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welcome
Thank you for purchasing the MEAP for Causal AI. You’ll want to have
established skills in scripting data science analyses to get the most benefit
from this book. You should also know basic probability concepts such as
conditional/joint probability, expectation, conditional independence, and
Bayes rule. The book provides a review of these concepts.

My path to causal inference was through computational Bayesian statistics
and probabilistic machine learning, techniques that, at their core, are
about simulation. I found it easier to understand hard ideas when I could
simulate them with code. If you are the same, this book is written for you.

When I entered the tech industry, I was surprised to find that causal inference
practitioners weren’t linking probabilistic machine learning and graphical
causality. Instead, for historical reasons (tech companies had hired
economists to tackle causal inference problems), causal inference was
presented as a laundry list of applied statistical and econometric methods. So
I started learning these techniques, and it immediately felt like a Sisyphean
task. That’s saying something, considering I already had a Ph.D. in statistics
and had already spent years working on causal inference. If you’ve tried to
learn causal inference and it also felt like drinking from a statistical firehose,
this book is written for you.

At the same time, an interesting thing was happening in the world of machine
learning; software libraries for probabilistic machine learning, especially for
deep probabilistic machine learning, were gaining widespread adoption.
Rather than explain the underlying statistical nuts and bolts of machine
learning, these opens source tools iteratively abstracted them away under an
accessible API.

That phenomenon of commodified inference motivated this book. The book’s
core thesis is that when we view a causal model as a special flavor of
probability model, then we can implement the causal models using
probabilistic machine learning tools. We can then use these tools’ inference



APIs to handle the nuts-and-bolts of the statistics, freeing us to have a code-
first focus on the high-level ideas that thread through that entire laundry list
of statistical methods. If you are interested in a two-birds-one-stone approach
to learning causal inference and probabilistic machine learning, this book is
written for you.

That said, this book will work through some of the elements of that laundry
list, namely the statistical methods for causal effect inference. We’ll focus on
the high-level intuition and the API for these methods in the DoWhy
library. This book is an excellent complement to books that do a more
traditional statistical deep dive into those methods. This high-level view will
also free us to explore causality in the context of cutting-edge machine
learning. If you’re interested in the causal foundations of representation
learning, algorithmic fairness, reinforcement learning, and attribution,
this book is written for you.

I hope you find the book as fun and interesting to read as it was to write.
Please check out www.altdeep.ai/p/causalAIbook for notebooks of the code
tutorials and other book notes. Also, please post any questions, comments, or
suggestions about the book in the liveBook discussion forum. Your feedback
is essential in developing the best book possible.

—Robert Osazuwa Ness

In this book

Copyright 2023 Manning Publications welcome brief contents 1 Introduction
to causal AI 2 Primer on probability modeling 3 Building a causal graphical
model 4 Testing the DAG with causal constraints 5 Connecting causality and
deep learning



1 Introduction to causal AI
This chapter covers

Defining Causal AI and causal data science
Describing how Causal AI is robust, explainable, and increases value
Making machine learning fairer with causal analysis
Extending probabilistic ML workflows and programming toolsets to
causal generative models
Exploring how the commodification of inference trend in ML empowers
causal modeling

This chapter will introduce some key motivations for learning causal AI. I’ll
start with what causal AI means and its importance to current data science
best practices and the current state-of-the-art of machine learning. I’ll also
give some intuition for how algorithmic causality could unlock the next wave
of AI.

Next, I’ll present a concrete example of the causal modeling workflow on the
MNIST image dataset, which is essentially the “hello world” of machine
learning. This machine learning example gives great insight while building
intuition with clear extensions to the more classical statistical data examples
of most causal inference texts (we’ll have several of those types of examples
in this book as well).

Finally, I talk about a trend I call the commodification of inference. This trend
motivates this book’s approach of using cutting-edge machine learning
frameworks like PyTorch to implement causal models and handle the
statistical heavy lifting of causal inference.

1.1 What is causal AI?

Causal reasoning is a crucial element to how humans understand, explain,
and make decisions about the world.  Causal AI means automating causal



reasoning with machine learning. Today’s learning machines have
superhuman prediction ability but aren't particularly good at causal reasoning,
even when we train them on obscenely large amounts of data.  In this book,
you will learn how to write algorithms that capture causal reasoning in the
context of machine learning and automated data science.

Though humans rely heavily on causal reasoning to navigate the world, our
cognitive biases make our causal inferences highly error-prone.  We
developed empiricism, the scientific method, and experimental statistics to
address our tendencies to make errors in causal inference tasks such as
finding and validating causal relations, distinguishing causality from mere
correlation, and predicting the consequences of actions, decisions, and
policies. Yet even empiricism still requires humans to interpret and explain
observational data (data we observe in passing). The way we interpret
causality from those different types of data is also error-prone. Causal AI
attempts to use statistics, probability, and computer science to help us surpass
these errors in our reasoning.

The difficulty of answering causal questions has motivated the work of
millennia of philosophers, centuries of scientists, and decades of statisticians.
But now, a convergence of statistical and computational advances has shifted
the focus from discourse to algorithms that we can train on data and deploy to
software.  It is now a fascinating time to learn how to build causal AI.

1.2 Why should I or my team care about causal data
science and AI?

I want to present some high-level reasons motivating the study of causal
modeling. These reasons apply to researchers, independent contributors, and
managers working on data science, machine learning, and other domains of
data-driven automated decision-making in general.

1.2.1 Better data science

Organizations in big tech and tech-powered retail have realized the
importance of causal inference and are paying big salaries to people with a



causal inference skill set. The main reason is that the goal of data science -
extracting actionable insights from data – is a causal task. Causal modeling
helps the data scientist achieve that goal in several ways.

Simulated experiments and causal effect inference

Causal effect inference – quantifying how much a cause (e.g., a promotion)
affects an effect (e.g., sales) is the most common goal of applied data science.
The gold standard for causal effect inference is randomized experiments,
such as an A/B test. The concepts of causal inference explain why
randomized experiments work so well; randomization eliminates non-causal
sources of statistical correlation.

More importantly, causal inference enables data scientists to simulate
experiments and estimate causal effects from observational data. Most data
in the world is observational data because most data is not the result of an
experiment. When people say “big data,” they almost always mean
observational data. When a tech company boasts of training a natural
language model on petabytes of Internet data, it is observational data. When
we can’t run a randomized experiment because of infeasibility, cost, or ethics,
causal inference enables data scientists to turn to observational data to
estimate causal effects.

Figure 1.1 Causal data science is a valuable tool no matter how small or big your data or how
easy it is to run experiments.



A common belief is that in the era of big data, it is easy to run a virtually
unlimited amount of experiments. If you can run unlimited experiments, who
needs causal inference? But even when you can run experiments at little
actual cost, there are often opportunity costs to running experiments. For
example, suppose a data scientist at an e-commerce company has a choice of
one thousand experiments to run and running each one would take time and
potentially sacrifice some sales or clicks in the process. Causal modeling
allows that data scientist to use results from a past experiment that answers
one question to simulate the results of a new experiment that would answer a
slightly different question. That means she could use past data to simulate the
results for each of these one thousand experiments and then prioritize the
experiments by those predicted to have the most impactful results in
simulation. She avoids wasting clicks and sales on less insightful
experiments.

Counterfactual Data science



Counterfactual questions have the form, “given what happened, what would
have happened if things had been different?” Causal modeling provides a
logical way to predict counterfactual outcomes. Data science that can infer
counterfactuals can answer critical business questions more directly.

For example, the TV show The Office was the most popular series on Netflix.
That posed a problem for Netflix because Netflix licenses The Office from
Comcast, which competes with Netflix through its own streaming service. If
Comcast decided to deny Netflix access to The Office, Netflix would be in
danger of losing subscribers who don’t watch much else. Thus, Netflix had a
strong incentive to find ways to encourage these subscribers to engage more
with other Netflix content.

Suppose you are a data scientist at Netflix. The company introduces the show
Space Force, which like The Office, casts actor Steve Carrell and has a
similar flavor of dry humor. The hope is that Space Force would act as a
“gateway drug” to greater engagement in other Netflix content.

The classical data science analysis divides heavy viewers of The Office into
those who watched Space Force and who didn’t, controls for other variables,
and looks for a statistically significant difference in their hours of
engagement in other content. This analysis would answer the question, “How
much does Space Force drive engagement among The Office watchers?” That
question is indeed relevant to the business problem of getting The Office
watchers to engage in other content.

However, consider the counterfactual questions you could answer with data
and a causal model. For example, consider those The Office watchers who
watched Space Force. What is the probability that had Space Force not been
introduced, they would have spent that time watching The Office?
Alternatively, what is the probability that had Space Force not been
introduced and if The Office were no longer available, they would have spent
that time watching content from a Netflix competitor? These questions get
more at the heart of the business problem.

Better attribution, credit assignment, and root cause Analysis



The “attribution problem” in marketing is perhaps best articulated by a quote
attributed to entrepreneur and advertising pioneer John Wanamaker:

Half the money I spend on advertising is wasted; the trouble is I don’t know
which half.

In other words, it is difficult to know what advertisement, promotion, or other
action caused a specific customer behavior, sales number, or another key
business outcome. Even in online marketing, where the data has gotten much
richer and more granular than in Wanamaker’s time, attribution remains a
challenge. For example, a user may have clicked after seeing an ad, but was it
that single ad view that led to the click, or was there a cumulative effect of all
the nudges to click they received over multiple channels? Causal modeling
addresses the attribution problem by using formal causal logic to answer
“why” questions, such as “why did this user click?”

Attribution goes by other names in other domains, such as “credit
assignment” and “root cause analysis.” The core meaning is the same; we
want to understand why a particular event outcome happened.

1.2.2 Causal machine learning is more robust, explainable, and
valuable to the organization

There are several ways causal machine learning provides benefits to an
organization engaged in engineering software reliant on machine learning. In
particular, I argue that causality makes machine learning more robust,
explainable, and valuable.

Figure 1.2 The properties of causal models offer machine learning engineering and DevOps teams
several benefits relative to large machine learning models.



More robust Machine Learning

Machine learning models lack robustness when differences between the
environment where the model was trained, and the environment where the
model is deployed, cause the model to break down. Examples of a lack of
robustness include:

Overfitting: The learning algorithm places too much weight on spurious
statistical patterns in the training data (and “held-out” data used for
parameter tuning). “Spurious” means these patterns appeared by random
chance and won’t likely appear in the environment where you hope to
deploy the model. Techniques such as cross-validation attempt to
ameliorate overfitting.
“Underspecification”[1]: Many equivalent configurations of a model
perform equivalently on test data but perform differently in the
deployment environment. One sign of “underspecificaton” is sensitivity
to arbitrary elements of the model’s configuration, such as a random
seed.
Data drift: As time passes, the characteristics of the data in the
environment where you deploy the model differ or “drift” from the
characteristics of the training data.



Some claim the way to address these issues is more data -- that given enough
data, deep learning architectures can learn anything. Only the machine
learning engineers at companies like Microsoft, Google, or Meta have the
luxury of virtually unlimited data and the millions of dollars of computational
budget to train models on all that data. And even for them, the adage
“correlation does not imply causation” remains true, even if it’s a deep
learning architecture learning that correlation from billions of points of data.

But these robustness problems do not condemn modern machine learning. 
Rather, they show we have work to do in discovering how to use causal
methods to enhance the state-of-the-art.  That is why Microsoft, Google,
Meta, and other tech companies deploy causal machine learning techniques to
make their machine learning services more robust.  It is also why notable
deep learning researchers are pursuing research combining deep learning with
causal reasoning.

Causal modeling enhances robustness by representing invariant causal
relationships between predictors and the predicted outcome. As a simple
example, if I collect data on temperature and air pressure in the tropical
coastal city of Honolulu, it will look much different than the temperature and
air pressure data collected in the high elevation city of Katmandu. But the
physics-based causal mechanisms connecting temperature and air pressure
are the same (invariant) no matter where I am on Earth.

Capturing that causal invariance helps avoid overfitting. From a causal
perspective, a “spurious statistical pattern” is a pattern that isn’t driven by
some underlying causal relationship. For example, we might call a correlation
between Nicolas Cage movie releases and drownings “spurious” because it’s
a random alignment of truly unrelated events. However, a causal modeler
might consider a correlation between ice cream sales and robberies as
originating from a shared cause of Summer heat; and thus, not spurious at all.

I had thought both were considered spurious correlations despite the former
having a common cause of ‘summer time warm’ and the latter being truly
random. In this book, we learn how causal models naturally avoid overfitting
by connecting statistical patterns in the data to causal structure in the world.

Modeling causal invariance also helps avoid underspecification. One core



contribution of formal causal inference is algorithms that tell you when a
causal prediction is “identified,” i.e., not “underspecified,” meaning a unique
answer exists given the assumptions and the data.

Finally, causal invariance helps with data drift. With the pressure/temperature
example, if I train a model on the Honolulu data, I’ll achieve better
performance on the Katmandu data if I can manage to encode the causal
invariance of that physical mechanism in the model’s architecture.

More explainable Machine Learning

The behavior of modern machine learning behavior can be hard to explain.
Explicability is particularly important in the context of business and
engineering. If your team deploys a predictive algorithm and it behaves in a
way that hurts your business, you don’t want to be stuck spouting machine
learning technobabble and handwaving when your boss asks you what
happened. You want a concise explanation that hopefully suggests ways to
avoid the problem in the future. As an engineer, you want that explanation
distilled down to a concise bug report that shows in simple terms the nature
of the error, what the correct output should have been, what inputs will
reproduce the error, and where the code logic starts to go awry given those
inputs. Armed with that explanation of the issue, you can efficiently fix the
problem.

Explicability also matters to third-party users of a machine learning-based
service. For example, suppose a product feature presents a user with a
recommendation. That user could need to know why the feature made them a
particular recommendation. An explanation is an essential element in
providing recourse so the user can get better results in the future. For
example, video streaming services often explain recommended content with
“Because you watched X,” where X is viewed content similar to the
recommended content. Instead, imagine richer content based on favored
genres, actors, and themes. Instead of promoting rabbit holes of similar
content, such explanations might suggest how you might explore unfamiliar
content that could expand your tastes and generate more valuable
recommendations in the future.



There are multiple approaches to explanation, such as analyzing node
activation in neural networks. But causal models are eminently explainable
because they directly encode easy-to-understand causal relationships in the
modeling domain. Indeed, causality is the core of explanation; to explain an
event means to provide the cause of the event[2]. Causal models provide
explanations in the language of the domain you are modeling (semantic
explanations) rather than in terms of the model’s architecture (“nodes” and
“activations” - syntactic explanations).

More Valuable Machine Learning

When a machine learning engineer trains and validates a machine learning
algorithm, she deploys it to a production environment, like any other set of
code. Once she does, it becomes an artifact that has value to the organization.

All else equal, a model artifact is more valuable if it has causal elements than
if it does not. We’ve already seen how robustness and explicability contribute
to value by reducing the cost of maintenance. If it is robust, it breaks less
often, and if it is explainable, you can figure out how to fix it when it does.

In addition, causal invariance allows the modeler to decompose some causal
models into smaller composable modules. These modules can be individually
and independently tested and validated, aligning with software engineering
best practices. Computer operations on these artifacts can execute separately,
enabling more efficient use of modern cloud computing infrastructure. For
large machine learning model artifacts, if we get additional training data or
discover an issue with the initial training data, one typically has to retrain the
model from scratch, which is often expensive. In contrast, we would only
need to retrain the modules of the causal model that are relevant to the new
data. Finally, your team can reuse components from old problems in models
attacking new problems if those problems overlap.

Figure 1.3 Causal models can be decomposed into components. This ability has benefits when
contrasted with large machine learning artifacts.



Training large machine learning artifacts is often more art than science,
relying on the intuition and experience of individual machine learning
engineers. When they leave the organization to move on to their next
opportunity, they take all of that intuition and experience with them. In
contrast, by virtue of being decomposable and explainable, it is easier for
your team to understand individual components of the model. Further, by
forcing the engineer to encode their causal knowledge about a problem
domain into the structure of the artifact, more of the fruits of their knowledge
and experience stays with the organization as valuable intellectual property
after that employee moves on.

These questions about how a modeling approach can translate into value for
the organization get less attention from the statistical and machine learning
research communities, who tend not to publish in business journals.



However, understanding this relationship is vital to managers responsible for
building business value on top of machine learning artifacts. It is also
essential for independent contributors (engineers and data scientists) who
want to be strategic about their careers.

1.2.3 Algorithmic Fairness

Suppose Bob applies for a business loan. A machine learning algorithm
predicts that Bob would be a bad loan candidate, so Bob is rejected. Bob is a
man. He got ahold of the bank’s loan data, and it shows that women and
gender non-binary individuals were more likely to have their loan
applications approved. So was this an “unfair” outcome?

We might say the outcome is “unfair” if, for example, the algorithm made
that prediction because Bob is a man. We might otherwise say if the
prediction is “fair” if it was due to factors relevant to Bob’s ability to pay
back the loan, such as his credit history, his line of business, or his available
collateral. Bob’s dilemma is another example of why we’d like machine
learning to be explainable, so we could analyze what factors in Bob’s
application lead to the algorithm’s decision.

Suppose the training data came from a history of decisions from loan officers,
some of whom harbored a gender prejudice that hurt men. For example, they
might have read the studies that show men are more likely to default in times
of financial difficulty, while women are more likely to rely on their families
and social relationships for help making debt payments. Based on those
studies, they decide to deduct points from their rating if the applicant is a
man.

Furthermore, when that data was collected, the bank advertised the loan
program on social media. When we look at the campaign results, we notice
that men who responded to the ad were, on average, less qualified than the
women who clicked on the ad. This discrepancy might have been because the
campaign was better targeted towards women, or because the average bid
price in online ad auctions was lower when the ad audience was a less
qualified man.



Figure 1.4 Statistical bias against gender could come from an algorithm directly penalizing
gender (unfair) and indirectly through gender discrepancies in applicants attracted by
advertising (fair). Causal inference can parse bias into fair and unfair sources.

Thus, we have two possible sources of statistical bias against men in the data.
One source of bias is from the online ad that attracted men who were, on
average, less qualified, leading to a higher rejection rate for men. The other
source of statistic bias comes from the prejudice of loan officers. One of these
sources of bias is arguably “fair” – it’s hard to blame the bank for online ad
auction pricing dynamics, and one of the sources is “unfair” – we can blame
the bank for sexist loan policies. But when we only look at the training data
without this causal context, all we’ll see is statistical bias against men. The
learning algorithm reproduced this bias when it made its decision about Bob.



One naïve solution is simply removing gender labels from the training data.
But it is reasonable to assume that even if those loan officers didn’t see an
explicit indication of the person’s gender, they could infer it from elements of
the application, such as the person’s name. Those sexist loan officers encode
their prejudicial views in the form of a statistical correlation between those
proxy variables for gender and loan outcome. The machine learning
algorithm would discover this statistical pattern and use it to make
predictions. As a result, you could have a situation where the algorithm
would produce two different predictions for two individuals who had the
same repayment risk but differed in gender, even if gender wasn’t a direct
input to the prediction. For these reasons, there is justified fear of how
widespread deployment of machine learning algorithms could adversely
impact our society by magnifying the unfair outcomes captured in our
society’s data.

However, causal analysis is instrumental in parsing algorithmic fairness
issues. In this example, we could use causal analysis to parse that statistical
bias into “unfair” bias due to sexism and bias due to “not unfair” factors like
online ad market dynamics (not unfair). Ultimately, we could use causal
modeling to build a model that only considered variables causally relevant to
whether or not an individual can repay a loan.

It is important to note that causal analysis is insufficient to solve algorithmic
fairness. Before applying causal analysis, all concerned parties need to agree
on what is fair and what isn’t. To illustrate, suppose that the social media ad
campaign served the loan ad to less women than to men and gender non-
binary individuals. Typically, there is more competition for the online
attention of people who identify as women. Thus, an ad campaign will serve
the ad less often to women because the highest bid on online ad auctions is
higher when the audience is a woman, resulting in fewer women seeing the
ad. The data will show a statistical bias against women due to the ad
campaign, but is this result unfair? Concerned parties would need to decide
how to balance the trade-off between gender fairness with the audience and
pricing fairness to advertisers who “have a right” to serve their ad if they win
the auction. Finding that consensus is not an easy task. But after we agree on
what’s fair and unfair, causal analysis can parse statistical bias into these two
categories.



1.2.4 Causal reinforcement learning, representation learning,
and the next AI wave

Incorporating causal logic into machine learning is already leading to new
advances in machine learning. For example, much of state-of-the-art deep
learning methods attempt to learn geometric representations of the objects
being modeled. However, these methods struggle with learning causally
meaningful representations. For example, a causally meaningful
representation of an image of a cat on a table wouldn’t have the cat floating
in midair if the table were removed. The challenge of building causally
meaningful representations presents an opportunity for those who are among
the first to forge new ground on this fascinating frontier.

Another example comes from a machine learning task called reinforcement
learning. In canonical reinforcement learning, learning agents ingest large
amounts of data and learn like Pavlov's dog; they learn actions that correlate
positively with good outcomes and negatively with bad outcomes. Daniel
Kahneman, in Nobel prize-winning work featured in his popular book
Thinking, Fast and Slow, argues that causal counterfactual mental predictions
define how humans make judgments and decisions. Humans take an
outcome, mentally rewind to the point of decision, and imagine how things
might have turned out had they made a different decision. If they imagine
things might have turned out better, they experience regret and update their
decision-making policies to avoid experiencing regret in the future. In other
words, humans not only learn from what happened, they also learn from what
might have happened.

Causal modeling approaches capable of learning complex causal
representations and conducting counterfactual reasoning are a path to new
algorithms that could automate these reasoning capabilities. Furthermore,
they can do so with machine learning’s uncanny ability to detect statistical
nuance in data and without the baggage of human cognitive biases.

People already working with neural networks when the deep learning wave
was gaining momentum did quite well career-wise.  The next wave of AI is
still taking shape, but it is clear it will fundamentally incorporate some
representation of causality. The goal of this book is to help you ride that



wave.

1.3 A machine learning-themed primer on causality

Let’s motivate an AI view of causality with a popular benchmark dataset used
in machine learning called MNIST. MNIST is a dataset of images of
handwritten digits, each labeled with the actual digit represented in the
image. Figure 1.5 illustrates multiple examples of the digits in MNIST.

Figure 1.5 Examples of images from MNIST. Each image in the dataset is an image of a written
digit, and each image is labeled with the digit it represents.

MNIST is essentially the “Hello World” of machine learning. It is primarily
used to experiment with different machine learning algorithms and to
compare their relative strengths. The basic prediction task is to take the



matrix of pixels representing each image as input and return the correct image
label as output.

1.3.1 Queries, probabilities, and statistics

Machine learning can use probability in analyses about quantities of interest.
Probabilistic machine learning models learn a probabilistic representation of
all the variables in that system. We can make predictions and decisions with
probabilistic machine learning models using a three-step process.

1. Pose the question: What is the question you want to answer?
2. Write down the math: What probability (or probability-related

quantity) will answer the question given the evidence or data?
3. Do the statistical inference: What statistical analysis will give you

(estimate) that quantity?

There is more formal terminology for these steps (namely “query, estimand,
and estimator”) but we’ll avoid the jargon for now. Instead, I’ll start with a
simple statistical example. Your step 1 might be “How tall are Bostonians?”
For step 2, you decide that knowing the mean height (in probability terms,
the “expected value”) of everyone who lives in Boston as the quantity will
answer your question. And step 3 might be to randomly select one hundred
Bostonians, and take their average height; statistical theorems guarantee that
this sample average is a close estimate of the true population mean.

Pose the question.

Now let’s extend that workflow to modeling MNIST images. Suppose this
we are looking at the

Figure 1.6 An ambiguous MNIST digit image.



MNIST image in Figure 1.6. In step 1, we articulate a question, such as
“given this image, what is the digit represented in this image?”

Write down the math.

In step 2, we want to find some probabilistic quantity that answers the
question given the evidence or data. In other words, we want to find
something we can write down in probability math notation that can answer
step 1. For our example with Figure 1.2, the “evidence” or “data” is the
image. Is the image a 4 or a 9? Let the variable I represent the image and D
represent the digit. In probability notation, we can write the probability the
digit is a 4 given the image as 

, where  is shorthand I being equal to some vector
representation of the image. We can compare this probability to 



, and choose the value of D that has the higher probability. Generalizing to all
ten digits, the mathematical quantity we want in step 2 is:

In plain English, this is “the value d that maximizes the probability that D
equals d given the image” where d is one of the ten digits (0-9).

Do the statistical inference.

Step 3 uses statistical analysis to assign a number to the quantity we
identified in step 2. There are any number of ways we can do this. For
example, we could train a deep neural network that takes in the image as an
input and predicts the digit as an output; we can design the neural net to
assign a probability to D=d for every value d.

1.3.2 Causality and MNIST

So how could causality feature in this analysis? Yann LeCun is a Turing
Award winner (AI’s Nobel prize) for his work on deep learning, and director
of AI research at Meta. He is also one of the three researchers behind the
creation of MNIST. He discusses the causal backstory of the MNIST data on
his personal website yann.lecun.com:

The MNIST database was constructed from NIST's Special Database 3 and
Special Database 1 which contain binary images of handwritten digits. NIST
originally designated SD-3 as their training set and SD-1 as their test set.



However, SD-3 is much cleaner and easier to recognize than SD-1. The
reason for this can be found on the fact that SD-3 was collected among
Census Bureau employees, while SD-1 was collected among high-school
students. Drawing sensible conclusions from learning experiments requires
that the result be independent of the choice of training set and test among the
complete set of samples. Therefore, it was necessary to build a new database
by mixing NIST's datasets.[3]

The authors mixed the two data sets because they argue that if one trained a
machine learning model solely on digits drawn by high schoolers’, it would
underperform when applied to digits drawn by bureaucrats. However, in real-
world settings, we want robust models that can learn in one scenario and
predict in another, even when those scenarios differ. For example, we want a
spam filter to keep working when the spammers switch from Nigerian princes
to Bhutanese princesses. We want our self-driving cars to stop even when
there is graffiti on the stop sign. Shuffling the data like a deck of cards is a
luxury not easily afforded in practical real-world settings.

Causal modeling leverages knowledge about the causal mechanisms
underlying how the digits are drawn that would help them generalize from
high school students to bureaucrats in the training data to high schoolers in
the test data. Figure 1.3 illustrates a causal graph, a popular and effective way
to represent causal mechanism.

Figure 1.7 An example causal graph representing generation of MNIST images.



This particular graph imagines that the writer determines the thickness and
curviness of the drawn digits, i.e., that high schoolers tend to have a different
handwriting style than bureaucrats. The graph also assumes that the writer's
identity is a cause of what digits they draw. Perhaps bureaucrats write more
1's, 0's, and 5's as these numbers occur more frequently in census work, while
high schoolers draw other digits more often because they do more long
division in math classes (this is a similar idea to how in topic models,
“topics” cause the frequency of words in a document). A causal modeling
approach would use this causal knowledge to train a predictive model that
could extrapolate from the high school training data to the bureaucrat test
data.

1.3.3 Causal queries, probabilities, and statistics

We answer questions like these with the same three-step analysis as above,
with a bit of added causal nuance:

1. 1. Pose the causal question: What is the question you want to answer?
2. Write down the causal math: What probability (or expectation) will



answer the causal question given the evidence or data?
3. Do the statistical inference: What statistical analysis will give you (or

“estimate”) that causal quantity?

Step 1: Pose the causal question.

We already asked, “Given this high schooler data, what would a bureaucrat’s
number 4 look like?” Here are examples of some causal questions we could
ask about our causal model.

"Is gender also a cause of how the image looks?” This question type is
called causal discovery (see chapter ?).
Assuming that stroke thickness is a cause of the image, we might ask,
“What would a 2 look like if it were as curvy as possible?" That is
intervention prediction (chapter ?).
"How much does the writer’s identity (high schooler vs. bureaucrat)
affect the look of the image?” Causal effect estimation (this chapter, and
chapter ?).
“Given an image, how would it have turned out differently if the stroke
curviness were heavier?" Counterfactual reasoning (chapter ?).
“What should the stroke curviness be to get an aesthetically ideal
image?” Causal decision-making and agent modeling (chapter ?).
“The image looks strange? Was it because strokes were too curvy?”
Actual causality, attribution, and explanation (chapter ?).

Step 2: Write down the causal Math.

Causal inference theory largely focuses on step 2. In non-causal models, we
rely purely on statistical correlation. But as the saying goes, correlation does
not imply causation. To move from correlation to causation, we need causal
assumptions. Causal graphs such as Figure 1.5 encode those assumptions in
graphical form. Causal theory such as something called the do-calculus tells
us how to turn those assumptions into the desired causal math. Much of that
theory is readily implemented as graph-based algorithms in software
packages.



Step 3: Do the statistical inference.

In the causal setting, the usual questions of statistical analysis apply, such as
the trade-offs between bias and variance, scalability to large data,
parallelizability, etc. This book takes the strong view that we should rely on
statistical modeling and machine learning frameworks to handle step 3, and
focus on honing our skills on steps 1 and 2.

1.4 Causality and the commoditization of inference

Note that steps 1 and 2 are up to us humans. We need to determine the
questions we want to answer, and we need to determine what math is enough
to answer our question. Indeed, in most cases, step 2 is automated by
algorithms called “identification algorithms.” So most of our focus goes to
step 1. People who want to tackle Step 3 need varying degrees of knowledge
of statistics and optimization, depending on the problem domain. However,
“the commodification of inference” trend means that we can rely on modern
machine learning frameworks to handle the heavy lifting of step 3.

The term “inference” is overloaded. Here, I use it as a catch-all term for the
act of quantifying something from data. Examples of inference include:

Calculating the average of or correlation between a set of measurements
Fitting the weight parameters of a linear regression model or deep neural
network.
Calculating a p-value or a confidence interval.
Running a Bayesian sampling algorithm.
Generating a prediction or a forecast.

“The commodification of inference” refers to the fact that modeling
frameworks increasingly automate away the statistical heavy lifting of
inference tasks. For example, much of modern statistics and machine
learning, including deep learning, rely on gradient-based optimization to fit
model parameters or “weights.” In deep learning, gradient-based optimization
at one time required modelers to specify complex derivatives of functions in
the model manually. Then, we saw the emergence of differential
programming frameworks such as TensorFlow and PyTorch that calculate



gradients automatically. Even then, model-builders had to specify a complex
set of “hyperparameters” that configure the learning algorithm. The ability to
optimize hyperparameters is an essential, albeit tedious, skill in deep learning
job candidates. But eventually, differential programming frameworks came to
automate hyperparameter optimization – that job skill is becoming less
essential as this task becomes commoditized.

We’ve seen similar trends in the world of probabilistic machine learning – a
broad bag that includes statistical models and machine learning methods that
use algorithms to derive probability distributions from data. Software for
probabilistic graphical models and Bayesian models provided inference
algorithms that worked automatically after one specified the model. At one
time, if one wanted to use an inference algorithm Markov Chain Monte Carlo
to estimate a model parameter from data, they needed a solid grasp of
probability theory and be adept at writing data structures and algorithms in a
low-level programming language like C. Now frameworks like Stan, PyMC,
and Pyro provide an implementation of MCMC that doesn’t require the user
to understand anything beyond how to interpret the algorithm’s results.
Finally, those differential programming frameworks also allow one to use
cutting-edge deep learning abstractions to do approximate probabilistic
inference.

A key element of this trend is that the frameworks that enable this
commoditization are universal modeling frameworks. For example, it is not
as though PyTorch is specific to natural language models and TensorFlow is
only used for computer vision, nor is Stan for biology while PyMC is for
finance. Instead, these frameworks provide modeling abstractions that are
domain-independent and provide a large amount of flexibility in how the
statistical model is specified.

Most texts on causal inference focus on various statistical methods for
estimating causal effects. Indeed, when I’ve taught workshops on causal
modeling, a common reason for joining is a professional need to learn
specific causal effect methods like difference-in-differences or propensity
score matching. Understanding what statistical methods analysts in your
problem domain use and why they are popular is indeed important,
particularly if one is to maintain data pipelines built around these tools and



debug them when they fail.

However, in contrast to those texts, we make a strong bet that as inference
continues to get commodified by universal frameworks, those universal
frameworks will handle the statistical nuts and bolts of these various causal
inference methods. For example, chapter ??? illustrates the use of Microsoft
Research library DoWhy to estimate a causal effect using several different
causal effect estimation methods; DoWhy allows you to switch between these
methods simply by changing an argument to a function or a method, much as
you can toggle between models in scikit learn.

The assumption frees us up to focus on a high-level of causal modeling that
unifies the many specific statistical methods for causal inference. Secondly,
we can work with programming frameworks that allow us to specify models
at that high level and rely on the commoditization of inference to do the
heavy lifting for us. In this book, we specifically rely on Python-based
graphical modeling framework pgmpy, and PyTorch-based generative
machine learning framework Pyro[4], which works well with causal models.
Rather than slogging through each individual statistical estimation procedure
without knowing how they tie together, we can pursue a global approach,
using cutting-edge machine learning technology, compare procedures based
on their compute time and outputs, and be in an excellent position to deep
dive into individual statistical procedures if and when we need to.

1.5 Summary

Causal AI seeks to augment statistical learning and probabilistic
reasoning with causal logic.
Causal analysis helps data scientists extract more causal insights from
observational data (the vast majority of data in the world) and
experimental data.
When data scientists can’t run experiments, causal analysis can simulate
experiments from observational data.
When data scientists can run experiments, data scientists can still
simulate experiments and prioritizing actual experiments by interesting
simulated outcomes.
Causal analysis also helps data scientists have more business impact



through algorithmic counterfactual reasoning and attribution.
Causal analysis also makes machine learning more robust, explainable,
and valuable to the organization. Causal models are easier for your
employees and colleagues to understand and maintain, and capture
employee knowledge and effort as intellectual property.
Causal analysis is useful for formally analyzing fairness in predictive
algorithms and for building fairer algorithms by parsing ordinary
statistical bias into its causal sources.
Types of causal inference tasks include causal discovery, intervention
prediction, causal effect estimation, counterfactual reasoning,
explanation, and attribution.
The way we build and work with probabilistic machine learning models
can be extended to causal generative models implemented in
probabilistic machine learning tools such as PyTorch.
The commodification of inference is a trend in machine learning refers to
how universal modeling frameworks like PyTorch continuously
automate the nuts and bolts of statistical learning and probabilistic
inference.
The commodification of inference reduces the need for the modeler to be
an expert at the formal and statistical details of causal inference and
focus on turning domain expertise into better causal models of their
problem domain.
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[4] At the time of writing, pgmpy and Pyro tend to be light on documentation.



For pgmpy, the Python is pretty basic, so I suggest general pedagogy on
probabilistic graphical models and Bayesian networks. For Pyro, most of the
bugs you encounter will be Pytorch bugs, so Pytorch tutorials will help.
Beyond that, look to books and tutorials on probabilistic machine learning.



2 Primer on probability modeling
This chapter covers

An introduction to the pgmpy and pyro libraries
Probability theory essentials for causal modeling
Computational probability essentials for causal modeling
Statistics essentials for causal modeling

Chapter 1 motivated learning how to code models for causal inference. It also
motivated why would want to tackle causal modeling with probabilistic
machine learning, which roughly refers to machine learning models that use
probability to simulate data and model uncertainty. The probabilistic machine
learning approach to causality makes causal modeling more intuitive and
utilizes cutting-edge tools like Pytorch. This chapter introduces the concepts
from probability, statistics, modeling, inference, and even philosophy that we
will need to implement key ideas from causal inference and implement the
probabilistic machine learning approach.

This is not a mathematically exhaustive introduction to these ideas. I focus on
what is needed for the rest of this book and omit the rest. This chapter also
introduces pgmpy and pyro as modeling tools.

Any data scientist seeking causal inference expertise should not neglect the
practical nuances of probability, statistics, machine learning, and computer
science. See the book notes at www.altdeep.ai/p/causalAIbook for
recommendations for resources where you can get deeper introductions or
review materials.

2.1 Primer on probability

In this section, I review the probability theory you need to work with this
book. These are just few basic mathematical axioms and their logical
extensions without yet adding any real-world interpretation. Let's start with



the concrete idea of a simple three-sided die (these exist).

2.1.1 Random variables and probability

A random variable is a variable whose possible values are numerical
outcomes of a random phenomenon. These values can be discrete or
continuous. For example, the values of a discrete random variable
representing a three-sided dice roll could be {1, 2, 3}. Alternatively, in 0-
indexed programming language like Python, it might be better to use {0, 1,
2}. Similarly, a discrete random variable representing a coin flip could have
outcomes {0, 1}. Alternatively, they could be {True, False} assuming our
programming languages let us treat Booleans (True/False) as integers (1/0)
when we need to do random variable math.

The standard notation is to write random variables with capitals like X, Y,
and Z. For example, suppose X represents a dice roll with outcomes {1, 2, 3}
and the outcome represents the number on the side of the dice. X=1 and X=2
represents the events of rolling a 1 and 2 respectively. If we want to abstract
away the specific outcome with a variable, we typically use small case. For
example, I would use “X=x” to represent the event “I rolled an ‘x’!” where x
can be any value in {1, 2, 3}.

Each outcome of a random variable has a probability value. The probability
value is often called a probability mass for discrete variables and probability
density for continuous variables. For discrete variables, probability values are
between zero and one and summing up the probability values for each
possible outcome yields 1. For continuous variables, probability densities are
greater than zero, and integrating the probabilities densities over each
possible outcome yields 1.

Given a random variable with outcomes {0, 1} representing a coin flip, what
is the probability value assigned to 0? What about 1? At this point, we just
know the two values are between zero and one and sum to one. To go beyond
that, we have to talk about how to interpret probability. Before we do that,
let’s hash out a few more concepts.

2.1.2 Probability distributions and distribution functions



A probability distribution function is a function that maps the random
variable outcomes to a probability value. For example, if the outcome of a
coin flip is 1 (heads) and the probability value is 0.51. The distribution
function maps 1 to 0.51. I stick to the standard notation P(X=x), as in P(X=1)
= 0.51. For longer expressions, when the random variable is obvious, I drop
the capital letter and keep the outcome, so P(X=x) becomes P(x), and P(X=1)
becomes P(1).

A probability distribution is some representation the probability distributions
mapping of the outcomes to the probability values. If the random variable has
a finite set of discrete outcomes, it looks like a table. For example, a random
variable representing outcomes {1, 2, 3} might look like Figure 2.1.

Figure 2.1 A simple tabular representation of a discrete distribution.

In this book I adopt the common notation of P(X). In programming terms,
think of this as a distribution function that hasn’t yet been called on a specific
outcome; the uncalled function P(X) represents all the possible arguments
(outcomes) and corresponding return values (probability values).

To implement this object in pgmpy, we’ll use the DiscreteFactor class.

Listing 2.1 Implementing a discrete distribution table in pgmpy

from pgmpy.factors.discrete import DiscreteFactor

dist = DiscreteFactor(

    variables=["X"],    #A

    cardinality=[3],    #B

    values=[.45, .30, .25],    #C

    state_names= {'X': ['1', '2', '3']}    #D

)



 

“phi(X)” is the probability value assigned to each outcome of X. One thing to
note is that these phi values don’t need to sum to one. For example, I can
multiple each probability value by one hundred as follows.

dist = DiscreteFactor(

    variables=["X"],

    cardinality=[3],

    values=[45, 30, 25],

    state_names= {'X': ['1', '2', '3']}

)

 

print(dist)

 

+------+----------+

| X    |   phi(X) |

+======+==========+

| X(1) |  45.0000 |

+------+----------+

| X(2) |  30.0000 |

+---3--+----------+

| X(2) |  25.0000 |

+------+----------+

pgmpy relaxes the constraint to sum to one is because the relaxation is useful
in some algorithms. We can always normalize to obtain proper probability
values.

dist.normalize()    #A

 

print(dist)

 

+------+----------+

| X    |   phi(X) |

+======+==========+

| X(1) |   0.4500 |

+------+----------+

| X(2) |   0.3000 |

+------+----------+

| X(3) |   0.2500 |

+------+----------+

 

2.1.3 Joint probability and conditional probability



Often, we are interested in reasoning about more than one random variable.
Suppose in addition to the random variable X in Figure 2.1, there was an
additional random variable Y with two outcomes {0, 1}. Then there is a joint
probability distribution function that maps each combination of X and Y to a
probability value.

As a table, it could look like Figure 2.2.

Figure 2.2 A simple representation of a tabular joint probability distribution.

The DiscreteFactor object in s will represent joint distributions as well.

Listing 2.2 Modeling a joint distribution in pgmpy

joint = DiscreteFactor(

    variables=['X', 'Y'],   #A

    cardinality=[3, 2],    #B

    values=[.25, .20, .20, .10, .15, .10],   #C 

    state_names= {    

        'X': ['1', '2', '3'],    #D

        'Y': ['0', '1']    #D

    }

)

 

print(joint)

 

+------+------+------------+

| X    | Y    |   phi(X,Y) |

+======+======+============+



| X(1) | Y(0) |     0.2500 |

+------+------+------------+

| X(1) | Y(1) |     0.2000 |

+------+------+------------+

| X(2) | Y(0) |     0.2000 |

+------+------+------------+

| X(2) | Y(1) |     0.1000 |

+------+------+------------+

| X(3) | Y(0) |     0.1500 |

+------+------+------------+

| X(3) | Y(1) |     0.1000 |

+------+------+------------+

 

Note that the sum of all the sum to 1. Further, when we marginalize (i.e.
“sum over” or “integrate over”) Y across the rows, we recover the original
distribution P(X), (AKA the marginal distribution of X).

Figure 2.3 Marginalizing over Y yields the marginal distribution of X.

The marginalize method will accomplish sum over the specified variables for
us.

print(joint.marginalize(variables=['Y'], inplace=False))

 

+------+----------+

| X    |   phi(X) |

+======+==========+



| X(1) |   0.4500 |

+------+----------+

| X(2) |   0.3000 |

+------+----------+

| X(3) |   0.2500 |

+------+----------+

Setting the in-place argument to False gives us a new marginalized table
rather than modifying the original joint distribution table.

Similarly, when we marginalize X over the columns, we get P(Y).

Figure 2.4 Marginalizing over X yields the marginal distribution of Y.

print(joint.marginalize(variables=['X'], inplace=False))

 

+------+----------+

| Y    |   phi(Y) |

+======+==========+

| Y(0) |   0.6000 |

+------+----------+

| Y(1) |   0.4000 |

+------+----------+

I’ll use the notation P(X, Y) to represent joint distribution and P(X=x, Y=y)
to represent an outcome probability. For shorthand I write P(x, y). For
example, in Figure 2.2, P(X=1, Y=0) = P(1, 0) = 0.25. We can define a joint
distribution on any number of variables; if there where three variables {X, Y,



Z}, I’d write the joint distribution as P(X, Y, Z).

In this tabular representation of the joint probability distribution, the number
of cells increases exponentially with each additional variable. There are some
“canonical” joint probability distributions (such as the multivariate Normal
distribution, I’ll show more examples in section 2), though not many. For that
reason, in multivariate settings, we tend to work with conditional probability
distributions.

The conditional probability of Y given X is .
Intuitively, P(Y|X=1) refers to the probability distribution for Y conditional
on X being 1. For the tabular representation of the joint distribution, this is
just dividing the cells in the joint probability table with marginal probability
values, as in Figure 2.5.

Figure 2.5 Derive the conditional probability distribution by dividing the joint distribution by a
marginal distribution.

Note that now the columns on the conditional probability table in Figure 2.5
sum to 1.

The pgmpy library allows us to do this division using the “/” operator.

print(joint / dist)



 

+------+------+------------+

| X    | Y    |   phi(X,Y) |

+======+======+============+

| X(1) | Y(0) |     0.5556 |

+------+------+------------+

| X(1) | Y(1) |     0.4444 |

+------+------+------------+

| X(2) | Y(0) |     0.6667 |

+------+------+------------+

| X(2) | Y(1) |     0.3333 |

+------+------+------------+

| X(3) | Y(0) |     0.6000 |

+------+------+------------+

| X(3) | Y(1) |     0.4000 |

+------+------+------------+

However, the more direct way in pgmpy to specify a conditional probability
distribution table is with the TabularCPD class:

from pgmpy.factors.discrete.CPD import TabularCPD

PYgivenX = TabularCPD(

    variable='Y',    #A

    variable_card=2,    #B

    values=[

        [.25/.45, .20/.30, .15/.25],    #C

        [.20/.45, .10/.30, .10/.25],    #C

    ], 

    evidence=['X'],

    evidence_card=[3],

    state_names = {

        'X': ['1', '2', '3'],

        'Y': ['0', '1']

    })

 

print(PYgivenX)

 

+------+--------------------+---------------------+------+

| X    | X(1)               | X(2)                | X(3) |

+------+--------------------+---------------------+------+

| Y(0) | 0.5555555555555556 | 0.6666666666666667  | 0.6  |

+------+--------------------+---------------------+------+

| Y(1) | 0.4444444444444445 | 0.33333333333333337 | 0.4  |

+------+--------------------+---------------------+------+

 



The argument variable_card is the cardinality of Y, and evidence_card is
the cardinality of X.

Conditioning as an operation

In the phrase “conditional probability”, “conditional” is an adjective. It is
useful to think of “condition” as a verb. You condition a random variable like
Y on another random variable X. For example, in Figure 2.5, I can condition
Y on X=1, and get essential a new random variable with the same outcomes
values as Y but with a probability distribution equivalent to P(Y|X=1).

For those with more programming experience, think of conditioning on X = 1
as filtering on the event X == 1, as in “what is the probability of distribution
of Y when X == 1?”

Thinking of conditioning as a verb helps us understand how to implement
conditional probability an operation performed on objects representing
random variables. As we’ll see, it also contrasts nicely with the core causal
modeling concept of “intervention” where we “intervene” on a random
variable.

Pyro implements conditioning as an operation with the pyro.condition
function. We’ll explore this in chapter 3.

2.1.4 The Chain Rule, the law of total probability, and Bayes
Rule

From the basic axioms of probability, we can derive the chain rule of
probability, the law of total probability, and Bayes rule. These laws of
probability that are especially important in the context of probabilistic
modeling and causal modeling, so we highlight briefly.

The chain rule of probability states that we can factorize a joint probability
into the product of conditional probabilities.  For example P(X, Y, Z) can be
factorized as follows:



We can factorize in any order we like.  Above the ordering was X, then Y,
then Z.  However, Y-then-Z-then-X or Z-then-X-then-Y and other orderings
are just as valid.

The chain rule is important from a modeling and a computational perspective.
The challenge of implementing a single object that represents P(X, Y, Z) is
that it would need to map each combination of possible outcomes for X, Y,
and Z to a probability value. The chain rule lets us break this into three
separate tasks for each factor in a factorization of P(X, Y, Z). The law of
total probability allows you to relate marginal probability distributions
(distributions of individual variables) to joint distributions: .

In the case where X is a continuous random variable, we integrate over X
rather than summing over X. For example, suppose we have a distribution on
X and Y denoted P(X, Y) and want to derive the marginal distribution of X,
P(X). The law of total probability tells us to the distribution over Y. We see
this in Figure 2.3 where we summed over Y in the rows to get P(X).

Finally, Bayes rule is a simple equation that follows from the chain rule and

the law of total probability: . By itself, the rule is not
particularly interesting. Bayesianism becomes interesting when it comes to its
philosophy around modeling, inference, and reasoning about the world.

2.1.5 Parameters and parameter-based complexity

Suppose I wanted to implement in code an abstract representation of a
probability distribution, like the tabular distribution in Figure 2.1, that I could
use for different finite discrete outcomes. To start, if I were to model another



three-sided die, it might have different probability values. So, what I want to
keep is the basic structure as in Figure 2.6.

Figure 2.6 The scaffolding for a tabular probability distribution data structure.

In code, I could represent this as some object type that has a constructor that
takes two arguments ρ1 and ρ2 (“ρ” is the Greek letter “rho”).

Figure 2.7 Adding parameters to the data structure.

The reason the third probability value is a function of the other two (instead
of ρ3) is because the probability values must sum to one. These set of two
values {ρ1, ρ2} are the parameters of the distribution. In programming terms,
I could create some data type that represents of a table with six values. Then
when I want a new distribution, I construct a new instance of this type with
these five parameters as arguments.

Finally, perhaps I want my data structure to handle a prespecified number of



outcomes. In that case, I’d need a parameter for the number of outcomes.
Let’s denote that with the Greek letter kappa κ. So, my parameterization in
{κ, ρ1, ρ2, … ρκ-1}.

In the pgmpy classes DiscreteFactor and TabularCPD, the ρ’s where the list
of values passed to the “values” argument, and the κ corresponds to the
values passed to the cardinality/variable_card/evidence_card arguments.

Or suppose I wanted to write code that operated on different shapes. I could
write a representation for a circle shape, and then instantiate the circle by
specifying a radius parameter. I could write a representation for a rectangle
shape, then instantiate the rectangle with height and width parameters.
Similarly, we can instantiate probability distributions with a set of
parameters.

Greeks vs. Romans

In this book, use Roman letters (A, B, and C) to refer to random variables
representing objects in the modeling domain, such as “dice roll” or “GDP”
and I use Greek letters for so-called “parameters.” “Parameters” in this
context refers to values that characterize the probability distributions of the
Roman-lettered variables. This distinction between “Greeks” and “Romans”
is not as important in statistics, for example a Bayesian statistician treats both
Romans and Greeks as random variables. However, in causal modeling the
difference matters because Romans can be causes and effects, while Greeks
serve to characterize the statistical relationship between causes and effects.

2.1.6 Canonical classes of probability distribution

There are several common classes of distribution functions. For example, the
tabular examples we just looked are examples from the class of Categorical
distributions. The Bernoulli distribution class is a special case of the
Categorical class when there are only two possible outcomes. There are other
canonical distribution classes appropriate for continuous, bounded, or
unbounded sets of variables. For example, the Normal (Gaussian) distribution
class illustrates the famous “bell curve.”



Figure 2.8 A common set of canonical probability distributions. Connected distributions are
mathematically related. Light-colored distributions are discrete distributions, dark-colored
distributions are continuous.

I use the term “class” (or, perhaps more ideally, “type”) in the computer
science sense because the distribution isn’t realized until we assign our
Greek-lettered parameters. For example, for a Normal (Gaussian) distribution
class the probability distribution function is:

Here, μ and σ are the parameters. Figure 2.8 illustrates several popular



canonical distributions. The arrows between the distributions highlight
adjustments to the mathematical specification that convert one distribution
into another.

Types of parameters

In probabilistic modeling settings it is useful to have an intuition for how to
interpret canonical parameters. To that end, think of the probability in a
distribution as a scarce resource that must be shared across all the possible
outcomes; some outcomes may get more than others but at the end of the day,
it all must sum/integrate to 1. Parameters characterize how the finite
probability is distributed to the outcomes.

As an analogy, we’ll use a city with a fixed population. The parameters of the
city determine where that population is situated. Location parameters, such as
the Normal distribution’s “μ” (μ is the mean of the Normal, but not all
location parameters are means) is like pin that drops down when you search
the city’s name in Google Maps. The pin characterizes a precise point we
might call the “city center.” In some cities most of the people leave near the
city center, and it gets less populous the further away from the center you go.
But in other cities, other non-central parts of the city are densely population.
Scale parameters, like the Normal’s “σ,” (σ is the standard deviation of a
Normal, but not all scale parameters are standard deviation parameters).
determine the spread of the population; Los Angeles has a high scale
parameter. A shape parameter (and it’s inverse the “rate parameter”) affects
shape of a distribution in a manner that is not simply shifting it (as a location
parameter does) or stretching/shrinking it (as a scale parameter does). As an
example, think of the skewed shape of Hong Kong, which has a densely
packed collection of skyscrapers in the downtown area, while the more
residential Kowloon has shorter buildings spread over a wider space.

The pyro library provides canonical distributions as modeling primitives. The
pyro analog to a discrete categorical distribution table is a Categorical object:

Listing 2.3 Canonical parameters in Pyro

import torch

from pyro.distributions import Bernoulli, Categorical, Gamma, Normal    #A



 

print(Categorical(probs=torch.tensor([.45, .30, .25])))    #B

print(Normal(loc=0.0, scale=1.0))

print(Bernoulli(probs=0.4))

print(Gamma(concentration=1.0, rate=2.0))

 

Categorical(probs: torch.Size([3]))    #C

Normal(loc: 0.0, scale: 1.0)    #C

Bernoulli(probs: 0.4000)    #C

Gamma(concentration: 1.0, rate: 2.0)    #C

 

Rather than providing a probability value, the log_prob method will provide
the natural log of the probability value because log probabilities have
computational advantages over regular probabilities. Exponentiating (taking 

 where  is the log probability) converts back to the probability scale. For
example, we can create a Bernoulli distribution object with a parameter value
of .4.

bern = dist.Bernoulli(0.4)

That distribution assigns a .4 probability to the value 1.0. However, we can
only get the log probability. But we can use the exp function in the math
library to convert back to the probability scale.

lprob = bern.log_prob(torch.tensor(1.0))

 

import math

math.exp(lprob)

 

0.3999999887335489

It is close but not the same as .4 due to numerical error.

Conditional probability with canonical distributions

There are few canonical distributions commonly used to characterize sets of
individual random variables, such as random vectors or matrices. However,
we can use the chain rule and conditional independence to factor and simplify
a joint probability distribution into conditional distributions we can represent
with canonical distributions. For example, we could represent P(y|x, z) with



the following Normal distribution:

Where the location parameter μ(x,z) is a function of x and z. An example is
the following linear function:

Other functions, such as neural networks, are possible as well. These β
parameters are typically called weight parameters in machine learning.

2.1.7 Visualizing distributions

In probabilistic modeling and Bayesian inference settings we commonly
conceptualize distributions in terms of visuals. In the discrete case, a common
visualization is the bar plot. For example, we can visualize the probabilities in
Figure 2.1 as the bar-plot in Figure 2.9.

Figure 2.9 Visualization of a discrete probability distribution.



Note that is not a histogram, I’ll highlight the distinction in section 2.3.

We still use visualizations when the distribution has a non-finite set of
outcomes. For example, Figure 2.10 overlays two distributions functions; a
discrete Poisson distribution and a continuous Normal (Gaussian) distribution
(I specified the two distributions in such a way that they overlapped). The
discrete Poisson has no upper bound on outcomes (it’s lower bound is 0), but
the probability tapers off for higher numbers, resulting in smaller and smaller
bars until the bar becomes too infinitesimally small to draw. We visualize the
Normal by simply drawing the probability distribution function as a curve in
the figure. The Normal has no lower or upper bound, but the further way to
get from the center, the smaller the probability values get. Each block in
Figure 2.10 illustrates a possible visualization for the popular named
distributions (though the shapes can of course vary). The continuous
distributions have dark grey visualizations and the discrete distributions have
light grey visualizations.

Figure 2.10 A continuous Normal distribution (solid line) approximates a discrete Poisson
distribution.



Visualizing conditional probability distributions involves mapping each
conditioning variable to some element in the image. For example, in Figure
2.11, X is discrete, and Y conditioned on X has a Normal distribution where
the location parameter is a function of X.

Figure 2.11 A visualization of the conditional probability distribution of continuous Y given
discrete X.

Since X is discrete, it is simplest to map X to color and overlay the curves for
P(Y|X=1), P(Y|X=2), and P(Y|X=3). However, if we wanted to visualize
P(Y|X, Z), we’d need to map Z to an aesthetic element other than color, such
as a third axis in a pseudo-3D image or rows in a grid of images. But there is



only so much information we can add to with a 2D colored image.
Fortunately, conditional independence helps us reduce the number of
conditioning variables.

2.1.8 Independence and conditional independence

Two random variables are independent if, informally speaking, observing an
outcome of one random variable does not affect the probability of outcomes
for the other variable, i.e.

. We denote this as X ⟂ Y.  If two variables are not independent,
then they are dependent, which we write as .

Two dependent variables can become conditionally independent given other
variables.  For example, X ⟂ Y | Z means that X and Y may be dependent (X
⟂̷ Y) but they are conditionally independent given Z. In other words, if X ⟂̷
Y and X ⟂ Y | Z, then it is not true that P(y|x) ≠ P(y) but it is true that P(y|x,
z) = P(y|x).

Independence is powerful tool for simplification

Independence is a powerful tool for simplifying representations of probability
distributions. Consider a joint probability distribution P(W, X, Y, Z).
Suppose we represented it as a table. The number of cells in the table is the
product of the number of possible outcomes each for W, X, Y, and Z. We
could use the chain rule to do break the problem up into factors {P(W),
P(X|W), P(Y|X, W), P(Z|Y, X, W)}, but the total number of parameters
across these factors doesn’t change and thus the aggregate complexity is the
same.

However, what if X ⟂ W? Then P(X|W) reduces to P(X). What if Z ⟂ Y|X?
Then P(Z|Y, X, W) reduces to P(Z| X, W). Every time we can impose a
pairwise conditional independence condition as a constraint on the joint
probability distribution, we can reduce the complexity of the distribution by a
large amount. Indeed, much of model building and evaluation in statistical
modeling, regularization in machine learning, and deep learning techniques
such as “drop-out” are either direct or implicit attempts to impose conditional



independence on the joint probability distribution underlying the data.

Conditional independence and causality

Conditional independence is fundamental to the causal modeling. Causality
relationships lead to conditional independence between correlated variables.
That fact allows us to learn and validate causal models against evidence of
conditional independence. In chapter 4, we’ll explore the relationship
between conditional independence and causality in formal terms.

2.1.9 Expected value

The expected value of a random variable with a finite number of outcomes is
the weighted average of all possible outcomes, where the weight is
probability of that outcome. The expected value is synonymous with the
mean of the random variable’s distribution.

In the case of a continuum of possible outcomes, the expectation is defined
by integration.

Some of causal quantities we’ll be interested in calculating will be defined in



terms of expectation. Those quantities only reason about the expectation, not
how the expectation is calculated. It is easier to get an intuition for a problem
when working with the basic arithmetic of discrete expectation rather than
integral calculus of the continuous case. So, in this book, when there is a
choice, I use examples with discrete random variables and discrete
expectation. The causal logic in those examples all generalize to the
continuous case.

In probabilistic modeling, we are frequently interested in the expectation of a
function of a random variable. The expectation of a function f(X) is:

An example is variance, which is the expectation of the function f(X) = (X-
E(X))2.

There are many interesting mathematical properties of expectation. In this
book, we care about the fact that conditional expectations simplify under
conditional independence:

If X ⟂ Y, then E(X|Y) = E(X). If X ⟂ Y|Z, then E(X|Y,Z) = E(X|Z)

Other than this, the most important property is the linearity of the
expectation; meaning that the expectation passes through linear functions.
Here are some useful reference examples of the linearity of expectation:

For random variables X and Y: E(X + Y) = E(X) + E(Y) and E(åX) =
åE(X)
For constants a and b: E(aX + b) = aE(X) + b
If X only has outcomes 0 and 1, and E(Y|X) = aX + b, then E(Y|X=1) –
E(Y|X=0) = a. (Spoiler alert: this one is important for linear regression-
based causal effect inference techniques).

In several canonical distributions, the expectation maps to a function of the
parameters. In some cases, such as in the Normal distribution, the location
parameter is the expectation (i.e., the distribution mean, and the scale



parameter is the standard deviation, the square root of the variance). But the
location parameter and the expectation are not always the same. For example,
the Cauchy distribution has a location parameter, but its expected value/mean
is undefined.

In the next section, we introduce how to represent distributions and calculate
expectations using computational methods.

2.2 Computational Probability

We need to code these ideas from probability to use them in our models. In
the previous section, we saw how to code up a probability distribution for a
three-sided die. But how do we code up rolling a three-sided die? How do we
write code representing two dice rolls that are conditionally independent?
While we're at it, how do we get a computer to do the math that calculates an
expectation? How do we get a computer, where everything is deterministic,
to roll dice so that the outcome is unknown beforehand?

2.2.1 The physical interpretation of probability

So, I have a three-sided die. I have some probability values assigned to each
outcome on the die. What do those probability values mean? How do we
interpret them?

Suppose I repeatedly rolled the die and kept a running tally of how many
times I saw each outcome. Firstly, the roll is random, meaning that though I
roll it the same way each time, I get varying results. That said, the physical
shape of the die affects those tallies; if one face of the die is larger than the
other two, that size difference will affect the count. As I repeat the roll many
times, the proportion of total instances I saw a given outcome converges to a
number. Suppose I use that number for my probability value. Further,
suppose I interpret that number as the "chance" of seeing that outcome each
time I roll.

This idea is called physical or frequentist probability.  Physical probability
means imagining some repeatable physical random process that results in one
outcome in a set of possible outcomes. We assign a probability value using



the convergent proportion of times the outcome appears when we repeat the
random process ad infinitum. We then interpret that probability as the
propensity for that physical process to produce that outcome.

2.2.2 Random generation

Given this definition, we can define random generation. In random
generation, an algorithm randomly chooses an outcome from a given
distribution. The algorithm's choice is based on physical probability; the way
it selects an outcome is such that if we ran the algorithm ad infinitum, the
proportion of times it chose that outcome would equal the distribution's
probability value for that outcome.

Computers are deterministic machines. If we repeatedly run a computer
procedure on the same input, it will always return the same output; it cannot
produce anything genuinely random. So, computers have to use deterministic
algorithms to emulate random generation. These algorithms are
called pseudo-random number generators. These pseudo-random number
generation algorithms take some starting number called a random seed and
return a deterministic series of numbers. Those algorithms mathematically
guarantee that series of numbers is statistically indistinguishable from
the ideal of random generation.

In notation, I write random generation as follows:

This is reads as “x is generated from the probability distribution of X”. In the
case of a joint distribution:

In random generation, synonyms to “generate”, include “simulate”, and
“sample.” For example, in pgmpy the sample method in DiscreteFactor does
random generation. It returns a pandas data frame.



Listing 2.4 Simulating from DiscreteFactor in pgmpy and Pyro

from pgmpy.factors.discrete import DiscreteFactor

dist = DiscreteFactor(

    variables=["X"],

    cardinality=[3],

    values=[.45, .30, .25],

    state_names= {'X': ['1', '2', '3']}

)

 

dist.sample(n=1)    #A

Figure 2.12 Generating one instance from P(X) creates a Pandas DataFrame object with one row.

The n argument represents the number of samples. Note that, since this is
random generation, you might not get the same output the first time you run
this code.

joint = DiscreteFactor(

    variables=['X', 'Y'],

    cardinality=[3, 2],

    values=[.25, .20, .20, .10, .15, .10],

    state_names= {

        'X': ['1', '2', '3'],

        'Y': ['0', '1']

    }

)

 

joint.sample(n=1)

Figure 2.13 Generating one instance from P(X, Y) creates a Pandas DataFrame object with one
row.



Canonical distributions in pyro also use a method with sample method.

import torch

from pyro.distributions import Categorical

Categorical(probs=torch.tensor([.45, .30, .25])).sample()

 

tensor(1.)

2.2.3 Coding random processes

We can write our own random processes out as code when we want to
generate in a particular way. Other names for random processes in code form
include stochastic processes, stochastic functions, probabilistic subroutines,
and probabilistic programs.

For example, consider the joint probability distribution P(X, Y, Z). How can
we randomly generate from this joint distribution? Unfortunately, software
libraries don’t usually provide pseudo-random generation for arbitrary joint
distributions.

We get around this by applying the chain rule and, if it exists, conditional
independence. So, for example, we could factorize as follows:

P(x, y, z) = P(z)P(x|z)P(y|x, z)

Suppose then that Y is conditionally independent of Z given X, then:

P(x, y, z) = P(z)P(x|z)P(y|x)

Finally, suppose we can sample from P(Z), P(X|Z), and P(Y|X) given the
basic random generation functions in our software library. Then he can then



use this factorization to compose an algorithm for sampling.

This is a random process that I can execute in code. Random processes in
code form as First, I generate a Z-outcome z from P(Z). I then condition X on
that z, and generate an X-outcome x. I do the same to generate a Y-outcome
y. Finally, this procedure is equivalent to generate a tuple {x, y, z} from the
joint distribution P(X, Y, Z).

In pgmpy, I create a random process using the class called BayesianNetwork.

Listing 2.5 Creating a random process in pgmpy and pyro.

from pgmpy.factors.discrete.CPD import TabularCPD

from pgmpy.models import BayesianNetwork

from pgmpy.sampling import BayesianModelSampling

 

PZ = TabularCPD(    #A

    variable='Z',    #A 

    variable_card=2,    #A

    values=[[.65], [.35]],    #A

    state_names = {    #A

        'Z': ['0', '1']    #A

    })    #A

 

PXgivenZ = TabularCPD(    #B

    variable='X',    #B

    variable_card=2,    #B

    values=[    #B

        [.8, .6],    #B

        [.2, .4],    #B

    ],    #B

    evidence=['Z'],    #B

    evidence_card=[2],    #B

    state_names = {    #B



        'X': ['0', '1'],    #B

        'Z': ['0', '1']    #B

    })    #B

 

PYgivenX = TabularCPD(    #C

    variable='Y',    #C

    variable_card=3,    #C

    values=[    #C

        [.1, .8],    #C

        [.2, .1],    #C

        [.7, .1],    #C

    ],    #C

    evidence=['X'],    #C

    evidence_card=[2],    #C

    state_names = {    #C

        'Y': ['1', '2', '3'],    #C

        'X': ['0', '1']    #C

    })    #C

 

model = BayesianNetwork([('Z', 'X'), ('X', 'Y')])    #D

model.add_cpds(PZ, PXgivenZ, PYgivenX)    #E

 

generator = BayesianModelSampling(model)    #F

generator.forward_sample(size=1)    #G

 

This produces one row in a Pandas DataFrame.

Figure 2.14 The forward_sample method simulates one instance of X, Y, and Z as a row in a
Pandas DataFrame.

Implementing random processes for random generation is powerful because it
allows generating from joint distributions that we can’t represent in clear
mathematical terms or as a single canonical distribution.

For example, while pgmpy works well with categorical distributions, pyro
gives us the flexibility of working with combinations of canonical



distributions. Here for example is another version of the above random
process; same dependence between Z, X, and Y, but different canonical
distributions:

Listing 2.6 Working with combinations of canonical distributions in Pyro

import torch

from pyro.distributions import Bernoulli, Poisson, Gamma

 

z = Gamma(7.5, 1.0).sample()    #A

x = Poisson(z).sample()    #B

y = Bernoulli(x / (5+x)).sample()    #C

Z comes from a gamma distribution, X from a Poisson with mean parameter
set to z, and Y from a Bernoulli with its parameter set to a function of x.

We can add even more nuanced conditional control flow to the code:

"for i in range(x):"

Here, y is still dependent on x. However, it is defined as the sum of x
individual random components. In pyro, I might implement this as follows.

Listing 2.7 Random processes with nuanced control flow in Pyro

import torch

from pyro.distributions import Bernoulli, Poisson, Gamma



z = Gamma(7.5, 1.0).sample()

x = Poisson(z).sample()

y = torch.tensor(0.0)    #A

for i in range(int(x)):    #A

y += Bernoulli(.5).sample()    #A

 

In Pyro, best practice is to implement random processes as functions. Further,
use the function pyro.sample to generate, rather than using the sample
method on distribution objects. I rewrite the above random_process code as
follows.

Listing 2.8 Using functions for random processes and pyro.sample

import torch

import pyro

def random_process():

    z = pyro.sample("z", Gamma(7.5, 1.0))

    x = pyro.sample("x", Poisson(z))

    y = torch.tensor(0.0)

    for i in range(int(x)):

        y += pyro.sample(f"y{i}", Bernoulli(.5))    #A

    return y

 

The first argument in pyro.sample is a string that assigns a name to the
variable you are sampling. The reason will become apparent when we start
running inference algorithms in Pyro in chapter 3.

2.2.4 Monte Carlo Simulation and Expectation

Monte Carlo algorithms use random generation to estimate expectations from
a distribution of interest. The idea is simple. If you want E(X), generate
multiple x’s, and take the average of those x’s. If you want E(f(X)), generate
multiple x’s apply the function f(.) to each of those x’s, and take the average.
Monte Carlo works even in cases when X is continuous.

In pgmpy, you use sample or forward_sample methods to generate a pandas
data frame and using the mean method.

generated_samples = generator.forward_sample(size=100)



generated_samples['Y'].apply(int).mean()

In pyro, we call the random process function repeatedly. I’ll do this for the
above Pyro generator with a for loop that generates 100 samples:

generated_samples = torch.stack([random_process() for _ in range(100)])

This code repeatedly calls random_process in a Python list comprehension.
Recall that pyro extends PyTorch, the value of y it returns is a tensor. So I
use torch.stack to turn this list of tensors into a single tensor. Finally, I call
the mean method on the tensor, to obtain the Monte Carlo estimate of E(Y).

generated_samples.mean()

 

tensor(3.7800)

Most things you’d want to know about a distribution can be framed in terms
of some function f(X). So, for example, if you wanted to know the
probability of X being greater than 10, you simply generate a bunch of x’s
and convert each x to 1 if it is greater than 10 and 0 otherwise. Then you take
the average of the 1’s and 0’s, and the resulting value estimates the desired
probability.

To illustrate, the following code block extends the previous block to calculate
E(Y2).

torch.square(generated_samples).mean()

 

tensor(18.8000)

When calculating E(f(X)) for a random variable X, remember to get the
Monte Carlo estimate by applying the function to the samples first, then take
the average. If you apply the function to the sample average, you instead get
an estimate of f(E(X)), which is almost always different (to see why, look up
“Jensen’s inequality”).

2.2.5 Programming probabilistic inference

Suppose we implement in code a random process that generates an outcome
{x, y, z} from P(X, Y, Z) as follows:



Further, suppose we are interested in generating from P(Z|Y=3). How might
we do this? Our process can sample from P(Z), P(X|Z), and P(Y|Z); it is not
clear how we go from these to P(Z|Y).

Probabilistic inference algorithms generally take an outcome-generating
random process and some target distribution as inputs. Then, they return a
means of generation from that target distribution. This class of algorithms is
often called Bayesian inference algorithms because the algorithms often use
Bayes rule to go from P(Y|Z) to P(Z|Y). However, the connection to Bayes
rule is not always explicit, so I prefer “probabilistic inference.”

For example, a simple class of probabilistic inference algorithms is called
accept/reject algorithms. Applying a simple accept/reject technique to
generating from P(Z|Y=3) works as follows:

1. Repeatedly generate {x, y, z} using our generator for P(X, Y, Z)
2. Throw away any generated outcome where y ≠ 3.
3. The resulting set of outcomes for Z will have distribution P(Z|Y=3)

Illustrating with pyro, I’ll rewrite the above random_process function to
return z and y. Then I’ll obtain a Monte Carlo estimate of E(Z|Y=3).

Listing 2.9 Monte Carlo estimation in Pyro

import torch

import pyro

from pyro.distributions import Bernoulli, Gamma, Poisson

def random_process():

    z = pyro.sample("z", Gamma(7.5, 1.0))

    x = pyro.sample("x", Poisson(z))

    y = torch.tensor(0.0)



    for i in range(int(x)):

        y += pyro.sample(f"{i}", Bernoulli(.5))

    return z, y    #A

 

generated_samples = [random_process() for _ in range(1000)]    #B

z_mean = torch.stack([z for z, _ in generated_samples]).mean()    #C

 

This code estimates E(Z). Since Z has a Gamma distribution, the true mean
E(Z) is the shape parameter 7.5 divided by the rate parameter 1.0, which is
7.5. To estimate E(Z|Y=3), I’ll filter the samples and keep only the samples
where Y is 3.

z_given_y = torch.stack([z for z, y in generated_samples if y == 3])

 

print(z_given_y.mean())

 

tensor(6.9088)

That probabilistic inference algorithm works well if the outcome Y = 3
occurs frequently. If that outcome were rare, the algorithm would be
inefficient: I’d have to generate many samples to get samples that meet the
condition, and I’d be throwing away many samples.

Fortunately, there are various other algorithms for probabilistic inference.
Unfortunately, the topic is too rich and tangential to causal modeling to
explore in-depth. Nevertheless, here are a few worth mentioning for what we
cover in this book.

Probability weighting methods

These methods generate outcomes from a joint probability distribution and
then weight them according to their probability in the target distribution. We
then use the weights to do weighted averaging via Monte Carlo estimation.
Popular variants of this kind of inference include importance sampling and
inverse probability reweighting, the latter of which is popular in causal
inference and is covered in Chapter 5.

Inference with probabilistic graphical models



Probabilistic graphical models use graphs to represent conditional
independence in a joint probability distribution. The presence of a graph
enables graph-based algorithms to power inference. Two well-known
approaches include variable elimination and belief propagation. In Figure 2.3
and Figure 2.4, I showed you could “eliminate” a variable by summing over
its columns or rows in the probability table. Variable elimination uses the
graph structure to find an optimal order of variable and then eliminates them
one by one until the resulting table represents the target distribution. In
contrast, belief propagation is a message-passing system; the graph is used to
form different “cliques” of neighboring variables. For example, If P(Z|Y=1)
is the target distribution, Y=1 is a message iteratively passed back and forth
between cliques. Each time a message is received, parameters in the clique
are updated, and the message is passed on. Eventually, the algorithm
converges, and we can derive a new distribution for Z from those updated
parameters.

One of the attractive features of graph-based probabilistic inference is that
users typically doesn’t implement them themselves; software like pgmpy just
does it for you. There are theoretical caveats, but they usually don’t matter in
practice. This feature is an example of the “commodification of inference”
trend I highlighted in chapter 1. In this book, we work with causal graphical
models, a special type of probabilistic graphical model that works as a causal
model. That gives us the option of applying graph-based inference for causal
problems.

Variational inference

In variational inference, you write in code a new stochastic process that
generates samples from an “approximating distribution” that resembles the
target distribution. That stochastic process has parameters that you optimize
using gradient-based techniques now common in deep learning software. The
objective function of the optimization tries to minimize the difference
between the approximating distribution and the target distribution.

Pyro is a probabilistic modeling language that treats variational inference as a
principal inference technique. It calls the stochastic process that generates
from the approximating distribution a “guide function,” and a savvy Pyro



programmer gets good at writing guide functions. However, it also provides a
suite of tools for “automatic guide generation,” another example of the
commodification of inference.

Honorary mentions; Markov Chain Monte Carlo (MCMC) and
Adversarial Inference

MCMC and adversarial inference are not used in this text, but I wish to
mention them briefly to give the reader a bit of context, as these are popular
inference algorithms. MCMC is an inference algorithm popular amongst
computational Bayesians. These are accept/reject algorithms where each
newly generated outcome depends on the previous (non-rejected) generated
outcome. This produces a chain of outcomes, and the distribution of
outcomes in the chain eventually converges to the target distribution.
Hamiltonian Monte Carlo is a popular version that doesn’t require users to
implement the generator, an instance of the “commodification of inference”
trend from chapter 1.

Adversarial inference algorithms typically have two components, one that
generates outcomes and one that rejects those outcomes if they are not good
enough, according to some standard. Generative adversarial networks made
adversarial inference de rigueur with their ability to generate uncannily
realistic images. The component in generative adversarial networks that
rejects is called a “discriminator” and rejects generated outcomes if it can
“discriminate” a generated outcome from a real outcome.

2.3 Data, populations, statistics, and models

So far, we have talked about random variables and distributions. Now we
move on to data and statistics. Let’s start with defining some terms. You
doubtless have an idea of what data is but let’s define it in terms we’ve
already defined in this chapter. Data is a set of recorded outcomes of a
random variable or set of random variables. A statistic is anything you
calculate from data. For example, when you train a neural network on
training data, the learned weight parameter values are statistics, and so are
model’s predictions (since they depend on the training data via the weights).



The real-world causal process that generates a particular stream of data is call
the data generating process or (DGP). A model is a simplified mathematical
description of that process. A statistical model is a model with parameters
tuned such that the model aligns with statistical patterns in the data.

This primer presents some of the core concepts related to data and statistics
needed to make sense of this book.

2.3.1 Probability distributions as models for populations

In applied statistics, we take statistical insights from data and generalize them
to a population. Consider, for example, with the MNIST digit classification
problem described in chapter 1. Suppose the goal of training a classification
model on MNIST data was to deploy the model in software that digitizes
written text documents. In this case, the population is all the digits on all the
texts the software would see in the future.

Populations are heterogeneous. Heterogeneity means, for example, that while
on average a feature on a website might drive engagement among the
population of uses, the feature might make some subpopulation of users less
engaged. So, you would want to target the feature to the right subpopulations.
Marketers call this “segmentation”.

In another example, a medicine might not be much help on average for a
broad population of patients, but there might be some subpopulation that
experiences benefits. Targeting those subpopulations is the goal of the field
of precision medicine.

In probabilistic models, we use probability distributions to model
populations. The ability to model populations with probability distributions is
particularly useful because we can target subpopulations by with conditional
probability. For example, suppose P(E|F=True) represents the distribution of
engagement numbers among all users exposed to the website feature, then
P(E|F=True, G=”millennial”) represents the subpopulation of users exposed
to the feature who are also millennials.

Canonical distributions and stochastic Processes as models of



populations

If we use probability distributions to model populations, then what canonical
distributions should we use for a given population. Figure 2.15 includes
common distributions and the phenomena they typically model.

Figure 2.15 Examples of common canonical distributions and the types of phenomena and data
they typically model.

These choices don’t come from nowhere. The canonical distributions are
themselves derived from stochastic functions. For example, the Binomial
distribution is the result of a process where you do a series of coin flips.
When something is the result of adding together a bunch of independent (or
weakly dependent) small changes, you get a Normal distribution. The
exponential distribution is the result of a waiting process where the amount of
time already elapsed has no bearing on how much time you still have to



weight. If you restarted the clock each time the waited-for event happened,
then the number of events after a certain amount of time follows the Poisson
distribution.

A useful trick in probabilistic modeling is to think of the stochastic process
that created your target population. Then either choose the appropriate
canonical distribution or implement the stochastic process in code using
various canonical distributions as primitives in the code logic. In this book,
we’ll see that this line of reasoning aligns well with causal modeling.

Sampling, IID, and generation

Usually, our data is not the whole population, but a small subset from the
population. The act of randomly choosing an individual is called sampling.
When the data is created by repeatedly sampling from the population, the
resulting dataset is called a random sample. If we can view data as a random
sample, we call that data independent and identically distributed (IID. That
means that the selection of each individual data point is identical in how it
was sampled, and each sampling occurred independently of the others, and
they all were sampled from the same population distribution.

The idea of sampling and IID data illustrates the second benefit of using
probability distributions to model populations. If we use a probability
distribution to model a population, then we can use generation from that
distribution to model sampling from a population. You can implement a
stochastic process that represents the DGP by writing a stochastic process
that represents the population and composing it with a process that generates
data from the population process, emulating IID sampling.

In pgmpy, this is just as simple as generating more than one sample.

generator.forward_sample(size=10)

Figure 2.16 A pandas DataFrame created by generating ten data points from a model in pgmpy.



The pyro approach for IID sampling is pyro.plate:

Listing 2.10 Generating IID samples in Pyro

import pyro

from pyro.distributions import Bernoulli, Poisson, Gamma

 

def model():

    z = pyro.sample("z", Gamma(7.5, 1.0))

    x = pyro.sample("x", Poisson(z))

    with pyro.plate('IID', 10):    #A

        y = pyro.sample("y", Bernoulli(x / (5+x)))    #B

    return y

 

model()

 



Using generation to model sampling is particularly useful in machine
learning, because often the data is not IID. Recall the MNIST example in
chapter 1, the original NIST data was not IID, one block of data came from
high school students, the other from government officers. You could capture
the identity of the digit writer as a variable in your stochastic process. Then
the data is IID conditional on that variable.

Don’t mistake the map for the terrain

Consider again the MNIST data. The population for that data is quite
nebulous and abstract. If that digit classification software were licensed to
multiple clients, the population is a practically unending stream of digits.
Generalizing to abstract populations is the common scenario in machine
learning. It is for statistics as well; when R.A. Fisher, the founding father of
modern statistics, was designing experiments for testing soil types on crop
growth at Rothamsted Research, he was trying to figure out how to generalize
to the population of future crops (with as small amount of samples as
possible).

The problem with working with nebulously large populations is that it can
lead to the mistake of mentally conflating populations with the probability
distributions. Do not do this. Do not mistake the map for the terrain.

To illustrate, consider the following example. While writing much of this
book, I was living in Silves, a town in the Portuguese Algarve with a big
castle, deep history, and great hiking. Suppose I were interested in modeling
the heights of Silves residents.

Officially the population of Silves is 11,000. Let’s take that number as
ground truth. That means there are 11,000 different height values in Silves.
Suppose I physically went down to the national health center in Silves and
got an actual spreadsheet of every resident’s height. Then the data I have is
not a random sample. It is the full population itself.

I then compute the histogram on that population, as seen in Figure 2.17.

Figure 2.17 A histogram illustrating the distribution of all Silves residents.



This illustration represents the full population distribution. I can make it look
more like a probability distribution by dividing by the counts by the number
of people, as in Figure 2.18. 14

Figure 2.18 Histogram of proportions of Silves residents with given height.

Now, one might say this distribution follows the Normal (Gaussian)
probability distribution, because the Normal represents evolutionary bell-



shaped phenomena such as height. But that statement is not precisely true. To
see this, note that all Normal distributions are defined for negative numbers
(though those numbers might have an infinitesimal amount of probability
density); heights can’t be negative. So, what we are really doing is using the
Normal distribution as a model of this population distribution.

In another example, Figure 2.19 shows the true distribution of the parts-of-
speech in Jane Austen’s novels. Note that this is not based on a sample of
pages from her novels, I created this visualization from the parts-of-speech
distribution of the 725 thousand words in literally all her six completed
novels.

Figure 2.19 Actual distribution of word types in all of Jane Austen's novels.

It is important not to conflate the probability distribution model (the map)
with the population distribution it models (the terrain). As statistician George
Box famously said, “All models are wrong, some are useful.” This point may
seem like trivial semantics. One reason it isn’t is that in the era of big data,
we often can reason about the entire population instead of just samples. For



example, popular online social networks have hundreds of millions and
sometimes billions of users. That’s a huge size, yet the entire population is
just one database query away.

In causal modeling, having a bit of precision about how we think about
modeling data and populations is extremely useful. Particularly in terms of
modeling the data generating process.

2.3.2  From the observed data to the data generating process

In causal modeling it is important to understand how the observed data maps
back to joint probability distribution, and how that joint probability
distribution maps back to the data generating process. Most modelers have
some level of intuition of the relationships between these entities, but in
causal modeling we must be explicit. This explicit understanding is.
important because while in ordinary statistical modeling you model the joint
distribution (or elements of it), in causal modeling you need to model the data
generating process.

From the observed data to the empirical Joint distribution

Suppose we had the following dataset of five data points.

Table 2.1 A simple data set with five examples.

jenny_throws_rock brian_throws_rock window_breaks

1 False True False

2 True False True

3 False False False



4 False False False

5 True True True

We can take counts of all the observed observable outcomes.

Table 2.2 Empirical counts of each possible outcome combination

jenny_throws_rock brian_throws_rock window_breaks counts

1 False False False 2

2 True False False 0

3 False True False 1

4 True True False 0

5 False False True 0

6 True False True 1

7 False True True 0

8 True True True 1



Dividing by the number of outcomes (5) gives us the empirical joint
distribution.

Table 2.3 The empirical distribution of the data.

jenny_throws_rock brian_throws_rock window_breaks proportion

1 False False False 0.40

2 True False False 0.00

3 False True False 0.20

4 True True False 0.00

5 False False True 0.00

6 True False True 0.20

7 False True True 0.00

8 True True True 0.20

So, in the case of discrete outcomes, we go from the data to the empirical
distribution using counts. In the continuous case, we could use a histogram or
some other summary technique. Figure 2.20 illustrates this first step of going
from the data to the joint probability distribution.



Figure 2.20 The observed data has an empirical distribution.

Importantly, the empirical joint distribution is not the actual joint distribution
of the variables in the data. For example, we see that several outcomes in the
empirical distribution never appeared in those five data points. Is the
probability of their occurrence 0? More likely, the probabilities were greater
than 0 but we didn’t see those outcomes since only five points were sampled.

As an analogy, if a fair die has a 1/6 probability of rolling a 1. If you roll the
die five times, you have a near (1-1/6)5=40% probability of not seeing 1 in
any of those rolls. If that happened to you, you wouldn’t want to conclude the
probability of seeing a 1 is 0. If, however, you kept rolling, the proportional
of times we saw the 1 would converge to 1/6[1].

From the empirical joint distribution to the observed joint distribution

Let’s suppose the following is the true joint probability distribution of these
observed variables.

Table 2.4 Assume this to be the true observational joint distribution.

jenny_throws_rock brian_throws_rock window_breaks probability

1 False False False 0.25



2 True False False 0.15

3 False True False 0.15

4 True True False 0.05

5 False False True 0.00

6 True False True 0.10

7 False True True 0.10

8 True True True 0.20

So, sampling from the joint observational distribution produces the empirical
joint distribution.

Figure 2.21 Sampling from the observational joint distribution produces the observed data and
empirical distribution.



Latent variables; from the observed joint distribution to the full joint
distribution

In statistical modeling, latent variables are variables that are not directly
observed in the data but included in the statistical model. Going back to our
data example, imagine there were a fourth latent variable
“strength_of_impact”; it’s latency is indicated by the grey shading in the
following table.

Table 2.5 The values in the strength of impact column are unseen "latent" variables.

jenny_throws_rock brian_throws_rock strength_of_impact window_breaks

1 False True 0.6 False

2 True False 0.6 True

3 False False 0.0 False



4 False False 0.0 False

5 True True 0.8 True

Latent variable models are common in disciplines ranging from machine
learning, to econometrics, to bioinformatics. For example, in natural language
processing, an example of a popular probabilistic latent variable model is
topic models, where the observed variables represent the presence of
“tokens” (e.g., words and phrases) in a document, and the latent variable
represents the topic of the document (e.g., sports, politics, finance, etc.)

The latent variables are omitted from the observational joint probability
distribution, because, as the name implies, the observational joint probability
distribution is the joint distribution of the variables observed in the data. The
joint probability distribution of both the observed and the latent variables is
the full joint distribution. To go from the full joint distribution to the
observational joint distribution, we marginalize over the latent variables.

Figure 2.22 Marginalizing the full joint distribution over the latent variables produces the
observational joint distribution.



From the full joint distribution to the data generating process

I wrote the actual DGP for the five data points use the following Python
code[2]:

Listing 2.11 An example of a data generating process in code form

def true_dgp(jenny_inclination, brian_inclination, window_strength):    #A

    jenny_throws_rock = jenny_inclination > 0.5    #B

    brian_throws_rock = brian_inclination > 0.5    #B

    if jenny_throws_rock and brian_throws_rock:    #C

        strength_of_impact = 0.8    #C

    elif jenny_throws_rock or brian_throws_rock:    #D

        strength_of_impact = 0.6    #D

    else:    #E

        strength_of_impact = 0.0    #E

    window_breaks = window_strength < strength_of_impact    #F

    return jenny_throws_rock, brian_throws_rock, window_breaks

 

In this example, jenny_inclination, brian_inclination, and
window_strength are latent variables between 0 and 1. jenny_inclination
represents Jenny's initial inclination to throw, brian_inclination represents



Brian's initial inclination to throw, and window_strength represents the
strength of the window pane. These are the initial conditions that lead to one
instantiation of the observed variables in the data: (jenny_throws_ball,
brian_throws_ball, window_breaks).

I then called the true_dgp function on the following five sets of latent
variables.

initials = [

    (0.6, 0.31, 0.83),

    (0.48, 0.53, 0.33),

    (0.66, 0.63, 0.75),

    (0.65, 0.66, 0.8),

    (0.48, 0.16, 0.27)

]

In other words, the following for-loop in Python is the literal sampling
process producing the five data points.

data_points = []

for jenny_inclination, brian_inclination, window_strength in initials:    

data_points.append(

    true_dgp(

        jenny_inclination, brian_inclination, window_strength

    )

)

So, the DGP is the causal process that generated the data. Note the narrative
element that is utterly missing from the full joint probability distribution;
Jenny and Brian throw a rock at a window if they are so inclined, and if they
hit the window, the window will break depending on if one or both of them
threw rocks and the strength of the window. The DGP entails the full joint
probability distribution. In other words, the joint probability distribution is a
consequence of the DGP based on how it generates data.

Figure 2.23 The data generating process entails the full joint distribution.



In summary, the data generating process entails the full joint distribution.
Marginalizing over the full joint produces the observational joint distribution.
Sampling from that distribution produces the observed data and the
corresponding empirical joint distribution. There is a many-to-one
relationship as we move down this hierarchy that has implications to causal
modeling and inference.

Many-to-one relationships down the hierarchy

As we move down from DGP to full joint to observational joint to empirical
distribution to data, there is a many-to-one relationship from the preceding
level to the subsequent level:

Figure 2.24 There is a many-to-one relationship as we move down the hierarchy. In summary,
there are multiple data generating processes consistent with the observed data.



There could be multiple empirical joint distributions consistent with
the observational joint distribution. How we construct the empirical
joint depends on statistical choices. How many bins should be in the
histogram? Should we use raw proportions in the probability table? Or
perhaps we should use additive smoothing to avoid zeroes when the
sample size is small?
There could be multiple empirical joint distributions consistent with
the observational joint distribution. If we sample 5 points, then
sample 5 more, we’ll get different datasets and thus different empirical
distributions.
There could be multiple full joint distributions consistent with one
observational joint distribution. The difference between the two
distributions is the latent variables. But what if we have difference
choices for the sets of latent variables? For example, if our observation
distribution is P(X, Y), then the full joint would be P(X, Y, Z, W) if our
set of latent variables is {Z, W}, or P(X, Y, Z, V) if our set of latent
variables is {Z, V}.
There could be multiple DGP’s consistent with one full joint
probability distribution: For a given joint probability distribution,
there are possibly multiple DGPs that are consistent with that joint
probability distribution. Suppose in our window-breaking example,
Jenny had a friend Isabelle who sometimes egged Jenny on to throw the
ball and sometimes did not, affecting Jenny's inclination to throw. This
DGP is different from the original, but the relationship between the



latent variable of Isabell's peer pressure and Jenny's inclination to throw
could be such that this new DGP entailed exactly the same joint
probability distribution. As a more trivial example, suppose we looked
at the distribution of a single variable corresponding to the sum of the
roll of three dice. The data generating process is rolling three dice then
summing them together. Two DGPs could differ in terms of the order of
summing the dice; e.g., (first + second) + third or (first + third) + second
or (second + third) + first. These would all yield the same distribution.

Those last two many-to-one relationships is fundamental to the concept of
causal identifiability, the core reason why causal inference is hard. This
concept is the reason “correlation does not imply causation” as the phrase
goes.

 Statistical tests for independence

Causality imposes independence and conditional independence on variables.
So, we rely on statistical tests for conditional independence to build and
validate causal models.

Suppose X and Y are independent, or X and Y are conditionally independent
given Z. If we have data observing X, Y and Z, then we can run a statistical
test for independence. This is a statistical procedure that returns a statistic,
namely a p-value, that quantifies the statistical evidence of
dependence/independence.

Just as evidence of a murder is not the same as truth of the occurrence of a
murder, statistical evidence of independence between two variables is not the
same as the true or false fact of independence between variables. For
example, given independence is true, the strength of the statistical evidence
can vary on several factors, such as how much data there is. And it is always
possible to make false conclusions from these tests.

Remember the if X and Y are independence, then P(Y|X) is equivalent to
P(Y). In predictive terms, that means X has no predictive power on Y. So, if
you can’t use classical statistical tests (e.g., X and Y are vectors) then you
can try training a predictive model and subjectively evaluate how well the



model predicts.

 Statistical estimation of parameters

Given observational data, we can estimate (in machine learning parlance,
“train”) the parameters of a model. In general, statistical modeling and
machine learning, the goal of parameter estimation is modeling the
observational or joint probability distribution. In causal modeling, the
objective is modeling the DGP. The distinction is important for making good
causal inferences. Moreover, in some cases we can use certain causality-
related constraints to help us in parameter estimation.

Estimating by maximizing likelihood

In informal terms and in the context of parameter estimation, likelihood is the
probability of having observed the observed data given a value of the
parameter vector. Maximizing likelihood means choosing a value for the
parameter vector that maximizes likelihood. Usually, we work with
maximizing the log of the likelihood instead of likelihood directly because its
mathematically and computationally easier to do so; the value that maximizes
likelihood is the same as the value that maximizes likelihood. In some
models, such as linear regression, the maximum likelihood estimate has a
mathematical solution. In general, we must find the solution using
optimization techniques. In some models, such as neural networks, it is
infeasible to find the value that maximizes likelihood, so you settle for a
candidate that has high likelihood.

Estimating by minimizing other loss functions and regularization

In machine learning, there are a variety of loss functions for estimating
parameters. Maximizing likelihood is a special case of minimizing a loss
function, namely the negative log-likelihood loss function.

Regularization is the practice of adding additional elements to the loss
function that steer the optimization towards better parameter values. For
example, L2 regularization adds a value proportional to the sum of the square



of the parameter values to the loss. Since a small increase in value leads to a
larger increase in the square of the value, L2 regularization helps avoid
exceedingly larger parameter estimates.

Bayesian estimation

Bayesian estimation treats parameters as random variables and tries to model
the conditional distribution of the parameters (typically called the posterior
distribution) given the observed variables in the data. It does so by putting a
“prior probability distribution” on the parameters. The prior distribution has
its own parameters called “hyperparameters” that the modeler has to specify.
When there are latent variables in the model, Bayesian inference targets the
joint distribution of the parameters and the latent variables conditional on the
observed variables.

One of the main advantages of Bayesian estimation is that rather than getting
a point value for the parameters, you get a representation of conditional
probability distribution, such as samples. That probability distribution
represents uncertainty about the parameter values, and you can incorporate
that uncertainty into predictions or other inferences you make from the
model.

According to Bayesian philosophy, the prior should capture the modeler’s
subjective beliefs or uncertainty about the true value of the parameters. I
consider myself a Bayesian statistician, and I can attest that using priors to
quantify uncertainty or encode subjective beliefs is no easy feat in general.
Most of the time modelers choose priors that are commonly used by other
modelers, or that have tractable mathematical or computational quantities.

Statistical and Computational Attributes of an Estimator

Given the many ways of estimating a parameter, we look for ways to
compare the quality of estimation methods. Statisticians care about the bias
and consistency of an estimator. An estimator is a random variable because it
comes from data (and data has a distribution). So, an estimator has a
distribution. An estimator is unbiased if the parameter it is estimating is the
mean of that distribution. In practice, the consistency of the estimator is more



important than whether it is unbiased. Consistency means that the more data
you have, the closer the estimate is to the parameter.

Computer scientists know getting an estimator (or any algorithm) to work
with “more data” is easier said than done. They care about the computational
qualities of an estimator in relation to the size of the data. Does the estimator
scale with the data? Is it parallelizable? A consistent estimator may converge,
but when its running on my iPhone app will it converge in milliseconds and
not eat up my battery’s charge in the process?

This book decouples understanding causal logic from the statistical and
computational properties of estimators of causal parameters. We will focus
on the causal logic and rely on libraries like DoWhy to make the statistical
and computational contrasts easy to do. There will be key exceptions when
the causal logic and statistical logic are intertwined, such as with instrumental
variables. I’ll call this out when it occurs.

Goodness-of-fit vs cross validation

When you estimated the parameters, you can calculate various statistics to tell
you how well you’ve done. One class of statistics are called goodness-of-fit
statistics. Statisticians define goodness-of-fit as statistics that quantify how
well the model fits the data used to train the model. Here’s another definition,
goodness-of-fit statistics tell you how well your model pretends to be the
DGP for the data you used to train your model. But as we saw, there are
multiple DGPs possible for a given data set.

Cross validation statistics generally see how well your model predicts data it
was not trained on. It is possible to have a model with a decent goodness-of-
fit relative to other models, but still predict poorly. Machine learning is
usually concerned with the task of prediction, and so favors cross validation.
However, note that a model can be a good predictor and provide completely
bogus causal inferences.

2.4 Determinism and Subjective Probability

This section will venture into the philosophical underpinnings we’ll need for



probabilistic causal modeling. The first idea is to view the data generating
process as deterministic. The second idea is to view the probability in our
models of the data generating process as subjective.

2.4.1 Determinism

Note that the code for the rock-throwing data generating process is entirely
deterministic; given the initial conditions, the output is certain. Consider our
definition of physical probability again. If I throw a die, why is the outcome
random?

If I had a superhuman level of dexterity, perception, and mental processing
power, I could mentally calculate the roll’s physics and know the outcome
with certainty.

This philosophical idea of determinism essentially says that the data-
generating process is deterministic. 18th-century French scholar Pierre-Simon
Laplace explained determinism with a thought experiment called Laplace’s
demon. Laplace imagined some entity (the demon) that knew every atom’s
precise location and momentum in the universe. With that knowledge, that
entity would know the future state of the universe with complete
deterministic certainty because it could calculate them from the laws of
(Newtonian) mechanics. In other words, given all the causes, the effect is
100% entirely determined and not at all random.

To be clear, this view of the world does not quite align with quantum
mechanics. Indeed, it may make sense to model emergence and complex
systems as fundamentally random. However, this philosophical view of
modeling will apply to most things we’ll care to model.

2.4.2 Subjective Probability

So, the physical probability I use when I roll the die represents my lack of the
demon’s superhuman knowledge of the location and momentum of all the
die’s particles. In other words, when I build probability models of the data
generating process, the probability reflects my lack of knowledge. This
philosophical idea is called subjective probability or Bayesian probability.



The argument goes beyond Bayes rule and Bayesian statistical estimation to
say that probability in the model represents the modeler’s lack of complete
knowledge about the data generating process and does not represent inherent
randomness in the data generating process.

Subjective probability expands our “random physical process” interpretation
of probability. The physical interpretation of probability works well for
simple “physical processes” like rolling a die, flipping a coin, or shuffling a
deck of cards. But, of course, we will want to model many phenomena that
are difficult to think of as repeatable physical processes. In these cases, we
will still model these phenomena using random generation. The probabilities
used in the random generation reflect that while we as modelers may know
some detail about the data-generating process, we’ll never have the
superhuman deterministic level of detail.

2.5 Summary

A random variable is a variable whose possible values are numerical
outcomes of a random phenomenon.
A probability distribution function is a function that maps the random
variable outcomes to a probability value. A joint probability distribution
function maps each combination of X and Y to a probability value.
We derive the chain rule, the law of total probability, and Bayes Rule
from the fundamental axioms of probability. These are useful rules in
modeling.
Canonical classes of distributions are mathematically well-described
representations of distributions. They provide us with primitives that
make probabilistic modeling flexible and relatively easy.
Canonical distributions are instantiated with a set of parameters., such as
location, scale, rate, and shape parameters.
When we build models knowing what variables are independent or
conditionally independent dramatically simplifies the model. In causal
modeling, independence and conditional independence will be vital in
separating correlation from causation.
The expected value of a random variable with a finite number of
outcomes is the weighted average of all possible outcomes, where the
weight is the probability of that outcome.



Probability is just a value. We need to give that value an interpretation.
The physical process interpretation maps probability to the proportion of
ties an outcome would occur if a physical process could be run
repeatedly ad infinitum.
In contrast, the Bayesian view of subjective probability interprets
probability in terms of beliefs.
When coding a random process, Pyro allows you to use canonical
distributions as primitives in constructing nuanced random process
models.
Monte Carlo algorithms use random generation to estimate expectations
from a distribution of interest.
Popular inference algorithms include graphical model-based algorithms,
probability weighting, MCMC, and variational inference.
Canonical distributions and random processes can serve as proxies for
populations for which we wish to model and make inferences.
Conditional probability is an excellent way to model heterogeneous
subpopulations.
Difference canonical distributions are used to model different
phenomena, such as counts, bell curves, and waiting times.
Generating from random processes is a good model of real-life sampling
independent and identically distributed data.
Given a dataset, multiple data generating processes could have
potentially generated that dataset. This fact connects to the challenge of
parsing causality from correlation.
Statistical independence tests validate independence and conditional
independence claims about the underlying distribution.
There are several methods to learn model parameters, including
maximum likelihood estimation and Bayesian estimation.
Determinism suggests that if we knew everything about a system, we
could predict its outcome with zero error. Subjective probability is the
idea that probability represents the modeler’s lack of that complete
knowledge about the system. Adopting these philosophical perspectives
will serve us in understanding causal AI.
A great way to build models is factorizing a joint distribution,
simplifying the factors with conditional independence, and then
implementing factors as random processes.
A powerful modeling technique is to use probability distributions to



model populations, particularly when you care about heterogeneity in
those populations.
When we use probability distributions to model populations, we can
map generating from random processes to sampling from the population.
While traditional statistical modeling models the observational joint
distribution or the full joint distribution, causal modeling models the
data generating process.

[1] More precisely, our frequentist interpretation of probability tells us to
interpret probability as the proportion of times we get a 1 when we roll ad
infinitum. Despite the “ad infinitum”, we don’t have to roll many times
before that proportion starts converging to a number (1/6).

[2] Note in general the DGP is unknown, and our models are making guesses
about it's structure. That said, many modern modelers are reasoning about
data generated from actual code that can be viewed in a code repository. For
example a data scientist working at a tech company might be analyzing data
generated by software.



3 Building a causal graphical model
This chapter covers

Building a causal directed acyclic graph (DAG) to model a data
generating process
Using your causal graph as a communicatlion, computation and
reasoning tool
Building a causal DAG in pgmpy and pyro (PyTorch)
Training a probabilistic machine learning model using the causal DAG
as a scaffold.

In the previous chapter, I introduced the concept of the data generating
process and how it relates to the joint probability distribution of the variables
in your modeling domain and the data you use in your model. In this chapter,
we'll build our first models of the data generating process using the causal
directed acyclic graph (causal DAG) and causal graphical models built on
top of that DAG.

Learning causal modeling requires a bit of a mental refactor. Causal modelers
don't model the data; they model the data generating process (DGP). That
model attempts to capture how variables relate causally instead of just
statistically.

The model-the-data mindset works well for predictions. For example,
suppose the DGP yields examples of some predictors and a prediction target.
A decent predictive modeling approach will pick up on the the statistical
patterns stemming from the probabilistic dependence between the predictors
and prediction target. That model would probably produce decent predictions.

However, while data alone can support prediction, we need more than data to
make causal inferences. Causal inferences will require us to make explicit
modeling assumptions about the DGP. Even causal discovery algorithms that
attempt to learn a causal DAG from data rely on strong assumptions about
that DGP (e.g., we'll define these assumptions in chapter 9). So, we need to



focus on the DGP over the data. That said, we'll see in later chapters how
statistical analysis and modeling of data will help us determine if our model
of the DGP is correct or not.

3.1 Introducing the causal DAG

So, a model of the data generating process attempts to represent how
variables relate causally instead of just statistically. What does this
representation look like?

One option is dynamic mathematical models such as ordinary differential
equations and partial differential equations, as is common in physics and
engineering. Another option is to use computational simulators, such as are
used in meteorology and climate science.

This book will focus on the causal DAG as our representation of the DGP.
We will also look at models that are built on top of causal DAGs. I do not
claim that the causal DAG is the "right way" to build a causal model of the
DGP relative to alternatives like dynamic models or simulators, or statistical
models that encode causal assumptions in different ways. However, I will
claim that causal DAGs have advantages over other alternatives. The most
basic advantage is that graphs are easy for humans to think about; graphs are
the go-to method for making sense of complicated domains.

Secondly, graphs are easy to compute over; they are a fundamental data
structure in computer science. Computer scientists have built many efficient
algorithms for solving problems on graphs that we can bring to bear on causal
reasoning. Finally, graphs form the basis of much of the formal theory in
causal inference. You can use that formal theory to get guarantees on your
analysis that other methods don’t yet provide because researchers have yet to
work out those mathematical results for these other causal representations.

3.1.1 How does a directed acyclic graph work as a causal
model?

Causal DAGs give us a simple and powerful way to represent causal structure
in the DGP and provide structure for our causal model.  The causal DAG



approach assumes that we will build a model that represents components of
the DGP as a discrete set of variables.  Those variables may be discrete or
continuous.  Often the variables are univariate, but they can also be
multivariate vectors or matrices. A combination of variable values represents
a possible state of the overall data generating process. Importantly, we
assume variables are causes/effects of other variables and that these cause-
effect relationships reflect true causality in the DGP.  Finally, we represent
the variables as nodes in the graph, and directed edges correspond to the
causal relationships.

For our first example, recall the rock-throwing DGP from Chapter 2. Recall
in the example that we start with Jenny and Bryan having a certain amount of
inclination to throw rocks at a windowpane that has a certain amount of
strength. If either person’s inclination to throw suppresses a threshold, they
throw. The window breaks depending on if either or both of them throw and
the strength of the window. We’ll now create the causal DAG that will
visualize this process. As a Python function, the DGP is as follows:

Listing 3.1 DAG Rock-throwing example

def true_dgp(jenny_inclination, brian_inclination, window_strength):    #A

    jenny_throws_rock = jenny_inclination > 0.5    #B

    brian_throws_rock = brian_inclination > 0.5    #B

    if jenny_throws_rock and brian_throws_rock:    #C

        strength_of_impact = 0.8    #C

    elif jenny_throws_rock or brian_throws_rock:    #D

        strength_of_impact = 0.6    #D

    else:    #E

        strength_of_impact = 0.0    #E

    window_breaks = window_strength < strength_of_impact    #F

return jenny_throws_rock, brian_throws_rock, window_breaks

 

Figure 3.1 illustrates the rock-throwing data generating process as a causal
DAG.

Figure 3.1 A causal DAG representing the rock-throwing data generating process. In this
example each node corresponds to a random variable in the data generating process.



In Figure 3.1, each node corresponds to a random variable in the data
generating process. The directed edge corresponds to a cause-effect
relationship (source node is the cause, end node is the effect).

Causal abstraction and causal representation learning

In modeling, level of abstraction refers to the level of detail and granularity of
the variables in the model. In Figure 3.1, there is a mapping between the
variables in the DGP and the variables in the causal DAG because the level of
abstraction in the data generated by the DGP and the level of abstraction of
causal DAG are the same. But it is possible for variables in the data to be at a
lower level of abstraction. This is particularly common in machine learning,
where we often deal with low-level features, such as pixels.

When the level of abstraction in the data is lower than the level the modeler
wants to work with, the modeler must use domain knowledge to derive the
high-level abstractions that will appear as nodes in the DAG. For example, a



doctor may be interested in a high-level binary variable node like “Tumor
(present/absent),” while the data itself contains low-level variables such as a
matrix of pixels from medical imaging technology.

That doctor must look at each image in the data set and manually label the
high-level tumor variable. Alternatively, a modeler can use analytical means
(e.g., math or logic) to map low-level abstractions to high-level ones, a task
called causal abstraction. Alternatively, they could use machine learning to
learn high-level abstractions from lower ones in data, a task called causal
representation learning. We touch on the latter topic in chapters 5 and 9.

3.1.2 Case Study: A causal model for transportation

The following example features a model of people's choice of transportation
on their daily commutes. Find links to accompanying code and video tutorials
at https://altdeep.ai/p/causalaibook.

Suppose you were an urban planning consultant trying to model the
relationships between people's demographic background, the size of the city
where they live, their job status, and their decision on how to commute to
work each day.

You break down the key variables in the system as follows:

Age (A): The age of an individual.
Gender (S): An individual’s reported gender.
Education (E): The highest level of education or training completed by
an individual.
Occupation (O): An individual's employment status.
Residence (R): The size of the city the individual lives in.
Travel (T): The means of transport favored by the individual.

You then think about the causal relationships between these variables using
knowledge about the domain.  Here is your narrative:

Educational standards are different across generations. In previous
generations, one could achieve a middle-class lifestyle (e.g., own a
home, support a family) with a high school degree. In more recent



generations, it is hard to get stable employment even with college
degrees. Thus age (A) is a cause of education (E).
Similarly, a person’s gender is often a factor in their decision to pursue
higher levels of education. So, gender (S) is a cause of education (E).
Many white-collar jobs require higher education. Many credentialed
professions (e.g., doctor, lawyer, or accountant) certainly require higher
education. So, education (E) is a cause of occupation (O).
White collar jobs that depend on higher levels of education tend to
cluster in urban areas. Thus, education (E) is a cause of where people
reside (R).
People who are self-employed might work from home and therefore
don't need to commute while people with employers do. Thus
occupation (O) is a cause of transportation (T).
People in big cities might find it more convenient to commute by
walking or using public transportation, while people in small cities and
towns rely on cars to get around. Thus residence (R) is a cause of
transportation (T).
Finally, you reduce this narrative to the following causal DAG shown in
Figure 3.2.

Figure 3.2 Causal DAG representing a model of the causal factors behind how people commute to
work.



We can build this causal DAG using the following code.

Listing 3.2 Building the transportation DAG (Figure 3.2) in pgmpy

model = BayesianNetwork(    #A

       [

        ('A', 'E'),    #B

        ('S', 'E'),    #B

        ('E', 'O'),    #B

        ('E', 'R'),    #B

        ('O', 'T'),    #B

        ('R', 'T')     #B

     ]

)

The BayesianNetwork object in pgmpy is built on the DiGraph class from
networkx, the preeminent graph modeling library in Python.

3.1.3 Why is it a directed acyclic graph?

The causal DAG is acyclic, meaning it doesn’t allow for any cycles.
Intuitively, this captures the notion that causes precede effects in time; and so
a cycle would imply things that happen later in time cause things that happen



earlier.

In some causal systems, relaxing the acyclicity constraint makes sense, such
as with systems that have feedback loops. Some formal causal models allow
for acyclicity. However, many such systems can be abstracted to have
acyclicity. Sticking to the acyclic allows us to use the benefits of the causal
DAG formalism.

3.2 The benefits of the DAG as a causal
representation

There are several benefits of using the causal DAG as a representation of the
data generating process. These benefits, which I will discuss further in the
following sections, break down as follows,

1. DAGs are useful in communicating and visualizing causal assumptions.
2. It is easy to compute over DAGs.
3. DAGs link causality to conditional independence.
4. DAGs can provide scaffolding for probabilistic ML models.

3.2.1 DAGs are useful in communicating and visualizing causal
assumptions.

A Causal DAG Is a powerful communication device.   Visual communication
of information is about highlighting important information at the expense of
other information.  As an analogy, consider the two maps of the London
Underground in Figure 3.3.

Figure 3.3 Visual communication is a powerful use case for a graphical representation. For
instance, the map of the London Underground on the left is geographically accurate while the one
on the right trades that accuracy for a clear representation of each station's position relative to
the others.  That latter is more useful for train riders than geographic detail.  Similarly, a causal
DAG abstracts away much detail of causal mechanism to a simple representation that is easy to
reason about visually.



The map on the left is geographically accurate. The simpler map on the right
ignores the geographic detail and focuses on the position of each station
relative to other stations, which is, arguably, all one needs to find their way
around London.

Similarly, a causal DAG highlights causal relationships while ignoring other
things. For example, the rock-throwing DAG ignores the if-then conditional
logic of how Jenny and Brian’s throws combined to break the window.
Similarly, the transportation DAG says nothing about the types of variables
we are dealing with. Should we consider age (A) in terms of continuous-time,
integer years, categories like young/middle-aged/elderly, or intervals like 18-
29 / 30-44 / 45-64 / >65? What are the categories of the transportation
variable (T)? Could the occupation variable (O) be a multi-dimensional tuple
like {employed, engineer, works-from-home}? The DAG also fails to capture
which of these variables are observed in the data, nor the number of data
points in that data.

Causal DAGs don’t illustrate mechanism

The graph also doesn’t visualize interactions between causes. For example, in
older generations, women were less likely to go to college than men. In
younger generations, the reverse is true. While both age (A) and gender (S)
are causes of education (E), you can’t look at the DAG and see anything



about how age and gender interact to affect education.

Figure 3.4 The various kinds of logic gates all have the same causal DAG.

More generally, DAGs don't convey any information about the causal
mechanism or how the causes impact the effect. Consider for example the
various logic gates in Figure 3.4 . The input binary values for A and B
determine the output differently depending on the type of logic gate. But if
we represent a logic gate as a causal DAG, then all the logic gates have the
same causal DAG. In other words, the causal DAG doesn’t visually represent
any mechanism for how the causal parents interact to determine the value of
the child. We can use the causal DAG as a scaffold for causal graphical
models that capture this logic, but we can see the logic in the DAG.

This is a strength and a weakness. The causal DAG simplifies matters by
communicating what causes what, but not how. But in some cases,
visualizing the “how” would be desirable.

Causal DAGs represent causal assumptions

The causal DAG represents the modeler’s assumptions and beliefs about the



data generating process because we don’t have access to that process most of
the time. Thus, the causal DAG allows us to visualize our assumptions and
communicate them to others.

Beyond this visualization and communication, the benefits of the causal DAG
are mathematical and computational (I explain these in the following
subsections). Causal inference researchers vary in their opinons on the degree
to which these mathematical and computational properties of the causal DAG
are practically beneficial. However, most agree on this fundamental benefit of
visualization and communication of causal assumptions.

The assumptions encoded in a causal DAG are strong. Consider, for example,
the transportation DAG.

Figure 3.5 The causal DAG model of transportation choices.

Consider the alternatives to that DAG; how many possible DAGs could we
draw on this simple six node system?  The answer is 3,781,503.  So, when I
use a causal DAG to communicate my assumptions about this system, I’m
communicating my top choice over 3,781,502 alternatives.

And how about some of those competing DAGs?  Some of them seem
plausible.  Perhaps baby boomers prefer small-town life while millennials



prefer city life, implying there should be an A → R edge?  Perhaps gender
determines preferences and opportunities in certain professions and
industries, implying an G → O edge?  The assumption that age and gender
cause occupation and residence only indirectly through education is a
powerful assumption that will provide useful inferences if it is right.

But what if our causal DAG is wrong? It seems it is likely to be wrong given
its 3,781,502 competitors.  In chapter 4, we'll learn to use data to show us
when the causal assumptions in our chosen DAG fail to hold.

3.2.2 It is easy to compute over DAGs.

Directed graphs are well-studied objects in math and computer science. In
computer science, they are a fundamental data structure. Computer scientists
have solved many practical problems with graph algorithms with theoretical
guarantees on how long they take to arrive at solutions. Most developers and
data scientists have some exposure to graphical libraries in their scripting
language of choice, such as networkx in Python and igraph in R.

We can bring that mathematical and computational theory and tooling to bear
on a causal modeling problem when we represent the causal model in the
form of a causal DAG. For example, in pgmpy we can train a causal DAG on
data to get a directed causal graphical model. Given that model, we can apply
algorithms for graph-based probabilistic inference, such as belief
propagation, to estimate conditional probabilities defined on variables in the
graph. The directed graph structure enables these algorithms to work in
typical settings without our needing to configure them to a specific problem
or task.

In the next chapter, we’ll introduce the concept of d-separation, which is a
graphical abstraction for conditional independence, and the fundamental idea
behind the do-calculus theory for causal inference. D-separation is all about
finding paths between nodes in the directed graph, something any worthwhile
graph library makes easy by default. Indeed, conditional independence is the
key idea behind the third benefit of the causal DAG.

Representing time in Causal DAGs



One of the benefits of visualizing a data generating process as a causal DAG
is the DAG has an implicit representation of time. In more technical terms,
the DAG provides a “partial ordering” that we can read as a partial temporal
ordering because causes precede effects in time.

For example, consider the graph in Figure 3.5.  This graph describes a data
generating process where a change in cloud cover (Cloudy) causes both a
change in the state of a weather-activated sprinkler (Sprinkler) and the state
of rain (Rain), and these both cause a change in the state of the wetness of the
grass (Wet Grass).  So, we know that change in the state of a weather causes
rain and sprinkler activation, and that these both cause a change in the state of
the wetness of the grass.  However, the graph doesn’t tell us which happens
first, the sprinkler activation or the rain. 

Figure 3.6 A causal DAG representing a sprinkler system that activates when the sky is not
cloudy. Cloudy skies lead to rain. Both rain and sprinklers make the grass wet.

This partial ordering in Figure 3.6 may seem trivial but consider the DAG in
Figure 3.7. Visualization libraries can use the partial ordering in the hairball-



like DAG on the right into the much more readable form on the left.

Figure 3.7 A visualization library can use the DAG's partial ordering to unravel the hairball-like
DAG on the right into a more readable form (right).

However, sometimes we need a causal DAG to be more explicit about time.
For example, we may be modeling causality in a dynamic setting, such as in
reinforcement learning. In this case, we can make time explicit in defining
and labeling the variables of the model, as in Figure 3.8. 

Figure 3.8 If we need a causal DAG to be explicit about time, we can make time explicit in the
definition of the variables and labeling of their nodes. We can represent continuous time with
interval variables like “Δ.”



3.2.3 DAGs link causality to conditional independence

The third benefit of the DAG is that it allows us to use causality to reason
about conditional independence. Humans have an innate ability to reason in
terms of causality. That ability is how we get the first and second benefits of
that causal DAG. But reasoning probabilistically doesn’t come nearly as
easily. So, the ability to use causality to reason about conditional
independence (a concept from probability) is a considerable feature of the
DAG.

Consider again the transportation DAG, displayed again in Figure 3.8.

Figure 3.9 The causal DAG for transportation choices.



Those six variables have a joint distribution P(A,S,E,O,R,T). Recall the chain
rule from chapter 2, which says that we can factorize any joint probability
into a chain of conditional probability factors. For example:

P(a,s,e,o,r,t)

=P(e)P(s│e)P(t│s,e)P(a│t,s,e)P(o│a,t,s,e)P(r│o,t,s,e)

=P(t)P(o│t)P(r│o,t)P(e│r,o,t)P(a│e,r,o,t)P(s│a,e,r,o,t)

= ...

The chaining works for any ordering of the variables. But instead of choosing
any ordering, we’ll choose the (partial) ordering of the causal DAG, since
that ordering aligns with our assumptions of the causal flow of the variables
in the data generating process. Looking at Figure 3.9, the ordering of
variables is {(A, S), E, (O, R), T}. Letting A come before S and O, come
before R, we get:

P(a,s,e,o,r,t)



=P(a)P(s│a)P(e│s,a)P(o│e,s,a)P(r│o,e,s,a)P(t│o,r,e,s,a)

Further, we'll use the causal DAG to further simplify this factorization. Each
factor is a conditional probability. We'll simplify those factors by
conditioning only the parents of each node in the DAG. In other words, for
each variable, we look at that variable's direct parents in the graph, then we
drop everything on the right-hand side of the conditioning bar "|" that isn't
one of those direct parents. If we condition only on parents, then we get the
following simplification:

P(a,s,e,o,r,t)

=P(a)P(s│a)P(e│s,a)P(o│e,s,a)P(r│o,e,s,a)P(t│o,r,e,s,a)

=P(a)P(s)P(e│s,a)P(o│e)P(r│e)P(t│o,r)

What is going on here? Why should the causal DAG magically mean we can
say P(s|a) is equal to P(s) and P(r|o,e,s,a) simplifies to a mere P(r|e)? An
astute reader of Chapter 2 will realize that stating that P(s│a) = P(s) and
P(t│o,r,e,s,a)=P(t│o,r) is equivalent to saying that S and A are independent,
and T is conditionally independent of E, S, and A given O and R. In other
words, the causal DAG gives us a way to impose conditional independence
constraints over the joint probability distribution of the variables in the data
generating process.

Why should you care about things being conditional independent?
Conditional independence makes your life as a modeler easier. For example,
suppose you were to model the transportation variable T with a predictive
model. The predictive model implied by P(t│o,r,e,s,a) requires having
features O, R, E, S, and A, while the predictive model inspired by P(t│o,r)
just requires features O and R. The latter model would have less parameters
to learn, have more degrees of freedom, take less space in memory, train
faster, etc.

But why does the causal DAG give us the right to impose conditional
independence?

The Causal Markov Property



Let’s build some intuition about the connection between causality and
conditional independence. Consider the example of using genetic data from
family members to make conclusions about an individual. For example, the
Golden State Killer was a California-based serial killer captured using genetic
genealogy. Investigators used DNA left by the killer at crime-scenes to
identify genetic relatives in public databases. They then triangulated from
those relatives to find the killer.

Suppose you had a close relative and a distant relative on the same line of
ancestry. Could the distant relative provide any additional information once
we had genetic information about that close relative? Let’s simplify a bit by
focusing just on blood type. Suppose the close relative was your father, and
the “distant” relative was your paternal grandfather, as in Figure 3.10. Indeed,
your grandfather’s blood type is a cause of yours. If we saw a large dataset of
grandfather/grandchild blood type pairs, we’d see a correlation. However,
your father’s blood type is a more direct cause, and the connection between
your grandfather’s blood type and yours passes through your father. So, if our
goal were to predict your blood type and we already had your father’s blood
type as a predictor, your father’s blood type could provide no additional
predictive information. Thus, your blood type and your paternal grandfather’s
blood type are conditionally independent, given your father’s blood type.

Figure 3.10 Causality implies conditional independence. Your paternal grandfather's blood type
is a cause of your father's, which is a cause of yours. But knowing your grandfather's type has no
benefit in predicting your type once we know your father's (i.e., conditional independence).



The way causality makes correlated variables conditionally independent is
called the causal Markov property. In concrete graphical terms, the causal
Markov property means that variables are conditionally independent of their
non-descendants (e.g., ancestors, “uncles/aunts,” “cousins,” etc.) given their
parents in the graph.

This “non-descendants” definition of the causal Markov property is
sometimes called the “local Markov property.” An equivalent articulation is
called the Markov factorization property, which is exactly the property that if
your causal DAG is true, you can factorize a joint probability into conditional
probabilities of variables given their parents in the causal DAG:

P(a,s,e,o,r,t) = P(a)P(s)P(e│s,a)P(o│e)P(r│e)P(t│o,r)

If our transportation DAG is a true representation of the data generating
process, then the local Markov property should to hold true.

3.2.4 DAGs can provide scaffolding for probabilistic ML
models.

Many modeling approaches in probabilistic machine learning use a DAG as
the model structure. Examples include:



Directed graphical models (AKA Bayesian networks).
Latent variable models (e.g., topic models).
Deep generative models such as variational autoencoders.

The advantage of building a probabilistic machine learning model on top of a
causal graph is, rather obviously, that you have a probabilistic causal
machine learning model. You can train it on data, and you can use it for
prediction and other inferences like any probabilistic machine learning
model. Moreover, because it is built on top of a causal DAG, it is a causal
model. Therefore, you may be able to use it to make certain causal inferences,
provided you meet the conditions for making those inferences. I discuss those
conditions in Part 2 of this book.

3.3 Building a probabilistic machine learn model on
a causal DAG

Recall our factorization of the joint probability distribution of the
transportation variables over the DAG in the transportation DAG.

P(a,s,e,o,r,t) =P(a)P(s)P(e│s,a)P(o│e)P(r│e)P(t│o,r)

We have a set of factors { P(a),P(s),P(e│s,a),P(o│e),P(r│e),P(t│o,r) }. From
here on, we’ll borrow the term “Markov kernel” from probability theory and
call these factors causal Markov kernels. We’ll build our probabilistic
machine learning model by implementing the causal Markov kernels in code
then composing them into one model.  Our implementations for each kernel
will be able to return a probability value given input arguments. For example,
P(a) will take in an outcome value for A and return a probability value for
that outcome. Similarly, P(t│o,r) will take in values for T, O, and R and
return a probability value for T. Our implementations will also be able to
generate from the causal Markov kernels. To do this, these implementations
will require parameters that map the inputs to the outputs. We’ll use standard
statistical learning approaches to fit those parameters from the data.

3.3.1 Training a model on the causal DAG



Consider the data generating process for the transportation DAG. What sort
of data would this process generate? 

Suppose we administered a survey covering 500 individuals, getting values
for each of the variables in this DAG.  The data encodes the variables in our
DAG as follows.

Age (A): Recorded as young (young) for individuals up to and including
29 years, adult (adult) for individuals between 30 and 60 years old
(inclusive), and old (old) for people 61 and over.
Gender (S): The self-reported gender of an individual, recorded as male
(M), female (F), or other (O).
Education (E): The highest level of education or training completed by
the individual, recorded either high school (high) or university degree
(uni).
Occupation (O): Employee (emp) or a self-employed (self) worker.
Residence (R): The population size of the city the individual lives in,
recorded as small (small) or big (big).
Travel (T): The means of transport favored by the individual, recorded
as car (car), train (train) or other (other)

Labeling Causal Abstractions

How we conceptualize the variables of a model matters greatly in machine
learning.   For example, ImageNet, a database of 14 million images, has
historically contained anachronistic and offensive labels for racial categories. 
Even if renamed to be less offensive, race categories themselves are fluid
across time and culture.  What are the "correct" labels to use in a predictive
algorithm?

These are not merely matters of identity politics. Philosophers have long
understood that how we define the abstractions in a problem domain impacts
the inferences and predictions we make about those abstractions. A famous
example is Nelson Goodman's "New Riddle of Induction", a thought
experiment that demonstrates label definitions that create paradoxical
predictions.

Many data scientists blindly model data and do not think about the data



generating process. When you don’t think about the data generating process it
is easy to take the provenance of the variable definitions in the data for
granted. Indeed, most causal inference texts assume you already know what
variables you are working with.

But the problem of defining the causal abstractions in our model is non-
trivial. The definitions constrain the causal questions we hope to answer with
the model. Evidence from cognitive science suggests humans can alternate
between causal abstractions to reason about different problems in different
domains. This suggests that our problems should define the variables in the
DAG and not the other way around.

In chapter 5, I'll introduce the idea of "no causation without manipulation," an
idea that provides a useful heuristic for how to define causal variables.

The variables in the transportation data are all categorical variables.  In this
simple categorical case, we can rely on a graphical modeling library like
pgmpy. 

Listing 3.3 Loading transportation data

import pandas as pd

url='https://raw.githubusercontent.com/altdeep/causalML/master/datasets/transportation_survey.csv'    #A 

data = pd.read_csv(url)

data

This produces the following data frame.

Figure 3.11 An example of data from the data-generating process underlying the transportation
model. In this case the data is 500 survey responses.



The BayesianNetwork class we initialized in Listing 3.1 has a fit method that
will learn the parameters of our causal Markov kernels.  Since our variables
are categorical, our causal Markov kernels will be in the form of conditional
probability tables represented by pgmpy's TabularCPD class.

Listing 3.4 Learning parameters for the causal Markov kernels in the transportation model

model = BayesianNetwork(

      [

        ('A', 'E'),

        ('S', 'E'),

        ('E', 'O'),

        ('E', 'R'),

        ('O', 'T'),

        ('R', 'T')

     ]



)

model.fit(data)    #A

causal_markov_kernels = model.get_cpds()    #B

print(causal_markov_kernels)    #B

Let's look at the structure of the causal Markov kernel for the transportation
variable T.

cmk_T = causal_markov_kernels[-1]

print(cmk_T)

This implements the causal Markov kernel P(T|O,R) as a conditional
probability table, a type of look-up table where given a value of T, O, and R
we get the corresponding probability mass value.  For example,
P(T=car|O=emp, R=big) = 0.7034.  Note that these are conditional
probabilities.  For each combination of values for O and R, there are
conditional probabilities for the three outcomes of T that sum to 1.  For
example, when O=emp and R=big, P(T=car| O=emp, R=big) + (P(T=other|
O=emp, R=big) + P(T=train| O=emp, R=big) = 1.

The causal Markov kernel in the case of nodes with no parents is just a
simple probability table.  For example, the following code block prints the
causal Markov kernel for gender (S)

print(causal_markov_kernels[2])

+------+-------+

| S(F) | 0.522 |

+------+-------+

| S(M) | 0.478 |

+------+-------+

This fit method learns parameters by calculating the proportions of each class
in the data. Alternatively, we could have used other techniques for parameter
learning.

3.3.2 Different techniques for parameter learning

There are several ways we could go about training these parameters. The
following highlights a few common ways of training parameters in
conditional probability tables.



Maximum likelihood estimation

The learning algorithm I used in the fit method on the BayesianNetwork
model object was maximum likelihood estimation (discussed in chapter 2).
Maximum likelihood estimation is the default parameter learning method, so
I didn’t specify “maximum likelihood” in the call to fit.  Generally,
maximum likelihood estimation seeks the parameter that maximizes the
likelihood of seeing the data we use to train the model. In the context of
categorical data, maximum likelihood estimation is equivalent to taking
proportions of counts in the data.  For example, the parameter for
P(O=emp|E=high) is calculated as:

Bayesian estimation

In chapter 2, we also introduced Bayesian estimation. Bayesian inference
techniques are generally mathematically intractable and rely on algorithms
(e.g., sampling algorithms and variational inference). However, there is an
approach that uses “conjugate priors” to derive simple mathematical
parameter estimates. Conjugate priors are a special mathematical case of
canonical prior distribution that provide pre-determined posteriors with the
same canonical form. That means the code implementation can just calculate
the parameter value with simple math without the need for complicated
Bayesian inference algorithms.

For example, pgmpy implements a Dirichlet conjugate prior for categorical
outcomes. In other words, the posterior distribution of the parameters in
P(O=emp|E=high) will also have a Dirichlet distribution. pgmpy will use the
mean of that distribution to provide point estimates of those parameters.

Listing 3.5 Bayesian point estimation with a Dirichlet conjugate prior

from pgmpy.estimators import BayesianEstimator    #A

estimator = BayesianEstimator(model, data)    #A

model.fit(



    data,

    estimator=BayesianEstimator,    #B

    prior_type="dirichlet",

    pseudo_counts=1    #C 

) 

causal_markov_kernels = model.get_cpds()     #D

cmk_T = causal_markov_kernels[-1]    #D

print(cmk_T)    #D

In contrast to maximum likelihood estimation, Bayesian estimation of a
categorical parameter with a Dirichlet prior acts like a smoothing mechanism.
For example, the maximum likelihood parameter estimate says 100% of self-
employed people in small towns take a car to work.  This is probably
extreme. Certainly, some self-employed people bike to work, we just didn’t
manage to survey any of them.  Some small cities, such as Crystal City in the
US state of Virginia (population 22,000), have subway stations. I’d wager a
least a few of the entrepreneurs in those cities use the train.

Causal Modelers and Bayesians

The Bayesian philosophy goes beyond mere parameter estimation. Indeed,
Bayesian philosophy has much in common with causal modeling with a
DAG. Bayesians try to encode subjective beliefs, uncertainty, and prior
knowledge into “prior” probability distributions on variables in the model.
Causal modelers try to encode subjective beliefs and prior knowledge about
the data generating process into the form of a causal DAG. The two
approaches are compatible. Given a casual DAG, you can be Bayesian about
inferring the parameters of the probabilistic model you build on top of the
causal DAG. You can even be Bayesian about the DAG itself and compute
probability distributions on DAGs!

Other techniques for parameter estimation

We need not use a conditional probability table to represent the causal
Markov kernels. There are models within the generalized linear modeling
framework for modeling categorical outcomes. For some of the variables in
the transportation model, we might have used non-categorical outcomes.
Age, for example, might have been recorded as an integer outcome in the
survey. For variables with numeric outcomes, we might use other modeling



approaches. You can also use neural network architectures to model
individual causal Markov kernels.

Parametric assumptions refer to how we specify the outcomes of a node in
the DAG (e.g., category or real number) and how we map parents to the
outcome (e.g., table or neural network). Note that the causal assumptions
encoded by the causal DAG are decoupled from the parametric assumptions
for a causal Markov kernel. For example, when we assumed that age was a
direct cause of education level and encoded that into our DAG as an edge, we
didn’t have to decide if we were going to treat age as an ordered set of classes
or as an integer, or as seconds elapsed since birth, etc. Furthermore, we didn’t
have to know whether to use a conditional categorical distribution or a
regression model. That step comes after we specify the causal DAG and want
to implement P(E|A, S).

Similarly, when we make predictions and probabilistic inferences on a trained
causal model, the considerations of what inference/prediction algorithms to
use, while important, are separate from our causal questions. This separation
simplifies our work. Often enough, we can build our knowledge and skill set
in causal modeling and reasoning independently of our knowledge of
statistics, computational Bayes, and applied machine learning.

3.3.3 Learning parameters when there are latent variables

Since we are modeling the data-generating process and not the data, it will be
likely that some nodes in the causal DAG will not be observed in the data.
Fortunately, probabilistic machine learning provides us with tools for
learning latent variables.

Learning latent variables with pgmpy and structural EM

To illustrate, suppose the education variable in the transformation survey data
were not recorded. pgmpy gives us a utility for learning the causal Markov
kernel for latent E using an algorithm called structural expectation
maximization, which is a variant of parameter learning with maximum
likelihood.



Listing 3.6 Training a causal graphical model with a latent variable.

import pandas as pd

from pgmpy.models import BayesianNetwork

from pgmpy.estimators import ExpectationMaximization as EM

url='https://raw.githubusercontent.com/altdeep/causalML/master/datasets/transportation_survey.csv'    #A

data = pd.read_csv(url)    #A

data_sans_E = data[['A', 'S', 'O', 'R', 'T']]    #B

model_with_latent = BayesianNetwork(

       [

        ('A', 'E'),

        ('S', 'E'),

        ('E', 'O'),

        ('E', 'R'),

        ('O', 'T'),

        ('R', 'T')

     ],

     latents={"E"}    #C

)

estimator = EM(model_with_latent, data_sans_E)    #D

cmks_with_latent = estimator.get_parameters(latent_card={'E': 2})    #D

print(cmks_with_latent[1].to_factor)    #E

The last line prints a factor object.

+------+----------+------+--------------+

| E    | A        | S    |   phi(E,A,S) |

+======+==========+======+==============+

| E(0) | A(adult) | S(F) |       0.1059 |

+------+----------+------+--------------+

| E(0) | A(adult) | S(M) |       0.1124 |

+------+----------+------+--------------+

| E(0) | A(old)   | S(F) |       0.4033 |

+------+----------+------+--------------+

| E(0) | A(old)   | S(M) |       0.2386 |

+------+----------+------+--------------+

| E(0) | A(young) | S(F) |       0.4533 |

+------+----------+------+--------------+

| E(0) | A(young) | S(M) |       0.6080 |

+------+----------+------+--------------+

| E(1) | A(adult) | S(F) |       0.8941 |

+------+----------+------+--------------+

| E(1) | A(adult) | S(M) |       0.8876 |

+------+----------+------+--------------+

| E(1) | A(old)   | S(F) |       0.5967 |

+------+----------+------+--------------+

| E(1) | A(old)   | S(M) |       0.7614 |



+------+----------+------+--------------+

| E(1) | A(young) | S(F) |       0.5467 |

+------+----------+------+--------------+

| E(1) | A(young) | S(M) |       0.3920 |

+------+----------+------+--------------+

The outcomes for E are 0 and 1 because the algorithm doesn’t know the
outcome names. Perhaps 0 is “high” and 1 is “uni,” but correctly mapping the
default outcomes from a latent variable estimation method to the names of
those outcomes would require further assumptions.

There are other algorithms for learning parameters when there are latent
variables, including some that use special parametric assumptions (i.e.,
functional assumptions about how the latent variables relate to the observed
variables).

Latent variables and identification

In statistical inference, we say a latent variable is “identified” when it is
theoretically impossible to learn its true value given an infinite number of
examples in the data. Unfortunately, your data may not be sufficient to learn
the latent variables in your causal DAG. More specifically, the observations
of the observed variables may not be sufficient to identify the latent variable.
If we did not care about representing causality, we could just restrict
ourselves to a latent variable graphical model with latent variables that are
identifiable from data. A causal DAG is driven by the data generating
process, not the data.

That said, even if you have non-identifiable latent variables, you still may be
able to identify the quantity that answers your causal question. Indeed, much
of causal inference methodology is focused on robust estimation of causal
effects (how much a cause affects an effect) despite the presence of latent
“confounders.” On the other hand, even if your latent variables are identified,
the quantity that answers your causal question may not be identified. We’ll
cover this in detail when we discuss the causal hierarchy in part 3 of this
book.

3.3.4 Inference with a trained causal probabilistic machine



learning model

A probabilistic machine learning model that models the observational
distribution can use computational inference algorithms to infer the
conditional probability of an outcome for any set of variables given outcomes
for the other variables. We use the variable elimination algorithm for a
directed graphical model with categorical outcomes (introduced in chapter 2).

For example, suppose we want to compare education levels amongst car
drivers to that of train riders. Then, we can calculate and compare P(E|T)
when T=car to when T=train using variable elimination, an inference
algorithm for tabular graphical models.

Listing 3.7 Inference on the trained causal graphical model

from pgmpy.inference import VariableElimination     #A

inference = VariableElimination(model)     

query1 = inference.query(['E'], evidence={"T": "train"})

query2 = inference.query(['E'], evidence={"T": "car"})

print("train")

print(query1)

print("car")

print(query2)

This prints the probability tables for “train” and “car.”

"train"

+---------+----------+

| E       |   phi(E) |

+=========+==========+

| E(high) |   0.6162 |

+---------+----------+

| E(uni)  |   0.3838 |

+---------+----------+

"car"

+---------+----------+

| E       |   phi(E) |

+=========+==========+

| E(high) |   0.5586 |

+---------+----------+

| E(uni)  |   0.4414 |

+---------+----------+



It seems car drivers are more likely to have a university education.  That
inference is based on our DAG-based causal assumption that university
education indirectly determines how people get to work.

In a tool like pyro, you have to be a bit more hands-on with the inference
algorithm. The following illustrates the inference of P(E|T=”train”) using a
probabilistic inference algorithm called importance sampling.

Listing 3.8 Implementing the trained causal model in pyro

import torch

import pyro

from pyro.distributions import Categorical

 

A_alias = ['young', 'adult', 'old']    #A

S_alias = ['M', 'F']    #A

E_alias = ['high', 'uni']    #A

O_alias = ['emp', 'self']    #A

R_alias = ['small', 'big']    #A

T_alias = ['car', 'train', 'other']    #A

 

A_prob = torch.tensor([0.3,0.5,0.2])    #B

S_prob = torch.tensor([0.6,0.4])    #B

E_prob = torch.tensor([[[0.75,0.25], [0.72,0.28], [0.88,0.12]],    #B

                     [[0.64,0.36], [0.7,0.3], [0.9,0.1]]])    #B

O_prob = torch.tensor([[0.96,0.04], [0.92,0.08]])    #B

R_prob = torch.tensor([[0.25,0.75], [0.2,0.8]])    #B

T_prob = torch.tensor([[[0.48,0.42,0.1], [0.56,0.36,0.08]],    #B

                     [[0.58,0.24,0.18], [0.7,0.21,0.09]]])    #B

 

def model():    #C

   A = pyro.sample("age", Categorical(probs=A_prob))    #C

   S = pyro.sample("gender", Categorical(probs=S_prob))    #C

   E = pyro.sample("education", Categorical(probs=E_prob[S][A]))    #C

   O = pyro.sample("occupation", Categorical(probs=O_prob[E]))    #C

   R = pyro.sample("residence", Categorical(probs=R_prob[E]))    #C

   T = pyro.sample("transportation", Categorical(probs=T_prob[R][O]))    #C

   return{'A': A,'S': S,'E': E,'O': O,'R': R,'T': T}    #C

 

pyro.render_model(model)    #D

 

The function pyro.render_model draws the implied causal DAG from the
pyro model in Figure 3.11.



Figure 3.12 You can visualize the causal DAG in pyro by using the pyro.render_model() function.

Pyro provides probabilistic inference algorithms such as importance sampling
that we can apply to our causal model.

Listing 3.9 Inference on the causal model in pyro

import numpy as np

import pyro

from pyro.distributions import Categorical

from pyro.infer import Importance, EmpiricalMarginal    #A

import matplotlib.pyplot as plt

 

conditioned_model = pyro.condition(    #B

    model,    #C

    data={'T':torch.tensor(1)}    #D

)

 

m = 5000    #E

posterior = pyro.infer.Importance(    #F

conditioned_model,    #G

num_samples=m    #H



).run()    #I

E_marginal = EmpiricalMarginal(posterior, "E")    #J

E_samples = [E_marginal().item() for _ in range(m)]    #J

E_unique, E_counts = np.unique(E_samples, return_counts=True)    #K

E_probs = E_counts / m    #K

 

plt.bar(E_unique, E_probs, align='center', alpha=0.5)    #L

plt.xticks(E_unique, E_alias)    #L

plt.ylabel('probability')    #L

plt.xlabel('E')    #L

plt.title('P(E | T = "train") - Importance Sampling')    #L

 

This produces the plot in Figure 3.13.

Figure 3.13 Visualization of the P(E|T="train") distribution.

The probabilities in Figure 3.13 are close to the results from the pgmpy
model, though slightly different, due to different algorithms and the rounding
of the parameter estimates to two decimal places.

This probabilistic inference is not yet causal inference. In chapter 8, we’ll
show how to use probabilistic inference to implement causal inference.



3.4 Your causal question scopes the DAG

Defining the DAG based on the variables in your data is attractive because
your DAG has a fixed set of variables; you don’t have to wonder about what
variables should be in your DAG. But causal modelers model the data
generating process, not the data. The true causal structure in the world
doesn’t care about what happens to be measured in your dataset.

The problem is that, while your data has a fixed set of variables, the variables
that could comprise your DGP are only bounded by your imagination. Given
a variable, you could include its causes, those causes’ causes, those causes’
causes’ causes, continuing all the way back to Aristotle’s “prime mover.”
Fortunately, there is no need to go back that far. You can use the following
procedure to select variables for inclusion in your causal DAG.

Include variables central to your causal question(s).

Step 1 is to include all the variables central to your causal question. If you
intend to ask multiple questions, include all the variables relevant to those
questions.

Figure 3.14 Step 1. Include variables central to your causal question(s). Here, suppose you are
interested in asking questions about V, U, and Y.

As I discussed in chapter 1, causal effect inference is the most common
causal question. As an example, consider Figure 3.14. Suppose that we intend
to ask a causal question about V, U, and Y. These become the first variables



we include in the DAG.

Include any common causes for the variables in step 1.

Step 2 is to add any common causes for the variables you included in step 1.
To illustrate, you would start variables U, V and Y in Figure 3.14, then trace
back their causal lineages and identify shared ancestors. These shared
ancestors are common causes. In Figure 3.15, W0, W1 and W2 are common
causes of V, U, and Y.

Figure 3.15 Satisfy causal sufficiency; include common causes to the variables from step 1.

In formal terms, a variable is a common cause Z of a pair of variables X and
Y if there is a directed path from Z to X that does not include Y and a
directed path from Z to Y that does not include X. The formal principle of
including common causes is called causal sufficiency. A set of variables is
causally sufficient if it doesn’t exclude any common causes between any pair



of variables in the set. Furthermore, once you include a common cause, you
don’t have to include earlier common causes on the same paths. For example,
Figure 3.16 illustrates how we might exclude variables earlier common
causes.

Figure 3.16 Once you include a common cause, you don’t have to include any earlier common
causes on the same paths to the step 1 variables.

In Figure 3.16, W2 is on W0’s path to Y and U, but we include W0 because it
has its own path to V. In contrast, while C is a common cause of V, Y, and U,
W0 is on all of C’s paths to V, Y and U, so we can exclude it after including
W0. Similarly, W2 lets us exclude E, and W0 and W2 together let us exclude
D.

Include variables that may be useful in causal inference statistical
analysis

Step 3 is to include variables that may be useful in statistical methods for the
causal inferences you want to make. For example, in Figure 3.17, suppose
you were interested in estimating the cause effect of V on Y. You might want
to include Z so it could function as an “instrumental variable,” a type of



variable used in certain statistical methods for causal effect inference (we’ll
cover these in part 4 of this book). X0 and X1 could also be of use in the
analysis by accounting for other sources of variation in Y.

Figure 3.17 Step 3 is to include variables that may be useful in the causal inference statistical
analysis.

Include variables that help the DAG communicate a complete story

Step 4 is to include any variables that help the DAG better function as a
communicative tool. Consider the common cause D in Figure 3.18.

Figure 3.18 Step 4 is to include variables that help the DAG tell a complete story. In this example,
despite having excluded D in step 2 (Figure 3.16) we still might want to include D if it is an
important variable.



In Figure 3.16, we concluded that common cause D could be excluded after
including common causes W0 and W2. But perhaps D is an important
variable in the domain. If so, including it may help the DAG tell a better story
by showing how a key variable relates to the variables you included.

3.4.1 Causal DAGs for causal effect estimation

Building a causal DAG for causal effect inference deserves special attention.
When you are interested in causal effects, you have the option of specifying
the DAG in terms of the roles certain variables play in causal effect inference.
Again, consider the nodes in Figure 3.16. I discussed including some of these
nodes because they follow certain roles. W0, W1, and W2 are common causes
and Z is an “instrumental variable.” Similarly, X0 and X1 are potentially
useful in causal effect.

We can use those roles to specify a basic DAG. The dowhy causal inference
library shows us how.

Listing 3.10 Creating a DAG based on roles in causal effect inference

from dowhy import datasets



 

import networkx as nx

import matplotlib.pyplot as plt

 

sim_data = datasets.linear_dataset(    #A

    beta=10.0,

    num_treatments=1,    #B

    num_instruments=2,    #C

    num_effect_modifiers=2,    #D

    num_common_causes=5,    #E

    num_frontdoor_variables=1,    #F

    num_samples=100,

    

)

dag = nx.parse_gml(simulated['gml_graph'])    #G

pos = {    #G

 'X0': (600, 350),    #G

 'X1': (600, 250),    #G

 'FD0': (300, 300),    #G

 'W0': (0, 400),    #G

 'W1': (150, 400),    #G

 'W2': (300, 400),    #G

 'W3': (450, 400),    #G

 'W4': (600, 400),    #G

 'Z0': (10, 250),    #G

 'Z1': (10, 350),    #G

 'v0': (100, 300),    #G

 'y': (500, 300)    #G

}    #G

options = {    #G

    "font_size": 12,    #G

    "node_size": 800,    #G

    "node_color": "white",    #G

    "edgecolors": "black",    #G

    "linewidths": 1,    #G

    "width": 1,    #G

}    #G

nx.draw_networkx(dag, pos, **options)    #G

ax = plt.gca()    #G

ax.margins(x=0.40)    #G

plt.axis("off")    #G

plt.show()    #G

This code produces the DAG pictured in Figure 3.19.

Figure 3.19 A causal DAG built by specifying variables by their role in causal effect inference.



This role-based approach produces a simple template causal DAG. It won’t
give you the nuance that you have in Figure 3.18, but it will be enough for
tackling the pre-defined causal effect query. It’s a great tool to use when
working with collaborators who are skeptical of DAGs but are comfortable
talking about variable roles.

Such a template method could be used for other causal queries as well. You
can also use this approach to get a basic causal DAG in a first step that you
then build upon to produce a more nuanced graph.

3.5 Causal invariance and parameter modularity

Suppose we were interested in modeling the relationship between altitude and
temperature. The two are clearly correlated; the higher up you go, the colder
it gets. However, you know temperature doesn't cause altitude, otherwise
heating the air within a city would cause the city to fly. Altitude is the cause,
and temperature is the effect. So we think of a simple causal DAG that we
think captures the relationship between temperature and altitude, along with



other causes, and come up with the DAG in Figure 3.20.

Let “A” be altitude, “C” be cloud cover, “L” be latitude, “S” be season, and
“T” be temperature. The DAG in Figure 3.14has five causal Markov kernels,
{P(A), P(C), P(L), P(S), P(T|A, C, L, S)}. To train your model you need to
learn parameters for each of these causal Markov Kernels.

Figure 3.20 A simple model of outdoor temperature

3.5.1 Independence of mechanism and parameter modularity

There are some underlying thermo-dynamic mechanisms in the data
generating process underlying these causal Markov kernels. For example, the
causal Markov kernel P(T|A, C, L, S) is the conditional probability induced
by the physics-based mechanism wherein altitude, cloud cover, latitude, and
season drive temperature. That mechanism is distinct from the mechanism
that determines cloud cover (according to our DAG). “Independence of
mechanism” refers to this distinction between mechanisms.



The independence of the mechanism means that when we train the
parameters of P(T|A, C, L, S) and the parameters of P(C), we are learning
encodings of those mechanisms. And since those mechanisms are separate,
the encodings should be separate. This “parameter modularity” is an
important rule to follow when you learn the parameters of a causal graphical
model. Parameter modularity is a property of causal graphical models that
states that the parameter sets for a causal Markov kernel are unconnected to
the parameters of other causal Markov kernels. That “unconnectedness”
means when you learn parameters, your learning procedure should treat them
as disjoint sets. If you treat the parameters as random variables to learn with
Bayesian inference, the parameter sets are a priori independent. Put another
way; the training of the parameter sets for each causal Markov kernel should
be decoupled. Note that this principle contrasts with most training procedures
in machine learning. In machine learning, a loss function is typically defined
on the full vector of parameters, and they are optimized jointly.

3.5.2 Causal invariance and domain transfer

You may not be a climatologist or a meteorologist. Still, you know the
relationship between temperature and altitude has something to do with air
pressure, turbulence and sunlight and such. You also know that whatever the
physics of that relationship is, that physics is the same in Katmandu as it is in
El Paso. So, when we train a causal Markov kernel on data solely collected
from Katmandu, we learn a causal representation of a mechanism that is
invariant between Katmandu and El Paso. This invariance helps with transfer
learning; we should be able to use that trained causal Markov kernel to make
inferences about El Paso.

Methods that use causal invariance learn components of a causal model on
one dataset and use it in making inference about others are generally called
causal transfer learning or causal data fusion. For two data sets with two data
generating process, these methods have the modeler specify which
components of the data generating processes overlap and then use that
overlap to allow using one data set to make inferences about the other.

3.5.3 Fitting parameters with common sense



In the temperature model, we have an intuition about the physics of the
mechanism that induces P(T|A, C, L, S). However, we rely on the same
assumptions for models from non-natural science domains such as
econometrics and other social sciences. In these domains, we still assume the
causal Markov kernels correspond to distinct causal mechanisms in the real
world, assuming the model is true. For example, recall P(T|O, R) in our
transportation model. We still assume the underlying mechanism is distinct
from the others; if there were some changes to the mechanism underlying
P(T|O, R), only P(T|O, R) should change; other kernels in the model should
not. If something changes the mechanism underlying P(R|E), the causal
Markov kernel for R, this change should affect P(R|E) but have no effect on
the parameters of P(T|O, R).

This invariance can help us estimate parameters without statistical learning
by reasoning the underlying causal mechanism. For example, let's look again
at causal Markov kernel P(R | E) (recall R is residence, E is education).

People who don't get more than a high school degree are more likely to stay
in their hometowns. However, people from small towns who attain college
degrees are likely to move to a big city where they apply their credentials to
get higher-paying jobs.

From this, we might reason about US demographics. Suppose some web
search tells you that 80% of the US lives in an urban area (P(R=big) = .8),
while 95% of college degree holders live in an urban area (P(R=big|E=uni) =
.95). Further, 25% of the overall adult population has a university degree
(P(E=uni) = .25). Then, with a bit of math, you calculate your probability
values as P(R=small|E=high)=.25, P(R=big|E=high) = .75, P(R=small|E=uni)
= .05, P(R=big|E=uni) = .95. The ability to calculate parameters in this
manner is particularly useful if data available for parameter learning.

3.6 Looking ahead: model validation and combining
causal graphs with deep learning

The Markov property will continue to be of use to us. In the next chapter,
we’ll examine how to use the property to validate, or more accurately
“refute,” our causal DAG.



In section 3 of this chapter, we examined how to build a probabilistic
machine learning model on top of the causal DAG. For each node in the
graph, we constructed a causal Markov kernel (probability distribution of the
node given its direct causes in the DAG). We used simple conditional
probability tables to represent these kernels. We used pgmpy’s
implementation of the structural expectation maximization algorithm to
estimate the causal Markov kernels of latent variables as well.

The Markov property allows us to extend this technique from conditional
probability tables to deep learning. For each causal Markov kernel, we could
replace the conditional probability table with probability parameters with a
feedforward neural network (causal parents as input and child as output) with
weight parameters. We can use the independence of mechanism assumption
to dramatically simplify the search space of those parameters. We can also
rely on deep learning’s ability to learn latent representations to train the
model in the presence of latent variables. Finally, we can make use of deep
learning’s ability to work with low-level features in enable causal modeling
of rich media objects such as images. We’ll examine this ability in chapter 5.

3.7 Summary

The causal DAG is a directed acyclic graph that can represent our causal
assumptions about the data generating process.
The causal DAG is a useful tool for visualizing and communicating your
causal assumptions.
DAGs are fundamental data structures in computer science and admit
many fast algorithms we can bring to bear on causal inference tasks.
DAGs link causality to conditional independence via the causal Markov
property.
DAGs can provide scaffolding for probabilistic ML models.
We can use various methods for statistical parameter learning to train a
probabilistic model on top of a DAG. These include maximum
likelihood estimation and Bayesian estimation.
Given the causal DAG, the modeler can choose from a variety of
parameterizations of the causal Markov kernels in the DAG, ranging
from conditional probability tables to regression models to neural
networks.



A causally sufficient set of variables contains all common causes
between pairs in that set.
You can build a causal DAG by starting with a set of variables of
interest, expanding that to a causally sufficient set, adding variables
useful to causal inference analysis, and finally adding any variables that
help the DAG communicate a complete story.
You can specify a DAG by the roles variables play in a specific causal
inference task.
The property of parameter modularity means parameter sets can often be
estimated based on common sense alone, without dat.
When using data, the parameter sets for each causal Markov kernel
should be learned independently from one another.



4 Testing the DAG with causal
constraints
This chapter covers

Using d-separation to reason about how causality constrains conditional
independence
Using networkx and pgmpy to do d-separation analysis
Refuting a causal DAG using conditional independence tests
Refuting a causal DAG using Verma constraints

Causality in the data generating process induces constraints, such as
conditional independence, on the joint probability distribution of the
variables in that process. We saw a flavor of these constraints in the previous
chapter in the form of the Markov property, how effects become independent
of indirect causes given their direct causes. These constraints give us the
ability to test our model against the data; if the causal DAG we build is
correct, we should see evidence of these constraints in the data.

In this chapter, we’ll use statistical analysis of the data to test our causal
DAG. Namely, we’ll try to refute our causal DAG; meaning we’ll look for
ways the data suggests our causal DAG is wrong. In this chapter we learn to
test our causal DAG using conditional independence tests and an extension of
conditional independence called Verma constraints that we can test when
variables in our causal DAG are not observed in data.

To start, we look at the concept of d-separation. D-separation tells us what
conditional independence constraints should hold given our causal DAG, and
it is the keystone of graphical causal inference analysis.

4.1 Examples of how causality induces conditional
independence



Consider again the blood type example in Figure 4. 1. The example illustrates
how causality induces conditional independence. Your father’s blood type is
a direct cause of yours, and you paternal grandfather’s blood type is an
indirect cause. Despite being a cause of your blood type, your paternal
grandfather’s blood type is conditionally independent of your blood type
given your father’s.

Figure 4. 1 Causality induces conditional independence. Your blood type is conditionally
independent of your paternal grandfather's blood type (an indirect cause) given your father's
blood type (a direct cause)

We know this from causality; the parents’ blood types completely determine
the blood type of the child. So your paternal grandfather’s and grandmother’s
blood type completely determined your father’s blood type. But your father’s
and mother’s blood type completely determined yours. So once we know
your father’s blood type, there is nothing more your paternal father’s blood
type can tell us.

4.1.1 Colliders

Now we consider the collider, the interesting way in which causal induces
conditional independence. Consider the canonical example in Figure 4. 2.
The sprinkler being on and whether or not it rains are causes of whether the
grass is wet or not. Knowing that the sprinkler is off won't help you predict



whether it’s raining. In other words, the. sprinkler state and rain state are
independent. But when you know the grass is wet, also knowing that the
sprinkler is off tells you it must be raining. So while the sprinkler state and
rain state are independent, they become conditionally dependent given the
state of the grass.

Figure 4. 2 The sprinkler being on and whether or not it rains causes the grass to be wet or not.
Knowing that the sprinkler is off won't help you predict whether it’s raining; i.e. sprinkler state
and rain state are independent. But given the grass is wet, knowing the sprinkler is off tells you it
must be raining, i.e. sprinkler state and rain start are conditionally dependent given the state of
the grass.

In this case “Wet Grass” is a collider, an effect with at least two independent
causes. Colliders are odd and interesting because they illustrate how causal
variables can be independent but then become dependent when one
conditions on a shared effect variable. In conditional independence terms, the
parent causes are independent (Sprinkler ⊥ Rain), but become dependent
after we observe (condition on) the child (Sprinkler ⟂̷ Rain | Wet Grass).

For another example, let’s look at blood type again in Figure 4. 3.

Figure 4. 3 Mothers and fathers are generally unrelated, and thus knowing mother's blood type
can't help predict father's blood type. But if we know the mother’s blood type and the child’s
blood type, it narrows down the possible blood types of the father.



Since the mother and father are unrelated, the mother's blood type tells us
nothing about the father's blood type - (mother's blood type ⊥ father's blood
type).  Suppose we only know the child's blood type. 

Let's suppose the child's blood type is B.  Does that help us predict the
father's blood type?  Without getting into probabilities, we can see that the
child is a B doesn't narrow down our possibilities for the father.  If the child
is B, then the father can be A, B, AB, or O.  To see this, examine the standard
blood type table in Figure 4. 4.

Figure 4. 4 Knowing mother’s blood type can help you narrow down the father’s blood type if
you know the child’s blood type.



Each column is a possible outcome for the father, and each of those columns
contains cases where the child is a B.

But if, in addition to knowing the child is a B, we know the mother was an A,
then we can narrow down the possibilities for the father. We know the father
can't be an A or an O, he must be a B or an AB.

So (mother's blood type ⊥ father's blood type), (mother's blood type ⟂̷
father's blood type | child's blood type).

In summary, colliders are weird because they describe how causal logic leads
to situations where two things are independent but "suddenly" become
dependent when you condition on a third variable.

4.1.2 Domain-free reasoning with a causal graph

The problem with the above explanation is that it is in terms of a specific
domain. If we want to write code that can help us make causal inferences
about different domains, we need a domain-independent way of mapping
causal relationships to conditional independence. “D-separation” solves this
problem.

“D-separation and connection” refers to how we use graphs to reason about
conditional independence. The concept is novel at first glance. But it is your
one of your most important tools for graph-based causal reasoning. As a bit
of a spoiler for chapter 8, consider the problem of causal effect inference,
illustrated in Figure 4. 5.

Figure 4. 5 In causal effect inference, we are interested in statistical quantifying how much a
cause (treatment) affects an effect (outcome). To do this we have to adjust for non-causal
correlation introduced by one or more confounders. D-separation is the backbone of the theory
that tells us how.



To estimate the causal effect of the treatment on the outcome, we have to
adjust for the confounder. The theoretical justification for doing so is based
on “d-separating” the path “treatment ← confounder → outcome” and
zooming in on the “treatment → outcome” path.

4.2 D-separation and conditional independence

Recall the following ideas from previous chapters:

1. The causal DAG is a model of the data-generating process.
2. The data-generating process entails a joint probability distribution.
3. Causal relationships induce some variables in the joint probability

distribution to be independent and conditionally independent.

D-separation/connection is a graphical language for reasoning about that
conditional independence in the joint probability distribution the causal DAG
models. The concept refers to nodes and paths in the causal DAG;
nodes/paths are “d-connected” or “d-separated.” The idea is for a statement
like “these nodes are d-separated in the graph” to correspond to a statement
like “these variables are conditionally independent.”

We want to make this correspondence because reasoning about over graphs is
easier than reasoning about probability distributions directly; tracing paths
between nodes is easier than taking graduate-level classes in probability
theory. Also, recall from chapter 2, that graphs are fundamental to algorithms



and data structures, and that statistical modeling benefits from making
conditional independence assumptions.

4.2.1 What is d-separation?

D-separation/connection is about making statements about a graph. This
statement involves a pair of nodes u and v, and a set of one or more third-
party nodes that does not include u and v. Let bold-face letter Z represent that
set of third-party nodes. The statement uses the verbs "d-separate" and "d-
connect" to talk about u, v, and Z. The statements are either true or false. So I
could ask you, "Hey bud, does set Z d-separate nodes v and u in graph G?"
and you could either answer "Yes indeed it does!" or "No, I'm afraid it does
not."

Specifically, a d-separation statement reads as follows: “Nodes u and v are d-
separated by the set of nodes Z in graph G. In notation, we write: u⊥_G v|Z.
In the expression u⊥_G v|Z , the subscript “G” on the “⊥” distinguishes it
from u⊥v|Z which means “u and v are conditionally independent given set
Z.” D-separation/connection does not rely on order. If u is d-separated
from/d-connected to v by Z, then v is d-separated from/d-connected to u by
Z.

D-connection is the opposite of d-separation. So if u and v are d-separated by
Z, then they are not d-connected. If u and v are d-connected, then they are not
d-separated.

One might ask that since the causal graph is a model of the data generating
process, why do we need to distinguish between u⊥_G v|Z and u⊥v|Z?
Firstly, d-separation is not unique to causal graphs, it is common across
graphical modeling including models that give no causal interpretation of the
data generating process. Secondly, the causal DAG is a model, and our model
could be wrong. Indeed, in this chapter we’ll see test if our model is wrong
by seeing if a d-separation like u⊥_G v|Z corresponds to actual statistical
evidence of u⊥v|Z in the data.

Four conditions for d-separation



Let P be path, meaning a series of edges between two nodes. It does not
matter if the nodes on the paths are observed or not in your data (we’ll see
how the data factors in later). It is okay for the path to have mixed edge
directions, for example i ← m → j is a path between nodes i and j where the
two edges on the (← , →) are not oriented in the same direction.

A path P is d-separated by node set Z if any of four conditions are met.

P contains a chain, i → m → j, such that the middle node m is in Z
P contains a chain, i ← m ← j, such that the middle node m is in Z
P contains a child-parent-child structure i ← m → j, such that the middle
(parent) node m is in Z
P contains the "collider," i → m ← j, such that the middle node m is not
in Z, and no descendant of m is in Z.

Two nodes u and v are said to be d-separated by Z if all paths between them
are d-separated.

A synonym for "d-separates" is "blocks". So, if a set Z d-separates u and v,
then "Z blocks all paths from u to v". You can also say, "Z is a blocker for u
and v".

Colliders make d-separation weird

Colliders (three-node motifs of the form i → m ← j are what make d-
separation a bit tricky to grok at first glance. Figure 4. 6 illustrates how
colliders affect d-separation. Later in this chapter, we'll see the import causal
intuition behind colliders.

Figure 4. 6 Colliders make d-connection tricky. Given a node m on a path, if m is not a collider,
the path is d-connected by default and d-separated when you block on m. If m is a collider, the
path is d-separated by default and d-connected when you block on m.



All paths between two nodes d-connect by default unless that path has a
collider. A path with a collider is d-separated by default.
Blocking with any node on a d-connected path will d-separate that path
unless that node is a collider. Blocking on a collider will d-connect a
path by default, as will blocking with a descendant of that collider.

In practice, we ask if two nodes in the graph are d-separated or d-connected.
It will always be easier to break that question down in terms of d-separating
paths. Look at all the paths between the two nodes and ask yourself if the
path is d-separated or blocked by some set Z.

D-separating sets of nodes

D-separation doesn't just apply to pairs of nodes, it applies to pairs of sets of



nodes. In the notation , Z can be a set of blockers. U and V can be sets as
well. We d-separate two sets by blocking all d-connected paths between
members of each set. Other graph-based causal ideas, such as the do-calculus,
also generalize to sets of nodes. If you remember that fact, we can build
intuition on individual nodes and that intuition will generalize to sets.

4.2.2 Examples of d-separation

A helpful analogy for understanding d-separation is an electronic circuit.
Paths without colliders are d-connected and are like closed circuits where
electrical current flows uninhibited. "Blocking" on a node on that path d-
separate the path and will “break the circuit” so current can’t flow. We can
think of a collider like an open switch. An open switch blocks current flow in
an electronic circuit. When a path has a collider, the collider blocks all
current from passing through it. Colliders break the circuit. Blocking on a
collider is like closing the switch, and the current that couldn’t pass through
before now can pass through (d-connection). Let’s work through some
examples with some illustrations.

Example 1

Consider the DAG in Figure 4. 7 where P is u → i → m → j → v.

Figure 4. 7 Does the set {m, k} d-separate path u→i→m→j→v?



This path is d-connected by default. Now let Z be the set {m, k}. P contains a
chain i → m → j, and m is in Z. If we block on Z the first condition is
satisfied and u and v are d-separated. Blocking on Z (specifically, blocking
on m, which is in Z) “breaks the circuit” as is illustrated in Figure 4. 8.

Figure 4. 8 The path is d-connected by default but blocking on m ∈ Z d-separates the path and
figuratively breaks the circuit (“∈” means “in”).

Example 2

Now consider the DAG in Figure 4. 9, where P is u ← i ← m → j → v.

Figure 4. 9 Does the set {m} d-separate path u←i←m→j→v?



This path is also d-connected by default. Note that d-connection can go
against the grain of causality. In Figure 4 - 2, the d-connected path from u to
v takes steps in the direction of causality; u to i (u → i) then i to m (i → m)
then m to j (m → j) then j to v (j → v). But here, we have two anticausal
(meaning against the direction of causality) steps, namely the step from u to i
(u ← i) and i to m (i ← m).

Suppose we block on set Z and Z contains only the node m. Then condition 3
is satisfied and the path is d-separated, as illustrated in Figure 4. 10.

Figure 4. 10 This path from u to v is also d-connected by default even though it has some steps (u
to I and i to m) that go against the direction of causality. Again, blocking on m ∈ Z d-separates
the path and figuratively breaks the circuit.



Minimal d-separating sets

When the blocking set Z is the singleton set {m}, this set is sufficient to
block the paths u → i → m → j → v in example 1 and u ← i ← m → j → v
in example 2. Altogether, the sets {i}, {m}, {j}, {i, m}, {i, j}, {m, j}, and {i,
m, j} all d-separate u and v on these two paths. However, {i}, {m}, {j} are
the minimal d-separating sets, meaning that all the other d-separating sets are
composed of these sets. When reasoning about d-separation and when
implementing it in algorithms, we want to focus on minimal d-separating
sets. We want to know the minimal requirements for blocking a path.

Example 3

In the DAG in Figure 4. 11, is the path u→i→m←j→v d-connected by
default?

Figure 4. 11 Does the set {m} (or {k} or {m, k}) d-separate path u→i→m←j→v?



 

No, because the path contains a collider structure m (i→m←j). Paths with
colliders are d-separated by default because, according to our circuit analogy,
the collider behaves like a resister that blocks all current from passing
through.

Now consider what would happen if the blocking set Z included m. In this
case, condition 4 is violated and the path becomes d-connected as in Figure 4.
12.

Figure 4. 12 This path from u to v is d-separated by default because it contains a collider m.
Blocking on m or any of its descendants d-connects the path and figuratively closes the circuit.



The path would also become d-connected if Z didn’t have m but just had k
(or if Z included both m and k). Blocking on a decedent of a collider d-
connects in the same manner as blocking on a collider.

Can you guess why? It’s because the collider’s decedent is d-connected to the
collider. In causal terms, we saw how given your father’s blood type,
observing your blood type (the collider) might reveal your mother’s blood
type. Similarly, if instead of observing your blood type we observed your
child’s blood type, that might help narrow down your blood type and thus
narrow down your mother’s blood type.

Example 4

U and V are d-connection in Figure 4. 13. What sets of nodes are fully
required to d-separate U and V?

Figure 4. 13 You can d-separate U and V with {U, V}.



In Figure 4. 13, U and V are d-connected through the paths;

U → I → V
U → J → V

Again, once d-separate two nodes once we block all the paths between them.
So we can block on {I, J}.  Are there any other d-connecting paths between U
and V initially?  Yes, namely  U → J → I → V, but blocking on {I, J} has
already blocked that path.

Example 5

How do we d-separate U and V in Figure 4. 14?

Figure 4. 14 We can d-separate U and V with sets {I, M, K, J} or {I, M, K, L}.



Let's first enumerate three of the shortest paths.

U ← I → V
U ← M → V
U ← K → V

We'll need to block on at least on {I, M, K} to d-separate these three paths. 
Note that U has another parent J, and there are several paths from U to V
through J, but the only one we haven't already d-separated is U ← J ← L →
V.  Both J and L will block that path.  So we could d-separate U and V with
minimal sets {I, M, K, J} or {I, M, K, L}.

Example 6

The graph in Figure 4. 15 is simple enough that we can enumerate all of the
paths.

Figure 4. 15 Blocking with M will block the path U ←M→V, but would d-connect the path
U←I→ M←J→V because M is a collider between I and J. So we need to additionally block on



either I or J to d-separate U←I→ M←J→V.

Let's start with the three d-connecting paths:

U ← M → V
U ← I → M → V
U ← M ← J → V

The easiest way to block all three of these d-connected paths with one node is
to block on M.  However, note that U ← I → M ← J→ V is not a d-
connecting path because M is a collider on that path.  If we block on that
collider, that path d-connects.  So we need to additionally block on I or J.  In
other words, our minimal d-separating sets are {I, M} and {J, M}.

4.2.3 D-separation in code

If, after that introduction, you are still hazy on d-separation, do not fret. The
best approach is to practice using a graph library that implements d-
separation. Let’s verify our d-separation analysis of the causal DAG in Figure
4. 15.

Listing 4.1 D-separation analysis of the DAG in Figure 4. 15



from networkx import d_separated     #A

from pgmpy.base import DAG    #B

dag = DAG(    #B

    [    #B

      ('I', 'U'),    #B

      ('I', 'M'),    #B

      ('M', 'U'),    #B

      ('J', 'V'),    #B

      ('J', 'M'),    #B

      ('M', 'V')    #B

    ]    #B

)    #B

print(d_separated(dag, {"U"}, {"V"}, {"M"}))    #C

print(d_separated(dag, {"U"}, {"V"}, {"M", "I", "J"}))    #D

print(d_separated(dag, {"U"}, {"V"}, {"M", "I"}))    #E

print(d_separated(dag, {"U"}, {"V"}, {"M", "J"}))    #E

 

In pgmpy there is also a get_independencies method in the DAG class that
enumerates minimal d-separating states that are true given a graph.

Listing 4.2 Enumerating d-separations in pgmpy

from pgmpy.base import DAG

dag = DAG(

    [

      ('I', 'U'),

      ('I', 'M'),

      ('M', 'U'),

      ('J', 'V'),

      ('J', 'M'),

      ('M', 'V')

    ]

)

dag.get_independencies()    #A

 

 

(I ⟂ J)
(I ⟂ V | J, M)
(I ⟂ V | J, U, M)
(V ⟂ I, U | J, M)
(V ⟂ U | I, M)
(V ⟂ I | J, U, M)
(V ⟂ U | J, M, I)



(J ⟂ I)
(J ⟂ U | I, M)
(J ⟂ U | I, M, V)
(U ⟂ V | J, M)
(U ⟂ J, V | I, M)
(U ⟂ V | J, M, I)
(U ⟂ J | I, M, V)

pgmpy is efficient in the representation of the d-separation statements. For
example, the statements in this graph (V ⟂ I| J, M) and (V ⟂ U | J, M) are
both true. But pgmpy compresses them into one statement (V ⟂ I, U | J, M).

4.2.4 Don’t conflate d-separation with conditional
independence

Recall that for conditional independence, we use the notation (X ⟂ Y | Z),
and for d-separation, we use (X ⟂G Y | Z). The printed results of the
get_independencies function does not use the “⟂G” notation. That is
unfortunate, because the distinction between d-separation and conditional
independence is important. Do not conflate d-separation in the causal graph
with conditional independence in the joint probability distribution entailed by
the data generating process the graph is meant to model.

The distinction is important for the task of refuting your causal DAG. If your
causal model is good, then then d-separation in the DAG implies conditional
independence in the joint distribution (note, the converse is not true). In the
next sections, we learn how to test if those implications are supported by
statistical evidence ofin the data. If the statistical evidence of conditional
independence in the data refutes the implications of d-separation in your
causal DAG, it is time to return to the drawing board.

4.3 Refuting the Causal DAG

We have seen how to build a causal DAG. Now we evaluate the causal DAG
against the data. Of course, we want to find a causal model that fits the data
well. We can always use standard goodness-of-fit and predictive statistics to
evaluate fit. But here, we’re going to focus on refuting our causal DAG.



Statistical models fit curves and patterns in the data. There is no “right”
model, there are just models that fit the data well. In contrast, causal models
go beyond the data to make statements about the data generating process.
Those statements are either true or false. As causal modelers, we try to find a
model that fits well, but we also try to refute our model by testing the
veracity of the statement.

D-separation is our first tool for refutation. You built a causal DAG and
(except in trivial cases) it implies conditional independence. If your causal
DAG is correct, you should see statistical evidence of conditional
independence in data. Evidence of dependence where your model says there
should be statistical independence refutes your model. When this happens,
you go back to the drawing board, and build a better model. In causal
modeling, you iterate on your model until you can no longer refute it with the
data at your disposal. Only then do you optimize the model for fit or
prediction; a causal model that is wrong but fits/predicts well is no good for
causal inferences.

4.3.1 Revisiting the causal Markov property

Recall that we saw two aspects of the causal Markov property:

Local Markov property: A node is conditionally independent of its non-
descendants given its parents.
Markov factorization property: The joint probability distribution
factorizes into conditional distributions of variables given their direct
parents in the causal DAG.

Now we introduce a third face of this property called the Global Markov
property. This property states that d-separation in the causal DAG maps to
conditional independence in the joint probability distribution. In notation, we
write:

U⊥_G V|Z⇒ U⊥V|Z

In plain words that notation reads as "If U and V are d-separated by Z in the
graph G, then they are conditionally independent.[1]" Note that if any of the
three facets of the causal Markov pare true, they are all true.



The global Markov property gives us a straightforward way to refute our
causal model. We can use d-separations to specify statistical tests for the
conditional independence. Failing tests refute the model.

4.3.2 Refutation using conditional independence tests

pgmpy and other libraries make it relatively easy to run conditional
independence tests. Let’s revisit the transportation model, shown again in
Figure 4. 16.

Figure 4. 16 The transportation model. Age (A) and Gender (S) determine Education (E).
Education causes Occupation (O) and Residence (R). Occupation and Residence cause
Transportation (T).



Recall that for our transportation model we were able to collect the following
observations:

Age (A): Recorded as young (young) for individuals up to and including
29 years, adult (adult) for individuals between 30 and 60 years old
(inclusive), and old (old) for people 61 and over.
Gender (S): The self-reported gender of an individual, recorded as male
(M) or female (F).
Education (E): The highest level of education or training completed by
the individual, recorded either high school (high) or university degree
(uni).
Occupation (O): Employee (emp) or a self-employed (self) worker.
Residence (R): The population size of the city the individual lives in,
recorded as small (small) or big (big).
Travel (T): The means of transport favored by the individual, recorded
as car (car), train (train) or other (other)

In the graph, E ⟂G T | O, R. So let’s test if E ⟂ T | O, R. Statistical
hypothesis tests have a null hypothesis (denoted H0) and an alternative
hypothesis (denoted Ha).  For statistical hypothesis tests of conditional
independence, it is standard that the null hypothesis H0 is the hypothesis of
conditional independence and Ha is the hypothesis that they are dependent.

A statistical hypothesis test uses the N data points of observed values of U,
V, and Z (from an exploratory data set) to calculate a statistic.

Listing 4.3 Loading the transportation data

Import pandas as pd

survey_url = "https://raw.githubusercontent.com/altdeep/causalML/master/datasets/transportation_survey.csv"

fulldata = pd.read_csv(survey_url)

 

# Create exploratory data set

data = fulldata[0:30]    #A

print(data[0:5])

print(data.shape)

 

 



A  S     E    O      R      T

0  adult  F  high  emp  small  train

1  young  M  high  emp    big    car

2  adult  M   uni  emp    big  other

3    old  F   uni  emp    big    car

4  young  F   uni  emp    big    car

(30, 6)

Most conditional independence testing libraries will implement frequentist
hypothesis tests. These tests will conclude in favor of H0 or Ha depending on
whether a given statistic falls above or below a certain threshold.
"Frequentist" in this context means that the statistic produced by the test is
called a p-value, and the threshold is called a significance level, which by
convention is usually (usually .05 or .1). 

The test favors the null hypothesis H0 of conditional independence if the p-
value falls above the significance threshold and the alternative hypothesis Ha
if it falls below the threshold.  This frequentist approach is an optimization
that guarantees the significance level is an upper bound on the chances of
concluding in favor of dependence when E and T are actually conditional
independent.

Most software libraries provide conditional independence testing utilities that
make specific mathematical assumptions when calculating a p-value.  For
example, I run the specific conditional independence test that mathematically
derives a test statistic that theoretically follows the Chi-squared probability
distribution, then uses this assumption to derive a p-value.  The following
code runs the test.

Listing 4.4 Chi-squared test of conditional independence

from pgmpy.estimators.CITests import chi_square    #A

significance = .05    #B

result = chi_square(    #C

   X="E", Y="T", Z=["O", "R"],    #C

   data=data,    #C

   boolean=False,    #C

   significance_level=significance    #C

)    #C

print(result)



The p-value is greater than the significance level, so this test favors the null
hypothesis of conditional independence.  In other words, this particular test
did not offer falsifying evidence against our model.

I can jump directly to the result of the test by setting the chi_square function's
boolean argument to True.  The function will then return True if the p-value
is greater than the significance value (favoring conditional independence) and
False otherwise (favoring dependence).

Listing 4.5 Chi-square test with Boolean outcome

from pgmpy.estimators.CITests import chi_square    #A

significance = .05    #B

result = chi_square(    #C

   X="E", Y="T", Z=["O", "R"],    #C

   data=data,    #C

   boolean=True,    #C

   significance_level=significance    #C

)    #C

print(result)

Now, let’s iterate throw all the d-separation statements we can derive from
the transportation graph, and test them one-by-one. The following script will
print each d-separation statement along with the outcome of the
corresponding conditional independence test.

Listing 4.6 Run a chi-squared test for each d-separation statement

from pprint import pprint

 

from pgmpy.base import DAG

from pgmpy.independencies import IndependenceAssertion

 

dag = DAG(

    [

      ('A', 'E'),

      ('S', 'E'),

      ('E', 'O'),

      ('E', 'R'),

      ('O', 'T'),

      ('R', 'T')

    ]

)



dseps = dag.get_independencies()    

 

def test_dsep(dsep):

    test_outputs = []

    for X in list(dsep.get_assertion()[0]):

       for Y in list(dsep.get_assertion()[1]):

           Z = list(dsep.get_assertion()[2])

           test_result = chi_square(

                              X=X, Y=Y, Z=Z,

                              data=data,

                              boolean=True,

                              significance_level=significance

           )

           test_outputs.append((IndependenceAssertion(X, Y, Z), test_result))

    return test_outputs

 

results = [test_dsep(dsep) for dsep in dseps.get_assertions()]

results_flat = [item for sublist in results for item in sublist]

results = {k: v for k, v in results_flat}

pprint(results)

 

 

{(O ⟂ A | R, E, T, S): True,
 (S ⟂ R | E, T, A): True,
 (S ⟂ O | E, T, A): True,
 (T ⟂ S | R, O, A): True,
 (S ⟂ O | R, E): True,
 (R ⟂ O | E): False,
 (S ⟂ O | E, A): True,
 (S ⟂ R | E, A): True,
 (S ⟂ R | E, T, O, A): True,
 (S ⟂ R | E, O, A): True,
 (O ⟂ A | E, T): True,
 (S ⟂ O | R, E, T): True,
 (R ⟂ O | E, S): False, 
 …

 (T ⟂ A | E, S): True}

I can count the number of tests that pass.

Listing 4.7 Calculate the proportion of d-separations with passing tests

num_pass = sum(results.values())

num_dseps = len(dseps.independencies)

num_fail = num_dseps - num_pass

print(num_fail / num_dseps)



 

0.2875

That implies 29% of the d-separations lack corresponding evidence of
conditional independence in the data.

The next step is to inspect these cases of apparent dependence where your
DAG says there should be conditional independence. If the evidence of
dependence is strong, you need to think about how to improve your causal
DAG to explain it.

Notes on configuring conditional independence tests

Above, I used the chi_squared function, which constructs a specific test
statistic with a Chi-squared test distribution – the distribution used to
calculate the p-value.  The Chi-squared distribution is just another canonical
distribution, like the normal or Bernoulli distributions. The Chi-squared
distribution comes up frequently for discrete variables, because there are
several test statistics in the discrete setting that either have a Chi-squared
distribution or get closer to one as the size of the data increases.  Overall,
independence tests have a variety of test statistics with different test
distributions. pgmpy provides several options by way of calls to Scipy’s stats
library.

One common concern is that the test makes strong assumptions. For example,
some conditional independence tests between continuous variables assume
any dependence between the variables would be linear. An alternative
approach is to use a permutation test, which is an algorithm that constructs
the p-value without relying on a canonical test distribution.  Permutation tests
make less assumptions, but are computationally expensive.

Conditional independence testing is a difficult and nuanced subject. Your
goal with conditional independence testing is to refute your causal DAG, not
to create the Platonic ideal of a conditional independence testing suite. I
recommend getting a testing workflow that is good enough, and then
focusing on model building. For example, if I had a mix of continuous and
discrete variables, rather than implementing a test that can accommodate my



different data types, I would just discretize my continuous variables and use a
vanilla Chi-squared test, so I keep things moving along.

4.3.3 Some tests are more important than others

The analysis above tested all the d-separations implied by a causal DAG. But
some might be more important to you than others. Some certain dependence
relations and conditional independence relations are pivotal to a downstream
causal inference analysis, while others don’t affect that analysis.

For example, consider Figure 3.17 from chapter 3. We added variables Z, X0,
and X1 to the graph because they might be useful for a specific causal query,
namely the causal effect of V on Y. We’ll discuss the role these variables
play in causal effect inference in Part 4 of this book. For now, suffice to say
that for Z, X0, and X1 to play those roles, they must be independent of W0,
W1, and W2.

Figure 4.17 from chapter 3, where Z, X0, and X1 were included in the DAG because they play a
useful role in analysing the causal effect of U on Y. Their role depends on conditional
independence, and it is important to test that they indeed serve those roles.



Similarly, Z must be conditionally independent of Y given V, W0, W1, and
W2. So validating those independence relations may be more important than
others.

4.4 The trouble with conditional independence tests

Unfortunately, there are several problems with conditional independence tests
as a means of testing your causal DAG. In this section, I highlight some of
these problems and propose some alternatives.

4.4.1 Statistical tests always have some chance of error

I mentioned that with d-separation, one should not “confuse the map for the
terrain”; d-separation is not the same thing as conditional independence.
Rather, if your model is a good representation of causality, d-separation
implies conditional independence. Similarly, conditional independence is not
the same as statistical evidence of conditional independence.

Recall in Chapter 2 how we distinguish between the joint and observational
distributions. The causal structure of the true data-generating process imposes
conditional independence constraints on the joint probability distribution. 
You would like to inspect that joint probability distribution for this
conditional independence. But you can’t do that directly. You can only run
statistical tests on the observational distribution.

Just like with prediction, classification, or any other statistical pattern
recognition procedure, the model can get it wrong. You can get false
negatives; where a pair of variables to be conditionally independent but the
statistical independence test concludes they are dependent.  You can have
false positives, where a statistical independent test finds a pair of variables to
be conditional independent when they are not.

4.4.2 The conclusions of conditional independence tests vary
with the size of the data

Statisticians developed frequentist independence tests to accommodate small



data.  They were designed under the explicit assumption that acquiring data
was expensive and focused on giving clear results with as few data as
possible.  In the modern era, many domains are characterized by large data
sets.  The problem here is that, all else equal, as the size of the data increases,
the p-value decreases.

To illustrate, the above test of E ⟂ T | O, R had 30 data points and produced
a p-value of 0.56.     Below, I run the following bootstrap statistical analysis
to show how the estimate of the p-value falls as the size of the data increases.

Listing 4.8 Bootstrap analysis of sensitivity of test of E ⟂ T | O, R to sample size

import matplotlib.pyplot as plt

import math

from numpy import mean, quantile

 

def sample_p_val(sample_size):    #A

   bootstrap_data = fulldata.sample(n=sample_size, replace=True)    #A

   result = chi_square(    #A

       X="E", Y="T", Z=["O", "R"],    #A

       data=bootstrap_data,    #A

       boolean=False,    #A

       significance_level = significance    #A

   )    #A

   p_val = result[1]    #A

   return p_val    #A

 

def estimate_p_val(sample_size, boot_size=1000):    #B

   samples = []

   for _ in range(boot_size):

       sample = sample_p_val(sample_size)

       samples.append(sample)

   positive_tests = [p_val > significance for p_val in samples]    #C

   prob_conclude_indep = mean(positive_tests)    #C

   p_estimate = mean(samples)    #D

   quantile_05, quantile_95 = quantile(samples, [.05, .95])    #E

   lower_error = p_estimate - quantile_05    #E

   higher_error = quantile_95 - p_estimate    #E

   return p_estimate, lower_error, higher_error, prob_conclude_indep

 

 

data_size = range(30, 500, 20)    #F

p_vals, lower_errors, higher_errors, probs_conclude_indep = zip(*[estimate_p_val(size) for size in data_size])    #F

 



plt.title('Amount of data vs. expected p-value (Ind. of E & T given O & R)')    #G

plt.xlabel("Number of examples in data")    #G

plt.ylabel("Expected p-value")    #G

plt.errorbar(data_size, p_vals, yerr=np.array([lower_errors, higher_errors]), ecolor="grey", elinewidth=.5)    #G

plt.hlines(significance, 0, 500, linestyles="dashed")    #G

 

Figure 4. 18 Sample size vs expected p-value of the conditional independence test for E ⟂ T | O, R
(blue line). The error bars are the 90% bootstrap confidence intervals. The horizontal dashed line is
a .05 significance level, above which we favor the null hypothesis of conditional independence and
below which we reject it. As the sample size increases, we eventually cross the line. Thus, the result
of our refutation analysis depends on the size of the data.

The blue line in Figure 4. 17 is the expected p-values at different data sizes,
the error bars are a 90% confidence interval. By the time we get to a data set
of size 1000, the expected p-value is below the threshold, meaning the test
favors the conclusion that E ⟂ T | O, R is false.

One might think that as the size of the data increases, the algorithm is
detecting subtle dependencies between E and T that were undetectable with
small data. Not so, for this transportation data is simulated in such a way that
E ⟂ T | O, R is definitely true. So this is a case where more data leads us to
rejecting independence because more data leads to more spurious correlation,
i.e. patterns that aren't really there.

To drive the point home, the plot in Figure 4. 18 shows how the probability
of favoring the true hypothesis (E ⟂ T | O, R) decreases as the size of the



data increases.

Listing 4.9 Probability of favoring independence given the amount of data

plt.title('Probability of favoring independence given amount of data')

plt.xlabel("Number of examples in data")

plt.ylabel("Probability of test favoring conditional independence")

plt.plot(data_size, probs_conclude_indep)    #A

Figure 4. 19 As the size of the data increases, the probability of concluding in favor of this (true)
instance of the conditional independence relation E ⟂ T | O, R decreases.

A causal model is either right or wrong about causality in the data generating
process it describes. The conditional independence the model implies is either
there or it’s not. Yet if that conditional independence is there, the test can still
conclude in favor of dependence when the data is arbitrarily large.

In practice this is not a huge deal. The relative differences between p-values
when there is no conditional independence and when there is will be large
and obvious. But ideally we could have an analysis that gives the same result
for any data size and, alas, that is not the case.

4.4.3 The problem of multiple comparisons

In statistical hypothesis testing, the more tests you run, the more testing



errors you rack up. The same is true when running a test for each d-separation
implied by a causal DAG. In statistics, this problem is called the multiple
comparisons problem. The solution is to use statistical approaches that adjust
the p-values or calculate something called false discovery rates. This may be
a good option, especially if you are familiar with computational tools for
multiple testing. However, these methods call attention to a worse problem.
Namely, the conditional independence testing approach I’ve highlighted so
far is wrong.

4.4.4 Testing causal DAGs with traditional CI tests is
fundamentally flawed

I say the proposed conditional independence tests for refutation are “wrong”
because the violate the spirit of the statistical hypothesis testing in science.
The “spirit” says that the hypothesis we want to test is the alternative
hypothesis in the statistical test, and the opposite of that hypothesis should be
the test’s null hypothesis. The conditional independence tests in Scilearn and
most other statistical libraries assume the alternative hypothesis is
dependence and the null hypothesis is conditional independence because in
statistical modeling, we’re usually trying to find statistical dependence
between things. For example, we might want to use “smoking” as a predictor
of “lung cancer.” But we are focusing on how causality induces conditional
independence. Our hypothesis is that if our model is right, certain things
should be conditional independent (e.g. “smoking” is independent of “lung
cancer” given “tar buildup in the lungs”). Thus, our null hypothesis should be
a hypothesis of dependence (“smoking and lung cancer are still dependent
given tar buildup in the lungs). That matters because the p-value depends on
the null hypothesis. However, you would be hard pressed to find a statistical
testing library that makes it easy to do this. The compromise is using the
traditional tests where the null hypothesis is of conditional independence, and
viewing the results more as a heuristic than as a theoretically rigorous
analysis.

4.4.5 CI testing doesn’t work well in machine learning settings

Finally, libraries for conditional independence testing are generally limited to
one-dimensional variables with fairly simple patterns of correlation between



them. However, in machine learning, it is common for variables to have more
than one dimension such as vectors, matrices, and tensors. For example, one
variable in a causal DAG might represent a matrix of pixels constituting an
image. Further, the statistical associations between these variables can be
nonlinear and otherwise nuanced[2].

One testing option is to focus on prediction. If two things are independent,
then they have no ability to predict one another. Suppose we had two
predictive models M1 and M2. M1 predicts Y using Z as a predictor. M2
predicts Y using X and Z as a predictor. Predictors can have dimension
greater than one. If X ⟂ Y | Z, then any X has no predictive information
about Y beyond what is already provided by Z. So you can test X ⟂ Y | Z by
comparing the model predictive accuracy of M2 to M1. When the models
perform similarly, we have evidence of conditional independence. Note that
you’d want to take steps to keep M2 from “cheating” on its predictive
accuracy by overfitting (e.g., regularization, drop-out, etc.)

4.5 Refuting a causal DAG given latent variables

As I've mentioned previously, we model the data generating process, not the
data. So our efforts to refute our causal DAG should not be limited to the
variables observed in the data. However, if a variable in our causal DAG is
latent (not observed in the data), we can’t run any conditional independence
tests involving that variable.

Recall that conditional independence is a constraint; if certain cause and
effect relationships exist in the data generating process, those relationships
constrain the joint probability distribution to have certain conditional
independencies between variables. There are other constraints as well,
including conditional independencies between functions of variables, as well
as equalities, inequalities, and bounds. When latent variables prevent certain
testing certain d-separations with conditional independence testing, we can
sometimes test these other constraints instead. Here, I focus on a specific
class of constraints called Verma constraints.

4.5.1 Evaluating conditional independence via the Verma



Constraints

Verma constraints, like conditional independence constraints, are derived
from the Markov property. If a latent variable prevents us from running
certain conditional independence tests, there may be testable Verma
constraints.

I'll introduce a Verma constraint with an example. The causal DAG in Figure
4. 19 illustrates a simple model of the causal relationship between smoking
and lung cancer.

Figure 4. 20 A causal DAG representing smoking's effect on cancer. The variable for genetics is
grey because it is unobserved in the data, so we can't run tests for conditional independencies
involving D. However, we can test a Verma constraint.



Figure 4. 19 represents how smoking behavior (S) is influenced both by the
cost of cigarettes (C) as well as genetic factors (denoted D as in "DNA") that
make one more or less prone to nicotine addiction. Those same genetic
factors influence one's likelihood of getting lung cancer (L). In this model,
smoking's effect on cancer is mediated through tar buildup (T) in the lungs.

In practical terms, it is fairly easy to get data on the cost of cigarettes (C) and
smoking behavior (S). Let's assume we can quantify tar damage (T) and lung
cancer (L) with some non-invasive chest scans relatively easily. The
challenge observing the genetics variable (D), which would involve a genetic
screen that (at least historically) would involve more time, money, and
resources.



If Genetics (D) were observed, we could test the following d-separations; (C
⊥G T | S), (C ⊥G L | D, T), (C ⊥G L | D, S), (C ⊥G D), (S ⊥G L | D, T),
and (T ⊥G D | S). But if it is unobserved, we can only test (C ⊥G T | S).

However, there is a Verma constraint, specified as follows:

This is an independence constraint between the cost of cigarettes (C) and a
function of certain conditional probability masses/densities of variables in the
causal DAG. That function involves the cost of cigarettes, but when we
aggregate over all the different smoking behaviors, the function output
doesn't depend at all on the cost of cigarettes. At least, that true according to
this causal DAG (again, the difference between implied dependence and
actual dependence is why why I still use the subscript in "⊥G").

4.5.2 Verma constraint intuition

We can derive Verma constraints via algorithm. The intuition behind the
algorithm is similar to that of the local Markov property. Recall that the
definition of the local Markov property is that each node in the graph is
independent of its non-descendants given its parents. However, when there
are latent variables, we'll have a latent variable version of the property.

Each node is independent of its non-descendants given its effective parents,
non-descendant variables in the node's confounded component, and the
effective parents of the non-descendant variables in its confounded
component.

A confounded component (usually abbreviated as c-component) for a given
observed node is the subset that includes itself and other observed nodes that
are d-connected through common latent ancestors. Confounder components
can overlap, but it is also possible for a node's confounded component to
include only itself. In Figure 4. 19, the confounder components for C and T



are {C} and {T}, respectively; they contain only the node themselves. But S
and L have the same confounded component {S, L}, by way of their common
latent ancestor D.

An effective parent of a node is the first observed ancestor node on an
incoming path through a latent direct parent node. As a mnemonic device,
imagine a single father raising a child with the help of the maternal
grandparents; given the absence of the mother, the maternal grandparents are
effective parents. Think of confounded components as cousins and similar
relatives related through missing parents.

The algorithm derives Verma constraints from this latent version of the local
Markov property, much as we can derive ordinary d-separation from the
ordinary local Markov property. The fact that we can derive Verma
constraints using a graph-based algorithm demonstrates yet another benefit of
working with DAGs as our causal representation.

In the following code I build the causal DAG in Figure 4. 19 using pgmpy
and the Python library Y0 (pronounced "why not") to derive the Verma
constraint automatically.

Y0 relies on several external dependencies and is in active development. So I
have created a fork of the Y0 repository for the code examples in this text. I
encourage you to explore the original Y0 library, as it has many useful tools
beyond the scope of this chapter, and I expect it will continue to produce
interesting new causal functionality.

Listing 4.10 Deriving Verma constraints from a causal DAG and a latent variable

!pip install git+https://github.com/altdeep/y0.git    #A

from pgmpy.base.DAG import DAG

from y0.altdeep import verma_from_digraph    #B

dag = DAG()    #C

dag.add_edges_from(    #C

   [    #C

     ('C','S'),    #C

     ('S','T'),    #C

     ('T','L'),    #C

     ('D','S'),    #C

     ('D','L'),    #C



   ]    #C

)    #C

for v in dag.nodes:    #D

   if v == "D":    #D

       dag.nodes[v]['latent'] = True    #D

   else:    #D

       dag.nodes[v]['latent'] = False    #D

verma_constraints = verma_from_digraph(dag)    #E

$rhs.cfactor    #F

[1] "Q[\\{L\\}](T,L)"    #F

 

$rhs.expr    #F

[1] "\\sum_{u_{1},Tar}P(L|u_{1},Tar)P(Tar)P(u_{1})"    #F

 

$lhs.cfactor    #G

[1] "\\sum_{S}Q[\\{S,L\\}](C,S,T,L)"    #G

 

$lhs.expr    #G

[1] "\\sum_{S}P(L|C,S,T)P(S|C)"    #G

 

$vars    #H

[1] "C"    #H

 

 

The result is a list object containing Verma constraint objects. These objects
will print a compiled math-type image when called. The lhs_expr method of
the Verma constraint object will print the left-hand-side of the independence
statement.

verma_constraints[0].lhs_expr

Figure 4. 21 Image generated by the verma_constraints method.

The object indicates that this term should be independent of a set of one or
more variables, in our case “C”. We can use that output to design an analysis
that statistically tests this independence assumption with the data.

4.5.3 Testing a Verma constraint

Let's examine how we'd test this independence assumption in code.



Specifically, we’ll to calculate ∑_S▒〖P(l│c,s,t) 〗 P(s│c) for each row in
the data and assign the value to a new column in the data. Then we’ll look at
evidence of independence between the data in the “C” column and this new
column.

Let's start with some imports.

Listing 4.11 Importing and formatting cigarettes and cancer data

from functools import partial

import numpy as np

import pandas as pd

 

 

data_url =  "https://raw.githubusercontent.com/altdeep/causalML/master/datasets/cigs_and_cancer.csv"

data = pd.read_csv(data_url)    #A

cost_lower = np.quantile(data["C"], 1/3)    #B

cost_upper = np.quantile(data["C"], 2/3)    #B

def discretize_three(val, lower, upper):    #B

   if val < lower:    #B

       return "Low"    #B

   if val < upper:    #B

       return "Med"    #B

   return "High"    #B

 

data_disc = data.assign(    #B

   C = lambda df: df['C'].map(    #B

           partial(    #B

               discretize_three,    #B

               lower=cost_lower,    #B

               upper=cost_upper    #B

           )    #B

       )    #B

)    #B

data_disc = data_disc.assign(    #C

   L = lambda df: df['L'].map(str),    #C

)    #C

print(data_disc)

 

 

C     S     T      L

0   High   Med   Low   True

1    Med  High  High  False



2    Med  High  High   True

3    Med  High  High   True

4    Med  High  High   True

..   ...   ...   ...    ...

95   Low  High  High   True

96  High  High  High  False

97   Low   Low   Low  False

98  High   Low   Low  False

99   Low  High  High   True

 

[100 rows x 4 columns]

Our first task is to model P(l|c,s,t) and P(s|c). There are many ways to model
these conditional probability distributions. One thing I could do is fit a
generative model on the causal DAG then apply a graphical modeling
inference algorithm. Fitting a causal generative model on data with latent
variables is sometimes possible; it is possible in this case. However, a simpler
approach would to mode P(l|c, s, t) and P(s| c) directly. I do so in the
following code using naive Bayes classifiers. The following code fits a model
for P(l| c, s, t).

The naive Bayes classifier is a probabilistic model that naively assumes that,
in the case of P(l|c,s,t), cost (C), smoking (S), and tar (T) are conditionally
independent given lung cancer status (L). According to our causal DAG, that
is clearly not true. But that does not matter if all we want is a good way to
calculate probability values for L given C, S, and T. A naive Bayes classifier
will do that well enough.

The following code will calculate P(l|c,s,t) and P(s|c) and then sum their
product over S.

Listing 4.12 Modeling the conditional probabilities in the Verma constraint

from pgmpy.estimators import BayesianEstimator

from pgmpy.inference import VariableElimination

from pgmpy.models import NaiveBayes

import statsmodels.api as sm

from statsmodels.formula.api import ols

 

model_L_given_CST = NaiveBayes()    #A

model_L_given_CST.fit(data_disc, 'L', estimator=BayesianEstimator)    #A

infer_L_given_CST = VariableElimination(model_L_given_CST)    #A



 

def p_L_given_CST(L_val, C_val, S_val, T_val, engine=infer_L_given_CST): #A

 

   result_out = engine.query(    #A

       variables=["L"],    #A

       evidence={'C': C_val, 'S': S_val, 'T': T_val},    #A

       show_progress=False    #A

   )    #A

   prob = dict(zip(result_out.state_names["L"], result_out.values))    #A

   return prob[L_val]    #A

 

 

model_S_given_C = NaiveBayes()    #B

model_S_given_C.fit(data_disc, 'S', estimator=BayesianEstimator)    #B

 

infer_S_given_C = VariableElimination(model_S_given_C)    #B

 

def p_S_given_C(S_val, C_val, engine=infer_S_given_C):    #B

       #B

   result_out = engine.query(    #B

       variables=['S'],    #B

       evidence={'C': C_val},    #B

       show_progress=False    #B

   )    #B

       #B

   prob = dict(zip(result_out.state_names["S"], result_out.values))    #B

   return prob[S_val]    #B

 

cstl_outcomes = pd.DataFrame(    #C

   [    #C

       (C, S, T, L)    #C

       for C in ["Low", "Med", "High"]    #C

       for S in ["Low", "Med", "High"]    #C

       for T in ["Low", "High"]    #C

       for L in ["False", "True"]    #C

   ],    #C

   columns = ['C', 'S', 'T', 'L']    #C

)    #C

 

cstl_outcomes    #C

>    #C

       C     S     T      L    #C

0    Low   Low   Low  False    #C

1    Low   Low   Low   True    #C

2    Low   Low  High  False    #C



3    Low   Low  High   True    #C

4    Low   Med   Low  False    #C

…    #C

32  High  High   Low  False    #C

33  High  High   Low   True    #C

34  High  High  High  False    #C

35  High  High  High   True    #C

 

cs_outcomes = pd.DataFrame(    #D

    [    #D

        (C, S)    #D

        for C in ["Low", "Med", "High"]    #D

        for S in ["Low", "Med", "High"]    #D

    ],    #D

    columns = ['C', 'S']    #D

)    #D

 

print(cs_outcomes)    #D

>    #D

      C     S    #D

0   Low   Low    #D

1   Low   Med    #D

2   Low  High    #D

3   Med   Low    #D

4   Med   Med    #D

5   Med  High    #D

6  High   Low    #D

7  High   Med    #D

8  High  High    #D

 

l_cst_dist = cstl_outcomes.assign(    #E

   p_L_CST = cstl_outcomes.apply(    #E

       lambda row: p_L_given_CST(    #E

           row['L'], row['C'], row['S'], row['T']), axis = 1    #E

   )    #E

)    #E

 

s_c_dist = cs_outcomes.assign(    #F

   p_S_C = cs_outcomes.apply(    #F

       lambda row: p_S_given_C(row['S'], row['C']), axis = 1    #F

   )    #F

)    #F

 

dist = l_cst_dist.merge(s_c_dist, on=['S', 'C', 'T', 'L'], how='left')   #G

 



print(dist)    #G

       C     S     T      L   p_L_CST     p_S_C    #G

0    Low   Low   Low  False  0.382637  0.131410    #G

1    Low   Low   Low   True  0.617363  0.131410    #G

2    Low   Low  High  False  0.243640  0.131410    #G

3    Low   Low  High   True  0.756360  0.131410    #G

4    Low   Med   Low  False  0.602541  0.246795    #G

…    #G

32  High  High   Low  False  0.399487  0.576324    #G

33  High  High   Low   True  0.600513  0.576324    #G

34  High  High  High  False  0.256916  0.576324    #G

35  High  High  High   True  0.743084  0.576324    #G

    #G

[144 rows x 8 columns]    #G

 

dist_mod = dist.assign(    #H

   product = dist.p_L_CST * dist.p_S_C    #H

)    #H

    #H

print(dist_mod)    #H

>    #K

       C     S     T      L   p_L_CST     p_S_C   product    #H

0    Low   Low   Low  False  0.382637  0.131410  0.050282    #H

1    Low   Low   Low   True  0.617363  0.131410  0.081128    #H

2    Low   Low  High  False  0.243640  0.131410  0.032017    #H

3    Low   Low  High   True  0.756360  0.131410  0.099393    #H

4    Low   Med   Low  False  0.602541  0.246795  0.148704    #H

…    #H

32  High  High   Low  False  0.399487  0.576324  0.230234    #H

33  High  High   Low   True  0.600513  0.576324  0.346090    #H

34  High  High  High  False  0.256916  0.576324  0.148067    #H

35  High  High  High   True  0.743084  0.576324  0.428257    #H

 

dist_verma = dist_mod.groupby(    #I

   ['C', 'T', 'L']    #I

   ).agg('sum').reset_index().drop(    #I

       columns=["p_L_CST", "p_S_C"]    #I

   ).rename(    #I

       columns = {'product':'sum_product'}    #I

   )    #I

 

print(dist_verma)    #I

>    #I

       C     T      L  sum_product    #I

0   High  High  False     0.348536    #I

1   High  High   True     0.651464    #I

2   High   Low  False     0.496355    #I

3   High   Low   True     0.503645    #I



4    Low  High  False     0.264353    #I

5    Low  High   True     0.735647    #I

6    Low   Low  False     0.399869    #I

7    Low   Low   True     0.600131    #I

8    Med  High  False     0.373653    #I

9    Med  High   True     0.626347    #I

10   Med   Low  False     0.523694    #I

11   Med   Low   True     0.476306    #I

 

df_verma = data_disc.merge(dist_verma, on=['C', 'T', 'L'], how='left')   #J

print(df_verma)    #J

>    #J

       C     S     T      L  sum_product    #J

0   High   Med   Low   True     0.503645    #J

1    Med  High  High  False     0.373653    #J

2    Med  High  High   True     0.626347    #J

3    Med  High  High   True     0.626347    #J

4    Med  High  High   True     0.626347    #J

..   ...   ...   ...    ...          ...    #J

95   Low  High  High   True     0.735647    #J

96  High  High  High  False     0.348536    #J

97   Low   Low   Low  False     0.399869    #J

98  High   Low   Low  False     0.496355    #J

99   Low  High  High   True     0.735647    #J

    #J

[100 rows x 5 columns]    #J

 

df_verma.boxplot("sum_product", "C")    #K

 

Figure 4. 22 A box plot visualization of cost (C) on the x-axis and the function 

 on the y-axis (labeled "Sum product").
Overlap of the distributions of sum product for each value of C support the Verma constraints
assertion that these two quantities are independent.



The x-axis in Figure 4. 21 is different levels of cost (low, medium, and high).
The y-axis represents the distribution of our sum product across each level of
C. The width of the boxes, the black and green horizontal lines represent
quantiles

In summary, it looks as though the distributions of the sum-product don't
change much across the different levels of cost; that is what independence is
supposed to look like.

I can also derive p-value again. This time I use an analysis of variance
(ANOVA) approach to derive a p-value (using an F-test rather than a chi-
square test). The p-values are in the "PR(>F)"[3].

Listing 4.13 Using ANOVA to evaluate independence



model = ols('sum_product ~ C', data=df_verma).fit()    #A

aov_table = sm.stats.anova_lm(model, typ=2)    #A

aov_table["PR(>F)"]["C"]    #A

> 0.19364363417824293    #B

 

model = ols('sum_product ~ T', data=df_verma).fit()    #C

aov_table = sm.stats.anova_lm(model, typ=2)    #C

aov_table["PR(>F)"]["T"]    #C

> 0.07522736142622223    #C

 

model = ols('sum_product ~ L', data=df_verma).fit()    #C

aov_table = sm.stats.anova_lm(model, typ=2)    #C

aov_table["PR(>F)"]["L"]    #C

> 7.0547852477839215e-28    #C

 

These are lower, both falling below the common .1 threshold where a
standard hypothesis test would reject the hypothesis that the sum-product is
independent of T and L.

4.5.4 Final takeaways

That was a lot of math and code, so I want to highlight the high-level
takeaways. The general idea certain constraints, like conditional
independence constraints, can’t be tested if the variables we need for the test
aren’t observed in the data. But there may be some testable implications of
our causal DAG that are still testable. Verma constraints are one example of
this. There are others, such as upper and lower bounds on certain observable
quantities. The math here can be a bit more subtle, but of course, software
libraries can make that analysis more accessible.

4.6 Summary

Causal modeling induces conditional independence constraints on the
joint probability distribution. D-separation provides a graphical
representation of conditional independence constraints.
Building an intuition for d-separation is important for reasoning about
causal effect inference and other queries.



The colliders might make d-separation confusing. But you can build
intuition by using d-separation functions in networkx and pgmpy.
Using traditional conditional independence testing libraries to test d-
separation has its challenges. The tests are sensitive to sample size, the
hypotheses are misaligned, and they don’t work well in many machine
learning settings.
When there are latent variables, the causal DAG still has testable
implications called Verma constraints.

[1] Again, this is not the same as the converse statement, that conditional
independence in the joint distribution implies d-separation in the graph. This
assumption is called “faithfulness” and isn’t testable. Violations of
faithfulness assumptions matter more in causal discovery, which we’ll cover
in chapter 9. Even then, in terms of assumptions violations, you tend to worry
more about other things than faithfulness.

[2] There has been promise in addressing this issue with conditional
independence tests that rely on kernel function classes to represent
probability distributions in reproducing kernel Hilbert spaces.

[3] "PR( >F)" means the probability of seeing an F-statistic for a given
variable (in our case C) at least as large as the F-statistic calculated from the
data assuming that variable is independent of sum_product, i.e., the p-value.



5 Connecting causality and deep
learning
This chapter covers

Using deep learning to enhance a causal graphical model
Training a causal graphical model with a variational autoencoder
Using causal methods to enhance machine learning

So far in this book, I have not said much about deep learning.  Deep learning
refers to a machine learning approach that uses artificial neural networks,
which are essentially nonlinear regression models stacked together in layers. 
“Deep” refers to using neural nets with many layers. More layers mean more
modeling power, particularly in terms of modeling of high dimensional and
nonlinear data such visual media and natural language text.  Neural nets have
been around for awhile, but deep neural nets were hard to train.  But recent
advancements in hardware and computational tools for gradient-based
optimization made training deep nets much easier.  That ease is why in recent
years there have been multiple cases of deep learning’s “superhuman”
performance on machine learning benchmarks, and why it will continue
making headlines for some time.

No doubt, you’ve heard of these accomplishments of deep learning.  You’ve
seen large language models hold nuanced and coherent conversations. 
You’ve seen examples of deep reinforcement learning defeating experts at
international gaming tournaments.  You’ve heard of deep generative models
producing works of art so impressive that they sell for millions at auction and
wins fine arts competitions.

So when you watch a presentation on causal inference from an economist and
the modeling approach sounds like linear regression with bells and whistles,
it feels like there’s a major disconnect.  What is going on?

Clearly causal inference researchers are talking about something important,



after all they are winning Nobel Prizes and Turing Awards.  But they either
say little about deep learning or are downright critical.  Meanwhile, deep
learning enthusiasts and critics argue on social media about whether deep
learning can learn causality.  Are causal inference and deep learning
competing paradigms? What is the connection?

Indeed, causality and deep learning are compatible.  In this chapter, I
demonstrate a few ways that deep learning and causality interact.  For code
notebooks, links to the data, and citations for the methods and case studies we
discuss, visit www.altdeep.ai/p/causalmlbook. The examples in this chapter
will build intuition about the connection between deep learning and causal
modeling.  In other parts of the book, we’ll look at other ways deep learning
and machine learning in general connect to causality.  For example, we’ll
explore double machine learning for causal effect inference in chapter 11.

5.1 Using deep learning to enhance causal inference

In this section, I’ll focus on one example of how deep learning can enhance a
causal model.  Specifically, we’ll use a deep probabilistic machine learning
approach called a variational autoencoder framework to train a causal
graphical model.

5.1.1 Modeling images with a deep generative causal model

Recall the MNIST data, comprised of images of digits and their digit “labels”
illustrated in Figure 5.1. 

Figure 5.1 MNIST data featuring images of handwritten digits and their digit labels.



There is a related dataset called Typeface MNIST (TMNIST) that also
features digit images and their digit labels.  However, instead of handwritten
digits, the images are digits rendered in 2,990 different fonts illustrated in
Figure 5.2. For each image, in addition to a digit label, there is a font label. 
Examples of the font labels include “GrandHotel-Regular,” “KulimPark-
Regular”, and “Gorditas-Bold.”

Figure 5.2 Examples from the Typeface MNIST comprised of typed digits with different
typefaces.  In addition to a digit label for each digit, there is a label for one of 2,990 different
typefaces (fonts).

In this analysis, we’ll combine these datasets into one, and build a simple
deep causal generative model on that data. We’ll simplify the “fonts” label
into a sample binary label that indicates “handwritten” for MNIST images,



and “typed” for the TMNIST images.

We have seen how to build a causal generative model on top of the DAG. 
We factorized the joint distribution into a product of causal Markov kernels
representing the conditional probability distributions for each node
conditional on their parents in the DAG.  In our previous examples in pgmpy,
we fit a conditional probability table for each of these kernels. 

You can imagine how hard it would be to use a conditional probability table
to represent the conditional probability distribution of pixels in an image. 
But there is nothing stopping us from modeling the causal Markov kernel
with a deep neural net, which we know is flexible enough to with high
dimensional features like pixels.  In this section, I demonstrate how to use
deep neural nets to model the causal Markov kernels defined by a causal
DAG.

5.1.2 Leveraging the universal function approximator

Deep learning is exceedingly useful at mapping inputs to outputs.  We can
frame the problem in terms of universal function approximation.  We imagine
there exists some function that maps some set of inputs to some set of
outputs, but we either don’t know the function or its too hard to write down
in math or code.  Given enough examples of those inputs and those outputs,
deep learning can approximate that function with high precision. Even when
that function is nonlinear and high dimensional, with enough data deep
learning will learn a good approximation.

We certainly work with functions in causal modeling and inference.  And
sometimes it makes sense to approximate them, so long as the
approximations preserve causal invariances. For example, the causal Markov
property makes us interested in functions that map values of a node’s parents
in the causal DAG to values (or probability values) of that node.  In this
section, we’ll do this mapping between a node and its parents with the
variational autoencoder (VAE) framework.  We’ll train two deep neural nets
in the VAE, and one of them maps parent cause variables to an outcome
variable. This example showcases the use of deep learning when causality is
nonlinear and high dimensional; the effect variable will be an image



represented as a high-dimensional array, and the cause variables will
represent the contents of the image.

5.1.3 Causal abstraction and plate models

But what does it mean to build a causal model of an image?  Images are
comprised of pixels arranged in a grid.  As data, we can represent that pixel
grid as a matrix of numerical values corresponding to color.  In the case of
both MNIST and TMNIST, the image is a 28 x 28 matrix of grayscale values,
as illustrated in Figure 5.3.

Figure 5.3 An MNIST image of "6" (left) and a TMNIST image of a "7."  In their raw form,
these are 28 x 28 matrices of numeric values corresponding to greyscale values.

A typical machine learning model looks at this 28 by 28 matrix of pixels as
28*28=784 features.  The machine learning algorithm learns statistical
patterns connecting the pixels to one another and their labels.  Based on this
fact, one might be tempted to treat each individual pixel as a node in the
naive causal DAG as in Figure 5.4, where for visual simplicity I draw 16
pixels (an arbitrary number) instead of all 784. 

In Figure 5.4 there are edges from the digit and is handwritten variables to
each pixel.  Further, there are examples of edges representing possible causal
relationships between pixels.  Causal edges between pixels imply the color of
one pixel is a cause of another.  Perhaps most of these relationships are
between nodes that are close, with a few far-reaching edges.  But how would



we know if one pixel causes another?  If two pixels are connected, how
would we know the direction of causality?

Figure 5.4 What a naive causal DAG might look like for an image represented by a 4x4 matrix.

Working at the right level of abstraction

But with these interpixel connections, the naïve DAG we see in Figure 5.4 is
already quite unwieldy with only 16 pixels.  It would be much worse at 784
pixels.  Aside from the unwieldiness of a DAG, the problem with a pixel-
level model is that our causal questions are generally not at the pixel level.  In
other words, the pixel is too low a level of abstraction.  That low level of
abstraction is why thinking about causal relationships between individual
pixels feels a bit absurd.

In applied statistics domains such as econometrics, social science, public
health, and business, our data has variables like “per capital income”,
“revenue”, “location”, “age”, etc.  These variables are typically already at the
level of abstraction we want to think about.  But modern machine learning
focuses on many perception problems from raw media, such as images,
video, text, and sensor data.  We don’t generally want to do causal reasoning
at the level of these low-level features.  Our causal questions are about the
high-level abstractions behind these low-level features.  So we need to model
at these higher abstraction levels.

So instead of thinking about individual pixels, we’ll think about the entire



image. We’ll define a variable X to represent how the image appears, i.e., the
outcome for a matrix random variable. Figure 5.5 illustrates a causal DAG for
the TMNIST caste. Simply, the identity of the digits (0 – 9) and the font
(2,990 possible values) are the causes, and the image is the effect. 

Figure 5.5 Simple causal DAG that represents the implied data generating process behind
Typeface MNIST.

In this case we are using the causal DAG to make an assertion that the label
causes the image.  That is not the case in general, as we’ll discuss in our case
study on semi-supervised learning in section 5.3.  As with all causal models,
it depends on the data generating process within a domain.  Let’s explore
why we might make this assertion in the case of MNIST.

Why say that the digit causes the image?

 In Plato’s Allegory of the Cave, Socrates describes a group of people who
have lived in a cave all their lives, without seeing the world.  They face a
blank cave wall and watch shadows projected on the wall from objects
passing in front of a fire behind them.  The shadows are simplified and
sometimes distorted representations of the true objects passing in front of the
fire.  In this case, we can think of the form of the objects being a cause of the
shadow.  Analogously, the true form of the digit label (the actual encoded
character) causes the representation in the image. 

The MNIST images were written by people.  Suppose we are looking at
MNIST image for the number 8.  While we are talking about Greek



philosophers, we can imagine the writer had a Platonic ideal of the number 8
in his head as he was writing.  The resulting written image is a version of that
“8” distorted by motor variation in the hand, the angle of the paper, the
friction of the pen on the paper, and other factors, i.e., a “shadow” of that “8”
in his mind.

Further, the MNIST data are photographs of written digits.  Photographic
images are created by light falling on surfaces, like cave walls only more
photosensitive.  For you, that surface is the retina in your eyes.  For a robot,
that surface might be an image sensor in a mounted camera. For the robot, the
objects in the environment are the causes of the forms that appear on the
image sensor.  And as you read this page, the existence and form of the words
on this page are the causes of the forms on your retina, which your brain
turns into what you see.  If your mind could cause images to appear as
patterns of activated rods and cones on your retina, and then those images
caused new objects to physically manifest in the real world, that would be
impressive.

In computer vision, this concept is sometimes called vision as inverse
graphics.  Generalizing beyond computer vision, in probabilistic machine
learning the concept is sometimes called analysis as synthesis.  The basic
idea is that when you have some device, like a camera, that collects raw
signals from the environment and the task is to infer the actual objects or
events that resulted in those signals, then causality flows from those
objects/events to the signals.  The inference task is to use the observed
signals (shadows on the cave wall) to infer the nature of the causes (objects in
front of the fire).

That said, images can be causes too.  For example, if you were modeling how
people behave after seeing an image in a mobile app (e.g., “click”, “like”,
“swipe left”), then you could model the image as cause of the behavior.

Plate modeling

Modeling 2,990 fonts in our TMNIST data is overkill for our purposes here. 
Instead, I combined these datasets into one, half from MNIST and half from
typeface MNIST.  Along with the digit label, I’m just going to have a simple



binary label called “is handwritten”, which is 1 (true) for images of
handwritten digits from MNIST and 0 (false) for images of “typed” digits
from TMNIST.  So we modify our causal DAG to get Figure 5.6.

Figure 5.6 A causal DAG representing the combined MNIST and TMNIST data, where "is
handwritten" is 1 (MNIST images) or 0 (TMNIST images).

Plate modeling is a visualizing technique used in probabilistic machine
learning that provides an excellent way to visualize the higher-level
abstractions while preserving the lower-level dimensional detail.  Plate
notation is a method of visually representing variables that repeat in a DAG –
in our case we have repetition of the pixels.  Instead of drawing each of the
784 pixels as an individual node, we use a rectangle or “plate” to group
repeating variables into subgraphs.  We then write a number on the plate to
represent the number of repetitions of the entities on the plate.  Plates can
nest within one another to indicate repeated entities nested within repeated
entities.  Each plate gets a letter subscript indexing the elements on that plate.
Figure 5.7 illustrates an example of our plate model.

Figure 5.7 A plate model representation of the causal DAG. Plates represent repeating variables,
in this case 28x28=784 pixels. Xj is the jth pixel.



The causal DAG in Figure 5.7 represents one image. During training, we
have a large set of training images.  Next, we’ll modify the DAG to capture
all the images in the training data.

5.2 Training the neural causal model

Our training data has N example images, so we need our plate model to
represent all N images in the training data, half “handwritten” and half
“typed.” So we add another plate corresponding to repeating N sets of images
and labels as in Figure 5.8.

Figure 5.8 The causal model with an additional plate for the N images in the data.



Now we have a causal DAG that illustrates both our desired level of causal
abstraction as well as the dimensional information we need to setup training
the neural nets in the model.

Let’s first load Pyro, other libraries and this combined data in Python.

Listing 5.1 Initial setup for the deep causal model

import random

 

import torch

import pandas as pd

import numpy as np

from torch.utils.data import Dataset, DataLoader

from torchvision import transforms

import os

from torchvision.transforms import ToTensor, Lambda

 

import torch.nn as nn

import torchvision.transforms as transforms

 

import pyro

import pyro.distributions as dist

import pyro.contrib.examples.util

from pyro.infer import SVI, Trace_ELBO

from pyro.optim import Adam

 

import matplotlib.pyplot as plt

 

assert pyro.__version__.startswith('1.8.1')   #A

pyro.distributions.enable_validation(False)

 

 

class CombinedDataset(Dataset):    #B

    def __init__(self, csv_file):

        self.data_frame = pd.read_csv(csv_file)

 

    def __len__(self):

        return len(self.data_frame)

 

    def __getitem__(self, idx): 

        images = self.data_frame.iloc[idx, 3:]    #C

        images = np.array([images])/255.    #C

        images = images.reshape(28, 28)    #C

        images = images.astype('float32')    #C

        transform = transforms.ToTensor()    #C



        images = transform(images)    #C

 

        digits = self.data_frame.iloc[idx, 2]    #D

        digits = np.array([digits])    #D

        digits = digits.astype('int')    #D

        digits = int(digits.squeeze())    #D

 

        is_handwritten = self.data_frame.iloc[idx , 1]    #E

        is_handwritten = np.array(is_handwritten)    #E

        is_handwritten = is_handwritten.astype('int')    #E

        

        return images, digits, is_handwritten    #F

 

 

def setup_data_loaders(batch_size=64, use_cuda=False):    #G

 

    combined_dataset = CombinedDataset(

        "https://raw.githubusercontent.com/altdeep/causalML/master/datasets/combined_mnist_tmnist_data.csv"

    )

    n = len(combined_dataset)

 

    train_length = int(n*0.7) 

    test_length = n - train_length

    train_set, test_set = torch.utils.data.random_split(

        dataset=combined_dataset,

        lengths=[train_length, test_length],

        generator=torch.Generator().manual_seed(43)

    )

 

    # Create data loaders for train and test

    kwargs = {'num_workers': 1, 'pin_memory': use_cuda}

    train_loader = torch.utils.data.DataLoader(

        dataset=train_set,

        batch_size=batch_size,

        shuffle=True,

        **kwargs

    )

    test_loader = torch.utils.data.DataLoader(

        dataset=test_set,

        batch_size=batch_size,

        shuffle=False,

        **kwargs

    )

    return train_loader, test_loader

5.2.1 Fitting the model with a variational autoencoder



The variational autoencoder (VAE) is perhaps the simplest deep probabilistic
machine learning modeling approach.  In the typical setup for applying VAE
to images, we introduce a latent continuous variable Z that has lower
dimension than the image date.  For each image in the data, there is a
corresponding latent Z-value. That value represents an “encoding” that
contains compressed information in the image.  A Z encoding vector takes
information in X and compresses it into a lower dimension.  This setup is
illustrated in Figure 5.9.

Figure 5.9 The causal DAG plate model extended to include an "encoding" variable Z. The
variable is latent, indicated by the dashed line.

Z appears as a new parent in the causal DAG, but it is important to note that
the classical VAE framework does not define Z as causal.  But now that we
are thinking causally, we’ll give Z a causal interpretation.  Specifically, we’ll
think of it as a continuous latent stand-in for all the causes of what you see in
the images that are not causally explained by “digit” and “is handwritten.” 
For example, all the nuance of the various fonts in the TMNIST labels that
we are deliberately ignoring will get captured by Z after training.  That said,
it is important to remember that the representation we learn for Z is not the
same as learning actual latent causes.



The VAE setup will train two deep neural networks, one that encodes an
image into a value for Z and one that decodes a value of Z into an image. 
The benefit of using deep learning is that the neural nets can capture the
complex and nonlinear relations needed to model the image as an effect
caused by “digit” and “is handwritten.”  Modeling images would be difficult
with the conditional probability tables and other simple parametrizations of
causal Markov kernels we’ve discussed previously.

The first neural network is called a “decoder.” The decoder generates an
image from the digit label, its handwritten label, and a Z value, as in Figure
5.10.

Figure 5.10 The decoder network generates an image X from Z and the labels "is handwritten"
and "digit".

The decoder acts like a rendering engine; given a Z encoding value and the
values for digit and is handwritten, it renders an image. We implement the
decoder as follows.

Listing 5.2 Implement the decoder

class Decoder(nn.Module):    #A

    def __init__(self, z_dim, hidden_dim):

        super().__init__()

        self.softplus = nn.Softplus()    #B

        self.sigmoid = nn.Sigmoid()    #B

        self.fc1 = nn.Linear(z_dim + 10 + 2, hidden_dim)    #C



        self.fc21 = nn.Linear(hidden_dim, 784)    #D

 

    def forward(self, z, digit, is_handwritten):    #E

        input = torch.cat([z, digit, is_handwritten], 1)    #F

        hidden = self.softplus(self.fc1(input))    #G

        X_img_parameter = self.sigmoid(self.fc21(hidden))    #H

        return X_img_parameter

We use the decoder in the causal model.  Our causal DAG acts as the scaffold
for a causal probabilistic machine learning model that, with the help of the
decoder, defines a joint probability distribution on {is-handwritten, digit, X,
Z}, where Z is latent.  We can use the model to calculate the likelihood of the
training data for a given value of Z.  The following model code is a class
method for a Pytorch neural network module. We’ll see the entire class later.

Listing 5.3 The causal model

def model(self, x, digit, is_handwritten):    #A     

        pyro.module("decoder", self.decoder)    #A

        batch_size = x.size(0)

        options = dict(dtype=x.dtype, device=x.device)

        with pyro.plate("data", x.shape[0]):    #B

            

            z_loc = x.new_zeros(torch.Size((x.shape[0], self.z_dim)))    #C

            z_scale = x.new_ones(torch.Size((x.shape[0], self.z_dim)))   #C

            z = pyro.sample(    #C

                    "Z",    #C    

                    dist.Normal(z_loc, z_scale).to_event(1)    #C

            )    #C

 

            digit_prob = torch.ones(batch_size, 10, **options) / 10.0   #D

            digit = pyro.sample(    #D

                    "digit",    #D

                    dist.OneHotCategorical(digit_prob),    #D

                    obs=digit    #E

            )

 

            hw_prob = torch.ones(batch_size, 2, **options) / 2.0    #F

            is_handwritten = pyro.sample(    #F

                    "is_handwritten",    #F

                    dist.OneHotCategorical(hw_prob),    #F

                    obs=is_handwritten    #G

            )

            

            X_img_param = self.decoder.forward(    #H



                    z,    #H

                    digit,    #H

                    is_handwritten    #H

            )    #H

            X_img = pyro.sample(    #I

                  "obs",    #I

                  dist.Bernoulli(X_img_param).to_event(1),    #I

                  obs=x.reshape(-1, 784)    #J

            )

        return X_img

Our probabilistic ML model models the joint distribution of {Z, X, digit, is-
handwritten}.  But since Z is latent, the model will need to learn P(Z|X, digit,
is-handwritten). But given we use the decoder neural net to go from Z and the
labels to X, the distribution of Z given X and the labels will be complex.  So
we will use variational inference, a technique where we first define an
approximating distribution Q(Z|X, digit, is-handwritten) and try to make that
distribution as close to P(Z|X, digit, is-handwritten) as we can.

The main ingredient of the approximating distribution is the second neural
net in the VAE framework, the “encoder,” illustrated in Figure 5.11.  The
encoder maps an observed image and its labels in the training data to a latent
Z variable.

Figure 5.11 The encoder maps actual images to latent Z variable.



The encoder does the work of compressing the information in the image into
a lower dimensional encoding. The following list implements the encoder,
which will infer the latent Z variable given an image, is_handwritten, and the
digit label.

Listing 5.4 Implement the encoder

class Encoder(nn.Module):    #A

    def __init__(self, z_dim, hidden_dim):

        super().__init__()

        self.softplus = nn.Softplus()    #B

        self.fc1 = nn.Linear(784 + 10 + 2, hidden_dim)    #C

        self.fc21 = nn.Linear(hidden_dim, z_dim)    #D

        self.fc22 = nn.Linear(hidden_dim, z_dim)    #D

        

 

    def forward(self, x, digit, is_handwritten):    #E

        x = x.reshape(-1, 784)    #F

        input = torch.cat([x, digit, is_handwritten], 1)    #G

        hidden = self.softplus(self.fc1(input))    #H

        z_loc = self.fc21(hidden)    #I

        z_scale = torch.exp(self.fc22(hidden))    #I

        return z_loc, z_scale

The encoder is used in a random function called a “guide function” that
represents the variational distribution Q(Z|X, is_handwritten, digit) that
approximates P(Z|X, is_handwritten, digit).  The guide is a function that
generates samples of Z given actual images and labels from the data. 
Specifically, Z is sampled from a Normal distribution.  The image and the
labels are passed to the encoder, which returns the parameters of that Normal
distribution.

Listing 5.5 The guide function

def guide(self, x, digit, is_handwritten):    #A

        pyro.module("encoder", self.encoder)    #B

        with pyro.plate("data", x.shape[0]):    #C

            z_loc, z_scale = self.encoder(x, digit, is_handwritten)    #D

            pyro.sample(    #E

                    "Z",    #E

                    dist.Normal(z_loc, z_scale).to_event(1)    #E

            )    #E



During training, autoencoder architectures iteratively pass training images
through the encoder to generate an encoding, then pass that encoding through
the decoder, which tries to reconstruct the original image.  The training
procedure optimizes the parameters of the decoder and encoder such that the
reconstructed image looks as close to the original image as possible.  We can
write a method that does this reconstruction manually.

Listing 5.6 Define a helper function for reconstructing and viewing the images

def reconstruct_img(self, x, digit, is_handwritten):    #A

        z_loc, z_scale = self.encoder(x, digit, is_handwritten)    #B

        z = dist.Normal(z_loc, z_scale).sample()    #C

        loc_img = self.decoder(z, digit, is_handwritten)    #D

        return loc_img

We combine these elements into one PyTorch neural network module.

Listing 5.7 Full VAE class

class VAE(nn.Module):

    def __init__(self, z_dim=50, hidden_dim=400, use_cuda=False):    #A

        super().__init__()

        self.encoder = Encoder(z_dim, hidden_dim)    #B

        self.decoder = Decoder(z_dim, hidden_dim)    #B

 

        if use_cuda:    #C

            self.cuda()    #C

        self.use_cuda = use_cuda

        self.z_dim = z_dim

 

    def model(self, x, digit, is_handwritten):    #D

        pyro.module("decoder", self.decoder)    #D

        batch_size = x.size(0)    #D

        options = dict(dtype=x.dtype, device=x.device)    #D

        with pyro.plate("data", x.shape[0]):    #D

    #D

            z_loc = x.new_zeros(torch.Size((x.shape[0], self.z_dim)))    #D

            z_scale = x.new_ones(torch.Size((x.shape[0], self.z_dim)))   #D

            z = pyro.sample(    #D

                    "Z",    #D

                    dist.Normal(z_loc, z_scale).to_event(1)    #D

            )    #D

                 #D

            digit_prob = torch.ones(batch_size, 10, **options) / 10.0    #D



            digit = pyro.sample(    #D

                    "digit",    #D

                    dist.OneHotCategorical(digit_prob),    #D

                    obs=digit    #D

             )    #D

    #D

            hw_prob = torch.ones(batch_size, 2, **options) / 2.0    #D

            is_handwritten = pyro.sample(    #D

                    "is_handwritten",    #D

                    dist.OneHotCategorical(hw_prob),    #D

                    obs=is_handwritten    #D

            )    #D

                #D

            X_img_param = self.decoder.forward(    #D

                    z,    #D

                    digit,    #D

                    is_handwritten    #D

            )    #D

            X_img = pyro.sample(    #D

                 "obs",    #D

                 dist.Bernoulli(X_img_param).to_event(1),    #D

                 obs=x.reshape(-1, 784)    #D

            )    #D

        return X_img    #D

 

    def guide(self, x, digit, is_handwritten):    #E

        pyro.module("encoder", self.encoder)    #E

        with pyro.plate("data", x.shape[0]):    #E

            z_loc, z_scale = self.encoder(x, digit, is_handwritten)    #E

            pyro.sample(    #E

                    "Z",    #E

                    dist.Normal(z_loc, z_scale).to_event(1)    #E

            )    #E

 

    def reconstruct_img(self, x, digit, is_handwritten):    #F

        z_loc, z_scale = self.encoder(x, digit, is_handwritten)    #F

        z = dist.Normal(z_loc, z_scale).sample()    #F

        loc_img = self.decoder(z, digit, is_handwritten)    #F

        return loc_img    #F

The variational autoencoder minimizes the difference between the target
distribution P(Z|X, is_handwritten, digit) and the variational distribution
Q(Z|X, is_handwritten, digit) that it is meant to approximate the target.  It
does this by minimizing the KL-divergence between the two distributions; the
KL-divergence is a way of quantifying how two distributions differ. 
Mathematically, KL-divergence has a lower bound called the expected lower



bound or ELBO.  Minimizing the KL-divergence is equivalent to maximizing
ELBO. Pyro implements a utility Trace_ELBO that calculates a ELBO-based
loss function during training.  The key parts of the training procedure are as
follows:

Listing 5.8 Key elements of the training algorithm

from pyro.infer import TraceELBO    #A

from pyro.infer import SVI    #B

from pyro.optim import Adam    #C

 

vae = VAE()    #D

optimizer = Adam({"lr": 1.0e-3})    #E

svi = SVI(vae.model, vae.guide, optimizer, loss=Trace_ELBO())    #F

 

…

epoch_loss += svi.evaluate_loss(x, digit, is_handwritten)    #G

The full training procedure is as follows.

Listing 5.9 The training procedure

LEARNING_RATE = 1.0e-3    #A

USE_CUDA = False    #A

NUM_EPOCHS = 1000    #A

TEST_FREQUENCY = 5    #A

 

def train(svi, train_loader, use_cuda=False):

    epoch_loss = 0.    #B

    for x, digit, is_handwritten in train_loader:    #C

        if use_cuda:    #D

            x = x.cuda()    #D

        digit = torch.nn.functional.one_hot(digit, 10)    #E

        is_handwritten = torch.nn.functional.one_hot(is_handwritten, 2)  #E

        epoch_loss += svi.step(x, digit, is_handwritten)    #F

 

    normalizer_train = len(train_loader.dataset)    #G

    total_epoch_loss_train = epoch_loss / normalizer_train    #G

    return total_epoch_loss_train    #G

 

def evaluate(svi, test_loader, use_cuda=False):    #H

    test_loss = 0.    #H

    for x, digit, is_handwritten in test_loader:    #I

        if use_cuda:    #J

            x = x.cuda()    #J



        digit = torch.nn.functional.one_hot(digit, 10)    #K

        is_handwritten = torch.nn.functional.one_hot(is_handwritten, 2)  #K

        test_loss += svi.evaluate_loss(x, digit, is_handwritten)

    normalizer_test = len(test_loader.dataset)

    total_epoch_loss_test = test_loss / normalizer_test

    return total_epoch_loss_test

 

def plot_regenerate(x, digit, is_handwritten):    #L

    fig = plt.figure    #L

    plt.imshow(x.view(28, 28).cpu().data.numpy(), cmap='gray')    #L

    plt.show()    #L

    x_generated = vae.reconstruct_img(x, digit, is_handwritten)    #L

    plt.imshow(x_generated.view(28, 28).cpu().data.numpy(), cmap='gray') #L

    plt.show()    #L

 

train_loader, test_loader = setup_data_loaders(

    batch_size=256, use_cuda=USE_CUDA

)

 

pyro.clear_param_store()    #M

vae = VAE(use_cuda=USE_CUDA)    #N

 

adam_args = {"lr": LEARNING_RATE}    #O

optimizer = Adam(adam_args)    #O

 

svi = SVI(vae.model, vae.guide, optimizer, loss=Trace_ELBO())    #P

 

train_elbo = []

test_elbo = []

 

for epoch in range(NUM_EPOCHS):    #Q

    total_epoch_loss_train = train(svi, train_loader, use_cuda=USE_CUDA) #Q 

    train_elbo.append(-total_epoch_loss_train)    #Q

    print("[epoch %03d] average training loss: %.4f" % (epoch, total_epoch_loss_train))  #Q

 

    if epoch % TEST_FREQUENCY == 0:    #R

        total_epoch_loss_test = evaluate(    #R

svi, test_loader, use_cuda=USE_CUDA    #R

)    #R

        test_elbo.append(-total_epoch_loss_test)   #R

        print("[epoch %03d] average test loss: %.4f" % (epoch, total_epoch_loss_test))   #R

        test_samples = random.choices(list(test_loader), k=3)   #R

        for x_test, digit_test, is_handwritten_test in test_samples:    #R

            x_shaped = x_test[0][0].reshape(1, 28*28)    #R

            digit_shaped = torch.nn.functional.one_hot(digit_test[0], 10)[None, :]    #R

            is_handwritten_shaped = torch.nn.functional.one_hot(is_handwritten_test[0], 2)[None, :]    #R

            plot_regenerate(    #R



x_shaped, digit_shaped, is_handwritten_shaped    #R

)    #R

            print("------------------------------")   #R

This code will train the full VAE.  Visit www.altdeep.ai/p/causalmlbook for a
link to a Jupyter notebook with the full code.

The code will train the parameters of the encoder that maps images and the
labels to the latent variable.  It will train the decoder that maps the latent
variable and the labels to the image.  That latent variable is a fundamental
feature of the VAE.  But we should take a closer look at how to interpret the
latent variable in causal terms.

5.2.2 How should we causally interpret Z?

I said we can view Z as a “stand-in” for all the independent latent causes of
the object in the image.  Z is a representation we learn from the pixels in the
images.  It is tempting to treat that representation like a higher-level causal
abstraction of those latent causes.  But it is probably not doing a great job as a
causal abstraction.  The autoencoder paradigm trains an encoder that can take
an image and embed it into a low-dimensional representation Z.  It tries to do
so in a way that it can reconstruct the original image as well as possible.  In
order to reconstruct the image with little loss, the framework tries to encode
as much information in the original image as it can in that lower dimensional
representation.

A good causal representation, however, shouldn’t try to capture as much
information as possible.  Rather, it should strive to capture only the causal
structure in the images and ignore everything else.  Solving this problem is a
challenge, particularly as the definition of “causal structure” can be domain
specific.  We investigate causal representation learning in chapter 9.

5.2.3 Using the trained deep causal model

You can visit www.altdeep.ai/p/causalmlbook for a link to full notebook
tutorial where you can run this code that trains this VAE. Figure 5.12 Loss on
the test data, which is -1 times the ELBO. Test loss was calculated every five
epochs.



Figure 5.12 Loss on the test data, which is -1 times the ELBO.  Test loss was calculated every five
epochs.

Figure 5.13 illustrates how well model can reconstruct (encode and then
decode) the original image after a modest 100 epochs.

Figure 5.13 Results of the training after 100 epochs.  The top row contains images in the test set,
bottom row is the reconstructed image.  The left two columns are handwritten (MNIST) images,
the right two columns are typed (TMNIST) digits.



So what can we do with this trained model?  So far, what we’ve demonstrated
is how to use this VAE to fit the conditional probability functions entailed by
the causal DAG.  We could similarly use another deep probabilistic machine
learning framework, such as a generative adversarial network (GAN).

The next step would be to use a model like this to make actual causal
inferences.  But we still have some conceptual groundwork to lay before we
do that. In later chapters, as we learn how to do causal reasoning with a
causal generative model, we’ll revisit this type of deep neural causal model
and demonstrate how to use them to make causal inferences.

5.3 Using causal inference to enhance deep learning

In this section, I illustrate one common example of how causality helps with
understanding when we’d expect a deep learning technique (or another
machine learning technique) to work and when it wouldn’t.  This example is
taken from a paper called On Causal and Anti-Causal Learning, by
Schölkopf, Janzing, Peters, Sgouritsa, Zhang, and Mooij; see the chapter
notes at www.altdeep.ai/p/causalmlbook for this and related citations.

5.3.1 Case study: Causality and semi-supervised learning



Suppose we have two variables X and Y.  We are interested in using X to
predict Y.  In machine learning terms, X is a feature, and Y is a label.

In order to predict Y from X, the predictive algorithm has to learn something
about the conditional probability distribution of Y given X, i.e. P(Y|X). 
Perhaps it learns a representation of the entire distribution, or perhaps it just
focuses on how to get highly probable values of Y for a given X.

In supervised learning, the training data consists of N samples of X, Y pairs;
(x1, y1), (x2, y2), …, (xN, yN).  The data is “supervised” because every x is
paired with a y.  We can use these pairs to learn P(Y|X).

In unsupervised learning, the data is unsupervised, meaning we have no
labels, no observed value of Y.  Our data looks like (x1), (x2), …, (xN).  With
this data alone we can’t learn anything about the P(Y|X), we can only learn
about P(X), the marginal distribution of X.

Semi-supervised learning asks the question, supposed we had a combination
of supervised and unsupervised data.  Could these two sets of data be
combined in a way such that our ability to predict Y was better than if we
only used the supervised data?  In other words, can the unsupervised data
somehow augment the learning of the supervised data?

Semi-supervised learning works in humans.  If you took a child to the zoo
and point out a few examples of mammals and non-mammals, you would
find that seeing additional animals would enhance their ability to distinguish
between mammals and non-mammals even if you didn’t tell them which was
which. Further, the semi-supervised question is quite practical.  It is common
to have abundant unsupervised examples while labeling those examples is
costly.  For example, suppose you worked at a social media site and were
tasked with building an algorithm that classified whether or not an uploaded
image contained sexually explicit content.  The first step is to create
supervised data by having humans manually label images as explicit or not. 
Not only does this cost many people-hours, but it is psychically stressful for
the labelers.  A successful semi-supervised approach would mean you could
minimize the amount of labeling needed to achieve a required level of
classification accuracy.



We can use causal reasoning to gauge how effective semi-supervised learning
might perform.  For semi-supervised learning to work, the needs to be some
connection between the P(X) we can learn from the unsupervised data and
the properties of P(Y|X) we can learn from the supervised data.  Causality
can help us understand when that might be possible.

To see this, let’s limit ourselves to two possibilities, one where X is a cause
of Y and one where Y is a cause of X.  In both cases, our goal is to learn as
much as we can about P(Y|X).  We’ll assume there are no other variables in
the data generating process to concern ourselves with.

Let’s consider the first case where X (the feature) is the cause of Y (the
label).  Thus, our causal DAG is X → Y. So we’ll call this the causal
learning case because the direction of the prediction is from the cause to the
effect, as illustrated in Figure 5.14.

Figure 5.14 In causal learning, the features cause the label. In anti-causal learning, the label
causes the features.

According to the Markov factorization property, the joint distribution P(x, y)
factorizes into P(x)P(y|x).  As we discussed in chapter 3, we expect causally
Markovian factors P(X) and P(Y|X) to obey a causal invariance principle
called “independence of mechanism.”  The principle is P(Y|X) and P(X) each
represent two distinct causal mechanisms in the data-generating process, one



where X is assigned its value, and one where Y is assigned its value given X.

In chapter 3, I discussed an example about elevation and temperature.  We
saw basic knowledge of physics tells us that the mechanism by which a city’s
elevation affects temperature is the same regardless of whether we’re in a
high-elevation city like Lhasa or a coastal city.  Further, knowing the
distribution of elevations across cities doesn’t tell me anything about how
elevation affects urban temperatures.  And if I know how elevation affects
urban temperatures, that doesn’t tell me anything about the variation of
elevations across cities.

The consequence of independence of mechanism is parameter modularity; if
P(X) and P(Y|X) represent independent mechanisms, then the parameters the
algorithm learns for P(X) should be decoupled from the parameters my
algorithm learns for P(Y|X).  That means, any observed crosstalk between the
learned representations of P(X) and P(Y|X) should be illusionary, signs of
overfitting. The unsupervised data can only help learn a representation of
P(X).  Thus, in this causal learning case, semi-supervised learning should be
no better than supervised learning since that learned representation of P(X)
should not inform P(Y|X).

Now consider the case where Y (the label) is the cause of X (the feature). 
The causal DAG is X ← Y.  We’ll call this the anti-causal learning case
because now we’re trying to look backward from effects to predict causes.  In
this case, P(x)P(y|x) is not the Markov factorization of the DAG, ergo P(X)
and P(Y|X) does not represent distinct causal mechanisms.  Thus, we do not
expect parameter modularity to hold for the algorithm’s representations of
P(X) and P(Y|X), and therefore the unsupervised data should help inform the
representation of P(y|x) in the case anti-causal learning.

5.3.2 Takeaways from semi-supervised learning case

Your takeaway should not be that there is some “causal semi-supervised
learning” that requires you to make all sorts of strong causal assumptions
about the data.  The causal learning case (feature vector X is a cause of the
labels Y) and the anti-causal learning case (labels Y is a cause of the feature
vector) is an intentional simplification of typical practical settings.  In



practical settings, it is common for some of the elements of the feature vector
to be causes of the label and some to be effects of the label.  Other elements
of the feature vector may correlate with the label by way of an unknown and
unmeasured (latent) common cause.

The key takeaway is semi-supervised learning is eminently useful but that
sometimes it worked well than other times less well.  Causal analysis helps us
understand when it should work and when it shouldn’t.  That can help the
modeler make better decisions about whether or not to spend her time and
resources applying semi-supervised learning in her problem domain.  Further,
she can use the insight to implement causally informed semi-supervised
learning algorithms, for example, one that gains efficiency by excluding
features in the unsupervised data that are likely causes of the label.

5.3.3 What it looks like when causality helps deep learning

AI researcher Ali Rahimi has compared modern machine learning to
alchemy.  While controversial, the simile is useful for understanding how
causal methods can enhance deep learning and what it looks like when they
succeed in doing so.

Rahimi’s comparison to alchemy wasn’t pejorative; he points out that
alchemy “worked."

Alchemy worked.  Alchemy invented metallurgy, ways to dye textiles, modern
glass-making processes, and medications.  Then again, alchemists also
believed they could cure diseases with leeches and transmute base metals
into gold.

In other words, alchemy works, but alchemists lacked understanding of the
underlying scientific principles that made it work when it did.  That made it
hard to know when it would fail.  As a result, alchemists wasted considerable
effort on dead-ends (philosopher’s stones, immortality elixirs, etc.).

Similarly, deep learning also “works” in that it achieves good performance on
a wide variety of prediction and inference tasks.  But we often have an
incomplete understanding of why and when it works.  That lack of
understanding has led to problems with reproducibility, robustness, and



safety.  Like the alchemists, machine learning engineers and researchers
spend significant resources, including many millions of dollars of corporate,
government, and investor capital, on dead-ends.  Some of these dead-ends
have adverse externalities, such as published work on that attempt to predict
behavior (e.g., criminality) from profile photos.  Such efforts are the machine
learning analog of the alchemical immortality elixirs that contained toxins
like mercury; they don’t work and they cause harm.

The semi-supervised learning case gives us a template for how causality can
remedy this alchemy problem.  Semi-supervised learning often worked, but it
wasn’t clear for which problems it would work well and which it would work
less well.  Causal analysis helped remedy this problem.  In general, the
pattern is as follows:

1. An algorithm has demonstrated impressive performance on a
benchmark.

2. However, sometimes it’s hard to reproduce that performance and it’s not
clear why.

3. Causal analysis helps provide insight into why.
4. This helps the modeler make better decisions about whether and when to

spend their time and resources on this algorithm.
5. Further, the causal insights can help the modeler tweak the algorithm to

be more robust and efficient.

The last item takes many shapes. For example, causal insights might identify
hyperparameters, elements of neural net architecture, and boilerplate
configuration and training code that don’t contribute to general performance.
Often, these enhancements do not improve performance beyond the
impressive numbers reported in the original publication and PR release.  But
they help reliably reproduce good performance across various settings.

5.3.4 AI Alchemy, and making “superhuman” performance
reliable

Robust “superhuman” performance

We often hear about the “superhuman” performance of deep learning. 



Speaking of superhuman ability, imagine an alternative telling of Superman’s
origin story.  Imagine if, when Superman made his first public appearance,
his superhuman abilities were unreliable?  He demonstrated astounding
superhuman feats like flight, super strength, and laser vision.  Yet, sometimes
his flight ability failed and his super strength faltered.  Sometimes his laser
vision was dangerously unfocused resulting in terrible collateral damage. 
The public would be impressed and hopeful that he could do some good, but
unsure if it would be safe to rely on this guy when the stakes were high.

Now imagine that his adoptive Midwestern parents, experts in causal
inference, used causal analysis to study why the superpowers fluctuate and to
engineer a pill that stabilizes the superpowers.  Note, this is not a pill that
enhances Superman’s powers, just one that makes them more reliable.  The
work of developing that pill would get less headlines than flight and laser
vision, but it would be the difference between merely having superpowers,
and being Superman.

This analogy helps us understand the role causal methods often take in
enhancing deep learning and other machine learning methods.  We see deep
learning achieve superhuman results in certain circumstances.  But then the
performance seems to be unstable across different settings.  Causal analysis
can often help explain what conditions are required for that superhuman
performance.  If modeler can tell in advance that those conditions cannot be
met, she saves time, effort, computational resources, and money.  In other
cases, causal analysis can show us how to tweak the deep learning algorithm
to achieve those conditions required for performance.  The deep learning
approach becomes more robust, reproducible, explainable, and engineerable. 

5.3.5 Causality can help by formalizing “inductive bias”

We can also use the concept of “inductive bias” to understand how causal
reasoning enhances deep learning. “Inductive bias” refers to elements of an
inference algorithm that makes it prefer certain inferences or predictions over
others.  Examples of inductive bias include “Occam’s Razor” and the
assumption in forecasting that trends in the past will continue into the future.

Modern deep learning relies on using neural network architectures and



training objectives to encode inductive bias.  For example, “convolutions”
and “max pooling” are architectural elements in convolutional neural
networks that encode inductive biases called “translation invariance”; i.e., a
kitten is still a kitten regardless of whether it appears on the left or right of an
image.  However, insights into the connection between neural network
architectures and inductive biases tend to be more heuristic than formal
(though formalizing inductive bias is an active area of AI research).

Causal inference also relies heavily on inductive biases, though most
researchers in the domain would simply say “assumptions” and
“constraints.”  But, in contrast to deep learning’s inductive biases, causal
inference relies on explicit and formal assumptions (such as a causal DAG). 
Explicit and formal inductive biases enable formal reasoning (such as with d-
separation) that lead to the formal guarantees about when you get causality
from correlation.  That emphasis on formalism exists because the stakes for
causal inferences are higher than for predictive inferences; if you publicly
claim your vaccine prevents a disease, you’d better be right.

But deep learning can leverage causality’s formalism to achieve more robust
results. For example, inductive biases in deep learning are often described in
terms of invariances, meaning elements of how the data is generated that we
expect to be consistent across datasets. Causal analysis can reveal the causal
sources of invariance, which in turn help learn more robust representations
and make more robust predictions.

5.4 Summary

Deep learning can be used to enhance causal modeling and inference.
In particular, causal modeling can leverage the ability of deep learning
to scale, deal with high-dimensional nonlinear relationships.
Deep learning and help learn representations of high-level causal
abstractions, though this is hard.
The variational autoencoder framework allows you to fit a causal DAG
with deep learning.
The framework allows you to use deep learning to represent a causal
Markov kernel for an image distribution.
The image is the effect, the labels representing the content of the image



are causes.
The decoder maps the causes and a latent variable to the image variable.
The encoder maps the image variable back to the latent variable.
We can view the learned representation of the latent variable as a stand-
in for unmodeled causes, but it lacks the qualities we’d expect from a
causal representation.
Causality often enhances deep learning and other machine learning
methods by helping elucidate the underlying principles that make it
work.
For example, causal analysis shows semi-supervised learning should
work in the case of anti-causal learning (when the features are caused
by the label) but not in the case of causal learning (when the features
cause the label).
Such causal insights can help the modeler avoid spending time,
compute, person-hours, and other resources on a given algorithm when
it is not likely to work in a given problem setting.
It can also help make the algorithm more robust and efficient.
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