
Game
Development
with Ren’Py

Introduction to Visual Novel Games
Using Ren’Py, TyranoBuilder,
and Twine
—
Robert Ciesla

Game Development
with Ren’Py

Introduction to Visual Novel
Games Using Ren’Py,

TyranoBuilder, and Twine

Robert Ciesla

Game Development with Ren’Py: Introduction to Visual Novel Games Using
Ren’Py, TyranoBuilder, and Twine

ISBN-13 (pbk): 978-1-4842-4919-2 ISBN-13 (electronic): 978-1-4842-4920-8
https://doi.org/10.1007/978-1-4842-4920-8

Copyright © 2019 by Robert Ciesla

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Rita Fernando
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484249192.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Robert Ciesla
Helsinki, Finland

https://doi.org/10.1007/978-1-4842-4920-8

This book is dedicated to my friend
Jukka Virnes (1978–2018).

v

Table of Contents

Chapter 1: Stories and How to Craft Them ���1

A Little Introduction to Dramatic Elements ���2

Antagonist ���2

Protagonist ��3

Alter Ego ��4

Catharsis ���5

Conflict ��5

Cliché ���5

Deus Ex Machina ���6

Double Entendre ��6

Exposition ��6

Flat/Round Character���6

Fourth Wall ��7

Narration/Narrator ���7

Onomatopoeia ���7

Personification ���8

Point of View (POV) ��9

About the Author ��xvii

About the Technical Reviewer ���xix

Acknowledgments ���xxi

Introduction ���xxiii

vi

Simile ��9

Soliloquy ��9

Aristotelian Poetics ���9

The Monomyth: A Hero’s Journey ���12

Taking Back August – A Synopsis Act I: Departure ��13

Act II: Initiation ���15

Act III: Return ���21

The 12 Character Archetypes ��29

1� The Hero ��30

2� John/Jane Doe���30

3� The Rebel ���31

4� The Joker ���31

5� The Ruler ���31

6� The Sage ��32

7� The Magician ���32

8� The Creator ��32

9� The Lover ���33

10� The Innocent One ���33

11� The Explorer ���33

12� The Healer ���34

Ten Visual Novel Good Practices ���34

1� Put the Story First ��34

2� Choose the Engine Carefully ��35

3� Don’t Overlook the Audiovisuals ��35

4� Make Your Characters Grow ��36

5� Honor the Sub-genre of Your Visual Novel ���36

6� Use Clichés Wisely ���36

7� Trim Unnecessary Elements ��37

Table of ConTenTs

vii

8� Bond with Your Audience ���37

9� Only Provide the Endings Your Story Needs ��38

10� Indulge in Forced Reading Sparingly ���38

Working for the Visual Novel Industry ���39

Visuals and Animation ���39

Audio Production and Voice Acting ��41

Programming ���41

Testing ���42

Localization ���42

Musings on Inspiration ��43

Fighting the Writer’s Block ��44

In Closing ��46

Chapter 2: The (Ancient) Art of Interactive Fiction �����������������������������47

The Great Grandfather of the Visual Novel: ELIZA (1966) ������������������������������������47

The Grandfather of the Genre: Colossal Cave Adventure (1975) �������������������������48

The Early Trailblazers ��49

Infocom ��49

Magnetic Scrolls ��55

Level 9 Computing ���60

Other Notable Games in the Genre ��64

King’s Quest: Quest for the Crown by Sierra On-Line (1984) �������������������������64

The Spellcasting Trilogy by Legend Entertainment (1990–1992) ������������������65

Timequest by Legend Entertainment (1991) ��67

Demoniak by Palace Software (1991)��69

How They Did It – Early Tools for Interactive Fiction ���70

A Few Words on Parsers ��71

Zork Interactive Language (ZIL) and the Z- machine ��������������������������������������72

Table of ConTenTs

viii

The Quill by Gilsoft (1983) ���74

Professional Adventure Writer by Gilsoft (1986) ��75

Adventure Game Toolkit by David Malmberg (1987) ��������������������������������������75

Inform by Graham Nelson (1993–) ���75

In Closing ��77

Chapter 3: The Modern Visual Novel ���79

The Visual Novel: Definitely Big in Japan ��79

Tropes ���80

The Faceless Protagonist ��80

Dialogue Tree ���80

The Endings Tree ���81

Into the Middle of Things/In Medias Res ���81

High School Geek ��81

Branch Cutting ���82

Sword and Sorcery ��82

Core Concepts of Japanese-Influenced Visual Novels ��83

Anime ��84

Bishoujo (also Galge) Games ���84

Dating Sim ���84

Doujinshi Games ��85

Eroge ���86

Hentai ��86

Isekai ���87

Kamige/Kusoge ���87

Kawaii ��87

Kinetic Novel ��87

Otaku ���88

Table of ConTenTs

ix

Otome ��88

Magical Girlfriend ��88

Mahou Shoujo (The Magical Girl) ���88

Manga ��89

Mecha ��90

Moe(ge) ���90

Nakige/Utsuge ���90

Tsundere ��90

Modern-Era Kamige, or the New Classics ���91

Kanon by Key (1999) ��91

Air by Key (2000) ���92

Phoenix Wright: Ace Attorney by Capcom (2001) ���93

Digital: A Love Story by Christine Love (2010) ���94

Katawa Shoujo by Four Leaf Studios (2012) ��95

Clannad by Key (2004, 2015) ���96

Her Story by Sam Barlow (2015) ���97

Doki Doki Literature Club! by Team Salvato (2017) ���������������������������������������98

Open Sorcery by Abigail Corfman (2017) ���100

Simulacra by Kaigan Games (2017) ���100

Simulacra: Pipe Dreams (2018) ���101

How We Do It – Modern Tools for Visual Novels ��102

Ren’Py ���102

Twine ���103

Adrift ��104

TyranoBuilder by STRIKEWORKS (2015) ��105

VN Maker ���107

In Closing ��108

Table of ConTenTs

x

Chapter 4: Working in Ren’Py, Twine, and TyranoBuilder �����������������109

Ren’Py in Detail ���110

How Ren’Py Works���111

Starting a New Project ��112

The Ren’Py Workflow ���113

The Basics of Ren’Py Scripting ��114

Creating User Interaction: Menus ��118

Indentation and Text Blocks ���119

Conditional Statements: if, elif, else ��120

More on Control Statements ��121

Twine in Detail ��122

Linking Passages Together ��124

Twine and Audiovisuals ���124

The Three Varieties of Twine ��126

Twine’s Many Macros ��126

Twine’s User Interface Functions ��128

A Few Words on the IFID ��131

Some Useful CSS Selectors ���131

TyranoBuilder in Detail ��132

The TyranoBuilder Workflow ��133

A Two-Scene Adventure ���135

Characters in TyranoBuilder ��138

Adding Multimedia ��138

TyranoBuilder and Media Files ��139

A Few Words on Game Settings ��139

Scripting in TyranoBuilder ���139

Live2D ��141

In Closing ��142

Table of ConTenTs

xi

Chapter 5: Deeper Down the Dungeon ��145

Ren’Py, Containers, and Codecs ��145

Using Video in Ren’Py ��148

Advanced Audio Functionality in Ren’Py ���149

Advanced Image Properties ���151

Customizing the Ren’Py GUI ��154

Advanced TyranoBuilder Techniques ���156

Plugins ���157

Of Variables and System Variables ��160

Randomized Dialogue ��162

iScript vs� JavaScript ���164

Clickable Image Areas ���165

Custom Fonts in TyranoBuilder ��166

Twine Magic ��167

Evoking JavaScript in Twine ��169

Text Reveal Effect in CSS ���169

Spicing Up the Text ��170

An Introduction to Harlowe ��173

Enter Snowman! ��178

In Closing ��184

Chapter 6: Deploying for Popular Platforms �������������������������������������187

Ren’Py and the Desktops ��187

Minimum System Requirements ���188

Icons for Desktops ���189

Ren’Py for Mobile Devices ��190

Deploying for Android ��190

Icons and the Splash Screen ���191

Table of ConTenTs

xii

Keybindings in Android ��192

Testing Your Android App in Ren’Py ���192

Deploying for iOS ���193

Xcode and the iOS Process ��193

Updating Your iOS Projects ��195

App Icons and Splash Screens for iOS ��195

Deploying for Chrome OS/Chrome Browser ��197

Legalese for Android and iOS in Ren’Py ��198

Ren’Py for the Quirky: Raspberry Pi ��198

Setting Up a Pi for Ren’Py ���199

TyranoBuilder for Desktops ���199

TyranoBuilding for iOS ���200

TyranoBuilding for Android ��201

Additional Android Advice ��204

Twine for the Desktops ���204

Twine for iOS and Android ���205

The Wonders of PhoneGap Build ���205

Splash Screens for Android ���208

Icons for Android ���208

Splash Screens for iOS ��210

Icons for iOS ��211

The Apple p12 Certificate and PhoneGap ��213

In Closing ��214

Chapter 7: Three Little Games ��217

Laying Out a Plan ��217

Cast of Characters ���218

Locations ���219

Table of ConTenTs

xiii

Part I: The Beginnings of Taking Back August in Ren’Py �����������������������������������234

Starting the Project��234

Setting Up the Characters ���235

Custom Transitions ��236

Assigning Images to Characters ��237

Preparing Other Audiovisual Assets ���237

Into the Fray! ���239

Commenting Your Code ���241

Your First Menu ���241

Using Conditional Statements ���244

Setting the Text Speed ���249

Upgrading the Inventory System ���250

Adding Functions (and Reusing Variables) ��253

Particles with SnowBlossom ���256

Randomizing Dialogue ���261

Styles and Hyperlinks ��262

Adding Videos ��265

Text Speed on the Fly ��265

More Fun with Text ��266

Part II: The Middle of Reginald’s Story with TyranoBuilder��������������������������������267

A Couple of Characters ��268

On a Train ���268

TyranoBuilder, Assets, and Directories ���269

Sounds on a Train ��271

First Glimpses of Interaction and Variables ���277

Random Dialogue in TyranoBuilder ��279

Adding Labels in TyranoScript ���281

Table of ConTenTs

xiv

The Might of the 3D Camera ��282

TyranoScript Macros ��282

Mixing Graphics with Text ��287

Graphical Buttons ��287

The Grand Finale Featuring Nasuka ��288

Various Tags and Tools���291

Part III: Telling Tales with Twine���294

Fonts and Colors ��296

Fun with Harlowe and Variables ��298

Custom Tags and Background Visuals ���299

An Inventory in Harlowe ��302

Refining Our Inventory and the Twine Footer ��303

Resuming Our Story ��304

Unlocking Locations with Items ��307

Food, Dramatic Moments, and More Macros ���308

Datamaps and Datasets ��309

Extreme Fun with Arrays ���310

More Visual Effects ��312

Real-Time Twine ��313

Our First Game Over ��315

Hiding That Pesky Inventory ��315

Adding Graphical Bars ���317

Transitions and Rotation: More Visual Flair ���318

Replacing Links with Passages ���319

Prompting the User ��320

In Closing ��323

Table of ConTenTs

xv

Chapter 8: Promotional Strategies ���325

Your Online Audience ��325

Online Distribution for Budding Visual Novelists ���327

Releasing for Free ���327

Selling Your Visual Novels ��329

Essential Marketing Practices ���331

Forum Decorum ���331

Demo Games ���331

Penetrating the Market with Free Stuff ���332

Staying Serious About Platforms ���332

The Power of Localization ���332

Web Site ��333

Trailer Video ���334

Blog ���335

Visual Novel Databases ���336

In Closing ��337

Index ���339

Table of ConTenTs

xvii

About the Author

Robert Ciesla is a freelance writer from

Helsinki, Finland. He has a BA in journalism

and a knack for writing urban fiction and

directing short films. Robert has worked on

many video games on several platforms since

being a kid in the mid-1990s. His personal web

site is www.robertciesla.com.

http://www.robertciesla.com/

xix

About the Technical Reviewer

Daniel Luque Soria has been a Python

developer for 5 years. He has worked as an

Odoo developer in several companies. In his

spare time, he has developed visual novels and

Ren’Py-related tools and contributed to the

Spanish localization of Ren’Py. He’s currently

focusing on game development with Unity3D.

xxi

Acknowledgments

I would like to thank my mother and all of my friends for their support

during the intense writing process.

xxiii

Introduction

If there’s one genre that doesn’t usually spring to mind when thinking of

popular video games (or video games in general), it’s anything text-based.

Many gamers see these types of games as something archaic or boring,

perhaps preferring to indulge in yet another first-person shooter. The

reality, however, is very different.

Although an old genre, interactive fiction and its more modern

cousin, the visual novel, are an increasingly thriving segment of the

industry. For example, Clannad HD Edition by developer Key outranked

some of the most popular action game franchises in Steam sales charts.1

Although initially a mostly Japanese phenomenon, today visual novels

are sold and/or downloaded in the millions worldwide. Doki Doki

Literature Club! by Team Salvato, a free visual novel with optional paid

add-ons, reached two million downloads in 2018 and continues to

exhibit a massive, global fan following.

The three tools presented in this book, Ren’Py, Twine, and

TyranoBuilder, offer everything you need for creating interactive fiction or

visual novels for multiple platforms. Best of all, the first two are completely

free to use. Gaining experience in any of these exceptional tools also opens

doors to other development systems, should the need for this arise, as well

as grants you with some general-purpose programming skills.

1 Clannad HD climbed on top of Grand Theft Auto V and Call of Duty: Black Ops III
in the Steam sales charts of 2015. The game also received over $540,000 during its
crowdfunding phase. Steam by Valve Software is the largest online distribution
platform for video games.

xxiv

With this book I aim to give you, the budding developer, the means

you need to create your very own interactive adventures. Yet this book

is not only a DIY manual for fans of text-based games, nor is it a history

lesson, although that’s certainly a part of it. First and foremost, I want

to stir your creative capabilities and use language, any language, to its

fullest capacity in creating commercially viable and meaningful titles of

your own. Whether you choose humor, romance, fear, or some other part

of the human experience as your main influence in your initial games, I

urge you to hold nothing back, within limits of course, and enter the fray

with complete confidence. At best we are, after all, creating immersive

universes others can enjoy and relate to, like writers do.

InTroduCTIon

1© Robert Ciesla 2019
R. Ciesla, Game Development with Ren’Py, https://doi.org/10.1007/978-1-4842-4920-8_1

CHAPTER 1

Stories and How to
Craft Them
Words, like 3D graphics, are information. Unlike fancy 3D graphics,

syllables put to good use convey a strong element of imaginative

interpretation from the reader’s part. One’s imagination is quite simply

sent soaring when reading. All of the abstract potential and lived

experience stored in our brains surfaces when interpreting syllables and

sentences (at least when one is enjoying what one is reading). It can be

argued that a person can therefore provoke more complex inner emotions

with pure language than with visual representations of things.

There’s a reason literary classics like Homer’s Iliad and Camus’ The

Stranger live on and storylines of 3D game franchises die after a few years

in the market. This is not to downplay a huge part of the industry, but to

remind developers that it’s okay to challenge the player in co-creating

your work in this powerful manner. It’s okay to focus on emotional impact,

which of course is no way limited to text-based games. But quite often too

much emphasis is put on visuals at the expense of a gripping storyline and

a rewarding dramatic arc. Outward minimalism can be a great co-creator

to bringing out one’s artistic ambitions in the world of video games as well.

2

In this chapter we’ll first examine some of the most common drama-

related concepts that are useful for anyone working in the field of writing

fiction. Then, we’ll explore the world of Aristotelian poetics. This is

followed by an in-depth look at Joseph Campbell’s “monomyth,” a very

popular trope in the world of entertainment, as well as the associated 12

character archetypes. Finally, we’ll delve into some useful practices for all

visual novelists.

 A Little Introduction to Dramatic Elements
Some terms have become canonized throughout the history of literature,

dating back to ancient Greece. Let’s take a look at some of the most

fundamental concepts and how they relate to newer forms of literature

and thus also interactive fiction. These terms are useful for all types of

storytelling. We’ll start with the central concept of protagonist, then take

on more terms in an alphabetical order.

 Antagonist
An antagonist is a villain in a story (see Figure 1-1), that is, someone who

makes life that little bit harder for our protagonist(s). Good antagonists

challenge our heroes, providing them with obstacles that enable their

growth. What usually separates an antagonist from an anti-hero is the

end goal. The former may use dubious means to achieve a more or less

morally sound goal. The latter will gladly rule over the world by any means

necessary.

Chapter 1 StorieS and how to Craft them

3

Note the following antagonists are best avoided due to
oversaturation: moustache-twirling (more or less) southern
gentlemen, powerful caped space kings, witches, and evil wizards
who are definitely in the last age bracket before “dead” on all official
documents.

 Protagonist
A protagonist is a leading character (see Figure 1-2) whose actions and

decisions are watched most closely by the reader or gamer. Think the

enigmatic Gordon Freeman from the Half-Life franchise or The Adventurer

from the 1980s Zork series of interactive fiction games. More complicated

projects may naturally include numerous different protagonists, each with

their own challenges and dramatic arcs.

Figure 1-1. Dr. Unpleasant, an antagonist (at least in the context of
this book) at your service. The evil grin is a giveaway.

Chapter 1 StorieS and how to Craft them

4

Not all protagonists are necessarily heroic or even morally sound. The

beloved janitor Roger Wilco from the classic Space Quest series of games

is a bit of a klutz, while Vegeta from the Dragon Ball Z universe can be

somewhat of a snob (to say the least). Not all main characters need be

from the goody-two-shoes school of drama. A bruised and bitter anti-hero

can indeed be a fun protagonist to write about and to deliver brutal truths

about the human condition in the process.

 Alter Ego
An alter ego is a personality distinct from a character’s usual self and

a popular trope in visual novels. Think Clark Kent from the Superman

universe. Alter egos may be necessary to hide one’s true identity (think

secret agent) or they may be borne out of some kind of mental issues, as is

the case with characters suffering from multiple personality disorder.

Figure 1-2. Reginald Pennelegion, the protagonist from Taking Back
August, this book’s tutorial game

Chapter 1 StorieS and how to Craft them

5

 Catharsis
A catharsis is sometimes the dramatic purging of a character’s emotional

baggage and/or stress. It is experienced after the completion of a major

task, and it usually grants the character new skills and a peace of mind.

In the visual novel sub-genre of dating simulators, forming a relationship

or getting married constitutes a form of catharsis. In more fantasy-based

games, defeating a powerful dragon or a malicious space lord is perhaps a

type of catharsis as well.

 Conflict
One of the most important concepts in any type of drama is conflict. Conflict

is an often resolvable challenge, pitting a character against other characters

or circumstances. The resolution of conflicts results in some type of prize, be

it new skills or a better set of prospects for the hero/heroine and their allies.

Conflict isn’t limited to the strenuous relationship between a main

character and his or her antagonists. It can take place fully within the

psyche of the leading character, in the form of phobias, neuroses, or other

issues. Conflict can therefore be external or internal or a combination of

both. Naturally, conflict can also manifest as political strife or be related to

technology; a somewhat popular pop culture trope is “man vs. machine,”

after all. Great drama often ensues from conflict between humans and

society at large, or nature, too.

 Cliché
A cliché is an overused concept. Time turns most fresh ideas to clichés

eventually. Many fans of visual novels are fine with some of the clichés in

the genre, such as the ubiquitous high schooler protagonist. This may be

because many people have themselves been an awkward high schooler at

some point.

Chapter 1 StorieS and how to Craft them

6

 Deus Ex Machina
A relatively popular dramatic device, deus ex machina refers to an external,

often all-powerful source that resolves some rather unsurmountable

difficulties. The expression is Latin for “a god from the machine.” Think of

a powerful giant robot appearing out of nowhere to help your heroes or

perhaps a benign artificial intelligence taking over the proceedings.

 Double Entendre
Double entendre refers to a sentence which has two meanings. It can be

either intentional or accidental. The former variety is often risqué in its

nature, while the latter is not.

• Example #1: I’m having an old friend for dinner, a

cannibal told me once.

• Example #2: Something went wrong in the car crash,

expert says.

 Exposition
The background information on characters and their everyday lives is called

exposition. It’s needed to make your protagonist more relatable for your

audience. Scenes of exposition might explain some of the motivations for the

characters in your visual novel, based on their personal history and interests.

 Flat/Round Character
A flat character is more or less a background figure. He, she, or it isn’t

without a purpose, however. They simply aren’t given that much time in

your saga. Think of a mysterious shopkeeper who sells magic items and

vanishes after a transaction.

Chapter 1 StorieS and how to Craft them

7

A round character, on the other hand, is what your heroes and villains

are characterized as. They are given the most exposition in your visual novel.

They often have rich personalities and complicated motivations for their

actions and desires. The word “flat” can also be used again to describe a main

character who isn’t well-rounded and believable enough to carry the story.

 Fourth Wall
A fourth wall refers to agreed-upon invisible wall which divides the events

of a dramatic work from its audience. When someone is “breaking the

fourth wall,” it means a character in a play, movie, visual novel, or other

such work acknowledges members of the audience.

Examples of visual novels breaking the fourth wall include Doki Doki

Literature Club! by Team Salvato (see Chapter 3) and Snow Sakura by D.O.

to name just two; the genre lends itself well to this practice.

 Narration/Narrator
Narration refers to one or more characters addressing the audience/

gamers directly, giving information or commenting on the twists in a story.

A narrator can be either the protagonist or a separate, often anonymous

entity. A narrator usually has more information than the heroes themselves.

 Onomatopoeia
This term refers to noises that imitate their own meaning. Onomatopoeia

is the vocal approximation of the associated sound (see Figure 1-3).

Some examples are animal sounds, such as “meow,” the feline classic, or

“coo” made popular by pigeons. Other examples include “bang” in the

context of a gun firing or the clock-inspired “tick tock.” You get the idea.

Onomatopoeia has been used to great effect in comic books and many

visual novels.

Chapter 1 StorieS and how to Craft them

8

 Personification
Personification is the approach of giving human attributes to abstract

concepts, such as the sun or weather. When applied to non-human beings

or objects (e.g., animals), it’s known as anthropomorphism (see Figure 1- 4).

This is a very popular approach in art and culture dating back to the

earliest days of recorded history. Many successful video game franchises

feature personified protagonists and antagonists.

Figure 1-3. Some examples of onomatopoeic visual expression

Figure 1-4. An anthropomorphic egg

Chapter 1 StorieS and how to Craft them

9

 Point of View (POV)
A point of view is simply the angle from which a story is told. This point of

view can be divided into three types: objective, omniscient, and limited

omniscient. An objective POV refers to a character who isn’t any more

knowledgeable than the audience, whereas a character with an omniscient

POV knows everything about the proceedings. A limited omniscient POV

sits between these two.

The typical visual novel protagonist perspective can be therefore

described as a first-person objective POV. An all-wise oracle character

would be described as a third-person omniscient POV.

 Simile
A simile is simply the comparison of two different things using connecting

words such as like or than.

For example: He was cooler than a refrigerated

zucchini. She was quiet like a phantom.

 Soliloquy
This term refers to a kind of monologue, which is only aimed at the

audience (i.e., the player). During soliloquies other characters present in

the scene stay quiet and blissfully ignorant of what was just being said.

 Aristotelian Poetics
Greek philosopher Aristotle (384–322 BC) perhaps first outlined the

still thriving principles of drama in his monumental work, Poetics, from

335 BC. Although his concepts may seem outdated to some, they are the

core structure behind many popular and long-lived works of literature

Chapter 1 StorieS and how to Craft them

10

and related fields. You may pick and choose the concepts that suit your

particular needs as a game designer.

According to Aristotle, all art is a modified imitation of life.

Interestingly, he referred to language-based art as “the unnamable art

form,” dividing it into tragedy, comedy, and the epic poem. Out of these

three genres, tragedies and epics carried more value, since they could

better convey moral lessons which were paramount back in the day.

One may reach the conclusion that morality is often overlooked in

current popular culture, especially in video games.

There are six core qualities of Aristotle’s tragedies:

 1. Morals: An overall noble quality to uphold decent

morals.

 2. Realism for the audience to relate to.

 3. Fitness of character: Appropriate characteristics for

the cast (e.g., brave knights, sneaky thieves).

 4. Consistency: Characters need to continue living out

their established qualities throughout the work.

 5. Necessity of action: The law of probability or

necessity must govern the work.

 6. Idealism: Be truthful, but more beautiful than life.

As for comedy, the genre seemed to present to the world lesser, more

frivolous characters and was thus lesser of an art form of the three. The art

form of comedy was not entirely without merit in Aristotle’s opinion, as it

could serve well the purposes of political satire, thus at best reducing the

tension between the rulers and the ruled. In modern times some of that

logic may be lost. Just think of, say, those numerous comedic films starring

Adam Sandler which may or may not influence the betterment of society

(no offense to Mr. Sandler, of course).

Chapter 1 StorieS and how to Craft them

11

As stated, in addition to tragedy and comedy, Aristotle outlined

the genre of epic poetry. These works consisted of four elements: plot,

character, thought, and diction. Their subject matter often dealt with

ancient gods and those with superhuman abilities. Notable examples of

this genre include Homer’s Odyssey and the aforementioned Iliad. The

oldest known epic is the Mesopotamian classic The Epic of Gilgamesh all

the way from 2200 BC no less.

There are nine qualities in Aristotle’s epic poems:

 1. An epic begins with a declaration of its theme.

 2. The story itself often begins in the middle of the

action (lat. “in medias res,” a common approach

in, say, the video game Prototype by Radical

Entertainment and classic TV episodes of MacGyver).

 3. In many cases, a muse is invoked (a muse is a goddess

who represents a specific type of art or science).

 4. The scope of the epic is large, dealing with the

entire world or worlds (hence the use of epic as an

adjective in popular culture).

 5. The cast of characters performs long monologues.

 6. Heavy use of repetition.

 7. The use of epic similes. They refer to the contrasting

of something ordinary to something extraordinary,

often spanning several lines (i.e., “The fax machine

made noises like a giant wild boar being irate, about

to devour the entire office”).

 8. Emphasis on courage and other heroic ideals.

 9. Epic poems embody the relevant society and its

values in considerable detail and scope.

Chapter 1 StorieS and how to Craft them

12

 The Monomyth: A Hero’s Journey
Drama, in all its forms, is an evolving art form. One of the more prominent

voices in its study was Joseph Campbell (1904–1987), a Professor of

Literature at Sarah Lawrence College. He presented the concept of the

monomyth to the world with his magnum opus The Hero with a Thousand

Faces (1949).

Basically, Campbell argued that most sagas in human history are

following the same formula. The monomyth can be summoned in a quote

from the introduction in the book:

A hero ventures forth from the world of common day into a
region of supernatural wonder: fabulous forces are there
encountered and a decisive victory is won: the hero comes
back from this mysterious adventure with the power to bestow
boons on his fellow man.

Not all video games need the monomyth approach, but a text-based

game greatly benefits from it. It’s a tool that helps you work faster using a

tried and tested method. Don’t reinvent the wheel when you can simply

aim for a rewarding, time-honored approach. You may completely ignore

the monomyth in your game making, of course, but it may be somewhat of

a risky maneuver. The hero’s journey has a tendency to keep the audience

on its toes, after all.

The monomyth, that is, the hero’s journey, consists of 17 stages, which

are often grouped in a number of ways, most often as three separate acts.

We’ll now take a look at these concepts in the form of a synopsis for a little

visual novel, Taking Back August by yours truly. We will be creating this

game later in the book in three installments using Ren’Py, TyranoBuilder,

and Twine.

In the world of visual novels, it’s generally a good idea to fully flesh out

the story this way before delving into coding. Do yourself a favor: pen a

synopsis beforehand – especially if there’s more than one person in the team.

Chapter 1 StorieS and how to Craft them

13

 Taking Back August – A Synopsis
Act I: Departure
 1. The Call to Adventure

the first stage of the hero’s journey often presents to the audience
the current (and sometimes rather mundane) existence of the
protagonist.

Reginald Pennelegion, a government cyber security expert and our

protagonist, is browsing nonsense at his desk workstation. He’s supposed

to be working on a big project, but instead he’s drifting into a world of

memes, online auctions, and silly video clips. Reginald is still depressed

about the passing of his best and only friend at the office, one Mervyn
Popplewell.

Amidst his continuing browsing, Reginald receives a strange email

from his deceased colleague’s email address, no less. Startled, he opens the

message. It simply states: “Meet me at Hyde Park at seven o’clock tonight.

I’ll be by the Wellington Arch. Don’t tell anyone!”

 2. Refusal of the Call

it’s not easy to jump head first into adventure. hesitation is part of
both human nature and the hero’s journey.

Being very nervous, Reginald darts his eyes across the office premises.

Everything seems business as usual. This has to be a sick joke, he mutters

to himself. Reginald ponders whether he should report the strange email

or just delete it. He decides to keep browsing the Internet and pretending

to be working until quitting time.

Chapter 1 StorieS and how to Craft them

14

 3. Supernatural Aid

in this stage of the journey, the protagonist seeks out a sage-like
figure and possibly gains a special item or skill in the process.

Evening falls. Before clocking off, Reginald decides to investigate the origins of

the mysterious email with some outside help. He calls the office tech support

person who is an elderly gentleman by the name of Royston Honeybun.
Royston tells Reginald there is no technical flaw behind the email – it’s

genuine. However, if Reginald plans to visit Hyde Park at seven o’clock,

Royston says he should pick up a certain item: an old cell phone from one

of the office drawers, for secure communication, he’s told. Reginald heeds

this advice and picks up the phone which was indeed located at a rather

obscure location. It’s really quite old, looking like it dates back to the 1980s.

 4. Crossing the Threshold

there’s no going back to the ordinary world now.

It’s five past six o’clock. It’s still not too late to reach Hyde Park in time.

Reginald decides to go for it, come heck or high water. He puts the old

phone into his briefcase and leaves. Reginald exits the office feeling rather

nervous and unsure of what is waiting for him. But there’s no turning back

now. He’ll take his chances.

 5. “Belly of the Whale”

now, it’s time for the first glimpses of real tribulation.

Hyde Park is just a walking distance from Reginald’s office. It’s getting

darker as he makes his way past busy Londoners. The Wellington Arch now

Chapter 1 StorieS and how to Craft them

15

looms in the distance. Eerily, it remains deserted save for our Reginald. No

one is there to greet him. Disappointed, he begins his trip home.

Strolling past his job, Reginald is flabbergasted: his office is engulfed

in flames! Maybe if he’d done some overtime instead of going to Hyde

Park, he could’ve prevented the fire. The fire brigade is on its way, but the

damage is done: months or years of work may have been destroyed for the

whole department.

 Act II: Initiation
 6. The Road of Trials

at this stage of the monomyth, it’s time to test our protagonist’s
resolve to see what he or she is made of. the number of trials you
put your hero/heroine through is, of course, up to you.

Panicking, Reginald is alarmed by the phone in his briefcase. The ancient

thing is ringing. Barely managing to answer the call, Reginald hears a

strange voice simply telling him to “Get the pink DVD under the plant and

get it out of there. You have ten minutes before it’s devoured by fire.” The

caller hangs up. What was he referring to?

It dawns to Reginald: it was about August, the prototype for the first

fully cyber-attack proof firewall to be implemented in all of Her Majesty’s

agencies later that year. No parts of it can perish. Reginald navigates

through the smoke and siren lights and manages to climb up a fire ladder

to his office while no one is watching. Clutching his briefcase to shield

from fire, he stumbles around the workplace to fetch the DVD with parts of

August on it. Using all of his willpower, Reginald manages to retrieve it and

return to ground floor, exhausted and coughing hard.

The phone in the briefcase rings again. The same voice answers.

“Well done,” it tells a startled Reginald Pennelegion, cyber security expert

extraordinaire. The voice continues: “Go home and stay there for further

instructions. Protect the disc with your life, if necessary.”

Chapter 1 StorieS and how to Craft them

16

 7. The Meeting with the Goddess

this stage of the journey may or may not include a literal goddess.
rather, at this point the hero or heroine is receiving aid in some form
from a selfless character. it may be in the form of encouragement
or advice from a romantic interest. perhaps this juncture of your
story entails a set of special items. meeting the goddess deals with
anything that helps your protagonist in times of stress. everyone
needs a helping hand ever now and then.

The adrenaline begins to slowly wear off as Reginald paces toward his

residence. He’s about to open the apartment door when the old phone

rings again. This time, it’s a woman’s voice. “Whatever you do, don’t go

home! Leave London right now. Go as far North as you can. A train is your

best bet. I’ll call again. Go! And don’t lose the disc!”

Reginald ponders for a few seconds. He begins to hear a strange

humming noise coming from his flat. Putting his ear against the door, the

noise gets louder. He never leaves his appliances running. Something is

up. Reginald decides to heed the girl’s advice and leave. Running down the

street toward the train station, he looks back once more. A human-like figure

with unnaturally large eyes stares back. It’s dressed in light blue uniform,

briefly reminding him of a life-sized action figure of some kind. Now almost

tasting blood, Reginald dashes away from the sight as fast as he can.

 8. Woman as Temptress

the eighth stage in the hero’s journey consists of some kind of
distraction that seeks to derail your protagonist. it doesn’t have
to be necessarily a temptress or any variety of the femme fatale

Chapter 1 StorieS and how to Craft them

17

(i.e., the seductive man-eater). it can be an activity, a proposition of
some kind, that offers a way out of the whole saga. it is perhaps the
very last chance to return to the former life for your protagonist.

After running what felt like a marathon, Reginald reaches Euston train

station, panting heavily. No one seems to have been following him.

He remembers the woman’s advice and looks for the next northbound

train. One leaves to Nottingham in 15 minutes. That’s north enough,

Reginald says to himself. He buys a ticket and prepares to board the train.

“Excuse me!” he suddenly hears. Out of nowhere, a dark-haired woman

dashes in front of him, blocking entrance to the train. “Is this the train to

Nottingham?” She gives a wide smile.

Reginald notices the woman has a name tag with his work logo on

it. But the way she appeared out of nowhere makes her suspect. He

confirms this is the correct train and pushes past her. Reginald finds his

seat and soon the train starts its trek. The woman sits opposite to him and

introduces herself “I’m Claire. We work at the same firm, I think. I’m in the

cyber-securities department.” Reginald reluctantly introduces himself and

gazes out of the window, watching London disappear little by little.

Noticing Reginald’s lack of enthusiasm for pleasantries, Claire dons

a pair of headphones and closes her eyes. Reginald is pleased there’s no

more small talk to interrupt his flow of thoughts. He’s pondering on his

next move. Where is he supposed to go after he arrives in Nottingham?

Reginald has no idea, but it was the advice he was given. Pulling out her

headphones, Claire suddenly offers a drink from a hip flask. “You know,

to pass the time with an esteemed colleague?” Reginald declines. “Suit

yourself,” Claire says taking a long sip from her flask.

Passing rows of drowsy commuters, a bald man in blue farmer’s

overalls approaches Reginald and Claire. He seems out of place and

somewhat strange in his mannerisms. He triggers something in Reginald,

who instinctively moves toward the corridor. Claire glances over and nods

at the strange man. Reginald begins pacing down the train corridor to the

Chapter 1 StorieS and how to Craft them

18

opposite direction. The bald man follows. Reginald is being chased. He

finds his way into a toilet and locks the door. Loud knocks sound off in his

eardrums. He’s trapped.

 9. Atonement with the Father

during this dramatic stage, the protagonist makes peace with
whomever holds most power in his or her journey. he or she
reconciles with a mentor. this may or may not be an older male figure.

Reginald had intuitively held on to his briefcase with the phone still in it.

He switches it on, still not fully knowing how it works. After a few beeps,

it automatically connects to someone: it’s the woman who told him to go

north. “You’re on your way. Good. Are they after you?” she asks. Reginald

shares his predicament over the phone. “Just wait. Stay put. They’re not

authorized to use full force. Just wait. Then I need you to leave the train at

the next stop. Do you hear me?” The woman hangs up. Puzzled, Reginald

does what he’s told. The knocking continues for another 5 minutes or so

then abruptly stops.

Reginald opens the toilet door warily; there’s no one behind it. Claire

is gone as is the bald man. Reginald hears an announcement: next stop

Bedford. He was told to leave so he positions himself near the train doors,

ready to dash out. As soon as the train stops, Reginald is out on the streets,

looking over his shoulder. No one seems to be following him.

Only a mere minute into the crowds, Reginald is grabbed by the arm. “I

think we should find a quieter venue to talk,” a vaguely familiar voice tells

him. It’s Royston Honeybun from tech support. “I sent you the email in

your friend’s name. Sorry about that. I had to get you out of there,” he says.

The two find a free park bench, and Mr. Honeybun briefs Reginald on the

situation at hand. The upcoming government firewall, August, is designed

to be perfect. But Reginald made it too perfect. A Faction of the government

needs backdoors in it, vulnerabilities which can be utilized at their will.

Chapter 1 StorieS and how to Craft them

19

Now they want Reginald to undo some of his own work. Their people

couldn’t figure out how to decrypt these key parts of the code. Reginald

must give them these backdoors at any cost. These people are very

adamant about it. Thing is, this Faction is not on the people’s side. Reginald

is told to wait for a call. It’ll be Raine, he spoke with her on the train. Stay

put and god save the Queen, Mr. Honeybun says and disappears into the

night. “Don’t lose the phone. It’s the only one they can’t eavesdrop on,”

Mr. Honeybun informs Reginald. Our befuddled protagonist stays behind

on the park bench, digesting everything he was just told.

 10. Apotheosis (Becoming Divine)

not necessarily having anything to do with divinity or magic,
apotheosis refers to the stage where the protagonist achieves greater
wisdom and/or resources, making the rest of the journey safer.

Only a mere minute or so later, the old mobile phone rings. “Raine?”

Reginald utters, answering the call. “You met with Honeybun. Good. Yes,

it’s me, Raine,” a female voice explains. She tells Reginald he must ditch

the phone as its being tracked by “them”: its signal encryption will be

compromised shortly. Raine also tells him if the “overalls man” finds him

now, it’s not just over for him: the entirety of Britain and later the rest of

Europe are in jeopardy.

Reginald is given a new set of coordinates and told he’s guaranteed

complete safety in this new location. The Faction can’t ever find him there.

Reginald drops the phone and embarks on the trip right away. A rather

complicated 3-day journey on trains, ferries, and fishing boats eventually

take him to Bouvet Island, Norway, the most remote island on the planet.

A human figure welcomes Reginald as he makes landfall in a blizzard.

Taking off his goggles, the host become recognizable: it’s Mervyn Popplewell,

Reginald’s supposedly dead former colleague. He shakes Reginald’s gloved

hand and says “Welcome to Bouvet Island, or limbo as I call it!”

Chapter 1 StorieS and how to Craft them

20

 11. The Ultimate Boon (Reaching the Quest’s Goal)

at this stage the protagonist reaches his or her goal, which may be
the acquisition of a special item or the completion of a specific task.
however, the story doesn’t end here: he or she still needs to get back
safely to the ordinary world.

After being escorted into a four-room underground bunker structure,

Mervyn informs Reginald he had to disappear from the world to be able

to complete his task, which he did. True government assigned him with

the duty of coming up with the means of fighting the Faction one on one.

“See, they’re not exactly human,” Mervyn says and continues, “They’re

semi-autonomous beings made from artificial flesh, controlled by other

beings – from a different galaxy.” Reginald finds it hard to believe, but

humors his resurrected former colleague anyway, who goes on to say:

“Faction members would pass any medical you and I would. They’re

indistinguishable from human beings with two exceptions: first, they

are completely impervious to heat and fire. Second, they don’t need to

breathe. They simply don’t need oxygen to function.”

Reginald is briefed he has a different, equally important task. He must

make sure the Faction never gets the backdoors they want in August,

the Britain-wide firewall-to-be. If they get them, they can infuse pretty

much every electronic device with malicious code that will render the

entire country vulnerable for manipulation and attack, shutting down

communications and wiping out or modifying crucial databases. This

attack is to take place almost immediately after the electronic takeover,

within 5–10 minutes to be exact. After that the Faction would move on to

other parts of Europe and finally the rest of the world.

As long as Reginald is on Bouvet Island, he’s unreachable by any

hostile forces. They don’t apparently have a plan B, according to British

intelligence. “You’re here to make August invulnerable. You must make

Chapter 1 StorieS and how to Craft them

21

modifications so after implementing them, not even you can undo them,”

Mervyn explains and continues, “You do have the pink DVD, don’t you?” to

which Reginald responds by taking the disc out of his briefcase. It contains

instructions how to create said modifications and also perfect plausible

deniability, a fail-safe system should August fall in the wrong hands. The

disc is classified far beyond “top secret.” To think it was kept under an

office plant, Reginald wonders. “Alright, let’s get to work,” Mervyn says,

“It shouldn’t take more than a couple of weeks. And remember, if you tell

anyone, well, make sure you don’t. Your country depends on it.”

In its current state, August is the biggest liability to world peace there

is. After all he’s been through, Reginald complies and starts studying the

techniques immediately the very same night. Astoundingly, he completes

the task by the next morning. August is no longer modifiable by anyone,

not even Reginald. All future backdoors have been made impossible to

implement and Reginald now knows how to create complete plausible

deniability even if captured (and tortured) by enemy agents. He is about

to submit the modifications to the firewall to the State Department from

Mervyn’s beat-up laptop computer with the slowest Internet connection

he’s ever experienced. It’s the northern lights, Mervyn explains. Ionic

activity slows down online business over here. Finally, Reginald presses

“Send.” Well done, Mervyn says. “August is carved in stone now, mate,” he

says while putting the pink DVD through a top-of-the-range shredding

machine, turning it into nothing but a pile of dust.

 Act III: Return
 12. Refusal of the Return

after all the adventures a protagonist has experienced, getting back
to the ordinary world may not be so appealing. the 12th stage deals
with this crisis.

Chapter 1 StorieS and how to Craft them

22

After a mere 2 days in the bunker, it begins to feel a second home to

Reginald. The outside world is dangerous, unpredictable. Food delivery

is provided weekly to the island by the British government, including

items like caviar, avocado with shrimp, and Belgian waffles. Reginald has

completed his task, going well beyond the call of duty as a mere cyber

security expert. A solitary man, he simply has nothing to go back to.

On the third day in the bunker, after filling in the blanks of their personal

lives, Mervyn tells he’s going back to England. A ferry is to pick him up some

hours later. After that he’ll work undercover for the government, dealing

with the Faction whenever one of their agents may appear. “They’re fairly

easy to spot, especially during the summer months,” Mervyn quips. “You’re

free to stay behind, but are you sure you wouldn’t want to come along?”

Mervyn presents one last time. Reginald declines politely. The time comes

for the two to depart. The former colleagues and current special agents

shake hands in the cold Norwegian winds. Mervyn disappears behind the

horizon and Reginald goes back to his new home, the four-room bunker.

The government has promised to install the latest and greatest

electronics to their base in Bouvet Island. Reginald feels resigned, but

content. He made a difference in the world, after all. Although completely

isolated, Reginald doesn’t miss anyone or anything. This freezing limbo,

as Mervyn called it, is a little arctic paradise. Reginald looks up to the sky.

Bright blue and green northern lights brighten up the skies. He’d forgotten

such a sight existed anywhere on the planet. Reginald is at peace. He’s

found home.

 13. The Magical Flight

not usually taken literally, the magical flight refers to the troubles
that await your protagonist as he or she flees from the extraordinary
world. typically it’s a fight or flight situation, a tough one, where the
hero must muster all available strength to survive.

Chapter 1 StorieS and how to Craft them

23

During his third day on the island, Reginald is startled by a noise. At

first it seemed to be coming somewhere inside the bunker, but it soon

became clear it’s originating from the surrounding sea. Reginald can’t

pinpoint its exact location, but it seems to be getting louder. He hurriedly

puts on his winter kit and goes outside to investigate. Reginald pinpoints

the source of the noise and associates it with a small orange dot in the

horizon. It’s obviously a boat of some sorts, slowly making its way toward

Bouvet Island, which was supposed to be the safest location on Earth for

Reginald and friends. If the craft’s crew is hostile, clearly the perimeter

has been breached.

Reginald flounders back to the bunker, locking up the doors carefully.

There don’t seem to be any tools for self-defense in it. The noise outside

is getting stronger. Reginald remembers what Raine told him: members of

Faction are impervious to heat. Perhaps they’re unusually sensitive to cold.

Reginald searches the entire bunker for any cutting tools. Apart from a few

dull dining knives, he comes up short. Outside, the orange dot has turned

into some kind of amphibious craft, gliding over the icy sea with ease.

The craft makes contact with terra firma, then parking itself some

hundred yards from the bunker. Reginald can do little else but observe

through the fortified bunker windows. After a few minutes of nothing but

howling wind, a somewhat petite female form leaves the craft and strolls

toward Reginald’s residence. She wears thick black rimmed glasses and a

dark blue winter jacket. There’s a knock on the entrance. “Reginald, it’s me,

Raine,” she informs and continues, “We must leave now.”

Reginald hesitantly opens the bunker door and steps outside. Raine

offers him a firm handshake and tells him there’s no time to explain.

“If you choose to stay, you may have a hard time fending them off,” she

says. Apparently the Faction boys have made landfall, too. Reginald and

Raine hurry over to the hovercraft, manned by two other agents of the

British government. There’s no sight of any antagonists yet. Now aboard

the craft and scurrying across the waves, Reginald and Raine notice a

second hovercraft emerging from the mist. “It’s them,” Raine tells Reginald.

Chapter 1 StorieS and how to Craft them

24

The black Faction craft is soon on the starboard side of Raine and Reginald

with more than a dozen of their stocky troopers aboard, wearing thick

layers of arctic clothing and military boots. Their black hovercraft mirrors

the course of that of Raine’s and soon begins to dash against it. Several of

the agents pounce and hold on to Raine’s craft, a few even managing to

climb aboard. She yells to Reginald: “Kick them off!” They start stomping

onto the antagonist agents slowing them down. However, none of them fall

to the icy water, instead making their way on to deck of Raine’s hovercraft.

She and Reginald back off inside the craft canopy as it gets overrun.

“We’re losing her!” the captain of the vessel says as the heavily

reinforced cabin door begins to come off its hinges. The antagonists clearly

possess extraordinary strength. “Where are your guns?” Reginald yells

in desperation. Raine tells they aren’t issued any. They wouldn’t do any

good if they did. “Get knives and stabbing weapons! Tear off their uniforms

and expose them to the cold! Open all hatches!” Raine orders the crew.

Reginald, along with one of the crew members, scrambles to find any self-

defense tools inside the hovercraft storage spaces. At that very moment,

the cabin door falls to the floor. At least half a dozen antagonists are about

to storm in.

 14. Rescue from Without

often the stresses of a grand adventure take their toll on even the
most heroic of protagonists. in the 14th stage, he or she receives
assistance from a powerful ally.

At the exact moment the cabin is rushed by Faction forces, a new sharp

noise is introduced into the already intense cacophony. A stream of

water begins to flood the hovercraft cabin from the skies. It’s much more

intense than sea spray or rain. Reginald identifies the emerging sound

as a helicopter. “It’s Roy,” Raine yells and continues, “It has to be him!”

The antagonists begin to retreat and leap back onto their vessel. One of

Chapter 1 StorieS and how to Craft them

25

them is seen tearing off his winter uniform, making wretched noises while

being pulled inside the antagonist craft by the others. A few of the Faction

troopers fall into the ocean. Noticing this, Raine says: “Don’t worry Reg.

They can’t swim but they don’t need air to breathe. Just a longer walk

home for those two!” The hostile craft breaks off its course and heads off

somewhere beyond the horizon.

Now free of imminent threats, the helicopter hovers low, and it is

indeed Royston Honeybun at the helm. He waves toward a specific

direction. The captain of the hovercraft nods, and they both begin

advancing toward this destination. “I believe Roy just flushed out all of the

dirt,” Raine says. Royston’s voice starts crackling from the vessel’s radio:

“Not bad for an old office geek, eh? Follow me.” The hovercraft makes

landfall somewhere in the coast of Norway. An unremarkable car awaits

Reginald, Raine, and Royston. “There’s a private jet waiting for us at Oslo

Airport. Let’s get going,” Royston says, opening a passenger door.

After a long drive, the three enter the airport through an unusual

route, far from where any typical passengers would be entering the area.

A rather run-down jet awaits the group on a runway. Immediately after our

protagonists are done settling in their seats, the plane begins its takeoff.

“You may have not had the time to read the news,” Royston says, offering

Reginald a tablet computer. A headline startles him: “Buckingham Palace

and Number Ten on lockdown.” In an act of desperation and true to

their nature, Faction has decided to put Britain in a chokehold by taking

over the two main government bodies. “Their demands? The full source

code to August. And you with it, Reginald,” Royston explains. “They have

guaranteed you safety and we believe them. But only to an extent,” Royston

continues.

The team arrives in London after another long drive, this time from

Heathrow. “We have snipers all over the place,” Royston says. “Although

set back, the Faction isn’t powerless yet. And whatever happens, they have

their patsies ready for the media to blame it all on.” “And Her Majesty?”

Reginald asks and is told she and the rest of the Royal Family have been

Chapter 1 StorieS and how to Craft them

26

taken into a safe environment. However, the prime minister is still missing.

The public will be kept unaware of this fact for obvious reasons.

Reginald is told he needs to go the meeting area alone and reminded

of the numerous SAS snipers in the area. The Faction managed to enter

Buckingham Palace which has its surrounding areas sealed off from

the public for now. “One more thing,” Raine says. “We have numerous

reports of masses of varying sizes becoming dislodged in the bottom of

Windermere, Llyn Tegid, and Loch Ness. This probably has something to

do with the proceedings at hand. I thought you’d like to know, Reginald.”

“Your opponents number in the tens of thousands, Reggy boy,”

Royston says and continues, “But we still have upper hand, believe it or

not. We still got you. Good luck!” Reginald begins his stroll toward the

main entrance of Buckingham Palace. “Wait!” Raine yells, “I’ll join you.”

 15. The Crossing of the Return Threshold

this stage deals with the challenges related to the integration of new
skills and wisdom in the ordinary world. it may or may not include a
duel with a powerful opponent with the protagonist using all his or
her newly gained powers to their very fullest.

A duo of Faction operatives open the doors to Buckingham Palace. Raine

and Reginald are kept a careful eye on as they enter the premises after

being searched for weapons of any kind. Inside, an absolute silence makes

every footstep sound like a hundred decibels. Our friends are escorted into

the Throne Room, where two familiar faces await them: it’s Claire from

the train and her bodyguard, the overalls man. “Welcome to the palace,

friends,” Claire says, “Would you like some refreshments?” Reginald

declines her offer. “Very well, we’re all on a tight schedule I believe,” she

responds coldly and waves them to take seats opposite to her.

Raine and Reginald take their seats under the stern, cold eyes of the

overalls man. Claire informs them the Faction still wants the code for the

Chapter 1 StorieS and how to Craft them

27

backdoor to August. It would take approximately seven decades using

current government devices to access that part of the firewall. The Faction

could decrypt it with their technology so that after a year or two they

would have full access. But time is of the essence for them. “As it is for

you as well, my friends,” Claire says and continues, “Failure to do so will

result in two things: the execution of your prime minister and a massive

electromagnetic pulse which will cripple not only your capital city, but the

entirety of your country.”

The overalls man gives Reginald a tablet computer. “Do the right thing,

Reginald darling,” Claire says, joining him behind the tablet. Reginald

inserts the key codes necessary to access August the firewall. He activates

the system with all of the requested backdoors open – or so it seems. “Very

good, Mr. Pennelegion,” Claire says with a smile, grabbing the tablet from

Reginald and handing it over to the overalls man.

The Faction shouldn’t notice anything until about 5–10 minutes in. For

all intents and purposes, their plan is at work. “You’re staying with us until

we have confirmation. It shouldn’t take more than, say, 5–10 minutes. After

that, you’ll get the coordinates to your precious prime minister and you’re

free to leave,” Claire informs. The overalls man keeps his eyes on the tablet,

paying no mind to any other proceedings at hand.

Time passes slowly with Claire eyeing Reginald and Raine. Eventually,

the overalls man nods to Claire who in turn seems to become more at ease.

“Excellent. We have a deal. The coordinates are now being transferred

into your tablet,” she says and continues, “You’re free to leave.” Reginald

leaves the Throne Room with Raine under the watchful eyes of the Faction

troopers, now lining up the corridors en masse. Walking slowly toward the

front doors, Raine notices something in the corner of her eye: one of the

guards is having difficulty maintaining his balance. Soon, a few more seem

to lose composure and stagger. The air turns freezing cold. Raine whispers

to Reginald: “Do you feel that? That’s our cue to run.” A few remaining

guards attempt to go after our duo, but instead fall flat on the floor. Now

outside, shots are fired. It’s the government snipers at work. “We fumigated

Chapter 1 StorieS and how to Craft them

28

the palace air conditioning with our special blend: iodine and liquid

nitrogen mist. Their Achilles’s heel, Reg,” Raine says and adds, “An SAS

team is on its way to get our prime minister. We expect him back in less

than an hour.”

 16. Master of Two Worlds

at this stage the protagonist becomes comfortable with both the
ordinary world and the extraordinary one, being no longer puzzled
by the unusual events that just unfolded. a sense of calm confidence
awakens in the hero/heroine.

Told to take a few days off, Reginald manages to enter his home without

any hassle. Gone are the strange sounds and uninvited guests. He was

briefed 90% of at-large Faction troops have been defeated. The remaining

10% is heading back to their abode in the deepest depths of the lakes and

oceans. August the firewall is fully functional and running without any

backdoors.

Reginald inspects the ancient mobile phone he once used. He feels

an odd attachment to it and the mystery it once held. Reginald was also

briefed this wasn’t the last attempt of invasion by Faction. It wasn’t even

the first. They surface once every 20 years or so, getting progressively more

and more furious in their plans for world domination.

 17. Freedom to Live

Basically, at the last stage the protagonist comes to full terms with
mortality. he or she isn’t troubled by past mistakes or future threats,
instead choosing to live in the present moment only. a fearlessness
sets in.

Chapter 1 StorieS and how to Craft them

29

Returning to work, Reginald is greeted by renovators working on the

fire-damaged office. New computers and desks have already been

carried in. As per his usual daily tasks, he supervises the operation of

August, and all logs appear to show only everyday Internet activities.

Suddenly Royston shows up. It’s his last day at work and then it’s off to

start living those pensioner’s golden years. He asks our protagonist: “Reg,

old friend, how would you like to work in tech support?” Being startled by

the suggestion of a more menial position, Reginald reads between the lines

and agrees to move his post. Before moving on to a more secluded part

of the building, he takes one last look at the ancient mobile phone before

storing it in a very special filing cabinet, ready for use.

The End
The synopsis for Taking Back August is but one example on how to

use the monomyth outlined by Joseph Campbell. Again, several works in

popular culture, including video games, have incorporated this approach

successfully to entice and excite the masses. While not a necessary tool

by any means, perhaps the structure of the monomyth triggers something

primordial in all of us, like it did for the ancient Greeks and Romans.

 The 12 Character Archetypes
The founder of analytical psychology, Carl Jung (1875–1961), inspired

Joseph Campbell and popularized the notion that there have been

basically 12 archetypes of characters present in storytelling ever since the

dawn of time. These archetypes have appeared in Aristotle’s peers’ work,

Shakespeare’s plays, and they continue to thrive in modern video games.

Understanding and consciously using archetypes helps you get a hold on

the dramatic arcs in your visual novels. They simply make your story more

relatable.

Consistency is important in any work of drama, including interactive

fiction. A character who fluctuates irrationally between different

Chapter 1 StorieS and how to Craft them

30

approaches and archetypes is annoying at best. Interesting characters

usually have traits from several different archetypes, but a single core

function. Although some form of transformation may take place within

a character’s psyche, especially in the case of the leading hero, the core

identity rarely changes.

All archetypes have a positive and a negative variety. There’s the

hero, a brave individual with sound morals. Then there’s the anti-hero, a

flawed person who barely manages to complete his or her adventures in a

satisfactory manner, possibly wrecking quite a few lives in the process.

 1. The Hero
The hero is the main protagonist in any saga. He or she faces often

seemingly unsurmountable challenges, embarks on a fantastic journey,

experiences loss, and returns to his or her tribe a wiser person.

Examples: Arthur Dent from The Hitchhiker’s Guide

to the Galaxy by Infocom, Phoenix Wright from

Phoenix Wright: Ace Attorney by Capcom, Reginald

Pennelegion from Taking Back August by Robert

Ciesla, and Luke Skywalker from Star Wars

 2. John/Jane Doe
He or she is the average citizen who just wants to belong. Not a risk-

taker, he or she plays it safe most of the time. A relatable, but sometimes

unremarkable, individual who goes with the flow and may be used to

embody apathy and collectivism.

Examples: The Woodcutter and his wife in King’s

Quest: A Quest for the Throne by Activision and

Uncle Owen and Aunt Beru from Star Wars

Chapter 1 StorieS and how to Craft them

31

 3. The Rebel
Whether cast in an antagonist’s or a good guy’s role, the rebel makes his

own rules. He can be destructive if his demands aren’t met. The rebel is

prepared to go to any length to attain the goals at hand. He is tempted and

often succumbs to the dark side of morality.

Examples: Miles Edgeworth from Phoenix Wright:

Ace Attorney by Capcom and Han Solo from Star

Wars

 4. The Joker
The joker is often a somewhat passive character, not contributing that

much to the most dramatic parts of the story. His or her mission is rather to

provide levity and elevate the mood of both the protagonist and the reader

amidst turbulent times.

Examples: Zaphod Beeblebrox from The Hitchhiker’s

Guide to the Galaxy by Infocom, Kano Kirishima

from Air by Key, Jack Dalton from MacGyver, and

Krusty the Clown from The Simpsons

 5. The Ruler
A ruler can be either benevolent or a tyrant. He or she is usually the main

villain or the gray eminence in works of drama, working behind the scenes

and manipulating others.

Examples: The Wizard of Frobozz from Zork II by

Infocom, Vogon Jeltz from The Hitchhiker’s Guide

to the Galaxy by Infocom, and Dick Jones from

Robocop

Chapter 1 StorieS and how to Craft them

32

 6. The Sage
A sage is the wise old person present in many sagas. He or she has a

hunger for the truth and can offer words of wisdom to the protagonist at a

time of need. Sages value knowledge over most other things in life, often

leading a life of solitude reading or writing books.

Examples: Ochimusha Master from _Summer

by Hooksoft, Mishio Amano from Kanon by Key,

Royston Honeybun from Taking Back August by

Robert Ciesla, and Lisa Simpson from The Simpsons

 7. The Magician
An archetype similar to the sage, a magician is different in his or her

approach to knowledge. Instead of merely learning theory, the magician is

keen to apply it. He or she wants to understand and transform the world.

In their negative pole, magicians can be very destructive. A magician’s

hunger for power can turn out to be his or her downfall.

Examples: The Dungeon Master from Zork III by

Infocom, Krill from Enchanter by Infocom, and

Dr. Emmett “Doc” Brown from Back to the Future

 8. The Creator
Often an innovative scientist or a prolific artist, a creator has a one-track

mind for his or her craft. Creators are committed and often borderline

fanatic about their interest, whether it be art or some branch of science.

Example: Dr. Roach from Fish! by Magnetic Scrolls,

Dr. Abraham Perelman from A Mind Forever

Voyaging by Infocom, and Dr. Noonian Soong from

Star Trek: The Next Generation

Chapter 1 StorieS and how to Craft them

33

 9. The Lover
Usually the main love interest of the hero, a lover is there to provide

more or less unconditional emotional support. Not limited to a romantic

capacity, this archetype is generally interested in maintaining peace and

harmony between all, whenever possible.

Examples: Trillian from The Hitchhiker’s Guide

to the Galaxy by Infocom, Wakana Shimazu from

_Summer by Hooksoft, Raine from Taking Back

August by Robert Ciesla, and Juliet from Romeo and

Juliet by Shakespeare

 10. The Innocent One
Providing support and a moral compass, the innocent ones can be gullible,

but come with a heart of gold. Probably the most selfless of all archetypes,

an innocent one may go so far as to self-sacrifice for a greater cause.

Examples: Floyd the robot in Planetfall by Infocom,

Hyun-ae an artificial intelligence from Analogue: A

Hate Story by Christine Love, and Rebecca “Newt”

Jorden from Aliens

 11. The Explorer
Explorers are on a lifelong quest for independence. They strive to be

self-sufficient and adventurous, getting bored easily. Explorers gave us

new continents and planets to colonize. Their drive for expansion of our

awareness benefits us all. However, they might find themselves, and their

companions, in dire situations due to their recklessness.

Chapter 1 StorieS and how to Craft them

34

Examples: Ford Prefect from The Hitchhiker’s Guide

to the Galaxy by Infocom, Mervyn Popplewell from

Taking Back August by Robert Ciesla, and Indiana

Jones from Indiana Jones

 12. The Healer
Empathetic and altruistic, healers express themselves by helping others.

They get pleasure in their ability to mend hearts and fix things. However,

healers are known to enable negative behaviors in others as their highest

priority is to alleviate suffering. As a result, some healers may become

bitter if they find out they have been used one time too many.

Examples: Yumemi Hoshino from Planetarian:

The Reverie of a Little Planet by Key and Dr. Frasier

Crane from Cheers and Frasier

 Ten Visual Novel Good Practices
Although this book offers a comprehensive look at various types of text-

based games, the star of the show (and the financially most viable option

in 2019 and beyond) is the modern-era visual novel. Writing in this genre

benefits from certain practices that have provided useful for presenting

visual novels over the decades. We’ll now take a look at some of these most

crucial writing techniques. Of course, you’re free to use these tips only to

the extent you desire.

 1. Put the Story First
As previously stated in this chapter, a good synopsis is a great idea before

embarking on any technical matters when it comes to the visual novel.

It’s a roadmap that aids you (or your team) in creating a consistent piece

Chapter 1 StorieS and how to Craft them

35

of interactive art. It pays to work your way through tutorials at first, yes,

but resist the temptation to jump right in when it comes to your first

serious project.

 2. Choose the Engine Carefully
The game-making scene in 2019 is vibrant and full of great products, all

more or less in direct competition with one another. Naturally, many of

them are genre-specific, and as the title of this book so boldly reveals,

some are catered for the visual novel enthusiasts. However, not all game

engines may be suitable for your skill level, project, or the way you prefer to

work. Study these engines before starting work on your visual novel: what

does it offer? Is it what your game works best with?

In this era of game-making tools, it’s mostly unnecessary to invest time

in getting to know the inner workings of a general-purpose programming

language, such as C++, if your goal is to produce a visual novel. However,

a working knowledge on the basics of programming can’t hurt and are

actually beneficial regardless of the tools you decide to use.

 3. Don’t Overlook the Audiovisuals
Character graphics, backgrounds, and music are very important

atmosphere builders in visual novels, too. Put focus on them. If you’re

unsure of your own ability to create commercially viable audiovisual

assets, hire and/or befriend someone who isn’t. It’s better to have no

visuals than amateurish or stock library graphics. Musical cues, too,

enhance your game and can signal important events to the players.

Be careful with recording your own voice acting. If it’s done poorly, it

will reflect very badly on the rest of your game, no matter how great it is in

other departments. It’s best to use professional voice actors or none at all

in your visual novels.

Chapter 1 StorieS and how to Craft them

36

And although they may seem superfluous, special effects such as

transitions can add that extra layer of polish to your products. Don’t overdo

them, but consider experimenting with every technique your chosen game

engine provides to fade-in and fade-out and add glitter to your games.

 4. Make Your Characters Grow
Change is generally considered fascinating in any variety of drama. A

protagonist or other character who starts off as a, say, timid high school

nerd and at the end of the game is still a timid high school nerd may not

excite your potential customers much. The most relevant characters in

your story should have an arc comprising taking on challenges and gaining

wisdom in the process. Give your characters goals, challenges, and rewards.

 5. Honor the Sub-genre of Your Visual Novel
Players usually have certain expectations when they’re choosing to play

a specific visual novel. This can range from expecting erotic content if the

title of a game suggests it to maintaining the key elements of a dating sim

throughout a game. Sudden genre skipping may frustrate gamers to the

point of not wanting to spend time on your products anymore. Decide

early on what the genre of your visual novel is, and commit to it. You can

experiment with other genres later on in your career, after all.

 6. Use Clichés Wisely
Most of the creativity in the game industry is in the visual novel. However,

in an era of thousands of visual novels for all major platforms, clichés

spread fast and only get you so far. There’s very little market for yet another

time loop (i.e., the movie Groundhog Day) or a sickly girl scenario – unless

you manage to be exceptionally gifted in its making.

Chapter 1 StorieS and how to Craft them

37

Being unique in your premises, characters, and approaches gets you

noticed, especially if you’re trying to break into the market. Think Doki Doki

Literature Club! by Team Salvato with its sinister inner workings (completely

in contrast with the cute characters) or Open Sorcery by Open Sorcery

Games which so eloquently conveys the inner world of a firewall program.

Then again, certain types of visual novels thrive on well-worn tropes

and clichés. They are to be expected in dating sims, for one; it may be hard

to imagine one without love meters and/or a limited in-game time frame

to work with. These and many other tropes will be looked into in detail in

Chapter 3 of this book.

 7. Trim Unnecessary Elements
Don’t bring in a pizza delivery guy unless he has a more profound meaning

than providing your protagonists with low-grade sustenance. Maybe he’s

an awkward ex of your protagonist? Maybe “he did it”? Who knows, but

everything and everybody should have actual meaning within the confines

of your game’s universe. Don’t include superfluous items or settings either.

They only confuse and frustrate your audience.

Chekhov’s Gun is a classic dramatic principle which states that all

elements included in a story must be necessary to it. The principle takes

its name from Anton Chekhov (1860–1904), a Russian playwright who

popularized the concept. First used in traditional stagecraft, it applies

perfectly to visual novels as well.

 8. Bond with Your Audience
You may or may not choose an exotic locale for your game, such as a space

station, an alternate dimension, or a universe where vegan hamburgers

eat people. That’s all well and good, but no matter how otherworldly your

games get, you should strive to focus on a degree of relatability in your

characters and their challenges.

Chapter 1 StorieS and how to Craft them

38

Psychedelia is fun, but excessive tripping doesn’t usually work in a

video game context. Common human goals and motivations include

acceptance, vengeance, healing, forgiveness, self-discovery, and sharing.

Incorporate some of those in your characters to guarantee at least a degree

of bonding with your audience. The goal of “eating a human” while being a

vegan hamburger in and of itself may not be enough to achieve rapport.

 9. Only Provide the Endings Your Story Needs
Visual novels are known for their multiple endings. And that’s all well and

good. These do provide longevity and replayability, after all. Of course,

you may be interested in creating a game with exactly one ending, that

is, a linear visual novel, such as most titles in the popular Ace Attorney

franchise. But in most cases, instead of focusing on the amount of endings,

spend your time on their quality. A couple of startling, dramatic endings is

better than a dozen strange and out-of-place ones.

 10. Indulge in Forced Reading Sparingly
Forced reading refers to unskippable dialogue. It can create suspense

and enhance the dramatic proceedings – if done sparingly. It can be a

frustrating experience for your customers if done to an unnecessary extent.

Most text should be skippable in a visual novel. At the very least, make sure

you allow for personalized adjustments on how promptly the text appears

onscreen – most tools, such as Ren’Py, have that functionality built in.

Forced reading may work best during the final stages of your adventure or

during exceptionally dramatic scenes.

Chapter 1 StorieS and how to Craft them

39

 Working for the Visual Novel Industry
The writing creates the novel, visual or traditional. But usually there’s more

to it than that. Whether you’re working as a solitary developer or a part of a

team, it’s important to understand all of the fields involved in the genre of

visual novel and how they relate to the role of the writer.

Also, the more skills you acquire as a developer, the more valuable

you become to any industry as a whole. Although many visual novels are

indeed creations of the one-person “team,” there are many opportunities

in an industry of great size. You may not have to create a single visual novel

from top to bottom to become an asset to this business.

Now we’ll take a closer look at some of the specific fields within the

visual novel industry and how the art of writing applies to them.

 Visuals and Animation
Although visuals don’t make the visual novel, they are obviously an

important factor in whether a game is a success or not (see Figure 1-5).

In this genre, graphical assets can be divided roughly into backgrounds

and characters (also referred to as character sprites). Often the neglected

asset, background graphics can enhance a game’s atmosphere. They can

be either photographic, drawings-based, computer generated, or any

combination of these.

Chapter 1 StorieS and how to Craft them

40

Character sprites are often the stars of a visual novel. They need to

be expressive enough to convey many degrees of emotion and lure the

player into the game’s universe. In rare cases, a contrast between chirpy

audiovisuals and some dark writing creates a shock effect, as is the case

with the 2017 hit game Doki Doki Literature Club! (see Chapter 3). Most

of the time, however, the style in which the visuals are created should

embody the spirit of the writing for maximum emotional impact. If you

have outsourced the production of your game’s visuals, you should have

as many meetings as are needed to hone in on the exact look you feel your

game needs to succeed.

Developers, especially at the earlier stages of their careers, are pretty

much starved for high-quality character graphics. They can make or break

a game, after all, regardless of the writing. Having talent as a visual artist in

any medium offers many opportunities to get your foot in the door.

Figure 1-5. SC2VN by Team Eleven features both impressive
characters and backgrounds

Chapter 1 StorieS and how to Craft them

41

 Audio Production and Voice Acting
Ever since CD-based storage became mainstream in the mid-1990s, visual

novels have been known to extensively incorporate speech. A writer

choosing to use voice acting in his or her games must know exactly all the

abilities and limitations the voice acting cast possesses. After the initial

meetings, get to know the people behind the voices as well as you can.

While no truly convincing music generator software exists as of 2019,

licensing options are plentiful. There’s several services offering game

soundtracks for free or for a nominal fee. Also, some creators of visual

novels have either an in-house composer or are themselves semi-pro

musicians. All this means making it solely as a composer in the world of

visual novels can be tricky.

 Programming
The coding aspect of making a visual novel is often enmeshed with the

writing progress. However, when working in a team setting with multiple

programmers, it is often a good idea to discuss the matter of proofreading.

Some coders are fine with assessing the fluency of your writing while

working as a coder. Often the programmers work ahead of schedule

(unlike writers, whose level of inspiration can be unpredictable) making

them agreeable to this extra task, if only to pass the time.

As mentioned previously in this book, extensive knowledge of

traditional, general-purpose programming languages is no longer a

prerequisite for creating visual novels. The main programming tool

presented in this book, Ren’Py, is a specialized language for the specific

purpose of creating games in the genre. Other tools specific for this type of

software exist, too, as we’ll see later in this book.

Chapter 1 StorieS and how to Craft them

42

 Testing
No game can be complete without a proper testing phase. It aims to create

an enjoyable, bug-free product, but may have little to offer when it comes

to refining the dramatic turns in visual novels – apart from the process

of proofreading. No matter how intimately a writer/developer knows his

or her game, there’s unfortunately always room for typos and/or poor

grammar.

Even if you can cope with all the other necessary areas of visual novel

development, always have someone else proofread the entirety of your

manuscript before release. As previously stated, this person may be either

a programmer or an individual specializing fully in proofreading.

 Localization
Localization is the process of introducing a video game (or other product)

for sale in a new region. It includes not only the translation of literary

assets but also the implementation of new audio, packaging, manuals, and

making sure the product takes potential cultural sensitivities into account.

Some regions, such as the German and Chinese markets, are known to be

particularly sensitive to specific cultural references.

No longer limited to the Asian markets, visual novels are increasingly

released in numerous languages. In fact, localization has been in demand

since the early days of text-heavy video games; dozens of titles have been

translated from, for example, Japanese to English by fans of these games.

In the field of translation work, a university degree isn’t necessarily a

prerequisite, but a solid command of two or more living (and popular)

languages obviously is.

While not perhaps as media sexy as coding or audiovisual work,

localization is nonetheless an important emerging field in the business of

visual novels. Out of all the fields presented in this section, the person or

team responsible for the localization needs to be most intimately aware of

Chapter 1 StorieS and how to Craft them

43

the writing and the original writer’s intent. Crucial plot developments can

be changed or lost completely in translation. Explain the exact meanings

in your dialogue to your localization team as thoroughly as you can. After

any stretch of the work is done, consult a native speaker in the localized

language to make sure your translated story is as authentic to the original

as possible.

 Musings on Inspiration
Finding inspiration for your work as a writer is relatively easy: live your life.

Life is guaranteed to give you every piece of inspiration you need, whatever

your external circumstances may be. The difficulty is often in choosing to

share your most intense experiences. It’s mostly these moments that give

your products substance.

Writing a successful visual novel needs emotional intensity. Don’t

hesitate to share your troubles and victories. Shape them into a more

alluring package, if you will. Change settings to something completely

exotic and far removed from your Earthly dwellings. Leave names out

or change them, but be honest with your past experiences. Perhaps

paradoxically, the more personal you get with your writing, the more

relatable and cathartic it is for the public at large. The themes that are

recurring and/or important to you are important to others, too. People

appreciate those who are forward with sharing genuine emotion, as it is a

rarity in modern society where mostly vapid entertainment prevails. Visual

novels, on the other hand, are an intimate art form. They thrive from a

creative environment where emphasis is on emotion and not some passing

fad. Like classical literature, visual novels have a potentially timeless

quality about them. The same can only be grudgingly said about most first-

person shooter games, which may simply serve to document the violent

tendencies our current civilization seems to glorify.

Chapter 1 StorieS and how to Craft them

44

Reading in general is recommended for any writer. Not in the sense of

plagiarizing others, but rather to expand one’s mental horizons. You can

gain new refreshing perspectives from the work of other writers you share

values with, and even from those you don’t. And while your fellow authors

are probably a solitary (or cliquish) bunch, try to network with them.

You may also wish to experiment with more exotic sources for

inspiration. Jot down your dreams every morning. Dig up old photographs,

either those documenting your life or perhaps those taken at some

historical event, available online or from thrift stores. Listen to new genres

of music you haven’t previously experienced. There’s also thousands of

free visual novels for you to download and play: give them a shot. Do one

or all of these things; you never know what synapses get activated in your

brain leading to sudden surges in writing acumen.

Try just observing the world around you. Use all of your senses to

register what goes on around you. Even the most mundane events can

spark inspiration. Try breaking any routines you’ve come to expect, even

when it comes to the smaller things: ride different public transportation on

your way to A to B. Ask yourself questions and let your writing answer them

without any self-censorship. Revisit old meaningful locales if you still can.

As mentioned earlier in this book, a strong synopsis is the best way to

go for most developers working on visual novels. It is the ground on which

you build the rest of the product. However, remind yourself to only work on

stories that inspire you. You have no obligation to complete a boring story,

unless you’re specifically paid for one. If you change your mind halfway

into the synopsis, start from scratch with a new theme or setting.

 Fighting the Writer’s Block
No writer fully expects the dreaded writer’s block. Yet somehow it always

sneaks into the proceedings, especially with those looming deadlines

staring one right in the eye. Writer’s block is a serious, but treatable

Chapter 1 StorieS and how to Craft them

45

disease. It’s caused by two major pathogens: worry and perfectionism.

Luckily, this disease can be treated with some tried and tested home

remedies.

You can’t force compelling creative writing. When you find inspiration

lacking, the first step is to take a controlled break. Flush out the worry from

your mind by focusing on something completely different. Taking a nice,

long walk outdoors may have you catch a phrase that gives you new ideas to

work with. Meditation, in whatever form you’re happy with, may open doors

to bursts of creativity. Brainstorming online or offline with an interested

and/or experienced party is particularly helpful. Try to keep writing and

editing as two separate tasks. You don’t have to do them simultaneously.

Perfectionism in the field of writing is a dirty word for a reason. Nothing

stifles your creativity more than self-censorship. Don’t inflict it on yourself.

Accept some passages in your writing may turn out to be perfectly mediocre,

and that’s fine. You can, and should, always refine what you just wrote later.

Simple things like proper nutrition and hydration can fuel your creativity.

Many writers are lacking in self-care to some degree. Constantly low blood

sugar levels rarely help. Your body and brain need the natural kind of energy

from fruit and vegetables, especially under stress. It’s generally a good idea

to avoid quick fixes, like soda and refined sugar in any forms.

Don’t underestimate things like chronic stress which can take a

major toll on one’s health. What tends to ensue is insomnia, brain fog,

and cravings for sweets. A lack of stress release may be a factor many

writers suffer from, and it can be tricky to diagnose as it includes a variety

of ills. This or some other medical condition may be behind your lack of

enthusiasm. If you think this is the case, see a doctor. For first aid, consider

your current living habits. Do you exercise? Do you eat healthy foods or is

it mostly potato chips?

Writing is often a solitary activity. Eventually, cabin fever may set in,

along with the previously mentioned nutritious deficiencies and other

challenges. Stay sane and happy by making whatever little progress you

can muster each day and cherishing it. Addictions can either work for

Chapter 1 StorieS and how to Craft them

46

you or against you, but usually it’s the latter. If truly drastic measures are

needed, try reducing your use of social media for frivolous purposes or

delete (some of) it altogether.

Now, if you’re lucky enough to be free of deadlines for the time being

and find yourself uninspired to write, it’s simply time to experience more

of life and refill those reservoirs of inspiration. Believe it or not, but it’s an

automatic process if you give it space. Experiences and ideas compelling to

warrant great visual novels will arise out of everyday interaction. You don’t

have to visit exotic locales for inspiration, although some writers might

benefit from such adventures.

 In Closing
After reading this chapter, you should have a solid understanding on how

to write drama and which elements contribute to interesting writing. You

are aware of the following core concepts and know how to apply them in

your visual novel writing:

• Relevant glossary terms

• The basics of Aristotelian poetics

• The monomyth as presented by Joseph Campbell and

how to use it

• The 12 character archetypes as popularized by Campbell

• Best practices on how to integrate the aforementioned

concepts into your visual novels

• What types of work are available within the industry of

visual novel games

In the next chapter, we’ll cover the rich history of interactive fiction

including some of the most legendary games in the genre throughout the

decades.

Chapter 1 StorieS and how to Craft them

47© Robert Ciesla 2019
R. Ciesla, Game Development with Ren’Py, https://doi.org/10.1007/978-1-4842-4920-8_2

CHAPTER 2

The (Ancient) Art of
Interactive Fiction
The origins of the visual novel can be traced back to the mid-1970s –

some say even the 1960s. Now, the term “interactive fiction” is defined as

software (i.e., a video game) which has text input as its main interactive

component. It’s crucial to know that, historically, interactive fiction has

greatly influenced the modern visual novel. This newer genre in turn is

defined as text-based video games that feature rich audiovisual elements

and, in general, rely on a non-typing-based system of user input.

In this chapter we’ll look at several historical interactive fiction titles

as they are the true roots for the modern visual novel genre. Also, we’ll be

talking about the software they used to create those titles of ancient times.

 The Great Grandfather of the Visual Novel:
ELIZA (1966)
It can be argued ELIZA provided the interface basis for all games to come

in the genre of interactive fiction. A virtual psychiatrist, the program

presented a text-based, interactive artificial intelligence to the user.

Created in MIT during 1964 and 1966 by Joseph Weizenbaum, ELIZA

provided a primitive but sometimes convincing virtual therapist to vent

one’s worries to.

48

First appearing on IBM’s massive 7094 computer, ELIZA has been

ported to dozens of platforms over the years. Some claims have been made

of ELIZA passing the Turing test. This test examines whether an interaction

between a computer and its user is indistinguishable from human-to-

human interaction or not. The Turing test was created in 1950 by Alan

Turing, a gifted scientist and pioneer of computer science.

But ELIZA’s legacy is more than her use of real-time text-based

interaction. The software introduced a concept (i.e., an interactive artificial

intelligence) which is still mostly reserved for graphics-based products

in the context of game design. It is to be noted not many text-based

games feature a convincing artificial intelligence as one’s opponent or

companion, even in 2019. Perhaps one of you, dear fellow programmers,

should focus on this aspect of game design.

 The Grandfather of the Genre: Colossal Cave
Adventure (1975)
The origins of the visual novel can be traced to an era of bell-bottom jeans,

disco, and room-sized mainframe computers. Colossal Cave Adventure

was the first work of interactive fiction, created by Will Crowther, an MIT

alumnus, in 1975. Often referred to as simply Adventure, the game ran

on a gigantic PDP-10 computer and offered, for the time, a revolutionary

interactive experience (see Figure 2-1). The premise was simple: find gold

treasures and escape the cave. Offering 78 map locations and absolutely no

graphics, Adventure pretty much started a video game genre.

Chapter 2 the (anCient) art of interaCtive fiCtion

49

In 1976, Princeton graduate Don Woods got in touch with Crowther

with some suggestions on how to improve Adventure. Crowther found

his ideas worthwhile and gave Woods the green light, who then added a

plethora of exotic creatures and items to the game. This beefed-up version

of Adventure set off an avalanche of interactive fiction as it was converted

to most available home computer systems in the following decade. It has

been featured on numerous magazine listings of “best games of all time.”

 The Early Trailblazers
Of course, text-based games didn’t stop at Adventure. Let’s now take a look

at companies with major historical significance in the development of

interactive fiction, such as Infocom, Magnetic Scrolls, and Level 9. These

and several other development teams released trail-blazing titles over the

decades that influenced the creation of the modern visual novel.

Some of these games can be played online in your favorite browser.

Feel free to experiment with these outstanding titles at your leisure.

 Infocom
The early days of interactive fiction were pretty much a tug-of-war between

two mighty companies: Infocom of the United States and Magnetic Scrolls

from the United Kingdom. Infocom was founded in 1979 by Dave Lebling,

SOMEWHERE NEARBY IS COLOSSAL CAVE, WHERE OTHERS HAVE FOUND FORTUNES IN TREASURE AND GOLD. THOUGH
IT IS RUMORED THAT SOME WHO ENTER ARE NEVER SEEN AGAIN. MAGIC IS SAID TO WORK IN THE CAVE. I
WILL BE YOUR EYES AND HANDS. DIRECT ME WITH COMMANDS OF 1 OR 2 WORDS.

(ERRORS, SUGGESTIONS, COMPLAINTS TO CROWTHER)

(IF STUCK TYPE HELP FOR SOME HINTS)

YOU ARE STANDING AT THE END OF A ROAD BEFORE A SMALL BRICK BUILDING.

AROUND YOU IS A FOREST. A SMALL STREAM FLOWS OUT OF THE BUILDING AND DOWN A GULLY.

Figure 2-1. The iconic first screen of text from “Adventure”

Chapter 2 the (anCient) art of interaCtive fiCtion

50

Marc Blank, Albert Vezza, and Joel Berez. The company was bought by

current-day multi-billion publisher Activision in 1986. Infocom continued

to produce outstanding interactive fiction throughout the 1990s, until

finally being dropped by its new owner in 2002.

 The Zork Series (1977–1993)

The genre of interactive fiction didn’t reach its apex in Adventure. Zork I:

The Great Underground Empire was released in the immediate aftermath

of Adventure in 1977 by newcomers Infocom. It became the bestselling

video game of 1982 with a total of 32,000 copies sold for numerous systems

that year. By the time 1986 was on the calendars, Zork I had garnered over

370,000 sales. Clearly the gaming public loved their text adventures and

thirsted for more.

Another multi-platform release, Zork II: The Wizard of Frobozz, had

sold over 173,000 copies by the end of 1986. The trilogy was wrapped up

with Zork III: The Dungeon Master, which sold a decent 120,000 copies as

well. It was clear from the early days that text adventures had much going

for them also from a business standpoint.

Later Zork titles put more focus on the visuals rather than the prose,

and the developers did receive criticism from both enthusiasts and the

gaming press alike. Nonetheless, the Zork series were not a fad, lasting well

into the late 1990s, gaining both new fans and critical praise along the way.

The Zork phenomenon alone solidified Infocom as the most iconic

publisher of interactive fiction for nearly three decades, but they do have

several other successful titles under their belts.

 The Enchanter Trilogy: Enchanter (1983), Sorcerer
(1984), Spellbreaker (1985)

Having an elaborate spell casting system for the time, Enchanter was an

ambitious game even by Infocom’s high standards. Selling around 75,000

copies during its shelf life, the game featured a novice magician as its sole

Chapter 2 the (anCient) art of interaCtive fiCtion

https://en.wikipedia.org/wiki/Marc_Blank
https://en.wikipedia.org/wiki/Albert_Vezza
https://en.wikipedia.org/wiki/Joel_Berez

51

underdog protagonist. You were facing Krill, a powerful warlock, with

nothing but some elementary spells to aid you.

Enchanter takes place in the same world as the Zork series, but it has a

more serious quality to it. The spell casting system adds a new dimension

to the somewhat contrived genre of fantasy interactive fiction. Although

not monumental in the writing department, Enchanter was a well-received

adventure and another successful title from Infocom.

Sorcerer picked up where Enchanter left, putting the player in the

victorious position of having defeated Krill the evil warlock. Still based

around a fun spell casting system, the game has you going after Belboz the

necromancer, who may have fallen to the dark side. You now have more

power as a wizard; however, the puzzles are trickier.

Rounding off the trilogy is Spellbreaker, the hardest of the three. The

Circle of Enchanters are panicking: magic is now beginning to fail all over

the land of Zork. After a rather surprising council meeting, the player is

thrust with the mission to find out why this is happening.

Mostly criticized for its harsh difficulty level, Spellbreaker had an

atmosphere of urgency and despair. For one, although there are powerful

new spells, spell casting is not guaranteed to work. The game is also much

larger in scope than any of the previous Infocom titles. Most players will

not complete the game without a guidebook. One for the hardcore gamer

crowd, Spellbreaker nonetheless provided a brilliant conclusion to the

Enchanter trilogy.

 Planetfall (1983) and Stationfall (1987)

As the janitor on the starship S.P.S. Feinstein, your job is mostly to mop its

floors. For better or worse, the plot thickens as explosions rock the ship,

forcing you into an escape pod and on to a strange planet. Not the first

visitor to the planet Resida, you must discover the fate of those who came

before you.

Chapter 2 the (anCient) art of interaCtive fiCtion

52

Planetfall turned out to be another big hit for Infocom, receiving praise

for its writing and the inclusion of a purposeful sidekick in the form of

Floyd the loveable robot. He is still considered one of the most cherished

characters in interactive fiction.

In Stationfall, the sequel to the game, our janitor protagonist has been

promoted to Stellar Patrol duty. This may sound more interesting than

janitorial duties; however, our hero spends his time mostly filling forms.

Teaming up with Floyd the robot for the second time, our duo is in fact sent

on a mission to grab some more forms at a space station. With the station

mostly deserted, an enjoyable sci-fi mystery begins to unfold featuring an

alien skeleton and an ostrich, no less.

Stationfall was praised for the tight writing and for bringing back Floyd

the robot, a true fan favorite. Not a game for beginners, it’s an enjoyable

adventure for the more experienced gamers.

 The Hitchhiker’s Guide to the Galaxy (1984)

Douglas Adams’ comedic hit series The Hitchhiker’s Guide to the Galaxy

was picked up by Infocom in 1984. Consisting of a TV series, radio plays,

and novels, the work suited the genre of interactive fiction extremely well.

The game was developed under the close supervision with the author of

the original work, Douglas Adams.

The absurdist sci-fi adventure was a massive hit, ending up selling over

400,000 copies during its (ever-continuing) lifespan. This game has been

converted to at least 17 different computer architectures, ranging from the

Apple II to current-day browsers.

The British Broadcasting Corporation released a 20th anniversary

version of the game in 2004 on their web site. As of 2019, a 30th

anniversary version of The Hitchhiker’s Guide to the Galaxy is still playable

on the BBC web site (www.bbc.co.uk/h2g2game).

Chapter 2 the (anCient) art of interaCtive fiCtion

http://www.bbc.co.uk/h2g2game

53

 Wishbringer (1985)

One for the novice gamers, Wishbringer was a well-written, critically

acclaimed adventure. Ending up as Infocom’s fifth bestselling game of all

time at 150,000 copies sold, it tells the story of a perfectly average postal

worker who stumbles upon a rather special envelope. After delivering

said envelope to the owner of “Ye Olde Magick Shoppe,” the protagonist

promises to retrieve her black cat who’s gone missing. Then finding

himself in a somewhat apocalyptic village called Witchville, he’s told he

only has a few hours to defeat a sorceress called The Evil One.

Described by some as simplistic, the game was not the most taxing

of Infocom’s adventures. Nonetheless, Wishbringer delivered a solid

interactive fiction experience for “everyone from ages 9 up,” as the

packaging stated. Clearly Infocom was experimenting with targeting

different gamer demographics, and when judged by Wishbringer’s sales,

they scored big time. The lesson here is this: from time to time, it does

a business a world of good to introduce new types of products to fresh

audiences.

 Leather Goddesses of Phobos (1986) and Leather
Goddesses of Phobos 2 (1992)

Classic fantasy aside, Infocom could also do salacious sci-fi like no other

developers. As the title suggests, Leather Goddesses of Phobos features

some rather leery antagonists – who are naturally up to no good. You

must stop them from taking over the planet in this tongue in cheek title,

released for most popular computer platforms of 1986. Leather Goddesses

is a campy, mildly erotic romp with the option to choose the level of smut

you’re comfortable with. It’s presented in a classic, minimalistic text-only

format as per usual for Infocom – and it still didn’t take anything from the

atmosphere and fun.

Chapter 2 the (anCient) art of interaCtive fiCtion

54

The first Leather Goddesses ended up selling a whopping 130,000

copies. A sequel was therefore warranted. In the time of ever-increasing

technical capabilities of early 1990s computers, Infocom, too, decided

to take the plunge and focus on colorful graphics, digitized speech, and

a snappy icon-driven user interface. Unfortunately, Leather Goddesses 2

turned out to be somewhat of a dud. Many have argued it’s easily Infocom’s

worst ever product.

Moving away from the genre of classic Infocom interactive fiction,

Leather Goddesses 2 was a mouse-controlled, visually gorgeous (see

Figure 2-2), critical disappointment of a game. A case of style taking over

substance, it failed to meet its expectations and was criticized for its

simplistic puzzles and poor writing. Surprisingly, Leather Goddesses 2 was

penned by one of Infocom’s brightest writers, Steve Meretzky.

Figure 2-2. The graphics in Leather Goddesses of Phobos 2 were
impressive—the writing not so much

Chapter 2 the (anCient) art of interaCtive fiCtion

55

 Magnetic Scrolls
We’ll now take a look at the other big player in the business of text-based

games, Magnetic Scrolls, through revisiting some of their most impressive

offerings. The company was founded by Anita Sinclair, Ken Gordon, and

Hugh Steers in London in 1984. It released several high-quality games

mostly during the 1980s.

Magnetic Scrolls fizzled out from the games market during the

early 1990s, but as of 2017 they have resurfaced as Strand Games (www.

strandgames.com). Having found the once lost source code for some of

their old text adventures, the Magnetic Scrolls team decided to recover it

and present it to the current generation of gamers. The project has so far

released two of their early games for modern platforms. New titles from

Strand Games may apparently appear in the future.

 The Guild of Thieves (1987)

Known for their visual prowess, Magnetic Scrolls’ The Guild of Thieves was

a monumental multi-platform release. Centering on suspicious and more

or less criminal activities, the game is an atmospheric and challenging

experience set in the fantasy land of Kerovnia.

Divided roughly into four areas, the game world in The Guild of Thieves

is vast. Over a hundred locations total are divided between countryside,

a castle, a labyrinth, and a temple. The game features a plethora of

collectable items and fixed utilities depicting a living fantasy world well.

They include a fully functioning water closet (complete with toilet paper)

and a somewhat taxing container system: there’s plenty of items within

items in the game.

The Guild of Thieves was released for at least 11 platforms. The

graphical screens are impressive pretty much on all of them. It was a hit

among critics and enthusiasts alike, justifying a new release in December

of 2017 for modern platforms, 30 years after the original.

Chapter 2 the (anCient) art of interaCtive fiCtion

http://www.strandgames.com
http://www.strandgames.com

56

the Guild of thieves re-release by Strand Games
 (https://strandgames.com/games/theguild)

 Corruption (1988)

A brilliant example of using then-current themes in a video game context,

Corruption dealt with 1980s politics in a realistic manner. This pleased

both critics and gamers at the time. In the game an average stockbroker

found himself in a world of trouble. Corruption, at its heart, was a detective

story. The tone of the game was steeped in cold war politics, enhanced by

realistic static graphics full of film noir aesthetics (see Figure 2-3).

Corruption featured one of the most intense atmospheres of any work

of interactive fiction. In some parts of the game, you could only enter one

command – and it had to be the right one, or else it was an instant game

over for you.

Figure 2-3. Corruption featured lifelike graphical screens

Chapter 2 the (anCient) art of interaCtive fiCtion

https://strandgames.com/games/theguild

57

No doubt a lesson can be learned from this one: when properly

executed, current events always make for compelling interactive fiction.

After playing Corruption, offices suddenly become quite ominous. For best

results, enjoy the game with some late 1980s popular music.

 Fish! (1988)

Magnetic Scrolls could deliver in a vast variety of themes. In a complete

departure from their previous release, Fish! was a surreal romp with an

aquatic protagonist (see Figure 2-4). You got to play as an actual goldfish,

doing your best to defend your planet Aquaria from a posse of antagonists

known as The Seven Deadly Fins.

Figure 2-4. A “plush lounge” in Fish!

Chapter 2 the (anCient) art of interaCtive fiCtion

58

Perhaps the developers felt they needed a break after the rather serious

nature of Corruption, so they came up with this whacky gem. Bizarre,

frivolous, and especially enjoyable for newcomers, Fish! was a risky move.

Despite the constant barrage of fish-related puns, the game was a hit.

Sometimes, taking a gamble with the concept pays off.

 Wonderland (1990)

Kicking off the 1990s in style, Magnetic Scrolls released an innovative and

critically acclaimed adventure based on the Lewis Carroll classic Alice in

Wonderland. The game featured beautifully drawn, and often animated,

visuals. The user interface is now fully mouse-controlled, but not in a

gratuitous way. Resizable windows, a dynamic mapping system, and

intuitive menus only work to enhance the whole experience (see Figure 2- 5).

For the time this was all quite revolutionary. The developers definitely took

design cues from the leading operating systems, Windows and macOS, and

translated them into an immersive game world.

Chapter 2 the (anCient) art of interaCtive fiCtion

59

Fi
gu

re
 2

-5
.

W
on

de
rl

an
d

ha
d

an
 im

pr
es

si
ve

 d
yn

am
ic

 in
te

rf
ac

e
w

it
h

re
si

za
bl

e
w

in
do

w
s

Chapter 2 the (anCient) art of interaCtive fiCtion

60

In addition to the fun and fluid user engagement, Wonderland was

loyal to its source material. The game is a fine lesson in how to approach a

much loved classic and translate it into the digital domain. Wonderland is

one of the finest works of interactive fiction ever made.

 Level 9 Computing
Level 9 was a British developer of interactive fiction founded by the

brothers Mike, Nicholas, and Pete Austin. They operated between 1981

and 1991, delivering highly polished products of interactive fiction,

specializing in a trilogy approach.

 Colossal Adventure (1983)

Capitalizing on the success of Will Crowther’s 1977 hit Adventure, Level 9

provided their audience with a beefed-up take on the original. The game

included 70 new locations in addition to Adventure’s 80 or so. A multi-

platform release, Colossal Adventure was criticized for its crude graphics,

but most critics agreed overall it was an improvement on the original.

Level 9 took a bit of a risk by infusing Tolkien lore into the game, which the

Tolkien Estate surprisingly didn’t object to – or know about.

 The Silicon Dreams Trilogy (1986)

Firmly set in the sci-fi realm, this trilogy featured a coherent story arc

across all three games. Starring the stalwart Kim Kimberly, a citizen of

the future, the trilogy deals with the concept of mankind colonizing other

planets – and the associated issues which tend to follow.

Chapter 2 the (anCient) art of interaCtive fiCtion

61

Snowball, first released in 1983, told the story of a doomed spaceship

on its way to the sun. An insane passenger sabotaged Kimberly’s ride

to Eden, a planet ready for colonization. With around two million lives

at stake, Snowball provided an intense sci-fi experience and was well-

received by critics and gamers alike.

Released the following year, Return to Eden is a survival story

featuring a ruthless jungle and a plethora of robotic fiends. The visual

elements introduced in the game were panned as being simplistic and

crude. However, the game itself was solid in writing and pace. Like its

predecessor, Return to Eden was critically acclaimed.

Concluding their sci-fi trilogy, Level 9 released The Worm in Paradise

in 1985. Although this title, too, featured crummy graphics (see Figure 2-6),

it was praised for its compelling story. Taking place a hundred years after

Return to Eden, the game is set in the domed city of Enoch. Robot labor,

profiteering, and cynical capitalism give Return to Eden a timeless flavor.

 The Time and Magik Trilogy (1988)

The games in this trilogy were initially released separately between 1983

and 1986 for 8-bit home computers. In 1988 the three games were polished

Figure 2-6. A view from Snowball. Level 9 was not famous for
amazing visuals; however, the writing was usually quite impressive.

Chapter 2 the (anCient) art of interaCtive fiCtion

62

and re-released as a compilation for a newer generation of platforms by

Mandarin Software. This time, Level 9 upped the ante on their visuals, too

(see Figure 2-7). However, only two games in this compilation, Red Moon

and The Price of Magik, formed a story arc.

Lords of Magic from 1983 featured a rather clever time-traveling plot.

The protagonist, a computer programmer, is contacted by one Father Time

in order to rescue treasures from nine different eras. These included the

time of the Roman Empire, the Age of Dinosaurs, and Ice Age. Well-written

by one Sue Gazzard, the game was loved by both the press and gamers.

Red Moon (originally released in 1985) and its sequel The Price of

Magik (from 1986) both won awards and featured a fair amount of role-

playing game elements. The latter incorporated a rather extensive spell

casting system for its time.

Chapter 2 the (anCient) art of interaCtive fiCtion

63

Fi
gu

re
 2

-7
.

A
 c

ol
la

ge
 o

f L
or

ds
 o

f M
ag

ic
 v

is
u

al
s:

 P
C

 v
er

si
on

 (
to

p)
 a

n
d

th
e

C
om

m
od

or
e

64
 v

er
si

on

(b
ot

to
m

)

Chapter 2 the (anCient) art of interaCtive fiCtion

64

 Other Notable Games in the Genre
“The Big Two” (i.e., Infocom and Magnetic Scrolls) and Level 9 weren’t the

only influential makers of quality interactive fiction by any means. Several

other development teams have since released impressive products. We’ll

now take a look at some of these fine text-based adventures.

 King’s Quest: Quest for the Crown by Sierra
On-Line (1984)
Sierra On-Line, started in 1979 by Ken and Roberta Williams, became

an iconic publisher in the adventure game genre. Some very successful

franchises based on this game concept include the Space Quest, Police

Quest, and, indeed, the ongoing King’s Quest series. Only folding until

2004, Sierra On-Line had a long-lived and lucrative reign as makers of

quality adventure games.

In the first game in the series, one brave young knight, Sir Graham, has

aspirations of becoming the ruler in the Kingdom of Daventry. He must

recover specific magical items and solve numerous folklore-based puzzles

to impress King Edward, who himself plans to retire if all goes well. While

the graphics are naturally crude by current standards, the storytelling is

still quite enchanting.

Chapter 2 the (anCient) art of interaCtive fiCtion

65

Although providing arcade game–like character control and a relatively

detailed visual world (see Figure 2-8), King’s Quest is at its heart a game of

interactive fiction. Like all early Sierra releases, King’s Quest lacks an icon-

driven user interface. There’s a lot of good writing to read – and a lot more

to type.

 The Spellcasting Trilogy by Legend
Entertainment (1990–1992)
Legend Entertainment was founded in 1990 by Steve Meretzky. He is best

known for writing Leather Goddesses of Phobos and The Hitchhiker’s Guide

to the Galaxy for Infocom. Exclusively released for the PC platform, the

Spellcasting series combined humor with fantasy-based tropes.

Meretzky’s new venture had considerable success right off the bat

with its debut product, Spellcasting 101. Ernie Eaglebeak is a nerdy novice

Figure 2-8. A scene from the visually improved version of King’s
Quest I from 1990

Chapter 2 the (anCient) art of interaCtive fiCtion

66

wizard who just wants to get the affections of one Lola Tigerbelly. Enrolling

in Sorcerer University, Ernie plans to gain the status and skills needed

to impress his crush. The trilogy deals with his escapades with the focus

being on student life difficulties, as the relatable protagonist fumbles

around. Apparently it’s not easy being a nerd in college, even when

possessing some magical abilities.

Spellcasting 101 kicked off a successful trilogy of games, being followed

by Spellcasting 201: The Sorcerer’s Appliance and Spellcasting 301: Spring

Break. The last game in the trilogy featured, for the time, impressive

256-color graphics (see Figure 2-9) in addition to solid sound card support,

adding to the game’s engaging audiovisual experience.

Figure 2-9. Spellcasting 301, like the other two titles in the trilogy,
had crisp graphical screens

Chapter 2 the (anCient) art of interaCtive fiCtion

67

The mixture of the adult themes of Leather Goddesses and sparse but

high-resolution graphics proved to be a hit. The intuitive mouse-assisted

control method didn’t hurt either. Of course, you could also wear your

fingertips out if you preferred that.

 Timequest by Legend Entertainment (1991)
Not sticking solely to bespectacled wizards with juvenile interests,

Legend went on to add sci-fi titles to their catalogue. Timequest, like the

name perhaps suggests, deals with the time-traveling business and the

dangerous ramifications it may or may not entail. It was created by one

Bob Bates who, like Steve Meretzky, had worked previously at Infocom.

In Timequest Zeke S. Vettenmyer, a Lieutenant in the Temporal Corps,

has stolen a time machine (referred to as an interkron in the game’s

universe). By meddling with history, Vettenmyer is causing a ripple

effect in the timestream which will result in catastrophic events for the

human race. You, as a lowly private in the Temporal Corps, must trace the

Lieutenant in question and correct the wrongs he’s committing.

Chapter 2 the (anCient) art of interaCtive fiCtion

68

Fi
gu

re
 2

-1
0.

 Y
ou

 m
ee

t q
u

it
e

a
fe

w
 h

is
to

ri
ca

l f
ig

u
re

s
in

 T
im

eq
u

es
t.

H
er

e’
s

a
fo

rm
er

 B
ri

ti
sh

 p
ri

m
e

m
in

is
te

r.

Chapter 2 the (anCient) art of interaCtive fiCtion

69

Using the same engine as the Spellcasting franchise, Timequest

provides crisp, high-resolution graphics and a gratifying mouse-

assisted interface. The odd melody plays at a few locations adding to the

atmosphere. The game was well-received, winning several video game

awards in the early 1990s. You don’t often get to meet such historical

figures as William Shakespeare, Winston Churchill (see Figure 2-10), and

baby Moses – especially during the course of a single day.

 Demoniak by Palace Software (1991)
Featuring a rather standard futuristic doomsday scenario for a plot,

Demoniak nonetheless broke new ground at the time of its release.

Penned by none other than Alan Grant, the writer behind Judge Dredd and

Batman comics, the game offers a well-written and somewhat anarchistic

experience as the namesake inter-dimensional demon and his four

bickering opponents clash. Whatever graphics are there all provide a touch

of atmosphere, being immensely well drawn in a cartoony fashion (see

Figure 2-11).

Chapter 2 the (anCient) art of interaCtive fiCtion

70

At first Demoniak seems like your typical text adventure. However,

you weren’t limited to playing as the main four protagonists. The game

impressed with a highly innovative feature: it allowed you to become most

of the 50 characters in the game. Should a character die, one could keep

playing with some other inhabitant of the game universe, all with their own

quirks and personalities. In addition, the WAIT command allows you to

simply watch the characters do their thing. Demoniak is an underrated gem.

 How They Did It – Early Tools for Interactive
Fiction
Like any type of software, text-based games can be created with a general-

purpose programming language of one’s choosing (e.g., C, C++, BASIC,

Java). However, even in the early days numerous dedicated creation tools

Figure 2-11. Although not plentiful, the graphical screens in
Demoniak were impressive. Here’s Doc Cortex.

Chapter 2 the (anCient) art of interaCtive fiCtion

71

for the genre were available. Let’s now take a glance at some of these text-

adventure frameworks.

Not only were these software packages milestones in programming,

but their influence in video gaming is still felt today. Also, as is the case

with Graham Nelson’s Inform development system, some of these

historical products are still viable tools for making new games today.

 A Few Words on Parsers
A parser is a piece of software which interprets user’s input into logical

data structures. In the context of interactive fiction, parsers work between

the gamer and the game world, translating text input into actions that

correspond with the game’s logic and parameters set by the programmer.

The quality of parsers varies greatly between games of interactive

fiction. A poor parser doesn’t understand perfectly sensical language,

only accepting clumsy and/or wordy sentences. A good parser can accept

a multitude of verbs and nouns and even gather relevant words from

broken sentences. One of the reasons for Infocom’s massive success was

indeed in their impressive parser, which would work well with complex

sentences. Adventure by Will Crowther, although a legendary game, mostly

operated on a rather simple “verb and noun” system (e.g., only accepting

commands like GET DAGGER). In the decades to come, this was largely

considered a rather frustrating type of approach.

In the current era of visual novel development, typing is not a common

input method, so the said parsers are of little importance. Of course, there

remains a rather fervent fan base of old-school interactive fiction. Literally

thousands of noncommercial, home-brewed text adventures have been

created ever since the 1980s for various platforms. Not every enthusiast

made the switch to mouse-assisted input.

Chapter 2 the (anCient) art of interaCtive fiCtion

72

 Zork Interactive Language (ZIL) and the
Z- machine
During Infocom’s heyday from the late 1970s to the late 1980s, their

developers utilized an in-house virtual machine called the Z-machine. The

way they distributed their software consisted roughly of two phases. First, a

Z-machine for a specific platform was developed (e.g., PC, C64, Amstrad).

Then, a system-independent adventure file (or Z-file) was created in

Infocom’s own programming language called Zork Interactive Language

(ZIL). Each of these files contained the game itself. ZIL itself is based on

the MIT Design Language (MDL) from 1971.

The Z-machine was available pretty much on all computer platforms

at the time. The same Z-files would run on any system with its specific

Z-machine, eliminating the need to develop games natively for each

system. This allowed for a simultaneous release for all dozen or so popular

computers of the time and helped propel Infocom to the top of the text-

adventure hill.

Starting its life way back in 1979, the mighty Z-machine isn’t dead yet;

modern interpretations of the system are available for current-day versions

of Windows, Linux, macOS, and iOS, among others. A rather prosperous

hobbyist scene has indeed formed around this beloved piece of software.

Although offering a rather succinct approach to programming

interactive fiction, ZIL is not for absolute beginners and takes a while to get

used to with its numerous commands. Listing 2-1 shows a sample room

definition using ZIL.

Listing 2-1. A sample room definition in Zork Interactive

Language (ZIL)

<ROOM APRESS-LOUNGE

 (LOC OFFICE)

 (DESC "The Apress Lounge")

Chapter 2 the (anCient) art of interaCtive fiCtion

73

 (SOUTH TO MEETINGROOM)

 (EAST TO KITCHEN)

 (NORTH TO TOILET IF DOOR-UNLOCKED ELSE "The water closet

door won't budge.")

 (ACTION APRESS LOUNGE-F)

 (FLAGS RLANDBIT ONBIT)

 (GLOBAL STAIRS)

 (THINGS (SLIPPERY WET) (DOORKNOB HANDLE) SLIPPERY- HANDLE- F)

The RLANDBIT flag in ZIL denotes a room is land-based, instead

of being immersed in some kind of liquid. The ONBIT flag indicates the

room is illuminated by default. A keyword called THINGS is used to create

pseudo-objects which can’t be moved, but which take less memory than

actual ZIL objects; saving RAM and cutting on a game’s loading time were

a big deal back in the day.

Listing 2-2 shows a sample object definition in ZIL.

Listing 2-2. A sample object definition in ZIL for an expensive pen

<OBJECT PEN(LOC APRESS-LOUNGE)

 (SYNONYM PEN MARKER)

 (ADJECTIVE EXPENSIVE)

 (DESC "expensive pen")

 (FLAGS TAKEBIT)

 (ACTION PEN-F)

 (FDESC "An expensive ink-powered writing tool is on a table.")

 (LDESC "There is a writing tool (ink-powered) here.")

 (SIZE 2)>

The TAKEBIT flag indicates an object can be picked up by the player.

Other object flags in the ZIL language include WEARBIT, READBIT, and

CONTBIT for wearables, readables, and containers, respectively. The size

attribute denotes an item’s weight in the Z-machine universe. For example,

a boulder should have a size value much larger than our expensive pen.

Chapter 2 the (anCient) art of interaCtive fiCtion

74

The FDESC property describes an object prior to the first time the

player moves it, while the LDESC property provides the description of an

object after it has been moved around. To learn more about the fascinating

world of Zork Interactive Language, see the official guide from 1989 here:

http://xlisp.org/zil.pdf

 The Quill by Gilsoft (1983)
Originally released for the ancient ZX Spectrum computer, Graeme

Yeandle’s The Quill was later ported to numerous popular 8-bit computers

of the 1980s. Some 450 Spectrum titles, a few of which sold very well, were

created with the software. The Quill supported roughly 200 locations and a

fully customizable command set. Graphics weren’t supported out of the box,

but in 1984 Gilsoft released The Illustrator, an add-on that allowed for this.

Using a database-based approach, The Quill had an easy-to-use

interface (see Figure 2-12) and helped introduce a generation of hobbyists

to the world of interactive fiction.

Figure 2-12. The rather simple main menu of The Quill is but the top
layer of a powerful piece of software

Chapter 2 the (anCient) art of interaCtive fiCtion

http://xlisp.org/zil.pdf

75

 Professional Adventure Writer by Gilsoft (1986)
Yeandle’s sequel to The Quill, Professional Adventure Writer (PAW),

featured a similar intuitive user interface with the addition of a much more

advanced parser and other major enhancements. For one, visuals were

now more easily implementable in one’s adventures.

Around 400 adventures were created with PAW. Sadly, the software

was only ever released for the ZX Spectrum, and the (even then) practically

fossilized CP/M class of operating systems.

 Adventure Game Toolkit by David Malmberg
(1987)
Featuring two methods of development to choose from, that is, the

standard and the professional, Adventure Game Toolkit (AGT) provided a

set of tools for both beginners and more advanced programmers alike.

AGT is based on Mark Welch’s Generic Adventure Game System

(GAGS) for the PC from 1985. Malmberg’s product featured a much

improved parser and greater scope. It was converted for numerous

platforms since its inception; the total number of games made with GAGS

and AGT hovers around a hundred or so. Although a tad clumsy to use by

today’s standards, AGT was (and is) capable of producing adventures on

par with Infocom’s classics.

 Inform by Graham Nelson (1993–)
Not exactly a beginner’s tool, Inform in its later versions became in fact

its very own programming language. This naturally allows for complete

control of one’s interactive fiction games or other related projects. Also, all

game files made with this software were 100% compatible with Infocom’s

famous Z-machine.

Chapter 2 the (anCient) art of interaCtive fiCtion

76

Inform was up to version 6 a somewhat traditional programming

language (see Listing 2-3). Version 7, however, is considered quite

revolutionary; this iteration of the software accepts full sentences. In

essence, creating a game with Inform 7 is almost like playing one (see

Listing 2-4).

Listing 2-3. A partial Inform version 6 listing

 Constant Story "Example Quest";

 Constant Headline "This is an example of Inform 6";

 Include "Parser";

 Include "VerbLib";

 [Initialise;

 location = Storage_Room;

 "Welcome to the storage room!";

];

 Object Garage "Garage";

 Object Front_Door "Front Door";

 Object Storage_Room "Storage Room"

 with

 description "A spacious and cold room.",

 e_to Garage,

 n_to Front_Door,

 has light;

Listing 2-4. A partial Inform version 7 listing

"Example Quest" by "Mr Programmer"

The story headline is "This is an example of Inform 7".

The Storage Room is a room. "A spacious and cold room."

Chapter 2 the (anCient) art of interaCtive fiCtion

77

The Garage is east of the Storage Room.

The Front Door is north of the Storage Room.

The Front Door is a door. The Front Door is closed and locked.

Inform is still a popular choice among developers of interactive fiction.

For one, it’s evident based on the tens of thousands of views on the topic

on sites like The Interactive Fiction Community Forum. Inform was even

used for the 1997 release Zork: The Undiscovered Underground, published

by software giants Activision. Other notable games using the various

versions of Inform include Galatea (2000) and Floatpoint (2006), both

created by Emily Short.

 In Closing
After reading this chapter, you should have a solid understanding of the

history of interactive fiction. You are familiar with the following concepts

and know how they relate to your visual novel writing:

• What some of the biggest selling text-based games were

and what made them successful

• What parsers are and how interactive fiction was made

back in the day

The next chapter consists of a thorough look at more recent text-based

games, that is, visual novels; we’ll start our review at games released at the

turn of the millennium.

Chapter 2 the (anCient) art of interaCtive fiCtion

79© Robert Ciesla 2019
R. Ciesla, Game Development with Ren’Py, https://doi.org/10.1007/978-1-4842-4920-8_3

CHAPTER 3

The Modern Visual
Novel
As demonstrated in the previous chapter, the road to the modern visual

novel has been a relatively long one. As of 2019, massive numbers of rooms

and items aren’t big deals. Gone are the technical limitations that once

dictated what was possible in video games. But before we review some

of the most impressive modern visual novels, we should get acquainted

with the related terminology. Many of these tropes have their origins in

Japanese culture as the established visual novel format originates from the

land of the rising sun.

 The Visual Novel: Definitely Big in Japan
Although audiovisual elements were found in the earlier text adventures,

by the turn of the millennium, technology had advanced quite a bit.

Computers no longer struggled with data crunching as they once did,

enabling game makers to indulge in a number of then-new techniques.

These included high-resolution graphics, CD-quality digital audio, and

Full HD video playback.

As mentioned, the visual novel is originally a Japanese phenomenon,

kicking off commercially in the late 1980s. According to Anime Advanced

and Advanced Media Network in 2006, almost 70% of PC games released

80

in Japan were visual novels.1 It has since become a popular genre of video

games worldwide.

 Tropes
In the popular vernacular, a trope is a frequently recurring thematic device.

Some tropes are to be avoided (those tend to be also called clichés),

while some are helpful in world building and user engagement. We’ve

simply learned to expect certain things from our entertainment over the

millennia. Quite a few of these tropes relate to the principles laid out by

Aristotle as discussed in Chapter 1, in fact.

 The Faceless Protagonist
An increasingly popular trope, this evokes a sense of mystery as well as

catering for each player individually. It’s easier to identify with a character

who isn’t specifically made to look like something you do not resemble in

real life. Examples include Gordon Freeman from the Half-Life franchise

and most protagonists in visual novels.

 Dialogue Tree
Virtually found in every visual novel out there, dialogue trees refer to the

points of choice in the flow of a storyline. In a good game of interactive

fiction, dialogue tree choices are logical and interesting and have an actual

effect in the proceedings of the game’s universe. These choices often

include whether to ask some virtual person on a date or not.

1 www.animenewsnetwork.com/press-release/2006-02-08/amn-and-anime-
advanced-announce-anime-game-demo-downloads

Chapter 3 the Modern Visual noVel

http://www.animenewsnetwork.com/press-release/2006-02-08/amn-and-anime-advanced-announce-anime-game-demo-downloads
http://www.animenewsnetwork.com/press-release/2006-02-08/amn-and-anime-advanced-announce-anime-game-demo-downloads

81

 The Endings Tree
Most visual novels feature various end states for the storyline. These

are the good ending (sometimes referred to as The Golden Ending), the

bad ending, and the standard ending. The first two are more or less self-

explanatory, referring either to typical tragedy or victory. The standard

ending, however, refers to the finale resulting usually from indifference

from the player’s behalf. It is the result of mostly passive clicking on

choices and usually provides only the least impressive of endings: most

visual novels expect a degree of focus and intent from the players.

Some visual novels, such as Tsukihime (2001) by Type-Moon, feature a

number of endings in each category for a total of nine. The more endings

you implement, the more longevity your game obviously has. However,

you should only provide the endings your story needs.

 Into the Middle of Things/In Medias Res
It’s often better to start a game in an interesting or unusual setting instead

of character X simply waking up in his bed. This is to grab the player’s

attention and not bore them with every banal passage leading into the

action. As introduced by Aristotle discussed in Chapter 1, this is a very

common trope in the visual novel genre and for a reason. Backtracking can

be done later as needed. Visual novels using this trope include Saya no Uta

by Nitroplus and Ef: A Fairy Tale of the Two by Minori.

 High School Geek
Perhaps the most popular character identity for current-day visual novel

protagonists, the high school geek is relatable for many as plenty of us have

been one at some point in time. Many fans of the game genre are indeed

currently teenagers, so from a demographic standpoint this also makes

Chapter 3 the Modern Visual noVel

82

sense. However, there’s no need to force high school geeks into your games

unless the story demands it.

Variations of this trope naturally exist all over in popular culture, such

as the regular Joe/Jane who gets a call to action, reaching new heights in

personal development after completing a challenge or several. Basically

most visual novels benefit from having at least one relatable character,

preferably as a protagonist.

Visual novels with this trope include Katawa Shoujo by Four Leaf

Studios and Doki Doki Literature Club! by Team Salvato – and a massive

swathe of other titles.

 Branch Cutting
When it comes to sequels in visual novels, most build on the premise

that the saga had one true ending (i.e., The Golden Ending). It might be

best if the other endings are ignored altogether in the follow-up product.

This is something developers need to keep in mind. Sticking to a single

canon is good for the franchise. Branching out too much might result in

a developer’s hard work getting confused with fan fiction when it comes

to sequels. Sticking to unified canon keeps the franchise strong. Leave the

more bifurcated storytelling to the fans of your product.

 Sword and Sorcery
Emerging from common folklore and solidified by the works of

J.R.R. Tolkien, fantasy is a genre that has been pretty much troped to death.

For better or worse, most people have heard of long swords, elves, magic

spells, and dragons – even those “not in the know” of fantasy-based video

games and other varieties of popular culture. There may be thus some

fantasy fatigue among the general population, even among enthusiasts.

However, by spicing up the sorcery with elements of, say, sci-fi, new

developments have emerged from this age-old trope.

Chapter 3 the Modern Visual noVel

83

In the first era of interactive fiction, pure sword and sorcery was still

exciting. First-generation gamers hunched over Infocom’s Zork were

entering a fascinating new world. But what was once novel in the late 1970s

no longer is. Palace Software’s Demoniak from 1991 combined fantasy

elements with androids and interplanetary travel resulting in a wonderful

experience. When it comes to elves, magic spells, and the like, make sure to

add other elements in your product – or hear the dreaded word of “clichéd.”

 Core Concepts of Japanese-Influenced
Visual Novels
Due to the Japanese origins of the modern-day visual novel, you may not

be familiar with some of the concepts of the genre and its offshoots. As a

developer it’s highly useful to understand these terms. Therefore, before

reviewing some important titles, let’s take a look at some of the core

concepts of the visual novel.

Figure 3-1. The anime aesthetic has gained ground in popular
culture since the 1980s

Chapter 3 the Modern Visual noVel

84

 Anime
Now pretty much a visual novel staple, anime refers to a specific type

of visual style and animation originating in Japan. This can be either

hand-drawn or computer generated. Anime characters present us with

a wide variety of body proportions and facial features. The latter include

unusually large eyes and an agreed-upon set of default expressions for

most common emotions (see Figure 3-1). Also, hair in anime characters

tends to be more on the colorful and exotic side of things.

Music used in anime-based products, including visual novels, are

mostly upbeat pop songs. This genre is referred to as J-pop, short for

Japanese pop. J-pop in general became popular in its originating country

in the 1990s. It has since attracted fans all over the world.

The earliest Japanese animation, Namakura Gatana, was introduced

in Japanese cinemas in 1917. This 4-minute film told the story of a stingy

samurai with a taste for cheap swords. It was drawn by one Jun’ichi Kōuchi.

 Bishoujo (also Galge) Games
The word bishoujo is Japanese for beautiful girl. It’s also a sub-genre of

the visual novel that features, not surprisingly, a lot of attractive female

characters. Galge is sometimes used as a synonym for this type of game;

this is short for “gal game.”

Bishoujo games aren’t necessarily adult-oriented as many of them

don’t contain any age-restricted material. Think of bishoujo as the more

romantic cousin of eroge, which definitely is not for the whole family (see

Eroge in the following).

 Dating Sim
Short for dating simulator, the concept of dating sims is quite self-

explanatory. The genre focuses on the player trying to impress his or her

Chapter 3 the Modern Visual noVel

85

love interest enough to score a relationship or marriage. Dating sims are

therefore usually somewhat more limited in subject matter than other

types of visual novels. Most dating sims are created with men in mind, but

those for females also exist. Also, same-sex dating sims have been released.

Quite a few dating sims feature similar themes: a high school setting,

a selection of characters to get infatuated by, and a complex set of internal

variables which determine whether you’re romantically successful or not.

Most dating sims can be classified as either bishoujo for male

audiences or otome for female gamers. However, not all bishoujo or otome

games are dating sims.

 Doujinshi Games
Because the visual novel is such a popular genre in Japan (and indeed,

increasingly so in the rest of the world), hobbyists have taken to it with

great enthusiasm ever since the 1990s. A doujinshi game refers to a home-

made visual novel, that is, one not published by any established company.

These types of games can be both fully original creations and fan fiction

based on commercial franchises.

Many doujinshi projects are derivatives of commercial anime

franchises. This can be seen as either a good or a bad thing, depending on

one’s taste. One must always tread carefully in the land of copyrights.

There are literally thousands of doujinshi games available, often as

free downloads, in every genre. However, many home-based creators put

a price on their work with great success. According to Media Create, a

Japanese sales tracking company, in 2007 almost half of the $1.65 billion

anime-based industry in Japan consisted of doujinshi games and other

hobbyist products.2 Some notable artists working in the genre include

Yoshitoshi Abe and Nanae Chrono.

2 www.m-create.com/

Chapter 3 the Modern Visual noVel

http://www.m-create.com/

86

To avoid legal problems, a doujin mark was created in 2013 (see

Figure 3-2). This is a logo for a license format inspired by the creative

commons public copyright licenses.

 Eroge
A portmanteau of erotic and game, eroge is a genre of pornographic visual

novels. A blanket term, these types of games are usually classified by their

sub-genres, such as otome (see Otome in the following). Most major

publishers of video games, such as Sony, do not allow eroge games of the

more graphic variety officially published on their systems (in Sony’s case,

the PlayStation consoles).

 Hentai
This term refers to any type of adult-themed entertainment produced

in Japan or heavily influenced by the anime aesthetic. There are plenty

of hentai visual novels, comics, and cartoons made all over the world.

Although hurt by piracy, hentai is a multi-billion industry in 2019.

Figure 3-2. The doujin mark

Chapter 3 the Modern Visual noVel

87

 Isekai
Isekai refers to a genre of anime and visual novels where the protagonist

visits (or is trapped in) some other world. This can be a parallel universe of

either benign or malicious nature. Many visual novels, such as Air by Key,

can be labeled as isekai.

 Kamige/Kusoge
Kamige literally means god game. It refers to visual novels that a gamer

considers some of the best ever made. Kusoge, on the other hand, refers

to human refuse. In the context of visual novels, it’s naturally only used if a

particular game isn’t very enjoyable. Both concepts are subjective, but the

latter seems to enjoy somewhat of an objective status.

 Kawaii
Basically, kawaii refers to the culture of cuteness in Japan. It covers people,

animals, and basically all things which are found appealing in a superficial

sense. Many visual novels are presented in the kawaii-aware context with

the characters therein being shy but outwardly attractive. Anything cute

and adorable is kawaii.

 Kinetic Novel
This term refers to a linear type of visual novel where the player cannot

make any choices regarding the flow of the story. Basically the only form

of control a player has in a kinetic novel is with the reading speed and/

or the language selection of the story. Examples of this genre include The

Spell by Hangover Cat Purrroduction and Highway Blossoms: Remastered

by Studio Élan.

Chapter 3 the Modern Visual noVel

88

 Otaku
Used as a somewhat of a pejorative in Japan, otaku simply refers to any

enthusiast or fanatic. In the west it usually refers to someone who’s a fan of

Japanese popular culture, including anime and visual novels.

 Otome
This is a type of visual novel targeted at female audiences. Otome games

feature a female protagonist who seeks the affections of various attractive

male characters. Interestingly, many titles in this genre feature fully voice

acted dialogue instead of simply presenting it on the screen the traditional

way. Otome games may or may not include erotic visuals.

 Magical Girlfriend
Not to be confused with The Magical Girl (see the following), a magical

girlfriend is an attractive girl the (usually) male protagonist falls in love

with – and this time, the love is requited. The often down-on-his-luck guy

gets lucky for once, but it’s really not that simple.

Magical girlfriends, although loyal and wonderful in every way, tend

to sometimes inadvertently cause mishaps due to owning said magical

powers. Also, these women may always be human with a touch of magic;

some of them can be aliens, witches, angels, or even demons. This

further adds to the dramatic possibilities of a common Joe discovering an

extraordinary woman.

 Mahou Shoujo (The Magical Girl)
This is a popular trope in many franchises. Mahou Shoujo simply refers

to the adventures of attractive, young women with actual magical or

otherwise superhuman abilities. Sometimes the term majokko is also used.

Chapter 3 the Modern Visual noVel

89

The origin for this trope comes from, perhaps surprisingly, Bewitched,

an American sitcom that ran from 1964 to 1972. Two famous Japanese

animators (i.e., Mitsuteru Yokoyama and Fujio Akatsuka) have said the

TV show inspired them to introduce the trope into the world of otaku.

The Magical Girl has since been a staple in it for decades.

 Manga
This oft-heard term refers to comic book art produced in Japan using specific

techniques. This style of drawing was created in the nineteenth century, and

it remains a popular art form for all ages in Japan and the rest of the world.

A lot of manga is drawn in black and white, although colorful manga

is also being produced. The first known manga magazine, Eshinbun

Nipponchi, was released in 1874. Created by Kawanabe Kyōsai (1831–1889)

and Nozaki Bunzō (1829–1894), the magazine folded after three issues.

However, it set in motion a phenomenon which shows no signs of slowing

down well over a century later.

Figure 3-3. An example of a mecha battle robot

Chapter 3 the Modern Visual noVel

90

 Mecha
In Japan the word mecha refers to any type of machinery. In a manga

or anime-related context, it often translates to “giant robots piloted by

humans” (see Figure 3-3), a rather common premise in general popular

culture, too. The sub-genre of combining mecha is also fairly popular;

in it individual robots can be seen combining to form one larger, more

powerful robot.

 Moe(ge)
An exceptionally light-hearted visual novel can be classified as moe(ge).

The characters in this genre tend to be even more cheerful and colorful

than in your run-of-the-mill anime. Some examples of moe(ge) include

Moe! Ninja Girls by NTT Solmare and LoveKami -Divinity Stage- by

MoeNovel.

 Nakige/Utsuge
Some sub-genres in visual novels are truly unique. Nakige refers to a crying

game, which aims to cause a powerful emotional reaction in the player.

This may be triggered by either great feelings of loss or joy.

Utsuge, on the other hand, stands for pretty much the opposite of

nakige, aiming to be as depressing an experience as possible. To each

gamer their own.

 Tsundere
Tsundere refers to the process of a previously hostile character becoming

more warm and open to other characters. This concept is crucial for many

games in the bishoujo and dating sim genres.

Chapter 3 the Modern Visual noVel

91

 Modern-Era Kamige, or the New Classics
Now it’s time to take a look at some of the most prominent visual novels

from the modern era. Play them, appreciate them, and learn from them.

Millions of visual novel aficionados consider the following titles kamige,

that is, games that are godly or among the best, after all.

 Kanon by Key (1999)
First released as an adult-themed game in 1999, Kanon kickstarted Key’s

foray into a visual novel powerhouse. As is the case with many debut

products, it was somewhat of a flawed masterpiece. Taking on the popular

trope of a high school geek as its protagonist, Kanon tells the story of

Yuichi Aizawa, an amnesiac who returns to his hometown after 7 years of

absence. The game ended up selling over 300,000 copies across numerous

platforms and spawning a whole host of spinoffs, including an animated

series which ran in 2002.

Kanon features five female characters, some of whom are also suffering

from amnesia. The tone of the game is somber, dealing with themes like

Figure 3-4. Kanon introduced the unique facial features familiar to
most of Key’s games

Chapter 3 the Modern Visual noVel

92

past grudges and teenage cynicism. It’s not all dark, however, as Kanon

includes its fair share of uplifting miracles and great food. The game was

most heavily criticized for its predictable and unsatisfying ending. Also,

Kanon introduced to the world a drawing style which is somewhat divisive:

not all gamers are happy with those gigantic wide-set eyes Key likes to

adorn their characters with (see Figure 3-4).

 Air by Key (2000)
Just like Kanon, Air was first released as an adult-oriented game (i.e.,

eroge) for Windows and later ported as a non-erotic game for the

PlayStation 2 and Dreamcast consoles. A sequel to the much less

impressive Kanon, the game tells the story of Yukito, a traveling showman

and puppet master looking for a “flying girl.” Set in Kami, a quiet seaside

town in Japan, Air is a harrowing tale of longing with a distinctively surreal

slant. It featured the same distinctive graphical style as its predecessor.

Air is split into three distinct chapters, namely, Dream, Summer, and

Air, each featuring a different female love interest. The story is focused

on the theme of loss and told with the help of reincarnation, a religious

sect, and a thousand-year familial saga involving the aforementioned

flying girl. Yukito and his three love interests aside, Air features a couple of

surprisingly well-written and humorous side characters as well.

An emotional roller coaster, Air was criticized for lack of dramatic

buildup and the rather abrupt and shocking ending. Being Key’s second

ever offering, the game was rough around the edges here and there in

terms of presentation or lack thereof. However, Air remains a highly

replayable visual novel and a bona fide genre classic thanks to its rich

atmosphere and powerful drama. There’s never a tedious moment in

Kami, it seems.

Chapter 3 the Modern Visual noVel

93

 Phoenix Wright: Ace Attorney by Capcom (2001)
Originally released in Japanese for the Nintendo Game Boy Advance,

Phoenix Wright is an absolute classic in the visual novel genre. The game

tells the story of a novice defense attorney who’s striving to clear his client’s

reputation. Split roughly into two sections, investigations and courtroom

trials, Phoenix Wright features great writing, vibrant visuals, and an

innovative setting. Courtroom drama was no longer limited to bland late

night TV (LA Law being of course excluded from the definition of bland).

Poor character development can decimate a visual novel, no matter

how interesting the premise may be. Luckily, Ace Attorney introduced

some of the most memorable and complex characters in the genre.

Phoenix Wright is an idealistic and inexperienced defense attorney with

much to lose (see Figure 3-5). To the laymen he is therefore a highly

relatable protagonist. Mia Faye, Wright’s boss, and prosecutor Miles

Edgeworth are in turn fascinating and tragic characters.

Phoenix Wright found his way onto several platforms after the initial

2001 release, including Windows, Nintendo Wii, and iOS. All conversions

Figure 3-5. Mr. Wright in his trademark pose

Chapter 3 the Modern Visual noVel

94

were universally praised, save for the Wii version due to it sticking to the

low-resolution graphics of the original.

This game set in motion a phenomenon of courtroom visual novels with

numerous sequels and related products. The latter include an anime series

and a feature length movie, which some critics consider the best video game

movie so far. Phoenix Wright is a great example of introducing new settings

into a somewhat stale genre and creating a major franchise in the process.

 Digital: A Love Story by Christine Love (2010)
Played in an interesting setting of 1980s operating system, Digital is

basically a tale of romance. The player gets to communicate with ∗Emilia,

a love interest via an old-school, pre-Internet network. Set in 1988, the

two team up to study and resolve the sudden disappearance of a number

of artificial intelligences. Rinsed in retro aesthetics (see Figure 3-6) and

early era Internet lore, Digital offers an engaging and poetic experience of

high- tech drama.

Figure 3-6. The art direction in Digital: A Love Story was a nod to
old-school operating systems.

Chapter 3 the Modern Visual noVel

95

Digital was not surprisingly well-received. Its Spartan visuals and to-

the- point writing recreated an era wonderfully. The silent protagonist gave

the game an extra layer of mystery.

Released for free in early 2010, Digital: A Love Story went on to

entertain tens of thousands of gamers. Its developer, Christine Love, went

on to produce a number of successful titles. Sometimes a first-class free

product is what you need to penetrate a market. This seems to be the case

with quite a few developers of visual novels, in fact.

 Katawa Shoujo by Four Leaf Studios (2012)
Even though Katawa Shoujo features the most clichéd of visual novel

champions, a high schooler, the game presents a twist: most of the

characters have disabilities. The aforementioned protagonist, Hisao

Nakai, is transferred to a special high school after a heart attack caused by

his cardiac arrhythmia. What ensues is a fine dating simulator featuring

five potential romantic prospects, namely, Lilly, Emi, Hanako, Rin, and

Shizune. All of them have disabilities, ranging from blindness to burn scars.

Katawa Shoujo, Japanese for “Disability Girls,” was well-received and

garnered praise for featuring, but not fetishizing, people with disabilities.

Its visuals, the characters in particular, are rather impressive, too. Although

the game features some adult content, it can be skipped without hindering

the flow of the story too much.

A community-based game, Katawa Shoujo’s origins can be traced to

the 4chan image board, where the creators first came together. A team of

several dozens of visual artists, writers, and programmers then managed

to create something both original and compelling. In development since

2007, the game was finally released in early 2012 as a free download for

most major platforms.

Chapter 3 the Modern Visual noVel

96

 Clannad by Key (2004, 2015)
Originally released in 2004 as a Japanese-only game, Clannad was brought

to English audiences in late 2015. Typical of many visual novels, the game

features a troubled high schooler as its protagonist (see Figure 3-7). Not

only a commercial success on its own, the game went on to branch into a

whole line of products. These include books, an animated series, and an

animated film. Clannad is a sequel to Air.

The plot in Clannad centers on your protagonist’s relationships with

five other students at a fictional private high school. These are girls with

their strengths and challenges. You act as a kind of mentor, being a senior

after all, doing your part to help them with their school life. But Clannad

is far from mundane in its subject matter. In addition to the school and its

related locations, you also get to experience an Illusionary World and its

invisible denizen. This haunting setting takes place during the second part

of the game, 7 years after high school.

Figure 3-7. Expressive characters help make Clannad’s setting less
mundane

Chapter 3 the Modern Visual noVel

97

It takes between 50 and a hundred hours, depending on one’s skill

and reading speed, to experience Clannad and its various endings in full.

Although not without its flaws (such as errant letters and typos), the game

is outstanding. Dealing with themes such as family life and loss, Clannad

was a highly successful multi-platform release, appearing also on consoles

such as PlayStation 3 and Xbox 360, among others.

 Her Story by Sam Barlow (2015)
Games using the approach called full motion video (FMV) have a bad

reputation for a reason. Most of them are lurid 1990s titles with little or

no substance and few gripping dramatic elements. However, Her Story is

an exception. The game is centered around a collection of videos from a

bygone interrogation concerning a man gone missing. A user interface

reminiscent of 1990s desktop operating systems lures you in as you try to

piece the story together (see Figure 3-8).

A winner of numerous accolades, Her Story is a unique combination

of minimalism, intense acting by the leading star Viva Seifert, and a heavy

atmosphere. While the game consists mostly of typing in keywords and

notes, it never fails to entertain. Her Story is a surprisingly long game,

easily taking several hours to complete. Little touches like reflections of

fluorescent lights on your virtual computer screen keep you going until you

reach the end of the story.

Chapter 3 the Modern Visual noVel

98

A demanding nonlinear experience, Her Story is a great example of a

developer not underestimating the player. If you take on the challenge, the

game will reward you with a great story featuring twists and turns you’d

never have expected.

 Doki Doki Literature Club! by Team Salvato (2017)
Beneath the bright colors and cheerful music is a game of suspense and

horror. Instead of front-loading the shock effects, the game reels you in

slowly, slapping you in the face relatively late into the game. Rather than

vampires and other boogiemen, Doki Doki features pure psychological

torment as its main antagonist.

In this game you, as a nerd in high school, enroll in the titular club.

What ensues is a tragedy that brilliantly mixes in elements of breaking the

fourth wall, in this case addressing you, the player, as an actual player of a

video game.

Doki Doki makes you feel you’re playing just another visual novel,

making you attached to the characters and their issues. Its atmosphere

Figure 3-8. Her Story features some fine retro aesthetics

Chapter 3 the Modern Visual noVel

99

is light at first, only to break your heart in less than an hour or so into the

proceedings. Lead programmer Dan Salvato has stated he has a love-

hate relationship with anime. He apparently wanted to create a game

that appeals to both anime enthusiasts and non-enthusiasts. One reason

behind the game is indeed criticism for the over-used light and cheerful

aesthetic found in many games in the genre.

A free game, Doki Doki has been downloaded in the tens of millions.

It also gathered a huge cult following in just a few months after its release.

Obviously, since the main product is provided for free, the developer

makes money off of it mostly via selling downloadable content (DLC), such

as soundtracks and other types of media.

Doki Doki Literature Club! is quite an experience with brilliant visuals

(see Figure 3-9), especially when it comes to the characters, drawn by

someone who calls themselves Satchel. The game demonstrates all the

power a good, well-written visual novel holds in the current year. The

visual novel, as a genre, is not only alive; it’s gaining new ground.

Figure 3-9. The visuals in Doki Doki Literature Club! are impressive
and deceptively charming

Chapter 3 the Modern Visual noVel

100

 Open Sorcery by Abigail Corfman (2017)
With a unique protagonist and atmosphere, Open Sorcery is a tech noir text

adventure about an otherworldly firewall. BEL/S is a fire elemental bound

to some C++ code. The heroine can either use her powers to protect or to

destroy. Various threats need to be first scanned and then dealt with. These

include a variety of malicious spirits, doing their best to ruin someone’s

day with their respective powers. You can either attempt to fight them or

to learn from them through thorough investigation. Human beings can be

consulted, too, for their take on the proceedings.

Presented as a text-only game without other audiovisual elements

simply adds to the tech-heavy and intense cyberpunk atmosphere. BEL/S

is on a quest for awareness and the displayed inner dialogue reflects that

well. Elements of the surreal intermingle with technology effortlessly in

Open Sorcery, providing an entertaining adventure in cyberspace complete

with numerous different endings.

 Simulacra by Kaigan Games (2017)
Found footage is a popular trope in films in which a substantial part of the

story is presented as if it were discovered on video recordings. The events

onscreen are usually seen through the camera or the characters involved in

the proceedings. Based on this, Simulacra tells the story of Anna, who’s gone

missing. It’s your job to find out what happened to her using the videos and

other data stored on her cell phone. Simulacra shows not all quality visual

novels need to adhere to the anime aesthetic (see Figure 3- 10).

The somewhat sinister premise in Simulacra is beautifully executed

using nods to modern social media and excellent writing. Sifting through

Anna’s emails and other media, while voyeuristic, is thrilling. Although the

voice acting is weak in some places, the atmosphere in the game is top-

notch, only seriously dampened by overtly grating audio cues. The game

Chapter 3 the Modern Visual noVel

101

interface is polished and a pleasure to use, conveying the aesthetics of

current-day smart phones to a tee.

The game features a few sub-games, such as picture decryption

segments. Luckily, these are few and far between and don’t ruin the

atmosphere. The puzzles in Simulacra tend to be on the easy side.

Comparisons can be made with the mighty Doki Doki Literature Club!,

but Simulacra is even more engaging due to its realism and everyday

relatability. Like all good visual novels, the game also has plenty of

replayability value thanks to several different endings. You’ll never look at

social media the same way again after playing some Simulacra.

 Simulacra: Pipe Dreams (2018)
Fueled by the success of the first Simulacra, Kaigan Games released a free-

to- play sequel, Pipe Dreams, a year later. Although not as lengthy as the

first Simulacra, this game, too, provides a couple of hours of nonstop thrills

with no major flaws.

Figure 3-10. Simulacra reels you in with its realism

Chapter 3 the Modern Visual noVel

102

Once again you’re at a cell phone, going through its contents. This

time you’re communicating with your friend Teddy, who’s fallen on some

hard times. As is often the case these days, you communicate with other

characters via text messages. The odd video recording from one of them

breaks up the potential monotony well. Pipe Dreams is riddled with

amusing fake ads to demonstrate the phenomenon of ever-increasing

commercialization of our time.

Simulacra: Pipe Dreams works on many levels. For one, it’s a critique

of the modern video game industry; a quaint minigame is used to

demonstrate the flawed, overblown nature of the business. The other major

theme is addiction in general, which is naturally intertwined with the

aforementioned industry. Although said minigame becomes quite repetitive

(i.e., FlapeeBird, a tribute to Flappy Bird by Dong Nguyen), it never turns

into a chore. Simulacra: Pipe Dreams is a fine sequel to a great visual novel.

 How We Do It – Modern Tools for Visual
Novels
Although some of the old-school tools from the earlier decades can still

be used to create perfectly compelling text adventures, the majority

of modern games are naturally created with a new generation of

software. The main software focus of this book is on Ren’Py, Twine, and

TyranoBuilder, but it’s useful for any developer to know what other tools

are on offer for making these types of video games. Let’s take a look at

these modern tools and what they bring to the table.

 Ren’Py
Out of all the software presented in this chapter, Ren’Py (www.renpy.org/)

is the closest to a traditional programming language. It may very well be

the most complicated piece of software out of the five featured here, but

Chapter 3 the Modern Visual noVel

http://www.renpy.org/

103

what Ren’Py offers is generous amounts of flexibility with very few

limitations. It’s simply in a league of its own, having the most features

while being relatively easy to master.

Ren’Py started its run way back in 2004 and it’s still going strong. Many

popular visual novels have been developed with it, including the wildly

successful Doki Doki Literature Club! and Digital: A Love Story, to name

just two. The system deploys for numerous platforms, that is, Windows,

Mac, Linux, iOS, and Android. Best of all, it’s a free download with no

hidden fees at any stage of the development. Games made with Ren’Py are

also quite easily localized to any language you can think of.

There’s very few limitations to the kind of audiovisual finesse you can

implement with Ren’Py, from impressive scene transitions to playback of

most audio and video formats to add atmosphere to your games. We’ll be

looking in depth at Ren’Py later in the book, but at this stage you should

just know it’s the reigning champion of visual novel engines, going from

strength to strength with each update it receives.

 Twine
Twine (twinery.org) is a hypertext-based game engine. Like Ren’Py, it’s

open source and completely free to use. Deploying for online, Windows,

Mac, and Linux, the software lends itself well to more minimalist games.

It’s great for beginners, as it doesn’t require any programming experience.

However, more advanced game makers can extend the capabilities of

Twine via its JavaScript and Cascading Style Sheet (CSS) support. While

many games made with Twine are of the text-only variety, you can inject

some amount of audiovisuals into your projects, too. It does pale in

comparison with the support for multimedia in Ren’Py and some other

systems featured in the segment. Keep that in mind if video files and/or

exotic audio formats are your thing.

Chapter 3 the Modern Visual noVel

http://twinery.org

104

Now, there are basically three choices for the overall approach to your

Twine projects, called Harlowe, Snowman, and SugarCube. For one, they

define the presentational style of your adventure. Harlowe provides the

classic Twine look. Snowman represents the most minimalistic approach

for more advanced creators, while SugarCube is the most modern style set

with support for saving games out of the box.

Twine comes in two flavors, Twine 1 and Twine 2. Although the latter

is more recent and thus advanced, some developers prefer the first version

so it’s still available for download. The user interface in Twine is graphical

and thus user-friendly. Not only is the development system available for

your desktops, you can also try making games online at the official site

using Twine 2: http://twinery.org/2/#!/welcome

A good example of a well-made Twine adventure is Open Sorcery by

Abigail Corfman. There’s something quite charming about the whole

Twine aesthetic.

 Adrift
Sometimes called the easiest-to-use tool for creating text adventures, Adrift

is free to download. The mouse-driven developer interface is certainly

comfortable to use (see Figure 3-11). While being Windows-only software,

the system deploys for other platforms, that is, macOS, Linux, and online.

Game data is organized well in the Adrift editor, consisting of separate

categories for locations, items, characters, and so on. Although the system

is designed for old-school adventures (i.e., text-only interactive fiction)

instead of visual novels, some support for static images and audio files is

included. Some more advanced features, like array data structures and

dynamic variables, can also be easily implemented in Adrift without any

issues. However, should a debutante developer get intimidated by these

more advanced features, they can all be made to disappear by switching on

a “Simple Mode.”

Chapter 3 the Modern Visual noVel

http://twinery.org/2/#!/welcome

105

Being completely mouse-driven and not requiring any coding, Adrift

is one for the beginners. A cozy piece of software, it is intuitive and fun

to use. From a consumer’s point of view, Adrift also has an impressive

auto-mapping feature in its output, making the gamer, too, feel more

comfortable playing these games. Adrift is well worth the small donation

the developer is asking for.

You can get Adrift here: www.adrift.co

 TyranoBuilder by STRIKEWORKS (2015)
For a measly $15 or so, you get a beginner-friendly, intuitive, and

powerful tool for making current-generation visual novels. That tool is

TyranoBuilder, and although it doesn’t let you go “under the hood” like

Figure 3-11. Adrift has a logical and well-organized user interface

Chapter 3 the Modern Visual noVel

http://www.adrift.co

106

some other software, its output is fully commercially viable. Visually,

it’s on par with Ren’Py, with extensive support for video and image file

formats. In fact, TyranoBuilder one ups Ren’Py in the visual category, since

it includes an impressive character animation system called Live2D. Said

system may be implementable in Ren’Py, but probably not as easily.

TyranoBuilder is a very friendly piece of software. Even prior to

getting down and developing with it, all important game settings are

presented in an understandable manner. The interface itself subscribes to

a so-called “drag and drop” approach, where various actions (e.g., display

text, change scene) are moved onto each scene to eventually make a

game. Positioning characters in these scenes is fun and instinctual, as it

should be, and an included asset library of visuals will get you started just

fine. A preview window (see Figure 3-12) is summoned atop your project

file for easy testing.

Figure 3-12. TyranoBuilder offers a clean, intuitive interface and a
handy, floating preview window

Chapter 3 the Modern Visual noVel

107

The TyranoBuilder main application is available for both Windows and

macOS. The software deploys for Windows, macOS, and online. Additional

platforms (i.e., iOS and Android) are supported via third-party software.

You can get TyranoBuilder here: http://tyranobuilder.com/buy

 VN Maker
Degica is behind the very successful RPG Maker line of software. In 2017

they released the VN Maker (Visual Novel Maker) tool dedicated to the

development of visual novels. Geared toward beginners, it’s easy enough

to use, but is let down by unpredictable behavior and bugs. Also, at around

$55, it’s somewhat expensive especially when considering its competition

of completely free tools.

Like TyranoBuilder, VN Maker includes the very impressive Live2D

character animation technology. However, this time it’s only available

as a $20 DLC (i.e., downloadable content). The user interface, while not

terrible, isn’t as intuitive as its competitors’ efforts. The learning curve is

steeper. Thankfully, some good tutorials and other resources have become

available since the product’s initial release. For advanced developers, the

software offers additional possibilities in the form of JavaScript support.

Also, localization in VN Maker into any language is well executed.

One of the reasons we won’t be delving in depth into VN Maker

in this book is in its issues. Contrast the slowdowns and bugs with the

price and it’s apparent VN Maker isn’t the best choice for development.

The potential, however, is there. Who’s to say what kind of visual novel

powerhouse this software may transform into after a few updates?

You can get VN Maker here: http://visualnovelmaker.com

Chapter 3 the Modern Visual noVel

http://tyranobuilder.com/buy
http://visualnovelmaker.com/

108

 In Closing
After reading this chapter, you’ll have learned about the following topics:

• The most common tropes related to visual novels

• The most noteworthy modern visual novels and what

factors contributed to their success

• Which tools are prominently in use for visual novel

creation today

In the next chapter, we’ll get our feet wet with visual novel

development by actually working in Ren’Py, TyranoBuilder, and Twine.

Chapter 3 the Modern Visual noVel

109© Robert Ciesla 2019
R. Ciesla, Game Development with Ren’Py, https://doi.org/10.1007/978-1-4842-4920-8_4

CHAPTER 4

Working in
Ren’Py, Twine, and
TyranoBuilder
In this chapter we’ll be taking a hands-on approach with the three featured

tools for visual novel creation: Ren’Py, Twine, and TyranoBuilder. We’ll

go through the main elements to the user interfaces for each system and

explore the main features found in said tools. Although the main focus of

this book is on Ren’Py due to its most robust feature set and customization,

the other two tools both offer compelling approaches which may be more

suitable for some developers.

The tutorials in this chapter will be kept concise and simple. More

advanced techniques for the aforementioned three tools will be explored

later in this book in the form of three mini adventures. But for now, let’s

simply recap the main features of the three, shall we (see Table 4-1)?

110

 Ren’Py in Detail
Ren’Py is a powerful tool devised exclusively for writing visual novels,

based on the Python programming language. The software is freely

downloadable with no restrictions for use. It allows for the creation of fully

commercially viable titles for multiple systems and has a great track record

in the industry. Successful visual novels created with Ren’Py include Doki

Doki Literature Club! and Digital: A Love Story (see Chapter 3). There’s also

a huge community of developers around the product with active forums.

Download Ren’Py from the official web site: www.renpy.org

Ren’Py supports most common image and audio formats. Some issues

with specific types of video files have been reported and do persist: your

mileage may be of the fluctuating kind. However, audiovisual formats in

Table 4-1. The main features of Ren’Py, Twine, and TyranoBuilder

Tool License Deploys for Available for Best Suited for

Ren’Py Free Windows,

macOS, Linux,

iOS, Android

Windows,

macOS, Linux

Multimedia-rich visual

novels

Twine Free Windows,

macOS, iOS,

Android,

Linux, online

(HTML5)

Windows,

macOS, Linux,

online

Minimalistic interactive

fiction with some

support for visual

elements via Cascading

Style Sheets (CSS) and

JavaScript

TyranoBuilder $15 (Q1

2019)

Windows,

macOS, iOS,

Android

Windows,

macOS

Multimedia-rich visual

novels with extensive

use of character

animation using Live2D

technology

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

http://www.renpy.org

111

general are well supported in Ren’Py, and there shouldn’t be many issues

concerning them.

Debuting in 2004, Ren’Py is still a frequently updated and very popular

tool for visual novel development, showing no signs of stagnating anytime

soon. Now, let’s get started with this fine piece of software.

 How Ren’Py Works
Ren’Py is basically split into three components: the launcher program (see

Figure 4-1), the script files, and the audiovisual elements (i.e., images and

audio files). The launcher is basically a project manager which allows you

to create and access the various game projects you may be working on in a

streamlined fashion.

Figure 4-1. The Ren’Py launcher screen

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

112

Now, all script files in Ren’Py have the same file extension of .rpy

(e.g., script.rpy). These are of the common text-file variety and can be thus

edited with practically any text editor. Ren’Py doesn’t have a built-in editor

for its script files per se. However, a selection of free text editors is available

for download on both the Ren’Py web site and from inside the Ren’Py

launcher (i.e., if one is not installed, the program will provide you with a

selection of editors).

 Starting a New Project
Projects are easily created by simply clicking “Create New Project” in

the launcher. This new project will be added to the list displayed on the

launcher window. After clicking said link, you’ll be asked to select a file

directory and enter a name for your game. All of your project files will be

residing inside the chosen directory.

Next, you’ll get to choose a screen resolution for this project. On offer

are 1066 x 600, 1280 x 720 (HD), and 1920 x 1080 (Full HD). This choice

should usually depend on the size of the project artwork. Naturally,

it’s easier to scale down artwork rather than to scale up and still keep

it presentable (i.e., artwork in 1920 x 1080 looks fine scaled down to

1280 x 720, but not necessarily vice versa). Even older computers are

perfectly capable of running Ren’Py visual novels in Full HD resolution

as the projects aren’t power-hungry unlike, say, games of the 3D variety.

Again, the decision for the resolution should rest on the (projected)

specifications of your art files.

Finally, you’ll be asked to select a color theme for your game. Pick

one that suits your sensibilities best; this color theme can be changed

later if you so choose. After this step, a skeleton project template will be

created. Support for setting reading speed, loading, and saving will be

automatically generated for each new game in Ren’Py. Clicking “launch

project” in the launcher will let you try out this template right away.

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

113

 The Ren’Py Workflow
So the launcher serves as the central hub for your Ren’Py projects. You

could access the various files manually from the project directory, but it’s

often easier to do so via the launcher. In addition, you can perform several

handy special actions with the program (see Table 4-2).

Table 4-2. The Ren’Py launcher actions

Action Description Useful when

Navigate
Script

Allows you to quickly find files,

labels, and other items in your

project

pinning down specific parts of

your project

Check Script
(Lint)

runs the Lint script to make sure

your game scripts are error-free

encountering unusual behavior

from your visual novel project,

checking for errors prior to

release, just in case

Change/
Update GUI

Allows you to change the color

scheme, user interface buttons,

and other aspects of the in-game

graphical user interface (gui)

The need for a new look for your

visual novel emerges

Delete
Persistent

Deletes saved games and other

persistent data from your project

Testing your game from scratch,

ironing out any strange behavior

Force
Recompile

recompiles all script files in your

project

ironing out any strange behavior,

importing an older project into a

newer version of ren’py

Build
Distributions

Creates the executable files

of your game in the requested

format (e.g., pC, macOS, Linux)

you’re ready to distribute

your game to your requested

platforms

(continued)

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

114

As you can see, Ren’Py is quite packed with features. They may seem

daunting for the beginning visual novelist, but the core principles of the

software aren’t all that complicated. It’s just that the team behind Ren’Py

perhaps opted for more traditional methods of implementing a workflow.

In time and with enough motivation, you’ll be generating translations and

deploying for Android like it’s your second nature.

 The Basics of Ren’Py Scripting
Ren’Py is a very flexible yet simple scripting language. We’ll now take a

look at the fundamentals of what it all looks like and how it works. The

following is a rather rudimentary Ren’Py game script which nonetheless

demonstrates how to develop visual novels using Ren’Py.

Table 4-2. (continued)

Action Description Useful when

Android Starts the export process for

Android by installing the free

Ren’Py Android Packaging Tool
(RAPT)

you’re releasing your visual novel

for the Android platform

iOS Starts the export process for iOS

by installing the free Renios tool

you’re releasing your visual

novel for the iOS platform (ipad,

iphone)

Generate
Translations

Translate all in-game writing to

other languages using language

templates

The need or opportunity to

release your games for additional

markets arises

Extract
Dialogue

exports in-game dialogue (or

other text) to an external file in

regular text and/or spreadsheet

format

proofreaders or other team

members need to read the

material without playing the

game

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

115

Note Character image files should share the names of the
shorthand descriptions in the script; for example, in our little
listing the default portrait for Markus should be named mar.png, in
accordance with the shorthand name defined in the script (shown
in bold). These files should also be placed in the images directory of
your project.

init:

 $ mar = Character('Markus')

 image home = Image("home_of_markus.jpg")

 image markus happy = Image("markus_happy.png")

 image markus sad = Image("markus_sad.png")

label start:

 scene home

 show markus happy

 mar "Here I am, at home and happy!"

 hide markus happy

 show markus sad

 mar "But the milk seems to have run out."

 "Markus is visibly saddened by the lack of dairy products."

 hide markus happy

 show mar

 mar "Is it too late to go to the grocery store?"

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

116

Scripts in Ren’Py start with the initialization statement (i.e., init:)

under which we define the backdrop and character graphics and other

audiovisual assets in a visual novel. These can be then later referenced in

the game in an elegant fashion. In our example, the image file home_of_

markus.jpg is associated with the variable home. Whenever our protagonist

is at home and the image file needs to be summoned, it can be done by

simply invoking the variable name (i.e., home) instead of the full file name

(i.e., home_of_markus.jpg).

Similarly, whenever we need to present a specific character graphic,

such as a sad or a happy Markus, we assign these sad and happy character

image files with variables and invoke those instead of the file names. In our

example, only the command of “show markus happy” is needed to display

a happy protagonist. No need to use potentially complicated file names to

stain our source code. In the preceding text, we have only two states for the

protagonist (i.e., happy and sad), but Ren’Py naturally allows for as many

states as you need to convey different emotions.

Now, the game proper begins with a label statement (i.e., label start:).

It’s after this point that things begin appearing on your screen. Labels

are “jump cuts” in a Ren’Py game, which are usually triggered by user

choices. Labels can be thought of as scenes and moving between them as

scene changes. In our more basic example, there’s only one label and user

interaction has no bearing on the proceedings: the player is simply clicking

to see the next piece of dialogue with no choices available. You may name

these label elements any way you wish (e.g., label work: or label holiday:).

Right after our label, there’s a character definition statement. We

simply associate the arbitrarily chosen variable m with the character name

Markus. After this point the letter “m” is used to display dialogue spoken

by said character. The words “Here I am, at home and happy!” will be then

displayed onscreen in a typewriter-like fashion, as is often the case with

visual novels. It’s all quite simple and effective. Let’s next take a look at

some of the core elements in Ren’Py (see Table 4-3).

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

117

Table 4-3. Ren’Py language key elements

Element/
Statement

Description Example(s) of Use

init: initialization label. used to

declare file name aliases

and other persistent data.

is typically followed by

image definitions

init:

image garage = Image

("garage.jpg")

image used to define aliases to

image files

image billy happy =

Image("billy.jpg")

image billy angry =

Image("billy2.jpg")

label Labels assign aliases to

specific access points in the

program listing

label garage:

"We're in the garage!"

Character
macro

gives a shorthand alias to a

game character

$ b = Character('Billy')

$ c = Character('Christopher')

scene Deletes all visuals onscreen

before summoning a new

background graphic

scene garage

show Shows a character portrait

on top of the background.

you may give additional

descriptive terms to your

images, such as "James

happy" or "James angry"

show billy happy

(continued)

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

118

 Creating User Interaction: Menus
Although a genre of fully linear visual novels exists (called the kinetic

novel), it’s generally a good idea to give the player room to maneuver in

your adventures. For this, we introduce the menu element. These are used

in combination with labels and our new friend, the jump command. See

the following listing for an example of said element.

Table 4-3. (continued)

Element/
Statement

Description Example(s) of Use

hide Hides a character portrait hide billy happy

Say
statement

Outputs text onscreen,

either for narrative purposes

or assigned to a character

using the character macro

"The air is pregnant with

silence."

b "Christopher! Are you

here?"

c "Yes, Billy. I'm here."

Transitions Fade images smoothly using

a variety of effects (e.g.,

fade, dissolve). Summoned

by the command with

show billy angry

with fade

hide billy angry

with dissolve

play

sound

plays an audio file in one

of the numerous formats

supported by ren’py

play sound "soundfx1.ogg"

pause pauses the game. if a value

in seconds is omitted, the

game will remain paused

until the player presses a

mouse button

pause 2.0

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

119

Notice how we’re using Ren’Py character aliases for easy formatting,

referring to both Christopher and Billy simply as c and b, respectively, as

defined in Table 4-3.

b "Hey, Christopher, wanna get out of here?"

pause 2.0

menu:

 "Yes. Let's go.":

 jump outsideworld

 "No. Let's stay put.":

 jump stayput

label outsideworld:

 c "Ah. Fresh air at last!"

 jump endstory

label stayput:

 c "Well, the garage *is* a pleasant space."

 jump endstory

label endstory:

 "And so ends our monumental tale."

 play sound "fanfare.ogg"

 Indentation and Text Blocks
One of the most common causes for errors in Ren’Py is the incorrect

use of indentation. The language is very sensitive to whitespaces and

even slightly off text placement. An incorrectly formatted script simply

won’t run in Ren’Py. The language interprets your script in blocks of text,

which need to adhere to a specific logic. In general, it’s a good idea to use

four spaces for making new text blocks, as is the case with the following

example.

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

120

"This here sentence is a part of block one."

if True:

 "This sentence is part of a second block."

 "Yes, this sentence is also part of a second block."

 "Would you have guessed it? This belongs in said block, too."

"And here we go back to block one."

You must keep the amount of whitespaces (i.e., empty characters)

exactly the same in each block or Ren’Py gets very confused. In our

example, block one statements feature zero whitespaces before them. In

the second text block, however, each of the statements has four whitespaces

before it. Should any one of the statements in the second block feature a

different number of spaces before it, the program wouldn’t run.

 Conditional Statements: if, elif, else
In the previous listing, a new element peeked out at as the mighty if, that is,

the conditional statement. These are used to examine the state of variables.

Now, variables are arbitrarily named temporary storage elements for

recording and manipulating in-game information, such as a character’s

energy level or other attributes. Let’s see the conditional statement in more

detail in the next listing, shall we?

Create a variable called "energy" and assign to it a random

value between 40 and 100

We could've just used something like "$ energy = 100", but we

are a curious bunch

$ energy = renpy.random.randint(40, 100)

if energy >= 100:

 b "Your energy level is optimal!"

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

121

elif energy >= 50:

 b "Your energy level is acceptable."

else:

 b "Darn it. You're almost out of energy."

 play sound "klaxon.ogg"

 pause 4.0

In the preceding example, we are examining the contents of the

variable called energy. We do this using the conditional statement if. If said

energy variable is set to 100 or greater, we display an enthusiastic message

of encouragement. Next, we introduce the elif statement. This is short for

else if. This branch of the program is executed should energy be greater

or equal to 50, but less than 100. Finally, we have the else statement. This

branch is triggered should energy fall below 50.

Any set of commands can be issued after these conditional statements;

you’re not limited to displaying text after them. As you may have gathered,

we did play a klaxon sound effect and paused the proceedings for 4

seconds in the last branch of our example.

 More on Control Statements
Using labels and jump commands is not the only way for fluent Ren’Py

script control. Another useful structure consists of label, call, and return

commands. The combination of these statements is demonstrated next.

c "Let's drink some healthy soda."

call drink_soda

c "Now we're done drinking soda."

return

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

122

label drink_soda:

 c "Mm. Delicious, isn't it?"

 return

The preceding example will output the following: “Let’s drink some

healthy soda. Mm. Delicious, isn’t it? Now we’re done drinking soda.” Using

the call command, we jump to the label of drink_soda from which we come

back to the main listing using the return command. For one, this technique

allows you to reuse parts of your code (i.e., the labels with return statements)

at specific intervals in your game. Again, you’re not limited to merely

displaying dialogue with said technique. It should also be noted that the

return statement prior to the label drink_soda makes sure we jump back into

the very beginning of the listing; this is a good way to end a Ren’Py script.

 Twine in Detail

Note Twine is currently in its second major incarnation. This book
deals exclusively with Twine 2.

Twine is a fine, intuitive choice for those who appreciate a more low-

key approach to game-making. Out of the box, the output is often rather

minimalistic in audiovisual terms and that can be a good thing. Also, at the

price of $0, you could do much worse. Twine’s user interface is designed

with said minimalism in mind with excellent results. Let’s take a look at its

main components, shall we?

Download Twine from the official web site: www.twinery.org

As you can see, the Twine launcher (see Figure 4-2) is quite a bit less

complicated than the one in Ren’Py. The main items of interest on it are

simply the green button, which creates a new story template, and the

previously stored adventures on the left.

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

http://www.twinery.org

123

Now, creating a new project is achieved by, as you guessed, clicking the

aforementioned green button entitled “+Story.” This will result in Twine

asking for a game title, which can be changed later if the need arises. After

this you’re taken to the main editor screen.

Game locations in Twine are called passages. At the start of a new

project, you’ll see a single passage which is represented by a square item.

The contents of this passage can be edited by clicking the pencil icon on

the item. This will take you to the room-editing screen, where you get to

describe the location/room the player starts his or her journey. Let’s type

something silly in there, like “Billy sure would enjoy a hot air balloon right

about now!”

Figure 4-2. The Twine launcher screen

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

124

 Linking Passages Together
After experimenting with Twine and creating a couple of different passages

(i.e., locations), you may wish to link these together to create interaction

and some semblance of gameplay. The following is the description for the

passage we just typed. Let’s add a link to another location to it:

Billy sure would enjoy a [[hot air balloon]] right about now!

By adding dual square brackets around a trigger word or expression,

we let Twine know this is a point of interaction in the game. Usually, this

leads to the player traveling to a new location.

But wait, shouldn’t we have created some sort of hot air balloon room/

passage for Billy before linking to it? The answer is no. Twine is clever

enough to automatically create new passages when the developer merely

references them in an existing location. Try it out.

Now we have two passages: the default room created by Twine and one

called “hot air balloon.” Let’s say we next want to create a third passage

which deals with Billy crashing into a mountain. Let’s edit the passage

called “hot air room” to look something like this:

Oh no! Billy is out of [[luck!|mountain]]

What happens now is Twine creates a new passage called “mountain.”

Although the trigger word is “luck!” in the passage, we are using a special

pipe character (i.e., |) to designate an alternate name for the new passage-

to- be. Passages in Twine don’t thus always need to be identical with their

links. This is very handy from the developer’s point of view, especially with

larger projects.

 Twine and Audiovisuals
Basically, Twine works on top of the good old HTML framework, by now

unfamiliar to none, from a consumer’s perspective at least: by now most

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

125

people have surfed the Web. Adding images and audio to your Twine

games works the same way as it does on any web site. Specific HTML

tags are issued for the desired effects. Twine also supports Cascading

Style Sheets (CSS), making sweeping changes to color themes and fonts a

breeze, even on the fly. We’ll take a closer look at CSS later in this chapter.

For now, see the table of the most useful HTML tags in the context of using

them in Twine (see Table 4-4).

Table 4-4. Useful HTML tags in Twine

Html Tag Function Example

 Displays image files in

almost all common formats

<a href> Accesses a site on the

internet

robert’s Site

<audio> plays digital audio files in

mp3, Ogg, and wav formats

<audio autoplay>

<source src="audio/wind.ogg"

type="audio/ogg">

</audio>

<video> plays (local) video files in

mp4, Ogg, or WebM formats.

Width and height attributes

are useful and self-

explanatory. The autoplay

keyword plays back the file

without user input

<video width="400" height="240"

autoplay>

<source src="movie.mp4"

type="video/mp4">

<source src="movie.ogg"

type="video/ogg">

</video>

<iframe> used for embedding

youTube videos into your

projects

<iframe width="420" height="345"

src="https://www.youtube.com/embed/

tgbnymZ7vqy?autoplay=1"> </iframe>

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

126

The preceding tags and more are simply embedded within each

passage in Twine, intermingled with the script at your leisure.

 The Three Varieties of Twine
Twine actually contains three slightly different approaches to game design.

These are referred to as story formats. Each of them provides a different

set of macros (i.e., built-in commands) and JavaScript functionality. In

this chapter we’ll focus on the SugarCube story format. The other two are

called Harlowe and Snowman, and they will be examined in detail later

in this book. All of them cater to different needs of developers at various

stages of experience.

 Twine’s Many Macros
In addition to HTML support, Twine also includes some rather handy

macros that facilitate many features such as audio playback and variable

manipulation (see Table 4-5). Macros are utilized simply by typing them

into each passage alongside the dialogue.

You can use either local (i.e., stored on your computer) or online

audiovisual files in Twine. However, it’s generally recommended to stick

to local files as online resources can be taken down on a whim by the site

owner(s).

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

127

Table 4-5. Some useful macros for SugarCube built into Twine

Macro Function Example(s)

<<cacheaudio>> prepares an audio file for

playback, assigning it with a

handle

<<cacheaudio "forest"

"forest.mp3">>

<<cacheaudio "wow"

"http://www.soundbank.com/

wow.mp3">>

<<audio>> plays an audio file

plays an audio file in a loop

Stops the playback of an audio file

Seeks to specific time in a sound

(in seconds)

Sets the volume of a sound using

the range of 0 to 1 and plays it

<<audio "forest" play>>

<<audio "wow" play loop>>

<<audio "forest" stop>>

<<audio "music1" time 30>>

<<audio "music1" volume

0.2 play>>

<<setplaylist>> Collects a number of audio files

into a single continuous playlist.

Works in conjunction with

<<cacheaudio>>

<<cacheaudio "song1"

"song1.mp3">>

<<cacheaudio "song2"

"song2.mp3">>

<<setplaylist "song1"

"song2">>

<<playlist>> plays back the playlist set up

with <<setplaylist>>

Halts the playback of the playlist

<<playlist play>>

<<playlist stop>>

<<stopallaudio> Stops the playback of all audio

files

<<stopallaudio>

<<goto>> Jumps immediately into a new

passage

<<goto "pyramids">>

(continued)

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

128

As you can see, Twine features quite a bit of built-in commands to

help you make the best adventures out there. We have only scratched the

surface in this chapter. In addition, the JavaScript functionality of Twine,

although tricky for novices, opens up a world of possibilities for more

advanced features. With enough persistence, most things are possible with

Twine.

 Twine’s User Interface Functions
The interface and workflow in Twine are indeed refreshingly simple

compared to, say, the ones in Ren’Py (as powerful as that software is). Let’s

take a look the few options we haven’t tackled yet.

Table 4-5. (continued)

Macro Function Example(s)

<<back>> goes back a number of passages

goes back one passage with the

link text "restaurant"

<<back go 5>>

<<back "restaurant">>

<<display>> Displays a second passage

within the current passage

<<display "pyramids">>

<<script>> executes JavaScript <<script>> alert(‘Hello

there!’); <</script>>

<<set>> Manipulates a variable <<set $money to 0>>

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

129

Twine’s editor screen has a nice, blueprint-like look, just waiting to

impress the engineers among us (see Figure 4-3). The network of passages

is represented by boxes and arrows on several levels of magnification, if

necessary. This gives you a very clear picture of the proceedings.

Now, by clicking your game title, a menu of options appears (see

Table 4-6). Let’s take a look at what it has to offer.

Figure 4-3. The Twine editor screen

Table 4-6. The Twine game menu options

Option Description Useful for

Edit Story
JavaScript

Allows the input of custom

JavaScript, to be executed at the

beginning of your game

More advanced users who are

augmenting Twine with new

functionality using pure JavaScript

Edit Story
Stylesheet

Allows the editing of Cascading

Style Sheets (CSS) associated

with the project

improving and experimenting with

any aspect of the visuals in your

games

(continued)

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

130

Table 4-6. (continued)

Option Description Useful for

Change
Story
Format

Changes your project’s

development approach

experimenting with the three

available story formats (Harlowe,

Snowman, and SugarCube)

Rename
Story

Allows you to change your game

name

experimenting with game titles. Can

be done at any stage of the project

without issues

Select All
Passages

Selects all passage boxes in the

editor view

rearranging your story elements as

it grows in size

Snap to
Grid

Makes all passage boxes align

with the editor grid

Organizing your passages; it’s a

matter of taste

Story
Statistics

Displays pertinent information

about your game, such as the

number of passages, words, and

(text) characters

keeping score on the size of the

project, double-checking on the iFiD

(see “A Few Words on the iFiD” later)

View
Proofing
Copy

Displays the story in a single

text file

providing your story for proofreading,

checking for consistency

Publish to
File

Creates an HTML file of your

story

Delivering your project to the desired

platforms (Windows, Mac, iOS,

online, etc.)

In addition to the aforementioned functions, Twine also allows you

to conduct searches using the “Quick Find” toolbar in the editor. This

function highlights all of the passages that contain the typed strings in real

time, no less.

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

131

 A Few Words on the IFID
As you might’ve noticed, Story Statistics in Twine reveal a long string

of characters referred to as an IFID. Since 2006, most games in the

genre of interactive fiction have been issued with a 32-digit Interactive

Fiction IDentifier (IFID). This unique, universal identifier is meant to be

permanent. Twine does its best to assign each of your projects one that

isn’t in conflict with any other existing titles.

Read more on the IFID on its official web site: https://ifdb.tads.org

 Some Useful CSS Selectors
The visual layouts in Twine games are primarily created using Cascading

Style Sheets (CSS). This is a mature online standard pretty much behind

every web site’s look and it works great with Twine. CSS is inserted using

the Edit Story Stylesheet button in the editor view. For those unfamiliar

with CSS, we’ll now review some key elements, called selectors, providing

examples of each (see Table 4-7).

Table 4-7. Useful selectors (i.e., CSS tags) to be used in Twine

Selector Description Example

body Controls the whole background’s

attributes, e.g., lets you adjust the

background color, font color, style, and

size

body {

background-color: white;

}

Sets the game background

color white

a

a:hover

Controls the links in a document

Controls the way links look when the

mouse pointer hovers over them

a { color: red; }

Sets all links to bright red

a:hover{ color: yellow; }

Sets all links to yellow when

hovered over

(continued)

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

https://ifdb.tads.org

132

The preceding examples are the tip of the iceberg of what you can

achieve with CSS. Although Twine games are primarily about the story,

the odd visual treat here and there can boost a game’s atmosphere

considerably.

 TyranoBuilder in Detail
TyranoBuilder offers a user-friendly, mostly mouse-driven game-making

experience for both beginners and more advanced developers alike.

Components are dragged onto each scene for tasks vital to any type of

visual novel (see Figure 4-4). This way you get to focus on writing with the

trade-off being customization and file format support; TyranoBuilder isn’t

exactly Ren’Py in that regard.

Download TyranoBuilder from the official web site:

www.tyranobuilder.com

Selector Description Example

#ui-bar Sets the left side user interface bar in

Twine’s SugarCube story format

#ui-bar { display: none; }

Hides the user interface bar

#story Sets the right side (i.e., the story display)

in SugarCube

#story { margin-left: 2.5em; }

Sets the left margin of the

story area

.passage Targets the story area background .passage { color: blue; }

Table 4-7. (continued)

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

http://www.tyranobuilder.com

133

TyranoBuilder shines in ease of use. It won’t take long for a complete

novice to churn out some type of visual novel or other. Although the

software provides a great deal of extendibility via its built-in TyranoScript

support, none of that is needed to create commercially viable products.

TyranoBuilder exports to most major platforms (i.e., Windows, Mac, iOS,

Android, online) and is truly a drag-and-drop piece of software.

 The TyranoBuilder Workflow
The launcher program in TyranoBuilder needs no explanation. You’re

simply presented with a list of previously created titles or the option to start

a new one. After choosing a project, the main view will pop up. It’s from

here that you add scenes, type in your masterpiece of a visual novel script,

Figure 4-4. The TyranoBuilder user interface

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

134

and insert components to create your game. It won’t take long to master

and is, in general, a pleasure to use. In each scene, the aforementioned

components are simply executed from top to bottom.

The components in TyranoBuilder can roughly be divided into three

categories: story flow, audiovisual asset control, and scripting. A large

swathe of these components are dedicated to visual effects; however, there’s

no real need for a massive amount of story-related elements. TyranoBuilder

has everything you need for compelling stories to be told. Let’s now take a

look at some of the core components of this software (see Table 4-8).

Table 4-8. The main TyranoBuilder components

Component Description Component
Group

Text Displays dialogue Story

Label Assigns a label for skipping to when necessary Story

Jump Jumps to a label in any scene Story

Page Break Clears onscreen dialogue, moves the text placement

to the top of the display

Story

Stop Stops the story from advancing until user action Story

Branch Button Creates a button for user interaction Story

Wait pauses the story for a defined duration (set in

milliseconds)

effects

Join Scene Adds a user-defined character (created via the

Characters option in the top project menu) into a scene

Characters

Exit Scene removes a character from a scene Characters

Change
Background

Changes the background with an optional transition

effect, available in 16 varieties

images

(continued)

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

135

 A Two-Scene Adventure
To get an idea of how TyranoBuilder works, just create a new project from

the launcher. You’ll be asked for a number of things such as the type of

game, display size. Choose any configuration you’re comfortable with: no

specific settings are needed at this point.

When starting a new project with TyranoBuilder, you’ll be asked

whether you want to start work on a new visual novel or a sound novel. By

now you must be familiar with the genre of visual novel. A sound novel

is a lesser known category of game. The difference between the two is in

the presentation. Like their name states, visual novels contain a plethora

of visuals. A sound novel, on the other hand, is a more minimalistic game

with the writing often occupying the entire screen. Unlike one might think,

sound novels rarely contain voice acting. However, games in this genre

often feature ample use of music and sound effects. The term sound novel

was solidified by console developer Chunsoft, who launched their business

in the mid-1980s.

Now, we’ll take the default new TyranoBuilder project and add some

functionality to it. Try running the freshly created project to get a feel of

what the typical output of the software looks like (see Figure 4-5).

Component Description Component
Group

Play Sound
Effect

plays an audio file with an optional fade-in transition,

may be looped if needed. Volume can be set between

0% and 100%

Media

Stop Sound
Effect

Stops a sound effect with an option fade-out transition Media

Table 4-8. (continued)

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

136

Next, exit the project and focus your attention on the left side of the

TyranoBuilder interface (see Figure 4-6). There’s three segments to this part

of the interface: components, assets, and scenes. First, click the scenes tab and

New Scene. Name the scene however you wish and click create. Now we’re

going to experiment with displaying dialogue and switching to a new scene.

TyranoBuilder will have changed views to this new scene. Click scene1

on the gray bar on the right to go back to the original scene. Then select

the component submenu from the left. Drag the component called Branch

Button onto the bottom part of the component view on the right. A new

panel will appear on the far right side of the interface. This is where you

enter any pertinent data for most of the components. Now, the crucial

attributes for the branch button element are Target, which sets the label to

jump to; Text, which names the button; and Positioning Tool which allows

you to set the position of the button using a graphical interface.

Figure 4-5. The TyranoBuilder default project. Always with the
classrooms.

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

137

Note The stop component should be on the bottom in each scene.
it is quite a show-stopper of a component. if you put it above the
branch button component, for one, the button will never appear.

For now, we won’t put anything in the Target element. However, we will

enter a name for the button using the text element and position the button

using the positioning tool. Name and position the button as you will. Click

accept after both operations to finalize your choices. Save the scene.

Now, click the other scene on the gray bar. There’s nothing but a

single text element by default. Double-click it and edit the contents of the

dialogue to your liking. Next, drag a label component onto the top of the

component list, before the text component. Click this new component and

enter a name for the label. Let’s assume you typed “label1” for the sake of

convenience. Save the scene and go back to scene1.

It’s time to revisit the previously introduced branch button. Click it

and select Location. This is the box we use to select which scene we will be

hopping to. Next, click Target. Here we define the exact label the player will

be visiting via the button. Select label1 (or however you marked the label

in the second scene). Save the scene and run the game. The project should

Figure 4-6. The TyranoBuilder user interface in the default project

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

138

now display some dialogue, after which a button should appear, which

will take you to the second scene and display its dialogue. This is how we

create and navigate scenes in TyranoBuilder.

 Characters in TyranoBuilder
An important aspect to any visual novel, TyranoBuilder offers a simple

way for managing your characters. To add characters, you simply click the

cogwheel icon with the portrait on it. Enter a name for your protagonist.

You now have a new character to use in your game. You’ll be able to assign

visuals to him/her and utilize the character components of TyranoBuilder.

Introduce a character in a scene with the join scene component.

By selecting this component and using the browse button, you can

attach an image file for this character. As with most visual elements in

TyranoBuilder, you can fade in your characters in style and position them

with the handy positioning tool. You can naturally have more than one

character onscreen at once. To make them all go away at the same time,

use the exit all component.

 Adding Multimedia
As seen in Table 4-8, TyranoBuilder comes with several components for

adding most types of multimedia into your games. The process is simple:

drag the functionality you need (i.e., for audio, background image, or video)

onto the component view. Click Browse and point to the location of the file

on your hard drive. Most multimedia components have a fade- in feature,

which accepts milliseconds. One second equals a thousand milliseconds,

so for a 2-second fade-in, you’d enter the value of 2000 into the box.

We’ll go in depth into the audiovisual possibilities offered by

TyranoBuilder later in this book. For now, you should start experimenting

with components like Background Image, Play Music, and others found in

the TyranoBuilder component library.

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

139

 TyranoBuilder and Media Files
The sometimes problematic video file support of Ren’Py isn’t an issue in

TyranoBuilder. Although supporting only two video formats (i.e., WebM

and the somewhat exotic Ogg Video), these files play beautifully and can

add a touch of class to any project.

For static images TyranoBuilder supports the standard .png, .jpg, and

.gif formats. Although the software doesn’t play a huge amount of audio

file formats for its music and sound effects (i.e., just Ogg), there aren’t any

issues with playback.

 A Few Words on Game Settings
TyranoBuilder’s options are hidden behind a cogwheel icon. The most

important options include the ability to change a game’s name on the go

(under the General tab) and to reconfigure controller device mappings.

You’ll find this functionality under Keyboard & Mouse. There you can

assign various in-game functions, such as Quick Load/Save and Skip

Dialogue, to the keys of your choice. In addition, you can change how your

game deals with mouse buttons and tablet gestures. And should you at

some stage want to change the garish default save/load game visuals and/

or the title screen look, the cogwheel is again your friend.

You can also visit the game settings panel if you choose to change your

game’s screen size, the in-game mouse cursor, and the base font type and

size. Should the TyranoBuilder user interface itself cause you to squint, you

can visit the namesake settings page and configure a larger font for your

dialogue input (this is highly recommended).

 Scripting in TyranoBuilder
In addition to the drag-and-drop approach, TyranoBuilder offers a robust

scripting feature set. On offer are two languages: iScript and TyranoScript.

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

140

We’ll now explore some of possibilities these scripting languages offer,

without going into too much detail: that is reserved for later chapters in

this book.

TyranoScript is basically a text-based version of the TyranoBuilder

interface; instead of the drag-and-drop method, you get to type in the

commands. iScript, on the other hand, is an offshoot of JavaScript, the

much loved Internet staple. Basically, anyone familiar with JavaScript will

be right at home with iScript. There are a few differences, however. For

one, variables are treated differently.

To start using scripting in TyranoBuilder, you first drag either the

iScript or TyranoScript components onto the project scene. The following

is a simple passage in TyranoScript.

This line will be displayed as dialogue.

This line, too, but it will wait for a mouse click to continue. [l]

This here line will delete the previous lines. [p]

See? [p][r]

And this line will be presented underneath the previous one.

The preceding listing demonstrated TyranoScript’s tag functionality.

These tags, inserted in square commas after a line of text, control how

the dialogue is presented. The main tags for displaying dialogue are [l],

[p], and [r], as seen in the example. Let’s now take a slightly closer look at

iScript, shall we?

// This is a comment line for some JavaScript

var message = "Hello!"

window.alert(message);

// This is a comment line for an iScript-example

f.message = "Hello!"

window.alert(f.message);

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

141

The preceding simple examples demonstrate how TyranoBuilder

handles variables in iScript; in-game variables are declared using the suffix

of f. instead of the keyword var, as is the case in JavaScript. Apart from this,

the two scripting languages are quite similar in most ways. As you can

expect, one can considerably extend the functionality of TyranoBuilder

with iScript. However, this is not absolutely necessary and beginners

shouldn’t thus feel daunted by this prospect.

 Live2D
Background images and video playback aside, TyranoBuilder offers some

impressive character visuals in the form of Live2D technology. Developed

by Tetsuya Nakajo, Live2D allows for the creation of animated 2D

characters without frame-by-frame animation or 3D models. Developers

input a set of 2D graphics into the Live2D framework, consisting of eyes,

arms, and other parts of a character. A skeletal structure is then defined

for the character, which can now be animated using a library of pre-

determined expressions and movements.

Although TyranoBuilder doesn’t offer a character creation kit for Live2D

per se, it still supports the technology; external software must be used to create

new Live2D characters. This will be looked into in detail later in this book.

For now, get to know some Live2D by experimenting with the default

character models shipping with TyranoBuilder. To enable Live2D, click

Project in the top bar, and select Add-In Components. Now, click Live2D

Components and select Ok. Your project now has Live2D components

available. However, we still need to import a Live2D character.

Select Asset Library from the top menu. Select Live2D from the

submenu. Double-click either one of the two available Live2D characters

to import it into the project (see Figure 4-7). Drag the Add Live2D

component onto the project timeline. Depending on your earlier choices,

select either Nasuka or dinogirl from the far-right component panel. Use

the Positioning Tool to set the position of your Live2D character.

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

142

You may already be impressed with the rather lifelike idle animation

of Live2D. But it gets even more impressive. Next, drag a Live2D Motion

component below the Add Live2D component you just added. Again,

choose the character you previously imported from the far-right

component panel. Use the Motion Selection Tool to preview all of the

available Live2D expressions. Preview the current scene to see Live2D

in action.

 In Closing
After studying this part of the book, you should have the knowledge of the

following on Ren’Py:

• How to start new Ren’Py projects and how to use the

launcher program

• The basic elements of Ren’Py scripting (i.e., basic

commands, menus, and conditional statements)

Figure 4-7. The amazing Nasuka is one of two default Live2D
characters shipped with TyranoBuilder

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

143

• How Ren’Py handles indentation and text blocks

As for TyranoBuilder, you should be confident with the following:

• How to start new projects in TyranoBuilder

• How to create and navigate scenes

• The basics of the TyranoBuilder components and user

interface

• How to import Live2D characters and other assets into

a project

Finally, you should have these skills for Twine:

• How Twine organizes its rooms/locations as passages

and how to implement user interaction

• How to use multimedia in Twine projects via HTML or

built-in macros

• The basics of Cascading Style Sheets (CSS) in the

context of Twine development

In the next chapter, we’ll take a much closer look at the various

techniques for development with the software presented, including how to

include more complex multimedia elements in Ren’Py and how to script

in TyranoBuilder.

CHApTer 4 WOrking in ren’py, TWine, AnD TyrAnOBuiLDer

145© Robert Ciesla 2019
R. Ciesla, Game Development with Ren’Py, https://doi.org/10.1007/978-1-4842-4920-8_5

CHAPTER 5

Deeper Down the
Dungeon
By this stage, you’ll have some basic working knowledge on the workflow

of the three tools covered by this book: Ren’Py, Twine, and TyranoBuilder.

Now it’s time to dwell deeper into the more advanced techniques and

possibilities provided by these amazing pieces of software. Among many

other things, we’ll be looking at how to integrate video files into Ren’Py

code, how to enhance Twine games with Cascading Style Sheets (CSS),

and how to create randomized dialogue in TyranoBuilder.

 Ren’Py, Containers, and Codecs
The information concerning video file formats isn’t exclusive for Ren’Py,

but is worth addressing as it affects basically any work in the field of digital

audiovisuals, including both TyranoBuilder and Twine development.

Video (and audio) files in general consist of two components:

containers and codecs. A video container is the full file, which includes the

video, audio, and in some cases the subtitles. A codec, on the other hand,

is the means of both compressing and decompressing (i.e., playing back)

the video file inside a container. There are numerous codecs available,

and they vary in their quality and compression ratio. Some of the most

146

popular container formats include .ogg, .webm, and .avi. These are almost

universally supported by most platforms, whether desktop or mobile.

As for codecs, good choices include H.264 (also known as MPEG-4),

MPEG-2, and MPEG-1. And just so you know, MPEG is an acronym for

Moving Picture Experts Group, established in 1988 by Hiroshi Yasuda and

Leonardo Chiariglione.

There are literally dozens of codecs available, but its best to stick to

these well-established formats for maximum compatibility. See Table 5-1

for a comparison of various codecs.

Table 5-1. Some of the most common video codecs

Codec License First
Release

Features

VP9 Free 2012 Powerful high-resolution support (i.e.,

4K/8K UHD), lossless compression option

VP8 Free 2008 Robust multiprocessor support. Provides

good random access for video editing.

Best used for lower resolution video

Theora Free 2004 Potent Internet live streaming

capabilities, presentable even in

low-quality bitrates due to built- in de-

blocking filter

H.264 (MPEG-4) Free for

Internet use

2003 Effective at live Internet streaming,

supports resolutions up to

8192 × 4320 (including 8K UHD)

Xvid, a free
implementation
of MPEG-4 part 2

Free (GNU

General Public

License)

2001 Highly optimized due to active

development, almost universally

supported

(continued)

CHaPtER 5 DEEPER DowN tHE DUNGEoN

147

Now, we’ll take a detailed look into some of the container formats you

can house your codecs in (see Table 5-2).

Codec License First
Release

Features

MPEG-2 Some patents

about to expire

as of 2019

1996 the DVD gold standard format, can

incorporate 5.1 surround sound in its

audio streams

MPEG-1 Free (patents

expired)

1989 works well with low-bitrate video (e.g.,

for smaller displays), considering both

its output quality and small file size

Table 5-1. (continued)

Table 5-2. Some of the most common video container formats

Container Format License First Release Supported Codecs

WebM Free 2010 VP8 and VP9 video, ogg Vorbis

and opus audio

Matroska Free 2002 any

Ogg Free 1993 theora and Dirac for video.

opus, Vorbis, and Speex for

audio

MPEG container
(Note: not to be
confused with
MPEG- codecs)

Patent

encumbered

1993 MPEG-1 and MPEG-2 video.

MPEG-1 Layers 1, 2, and 3 (i.e.,

mp3) audio

AVI Presumed

free

1992 Most, including uncompressed

(Full Frame), Intel Real time

(Indeo), and Cinepak

CHaPtER 5 DEEPER DowN tHE DUNGEoN

148

 Using Video in Ren’Py
Setting video playback in Ren’Py is a relatively smooth process. The

software supports several popular video formats; therefore, the potentially

tedious process of converting between formats is kept to a minimum. The

following single line of code inserted into a Ren’Py script plays back a

fullscreen video file:

$ renpy.movie_cutscene("introvideo.webm")

The preceding line plays a video until it reaches its end or the player

clicks on the mouse. That’s all there is to it! Now, we have many other

options to display video in Ren’Py; it’s not just fullscreen cutscenes at our

disposal. It’s time to define some more terms.

A displayable is Ren’Py speak for any visual asset, such as a

background. A movie displayable refers to an animated background video

playing, say, behind dialogue screens or in menus. In addition to video

backdrops, you can also use video files as character visuals in Ren’Py.

These are referred to as movie sprites. Let’s now define a character video

graphic, shall we?

image markus movie = Movie(play="markus_movie.webm",

mask="markus_mask.webm")

show markus movie

"Isn't this a lot of fun?"

hide markus movie

The preceding code defines a movie sprite called “markus,” directing

the character to display as the video file markus_movie.webm. Our old

friend the show command then starts playback of the aforementioned file.

A bit of narration is added for full effect. The video is then hidden with the,

you guessed it, hide command.

The mask parameter in the Movie command defines an alpha mask

for the video file. It should be of the same pixel dimensions and duration

CHaPtER 5 DEEPER DowN tHE DUNGEoN

149

of the video file it’s associated with. The purpose of the alpha mask is

to denote the areas which are visible in the video file, that is, to hide the

unwanted edges and/or background in the video. Without it you’d have a

square or rectangular movie sprite; that wouldn’t be a good look.

When it comes to Ren’Py and alpha masks, the color white represents

full opacity in an image, while black denotes the fully transparent parts.

 Advanced Audio Functionality in Ren’Py
Playing and stopping sound effects is fine, but sometimes you need a

more thorough approach to audio in Ren’Py. By default, Ren’Py takes the

approach of assigning one audio channel for music, one for sound effects,

and one for voice for a total of three channels. Each of these channels plays

back one audio file at a time. This is for convenience’s sake. If you insist,

you may define additional audio channels for more advanced purposes.

These are addressed later in this book.

The following three lines of code utilize the three default audio

channels. A song, a sound effect, and a piece of voice acting are played

here all at the same time, while some text is displayed onscreen.

play music "song1.ogg"

play sound "boom.mp3"

voice "dialogue1.ogg"

"Hello! How are you doing?"

Now, Ren’Py supports the .wav, .ogg, .mp3, and Opus audio file

formats. Out of these, the .wav format is perhaps the most cumbersome,

as it takes the most space and thus slows down your game’s delivery (i.e.,

download). Although the highest quality format, it’s better to use one of

the other ones instead of .wav (which is the uncompressed CD standard

audio format) when deploying the game for sale and/or download. When

your audio is still at the editing stage, however, only use .wav. The other

formats, being compressed, decay in quality after each edit-and-save

CHaPtER 5 DEEPER DowN tHE DUNGEoN

150

cycle. Wav does not. Think of any compressed file format as a photocopy

of the original file; a copy of a copy of a copy isn’t anywhere as readable, or

audible, as the original.

 Audio Queues

For one, there’s nothing more atmospheric than a long and varied playlist

of music instead of a short repeating tune. We can achieve this quite easily

in Ren’Py with the queue command. In the following example, we define a

queue of three songs (in the .ogg format) for the default music channel of

Ren’Py and play it back.

queue music ["song1.ogg", "song2.ogg", "happysong.ogg"]

play music

 Advanced Play and Stop Statements

The venerable play statement in Ren’Py can do a lot more than play back

a sound: you better believe it. You can even integrate the aforementioned

queue command with a play statement, in addition with some other

parameters. This example queues two songs in the mp3 format, fading

them both in and out for the duration of 2 seconds.

play music ["song1.mp3", "song2.mp3"] fadeout 2.0 fadein 2.0

Should you want to suddenly stop a song playing on the music

channel, fading it out in style during a 10-second period, you would

approach the situation in the following way:

stop music fadeout 10.0

If you ever need to insert some silence before your audio, use the

silence tag which, again, takes its variables in seconds. This is great for

those dramatic pauses.

play audio ["<silence 2.5>", "song1.mp3"]

CHaPtER 5 DEEPER DowN tHE DUNGEoN

151

 Audio File Random Access

Ren’Py allows you to skip parts in an audio file on the fly. Using the from

command inside a play statement, you can specify the exact part you want

to skip, in seconds. The following example skips to the 2.5-second marker

in the audio file song1.mp3, playing until the 10.5-second marker.

play music "<from 2.5 to 10.5>song1.mp3"

 Advanced Image Properties
Naturally, you’re not limited to showing and hiding images in Ren’Py;

there’s a whole host of additional functions and properties at your

disposal. Let’s now take at some of the more useful ones, shall we?

 Character Dialogue Color

In the previous chapter, we took a glance at how characters are defined in

Ren’Py script. To refresh your memory, it went a little something like this:

$ m = Character('Markus', color="#EE1100")

But wait, a new property has been sneakily introduced. The color

property uses hexadecimal values to define a color for a character’s dialogue.

It does this by mixing red, green, and blue (i.e., RGB) values for a brand new

color. The first two digits after the hashtag (#) set the red value, the third and

the fourth set the green value, and the remaining digits set the blue value.

The hexadecimal system (i.e., base 16) goes from numbers 0–9 to letters

A–F. The letters represent the values between 10 (i.e., A) and 16 (i.e., F).

This technique is universally used in HTML and CSS (i.e., Web Colors)

and all of the visual novel software featured in this book. In our example

the character of Markus is given a rather bright red dialogue color, reined

in slightly by adding a tiny amount of green. Let’s take a look at some of the

most common RGB-based colors in Table 5-3.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

152

 Quick Image Alignment

Ren’Py image elements come with a handy duo of properties, xalign

and yalign, which allow for quick adjustment of an image’s placement

onscreen. The xalign property sets the horizontal position, with the value of

0.0 being left, 0.5 being center, and 1.0 being right. Respectively, an image’s

vertical placement can be controlled by the yalign property, with the value

of 0.0 being top, 0.5 being center, and 1.0 being the bottom of the screen.

The following line of code prepares an image file, man.png, to be

displayed on the bottom right part of the display.

image man right = Image("man.png", xalign=1.0, yalign=1.0)

 Advanced Transitions

Ren’Py offers some stylish transitions between scenes and for the various

visual elements within a game. They can be used in script by summoning

the with command or by editing the gui.rpy and/or options.rpy files for

more global use. Transitions in Ren’Py are very simple to utilize, and they

offer a lot in the way of production values.

Table 5-3. Some popular colors using the RGB hexadecimal method

Color Hexadecimal Value Color Hexadecimal Value

Black #000000 Yellow #FFFF00

White #FFFFFF Red #FF0000

Grey #808080 Purple #800080

Green #008000 Orange #FFa500

Blue #0000FF Burlywood #DEB887

CHaPtER 5 DEEPER DowN tHE DUNGEoN

153

show bg garage

with dissolve

"Well gosh darn it! We are in the garage, Ernie!"

This piece of script summons a background image presumably of a

garage using the classic dissolve transition to do so. But dissolving isn’t the

only one available in Ren’Py. Now, let’s examine those tasty transitions in

detail, shall we (see Table 5-4)?

Table 5-4. The major visual transitions in Ren’Py

Transition Description Transition Description

dissolve Fades between

images

slideleft, slideright,
slideup, slidedown

Slides in the element

using the specified

directional command

fade Fades to black and

then onto a new

image

Vpunch Shakes the screen

vertically for 1

second

pixellate Pixellates the old

screen, de- pixellating

a new image

Hpunch Shakes the screen

horizontally for

1 second

blinds transitions the

screen using vertical

blinds

easeinleft,

easeinright,

easeintop,

easeinbottom

Similar to move,

except executed

using a more gradual

movement

zoomin Zooms in a new

image

irisin, irisout Brings in a new

image or hides the

current one using a

rectangular pattern

(continued)

CHaPtER 5 DEEPER DowN tHE DUNGEoN

154

The best way to get acquainted with the many transitions Ren’Py

offers is naturally to experiment with them. You never know how much

atmosphere a strange new transition might add to your scenes.

 Customizing the Ren’Py GUI
All of the graphical user interface (GUI) components of Ren’Py can be

customized by editing the file gui.rpy, which can be accessed from the

Ren’Py launcher under the Edit File section, to be exact. This is a plain text

file with dozens of settings for the appearance of your Ren’Py project. You

may or may not be interested in customizing all of these settings, but a few

key options should be addressed (see Table 5-5).

Table 5-4. (continued)

Transition Description Transition Description

zoomout Zooms out the

current image

Squares transitions the

image in squares

zoominout Zooms in a new

image while zooming

out the current one

wipeleft, wiperight,
wipeup, wipedown

wipes the image

in the specified

direction

move Moves in a new

image

moveoutright,
moveoutleft,
moveouttop,
moveoutbottom

Moves out the

current screen

toward the specified

direction

slideawayleft,

slideawayright,

slideawayup,

slideawaydown

Slides a new image

in the specified

direction

moveinright,
moveinleft,
moveintop,
moveinbottom

Moves in a new

screen using the

specified direction

CHaPtER 5 DEEPER DowN tHE DUNGEoN

155

Now, the aforementioned gui.rpy isn’t the only file of interest when it

comes to customizing Ren’Py. Another one is called options.rpy, and it’s

also accessible from the launcher program, again, under Edit File. We’ll

take a closer look at some of its contents and what they entail to your visual

novels (see Table 5-6).

Table 5-5. Some useful options found in gui.rpy

Option/Line Description Option/Line Description

define gui.
text_size

Sets the GUI text size.

Default value: 22

define gui.main_
menu_background

Defines the

game main menu

background image

and location. Default:

“gui/main_menu.png”

define gui.
text_color

Sets the dialogue color.

Default: white (#ffffff)

define gui.game_
menu_background

Defines the in-game

menu background

image and location.

Default: “gui/game_

menu.png”

define gui.
textbox_
height

Sets the dialogue box

height in pixels. Default:

185 pixels

define gui.title_
text_size

Sets the game title

text size. Default: 50

define gui.
name_text_
size

Sets the character name

size. Default: 30

define gui.
interface_text_size

Sets the size of the

game interface text.

Default: 22

define gui.

text_font

Defines the font used

by your game. the font

file should be kept in the

game directory. Default:

DejaVuSans.ttf

define gui.label_
text_size

Sets the size of the

game GUI label text.

Default: 24

CHaPtER 5 DEEPER DowN tHE DUNGEoN

156

 Advanced TyranoBuilder Techniques
Although TyranoBuilder appears to be the simplest development tool

of the three presented in this book, there’s actually a lot of power under

the hood. We’ll now take a look at some of the powerful techniques

TyranoBuilder provides even for the beginner.

Table 5-6. Some useful options found in options.rpy

Option/Line Description Option/Line Description

define gui.
show_name

Chooses whether to

show the game title or

not in the title screen.

Default: true

default
preferences.
afm_time

Sets the text auto-

forward delay. Default:

15. Valid values are

between 0 and 30

define config.
has_sound

Shows or hides the

in-game sound mixer.

Default: true

define config.
window_icon

Sets the game dock icon

and location. Default:

“gui/window_icon.png”

define config.
has_music

Shows or hides the

music mixer. Default:

true

define config.
intra_transition

Controls the type of

visual transition between

screens of the game

menu. Default: dissolve

define config.
has_voice

Shows or hides the

voice mixer. Default:

true

define config.
enter_
transition
define config.
exit_transition

Controls the type of

visual transition for

entering and exiting the

game menu. Default:

dissolve

default

preferences.

text_cps

Controls the text speed.

Default: 0. Values

higher than zero denote

characters per second

define config.
after_load_
transition

Sets the transition after

a game has been loaded.

Default: None

CHaPtER 5 DEEPER DowN tHE DUNGEoN

157

 Plugins
As of January 2019, TyranoBuilder received a major update to version 182.

Not only is the software now fully 64-bit, but it also has more expandability

in the form of plugins. These are basically extra components available for

download for free. There’s about a dozen plugins (in English) to integrate

into your projects at the time of this update.

Visit the TyranoBuilder plugins page here: https://plugin.tyrano.jp/en

Download the plugins of your choice from the preceding link. These

are then added to the main software by clicking the TyranoBuilder top

menu and selecting Project ➤ Plugins. Click Add New and select the file

you just downloaded with the .tbp file extension.

Now, revisit the top menu and select Customize Tool Area. Scroll all

the way down on the dialogue window that just opened and select both

the Components checkbox and any checkboxes next to components you’d

like to activate in TyranoBuilder. You’ll now have a new section in the main

components dialogue, titled Plugins.

Although there’s surely many more on their way, let’s review the initial

selection of TyranoBuilder version 182 plugins next, shall we (see Table 5- 7)?

Table 5-7. Some of the new TyranoBuilder plugins and their uses

Plugin Description URL

Background
Mask
Transitions

Enables special transitions using mask images.

Includes dozens of masks for more exotic

transitions

https://

plugin.

tyrano.jp/en/

item/20007

Mask
Transitions

Introduces special mask transitions for character

images. Includes 200 masks

https://

plugin.

tyrano.jp/en/

item/20014

(continued)

CHaPtER 5 DEEPER DowN tHE DUNGEoN

https://plugin.tyrano.jp/en
https://plugin.tyrano.jp/en/item/20007
https://plugin.tyrano.jp/en/item/20007
https://plugin.tyrano.jp/en/item/20007
https://plugin.tyrano.jp/en/item/20007
https://plugin.tyrano.jp/en/item/20014
https://plugin.tyrano.jp/en/item/20014
https://plugin.tyrano.jp/en/item/20014
https://plugin.tyrano.jp/en/item/20014

158

Plugin Description URL

Sleep and
Awake

allows the player to save the game and embark

on a different quest altogether, then return to the

original adventure at will

https://

plugin.

tyrano.jp/en/

item/20001

Custom
Save Game
Thumbnail

Sets a custom thumbnail image for saved games,

instead of the tyranoBuilder defaults

https://

plugin.

tyrano.jp/en/

item/20002

Auto Save
and Load

Introduces automatic loading and saving

components (i.e., reduces some of the player saved

game management)

https://

plugin.

tyrano.jp/en/

item/20003

Show
Dialogue

Displays a confirmation dialogue on top of all other

elements in a game

https://

plugin.

tyrano.jp/en/

item/20009

Change
Title

allows for the renaming of a game in progress. May

be used to denote different chapters in a game, for

one

https://

plugin.

tyrano.jp/en/

item/20010

Screen
Filters

adds five new visual filters into your arsenal, such

as grayscale, sepia, and blur, for special effects

https://

plugin.

tyrano.jp/en/

item/20005

Table 5-7. (continued)

(continued)

CHaPtER 5 DEEPER DowN tHE DUNGEoN

https://plugin.tyrano.jp/en/item/20001
https://plugin.tyrano.jp/en/item/20001
https://plugin.tyrano.jp/en/item/20001
https://plugin.tyrano.jp/en/item/20001
https://plugin.tyrano.jp/en/item/20002
https://plugin.tyrano.jp/en/item/20002
https://plugin.tyrano.jp/en/item/20002
https://plugin.tyrano.jp/en/item/20002
https://plugin.tyrano.jp/en/item/20003
https://plugin.tyrano.jp/en/item/20003
https://plugin.tyrano.jp/en/item/20003
https://plugin.tyrano.jp/en/item/20003
https://plugin.tyrano.jp/en/item/20009
https://plugin.tyrano.jp/en/item/20009
https://plugin.tyrano.jp/en/item/20009
https://plugin.tyrano.jp/en/item/20009
https://plugin.tyrano.jp/en/item/20010
https://plugin.tyrano.jp/en/item/20010
https://plugin.tyrano.jp/en/item/20010
https://plugin.tyrano.jp/en/item/20010
https://plugin.tyrano.jp/en/item/20005
https://plugin.tyrano.jp/en/item/20005
https://plugin.tyrano.jp/en/item/20005
https://plugin.tyrano.jp/en/item/20005

159

Table 5-7. (continued)

Plugin Description URL

Open
Website

opens a URL in the player’s default browser from

within a game

https://

plugin.

tyrano.jp/en/

item/20008

Sprite
Sheets

Provides support for sprite sheets, i.e., images

which contain smaller images for the purposes of

animation (see Figure 5-1). Contains parameters for

playback speed, looping, and sprite size, to name

just three

https://

plugin.

tyrano.jp/en/

item/20012

Figure 5-1. An example sprite sheet of a bird flying

CHaPtER 5 DEEPER DowN tHE DUNGEoN

https://plugin.tyrano.jp/en/item/20008
https://plugin.tyrano.jp/en/item/20008
https://plugin.tyrano.jp/en/item/20008
https://plugin.tyrano.jp/en/item/20008
https://plugin.tyrano.jp/en/item/20012
https://plugin.tyrano.jp/en/item/20012
https://plugin.tyrano.jp/en/item/20012
https://plugin.tyrano.jp/en/item/20012

160

 Of Variables and System Variables
Variables are an important part of most visual novels. Using variables we

get to store the amount of gold a player might have or to calculate the odds

of him or her impressing a love interest. Variable data is stored in saved

games. TyranoBuilder has a Variables Manager, accessible from the top

Project menu (see Figure 5-2). It’s there we input variables and define their

initial values.

TyranoBuilder also supports permanent variables, referred to as system

variables. This information is stored on a system without depending on

any save game functionality. One common use for a system variable is the

number of times the player has completed the game; the game designer

might implement alternate endings dependent on the number of times the

quest is completed.

Variables are used via the System class of components in the

TyranoBuilder component library.

The System class consists of three components: process variable, input

box, and commit input. Of these the process variable (see Figure 5-3) is the

Figure 5-2. The Variables Manager in TyranoBuilder

CHaPtER 5 DEEPER DowN tHE DUNGEoN

161

most important for manipulating variable data. It is using this component

you can use arithmetic operations on your variables or assign random

values to them.

Now, to have variables have an impact on the story in your games, you

use them in combination with the Jump component, found under the Story

segment of the TyranoBuilder user interface.

Using variables to control the direction of your story is enabled

by clicking the conditional jump checkbox. This is demonstrated in

Figure 5- 4. In this jump component, we are going to transport to scene2

and its Happy_room label, but only if a condition is met. That condition

deals with a previously defined variable called gold; this variable must be

over ten in value for the condition to be true. Ten or nine won’t cut it.

Figure 5-3. The Process Variable component window in
TyranoBuilder

CHaPtER 5 DEEPER DowN tHE DUNGEoN

162

To create text prompts (e.g., for entering a player’s name), you use

the combination of the Input Box and Commit Input components. Drag

an input box onto the TyranoBuilder scene of your choosing. Type in the

desired variable name into the Assign Variable box on the aforementioned

input box. Use the positioning tool to set the prompt’s onscreen location.

Follow this step with the commit input component, and the prompt will be

associated with a variable for later use in your game.

 Randomized Dialogue
A surprisingly underused approach in the genre of the visual novel is the

usage of randomization. This refers to picking suitable, but random, lines

or single words from a pool of dialogue stored within a game.

For this, we’ll be using both of TyranoBuilder’s scripting languages,

iScript and TyranoScript. You should now reopen the default

TyranoBuilder project we created in the last chapter – or create one.

Figure 5-4. The Jump component window in TyranoBuilder in
conditional mode

CHaPtER 5 DEEPER DowN tHE DUNGEoN

163

First, drag an iScript component on top of the Text component. Leave

it blank for now. Then add a TyranoScript component between the two

aforementioned components. Copy the following listing into the iScript

component.

itemArray = [

 "apple",

 "keys",

 "cucumber",

 "fedora",

 "headphones",

 "potato"

];

randomItem = itemArray[Math.floor(Math.random()*itemArray.

length)];

In this listing we defined an array, which is a variable that can contain

several values. These values can be either numbers, single alphabetical

characters, or strings of text. We put some everyday items into our array,

the one we chose to call itemArray. We could’ve named it anyway we

wished, but that is one of the most logical choices for it.

Next, we defined a new variable called randomItem. In it we inserted

a value taken at random from the array we just defined. Don’t be startled

by the business inside the square brackets: it consists of a couple of simple

math functions that pick a random variable based on the number of items

inside said array (i.e., itemArray). In our case, because the array has six

elements (starting with apple, ending with potato), the line of code returns

a value between zero and five. Not one and six because arrays start at

zero. Math.floor is a function that rounds numbers, so you end up with “4”

instead of something like “4.34234.” The latter number wouldn’t work well

for us in the type of scenario we’re currently immersed in.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

164

Now, insert the following line into the TyranoScript component.

[eval exp="randomitem_text=randomItem"]

The preceding line creates a new variable, called randomitem_text, and

copies the contents of the randomItem variable as a string of text. We need

to do this, because we’re about to output the variable onscreen and only

strings can be used to do that; the randomItem variable wouldn’t be of the

correct type. Think of the command eval exp as evaluate expression.

Lastly, we’ll insert the variable randomitem_text into a text component

and actually display it. Insert this line into the text component:

Hello!

Oh no! I've lost my [emb exp="randomitem_text"]!

Run the project and you’ll see something to the effect of “Hello! Oh No!

I’ve lost my cucumber!” As you can see, the emb method, used within text

components, embeds expressions into the dialogue.

 iScript vs. JavaScript
In general-purpose JavaScript, variables are declared using the var

keyword. Unlike in most programming languages, variable types

themselves need not be specified in JavaScript. It’ll accept strings and

alphanumerical characters just fine using a single keyword of var.

var myName = "Tim";

var myAge =54;

In TyranoBuilder’s iScript, the variables for JavaScript are defined

using a slightly different syntax. This is the main difference between the

two implementations of the language. This is how you do it in iScript:

f.myName = "Tim";

f.myAge = 54;

CHaPtER 5 DEEPER DowN tHE DUNGEoN

165

Remember, iScript is basically JavaScript. TyranoScript, on the other

hand, offers a typed-in experience of the TyranoBuilder experience for

those who prefer one.

 Clickable Image Areas
In TyranoBuilder, you can designate certain areas of your background

graphics as clickable areas. For example, you might have an image with a

door in it. By clicking that door, the player is moved into a different scene.

Clickable areas work in conjunction with the background image component.

Simply drag the component called Clickable Area underneath a

Background Image component. Use the positioning tool (see Figure 5-5) to

set the size and location of this “hot spot.” The darkened mask graphic can

be resized by dragging on its edges; you’ll see the mouse cursor change

when these actions become possible.

Figure 5-5. The positioning tool for clickable areas. Here, a bulletin
board has been defined as a clickable area.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

166

Now, on the clickable area component panel, you’ll see two drop-

down menus: Location and Target. These point to the scene and its label

the player is transported to by clicking the aforementioned area.

 Custom Fonts in TyranoBuilder
TyranoBuilder offers you four choices for typefaces by default. Thankfully,

you’re not limited to using one of these. A custom font can be either set

project wide from the TyranoBuilder settings or utilized on a dialogue-to-

dialogue basis.

TyranoBuilder only has full support for the TrueType Font (.ttf) format.

Luckily, as a popular format, there’s literally thousands of free and classy

fonts out there. Some notable foundries for typefaces include www.dafont.

com and www.1001freefonts.com.

To install a custom font in TyranoBuilder into your project, select

Projects ➤ Custom Fonts from the top menu. Click Add Font and

direct the program into your .ttf file. Now, to immediately change all

of your in-game dialogue to this new custom font, click the cogwheel

icon, taking you to Game Settings. Select Font Style from the menu

on the right. This will get you to the screen where you’ll be able to set

a plethora of font-related settings for your project, including those

dealing with custom typefaces.

For assigning custom fonts for specific parts of your game, you’ll

need to use the Change Font Style component found under the Messages

category on the main project view. Simply insert this component before a

Show Text component and work with the panel opening on your right to

use any custom fonts of your choice.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

http://www.dafont.com
http://www.dafont.com
http://www.1001freefonts.com

167

 Twine Magic
Although seeming deceptively minimalistic at first, Twine contains the

support for almost everything you need to add audiovisual flair to its

projects. As mentioned in the previous chapter, this is done via extensive

support for both JavaScript and Cascading Style Sheets (CSS), two staples

of the Internet. All examples in this part of the book assume we have

selected the SugarCube story format in Twine.

Although there are three story formats in Twine, you will see many

similarities between them. In fact, you’ll see plenty of similarities with

most Twine projects and general HTML or web development. This is

because Twine shares a lot of its functionality with HTML and its related

tags and techniques. Therefore, we’ll now rehash some of those good

old HTML elements which we are witness to daily by checking email or

shopping online (see Table 5-8).

Table 5-8. Some basic HTML elements which also work in Twine

HTML Element Description Example

<p> Paragraph <p>This is a paragraph</p>

 Line break This is a line.
This is another line.

<button> Create a button element <button>Click on this</button>

 Sets up a list of

bulletpoints using

for each point

Point
Another point

(continued)

CHaPtER 5 DEEPER DowN tHE DUNGEoN

168

HTML Element Description Example

<table> Sets up a table of

information using the

sub-elements of <tr>

for table row, <th> for

table header, and <td>

for table data

<table>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Occupation</th>
 </tr>
 <tr>
 <td>Ben</td>
 <td>Smith</td>
 <td>Barbarian</td>
 </tr>
 <tr>
 <td>Jill</td>
 <td>Wordsmith</td>
 <td>Miner</td>
 </tr>
</table>

 Bold text Coming up: something in bold

<i> Italic text <i>This sentence is now italic, i.e.
slanted</i>

<u> Underscore Oh good, some <u>underscored text</u>

<h1> Largest header style <h1>This is a rather big header</h1>

<h6> Smallest header style <h6>This you can't even read I bet</h6>

Table 5-8. (continued)

CHaPtER 5 DEEPER DowN tHE DUNGEoN

169

 Evoking JavaScript in Twine
For the simplest of JavaScript sequences in your Twine games in the

SugarCube story format, all you need to do is open a passage and use the

script tags to execute your operation. See the following example.

<<script>> alert("Look at me!"); <</script>>

As you may remember from the previous chapter, more complicated

JavaScript should be inserted into the dedicated area in Twine called Edit

Story JavaScript. In fact, why don’t we do some of that right now?

 Text Reveal Effect in CSS
Clicking Edit Story Stylesheet in the main project view and typing in some

well-placed strings gives you the entire power of CSS. The following lines

build a new class, called .css-reveal, which will reveal text from left to right in

a rather eye-catching manner. It was named so from the viewpoint of clarity.

.css-reveal

{

 width: 30em;

 white-space:nowrap;

 overflow:hidden;

 -webkit-animation: type 5s steps(75, end);

 animation: type 5s steps(75, end);

}

@keyframes type{

 from { width: 0; }

}

@-webkit-keyframes type{

 from { width: 0; }

}

CHaPtER 5 DEEPER DowN tHE DUNGEoN

170

Now, use the following line inside a Twine passage to see the text

reveal effect in action. In it we’ve associated the preceding style with the

paragraph element, that is, <p>. We could’ve used many other elements for

this purpose.

<p class="css-reveal">Hello there!</p>

By now you’ll have hopefully grasped the method of both defining

and implementing CSS in your Twine projects. Use the method in the

examples that follow, too. Don’t feel intimidated by the contents of these

CSS statements; this book focuses on CSS only to the degree that is needed

to utilize it in your visual novel projects.

 Spicing Up the Text
Looking for creative ways of displaying your stories? Just try some of these

CSS properties. Copy and paste them into your Story Stylesheet in Twine,

implement them into your passages, and off you go. For clarity the names

of these styles are self-explanatory. Also, for your convenience, the parts

that go into your passages are presented in bold.

.shadow {

 text-shadow: 0.07em 0.07em 0.07em #000;

}

.redglow {

 text-shadow: 0 0 0.2em #F00;

}

.upside-down {

 display: inline-block;

 transform: scaleY(-1);

 -webkit-transform: scaleY(-1);

}

CHaPtER 5 DEEPER DowN tHE DUNGEoN

171

.mirror {

 display: inline-block;

 transform: scaleX(-1);

 -webkit-transform: scaleX(-1);

}

The following three CSS rules form a single effect, which accurately

depict the effects of the weather in Finland. Put them all into your Story

Stylesheet. Only call the last of the three in your passage to see it in action.

@-webkit-keyframes shake {

 50% {

 -webkit-transform: translateX(0.2em);

 transform: translateX(0.2em)

 }

}

@keyframes shake {

 50% {

 -webkit-transform: translateX(0.2em);

 transform: translateX(0.2em)

 }

}

.shake {

 -webkit-animation: shake linear 0.1s 0s infinite;

 animation: shake linear 0.1s 0s infinite;

 display: inline-block;

}

Here’s another trifecta of CSS rules for creating an ominous and

continuous fade-in-out. Again, only use the last rule inside of your Twine

passages. You might spot the part where it says “4s.” Yes, these refer to

seconds. Change these values to either speed up or slow down the fades.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

172

@-webkit-keyframes fade-in-out {

 0%,

 to {opacity: 0}

 50% {opacity: 1}

}

@keyframes fade-in-out {

 0%,

 to { opacity: 0 }

 50% { opacity: 1 }

}

.fade-in-out {

 text-decoration: none;

 animation: fade-in-out 4s ease-in-out infinite alternate;

 -webkit-animation: fade-in-out 4s ease-in-out infinite

alternate;

}

Finally, we have a little something dynamic. The following CSS style,

when implemented into a passage, offers a resizable-textbox.

.resizable-textbox {

 border: 2px solid;

 padding: 20px;

 width: 300px;

 resize: both;

 overflow: auto;

}

CHaPtER 5 DEEPER DowN tHE DUNGEoN

173

Now, try something like this in one of your Twine passages to see said

element in action:

<div class="resizable-textbox">First line
Second line
Third

line</div>

The player can then adjust the size of this box from the bottom right

corner of the textbox.

 An Introduction to Harlowe
The SugarCube story offers a fine workflow. But, as you might remember,

there’s two other alternatives built into Twine: Harlowe and Snowman.

Let’s now take a look at the hallowed Harlowe. First, create a new Twine

story using this story format.

 Harlowe and the Might of jQuery

jQuery is an extension (i.e., a library) to JavaScript, created by John Resig

in 2006. It provides a wealth of powerful new functions to visually enhance

and accelerate your Twine (and JavaScript) development experience. And

yes, it can be fully integrated into Twine with all of its bells and whistles.

Let’s take a look at some of jQuery’s basics next.

jQuery and JavaScript are used using the tag <script> inside Harlowe

passages as needed. The following example, when typed into any Twine

passage, creates a gray bar and two standard buttons (i.e., button1 and

button2). These buttons are then assigned with the element we titled

superbox for the purposes of animation. The lines beginning with the

dollar sign (i.e., $) denote jQuery.

Try it out. The button titled “Action” will change the width element of

the bar to 300 pixels from the original 100 pixels. As for the reset button,

you may have a vague idea as to its purpose.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

174

<script>

$(document).ready(function(){

 $("#button1").click(function(){

 $("#superbox").animate({width: "300px"});

 });

 $("#button2").click(function(){

 $("#superbox").animate({width: "100px"});

 });

});

</script>

<button id="button1">Action</button>

<button id="button2">Reset</button>

<div id= "superbox" style="background:#777; height:100px;

width:100px;"></div>

Now, the visual effects of jQuery are referred to as effect methods. In

the preceding example, we utilized only one of these methods: the one

called animate. A whole host of eye candy is available via this wonderful

JavaScript library. Most of these methods are utilized the same way. Each

effect is assigned to a specific HTML element in your Twine passage and

then called by user interaction.

To reiterate, the preceding example featured three arbitrarily labeled

elements: button1, button2, and superbox. Study the provided example to

get acquainted with the syntax and logic of using jQuery in your Harlowe-

based stories. Next we’ll take a look at some other effect methods at our

disposal (see Table 5-9) and how to implement them.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

175

Table 5-9. Some common jQuery effect methods

Effect
Method

Description Example

fadeIn Fades in an element.

optionally accepts the fade-

in values of “slow,” “fast,”

and milliseconds

$("button").click(function()

{$("#bluebox").fadeIn("fast");

$("#redbox").fadeIn("slow");});

<button>Click!</button>

<div id="bluebox"

style="width:60px;

height:60px; display:none;

background-color:red;"></

div>

<div id="redbox"

style="width:60px;

height:60px; display:none;

background-color:red;"></div>

fadeOut Fades out an element.

accepts the same optional

variety of values as fadeIn

$("button").click(function(){

$("#bluebox").fadeOut(1000);

$("#redbox").fadeOut("fast");

});

(continued)

CHaPtER 5 DEEPER DowN tHE DUNGEoN

176

Table 5-9. (continued)

Effect
Method

Description Example

slideToggle Slides an element up or

down depending on its

current state. accepts same

optional values as fadeIn

and fadeout.

Note: the attribute of

display: none; is mandatory

in the element to slide in

and out

$(document).ready(function(){

$("#button").click(function(){

$("#panel").slideToggle(2000);

});

});

<style>

#panel, #button {

padding: 3px;

text-align: center;

background-color: #red;

border: solid 1px #yellow;

}

#panel {

padding: 40px;

display: none;

}

</style>

<div id="button">Click here

</div>

<div id="panel">Behold the

hidden message!</div>

CHaPtER 5 DEEPER DowN tHE DUNGEoN

177

 More on Animate

Let’s go back to the first jQuery effect method presented in this chapter.

Our old friend animate is capable of much more than changing the width

of an element on the fly. Several attributes are available for simultaneous

tweaking. The following code, when entered into a Twine passage,

demonstrates this. Watch happybox evolve.

<style>

 .happybox{

 width: 100px;

 height: 100px;

 background: red;

 margin-top: 30px;

 border-style: solid;

 border-color: black;

 }

</style>

<script>

$(document).ready(function(){

 $("button").click(function(){

 $(".happybox").animate({

 width: "200px",

 height: "200px",

 marginLeft: "30px",

 borderWidth: "10px",

 });

 });

});

</script>

<button type="button">Look at me!</button>

<div class="happybox"></div>

CHaPtER 5 DEEPER DowN tHE DUNGEoN

178

 Enter Snowman!
The third and last available story format in Twine is called Snowman.

This is the most bare-boned approach to making games with Twine.

And that can be a good thing; it is the least restrictive of the story

formats. Snowman uses a formatting technique called Markdown.

This is a minimalistic approach created by John Gruber, where text

formatting is achieved using only a minimal amount of special

characters. Next we’ll take a closer look at basic text formatting in

Snowman (see Figure 5-6).

Header1

Header2

Header3

Header4

Header5

Header6

Emphasized

Bold

~~Deletion~~

Putting the preceding code into a passage in Snowman produces the

result shown in Figure 5-6.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

179

 Snowman, JavaScript, and Underscore

The Snowman story format was designed primarily to be used in

conjunction with JavaScript and custom CSS. Therefore, it doesn’t feature

any built-in macros, unlike the SugarCube and Harlowe story formats.

Snowman includes a full implementation of the Underscore library,

created and updated by its growing team of enthusiasts and online since

2009. Underscore features over a hundred rather advanced methods for

data sorting and manipulation.

JavaScript, including Underscore, can be easily integrated into

Snowman passages using the tags <% and %>. To output the end results

of variable manipulation, you use the tags <%= and %>. See the following

example.

<% alert('Hello there, world!'); %>

I wonder what 1+2 is? Oh, it's <%= 1+2 %>

Figure 5-6. An example of text formatting in the Snowman story
format

CHaPtER 5 DEEPER DowN tHE DUNGEoN

180

 Snowman and Variables

Variables can be defined and manipulated in this story format using a

global variable called s.

<%

 s.myAge = 52;

 s.myName = "Jimmy";

%>

Hi, my name is <%= s.myName %> and I'm <%= s.myAge %>!

<% ++s.myAge %>

Wait. I'm actually <%= s.myAge %>..

 Rolling Dice in Snowman

Now, a more practical example is in order. The following lines can be

likened to rolling dice in Snowman, using the _.random method provided

by the Underscore library. Note the literal way the library is utilized with

the underscore character (i.e., _) prior to each method.

Rolling a four-sided die: <%= _.random(1,4) %>

Rolling a six-sided die: <%= _.random(1,6) %>

My real age is actually <%= s.myAge=_.random(53,100) %> years

young

As you can see, the _.random method takes two values to set the range

for the end results. Also, in the last line of our example listing, we assigned

a previously defined variable s.myAge with a random number between 53

and 100 to demonstrate further how variables work in Snowman.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

181

 Underscore and Arrays

Let’s dwell a tad deeper into the awesome power of the Underscore library,

which offers developers using the Snowman story format quite a bit of

extra functionality. For one, the library is very useful for building advanced

inventories for your games. And this is where arrays come in.

Arrays are created and displayed in Underscore (under Snowman)

like this:

<% var Friends = []; %>

<% var Items = ["Sword","Banana","Fedora"]; %>

Your inventory contains the following: <%= Items %>

<% Items.pop() %>

Well gosh darn it, you seemed to have lost your fedora!

Your inventory contains the following: <%= Items %>

The first line creates an empty array called Friends. More can be added

to this array later. Now, the second line creates an array called Items and

fills it with three values from the get-go. The third line simply prints the

contents of this array onscreen.

The fourth line is actually run-of-the-mill JavaScript; pop is a method

that deletes the last item in an array. As for adding items to arrays in

Snowman? Try this other basic JavaScript method: <% Items.push(“New

Fedora”,”Orange”); %>

Take a glance at some of the more useful methods Underscore provides

in Table 5-10. The possibilities for advanced item management and RPG

elements are limitless on Snowman when harnessing the power of the

Underscore library.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

182

Table 5-10. Some useful methods for arrays in the Underscore library

Method Description Example(s)

_.find Searches for a specific type of

element in an array until such an

element is found

<% var DiscoverFedora =

_.find(["Fedora","Banana",

"Fedora"], function(string){

return "Fedora"; }); %>

<%= DiscoverFedora %>

_.last Returns the last element in an

array

<% var Items = ["Sword",

"Banana", "Fedora"]; %>

<% var Inventory = _.last

(Items); %>

<%= Inventory %>

_.first Returns the first element in an

array

<% var Items = ["Sword",

"Banana", "Fedora"]; %>

<% var Inventory = _.first

(Items); %>

<%= Inventory %>

_.each Iterates (processes) an array

invoking a function/method

which takes three arguments

(value, index, list)

<% var Items = ["Sword",

"Banana", "Fedora"]; %>

<% _.each(Items, function

(value, index, list) {%>

<%= index + ": " +

value+"
"%>

<%= "Full list: "+list %>

<% }); %>

(continued)

CHaPtER 5 DEEPER DowN tHE DUNGEoN

183

Table 5-10. (continued)

Method Description Example(s)

_.map Performs operations on all items

in an array, such as arithmetics

The original values are 1, 4,

and 5

<% var Example=_.map([1, 4, 5],

function(num){ return

num * 5; }); %>

After_.map multiplied each by

five, they are <%= Example %>

_.
sample

Produces a random sample of

an array’s content. optionally

accepts the sample size. In this

example, we set the sample size

to two items

<% var Items = ["Sword",

"Banana", "Fedora"]; %>

<% var Sampling =

_.sample(Items,2) %>

<%= Sampling %>

_.size Returns the number of elements

in an array

<% var Items = ["Sword",

"Banana", "Fedora"]; %>

<% var Size = _.size(Items) %>

<%= Size %>

_.clone Clones an array <% var Items = ["Sword",

"Banana", "Fedora"]; %>

<% var Cloned = _.clone

(Items); %>

<%= Cloned %>

_.filter Filters through an array for

specific elements, returning all

of them

<% var Filtered =

_.filter([“Fedora”, “Banana”,

“Banana”], function(string) {

return string=="Banana" });

%>

<%= Filtered %>

CHaPtER 5 DEEPER DowN tHE DUNGEoN

184

 Snowman and Audiovisuals

Since Snowman doesn’t include any handy macros out of the box, HTML

and JavaScript are its primary means of adding a little audiovisual flair to

your games. So, to add an image with an audio file player beneath it, you

could come up with something like this:

<p>This here is a fine image:</p>

<p><img src="https://upload.wikimedia.org/wikipedia/commons/6/

6e/Napoleon_crop.jpg" width="50%" height="50%"></p>

<p>Let's not forget about some audio!</p>

<p><audio controls>

 <source src="https://upload.wikimedia.org/wikipedia/commons/

b/b4/United_States_Navy_Band_-_O_Canada.ogg" type="audio/ogg">

</audio></p>

As for jQuery and its impressive visual trickery? You’ll be happy to find

out you can use jQuery within your Snowman projects the same way you

would in your Harlowe games.

 In Closing
This chapter contained a hefty amount of information on the three fine

pieces of software featured in this book: Ren’Py, TyranoBuilder, and Twine.

After reading this rather intense chapter, you should have the knowledge of

the following for Ren’Py:

• Working with different video formats

• Audio playback, advanced image control, and visual

transitions

• How to customize the Ren’Py user interface using

configuration files

CHaPtER 5 DEEPER DowN tHE DUNGEoN

185

You should also have learned the following about TyranoBuilder:

• What plugins are and how they are integrated into your

games

• How to make randomized dialogue and use custom

fonts

• How variables work in TyranoBuilder and how they’re

used to control the story flow

As for Twine, you’ll have learned the following:

• The main differences between the three story formats

(SugarCube, Harlowe, and Snowman)

• How to use Cascading Style Sheets (CSS) to customize

the look of your Twine games

• Basic HTML elements and how to integrate them into

Twine

• The basics of jQuery and Underscore JavaScript

libraries

In the next chapter, we’ll look at how you can deploy your games to the

various desktop and mobile platforms available in Ren’Py, TyranoBuilder,

and Twine.

CHaPtER 5 DEEPER DowN tHE DUNGEoN

187© Robert Ciesla 2019
R. Ciesla, Game Development with Ren’Py, https://doi.org/10.1007/978-1-4842-4920-8_6

CHAPTER 6

Deploying for Popular
Platforms
Not only is the software in this book powerful and highly usable, it

also deploys to a plethora of popular platforms rather wonderfully.

In this chapter, we’ll explore in detail how this is done for your Ren’Py,

TyranoBuilder, and Twine projects.

 Ren’Py and the Desktops
Ren’Py deploys out of the box for Windows, macOS, and Linux desktops,

without any or much configuration. This is done by simply clicking Build

Distributions from the Ren’Py launcher and selecting the platforms you

want to deploy your game on. There may be some confusion as to what

these different options refer to, so they are explained in further detail in the

following (see Table 6-1).

188

 Minimum System Requirements
Although Ren’Py games in general are light on the computer system

requirements, they do have certain minimum hardware thresholds to

meet. These are discussed next (see Table 6-2). For example, ample

amounts of high-definition video tend to take a toll on a computer. In such

a scenario, the minimal requirements may not cover all of the stress a

game puts on hardware.

Luckily, the average PC in 2019 is rather capable of running almost

anything a developer in Ren’Py can throw at it. Even most basic of

customer PCs of today consist of 4 gigabytes (GB) of system memory

(i.e., RAM) with a nice dual-core CPU (i.e., processor) to play visual

novels perfectly comfortably on. In general, the visual novel is among

the least demanding genres of video games, although exceptions

can exist.

Table 6-1. Ren’Py deployment options for desktop operating systems

Option Description

PC: Windows and Linux Creates a compressed zip file for 32-bit Windows

and Linux, as well as 64-bit Linux

Linux x86/x86_64 Creates a compressed TAR.BZ2 file for 32- and

64-bit Linux

Macintosh x86/x86_64 Creates a zip file for 32- and 64-bit macOS

Windows x86 Creates a zip file for older 32-bit Windows

operating systems (e.g., Windows XP)

Windows, Mac, Linux for
Markets

Outputs files for Windows, macOS, and Linux

optimized for online distribution via Itch.io and

Steam. These files are not meant to run directly

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

189

OpenGL and DirectX are visual frameworks supported by most video

cards of today, at least when it comes to the versions required by games

created with Ren’Py (i.e., OpenGL 2.0 and DirectX 9.0c). You do need to

keep an eye on which operating system you have; luckily Ren’Py doesn’t

require the latest versions of them for any platform, working well even on

an archaic Windows XP from 2001.

The file size of the final project file depends on how many audiovisual

assets your game used. It’s good to not go overboard with video files, for

example, to keep the file sizes and download times to a minimum. Always

experiment with both video and audio formats and their respective quality

settings to find a balance between fidelity and file size.

 Icons for Desktops
Ren’Py stores two files for application icons in the root directory: icon.

ico for Windows and icons.icns for macOS. If you want custom icons for

your game, which is highly recommended, you must store these files

in a special format; renaming a standard .png file won’t do. There are

several free programs online for creating these icon files. One of the best is

iconverticons, found on this page: https://iconverticons.com

Table 6-2. Minimum hardware requirements for Ren’Py games

Platform OS Version Processor RAM Graphics

Windows XP or higher Core 2 Duo 2.0 ghz 2.0 gB OpengL 2.0 or

DirectX 9.0c

macOS 10.6 (Snow Leopard)

or higher

Core 2 Duo 2.0 ghz

(64-bit only)

2.0 gB OpengL 2.0

Linux ubuntu 12.4 or higher Core 2 Duo 2.0 ghz 2.0 gB OpengL 2.0

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

https://iconverticons.com

190

 Ren’Py for Mobile Devices
In addition to desktop support, Ren’Py offers deployment for the popular

mobile operating systems of iOS and Android. The process for delivering

for these formats is a tad more complex, however, and will be looked at in

detail next.

 Deploying for Android
Ren’Py supports the Android operating system to a great extent. However,

some visual glitches may appear. Test your games thoroughly on your

Android device(s).

Now, the first step in deploying for Android is to download the Ren’Py

Android Packaging Tool (RAPT). This is done simply by clicking Android

on the Ren’Py launcher; you’ll be asked to download the aforementioned

tool if you haven’t installed it yet.

Next, you’ll need the Java Development Kit from Oracle. It’s a

free download obtainable from the following URL: www.oracle.com/

technetwork/java/javase/downloads/jdk8-downloads-2133151.html

You now need to configure both your Android device and your PC for

software development. This involves installing an Android Debug Bridge

(ADB) connection between the device and your desktop computer. Follow

these steps:

 1. Open the Settings app on your Android device.

Select Developer options, and enable USB

debugging.

 2. Set up your PC to detect your device. The macOS

does this automatically. In Linux, you need to run

the command apt-get install adb to download a

package. As for Windows, you need to download

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

191

and install a USB driver specific to your version

of the Windows operating system: https://

developer.android.com/studio/run/oem-usb

 3. Select Install SDK & Create Keys from the Ren’Py
launcher’s Android screen. A digital key will be

created and used to sign packages that are sold on

the market (e.g., on Google Play).

 4. Enter some information for Ren’Py about your
game. Choose Configure from the launcher’s

Android menu.

 5. Make sure your Android device is connected to
your computer. Build your game by selecting Build

& Install from the Android menu of the Ren’Py

launcher. You may be asked to authorize your

computer for this activity.

 Icons and the Splash Screen
Ren’Py will create both the foreground and background icons for your

game in its base directory from image files you provide. On Android, these

icons are 432 x 432 pixels in size. The foreground icon is transparent, while

the background icon is not.

Pre-splash screens are displayed while your Ren’Py games are loading.

In the case of Android devices, they are quite crucial; the first time your

game is ran in Android, it will take some time as files will be unpacked

in the background. The file android-presplash.jpg in your project root

directory will be used as Android’s pre-splash screen.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb

192

 Keybindings in Android
It’s worth noting that the following keybindings are enabled for Ren’Py

games running on Android:

• Home: Returns to the Android home screen,

suspending the current game and saving its state

• Menu: Summons the in-game menu

• Back: Rolls back

• Volume Up/Down: Used for volume control, as

expected

 Testing Your Android App in Ren’Py
Ren’Py provides several software emulations for several types of Android

devices via the launcher’s Android menu. Your PC’s Esc key is mapped as

the menu button and the Page Up key as the back button for all of these

emulations. The following devices are available for emulation in Ren’Py:

• Android Phone: Touch is emulated using the mouse

when a button is held down.

• Android Tablet: Touch is emulated the same way as it

is for the simulated Android phone.

• Television/OUYA device: This selection emulates a

television-based Android device, including the OUYA

console. In addition to the controls available for the

other two platforms, in this mode the arrow keys

provide navigation, while Enter works as “select.” Also,

this mode provides a simulated “safe area” overlay.

Areas outside of this safe area may or may not display

on the average TV.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

193

 Deploying for iOS
The process of deploying Ren’Py projects for the iOS platform can only

be done on a desktop running macOS. iOS support provided by Ren’Py

is experimental as of Q1 2019. The developers state your projects aren’t

100% guaranteed to fit the tough standards of the Apple App Store,

although some games have made it through. Some technical issues, that

is, fallout from the export process, may be the cause. In addition, Apple

tends to prefer more “wholesome” titles in general for their App Store.

Therefore it makes sense to include as little violence and nudity in your

games as possible.

The tools for testing your games, however, are rather robust in Ren’Py.

Software emulations of the average iPhone and iPad are built right into the

software.

Now, the first step for deploying for iOS is to download the free renios

software; click the iOS link on the Ren’Py launcher and you’ll be asked

to do so, unless it’s already installed. Once done installing, a new set of

actions particular to iOS devices become available. Most importantly, you

now have the ability to emulate your games on virtual iPhones and iPads

using the two options below Emulation. Note: while this functionality

provides a preliminary view of your Ren’Py projects on the iOS platform,

extensive testing should be also done on actual hardware.

 Xcode and the iOS Process
Apple doesn’t make it easy to get your games on the App Store. It’s a rather

time-consuming process as well as a tad pricey. However, the first step

is free, and it deals with installing Apple’s Xcode integrated development

environment (IDE). It’s safe to assume you already have an Apple ID if

you’re a Mac user. So, just download Xcode for free from the App Store on

your Mac and install.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

194

Once you have Xcode on your Mac, the following steps enable you

to deploy your Ren’Py games for iOS. It’s time to get both thorough and

patient.

 1. Enroll in the Apple Developer Program using the
following link. Be prepared to pay an annual fee

of $99 (as of Q1 2019) for the iOS program. Your

personal Apple ID will be then associated with the

program.

• https://developer.apple.com/programs/enroll/

 2. Use the Ren’Py launcher to create a new Xcode
project. Do this by clicking iOS on the main

launcher page and Select Xcode Projects Directory.

Next, click Create Xcode Project. It will be named

automatically based on the game’s name in Ren’Py.

 3. Access your new project in Xcode. Click Launch

Xcode in the Ren’Py launcher.

 4. Add your Apple ID to Xcode’s Account
Preferences. Go to the Accounts tab in Xcode. Use

the plus sign icon on the bottom of the screen to add

your Apple ID to the project.

 5. Assign your project into a team. Select your project

in the Xcode project editor. Click General. Then click

Signing to show the relevant controls. Make sure

the checkbox for Automatically manage signing is

checked.

 6. Execute your game on an iOS device. Connect an

iOS device to your Mac. Running your project on

actual iOS hardware will tell Xcode to create all the

necessary signing assets relevant for deployment.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

https://developer.apple.com/programs/enroll/

195

 7. Export your signing certificates and provisioning
profiles. This is an optional, cautionary step for

peace of mind. To make backups of the signing

certificates and provisioning profiles (i.e., your

developer account), simply visit the Accounts tab

in Xcode and select Export Developer Accounts

from the bottom of the window beneath the list of

Apple IDs.

 8. Enter a file name in the Save As field. Enter a

password in both the Password and Verify fields.

A file containing your developer account is now

safely encrypted and password protected at a

location of your choosing.

Oh, and should you later want to re-introduce a lost developer account

into the Xcode environment, just select Import Developer Accounts in the

Accounts tab and dig up a file you’ve previously created. And don’t forget

the password.

 Updating Your iOS Projects
Whenever you make changes in your Ren’Py project and want to transfer

them over to the iOS side of things, simply click Update Xcode Project in

the Ren’Py launcher. If you’ve recently updated to a new version of the

Ren’Py software itself, however, you need to create an entirely new Xcode

project for your games: using the aforementioned technique won’t work.

 App Icons and Splash Screens for iOS
Both the app icons and splash screens for your iOS projects are

manipulated exclusively in Xcode. Apple is pretty strict when it comes to

the specifications of the icons (see Table 6-3).

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

196

Note: there are many useful and free services online for creating all

types of Apple- approved icons from a single image file, such as App Icon

Generator (https://appicon.co).

Splash screens, called launch screens in the Apple ecosystem, are

mandatory in all software sold on the App Store. Let’s take a look at some

approved dimensions for these launch screens in Table 6-4. Note: the

resolution for landscape mode is simply the reversed for portrait mode

(e.g., from 1125 x 2436 to 2436 x 1125).

Table 6-4. Apple’s specifications for Launch Screens on select devices

in portrait mode

iOS Device Resolution
(in Pixels)

iOS Device Resolution (in
Pixels)

iPhone X 1125 x 2436 iPad Pro (12.9") 2048 x 2732

iPhone 8, iPhone
7, iPhone 6s

750 x 1334 iPad Pro (11") 1668 x 2388

iPhone SE 640 x 1136 iPad (9.7") 1536 x 2048

Table 6-3. Apple’s specifications for App icons as of Q1 2019

Platform Resolution (in Pixels) Platform Resolution (in Pixels)

iPhone 180 x 180 and 120 x 120 iPad & iPad Mini 152 x 152

iPad Pro 167 x 167 Apple App Store 1024 x 1024

To set a launch screen, just work with the LaunchScreen.storyboard

in Xcode. Add your image file of the proper resolution into the folder

called Assets.xcassets. Drag the image from the Xcode media library onto

the LaunchScreen storyboard. You should then have a brand new launch

screen for your iOS Ren’Py game.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

https://appicon.co

197

 Deploying for Chrome OS/Chrome Browser
Google’s Chrome OS is a Linux-based operating system which uses Chrome

as its primary online browser. The latter is a free download available for

most operating systems. Chrome OS is primarily distributed on specific

laptops and desktop computers, such as Chromebooks and Chromeboxes.

Now, Ren’Py games can be deployed for the Chrome browser to be played

as web applications by taking the following steps:

 1. Download and install the latest version of the
Chrome browser.

 2. Download and install the Android Runtime for
Chrome (ARC) software. Do this inside Chrome.

• https://chrome.google.com/webstore/detail/

arc-welder/emfinbmielocnlhgmfkkmkngdoccbadn

 3. Package your game like you would for Android

(see “Deploying for Android” in this chapter).

 4. Run the ARC software from inside of Chrome
browser.

 5. Locate the path to your application ending in
.APK.

 6. Set the following options: Landscape orientation,

Table form factor, Resize: disabled, and Clipboard

access: disabled.

Choose Test to run your game and Download Zip to generate a

compressed file ready for distribution on the Chrome Web Store.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

https://chrome.google.com/webstore/detail/arc-welder/emfinbmielocnlhgmfkkmkngdoccbadn
https://chrome.google.com/webstore/detail/arc-welder/emfinbmielocnlhgmfkkmkngdoccbadn

198

 Legalese for Android and iOS in Ren’Py
Parts of the Ren’Py Android Packaging Tool (RAPT) and the iOS

implementations of Ren’Py feature software libraries licensed under the

GNU Lesser/Library General Public License. This should be acknowledged

in the description of your game, just to be on the safe side. Simply integrate

the following note into the documentation of your game:

This program contains free software licensed under a number
of licenses, including the GNU Lesser General Public License.
A complete list of software is available at https://www.renpy.
org/l/license/.

 Ren’Py for the Quirky: Raspberry Pi
Since 2012 the computing scene has seen a surge of bare-boned and

somewhat quirky little devices. Such a device is called a Raspberry Pi, a

miniature computer of little cost, usually priced at under $40. With sales

of approximately 20 million by 2019, the Raspberry Pi has been quite a

success. With very little effort, you too can capitalize on this emerging

market with your Ren’Py games.

Ren’Py offers you the functionality to deploy to Raspberry Pi, but with

some caveats. Since the device is rather lightweight, some restrictions

apply that do not apply on Android or iOS. Your audiovisual assets should

be kept to a minimum when porting to Raspberry Pi. Consider making a

rather stripped-down version of your game for the system; a direct port

from a desktop computer isn’t usually a sound idea.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

https://www.renpy.org/l/license/
https://www.renpy.org/l/license/

199

 Setting Up a Pi for Ren’Py
Raspberry Pi runs Raspbian, a Linux-based operating system. Ren’Py is not

guaranteed to work on anything else than a Raspberry Pi model 3B. Also,

the following settings should be set by typing sudo raspi-config into the

LXTerminal application in Raspbian:

• Memory split: 256 MB/1280 x 720 screen resolution or

lower/GL Driver: GL (Fake KMS)

Hold on: your Raspberry Pi isn’t quite ready to tackle Ren’Py yet.

In addition to the preceding text, you need to install a Linux version of

the SDK as well as the Raspberry Pi support files. Find the former on

the page provided in the following by clicking Download SDK tar.bz2.

The latter is also available on the same page, listed under Additional

Downloads.

• www.renpy.org/latest.html

 TyranoBuilder for Desktops
TyranoBuilder is a very user-friendly tool also when it comes to exporting

to different platforms. The easiest to export to are Windows, macOS, and

browser. It simply takes a few clicks of the mouse.

Select Project ➤ Export Game from the top menu in TyranoBuilder.

Select either Browser Game, Windows Application, or Mac Application

from the Export Type drop-down menu. Confirm the export by clicking Ok

when presented with the prompt saying “Proceed with export?” After just

a few measly seconds of processing, you are given the option to open the

folder on your computer where the files were just created. You now have

the game in your chosen format, ready for distribution. That’s basically all

there is to it.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

http://www.renpy.org/latest.html

200

Note: it is a good practice to include a manual and license with your

game files, no matter how basic. A well-edited manual in a printable PDF

format can add a touch of class to any game.

 TyranoBuilding for iOS
The effort needed for mobile deployment is, as always, more involved

than that for the desktops. That is the case for TyranoBuilder, too.

The initial steps are the same for iOS (and Android); select Project

➤ Export Game from the top menu in TyranoBuilder. You’ll get your

game in a distributable form in no time. However, this is where it gets

somewhat trickier.

The additional requirements for iOS deployment on TyranoBuilder are

quite similar to those for Ren’Py:

• A Macintosh computer running TyranoBuilder.

• An Apple Developer Account for iOS (costing

$99 a year).

• Xcode: Available for free from the App Store.

• Approval from The Apple App Store. A family-friendly

approach to your game writing helps.

For details on the aforementioned steps, see “Xcode and the iOS

Process” earlier in this chapter. What you need to bring to the table most

for iOS are a certificate and a provisioning profile, two little files that are

crucial for iOS deployment.

Note the following restrictions for iOS deployment: all of your games’

video files must be in the mp4 format. As for your audio files, they must be

in either the m4a or mp3 formats. Using other file formats may result in

your game not running properly. Also, avoid using Japanese characters in

your file names.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

201

Now, you’ll also need a free piece of software called TyranoPlayer.

Download it from the following page:

• http://tyrano.jp/download/player/

TyranoPlayerFramework_ios_v112.zip

Open the TyranoPlayer file folder and a sub-folder titled

game. Copy all of the files you created earlier via the Export Game

function of TyranoBuilder to this directory. Locate the file called

TyranoPlayerFramework.xcodeproj in the TyranoPlayer directories and

double-click it to open Xcode.

The next step is to test your game on either a software simulation of an

iOS device or an actual iPhone and/or iPad. You can run iOS emulation in

Xcode by clicking the play button in the top of the Xcode interface. To test

your TyranoBuilder project on a hardware iPhone or iPad, simply connect

the device while Xcode is running; your device will appear in the emulator

box for you to test.

 TyranoBuilding for Android
To deploy for Android, make the same initial steps by selecting Project ➤

Export Game from the top menu in TyranoBuilder. Next, you need to

install the Android Studio software, which is available for download

from the following URL: https://developer.android.com/studio. It’s a

rather hefty sized file at around a gigabyte, so you might want to go have

your tea break.

Then, it’s time to install TyranoPlayer for Android, which is

another free download: http://tyrano.jp/download/player/

TyranoPlayerFramework_android_v112.zip

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

http://tyrano.jp/download/player/TyranoPlayerFramework_ios_v112.zip
http://tyrano.jp/download/player/TyranoPlayerFramework_ios_v112.zip
https://developer.android.com/studio
http://tyrano.jp/download/player/TyranoPlayerFramework_android_v112.zip
http://tyrano.jp/download/player/TyranoPlayerFramework_android_v112.zip

202

As is the case with TyranoBuilder’s iOS deployment, your Android

projects should only contain video files in the mp4 format and audio files

in the m4a or mp3 formats. Also, Japanese characters are not supported in

file names.

Run Android Studio next. Select File ➤ New Project from the top

menu. Enter your project details, such as your application name, and

click next. On this screen, focus your attention on the Phone and Tablet

selection. For the setting for Minimum SDK, choose API 19: Android 4.4

(KitKat). Click next.

On the screen titled Add an Activity to Mobile, select Empty Activity as

the setting (see Figure 6-1).

Figure 6-1. The activity view in Android Studio

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

203

Next, confirm the following settings:

• Activity Name: “MainActivity”

• Layout Name: “activity_main”

Press Next and Finish. Android Studio will crunch some numbers for a

couple of minutes resulting in the project information needed to compile

your game. After this stage you still need to right-click the folder called

“app” in Android Studio (see Figure 6-2) and select Show in Explorer to

view the files.

Figure 6-2. The project view in Android Studio

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

204

When the explorer view opens, enter the directory /app/src. Delete

the folder called main. Now, bring up the folder you previously worked

with in TyranoPlayer. Copy the contents of the main directory built with

TyranoPlayer into the main directory created by Android Studio.

Enter Android Studio and click the play button on the top of the

interface. If the game works, you can congratulate yourself: you’re ready

to enter the rather lucrative Android market. If you see error messages,

you might be missing some crucial components. These can be installed

by clicking the text link stating Install missing platform(s) and sync project

at the very bottom of the message window. This might lead to downloads

the size of several gigabytes, so it’s time for another cup of tea. Choose a

simulation type and re-click the play button to test your project.

 Additional Android Advice
The landscape mode might not work properly on simulated Android

devices. However, this doesn’t mean it won’t work on actual hardware.

Also, your Android app name might be something ludicrous by default,

such as TyranoPlayerFramework. To change this, navigate to App ➤ Res

➤ Values in your TyranoPlayer file structure. Edit the file Strings.xml and

locate the line <string name=”app_name”>TyranoPlayerFramework </

string>. Change TyranoPlayerFramework into your game’s actual name

and save the file.

 Twine for the Desktops
With its standardized main components, HTML5 and JavaScript, Twine

games are perhaps the most compatible with the most operating systems

and devices. All desktop devices compatible with these technologies via

browsers (i.e., pretty much all of them) can run Twine games right after

they’ve been exported.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

205

Exporting in Twine is done by simply clicking the cogwheel icon

next to a project in the main view. Then select Publish to File and select a

directory location for your files. You now have a game ready to run on most

desktops, regardless of their operating system, and most browsers online.

 Twine for iOS and Android
The easiest way to deploy for both iOS and Android devices is by using a

free online tool, PhoneGap Build, provided by Adobe. What this service

does is it accepts HTML/JavaScript applications and churns out either iOS,

Android, or Windows Phone executables. Like you may have guessed, for

iOS, you should get familiar with the following resources:

• An Apple Developer Account for iOS (costing

$99 a year)

• Xcode: Available for free from the App Store

For details on the aforementioned steps, see “Xcode and the iOS

Process” earlier in this chapter. As always, what you need to bring to the

table for iOS are a certificate and a provisioning profile.

Now, as for PhoneGap Build, just sign up for a free Adobe account on

any Adobe site. This grants you access to the tool, which is to be found on

the following page: https://build.phonegap.com

Note: although PhoneGap Build still supports (as of Q1 2019) Windows

Phone, we won’t be looking at how to deploy to this platform. The reason

is the announcement in which Microsoft stated the end of support for

Windows Phone by the end of 2019.

 The Wonders of PhoneGap Build
To work with Adobe’s wonderful tool, you must upload a compressed

zip file containing two files: your exported Twine game and an xml

configuration file called config.xml. The following lines can be used as the

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

https://build.phonegap.com

206

contents of the xml file. Simply copy and paste them into a new text file

and save it as config.xml. Note: make sure there are no empty lines at the

top of this file!

<?xml version="1.0" encoding="UTF-8" ?>

<widget xmlns = "http://www.w3.org/ns/widgets"

 xmlns:gap = "http://phonegap.com/ns/1.0"

 id = "com.happygame.example"

 versionCode = "10"

 version = "1.0.0" >

 <name>Happy Game</name>

 <description>

 An amazing adventure set in the bathroom.

 </description>

 <author href="https://www.happygames.com" email="support@

happygames.com">

 David McDeveloper

 </author>

</widget>

Next, follow these steps:

 1. Name your Twine file as index.html and nothing
else. Find the file that came out of the Twine export

process and rename it.

 2. Open config.xml and modify the file if needed.

 3. Create a folder on your hard drive which has both
index.html and config.xml. Nothing else is needed

in said folder, which you can call whatever you wish.

We’ll refer to this as the PhoneGap folder.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

207

 4. Compress the folder you just created. On a Mac,

this is achieved easily by navigating to the structure

where your PhoneGap folder is, right- clicking said

folder, and selecting Compress <folder name>. On

Windows you can use free utilities such as 7-zip to

create the .zip file.

• www.7-zip.org/

 5. Go to Adobe’s PhoneGap page and click Upload a
.zip file. Locate the zipped PhoneGap folder on your

PC and upload it.

 6. Click Ready to build.

You should see blue download links for iOS, Android, and Windows

Phone by clicking Builds (see Figure 6-3). You can download and try the

Android (and Windows Phone) files right away. iOS is more finicky and

requires you to upload both a p12 certificate and a provisioning profile by

clicking No key selected and add a key in the PhoneGap panel. We’ll look at

the iOS implementation in detail later in this chapter.

Figure 6-3. The Builds view in PhoneGap

Note that you can also download apps by scanning the QR codes

presented by PhoneGap.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

http://www.7-zip.org/

208

 Splash Screens for Android
To create splash screen for your Android app, you need a single image

file with the dimensions of 360 x 480. Also make sure it is in the Portable

Network Graphics (PNG) format. Put this file into your PhoneGap folder.

Next, add the following code to the config.xml file, right before the tag of

</widget>.

<plugin name="cordova-plugin-splashscreen" source="npm"

spec="~3.2.1" />

 <preference name="SplashScreenDelay" value="3000" />

 <preference name="ShowSplashScreenSpinner" value="false" />

 <preference name="FadeSplashScreen" value="false" />

 <preference name="SplashMaintainAspectRatio" value="true" />

 <preference name="SplashShowOnlyFirstTime" value="false" />

<splash src="splash.png" />

 Icons for Android
The process of implementing icons for your Android app is a tad more

involving. We’ll go through it next, step by step:

 1. Add the following code into config.xml, again,

before the tag </widget>.

<platform name="android">

 <icon density="ldpi" src="res/icon/android/ldpi.png" />

 <icon density="mdpi" src="res/icon/android/mdpi.png" />

 <icon density="hdpi" src="res/icon/android/hdpi.png" />

 <icon density="xhdpi" src="res/icon/android/xhdpi.png" />

 <icon density="xxhdpi" src="res/icon/android/xxhdpi.png" />

 <icon density="xxxhdpi" src="res/icon/android/xxxhdpi.png" />

</platform>

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

209

 2. Navigate to your PhoneGap folder on your PC.
Create a sub-folder called res and open it. Create

another sub- folder inside this folder called icon.

Again, open this folder and create yet another

folder called android. You should now have a folder

structure resembling YourApp/res/icon/android,

where YourApp is whatever name you gave to your

PhoneGap folder.

 3. Create the icon file itself using your favorite
image-editing program. The resulting file should

be 1024 x 1024 pixels in resolution and saved in the

PNG format.

 4. Build a set of Google-approved app icons out of
the base image file you just made. This is easiest

done using free online tools, such as ResizeAppIcon,

available on the following page:

• https://resizeappicon.com/

 5. Find the link labeled Upload File on the
aforementioned web site. Give the site the base

image file. Wait for the upload to complete.

 6. Find the section on Android. Click the checkbox

labeled All.

 7. Scroll down the page and find the section

Download Selected. This will result in a zip file

containing all of the necessary icons for your

Android project.

 8. Unpack the zip file and copy the contents into
your PhoneGap folder’s android sub-folder.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

https://resizeappicon.com/

210

 Splash Screens for iOS
Apple has stricter requirements for splash screens than Google. While a

single image file might work for Android, iOS requires several images in

numerous resolutions and orientations. Luckily, free online tools can help

you with this endeavor, too. One of the best is Resource Generator, available

on the following web site:

• www.resource-generator.com

The makers of this tool recommend nontransparent PNG files in a

2208 x 2208 pixel resolution for optimal splash screen creation. Simply

click Browse underneath Splash screen and navigate to this image file.

Click Upload files. After a minute or two, your gorgeous Apple-approvable

screens will have arrived on your PC.

Now, we need to navigate to your PhoneGap folder and create a new

sub-directory in res, called screen. And into screen you should create a new

folder called ios. The folder structure should look like this: YourApp/res/

screen/ios. Copy the files you created with Resource Generator into this

directory.

Next it’s time to add lines into the venerable config.xml file. As always,

insert the following lines before the tag called </widget>.

<platform name="ios">

<splash src="yourApp/res/screen/ios/Default-568h@2x~iphone.

png"platform="ios" width="640" height="1136" />

<splash src="yourApp/res/screen/ios/Default-667h.png"

platform="ios" width="750" height="1334" />

<splash src="yourApp/res/screen/ios/Default-736h.png"

platform="ios" width="1242" height="2208" />

<splash src="yourApp/res/screen/ios/Default-Landscape-736h.png"

platform="ios" width="2208" height="1242" />

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

http://www.resource-generator.com

211

<splash src="yourApp/res/screen/ios/Default-Landscape@2x~ipad.

png"platform="ios" width="2048" height="1536" />

<splash src="yourApp/res/screen/ios/Default-Landscape~ipad.png"

platform="ios" width="1024" height="768" />

<splash src="yourApp/res/screen/ios/Default-Portrait@2x~ipad.

png" platform="ios" width="1536" height="2048" />

<splash src="yourApp/res/screen/ios/Default-Portrait~ipad.png"

platform="ios" width="768" height="1024" />

<splash src="yourApp/res/screen/ios/Default@2x~iphone.png"

platform="ios" width="640" height="960" />

<splash src="yourApp/res/screen/ios/Default~iphone.png"

platform="ios" width="320" height="480" />

</platform>

 Icons for iOS
The process for including Apple-approvable icons in your PhoneGap

project consists mostly of the same steps as the one for Android. Revisit

the ResizeAppIcon tool, upload your base image, and select iOS as your

platform of choice. Click Download Selected to receive your Appstore-

friendly icons.

If needed, create a sub-folder called res and open it. Also create

another sub-folder inside this folder called icon unless you previously did

so. Now, open this folder and create a new folder called ios. Unpack the

zip file you received your icons in into this directory. The folder structure

should now look like this: yourApp/res/icon/ios.

Also, add the following code into config.xml, again, before the tag

 </widget>. Note: you can combine your splash screen and icon metadata

under the same <platform> tag. This is demonstrated in the following with

the bold line right before the end of the platform structure. All definitions

for iOS can and should go here, but for the sake of brevity, we won’t be

demonstrating this right now.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

212

<platform name="ios">

 <icon src="yourApp/res/icon/ios/icon.png" platform="ios"

width="57" height="57" />

 <icon src="yourApp/res/icon/ios/icon@2x.png" platform="ios"

width="114" height="114" />

 <icon src="yourApp/res/icon/ios/icon-40.png" platform="ios"

width="40" height="40" />

 <icon src="yourApp/res/icon/ios/icon-40@2x.png" platform="ios"

width="80" height="80" />

 <icon src="yourApp/res/icon/ios/icon-50.png" platform="ios"

width="50" height="50" />

 <icon src="yourApp/res/icon/ios/icon-50@2x.png" platform="ios"

width="100" height="100" />

 <icon src="yourApp/res/icon/ios/icon-60.png" platform="ios"

width="60" height="60" />

 <icon src="yourApp/res/icon/ios/icon-60@2x.png" platform="ios"

width="120" height="120" />

 <icon src="yourApp/res/icon/ios/icon-60@3x.png" platform="ios"

width="180" height="180" />

 <icon src="yourApp/res/icon/ios/icon-72.png" platform="ios"

width="72" height="72" />

 <icon src="yourApp/res/icon/ios/icon-72@2x.png" platform="ios"

width="144" height="144" />

 <icon src="yourApp/res/icon/ios/icon-76.png" platform="ios"

width="76" height="76" />

 <icon src="yourApp/res/icon/ios/icon-76@2x.png" platform="ios"

width="152" height="152" />

 <icon src="yourApp/res/icon/ios/icon-small.png" platform="ios"

width="29" height="29" />

 <icon src="yourApp/res/icon/ios/icon-small@2x.png"

platform="ios" width="58" height="58" />

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

213

 <icon src="yourApp/res/icon/ios/icon-small@3x.png"

platform="ios" width="87" height="87" />

 <splash src="www/res/screen/ios/Default-568h@2x~iphone.

png"platform="ios" width="640" height="1136" />

</platform>

 The Apple p12 Certificate and PhoneGap
Using PhoneGap Build for iOS requires not only an Apple developer

certificate, but it needs to be provided in a specific format, which is the

Personal Information Exchange format. This is often referred to as the p12

certificate. The following steps tell you how this is done:

 1. Open Keychain Access on your Mac. This tool is

found usually in your Applications/Utilities folder.

 2. Select File ➤ Import to bring your Apple-
provided certificate file (i.e., the file with the
extension of .cer).

 3. Select the Keys category in Keychain Access.
Choose the private key associated with your iOS

Development Certificate. The key is identified by a

public certificate that is paired with it.

 4. Hold down the CMD key and click the Developer
Certificate. Select Export iOS Developer Certificate.

 5. Save the keystore in the p12 format.

 6. A prompt will appear requesting a strong
password. This will be needed when transferring

your keys and certificates between keystores or

when signing apps.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

214

 In Closing
This chapter dealt with how to deploy games made with Ren’Py,

TyranoBuilder, and Twine for the most popular platforms today. After

reading this chapter, you should have the knowledge of the following for

Ren’Py:

• How to deploy to Windows, macOS, and Linux desktops

• How to obtain and use Ren’Py Android Packaging Tool

(RAPT) to deploy for Android

• Using Android Runtime for Chrome (ARC) to create

web apps for Google’s Chrome OS and browser

• How to obtain the necessary frameworks and digital

certificates from Apple needed to deploy for iOS

After reading this chapter, you should have the knowledge of the

following for TyranoBuilder:

• Deployment to Windows, macOS, and browser

• How to deploy TyranoBuilder games for iOS using

TyranoPlayer and Apple’s Xcode

• How to obtain and use the Android Studio software to

deploy your games for Android

As for deploying in Twine, you should have the following knowledge at

this point:

• Deployment to Windows, macOS, and browser

• How to use Adobe’s PhoneGap Build online tool to

create both iOS and Android apps

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

215

Other things you have learned include

• How to use online tools to create icons and splash

screens to Apple’s and Google’s exact specifications

• What Apple’s p12 certificate is and how it’s obtained

• The “legalese” you should include in the

documentation of your Ren’Py games when deploying

for Android and iOS

In the next chapter, we’ll actually be implementing our know-how on

these pieces of software by creating three little games with them.

ChAPTeR 6 DePLOying fOR POPuLAR PLATfORmS

217© Robert Ciesla 2019
R. Ciesla, Game Development with Ren’Py, https://doi.org/10.1007/978-1-4842-4920-8_7

CHAPTER 7

Three Little Games
In this chapter we’ll create an actual visual novel. We’ll see how the

synopsis from Chapter 1 translates into Ren’Py, Twine, and TyranoBuilder

as we create a little game called Taking Back August. This project will be

split between the three aforementioned frameworks with the majority of

the game being presented in Ren’Py.

You can, and should, write your own stories. However, it’s useful to see

how the process evolves from synopsis to game, especially if you haven’t

written your first game yet.

 Laying Out a Plan
Before embarking on the coding side of things, it’s good to lay

out a plan for your adventure. This means you should catalogue

the characters and the most relevant venues in your game into

representations that can be easily referenced. It is paramount especially

when working in larger teams.

We’ll now lay out some tables for the techno-thriller Taking Back

August. For the purposes of this book, the method of tables works best.

Of course, you are free to use any visual approach in this process. The

crucial thing is to not skip this phase and go straight to the coding; such an

approach could backfire!

218

 Cast of Characters
Let’s start off with the relevant characters (see Table 7-1). Feel free to

return to Chapter 1 of this book to refresh your memory if these names no

longer sound familiar.

It may be a good idea to rehash the principles of Joseph Campbell’s 12

character archetypes, also found in Chapter 1, as the example game does

make a use of them. Not all archetypes are necessary for an adventure, as

you can see.

Table 7-1. The main characters in our Ren’Py adventure

Character Role/Archetype Gender and Age Appearance

Reginald
Pennelegion

Protagonist

(i.e., player)

Male, early 30s Medium build and

height, professional look

Mervyn
Popplewell

Explorer Male, early to

mid-30s

Gaunt build and medium

height, somewhat

ragged look

Royston
Honeybun

Sage Male, late 50s Heavy build, casual look

Claire Ruler Female, late 20s Athletic build, medium

height, fashionable look

Overalls Man Rebel Male, age unknown Athletic build, bald and

tall, bizarre look

Raine Lover Female, early 30s Average build, petite

CHAPtER 7 tHREE LittLE GAMES

219

 Locations
Visual novels aren’t usually thought of in terms of the number of locations

or rooms. When it comes to the genre, the metric for depth is often the

number of words of dialogue and narration a game contains. On average,

it’s good to settle between 10,000 and 50,000 words total per game. Note:

for the sake of brevity, the tutorial games presented in this book will all fall

short of the aforementioned word count.

While the relevant characters in an adventure are easily catalogued, it’s

more challenging to decide on the number and type of venues (and later,

rooms) in a game. Too few locations hinder a game’s atmosphere, and too

many simply confuse the player. It’s best to start with a top-down approach

(see Table 7-2), focusing only on the most crucial venues first and splitting

them into smaller units (i.e., rooms).

We use three categories for mapping a story: settings, venues,

and rooms. This is for the sole reason of continuity, in regard to both

storytelling and the audiovisual side of things.

• Settings can and should share the same theme and

atmosphere, when it comes to the writing and/or

visual elements (e.g., the stylistic choices with the

backgrounds).

• Venues might, for example, share a soundtrack (or

other ambient backdrop) and/or visual components.

• Rooms included in a venue can usually be thought

of as being the smallest units for locations in a game,

some of which are interconnected.

CHAPtER 7 tHREE LittLE GAMES

220

Table 7-2. The main settings and venues in Taking Back August

Setting Venue Example Room Description

The Office
Complex

Reginald’s work
space

You’re idling at a tidy desk with a desktop

computer and stacks of papers. Only a

sticker of a cyborg woman makes your

workstation unique to all of the others’.

The Office
Complex

The Top Floor
(i.e., The Special Cell
Phone Storage Area)

You enter a somewhat run-down part of

the office premises, several floors above

Reginald’s desk, and several decades

behind in furniture style and decoration.

London The Wellington Arch,
Hyde Park

the Arch stands in the dark London night

as almost a sinister monument in the light

of recent events.

The Office
Complex
(On Fire)

Reginald’s desk All hell has broken loose in the inferno

that used to be your workplace. You

shield your face with your briefcase and

dive into the fire.

London
(Residential
Area)

Reginald’s Apartment Your once familiar dwelling is now clouded

in sinister apprehension as strange sounds

emit from behind the door.

London
(Train Station)

Euston Train Station With the taste of blood in your mouth, you

frantically eye the timetables for the next

train; any train will do.

Train Train to Nottingham Sitting down in a mushy train seat, a

woman with black hair opposite to you

dons a smile. taking her headphones off,

she introduces herself.

(continued)

CHAPtER 7 tHREE LittLE GAMES

221

(continued)

Table 7-2. (continued)

Setting Venue Example Room Description

Bedford
Streets

Bedford Train Station Doing your best to blend in the crowd, you

are suddenly shaken by an arm grabbing

you by the shoulder.

Bouvet Island,
Norway

Bouvet Island You exit the hovercraft into an almost

alien world. the freezing temperature

chills your blood. the craft begins to

reverse immediately as you’re left to

deal with the Atlantic winds – and the

Faction – on your own.

Bouvet Island,
Norway

The Underground
Bunker

Unnoticeable from the outside, the four-

room structure is surprisingly roomy on

the inside. With better furniture, it could be

turned into an exotic hostel.

South Atlantic
Ocean

The Hovercraft A second craft emerges a few hundred

yards to the starboard. Like the hovercraft,

it has no lights on. You begin to panic.

Norway Oslo Airport You enter an exceptionally busy airport

spanning what seems like miles. You take

some comfort in being able to disappear

into the massive crowd.

London Heathrow Airport Jet-lagged tourists pull their luggage

around a surprisingly calm Heathrow

as you mentally prepare for the fight of

your life.

CHAPtER 7 tHREE LittLE GAMES

222

Now it’s time to divide the aforementioned venues into smaller units.

After all, a game with only 14 locations tends to run out of steam rather

quickly. Using the three categories of locales, we map out some rooms for

the first setting (i.e., The Office Complex) of our adventure (see Table 7-3).

We’ll then do this for all of the different locations in the example game.

Table 7-3. The Office Complex setting in Taking Back August

Setting Venue Room Connects to Room(s)

The Office
Complex

Reginald’s work
space

Reginald’s desk Drinking fountain area,
Royston’s desk

Drinking fountain area Reginald’s desk, The
neighboring desk

The neighboring desk Drinking fountain area

The Top Floor (i.e.,
The Special Cell
Phone Storage Area)

Royston’s desk Reginald’s desk,
Special filing cabinet

Special filing cabinet Royston’s desk

Setting Venue Example Room Description

London Buckingham Palace there’s no time to admire the courtly

facades and stately monuments behind

you. You must only run. the sound of

gunfire makes you almost trip on the

exquisite pavement.

New Office
Complex

Reginald’s new work
space

Before moving on to a more secluded part

of the building, he takes one last look at the

ancient mobile phone before storing it in a

very special filing cabinet, ready for use.

Table 7-2. (continued)

CHAPtER 7 tHREE LittLE GAMES

223

 Setting I: The Office Complex

As you may remember, our adventure begins with Reginald receiving a

mysterious email from a deceased former colleague, one Mervyn Popplewell.

Design notes for The Office Complex:

• The tone for the writing in this setting should be

somewhat somber and foreboding.

• As far as audio atmosphere building goes, the relevant

venues might benefit from copier machine sounds,

muffled voices, and perhaps a radio playing in the

background in one of the rooms.

 Setting II: London

Now we’re on our way to the Wellington Arch, as per the instructions in the

mysterious email. On to the streets of London we go (see Table 7-4).

Table 7-4. The Office Complex setting in Taking Back August

Setting Venue Room Connects to Room(s)

London Hyde Park Hyde Park The Wellington Arch

The Wellington Arch,
Hyde Park

The Wellington Arch Hyde Park

Street Road past the office The Wellington Arch

Flames in the distance None

CHAPtER 7 tHREE LittLE GAMES

224

Design notes for London:

• The tone for the writing in this setting should still be

foreboding.

• Audio wise, we should incorporate normal street

sounds: cars passing by, people talking into their cell

phones, footsteps, and perhaps the beeps of traffic

lights.

 Setting III: The Office Complex on Fire

This is a troublesome moment in our protagonist’s adventure. Reginald

is determined to head back to the office, which is now almost completely

engulfed in flames (see Table 7-5). With nothing but a briefcase to shield

him, he takes on the challenge nonetheless.

Table 7-5. The Office Complex setting in Taking Back August

Setting Venue Room Connects to Room(s)

London Office back
entrance

Back alley Fire ladder

The Office
Complex (On Fire)

Fire ladder General Office Space

General Office Space Reginald’s desk

Reginald’s desk Neighboring desk A

Neighboring desk A Reginald’s desk,
Neighboring desk B

Neighboring desk B Neighboring desk A

CHAPtER 7 tHREE LittLE GAMES

225

Design notes for The Office Complex (On Fire):

• The tone for the writing in this setting should be

distressed and confused.

• For audio, the sounds of fire engines, flames, and things

falling apart are what’s needed.

 Setting IV: London (Residential Area)

At this point in the story, Reginald heads home, as instructed. However, things

aren’t quite ideal; strange sounds can be heard coming from his apartment.

In fact, entering his home would be downright detrimental to Reginald’s

health; hence, there’s no coming back from that room (see Table 7-6).

Table 7-6. London (Residential Area) setting in Taking Back August

Setting Venue Room Connects to Room(s)

London (Residential
Area)

Reginald’s
house

Street None

Corridor Street

Reginald’s
Apartment Door

Corridor, Reginald’s
Apartment

Reginald’s
Apartment

None

Design notes for London (Residential Area):

• The writing in this brief but intense setting should

convey a sense of doom.

• When it comes to audio, the venue would benefit most

from echoing footsteps and bizarre, alien sounds.

CHAPtER 7 tHREE LittLE GAMES

226

Design notes for London (Train Station):

• The tone set in the previous setting continues; Reginald

is being pursued and he’s panicking, after all.

• Audio in this setting should be kept similar to the other

London-based settings, only to be slightly busier due to

higher concentration of people.

 Setting VI: Train

Entering a train, Reginald feels slightly more at ease. However, this calm

won’t last very long; he’s still being chased (see Table 7-8). In fact, he ends

up locking himself in the train toilet with a pair of maniacs running after

him. Receiving a call on the special mobile phone, he’s told to leave at the

next station, which happens to be Bedford.

 Setting V: London (Train Station)

Now under pressure to leave London immediately, Reginald dashes to the

train station. There, he enters the first northbound train (see Table 7-7).

Table 7-7. London (Train Station) setting in Taking Back August

Setting Venue Room Connects to Room(s)

London (Train
Station)

Euston Train
Station

Stephenson Statue Platform A

Platform A Stephenson Statue,
Platform B

Platform B Train

Train None

CHAPtER 7 tHREE LittLE GAMES

227

Table 7-8. London (Train Station) setting in Taking Back August

Setting Venue Room Connects to Room(s)

Train Train to Nottingham Train doors None

Train car A Train car B, Train doors

Train car B Train car A

Train toilet Train car B, Train car C

Train car C None

Design notes for Train:

• This setting offers a breather in terms of dramatic

tension. However, toward the end of this setting, the

action ramps up again.

• The ambience should consist of quiet train noises, that

is, cars rolling and clicking on rails.

 Setting VII: Bedford Streets

Reginald gets off at Bedford Station, unsure of what to do next. Dashing

around the platforms, he is shook as someone grabs him by the arm.

Luckily, it turns out to be Royston Honeybun, the guy from tech

support. They stroll into a small Bedford park, sitting down on a bench.

Reginald is then briefed on some of the details of the situation (see

Table 7-9).

CHAPtER 7 tHREE LittLE GAMES

228

Design notes for Bedford Streets:

• Aside from a single shock, this setting has a more

relaxed tone overall compared to the others so far. The

writing should reflect the fact that the protagonist now

feels somewhat safe, being in the presence of an ally.

• The audio for Bedford should be similar to that of the

London settings, although slightly more muted and

sparse.

 Setting VIII: Bouvet Island, Norway

As Royston Honeybun departs into the night, Reginald receives another

call on the special mobile phone. Raine informs him he now needs to ditch

the phone and relocate to the most remote island on the planet: Bouvet

Island. A rather complicated trip involving numerous trains, ferries, and

fishing boats ensues, but Reginald makes it in a little less than 3 days

(see Table 7-10).

Table 7-9. The Bedford Streets setting in Taking Back August

Setting Venue Room Connects to Room(s)

Bedford Streets Bedford
Station

Train platform A Train platform B

Train platform B Train platform A, Road to
a Park

Road to a Park Park Bench

Park Bench

CHAPtER 7 tHREE LittLE GAMES

229

Table 7-10. The Bouvet Island setting in Taking Back August

Setting Venue Room Connects to Room(s)

Bouvet
Island,
Norway

Bouvet Island Landfall Path to the Bunker A

Path to the Bunker A Path to the Bunker B

Path to the Bunker B Bunker entrance

Bunker entrance Bunker room A

The Bunker Bunker room A Bunker room B, Bunker
room C, Bunker room D

Bunker room B Bunker room A, Bunker
room C, Bunker room D

Bunker room C Bunker room A, Bunker
room B, Bunker room D

Bunker room D Bunker room A, Bunker
room B, Bunker room C

And who else is greeting Reginald at the island but Mervyn Popplewell,

the man who was supposedly dead. Hidden from sight is a somewhat

 spacious four-room bunker, where Reginald is taken for tea and debriefing.

He also completes his work on August at this venue.

Design notes for Bouvet Island, Norway:

• Bouvet Island is a place of recovery for our protagonist and

the writing should reflect this. After an intense beginning,

the player should be made to feel at ease at this point.

• This setting offers a vastly different soundscape.

Being remote and arctic, the island’s main ambient

component consists of heavy winds and oceanic sounds.

CHAPtER 7 tHREE LittLE GAMES

230

 Setting IX: South Atlantic Ocean

A few days later, after being visited by Raine, Reginald is invited to leave

the bunker. An emergency is taking place in Buckingham Palace. Reginald

takes on the offer and boards a hovercraft. Some major action ensues in

this short but intense setting as enemy operatives storm the craft (see

Table 7-11).

With our team unable to fend for themselves, Royston Honeybun

comes to the rescue with his helicopter, creating a second venue for this

series of rooms.

Table 7-11. The South Atlantic Ocean setting in Taking Back August

Setting Venue Room Connects to
Room(s)

South Atlantic
Ocean

The Hovercraft Hovercraft deck Hovercraft control
room

Hovercraft control room Hovercraft deck

Helicopter
Rescue

Hovercraft control room Hovercraft deck

Hovercraft deck Hovercraft control
room

Design notes for South Atlantic Ocean:

• The writing for this setting should convey a sense of

stress and immediacy.

• The audio in this setting should be very intense with

sound of the hovercraft’s engines providing a backdrop

for heavy footsteps, banging on the cabin door, ocean

sounds, and eventually the overbearing sound of a

helicopter at close range.

CHAPtER 7 tHREE LittLE GAMES

231

 Setting X: Norway

Reginald and the gang make landfall somewhere on the coast of Norway.

A car is waiting for them, taking them to Oslo Airport where a private jet

awaits (see Table 7-12). A turbulent flight to London begins as Reginald

learns of a dire situation at Buckingham Palace.

Table 7-12. The Norway setting in Taking Back August

Setting Venue Room Connects to Room(s)

Norway Landfall Coast of Norway Car to Airport

Oslo Airport Car to Airport Airport Area A

Airport Area A Airport Area B, Car to Airport

Airport Area B Jet to London

Jet to London None

Design notes for Norway:

• The writing should reflect the lack of immediate threats,

as a large swathe of antagonists were defeated in the

previous setting. However, a situation at Buckingham

Palace is yet to be resolved; a lot is still at stake.

• This setting should have a somewhat soothing

series of ambient backdrops, from a now worry-free

hovercraft trip, to a long drive, to the sound of jet

engines spinning up.

 Setting XI: London

Reginald and his friends arrive at Heathrow and immediately head to

Buckingham Palace, which is the ground zero for a rather messy situation

(see Table 7-13). The prime minister has been kidnapped and will only be

CHAPtER 7 tHREE LittLE GAMES

232

Table 7-13. The London setting in Taking Back August

Setting Venue Room Connects to Room(s)

London Heathrow Airport Arrivals Car to Central London

Car to Central London Constitution Hill

Buckingham
Palace

Constitution Hill Main Entrance, Living Room

Main Entrance Throne Room, Constitution
Hill

Throne Room Main Entrance

Reginald’s house Living Room Bedroom

Bedroom Living Room, Balcony

Balcony Bedroom

released if Reginald implements a back-doored, flawed implementation

of August the firewall. With the palace premises flooding with Faction

antagonists, a nervous Reginald sets foot in the Throne Room, where

Claire and her overalls-covered bodyguard await.

Reginald does, in fact, deliver the goods but in such a way that

August is fool-proof and inaccessible save for the British government.

Finally, SAS snipers finish the task as Reginald and Raine run to safety

from the palace. After a brief visit home, he goes back to work where

he learns he’s now earned the position once held by one Royston

Honeybun. The end!

Design notes for London:

• The tone for this setting should be rather matter-of-

fact, cool, and calculated as this reflects the most

reasonable approach our protagonist would take in

CHAPtER 7 tHREE LittLE GAMES

233

such a situation. Reginald has experienced quite a bit

in the last few weeks and is wiser and more resourceful

as a result of his adventures.

• Audio wise, the setting benefits from both the usual city

sounds (e.g., klaxons and crowd noises) and a more

minimalistic ambience inside Buckingham Palace. The

latter works to create a contrast between the intensity of

the things at stake and the externally rather austere actions.

 Setting XII: The New Office Complex

Reginald returns to work. The office has been completely renovated during

his quest abroad. There’s no sign of any fire damage; fancy new computers

and desks adorn the premises (see Table 7-14).

Royston shows up, stating he’s retiring. He offers Reginald his old job

at “tech support.” Reading between the lines, Reginald agrees. He moves

his post to the top floor, close to the special cell phone, ready for any new

adventures that may follow.

Table 7-14. The New Office Complex setting in Taking Back August

Setting Venue Room Connects to Room(s)

New Office
Complex

Reginald’s work
space

Reginald’s desk Drinking fountain area,
Royston’s desk

The new neighboring
desk

Reginald’s new desk

The Special Cell
Phone Storage Area

Royston’s desk
(Reginald’s new desk)

Reginald’s new desk,
Special filing cabinet

Special filing cabinet Royston’s desk

CHAPtER 7 tHREE LittLE GAMES

234

Design notes for New Office Complex:

• The writing should invoke a sense of triumph and

optimism.

• When it comes to audio, the New Office Complex is

a serene and modern environment with no intense

elements.

 Part I: The Beginnings of Taking Back
August in Ren’Py
According to our catalogue of locations, we ended up with a total of 61

rooms for Taking Back August. This is enough to introduce you to the

Ren’Py workflow. It’s now time to move on to the coding process itself. As

previously mentioned, this is but a small adventure with the word count

falling somewhere between 2000 and 2500 words. We will, however, utilize

most of the powerful features Ren’Py offers for making this game.

Now, go ahead and launch Ren’Py; it’s showtime.

 Starting the Project
After opening the Ren’Py launcher, click Create New Project. You’ll be

asked to enter a project name. We’ll use Taking Back August. Next, Ren’Py

wants to know your choice of screen resolution, defaulting to 1280 x 720

(HD). This is a good choice, so merely click Continue. You’ll be presented

with a screen titled Select Accent and Background Colors. Pick the ones that

you fancy most. These settings can be changer later at any time.

After a few moments of processing, Ren’Py takes you back to the

launcher main screen. This is where you work on your adventures. Select

Taking Back August from the left, underneath Projects. You’ll find a file

CHAPtER 7 tHREE LittLE GAMES

235

called script.rpy under Edit File. Click it. The file should open within a text

editor. This is the main script for our game. We’ll mostly be working with

this file throughout this tutorial.

Ren’Py is very finicky with whitespaces and syntax. This can’t be

stressed enough. For example, some text editor software uses automatic

quotation mark adjustment, replacing the Ren’Py-friendly simple

quotation mark (i.e., “Hello”) with double curved quotes (i.e., “Hello”).

This will result in Ren’Py not being able to process the script. Make sure

to adjust your word processor’s options to not automatically “fix” said

punctuation.

Note: the title screen in a Ren’Py project is found by clicking gui on

the launcher. Now navigate to the overlay directory and you’ll find the

file (i.e., main_menu.png) for customization with your favorite image

editor.

 Setting Up the Characters
You’ll find some pre-made code in any new Ren’Py script file, featuring the

stalwart Eileen as the sole character. We’ll now start to replace this listing

with our own by first entering the main cast into the script, color coding

their names for the dialogue as we see fit.

Now, you might remember the fact that Ren’Py uses standard HTML-

compliant color coding. Each color definition is entered in hexadecimal

notation. The first two digits after a dash sign represent red, the next two

green, and the last two adjust the amount of blue in a hue. The range for

these values is between 0 and 9 for the first ten, continuing with A to F for

values between 10 and 16. As a refresher, this is what pure red would look

like: #FF0000. For black, we would enter #000000.

Look for the following line in the default script file (i.e., script.rpy):

define e = Character("Eileen")

CHAPtER 7 tHREE LittLE GAMES

236

Now add the following lines in its place:

define reg = Character("Reginald Pennelegion", color="#0099BB")

define merv = Character("Mervyn Popplewell", color="#007799")

define roy = Character("Royston Honeybun", color="#003399")

define rai = Character("Raine", color="#8888EE")

define cla = Character("Claire", color="#AA1100")

define man = Character("Overalls Man", color="#EE1100")

What this does is create the main cast of characters for our example

adventure, assigning each with a shorthand tag for more comfortable

typing later on. You’ll find these tags denoted in bold in the preceding

listing purely for the sake of convenience. When it comes to color coding,

we gave our protagonist and his crew a set of blueish hues, while the

antagonist side gets painted with red.

 Custom Transitions
You may remember the various stock visual transitions that Ren’Py

has built in (e.g., fade, dissolve, pixellate). While there’s nothing wrong

with using them, sometimes you want a little extra control over the

transitions in your game. Add the following line after the previous

ones; it’ll define a new 2-second transition called slideleft as well as one

called fireflash, both of which we’ll use later. The latter is a quick fade

to bright orange and back, for the dramatic purposes of simulating a

burning environment.

define slideleft = CropMove(2.0, "slideleft")

define fireflash = Fade(0.1, 0.0, 0.5, color="#e40")

CHAPtER 7 tHREE LittLE GAMES

237

 Assigning Images to Characters
You’ll notice the Ren’Py launcher has a link titled Open Directory ➤

images. This creates a directory view of the image files associated with the

active project.

Now, the naming convention in Ren’Py is as follows: each file name for

a character should share the exact one assigned in the preceding section

in this book (for the purposes of our example adventure). For example, for

our six characters, we’ll need six image files with the exact names of reg.

png, merv.png, roy.png, and so on. In our case, files named reg.png or Reg.

png would both work; however, Reginald.png wouldn’t.

Remember, Ren’Py takes images for characters in the PNG format,

although it also accepts WEBP files. For background files, the software

accepts JPG, PNG, and/or WEBP files.

 Preparing Other Audiovisual Assets
Although Ren’Py automatically seeks out the character images provided

you’ve named those correctly, most other audiovisual assets need to be

defined in the script file. The vast swathe of these assets included in our

tutorial game consists of background graphics in the jpg format, as you

can see from the following code, which should sit below the character

definitions laid out previously.

One exception is the definition of a second expression for one of

our characters, Raine. She dons a more serious face at one point in

the adventure. This needs to be stated in the source code prior to said

moment. For logic’s sake, we use the additional keyword serious and type

in the following:

image rai serious = "rai_serious.png"

CHAPtER 7 tHREE LittLE GAMES

238

We can then summon this expression for Raine’s character at our

leisure, using something like rai serious “Yes, I’m being serious!” Feel free to

add any number of expressions for your characters using this method.

Just to reiterate: you can use the image statement to define both the

basic character portraits and any additional expressions (e.g., image

jimmy =“jimmy.png” or perhaps image jimmy happy = “jimmyhappy.

png”). However, you need a character definition before that (e.g., define

jimmy = Character(“Jimmy”), etc.) As you probably remember, we defined

our tutorial game’s characters and their associated image tags under the

header Setting Up the Characters a couple of pages ago.

Now, let’s define the sepia-toned visuals for the office complex in the

game. These can be summoned and hidden at your will using the show

and hide commands (e.g., show office will display the image file office1.jpg,

whereas hide office will, you might’ve guessed it, hide said image):

image office1 = "office1.jpg"

image office2 = "office2.jpg"

image email = "email.jpg"

image topfloor = "topfloor.jpg"

image cooler = "cooler.jpg"

Next, we assign some images for the outdoor scenes, this time the files

sharing a blue hue:

image london = "london.jpg"

image london2 = "london2.jpg"

image park = "park1.jpg"

image park2 = "park2.jpg"

image alley = "alley.jpg"

image door = "door.jpg"

image window = "window.jpg"

image station = "station.jpg"

CHAPtER 7 tHREE LittLE GAMES

239

Finally, we assign a quadruplet of fiery images representing the chaos

of a full-blown fire storm. They will be displayed at random at one point in

the adventure.

image fire1 = "fire1.jpg"

image fire2 = "fire2.jpg"

image fire3 = "fire3.jpg"

image fire4 = "fire4.jpg"

 Into the Fray!
Now, we’ll get to the meat of the action by setting up the scene with a few

descriptive lines of who you are and what you do. Provided the character

images are in the correct directory, we’ll also display our hero, Reginald,

with the nice custom sliding effect we defined earlier. We’ll also use

the xpos attribute to position him on the right side of the proceedings.

Remember, with xpos the value of 0.0 is the absolute left and 1.0 is the

absolute right.

But first, we define some variables. They will be used and explained in

detail later.

The game starts here.

label start:

Define variables

 $ sips = 0

 $ time = 0

 $ items = []

 $ dvd_found = False

CHAPtER 7 tHREE LittLE GAMES

240

Look for the line in the script which says $ dvd_found = False. Next,

add the following line underneath this definition and make sure to adhere

to the strict and uniform indentation Ren’Py expects (i.e., start each line

with the same exact number of spaces). We’ll be hearing some mouse

clicking next:

 play sound ["<silence 1.5>", "sounds/mouse_clicks.wav"]

The preceding line plays a sound file found in the sounds directory,

placing 1.5 seconds of silence before doing so for dramatic purposes. You

could’ve used a simpler syntax, naturally, as in play sound “sounds/mouse_

clicks.wav” as well. Next, we’ll have some visuals.

 show office1

 with slideleft

The preceding lines display the image file associated with the handle

of office1 using a custom transition (i.e., slideleft) which we previously

defined. Once more, the two commands (i.e., show and with) must share

the exact same indentation; you won’t be able to run the game if one of

these keywords is, say, a single space further from the left than the other.

Some (free) text editors, like Editra, assist you in indentation by allowing

you to insert text blocks with the tab key.

 show reg:

 xalign 0.0

 xpos 0.7

 ypos 0.2

 with easeinleft

 "You, Reginald Pennelegion, a government cyber security

expert, are browsing nonsense at your desk workstation.."

CHAPtER 7 tHREE LittLE GAMES

241

 "You're supposed to be working on a big project, but

instead you're drifting into a world of memes, online

auctions, and silly video clips."

 "You are still depressed about the passing of your best and

only friend at the office, one Mervyn Popplewell."

Running this project in Ren’Py will now result in the default Ren’Py

starting menu, followed by the preceding narration being displayed and a

lovely portrait of our protagonist sliding in. Don’t see any changes when

clicking Launch Project? Make sure to save your script file before switching

over to Ren’Py.

 Commenting Your Code
It’s a good idea to comment your code, especially if you’re working as a

part of a larger team. As a reminder, in Ren’Py this is done easily with the

hashtag character. Add this before the first line of narration (“Reginald

Pennelegion, a government...”):

Room 1: Reginald's Desk

Despite Ren’Py’s rather stringent requirements when it comes to

indentation, you can luckily forgo that aspect of script writing when it

comes to comment lines. You can jot them however many spaces from the

left as you like; they aren’t considered a part of a text block in the software.

 Your First Menu
We’ll now implement some interaction into the proceedings using the

menu element. The following lines add this functionality to our adventure.

Put them underneath the preceding comment. Again, unless you’re finicky

and uniform with your indentation, Ren’Py will not function. Also, you

CHAPtER 7 tHREE LittLE GAMES

242

can’t use the tab key on your keyboard to add whitespaces to your Ren’Py

code; it will merely result in an error message. Stick to pressing the space

bar instead.

Let’s insert some variable functionality into our budding project. To

define variables in Ren’Py, you use the following syntax: $ variable_name = 0.

These definitions should be put after the starter label. Make the one in our

project look like this:

label start:

 $ sips = 0

 $ time = 0

 $ items = []

The variable called sips will be used to count the times our protagonist

ingests some water from the drinking station, as you’ll soon discover. The

variable called time will be used, perhaps unsurprisingly, to gauge the

passage of time. The variable named items is actually a currently empty

array of variables; we’ll be using it for a simple inventory system later on.

Unlike many programming languages, Ren’Py doesn’t have arrays per se.

Instead, it utilizes lists in their place.

Now, add the following code to the project after the comment line

(i.e., # Room 1: Reginald’s Desk):

 menu deskaction:

 "Choose your action"

 "Visit the drinking station":

 $ time += 1

 stop sound fadeout 1.0

 hide office1

 show cooler

 with dissolve

 jump drinkingfountain

CHAPtER 7 tHREE LittLE GAMES

243

 "Examine your colleague's desk":

 $ time += 1

 stop sound fadeout 1.0

 hide office1

 show office2

 with dissolve

 jump neighboringdesk

 menu drinkingfountain:

 "Choose your action"

 "Return to your desk":

 jump deskaction

 "Drink":

 $ sips += 1

 "Gulp. You take sip number [sips]!"

 jump deskaction

 label neighboringdesk:

 if time>3:

 jump emailreceived

 if time<=2:

 "One of your colleagues left early. His desk is

much tidier than yours."

 hide office2

 show office1

 with dissolve

 show reg

 jump deskaction

 else:

 "Yes, the desk next to yours is rather tidy."

 hide office2

CHAPtER 7 tHREE LittLE GAMES

244

 show office1

 with dissolve

 show reg

 jump deskaction

Examine the preceding listing. It’s a simple demonstration of the main

Ren’Py control elements, highlighted in bold. The menu element doesn’t

work on its own and needs to be assigned with a label; in this case we

called it deskaction. A combination of jump and label elements takes the

player to wherever you want them. Indentation aside, do pay attention to

punctuation, such as the colons after both the labels and menu items.

When it comes to our variable, you’ll see it’s manipulated using the

operator of += and displayed by using square brackets. Since Reginald is

not a particularly thirsty character at this point, he’ll only take one sip per

visit to the drinking station. We could’ve made him drink, say, 60 sips using

said variable ($ sips += 60), but that would’ve been rather preposterous,

don’t you think?

 Using Conditional Statements
We can add variation and excitement to the stories with conditional

statements of if, elif, and else. Replace the lines of code starting at menu

drinkingfountain: and ending at jump deskaction with the following:

 menu drinkingfountain:

 "Choose your action"

 "Return to your desk":

 jump deskaction

 "Drink":

 $ sips += 1

 play sound "sounds/gulp.wav"

CHAPtER 7 tHREE LittLE GAMES

245

 if sips<3:

 "Gulp. You take sip number [sips]"

 show office1

 with dissolve

 jump deskaction

 elif sips==3:

 "Gulp. You are beginning to feel full at

sip number [sips]"

 show office1

 with dissolve

 jump deskaction

 else:

 "You decided it was best to stop

drinking."

 show office1

 with dissolve

 jump deskaction

As you can probably tell, Mr. Pennelegion really isn’t dehydrated,

stopping the hydration at sip number three. The aforementioned

conditional elements are bolded for your convenience, and they are used

here to study the contents of our one and only variable sips. If is a self-

explanatory statement. Elif stands for else if. If an else statement is present,

it will be executed if all other evaluations in the same text block fail.

As always, watch those colons, avoid pressing the tab key for

whitespaces, and make sure your indentation is perfect to keep Ren’Py

working. Now, let’s add some more conditional action into our script,

using the other variable we defined and called time. Add the sections in

bold under the previously typed code (do not re-type the other parts):

 "Visit the drinking station":

 $ time += 1

 jump drinkingfountain

CHAPtER 7 tHREE LittLE GAMES

246

 "Examine your colleague's desk":

 $ time += 1

 jump neighboringdesk

Also, add the following new lines directly under label neighboringdesk:

 if time>4:

 jump emailreceived

The preceding mechanic simply checks for the number of user actions

in the game so far (i.e., either drinking water or examining your colleague’s

desk), and when that number is greater than four, we’re jumping to a new

label called emailreceived.

Now we’re going to change the scenery somewhat. Add the following

lines to the script before return and after the listing so far (i.e., after the last

line with jump deskaction):

 # Email time

 label emailreceived:

 scene email

 with dissolve

The scene command deletes all displayables (i.e., backgrounds and

character sprites), presenting a new backdrop in their place. Now, let’s play

a little chime to add to the atmosphere.

 play sound "sounds/email.wav"

 "No time for that now! Your workstation sounds off.

You've received email."

 "You open the message. It says: 'Meet me at Hyde Park

at seven pm tonight. I'll be by the Wellington Arch.

Don't tell anyone..'"

 "'..signed Mervyn Popplewell'"

CHAPtER 7 tHREE LittLE GAMES

247

 "This is some kind of sick joke. Mervyn is gone."

 "You decide to investigate the origin of the email by

phoning Royston at tech support.."

 "After a phone call upstairs, it becomes apparent the

email is genuine. Royston asks you to fetch something

from the top floor."

It’s time to change venues; say hello to the top floor. Adding the following

lines to the script, we are moving the story forward as per our synopsis.

Once again, conditional statements help to spice up the level of

immersion and provide replayability. Here we examine the sips variable

to see if the player overhydrated at the water station and, if so, display a

mildly humorous message.

label topfloor:

 scene topfloor

 with dissolve

 # Show the phone-sprite at specific coordinates

 show phone:

 xalign 0.0

 xpos 0.5

 ypos 0.18

 with easeinleft

Images (i.e., displayables in Ren’Py parlance) aren’t just reserved for

backgrounds or characters. The occasional sprite, especially when paired

with a suitable transition, can liven up the proceedings quite a bit. For

one, these can be used to introduce items. The preceding code brings in a

sprite of an archaic mobile phone using the rather sassy built-in transition

of easeinleft. Some dialogue is displayed and the phone is then taken off

the screen using easeoutright, which works well in conjunction with the

previous transition.

CHAPtER 7 tHREE LittLE GAMES

248

 "You locate a mobile phone in an obscure location. It's

really quite old, looking like it dates back to the 80s.

You pick it up."

 hide phone

 with easeoutright

We’ll use a specific sound to signal to the player any inventory-related

events from now on. Also, we’ll add the first item to this inventory using

the method of append.

 play sound "sounds/sound.wav"

 $ items.append("special phone")

 scene london

 with dissolve

 # If they player took their time drinking water, display a

message

 if sips >= 3:

 "You feel the need to use the bathroom, but you are in

a hurry.."

 "You decide to follow the instructions in the strange

email. Hyde Park, here we come."

 # Hyde Park

 label hydepark:

 play music ["sounds/park.mp3"] fadein 10.0 loop

The preceding line demonstrates the use of the music channel. Like

you may remember, Ren’Py has three channels for audio by default:

sound, music, and voice. Here we used the music channel to play some

background ambience from a park; by stating fadein and 10.0, we’ll be

fading in the track during a period of 10 seconds. By stating loop, we do

just that: we set the track so that it starts playing from the beginning each

time it reaches the end.

CHAPtER 7 tHREE LittLE GAMES

249

 scene park

 with dissolve

 "Hyde Park is just a walking distance from the office. It's

getting darker as you make your way past busy Londoners.

The Wellington Arch now looms in the distance. "

 $ items.append("coin")

 # Sort the items-list

 $ items.sort()

 play sound "sounds/sound.wav"

 "You notice a coin in the ground. You pick it up and pocket it."

Like you may have deduced, we used the previously empty items list for

the first time with the preceding bolded lines. We simply added two strings

(i.e., coin and special phone) into this list using the .append method. We

can study the context of the aforementioned list later in the game to direct

the proceedings of the adventure at hand. A typical use for Ren’Py’s list

structure would be checking if the player has a key to open a specific door.

Just to be fussy, we also used the handy sort method to put the items in

an alphabetical order (i.e., Coin followed by Special Phone instead of the

default order of vice versa).

 Setting the Text Speed
You may have noticed the dialogue is presented in a single block of text so

far without the classic method of one character at a time, as with most visual

novels. We’ll rectify this at once by accessing the file options.rpy from the

launcher application. Find the line that says default preferences.text_cps = 0

and change the number to 20. Save the file and re-run the game. You’ll now

enjoy a classic typewriter effect for the rest of the adventure.

CHAPtER 7 tHREE LittLE GAMES

250

 Upgrading the Inventory System
Now, the player would probably appreciate a visual representation of their

in-game belongings. After all, very few enjoy keeping a pen-and-paper

record of these things. Let’s add the following code to the very beginning

of the script file. The init statement makes sure the code is run before

anything else in the script.

init python:

 items = []

 def display_items_overlay():

 if len(items)>0:

 inventory = "Briefcase: "

 for i in range(0, len(items)):

 item_name = items[i].title()

 if i > 0:

 inventory += ", "

 inventory += item_name

 ui.frame()

 ui.text(inventory)

 config.overlay_functions.append(display_items_overlay)

The preceding code creates the fundamentals of an inventory listing,

displaying it on the top left corner of the screen. The Python statement tells

Ren’Py the lines to follow are to be interpreted as pure Python, that is, the

language Ren’Py is based on.

Now, our little inventory system works like this: if the previously defined

list called items contains at least one element, its contents are displayed

onscreen. Should it contain more than one element, these are to be displayed

but separated with commas. We implemented this inventory system from

the get-go, right after the variable definitions, so it runs in the background

throughout the game. Also, you might want to glance at Table 7-15 for some

handy methods delivering additional list manipulation in case you ever need it.

CHAPtER 7 tHREE LittLE GAMES

251

Ta
bl

e
7-

15
.

So
m

e
u

se
fu

l m
et

ho
ds

 fo
r

li
st

 m
an

ip
u

la
ti

on
 in

 P
yt

ho
n

 a
n

d
R

en
’P

y

M
et

ho
d

De
sc

rip
tio

n
Ex

am
pl

e
M

et
ho

d
De

sc
rip

tio
n

Ex
am

pl
e

ap
pe

nd
Ad

d
to

 li
st

fru
it.

ap
pe

nd
(“

ap
pl

e”
)

co
un

t
Co

un
ts

 th
e

nu
m

be
r o

f

ite
m

s
fo

un
d

in
 a

 li
st

.

Ca
se

- s
en

si
tiv

e

fru
it.

co
un

t(“
Pe

ar
”)

re
m

ov
e

Re
m

ov
e

ite
m

 fr
om

lis
t

po
ck

et
.re

m
ov

e(
“p

ie
”)

so
rt

So
rts

 th
e

ite
m

s
in

 a
 li

st

al
ph

ab
et

ic
al

ly

la
st

_n
am

es
.s

or
t()

in
se

rt
in

se
rts

 a
n

ite
m

 a
t

gi
ve

n
in

de
x

po
si

tio
n

in
ve

nt
or

y.
in

se
rt(

2,

“d
eo

do
ra

nt
”)

cl
ea

r
Re

m
ov

es
 a

ll
ite

m
s

fro
m

a
lis

t

in
ve

nt
or

y.
cl

ea
r()

re
ve

rs
e

Re
ve

rs
es

 a
 li

st

(e
.g

.,
“F

is
h”

, “
Ca

t”

be
co

m
es

 “
Ca

t”
,

“F
is

h”
)

na
m

es
.re

ve
rs

e(
)

le
n

Re
tu

rn
s

th
e

le
ng

th
 o

f

a
lis

t (
i.e

.,
th

e
to

ta
l

nu
m

be
r o

f i
te

m
s

in
 a

lis
t)

if
le

n(
ite

m
s)

>
0:

“H
oo

ra
y!

”

CHAPtER 7 tHREE LittLE GAMES

252

Let’s continue with the adventures of our protagonist, Reginald

Pennelegion. The following code goes after the line $ items.append(“coin”)

in the script:

 scene park2

 with dissolve

 "You arrive at the Wellington Arch, on time. No-one is

there to greet you."

 "You wait for quite a while, but not a soul approaches you."

 "Disappointed, you begin the trip home."

Now, let’s engage in some rather dramatic events. The script continues:

 # Office Inferno

 label inferno:

 "Your disappointment doesn't last long. You see flames in

the distance!"

 reg "Maybe if I'd done some overtime instead of going to

Hyde Park I could've prevented this!"

 play sound "sounds/phone.wav" loop

 "Panicking, Reginald is alarmed by the phone in his briefcase.

The ancient thing is ringing. You answer the call."

 stop sound

 show roy:

 xalign 0.0

 xpos 0.2

 ypos 0.2

 with easeinright

 roy "Get the pink DVD and get it out of there. You have ten

minutes before its devoured by fire."

CHAPtER 7 tHREE LittLE GAMES

253

 hide roy

 play sound "sounds/siren.wav" fadein 5.0 fadeout 5.0

 "It's about August, the prototype for the first fully

cyber-attack proof firewall to be implemented in all of Her

Majesty's agencies later this year. "

 Adding Functions (and Reusing Variables)
Functions are reusable code that can be called when needed. They tidy

up the code and speed up the development process. In Ren’Py they are

invoked using the call command.

Add the following line underneath the current variable definitions:

$ dvd_found = False. This defines a boolean variable named dvd_found.

A boolean has only two states: true or false. These are great for flagging

events in a Ren’Py game. Like you may have gathered, the aforementioned

variable is used to check whether a special DVD is in your possession or

not. This is done in conjunction with a certain function, check_dvd, which

will be defined next.

Note Ren’Py is very picky with booleans. it simply refuses to
acknowledge non-capitalized values for these types of variables.
Make sure to capitalize them at all times (i.e., True is correct, while
true causes an error).

Let’s next define three functions that will prove useful in our game’s

development. We do this by adding the following code into the script.

These and other functions should be defined in the script before the main

label (i.e., before label start:).

CHAPtER 7 tHREE LittLE GAMES

254

label show_fire:

 $ num = renpy.random.randint(1, 4)

 $ which = "fire" + str(num)

 show expression which

 with fireflash

 return

label check_dvd:

 # play sound if "dvd_found" hasn't been set to "True" yet

 if dvd_found == False:

 play sound "sounds/sound.wav"

 $ if dvd_found == False: items.append("Pink DVD")

 $ if dvd_found == False: items.sort()

 $ if dvd_found == False: dvd_found = True

 return

label checktime:

 # call another function, show_fire, from within this function

 call show_fire

 play sound "sounds/woosh.wav"

 $ time -= 5

 if time < 5:

 jump burn

 return

The first function, show_fire, is used to select a backdrop at random

from a pool of four images. It uses a variable called num to draw a random

number between one and four. This number is then added to a string via a

second variable, which, that results in strings between fire1 or fire4. Finally,

this is passed on to a show command with the addition of a modifier called

expression to make it compatible with said command. The end result of

this function is a fiery background image being displayed using the custom

transition called fireflash we defined earlier.

CHAPtER 7 tHREE LittLE GAMES

255

The function called check_dvd first examines whether a boolean

variable called dvd_found is set to false. If so, an item is added to the

inventory using the append method. The items list is then also sorted

alphabetically. Finally, the variable (i.e., check_dvd) is set to true so that the

aforementioned processes won’t be run again. This is to avoid inserting the

pink DVD into the inventory more than once, which could happen if the

player revisited the room it’s available in (i.e., your other colleague’s desk).

Now, you may have noticed we pulled out the variable called time and

assigned it a value of 25. Reusing variables is a perfectly fine and, when

possible, recommended.

So, we are entering a rather hectic sequence in the adventure where

the player is frantically searching for a special pink DVD in a burning office

complex. The setting consists of four rooms (i.e., officefire, firedesk_a,

firedesk_b, and firedesk_c). The following information is classified: the pink

DVD is located in firedesk_c, that is, Your other colleague’s desk. Every dash

to a different room causes a 5-second reduction in the available time. Once

that reaches zero, the player is engulfed in flames and the game is over.

Back to the main script; it continues as follows (after “It’s all about

August..”):

 # The Inferno Proper

 label actionscene:

 scene alley

 with dissolve

 play music ["sounds/fireplace.mp3"] fadein 10.0 loop

 "You reach the back alley of the office building, feeling a

sense of urgency. It's now or never. You climb up the fire

ladder."

 $ time = 25

 call show_fire

CHAPtER 7 tHREE LittLE GAMES

256

 Particles with SnowBlossom
It’s time to add some eye candy in the form of particles. These refer to

small image files (i.e., sprites) which are used in large numbers to create

effects such as rain, snow, and explosions. Ren’Py supports particles via

its built-in SnowBlossom effect. This effect has been used in quite a few

visual novels to push leaves and cherry blossoms around; we’ll use it for

animating a bunch of sparks.

Set-up and display particles using the SnowBlossom-effect

 image sparks = Fixed(

 SnowBlossom(im.FactorScale("images/fireparticle.

png",1.0),count=12,start=5),

 SnowBlossom(im.FactorScale(im.Alpha("images/

fireparticle.png",0.8),0.6), count=15,

yspeed=(50,125)))

The main attributes for SnowBlossom are as follows: count, start,

yspeed, and xspeed. Start refers to the delay between inserting a particle

into a scene, in seconds. In our script this is set to 5 seconds, as you

probably gathered. Count sets the maximum amount of particles

onscreen.

Next, yspeed addresses the vertical speed, while xspeed controls

the horizontal speed of sprites/particles. These two attributes can

take negative values and/or tuples of two numbers (i.e., (5,10) or

(−10,−5)). When used with tuples, Ren’Py selects a random value

between the two. With our sparks, a yspeed between 50 and 125 is

set for each particle, making them fall down rather slowly, which is

exactly what we want.

What we have in our game is actually two instances of SnowBlossom:

the first one (presented in bold) produces full-sized particles, while the

second one creates smaller variations of these sprites. This works to create

CHAPtER 7 tHREE LittLE GAMES

257

an illusion of depth. The second line of SnowBlossom also works on the

alpha channel (i.e., transparency) of the spark sprites, making these particles

translucent. It achieves this by adjusting the attribute of im.Alpha to 0.6.

Now, for a very basic example of SnowBlossom in action, you could do

something like this:

 image sparks = Fixed(

 SnowBlossom(im.FactorScale("images/fireparticle.png",1.0),

count=10, yspeed=(100,110), xspeed=(1,2), start=4))

The previous lines of script would create a nice snowfall effect.

However, our sparks need to be a tad more complicated so we’ll stick with

the previous code.

Next, we use the following single line to activate our particles; our dear

friend the show command is at work once again:

 show sparks

 menu officefire:

 "Choose your action. You have [time] seconds left. You are

in the general office area."

 "Dash to your desk":

 call checktime

 jump firedesk_a

 "Dash to your colleague's desk":

 call checktime

 jump firedesk_b

 "Dash to your other colleague's desk":

 call checktime

 call check_dvd

 jump firedesk_c

CHAPtER 7 tHREE LittLE GAMES

258

The player is presented with three choices in each room. The checktime

function is called before changing locations. It simply reduces the time

variable by five units. Also, should the value of time fall under five, the

function makes sure the player is transported to the label burn as it is

indeed game over at that grim point.

The function named check_dvd is only ever requested if the player

visits the room with the DVD in it (i.e., firedesk_c). It would be unnecessary

to treat all of the rooms with this function; avoid redundant code if you can.

 menu outwindow:

 "Choose your action. You have [time] seconds left. You are

in the general office area."

 "Climb Out the Window":

 call checktime

 jump window

 "Dash to your desk":

 call checktime

 jump firedesk_a

 "Dash to your colleague's desk":

 call checktime

 jump firedesk_b

 "Dash to your other colleague's desk":

 call checktime

 call check_dvd

 jump firedesk_c

There are two almost identical menus for the location of the

preceding General Office Area. The initial menu (i.e., officefire) is

presented, while dvd_found returns False; the second menu (i.e.,

outwindow) is put to use when said variable returns True. In other words,

the option to climb out the window becomes available, from this room

CHAPtER 7 tHREE LittLE GAMES

259

only, when the player has collected the DVD (as in he or she visited the

room firedesk_c at least once).

 menu firedesk_a:

 "Choose your action. You have [time] seconds left. You are

at your own desk. You find nothing but flames here."

 "Dash to the general office area":

 call checktime

 if dvd_found == False:

 jump officefire

 else:

 jump outwindow

 "Dash to your colleague's desk":

 call checktime

 jump firedesk_b

 "Dash to your other colleague's desk":

 call checktime

 call check_dvd

 jump firedesk_c

 menu firedesk_b:

 "Choose your action. You have [time] seconds left. You are

at your colleague's desk. You find nothing but smoke here."

 "Dash to the general office area":

 if dvd_found == False:

 jump officefire

 else:

 jump outwindow

 "Dash to your desk":

 call checktime

 jump firedesk_a

CHAPtER 7 tHREE LittLE GAMES

260

 "Dash to your other colleague's desk":

 call checktime

 call check_dvd

 jump firedesk_c

Ah yes, finally we reach the special location with the DVD in it.

 menu firedesk_c:

 "Choose your action. You have [time] seconds left. You are

at your other colleague's desk."

 "Dash to the general office area":

 if dvd_found == False:

 jump officefire

 else:

 jump outwindow

 "Dash to your desk":

 call checktime

 jump firedesk_a

 "Dash to your colleague's desk":

 call checktime

 jump firedesk_b

Should our protagonist suffer a fiery death and be in possession of the

aforementioned special DVD, we’ll display an additional line of narration

using a conditional statement, like this:

label burn:

 "You pass out from the fumes and burn to death."

 if dvd_found == True:

 "They find your corpse clutching a scorched pink DVD.."

 # Back to main menu

 $ renpy.full_restart()

CHAPtER 7 tHREE LittLE GAMES

261

The command full_restart resets the game and takes the player back

to the main menu; it is game over after all. Now, a label for a successful

escape is inserted immediately afterward.

label window:

 "You find your way out of the window and slide down the hot

fire ladder!"

 Randomizing Dialogue
Let’s carry on with our story and add a new element: randomized dialogue.

For one, this will do wonders for replayability.

 $ randomdialogue = renpy.random.choice(['The phone in the

briefcase rings again.',

'You are startled by a shrill noise emanating from your

briefcase.',

'The ancient mobile phone is ringing.'])

 play sound "sounds/phone.wav" loop

 # Display our random dialogue

 "[randomdialogue]"

 stop sound

 show roy:

 xalign 0.0

 xpos 0.2

 ypos 0.2

 with dissolve

 roy "Well done. Go home and stay there for further

instructions. Protect the disc with your life, if

necessary."

CHAPtER 7 tHREE LittLE GAMES

262

The line in bold displays one of the three lines of narration stored in

the variable called random_narration. As always, make sure your syntax is

perfect or Ren’Py will not play ball with you.

Now, should we need to conjure up a random value at some point in

our adventure, we would do this:

 # Generate a random number between 20 and 80

 $ random_number = renpy.random.randint(20, 80)

 "You feel [random_number]%% motivated to continue your quest!"

In the preceding text, we created a variable called random_number

and assigned to it a value between 1 and 100. You can, of course, use any

range for these values that fits your project best (e.g., (5, 10) or perhaps

(0, 1000), etc.).

On the next line, we displayed this aforementioned variable. But why

the double character when it comes to the percentage sign? Well, without

this approach, Ren’Py would throw an error.

And should we have needed a random floating point value between

0 and 1 (e.g., 0.5 or perchance 0.9), we would’ve done this: $ random_

number = renpy.random.random()

 Styles and Hyperlinks
Our little techno-thriller’s script resumes as follows:

label home:

 scene london2

 with dissolve

 # We use the music-channel to play ambient sounds. This is

because only this channel

 # allows for both the looping and the fadein for audio

 play music ["sounds/london_bridge.wav"] fadein 10.0 loop

CHAPtER 7 tHREE LittLE GAMES

263

 "The adrenaline begins to slowly wear off as you pace

towards your residence."

 play sound "sounds/phone.wav" loop

 "The old phone rings again."

 stop sound

 "This time, it's a woman's voice."

 # Show the serious face for Raine

 show rai serious:

 xalign 0.0

 xpos 0.2

 ypos 0.2

 with dissolve

The preceding passage demonstrates the use of character expressions

in Ren’Py. As you might remember, we defined a serious face for Raine

early on in the script, and with the simple command of show rai serious, we

summoned that look.

 rai "{i}Whatever you do, don't go home!{/i} Leave London

right {u}now.{/u} Go as far North as you can. A train is

your best bet."

 rai "I'll call again. Go! {b}And don't lose the disc!{/b}"

The next passage hides Raine’s serious expression and evokes her

natural cheeky expression, which is her default portrait. By omitting any

additional attributes, the show command defaults to the character image

files we named after their in-script shorthand (e.g., rai.png, roy.png, and

reg.png).

 # Hide serious Raine and show her more cheeky face

 hide rai

CHAPtER 7 tHREE LittLE GAMES

264

 show rai:

 xalign 0.0

 xpos 0.2

 ypos 0.2

We used three types of new styles in the preceding dialogue: bold,

italic, and underline (all presented in bold for your convenience). These

styles are implemented using tags created from curly brackets (i.e., { and })

with the desired style inside them. Use them sparingly to spice up the

dialogue every now and then.

Now, perhaps you feel like some blatant advertising by inserting

hyperlinks into the proceedings.

 rai "Oh, and, why not visit {a=http://www.robertciesla.com}

this great site{/a} when you have the time?"

As with HTML, hyperlinks in Ren’Py are embedded using the a-tag.

A slightly more Spartan syntax is used in the latter framework as you can

see from the preceding example.

Sometimes you want to change the text size in game. This is done using

the intuitively named size tag. The following line utilizes this tag and also

demonstrates how you can combine different attributes.

 rai "I personally visit that {size=+10}{i}fascinating{/i}

{/size} website every day."

 hide rai

 # Replace the ambient sound with another one

 play music ["sounds/ambience.wav"] fadein 10.0 loop

 # Again, the music-channel is great for ambience, too, for

its versatility with options

CHAPtER 7 tHREE LittLE GAMES

265

 Adding Videos
As long as your video files are in the correct format, playing them

back in Ren’Py is a breeze. Next we summon the Python command of

renpy.movie_cutscene to play a video file, after which we fade in a new

background graphic (i.e., door.jpg). Once again, be very careful with the

capitalization and location of your video files or Ren’Py won’t play ball.

The sample video file is stored using the webM container format, which is

probably the most compatible and best choice for Ren’Py projects.

$ renpy.movie_cutscene("videos/Interlude.webm")

 scene door

 with dissolve

Note: your video editing software may not support exporting the

WebM format out of the box. It might be necessary to install plugins for

this purpose. Alternatively, you can first export to whichever high-quality

format you desire and then convert the video file into WebM using external

software. The following links provide some free tools for these tasks:

• Fnord’s Plugin for Adobe Premiere Pro and Media

Encoder: www.fnordware.com/WebM

• Transmageddon, a general-purpose WebM converter

for Linux: https://github.com/GNOME/transmageddon

• XMedia Recode, a WebM converter for Windows: www.

xmedia-recode.de/en

 Text Speed on the Fly
You may remember us activating the typewriter effect for this project

earlier in this chapter using the options file (i.e., options.rpy). While that

approach indeed provides a global setting for characters per second (cps),

this can be controlled from inside the main script as well.

CHAPtER 7 tHREE LittLE GAMES

https://www.fnordware.com/WebM
https://github.com/GNOME/transmageddon
http://www.xmedia-recode.de/en
http://www.xmedia-recode.de/en

266

 "You hear a strange humming noise coming from your flat.

Putting your ear against the door, {cps=5}the noise gets

louder.{/cps}"

By applying the cps tag to the desired passage, you can set the text

speed in game at your leisure. It works great for those more dramatic

moments in your story.

 More Fun with Text
Ren’Py offers a wealth of styles for presenting your story; you aren’t limited

to the aforementioned attributes.

 "{k=-1.5}Something is up.{/k} {k=1.5}You decide to heed the

girl's advice and leave.{/k}"

 "Running down the street toward the train station you look

back once more.{vspace=25}{w}A human-like figure with

unnaturally large eyes stares back."

The preceding snippet of the script demonstrates three more effects:

text kerning, the vertical space, and the wait. Kerning refers to the space

between characters. A negative kerning value will bring the letters closer,

while a positive one will do the opposite.

A vspace element creates a vertical space of however many pixels you

want. The wait tag simply awaits a mouse click in the middle of dialogue

before continuing with the story.

 "It's dressed in light blue uniform, briefly reminding you

of a life-sized action figure of some kind.{fast} Your

heart skips a beat or two."

The fast element displays the text after it in an instant, as per the

default setting in the Ren’Py options file.

CHAPtER 7 tHREE LittLE GAMES

267

 scene station

 with dissolve

 stop music fadeout 5.0

 "After running what felt like a marathon, you reach Euston

train station, panting heavily. No one seems to have been

following you."

 "You remember the girl's advice and look for the next

northbound train.."

 "You've now reached the end of this tutorial visual novel.

Check out the source code to learn more."

And that’s the end of the first part of Taking Back August. We’ve now

demonstrated most of the functionality of Ren’Py. And that’s how we

develop with this wonderful software, from synopsis to the game itself.

Perhaps you feel like completing the adventure with the building blocks

provided. In any case, we’re moving on to other software.

 Part II: The Middle of Reginald’s Story
with TyranoBuilder
We’re now switching to the world of TyranoBuilder with all of its graphical

user interface magic to resume telling the story of Taking Back August. Let’s

begin by simply creating a fresh new project in the software.

You may remember the concept of a sound novel from Chapter 4. This

is a more minimalistic variety of visual novel with the dialogue taking up

most of the space, with the emphasis being less on visual representations

of characters. We won’t be picking this approach, rather we’re going for the

more traditional style of game.

CHAPtER 7 tHREE LittLE GAMES

268

After entering the game’s name, set up the project as follows:

• Game Type: Visual Novel

• Screen Size: Landscape (1280 x 720)

• No Title Screen & No Menu Button (for Save, Load, etc.)

Delete the default background graphic by clicking the Background

Image block in the main designer view; we’re going to keep an ominous

minimalistic vibe going for this leg of the adventure, too.

 A Couple of Characters
Since we’re exploring most of TyranoBuilder’s main functionality in

this tutorial project, we will be needing some characters to manipulate.

Select Project ➤ Characters from the top menu. Enter the following

characters one by one in the input box: Claire, Overalls, Reginald, and

Raine. TyranoBuilder will automatically create directories on your hard

drive for each character created. These are used to store the related

image files. These directories will be numbered in the order you created

the characters, that is, “1” for Claire, “2” for Overalls, and so on. You can

access them as sub-directories at ProjectName/data/fgimage. This will be

demonstrated in more detail later in this chapter.

 On a Train
Now, on with the story. Our stalwart protagonist will find himself aboard a

train. Copy the following text block into the red Text field below Show Text.

After running what felt like a marathon, you reach Euston train

station, panting heavily. No one seems to have been following

you. You remember the girl's advice and look for the next

northbound train.

CHAPtER 7 tHREE LittLE GAMES

269

Next is another piece of narration for a second component of Show Text:

"Excuse me!", you suddenly hear. Out of nowhere, a dark-haired

woman dashes in front of you, blocking entrance to the train.

"Is this the train to Nottingham?" She gives a wide smile.

As we know, TyranoBuilder offers a robust graphical user interface for

making your visual novels with. However, we shouldn’t forget its scripting

features; the TyranoScript component offers a lot of flexibility for the

developer(s). We’ll be mostly utilizing TyranoScript from now on.

 TyranoBuilder, Assets, and Directories
Before utilizing any audiovisual assets, we need to get acquainted with the

TyranoBuilder directories. These will be automatically generated for each

project. Now, the most common way of using TyranoBuilder is via Steam,

regardless of the platform. To open your project directory using the Steam

app, take the following steps:

• Right-click TyranoBuilder in the Steam library view and

select Properties.

• Click the tab called Local Files.

• Click Browse Local Files.

A directory view of the TyranoBuilder program should open. Open

the myproject directory. Double-click the project name you’re interested

in working on (e.g., MyHappyGame). Double-click data. You’ll now see

a directory structure where you’ll be storing your audiovisual assets (see

Table 7-16). The audiovisual files and their corresponding directories will

be described in the following.

CHAPtER 7 tHREE LittLE GAMES

270

Table 7-16. The most relevant directories for TyranoBuilder projects

(under “project-name” ➤ data)

Directory Used for Directory Used for

bgimage Background images others Plugins (i.e., downloadable

add-ons)

bgm Background music

(in .ogg or .wav)

scenario Scene files (e.g., scene1.ks)

fgimage Character images. Will be

automatically managed by

tyranoBuilder

sound Sound effects (in .wav

or .ogg)

image Various image files related

to the user interface

video Video files (.webM is

preferred)

We’ll proceed to add some sounds to our adventure. Let’s first take a look at

some of the most useful audio-related tags in TyranoBuilder (see Table 7-17).

You either use the method of square brackets in your TyranoScript

components for longer commands or utilize the at sign for tags taking no

more than a single line (e.g., @playse storage=cheer.ogg). In the following

table, we’ve exclusively used square brackets for simplicity’s sake.

Note: TyranoScript uses semicolons (;) for commenting purposes.

Table 7-17. Some useful tags in TyranoScript for manipulating audio

Tag Description Example

[playse] Plays a sound effect. Loop and clear

parameters optional; the latter interrupts an

already playing sound effect with the new one

[playse storage=

cheer.ogg loop=

false clear=true]

[stopse] Stops playing a sound effect. takes no

parameters

[stopse]

(continued)

CHAPtER 7 tHREE LittLE GAMES

271

Table 7-17. (continued)

Tag Description Example

[seopt] Sets sound effect volume [seopt volume=70]

[wse] Waits for sound effect to stop playing before

continuing. takes no parameters

[wse]

[playbgm] Plays background music. Additional

parameters: loop, time (in milliseconds, for

the playback to start at)

[playbgm

storage="song1.

ogg" loop=true]

[stopbgm] Stops background music playback. takes no

parameters

[stopbgm]

[bgmopt] Sets the background music volume [bgmopt

volume=50]

[xchgbgm] Crossfades background music with another

track. Additional parameters: loop, time (in

milliseconds)

[xchgbgm

storage=song2.

ogg loop=true

time=4000]

[fadeoutbgm] Fades out background music track. takes

time in milliseconds

[fadeoutbgm

time=3000]

[fadeinbgm] Fades in background music track. takes

time in milliseconds

[fadeinbgm

time=5000]

 Sounds on a Train
Now, onward with our adventure. Drag a component called Change

Background from the Images category below the previous component. Use

the component’s Browse button to the file called train2.jpg. Next add a

TyranoScript component beneath the component called exit scene. Insert

the following code:

CHAPtER 7 tHREE LittLE GAMES

272

;Set your intoxication level to zero using a custom variable

"f.rumlevel"

[eval exp="f.rumlevel = 0"]

What the line in bold does is define a variable called f.rumlevel and

give it a value of zero. In-game variables in TyranoBuilder need to adhere

to this syntax, that is, the f. needs to begin each variable name (e.g.,

f.happiness or f.attraction_level). Now, let’s continue with our TyranoScript.

;The [r] tag inserts a new line

The way she appeared out of nowhere makes her suspect. You

confirm this is the correct train and push past her. [r]

;The [l] tag makes the game wait for a mouse click, while the

[cm] tag clears all text.

You find your seat and soon the train starts its trek. [l][cm]

;Start playback of a looped ambient track

[fadeinbgm storage=train_01.wav loop=true time=3000]

;Display a new background image

[bg storage=train1.jpg time=6000 wait=true]

Claire dons a pair of headphones and closes her eyes.[r]

You're pleased there's no more small talk to interrupt your

flow of thoughts.

;Let's play a little (unskippable) movie

[movie storage=interlude.webm skip=false]

Like the comment line says, in addition to text, this code will begin the

playback of a looped ambient track of train noise, creating some nice extra

atmosphere. Instead of abruptly playing said file, we fade it in using the tag

called fadeinbgm and a time setting of 3000 milliseconds (i.e., 3 seconds).

We are also changing the background graphic with the next actual

line of code (shown in bold) using a 6-second fade-in transition. Finally,

we play a pretty much universally compatible webM video file, stored in

TyranoBuilder’s video directory. See Table 7-18 for specific information on

image and video file usage in TyranoScript.

CHAPtER 7 tHREE LittLE GAMES

273

Ta
bl

e
7-

18
.

So
m

e
u

se
fu

l t
ag

s
in

 T
yr

an
oS

cr
ip

t f
or

 w
or

ki
n

g
w

it
h

la
ye

rs
, t

ex
t,

an
d

im
ag

es

Ta
g

De
sc

rip
tio

n
Ex

am
pl

e(
s)

[im
ag

e]
Di

sp
la

ys
 a

n
im

ag
e.

Pa
ra

m
et

er
s:

 la
ye

r,
pa

ge
, v

is
ib

le
, w

id
th

, h
ei

gh
t,

x,
 y.

Se
ts

 la
ye

r t
o

"b
as

e"
 to

 p
ut

 th
e

im
ag

e
on

 th
e

ba
ck

gr
ou

nd
.

Po
si

tiv
e

nu
m

be
rs

 p
ut

 th
e

im
ag

e
on

 th
e

fo
re

gr
ou

nd
.

Pa
ge

 ta
ke

s
ei

th
er

 "
fo

re
"

or
 "

ba
ck

".

[i
ma
ge
 s
to
ra
ge
="
du
de
.j
pg
"

la
ye
r=
1
pa
ge
=f
or
e
vi
si
bl
e=
tr
ue

wi
dt
h=
"2
56
"
he
ig
ht
="
25
6"
 x
="
64
0"

y=
"2
00
"]

[i
ma
ge
 s
to
ra
ge
="
bg
.

jp
g"
 l
ay
er
=b
as
e
pa
ge
=b
ac
k

vi
si
bl
e=
tr
ue
 w
id
th
="
12
80
"

he
ig
ht
="
72
0"
 x
="
0"
 y
="
0"
]

[b
g]

Ch
an

ge
s

th
e

ba
ck

gr
ou

nd
 im

ag
e.

Pa
ra

m
et

er
s:

 m
et

ho
d,

 ti
m

e,
 w

ai
t.

M
et

ho
d

re
fe

rs
 to

 tr
an

si
tio

n
ty

pe
 (i

.e
.,

cr
os

sf
ad

e,
 e

xp
lo

de
,

sl
id

e,
 b

lin
d,

 b
ou

nc
e,

 c
lip

, d
ro

p,
 fo

ld
, p

uf
f,

sc
al

e,
 s

ha
ke

, s
ize

).

W
ai

t s
pe

ci
fie

s
w

he
th

er
 o

r n
ot

 to
 s

to
p

pr
oc

es
si

ng
 u

nt
il

th
e

tra
ns

iti
on

 is
 c

om
pl

et
e.

[b
g
st
or
ag
e=
bg
1.
pn
g
me
th
od
=s
li
de

ti
me
=2
00
0
wa
it
=t
ru
e]

[b
g
st
or
ag
e=
bg
2.
pn
g
me
th
od
=p
uf
f

ti
me
=4
00
0
wa
it
=f
al
se
]

[la
yo

pt
]

Co
nt

ro
ls

 d
is

pl
ay

 la
ye

rs
.

Pa
ra

m
et

er
s:

 p
ag

e,
 v

is
ib

le
, l

ef
t (

po
si

tio
n

fro
m

 th
e

le
ft)

, t
op

,
op

ac
ity

 (0
–2

55
 w

he
re

 2
55

 is
 tr

an
sp

ar
en

t).

[l
ay
op
t
la
ye
r=
1
vi
si
bl
e=
tr
ue

op
ac
it
y=
10
0]

[l
ay
op
t
la
ye
r=
1
vi
si
bl
e=
fa
ls
e]

(c
on

ti
n

u
ed

)

CHAPtER 7 tHREE LittLE GAMES

274

Ta
bl

e
7-

18
.

(c
on

ti
n

u
ed

)

[a
ni

m
]

An
im

at
es

/m
ov

es
 a

n
im

ag
e

or
 c

ha
ra

ct
er

 s
pr

ite
.

Op
tio

na
l p

ar
am

et
er

s:
 la

ye
r,

le
ft,

 to
p,

 w
id

th
, h

ei
gh

t,
op

ac
ity

,
co

lo
r,

tim
e,

 e
ffe

ct
.

Ef
fe

ct
 ta

ke
s

th
es

e
pr

ed
ef

in
ed

 m
ac

ro
s:

js
w

in
g

|
de

f |
 e

as
eI

nQ
ua

d
|

ea
se

Ou
tQ

ua
d

|
ea

se
In

Ou
tQ

ua
d

|
ea

se
In

Cu
bi

c
|e

as
eO

ut
Cu

bi
c

|
ea

se
In

Ou
tC

ub
ic

|e

as
eI

nQ
ua

rt
|

ea
se

Ou
tQ

ua
rt

|e
as

eI
nO

ut
Qu

ar
t |

ea

se
In

Qu
in

t |
ea

se
Ou

tQ
ui

nt
 |

 e
as

eI
nO

ut
Qu

in
t |

 e
as

eI
nS

in
e

|
ea

se
Ou

tS
in

e
|

ea
se

In
Ou

tS
in

e
|

ea
se

In
Ex

po
 |

 e
as

eO
ut

Ex
po

 |

ea
se

In
Ou

tE
xp

o
|

ea
se

In
Ci

rc
 |

 e
as

eO
ut

Ci
rc

 |
 e

as
eI

nO
ut

Ci
rc

|

ea
se

In
El

as
tic

 |
 e

as
eO

ut
El

as
tic

 |
 e

as
eI

nO
ut

El
as

tic
 |

ea

se
In

Ba
ck

 |
 e

as
eO

ut
Ba

ck
 |

 e
as

eI
nO

ut
Ba

ck
 |

 e
as

eI
nB

ou
nc

e
|

ea
se

Ou
tB

ou
nc

e
|

ea
se

In
Ou

tB
ou

nc
e.

[a
ni
m
na
me
="
Bi
ll
y"
 t
im
e=
30
00

le
ft
=1
00
 t
op
=4
0]

[a
ni
m
na
me
="
Re
gi
na
ld
"

ti
me
=2
00
0
le
ft
=8
00
 t
op
=4
0

ef
fe
ct
=e
as
eI
nO
ut
Qu
in
t]

[a
ni
m
na
me
="
Ga
ye
lo
rd
"

ti
me
=1
00
0
le
ft
=1
00
 t
op
=4
0

ef
fe
ct
=e
as
eI
nO
ut
Qu
in
t
co
lo
r=
re
d

op
ac
it
y=
50
]

[p
te

xt
]

Di
sp

la
ys

 te
xt

. A
cc

ep
ts

 H
tM

L
ta

gs
.

Pa
ra

m
et

er
s:

 te
xt

, s
iz

e,
 x

, y
, c

ol
or

, v
er

tic
al

.

[p
te
xt
 l
ay
er
=2
 p
ag
e=
fo
re

te
xt
="
He
ll
o
<b
r>
<i
>f
ri
en
ds
!<
/i
>"

si
ze
=3
0
x=
30
 y
=1
80
 c
ol
or
=g
re
en
]

Ta
g

De
sc

rip
tio

n
Ex

am
pl

e(
s)

CHAPtER 7 tHREE LittLE GAMES

275

[m
te

xt
]

Di
sp

la
ys

 a
ni

m
at

ed
 te

xt
 u

si
ng

 d
oz

en
s

of
 d

iff
er

en
t m

et
ho

ds
.

Pa
ra

m
et

er
s:

 te
xt

, x
, y

, i
n_

ef
fe

ct
, o

ut
_e

ffe
ct

.

Se
e
ht
tp
s:
//
ty
ra
no
.j
p/
mt
ex
t/

 fo
r a

 fu
ll

liv
e

de
m

on
st

ra
tio

n.

[l
ay
op
t
la
ye
r=
0
vi
si
bl
e=
tr
ue
]

[m
te
xt
 t
ex
t=
"H
el
lo
 t
he
re
!"
 x
=2
00

y=
10
0
in
_e
ff
ec
t=
"f
ad
eI
n"
 o
ut
_

ef
fe
ct
="
hi
ng
e"
]

[l
ay
op
t
la
ye
r=
0
vi
si
bl
e=
tr
ue
]

[m
te
xt
 t
ex
t=
"W
ow
!
Wh
at
 i
s
th
is
?"

x=
20
0
y=
10
0
in
_e
ff
ec
t=
"b
ou
nc
eI
n"

ou
t_
ef
fe
ct
="
bo
un
ce
Ou
t"
]

[fi
lte

r]
Ap

pl
ie

s
a

fil
te

r t
o

a
la

ye
r o

r o
bj

ec
t.

Op
tio

ns
: g

ra
ys

ca
le

, s
ep

ia
, s

at
ur

at
e,

 h
ue

, i
nv

er
t,

op
ac

ity
,

br
ig

ht
ne

ss
, c

on
tra

st
, b

lu
r.

[f
il
te
r
la
ye
r=
"0
"
se
pi
a=
50
]

[f
il
te
r
la
ye
r=
"0
"
in
ve
rt
]

[fr
ee

_f
ilt

er
]

Di
sa

bl
es

 fi
lte

rs
.

[f
re
e_
fi
lt
er
]

[m
ov

ie
]

Pl
ay

s
an

 m
p4

 m
ov

ie
.

Pa
ra

m
et

er
s:

 s
ki

p
(d

ef
in

es
 if

 m
ov

ie
 is

 s
ki

pp
ab

le
 o

r n
ot

).

;S
ho
w
an
 u
ns
ki
pp
ab
le
 v
id
eo
-f
il
e

[m
ov
ie
 s
to
ra
ge
="
ha
pp
ym
ov
ie
.m
p4
"

sk
ip
=f
al
se
]

(c
on

ti
n

u
ed

)

CHAPtER 7 tHREE LittLE GAMES

https://tyrano.jp/mtext/

276

Ta
bl

e
7-

18
.

(c
on

ti
n

u
ed

)

[b
gm

ov
ie

]
Pl

ay
s

a
vi

de
o

ba
ck

gr
ou

nd
.

Pa
ra

m
et

er
s:

 v
ol

um
e,

 lo
op

.
No

te
: f

or
 m

ax
im

um
 c

om
pa

tib
ili

ty
 b

et
w

ee
n

pl
at

fo
rm

s,
 u

se

w
eb

M
 fi

le
s.

;D
is
pl
ay
 a
 l
oo
pi
ng
 v
id
eo
 a
t
80
%

vo
lu
me

[b
gm
ov
ie
 s
to
ra
ge
="
mo
vi
e.
we
bm
"

vo
lu
me
=8
0
lo
op
=t
ru
e]

[s
to

p_
bg

m
ov

ie
]

St
op

s
pl

ay
in

g
a

vi
de

o
ba

ck
gr

ou
nd

.
[s
to
p_
bg
mo
vi
e]

Ta
g

De
sc

rip
tio

n
Ex

am
pl

e(
s)

CHAPtER 7 tHREE LittLE GAMES

277

 First Glimpses of Interaction and Variables
Isn’t the TyranoScript component a blast? Let’s continue the story right in

it also adding a little interaction.

;Let's implement some interaction, shall we?

Pulling out her headphones, Claire suddenly offers a drink from

a hip flask.[l]

[dialog type="confirm" text="Drink?" label_ok="Yes, please."

storage="scene1.ks" target="yes_label" label_cancel="No,

thanks.." storage_cancel="scene1.ks" target_cancel="no_label"]

We invoked a confirmation dialogue window with the preceding

code using the dialog command, presented here in bold. Should the

player agree to a sip, he or she will be taken to a label named yes_label.

If the player disagrees with the notion of tasting potentially intoxicating

liquids, he or she will be transported to no_label. Both labels can be

handily implemented with the graphical interface in TyranoBuilder by the

dedicated label component.

Let’s do just that and add a label component, calling it no_label. Add

another TyranoScript component underneath it with the following code:

[cm]You decline. "Suit yourself", Claire says taking a long sip

from her flask.[l]

;Jump over the yes_label choice

[jump storage=scene1.ks target=*continue]

Now it’s time for the other label, that is, the yes_label. Add this and also

add a TyranoScript component below it with the following lines:

[playse storage=gulp.wav loop=false]

;Add your intoxication-level by one

[eval exp="f.rumlevel +=1"]

CHAPtER 7 tHREE LittLE GAMES

278

[cm]You agree. "Here you go..", Claire says offering you the

flask. It's some type of rum.[l][cm]

Should our protagonist feel thirsty, we’ll hear a gulping sound effect

and see some related dialogue. This does, of course, require an audio

file called gulp.wav in the TyranoBuilder sound directory. Also, we

increase the value of the variable f.rumlevel by one by using the eval (as in

“evaluation”) tag. Now, it’s time for another block of TyranoScript.

Passing rows of drowsy commuters, a bald man in blue farmer's

overalls approaches you and Claire.[l][r]

He seems out of place and somewhat strange in his mannerisms.[p]

He triggers something in you. You instinctively move towards the

corridor.[r]Claire glances over and nods at the strange man.[p]

;The plot thickens

You begin pacing down the train corridor to the opposite

direction. The bald man follows.[l][r]You're being chased.[l][cm]

[bg storage=train3.jpg time=3000 wait=false]You find your

way into a toilet and lock the door. [playse storage=knock.

ogg loop=false]Loud knocks sound off in your eardrums. You're

trapped.[l][cm]

In the preceding code, we play an ominous knocking-on-the-door

sound effect mid-narration (shown in bold). This adds to the immersion;

in other words, you don’t have to wait for a passage to be fully displayed to

startle the player. Also, by now you should be familiar with the text control

tags offered by TyranoBuilder (e.g., [l] and [cm]).

Let’s continue our script by introducing some variable evaluation. Add

the following to the TyranoScript component at hand.

CHAPtER 7 tHREE LittLE GAMES

279

;Evaluate and display variable

[if exp="f.rumlevel==1"] You feel a little tipsy...Your rum-

level is [emb exp=f.rumlevel].

[endif]

The preceding code evaluates our sole custom variable so far,

f.rumlevel, to see if it’s set to one. If so, the player will be shown a special

string of text containing the contents of the aforementioned variable. Now,

to recap the three of TyranoScript’s basic variable operations:

• [eval exp..] is for assigning values.

• [if exp..] is for comparing values.

• [emb exp..] is for displaying (i.e., embedding) variables.

• In-game variables need an f. in the front.

 Random Dialogue in TyranoBuilder
Now, let’s implement some randomized dialogue, like we did with Ren’Py.

;Play some looping audio and display one of three random lines

of narration

[playse storage=phone.wav loop=true]

[cm][eval exp="f.random_number = Math.floor((Math.random() * 3)

+ 1)"]

[if exp="f.random_number==1"]Your ancient telephone rings.

[endif]

[if exp="f.random_number==2"]The nearly fossilized mobile phone

is ringing. [endif]

[if exp="f.random_number==3"]The relic of a telephone drowns

out all other noises. [endif]

CHAPtER 7 tHREE LittLE GAMES

280

We use the familiar eval tag to define a new variable called f.random_

number. This variable is then assigned a value between one and three

using two new functions: Math.floor and Math.random. The latter function

summons a random number. The former then rounds this floating point

number (e.g., 1.4) down into the nearest integer (e.g., 1).

Because Math.random starts its range at zero, we add a plus one to the

end of the expression. This value is then multiplied by three, creating a trio

of random choices for the end result: integers 1, 2, or 3.

Let us continue with the adventure.

;Display Raine and stop the phone from ringing

[chara_show name="Raine" wait=true top=40 left=50]

[stopse]

"You're on your way. Good. Are they after you?"[p]

"Just wait. Stay put. They're not authorized to use full force."[p]

[anim name="Raine" time=2000 left=800 top=40]

"I need you to leave the train at the next stop. Do you hear me?"

The woman hangs up.

[filter name="Raine" blur=20][chara_hide name="Raine" time=1000

wait=true]

[p]

Puzzled, you do what you're told. [playse storage=knock.ogg]The

knocking continues for another five minutes or so then abruptly

stops.

[playse storage=knock.ogg volume=30][p]

[bg storage=train2.jpg time=3000 wait=true]

You open the toilet door warily; There's no one behind it.

Claire is gone as is the bald man.[p]

The preceding code features mostly familiar elements, but we also

introduce the character-related methods of chara_show, chara_move,

and chara_hide. These are used here to summon and relocate our agent

extraordinaire, Raine. See Table 7-19 for more information on these tags.

CHAPtER 7 tHREE LittLE GAMES

281

In addition, we also added a blur filter on Raine slightly before her call

ends at 20% strength. Remember, these effects in TyranoBuilder can be

applied on full layers and single character sprites alike.

 Adding Labels in TyranoScript
Labels aren’t only added using the graphical interface in TyranoBuilder;

TyranoScript offers this functionality as well. In the following code, we’re

once again examining the variable of f.rumlevel to gauge Reginald’s

energy level. The sections in bold demonstrate the label functionality of

TyranoScript as we’re introducing two new tags: jump and the asterisk-

powered label (e.g., *still_tipsy).

Ah yes, we shouldn’t forget one can use HTML tags, too, in

TyranoScript. This is also demonstrated in the following with the bold and

italic tags around the name of a lovely city.

[bg storage="platform1.jpg"]

You hear an announcement: next stop <i>Bedford!</i>[p]

[camera zoom=2 from_zoom=1 x=180 y=100 time=2000]

;Reset camera

[reset_camera]

As soon as the train stops, you're out on the streets, looking

over your shoulder. No one seems to be following you.[p]

[if exp="f.rumlevel==1"] [jump target=*still_tipsy]

[else] [jump target=*full_of_energy][endif]

;Add a label

*still_tipsy

You feel somewhat drowsy. But you must go on.[p] [jump

target=*resume_story]

;Add a second label

*full_of_energy

You feel adrenaline surging in your veins.[p]

CHAPtER 7 tHREE LittLE GAMES

282

*resume_story

Only a mere minute into the crowds, you're grabbed by the

arm![p]

 The Might of the 3D Camera
TyranoBuilder has a feature the developers (or marketing) decided to call

3D Camera. What this refers to are basically simple panning and zooming

capabilities for plain 2D images. Although slightly grandiose in its naming

convention, the compact feature set is actually usable as demonstrated in

the preceding code.

With a mere couple of tags, namely, [camera] and [reset_camera], we

added some dramatic zooming effects onto our scene, creating a sense

of urgency. Using the virtual camera is simple: you define the desired

amount of zoom and add some coordinates with an optional time setting

in milliseconds. The attribute of from_zoom specifies the pre-zoomed

dimensions of the image. In our example we let it stay at the original values

(i.e., at one). A reset_camera tag is then called to return the visuals to their

original settings; these tags are simple and fun to use. However, the 3D

Camera is best used sparingly.

 TyranoScript Macros
Macros are a type of coder-defined shorthand. In essence you can define

new custom tags with them. The following lines in bold demonstrate this

approach. Two new tags are created mid-game and used to set text color

via the font color property.

;Define two macros

[macro name="redtag"][font color=0xff0000][endmacro]

[macro name="yellowtag"][font color=0xffff00][endmacro]

CHAPtER 7 tHREE LittLE GAMES

283

[redtag]"I think we should find a quieter venue to talk", a

vaguely familiar voice tells you. It's Royston Honeybun

from tech support.[p]

[bg storage="park.jpg"][chara_show name="Royston" wait=true

top=40 left=50]

[yellowtag]"I sent you the email in your friend's name. Sorry

about that."[p]

[chara_mod name="Royston" storage="chara/6/Roy2.png" time=0]

[resetfont]

"I had to get your out of there", he says.[p]

In addition to the two macros, we also used the character image

modification tag for the first time in this tutorial; chara_mod is used to

change the appearance of your characters. We set the time parameter to

zero for an instant face swap. The command defaults to a slow crossfade,

but we felt like a more instant change of faces. See Table 7-19 for more

character- related tags.

Finally, to return to the default font style and color, we implemented

the tag of resetfont.

CHAPtER 7 tHREE LittLE GAMES

284

Ta
bl

e
7-

19
.

So
m

e
ta

gs
 fo

r
ch

ar
ac

te
rs

 in
 T

yr
an

oS
cr

ip
t

Ta
g

De
sc

rip
tio

n
Ex

am
pl

e(
s)

[c
ha

ra
_s

ho
w

]
Di

sp
la

ys
 c

ha
ra

ct
er

.

Pa
ra

m
et

er
s:

 w
ai

t,
tim

e,
 la

ye
r,

le
ft,

 to
p.

W
ai

t c
re

at
es

 a
 d

el
ay

ed
 a

pp
ea

ra
nc

e
fo

r a

ch
ar

ac
te

r.
ti

m
e

se
ts

 th
e

tra
ns

iti
on

 ti
m

e
in

m
ill

is
ec

on
ds

 (t
he

 d
ef

au
lt

be
in

g
10

00
).

La
ye

r s
et

s

th
e

ch
ar

ac
te

r’s
 s

pe
ci

fic
 la

ye
r (

th
e

de
fa

ul
t b

ei
ng

th
e

fo
re

gr
ou

nd
).

Le
ft

an
d

to
p

co
nt

ro
l t

he
 im

ag
e’

s

pl
ac

em
en

t.

[c
ha
ra
_s
ho
w
na
me
="
Bi
ll
y"
]

;S
ho
wi
ng
 a
 c
ha
ra
ct
er
 a
t
a

sp
ec
if
ic

po
in
t

;o
n-
sc
re
en
 w
it
h
a
de
la
y

[c
ha
ra
_s
ho
w
na
me
="
Ga
ye
lo
rd

"
wa
it
=t
ru
e

to
p=
10
0
le
ft
=5
0]

[c
ha

ra
_h

id
e]

Hi
de

s
ch

ar
ac

te
r f

ro
m

 s
cr

ee
n.

[c
ha
ra
_h
id
e
na
me
="
Bi
ll
y"
]

CHAPtER 7 tHREE LittLE GAMES

285

[c
ha

ra
_m

ov
e]

Re
lo

ca
te

s
a

ch
ar

ac
te

r i
m

ag
e

on
sc

re
en

 u
si

ng
 th

e

tra
ns

iti
on

 d
ef

in
ed

 w
ith

 c
ha

ra
_c

on
fig

.

Pa
ra

m
et

er
s:

 ti
m

e,
 a

ni
m

, l
ef

t,
to

p,
 w

id
th

, h
ei

gh
t,

w
ai

t,
ef

fe
ct

.
An

im
 a

cc
ep

ts
 tr

ue
 o

r f
al

se
, a

ni
m

at
in

g
th

e
im

ag
e

in
 a

cc
or

da
nc

e
to

 th
e

ty
ra

no
Bu

ild
er

 a
ni

m
at

io
n

m
ac

ro
s,

 d
ef

in
ed

 in
 “

ef
fe

ct
”

(s
ee

 ri
gh

t f
or

 a
 li

st
).

W
id

th
 a

nd
 h

ei
gh

t s
et

 th
e

di
m

en
si

on
s

of
 th

e

im
ag

e
at

 th
e

de
st

in
at

io
n

(in
 p

ix
el

s)
.

[c
ha
ra
_m
ov
e
na
me
="
Ga
ye
lo
rd
"

ti
me
=2
00
0
le
ft
=8
00
 t
op
=4
0
an
im
=t
ru
e

ef
fe
ct
=e
as
eI
nC
ub
ic
]

;
Ty
ra
no
Bu
il
de
r
an
im
at
io
n
ma
cr
os
:

;j
sw
in
g
|d
ef
 |
ea
se
In
Qu
ad
 |
ea
se
Ou
tQ
ua
d

;e
as
eI
nO
ut
Qu
ad
 |
ea
se
In
Cu
bi
c

|e
as
eO
ut
Cu
bi
c;
ea
se
In
Ou
tC
ub
ic

|e
as
eI
nQ
ua
rt
 |
ea
se
Ou
tQ
ua
rt

;e
as
eI
nO
ut
Qu
ar
t

|e
as
eI
nQ
ui
nt
 |
ea
se
Ou
tQ
ui
nt

;e
as
eI
nO
ut
Qu
in
t|
ea
se
In
Si
ne
|

ea
se
Ou
tS
in
e
;e
as
eI
nO
ut
Si
ne
 |
ea
se
In
Ex
po

|e
as
eO
ut
Ex
po
 ;
ea
se
In
Ou
tE
xp
o

|e
as
eI
nC
ir
c
|e
as
eO
ut
Ci
rc

;e
as
eI
nO
ut
Ci
rc
 |
ea
se
In
El
as
ti
c

;e
as
eO
ut
El
as
ti
c
|e
as
eI
nO
ut
El
as
ti
c

;e
as
eI
nB
ac
k
|e
as
eO
ut
Ba
ck

|e
as
eI
nO
ut
Ba
ck
 ;
ea
se
In
Bo
un
ce

|e
as
eO
ut
Bo
un
ce
 ;
ea
se
In
Ou
tB
ou
nc
e (c
on

ti
n

u
ed

)

CHAPtER 7 tHREE LittLE GAMES

286

Ta
bl

e
7-

19
.

(c
on

ti
n

u
ed

)

[c
ha

ra
_m

od
]

Al
te

rs
 a

 c
ha

ra
ct

er
’s

 a
pp

ea
ra

nc
e.

Pa
ra

m
et

er
s:

 ti
m

e,
 re

fle
ct

, w
ai

t,
cr

os
s.

Se
tti

ng
 re

fle
ct

 to
 “

tru
e”

 re
ve

rs
es

 th
e

im
ag

e

ho
riz

on
ta

lly
. C

ro
ss

 c
on

tro
ls

 w
he

th
er

 th
e

ne
w

im
ag

e
is

 c
ro

ss
fa

de
d

w
ith

 th
e

ol
d

on
e.

 t
im

e
se

ts

th
is

 c
ro

ss
fa

di
ng

 in
 m

ill
is

ec
on

ds
 (w

ith
 a

 d
ef

au
lt

of
 6

00
 m

s)
.

;B
as
ic
 c
ha
ra
ct
er
 m
od
if
ic
at
io
n

[c
ha
ra
_m
od
 n
am
e=
"B
il
ly
"

st
or
ag
e=
"b
il
ly
/1
/s
ad
fa
ce
.p
ng
"]

;M
or
e
sp
ec
if
ic
 t
ra
ns
it
io
n

[c
ha
ra
_m
od
 n
am
e=
"B
il
ly
"

st
or
ag
e=
"b
il
ly
/1
/h
ap
py
fa
ce
.p
ng
"

cr
os
s=
tr
ue
 t
im
e=
10
00
]

[c
ha

ra
_d

el
et

e]
Pe

rm
an

en
tly

 e
ra

se
s

a
ch

ar
ac

te
r f

ro
m

 th
e

ga
m

e.
[c
ha
ra
_d
el
et
e
na
me
="
Bi
ll
y"

]

Ta
g

De
sc

rip
tio

n
Ex

am
pl

e(
s)

CHAPtER 7 tHREE LittLE GAMES

287

 Mixing Graphics with Text
You’re not limited to background and character images in TyranoBuilder.

By using a little tag called graph, you can interject your writing with the

odd visual representation or two. Just make sure these image files are

located in your project’s image directory.

;Add some inline images

[macro name="phone"][graph storage="Cellphone.png"][endmacro]

[chara_mod name="Royston" storage="chara/6/Roy.png" time=0]

The upcoming government firewall, August, is designed to be

perfect. Turn out you made it too perfect.[p]

A faction of the government needs backdoors in it,

vulnerabilities which can be utilized at their will, Mervyn

explains.[p]

You're told to wait for a call. [phone] It'll be Raine, you

spoke with her on the train.[p]

[chara_hide name="Royston" time=2000 wait=true]

 Graphical Buttons
TyranoBuilder offers a handy graphical button system implementation

right in pure TyranoScript. Using the tag called glink, you can easily

summon buttons for all your interactive needs. TyranoBuilder even

has a chic set of built-in colors for these buttons (i.e., black, gray, white,

orange, red, blue, rosy, green, and pink). There’s also plenty of room for

customization when it comes to the fonts and other visuals used with these

elements.

CHAPtER 7 tHREE LittLE GAMES

288

In the following, we’re implementing a three-button branching menu

demonstrating some of the styles available for the glink tag. Note: when

using graphical buttons, it’s wise to end the menu with the tag [s], which

pauses the adventure until the player makes a choice.

;Add graphical buttons

*cool_buttons

[glink target="ponder" text="Ponder" size=20 width="300" y=250

color=rosy font_color=0x000000]

[glink target="try" text="Relax" size=20 width="300" y=300

color=blue]

[glink target="resume_adventure" text="Onwards!" size=20

width="300" y=350 color=gray]

[s]

*ponder

You stay behind on the park bench, digesting everything you

were just told.[p] [jump target=*resume_adventure]

*try

You do your best to not ponder recent events, but you fail.[p]

*resume_adventure

 The Grand Finale Featuring Nasuka
And so we’re about to move on from TyranoBuilder to other game-making

software, mainly Twine. But it’s not quite over yet. We’ll first display a fancy

farewell message using the tag of mtext, defined here to use a heftily sized

font. In addition, we’ll startle the player with a touch of the quake effect,

a visual novel staple. The position tag is also used to hide the message

background by setting its opacity attribute to zero.

The main attraction in this segment is, of course, the lovely Nasuka.

She’s a Live2D model, meaning she’s capable of much more than static

character images (no offense to Royston and Raine). Just a reminder: to

CHAPtER 7 tHREE LittLE GAMES

289

enable Live2D in TyranoBuilder, go to Project ➤ Customize Tool Area on

the top menu. Next, click the Live2D component selection. If you then go

to the Asset Library on the top menu, you’ll see a new drop-down menu for

Live2D assets, including Nasuka. She’s put to good use in this tutorial as

the listing continues:

What's this? Oh, you've reached the end of this tutorial game.

See the project files for the source code.[p]

[position opacity=0][quake count=3 time=200 hmax=20]

[live2d_new name="Nasuka"] [live2d_show name="Nasuka"]

[live2d_trans name="Nasuka" time=2000 left=200 top=-200]

[live2d_motion name="Nasuka" filenm="pleased.mtn" idle="ON"]

[wait time="2000"]

[live2d_motion name="Nasuka" filenm="idle.mtn" idle="ON"]

[mtext text="Cheerio!" layer=2 size=48 x=680 y=160 in_

effect="bounceIn" out_effect="hinge"]

[live2d_scale name="Nasuka" scaleX=4.8 scaleY=4.8 time=3000]

[live2d_opacity name="Nasuka" opacity=0 time=4000]

[wait time="3000"] [close ask=false]

As you can tell, our Live2D friend is assigned with quite a few tags

(see Table 7-20). First, she’s defined and displayed using live2d_new and

live2d_show. She’s then transported across the screen by 200 pixels to

the right and 200 pixels toward the top of the display using live2d_trans.

Nasuka is then assigned a motion file to display; in this case it’s the

intuitively named pleased.mtn. A 2-second delay is inserted for Nasuka to

show off her capabilities, after which she’s returned to her idle state using

the same tag of live2d_motion.

Next, we show off TyranoBuilder’s animated text tag, mtext. As

Nasuka bids us her adieus, she’s also scaled up in size (during a period

of 2 seconds) for maximum dramatic effect. After this it’s time to

automatically end the game using the close tag in tandem with its ask

parameter set to false.

CHAPtER 7 tHREE LittLE GAMES

290

Table 7-20. Some tags for Live2D in TyranoScript

Tag Description Example(s)

[live2d_new] Creates a new Live2D model

onscreen.

Parameters: name, left, top, width,
height, zindex, opacity, glleft,
gltop, glscale.
Left and top position the model.

Zindex controls its depth

onscreen.

Glleft and gltop adjust the model’s

position relative to the canvas

(taking values between 0.0 and 2.0).

Glscale controls the model’s scale

also taking values between 0.0

and 2.0.

Note: only name is mandatory.

;A simple Live2D-

evocation

[live2d_new

name="Jill"]

;A more elaborate one

[live2d_new

name="Nasuka"

opacity=1.0 left=50

top=50]

;One with even more

elaborate string of

;parameters

[live2d_new

name="Laverne"

opacity=1.0 glleft=0.2

gltop=0.5 zindex=2

glscale=1.5]

[live2d_show] Displays a Live2D model.

takes a time parameter in

milliseconds.

[live2d_show

name="Nasuka"

time=1000]

[live2d_hide] Hides a Live2D model.

takes a time parameter in

milliseconds.

[live2d_hide

name="Nasuka"

time=2000]

[live2d_
expression]

Plays back an expression motion

file for a Live2D model.

Accepts a parameter called filenm

for said file, set in model.json.

[live2d_expression

name="Billy"

filenm="F01.mtn"]

(continued)

CHAPtER 7 tHREE LittLE GAMES

291

Tag Description Example(s)

[live2d_trans] Moves a Live2D model.

Parameters: left, top, time.
Left and top take the amount of

pixels to move from the current

position. the optional parameter

of time is entered in milliseconds

(its default is 1000).

[live2d_trans

name="Nasuka" top=100

left=50 time=2000]

[live2d_
opacity]

Sets the opacity of a Live2D

model.

Accepts time and opacity

parameters, the latter of which is

in the 0.0 to 1.0 range

[live2d_opacity

name="Nasuka"

opacity=0.5 time=1500]

[live2d_color] Adjusts the Live2D model color

using the RGB method. takes the

red, green, and blue parameters

in the range of 0.0 to 1.0.

[live2d_color

name="Nasuka" red=0.5

green=0.7 blue=1.0]

Table 7-20. (continued)

 Various Tags and Tools
In addition to all of the audiovisual power at your disposal, TyranoBuilder

offers much in the way of general-purpose scripting (see Table 7-21). For

one, you can display web sites in game using the HTML tag. The mouse

cursor and the glyph (i.e., the icon displayed when awaiting a mouse click)

are fully customizable.

Sometimes preloading assets is a good idea, in particular if there’s lots

of them. This can be achieved in TyranoBuilder by using a tag called, you

guessed it, preload.

CHAPtER 7 tHREE LittLE GAMES

292

Table 7-21. Some useful general-purpose tags in TyranoScript

Tag Description Example(s)

[title] Sets the game title. [title name="Chapter 2 of

Happy Game"]

[cursor] Changes the mouse cursor

image.

[cursor storage="new_

cursor.gif"]

[html] Adds an HtML layer. Can be

used for any HtML, including

embedding videos from, e.g.,

Youtube.

Parameters: top, left.

;Embed and autoplay a

great YouTube-video

[html top="50" left="50"]

<iframe src="http://

www.youtube.com/embed/

f4QBRgyitFs?&autoplay=1"

width="560" height="315">

</iframe>

[endhtml]

[endhtml] Ends the HtML layer. Uses no

parameters. See the preceding

[html].

[web] Opens a web site in the player’s

default browser.

[web url="http://www.

robertciesla.com"]

[glyph] Sets the location for the icon

displayed when awaiting for a

mouse click.

the image file is located in this

directory: tyrano/images/kag/
nextpage.gif.
Paremeters: fix (enables the next

two positional parameters), left,
top.

;Set glyph coordinates by

enabling "fix"

[glyph fix=true left=100

top=100]

(continued)

CHAPtER 7 tHREE LittLE GAMES

293

Tag Description Example(s)

[dialogue] Displays a dialogue window. this

can be either a simple alert, an

ok/cancel window, or a text input

prompt.

Parameters: type (takes alert,
confirm, input), target, storage,
label_ok, label_cancel.
in the confirm and input
windows, the storage attribute

refers to the scene you’ll be

transported to when clicking a

choice. the target parameter

simply sets the label you’re taken

to within this scene.

You can also rename the contents

of the ok and cancel buttons

using the label_ok and label_
cancel attributes (shown in bold).

;Simple alert

[dialog type="alert"

text="Hello!"]

;Ok/cancel window

[dialog type="confirm"

text="Say hi?" label_

ok="Yes!" storage="scene1.

ks" target="yes_label"

label_cancel="No."

storage_cancel="scene1.ks"

target_cancel="no_label"]

;Text input window

[dialog type="input"

text="Enter your name"

storage="scene1.ks"

target="happy_label"]

[loadcss] Loads a Cascading Style
Sheet (CSS) while a game is in

progress. Great for completely

changing the look of a game,

when needed.

[loadcss file="./data/

others/css/new.css"]

[wait] Halts the game for a duration

defined in milliseconds.

[wait time="2000"]

Table 7-21. (continued)

(continued)

CHAPtER 7 tHREE LittLE GAMES

294

At this point the second leg of the tutorial adventure Taking Back

August is complete. As you can tell, TyranoBuilder offers quite a robust

framework for making audiovisually rich games. We focused on the

TyranoScript approach due to its flexibility and the development speed it

offers as opposed to the graphical user interface. Hopefully you’ve learned

the basics of this powerful system and feel inspired to create your own

sagas with it; TyranoBuilder is indeed a fine piece of software.

 Part III: Telling Tales with Twine
We’ll now move on to telling the rest of the story with Twine; offering

perhaps the most traditional game creating process, there’s quite a bit of

typing involved. However, with its clean interface and automated passage

creation, Twine is a joy to use. Here’s Taking Back August, Part III (see

Figure 7-1). We’ll again start with the basics, adding audiovisuals and other

more advanced elements as we progress with the story.

Table 7-21. (continued)

Tag Description Example(s)

[close] Quits the game. Optionally takes

an attribute of ask; when set to

“false” it won’t present the player

with a confirmation dialogue.

[close ask=true]

[preload] Preloads audio and image files.

takes an optional attribute called

wait. When set to true, it halts the

game until the assets are fully

loaded.

[preload storage="data/

images/apress.jpg"

wait=true]

CHAPtER 7 tHREE LittLE GAMES

295

We’ll begin by opening up Twine and clicking the green plus sign to

create a new story and naming it. Let’s work with the popular Harlowe

story format. We’re immediately taken into the minimalistic user interface

of the software.

Double-clicking the first room (i.e., a passage in Twine parlance), we

enter this code:

Only a mere minute or so later, the old mobile phone rings.

"Raine?", you utter, answering the call. "You met with

Honeybun. Good. Yes, it's me, [[Raine]]", a female voice

explains.

(set: $variable to 0)

Figure 7-1. A project view of our completed tutorial game

CHAPtER 7 tHREE LittLE GAMES

296

As you may remember, entering double square brackets into a Twine

passage creates new ones. In the case of the preceding code, Twine

creates a new passage called Raine. Also, we used the Harlowe method of

declaring a variable, which we dubbed, well, $variable. Notice the use of

dollar sign, parentheses, and the tag called set:.

 Fonts and Colors
The default font looks rather plain. Let’s change that, shall we? Click the

game title (i.e., Taking Back August) and select Edit Story Stylesheet. We

can add Cascading Style Sheets (CSS) into this form. Go ahead and add the

following lines:

body, tw-story

{

 font-family: Courier New;

 font-size: 22px;

 color: #EE9900;

 text-shadow: 1px 1px 1px #000000;

 background: rgb(194,169,45);

 background: linear-gradient(180deg, rgba(194,169,45,1) 0%,

rgba(110,71,71,1) 31%, rgba(0,0,0,1) 86%, rgba(127,117,117,1)

100%);

}

All of our passages in this adventure will now have a somewhat more

pleasing Courier New font, complete with drop shadow, and a nice

autumnal color-gradient backdrop.

Now, Twine doesn’t package fonts into its output. Basically a player

needs to have the font you defined in Twine installed in their operating

system. Your safest bet is to use fonts generally found among most users.

These days you’re thankfully not usually limited to Times New Roman.

Popular fonts are sometimes referred to as web safe fonts (see Table 7-22).

CHAPtER 7 tHREE LittLE GAMES

297

Now, onto our adventure and its second passage, which should look

like this:

She tells you you must ditch the [[phone]] as it's being

tracked by "them": its signal encryption will be compromised

shortly.

The current color scheme is nice and all, but the blue links are kind of

an eyesore. Time to fix that by going back to the stylesheet editor in Twine.

Add the following lines after the previous lines of CSS:

tw-link /* Set both base link colors */

{ color: #ffcc00; }

tw-link:hover /* Set both hover link colors */

{ color: #ffff00; }

.visited /* Visited links */

{ color: #ffcc00; }

.visited:hover /* Visited hover links */

{ color: #ffff00; }

We’re in business; this look is much more uniform and pleasing to

the eye.

Table 7-22. Common web safe fonts

Font Type Font Type Font Type

Arial Sans- serif Garamond Sans- serif Times Serif

Arial Black Sans- serif Georgia Serif Times New Roman Serif

Bookman Serif Helvetica Sans- serif Trebuchet MS Sans- serif

Courier
New

Serif Impact Sans- serif Verdana Sans- serif

CHAPtER 7 tHREE LittLE GAMES

298

 Fun with Harlowe and Variables
Friends, it’s time to use a variable in the project.

Raine also tells you if the "overalls man" finds you now,

the entirety of Britain and later the rest of Europe are in

jeopardy.

You're given a new set of [[coordinates]] and told you're

guaranteed complete safety in this new

(if: $variable < 3)[[[location.|location]]]

(else:)[[[Time to move.|Moving]]]

In the preceding passage, we are using Harlowe’s tag of if: to examine

the contents of our variable, $variable. Again, pay attention to correct

use of parentheses and square brackets; as you can tell, Twine doesn’t

exactly have a distaste for the latter. The next passage, called location,

demonstrates the use of variables further.

We are also demonstrating the use of the tag called else:, which refers

the player to a new passage called Moving when the location simply called

location has been visited three times. Notice the use of the pipe character

(i.e., |) to separate the link text from the link itself.

Note: sections of Harlowe code surrounded by square brackets are

referred to as hooks.

(if: $variable is 0) [You are quite curious about the location.]

(if: $variable is 1) [Yes, you are still very curious about the

location.]

(if: $variable is 2) [Now you feel like actually visiting this

location!]

(set: $variable += 1)

(link: "It's all a grand mystery.")[(go-to:"phone")]

CHAPtER 7 tHREE LittLE GAMES

299

This passage (i.e., location) simply displays messages based on the

content of our variable. Three different messages are provided after which

this passage can’t even be visited from the previous passage of phone. As

it happens, we are entering an icy world. Let’s make the cosmetic side of

things reflect that. First, here’s the new passage itself (i.e., Moving).

You drop the phone and embark on the trip right away. A rather

complicated three-day journey on trains, ferries, and fishing

boats eventually take you to Bouvet Island, Norway, the most

remote [[island]] on the planet.

 Custom Tags and Background Visuals
Let’s add some visual variety into the passage. Insert the following CSS into

the game by clicking Edit Story Stylesheet:

tw-story[tags~="snow"] {

background-image:url("https://upload.wikimedia.org/wikipedia/

commons/4/44/Bouvet_island_0.jpg");

 background-size: cover;

 color: blue;

}

tw-story[tags~="snow"] tw-link {

 color:blue;

}

tw-story[tags~="snow"] tw-link:hover {

 color:white;

 }

What the preceding lines do is to create three new element definitions:

one for the main story and two for our links. The text in bold is a part of

Twine’s custom tag system; you may remember the software allows you

CHAPtER 7 tHREE LittLE GAMES

300

to add specific tags to your passages. This is done by entering the editing

mode for a passage and clicking the icon entitled +Tag. You can then enter

these custom tags. Let’s do that for our current passage of Moving.

Note: make sure the capitalization of your tags is shared by both the

passage and the css definitions; Snow is very much different to snow in Twine.

Now the passage called Moving should have the customized tag of

snow with a non-capital s. In the CSS side of things, we’re using the tags

element (i.e., tags~=“snow”) to assign specific parameters to all passages

sharing the tag of snow. At the moment it’s just one room and this room

gets an auto-scaling background graphic courtesy of Wikipedia, a clear

blue font, and a brand new paint job for its links. These changes should

reflect the icy world of Bouvet Island far better than our former autumnal

color scheme.

As you probably gathered, using Twine’s custom tags is a great way

to change visual elements in a game with ease by having a specific set of

passages share them.

Say, why don’t we come up with even more custom looks for our future

passages? Let’s add the following code to the CSS of the project using the

Edit Story Stylesheet form:

tw-story[tags~="snow2"] {

 color: ivory;

 background: rgb(34,193,195);

 background: linear-gradient(0deg, rgba(34,193,195,1) 0%,

rgba(157,157,157,1) 100%);

 }

tw-story[tags~="snow2"] tw-link {

 color:#444;

 }

tw-story[tags~="snow2"] tw-link:hover {

 color:white;

 }

CHAPtER 7 tHREE LittLE GAMES

301

tw-story[tags~="bunker"] {

 color: white;

 background: rgb(46,46,46);

 background: linear-gradient(0deg, rgba(46,46,46,1) 0%,

rgba(157,157,157,1) 100%);

 }

tw-story[tags~="hovercraft"] {

 color: white;

 background: rgb(28,142,118);

 background: linear-gradient(0deg, rgba(28,142,118,1) 0%,

rgba(157,157,157,1) 100%);

 }

tw-story[tags~="bham"] {

 color: cornsilk;

 background: rgb(110,71,71);

 background: linear-gradient(180deg, rgba(110,71,71,1) 20%,

rgba(224,230,125,1) 100%);

 }

tw-story[tags~="bham"] tw-link {

 color:peru;

 }

tw-story[tags~="bham"] tw-link:hover {

 color:wheat;

 }

tw-story[tags~="finale"] {

 color: white;

 background: rgb(2,0,36);

 background: linear-gradient(90deg, rgba(2,0,36,1) 0%,

rgba(121,9,9,1) 35%, rgba(0,0,0,1) 100%);

 }

CHAPtER 7 tHREE LittLE GAMES

302

 An Inventory in Harlowe
The Harlowe story format has several macros suitable for in-depth variable

manipulation. It supports arrays, for one, which is a great data structure for

creating an inventory system. Let’s make one right now.

First, we need to configure an array, which is basically a group of

strings. There’s basically two ways of making it: either one with preexisting

items (i.e., strings) or one which is completely blank. Let’s configure the

former first. These definitions work best inserted into the first passage of

your game.

(set: $items to (a:))

Now, if you wanted an array/inventory with items, you would do

something like this:

(set: $items to (a: "key", "book", "mirror"))

To print the contents of the inventory, you use the macro of print: as

well as one called join, which specifies you want a comma character and

an “a” between the strings/items.

Your inventory contains a (print: $items.join(", a ")).

Adding and removing items to and from an array in Twine is simple

using basic arithmetic operators:

(set: $items to $items + (a: "key"))

(set: $items to $items - (a: "key"))

If you want your inventory to be of any use, you need to be able to

examine its contents. We would do this with the little macros called if: and

else:.

CHAPtER 7 tHREE LittLE GAMES

303

(if: $items contains "key")[You use the key to open the

[[locked door]].]

(else:)[The door won't budge. It remains locked. You need to

find a key for it.]

Note: the inventory in the tutorial game will be defined separately; the

preceding code is for the sake of demonstration only.

 Refining Our Inventory and the Twine Footer
Although the basic functionality for an inventory in Harlowe presented

earlier works, it could still be improved. For one, even if your inventory is

empty, it uses the comma convention to display the nonexistent contents.

Let’s change that right now.

(if: $items's length > 0)[Your inventory contains a (print:

$items.join(", a ")).]

(else:)[Your inventory is empty.]

Yes, that’s better; an empty inventory now displays a different message.

However, if you’re going to have an inventory in your game, wouldn’t you

want the option to access it whenever you wanted? To achieve this, we’ll

use a special passage in Twine called the footer. Basically, any room tagged

with footer will be a special passage displayed at every other passage.

So create a new passage, titling it whatever you want; “inventory”

would work. Assign a tag to this passage and call it footer. Again, this

passage will now display at the bottom of all of the other passages. Give it

the following content:

<hr>

(if: $items's length > 0)[Your inventory contains a (print:

$items.join(", ")).]

(else:)[Your inventory is empty.]

CHAPtER 7 tHREE LittLE GAMES

304

The HTML tag at the top gives your footer passage a nice horizontal

line to separate it from the other content in your game.

Now, for dramatic consistency, you may remember how our

protagonist Reginald heroically fetched an important pink DVD from a

building office. Let’s put that item into his inventory, shall we? Open the

very first passage in this Twine project and add the following line:

(set: $items to $items + (a: "Pink DVD"))

 Resuming Our Story
Let’s get back to our game, Taking Back August, and utilize some of the

techniques outlined in the preceding text. The passage called island

should have the following contents:

A human figure welcomes you as you make landfall in a blizzard.

Taking off his goggles, the host becomes recognizable:

it's Mervyn Popplewell, your supposedly dead former

colleague. He shakes your gloved hand and says "Welcome to

Bouvet Island, or limbo as I call it!"

Go to [[bunker room A]], [[bunker room B]], [[bunker room C]],

or [[bunker room D]].

Remember our Story Stylesheet and all the definitions therein (e.g.,

snow, snow2)? Now it’s time to start tagging passages en masse to enable

all those visuals in our stylesheet. Tag the preceding passage with snow2

(see Figure 7-2). This will give it a unique look with a suitably icy color

scheme.

Also, the four bunker rooms we just created would benefit from a slight

variation in their backdrops. We can achieve this at this point by tagging

these rooms with the keyword “bunker,” which will assign some of our

previously defined, funky CSS elements to these passages.

CHAPtER 7 tHREE LittLE GAMES

305

Now then, Reginald is now facing a four-room underground bunker in

a very cold and desolate place. Let’s make it so that he has to collect three

additional items (from bunker rooms A, C, and D) for the story to progress:

a USB stick, a programming manual, and a password on a piece of paper.

The following is a table for the various bunker room passages (see

Table 7-23).

Figure 7-2. The island passage from Taking Back August (Part III)

CHAPtER 7 tHREE LittLE GAMES

306

Table 7-23. The bunker complex in Taking Back August for Twine

Passage Script

Bunker room A This room is exceptionally cold.

(if: $items contains "USB-stick")[The room is

empty.]

(else:)[You find a USB-stick!(set: $items to

$items + (a: "USB-stick"))]

Go to [[bunker room B]], [[bunker room C]],

or [[bunker room D]].

Bunker room B This room is quite barren.

(if: $items contains "Programming Manual")

[The room is empty.]

(else:)[You find a Programming Manual!(set:

$items to $items + (a: "Programming

Manual"))]

Go to [[bunker room A]], [[bunker room C]],

or [[bunker room D]].

Bunker room C The room is cold and empty.

Go to [[bunker room A]], [[bunker room B]],

or [[bunker room D]].

Bunker room D (if: $items contains "Password on a Piece of

Paper")[The room is empty.]

(else:)[You find a Password on a Piece of

Paper!(set: $items to $items + (a: "Password

on a Piece of Paper"))]

Go to [[bunker room A]], [[bunker room B]],

or [[bunker room C]].

CHAPtER 7 tHREE LittLE GAMES

307

 Unlocking Locations with Items
Now, we’ll need to check if the player has acquired all of the necessary

items and give them access to a new passage called computer. The code for

this is as follows:

(if: $items contains "USB-stick" and "Programming Manual" and

"Password on a Piece of Paper")[You're ready to get to work at

the bunker computer [[computer]].]

We don’t need to check for the “Pink DVD” as it is expected to be in

the player’s possession from the get-go. However, where do we stick the

preceding code? In every bunker room? We could do that, but it’s more

efficient to have it in one element of the game which is present throughout

the whole experience: the footer passage. Let’s modify said passage and

make it look like this:

<hr>

(if: $items's length > 0)[Your inventory contains a (print:

$items.join(", ")).]

(else:)[Your inventory is empty.]

(if: $items contains "USB-stick" and "Programming Manual" and

"Password on a Piece of Paper")[You're ready to get to work at

the bunker computer [[computer]].]

There it is. Now the player gets access to a new passage should all of

the required items be in his or her possession. You should see this new

passage, that is, computer, appear in the Twine design view. Its code is

shown in the following. Notice how we delete all items from the inventory

array as we won’t be taking them out of the computer room.

You must make sure the Faction never gets the backdoors they want

in August, the Britain-wide firewall-to-be. If they get them, they

can infuse pretty much every electronic device with malicious code

that will render the entire country vulnerable for attack.

CHAPtER 7 tHREE LittLE GAMES

308

"You must make modifications so after implementing them, not

even you can undo them", Mervyn explains.

<!-- Clear inventory -->

(set: $items to (a:))

[[Finish Code]]

 Food, Dramatic Moments, and More Macros
Let’s resume the story and introduce a few more macros for Harlowe. The

following code will be for the passage called Finish Code, created earlier.

It’s to be tagged as snow2 for the intended visual theme.

After a mere two days in the bunker, it begins to feel a second

home to you. The outside world is dangerous, unpredictable.

Food delivery is provided weekly to the island by the British

government, including items like caviar, avocado with shrimp,

and Belgian waffles.

You've found home.

<!-- Time to "enchant" a food item -->

(enchant: "avocado with shrimp", (text-colour: white) + (text-

style:'bold'))

(display: "Food")

[[Fall Asleep]]

Harlowe allows you to change the styling in your passages using a

wonderful macro called enchant:. This macro gives developers great

flexibility to re-design some elements of their passages at will.

As for the macro called display: – it is used to show the contents of

external passages within a specific passage. For the preceding macro to

work, we need a brand new passage called Food in order to use display:.

The contents of Food could be simply something like this:

(Your favorite food is, indeed, avocado with shrimp!)

CHAPtER 7 tHREE LittLE GAMES

309

You’ll notice the enchant-macro addresses both the originating

passage of Finish Code and the later one called Food; in both passages the

same string (i.e., “avocado with shrimp”) will be highlighted.

 Datamaps and Datasets
Harlowe includes support for data structures known as datamaps and

datasets. Simply put, what datamaps do is they create structures of key-

value pairings. They can be used to create character statistics or other

useful data collections. Datamaps utilize Harlowe’s common variable

definition of the dollar sign (e.g., $whatever_variable).

Accessing datamaps is done using the intuitive element of ‘s (e.g.,

$info’s) optionally with the macro called print:. The familiar if-else notation

also applies to datamaps as demonstrated next in the passage Fall Asleep,

again to be tagged with snow2 for the visuals.

<!-- Define a datamap with two keys (temperature and energy)

and assign them with values -->

(set: $info to (datamap: "temperature", -20, "energy", 5))

<!-- Display the datamap structures -->

Note: your energy-level is (print: $info's energy) out of 10.

The current temperature is (print: $info's temperature) C.

<!-- Check the values of the keys and display messages if

appropriate -->

(if: $info's energy is < 10)[You are somewhat tired.]

(if: $info's temperature is > 10)[It is quite warm!]

(else:)[It is very cold!]

As for datasets, think of them as arrays (i.e., the type of structure

we used for our inventory system) that use specific, easy-to-remember

manipulators, such as “is in” and “contains” as demonstrated by the

CHAPtER 7 tHREE LittLE GAMES

310

following passage called Fall Asleep. Since an “alarm clock” isn’t included

in our dataset, the related second message won’t be displayed. Also note

the use of the handy and operator in the last line of dataset examination.

Now, the passage continues like this:

During your third day on the island, you're startled by a

noise. At first it seemed to be coming somewhere inside the

bunker, but it soon became clear it's originating from the

surrounding sea.

<!-- Create a new inventory with a dataset -->

(set: $briefcase to (dataset: "pencil", "eraser"))

<!-- Examine contents of the aforementioned dataset using "is

in" and "contains" -->

(if: "pencil" is in $briefcase)[You have your trusty pencil in

your trusty briefcase.]

(if: "alarmclock" is in $briefcase)[You are also carrying an

alarm clock in your briefcase.]

(if: $briefcase contains "eraser")[You are also carrying an

eraser in said briefcase.]

(if: $briefcase contains "eraser" and $briefcase contains

"pencil")[You feel well prepared.]

[[Go outside.]]

 Extreme Fun with Arrays
Arrays in Harlowe’s can be manipulated in various ways; you’re not limited

to simply iterating through them in order. Let’s take a look at the next

passage (i.e., Go Outside.) and some of these nifty array manipulations

therein. This passage, too, could do worse than be tagged with snow2.

You pinpoint the source of the noise and associate it with a

small orange dot in the horizon. It's obviously a boat of some

sorts, slowly making it way towards Bouvet Island.

CHAPtER 7 tHREE LittLE GAMES

311

<!-- Create a new array, $array, assign four strings into it,

and randomize its order -->

(set: $array to (shuffled: "escape", "pencils", "fish",

"August"))

Panicking, you are thinking about (print: $array)!

<!-- Create another array, assign four numbers, rotate the

array by two -->

(set: $numbers to (a: 1,4,5,8))

And your briefcase lock number.. Which was it: (print:

$numbers) or(set: $numbers to (rotated: 2, ...$numbers))

(print: $numbers)?

<!-- Create a new array, fill it with four strings, arrange

them alphabetically -->

(set: $bands to (a: 'Abba', 'Megadeth', 'Tiffany', 'Enya'))

It's times like these you think about your favorite bands:

(print: (sorted: ...$bands)).

[[Hide in the bunker!]]

Some of the most useful array manipulations in Harlowe are shuffled:,

rotated:, and sorted:, as demonstrated in the preceding text. The triple dot

(i.e., ...) is called a spread operator in Twine. It’s used to insert all of the

values in an array into a macro (e.g., sorted: ...$bands).

Let’s continue onward to the next passage of us hiding in the bunker.

Oh and can you guess which tag would go well with such a passage? (It’s

bunker.)

The craft makes contact with terra firma. You can do little

else but observe through the fortified bunker windows. After

a few minutes of nothing but howling wind a somewhat petite

female form strolls towards your residence. She wears (either:

"thick black rimmed", "hipster") glasses and a (either: "dark

blue", "chic") winter jacket.

CHAPtER 7 tHREE LittLE GAMES

312

There's a knock on the entrance. "Reginald, it's me, Raine

", she informs and continues, "We must leave now. We only

have (random: 10,20) seconds!"

[[Enter the hovercraft.]]

In the preceding passage, we used two macros to create some variety:

the invigorating either: and the handy random:. The former’s function is

rather self-explanatory, while the latter creates a random whole number

between 10 and 20. You can, of course, enter any range of numbers at your

leisure for this macro.

 More Visual Effects
Now, the plot thickens as we enter the hovercraft. We even animate the

text passages to reflect the tense atmosphere of the story at this point. Note

the use of hooks (i.e., square brackets) needed to envelop the paragraphs.

The following is a passage called Enter the hovercraft. For this and the

four passages that are connected to it, we should assign the tag of, yes,

hovercraft, for that oceanic color scheme.

(text-style: "Shudder")[Now aboard the craft and scurrying

across the waves, you and Raine notice a second hovercraft

emerging from the mist. "It's them", Raine tells you.]

(text-style: "Rumble")[The black Faction craft is soon on the

starboard side of her and you with more than a dozen of their

stocky troopers aboard, wearing thick layers of arctic clothing

and military boots.]

(text-style: "Shudder")[(text-style: "Smear")[You and Raine

back off inside the craft canopy as it gets overrun.]]

<!-- Apply an effect to a specific section in a passage (i.e.

[beg] and [ins]) -->

(set: $string to (text-style: "Shudder")) The heavily reinforced

cabin door $string[beg]$string[ins] to [[come off its hinges]].

CHAPtER 7 tHREE LittLE GAMES

313

As you can see, adding more than one visual effect to sections of a

passage using text-style involves using hooks to surround these other text-

styles with. Also, it’s possible to create reusable string variables for text-

styles and apply them where necessary. See Table 7-24 for a partial list of

these visual effects. Note: the usage is always (text-style: “effect name”)[text].

Table 7-24. Some settings for Twine’s “text-style” macro

Non-animated Effects Animated Effects

Bold Superscript Condense Rumble

Italic Subscript Shadow Shudder

Underline Mark Outline Blink

Strike Expand None Fade-in-out

 Real-Time Twine
Games made with Twine aren’t just limited to pensive clicking. Oh no:

one can implement some serious real-time drama with countdowns by

utilizing a macro called live:! Let’s try this out in the next passage, called

come off its hinges.

The antagonists are about to break through the cabin door.

[[Stay put!]] / [[Open the Door!]]

(set: $time to 15)

(set: $string to (text-style: "Shudder"))

(set: $string2 to (text-style: "Rumble"))

<!-- Display dramatic messages every 0.8 seconds-->

{(live: 0.8s)[

CHAPtER 7 tHREE LittLE GAMES

314

 (either: "","","Double ")

 (either: "$string[Thump!]", "Wham!", "Yikes!", "Oof!",

"$string2[Bam!]")

]}You have |amount>[$time] seconds left!

(live: 1.0s)[

 (set: $time to it - 1)

 (if: $time is 0)[(go-to: "Open the Door!")]

 (replace: ?amount)[$time]

]

First, we create a simple variable called $time, assigning it with a value

of 15. If this variable reaches zero, the player is transported to a passage

called Open the Door!, which is also available as the “wrong” choice at the

top of the current passage through the usual means. Staying put is the only

way to survive this passage.

The macro called live: simply creates a real-time hook, to be repeated

by a specific interval. In this passage we assigned two live hooks: one

displays intense messages every 0.8 seconds, and the other decreases our

aforementioned variable by one every second. A macro called replace: is

utilized to display the updated contents of the timer variable. Also, you’ll

notice we utilize the previously introduced macro called either: to create

some variety in our messaging system.

But why don’t we make the countdown timer even more dramatic by

changing its color to red? We might as well make the numbers bold while

we’re at it using the font-weight attribute. Let’s add the following to the

Story Stylesheet:

tw-hook[name="amount"] {

 color: red;

 font-weight: bold;

}

CHAPtER 7 tHREE LittLE GAMES

315

 Our First Game Over
Should the player choose to open the cabin door while the invading forces

are aboard the hovercraft, the game ends. The passage called Open the

Door! should look like this:

 You open the door in an attempt to fight the intruders. You

are overrun in seconds.

 (live: 3s)[

 (stop:)

 (text-style: "Outline")[<h1>GAME OVER</h1>]

 (link:"Try, Try Again")[(goto:"Start")]

]

You’ll notice it has a new macro called stop:. This is used in

conjunction with the live macro to create a 3-second delay before

displaying the dreaded words of “Game Over.”

 Hiding That Pesky Inventory
There are passages in which the player doesn’t need to keep an eye at

the inventory; at times, keeping it displayed is just frustrating for your

audience. You may have noticed some of the recent passages in this

tutorial were quite busy. Let’s take care of that right now.

Find the inventory passage in the project. Make it look like this:

(if: $show_footer is true)[

<hr>

(if: $items's length > 0)[Your inventory contains a (print:

$items.join(", ")).]

(else:)[Your inventory is empty.]

(if: $items contains "USB-stick" and "Programming Manual" and

"Password on a Piece of Paper")[You're ready to get to work at

the bunker computer [[computer]].]

]

CHAPtER 7 tHREE LittLE GAMES

316

Some new sections are displayed in bold. What these do is examine

a boolean variable, $show_footer, to see if it’s set to “true” (booleans are

variables with only two states: true or false). If it is, a hook displaying the

inventory is shown. If said variable is set to false, no parts of the inventory

passage are shown. Note: be careful with the capitalization of booleans in

Twine, too. True is not the same as true.

Now, to enable or disable the inventory within any passage, enter one

of the following lines into it (preferably as the very first one for the sake of

clarity):

(set: $show_footer to false) <!-- Hide inventory -->

(set: $show_footer to true) <!-- Show inventory -->

See Figure 7-3 for the final form of our inventory passage. In our

project, we should hide the inventory in the following passages: Enter

the hovercraft. and Go Outside. Also, we should enable it in the very first

passage of the adventure, to make sure it defaults to being visible. In

addition, do remember the variable (i.e., $show_footer) maintains its value

until you change it again.

Figure 7-3. The completed inventory passage from Taking Back
August (Part III)

CHAPtER 7 tHREE LittLE GAMES

317

 Adding Graphical Bars
There’s nothing quite like visual representations of data in a video game

context. Whether you’re implementing character statistics or any type of

progress, you should invest some of your time into doing that visually. Let’s

create some of those fine bars right now in our next passage, called Stay put!

(set: $hose to 100)

A stream of water begins to flood the hovercraft cabin from the

skies. It's much more intense than seaspray or rain.

You identify the emerging sound as a helicopter. "It's Roy",

Raine yells and continues, "It has to be him!"

Royston is almost done removing the bad guys off the

hovercraft:

 (live: 0.25s)[

 (if: $hose>0)[

 (set: $hose to $hose - (random: 1,5))

]

(print: '<progress value="' + (text: $hose) + '" max="100">

</progress>')

 (if: $hose < 10)[[[Follow Roy's helicopter!]]]

]

In this passage we’re simply introducing an HTML element known as

<progress> into the proceedings using the Twine macro called print:.

After first defining a new variable called $hose and giving it a value

of 100, we integrate this data into the progress element. By using the

now probably familiar live macro, we reduce said variable’s value

between one and five units every quarter of a second. However, we

have controls in place which guarantee that this will only occur if the

value of the aforementioned variable is above zero; we don’t want any

funny business to occur with our bars and data.

CHAPtER 7 tHREE LittLE GAMES

318

When the value of our hose-related variable falls below ten, a link to a

new passage (i.e., Follow Roy’s helicopter!) will be displayed. However, the

default visuals provided by the progress element are rather uninspiring.

Let’s summon some CSS to correct that, shall we? We create a nice new

look to our progress bar by adding the following code into the Story

Stylesheet:

progress {

 background-size: 20px 20px, 100% 100%, 100% 100%;

 box-shadow: 5px 5px 5px black;

}

What the preceding CSS does is give the progress bar a nice, thick

green look and a shadow to boot. Said shadow will be offset by 5 pixels

both horizontally and vertically, feature 5 pixels of blur, and be black in

color.

 Transitions and Rotation: More Visual Flair
You can introduce parts of your passages in style with the macro known

as transition:. It takes a number of animation styles as its parameter. In

the following code, we used the rather striking pulse as our transition of

choice, which is a good way to display news headlines. In addition, we

can make things even more tabloidy by using a macro called text-rotate.

Finally, our old friend text-style emerges again to create an embossed and

smeared look for the headlines. The following passage is called Follow

Roy’s helicopter!

The hovercraft makes landfall somewhere in the coast of Norway.

An unremarkable car awaits you, Raine, and Royston. "There's a

private jet awaiting for us at Oslo Airport. Let's get going",

Royston says, opening a passenger door.

CHAPtER 7 tHREE LittLE GAMES

319

Picking up a newspaper in the car, a headline startles you:

(transition: "pulse") [

(text-style: "emboss")[

<h2>(text-style: "smear")[(text-rotate: 2)["Buckingham Palace

and Number Ten on lockdown!"]</h2>

(text-rotate: -2)["Britain shocked by PM's disappearance!"]]

]

Finish reading the [[newspaper]]]

 Replacing Links with Passages
We continue the story in a passage called newspaper, which is presented in

the following. Here we utilize a macro called click-replace: to create a link

out of the string of “Proceed Inside..” Clicking this link will then display the

contents of a separately defined passage called Buckingham Court inside

the current one. It’s also the time to switch to a brand new color scheme

by tagging this passage with the magic word bham. This also goes for the

passage to follow, that is, Throne Room.

Your team arrives in London after another long drive, this time

from Heathrow. "We have snipers all over the place", Royston

says.

The Faction managed to enter Buckingham Palace which has its

surrounding areas sealed off from the public for now.

Proceed Inside..

(click-replace: "Proceed Inside..")[(display: "Buckingham Court")]

CHAPtER 7 tHREE LittLE GAMES

320

The simple passage called Buckingham Court is presented in the

following.

A duo of Faction operatives open the doors to Buckingham Palace.

Raine and Reginald are kept a careful eye on as they enter the

premises after being searched for weapons of any kind.

Inside, an absolute silence makes every footstep sound like a

hundred decibels.

(link-goto: "Enter the Throne Room", "Throne Room")

 Prompting the User
And so we enter the Throne Room. Now it’s time to introduce another

element Harlowe is capable of: the user prompt. We get to enter a

password next, and should it be the correct one (i.e., “reginald”), enter

a new passage. If the player fails to get it right, they’re presented with a

blinking error message and given the opportunity to try again by reloading

and thus resetting the current passage. Yes, hacking is sometimes hard,

friends.

(set: $password="")

Our friends are escorted into the Throne Room, where two

familiar faces await them: it's Claire from the train and her

bodyguard, the overalls man.

Claire informs them the Faction still wants the code for the

backdoor to August.

"Failure to do so will result in two things: the execution of

your prime minister and a massive electromagnetic pulse which

CHAPtER 7 tHREE LittLE GAMES

321

will cripple not only your capital city, but the entirety of

your country", Claire explains.

> Enter password.(click: "password")[

(put: (prompt: "Enter Your Password (it's reginald):", "") into

$password)

(if: $password is "reginald")[(goto: "Done")](else:)[(text-

style: "blink")[> Access denied!](link-goto: "> Try again? <",

"Throne Room")

]

]

You’ll notice another macro we haven’t discussed yet: put:. This is

simply a different implementation of the familiar set macro which uses a

slightly different syntax; both of these macros create and modify variables.

Instead of (set: $password to ...), we chose to use (put: ... into $password).

We’re almost there. The two remaining passages are stylized with a

dramatic red hue courtesy of the tag called finale. The following passage is

called Done.

You activate the system with all of the requested backdoors

open – or so it seems.

"Very good, Mr Pennelegion", Claire says with a smile, grabbing

the tablet from Reginald and handing it over to the overalls man.

"Excellent. We have a deal. The coordinates are now being

transferred into your tablet", she says and continues: "You're

free to leave".

Walking slowly towards the front doors, Raine notices something

in the corner of her eye: one of the guards is having difficulty

maintaining his balance. The air turns freezing cold.

Raine whispers to you: "Do you feel that? That's our cue to

[[run!]]"

CHAPtER 7 tHREE LittLE GAMES

322

And for the grand finale itself, here’s something a little different. Enjoy

the very last passage of this tutorial, called run!

"We fumigated the palace air conditioning with our special

blend: iodine and liquid nitrogen mist. Their Achilles' heel,

Reg", Raine says and adds, "An SAS team is on its way to get

our prime minister. We expect him back in less than an hour.."

(live: 3s)[(stop:)(transition: "Shudder") [(text-style:

"Smear")[<h1>THE END</h1>](link:"Re-Start")[(goto:"Start")]]]

<audio controls autoplay>

<source src="https://ia802805.us.archive.org/7/items/

RelaxingHarpMusicSleepMusicMeditationMusicSpaMusicStudy

MusicInstrumentalMusic49_201807/Relaxing%20Harp%20Music%20

Sleep%20Music%2C%20Meditation%20Music%2C%20Spa%20Music%2C%20

Study%20Music%2C%20Instrumental%20Music%20%E2%98%8549.mp3"

type="audio/mp3">

Your browser does not support the audio element.

</audio>

So far, our tutorial game has been rather quiet. How about we add some

sound? Like you may remember, Twine’s Harlowe story format doesn’t have

built-in macros for audio; that needs to be implemented using HTML or

JavaScript. For our final passage, we used the HTML tag <audio> enabling its

options for both autoplaying a track and for user controls.

The rather rebellious URL points to a lovely track of harp music at

Archive.org, a digital library which provides free public access to its

materials.

We have now completed Taking Back August (Part III), a tutorial game

for Twine, thus demonstrating the basic mechanics of the Harlowe story

format. Although a portion of the story remains untold, the epilogue would

merely be a repetition of the aforementioned mechanics. Surely at this

point, you, dear reader, are aching to create your very own adventures from

the ground up.

CHAPtER 7 tHREE LittLE GAMES

323

 In Closing
After finishing this fairly intense chapter, you should have knowledge on

the following:

• How to translate a synopsis into a catalogue of

locations and characters for visual novel development

• The importance of keeping track of interconnected

rooms/passages in a game

For Ren’Py, you are now fully familiar with

• Working with variables and creating branching stories

using conditional statements

• Performing advanced variable manipulation with lists

and Python

• Defining custom transitions and adding other

audiovisual elements, including particles

In the case of TyranoBuilder, you should be comfortable with

• TyranoScript and its most useful macros in place of, or

with, the graphical user interface

• Advanced character transitions

• The basics of implementing Live2D characters

For Twine, you’ll have mastered the following:

• Using the Harlowe story format and its main dedicated

macros

• Creating interconnected Twine passages and stylizing

them using Cascading Style Sheets (CSS) and HTML

• Using variables to influence game events

CHAPtER 7 tHREE LittLE GAMES

324

• Using basic Twine data structures, including inventory

systems using arrays

• Utilizing the live macro to create real-time events

That’s quite a lot of potentially new information to digest. Now, the

next chapter will be somewhat more amenable, dealing instead with

marketing essentials and promotional strategies.

CHAPtER 7 tHREE LittLE GAMES

325© Robert Ciesla 2019
R. Ciesla, Game Development with Ren’Py, https://doi.org/10.1007/978-1-4842-4920-8_8

CHAPTER 8

Promotional
Strategies
Like stated early on in this book, the visual novel is a thriving genre. For

you, a developer, this means two things: stiff competition and flourishing

communities full of potential fans. In this chapter we’ll explore the

possibilities of said communities and other promotional tools you have at

your disposal. We’ll also be taking a look at the distribution side of things

in the form of various online platforms available today.

 Your Online Audience
The visual community is huge and ever-expanding. As a developer, you

should get acquainted with the main forums of the scene, to observe, to

participate, and especially to network in (see Table 8-1).

326

Table 8-1. The main online communities for visual novels and

interactive fiction (data for Q1 2019)

Community Members Description

Visual Novels on
Reddit
www.reddit.com/r/

visualnovels

55.6 k Reddit offers this popular and welcoming

community for fans of the visual novel genre

and developers alike.

Lemmasoft Forums
lemmasoft.renai.us/
forums

38.6 k Lemmasoft is a developer-focused and very

active forum with Tom Rothamel, the creator of

Ren’Py, as one of its administrators.

Visual Novel
Database
vndb.org

14.3 k Focused on cataloguing the visual novel, VNDB

features over 24,000 games in its database. It

includes a fairly active forum, too.

Fuwanovel (Fuwa)
forums.fuwanovel.net

10 k With a tagline of “make visual novels popular

in the west,” Fuwanovel offers a busy forum

with hundreds of thousands of posts and

counting. Focused on the player experience, it

also offers a discussion board for developers.

The Interactive
Fiction Community
Forum
intfiction.org

7.4 k Intfiction.org is a well-organized resource for

those who prefer more old-school approaches

to adventure game-making (e.g., Twine).

Highly recommended for all enthusiasts and

developers in the genre.

The Interactive
Fiction Database
ifdb.tads.org

7 k Like its name states, IFDB is a database which

also offers promotional opportunities for

developers in the form of recommendations.

CHapTeR 8 pRomoTIoNaL STRaTegIeS

http://www.reddit.com/r/visualnovels
http://www.reddit.com/r/visualnovels
http://lemmasoft.renai.us/forums
http://lemmasoft.renai.us/forums
http://vndb.org/
https://forums.fuwanovel.net/
http://intfiction.org/
http://ifdb.tads.org/

327

 Online Distribution for Budding Visual
Novelists
There are two universal basic types of products: commercial and free. As

discussed previously in this chapter and this book, a visual novel released

for free can do wonders for the developers. On the other hand, this beloved

genre is no longer a rarity on big commercial platforms such as Steam or

Good Old Games either. We will now explore the best venues for the online

distribution of both free and commercial visual novels.

 Releasing for Free
A simple file hosting service is basically all what a developer needs to

distribute his or her visual novels; these are costless for all parties in

general (see Table 8-2). Just drop a link of your games to your potential

customers and you’re good to go. It’s not the most extravagant method of

game delivery, but it works. You may not even opt for a custom domain

(e.g., www.mygame.com), but that’s not recommended: sometimes it’s good

to rein in the thriftiness. Always have your own web site.

Now, let’s take a look at some of the best free distribution platforms.

Table 8-2. Some online platforms for free distribution of visual novels

(data for Q1 2019)

Service Represented
Platforms

Description

Itch.io Windows, mac,

Linux, android,

ioS

Itch.io provides free online distribution with an optional

“name your price” model. The store has over 4000

visual novels in its virtual shelves as of Q1 2019.

The Itch.io community is a thriving one and well worth

leveraging for distribution, networking, and inspiration.

(continued)

CHapTeR 8 pRomoTIoNaL STRaTegIeS

http://www.mygame.com

328

Table 8-2. (continued)

Service Represented
Platforms

Description

Game
Jolt

Windows, mac,

Linux, vintage

computer Roms

Game Jolt hosts all three major desktop platforms as

well as the rather exotic format of Roms, which refer to

retro computer game files.

Similar to Itch.io, game Jolt offers a “name your price”

option for your downloads, meaning you can distribute

for free.

IndieDB Windows, mac,

Linux, all major

consoles

IndieDB is a well-established community and file

hosting service geared toward indie game developers.

Its main appeal is in the vibrant community.

CloudMe No restrictions CloudMe is a Swedish file hosting solution offering

3 gigabytes of free storage without traffic limitations.

Your individual file size is however limited to 150

megabytes. Cloudme is still a great choice for smaller

projects.

Download limit(s): none

Google
Drive

No restrictions Google Drive requires a free google account from the

developer’s part, but not from the downloader. You get

a hefty 15 gigabytes of storage which is more than

enough for a few visual novels.

Download limit(s): 750 MB per hour or 1250 MB
per day

Mega No restrictions Similar to google Drive, you get 15 gigabytes of free

storage with Mega.

Download limit(s): 10 GB per month

CHapTeR 8 pRomoTIoNaL STRaTegIeS

329

 Selling Your Visual Novels
Let’s now explore the world of commercial software distribution platforms

(Table 8-3). Although most of them don’t require a submission fee, the

process may not turn out the way you desire. As soon as money is involved,

things get more complicated. Typically more mainstream games are

accepted in the world of commercial game distribution. Exotic niche

products don’t fare as well.

When approaching commercial distributors, it’s mandatory to have

some high-quality marketing materials ready. These include at least five

high-resolution screenshots and a video trailer, or two. Never email a

distributor without links or attachments to these materials.

Table 8-3. Some online platforms for commercial distribution of

visual novels (data for Q1 2019)

Service Platforms Description Submission Process

Steam Windows,

mac, Linux

Valve Software’s giant platform

offers its 150+ million users

tens of thousands of games in

every possible genre.

as for visual novels, Steam

hosts around 1.5K such titles

as of Q1 2019.

You keep 70% of revenue.

“Steam Direct”: pay a

fee of $90 and wait 2–3

weeks for approval.

Steam’s “hands-off”

approach implemented in

2018 guarantees only the

most offensive titles are

kept out of the store.

Epic
Store

Windows,

mac

although the focus is on

showcasing the 3D prowess of

epic’s Unreal engine, the store

claims to be “engine agnostic.”

There don’t seem to be any

objections to genres either.

You keep 88% of revenue.

Fill in the store

submission form online.

(continued)

CHapTeR 8 pRomoTIoNaL STRaTegIeS

330

Table 8-3. (continued)

Service Platforms Description Submission Process

GOG Windows,

mac, Linux

Formerly known as good old

games, gog offers a solid store

front for your visual novels with

a good degree of awareness

among gamers and developers

alike.

You either keep 70% of the

revenue or sign up for an

upfront payment, which will be

paid back by gog taking 40%

of the sales. after the upfront

payment has been accrued,

gog takes 30% of future sales

as per usual.

Fill in the store

submission form online.

Gamer’s
Gate

Windows,

mac, Linux,

android

Swedish distributor gamer’s

gate has a strong portfolio of

some 250 publishers and over

6000 games on sale.

You keep 70% of revenue.

Contact them via email

with details of your title:

publisher@gamersgate.

com

Green
Man
Gaming

Windows,

mac,

Nintendo Wii

U & 3DS

UK-based green man gaming

represents 660 publishers and

over 6600 titles including a

considerable number of indie

games.

You keep 70% of revenue.

Contact them via email

with details of your title:

david.clark@

greenmangaming.com

CHapTeR 8 pRomoTIoNaL STRaTegIeS

331

 Essential Marketing Practices
Marketing a visual novel is pretty much the same as marketing any other

type of video game. As of 2019 run-of-the-mill social media (e.g., Facebook

and Twitter) is oversaturated and overrated for the indies; you may not

want to bother with much of it early in your career. There are, however,

several steps you can and need to take as an indie developer.

 Forum Decorum
Whichever forums you decide to engage with, make sure you behave

within certain parameters. When interacting with members on any forum,

stay civil and succinct. Be open to accepting even unasked for criticism as

long as it’s constructive. Reach out freely to other enthusiasts, but don’t

bicker and try not to convince anyone of anything in particular.

 Demo Games
The promotion of your visual novel doesn’t need to only start after you

and/or your team have completed work on it. You may want to invest your

time in producing a, say, time-limited demo version of your game for your

fans, your future fans, and potentially even journalists. Dedicated forums

are a great way to distribute your demo games and build whatever amount

of buzz you can for your products. Although your game doesn’t have to be

finished at the demo stage, it should be as polished as possible.

Note When presenting your visual novel demo to the world at
large, it’s usually a good idea to give them an estimate of the demo’s
playing time in minutes.

CHapTeR 8 pRomoTIoNaL STRaTegIeS

332

 Penetrating the Market with Free Stuff
Besides creating polished products, one of the best ways of generating

interest toward your visual novels is to release it for free. As mentioned

earlier in this book, several games that ended up being downloaded in the

millions were released free of charge. Examples of this marketing strategy

include Digital: A Love Story by Christine Love and the phenomenon

called Doki Doki Literature Club! by Team Salvato. The former launched

Love’s video game career, while the latter is earning its team income by

selling downloadable content such as soundtracks.

 Staying Serious About Platforms
The tools developers have these days for creating visual novels are, for the

most part, designed to be multi-platform from the ground up. All developers

should strive to release their games for as many platforms as their tools

allow. However, there’s debate among software publishers on the issue

of simultaneous cross-platform release. A system-synchronized product

launch reduces marketing overhead. A staggered launch, on the other

hand, allows for things such as a potentially longer commercial lifespan

for your game. Less established indie developers may benefit most from a

simultaneous launch, as this gets the game out there as far as possible and

lets the developers know whether or not said product has any hit potential.

 The Power of Localization
If there’s a genre of video games that benefits greatly from localization,

it’s the visual novel. The admittedly large English-speaking world aside,

there are numerous potentially lucrative markets out there untapped

by many developers. The main reason for this is obvious: a text-based

product needs a high degree of language ability from the ones doing the

localization. The average visual novelist may or may not be competent

CHapTeR 8 pRomoTIoNaL STRaTegIeS

333

in Simplified Chinese or the Korean standard language. Usually, extra

personnel must be hired for these tasks.

The average translation rate per word can range anywhere between

$0.02 and $0.07 for individual translators. The rate goes all the way up to

around $0.10–$0.25 for professional translation agencies. These include

businesses such as MoGi Group or Level Up Translation. Now, for a smallish

game of, say, 40,000 words at $0.09 per word, you would pay $3,600. A

120,000-word beast of a game at a similar rate would cost you $10,800.

A usually expensive endeavor then, localization nonetheless provides

opportunities to enter fresh markets with millions of potential new buyers.

It’s naturally best attempted when your product already has a proven track

record for its original release. It’s either that or you sign up for those hip

language courses and master a brand new language yourself.

 Web Site
Even with all the social media platforms of today, it still pays to have a

custom web domain of your own. For maximum impact for a specific game,

create your domain around its title (i.e., supergame.com). Don’t bother

with dedicated forums or other communal features; these will pretty much

create themselves somewhere in social media if the demand exists.

Optimize your web site for mobile use and search engines. You may

even want to invest time into making separate web sites for desktops and

mobile devices. There are plenty of free templates for web sites online

which serve as great starting points for your site(s).

Search engines love text; balance the visuals on your site with lots of

original quality writing. Make sure your site is made with error-free HTML to

further enhance its status among search engines and potential customers;

the W3C Markup Validation Service is a great tool for this purpose.

CHapTeR 8 pRomoTIoNaL STRaTegIeS

334

There are many sites and free tools for developing and optimizing your

web site, some of which are presented as follows:

• W3C HTML5 Tutorial (www.w3schools.com/html)

• BlueGriffon HTML editor free for Windows, Mac, and

Linux (www.bluegriffon.org)

• Free CSS Templates (www.free-css.com)

• W3C Markup Validation Service (http://validator.

w3.org)

• Google Search Console (http://search.google.com/

search-console)

• Google PageSpeed (http://developers.google.com/

speed/pagespeed/insights)

• Bing Webmaster Tools by Microsoft (www.bing.com/

toolbox/webmaster)

• Yandex Webmaster Tools (http://webmaster.

yandex.com/welcome)

 Trailer Video
Even if your game is a bare-boned text-only adventure game, an

audiovisually rich trailer can and should be made to present it in an

engaging way. Build extra atmosphere by utilizing a quality soundtrack.

Avoid cheap production values and built-in templates offered by pretty

much all video editing software.

Keep your trailer under 2 minutes in length and use at least some

footage from the game itself. Add a link to your online presence to the end.

If at some point you receive any positive press, make a new trailer with

these quotes included in it.

CHapTeR 8 pRomoTIoNaL STRaTegIeS

http://www.w3schools.com/html
http://www.bluegriffon.org
http://www.free-css.com
http://validator.w3.org/
http://validator.w3.org/
http://search.google.com/search-console
http://search.google.com/search-console
http://developers.google.com/speed/pagespeed/insights
http://developers.google.com/speed/pagespeed/insights
http://www.bing.com/toolbox/webmaster
http://www.bing.com/toolbox/webmaster
http://webmaster.yandex.com/welcome
http://webmaster.yandex.com/welcome

335

If you’re not familiar with trailer creation, learn basics of the trade – or

find someone who already knows what they’re doing. Some good, free

choices for editing software are listed next; find the program with the most

comfortable user interface for you and master it.

• Lightworks for Windows, Mac, and Linux (www.

lwks.com)

• HitFilm for Windows and Mac (http://hitfilm.com/

express)

• Shotcut for Windows, Mac, and Linux (http://

shotcut.org)

• OpenShot for Windows, Mac, and Linux (www.

openshot.org)

• Flowblade for Linux (http://jliljebl.github.io/

flowblade)

 Blog
Keeping a regular blog signals you’re active and thus serious about your

project. Blogs are a great way of processing feedback and interacting with

your potential supporters. Regular blogging is also a form of search engine

optimization, giving them data to chew on and index. If you decide to open

a game development blog, try to post on a weekly basis. Your topics might

include general progress updates on your game, announcements on a

demo version, or more technical posts aimed at your fellow developers.

You may even choose to center your entire online presence as a game

developer around a free blog service, such as WordPress.org or Blogger.

com. That is certainly a good approach when it comes to saving time;

however, you should register your own web domain even when using this

method. If you pick WordPress for your blog/web site, the cheapest option

for its hosting with a custom domain (as of Q1 2019) is at Bluehost.com,

costing you less than $3 per month.

CHapTeR 8 pRomoTIoNaL STRaTegIeS

http://www.lwks.com
http://www.lwks.com
http://hitfilm.com/express
http://hitfilm.com/express
http://shotcut.org/
http://shotcut.org/
http://www.openshot.org
http://www.openshot.org
http://jliljebl.github.io/flowblade
http://jliljebl.github.io/flowblade

336

Guest bloggers from the industry can also enhance your online

presence through link sharing. Reach out to your fellow developers for

this purpose in mind. Now, general-purpose blogging sites aside, there

are some platforms dedicated to game development. These include Gama

Sutra (http://gamasutra.com) and GameDev.net.

 Visual Novel Databases
As a reminder, you should always submit data of your games into databases

and keep it up to date. Your go-to listings should include at least The Visual

Novel Database (www.vndb.org), The Interactive Fiction Database (http://

ifdb.tads.org), and good old Wikipedia. The last one requires some form

of “relevance” from your games (apparently tons of confirmed sales and/or

positive press) or your titles will be wiped off its pages. Still, you should edit

Wikipedia to your benefit at some point and hope it sticks.

• Wikipedia listing for Ren’Py Games

(http://en.wikipedia.org/wiki/

Category:Ren'Py_games_and_visual_novels)

• List of games at the official Ren’Py web site

(http://games.renpy.org)

• Itch.io’s list of top visual novels made with
TyranoBuilder

(http://itch.io/games/genre-visual-novel/

made- with- tyranobuilder)

• Steam discussions for TyranoBuilder

(http://steamcommunity.com/app/345370/

discussions)

• Wikipedia page for Twine

(http://en.wikipedia.org/wiki/Twine_(software))

CHapTeR 8 pRomoTIoNaL STRaTegIeS

http://gamasutra.com/
http://www.vndb.org
http://ifdb.tads.org/
http://ifdb.tads.org/
http://en.wikipedia.org/wiki/Category:Ren'Py_games_and_visual_novels
http://en.wikipedia.org/wiki/Category:Ren'Py_games_and_visual_novels
http://games.renpy.org/
http://itch.io/games/genre-visual-novel/made-with-tyranobuilder
http://itch.io/games/genre-visual-novel/made-with-tyranobuilder
http://steamcommunity.com/app/345370/discussions
http://steamcommunity.com/app/345370/discussions
http://en.wikipedia.org/wiki/Twine_(software)

337

 In Closing
Finishing this chapter, you’ll have learned about the following:

• The main free and commercial online distribution

platforms for your visual novels

• The importance of demo games and the possibilities

offered by localization

• Essential marketing practices, including custom web

domains and blogging

And here we are at the end of the book. The author sincerely hopes you

have gained some valuable information concerning the art of the visual

novel. Whether you choose Ren’Py, TyranoBuilder, Twine, or some other

amazing piece of software for game development, may you utterly succeed

in your ventures. Hopefully, you’ll become a celebrated part of the ever-

expanding community of interactive fiction, exploring important themes

and creating many entertaining products.

“Write a wise saying and your name will live forever.”

—Author unknown

CHapTeR 8 pRomoTIoNaL STRaTegIeS

339© Robert Ciesla 2019
R. Ciesla, Game Development with Ren’Py, https://doi.org/10.1007/978-1-4842-4920-8

Index

A
Act I, departure

adventure call, 13
Hyde Park, 14
refusal call, 13
supernatural aid, 14
threshold, 14

Act II, initiation
apotheosis, 19
father, atonement, 18, 19
goddess, 16
quest’s goal, 20
road trials, 15
woman as temptress, 16, 17

Act III, return
freedom to live, 28, 29
magical flight, 22–24
refusal, 21, 22
rescue, 24–26
threshold, 26–28
two worlds, 28

Adrift editor, 104, 105
Adventure Game

Toolkit (AGT), 75
Anthropomorphism, 8
Append method, 248
Archive.org, 322
Aristotelean poetics, 9–11

B
Blog, 335
Boolean variable, 253
Brainstorming, 45

C
call command, 253
Cascading Style

Sheets (CSS), 125, 145, 296
Change Background component, 271
Characters per second (cps), 265
chara_mod, 283
Codecs, 146
Commercial platforms, 327
Creator, 32

D
Datamaps, 309
3D Camera, 282
Demo games, 331
Deskaction, 244
3D graphics, 1
Display macro, 308
Dramatic elements

alter ego, 4
antagonist, 2, 3

https://doi.org/10.1007/978-1-4842-4920-8

340

catharsis, 5
cliché, 5
conflict, 5
deus ex machina, 6
double entendre, 6
exposition, 6
flat/round character, 6
fourth wall, 7
narration/narrator, 7
Onomatopoeia, 7
personification, 8
POV, 9
protagonist, 3, 4
simile, 9
soliloquy, 9

E
Editra, 240
Enchant macro, 308
Explorer, 33

F
File hosting service, 327
from_zoom attribute, 282
full_restart command, 261
Functions, 253

G
glink tag, 287
Graphical user interface (GUI), 154

graph tag, 287
Guest bloggers, 336

H
Harlowe, 126
Harlowe story format, 302, 322
Healer, 34
Hero, 30
Hero’s journey

departure (see Act I, departure)
initiation (see Act II, initiation)
return (see Act III, return)

HTML-compliant color coding, 235

I
init statement, 250
Innocent One, 33
Inspiration, 43, 44
Integrated development

environment (IDE), 193
Interactive fiction

Colossal Cave Adventure, 48, 49
ELIZA, 47, 48
Infocom, 49–53
level 9 computing, 60, 61, 63
Magnetic Scrolls, 55, 56, 58
text-based adventures, 64, 66,

67, 69, 70
tools

AGT, 75
parser, 71
PAW, 75

Dramatic elements (cont.)

INDEX

341

Quill, 74
ZIL, 72, 73

Interactive Fiction IDentifier
(IFID), 131

iScript, 140, 162

J, K
John/Jane Doe (example), 30
Joker, 31
jQuery effect methods, 175

L
Launch screens, 196
Layout plan, Taking Back August

characters, 218
locations, 219

Bedford Streets, 227, 228
Bouvet Island, 228, 229
London, 223, 224, 231, 232
London (residential area),

225
London (train station), 226
new office complex, 233, 234
Norway, 231
office complex, 222–225
South Atlantic Ocean, 230
train, 226, 227

List manipulation method, 251
Live2D technology, 141
Live2D, TyranoScript, 290, 291
Live macro, 314

Localization, 42
Lover, 33

M
Macros, 282
Magician, 32
Math.floor function, 163
Mobile devices, Ren’Py

Android, 190, 191
app icons, 196
deploy OS/Chrome browser, 197
iOS, 193
keybindings, 192
launch screens, 196
pre-splash screens, 191
RAPT, 198
testing android, 192
Xcode, 194, 195

Mountain, 124

N
Nasuka, 288
Novel good practices

audience bond, 37, 38
audiovisuals, 35
characters grow, 36
dramatic endings, 38
engine, 35
forced reading, 38
story, 34

INDEX

342

sub-genre, 36
unnecessary elements, 37
using clichés, 36, 37

O
Online communities, 326
Online distribution, visual novel

commercial software
distribution
platforms, 329, 330

free distribution, 327, 328
Onomatopoeia, 7

P, Q
Parser, 71
Passages, 123
Point of View (POV), 9
Portable Network

Graphics (PNG), 208
Print macro, 309, 317
Professional Adventure Writer

(PAW), 75
Proofreading, 42

R
Raspberry Pi, 198
Real-time Twine, 313, 314
Rebel, 31
Ren’Py, 41, 102

alpha mask, 148
audio functionality, 149–151

components, 111, 112
conditional statement, 120, 121
control statements, 121, 122
creating project, 112
creating user

interaction, 118, 119
definition, 110
gui.rpy, 155
image properties

alignment, 152
character color, 151, 152
transitions, 152–154

key elements, 117, 118
launcher actions, 113, 114
markus_movie.webm, 148
mobile devices, Ren’Py (see

Mobile devices, Ren’Py)
options.rpy, 155, 156
play and stop, 150
queue command, 150
Raspberry Pi, 198, 199
scripting language, 114, 116
text block, 119, 120
video codecs, 146, 147
video container formats, 147
video playback, 148

Ren’Py Android Packaging Tool
(RAPT), 190

Ren’Py, desktop
deployment options, 188
hardware requirements, 188, 189
icons, 189

renpy.movie_cutscene
command, 265

Novel good practices (cont.)

INDEX

343

Ren’Py, Taking Back August
audio channels, 248
audiovisual assets, 237, 239
character expressions, 263, 264
characters setup, 235, 236
conditional statements, 244–249
define variables, 242
functions, 253, 254
hashtag character, 241
hyperlinks, 264
inventory system, 250, 252, 253
kerning, 266
menu element, 241, 244
naming convention, 237
project starting, 234, 235
randomized dialogue, 261, 262
sliding effect, 239
SnowBlossom effect, 256–260
starting menu, 241
text speed, 249, 266
transitions, 236
variable, 255
video files, 265
vspace element, 266
wait tag, 266

reset_camera tag, 282
RGB hexadecimal method, 152
Ruler, 31

S
Sage, 32
scene command, 246
show command, 257, 263

SnowBlossom effect, 256
alpha channel, 257
attributes, 256
conditional statement, 260
identical menus, 258
particles, 256, 257

Snowman, 126
Sort method, 249
Steam app, 269
Stop macro, 315

T
Taking Back August project

characters, 218
Ren’Py workflow (see Ren’Py,

Taking Back August)
settings and venues, 220–222
Twine (see Twine, telling tales)
Twine, project view, 295
TyranoBuilder, Reginald’s story

(see TyranoBuilder project)
Text-rotate macro, 318
Text-style macro, 313
Trailer video, 334, 335
Transition macro, 318
Twine, 103

CSS, 125
CSS selectors, 131, 132
definition, 122
Harlowe, 126

animate, 177
and jQuery, 173–176

HTML elements, 167, 168

INDEX

344

HTML tags, 125, 126
IFID, 131
JavaScript, evoking, 169
launcher screen, 123
macros, 127, 128
mountain, 124
passages, 123
Snowman, 126

audiovisuals, 184
JavaScript and

underscore, 179
Markdown technique, 178
rolling dice, 180
text formatting, 178, 179
underscore

and arrays, 181–183
variables, 180

text reveal effect, 169, 170
text spicing, 170–172
user interface functions

editor screen, 129
game menu options, 129, 130

Twine, desktop
android icons, 208, 209
for iOS and android, 205
iOS icons, 211, 213
iOS p12 certificate, 213
iOS splash screens, 210
PhoneGap build, 206, 207
splash screen android, 208

Twine, telling tales
arrays, Harlowe, 310, 311
click-replace macro, 319, 320

color scheme, 297
custom tags, 300
Edit Story Stylesheet, 299, 300
footer, 303, 304
graphical bars, 317, 318
Harlowe method, 296, 302, 303
inventory passage, 315, 316
locations unlock, 307
project view, 295
real-time drama, 313, 314
resume story, 304–306
text-style, 313
user prompt, 320, 321
variable, 298
web safe fonts, 297

TyranoBuilder, desktop
for Android, 201, 203, 204
for iOS, 200, 201

TyranoBuilder project, 106
adding multimedia, 138
audio-related tags, 270, 271
background graphic, 268
characters tag, 268, 284, 286
components, 134, 135
creating project, 135, 136, 138
3D camera, 282
directories, 269, 270
fadeinbgm, 272
game settings panel, 139
general-purpose tags, 292–294
graphical button, 287, 288
graphical user interface, 269
image and video file, 272–276
interaction, 277

Twine (cont.)

INDEX

345

iScript, 141
join scene component, 138
label component, 277
labels, 281, 282
Live2D, 141, 142, 289–291
macros, 282
randomized dialogue, 279–281
scripting languages, 140
sound directory, 278
user interface, 133
variable operations, 279

TyranoBuilder techniques
clickable areas, 165
fonts, 166
iScript vs. JavaScript, 164
jump component, 161, 162
plugins, 157–159
process variables, 160, 161
randomItem variable, 163
randomization, 162–164
system variables, 160
variables manager, 160

TyranoPlayer, 201
TyranoScript, 140, 162, 269, 270, 281

U
Underscore library, 179

V
Virtual camera, 282
Visual community, 325
Visual Novel Database, 336

Visual novel industry
animation, 39, 40
audio production and voice

acting, 41
localization, 42
programming, 41
testing, 42

Visual novel, marketing
blog, 335
demo games, 331
forums, 331
free stuff, 332
localization, 332, 333
platforms, 332
trailer video, 334, 335
Visual Novel Database, 336
web site, 333, 334

Visual novels
classics, 91–102
Japanese origins

anime, 84
bishoujo, 84
dating sims, 84
doujinshi games, 85
eroge, 86
Hentai, 86
Isekai, 87
Kamige/Kusoge, 87
kawaii, 87
MAhou shoujo, 88
manga, 89
mecha, 90
moe(ge), 90
Nakige/Utsuge, 90

INDEX

346

Otome games, 88
Tsundere, 90

tools
Adrift, 104, 105
Ren’Py, 102
Twine, 103
TyranoBuilder, 106
VN Maker, 107

tropes
branching, 82
dialogue tree, 80
ending tree, 81
protagonist, 80
sword and sorcery, 82, 83

Visual Novel (VN) Makertool, 107

W
webM container

format, 265
Web safe fonts, 297
Web site, 333, 334
Writer’s block, 44–46

X, Y
xpos attribute, 239

Z
Zork Interactive

Language (ZIL), 72

Visual novels (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Stories and How to Craft Them
	A Little Introduction to Dramatic Elements
	Antagonist
	Protagonist
	Alter Ego
	Catharsis
	Conflict
	Cliché
	Deus Ex Machina
	Double Entendre
	Exposition
	Flat/Round Character
	Fourth Wall
	Narration/Narrator
	Onomatopoeia
	Personification
	Point of View (POV)
	Simile
	Soliloquy

	Aristotelian Poetics
	The Monomyth: A Hero’s Journey
	Taking Back August – A Synopsis Act I: Departure
	1. The Call to Adventure
	2. Refusal of the Call
	3. Supernatural Aid
	4. Crossing the Threshold
	5. “Belly of the Whale”

	Act II: Initiation
	6. The Road of Trials
	7. The Meeting with the Goddess
	8. Woman as Temptress
	9. Atonement with the Father
	10. Apotheosis (Becoming Divine)
	11. The Ultimate Boon (Reaching the Quest’s Goal)

	Act III: Return
	12. Refusal of the Return
	13. The Magical Flight
	14. Rescue from Without
	15. The Crossing of the Return Threshold
	16. Master of Two Worlds
	17. Freedom to Live

	The 12 Character Archetypes
	1. The Hero
	2. John/Jane Doe
	3. The Rebel
	4. The Joker
	5. The Ruler
	6. The Sage
	7. The Magician
	8. The Creator
	9. The Lover
	10. The Innocent One
	11. The Explorer
	12. The Healer

	Ten Visual Novel Good Practices
	1. Put the Story First
	2. Choose the Engine Carefully
	3. Don’t Overlook the Audiovisuals
	4. Make Your Characters Grow
	5. Honor the Sub-genre of Your Visual Novel
	6. Use Clichés Wisely
	7. Trim Unnecessary Elements
	8. Bond with Your Audience
	9. Only Provide the Endings Your Story Needs
	10. Indulge in Forced Reading Sparingly

	Working for the Visual Novel Industry
	Visuals and Animation
	Audio Production and Voice Acting
	Programming
	Testing
	Localization

	Musings on Inspiration
	Fighting the Writer’s Block
	In Closing

	Chapter 2: The (Ancient) Art of Interactive Fiction
	The Great Grandfather of the Visual Novel: ELIZA (1966)
	The Grandfather of the Genre: Colossal Cave Adventure (1975)
	The Early Trailblazers
	Infocom
	The Zork Series (1977–1993)
	The Enchanter Trilogy: Enchanter (1983), Sorcerer (1984), Spellbreaker (1985)
	Planetfall (1983) and Stationfall (1987)
	The Hitchhiker’s Guide to the Galaxy (1984)
	Wishbringer (1985)
	Leather Goddesses of Phobos (1986) and Leather Goddesses of Phobos 2 (1992)

	Magnetic Scrolls
	The Guild of Thieves (1987)
	Corruption (1988)
	Fish! (1988)
	Wonderland (1990)

	Level 9 Computing
	Colossal Adventure (1983)
	The Silicon Dreams Trilogy (1986)
	The Time and Magik Trilogy (1988)

	Other Notable Games in the Genre
	King’s Quest: Quest for the Crown by Sierra On-Line (1984)
	The Spellcasting Trilogy by Legend Entertainment (1990–1992)
	Timequest by Legend Entertainment (1991)
	Demoniak by Palace Software (1991)

	How They Did It – Early Tools for Interactive Fiction
	A Few Words on Parsers
	Zork Interactive Language (ZIL) and the Z-machine
	The Quill by Gilsoft (1983)
	Professional Adventure Writer by Gilsoft (1986)
	Adventure Game Toolkit by David Malmberg (1987)
	Inform by Graham Nelson (1993–)

	In Closing

	Chapter 3: The Modern Visual Novel
	The Visual Novel: Definitely Big in Japan
	Tropes
	The Faceless Protagonist
	Dialogue Tree
	The Endings Tree
	Into the Middle of Things/In Medias Res
	High School Geek
	Branch Cutting
	Sword and Sorcery

	Core Concepts of Japanese-Influenced Visual Novels
	Anime
	Bishoujo (also Galge) Games
	Dating Sim
	Doujinshi Games
	Eroge
	Hentai
	Isekai
	Kamige/Kusoge
	Kawaii
	Kinetic Novel
	Otaku
	Otome
	Magical Girlfriend
	Mahou Shoujo (The Magical Girl)
	Manga
	Mecha
	Moe(ge)
	Nakige/Utsuge
	Tsundere

	Modern-Era Kamige, or the New Classics
	Kanon by Key (1999)
	Air by Key (2000)
	Phoenix Wright: Ace Attorney by Capcom (2001)
	Digital: A Love Story by Christine Love (2010)
	Katawa Shoujo by Four Leaf Studios (2012)
	Clannad by Key (2004, 2015)
	Her Story by Sam Barlow (2015)
	Doki Doki Literature Club! by Team Salvato (2017)
	Open Sorcery by Abigail Corfman (2017)
	Simulacra by Kaigan Games (2017)
	Simulacra: Pipe Dreams (2018)

	How We Do It – Modern Tools for Visual Novels
	Ren’Py
	Twine
	Adrift
	TyranoBuilder by STRIKEWORKS (2015)
	VN Maker

	In Closing

	Chapter 4: Working in Ren’Py, Twine, and TyranoBuilder
	Ren’Py in Detail
	How Ren’Py Works
	Starting a New Project
	The Ren’Py Workflow
	The Basics of Ren’Py Scripting
	Creating User Interaction: Menus
	Indentation and Text Blocks
	Conditional Statements: if, elif, else
	More on Control Statements

	Twine in Detail
	Linking Passages Together
	Twine and Audiovisuals
	The Three Varieties of Twine
	Twine’s Many Macros
	Twine’s User Interface Functions
	A Few Words on the IFID
	Some Useful CSS Selectors

	TyranoBuilder in Detail
	The TyranoBuilder Workflow
	A Two-Scene Adventure
	Characters in TyranoBuilder
	Adding Multimedia
	TyranoBuilder and Media Files
	A Few Words on Game Settings
	Scripting in TyranoBuilder
	Live2D

	In Closing

	Chapter 5: Deeper Down the Dungeon
	Ren’Py, Containers, and Codecs
	Using Video in Ren’Py
	Advanced Audio Functionality in Ren’Py
	Audio Queues
	Advanced Play and Stop Statements
	Audio File Random Access

	Advanced Image Properties
	Character Dialogue Color
	Quick Image Alignment
	Advanced Transitions

	Customizing the Ren’Py GUI

	Advanced TyranoBuilder Techniques
	Plugins
	Of Variables and System Variables
	Randomized Dialogue
	iScript vs. JavaScript
	Clickable Image Areas
	Custom Fonts in TyranoBuilder

	Twine Magic
	Evoking JavaScript in Twine
	Text Reveal Effect in CSS
	Spicing Up the Text
	An Introduction to Harlowe
	Harlowe and the Might of jQuery
	More on Animate

	Enter Snowman!
	Snowman, JavaScript, and Underscore
	Snowman and Variables
	Rolling Dice in Snowman
	Underscore and Arrays
	Snowman and Audiovisuals

	In Closing

	Chapter 6: Deploying for Popular Platforms
	Ren’Py and the Desktops
	Minimum System Requirements
	Icons for Desktops

	Ren’Py for Mobile Devices
	Deploying for Android
	Icons and the Splash Screen
	Keybindings in Android
	Testing Your Android App in Ren’Py
	Deploying for iOS
	Xcode and the iOS Process
	Updating Your iOS Projects
	App Icons and Splash Screens for iOS

	Deploying for Chrome OS/Chrome Browser
	Legalese for Android and iOS in Ren’Py

	Ren’Py for the Quirky: Raspberry Pi
	Setting Up a Pi for Ren’Py

	TyranoBuilder for Desktops
	TyranoBuilding for iOS
	TyranoBuilding for Android
	Additional Android Advice

	Twine for the Desktops
	Twine for iOS and Android
	The Wonders of PhoneGap Build
	Splash Screens for Android
	Icons for Android
	Splash Screens for iOS
	Icons for iOS
	The Apple p12 Certificate and PhoneGap

	In Closing

	Chapter 7: Three Little Games
	Laying Out a Plan
	Cast of Characters
	Locations
	Setting I: The Office Complex
	Setting II: London
	Setting III: The Office Complex on Fire
	Setting IV: London (Residential Area)
	Setting V: London (Train Station)
	Setting VI: Train
	Setting VII: Bedford Streets
	Setting VIII: Bouvet Island, Norway
	Setting IX: South Atlantic Ocean
	Setting X: Norway
	Setting XI: London
	Setting XII: The New Office Complex

	Part I: The Beginnings of Taking Back August in Ren’Py
	Starting the Project
	Setting Up the Characters
	Custom Transitions
	Assigning Images to Characters
	Preparing Other Audiovisual Assets
	Into the Fray!
	Commenting Your Code
	Your First Menu
	Using Conditional Statements
	Setting the Text Speed
	Upgrading the Inventory System
	Adding Functions (and Reusing Variables)
	Particles with SnowBlossom
	Randomizing Dialogue
	Styles and Hyperlinks
	Adding Videos
	Text Speed on the Fly
	More Fun with Text

	Part II: The Middle of Reginald’s Story with TyranoBuilder
	A Couple of Characters
	On a Train
	TyranoBuilder, Assets, and Directories
	Sounds on a Train
	First Glimpses of Interaction and Variables
	Random Dialogue in TyranoBuilder
	Adding Labels in TyranoScript
	The Might of the 3D Camera
	TyranoScript Macros
	Mixing Graphics with Text
	Graphical Buttons
	The Grand Finale Featuring Nasuka
	Various Tags and Tools

	Part III: Telling Tales with Twine
	Fonts and Colors
	Fun with Harlowe and Variables
	Custom Tags and Background Visuals
	An Inventory in Harlowe
	Refining Our Inventory and the Twine Footer
	Resuming Our Story
	Unlocking Locations with Items
	Food, Dramatic Moments, and More Macros
	Datamaps and Datasets
	Extreme Fun with Arrays
	More Visual Effects
	Real-Time Twine
	Our First Game Over
	Hiding That Pesky Inventory
	Adding Graphical Bars
	Transitions and Rotation: More Visual Flair
	Replacing Links with Passages
	Prompting the User

	In Closing

	Chapter 8: Promotional Strategies
	Your Online Audience
	Online Distribution for Budding Visual Novelists
	Releasing for Free
	Selling Your Visual Novels

	Essential Marketing Practices
	Forum Decorum
	Demo Games
	Penetrating the Market with Free Stuff
	Staying Serious About Platforms
	The Power of Localization
	Web Site
	Trailer Video
	Blog
	Visual Novel Databases

	In Closing

	Index

