
Reinhard Brandl

Cost Accounting for Shared IT Infrastructures

GABLER EDITION WISSENSCHAFT

Reinhard Brandl

Cost Accounting for
Shared IT Infrastructures

With a foreword by Prof. Dr. Martin Bichler

GABLER EDITION WISSENSCHAFT

Bibliographic information published by Die Deutsche Nationalbibliothek
Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.d-nb.de>.

1st Edition 2008

All rights reserved
© Betriebswirtschaftlicher Verlag Dr. Th. Gabler | GWV Fachverlage GmbH, Wiesbaden 2008

Editorial Office: Frauke Schindler / Anita Wilke

Gabler-Verlag is a company of Springer Science+Business Media.
www.gabler.de

No part of this publication may be reproduced, stored in a retrieval system
or transmitted, mechanical, photocopying or otherwise without prior
permission of the copyright holder.

Registered and/or industrial names, trade names, trade descriptions etc. cited in this publica-
tion are part of the law for trade-mark protection and may not be used free in any form or by
any means even if this is not specifically marked.

Cover design: Regine Zimmer, Dipl.-Designerin, Frankfurt/Main
Printed on acid-free paper
Printed in Germany

ISBN 978-3-8349-0897-1

Dissertation Technische Universität München, 2007

Für meine Eltern

Foreword

During the past few years, determining the “value of IT” has ranked high on the agenda

of IT managers and Chief Information Officers (CIOs). The rather broad and abstract

topic has been intensively discussed in the Information Systems literature for many years.

It turns into a very tangible problem in the field of IT cost accounting. Nowadays, cor-

porate information systems are distributed systems. A detailed measurement of resource

demands of IT services on a distributed IT-infrastructure and respective accounting and

cost allocation turns out to be very expensive and impractical in most cases. The large

proportion of indirect costs and the difficulty of finding adequate allocation rates are a

significant problem in practice, regularly leading to free-rider problems. This problem has

largely been ignored in the academic literature so far. Dr. Brandl proposes a method to

derive estimators for the resource demand of service requests in a distributed IT infras-

tructure. This estimator is based on a set of load tests and respective measurements as

they are often performed during the deployment phase of new information systems. Cost

allocation keys can now be determined based on the number of service invocations per

user or per department and the respective estimators.

While these measurements provide a lean method for the determination of usage-based

cost allocation keys, it is not obvious that the estimators have sufficient accuracy, in par-

ticular concerning different types of services and volatile workloads. Although it is not

possible to provide tangible results for all types of information systems, Mr. Brandl per-

forms a large number of experiments for typical multi-tiered information systems as they

are in widespread use today. Queuing network models are used to validate the results

for different workloads and multiple types of services. The experiments shows that re-

source consumption in heterogeneous environments can be predicted with high accuracy.

Overall, this leads to a viable solution for the cost accounting of distributed information

systems.

VIII Foreword

Dr. Brandl makes an important contribution to a largely neglected field. The book pro-

vides practical advice for IT managers for a very timely topic. I therefore hope and expect

that the book will be well received not only among academics, but in particular among

practitioners in cost accounting and IT controlling.

Prof. Dr. Martin Bichler

Preface

The provision of central IT infrastructure components, such as servers, storage, and net-

working equipment, accounts for a considerable proportion of the IT budgets of larger

organizations. Typically, such components are shared among multiple applications and

internal customers. Objective measurements of their respective resource consumption are

technically difficult and incur high costs. In practice, infrastructure cost allocation is

regularly based on simplified allocation keys which cause multiple free-rider problems and

discontent among the stakeholders.

This thesis proposes a method to estimate the expected resource consumption of customer-

oriented services across the components involved. The estimates are determined in a load

test prior to the roll-out of an application system and then combined to so-called resource

profiles. By means of these resource profiles, costs can be allocated to services or service

invocations. During regular operations, consumption measurements at the different com-

ponents can be omitted. The estimates therefore need to be unbiased even in cases of

varying system workloads and in heterogeneous environments. Furthermore, they should

support IT Capacity Planning and bridge the gap between business forecasts and IT re-

source planning.

The concept was implemented in a software toolkit and evaluated in a set of experiments

with multi-tier database applications in a data center of the BMW Group. Queuing Net-

work Models were used to validate the resource profiles under different system workloads.

In the experiments, a surprisingly high accuracy of consumption estimates as well as of

Queuing Network Model predictions could be determined. Besides the experimental vali-

dation, it was analyzed how the approach could be integrated into existing IT processes

at the BMW Group.

The work presented in this thesis would not have been possible without the great support

of two persons: Prof. Dr. Martin Bichler and Dr. Michael Ströbel. They gave me the

X Preface

opportunity to work on this topic and provided continuous feedback, inspiration, and

encouragement. I am deeply grateful to both of them.

During my time as a doctoral candidate, I was employed by the BMW Group. I greatly

appreciated the pleasant working atmosphere and the kind support from all my colleagues.

In particular, I would like to thank my managers Harald Raufer, Alexander Pauli, and

Bernhard Huber, who gave me the freedom to pursue my research activities and pro-

vided me with interesting and responsible tasks to collect valuable business experiences

far beyond the dissertation project. At the BMW Group, I was given access to all the

relevant information and data center resources. However, without the technical expertise

of Volker Smuda and Alexander Pochivalow, it would not have been possible to conduct

more than 500 load tests during the development and evaluation phase of the software

toolkit. Furthermore, I am particularly thankful to my colleagues Dr. Markus Greunz

and Hartmut Liefke for their numerous comments on the viability of my approach.

I would also like to thank Prof. Dr. Helmut Krcmar who readily accepted to act as the

second reviewer of the thesis and provided me with valuable advice regarding future steps.

Finally, I am deeply indebted to my family for enabling me to go this way and providing

continuous support, patience, and understanding throughout my whole life.

Dr. Reinhard Brandl

Contents

List of Figures . XV

List of Tables . XIX

1 Introduction 1

1.1 Problem Statement . 1

1.2 Research Approach . 5

1.3 Overview of the Thesis . 7

2 IT Infrastructure Cost Allocation 11

2.1 IT Cost Accounting and Chargeback . 11

2.1.1 Classification . 11

2.1.2 Definition of Terms . 14

2.1.3 Overview of Processes . 16

2.1.4 Cost Allocation for IT Services . 18

2.1.5 IT Infrastructure Services . 21

2.2 Survey of Literature . 23

2.2.1 Scientific Work . 23

2.2.1.1 Process and Activity-based Costing 23

2.2.1.2 IT Controlling of Distributed Systems 26

2.2.1.3 Organizational Objectives and Chargeback Systems 27

2.2.2 Empirical Surveys . 28

2.2.3 IT Service Management Reference Models 30

2.2.4 Commercial Research . 33

2.3 Requirements and Objectives . 36

2.4 Practiced Approaches . 39

2.5 Discussion . 43

XII Contents

3 Cost Allocation based on Resource Profiles 47

3.1 Scope . 47

3.2 Concept . 49

3.2.1 IT Services from a Customer Perspective 49

3.2.2 Determining Resource Profiles for Services 51

3.2.3 Resources in a Client/Server Environment 52

3.2.4 Cost Allocation by Services and Resource Profiles 53

3.3 Model Hypotheses . 55

3.4 Requirements on Resource Profiles . 57

3.5 Software Support . 58

3.5.1 Tool Categories . 58

3.5.2 Profiling Process . 60

3.5.3 Software Overview . 63

3.5.3.1 Load Test Tool . 63

3.5.3.2 Performance Monitors . 63

3.5.3.3 Service Profiler . 64

3.5.4 Mercury LoadRunner . 66

3.5.4.1 LoadRunner Virtual User Generator 66

3.5.4.2 LoadRunner Controller . 69

3.5.4.3 LoadRunner Analysis . 71

3.5.5 Resource Profile Determination . 72

3.6 Overview of Validation Approaches . 78

3.6.1 Experiments: Resource Profiles . 79

3.6.2 Experiments: Analytical Models . 80

3.6.3 Proof of Concept: BMW Group . 81

3.6.4 Summary . 81

3.7 Related Work . 83

3.7.1 Cost Allocation by Services . 83

3.7.2 Determination of Resource Profiles 84

4 Experiments: Resource profiles 85

4.1 Experimental Setup . 85

4.1.1 Test Infrastructure . 85

4.1.2 Example Applications . 87

Contents XIII

4.1.2.1 PASTA . 87

4.1.2.2 Java Pet Store . 90

4.2 Overview of Experiments . 93

4.3 Experimental Results . 96

4.3.1 Background Activities . 96

4.3.2 Resource Profiles . 99

4.3.3 Repeatability . 101

4.3.4 Load-dependent Behavior . 104

4.3.5 Linear Regression . 108

4.3.6 Linear Regression (cross check) . 110

4.3.7 Database Size . 111

4.4 Summary . 113

5 Experiments: Analytical Models 115

5.1 Motivation . 115

5.2 IT Capacity Planning Methods . 116

5.3 Queueing Network Theory . 119

5.3.1 Elementary Queueing Systems . 120

5.3.2 Workload Parameter . 122

5.3.3 Queueing Network Models . 124

5.3.4 Analysis Techniques . 125

5.4 Software Support . 129

5.4.1 Software Overview . 129

5.4.2 Analysis of Queueing Network Models 130

5.4.3 Validation of Queueing Network Models 131

5.4.4 Interplay of Software Tools . 135

5.5 Experimental Setup . 136

5.5.1 Overview of Experiments . 136

5.5.2 Queueing Network Model . 136

5.6 Experimental Results . 138

5.6.1 Services including single Client Requests 138

5.6.2 Services including multiple Client Requests 141

5.7 Related Experimental Results . 144

5.8 Summary . 149

XIV Contents

6 Proof of Concept: BMW Group 151

6.1 Motivation . 151

6.2 Organizational Context . 152

6.2.1 Overview of IT Organization . 152

6.2.2 IT Service Management Processes 154

6.2.3 IT Cost Accounting and Chargeback 155

6.2.4 Analysis of the current Situation 158

6.2.5 Customer-oriented Services and Resource Profiles 159

6.3 Feasibility Study: Java/J2EE Application Systems 160

6.3.1 Java/J2EE at the BMW Group . 161

6.3.2 Integration into existing Processes 163

6.3.3 Identification of Services . 166

6.3.4 Summary of Experiences . 167

6.3.5 Other Application Platform Technologies 169

6.4 Summary . 171

7 Conclusions 173

7.1 Summary of Results . 173

7.2 Outlook . 175

Bibliography 179

A Appendix 195

List of Figures

1.1 Composition of an average IT Budget . 2

1.2 Example: Shared and dedicated Data Center Resources 3

1.3 Structure of the Thesis . 7

2.1 Model of Information Management . 13

2.2 Example: Organization of IT Service Provision 15

2.3 IT Cost Accounting and Chargeback Processes 16

2.4 Example: Overview of IT Functions . 19

2.5 Total Costs of Ownership of an IT System 20

2.6 Information and Communication Technology 22

2.7 Model of IT Chargeback . 28

2.8 IT Cost Allocation in Germany . 29

2.9 ITIL Publication Framework . 31

2.10 Strengths and Weaknesses of Cost Allocation Methods 35

2.11 Stakeholders and Objectives of IT Cost Accounting 37

2.12 Consistent and conflicting Objectives . 38

2.13 Classification of practiced Approaches . 40

3.1 Classification of Application Systems and Operation Modes 48

3.2 Customer Perspective on Information and Communication Technology . . . 50

3.3 Meta-Model of IT Services . 51

3.4 Cost Allocation by Services and Resource Profiles 54

3.5 Profiling Process . 61

3.6 Overview of the Service Profiler . 65

3.7 Screenshot: LoadRunner Virtual User Generator 67

3.8 Screenshot: LoadRunner Controller . 70

XVI List of Figures

3.9 Screenshot: LoadRunner Analysis . 71

3.10 Example: Services including single Client Requests 75

3.11 Example: Services including multiple Client Requests 76

3.12 Example: Linear Regression . 77

3.13 Example: Consumption Estimates per Service 78

4.1 Overview of the Test Infrastructure . 86

4.2 Screenshot: PASTA . 88

4.3 Overview of PASTA Use Cases . 89

4.4 Screenshot: Java Pet Store . 90

4.5 Overview of Java Pet Store Use Cases . 91

4.6 Background Processor Utilization at the Database Server 97

4.7 Truncated Means (10 %) of Background Processor Utilizations 98

4.8 Resource Profile: PASTA – multiple Client Requests 100

4.9 Resource Profile: Java Pet Store – multiple Client Requests 101

4.10 Repeatability: PASTA – multiple Client Requests 102

4.11 Repeatability: PASTA – single Client Requests 103

4.12 Repeatability: Java Pet Store – multiple Client Requests 103

4.13 Repeatability: Java Pet Store – single Client Requests 104

4.14 Load-dependent Behavior: PASTA – multiple Client Requests 105

4.15 Load-dependent Behavior: PASTA – single Client Requests 106

4.16 Load-dependent Behavior: Java Pet Store – mult. Client Requests 106

4.17 Load-dependent Behavior: Java Pet Store – single Client Requests 107

4.18 Linear Regression: PASTA – multiple Client Requests 109

4.19 Linear Regression: Java Pet Store – multiple Client Requests 109

4.20 Linear Regression (cross check): PASTA – mult. Client Requests 110

4.21 Database Size: Java Pet Store – multiple Client Requests 112

5.1 Overview of IT Capacity Planning Methods 117

5.2 Elementary Queueing System with a single Service Station 119

5.3 Classification and Notation of Elementary Queueing Systems 120

5.4 Open and closed Queueing Network Models 124

5.5 Classification of Analysis Techniques for QN Models 128

5.6 Overview of Software Tools for QN Analysis and Validation 129

5.7 Example: Load Test for QN Model Validation 133

List of Figures XVII

5.8 Example: Mean Processor Utilization during Intervals with constant Num-

bers of Users . 134

5.9 Interplay of the different Software Tools 135

5.10 QN Model of the Test Infrastructure . 138

5.11 QN Model Validation: Application Server Processor Utilization – single

Client Requests . 140

5.12 QN Model Validation: Database Server Processor Utilization – single Client

Requests . 140

5.13 QN Model Validation: Web Server Processor Utilization – single Client

Requests . 141

5.14 QN Model Validation: Response Time – single Client Requests 142

5.15 QN Model Validation: Throughput – single Client Requests 142

5.16 QN Model Validation: Application Server Processor Utilization – multiple

Client Requests . 144

5.17 QN Model Validation: Database Server Processor Utilization – multiple

Client Requests . 145

5.18 QN Model Validation: Web Server Processor Utilization – multiple Client

Requests . 145

5.19 QN Model Validation: Throughput – multiple Client Requests 146

6.1 Organizational Structure of the BMW Group IT 153

6.2 Tasks of Central IT, Departmental IT and Business Units 154

6.3 IT Service Management Process Map . 155

6.4 IT Chargeback and Budget of BMW Group Central IT 156

6.5 Master Solution Guideline J2EE/EJB . 161

6.6 Master Solution Guideline J2EE/Servlet 162

6.7 Integration into the Approval Process . 164

6.8 Integration into the IT Service Management Process Map 166

A.1 Background Resource Consumption at the SAN 203

A.2 Background Resource Consumption at the Network 203

List of Tables

2.1 Benefits and Problems of IT Cost Accounting and Chargeback 18

2.2 Overview of Cost Allocation Methods . 34

3.1 Rules for Raw Data Normalization . 72

3.2 Comparison of Method and Software Toolkit with Nagaprabhanjan and

Apte (2005) . 84

4.1 Overview of Experiments on Resource Profiles 95

4.2 Experiments on Background Activities: Configuration of Performance Mon-

itors . 96

4.3 Average Client Think Times and Load Test Runtimes 108

5.1 Experimental Results of Kounev and Buchmann (2003) 148

6.1 Example: Intervals of expected Resource Consumption 169

A.1 Overview of the Test Infrastructure . 196

A.2 Resource Profile: PASTA – multiple Client Requests 197

A.3 Resource Profile: PASTA – single Client Requests 199

A.4 Resource Profile: Java Pet Store – multiple Client Requests 200

A.5 Resource Profile: Java Pet Store – single Client Requests 202

A.6 Repeatability: PASTA – multiple Client Requests 204

A.7 Repeatability: PASTA – single Client Requests 204

A.8 Repeatability: Java Pet Store – multiple Client Requests 205

A.9 Repeatability: Java Pet Store – single Client Requests 205

A.10 Load-dependent Behavior: PASTA – multiple Client Requests 206

A.11 Load-dependent Behavior: PASTA – single Client Requests 206

A.12 Load-dependent Behavior: Java Pet Store – mult. Client Requests 206

XX List of Tables

A.13 Load-dependent Behavior: Java Pet Store – single Client Requests 207

A.14 Linear Regression: PASTA – multiple Client Requests 207

A.15 Linear Regression: Java Pet Store – multiple Client Requests 207

A.16 Linear Regression (cross check): PASTA – mult. Client Requests 208

A.17 Resource Profile: Java Pet Store – multiple Client Requests – 90% full

Tablespace . 209

A.18 QN Model Input Parameter: Processors – single Client Requests 210

A.19 QN Model Validation: Processor Utilization – single Client Req. 211

A.20 QN Model Input Parameter: Processors - mult. Client Requests 212

A.21 QN Model Validation: Processor Utilization – mult. Client Req. 213

Chapter 1

Introduction

1.1 Problem Statement

In recent decades, industrial data centers have been subject to many technological changes.

Until the mid-90s, central mainframe architectures dominated. They provided homo-

geneous environments for applications and users, high Quality-of-Service and elaborate

workload management for an effective resource usage. Then the rise of client/server tech-

nologies initiated a move toward distributed, multi-tier systems running on low-cost, and

often heterogeneous, hardware. Over the years more or less independent hardware si-

los, each dedicated to a distinct enterprise function or application, became commonplace

(Foster and Tuecke, 2005). However, along with this shift, the average server utilization

decreased to 25 % and lower (Schmitz, 2005). Today, client/server principles are still

standard, but along with advances in virtualization technologies (see for instance Xen,

University of Cambridge, n.d.) there is a trend toward sharing IT infrastructure among

multiple applications and service customers.

Regarding today’s IT budgets, the largest portion (28 %)1 is spent on salaries of full-time

IT staff (see figure 1.1). The second largest cost pool is computer hardware (21 %), which

accounts together with Networking and Communications hardware (14 %) for more than

one-third of an average IT budget. In times of rising budget pressure, IT managers are

typically required to provide not only such a cost type classification, but to allocate the

costs to the business processes or the business units2 that caused them.

1 Between September and December 2005, Forrester Research surveyed 270 IT executives at European
enterprises (> 1,000 employees, different industries) on their IT budgets and spending for 2006 (see
Bartels, 2006).

2 In the following referred to as the customers of IT services.

2 1. Introduction

Networking and communications

hardware

14%

Computer

hardware

21%

IT services

19%

Software

18%

Full-time IT staff

28%

Figure 1.1: Composition of an average IT Budget (Source: Bartels, 2006)

The technological changes described above have also affected cost structures of data cen-

ters and approaches to determine appropriate cost allocation keys. Mainframes tradition-

ally provide accounting mechanisms that are tightly coupled with the operating system

and enable an apportionment of resource usage to specific applications or users (see for

instance Fujitsu Siemens, n.d.; IBM, n.d.b). By means of the consumption shares, infras-

tructure costs (e.g., amortization, maintenance, licenses) can be subdivided among the

customers. In distributed client/server environments, as depicted in figure 1.2, the deter-

mination of such usage-based allocation keys is by far more challenging (Bertleff, 2001,

p. 63). If the hardware is dedicated to specific customers, the incurred costs can be treated

as direct costs (see example of client 1 in figure 1.2). The actual resource consumption

(e.g., CPU time or number of I/O operations) is not a relevant cost driver and can be

ignored. However, more and more IT infrastructure is nowadays shared among multiple

applications and business units. In such environments, the resource consumption of ap-

plications is a major driver for new investment decisions. An average application server

in an industrial data center (e.g., 4 processors, 16 GB memory) can easily host dozens

1.1. Problem Statement 3

DB

App.

Server

App.

Server
Web

Server

Web

Server DB

DB

DB

DBDB

DB

App.

Server

App.

Server

Web

Server

Web

Server

App.

Server

Middle

ware
App.

Server

App.

Server

Web

Server

Web

Server

App.

Server

App.

Server

DB
Data center

Client

5

Client

4

Client

1

Client

3

Client

2

Web

Server

Web

Server

Customers

App.

Server

App.

Server

App.

Server

App.

Server

Figure 1.2: Example: Shared and dedicated Data Center Resources

of light-weight applications, whereas in other workload scenarios, the same server may

be fully utilized by one or two applications. If the costs for such a server are treated as

indirect costs and are apportioned via flat rates or fixed percentages, the IT management,

as well as the concerned business units, has only a few possibilities for cost controlling

and planning. The creation of cost transparency is further complicated as servers are

usually not offered as a standalone product, but as part of larger IT systems. A request

in a three tier database application, for example, comprises a web server, an application

server, and a database server, which are all typically used by different applications (see

figure 1.2). Tracking resource consumption is one of the toughest but most critical parts

of a successful cost transparency program (Appel et al., 2005, p. 13).

Besides the improvement in cost transparency, the allocation of IT costs is also an IT

Governance instrument, which can encourage desired behavior on the supply and de-

mand side. However, a simplified cost allocation mechanism, based for instance on the

number of employees in a business unit, may lead to multiple free-rider problems and

political tensions. Business owners of application systems might not consider the resource

4 1. Introduction

requirements when selecting off-the-shelf software. Also, the owners of “light-weight” ap-

plications might have to bear a very high share of the costs for a particular application

or database server, which in turn makes it more difficult to finance these applications.

Obviously, a consumption-based model, where IT infrastructure costs can easily be al-

located to application owners or even to users directly, increases cost transparency and

would have a number of advantages. A technical possibility would be to determine cost

allocation keys through detailed monitoring and metering of each service request. This

would require assigning a unique identifier for each user to each database request and each

thread running on an application server in order to determine exactly how much of the

resources a service customer has consumed. It would force the adaptation of the entire

IT infrastructure, cause a huge monitoring and metering overhead, and is typically not

viable. Furthermore, business customers probably would not accept technical accounting

metrics such as the processor times of different servers. As they cannot directly correlate

such metrics with their business activities, they can hardly plan or control cost allocation.

In mainframe environments, with one single resource, this might have been possible, but

the concept cannot be transferred to client/server infrastructures. The use of customer-

oriented cost allocation keys (e.g., number of executed business transactions) shifts the

problem to the IT units, which must then translate their resource-oriented cost sheets

(e.g., per server, per stored gigabyte) into metrics reflecting business operations. This

challenges internal IT units in particular. External outsourcing providers have a greater

flexibility to adapt their accounting metrics to the needs of their customers and, for in-

stance, are not required to determine fair cost shares.

Regarding the technical complexity and the potential overhead, it is not surprising that

IT Cost Accounting and Chargeback is often based on simplified cost allocation keys

(Gadatsch et al., 2005; Syskoplan, 2002). Practitioners, however, regularly report discon-

tent, conflicts, investment setbacks and distorted use of IT services due to internal cost

allocation. IT analysts at Gartner even estimate that through 2008, 50 % of chargeback

initiatives implemented by IT organizations will be seen as failures on the part of the

business, the IT organization or both (Gomolski, 2005, p. 2).

Summing up, in shared and distributed IT infrastructures the determination of accurate

usage-based cost allocation keys is often fraught with technical problems and unreason-

able overheads. Simplifications, however, may lead to organizational problems such as

free-rider behavior, political tensions or biased management decisions.

1.2. Research Approach 5

1.2 Research Approach

Most research on the design of IT Cost Accounting and Chargeback systems stems from

behavioral science (see for instance McKinnon and Kallman, 1987; Ross et al., 1999;

Verner et al., 1996). Basically, researchers study a number of real world cases to identify

chargeback approaches and processes that are appropriate to achieving organization-level

objectives. A second prominent category of publications evaluates the viability of dif-

ferent costing methodologies (e.g., activity-based costing vs. traditional costing) for IT

units (see for instance Fürer, 1994; Funke, 1999; Gerlach et al., 2002; Mai, 1996). Al-

though these research approaches provide valuable results on organizational and human

phenomena and on the appropriateness of cost management methods, they do not address

the fundamental, technical problems. In this thesis we therefore follow a design-science

approach (see for instance Hevner et al., 2004; March and Smith, 1995; Simon, 1996). In

particular, we focus on the following question:

How can IT Service providers determine usage-based cost allocation

keys for shared IT infrastructures?

The purpose is to develop a new cost allocation approach that should help to avoid

the technical and organizational problems described above. We limit the scope to oper-

ational, interactive systems for Online Transaction Processing (OLTP), as those systems

are typically shared among multiple customers and the determination of cost allocation

keys is particularly difficult. From the existing literature on IT Cost Accounting and

Chargeback we derive that, from a customer perspective, services such as the execution

of a business transaction or the access to an information system would be an appropriate

basis for cost allocation. However, instead of measuring the resource consumption during

regular operations, we propose to determine, during standard load tests prior to the roll-

out of an application system, estimates for the expected resource consumption of such

services. The consumption estimates at the different resources are combined to a resource

profile per service. The resource profile then could constitute the basis for the allocation

of costs per service or per service invocation. Deriving such profiles, however, is not a

trivial task. We consider four basic requirements:

1. Accuracy The resource profiles should be unbiased, in the sense that on average

they should not over- or underestimate the true resource consumption.

6 1. Introduction

2. Consistency The estimation of resource profiles should be in the same manner

applicable to various kinds of hardware and software resources.

3. Capacity Planning The resource profiles should enable a translation of the cus-

tomers’ forecasted service usage into IT resource requirements and thus support the

IT Capacity Planning.

4. Operating Efficiency The estimation should cause little extra work and integrate

well with existing IT Service Management processes.

The concept is based on the hypothesis that the resource consumption increases lin-

early with the number of service invocations. To validate this hypothesis and to evaluate

the concept regarding the above requirements we create the following artifacts: First, a

process to derive resource profiles from load test measurements (method) and, second, a

software toolkit implementing the process (instantiation). The evaluation then is based

on three separate approaches:

1. Experiments: Resource Profiles We verify in several experiments the precision

of measurement and analysis instruments, the repeatability of the process and the

effect of parameter changes on resource profiles (Requirements 1, 2 and 4).

2. Experiments: Analytical Models The resource profiles should be unbiased,

even in situations with multiple concurrently active services and varying workloads.

We simulate such conditions in load tests and use consumption estimates from the

resource profiles to parametrize analytical performance models. We then compare

the model predictions with experimental results. Thus, we can verify the hypothesis

on the linear increase of resource consumption and the appropriateness of resource

profiles for Analytical Capacity Planning. We claim that if the resource profiles

can be readily used for capacity planning, their accuracy is also sufficient for cost

allocation (Requirements 1 and 3).

3. Proof of concept: BMW Group The experiments take place in a data center of

our industrial partner, the BMW Group. Thus, we can evaluate the practicability

of the approach and analyze how it could be integrated into professional IT Service

Management processes (Requirements 2 and 4).

The research presented in this thesis aims to contribute a viable alternative to existing

cost allocation methodologies and should constitute a basis for further studies on the

organizational and technical design of IT Cost Accounting and Chargeback systems.

1.3. Overview of the Thesis 7

Chapter 3

Cost Allocation based

on Resource Profiles

Chapter 2

IT Infrastructure Cost

Allocation

Chapter 7

Conclusions

Chapter 4

Experiments:

Resource profiles

Validation

Concept

Requirements

Chapter 6

Proof of Concept:

BMW Group

Chapter 5

Experiments:

Analytical Models

Figure 1.3: Structure of the Thesis

1.3 Overview of the Thesis

The thesis is organized along the research approach described above (see figure 1.3):

Chapter 2 The chapter starts with an overview of IT Cost Accounting and Chargeback

and a brief introduction to basic terms and processes (section 2.1). We then focus on

appropriate cost allocation approaches for today’s client/server infrastructures. Based

on a survey of literature (section 2.2), we describe major objectives and requirements

of the involved stakeholders and point out the dilemma between customer-oriented and

resource-oriented approaches (section 2.3). In section 2.4 we present a classification of

cost allocation methods and illustrate why they often do not achieve the major objectives

of IT Cost Accounting and Chargeback. The chapter concludes with a brief discussion

on the future relevance of the problem against the background of today’s organizational

and technological trends (section 2.5).

8 1. Introduction

Chapter 3 In this chapter we present the idea of allocating costs using customer-

oriented services and their estimated resource consumption. We first define the scope

of our considerations (section 3.1) and then detail the concepts of services, resource pro-

files and the cost allocation process (section 3.2). The underlying hypotheses on resource

consumption are formalized in section 3.3. We then derive four major requirements on

resource profiles and the profiling process that we consider as critical to the practical

success of the approach (section 3.4). In section 3.5 we present the process for the deter-

mination of resource profiles and the software toolkit developed to validate the concept.

Section 3.6 gives an overview of the validation presented in the subsequent chapters.

Section 3.7 compares the concept to related approaches.

Chapter 4 We present the results of several experiments conducted with the software

toolkit introduced in section 3.5. In sections 4.1 and 4.2 we provide an overview of the

test infrastructure, the example application systems and the test series. In section 4.3 we

then detail the experimental results. For the experiments we have set the following three

objectives: First, we try to verify if the model describing the total resource consumption

holds in the example environment. Second, we test the precision of the measurement and

analysis tools. Third, we analyze the effects of parameter changes during the profiling

process and compare the experimental results with the model predictions. The results are

summarized in section 4.4.

Chapter 5 The motivation for the model-based validation approach presented in this

chapter is twofold. First, it should enable a validation of the accuracy of the consumption

estimates in situations with multiple concurrently active services and varying workloads.

Second, by means of analytic performance models we try to demonstrate the appropri-

ateness of resource profiles for Capacity Planning. That motivation is detailed further

in section 5.1. In section 5.2 we provide an overview of IT Capacity Planning methods.

We chose Queueing Network Theory as the mathematical basis for our performance mod-

els. In section 5.3 we introduce major concepts of Queueing Network Theory and then

present the software tools developed for the analysis and verification of respective models

(section 5.4). We continue the experiments presented in chapter 4 and use consumption

estimates from the resource profiles as input parameters for a performance model. In sec-

tion 5.5 we first describe the experimental setting and then detail the performance model.

We evaluate the predictive accuracy of the model with services including single and multi-

1.3. Overview of the Thesis 9

ple client requests. The experimental results are summarized in section 5.6. As standard

of comparison we introduce in section 5.7 published results of a related experiment. The

findings are summarized in section 5.8.

Chapter 6 In this chapter, we describe the results of a proof-of-concept conducted

in cooperation with our industrial partner, the BMW Group. We first detail our mo-

tivation (section 6.1) and discuss whether the general considerations on requirements,

objectives and practiced approaches are in accord with the situation at the BMW Group

(section 6.2). We then focus on Java/J2EE-based application systems, report experiences

of the tests in a data center of the BMW Group and propose an integration of resource

profile determination into the existing IT Service Management Processes (section 6.3).

Section 6.4 summarizes the results of the proof-of-concept.

Chapter 7 The thesis concludes with a summary of results (section 7.1) and a brief

outlook onto future areas of research (section 7.2).

Chapter 2

IT Infrastructure Cost Allocation

2.1 IT Cost Accounting and Chargeback

2.1.1 Classification

There are several possibilities to structure the field of IT Cost Accounting and Charge-

back. In the present context, the Management Accounting and Information Management

perspective are of particular relevance. In the following, we briefly introduce both per-

spectives and provide references for further reading.

Management Accounting supports managers in planning and controlling their operations.

In contrast to Financial Accounting, which addresses the needs of external parties (e.g.,

investors, creditors and tax authorities), the focus of Management Accounting lies in-

side the organization. The objective is to motivate and to assist managers in attaining

their organizational objectives in a timely, efficient and effective manner (Kaplan and

Atkinson, 1998, p. 1). Management Accounting is not constrained by external reporting

requirements and can be designed according to an organization’s needs. Relevance is

more important than objectivity and auditability. Nevertheless, the data used must be

defensible and transparent to internal participants (Kaplan and Atkinson, 1998, p. 1).

One of the most important input types for Management Accounting is cost information.

Costs arise from the acquisitions and use of organizational resources, such as people,

equipment, materials and facilities (Kaplan and Atkinson, 1998, p. 13). Cost Accounting

tracks, records and analyzes this information and reports costs associated with products

or activities of the organization back to the management. Therefore, traditional costing

systems implement a two-stage process. First, costs are assigned to cost centers (e.g.,

12 2. IT Infrastructure Cost Allocation

departments, subsidies) and, second, to cost objects (e.g., products produced by a depart-

ment). Accordingly, costs can be categorized into direct and indirect costs. Direct costs

are incurred by and can be directly traced to a cost center or a cost object. Examples

of direct costs are direct raw materials or direct wages. Indirect costs or overhead costs

cannot be fully traced back, because they are incurred by a number of cost centers or cost

objects (Owen and Law, 2005, p. 211). Costs can be further categorized into variable and

fixed costs. Variable costs change in direct proportion to the production or sales volume,

while fixed costs remain constant over a certain period of time. Direct and indirect costs

can either be fixed or variable. Costing systems differ by the cost categories they take

into account. In a full-cost approach, fixed and variable costs are allocated to the cost

object. In a variable-cost approach, only direct costs plus variable overhead costs are

allocated (Owen and Law, 2005, p. 252). The reported product costs are meant to reflect

the marginal costs of manufacturing (Cooper and Kaplan, 1987, p. 205). However, not all

departments (cost centers) directly produce or distribute the organization’s output (cost

objects). Typically, two different types of departments can be distinguished: production

departments and service departments. The costs of service departments should be as-

signed to production departments to promote cost control and efficiency by (Kaplan and

Atkinson, 1998, p. 62):

• providing incentives for efficient performance by the managers of the service depart-

ments.

• motivating prudent use of the outputs from service departments by the managers

of production departments.

Furthermore, managers of the consuming departments, who are charged for the services

on a quantity and quality basis, will (Kaplan and Atkinson, 1998, p. 63):

• exercise more control over the consumption of that output in their departments.

• compare the costs of using the internal service department with the costs of com-

parable services purchased outside the firm.

• attempt to communicate to the service department the quality level of services

desired, including showing their willingness to pay more to receive higher-quality

service or to accept lower quality in order to pay less.

2.1. IT Cost Accounting and Chargeback 13

IT Governance

Strategy

IT Processes

IT Personnel

IT Controlling

Storage

Processing

Communication

Technology Bundles

Data

Processes

Application Life Cycle

Supply

Demand

Usage

Managerial

Functions of

Information

Management

Management of

Information

Management of

Information

Systems

Management of

Information and

Communication

Technology

Figure 2.1: Model of Information Management (adapted from Krcmar,
2004, p. 47)

IT departments are typical examples of service departments. Their costs are mostly

fixed as they do not vary with the actual level of production. IT costs are partially

direct and can be assigned to departments incurring the costs (e.g., costs for dedicated

servers or desktop computers). Indirect IT costs, such as costs for a shared data center

infrastructure, are incurred by multiple departments or even for the whole company and

cannot be directly attributed. Depending on the costing system, these indirect costs are

or are not allocated to production departments. If the costs are apportioned, the challenge

is to define appropriate allocation keys (e.g., per usage, per revenue share, per employee).

Arbitrary allocation bases may lead to distorted product costs and biased management

decisions. The optimal design of Management Accounting and Cost Accounting systems

is the subject of a broad range of literature. In particular, we refer the interested reader

to Kaplan and Atkinson (1998) and Horngren et al. (2005) (United States perspective),

Reichmann (2006) and Horváth (2006) (German perspective), and Spitta (2000) (focus

on IT costs).

14 2. IT Infrastructure Cost Allocation

Management Accounting and Cost Accounting focus on the provision of decision sup-

port information for managers. As mentioned above, the allocation of costs and the

collection of internal charges for the usage of Information Systems intentionally changes

users’ behavior. Planning and controlling those effects falls under the realm of Infor-

mation Management. According to Krcmar (2004), Information Management includes

overall managerial functions as well as the Management of Information, Management of

Information Systems and the Management of Information and Communication Technolo-

gies (see figure 2.1). The objective of Information Management is to ensure, with regard

to business objectives, the best possible use of the resource information. Information

Management is a management as well as a technology discipline, and is an integral part

of corporate management (Krcmar, 2004, p. 49). Above mentioned tasks of planning

and controlling users’ or departments’ behavior are fulfilled by the overall managerial

functions. IT Governance specifies “the decision rights and accountability framework to

encourage desirable behavior in the use of IT” (Weill and Woodham, 2002 cited by Kr-

cmar, 2004, p. 288). IT Controlling coordinates the use of the resource information, the

lifecycle of the Information Systems (Portfolio, Project and Product Controlling) and the

IT infrastructures (Infrastructure Controlling) (Krcmar, 2004, p. 421). The allocation of

costs and the collection of charges are powerful instruments of Product Controlling and

Infrastructure Controlling. They can encourage necessary behavior, but can also lead

to political tensions, investment setbacks and distorted use of IT services (Blosch et al.,

2003b, p. 6). In the following sections we focus on identifying appropriate cost allocation

approaches to avoid those conflicts.

Concerning further reading on Information Management, we refer the interested reader

to Biethahn et al. (2004); Heinrich (2002) and Krcmar (2004). Teubner and Klein (2002)

provide a comparative book review. Furthermore, IT Cost Accounting and Chargeback is

typically addressed in literature on IT Controlling (see for instance Gadatsch and Mayer,

2006; Heilmann, 2001; Kargl, 1999; Krcmar et al., 2000; von Dobschütz et al., 2000).

Schauer (2006) provides a comparative review of books published in Germany and the

United States.

2.1.2 Definition of Terms

Before we focus on how IT Cost Accounting and Chargeback can be realized, several

terms with potentially ambiguous meanings are introduced. The definitions correspond,

as far as possible, with the terms used in the IT Infrastructure Library (see Office of

Government Commerce, n.d.).

2.1. IT Cost Accounting and Chargeback 15

Business units

Application Management and

Operations

Infrastructure Management and

Operations

Application Management and

Operations

Infrastructure Management and

Operations

Scenario I Scenario II

External or internal

users

Business units

External or internal

users

IT unit IT unit 1

IT unit 2

Figure 2.2: Example: Organization of IT Service Provision

In the following, we refer to a company if an organization is meant as a whole and to

business unit or IT unit if an organizational subunit (e.g., department, division, sub-

sidiary) is described. The outputs of IT units are IT services. An IT service is based on

the use of Information Technology and supports the customer’s business processes. An

IT infrastructure service is not directly used by a business unit, but is required for the

provision of another IT service. Customer is used to refer to the business or IT unit that

is receiving a service. The user is the person who makes day-to-day use of the service.

An application is a piece of software that provides functions that are required by an IT

service. An application system is a combination of one or more applications that provides

one or more IT services.

Concerning the organization of IT service provision, we differentiate between infra-

structure-related IT functions such as operations of servers, storage and networks, and

application-related functions such as application maintenance, operations and support.

Figure 2.2 illustrates the concept with two example scenarios. In the first scenario all

functions are integrated in one IT unit. Single customers for IT services are the business

units. In the second scenario the functions are separated. The IT unit managing the

16 2. IT Infrastructure Cost Allocation

IT Chargeback

Cost

Identification

Cost

Allocation

Cost

Recovery

IT Cost Accounting

Figure 2.3: IT Cost Accounting and Chargeback Processes (adapted from
Blosch et al., 2003b, p. 7)

applications is on the one hand a customer of the IT infrastructure services and on the

other hand the IT Service Provider for the business units.

2.1.3 Overview of Processes

IT Cost Accounting and Chargeback can be divided into three major processes (Blosch

et al., 2003b): Cost Identification, Cost Allocation and Cost Recovery (see figure 2.3)1.

Whether and how these processes are implemented depends primarily on the funding of

the IT units. Three basic funding models can be distinguished (adapted from Bertleff,

2001, p. 58 and Office of Government Commerce, 2001, ch. 5.3.2):

• Fixed IT budget and no charges for business units

• Cost recovery with charges based on actual costs

• Self-funding with an autonomy in setting prices

The funding models can be combined according to management objectives, overall

Cost Accounting guidelines and organizational needs. For instance, a self-funding profit

center can be created with the business objective of making a profit, breaking even or

operating with a subsidy (Office of Government Commerce, 2001, ch. 5.3.2). The three

IT Cost Accounting and Chargeback processes then can be described as follows.

1 The IT Infrastructure Library proposes a related process structure: Budgeting, Accounting, Charging
(Office of Government Commerce, 2001, ch. 5)

2.1. IT Cost Accounting and Chargeback 17

Cost Identification focuses on achieving cost transparency inside the IT units. The

objective is to identify actual costs for the different IT services and thus control the

efficiency of their provision. This process is mandatory, whether or not the costs are

further allocated to the business units (Blosch et al., 2003b, p. 8). The underlying cost-

ing approach (e.g., full-costing, variable-costing) typically depends on overall accounting

guidelines.

Cost Allocation then distributes the costs to the business units. The objective is to

enable business and IT managers to control what the money is spent on (e.g., cost share

per business unit, cost share per process). In a typical company more than half of the

IT costs are spent on shared services (e.g., data center operations, network management,

telecommunications) (Blosch et al., 2003a, p. 14). For these services the chosen cost

allocation keys2 are decisive. Arbitrary cost allocations may distort the determined cost

shares and bias management decisions.

Cost Recovery actually charges the accounts of the business units for their usage of

IT services. The focus lies on changing customer behavior. To a certain degree and ac-

cording to management objectives, market mechanisms can be used to regulate supply

and demand of IT services. Charges may be dependent on costs or on market prices, for

instance. However, Cost Recovery can also lead to political tensions and to suboptimal

use of IT services. Thus, credible cost identification and allocation mechanisms are re-

quired.

Benefits and potential problems of the processes are summarized in table 2.1. Cost

Allocation and Cost Recovery are optional processes. In the literature the term IT Cost

Accounting sometimes applies only to Cost Identification, and sometimes also to Cost

Allocation and Cost Recovery. IT Chargeback is used to describe the three processes or,

at least, Cost Recovery. To avoid misunderstandings, we refer in the following to IT Cost

Accounting and Chargeback if all three processes are meant. Alternatively, we could have

used IT Financial Management, but this term may also include additional aspects such

as budgeting or investment appraisal.

2 An overview of common cost allocation keys is given in section 2.4.

18 2. IT Infrastructure Cost Allocation

Process Benefits Potential problems

Makes IT unit’s costs visible Costs hidden in multiple budgets

Cost Identification Allows IT services to be costed
IT unit accounts don’t match

Finance’s

Provides the basis for cost control
Chart of accounts is not detailed

enough

Allows assessment of BU
performance

Disagreements over the choice of
method

Cost Allocation
Improves forecasting, decision

making
Focus on IT service cost rather than

value

Spreads best practices across BUs
IT unit is not resourced to

administer methods

Strongly influences BU behavior
BUs attempt to use external service

providers

Cost Recovery Improves IT discipline in BUs
The trust and credibility of IT unit

plunge

Creates financial discipline in IT
unit

The wrong behaviors are encouraged

Table 2.1: Benefits and Problems of IT Cost Accounting and Chargeback
(adapted from Blosch et al., 2003b, p. 7)

2.1.4 Cost Allocation for IT Services

A major difficulty of IT Cost Accounting and Chargeback is that IT units perform various

kinds of tasks. An overview with examples of 30 IT functions is provided in figure 2.43.

Typically, outputs of several IT functions are bundled to IT services, which then sup-

port the business processes of customers. Desktop-related IT services, represented by the

light-gray boxes in figure 2.4, can be particularly well specified (e.g., the configuration of a

desktop computer with office applications and network access, see Bertleff, 2001, p. 62 for

an example) and incurred costs clearly allocated to the business units (e.g., per desktop

computer, per telephone line). By far more complex is apportioning costs for the provision

of central business application systems, represented by the dark-gray boxes in figure 2.4.

This is because, firstly – in contrast to standardized desktop-related services – each ap-

plication system has its own infrastructure, application and support requirements and,

secondly, because a single instance of an application system is typically used concurrently

by various customers. In the literature (see for instance Spitta, 2000; Spitta and Becker,

2000) and in practice (see section 2.4) application systems are often considered as inter-

nal IT cost objects. Incurred costs are first allocated to the application system and then

3 The following abbreviations are used in figure 2.4: HR Human Resources, PSA Professional Services
Automation, CRM Customer Relationship Management, R&D Research and Development, DC Data
center.

2.1. IT Cost Accounting and Chargeback 19

WAN

DC Hosting

Console Operations

B
u
s
in

e
s
s
 C

o
n
ti
n
u
it
y

Storage

Super

Comp.

V
o
ic

e

D
C

 L
A

N
/
N

W

P
e
ri
m

e
te

r

Mid-

range
Unix

Win-

dows

Main-

frame

Office

Applications

Mail &

Collaboration

Desktop &

Mobility

Infrastructure

Servers

LAN

Applications
Maintenance

R & D

IT Projects

& Develop-

ment

IT

Management

& Strategy

Service

desksApplications
Operations

Finance

HR

Purchasing

PSA

Vertical Line of

Business

Applications

(Banking, Billing,

Manufacturing,

Logistics, etc.)

CRM &

Contact

Centers

Sales Force

Automation

Figure 2.4: Example: Overview of IT Functions (adapted from Barton,
2006)

apportioned among the customers or attributed to a single business owner. For instance,

the costs for HR, Finance and Purchasing systems can be attributed to the business units

fulfilling these tasks. This approach has several difficulties. First, in cases where such

single business owners do not exist, additional cost allocation keys must be determined

(e.g., per employee, per transaction or per login). Second, apportioning fixed labor costs

might require a time recording system (see Spitta and Becker, 2000 for a discussion of

possible problems) and, finally, determining usage shares of shared IT infrastructure re-

sources could become technically complex.

Major functions required for the provision of an application system, their relative cost

shares4 and possibilities to allocate these costs to customers are depicted in figure 2.5.

Under the assumption that an appropriate time-recording system exists, costs for external

4 The percentage rates indicate the share of Total Costs of Ownership (TCO). The TCO concept was
initially developed by Gartner, Inc. to assess the total lifecycle costs of an IT investment (see Redman
et al., 1998).

20 2. IT Infrastructure Cost Allocation

Ext. implementation
Customer

1

Customers / users

Cost centers / objects

Business processs

Customer

2

Customer

3

Customer

4

Customer

5

Internal implementation

Software licenses

Hardware infrastructure

App. support /maint.

Sofware Maintenance

Infrastructure Support

Internal Administration

12%

3%

42%

10%

3%

21%

9%

3%
Application

system

Total Costs of Ownership of

an application system

Application system

as IT cost object

Figure 2.5: Total Costs of Ownership of an IT System (adapted from
Spitta, 2000; Spitta and Becker, 2000; Ziehm, 2004)

and internal implementation services can be assigned to the concerned application sys-

tems. Cost for application support and maintenance can be either assigned to customers

(e.g., per help-desk call, per change request) or to the application system. Software li-

censes and maintenance refers to server software, such as database server and application

server software. Incurred costs can be assigned to the applications system. The same

is possible for costs of dedicated infrastructure resources. However, if infrastructure re-

sources are shared by multiple applications systems, the question of appropriate cost

allocation keys arise. In contrast to costs for internal administration, the infrastructure

costs are associated with a certain capacity level. The resource consumption of applica-

tions is a major cost driver. From a Cost Accounting perspective a usage proportional

distribution of costs, either to applications or to customers, would be reasonable5 (see for

instance Horngren et al., 2005, pp. 532-535 or Horváth, 2006, p. 713). The literature on IT

Controlling predominantly recommends the use of technical consumption metrics, such as

5 For a fundamental discussion of “reasonable” cost allocation principles we refer the interested reader
to Riebel (1994, p. 67-79).

2.1. IT Cost Accounting and Chargeback 21

processor time, number of Input/Output (I/O) operations and stored Gigabytes (see for

instance Gadatsch and Mayer, 2006, p. 180, Spitta, 2000, p. 282 or Kargl, 1999, p. 122).

In a mainframe environment the allocation of resource consumption is supported by com-

prehensive accounting mechanisms such as the System Management Facility (SMF) of

IBM (see IBM, n.d.b) or the “Rechenzentrum-Abrechnungsverfahren” (RAV) of Fujitsu-

Siemens (see Fujitsu Siemens, n.d.). In the context of today’s distributed and heteroge-

neous client/server infrastructures such an approach has flaws (Bertleff, 2001, p. 63). On

the IT side, metering and consolidating consumption data from distributed and heteroge-

neous components is elaborate and cost-intensive. On the customer side, diverse technical

metrics, such as processor times from different servers, are difficult to comprehend and to

control.

Overall, the diversity of IT functions requires differentiated Cost Accounting and Charge-

back methods. Particularly in shared client/server environments usage-based cost al-

location seems to be difficult. The necessary efforts for the determination of accurate

cost allocation keys could potentially outweigh their benefits. These problems have moti-

vated a closer analysis of appropriate cost allocation approaches for today’s client/server

infrastructures. Before we provide in the following sections an overview of literature

(section 2.2), overall objectives and requirements (section 2.3) and practiced approaches

(section 2.4), we specify the term IT infrastructure.

2.1.5 IT Infrastructure Services

In section 2.1.2 an IT infrastructure service was defined as a service which is not di-

rectly used by a business unit, but required for the provision of another IT service. More

general, prior to installation and operation of business applications, technical and orga-

nizational conditions must be fulfilled, i.e. an infrastructure must be provided (Krcmar,

2004, p. 211).

Infrastructure consists of the hardware and software for communication,

computing and storage which is required by an application (technical infras-

tructure) as well as of human resources and services necessary for setup and

usage (organizational infrastructure) (Krcmar, 2004, p. 211).

Accordingly, IT infrastructure costs include all costs related with the provision of the

infrastructure (e.g., utility, hardware, personnel). The technical infrastructure consists of

22 2. IT Infrastructure Cost Allocation

Base functionality

Software

Hardware

Level 1:

Base technology

Level 2:

Technology bundles

Level 3:

Application software

StorageCommunication Computing

Information

retrieval
E-mail

ERP

system

Web services
Client/Server

architecture

Management
Production

plant
Office ...

Data networks

Storage

technology

Processors

Web

Server

(Distributed)

database
Operating

systems
Communication

protocols

Figure 2.6: Information and Communication Technology (adapted from
Krcmar, 2004, p. 212)

hardware and software infrastructure entities, in the following referred to as base technol-

ogy, which provide the base functionalities communication, computing and storage. Only

specific combinations of base technologies are reasonable. Those application-independent

combinations are called technology bundles. The concept is summarized in figure 2.6.

Infrastructure comprises levels one and two. The exact delineation between software in-

frastructure entities and applications might not be clear-cut. Software infrastructure is

application-independent, such as operating systems, server software, database manage-

ment systems and application integration software. However, applications suites, which

bundle multiple applications, e.g., for Enterprise Resource Planning (ERP) or Customer

Relationship Management (CRM) often also contain software infrastructure entities. For

instance, SAP platform software such as SAP NetWeaver (see SAP, n.d.a) belongs to

software infrastructure (level 1), whereas the ERP solution built upon is part of the

applications (level 3).

2.2. Survey of Literature 23

2.2 Survey of Literature

For the following survey of literature, we set two objectives. First, the establishment of an

overview of scientific work in the domain and current practices in industry. Second, the

identification of overall objectives and requirements on IT Cost Accounting and Charge-

back as guidelines for the development of alternative approaches. We therefore focus on

four different types of sources:

1. Scientific work on IT Cost Accounting and Chargeback (section 2.2.1)

2. Empirical studies on the state-of-the-practice (section 2.2.2)

3. IT Service Management Reference Models (section 2.2.3)

4. Guidelines from Commercial Research Companies (section 2.2.4)

In each section we present one to three prominent publications in detail and provide

references to further reading.

2.2.1 Scientific Work

From our investigation on scientific work in the domain, three major research branches

have emerged: First, the adoption of Activity-based costing approaches to data centers to

overcome the limitation of traditional cost accounting systems (section 2.2.1.1); second, IT

Controlling in distributed environments (section 2.2.1.2); and third, the optimal design of

chargeback systems and practices to achieve organization-level objectives (section 2.2.1.3).

2.2.1.1 Process and Activity-based Costing

Traditional cost center/cost unit costing is primarily designed to determine costs for

end-products with a high proportion of variable production costs. Fixed overhead costs

are either not allocated (variable costing), or apportioned among the cost centers, for

instance by using fixed percentages, production volumes or measured usage rates (full

costing)6. However, if overhead costs dominate, the per-unit cost information is likely to

6 For an overview of traditional IT Cost Accounting, we refer the interested reader to Mai (1996), who
discusses the applicability and the optimal design of three traditional Cost Accounting approaches
(Full Costing based on actual/budgeted costs and Variable Costing based on budgeted costs) for IT
infrastructures with shared resources.

24 2. IT Infrastructure Cost Allocation

be biased. A possible solution to this problem of traditional Cost Accounting systems

is the Activity-based costing approach. It was first developed in the United States (see

Cooper and Kaplan, 1987, 1988; Miller and Vollmann, 1985) and later operationalized

and adapted to the German Process costing (see Horváth and Mayer, 1989). Instead of

apportioning overhead costs among cost centers, they are first allocated to the activities

(processes) which actually cause the costs and then, in a second step, to the end-products

depending on their usage of these activities (processes). Data centers are typical examples

of environments where costs do not vary directly with production volumes. At least in

the short term, most costs are fixed. The determination of cost shares per IT product

produced would be a suitable case for Activity-based costing approaches (Kargl, 1999,

p. 131). However, the concept was originally developed for production environments with

physical goods. A number of authors (see for instance Fürer, 1994; Funke, 1999; Gerlach

et al., 2002; Gerlinger et al., 2000) have proposed a transfer to data centers. We present

below the studies of Fürer (1994) and Funke (1999), as they focus in particular on shared

data center infrastructures.

The concept of Fürer (1994) can be briefly summarized as follows. First, the data

center services are divided into three activity centers (Processing, Storage, Output). Then,

the author analyzes the workload and the scare resources, i.e. the potential bottlenecks,

and selects out of them for each activity center one cost driver (Fürer, 1994, p. 153):

• Processing: number of I/O operations

• Storage: size of reserved space

• Output: number of printed pages

The total budgeted operating costs for an activity center divided by the forecasted

usage results in a cost share per cost driver unit (e.g., costs per I/O operation). On

the process side, the author starts with applications and divides them into transactions

which he considers as business sub-processes. For each transaction he determines, by the

analysis of historical data, the average number of consumption units of the cost-driving

resource. Thus, he derives cost portions per transaction and, by forecasted or measured

quantities, the costs for business processes (Fürer, 1994, p. 137 et seqq.). The concept

is illustrated by examples of mainframe infrastructures at major banks in Switzerland.

2.2. Survey of Literature 25

Besides the costing approach, a major contribution is the in-depth evaluation of stake-

holders and objectives of IT Cost Accounting (see Fürer, 1994, p. 38-55).

Funke (1999) goes in his work even a step further. In the same manner as Fürer

(1994), he divides the data center into the three activity centers: Processing, Storage and

Output. Additionally, he considers during the allocation of costs to processes not only

the technical resource consumption, but also end-user requirements, such as response

time or Quality-of-Service. The definition of an IT service is based on the specifications

of DIN 66273-17 (see DIN 66273, 1991).

Excursion: The DIN standard 66273-1 considers an IT system, including all software and

hardware components, as black-box. A service is defined as a successful response

to a request or, more precisely, as the fulfillment of a user job within a predefined

response time and in accordance with certain functional and non-functional quality

and quantity standards. Correspondingly, performance is defined as the number of

successfully fulfilled jobs within a unit of time. Based on the different performance

requirements of end-users, the standard describes a process for the determination

of load profiles, e.g., for performance tests (see Dirlewanger, 1994, for a detailed

description).

In the context of Cost Accounting, the advantage of this approach is that the metrics

are customer-oriented and multiple cost-driving factors can be integrated. So, for in-

stance, to high-priority jobs with tight response-time requirements and peak load profiles

a higher a cost share could be allocated, even if their total resource consumption is equal

to other jobs with lower priorities (Funke, 1999, p. 202-206).

The two studies bridge the gap between business processes and IT resource consump-

tion by conversion tables (Funke, 1999, p. 201) and average resource consumption values

(Fürer, 1994, p. 163). The focus of both lies on Cost Accounting. The authors neither go

into technical details nor provide experimental results to demonstrate how these tables or

values are determined.

7 The national standard DIN 66273 had been transferred to the International Organization for Stan-
dardization and was published as ISO 14756 in 1999 (see ISO 14756, 1999).

26 2. IT Infrastructure Cost Allocation

2.2.1.2 IT Controlling of Distributed Systems

IT Cost Accounting and Chargeback is typically addressed in the mostly practice-oriented

literature on IT Controlling (see for instance Gadatsch and Mayer, 2006; Heilmann, 2001;

Kargl, 1999; Krcmar et al., 2000; von Dobschütz et al., 2000). Earlier publications usually

come from mainframe-oriented data centers with one central resource and do consider the

situation of shared client/server environments.

Aurenz (1997) was one of the first authors, who analyzed how the ongoing technical

and organizational decentralization of IT systems affects IT Controlling. For his consider-

ations, he structures IT Controlling according to Krcmar and Buresch (1994) in Portfolio

Controlling, Project Controlling, Product Controlling and Infrastructure Controlling. IT

Cost Accounting is part of IT Infrastructure Controlling (see section 2.1.1). However,

from his 1997 perspective, the determination of usage-based cost allocation keys is less

problematic, as on the one hand, hardware and software in distributed environments is

mostly dedicated to business units (Aurenz, 1997, p. 355) and on the other hand, future

accounting software will provide user-oriented accounting metrics (Aurenz, 1997, p. 357).

Current literature on IT Controlling mostly proposes technical metrics to allocate costs

of shared client/server infrastructures (see for instance Gadatsch and Mayer, 2006, p. 180)

and does not provide clear answers how internal IT Service Providers should meet the

demand for customer-oriented accounting metrics. However, we identified an interesting

approach by Scheeg (2005). His primary purpose is not cost allocation, but forecasting

future operations costs. In the planning phase of a client/server-based IT system, decision-

makers often face multiple implementation alternatives, relying on different technologies

and infrastructure resources. At that time the (short-time) implementation costs are very

transparent. However, the Total Costs of Ownership are dominated by future operations

costs (see also figure 2.5). This claim is underpinned by an empirical analysis of life cycle

costs of 30 applications in three different organizations. As a solution, the author pro-

poses the use of cost tables, which integrate implementation and operations costs. So,

total costs of solution alternatives can be evaluated and compared already during the

planning phase. To enable the estimation and comparison of operations costs, the au-

thor abstracts from the technical view on applications and introduces IT products, which

are defined as “business process support services” (Scheeg, 2005, p. 139). By means of

the customer’s forecasted demand for IT products and standard performance benchmarks

such as TPC-C (see TPPC, n.d.b) and SAPS (see SAP, n.d.b), the IT planners should

estimate the required capacity and resource costs for the different alternatives (Scheeg,

2005, p. 157).

2.2. Survey of Literature 27

Basically, the same business process support services and performance benchmarks could

be later used to allocate the operations costs to the customers. However, the focus of

Scheeg (2005) lies on overall aspects of IT Controlling. He does not provide any experi-

mental validations or real-world examples for this part of his study.

2.2.1.3 Organizational Objectives and Chargeback Systems

Mainly in the United States, behavioral science focuses on the question of which charge-

back approaches and processes are appropriate for achieving organization-level objectives

(see for instance McKinnon and Kallman, 1987; Ross et al., 1999; Verner et al., 1996).

As a representative of this research branch, we present in the following the frequently

cited contribution of Ross et al. (1999). Their paper addresses the question, “What

chargeback practices lead to effective managerial decisions on information technology in-

vestment and use?” The authors first propose a model of IT Chargeback (see figure 2.7)

to analyze relationships between chargeback policies and practices and three outcomes:

First, business unit IT investment and usage decisions; second, performance evaluations

of business unit managers and, third, business unit assessments of IT performance. Based

on this model they surveyed the situation in 10 US-based, Fortune 500-sized companies

through multiple telephone interviews (09/1995-01/1996).

As the most common outcome of IT Chargeback, evident in all 10 firms, the study identi-

fied “reduced resource consumption”. Charges help business units to identify less expen-

sive ways to accomplish their objectives. However, only in four cases did the respondents

confirm that chargeback had an impact on major IT investment decisions. Interestingly,

business managers from these four firms characterized core IT as business-focused and

claim that they receive “good” value from IT, while in the other six companies the in-

terview partners described the value added by IT services as “questionable”. A further

analysis of these relationships revealed that the four companies with positive outcomes

intensively used the administrative chargeback processes to encourage communication

between IT and business (e.g., through regular negotiations about rates and services,

communication of total costs and charges). This supported a mutual understanding of

costs and requirements and resulted in an enhanced business-IT partnership. According

to the authors, “this is the (largely) untapped potential of IT chargeback”.

28 2. IT Infrastructure Cost Allocation

Evaluations

• Performance evaluation of

business unit

• Busines unit assessments of

the value of IT services

Perceived

Fairness

Corporate

Performance

Economic Decisions

• Demand for services

• Supply of services

Firm Strategic

Context

Chargeback Policies

• Sourcing policy

• Cost recovery policy

• Policy on Accountability

Administrative Practices

• Rate Setting Process
• Communication Process

IT Charges

Figure 2.7: Model of IT Chargeback (Source: Ross et al., 1999)

2.2.2 Empirical Surveys

We present three empirical surveys, each with a different focus. Hübner et al. (1999)

analyze IT Cost Management in centralized and decentralized environments. Gadatsch

et al. (2005) focus on the overall state-of-the-practice of IT Controlling. Syskoplan (2002)

examines IT Asset Management and the cost allocation methods. All three studies ana-

lyze the situation in Germany, respectively in German-speaking countries. For a survey

of the international situation we refer to IT Governance Institute (2006) and Drury (1997).

The comprehensive study of Hübner et al. (1999) focuses on IT Cost Management

in the German banking sector. At that time (1997-1999) the rise of client/server technolo-

gies and new business models, like direct banking, changed the systems architectures in

data centers and the underlying cost structures. The study consists of four major parts.

First, characteristics of client/server systems and of Cost Accounting in the banking sector

are introduced. In an empirical part, the effects of the developments mentioned above on

IT Cost Management are analyzed. The results are based on 44 questionnaires filled out

by 44 German banks in 1997. Finally, the authors derive implications and recommenda-

tions for the practice. Although client/server technologies and system architectures have

advanced in the meantime, general results from the empirical survey on the objectives,

requirements and difficulties of internal IT Chargeback approaches are still of interest.

2.2. Survey of Literature 29

13%

26%

36%

49%Overhead cost allocation

Causer-pays principle

Business transactions

Service Level Agreements

Figure 2.8: IT Cost Allocation in Germany (Source: Frisch, 2002 cited by
Gadatsch and Mayer, 2006, p. 154)

Selected results concerning internal IT Chargeback approaches:

• Major objectives: “Cost Transparency” and “Cost Consciousness” (Hübner et al.,

1999, p. 75)

• Major requirements: “Fairness”, ”Transparency” and “Accuracy” (Hübner et al.,

1999, p. 79)

• Major difficulties: “Overhead costs”, “Metering resource consumption” and “Ac-

ceptance” (Hübner et al., 1999, p. 82)

Gadatsch et al. (2005) present the results of a survey on the state of IT Controlling

in the German-speaking countries conducted in 2004. The analysis is based on 40 ques-

tionnaires, predominantly filled out by executives from IT and Controlling departments.

The sample comprises companies from different industries and size (6 - 250,000 employees,

median: 930 employees). The study reveals that a large proportion of companies do not

make use of major IT Controlling instruments.

Selected results:

• 51.3 % of the companies conduct no internal chargeback for IT services.

• 51.3 % make no use of IT Asset Management systems.

30 2. IT Infrastructure Cost Allocation

• 23.7 % conduct no cost benefit analysis for IT investments

Unfortunately, the analysis does not take into account the heterogeneity of the sample

(e.g., company size, industry size). Further differentiations would raise the significance of

the results.

The IT market research company IDC analyzed in July 2002, on behalf of Syskoplan

AG, the state of IT Asset Management in Germany (Frisch, 2002; Syskoplan, 2002).

The survey is based on interviews with IT managers from 51 German companies with

more than 500 employees. The results (see figure 2.8) concerning IT Cost Accounting

support the findings of Gadatsch et al. (2005). 49 % of the companies make no use of IT

Chargeback systems and allocate their IT costs as overheads.

The fundamental finding of Syskoplan (2002) and Gadatsch et al. (2005) that most

companies in German(-speaking) countries make only limited use of IT Controlling instru-

ments is confirmed by related surveys (see for instance Controller Verein, 2004; Paul-Zirvas

and Bereszewski, 2004; Son and Gladyszewski, 2005).

2.2.3 IT Service Management Reference Models

Overall, IT departments face the challenge of evolving from a technology- and resource-

centered applications and infrastructure provider to a customer-oriented service provider

(Hochstein et al., 2004, p. 382). In the context of these change processes several organi-

zations have developed reference models, which should serve as guidelines for the analysis

and improvement of the IT Service Management (ITSM) processes8. In the following,

we briefly present the advice on IT Cost Accounting and Chargeback of two wide-spread

models, namely the Information Technology Infrastructure Library (ITIL) and the Control

Objectives for Information and related Technology (CobiT).

Information Technology Infrastructure Library ITIL is a structured collection of

best-practices for the realization of a cost-efficient IT organization and for the provision of

high-quality services (Häusler et al., 2005, p. 16 et seqq.). In the first half of this decade

it has emerged as a de-facto standard and has gained an enormous popularity (Häusler

et al., 2005, p. 6 et seqq.). ITIL can be divided into seven core parts (see figure 2.9).

8 For a comprehensive overview and comparison of different models, we refer to Häusler et al. (2005).

2.2. Survey of Literature 31

T
h
e
 B

u
s
in

e
s
s

T
h

e
 T

e
c
h

n
o
lo

g
y

Planning to Implement Service Management

Application Management

The Business

Perspective

ICT

Infrastructure

Management

Service Management

Service

Delivery

Service

Support

Security

Management

Figure 2.9: ITIL Publication Framework (Source: Office of Government
Commerce, 2002b, ch. 1.4)

IT Financial Management is a core process of Service Delivery (Office of Government

Commerce, 2001, ch. 5). ITIL defines the objectives of IT Financial Management as

follows (ch. 5.1.4)9:

1. to provide cost-effective stewardship of the IT assets and resources used in providing

IT services.

2. to be able to account fully for the spend on IT services and to attribute these costs

to the services delivered to the organization’s customers

3. to assist management decisions on IT investment by providing detailed business

cases for changes to IT services.

9 The following chapter citations refer to the ITIL book “Service Delivery” (Office of Government
Commerce, 2001, ch. 5.x.x).

32 2. IT Infrastructure Cost Allocation

In analogy to the three IT Cost Accounting and Chargeback processes presented above

(see section 2.1.3), ITIL divides IT Financial Management into Budgeting, IT Accounting

and Charging. All three processes are discussed and guidelines for their implementation

are provided. Concerning IT Accounting, ITIL recommends a simple, fair and accurate (if

possible) cost model (ch. 5.3.7). For allocating costs of shared resources, ITIL recommends

to establish, during the annual planning, standard unit costs for each IT resource (e.g.,

per processor time, per stored GB). The expenditures per cost center are then monitored

and determined on a monthly basis (ch. 5.3.14). If the business units are charged for

their usage of IT services, the chargeable items should be as close as possible to the

organization’s business deliverables.

“Only a lack of information should force Charging to be directly based on

resource usage; this lack of information must be overcome and it is important

that in the analysis phase, steps are taken to ensure the future vailability of

information” (ch. 5.4.4).

On the other hand, business deliverables are often not suited for chargeback, mainly

because the allocation of resource consumption would require unacceptably high mea-

surement efforts (ch. 5.4.4). ITIL does not provide a complete answer to this dilemma.

The benefits must be weighed against the cost of implementation and operation of the

charging and monitoring system from case to case.

Control Objectives for Information and related Technology CobiT is a frame-

work for IT governance and control practices. It does not explicitly describe how ITSM

processes can be realized, but provides a structured overview of what should be done. Co-

biT is complementary to ITIL. In practice it is often used for auditing processes which have

been realized according to the ITIL guidelines (Hochstein and Hunziker, 2003, p. 51). The

4th edition of CobiT (IT Governance Institute, 2005) is organized into four domains (Plan

and Organize, Acquire and Implement, Deliver and Support and Monitor and Evaluate),

34 high-level objectives and 215 control objectives. IT Cost Accounting and Charge-

back falls within the domain of Deliver and Support and the high-level objective Identify

and Allocate Costs (DS6). Four control objectives are therefore defined (IT Governance

Institute, 2005, p. 124):

1. Definition of Services Identify all IT costs and map them to IT services to support

a transparent cost model. IT services should be linked to business processes such

that the business can identify associated service billing levels.

2.2. Survey of Literature 33

2. IT Accounting Capture and allocate actual costs according to the defined cost

model. Variances between forecasts and actual costs should be analyzed and re-

ported on, in compliance with the enterprise’s financial measurement systems.

3. Cost Modeling and Charging Based on the service definition, define a cost

model that includes direct, indirect and overhead costs of services and supports

the calculation of chargeback rates per service. The cost model should be in line

with the enterprise’s cost accounting procedures. The IT cost model should ensure

that the charging for services is identifiable, measurable and predictable by users to

encourage proper use of resources. User management should be able to verify actual

usage and charging of services.

4. Cost Model Maintenance Regularly review and benchmark the appropriateness

of the cost/recharge model to maintain its relevance and appropriateness to the

evolving business and IT activities.

Additionally, CobiT provides performance indicators and a process maturity model,

which support an audit of the processes. However, it does not provide any details about

how the Cost Allocation should be realized.

2.2.4 Commercial Research

In the present context, valuable contributions and insights into current and future develop-

ments stem from commercial analysts and consulting companies. We therefore integrated

into this survey the viewpoint and the recommendations of Gartner, Inc., one of the lead-

ing IT research companies worldwide.

The fundamental positions of Gartner on IT Chargeback and the ways it can support

the cost-effective delivery and use of IT services are summarized in one comprehensive

report10 (see Blosch et al., 2003a). Subsequent publications (e.g., Gomolski, 2005; Heine,

2006) are mainly based on this document.

For Gartner IT Chargeback is primarily a governance mechanism that can be used to

create desirable behavior of users or business leaders in the use of IT services (Blosch

et al., 2003b, p. 2). They distinguish three steps: Cost Identification, Cost Allocation

and Cost Recovery (see figure 2.3 and table 2.1). For Cost Allocation the perception of

10 A summary of the document is freely available (see Blosch et al., 2003b).

34 2. IT Infrastructure Cost Allocation

Method Allocation Base Areas Where Suited

Market-based pricing per measured unit of service
For defined, end-to-end services,
often available on the market

Negotiated flat rate projected service usage Well-defined projects

Tiered flat rates
service accessibility, whether used or

not
Help desks, application

maintenance, data centers

Measured resource usage measured consumption of resources Storage, e-mail, telecoms

Direct cost dedicated resource ownership
Application development, dedicated

projects

Low-level allocation
specific IT service costs, based on
user size (e.g., employees, revenue)

Desktops, IT overhead, strategy, IT
architecture

High-level allocation
overall IT costs, based on user size

(e.g., employees, revenue)
All of IT is consolidated under

High-level allocation

Table 2.2: Overview of Cost Allocation Methods (adapted from Blosch
et al., 2003b, p. 37 and Gomolski, 2005)

Chargeback as governance mechanisms implies that the method and the allocation bases

must be oriented toward the need of customers. They assume that business managers use

the following four criteria for the evaluation of different approaches (Blosch et al., 2003b;

Gomolski, 2005):

1. Simplicity Business units seek a billing method that is easy to manage, and invoices

that are easy to understand. Simplicity tends to be the dominant driver when

the magnitude of IT costs is low, cost-effectiveness is the primary consideration in

managing the chargeback system or the IT organization is highly trusted.

2. Fairness Business units want to pay only for their own usage and adamantly avoid

the cross subsidization of other clients. This is the dominant driver when there are

poor relations between the IT organization and business units, when business units

suspect that the IT organization’s costs are out of control, or when the enterprise

is decentralized.

3. Predictability Business units seek assurance that there will be little or no variation

between their budgets for IT services and their actual invoices. This is dominant

when IT cost variances would jeopardize the business units’ performance targets

(such as government or low-margin business units).

4. Controllability Business units seek a cost structure that will enable them to ac-

tively manage their IT costs. This is prevalent when there is a dramatic shift in

2.2. Survey of Literature 35

Tiered flat rates

Measured resource usage

Negotiated flat rate

Direct cost

Low-level allocation

High-level allocation

Market-based pricing

C
o
n
tr

o
lla

b
ili

ty

S
im

p
lic

it
y

F
a

ir
n
e

s
s

P
re

d
ic

ta
b
ili

tyHigh

Medium

Low

Figure 2.10: Strengths and Weaknesses of Cost Allocation Methods
(Source: Blosch et al., 2003a, p. 37)

business results (revenue collapse or strong growth) or uncertainty about the busi-

ness unit’s future performance, or when the business unit’s primary objective is

flexibility.

Selecting a cost allocation method for an IT service depends on what behavior should

be encouraged, the needs of the business units and the administrative capabilities of the

chargeback team. Gartner has identified seven common methods, ranging from Market-

based pricing, which requires well-defined end-to-end service definitions and directly en-

ables a benchmark with external service providers, to High-level allocation, which dis-

tributes total IT costs by simple business parameters, such as number of business units’

employees or revenue share. In table 2.2 the different methods, their allocation bases and

the areas where suited are summarized. In figure 2.10 the methods are assessed against

the requirements presented above.

The publications of Gartner and related companies have a strong strategic orientation and

focus on a management audience. For advice on more practical aspects of IT Chargeback,

36 2. IT Infrastructure Cost Allocation

we refer to the books of Jochen Michels (see for instance Michels, 2003a,b,c, 2004) and to

the publications of the IT Financial Management Association (see ITFMA, n.d.).

2.3 Requirements and Objectives

In the previous section we analyzed the domain of IT Cost Accounting and Chargeback

from different literature perspectives. Although the backgrounds of the works were dif-

ferent, we identified a consensus on three general requirements for IT Cost Allocation

methods: Simplicity, Fairness and Accuracy (Blosch et al., 2003b; Hübner et al.,

1999; IT Governance Institute, 2005; Office of Government Commerce, 2001).

“The simpler the allocation method, the better” (Blosch et al., 2003b, p. 8)

“ [...] apportionment should be firstly simple, secondly fair and thirdly accu-

rate (if possible).” (Office of Government Commerce, 2001, ch. 5.3.7)

Beyond the general requirements, the determination of a Cost Allocation method

depends on a company’s overall objectives on IT Cost Accounting and Chargeback. Typ-

ically, this situation is not clear-cut, due to the three different groups of stakeholders

involved (see figure 2.11). First, the Executive Management, which sets standards and

objectives, not only for IT but for all managerial accounting activities. Second, the busi-

ness units as customers and, third, the IT units as providers of IT services (see figure 2.11).

Each group has its own objectives which are partially shared and partially opposed or

contrary to the overall requirements of Simplicity, Fairness and Accuracy. Figure 2.12

provides an example overview of consisting and conflicting objectives11.

The primary challenge for the establishment of an IT Cost Allocation system is to define

accountable items, which balance out these objectives and requirements. For many IT

services accountable items are self-suggesting, e.g., per desktop computer, per help desk

call, per dedicated server and so forth. However, when it comes to shared infrastructures a

dilemma between resource-oriented (e.g., per processor second, per transferred byte) and

customer-oriented (e.g., per business activity, per business transaction) cost allocation

arises.

11 The objectives and their relationships are discussed by Fürer (1994, p. 38-55).

2.3. Requirements and Objectives 37

comprehensibility

on-time

delivery

ability to control costs

predictability

cost effective

IT usage

cost effective IT

service provision

knowledge of

IT’s cost share

precision

cost proportionality

costing support

transparency

operating efficency

controlling and

planning function

causer-based cost allocation

controlling of user behavior

capacity planning

optimization of

utilization

cost

recovery

planning and

cost calculation

instrument

consistency

cost allocation

by chargeback

incentives for cost

consciousness

reproducibility

IT unit

objectives

Business unit

objectives

Management

objectives

Figure 2.11: Stakeholders and Objectives of IT Cost Accounting (adapted
from Fürer, 1994, p. 48)

If business units are charged for their usage of IT services, a customer-oriented ap-

proach seems to have considerable advantages. At the business units cost allocation

for instance per business transaction enables a better controlling of IT usage (includ-

ing predictability, comprehensibility, reproducibility and ability to control costs) and an

alignment of business forecasts with IT budget planning. Furthermore, cost transparency

is increased as such an approach facilitates the determination of IT cost shares per pro-

duced product, per business process or for other company-wide cost objects. However,

there are two essential difficulties associated with customer-oriented approaches: First,

the identification of business activities, appropriate for IT cost allocation and, second, the

determination of adequate cost shares for the different activities. As most IT costs are

not directly related to the actual usage of IT services, a methodology for allocating fixed

or step costs to the accountable business activities is required. Finally, if cost allocation

keys are biased, they may encourage suboptimal behavior and cause free-rider problems

(see Wheatley, 2003, for illustrative examples).

38 2. IT Infrastructure Cost Allocation

operating

efficency

precision

cost

proportionality

causer-based

cost allocation

optimization

of utilization

cost

recovery

ability to

control costs

costing

support

reproducibility
incentives for cost

consciousness

controlling of

user behavior

on-time

delivery

transparency

simple

keys
capacity

planning

consistent objectives conflicting objectives

Figure 2.12: Consistent and conflicting Objectives (adapted from Fürer,
1994, p. 50)

“I’m saving money, even though it must be costing the company more - anoma-

lies in the charging system will be exploited by businesses.” (Office of Gov-

ernment Commerce, 2001, ch. 5.4.2)

These problems do not occur for resource-oriented approaches. Typically, standard

cost accounting determines costs per resource (e.g., for a particular server) or at least per

resource pool (e.g., for all Unix servers). These costs can be either directly attributed to a

single business owner or apportioned by some form of usage-based cost allocation key (see

next section). Business transactions typically involve multiple resources. Measuring and

consolidating their total resource consumption is mostly not possible or associated with

unreasonable efforts. On the other hand, allocating costs by various technical consump-

tion metrics neglects most of the positive controlling potential of IT charges. Against this

background, the purpose of chargeback for shared client/server and network infrastruc-

tures is seriously questioned (see for instance Liebmann, 1996; Oleson, 1998; Wheatley,

2003).

2.4. Practiced Approaches 39

“[...] But a rigorous chargeback methodology - one that will earn respect -

requires IS management to develop, administer and maintain what can become

a Byzantine method of data collection. Worse, a rigorous cost accounting

system is often prohibitively expensive. Worst of all, the data needed to make

such a system work, particularly in the client/server environment, is almost

impossible to gather because of the degree of detail needed to make a cost

accounting system accurate.” (Oleson, 1998)

Beyond the above considerations, this fundamental dilemma of IT Cost Accounting

and Chargeback approaches has been subject of extensive discussion in literature (e.g.,

Quinlan, 1989, p. 78; Fürer, 1994, p. 44; Funke, 1999, p. 74; Ross et al., 1999; Office of

Government Commerce, 2001, ch. 5.4.4; Michels, 2003b, ch. 4.1.1).

2.4 Practiced Approaches

The second objective of the literature study was to get an overview of practiced approaches

to IT Infrastructure Cost Allocation. Besides approaches that are based on non-IT alloca-

tion keys (e.g., cost allocation per employee or per revenue share), we identified five basic

concepts for apportioning infrastructure costs. These concepts are briefly introduced in

the following (see figure 2.13 for an overview).

Direct cost allocation Where a hardware resource is dedicated to a specific application

or a business function, the costs of the assets can be directly attributed. This procedure

is transparent and easy to implement. It is not IT-specific. However, the underlying

assumption – that there is a single business owner of a resource – is mainly limited to

application server and storage infrastructure. Other resources, like network components

or middleware for application integration, are usually shared.

(Tiered) flat rate per application If the application, rather than the infrastructure,

is dedicated to a single business owner, costs can be allocated by a flat rate. The ac-

tual resource consumption is not considered. The BMW Group uses such flat rates for

applications on its J2EE infrastructure (see chapter 6). Gartner recommends tiering the

flat rates according to functionality, expected usage (e.g., number of registered users) and

service levels (see Blosch et al., 2003a; Heine, 2006). This approach is particularly easy

to implement, as no explicit differentiation of resource costs and no metering is required.

40 2. IT Infrastructure Cost Allocation

IT Infrastructure Costs

Customers / users

Cost centers / objects

Business processs

Business transactions

D
ir
e
c
t

c
o
s
t

a
llo

c
a
ti
o
n

M
e
a
s
u
re

d
 h

a
rd

w
a
re

 u
s
a
g
e
 o

f
u
s
e
rs

Measured

hardware

usage of

applications

Applications

(Tiered) flat

rates per

application

Number of

executed

transactions

Figure 2.13: Classification of practiced Approaches

The accompanying lack of transparency may be accepted if the applications are of a sim-

ilar nature (complexity, workload, etc.) and are predominantly used by a single business

unit.

Measured hardware usage of end-users A widespread approach to allocating costs

of a shared infrastructure is a proportional breakdown to the business units according

to their resource consumption. Measured usage is commonplace for disk storage and

telephony services. However, when it comes to client/server computing, a single request

usually involves multiple heterogeneous components (e.g., web server, application server

and database server). Measuring and allocating resource consumption directly to business

units is associated with two fundamental problems.

1. From a user perspective, diverse technical metrics are difficult to comprehend and

to control. Let us consider a business manager, receiving an account statement,

based on the processor times of multiple servers. As he cannot directly correlate

2.4. Practiced Approaches 41

the charges with his (business) activities, it is difficult for him to plan or control

resource consumption. In mainframe environments, with one single resource, this

might have been possible, but the approach cannot be transferred to client/server

infrastructures.

2. Due to performance and security reasons, the original business context of a trans-

action (e.g., user, business activity) is mostly not available in the backend. User

names are not further transmitted after a successful authorization and connection

pools are used for database access. A SQL statement, for instance, does not con-

tain any information about the actual user of the application who submitted the

query. Modern DBMS support the allocation of resource consumption (processor

time, query runtime, etc.) to the connection pools of the application servers, but

they cannot reconstruct the original user.

For centrally controlled, scheduled and monitored batch jobs these problems can be

partially overcome. However, for interactive workload a clear assignment of resource

consumption – and thus of costs – to users is often not possible.

Measured hardware usage of applications Metering and allocating resource con-

sumption to applications or databases is supported by most operating systems and server

software. It is also the domain of professional accounting and billing tools (see for instance

Econet, n.d.; IBM, n.d.a; Nicetec, n.d.; USU, n.d.)12. Their strengths are the collection

of accounting data by custom agents or by log files analysis, the consolidation of this

information and the generation of reports for chargeback and management information.

However, in client/server environments they are also facing the problems described in the

previous paragraph. Thus, they mostly provide only a per-application and not a per-user

or a per-department view on resource consumption. Accordingly, they assume either a

single business owner per application or use external data from the application or the

organization to derive cost portions for the business units:

“Once you know the cost of an application as a whole, you can determine

the cost of functional metrics produced by the application. For example, if

you knew that “Payroll” cost $10,000 and that it produced 1,000 paychecks

then the average cost of a paycheck is $10.00. Then, you could allocate the

12 An overview of commercial accounting and billing tools is provided by Siebertz (2004, p. 49).

42 2. IT Infrastructure Cost Allocation

cost of payroll to the departments and business units based on the number

of paychecks they received.” (Excerpt from the CIMS System Description

Manual: CIMS Lab, n.d.)

Business transactions There may be two very different motivations behind using busi-

ness transactions for the allocation of IT costs. On the one hand, it could be considered

as a form of simple overhead cost allocation, similar to costs per employee or cost per

revenue share. On the other hand, it could be intentionally used for enabling an effective

controlling of IT usage and costs by the business units (see section 2.3). In practice,

the situation is often not as clear-cut as in the payroll example described above. Appli-

cations could provide different services and the usage intensity of the services may not

be dependent on business figures such as the number of employees. Furthermore, if the

accountable transactions and their cost shares are not carefully determined, they might

also encourage suboptimal behavior and cause free-rider problems.

Outsourcing providers have recognized the potential of customer-oriented accounting met-

rics. In the context of on-demand and utility computing scenarios, the industry provides

solutions which enable a detailed metering of business transactions for accounting pur-

poses. As a representative example, we briefly present in the following excursion the

concept of the utility metering service of the IBM Universal Management Infrastructure

(see Albaugh and Madduri, 2004).

Excursion: The Universal Management Infrastructure (UMI) is a collection of software

and architectures supporting the management and operations of hosted infrastruc-

tures and applications at IBM’s utility computing data centers (IBM, 2004). Major

functionalities of the UMI are metering, monitoring, auto-provisioning, SLA man-

agement, portal, billing, ordering, reporting and help desk/change management (Al-

baugh and Madduri, 2004). The utility metering service supports usage metering

and billing for on-demand services on the infrastructure as well as on the application

level (e.g., end-user billing for the usage of specialized supply management applica-

tions). The architecture of the metering service allows the integration of third-party

applications. Additionally, IBM has set up a process (see Chang et al., 2004), which

should enable independent software vendors to adopt their applications and offer

them as on-demand services to their customers.

The utility metering approach of IBM requires the UMI as the proprietary infrastruc-

ture environment and is not directly transferable to internal data centers. Furthermore,

2.5. Discussion 43

it solves only half of the problem, namely metering and allocating the usage of services.

It does not directly provide an answer to how the step costs for the infrastructure should

be apportioned among the provided services. In outsourced environments this is less rel-

evant, as rate setting follows different objectives than in internal cost-centers (e.g., profit

maximization vs. fairness, competitiveness of price model vs. cost transparency, etc.).

With regard to the overall objectives for IT Cost Accounting and Chargeback (see sec-

tion 2.11), all of the approaches presented above have flaws. Direct cost allocation and

measured hardware usage of end-users are hardly applicable to shared infrastructures.

Both application-oriented approaches implicitly rely on single business owners for the

applications, which might not be the case. An allocation of costs using the number of

executed business transactions could support an effective controlling of IT usage and costs

by the business units. However, it is difficult to establish a transparent link of business

transactions to the infrastructure costs.

2.5 Discussion

Starting point for the considerations of the previous sections was the question of what

are appropriate cost allocation approaches for today’s client/server infrastructures (see

section 2.1.4). We surveyed the literature (section 2.2), pointed out the dilemma between

customer-oriented and resource-oriented allocation methods (section 2.3) and described

why practiced approaches often do not achieve major objectives of IT Cost Accounting

and Chargeback (section 2.4). In the following, we briefly discuss the future relevance of

the question against the background of today’s organizational and technological trends.

“After pouring millions of dollars into in-house data centers, companies may

soon find that it’s time to start shutting them down. IT is shifting from being

an asset companies own to a service they purchase.” (p. 67 Carr, 2005)

Although the hypotheses of Carr (2003, 2005) about the future role of IT are the

subject of controversial discussions (see for instance Harvard Business Review, 2003), it

seems quite clear that internal IT organizations are undergoing a transformation from

resource-centered applications provider to customer-oriented service providers (see for in-

stance Brenner, 2004). The Society for Information Management surveyed in 2003, 2004

and 2005 the management concerns of IT executives. The top-ranked issue in all three

44 2. IT Infrastructure Cost Allocation

reports was IT and business alignment, defined as “applying IT in an appropriate and

timely way, in harmony and collaboration with business needs, goals, and strategies”

(Luftman et al., 2006). As top enablers of IT and business alignment, the respondents

of the 2005 survey indicated: IT understands the firm’s business environment (Luftman

et al., 2006). Business managers drive IT to focus on cost-effective support of business

processes rather than on technologies. IT managers, in turn, are forced to justify their

budgets and thus try to increase cost transparency by allocating their costs as far as

possible to the businesses.

Concerning today’s technological trends, the variety of terms, such as service-oriented

architectures, grid, on demand, utility computing, software as a service or virtualization

might be confusing at first glance. However, according to the analysis of Foster and Tuecke

(2005) these and other related terms “represent different perspectives on the same overall

goal — namely, the restructuring of enterprise IT as a horizontally integrated, service-

oriented architecture”. This “overarching trend” (Foster and Tuecke, 2005) means, on the

one hand, that distributed hardware resources are pooled together (e.g., by virtualiza-

tion technologies) and then managed and allocated in a common and automated manner.

Thus, overall utilization can be improved and operating costs reduced (Foster and Tuecke,

2005). On the other hand, the goal implies that the interfaces between application com-

ponents, workload management systems, and physical resources are standardized so that

the different components can be assembled dynamically (Foster and Tuecke, 2005). The

applications are fully decoupled from the underlying hardware and neither hardware nor

applications are dedicated to a specific business function.

With regard to IT Infrastructure Cost Allocation we derive two major implications from

these trends:

1. Along with the predicted commodization of IT services, the importance of customer-

oriented and usage-based cost allocation approaches will grow.

2. Traditional cost allocation methods, which are based on static mappings between

hardware resources, applications and customers, are not applicable in future infras-

tructures.

The arising cost allocation problems concern mostly internal IT units. Outsourcing

providers have a greater flexibility to adapt their accounting metrics to the needs of their

customers. So, for instance, they must not necessarily consider resource consumption to

2.5. Discussion 45

determine fair cost shares. Their primary motivations are profit maximization and risk

control. We identified no standardization efforts, which could create an overall technical

solution. Internal IT units in particular require alternative cost allocation approaches to

cope with the organizational and technological trends described above.

Chapter 3

Cost Allocation based on Resource

Profiles

3.1 Scope

We illustrated in the previous chapter the difficulties of allocating IT infrastructure costs.

These considerations motivated the development of an alternative approach, which is pre-

sented in the following sections. We thereby focus on a certain category of application

systems.

Application systems built on databases can be divided into systems for online transaction

processing (OLTP) and systems for online analytical processing (OLAP) (Kemper and

Eickler, 2006, p. 495). OLTP systems typically automate clerical data processing tasks

that are the day-to-day operations of companies (e.g., order entries, customer updates).

The tasks are structured and repetitive. Database transactions are short, require detailed,

up-to-date data and operate (read/write) on a small amount of records (Chaudhuri and

Dayal, 1997). OLAP systems, in contrast, prepare decision support information for the

management. They operate on large amounts of historical data, rather than on individual

records. Database queries are complex and mostly created ad-hoc (Chaudhuri and Dayal,

1997). A typical example for OLAP application is the multidimensional analysis of sales

or marketing data (e.g., sales volumes per product, district, time, salesperson). OLTP

and OLAP systems have different performance requirements (e.g., transaction throughput

vs. query runtimes) and workload profiles and thus usually operate on separate physical

databases (Kemper and Eickler, 2006, p. 495).

48 3. Cost Allocation based on Resource Profiles

Classification of

Application Systems and

Operation Modes

OLTP

operational

OLAP

strategic

Batch

e.g., data

reconciliation

Interactive

e.g., operational

clerical activities

Batch

e.g., regular

report generation

Interactive

e.g., ad-hoc

analyses

Figure 3.1: Classification of Application Systems and Operation Modes

Furthermore, we can distinguish between two different operation modes of application

systems: Interactive access and batch processing. In the interactive operation mode the

application prompts the users for input, while in batch mode the application typically

processes large amounts of data without human interaction. For instance, in OLTP sys-

tems nightly batch jobs can be used to reconcile daily activities with master databases.

In OLAP systems batch jobs could produce daily/weekly/monthly reports or import and

consolidate data from various operational databases. The two types of application sys-

tems and the different operation modes are summarized in figure 3.1. We restrict our

considerations in the following on operational, interactive OLTP systems. We claim

that for these kinds of systems the determination of appropriate cost allocation keys is

both particularly relevant and particularly difficult.

• Costs of operational IT systems can be considered as fixed or step costs of produc-

tion and should be allocated accordingly. In contrast, costs for strategic manage-

ment information systems are not directly related to cost objects such as products

produced and can thus be treated as any other overhead.

• Batch processing, in contrast to interactive workload, can be centrally controlled,

scheduled and monitored. This facilitates the measurement of resource consumption

and thus the allocation of costs to the submitter of batch jobs.

3.2. Concept 49

• Compared to operational OLTP systems, OLAP systems are typically used by a

small number of people with a management or a reporting function. Furthermore,

the resource consumption per individual user in OLTP systems is far smaller than

in OLAP systems. This causes higher efforts for measuring and allocating resource

consumption, in particular if the users are distributed across business units.

The infrastructure of application systems can be realized with different technology

bundles such as mainframe or client/server architectures (see section 2.1.5). We set the

scope for the following considerations to client/server architectures, firstly, because

they are predominant in today’s data centers and, secondly, because their distributed

and heterogeneous nature complicates the determination of usage-based cost shares (see

section 2.4).

3.2 Concept

3.2.1 IT Services from a Customer Perspective

In section 2.1.5 a model of Information and Communication Technology was introduced

(see figure 2.6). This model is technology-oriented and does not necessarily reflect a

customer’s perspective. For end users, the complexity of application systems, technology

bundles and software and hardware infrastructure entities is typically not transparent.

They perceive an application system largely as black-box, accessible through (graphical)

user interfaces and providing a number of business-related services. In the context of the

considered operational, interactive OLTP systems, possible kinds of services can be:

• Execution of a business transaction (e.g., “process order”, “update stock”, and

“add customer”)

• Access to an Information System (e.g., “retrieve order details”, “browse cata-

log”, and “check plant status”)

The customer perspective and the notion of services lead to an adapted and simplified

model of Information and Communication Technology (see figure 3.2). The users, grouped

into business units, access the services of application systems through (graphical) user in-

terfaces. An application system consists of at least one frontend and potentially several

50 3. Cost Allocation based on Resource Profiles

Software and

hardware

infrastructure

resources

Applications

and application

systems

Services

accesible

through user

interfaces

Users grouped

into business

units

(customers)

Figure 3.2: Customer Perspective on Information and Communication
Technology

backend applications. An application either runs on a shared or dedicated computing re-

sources and can be used in the context of one or more application systems. Furthermore,

an application can access other infrastructure components (e.g., computing, storage, print-

ing resources) over the communication networks.

The basic question, raised in the previous chapter (see section 2.1.4), is how costs for the

provision of infrastructure resources can be allocated to the business customers. Com-

mon approaches based on measured usage or direct costs have flaws or are not applica-

ble for shared infrastructure resources (see section 2.4). Taking into account customers’

objectives, e.g., comprehensibility, reproducibility, predictability or controllability (see

figure 2.11), services and their usage could be an appropriate basis for cost allocation.

This is not a new idea. In the survey of literature (see section 2.2), we already presented

two process costing approaches (see Fürer, 1994; Funke, 1999) and one IT Controlling

framework (see Scheeg, 2005) which put forward this concept. However, there are two

major difficulties; first, the definition of adequate services, and, second, the assignment of

costs to services. Concerning the first difficulty, a process model for service engineering

3.2. Concept 51

Service

Application

Hardware

Human

Resource

Non Process-

linked Service

Preliminary

Service

Process-

linked Service

Customer Bu-

siness Proc.
Resource

-supports

-consists

-consists

-supports

-supports

*

1..* 0..*

0..*

0..*

0..**

1

Figure 3.3: Meta-Model of IT Services (Source: Uebernickel et al., 2006b)

was recently proposed by Uebernickel et al. (2006a,b). The underlying meta model of IT

services is depicted in figure 3.3. Concerning the second difficulty, comprehensive method-

ologies to relate business services with infrastructure costs are still missing. An equal or

arbitrary allocation of costs to services would clash with the central objectives of IT Cost

Accounting and Chargeback such as causer-based cost allocation or cost proportionality

(see figure 2.11). This might lead to various acceptance problems:

• “Cost transparency is not achieved” (management)

• “Cost portions are arbitrary” (customers)

• “Usage forecasts are worthless for planning IT resources ” (IT unit)

To overcome this difficulty, we focus below on the development of a methodology

which bridges the gap between customer-oriented services and IT infrastructure resource

consumption.

3.2.2 Determining Resource Profiles for Services

In shared infrastructures, the resource consumption of users, services or applications is

a cost driver. It would be obvious to use metered consumption values as an objective

basis for apportioning infrastructure costs. Unfortunately, in heterogeneous client/server

environments metering and allocating resource consumption to users and applications is

difficult, if not impossible (see section 2.4). For services, as defined in the last section, it

is even worse as they have a business, but not necessarily a technical meaning. Hence,

measuring at runtime is not a feasible solution. Against this background, we propose

52 3. Cost Allocation based on Resource Profiles

an alternative approach that is based on the assumption that the invocation of a service

always results in the same resource consumption in the infrastructure. In other words:

The cumulated resource consumption of a service increases linearly

with the number of concurrent or subsequent service invocations.

If estimates for the expected consumption of the different resources and the number

of service invocations were known, this could constitute the basis of cost allocation keys.

The elaborate process of measuring and consolidating log data from different components

could be bypassed. Furthermore, these estimates would be valuable inputs for the align-

ment of business forecasting and IT Capacity Planning.

In the following, we propose a methodology to estimate for a service i a so-called resource

profile, p, which is defined as a vector of n consumption values pij with j = 1...n denoting

the different resources1. The profile then multiplied by the number of service invoca-

tions of a certain customer should result in an estimator for the resource consumption

of this customer. The number of service invocations per customer can be traced by the

analysis of business records (“Execution of a business transaction”) or by the authoriza-

tion/authentication infrastructure (“Access to an Information System”).

3.2.3 Resources in a Client/Server Environment

We propose categorizing resources according to the base functionalities of Information and

Communication Technology: Communication, Computing and Storage (see figure 2.6).

The resource profiles include estimates for resource consumption which is directly corre-

lated with the actual service usage. They are not applicable to usage-independent resource

consumption, such as permanently reserved network, server or disk capacities. Such re-

sources are not shared, but dedicated to specific applications or business units.

For each resource in a resource profile an appropriate usage variable (measurement point)

and a consumption metric (measurement unit) is required. They should represent the bot-

tleneck of the resource, where increasing usage drives new investments. For the considered

application systems (see section 3.1), we propose the following measurement points and

units:

1 A list of symbols is provided in the appendix (see section A.1).

3.2. Concept 53

Communication: Amount of transferred data [bytes] The amount of transferred

bytes reflects usage and is equally applicable to networking and communications equip-

ment in Local Area Networks, Wide Area Networks and the Internet.

Computing: Processing time [seconds] For computing resources we propose in-

cluding estimates of processing times at the different servers in the resource profiles. As

measurements of processor times on different hardware are not directly comparable, they

must be normalized, e.g., by using standard performance benchmarks (see SPEC, n.d.a).

Memory is often also considered as a scarce resource. However, the maximum amount

of physical memory a server can allocate on a machine is typically dedicated at startup

(e.g., by setting a range for virtual memory) and it is possible to take this value as the

basis for cost allocation.

Storage: Amount of transferred data [blocks] We exclude disk space from our

considerations, as it is usually allocated a priori to a specific application or a database.

Besides space constraints, the storage I/O of database servers is a typical bottleneck in

OLTP systems. We propose using the amount of transferred data for the resource profiles,

as the number of I/O operations may be dependent on the actual workload and factors

like the disk fragmentation.

The proposed categories, resources, usage variables and consumption metrics are typical

examples and can be adapted to the actual conditions. Fürer (1994) and Funke (1999)

propose a similar categorization for their process costing approaches (see section 2.2.1.1).

They group resources into activity centers and determine for each activity center a cost

driver. While we are targeting distributed client/server environments, they focus on cen-

tral mainframe architecture. They propose the category “Output” with printing and

archiving resources, but do not explicitly consider “Communication”.

3.2.4 Cost Allocation by Services and Resource Profiles

Although the categorization of resources is related to the activity centers of process costing

approaches, the concept of allocating costs by resource profiles and services is not depen-

dent on a specific costing system. It is applicable for traditional cost accounting (full and

variable costing) as well as for process- or activity-based costing approaches. Based on

54 3. Cost Allocation based on Resource Profiles

IT

Infrastructure

costs

Customer

1

Communication

WAN

LAN

…

Computing

Unix

Linux

…

Storage

SAN

NAS

…

p41

p42

p43

p44

...

Service

4

p31

p32

p33

p34

...

Service

3

p21

p22

p23

p24

...

Service

2

p11

p12

p13

p14

...

Service

1

Resource

profiles

(1) Cost identification (2) Cost allocation to services (3) Cost allocation to customers

Customers / users

cost centers / units

business processs

Services

Customer

2

Customer

3

Customer

4

Customer

5

IT cost centers / units

Figure 3.4: Cost Allocation by Services and Resource Profiles

the overall process structure of IT Cost Accounting and Chargeback (see section 2.1.3),

we propose a three-stage approach for apportioning infrastructure costs:

1. Cost identification. Direct and indirect infrastructure costs are allocated to the

accounts of the different resources (e.g., Unix server operations). These accounts

may be organized as cost centers or as cost units (IT products). Each resource

has a consumption metric (e.g., processor time). Based either on forecasted or on

past consumption levels, the costs per consumption unit (e.g, processor second) are

calculated.

2. Cost allocation to services. For each service, a resource profile which contains

the estimated consumption at the different resources (e.g., processor time Unix,

processor time Linux, number of SAN I/Os) is determined. By multiplication with

the cost per consumption unit, the cost shares per service are calculated.

3. Cost allocation to customers. Depending on the costing approach, the infras-

tructure costs are finally allocated to cost centers (e.g., business units), to cost

3.3. Model Hypotheses 55

units (e.g., products) or to business processes. Therefore, the measured, forecasted

or estimated number of service invocations is multiplied by the cost shares of the

services.

The concept is illustrated by figure 3.4. In the following we focus on the second stage

(“Cost allocation to services”) and, in particular, on the development of a methodology

for the determination of the resource profiles.

3.3 Model Hypotheses

In section 3.2.2 we first introduced the concept of resource profiles: A resource profile p

for a service i consists of n values pij, which are estimates of the expected resource

consumption of service i at resource j. Our considerations were based on the following

hypothesis:

1. The cumulated resource consumption of a service increases linearly with the number

of concurrent or subsequent service invocations.

This hypothesis focuses on the increase of the resource consumption. To derive a model

which describes the total observed resource consumption, we extend the first hypothesis

as follows:

2. The total resource consumption is composed of the resource composition of back-

ground activities and of the resource consumption caused by service invocations.

3. The resource consumption caused by service invocations consists of a load-independent

portion and a load-dependent portion.

Background activities, triggered for instance by operating systems, system manage-

ment tools or performance monitors, cause a certain amount of resource consumption,

even when there is no service workload on the resources. Consequently, this resource

consumption should not be included in the resource profiles.

The resource consumption per service may depend to a certain degree on the actual load

at the resources. Those effects are described for Communication, Computing and Stor-

age resources. In the following, we illustrate such behavior with an example from each

category.

56 3. Cost Allocation based on Resource Profiles

• In Ethernet networks, the collision rate depends on the utilization of the network

segment. If a packet collision occurs, the sender retries the transmission and thus

raises the number of transferred bytes (Friedman and Pentakalos, 2002, p. 530).

However, today’s network technologies minimize this effect.

• A certain amount of the processor time triggered by service invocations is required

for system activities, such as context switching or memory management. The effort

for these overhead activities may depend on the actual system load. For instance,

as the number of jobs in the memory increases, the work required by management

routines also increases (Menascé et al., 2004, p. 151).

• Rising numbers of requests to hard disks may enable the scheduling mechanisms of

the disk drives to reduce the average seek distance and thus increase the effective

service rate (Padhye et al., 1995).

While it is unquestionable that those effects exists, it is unclear what their relative

impact on the total resource consumption is.

We summarize the three hypotheses in the following model. The parameter yij describes

the total consumption of resource j during the execution time t of x concurrent or sub-

sequent invocations of service i. The parameter aj indicates the resource consumption of

the background activities, bij the load-independent and uij the load-dependent resource

consumption caused by the service invocations. However, for the resource profile we re-

quire one estimate pij of the expected resource consumption, independent of the actual

utilization of the resource j. We therefore define pij as sum of the baseline consumption bij

and of uij as constant approximation of the load-dependent resource consumption uij:

pij = bij + uij (3.1)

Assuming that the utilization of the resources varies, the first and the third hypotheses

are contradicting. We argue that the approximation and thus the determination of esti-

mates for the resource consumption is justified if bij >> uij or uij ≈ 0, i.e. the resource

consumption of a service invocation is not or is barely dependent on the actual workload.

The total consumption yij can then be described as follows:

yij(x, t) = aj(t) + xpij (3.2)

3.4. Requirements on Resource Profiles 57

The requirements from this model on a software tool supporting the estimation of

resource profiles are twofold. First and foremost, it should enable the determination of

the values pij. Secondly, it should enable a verification of the hypotheses required to

construct the model, namely the composition of the total resource consumption and the

constant approximation of the load-dependent resource consumption.

3.4 Requirements on Resource Profiles

Resource profiles for services are not readily available and the viability of the whole ap-

proach stands and falls with their determination. From the overall requirements and

objectives for IT Cost Accounting and Chargeback (see section 2.3) and the model hy-

potheses (see section 3.3), we derived four requirements for resource profiles and the

profiling process, which we consider as critical to the practical success of the concept.

Requirement 1: Accuracy The resource profiles should be unbiased in the sense that

on average it should not over- or underestimate the true resource consumption. If, from

the perspective of the stakeholders, the resource profiles are not reliable, it might lead to

various acceptance problems (see section 3.2.1) and questioning of the whole approach.

This overall requirement has two major implications. On the one hand, instruments to

validate the resource profiles should be available. On the other hand, potential sources of

bias should be evaluated and, if possible, removed. We identified three major reasons for

bias in resource profiles, formulated as sub-requirements in the following.

• Requirement 1.1: Accurate measurement and analysis tools Inaccuracies

of the measurement and analysis tools may introduce a systematic error or also lead

to high sample variance.

• Requirement 1.2: Linear resource consumption The model hypotheses formu-

lated in section 3.3 must be fulfilled. If load-dependent behavior or other nonlineari-

ties in the resource consumption affect a substantial share of the total consumption,

the predictive accuracy may become insufficient for resource profiles.

• Requirement 1.3: Correct assumptions about user behavior If a service

requires interaction or parameters entered by the users, wrong assumptions about

the user behavior may lead to distorted resource profiles.

58 3. Cost Allocation based on Resource Profiles

Requirement 2: Consistency The concept has been proposed for resolving the dif-

ficulties of usage-based cost allocation in heterogeneous and distributed client/server in-

frastructures. The estimation of resource profiles therefore should be in the same manner

applicable to various kinds of hardware and software resources. Any dependencies on

vendors or technologies should be avoided.

Requirement 3: Capacity Planning The idea behind resource profiles is to bridge

the gap between the business and the IT units’ requirements on a cost allocation approach.

Hence, it should be possible to translate the forecasted service usage of the business units

into IT resource requirements and thus support the IT Capacity Planning.

Requirement 4: Operating Efficiency The estimation should cause little extra work

and integrate well with existing IT Service Management processes. If the determination

of resource profiles is too costly, the advantages of a comprehensive consumption-based

and customer-oriented cost allocation are outweighed by the existing approaches (see sec-

tion 2.4).

These requirements are used below as a basis for the development and evaluation of

an approach for the determination of resource profiles.

3.5 Software Support

In the previous section we specified a number of requirements on resource profiles and on

the profiling process. We now focus on the development of a software toolkit realizing the

concept. We start with a brief overview of existing tools and then describe the profiling

process and the implementation of the Service Profiler.

3.5.1 Tool Categories

A broad range of tools for testing and profiling applications, simulating end-user behavior

and metering performance and resource consumption is available on the software market.

In the following, we briefly discuss three tool categories, which we consider as relevant in

the context of resource profiles.

3.5. Software Support 59

Profiling Tools Profiling tools focus on the prevention or on the root cause analysis of

performance problems. They typically provide a detailed breakdown of processor time and

memory allocation. Overall, this kind of information is a valuable input for the estimation

of expected resource consumption, but there are two practical restrictions which hamper

the application of standard profiling tools for the determination of resource profiles. First,

profiling tools are mostly technology- or vendor-dependent, e.g., Java/J2EE (see JavaPer-

formanceTuning, n.d.), .NET (see Schwichtenberg, n.d.) and different ERP/CRM systems

(see Symantec, n.d.). In an heterogeneous environment, different tools and a consolidation

of measurements would be required. Second, profiling tools mainly focus on information

required for optimization or debugging. They analyze the resource consumption and be-

havior of technical procedures and entities such as objects, methods, requests, transactions

or applications. Typically, this does not match with a customer’s perception of services.

Overall, profiling tools are not appropriate for the determination of the required kind of

resource profiles, but recent developments point to an interesting direction.

“Application transaction profiling software tools prepare a profile for appli-

cation transactions. This profile consists of resource use across all the IT

components these transactions traverse through, which is then correlated with

end-user response time, individual component response time and other param-

eters to improve root cause analysis, performance management and capacity

planning. These tools can be used with custom and packaged applications, and

they use business policies during transaction execution to modify execution

behavior.” (Gartner, 2006, p. 10)

The objective of such tools (see for instance Bristol, n.d.; OpTier, n.d.) is to enhance

the capabilities of IT operations staff to maintain required service levels. The scope and

functionalities goes far beyond cost allocation. According to the analysis of Gartner it

is an emerging area, but it is still too early from a technology maturity perspective to

successfully implement these tools (Gartner, 2006, p. 10).

Load Test Tools In load tests the behavior and the performance of application sys-

tems under different workload levels is analyzed. A number of commercial (see Borland,

n.d.; Mercury, n.d.a) and open-source (see Aberdour, n.d.) load test toolkits are avail-

able. Typically, such a toolkit consists of three components: A tool for recording real

user behavior, a load generator which replays the user behavior and thus simulates tens,

60 3. Cost Allocation based on Resource Profiles

hundreds or even thousands of virtual users, and a tool for analyzing the results. Load

test tools provide elaborate means to simulate real user behavior. However, the analysis

focus lies on the performance experienced by the virtual users and on the utilization of

the resources. It does not calculate the total resource consumption or the consumption

per user or per request.

Performance Monitors The resource consumption of server hardware components

(e.g., processors, disks, memory, network interfaces) can be monitored either by custom

hardware monitors (see for instance Intel, n.d.) or by using the monitoring facilities of

the operating systems. They can be accessed via application interfaces by third-party

monitors or by using standard operating systems tools such as perfmon (Windows), sar,

iostat or vmstat (Unix/Linux). The information is used, for instance, for systems manage-

ment, error detection, performance analysis, consumption metering and accounting (see

for instance Krüll, 1997). The agents of the accounting and billing software introduced

in section 2.4, as well as most of the profiling and load test tools presented above rely on

these monitoring facilities. The advantage of Unix, Linux and Windows operating sys-

tems is that they offer a broad range of counters which provide comprehensive information

about activities at the different hardware components. However, in contrast to the RMF,

SMF and subsystem measurement tools available on MVS mainframes (see IBM, n.d.b

and IBM, n.d.c), they are limited to this component-oriented view and lack transaction or

request-oriented data (see Buzen and Shum, 1996, for a comparative analysis). They do

not relate the observed resource consumption with user behavior or application activities

and thus are not directly applicable to the determination of resource profiles.

3.5.2 Profiling Process

For the determination of resource profiles, we propose combining the strengths of a load

test tool with local performance monitors. The basic idea is to use a load generator for

systematic service invocations and to meter at the same time the resource consumption

at the different components. However, as neither the load test tool nor the performance

monitors explicitly determines the resource consumption per service invocation, an addi-

tional analysis toolkit is required, which correlates the data and calculates the resource

profiles.

Overall, the profiling process can be broken down into the following steps:

1. The application system is deployed in a dedicated test environment. Such environ-

ments with minimal or no differences to the production environments are typically

3.5. Software Support 61

Service 1

1 user

Service 1

2 user

Service 1

n user

Service 2

1 user

Background activities

no service workload

R
e
s
o
u
rc

e
 c

o
n
s
u
m

p
ti
o
n

C
o
m

m
u
n
ic

a
ti
o
n
,
C

o
m

p
u
ti
n
g
,
S

to
ra

g
e

time

bytes

%

blocks

Figure 3.5: Profiling Process

used in larger organizations for approval tests2 prior to the roll-out of a new soft-

ware release. It is important to isolate the resources in a test environment as far

as possible from the influence of other application systems in the network. Their

activities could distort the measurements.

2. The service invocations are recorded in load test scripts. The different services have

to be defined in cooperation with the customers and, if possible, based on historical

usage data. If a service requires multiple user interactions and no information about

the expected user behavior is available, different user profiles can be recorded to

determine not an exact value, but an interval for the expected resource consumption.

3. The load generator replays the script and thereby successively raises the number of

concurrent service invocations, until the first component reaches its bottleneck. The

process is depicted in figure 3.5. A measurement interval starts with the first of a

set of concurrent service invocations and ends when all these service invocations are

2 also known as acceptance tests (Office of Government Commerce, 2002a, ch. 5.3.4)

62 3. Cost Allocation based on Resource Profiles

completed. The time between two measurement intervals is represented by grayed-

out periods. During the whole time, performance monitors at the involved servers

meter the incurred resource consumption. As at any one moment only one kind of

service is active, resource consumption that is hardly traceable during regular oper-

ations (e.g., network traffic) can also be allocated. In figure 3.5 the load test starts

with the first service and one virtual user (x-axis). After the service invocation has

been completed, the load generator waits a certain time to make sure that the re-

sources have finished the work associated with the initial service invocation. It then

starts an additional virtual user and initiates two concurrent service invocations.

The incurred resource consumption (y-axis) during the measurement interval rises

accordingly. The process is continued until for n concurrent users the first resource

reaches its bottleneck. Then it is restarted with the second service.

4. After the load test the log data of the performance monitors and of the load tests

tools are correlated. For the data analysis it is assumed, first, that the measured

resource consumption is composed according to the model introduced in section 3.3

and, second, that the length of the measurement interval t remains constant for each

service i during the load test. Thus, the function 3.2 can be simplified as follows:

yij(x) = aij + xpij (3.3)

The analysis component calculates the values pij in two major steps. First, it

determines from the log data the total resource consumption values yij for each

measurement interval. Second, it applies linear regressions to the results and derives

the values pij as slopes of the regression lines. They reflect the average resource

consumption per additional user. As the measurements were obtained from the full

load spectrum (“until the first component reaches its bottleneck”), possible load-

dependent effects are factored in. We thus consider these values to be estimates for

the expected resource consumption of a service invocation.

To validate the process and the underlying hypotheses, we combined a number of

off-the-self and custom software components. An overview of the software and detailed

descriptions are presented in the following sections.

3.5. Software Support 63

3.5.3 Software Overview

Three kinds of tool are required for the process: A load test tool to simulate user behavior,

performance monitors to meter the resource consumption at the involved components,

and an analysis component to calculate the resource profiles. For the first and second

purpose, we chose commercial off-the-shelf tools; for the data analysis we developed a

custom software package.

3.5.3.1 Load Test Tool

As the load test tool, we chose Mercury LoadRunner (see Mercury, n.d.a). The choice

was based on the following considerations.

• The Mercury LoadRunner is the leading product with an estimated market share

of 77 % in the load testing market worldwide (Hamilton, 2005 cited by Mercury,

n.d.b).

• It supports around 30 protocols for different front- and backend interfaces, including

HTTP, J2EE, .NET as well as protocols for major ERP/CRM systems (see Mercury,

n.d.c). Thus, we obtain a broad coverage of existing application systems.

• The tool has been used for load tests at our industrial partner, the BMW Group.

We could therefore directly use the software solution for experiments with real-word

applications (see section 3.6.3).

We describe the structure and the application of the different LoadRunner components

in section 3.5.4. The process can be realized in the same manner with other load tests

tools, as long as they are able to group multiple client interactions to services and support

simultaneous invocations of such user-defined services.

3.5.3.2 Performance Monitors

For metering the resource consumption, we decided to rely on standard operating system

tools. For Unix and Linux servers we chose the System Activity Reporter (sar) (see

Godard, n.d.; Hewlett-Packard, n.d.b) and for Microsoft Windows servers the Performance

Monitor (perfmon) (see Microsoft, n.d.b). The usage of such standard tools has the

following advantages:

64 3. Cost Allocation based on Resource Profiles

• Support for performance monitors of the Windows, Unix and Linux operating sys-

tems results in an almost complete coverage of client/server architectures.

• Each tool provides counters for all relevant system resources: Network, processors

and disks (see section 3.2.3).

• As there is no additional software installation required, new resources can be easily

integrated.

• The measurements are non-intrusive and impose no requirements on applications

and server software.

The operation principles of the three tools are similar. First, the user selects on

the command line (sar) or by using a graphical user interface (perfmon) the relevant

counters and determines the measurement interval and log runtime. According to these

specifications the tools then record the system behavior in log files. The Unix and Linux

tool sar creates binary files which can be read out and transformed to space separated text

files. The Windows tool perfmon directly creates comma-separated text files. Against the

background of resource profiles, the tools have the following drawbacks:

• The minimal measurement interval is one value per second. This might not be

sufficient for short-running services.

• The measurement points and units of the different tools are not standardized. Data

normalization is required for a comparative analysis.

• As the performance monitors are totally decoupled from the load generator, the

local system times must be exactly synchronized.

Whether these kinds of performance monitors are appropriate for the determination

of resource profiles is validated by a set of experiments (see section 3.6).

3.5.3.3 Service Profiler

For data analysis and calculation of resource profiles we developed a custom software tool-

kit, the Service Profiler. It consists of three separate components: Import, Analyze and

Visualize (see figure 3.6). The software is implemented in Java 1.5. Database manage-

ment systems Oracle, MySQL and Microsoft Access are supported. In the following, we

first provide an overview of the toolkit and then, in section 3.5.5, detail the determination

of the resource profiles.

3.5. Software Support 65

.txt

.csv

.mdb

.xls
Database

Oracle

MySQL

MS Access

Unix/Linux

System Activity Reporter

sar

Microsoft Windows

Performance Monitor

perfmon

Mercury Interactive

Loadrunner 8.0

Analysis Database

Import

Analyze

Visualize.eps

Service Profiler
Java 1.5

Additional information

about measurement points

MS Excel Spreadsheet

Result Diagramms

Interactive application

windows and graphic files

.xml
Configuration

parameters

Figure 3.6: Overview of the Service Profiler

Import The Import component parses the different kinds of log files (see figure 3.6) and

consolidates the measurements in the database. In doing so it standardizes the different

time formats and resolves data inconsistencies caused by recording errors. Sometimes two

subsequent measurements carry for instance the same timestamp or string values such as

“nan” (not a number) or “inf” (infinity) are recorded instead of numerical values.

Analyze The Analyze component first enriches the measurement points in the database

with additional context information which could not be retrieved from the log files. It then

normalizes the data, for example by converting values measured in milliseconds to seconds.

Following these preparatory activities, the tool groups concurrent service invocations to

measurement intervals and determines for each measurement interval the total resource

consumptions. By means of a linear regression, the Analyze component finally calculates

the values pij. The whole process is detailed in section 3.5.5.

Visualize The Visualize component supports three major activities: Report genera-

tion, consistency checking and performance analysis. Therefore it offers different kinds of

66 3. Cost Allocation based on Resource Profiles

parameterizable analysis queries. The results are depicted in charts, generated by means

of the open source library JFreeChart (see Object Refinery, n.d.). The charts are either

written to graphic files or displayed in interactive applications windows. Overall, the

following types are available:

• Report Generation The final resource profile is presented in bar charts sorted

either per service or per resource.

• Consistency Checking Besides the resource profiles, major intermediate results

can also be visualized. This facilitates the root cause analysis of non-linearities and

inconsistencies. The tool supports, for instance, the analysis of autocorrelations by

x/y-line charts comparing the total resource consumption with the regression lines.

• Performance Analysis The raw measurements of the performance monitors and

the LoadRunner can be combined in one time series chart (similar to figure 3.5).

Thus, the user and the system behavior can be reconstructed and analyzed at each

point in time.

The charts, used in the following chapters to illustrate experimental results, are en-

capsulated postscript files, generated by the Visualize component.

3.5.4 Mercury LoadRunner

The Mercury LoadRunner consists of three major components: Virtual User Generator

to record and edit the test scripts, Controller to manage the load tests and Analysis

to examine the test results. In the following, we describe how these applications are

instrumented for the determination of resource profiles.

3.5.4.1 LoadRunner Virtual User Generator

In load tests, the behavior of human users is emulated by virtual users (Vusers). The

actions a Vuser performs are specified in a Vuser script. The LoadRunner tool for creating

and editing scripts for server-based application systems is the Virtual User Generator

(VuGen). Overall, the LoadRunner toolkit supports more than 30 different frontend and

backend protocols (Mercury, n.d.c), or, in other words, more than 30 types of Vusers. The

structure and the content of the scripts vary accordingly. While database scripts contain

SQL calls and resemble C, Java-Corba scripts are written in a Java-based language. The

3.5. Software Support 67

Figure 3.7: Screenshot: LoadRunner Virtual User Generator

screenshot in figure 3.7 shows a HTTP/HTML script in the edit mode and a secondary

window with a list of alternative protocols. For all types of Vusers, the script development

process is similar. It can be outlined as follows (Mercury, 2004, p. 6):

1. Record a basic Vuser script. VuGen automatically creates a basic script by

recording the interactions of a real user with the application system.

2. Enhance/edit the Vuser script. Typically, a basic script must be revised, for

instance to integrate functions which guarantee a proper handling of dynamically

created data (e.g., session cookies), to generate arbitrary form inputs or to adapt

the think times between two activities.

3. Configure runtime settings. In the runtime settings further parameters, such

as the simulated network speed, the browser behavior or the run logic of the script,

can be adjusted.

68 3. Cost Allocation based on Resource Profiles

4. Run the Vuser script in stand-alone mode. Once the configuration is com-

pleted the script can be readily tested within the VuGen application.

5. Integrate the Vuser script. If the test was successful, the script can be trans-

ferred to the Controller and integrated into a load test scenario (see next section).

The scripts for the determination of resource profiles are generated in the same manner.

First, VuGen records the service invocations of a human user in a basic script. During

the following revision of the script, the following LoadRunner functions are inserted:

• lr_start_transaction() ... lr_end_transaction()

The LoadRunner concept of transactions is used to mark the beginning and the

end of service invocations. Thus, services can comprise single requests as well as

complex user interactions. The start and the execution time of each transaction is

written to the LoadRunner result file. This information is afterward analyzed by

the Service Profiler (see section 3.5.5).

• lr_rendezvous()

Rendezvous points enable a runtime synchronization of concurrent active Vusers.

When a Vuser arrives at a rendezvous point, it waits until all the other Vusers

currently executing the same script arrive. When complete, they simultaneously

perform the next task in the script. Typically, rendezvous points are used to sim-

ulate heavy user loads and load peaks. We insert rendezvous points before each

transaction and thus realize simultaneous service invocations.

The concept of transactions and rendezvous points is applicable to all protocols sup-

ported by the LoadRunner. We illustrate it below with a section of a HTTP/HTML

script. Thus, we consider as service “search” a single request to a search engine of an

example application.

1 (...)
2 lr_think_time(7);
3 lr_rendezvous("search");
4 lr_start_transaction("search");
5

6 web_submit_data("search.screen",
7 "Action={url}/exampleApplication/search.screen",

3.5. Software Support 69

8 "Method=GET",
9 "EncType=",

10 "RecContentType=text/html",
11 "Referer={url}/exampleApplication/main.screen",
12 "Snapshot=t60.inf",
13 "Mode=HTTP",
14 ITEMDATA,
15 "Name=keywords",
16 "Value={random_string_value}",
17 ENDITEM,
18 LAST);
19

20 lr_end_transaction("search", LR_AUTO);
21

22 lr_think_time(7);
23 (...)
24

During the profiling process, subsequent service invocations are framed by think times

with no Vuser actions. Thus, potential impact from precedent service invocations on

the resource consumption in the measurement interval should be excluded (see section

3.5.2). In the above script, these think times are 7 seconds (lines 2 and 22). After

the think time, the concurrent active users meet at a rendezvous point (line 3), and,

when complete, simultaneously start the transaction (line 4). In the example script, the

transaction (service) consists only of a single HTTP request (lines 6 to 18). The strings

in braces are manually inserted parameters, which are set at runtime. The url (line 11

and 7) is read from a configuration file, to enhance script portability. The search string

is generated randomly (line 16), to avoid unrealistic cache effects.

Once the scripts are created and tested, they can be integrated into load test scenarios,

managed and executed by the LoadRunner Controller.

3.5.4.2 LoadRunner Controller

The LoadRunner organizes load test configurations into scenarios. The scenarios are cre-

ated and executed by the Controller. Each scenario contains a list of computers used for

load generation, references to the integrated Vuser scripts, Vuser schedules and runtime

settings. During the execution of a scenario, the Controller manages the load generators

and provides an online console for performance monitoring. The scenario design depends

on the load test objectives. Typical objectives are the identification of bottlenecks, deter-

mining the system capacity, checking system reliability and error handling or analyzing

70 3. Cost Allocation based on Resource Profiles

Figure 3.8: Screenshot: LoadRunner Controller

the system behavior in overload situations. For the determination of resource profiles, the

following aspects must be considered:

1. For an unambiguous allocation of incurred resource consumption, only one kind of

active service is allowed at each moment during the load test.

2. As the average resource consumption is calculated by a linear regression over mea-

surements at different workload levels, the Controller must successively raise the

number of concurrent service invocations, until the first component reaches its bot-

tleneck.

3. Interactive services include think times of users. The length of these think times

can be generated randomly. This might be reasonable in situations where load

peaks should be avoided. However, the parameters of the random generator must

be adjusted in a way that the total length of the measurement intervals remains

approximately constant (see section 3.5.2).

3.5. Software Support 71

Figure 3.9: Screenshot: LoadRunner Analysis

The screenshot in figure 3.8 shows an example Vuser schedule. During the load test

the Controller successively raises the number of Vusers from 1 to 30. A group of Vusers is

executed as soon as the previous group has finished the execution. The synchronization

within a group of Vusers is performed by the rendezvous points.

The Controller also manages the execution of the scenarios. During a load test various

kinds of online monitors are available to control performance counters of Vusers and

involved resources. As soon as the test has finished, the data can be transferred to the

LoadRunner Analysis tool.

3.5.4.3 LoadRunner Analysis

The LoadRunner Analysis enables a detailed examination of load test results. The pri-

mary focus lies on Vuser performance metrics (e.g., transaction response times, number

of failed transactions) and measurements of the load generators (e.g., number of open

connections, data throughput). Additionally, the performance of the involved computing

and network resources can be analyzed. The data is obtained either manually by file

imports or automatically from the measurements of online monitors activated during the

72 3. Cost Allocation based on Resource Profiles

Normalized data of the Raw measurements of the performance monitors

Resources Service Profiler Linux Unix Windows

points units sar sar perfmon

Network
Transferred

Bytes
bytes rxbyt/s + txbyt/s n/a Bytes Total/sec

Disk

Disk Time percent %util %busy % Disk Time

Average Queue
Length

number avgqu-sz avque
Avg. Disk Queue

Length

Average
Transfer Time

seconds await / 1000
(avserv + avwait)

/ 1000
Average Disk
sec/Transfer

Read/write
Blocks

bytes
rd sec/s +
wr sec/s

blks/s
Disk Bytes/sec /

512

Processor

Processor Time percent %user + %system %usr + %sys % Processor Time

User Time percent %user %usr % User Time

System Time percent %system %sys
% Privileged

Time

Processor
Queue Length

number runq-sz runq-sz
Processor Queue

Length

Table 3.1: Rules for Raw Data Normalization

load test (see previous section). However, as the remote monitoring intervals cannot be

set lower than 3 s (Windows) and 6 s (Unix, Linux), these resource consumption counters

cannot substitute the local performance monitors. The Analysis tool displays the infor-

mation in interactive graphs (see figure 3.9 for an example) and generates reports in the

form of HTML or Microsoft Word documents. Furthermore, the raw data can be copied

to spreadsheet applications for custom analysis. Beyond this manual solution, the Load-

Runner provides no documented interface which would enable third-party applications to

access the raw data. Fortunately, the Analysis tool internally uses the Microsoft Access

database format for data storage. The Service Profiler connects to this database and

can thus read out the timestamps of the transactions for the determination of resource

profiles.

3.5.5 Resource Profile Determination

In section 3.5.3.3 we presented an overview of the Service Profiler. In the following,

we focus on the Analyze component and detail the process for the determination of the

resource profiles. We assume that the Import component has successfully transferred the

raw data into the database. The Analyze component then conducts the following steps:

1. Addition of context information The measurement points are first enriched

with additional context information which could not be retrieved from the log files.

3.5. Software Support 73

For instance, the Import component might have extracted from a sar-log file the

server name (machine) and a data column with the title %usr. The measurement

point is now completed with the information that %usr stands for the percentage of

time (unit) a processor (object) spent in user mode (counter) and with information

about the server configuration such as the number of processors (instances) and a

performance index. The context information is kept and administered in a Microsoft

Excel spreadsheet. It also contains the information for which measurement points

consumption estimates should be calculated and which are intended for performance

analysis only.

2. Normalization of measurements Neither measurement points nor measurement

units provided by the different performance monitors are standardized. For a com-

parative performance analysis and the determination of resource profiles, normalized

values are required. A normalization is not always trivial. Table 3.1 illustrates how

the Service Profiler normalizes the raw data by example of some major measure-

ment points3. The data conversion rules are specified in the spreadsheet introduced

above.

3. Determination of measurements intervals The raw data read out from the

LoadRunner database contains for each transaction an entry with the transaction

name, as specified in the script (see section 3.5.4.1), the transaction start time

and its execution time. The Service Profiler consolidates this data and determines

the measurement intervals together with the corresponding numbers of concurrent

service invocations. The major difficulty thereby is the identification of outliers.

During the load test it might happen that transactions fail, require extraordinary

long execution times or that virtual users miss one or more rendezvous points. Dur-

ing normal load tests sporadic errors of this kind are typically negligible. However,

in the present case they can lead to distorted or overlapping measurement intervals

and thus reduce the quality of the resource profiles. The Service Profiler implements

several analysis functions which try to identify such outliers and exclude ambigu-

ous measurement intervals from the subsequent resource profile calculations. The

required threshold values are specified in the configuration files.

3 For a detailed description of the counters in table 3.1, the interested reader is referred to the manual
pages of the performance monitors (Linux sar: Godard, n.d., Unix sar: Hewlett-Packard, n.d.b,
Windows perfmon: Microsoft, n.d.b).

74 3. Cost Allocation based on Resource Profiles

4. Correlation of transactions and resource consumption The measurement

intervals, as determined from the raw transaction data, are then correlated with

the measurements of the performance monitors. Each measurement value in the

database is supplemented by the transaction and the number of virtual users, which

were active at the moment the measurement was taken. The different time granu-

larities of the measurements must thereby be considered. Start and response times

of transactions are measured in milliseconds. The performance monitors report av-

erage values of the resource consumption during the last second. Furthermore, the

sar tools (Unix, Linux) round the timestamps. Hence, a value measured at the point

in time 1 could include the resource consumption between 0.0 and 1.0 as well as

between 0.9 and 1.9. The Service Profiler uses by default the following formulas for

determining the measurement interval for the resource consumption.

[�tstart + 0.5�; �tend + 0.5�] (3.4)

The parameter tstart represents the exact start time of the first and tend the end

time of the last transaction of the measurement cycle. The values are measured

in milliseconds. The conversion to seconds intervals described above has been well

tried and tested in several experiments. Whether it was successful, i.e., whether the

determined intervals cover the incurred resource consumption, can be controlled by

time series charts provided by the Visualize component (see section 3.5.3.3).

We illustrate the correlation of transactions and resource consumption measure-

ments with two examples4. Figure 3.10 depicts a 30 second excerpt of a load test in

a time series chart. In the lower diagram the raw data of the LoadRunner database

is displayed. Each arrow indicates the start (black arrows) or stop (gray arrows)

of a transaction. The horizontal line shows the number of concurrent active Vusers

(lower y-Axis). In the upper diagram, measurements of the performance monitors

are displayed (here: the utilization of an application server). The white areas in both

diagrams indicate the different measurement intervals. The gray areas in-between

represent the think times the load generator waits to make sure that the resources

have finished the work associated with the previous service invocation (here: 7 sec-

onds). In figure 3.10 the LoadRunner transactions include only single client re-

4 The experimental setup and the example applications are detailed in section 4.1. The LoadRunner
scripts are provided in the appendix (see section A.5).

3.5. Software Support 75

Figure 3.10: Example: Services including single Client Requests

quests (“search.screen”, “category.screen”, “product.screen”, “item.screen”). In the

depicted time period the transactions are simultaneously started by 46 Vusers. The

application system always requires less than one second to process all 46 requests

(lower diagram). However, due to the inaccuracies of the performance monitors

described above, the Service Profiler allocates the incurred resource consumption

within a 2 or 3 second interval to the transactions.

In the second example the whole application is considered as single service and

resource profiles are now determined for different kinds of user behavior (user pro-

files). Figure 3.11 shows a 4 minute excerpt of a load test and three measurement

cycles. During the depicted time period 40, 50 and 60 concurrent Vusers simulate

a “power shopper” behavior. The corresponding LoadRunner transaction includes

multiple requests to the application system. To avoid load peaks the Vusers wait a

random time between 0.5 and 1.5 seconds between two subsequent requests. Again

the transactions start synchronously (black arrows), but the random think times

result in different execution times (gray arrows). The transaction measurement

76 3. Cost Allocation based on Resource Profiles

Figure 3.11: Example: Services including multiple Client Requests

interval begins with the start of the first transaction and ends when the last trans-

action of a measurement cycle finishes. The measurement interval for the resource

consumption is calculated as in the previous example. In the upper diagram an

increase of the resource consumption along with the number of concurrent transac-

tions is visible. During the periods with no Vuser activities (here: 20 seconds) the

resource consumption of background activities can be observed.

5. Calculation of resource consumption The calculation of the resource consump-

tion per service invocation is implemented according to the process description in

section 3.5.2 (step 4).

First, for all services i and resources j the values yij(x) are calculated. Therefore,

the consumption values during the measurement intervals are summed up. We il-

lustrate this step with the example in figure 3.10. During the first measurement

3.5. Software Support 77

Figure 3.12: Example: Linear Regression

interval the consumption values 0 %, 39 % and 0 % were observed5. Hence, the Ser-

vice Profiler calculates for the service “search.screen” and the resource “Application

server - Processor - all” the value y(46) = 0 + 0.39 + 0 = 0.39.

In a second step, a linear regression is applied to the results. Thus, the slopes of the

regression lines pij, considered as average resource consumption values per service

invocation, and the correlation coefficients rij, considered as quality measures, are

determined. The example introduced above is supplemented in figure 3.12 by the

remaining values y(x) for x = 1, 2, ..., 70 and the regression line as determined by

the Service Profiler (p = 0.007, r = 0.984).

6. Preparation of results Finally, the resource profiles are prepared for their further

usage (e.g., cost accounting, capacity planning). This includes, first, a normalization

of the processor times of different servers by the number of processors and perfor-

5 39% average processor utilization during an interval of 1 second is equal to 0.39 seconds processor
time.

78 3. Cost Allocation based on Resource Profiles

Figure 3.13: Example: Consumption Estimates per Service

mance indexes, retrieved for instance from public processor benchmark databases

(see SPEC, n.d.a). The Service Profiler then exports the resource profiles either to

spreadsheets or visualizes them in charts. Figure 3.13 continues the above example

and shows an overview of the resource consumption and the correlation coefficients

of all services. A table with the complete resource profiles can be found in the

appendix (see table A.5 in section A.3.1).

3.6 Overview of Validation Approaches

In section 3.2 we presented a cost allocation methodology based on customer-oriented

services and resource profiles. For the determination of these resource profiles we then

introduced a model describing the composition of resource consumption (section 3.3), a

number of practical requirements (section 3.4), a profiling methodology and a software

toolkit (section 3.5). In the subsequent chapters we focus on the validation of these

3.6. Overview of Validation Approaches 79

concepts. We therefore propose three different approaches, which are briefly summarized

below.

3.6.1 Experiments: Resource Profiles

For an initial assessment of the model hypotheses and the software tools we conduct a

set of experiments with two different application systems and services consisting of single

and of multiple client requests (chapter 4). We therefore define the following seven test

scenarios:

• Background Activities Experiments with no service workload to analyze the

background resource consumption caused for instance by the performance monitors

(section 4.3.1).

• Resource profiles Experiments to analyze correlation coefficients and scale and

range of the determined resource consumption (section 4.3.2).

• Repeatability Experiments under equal conditions to verify the repeatability of

results (section 4.3.3).

• Load-dependent Behavior Experiments with different profiling workloads to an-

alyze total and per-user resource consumptions (section 4.3.4).

• Linear Regression Experiments with rising user think times and thus rising impact

of background activities on total resource consumption; the linear regression should

eliminate any influence on the resource profiles (section 4.3.5).

• Linear Regression – cross check Experiments with rising think times and no

linear regression; the increasing impact of background activities should be now mea-

surable (section 4.3.6).

• Database Sizes Experiments with full and empty databases (section 4.3.7).

Aims and purposes are threefold. First, we verify if our model describing the total

resource consumption holds in principle. Second, we test the measurement and analysis

tools and control the accuracy and consistency of the results. Third, we analyze how a

change of parameters, namely workload, user think time and database size, affects the

resource profiles. These experiments should enable an initial validation; they are not

intended to be repeated during the regular profiling process.

80 3. Cost Allocation based on Resource Profiles

3.6.2 Experiments: Analytical Models

The resource profiles should bridge the gap between customer-oriented services and IT

resources. In other words, they should support the translation of business forecasts into

hardware requirements. We therefore propose the use of a well-known instrument from

Analytical Capacity Planning, namely Queuing Network (QN) Theory. The basic idea

is to take the processor times from the resource profiles as input parameters for a QN

Model of the infrastructure. By means of the respective algorithms for a given user be-

havior (i.e., service usage) and a given workload scenario (i.e., number of active users and

think times between two activities) the expected server utilizations can be calculated. We

validate the concept with a set of experiments (chapter 5). Thus, we replay the user be-

havior and the workload scenario in a load test, measure the actual server utilizations and

analyze the deviation from the predicted values. This approach has several advantages:

1. In the load tests required for the estimation of the resource profiles, the infras-

tructure is at any time exclusively used by a single service (see section 3.5.2). In

contrast, in the load tests for QN validation, real world scenarios with multiple

concurrently active services are replayed. It can therefore be verified whether the

estimated resource consumption and the underlying hypotheses also hold in these

scenarios.

2. If the load test simulates different workload levels, for instance by successively in-

creasing the number of active users, nonlinearities in the resource consumption and

load-dependent behavior can be discovered.

3. For the estimation of resource profiles, the cumulated processor times during the

completion time of concurrent service invocations are analyzed. In contrast, for

the validation of the QN Models the average utilizations over longer time intervals

are determined. The two analysis and measurement approaches enable a mutual

validation of the accuracy and consistency of the results.

4. If the load test has verified the QN Model and its input parameters, it can readily be

used for capacity planning. The model enables capacity planners to conduct “what-

if” analyses and thus anticipate the effects of changes in the workload composition

or the hardware configuration.

In chapter 5 we first provide a short introduction to QN Theory and describe the

software tools required for solving and verifying QN Models. We then present the results

3.6. Overview of Validation Approaches 81

of experiments conducted with services consisting of single and of multiple client requests.

Besides a validation of the resource profiles, the support for capacity planning is a major

added value of the approach. Thus, it might be reasonable to conduct the load tests for

QN Model validation on a regular basis.

3.6.3 Proof of Concept: BMW Group

Finally, we present in chapter 6 the results of a proof of concept, conducted in cooperation

with our industrial partner, the BMW Group. It is organized in three stages:

1. Analysis of objectives, requirements and practices of IT Cost Accounting and Charge-

back at the BMW Group.

2. Development of a proposal how the determination of resource profiles could be

integrated into the existing IT Service Management processes.

3. Application of the software in a data center of the BMW Group.

The objectives are twofold. First, we intend to underpin the overall considerations

on IT Cost Accounting and Chargeback of chapter 2 with a real-world case. Second, we

want to test the viability of the concept and the software in an industrial environment

and evaluate an integration into existing IT Service Management Processes.

3.6.4 Summary

The three different validation approaches are summarized below by means of the require-

ments presented in section 3.4. Therefore, we list the requirements again and describe

whether and how they are addressed by the Service Profiler and the validation approaches.

Requirement 1: Accuracy The Service Profiler implements no kind of auto-correction

mechanisms for the resource profiles which would guarantee a certain level of accuracy.

However, the visualizing components and the correlation coefficients facilitate the identi-

fication of bias and inconsistencies in the resource profiles (see section 3.5.5).

Requirement 1.1: Accurate measurement and analysis tools This is the basic

condition for accurate resource profiles. With regard to the software toolkit it is unclear

whether the accuracy of standard performance monitors is sufficient for the determination

82 3. Cost Allocation based on Resource Profiles

of resource profiles (see section 3.5.3.2). We address these questions in our experiments

in chapter 4 and demonstrate in chapter 5 how QN Models can be used to cross-check

the accuracy of the processor time estimates.

Requirement 1.2: Linear resource consumption In the experiments in chapter 4

we analyze whether the model hypotheses on the composition of resource consumption

holds in the test environment. However, these results cannot be generalized. During the

estimation of resource profiles the visualizing components and the correlation coefficients

facilitate the identification of nonlinearities in the resource consumption (see section 3.5.5).

The processor time estimates can be further cross-verified by the results of load tests for

the validation of QN Models (see chapter 5).

Requirement 1.3: Correct assumptions about user behavior Generally, a full

validation of the assumptions on user behavior is only ex-post and by measurements at

the productive system possible. If historical usage data is available, this can be used to

derive respective user behavior models. Particularly for web-based applications a variety

of different tools (see Ideal Observer, n.d.) and modeling approaches (see Menascé and

Almeida, 2000, p. 41-64) exist. In the experiments in chapter 4 we analyze the more

difficult case of highly interactive applications and no historical usage data. We present

two strategies. First, the definition of very fine-grain services and, second, the profiling of

different user behaviors to determine not an exact value, but an interval for the expected

resource consumption.

Requirement 2: Consistency We combined a professional load generator with the

standard performance monitors of Unix, Linux and Windows operating systems to max-

imize the applicability of the analysis software. The viability of the concept and the

accuracy of the results is the subject of the experiments in chapter 4 and the proof-of-

concept at the BMW Group (chapter 6).

Requirement 3: Capacity Planning We evaluate in a set of experiments whether

processor time estimates from the resource profiles can be used as input parameters for

Analytical Capacity Planning based on QN Models (see chapter 5).

Requirement 4: Operating Efficiency The experiments presented in chapter 4 and 5

were conducted in a data center of our industrial partner. Thus, we could analyze the

3.7. Related Work 83

efforts required for the determination of resource profiles and evaluate on-site the inte-

gration into the existing IT Service Management processes. The results are summarized

in chapter 6.

3.7 Related Work

We structure the discussion of related work into two parts. First, we refer to concepts,

which also propose the usage of customer-oriented services for IT Cost Allocation and,

second, we compare the profiling methodology and the software toolkit (see section 3.5)

to a related approach.

3.7.1 Cost Allocation by Services

The allocation of IT costs based on customer-oriented services such as business transac-

tions is already practiced (see section 2.4). It has a number of advantages for business

units in particular (see section 2.3). We picked up the concept and propose the use of

predetermined resource profiles to relate the customer-oriented services of application sys-

tems with IT resource requirements. In the survey of literature, we presented two process

costing approaches (section 2.2.1.1: Fürer, 1994; Funke, 1999) and one IT Controlling

framework (section 2.2.1.2: Scheeg, 2005) that are based on similar ideas. The concepts

differ in the way they translate the services into IT resource requirements and infrastruc-

ture cost shares. Fürer proposes the analysis of historical data to determine the average

resource consumption for each transaction (Fürer, 1994, p. 137 et seqq.). Funke mentions

conversion tables (which are seemingly similar to resource profiles) and, furthermore, ad-

ditional requirements (e.g., throughput, response time) as valuation standard for services

(Funke, 1999, p. 201). Fürer and Funke formulated their concepts against the background

of centralized mainframe architectures. In contrast, Scheeg (2005) explicitly addresses the

characteristics of client/server environments. He proposes the use of Application Bench-

marks such as TPC-C (see TPPC, n.d.b) or SAPS (see SAP, n.d.b) to compare hardware

capacity and the resource requirements of services (Scheeg, 2005, p. 178).

The focus of studies mentioned above lies on Cost Accounting (Fürer, Funke) and IT

Controlling (Scheeg). Although the authors describe why and how the resource require-

ments for services should be determined, they neither provide any technical details nor

illustrate their concepts with real-world examples or experimental results. The present

work aims to fill this gap.

84 3. Cost Allocation based on Resource Profiles

Nagaprabhanjan and Apte
(2005)

Concept presented in
section 3.5

Services
A service is defined by an URI (i.e.

a single client request)
A service can comprise multiple

client requests

Load generation
Custom load generator (master),

which sequentially generates HTTP
requests

Mercury LoadRunner (various
protocols)

Performance monitoring
Agents (slaves) on the different

components collect data from OS
tools and an in-process java profiler

OS tools record system behavior in
log files

Coordination between load
generation and performance

monitoring

The master coordinates the load
generation with the monitoring

processes at the slaves (start/stop)

No direct coordination – exact time
synchronization is required

Supported Platforms Linux / (Java) Linux/Unix/Windows

Data analysis
The slaves transfer the performance

data to the master, which
immediately analyzes the data

The data from the log files and the
load generator are separately
consolidated and analyzed

Duration (measurement and
analysis)

∼minutes ∼hours

Table 3.2: Comparison of Method and Software Toolkit with
Nagaprabhanjan and Apte (2005)

3.7.2 Determination of Resource Profiles

The problem of determining resource profiles in client/server environments has also been

addressed by Nagaprabhanjan and Apte, who recently presented a tool (see Nagaprab-

hanjan and Apte, 2005) for automated profiling of distributed transactions. Their focus

is not the allocation of infrastructure costs, but the determination of input parameters for

performance analysis and capacity planning. The differences to our approach are pointed

out in table 3.2.

Nagaprabhanjan and Apt also combine load generation with performance monitors for the

determination of resource consumption. They use a custom load generator which requires

measurement agents installed on the different servers. This enables more precise measure-

ments. Accordingly, they require fewer measurement cycles and generate less data for the

analysis. However, the use of custom agents limits the flexibility of the implementation

(currently to Linux servers and Web applications, see Nagaprabhanjan and Apte, 2005).

In contrast, we use a commercial off-the-shelf load generator and require no additional

software installations on the servers. Thus, we gain three major advantages. First, we

can simulate complex interactive user behavior. Second, the approach is not restricted

to application systems with web interfaces. The load generator supports more than 30

different frontend and backend protocols. Third, as we solely use standard performance

monitors of operating systems, additional resources can be easily integrated.

Chapter 4

Experiments: Resource profiles

4.1 Experimental Setup

We tested the model hypotheses on resource consumption (see section 3.3) and the soft-

ware tools implementing the profiling methodology (see section 3.5) in a set of exper-

iments. As example application platform we chose the widely used Java 2 Platform,

Enterprise Edition (J2EE) of Sun Microystems (see Sun Microsystems, n.d.c). J2EE

is a platform specification and a branding initiative that provides a unifying umbrella

for enterprise-oriented Java technologies1. We conducted the experiments in close coop-

eration with our industrial partner, the BMW Group. They provided the data center

infrastructure as well as an example application system. We could therefore analyze the

viability of concept and software under realistic conditions and evaluate the integration

into existing IT Service Management processes (see chapter 6).

4.1.1 Test Infrastructure

In the experiments we used a multi-tier client/server architecture as typical for J2EE

application scenarios (Singh et al., 2002, p. 14). The setup of the infrastructure is oriented

toward standards of the BMW Group (see section 6.3.1). Figure 4.1 provides a schematic

overview. A detailed specification is given in the appendix (see section A.2).

The test environment reflects the heterogeneity of client/server architectures mentioned

above (see section 2.1.4). Three operating systems (Linux/Windows/Unix) are combined

1 We do not go into details of the J2EE platform here. The interested reader is referred to Singh et al.
(2002) for a comprehensive technology overview.

86 4. Experiments: Resource profiles

LoadRunner

Windows 2000

2 x

CISC

2 GB

MEM

Apache HTTP

Red Hat Linux

2 x

CISC

2 GB

MEM

Oracle DB

HP-UX

2 x

RISC

2 GB

MEM

BEA Weblogic

Windows 2000

2 x

CISC

2 GB

MEM

HP XP

Client Web server App. server Database server

SAN Storage

100 Mbit Ethernet

Fibre

Channel

Figure 4.1: Overview of the Test Infrastructure

with three different kinds of server software. Core element is a Java application server

from the Weblogic product family of Bea Systems (see BEA, n.d.b). It provides a web

container as runtime environment for Java Server Pages (JSPs) and Servlets and an EJB

container as runtime environment for Enterprise Java Beans (EJBs). An Apache web

server acts as a proxy between client and application server. Static web content, such

as html or image files, is directly delivered to the client from the web server. Dynamic

content is generated by the web container of the application server. The business logic

can be located either in the web container or in the EJB container. Combining business

and presentation logic in the web container can enable a quick start for small applications

with few transactional needs. In contrast, the EJB-centric concept is better for building

a large-scale enterprise application where code and performance scalability are prime

factors (Singh et al., 2002, p. 356). As database management system (DBMS) we use

Oracle Database. Due to performance and security reasons, the data files are located in a

Storage Area Network (SAN) connected via fibre channel with the database server. The

clients are simulated by a Mercury LoadRunner Controller (see section 3.5.4).

4.1. Experimental Setup 87

4.1.2 Example Applications

We conducted experiments with two very different kinds of application systems to enhance

the significance of the results:

• PASTA, a custom application system of the BMW Group, to analyze the viability

of the concept with a real-world example (see section 4.1.2.1). PASTA only uses

the web container of the application server. It is designed for a small number of

concurrent users. Hardware bottleneck of the system is the database server.

• Java Pet Store, a well-known reference application system of Sun Microsystems,

which is freely available and well documented (see section 4.1.2.2). We provide all

information that an interested reader requires to redo the experiments and compare

the results. The Java Pet Store uses both, web and EJB container of the application

server. The software architecture is highly scalable and can handle hundreds of

concurrent users. Hardware bottleneck of the system is the application server.

Both application systems are highly interactive. This complicates the determination

of resource profiles. Wrong assumptions about the expected user behavior may lead

to distorted consumption estimates (see section 3.4). For the experiments we assumed

furthermore that no historical usage data is available. In the previous chapter (see sec-

tions 3.5.5 and 3.6.4), we presented two strategies to cope with this problem. First, the

definition of very fine-grain services and, second, the profiling of different user behaviors

to determine, instead of an exact value, an interval of the expected resource consumption.

In the experiments we evaluated both strategies and prepared load test scripts with ser-

vices including single client requests and load test scripts with services including multiple

client requests, which represent different user profiles.

4.1.2.1 PASTA

PASTA (“Projekt Aktivitäten und STatus Anzeige”) is a custom application system of

the BMW Group. It was chosen for the experiments because it can be considered as a typ-

ical representative of a large number of similar non-critical systems at the BMW Group.

PASTA is used as a central project management dashboard for IT projects in the pro-

duction department. It implements the BMW-specific IT Project Management processes,

ranging from the initial business proposal to the system roll-out (see figure 4.2). The

different project teams use PASTA to communicate the current project status, activities,

88 4. Experiments: Resource profiles

Figure 4.2: Screenshot: PASTA

team members, gateway documents and so forth. The business logic, required for the

administration and visualization of project information, is not complex. Both business

and presentation logic reside in the web container of the application server. Servlets are

used to process client requests and to generate dynamic responses in the form of web

pages. Static web content such as image files or stylesheets are located at a separate

web server (see section 4.1.1). The data is stored in an Oracle database. PASTA ac-

cesses the database using preconfigured connection pools of the application server. In

the experiments we worked on a copy of the real database content. Furthermore, PASTA

has an interface to the group directory to automatically update the contact information

of project team members (e.g., telephone and department numbers). User access and

read/write permissions are controlled by a central authentication/authorization service.

Web servers, application servers and database servers are shared with certain numbers

of different application systems. For each system a single business owner is defined, to

whom hardware and server operations costs are allocated on a flat rate basis. The re-

source consumption is not considered in the cost allocation keys.

4.1. Experimental Setup 89

User

Browse

Project Status

View Team

View Documents

View Description

...

Edit Team

Add Documents

Edit Description

...

Log On and Off

Edit

Project Status

Figure 4.3: Overview of PASTA Use Cases

Basically, two different kinds of PASTA user exists. The majority are read users, who

solely browse through the projects. Edit users, in contrast, also change project informa-

tion (see figure 4.3). For estimating an interval of the expected resource consumption of

a PASTA user, we created load test scripts with the following user behavior:

• read user The user logs in, checks the status of a single project and logs out (11

user interactions).

• edit user The user logs in, fully updates a project, verifies the changes and logs

out (21 user interactions).

We assumed that the read user and edit user profiles reflect minimum and maximum

bounds of PASTA usage. Additionally, we created a script in which all possible kinds of

read and edit requests are considered as separate services. Thus, we tried to obtain in the

experiments, even without any historical data on user behavior, as much information on

the expected resource consumption as possible.

90 4. Experiments: Resource profiles

Figure 4.4: Screenshot: Java Pet Store

4.1.2.2 Java Pet Store

The Java Pet Store is a sample application of the Java BluePrints program at Sun Mi-

crosystems (see Sun Microsystems, n.d.a). The software architecture is used as a showcase

in the book of Singh et al. (2002). Additionally, Sun Microsystems provides on its web

site a supplement to the book, containing detailed information on design and imple-

mentation of the application (see Sun Microsystems, n.d.b). We chose Pet Store over

commercial benchmarks such as TPC-App (see TPPC, n.d.a) for three reasons. First, it

is readily available and the experiments are easy to repeat. Second, it covers most J2EE

technologies and, third, the software architecture, with several interacting applications in

the frontend and backend, is an appropriate representation of the structure of modern

enterprise systems. The Java Pet Store is frequently used for performance studies (see

for instance Juse et al., 2003). Microsoft and Macromedia have even reimplemented the

functionalities of the Java Pet Store to compare the capabilities of .NET and Flash with

the J2EE platform (see Adobe, n.d.; Microsoft, n.d.a).

4.1. Experimental Setup 91

Customer

Browse Catalog

Search Catalog

Browse

Catgeories

Browse

Product Details

Browse

Item Details

Update

Shopping Cart

Sign On and Off

Update Account

Update

Personalization

Submit Order

Send Purchase

Order to Order

Processing Center

<<include>>

Figure 4.5: Overview of Java Pet Store Use Cases (adapted from Singh
et al., 2002, p. 362)

The Java Pet Store is as a typical e-commerce application: An online shop that sells

products (animals) to customers. It has a web site through which it presents an interface

to customers (see figure 4.4). Administrators and external businesses such as suppliers use

other application interfaces to maintain inventory and perform managerial tasks (Singh

et al., 2002, p. 352). We focus in the experiments on the interactions between customer

and web site (see figure 4.5). The customer can select items from a catalog, place them

in a shopping cart and, when ready, purchase the shopping cart contents. The shopping

cart content can be displayed and revised. To complete the purchase, the customer must

provide a shipping address and a credit card number. Returning customers can reuse the

contact and payment information of their last order (Singh et al., 2002, p. 353).

Two separate applications are involved in the scenario. First, a web application that

provides the online shop (petstore.ear) including all functionalities customers require to

purchase merchandise through a web browser. As soon as a customer has completed the

purchase, the online shop sends the order in form of an XML document and via Java Mes-

92 4. Experiments: Resource profiles

sage Service (JMS) to the order processing center (opc.ear). This second, process-oriented

application manages the order fulfillment in the backend. It provides the following services

(Sun Microsystems, n.d.b, p. 2):

• Receive and process XML documents, via JMS, containing orders from the online

shop

• Provide order data via XML messaging over HTTP to the shop administrator

• Send email to customers acknowledging orders using JavaMail

• Send XML order documents to suppliers via JMS

• Maintain purchase order database

The Java Pet Store uses both web and EJB container of the application server. For the

experiments, we used a configuration template provided by Bea Systems which supports

the deployment of the Java Pet Store files on Bea Weblogic application servers and Oracle

databases (see BEA, n.d.a). We populated the database with the default content provided

by Sun Microsystems.

Compared to PASTA (see section 4.1.2.1), the Java Pet Store is far more complex and

user profiles are not so clear-cut. Hence, we created load test scripts for four different

kinds of user behavior to estimate an interval of the expected resource consumption of a

Pet Store customer.

• curious visitor The customer browses to four different item descriptions and then

leaves the online store without having used the shopping cart, registering or pur-

chasing functionalities (12 user interactions).

• first time shopper Like the curious visitor, the customer browses first to four

different product descriptions, then registers with the store and buys two different

products (32 user interactions).

• determined shopper The customer directly uses the search engine to find the

first product, adds it to the shopping cart, then browses on the shortest path to two

further products, adds them also, checks out and purchases the cart contents (17

user interactions).

4.2. Overview of Experiments 93

• power shopper The customer browses through the store, uses the search engine,

performs multiple updates of the shopping cart and finally buys 6 different products

(41 user interactions).

We assumed that the determined shopper and the power shopper are returning cus-

tomers, who are already registered with the store. As for PASTA, we also created a load

test script, in which all possible kinds of customer requests are considered as separate

services. However, services including single client requests require a synchronous fulfill-

ment of the requests. Those kinds of services are not applicable to asynchronous backend

applications such as the order processing center.

LoadRunner scripts for the Java Pet Store and services including single requests and mul-

tiple requests (power shopper) are given in the appendix (see sections A.5.1 and A.5.2).

4.2 Overview of Experiments

In the previous chapter we presented a methodology and a software toolkit for the deter-

mination of resource profiles. The concept is based on the hypotheses that the resource

consumption evolves according to the following function (see sections 3.3 and 3.5.2):

yij(x, t) = aj(t) + xpij (4.1)

We evaluated the hypotheses and the software implementing the concept in a set of

experiments. Aims and purposes were threefold. First, we tried to verify if the model

describing the total resource consumption holds in the example environment. Second,

we tested the precision of the measurement and analysis tools introduced in section 3.5.

Third, we analyzed the effects of parameter changes during the profiling process and

compared the experimental results with the model predictions.

The experiments were organized into seven test scenarios with different analysis objectives

and parameters:

• Background Activities – aj : The resource consumption of background activities

was measured during tests with no service workload. To analyze the impact of

performance monitoring thereon, we conducted three experiments with local and

remote monitors and different logging configurations (see section 4.3.1).

• Resource profiles – pij, rij : Resource profiles were regularly determined for ser-

vices including single and multiple client requests. We first analyzed the correlation

94 4. Experiments: Resource profiles

coefficients of the linear regression and then, for services including multiple client

requests, the influence of varying user behavior on the mean resource consumption

(see section 4.3.2).

• Repeatability – pij : The process for the determination of resource profiles was

repeated five times under equal conditions. We compared the resulting resource

profiles and analyzed the repeatability of the results (see section 4.3.3).

• Load-dependent Behavior – yij(x)

x
: The total resource consumption yij(x) was

measured at five different workload levels x. By comparing the normalized values,

we could analyze the influence of the workload on the average resource consumption

per service (see section 4.3.4).

• Linear Regression – pij : The process for the determination of resource profiles

was repeated five times. After each test the average think time between two user

activities was doubled. By comparing the results we verified whether the linear

regression eliminates the influence of the increasing measurement interval lengths on

the resource profiles. This kind of experiment is only suitable for services including

multiple client requests (see section 4.3.5).

• Linear Regression – cross check – yij(t)

x
: These experiments with increasing

think times were repeated with a constant number of concurrent service invocations

x. No linear regression was applicable. We cross checked the model hypotheses by

verifying whether the normalized total resource consumption rises with the length

of the measurement interval t (see section 4.3.6).

• Database Sizes – pij : In this experiment we analyzed how the number of entries

in a database can influence the mean resource consumption. Those effects are not

considered in the model describing the total resource consumption. However, as

database sizes may significantly change during the lifecycle of application systems,

they are highly relevant for the practicability of the concept (see section 4.3.7).

All experiments were conducted on the infrastructure described above and with the

example application systems PASTA and Java Pet Store (see section 4.1). After each load

test the servers were restarted, the initial system configuration restored and the system

clocks synchronized.

4.2. Overview of Experiments 95

PASTA Java Pet Store

Service type multiple req. single requests multiple req. single requests

Example user profile/service edit user actitemsave.do power shopper cart.do

Background activities BA01 1-3

Resource profiles PA01 1 PA03 1 PE01 1 PE03 1

Repeatability PA01 0-5 PA03 0-5 PE01 0-5 PE03 0-5

Load-dependent behavior PA02 1-5 PA04 1-5 PE04 1-5 PE02 1-5

Linear regression PA05 1-5 PA05 1-5

Linear regression (cross check) PA06 1-5

Database size PE07 1

Table 4.1: Overview of Experiments on Resource Profiles

For each application system we analyzed services including single client requests and

services including multiple client requests (user profiles). We focus in the following con-

siderations on representative examples of one service and one user profile per application

system. The user profiles edit user (PASTA) and power shopper (Java Pet Store) were

described in sections 4.1.2.1 and 4.1.2.2. The PASTA service actitemsave.do updates the

list of current project activities (see figure 4.2). The Java Pet Store service cart.do adds

a product to the shopping cart of the online shop.

Overall, the experiments described above comprise 59 separate load tests. For purposes

of clarity, we introduce a notation for experiments and load tests (see table 4.1). The

identifier PA01 1 denotes, for instance, the first load test of experiment PA01 (PASTA:

Resource profiles and Repeatability). PA01 0 describes the consolidated analysis of all

measurements of experiment PA01 (load tests PA01 1-5). The different resources are de-

scribed and categorized according to the following scheme: Server type - object - instance

- counter (see section 3.5.5).

In the experiments we determined consumption estimates for the following resources:

• Application server - Network - all - Bytes total

• Application server - Processor - all - Processor time

• Client - Network - all - Bytes total

• Database server - Processor - all - Processor time

• Database server - Disk - SAN - Read/Write blocks

• Web server - Processor - all - Processor time

96 4. Experiments: Resource profiles

Application server Database server
Web

server

perfmon
(local)

perfmon
(remote)

Bea JMX
(remote)

sar (local)
rstatd

(remote)
sar (local)

BA01 41 counters 2 counters 2 counters
all measure-

ments
9 counters

all measure-
ments

BA02 41 counters – – CPU / Disk –
CPU / Net

/ Disk

BA03 2 counters – – CPU / Disk – CPU / Net

Table 4.2: Experiments on Background Activities: Configuration of
Performance Monitors

The list is adopted from the above considerations on typical resources in client/server

environments (see section 3.2.3). Network traffic is measured at the client and the ap-

plication server, to differentiate between the traffic between client and data center and

traffic within the data center. We illustrate the following result descriptions with processor

time examples and provide result tables including data from all resources in the appendix.

4.3 Experimental Results

4.3.1 Background Activities

Background activities, triggered for instance by operating systems, system management

tools or performance monitors, cause a certain amount of resource consumption, which

should not be included in the resource profiles. However, the performance monitors used

during the profiling process (see section 3.5.3.2) do not enable a distinct separation of re-

source consumption caused by services and resource consumption caused by background

activities. Hence, we monitored the environment for 1 hour without any service work-

load (t = 1 h, x = 0) to analyze form and impact of background activities. The test

was repeated three times with different performance monitor configurations, to gain an

understanding of the resource consumption caused by the monitors. Table 4.2 provides

an overview of experiments and settings.

The resource consumption at the application server (Windows 2000) is locally logged by

perfmon. Additionally, the LoadRunner Controller (see section 3.5.4.2) can retrieve re-

mote measurements from perfmon and can monitor the Bea Weblogic application server

via Java Management Extensions (JMX). At the database server the tool sar is used.

4.3. Experimental Results 97

Figure 4.6: Background Processor Utilization at the Database Server
(HP-UX 11.11)

The version of sar shipped with the operating system (HP-UX 11.11) does not provide

counters for network activities. However, the LoadRunner Controller can connect to

the kernel statistics server (rstatd) and read out the missing information (see Hewlett-

Packard, n.d.a). In contrast, the sar version available on the web server (Red Hat Linux)

provides all necessary counters. No further local or remote tools are required. The exper-

iments should clarify how these different performance monitoring possibilities affect the

background resource consumption.

Figure 4.6 shows the processor utilization at the database server during a measurement

interval of one hour with no service workload (Experiment BA01 01). The measured uti-

lization is not constant, but fluctuates between discrete values. We observed a similar

behavior at the other servers, each with a different set of discrete measurements:

• perfmon (Windows 2000): 0, 0.78125, 1.5625, 2.34375, ...

• sar (HP-UX 11.11): 0, 1, 2, 3, ...

• sar (Linux RH AS 2.1): 0.25, 0.5, 0.75, 1, ...

We conclude that the performance monitors only record rounded values and that the

underlying rounding rules are different at each server. The rounding has a higher rela-

98 4. Experiments: Resource profiles

Figure 4.7: Truncated Means (10 %) of Background Processor Utilizations

tive impact on small utilization values. Consumption estimates derived from this may be

imprecise and comparisons of consumption or utilization values between different servers

may be biased. Additionally, the measurement intervals are very coarsely-grained. The

minimum interval length configurable at the local monitors is 1 second. The remote mon-

itors record measurements at intervals of 3 seconds (perfmon, BEA JMX) or 6 seconds

(rstatd).

Figure 4.6 also illustrates that even when there is no service workload on the system,

sudden load peaks may appear. During a regular profiling process such peaks may distort

the resource consumption allocated to the currently active service. In the experiments

with no service workload, such outliers determined for the most part the total observed

resource consumption. Hence, we base the comparative analysis on the truncated mean

(10%) of the measured utilization values2 (see figure 4.7).

Overall, the mean processor utilization was in all tests and on all servers very small

(< 0.35 %). The remote monitoring of Windows server and Unix server during experi-

ment BA01 01 significantly raised the measured background resource consumption. At

the Windows server no difference between the local monitoring of 41 counters (BA01 02)

2 The lowest 5% and the highest 5% of the sample values are discarded.

4.3. Experimental Results 99

and of 2 counters (BA01 03) was measurable. Due to the different measurement granu-

larities, the absolute server utilizations are barely comparable. For instance, the lowest

value measured at the Linux server is 0.25, while at the Windows and Unix server most

measurements are (rounded to) 0.0. Accordingly, the calculated mean utilization of the

Linux server is significantly higher (see figure 4.7).

In the appendix, time series graphs depicting the number of read/write blocks at the SAN

(see figure A.1) and of the transferred bytes in the network (see figure A.2) are included.

At the SAN no regular background activity was measurable. However, we also recorded

sudden load peaks which could possibly distort resource profile measurements. At the

application server we observed a constant baseline network traffic of approximately 400

bytes/sec. The remote monitoring caused regular peaks of approximately 6,000 bytes/sec

every three seconds (load test BA01 01).

In the experiments described below, we used the monitoring configuration of BA01 01

load test (see table 4.2). We omitted the remote monitoring of the database server. Ac-

cording to the above considerations, we can expect most influence of background activities

on the processor time at the application server (Windows).

4.3.2 Resource Profiles

The experiments with the example application systems PASTA and Java Pet Store started

with the determination of resource profiles for the services described above (see sec-

tions 4.1.2.1 and sections 4.1.2.2). The profiling process is detailed in section 3.5.2. We

specified there that during the load test the number of concurrent service invocations

rises until the first component reaches its bottleneck. The maximum capacities of the

considered application systems were different. PASTA was able to process 20 concurrent

service invocations, while the Java Pet Store could handle 70 concurrent invocations of

services including single requests and even 100 invocations of services including multiple

requests and random think times between 0.5 s and 1.5 s. In the load tests, we raised the

number of concurrent virtual users in steps of one, or ten for Java Pet Store and services

including multiple requests. The analysis objectives were twofold. First, we verified if the

correlation coefficients r support the assumptions of linearly increasing resource consump-

tion. Second, we analyzed for services including multiple client requests the impact of the

user behavior on the resource profiles. Table 4.1 provides an overview of the experiments.

The complete resource profiles, the correlation coefficients and additional information on

the load tests are given in the appendix (see A.3.1). In all four experiments the vast

100 4. Experiments: Resource profiles

Figure 4.8: Resource Profile: PASTA – Services including multiple Client
Requests

majority of correlation coefficients was greater than 0.9. Two types of exceptions could

be identified; first, very small processor time values (< 0.01 s) and, second, resource con-

sumption at the SAN (read/write blocks). While the first category can be explained by

the lacking precision of the performance monitors and the impact of background activi-

ties (see section 4.3.1), the resource consumption at the SAN seems not to be fully in line

with the model hypotheses. These exceptions aside, the correlation coefficients support

the assumptions on a linear increase of resource consumption.

The impact of the user behavior on resource profiles is illustrated in figure 4.8 (PASTA)

and figure 4.9 (Java Pet Store). Most interesting is a comparison between the applica-

tion systems. The by far more complex Java Pet Store caused only a small fraction of

the resource consumption of the custom application system PASTA. Certainly, a direct

comparison is not fair. Java Pet Store was developed by specialists to demonstrate Java

capabilities and performance. Nevertheless, the example underlines the impact and the

resource-saving potential of system and software design. For instance, a user activity

in PASTA mostly triggers one or more SQL queries which are directly executed on the

database server. Java Pet Store deliberately avoids “expensive” database and disk ac-

cesses by using caching mechanisms of the application server. Summing up, the user

4.3. Experimental Results 101

Figure 4.9: Resource Profile: Java Pet Store – Services including multiple
Client Requests

behavior influences the range of the resource consumption values, but the overall scale is

predetermined by the design of the application system.

4.3.3 Repeatability

The repeatability of the profiling process is a major precondition for the practical appli-

cability of concept and software. Under repeatability we understand in this context that

the variation of resource profiles determined under equal conditions is minimal. Equal

conditions comprises the configuration of application systems, services and infrastructure

as well as parameter settings during the profiling process (e.g., workload, measurement in-

tervals). We tested the repeatability by means of the example application systems PASTA

and Java Pet Store and services including single and multiple requests (see section 4.1.2).

Starting points were the load tests and resource profiles described in the previous section.

For each combination of application system and service type we conducted four addi-

tional load tests under equal conditions. We analyzed the variation of the consumption

estimates from the different load tests by the coefficient of variation (cv). This statistical

measure is defined as ratio of standard deviation to arithmetic mean. Table 4.1 provides

an overview of the experiments.

102 4. Experiments: Resource profiles

Figure 4.10: Repeatability: PASTA – Services including multiple Client
Requests

The processor time results are shown in figures 4.10 and 4.11 (PASTA) and figures 4.12

and figures 4.13 (Java Pet Store). In experiment PE01 one load test failed. For compari-

son we additionally calculated the mean consumption values from all load tests (labeled

as xxxx 0). The result tables including all resources and statistical information on the

distributions of the mean consumption values (minimum, maximum, standard deviation,

coefficient of variation) are given in the appendix (see section A.3.3).

Overall, for most resources and experiments the variation of mean consumption values is

minimal (cv < 5 %). As in the previous section, two kind of exceptions could be iden-

tified. First, at the SAN (read/write blocks) the coefficients of variation of the resource

consumption range up to 25.8 % (PA01). We explain this by caching effects, which are

not reproducible in this kind of load test. However, those effects must be considered if the

mean number of read/write blocks determined in a single load test is used as a basis for

cost allocation. Second, for very small processor times sporadically higher variations oc-

curred. We refer this to the higher relative impact of background activities and the lacking

precision of the performance monitors. For cost allocation, we consider these variations

as negligible. Apart from these exceptions, the experiments confirmed the repeatability

and the precision of measurement tools and software. In the experiments described be-

low, we went one step further and deliberately changed workload (section 4.3.4), client

4.3. Experimental Results 103

Figure 4.11: Repeatability: PASTA – Services including single Client
Requests

Figure 4.12: Repeatability: Java Pet Store – Services including multiple
Client Requests

104 4. Experiments: Resource profiles

Figure 4.13: Repeatability: Java Pet Store – Services including single
Client Requests

think times (section 4.3.5 and 4.3.6) and database size (section 4.3.7). In doing so, we

evaluated the robustness of resource profiles and the consistency of explanatory model

and experimental results.

4.3.4 Load-dependent Behavior

The concept of resource profiles is based on some fundamental hypotheses on the struc-

ture of resource consumption (see section 3.3). In particular, we suppose that the resource

consumption pij is not or is barely dependent on the system workload. The following ex-

periments aim to verify if this precondition is fulfilled in the test environment described

above.

Basically, we considered two possible kinds of experiments to identify load-dependent

behavior. First, an autocorrelation analysis of linear regression residuals and, second, a

comparison of the total resource consumption at different workload levels. We focus in

the following on the second test, because it is less sensitive to outliers – short periods

with sudden load peaks caused by background activities may already bias residuals. It

also enables an estimation of the background resource consumption aij.

4.3. Experimental Results 105

Figure 4.14: Load-dependent Behavior: PASTA – Services including
multiple Client Requests

Again, we used the example applications PASTA and Java Pet Store and services includ-

ing single and multiple client requests. In the PASTA experiments PA02 and PA04 we

conducted load tests with 1, 5, 10, 15 and 20 virtual users and in the Java Pet Store ex-

periments PE02 and PE04 load tests with 1, 10, 30, 50 and 70 virtual users. During each

load test the number of virtual users x remained constant over 20 repeated measurement

intervals. No linear regression was applicable. Instead, the Service Profiler divided the

total resource consumption during each measurement interval by the number of virtual

users and then calculated mean results. So, we could analyze for PASTA and Java Pet

Store and five values x the behavior of the following function:

yij(x)

x
=

aij

x
+ pij (4.2)

According to the model hypotheses, the value yij(x)

x
should be maximal for x = 1:

aij +pij and then converge for growing x toward pij. The processor time results are shown

in figures 4.14 and 4.15 (PASTA) and figures 4.16 and figures 4.17 (Java Pet Store). The

results are compared with the values pij from the experiments on repeatability (see sec-

tion 4.3.3).

106 4. Experiments: Resource profiles

Figure 4.15: Load-dependent Behavior: PASTA – Services including
single Client Requests

Figure 4.16: Load-dependent Behavior: Java Pet Store – Services
including multiple Client Requests

4.3. Experimental Results 107

Figure 4.17: Load-dependent Behavior: Java Pet Store – Services
including single Client Requests

Concerning processor times, the basic model hypotheses could be validated in all four

experiments. However, the impact of background consumption is seemingly different.

First, it is far higher for the application server (Windows) than for the database server

(Unix) or the web server (Linux). Second, it is higher for services including multiple

requests than for services including single requests. The latter aspect confirms the evi-

dent dependency of background resource consumption on the length of the measurement

interval t. Although load test configuration and data analysis during the experiments on

repeatability were completely different (rising load and linear regression vs. constant load

and arithmetic means), the convergence of the results is surprisingly exact. We observed

significant deviations only for the processor time at the application server and services

including multiple client requests (experiment PA01 compared to PA02 and experiment

PE01 compared to PE02).

The results for storage and network resources are given in the appendix (see sec-

tion A.3.4). The number of read/write operations at the SAN show a similar variation

as in the repeatability experiments (see section 4.3.3). Regarding load-dependent behav-

ior, no further information could be derived from the results. In contrast, the measured

mean network traffic was fully in line with the processor time results. No significant non-

linearities in the resource consumption at different workload levels could be identified.

108 4. Experiments: Resource profiles

Experiment tt=1s tt=2s tt=4s tt=8s tt=16s

PA05 1h 11min 1h 39min 2h 36min 4h 37min 8h 57min

PE05 failed 1h 23min 2h 40min 5h 15min 10h 23min

PA06 1h 14min 1h 38min 2h 35min 4h 46min 9h 9min

Table 4.3: Average Client Think Times and Load Test Runtimes

These experiments strongly confirm our model hypotheses. However, the results are not

necessarily generalizable. So, for instance, neither network nor the storage resources were

substantially utilized during the experiments. Furthermore, the infrastructure was at

all times exclusively used by a single kind of service. The latter aspect is addressed in

chapter 5. There we verify if the assumption of load-independent behavior also holds in

scenarios with multiple types of concurrent active services.

4.3.5 Linear Regression

The absolute amount of the background resource consumption aj(t) grows with the length

of the measurement interval t (see section 4.3.4). In services consisting of multiple client

requests, the length of the measurement interval is mostly determined by client think

times between the requests. With regard to the required accuracy of resource profiles (see

section 3.4), it is evident that consumption estimates for services should be independent of

background activities and think times. However, this requirement also has major implica-

tions for the operating efficiency of the concept. If the resource profiles are independent of

the think times, they can be minimized during the profiling load test and thus the whole

process significantly accelerated. This property is given in the model describing the total

resource consumption. We assume that if the length of the measurement interval t is

kept approximately constant for each service i, the time-dependent background resource

consumption aj(t) can be considered as constant term aij. In the linear function yij(x)

this term then represents the intercept of the regression line.

We tested the independence of resource profiles and think times in experiments with the

example applications PASTA and Java Pet Store and services including multiple client

requests. The clients waited a random think time between two requests. The average

think time length and the random range (here: 50 % to 150 %) are configured in the load

test scenario. During each experiment we conducted five load tests and after each load

test we doubled the average client think times. In experiment PE05 one load test failed.

Table 4.3 provides an overview of average client think times and test runtimes.

4.3. Experimental Results 109

Figure 4.18: Linear Regression: PASTA – Services including multiple
Client Requests

Figure 4.19: Linear Regression: Java Pet Store – Services including
multiple Client Requests

110 4. Experiments: Resource profiles

Figure 4.20: Linear Regression (cross check): PASTA – Services including
multiple Client Requests

The processor time results are shown in figure 4.18 (PASTA) and figure 4.19 (Java Pet

Store). Despite the very different lengths of measurement intervals, the determined con-

sumption estimates show only small variations. Tables including data from storage and

network resources are given in the appendix (see section A.3.5). As in the previous

experiments, the fluctuating number of read/write blocks at the SAN complicates the

identification of clear trends. The resource consumption at the network interfaces is in

line with the processor time results.

Both experiments confirmed the model assumptions and the robustness of resource pro-

files against varying think times. For a cross check of these results, we conducted a

supplemental experiment with PASTA.

4.3.6 Linear Regression (cross check)

The experiments in the previous section demonstrated that resource profiles are barely

influenced by client think times. According to the model hypotheses, this is achieved by

the linear regression. To verify this assumption, we performed a supplemental experiment

with PASTA (PA06). Again, we conducted five load tests and after each load test doubled

4.3. Experimental Results 111

the average client think times (see table 4.3). In the previous experiments the number of

active virtual users x successively rose during each load test, so that a linear regression

was applicable. In contrast, in this experiment the number of virtual users remained

constant (x = 10) during each load test and over all five load tests. The measurements

were processed by the Service Profiler as in the experiments on load-dependent behavior

(see section 4.3.4). We could therefore analyze for constant x and five values t the behavior

of the following function:

yij(t)

x
=

aij(t)

x
+ pij (4.3)

According to the model hypotheses, the value yij(t)

x
should be minimal if the length

of the measurement interval, determined by the average think time length tt, is minimal.

The value should grow with rising average think times. Overall, yij(t)

x
should be higher

than the values determined for pij during the experiments PA01 (see figure 4.10) and

PA05 (see figure 4.18).

The processor time results are shown in figure 4.20. With the exception of PA06 3 (pro-

cessor time, application server), the results confirm the above assumptions. However,

although the impact of background activities at the database server (Unix) and the web

server (Linux) is clearly measurable, the absolute amount is negligible. A results table with

data from network and storage resources is provided in the appendix (see section A.3.6).

As in the previous experiments, the network resource consumption confirmed the pro-

cessor time results. The number of read/write blocks at the SAN again showed high

variations. No information on the appropriateness of the linear regression concept can be

derived from this.

4.3.7 Database Size

Resource profiles, determined according to the concept described above, are associated

with a certain infrastructure configuration. While changes to hardware or software con-

figurations typical require a manual intervention, content and size of databases change

dynamically during regular operations. Obviously, the resource consumption of a service

including database requests may depend to a a certain degree on the number of entries in

the queried tables. If the database size i.e. the number of entries changes, the accuracy

of the consumption estimates may be affected. The actual impact depends strongly on

database and query design. Overall, we recommend the use of realistic database sizes

112 4. Experiments: Resource profiles

Figure 4.21: Database Size: Java Pet Store – Services including multiple
Client Requests

during the profiling process, and the estimation (and if required testing) of the impact of

potential changes.

In the PASTA case the responsible persons at the BMW Group expect no significant

changes in the database size. In contrast, application systems such as the Java Pet Store

store information on business transactions (e.g., order details) and in a real world scenario

a constant database growth would be expected. The resource profiles, determined during

the experiments on repeatability (see section 4.3.3), are based on the default database

content as provided by Sun Microsystems. To assess the impact of the database size on

the resource profiles, we conducted a further experiment (PE07). For this, we added more

than 400,000 order entries to the database, so that the available tablespace (200 MB) was

about 90 % utilized. We then conducted a new load test and determined mean consump-

tion values.

In figure 4.21 the processor time results of experiment PE07 are compared with the results

of experiment PE01. A significant growth in the processor time at the database server

can be observed. The complete resource profile, including all user profiles, is given in the

appendix (see section A.3.7). Although this result is not generalizable, it supports the

idea of considering an interval rather than exact consumption estimates for cost alloca-

4.4. Summary 113

tion. Those effects could thus be, at least partially, anticipated. Nevertheless, it is still

required that software architects and load test engineers are aware of the consequences

of changes at the application system or the infrastructure on resource consumption and

performance.

4.4 Summary

The aims and purposes of the experiments were threefold. First, we tried to verify if

the model describing the total resource consumption holds in the example environment.

Second, we tested the precision of the measurement and analysis tools introduced in

section 3.5. Third, we analyzed the effects of parameter changes during the profiling

process and compared the experimental results with the model predictions. The results

can be summarized as follows:

1. The model hypotheses could be confirmed for the computing resources (processor

time) and the communication resources (transferred bytes). At the storage resource

(read/write blocks) we observed high variations of the consumption values. Mean

consumption values determined during a single load test can be considered only as

very rough estimates for the expected resource consumption during regular opera-

tions.

2. Although the performance monitors record only coarsely-grained consumption data,

we achieved through multiple measurements very precise and repeatable results.

3. We analyzed the robustness and consistency of the results by changing client think

times and workload during the profiling process. The experimental results were in

line with the explanatory model. No load-dependent behavior could be observed.

4. In particular we could demonstrate that the resource profiles are independent of

the client think times during the profiling process. Thus, the think times could be

minimized during the load tests. This accelerated the whole process significantly.

In the Java Pet Store example a load test with four different user profiles required

less than 45 minutes (see section 4.3.2).

5. Resource profiles are always tied to a certain infrastructure configuration. Through

experiments with an empty and a full database, we showed how the mean resource

114 4. Experiments: Resource profiles

consumption could change during regular operations. Software architects and load

test engineers determining resource profiles must be aware of those effects.

Based on these experiences, we recommend considering an interval rather than exact

consumption estimates for cost allocation. Uncertainties about the exact user behavior

and variations as observed for the storage resource and due to changing database sizes

could thus be anticipated. In the experiments we demonstrated how these factors can

affect the mean resource consumption values. However, at least in the examples, they had

no significant influence on the overall dimension of the resource consumption. Instead, it

was predefined by the software design of the application system.

Chapter 5

Experiments: Analytical Models

5.1 Motivation

In the previous chapters we presented a method, a software toolkit and experimental re-

sults on the determination of resource profiles for customer-oriented services. We will now

analyze whether the determined consumption estimates are appropriate input parameters

for analytical performance models. The basic approach is to set up a performance model

according to the respective guidelines in the literature and calculate model predictions of

system performance in different workload scenarios. We then validate model and input

parameters by comparing the results, i.e., processor utilizations, response times, through-

put with measurements from load tests. The motivation therefore stems from the overall

requirements on resource profiles (see section 3.4):

1. Accuracy The resource profiles should be unbiased even if the workload at the

respective resources varies. We have already addressed this central requirement in

the experiments presented in section 4.3.4. However, during those load tests the

resources were at all times exclusively used by a single service. Furthermore, the

profiling workload consisting of x concurrent services invocations is not comparable

to the workload during regular operations. In contrast, in load tests for the vali-

dation of performance models realistic scenarios with multiple concurrently active

services and varying workload can be simulated. We claim that if performance mod-

els parameterized with consumption estimates from the resource profiles accurately

predict system performance (utilization, response time, throughput) during those

load tests, the accuracy of the resource profiles is also sufficient for cost allocation.

116 5. Experiments: Analytical Models

2. Capacity Planning In contrast to arbitrarily chosen cost allocation keys, the re-

source profiles should bridge the gap between business forecasts and IT resource

requirements. The major advantage of an analytical performance model is that

once has it has been validated it can be readily used for capacity planning. It

enables capacity planners to conduct “what-if” analyses and thus anticipate the

effects of changes in the workload composition, hardware configuration or system

architecture.

In the following sections we first provide a general overview of IT Capacity Planning

methods (section 5.2). We then introduce basic concepts of Queueing Network Theory

(section 5.3) and describe the software tools developed to solve and validate respective

performance models (sections 5.4). To evaluate the approach we continued the experi-

ments presented in chapter 4 (see section 5.5 and 5.6). We conclude this chapter with a

comparison to related experimental results (section 5.7) and a summary of the findings

(section 5.8).

5.2 IT Capacity Planning Methods

Capacity Management is a central task of IT Service Management. It is responsible

to ensure that the capacity of the IT infrastructure matches the evolving demands of

the business in a cost-effective and timely manner (see Office of Government Commerce,

2001, ch. 6.1). The term “cost-effective” implies that capacity managers must balance

two objectives. On the one hand, they must optimize resource utilization and avoid over-

investments. On the other hand, they must ensure that the IT infrastructure is able to

deliver agreed Service Level Targets. System breakdowns or poor performance of business-

critical applications can cause severe economic damage to a company.

Capacity Planning is an activity within Capacity Management (see Office of Government

Commerce, 2001, ch. 6.3). Capacity planners develop and maintain forecasts of system

performance and future resource requirements. Input factors are more or less precise in-

formation on the expected workload, hardware performance and system architectures. We

distinguish experience-based, model-based and load test-based approaches to IT Capacity

Planning (see figure 5.1).

Rules-of-thumb estimates are typically based on experiences of system experts and ven-

dor guidelines. They require little effort and are usually the quickest and cheapest way

5.2. IT Capacity Planning Methods 117

Load test-based

Bench-

marks

Real

system

Model-based

Analytical Simulation

Experience-based

Rules-of-

thumb

Trend

analyis

Output

Predictions of system performance and resource requirements

Methods

Accuracy/Costs

Expected workload System architectureHardware parameter

Input

Figure 5.1: Overview of IT Capacity Planning Methods (adapted from
Müller-Clostermann, 2001, p. I-78; Scheeg, 2005, p. 155)

to a rough, but possibly biased, capacity planning. In contrast, trend analysis derives

forecasts from historical data on workload and system performance. It requires long-term

measurements and thus causes more effort than the rules-of-thumb. Approaches based

on linear extrapolation cannot anticipate changes in the workload composition or predict

non-linear behavior of systems close to saturation points. So, particularly for highly-

utilized systems, such forecasts are questionable (Müller-Clostermann, 2001, p. I-79).

Model-based approaches1 use abstractions of real systems (models) to study their expected

behavior under different conditions. The level of abstraction depends on the analysis pur-

pose. Generally, models should not be made more complex than necessary. Two major

types of model can be distinguished. Simulation models are based on computer pro-

grams that emulate different dynamic aspects as well as the static structure of IT systems

(see MacDougall, 1987, for an overview of simulation techniques). Analytical models are

1 The considerations on model-based approaches are mainly based on Menascé et al. (2004, pp. 36-38).

118 5. Experiments: Analytical Models

composed of a set of formulas and/or computational algorithms that provide desired per-

formance measures as a function of the set of input workload parameters. Compared

to simulation models, analytical models are less expensive to construct and tend to be

computationally more efficient. Furthermore, due to their higher level of abstraction it

is easier to obtain the necessary input parameters. Simulation models, in contrast, can

be made as detailed as needed, thus delivering more accurate results. They are also less

restrictive, regarding for instance distributions of arrival rates or prioritization strategies,

and can emulate system behavior that cannot be captured (or only approximated) in

analytical models. Both kind of models, however, require a validation, if possible against

real systems, to verify that the chosen abstraction is an appropriate representation of re-

ality. Once validated, capacity planners can use the model to conduct “what-if” analyses.

So, they can study how changes in the workload composition, hardware configuration or

system architecture affect the expected system behavior. Due to their flexibility and effi-

ciency, analytical models are generally preferable for capacity planning purposes (Menascé

et al., 2004, p. 38). Simulation models, in contrast, are particularly useful for detailed

analyses of important details (Müller-Clostermann, 2001, p. I-85).

Nevertheless, the highest planning accuracy can be achieved in load tests with the real

system. If the real application system is not available, custom or standardized benchmarks

(e.g., TPC-App: TPPC, n.d.a or SAPS: SAP, n.d.b) can be used to simulate comparable

workloads and to assess the overall capacity of the infrastructure. Load test tools typically

provide elaborate means to simulate real user behavior (see section 3.5.1). Thus, they

enable detailed analyses of system behavior in different workload scenarios. In contrast,

“what-if” changes to hardware parameters or system architectures usually require time-

consuming and costly system reconfigurations. Against this background, load test-based

methods are typically applied for the basic validation of performance models or rules-of-

thumb estimates and for the final approval of a system configuration prior to the roll-out

of a new software release (Office of Government Commerce, 2002a, ch. 5.3.4).

Despite the numerous advantages of model-based approaches (e.g., flexibility, efficiency,

costs), they are rarely used in practice. A major reason for this is that necessary in-

put parameters such as service demands are mostly not readily available. Consumption

estimates, as determined for resource profiles, could fill this gap. In the following, we

evaluate their appropriateness for Capacity Planning by means of analytical Queueing

Network Models. We use load tests to validate respective models (see chapter 5). Al-

ternative analytical modeling approaches are based for instance on Stochastic Petri Nets

5.3. Queueing Network Theory 119

departure

rate

μ

arrival

rate

arriving

jobs

waiting

time

t

service

time

s

departing

jobs

Figure 5.2: Elementary Queueing System with a single Service Station

(see Marsan et al., 1984) or on extensions of Queueing Network Theory (see Rolia and

Sevcik, 1995; Woodside et al., 1995). We chose standard Queueing Network Models over

those approaches because a broad range of modeling guidelines (see for instance Menascé

et al., 2004) and comparable experimental results are available (see section 5.7).

5.3 Queueing Network Theory

Queueing Network Theory (QN Theory) is a well-studied methodology for the mathemat-

ical analysis of systems with waiting lines and service stations. It was first introduced

by Erlang (1909) for the study of traffic in telephone networks. Today, QN Theory is

used in various domains, ranging from manufacturing system planning via transportation

and logistics to telecommunication and computer performance modeling (see Bolch et al.,

2006, pp .703-806, for several case-studies on real-world applications).

The study objects of QN Theory are queueing systems. Figure 5.2 shows an example of an

elementary queueing system consisting of a service station and a waiting room. Jobs (cus-

tomers) arrive at the back of the queue with an arrival rate λ and are served at the front of

the queue in an average time s. Arrival rate as well as service time may be deterministic

or stochastic variables. If the service station is occupied, jobs have to line up. QN Theory

provides mathematical means to analyze such and related processes. Thus, central per-

formance measures such as mean utilization, waiting time, throughput or queue lengths

can be determined. Several kinds of elementary queueing systems (see section 5.3.1)

and workloads (see section 5.3.2) as well as networks of interconnected queueing systems

(see section 5.3.3) are supported. Approximate and exact analysis techniques exist (see

section 5.3.4).

120 5. Experiments: Analytical Models

Classification and Notation

of Elementary Queueing Systems

Load independent Load-dependent

single service

station

multiple service

stations

Delay

m

1

...

Figure 5.3: Classification and Notation of Elementary Queueing Systems

5.3.1 Elementary Queueing Systems

Three general categories of elementary queueing systems can be distinguished: Load

independent, load-dependent and delay systems (Menascé et al., 2004, p. 46). Figure 5.3

provides an overview of this classification and the corresponding graphical notations. The

three categories can be described as follows:

• Load independent: The service rate is not dependent on the current workload,

i.e., the number of jobs in the queue.

• Load-dependent The service rate is a function of the number of jobs in the queue.

Typical examples are queueing systems with multiple service stations (e.g., models

of multi-processor machines). The effective service rate increases as the number of

current jobs grows from 1 to m (number of service stations). Load-dependent queue-

ing systems with single service stations are marked with an arrow (see figure 5.3).

In the context of computer systems, various forms of load-dependent behavior exist

(see section 3.3).

• Delay Each job that arrives at a delay system is served immediately. A delay

system has an (assumed) infinite capacity and thus requires (and has) no waiting

5.3. Queueing Network Theory 121

line. In computer performance models, delay systems are typically used to represent

human users, resources dedicated to certain jobs or third party components.

Beyond this rough classification, the so-called Kendall notation (see Kendall, 1953) is

widely used to describe elementary queueing systems. Its basic form takes into account

stochastic characteristics of the arrival process and of the service times, the number of

parallel service stations and the queueing discipline:

arrival process | service time | no. of service stations – queueing discipline

The basic Kendall notation is occasionally extended by the number of places in the

queue or the total number of jobs (both assumed as infinite by default). The placeholders

arrival process and service time may take very different values. In the context of computer

performance models, the following symbols and distributions are mostly used:

• M: Exponential distribution (memoryless property)

• G: General distribution

• GI: General distribution with independent interarrival rates.

• D: Deterministic distribution (i.e., arrival rate and/or service time is constant)

The queueing discipline determines which job is selected next from the queue, when

a service station becomes available. Commonly used queueing strategies are:

• FCFS (First-Come-First-Served): The jobs are served in the order of their arrival.

If no queueing discipline is given, FCFS is considered default.

• LCFS (Last-Come-First-Served): The job that arrived last is served next.

• LCFS PR (Last-Come-First-Served Preemptive Resume): A newly arriving job is

served immediately. The service of the current job is therefore interrupted and the

job is queued. The waiting line is served according to LCFS.

• RR (Round Robin): Each job is served for a fixed period of time (timeslice). If a

job could not be finished during that time, it has to queue for one of the subsequent

timeslices. The waiting line is served according to FCFS. The process is repeated

until the job is completed.

122 5. Experiments: Analytical Models

• PS (Processor Sharing): This queueing discipline corresponds to RR with infinites-

imal small timeslices.

• IS (Infinite Server): There is an ample number of service stations. IS queues corre-

spond to the delay queues described above.

The expression M|M|1 describes for example a single server queueing system with ex-

ponentially distributed interarrival rates and service times. The queueing discipline is

FCFS (default). The exponential distribution is of paramount importance in QN Theory

because it has some pleasant mathematical properties and because it is an appropriate

mathematical representation of many real-world processes. The exponential distribution

is the only continuous distribution with the memoryless property. This implies for the ar-

rival process that if the time between two consecutive arrivals is exponentially distributed

with parameter λ, then the distribution of the residual time until the next arrival is also

exponential with the same parameter λ. For service times it implies that the expected

time remaining to complete a job is independent of the service already provided (see

Menascé et al., 2004, p. 294, for further characteristics of the exponential distribution).

The above M|M|1 example specifies the simplest kind of an elementary queueing system.

Examples of mathematically more difficult, but well-studied, elementary queueing sys-

tems include the M|G|1, the G|M|m or the G|G|1 queueing system (see Kleinrock, 1975,

chapters 3,5,6 and 8).

5.3.2 Workload Parameter

The queueing systems introduced in the previous section require two kinds of workload

input parameter: Service demand and workload intensity (Menascé et al., 2004, p. 109).

The service demand specifies the total average amount of time an elementary queueing

system requires to serve a certain class of jobs. The workload intensity provides measures

of the load placed on the system. At load-dependent queueing systems the service demand

depends on the workload intensity. With regard to computer performance models, system

workload and workload intensity parameters can be further classified into interactive2,

transaction and batch workload (see Menascé et al., 2004, p. 54).

• Interactive workload A fixed number of users (terminals, clients) interact with

the system in a request/reply fashion. The time which has elapsed since a reply to

2 In earlier works mostly referred to as terminal workload (see for instance Allen, 1990, p. 378).

5.3. Queueing Network Theory 123

a request has been received before the next request (job) is submitted by the same

user is defined as think time. The workload intensity is specified by the number of

users and their think times.

• Transaction workload Jobs from outside arrive at the system and leave the system

after their service is completed. In contrast to interactive workload, the job arrivals

are independent of the internal system state (e.g., queue length). The workload

intensity is specified by the arrival rate.

• Batch workload The system has to serve a fixed number of batch jobs. The

workload intensity is defined by that number of jobs.

QN Theory furthermore supports workloads consisting of single or multiple job classes.

For computer performance models a differentiation of job classes may be reasonable in

the following situations (Menascé et al., 2004, p. 41):

• Heterogeneous service demands The jobs that form the workload can be clus-

tered into groups that exhibit significantly different average service demands.

• Different types of workload The jobs are different in nature (e.g., batch and

interactive jobs).

• Different service level objectives For jobs with different service level objectives,

a differentiated analysis, for instance of response times, may be necessary.

The analytical determination of the desired performance measures requires that the

workload and the queueing system are completely characterized. In the context of com-

puter performance modeling, not all input parameters are readily available. The static

configuration of queueing systems can mostly be derived from the system architecture

and from appropriate modeling guidelines (see section 5.5.2 for an overview of litera-

ture). Workload intensity parameters can be estimated by means of the expected num-

ber/behavior of users (see Menascé and Almeida, 2000, pp. 41-64) or by the analysis of

data from similar systems. Service demands, however, should be determined from mea-

surements on real systems. This can be costly and time consuming or even impossible, if

the system is not (yet) available3.

3 For an overview of parameterization techniques for models of existing, evolving and proposed systems,
we refer the interested reader to Lazowska (1984, pp. 273 et seqq.).

124 5. Experiments: Analytical Models

Closed Queueing Network Model

Open Queueing Network Model

Figure 5.4: Open and closed Queueing Network Models

5.3.3 Queueing Network Models

QN Theory provides analysis techniques for elementary queueing systems (see section 5.3.1)

as well as for networks of interconnected queueing systems. Such Queueing Network Mod-

els (QN Models) are typically more appropriate for modeling real-world systems with mul-

tiple resources rather than single queueing systems. In a queueing network the job input

stream of one queueing system can be formed by the superposition of the output streams

of one or more other systems. Apart from this relationship, the individual systems are

independent of one another (Haverkort, 1998, p. 200). According to the workload charac-

teristics (see section 5.3.2), queueing networks can be classified into open, closed or mixed

networks4.

A queueing network is called open when jobs can enter or leave the network. The total

number of jobs is assumed to be infinite. The workload intensity is specified by a job ar-

rival rate. In equilibrium, the flow into the network (i.e., the arrival rate) is equal to the

flow out of the network (i.e., the throughput). Thus, throughput is an input parameter.

4 The considerations on open, closed and mixed queueing networks are mainly based on Menascé et al.
(2004, pp. 42-45).

5.3. Queueing Network Theory 125

Transaction workload (see section 5.3.2) is an example of workload requiring an open QN

Model.

A queueing network is referred to as closed if the number of jobs in the network remains

constant, either because jobs cannot enter or leave the network or, whenever a job leaves,

a new one enters. The total number of jobs is known and determines as model input pa-

rameter the workload intensity. In contrast, the throughput of the network is an output

parameter of the model. Interactive or batch workloads (see section 5.3.2) are examples

of workload requiring a closed QN Model.

Mixed queueing networks represent workloads consisting of open and closed job classes.

Such models are required, for instance, when the real-world system executes batch jobs

and online transactions at the same time.

Figure 5.4 shows an example of an open and a closed QN Model. In the open model the

jobs arrive from outside and leave the network after completion. In the closed model, the

jobs circulate indefinitely among the queueing systems. So, for instance, the request/reply

interaction between human users (represented by the delay systems in figure 5.4) and IT

resources could be modeled.

5.3.4 Analysis Techniques

IT systems, as considered in the present context, consist of multiple resources (e.g., servers,

processors, disks). We therefore require queueing networks rather than single queueing

systems for creating adequate performance models. Unfortunately, very little can be done,

analytically, with general queueing networks (Allen, 1990, p. 378). Numerical analysis

techniques are only applicable to small numbers of jobs and queueing systems, otherwise

the number of equations becomes unreasonably large (see Bolch et al., 2006, pp. 332-335).

However, if all queueing systems in the network fulfill certain assumptions concerning

the distribution of interarrival rates and service times and the queueing discipline, each

single queueing system can be examined on its own, in isolation from the rest of the

network. Networks fulfilling these conditions are referred to as separable or product-form

networks. Efficient analysis techniques exist for product-form networks. Jackson (1957,

1963) and Gordon and Newell (1967) found first product-form solutions for open and

closed queueing networks with exponentially distributed interarrival and service times

and FCFS as queueing discipline. Baskett, Chandy, Muntz, and Palacios (1975) extended

these results to open, closed and mixed queueing networks with multiple job classes and

126 5. Experiments: Analytical Models

queueing systems belonging to one of the following categories (see Bolch et al., 2006,

p. 340 and p. 358):

• M|M|m – FCFS : The service rates for different job classes must be equal. Exam-

ples of such queueing systems are disks or other I/O devices.

• M|G|1 – PS : Processors can very often be modeled as such a queueing system.

• M|G|∞ – IS : User think times can be modeled as such delay systems.

• M|M|m – LCFS PR : There is no practical example of an application in computer

system models.

These networks are referred to as BCMP networks (after the four authors).

Product-form solutions can be expressed very easily as formulas. For closed queueing

networks, however, the determination of the desired performance measures requires the

computation of state probabilities and of a normalization constant (Gordon and Newell,

1967). Due to the large number of states the solution causes a high computational effort,

even for moderately sized networks. The breakthrough came with the development of

the Mean Value Analysis (MVA) algorithm by Reiser and Lavenberg (1980) and Reiser

(1981). The MVA is an iterative analysis technique for closed product-form networks. It

enables an efficient determination of mean values for central performance measures such

as queue lengths, response times, throughputs and utilizations. As the name implies, the

MVA calculates only mean values and not the associated distributions. It is therefore not

helpful for questions such as “probability of more than three jobs in queue xy?”. However,

for most performance models, mean values are sufficient.

A drawback of the MVA and other exact solution algorithms for closed networks is that

memory and storage requirements grow exponentially with the number of classes. MVA-

based approximation techniques, based on the MVA, overcome this problem and yet give

very accurate results (Bolch et al., 2006, p. 421). An often used approximation tech-

nique was suggested by Bard (1979) and Schweitzer (1979) for queueing systems with

single service stations. The Self-Correcting Approximation Technique (SCAT) extended

the Bard-Schweitzer approximation to queueing systems with multiple service stations

and improved its accuracy (see Neuse and Chandy, 1981). An alternative to MVA-based

approximation techniques is the Summation Method (SUM). It is easier to implement and

to understand, but less accurate than SCAT (Bolch et al., 2006, p. 460). Bounds analysis

5.3. Queueing Network Theory 127

techniques, such as Asymptotic Bounds Analysis (ABA) or Balanced Job Bound Analysis

(BJB), provide only upper and lower bounds for the performance measures. Such an

approximation might be sufficient for bottleneck analysis or to obtain a rough prediction

of system performance already during the design phase. ABA and BJB are applicable to

open and closed queueing networks. Generally, exact analysis techniques for open queue-

ing networks do not suffer from the state space explosion problem of closed networks.

Thus, approximations are usually not required. For mixed networks Bolch et al. (1992)

proposed the closing method. The basic idea is to extend the network by a queueing

system that represents the external world of the open classes so that the network can be

analyzed with the same exact and approximate techniques as closed networks (see also

Bolch et al., 2006, pp. 507-512).

For the mathematical analysis of non-product-form queueing networks, three basic ap-

proaches exist (Bolch and Riedel, 1997, p. 171):

1. Approximation by a product-form network The model can then be analyzed

with one of the techniques introduced above.

2. Numerical Analysis Due to high computing and memory requirements, this ap-

proach is only applicable for very small networks.

3. Approximation technique for non-product form networks Depending on

which product-form condition is not satisfied, different approximation techniques

exist.

Several approximation techniques for non-product-form networks exist. The most

important strategy is Decomposition (Bolch and Riedel, 1997, p. 172). The queueing net-

work is first decomposed into several sub-networks, which are separately analyzed. The

results are then combined to a result for the complete model. This approach leads to

exact solutions for product-form networks and approximate solutions for non-product-

form networks. A multitude of decomposition approaches for open and closed networks

are available (see for instance Bolch and Riedel, 1997, pp. 172-211). Furthermore, several

extensions to the MVA, SCAT and Summation methods exists for analyzing closed queue-

ing networks including non-product-form queueing systems (e.g., due to non-exponentially

distributed service times or asymmetric service stations). Closed queueing networks, how-

ever, are quite robust, in particular toward variations of the service time distributions.

Robustness in this context means that a major change in system parameters generates

128 5. Experiments: Analytical Models

open closedmixed

Jackson

BCMP

...

Closing

Method

MVA-

MIX

...

MVA

Convo-

lution

...

open closedmixed

ABA

BJB

...

Closing

Method

...

SCAT

SUM

...

open closedmixed

Decom-

position

Diffu-

sion

...

Closing

Method

...

Extended

SCAT

Extended

SUM

...

exact

alogorithms

approximate

algorithms

approximate

algorithms

non-product-form

networks

product-form

networks

Classification of Analysis Techniques

for Queueing Network Models

Figure 5.5: Classification of Analysis Techniques for Queueing Network
Models (adapted from Bolch et al., 2006, p. 370 and p. 462)

only minor changes in the calculated performance measures (Bolch et al., 2006, p. 488).

Thus, they can often be very good approximated by product-form networks (approach 1).

Open networks in contrast do not have that robustness property and it is recommended

to use an approximation technique for non-product-form networks (approach 3) instead

(see Bolch et al., 2006, p. 489).

Figure 5.5 provides an overview of analysis techniques for QN Models. Further details

on the algorithms can be found in various textbooks on QN Theory. In particular, we

refer the interested reader to Bolch et al. (2006); Gross and Harris (1998); Tjims (1995)

(general aspects of QN Theory and comprehensive sets of algorithms), Kleinrock (1976);

Lazowska (1984); Menascé et al. (2004) (special focus on computer system applications)

and Bolch and Riedel (1997) (German textbook including major algorithms).

5.4. Software Support 129

.txt

.csv

.mdb

.xls

Database
Oracle

MySQL

MS Access

Unix/Linux

System Activity Reporter

sar

Microsoft Windows

Performance Monitor

perfmon

Mercury Interactive

Loadrunner 8.0

Analysis Database Import

Analyze

Visualize

.eps

QN Verifier
Java 1.5

Additional information

about measurement points

MS Excel Spreadsheet

Result Diagramms

Interactive application

windows and graphic files

.xml
Configuration

parameters

Analyze

QN Solver
Java 1.5

.xls
QN Model Specification

MS Excel Spreadsheet

Figure 5.6: Overview of Software Tools for QN Analysis and Validation

5.4 Software Support

5.4.1 Software Overview

We could not identify appropriate off-the-shelf tools that enable an integrated analysis

and validation of Queueing Network Models. We therefore propose a software toolkit

which combines a commercial load generator and standard performance monitors with

two custom software tools, the QN Solver and the QN Verifier (see figure 5.6).

QN Solver The QN Solver implements several algorithms for the analysis of open

and closed QN Models. It consists of a single software component (Analyze). Model

and workload parameters are specified in a Microsoft Excel spreadsheet. The Analyze

component reads out the input parameters, applies the selected algorithm and writes the

results (e.g., response time, throughput, utilization) to a central database. These values

can then be compared to measurements obtained during load tests with the real system.

The QN Solver is introduced in section 5.4.2.

130 5. Experiments: Analytical Models

QN Verifier The QN Verifier processes measurement data from load tests for the vali-

dation of analytical performance models. It consists of three components: Import, Ana-

lyze and Visualize. Analogous to the determination of resource profiles, we use Mercury

LoadRunner as load generator (see section 3.5.4) and standard operating system tools as

performance monitors (see section 3.5.3.2). We could therefore directly reuse the Import

and the Visualize component from the Service Profiler (see section 3.5.3.3). The Analysis

component and the load test process are detailed in section 5.4.3.

The Service Profiler, the QN Solver and the QN Verifier operate on the same data

model. This allows for a direct transfer of data from resource profiles into QN Models

and for an automated analysis of the model accuracy. The interplay of the software tools

is further described in section 5.4.4.

5.4.2 Analysis of Queueing Network Models

The QN Solver is implemented for the mathematical analysis of QN Models. It calcu-

lates, on the basis of a queueing network specification and given workload parameters,

the following performance measures: Utilization, throughput, response time and queue

length. We opted for the development of a custom software component because we aimed

to achieve a seamless integration with the Service Profiler and the QN Verifier. Alter-

natively, we could have used an existing tool such as TeamQuest Model (commercial,

see TeamQuest, n.d.) or Java Modelling Tools (academic/open-source, see Bertoli et al.,

2006; SourceForge, n.d.)5.

The input parameters for the QN Solver originate from different sources: The QN Model

is specified manually. The service demands are taken from resource profiles. The workload

intensity (i.e., the arrival rates respectively the number of users and their think times,

see section 5.3.2) is also specified manually. However, if the results are validated against

a load test, the modeled workload intensity must be in line with the load test configura-

tion. The QN Solver reads out all input parameters from a Microsoft Excel spreadsheet

(see figure 5.6). We chose this data format because, on the one hand, Java can interact

with spreadsheets as if they were databases. Especially, the support for SQL statements

enables a convenient read/write access to the parameters. On the other hand, Microsoft

Excel provides an appropriate user interface for the manual entry of parameter values.

5 Hlynka (n.d.) provides a comprehensive list of tools for QN Analysis.

5.4. Software Support 131

The QN Solver supports open and closed product-form networks, workloads consisting of

single or multiple job classes, and queueing systems with one or more service stations.

The following algorithms are used (references to the textbooks that served as the basis

for the implementation are given in brackets):

• Open QN: Exact formulas based on Jackson (1957, 1963) (see Menascé et al., 2004,

p. 400)

• Closed QN: Mean Value Analysis (MVA) – exact algorithm based on Reiser (1981);

Reiser and Lavenberg (1980) (Menascé et al., 2004, p. 389)

• Closed QN: Mean Value Analysis (MVA) – approximation based on Bard (1979);

Schweitzer (1979) (Menascé et al., 2004, p. 395)

• Closed QN: Self-Correcting Approximation Technique (SCAT) – approximation

based on Neuse and Chandy (1981) (Bolch and Riedel, 1997, p. 152-153)

Due to the robustness property (see section 5.3.4), closed non-product-form networks

can mostly be approximated by product-form networks and analyzed with one of the

techniques listed above (see section 5.3.4, approach 1). Open non-product-form networks

are not supported by the QN Solver. The exact MVA algorithm for closed networks, how-

ever, suffers from state space explosion problems and is not applicable to networks with

multiple job classes. The QN Solver implements two different approximation techniques

for such networks, so the user can cross-check the results.

The algorithm that should be applied to the input parameters is determined in the spread-

sheet. The results are then written to a central database (see figure 5.6). By means of

the QN Verifier, they can be visualized and compared to measurements obtained during

load tests with the real system.

5.4.3 Validation of Queueing Network Models

The predictive accuracy of the analytical performance models is validated in load tests

with real systems. As for the determination of resource profiles, we use Mercury Load-

Runner for the emulation of user behavior (see section 3.5.4) and operating system per-

formance monitors to record the resource consumption at the components involved (see

section 3.5.3.2). A custom software tool, the QN Verifier, then analyzes the measurement

data and prepares it for comparison with the analytical results. The software architecture

132 5. Experiments: Analytical Models

of the QN Verifier is the same as for the Service Profiler (see figures 5.6 and 3.6). The

Import component parses the different log files and consolidates the measurements in the

database. The Analyze component then processes the data according to the parameter

settings specified in the configuration files. The Visualize component finally displays the

results in interactive application windows or writes them to graphic files. The Import

and the Visualize component could be directly reused from the Service Profiler (see sec-

tion 3.5.3 for further descriptions).

The load tests for the determination of resource profiles are characterized by synchronous

service invocations of a continuously increasing number of virtual users (Vusers). The

infrastructure is at all times exclusively used by a single service (see section 3.5.2). In

contrast, in load tests for the validation of QN Models, we put the Vusers in endless loops,

insert random think times and omit all rendezvous points in the script. The infrastructure

is therefore used by a constant number of Vusers with unsynchronized service invocations.

The number of users and the mean think times are configured in the load test scenario (see

section 3.5.4.2). These values equal the workload intensity parameters in the analytical

model (see section 5.4.2). During a load test, the workload intensity can be varied by

changing the number of concurrently active Vusers.

We illustrate the approach with an example. Figure 5.7 shows a time series chart of

a 90-minute load test. The horizontal line in the lower diagram indicates the number

of concurrent active Vusers (lower y-axis). In the upper diagram, measurements of the

performance monitors are displayed (here: processor utilization of an application server).

The load test starts with ten Vusers in an endless loop. Every five minutes, ten more

users are added until the load test stops after 90 minutes and with 180 concurrently active

Vusers. The upper diagram shows how the utilization of the application server evolves

with the increasing workload.

The Import component transfers the log files of the performance monitors and of the load

generator into the database. The Analyze component then conducts the following steps6:

1. Addition of context information

2. Normalization of measurements

3. Determination of measurements intervals An entry in the LoadRunner trans-

action log file contains, besides the transaction name and a timestamp, a unique

6 Steps 1 and 2 were taken over without any modifications from the determination of resource profiles
(see section 3.5.5 for a description).

5.4. Software Support 133

Figure 5.7: Example: Load Test for QN Model Validation

identifier of the Vuser that executed the transaction. The Analyze component pro-

cesses this data and derives measurement intervals with constant workload from it.

As the start or stop of virtual users may lead to a non-steady transient behavior

in the system, the Analyze component can exclude a configurable time period after

a change in the workload from the further analysis. In the example of figure 5.7,

the white areas indicate the measurement intervals and the gray areas represent

the time periods excluded from the analysis (here: 1 minute after a change in the

number of concurrently active users).

4. Calculation of mean performance values The measurement points of interest

for a comparison with analytical values are specified in the configuration files. The

Analyze component reads out this list and calculates for each measurement interval

the arithmetic mean of the values recorded by the performance monitors. This

step is illustrated by figure 5.8. The graph shows the mean processor utilization of

the application server during the 18 measurement intervals depicted in figure 5.7.

Besides the performance of the involved components, the tool also analyzes the

134 5. Experiments: Analytical Models

Figure 5.8: Example: Mean Processor Utilization during Intervals with
constant Numbers of Users

LoadRunner transactions and determines mean values for transaction throughput

and execution times.

5. Preparation of results Finally, the Analyze component prepares the data for

comparison with analytical values and consolidates the results in database tables

that can be read out by the Visualize component or exported to other applications

later.

After the analysis of the load test measurements, the results can be compared to

performance values calculated by the QN Solver or other third-party tools. The QN

Verifier therefore provides the custom Visualize component and a database interface for

external applications such as Microsoft Excel.

5.4. Software Support 135

Service Profiler

QN Solver

QN Verifier

Resource

profiles

Service

definitions

Performance

prediction

Measured

performance

Comparison

Different

workload

scenarios QN Model

Load test

(I)

Load test

(II)

Software tools

Figure 5.9: Interplay of the different Software Tools

5.4.4 Interplay of Software Tools

The motivation for the development of the software toolkit introduced above was to verify,

on the one hand, whether the consumption estimates determined for resource profiles are

also unbiased in scenarios with multiple concurrently active services and varying work-

loads, and on the other hand, whether the estimates are appropriate input parameters

for analytical performance models (see section 5.1). Figure 5.9 therefore illustrates the

interplay of the different software tools.

Starting point is a set of services that adequately reflects the usage of the considered

application system. These services can include single or multiple client requests. By

means of a first load test and the Service Profiler, resource consumption estimates for the

different services are determined. This process is detailed in chapter 3. The model-based

validation approach described above requires a QN Model of the test infrastructure. This

model must be constructed manually. Consumption estimates of the resource profiles

serve as the model input parameter (service demands). For given workload scenarios,

i.e., number of users and think times (workload intensity), the QN Solver then calculates

performance predictions (utilization, response time, throughput). The same workload sce-

narios are then replayed in a second load test. The QN Verifier analyzes the performance

136 5. Experiments: Analytical Models

measurements obtained during the load test and prepares them for comparison with the

analytical results. We claim that if the analytical results accurately predict the measured

system performance, the accuracy of the consumption estimates is also sufficient for cost

allocation. Furthermore, the QN Model and the input parameters from the resource pro-

files can then be readily used for “what-if” analyses and Capacity Planning.

In chapter 4 we already presented results of experiments with the Service Profiler. In the

following sections, we focus on experiments with the QN Solver and the QN Verifier and

thus complete the experimental validation of the approach.

5.5 Experimental Setup

5.5.1 Overview of Experiments

We applied the model-based validation approach to resource profiles determined during

the experiments presented in chapter 4. Therefore, we conducted a number of additional

experiments on the test infrastructure and with Java Pet Store as example application

system (see section 4.1 for a detailed description of the setup). We chose Java Pet Store

over PASTA because it is far more scalable and thus enables a more differentiated model

validation. As in the experiments with resource profiles, we separately analyzed services

including single client requests and services including multiple requests:

• Experiment PE08: 13 services including single client requests (see section 5.6.1)

• Experiment PE09: 1 service (user profile) including multiple client requests (see

section 5.6.2)

In both experiments, we conducted load tests according to the process described in

section 5.4.3. The corresponding LoadRunner scripts are given in the appendix (see

section A.5). The measurements were analyzed with the QN Verifier and compared to

analytical results determined by the QN Solver. The underlying QN Model of the test

infrastructure is detailed below.

5.5.2 Queueing Network Model

The model-based validation approach requires the manual specification of a QN Model of

the test infrastructure. In general, the development of an analytical model that appropri-

ately represents a real system is not trivial. However, particularly for models of computer

5.5. Experimental Setup 137

systems, a broad range of guidelines exists. We therefore refer practice-oriented readers

to the textbooks of Menascé et al. (Menascé and Almeida, 2000, 2002; Menascé et al.,

2004). Readers interested in literature with an emphasis on algorithms and on mathemat-

ical fundamentals of QN Theory are referred to Allen (1990); Bolch et al. (2006); Bolch

and Riedel (1997); Kleinrock (1976) and Lazowska (1984).

In the following, we detail the modeling decisions that led to the QN Model of the test

infrastructure that was used during the experiments. A technical description and an exact

specification of the infrastructure is given in sections 4.1.1 and A.2.

• In load tests as described in section 5.4.3, the number of concurrently active Vusers is

constant during each measurement interval. The Vusers interact with the system in

endless loops. This kind of workload requires a closed QN Model (see section 5.3.3).

• We modeled solely the processors, since the disk times and the network delay were

negligible. Hard disks would be typically modeled as M|M|n – FCFS queueing

system (see Bolch et al., 2006, p. 340). Load-independent network delay could be

represented as M|G|∞ queueing system (delay system).

• A processor can very often be modeled as M|G|1 – PS queueing system (see Bolch

et al., 2006, p. 340). In our test infrastructure we use dual-processor machines, which

would be modeled accordingly as M|G|2 – PS queueing systems. Unfortunately,

product-form solutions for queueing systems with multiple service stations exist

only for M|M|m – FCFS systems. With regard to the robustness of closed networks

(see Bolch et al., 2006, pp. 488-489), we opted for an approximation based on M|M|2
– FCFS queueing systems. Alternatively, we could have used two separate M|G|1 –

PS systems (see section 5.7 for an example).

• The think time of the users is represented by a M|G|∞ queueing system (delay

system). The infinite number of service stations indicates that independent from

the actual load no queueing effects occur. This reflects reality as the think time of

a user is not dependent on the number of concurrently active users.

The structure of the resulting QN Model is depicted in figure 5.10. The model conforms

to the product-form conditions (see section 5.3.4) and can be analyzed by the QN Solver

either with the exact MVA algorithm or with one of the implemented approximation

techniques. We validated the QN Model and the input parameters taken from resource

138 5. Experiments: Analytical Models

Web Server

 M/M/2

Application Server

 M/M/2

Database Server

 M/M/2

Think time

 M/G/

Figure 5.10: QN Model of the Test Infrastructure

profiles by load tests with the real system and services including single and multiple client

requests.

5.6 Experimental Results

5.6.1 Services including single Client Requests

In the experiments on analytical models we tried to predict system performance (utiliza-

tion, response time, throughput) in a multi-tier client/server environment. As an example

scenario, we considered the interactions of an online customer with the Java Pet Store

shop application (see section 4.1).

In the first experiment (PE08) we used 13 different types of requests (job classes) to

specify the workload of a Java Pet Store customer. These were the same requests, as

considered during the experiments on resource profiles as services including single client

requests (e.g., search.screen or cart.do). During those experiments, the disk times and the

network delay were negligible. Hence, we included solely the processors in the QN Model

(see section 5.5.2). As service demands, we used processor time estimates determined

during the experiment PE03 (analysis PE03 0, see section 4.3.3).

In the LoadRunner script for experiment PE08, we specified that each Vuser subsequently

submits one request of each kind (see section A.5.1). During the load test, the Vusers

ran in endless loops (see section 5.4.3). We therefore assumed in the model that the time

between the submission of two requests of the same kind by a certain user is composed of

the total user think time plus the execution time of the other 12 requests.

We analyzed the predictive accuracy of the analytical model in 18 different workload sce-

narios. The load test started with ten Vusers in an endless loop. Every five minutes,

5.6. Experimental Results 139

we added ten more users until the load test stopped after 90 minutes and with 180 con-

currently active Vusers. The mean think time between two subsequent requests was 1

second (random range: 50 % to 150 %) for all Vusers and at all workloads. A times series

graph of the load test is depicted in figure 5.7. The load test measurements were ana-

lyzed by the QN Verifier according to the process description in section 5.4.3. The load

test configuration (numbers of users and mean think times) served as input parameter

(workload intensity) for the QN Model. The QN Solver calculated on this basis for each

workload scenario an individual performance prediction. Due to state space explosion

problems, the exact MVA algorithm is not applicable to QN Models with multiple job

classes (here: 13). Hence, we used the SCAT approximation to analyze the model and

the Bard-Schweitzer/Menascé algorithm to cross check the results (see section 5.4.2). A

summary of all input parameters as well as full result tables are provided in the appendix

(see section A.4.1).

Regarding the accuracy of the processor time estimates and their appropriateness for

Capacity Planning, most interesting is how well the performance model predicts the pro-

cessor utilizations. In figures 5.11, 5.12 and 5.13 the mean processor utilization of the

application server, the database server and the web server during each measurement inter-

val is compared to the analytically determined values. Basically, the processor utilizations

evolved with increasing load, as we had expected in our theoretical considerations. No

significant non-linearities in the resource consumption could be observed. Mean absolute

deviations of the analytically determined values were 3.6 % (application server), 0.9 %

(web server) and 0.9 % (database server). Relative values are given in the appendix (see

table A.19). In the test scenario the application server emerged as the bottleneck of the

system. At workloads beyond 120 concurrently active users its mean processor utilization

was above 90 %. From that point on, the measured response times showed high variations

that could not be explained by the performance model (see figure 5.14). Database server

and web server were far less utilized during the whole load test.

The highest predictive accuracy, however, could be achieved for the throughput values

(see figure 5.15 for an example). As long as the system is not close to its capacity limit the

throughput grows approximately linearly with the number of concurrently active users.

Therefore, the throughput graph is a valuable cross check whether the modeled workload

intensity equals the workload intensity emulated by the load generator. In experiment

PE08 the analytically determined and the measured throughput values are nearly congru-

ent for all workloads. This confirms the accuracy of workload intensity parameters (i.e.,

140 5. Experiments: Analytical Models

Figure 5.11: QN Model Validation: Application Server Processor
Utilization – Services including single Client Requests

Figure 5.12: QN Model Validation: Database Server Processor Utilization
– Services including single Client Requests

5.6. Experimental Results 141

Figure 5.13: QN Model Validation: Web Server Processor Utilization –
Services including single Client Requests

the calculated arrival rate of requests), as well as of model results (predicted capacity

limit).

Overall, and despite the required approximations (e.g., processor models or SCAT algo-

rithm, see section 5.5.2), the predictive accuracy of the analytical model was quite high

in this experiment (see section 5.7 for a comparison with related results). The obser-

vations underpin our approach in three different ways. First, during the load tests we

could not identify major non-linearities in the resource consumption (see requirement 1.2

in section 3.4). Second, the processor estimates emerged as largely unbiased at different

workloads and with multiple concurrently active services. Third, the predictive accu-

racy of the results indicated the appropriateness of consumption estimates from resource

profiles as input parameters for analytical performance models (see section 5.1).

5.6.2 Services including multiple Client Requests

In experiment PE09, we analyzed whether the model-based validation approach is also

applicable to services including multiple client requests (and hence user think times). This

was unclear, as we could not identify any related experimental results with QN Models

and such kind of job classes.

142 5. Experiments: Analytical Models

Figure 5.14: QN Model Validation: Response Time – Services including
single Client Requests

Figure 5.15: QN Model Validation: Throughput (requests per second) –
Services including single Client Requests

5.6. Experimental Results 143

As an example scenario, we considered again the interactions of an online customer with

the Java Pet Store shop application. In the experiment described in the previous section,

we specified the workload through 13 different kinds of requests (job classes). Now, we

abstract from the level of single requests and consider the entirety of interactions of a

certain kind of user as job class. In the experiments on resource profiles, we introduced

an analogous abstraction and determined consumption estimates for different user profiles

(i.e., services including multiple client requests).

For experiment PE09, we considered the power shopper user profile, introduced in sec-

tion 4.1.2.2, as the example job class. We slightly adapted the LoadRunner script to

enable a comparison with the results of experiment PE08. The script and the modifica-

tions are documented in the appendix (see section A.5). In total, it contains 40 customer

requests to the shop application.

The configuration of the load test PE09 1 is similar to the configuration of load test

PE08 1 presented in the previous section. Due to a less resource-intensive workload com-

position, we could analyze the predictive accuracy of the analytical model in 20 instead

of 18 different workload scenarios. The load test started again with ten Vusers in an

endless loop. Every five minutes, we added ten more users until the load test stopped

after 100 minutes and with 200 concurrently active Vusers. The mean think time between

two subsequent requests was 1 second (random range: 50 % to 150 %) for all Vusers and

at all workloads. Thus, the mean total think time was 40 seconds. In the QN Model,

we considered this value as service demand of the power shopper at the delay queue (see

figure 5.10). The service demands at the other queueing systems were extracted from the

corresponding resource profile (see table A.20). Again, we used the QN Verifier and the

QN Solver to analyze the load test measurements and the QN Model.

Overall, the performance model was far less complex than the model used for experi-

ment PE08. Instead of 39 (13 job classes x 3 queueing systems) we required only 3 service

demand input parameters. As we considered only one job class, the QN Model could be

analyzed with the exact MVA algorithm. Approximations due to state space explosion

problems were not required. A summary of all input parameters as well as full result

tables are provided in the appendix (see section A.4.2).

In figures 5.16, 5.17 and 5.18 the analytically determined values are compared to the mean

processor utilization of the application server, the database server and the web servers.

Overall, the mean utilizations evolve with increasing workload as expected and similar

to the observations in experiment PE08. Mean absolute deviations of analytical values

144 5. Experiments: Analytical Models

Figure 5.16: QN Model Validation: Application Server Processor
Utilization – Services including multiple Client Requests

to load test measurements were 5.7 % (application server), 0.3 % (web server) and 0.3 %

(database server). Relative values are given in the appendix (see table A.21). Although

the predicted capacity limit is slightly too high (see figures 5.16 and 5.19), the model

accuracy is directly comparable to the results of experiment PE08. This is particularly

interesting, as the service demand input parameters are far more coarse-grained (total

resource consumption of 40 requests). This reduces the complexity not only for the QN

Solver, but also for the people responsible for modeling and Capacity Planning.

The experimental results basically confirm the conclusions drawn in the previous section.

The analysis of load test measurements provided no indications of major non-linearities

in the resource consumption. The processor time estimates seemed to be largely unbiased

at different workloads and with multiple concurrently active services, and emerged as

appropriate input parameters for analytical performance models.

5.7 Related Experimental Results

We chose Java Pet Store for the above experiments because we consider it an appro-

priate example of modern multi-tier client/server systems. This architectural concept is

5.7. Related Experimental Results 145

Figure 5.17: QN Model Validation: Database Server Processor Utilization
– Services including multiple Client Requests

Figure 5.18: QN Model Validation: Web Server Processor Utilization –
Services including multiple Client Requests

146 5. Experiments: Analytical Models

Figure 5.19: QN Model Validation: Throughput (users per second) –
Services including multiple Client Requests

widely used in today’s data centers and analytical models of respective systems can sup-

port various tasks. Closed Queueing Network Models have been proposed for multi-tier

client/server architectures in the context of Dynamic Resource Allocation (see for instance

Bennani and Menascé, 2005; Urgaonkar et al., 2007), Service Level Management (see for

instance Cherkasova et al., 2007; Liu et al., 2005) and Capacity Planning (see for instance

Kounev and Buchmann, 2003; Zhang et al., 2007).

From these related works we chose Kounev and Buchmann (2003) for a closer analysis

because their experimental results are well documented and the test scenario is directly

comparable to the one presented above (see section 5.5.1). A shortened version of their

paper is included as an example case study in the textbook of Bolch et al. (2006, pp. 733-

745).

Kounev and Buchmann (2003) analyzed the applicability of Queueing Network Models

for performance prediction and capacity planning in a distributed multi-tier Java/J2EE

environment. They chose the SPECjAppServer2002 benchmark (see SPEC, n.d.b) as

an example application system. Similar to Java Pet Store, it represents a distributed

e-business environment. It includes components supporting manufacturing, supply-chain

management and order/inventory processes. The business logic of both application sys-

5.7. Related Experimental Results 147

tems is implemented using the J2EE EJB technologies (J2EE server version 1.3). The

test infrastructure of Kounev and Buchmann consisted of a Bea Weblogic Server cluster

(single processor machines) and a Oracle database server (dual processor machine).

The QN Model of Kounev and Buchmann is slightly different to the model presented in

section 5.5.2:

• CPU Application Server: –|M|1 – PS

• CPU Database Server: –|M|1 – PS

• Disk Database Server: –|M|1 – FCFS

• Client: –|M|∞ – FCFS

• Production Line Stations: –|M|∞ – FCFS

In the Java Pet Store example, the time consumed by the SAN was negligible, so we

omitted it in the model. Production Line Stations representing a “manufacturing think

time” are a specific characteristic of the SPECjAppServer2002 example. The model above

does not conform to the product-form conditions (see section 5.3.4). While we opted for

an approximation by a product-form network (see section 5.3.4, approach 1), Kounev

and Buchmann used an extension of the summation method (see Bolch et al., 2006,

pp. 505-507), i.e., an approximation technique for non-product-form networks (approach

3). However, many efficient analysis techniques for non-product networks do not support

–|M|m – PS queueing systems. Therefore, they approximated the dual-processor machine

with two single processor machines. We opted instead for a product-form approximation

using M|M|2 – FCFS queueing systems (see section 5.5.2). This enabled us to apply the

MVA and the SCAT algorithms, which are more accurate than the summation method

(Bolch et al., 2006, p. 460).

Kounev and Buchmann solely analyzed their model for services (job classes) including sin-

gle client requests (analogous to experiment PE08, see section 5.6.1). They distinguished

five request classes:

• NewOrder places a new order in the system

• ChangeOrder modifies an existing order

• OrderStatus retrieves the status of a given order

148 5. Experiments: Analytical Models

1 Application Server 2 Application Servers

Metric Model Measured Error Model Measured Error

NewOrder Throughput 14.59 14.37 1.5 % 14.72 14.49 1.6 %

ChangeOrder Throughput 4.85 4.76 1.9 % 4.90 4.82 1.7 %

OrderStatus Throughput 24.84 24.76 0.3 % 24.89 24.88 0.0 %

CustStatus Throughput 19.89 19.85 0.2 % 19.92 19.99 0.4 %

WorkOrder Throughput 12.11 12.19 0.7 % 12.20 12.02 1.5 %

NewOrder Response Time 56 ms 68ms 17.6 % 37 ms 47ms 21.3 %

ChangeOrder Response Time 58 ms 67ms 13.4 % 38 ms 46ms 17.4 %

OrderStatus Response Time 12 ms 16ms 25.0 % 8ms 10ms 20.0 %

CustStatus Response Time 11 ms 17ms 35.2 % 7ms 10ms 30.0 %

WorkOrder Response Time 1127ms 1141ms 1.2 % 1092ms 1103ms 1.0 %

WebLogic Server CPU Utilization 66 % 70% 5.7 % 33 % 37% 10.8 %

Database Server CPU Utilization 36 % 40% 10% 36 % 38% 5.2 %

Table 5.1: Experimental Results of Kounev and Buchmann (2003)

• CustStatus lists all orders of a given customer

• WorkOrder controls the order production

The service demands were retrieved manually by analysis of the server utilization (ap-

plication server) and of data monitored by an Oracle agent (database server). As in the

Java Pet Store example, most of the service time was consumed by the processors. The

disk time was minimal.

During the experiments, Kounev and Buchmann applied a certain workload to different

numbers of parallel application servers. They could therefore evaluate the predictive ac-

curacy of the model in scenarios with varying capacities. Mean results of experiments

with 1 and 2 application servers are given in table 5.1. Additional experiments with three

different workloads and 3, 4, 6 and 9 parallel application servers led to comparable results

(see full result tables in Kounev and Buchmann, 2003). The experiments presented in

the previous sections are complementary to that approach. In contrast to Kounev and

Buchmann, we analyzed the predictive accuracy of the model in scenarios with a fixed

capacity but varying workloads.

Both types of experiments led to a similar result accuracy (see table 5.1 and table A.19,

and figures in section 5.6.1). Overall, the best predictions could be achieved for through-

put values, whereas in both cases the measured response times showed relatively high

variations. Regarding the accuracy of utilization values, Kounev and Buchmann deter-

mined in their experiments with a single application server a relative deviation of 5.7 %

5.8. Summary 149

at the application server and 10 % at the database server (see table 5.1). At a compa-

rable workload level we measured relative deviations of 5.8 % and 1.3 % respectively (see

table A.19: 90 concurrent users and 66.1 % utilization of the application server).

5.8 Summary

The motivation for the development of the software tools, QN Solver and QN Verifier, and

for the experiments described in the previous sections was twofold (see section 5.1). First,

we wanted to analyze whether the consumption estimates determined for resource pro-

files are also unbiased in scenarios with multiple concurrently active services and varying

workloads (Requirement 1: Accuracy, see section 3.4). Second, we aimed to evaluate the

appropriateness of consumption estimates as input parameters for analytical performance

models (Requirement 3: Capacity Planning, see section 3.4).

During the load tests described in the previous sections, we could not observe any sig-

nificant load-dependent behavior in the consumed processor time. This confirmed the

basic model hypothesis on the linear increase of resource consumption (see section 3.3).

Furthermore, in both experiments, the QN Model emerged as a viable representation of

the real system. The predictive accuracy was surprisingly high and directly comparable

to related results. Thus, we concluded that the processor time estimates were largely

unbiased in the considered workload scenarios and appropriate input parameters for the

analytical model.

Basically, such results cannot be directly transferred to other environments. Analytical

models always require a validation, if possible against the real system (see section 5.2).

Although model-based approaches have been proposed for various tasks within IT Service

Management (see section 5.7 for some examples), the need for validation and often not

readily available input parameters hamper their application in practice. We claim that

there resource profiles and the validation methodology presented in the previous sections

could fill a gap.

Chapter 6

Proof of Concept: BMW Group

6.1 Motivation

The initial objective of the work presented in this thesis was to contribute a viable alterna-

tive to existing cost allocation methodologies (see section 1.2). To evaluate the “viability”

of the approach presented in the previous chapters we conducted a proof of concept in

cooperation with our industrial partner, the BMW Group. The project was organized

into three stages. First, we analyzed the cost allocation practices for IT infrastructure

services and verified whether the situation is in accord with our general assumptions on

IT Cost Accounting and Chargeback (see chapter 2). Second, by example of Java/J2EE-

based application systems we examined how the determination of resource profiles could

be integrated into the existing IT Service Management processes. Finally, we applied

method and software to two different application systems in a data center of the BMW

Group. Results from experiments on that infrastructure were already presented in chap-

ters 4 and 5. During the proof of concept, we put a particular analysis focus on the

following two requirements (see section 3.4):

1. Consistency This requirement means that the estimation should be applicable to

various IT infrastructures, without a need to change the respective systems. We de-

liberately chose Java/J2EE technologies for the proof of concept, as the respective

guidelines at the BMW Group facilitate the design of distributed and heterogeneous

software and hardware architectures. So, we combined in the test infrastructure

three different operating systems (Linux, Windows, Unix) with server software from

Apache, Bea and Oracle. All hardware and software components were typical enter-

prise products. By means of this rather heterogeneous, but realistic, infrastructure,

152 6. Proof of Concept: BMW Group

we tried to gather significant results on the consistency of the estimation process

and the determined resource profiles.

2. Operating Efficiency The determination of resource profiles should integrate well

with existing IT Service Management processes and cause little extra work. We

addressed this requirement with a feasibility study with Java/J2EE-based applica-

tion systems. We first developed an integration into existing processes and then

conducted a number of test series with two example application systems. Thereby,

we tried to adhere to all relevant process and architectural guidelines to get sound

estimates for the expected efforts and the operating efficiency of the approach for

the determination of resource profiles.

In the following, we first introduce the case of the BMW Group and discuss the current

cost allocation practices of the Central IT unit (section 6.2). In section 6.3 we then

present the results of the feasibility study with Java/J2EE-based application systems. As

experimental results were already provided in chapters 4 and 5, we focus in this section

on the integration into existing IT Service Management processes and our experiences

regarding the operating efficiency and the efforts required for the determination of resource

profiles. Section 6.4 summarizes the findings from the proof of concept and describes some

potential benefits of resource profiles beyond Cost Accounting.

6.2 Organizational Context

The BMW AG is an independent automobile and motorcycle company, headquartered

in Munich (Germany). It develops and sells cars and motorcycles manufactured by itself

and by foreign subsidiaries. The vehicles are sold through the company’s own branches,

independent dealers, subsidiaries and importers (BMW Group, 2006, p. 52). The BMW

AG is the parent company of the BMW Group, which comprises all German and foreign

subsidiaries as well as the car brands MINI and Rolls-Royce Motor Cars. As of 31 De-

cember 2005 the BMW Group had 105,798 employees, of which 76,536 were in the BMW

AG (BMW Group, 2006, p. 3).

6.2.1 Overview of IT Organization

The IT organization of the BMW Group is structured into two levels (see figure 6.1

and Gammel, 2005). Each of the business departments “Development and Purchasing”,

6.2. Organizational Context 153

Business

units

D
e
v
e
lo

p
m

e
n
t

a
n
d
 P

u
rc

h
a
s
in

g

P
ro

d
u
c
ti
o
n

S
a
le

s
 a

n
d

M
a
rk

e
ti
n
g

F
in

a
n
c
e
s

H
u
m

a
n

R
e

s
o

u
rc

e
s

a
n
d

 W
e
lf
a
re

F
in

a
n
c
ia

l

S
e
rv

ic
e
s

Depart-

mental

IT

Central IT

Business

units

Business

units

Business

units

Business

units

Business

units

Depart-

mental

IT

Depart-

mental

IT

Depart-

mental

IT

Depart-

mental

IT

Depart-

mental

IT

Figure 6.1: Organizational Structure (adapted from internal
documentation)

“Production”, “Sales and Marketing”, “Finances”, “Human Resources and Welfare” and

“Financial Services” has a Departmental IT, which coordinates all IT resources in the

department. The Departmental IT units are focused on supporting and designing business

processes in their departments. General IT topics such as IT strategy and infrastructure

operations are steered by the Central IT. Departmental IT units and Central IT have

the world-wide responsibility for controlling and planning IT resources and providing IT

services. The necessary tasks are distributed between the two levels (see figure 6.2).

The need for IT support arises from the business processes and from the business units.

Their primary contractor is the corresponding Departmental IT. This IT unit is respon-

sible for development, maintenance, support and operations of all business applications

in the department. Additionally, it optimizes, in cooperation with the business units, the

business processes and enforces the department-wide standardization of processes as well

as of application and data architectures. In contrast, Central IT is responsible for cross-

departmental processes and services. This includes, on the one hand, the provision of a

154 6. Proof of Concept: BMW Group

Figure 6.2: Tasks of Central IT, Departmental IT and Business Units
(adapted from internal documentation)

common data center infrastructure (communication, computing, storage) and of central

IT services (e.g., help desks, desktop computers, office applications, telephony services).

On the other hand, it has a lead function for overall IT processes and projects. For

instance, the IT strategy is cooperatively created and implemented by all IT functions.

Central IT is responsible for the process and the coherence of the content. It has also the

leadership of the cross-departmental Centers of Competence. They were established for

standardizing and consolidating the usage of standard software, of IT architectures and of

data and object models. The Centers of Competence develop mandatory standards and

guidelines for the whole group.

6.2.2 IT Service Management Processes

The overall objective of the BMW Group IT is to provide services which meet the business

requirements in an effective and an efficient manner. IT Service Management processes are

therefore standardized across the organizational levels introduced above. The IT Process

6.2. Organizational Context 155

Solution Mgmt.

Build

Service / Ops. Mgmt.

Run

IT Business Mgmt.

Plan

IT
 S

e
r
v
ic

e
s

Service Delivery
Availability Mgmt.

Capacity Mgmt.

Service Level Mgmt.

Service Continuity Mgmt.

Infrastructure Ops. Mgmt.
Computing Operation

Storage Operation

Network Operation

Basic Infrastructure Operation

Application Operations

Management

Relationship

Management

Service Support
Incident Management

Problem Management

Change Management

Release Management

Configuration Management

IT Risk and IT Security

Management

IT Resource

Management

IT Quality, Process and

Target Management

IT Strategy and IT

Innovation Management
IT Strategy Management

IT Innovation Management

IT Communication Management

Planning and Control

(incl. Requirements

Management)

Enterprise Architecture

Management

Solution Lifecycle Mgmt.

(incl. Deployment)
Application Lifecycle Mgmt.

Infrastructure Lifecycle Mgmt.

Component Lifecycle Mgmt.

IT Program / IT Project

Management

Solution Development
Application Development

Infrastructure Development

Component Development

B
u

s
in

e
s
s
 R

e
q

u
ir

e
m

e
n

ts

Figure 6.3: IT Service Management Process Map (adapted from internal
documentation)

Map in figure 6.3 shows the underlying structural framework. The categories Plan, Build

and Run follow the lifecycle of application systems. The different processes are oriented

toward external standards such as ITIL and CobiT (see section 2.2.3 for a brief overview).

For each process a responsible manager, process maturity metrics, performance indicators

and targets are defined. A Performance Measurement System reports the current state

of the IT processes to the stakeholders. The motivation for the standardization of IT

Process Management is to create a uniform and comprehensive management information

basis. This transparency should enable an optimal control of employment and utilization

of the IT resources.

6.2.3 IT Cost Accounting and Chargeback

A major instrument to control supply and demand for internal IT services and thus en-

sure an optimal allocation of scarce resources is IT Cost Accounting and Chargeback (see

section 2.1). At the BMW Group cost allocation was historically used to control the

156 6. Proof of Concept: BMW Group

Benchmark

costs

Costs calculated

bottom up

Target costs

Chargeback

price

Service Catalog

IT Infastructure

and central

IT services

IT Infrastructure

IT Services

IT Projects

Overall functions

Administration

Forecasted

quantities

Actual quantities

Budget

Charges

Central IT

budget

x

x

Figure 6.4: IT Chargeback and Budget of BMW Group Central IT
(adapted from internal documentation)

considerably increasing IT budgets. The controlling aspect, in the sense of encouraging

desired behavior, was less important. This has changed over recent years. Besides trans-

parency and operating efficiency, the controlling and planning function (see section 2.3)

has become the major objective of IT Cost Accounting and Chargeback. We illustrate

BMW’s approach by means of the data center infrastructure and central IT services (see

figure 6.4). Service provider is Central IT. Contractors for end-user services are business

units. Contractors for data center services are Departmental IT units. The different IT

services are described in a Service Catalog. The services are composed in a way that

external benchmark costs can be determined. Examples of such services include:

• Mainframe processor time (MIPS/hour)

• Network Attached Storage (GB/month)

• Database (instance/month)

6.2. Organizational Context 157

• Java/J2EE Server Environment (instance/month)

• Windows/Unix/Linux Server Operations (server/month)

• Desktop computer (computer/month)

• Support Center (ticket)

• Internet Connectivity (user/month)

Once a year benchmark costs for the services are determined. They constitute, in

combination with internal bottom-up calculations, the basis for the derivation of target

costs. The target costs are determined by the IT Controlling units and confirmed by

the IT committee of the management board. The primary budget for the provision of IT

services results from the demand forecasts of the contractors multiplied by the target costs.

The budgets are adapted during the year if demand quantities vary from forecasts. While

the budgeting process is used to control the supply side, IT Chargeback is used to control

the demand for IT services. The concepts are decoupled in the sense that chargeback

does not affect the size of the budgets. The chargeback revenues are deposited into an

account of Central Controlling and the Departmental IT and/or the business units are

only charged for their use of IT services if one of the following conditions is fulfilled:

1. Charges are appropriate to encourage desired behavior (e.g., cost consciousness, use

of certain technologies).

2. Legal authorities prescribe monetary transparency between service provider and

service receiver. This situation arises if the provider and receiver are organized in

different legal entities (e.g., the BMW AG and a foreign subsidy).

Consequently, business units are not charged for services such as e-mail or calendaring.

As every office worker requires one (and only one) mailbox and calendar account, there is

only a limited potential for demand control. If the service provider/receiver relationship

is not subject to legal restrictions, IT Controlling even has the possibility to set “political

prices” to enhance the desired incentives.

158 6. Proof of Concept: BMW Group

6.2.4 Analysis of the current Situation

In the following, the IT Cost Accounting and Chargeback approach of the BMW Group

is analyzed with regard to general objectives (see section 2.3). The concept focuses, as il-

lustrated, on transparency for IT Controlling, operating efficiency and the controlling and

planning function of charges. However, it also harbors some principal conflicts, which

partially outweigh the benefits. The desired operating efficiency requires the overhead

caused by measuring and apportioning resource consumption to be small. At Central IT

no charges or charges based on flat rates are collected for resource consumption, which

is hardly measurable or allocatable. Instead of controlling interests, technical aspects de-

termine the way customers are charged for their resource usage. This concerns particular

services based on shared data center infrastructures (e.g., network traffic or processor us-

age in distributed environments). The resulting chargeback heterogeneity causes free-rider

problems and partially undermines the objectives of the stakeholders.

• Transparency The approach creates transparency for the IT Controlling functions.

Demand and cost variations are clearly distinguishable. The efficiency of the service

provision can be controlled by external benchmarks. However, the chargeback policy

is not always transparent to customers and is partially considered as arbitrary.

• Incentives for cost consciousness The unequal treatment of resources creates

incentives for developers and architects to shift consumption from chargeable to

non-chargeable resources. For instance, turning off compression mechanisms shifts

resource consumption from processors to networks and storage devices. If Depart-

mental IT are not charged for the incurred network traffic such a measure might

reduce their charges, even if it incurs additional costs for the company.

• Capacity Planning, Planning and cost calculation instrument The primary

budget for the provision of IT services relies on the forecasted demand of the cus-

tomers. The customers have incentives for precise forecasts of the resource consump-

tion they are charged for. In contrast, they cannot forecast resource consumption

which is not allocated to them. The process is further complicated as the cus-

tomers usually forecast business operations which must be converted to technical

IT resource consumption.

Furthermore, chargeback heterogeneity is at odds with overall objectives such as com-

prehensibility, consistency, cost proportionality, causer-based cost allocation and precision.

6.2. Organizational Context 159

At the BMW Group, two major problems arise from the shortcomings of the approach.

First, the chargeback system suffers from a lack of acceptance and trust by the customers.

Second, it does not achieve an alignment of business and IT planning. The correlation

between actual and future costs for the provision of IT services and business operations

figures is not transparent. So, on the one hand, customers are mostly not aware of the

consequences of their decisions on IT costs. On the other hand, IT Capacity Planning,

which determines to a large extent future resource costs, is often imprecise.

6.2.5 Customer-oriented Services and Resource Profiles

The basic question to answer, prior to any feasibility considerations, is whether customer-

oriented services and resource profiles improve the situation described above. We approach

this question by examining the objectives for the IT planning and control processes (see

figure 6.3):

“Overall IT planning and control is responsible for the business-relevant op-

timal employment of existing IT resources by comprehensive planning and

controlling of the BMW Group IT. It takes place in close coordination with

the company’s financial planning and controlling.” (cited from an internal

process documentation)

“Optimal employment” comprises effectiveness as well as efficiency of IT service provi-

sion. Concerning the data center infrastructure, controlling and planning is predominantly

resource-oriented (see section 6.2.3). Measures such as operational costs, provisioning

times or achieved service levels of data center resources are used to control the efficiency

of the service provision. The resource-orientation thereby facilitates the identification of

external benchmarks and the management of internal targets. In contrast, controlling and

planning based on business- or customer-oriented services focuses on the effectiveness of

IT resource employment. At the BMW Group, service-orientation and resource profiles

could address central conflicts of IT Cost Accounting and Chargeback (see section 6.2.4):

• Transparency Services and costs associated with business processes can create a

new form of transparency for customers and service provider. As not every business

process is of equal importance, IT costs per process are valuable information for

controlling IT effectiveness and prioritizing scarce resources.

160 6. Proof of Concept: BMW Group

• Incentives for cost consciousness Resource profiles for services can include all

relevant data center resources. They can thus prevent free-rider problems caused

by exploiting the unequal treatment of resources. Furthermore, end-users can bet-

ter control cost allocations based on service invocations than on technical resource

consumption (e.g., processor time).

• Capacity Planning, Planning and cost calculation instrument Services and

resource profiles support the translation of business forecasts into IT resource re-

quirements. The approach can thus provide a solid analytical basis for Capacity

Planning and infrastructure cost estimates.

Focusing on business- or customer-oriented services, at least as a complement to the

existing IT Controlling perspectives, seems promising. The management has recognized

this and forces process-costing initiatives. As service-orientation has been widely discussed

in literature (see sections 2.2 and 3.7), we focus in the following on the determination

of resource profiles. By means of the Java/J2EE infrastructure at the BMW Group, we

analyze whether this second building block of the concept (see section 3.2) is applicable in

an industrial environment and how it integrates into the existing IT Service Management

processes.

6.3 Feasibility Study: Java/J2EE Application

tems

At the BMW Group, Java/J2EE is the predominant platform technology for custom soft-

ware development. The Center of Competence IT Architectures has therefore published

two master solution guidelines (see section 6.3.1). They are mainly based on open stan-

dards and provide comprehensive means for backend integration. The guidelines enable

“best-of-breed” strategies and facilitate the design of distributed and heterogeneous soft-

ware and hardware architectures. The majority of the application systems are hosted on

shared resources (October 2006). We focus in the following on this kind of systems, first,

because of their strategic relevance for the BMW Group and, second, because of their

distributed and heterogeneous nature, combined with widely shared resources, which is

usually not compatible with common Cost Accounting approaches (see section 2.4).

Sys

6.3. Feasibility Study: Java/J2EE Application Systems 161

H <<Hardware System>>

z/OS

H <<Hardware System>>

DB Host

H <<Hardware System>>

CORBA Host

H <<Hardware System>>

Host

H <<Hardware System>>

Host

H <<Hardware System>>

z/OS

H <<Hardware System>>

Client Hardware

H <<Hardware System>>

Client Hardware

H <<Hardware System>>

Client Hardware

I <<Execution Unit>>

IE 6

I <<Exec. Unit>>

IE 6

H <<Hardware System>>

Application Server, Solaris 8/Linux

I <<Execution Unit>>

BEA WebLogic Server 8.1, JDK 1.4

H <<Hardware System>>

Web Server, Solaris 8, Linux

HTTP(S) I <<Exec. Unit>>

TP-Monitore

I <<Exec. Unit>>

Visibroker 5.2

I <<Exec. Unit>>

WebSphereMQ 5.2/5.3

I <<Exec. Unit>>

Oracle 9.2

I <<Exec. Unit>>

IBM DB2 7

HTTP(S)

IIOP(S)

H <<Hardware System>>

Integration Server

I <<Exec. Unit>>

SeeBeyond (eGate 4.5)

I <<Exec. Unit>>

SAP

I <<Container>>

EJB Container

I <<Depl. Unit>>

JCA

I <<Depl. Unit>>

EHL 1.4/2.0

I <<Depl. Unit>>

GROPS 3.0

I <<Depl. Unit>>

DB2Connect

I <<Depl. Unit>>

Oracle Thin

I <<Depl. Unit>>

IBM JMS

I <<Depl. Unit>>

VisiBroker 5.2

I <<Depl. Unit>>

Apache Xerces Parser

I <<Depl. Unit>>

JCo

I <<Depl. Unit>>

Apache Xalan XSLT-Prozessor

I <<Depl. Unit>>

BEA Webservices

I <<Container>>

Servlet Engine

A <<Depl. Unit>>

Presentation Logic

I <<Depl. Unit>>

UTC/SA 1.3.x

A <<Depl. Unit>>

Business Logic

I <<Depl. Unit>>

CA 2.0

I <<Container>>

Java PlugIn

A <<Depl. Unit>>

Presentation Logic

I <<Exec. Unit>>

Netscape 4.7

I <<Execution Unit>>

Netscape 4.1/JDK 1.4

I <<Container>>

Java PlugIn

A <<Depl. Unit>>

Presentation Logic

A <<Execution Unit>>

Native Java Client 1.4

A <<Depl. Unit>>

Presentation Logic

I <<Execution Unit>>

Apache 2.0.x

I <<Depl. Unit>>

BEA Proxy

I <<Depl. Unit>>

Siteminder Agent

Figure 6.5: Master Solution Guideline J2EE/EJB (adapted from internal
documentation)

6.3.1 Java/J2EE at the BMW Group

The basis for custom Java/J2EE-based applications systems are the master solution guide-

lines J2EE/EJB and J2EE/Servlet. The guidelines are mandatory for software projects

and aim at standardizing system and software architectures as well as the necessary build

and run processes (see section 6.2.2). For the documentation of guidelines and architec-

tures the BMW Group uses a simple graphical notation similar to UML (see figures 6.5

and 6.6). In both master solution guidelines a Bea Weblogic Server (BEA, n.d.b) is used

as Java application server. If the application system is accessed via web interfaces, an

Apache HTTP Server (Apache, n.d.) delivers static web content and acts as proxy between

client and application server. Web and application server run on shared or dedicated Unix

or Linux (Intel) hardware. As database management systems, Oracle Database (HP-UX)

and IBM DB2 (z/OS) are supported.

The J2EE/EJB master solution guideline is the basis for custom OLTP systems (see

figure 6.5). Typical characteristics of such application systems are:

• complex business logic and multiple use cases

162 6. Proof of Concept: BMW Group

H <<Hardware System>>

Thin Client

H <<Hardware System>>

Ultra Thin Client

H <<Hardware System>>

CORBA Host

H <<Hardware System>>

z/OS

H <<Hardware System>>

DB Host

H <<Hardware System>>

Web Server, Solaris 8, Linux

H <<Hardware System>>

Application Server, Solaris 8/Linux

HTTP(S)

HTTP(S)

H <<Hardware System>>

Thin Client

H <<Hardware System>>

Ultra Thin Client

I <<Execution Unit>>

Apache 2.0.x

I <<Exec. Unit>>

Netscape 4.7

I <<Execution Unit>>

Netscape 4.1/JDK 1.4

I <<Exec. Unit>>

IE 6

I <<Execution Unit>>

IE 6/JDK 1.4

I <<Execution Unit>>

BEA WebLogic Express 8.1, JDK 1.4

I <<Exec. Unit>>

IBM DB2

I <<Exec. Unit>>

Oracle 9.2

I <<Exec. Unit>>

CORBA System

I <<Depl. Unit>>

BEA Proxy

I <<Depl. Unit>>

Siteminder Agent

I <<Container>>

Servlet Engine

I <<Depl. Unit>>

DB2Connect

I <<Depl. Unit>>

Oracle Thin

I <<Depl. Unit>>

VisiBroker

I <<Depl. Unit>>

EHL 1.4/2.0

I <<Depl. Unit>>

GROPS 3.0

I <<Depl. Unit>>

Apache Xerces Parser

I <<Depl. Unit>>

Apache Xalan XSLT-Prozessor

I <<Depl. Unit>>

GLUE Standard 3.2.3

A <<Depl. Unit>>

Presentation Logic

I <<Depl. Unit>>

UTC/SA 1.3.x

I <<Container>>

Java PlugIn

I <<Container>>

Java PlugIn

A <<Depl. Unit>>

Presentation Logic

A <<Depl. Unit>>

Presentation Logic

Figure 6.6: Master Solution Guideline J2EE/Servlet (adapted from
internal documentation)

• high transaction volumes and complex transactions

• non-trivial data models

• read and write access to databases

• support for different client types (e.g., native clients and web clients)

• comprehensive integration of backend systems (e.g., using message-oriented middle-

ware or web service technologies).

In contrast, the J2EE/Servlet master solution guideline (see figure 6.6) is used for simple

information systems. A typical application scenario is the visualization of data from a

database in a web browser. The business logic is implemented in neighbored systems or

in the backend. Differentiating usage criteria to J2EE/EJB are:

• focus on presentation logic not on business logic

• no distributed transactions

• predominantly read access to databases (simple write operations allowed)

6.3. Feasibility Study: Java/J2EE Application Systems 163

• only web clients supported

• backend integration is limited to database management and Corba systems.

Central IT offers standardized server environments either on shared or dedicated hard-

ware for both kinds of application systems. For each server environment a single customer

is defined, typically a Departmental IT or a business unit, to whom costs are allocated.

If server resources are dedicated, incurred hardware and operations costs are passed on

to this customer. If the resources are shared, a flat rate is charged per application sys-

tem. Costs for databases are always fully allocated to a single application system, even

if the database is used in different contexts. Resource consumption in a client/server

environment such as network traffic, processor time or storage I/O, which drives new in-

frastructure investments, is not considered. So, for instance, if an application system uses

a database running on a mainframe computer, the customer is charged for the processor

time, while the processor time consumed by databases on Unix servers is “free”. Although

this cost allocation approach is quite efficient, such inconsistencies cause acceptance and

free-rider problems (see section 6.2.4).

6.3.2 Integration into existing Processes

Resource profiles for cost accounting and capacity planning should be based on the final

version of application system and infrastructure configuration. Thus, the optimal mo-

ment for their determination is after completed development and test phases, but before

productive operations begins. For Java/J2EE-based application systems, Central IT con-

ducts at that point in the lifecycle a mandatory approval test1 (see figure 6.7). The project

team in charge of the application system, typically consisting of Departmental IT, and

business units’ and external staff, hands over the final installation package to the approval

test team (Central IT). They install the application system in a dedicated production-like

environment, provided by the data center, and verify in a series of technical approval tests

if it satisfies the following criteria:

• adherence to programming/architecture guidelines (manual)

• installation routines (manual)

1 ITIL describes a similar process and therefore uses the term acceptance test (Office of Government
Commerce, 2002a, ch. 5.3.4).

164 6. Proof of Concept: BMW Group

Installation

package

Approval test

preparation

Service order

approval env.

Use cases and

test scenarios

LR scripts for tec.

approval tests

LR scripts for det.

of res. profiles

Start provision of

approval env.

Approval

environement

Plausibility test

Load test for det.

of res. profiles

Approval protocol

Resource

capacity planning

Determination of

charges

Service order

production env.

….

Start provision of

prod. environm.

….

….

Start of operations

Resource profiles

Request to roll-out a

new software release

successful

failed

Installation test

Technical

approval tests

successful

failed

successful

failed

successful

failed

….

Approval

failed

Project team Data centerApproval test team

Figure 6.7: Integration into the Approval Process

6.3. Feasibility Study: Java/J2EE Application Systems 165

• plausibility/completeness of load test scenarios (manual)

• robustness/stability/error tolerance (load test)

• processor and memory load (load test)

• response times (load test)

• dispatch and cluster capability (load test, manual intervention)

• database reconnect capability (load test, manual intervention)

The load tests are conducted with Mercury LoadRunner (see section 3.5.4). Both

custom-built software and pure third party products must pass the approval process. If

one or more of the above-mentioned criteria/preconditions fail, Central IT can reject

productive deployment of the installation package. In that case the problems must be

solved and the approval repeated. The approval is also repeated if at least one of the

following changes occurs:

• change in the system architecture (e.g., use of new server components, communica-

tion protocols, interfaces)

• change in the software architecture (e.g., major changes to the user navigation, use

of new software patterns)

• change of specifications (e.g., performance requirements, workload mix, system load)

The mandatory approval tests provide optimal occasions for the determination of re-

source profiles. We therefore analyzed during the feasibility study how the existing test

procedures can be appropriately extended (see gray-shaded boxes in figure 6.7).

Once determined, services and resource profiles can serve as inputs for neighbored IT

Service Management Processes (see figure 6.8). A stronger focus on services would pri-

marily address shortcomings of the current IT Cost Accounting and Chargeback approach

concerning Planning and Control (see section 6.2.5). Furthermore, the resource profiles

would be valuable inputs for the alignment of business forecasting and IT Capacity Plan-

ning and thus support the Capacity Management process (Service Delivery). Finally, if

the resource consumption per service and user becomes transparent during the approval

test, it can be used as a criterion for the evaluation of software and for the specification

of targets for developers and architects (Solution Development).

166 6. Proof of Concept: BMW Group

Solution Development
Application Development

Infrastructure Development

Component Development

Planning and Control

(incl. Requirements

Management)

Service Delivery
Availability Mgmt.

Capacity Mgmt.

Service Level Mgmt.

Service Continuity Mgmt.

Solution Lifecycle Mgmt.

(incl. Deployment)
Application Lifecycle Mgmt.

Infrastructure Lifecycle Mgmt.

Component Lifecycle Mgmt.

Solution Mgmt.

Build

Service / Ops. Mgmt.

Run

IT Business Mgmt.

Plan

IT
 S

e
r
v
ic

e
s

Infrastructure Ops. Mgmt.
Computing Operation

Storage Operation

Network Operation

Basic Infrastructure Operation

Application Operations

Management

Relationship

Management

Service Support
Incident Management

Problem Management

Change Management

Release Management

Configuration Management

IT Risk and IT Security

Management

IT Resource

Management

IT Quality, Process and

Target Management

IT Strategy and IT

Innovation Management
IT Strategy Management

IT Innovation Management

IT Communication Management

Enterprise Architecture

Management

IT Programm / IT Project

Management

B
u

s
in

e
s
s
 R

e
q

u
ir

e
m

e
n

ts

Services and resource

profiles serve as a basis

for planning and control

Determination of resource

profiles during operational

approval tests

Resource profiles as input

factors for analytical

capacity planning

Resource consumption as

criteria for the evaluation

of software products

Figure 6.8: Integration into the IT Service Management Process Map
(adapted from internal documentation)

6.3.3 Identification of Services

According to the concept description (see section 3.2.1), possible kinds of services could

be the execution of a business transaction or the access to an information system. In the

context of Java/J2EE at the BMW Group, we propose considering the access or the logon

to an application system as default form of service invocation. The decision is based on

three reasons:

1. The complexity of the considered Java/J2EE applications is very different. A com-

mon understanding of business transactions, as for instance in SAP systems, does

not exist. We claim that services based on logons constitute a consistent and com-

prehensible accounting basis in this heterogeneous application landscape.

2. Compared to packaged application suites (e.g., for ERP, CRM, HR, SCM), the ma-

jority of the custom application systems are relatively small (for instance regarding

6.3. Feasibility Study: Java/J2EE Application Systems 167

the number of concurrent users or the implemented use cases). We claim that one

service per system is a reasonable granularity for cost allocation.

3. Most Java/J2EE applications use a central infrastructure service for user authen-

tication and authorization. This component can be employed as a central meter

for service invocations. No information from the application logs or operational

databases must be analyzed to determine the internal cost shares.

However, this rule is not exclusive. In certain situations other forms of services might

be more reasonable. Considering logon operations as service invocations is not trivial.

Most Java/J2EE applications are interactive web applications. Users can interact with

the system in different ways. For the approval tests the project team must provide load

test scenarios (see section 3.5.4.2) which reflect typical user behavior. The test engineers

only verify the plausibility and the completeness regarding component coverage. If the

system under consideration has already been used, historical log files provide a solid basis

for the determination of this “typical user behavior”. Central IT offers several tools which

automate the necessary log file analysis. In contrast, usage scenarios for new application

systems are mainly based on the assumptions of the project team. According to the

experiences of the load test engineers involved, these assumptions often do not match

with reality. Charges based on these expected user behaviors would introduce additional

bias and stimulate conflicts. In that case, we propose determining an interval instead of a

discrete estimate of the expected resource consumption. We argue that is easier for new

application systems to estimate different user profiles as the average user behavior. The

information about scale and range of the resource consumption might be sufficient for a

classification and the determination of charges.

6.3.4 Summary of Experiences

We applied the concepts and the software for the determination of resource profiles (see

chapter 3) and analytical capacity planning (see chapter 5) to application systems in a

data center of the BMW Group. In particular, we analyzed the extra efforts and the pre-

conditions required for an integration of the approach into the existing approval tests (see

section 6.3.2). To achieve significant results, we tried to adhere to all relevant process and

architectural guidelines (see section 6.3.1). For the feasibility study and the experiments

presented in chapters 4 and 5 we used the same infrastructure and example applications.

168 6. Proof of Concept: BMW Group

We could thus analyze during the experiments the viability of the concept and the soft-

ware under realistic conditions. The test infrastructure follows the standards defined in

the Java/J2EE master solution guidelines. We only replaced the operating system of the

application server (Solaris 8/Linux) with a Microsoft Windows system (Windows 2000

Advanced Server) to integrate the three common types of client/server operating systems

(Unix/Linux/Windows). A description and an exact specification of the environment is

given in sections 4.1.1 and A.2. The experiments were conducted with two different appli-

cation systems (see section 4.1.2). We intentionally chose one custom application system

of the BMW Group (PASTA) to study the feasibility on a real-world example and one

application system, which is freely available, to enable an external review of the results

(Java Pet Store). The chosen application systems also represent the two kinds of master

solution guidelines, J2EE/Servlet (PASTA) and J2EE/EJB (Java Pet Store).

In the previous section we proposed considering the logon to an application system as

the default form of service invocation. PASTA as well as Java Pet Store are interactive

web applications and we assumed that for both no historical usage data is available. Ac-

cordingly, we determined intervals instead of discrete estimates of the expected resource

consumption (see section 6.3.3). For the feasibility of the approach it is crucial whether

information about scale and range of the resource consumption is sufficient for the allo-

cation of charges. In the experiments we therefore measured the resource consumption

of two different PASTA user profiles and four different Java Pet Store user profiles (see

section 4.1.2). The resulting intervals of the expected resource consumption are sum-

marized in table 6.1. The complete resource profiles are provided in the appendix (see

section A.3.1). The results were surprising. In the examples the impact of system and

software design was far greater than the impact of different user behaviors. The systems

could therefore be clearly attributed to different cost categories without any knowledge

of the average user behavior.

Setting up an application system in a dedicated environment and preparing realistic load

tests may require several days. The effort depends on aspects such as the ease of inte-

gration of backend systems, the complexity of server configurations or the use cases in

the load test scripts. If this is already achieved, as in obligatory approval tests, the extra

effort for the determination of resource profiles is acceptable. During the feasibility study

we required approximately half a day for the adaption of an existing load test scenario

(∼ 1 h), the execution of the load test (∼ 1-3 h) and the data analysis (∼ 2 h).

6.3. Feasibility Study: Java/J2EE Application Systems 169

Resource
PASTA Java Pet Store

min max min max

Database - Disk - SAN - Read/Write blocks 0 142,111 8,63 74,18

Database - Processor - all - Processor Time 2,672 7,337 0,00 0,07

App Server - Network - all - Bytes Total/sec 237.149 602.794 174.622 594.286

App Server - Processor - all - Processor Time 0,625 1,651 0,17 0,47

Client - Network - all - Bytes Total/sec 182.322 376.897 228.617 587.170

Web Server - Processor - all - Processor Time 0,028 0,08 0,01 0,03

Table 6.1: Example: Intervals of expected Resource Consumption

The load tests for the verification of QN models (see chapter 5) require a similar ef-

fort, but need more time and test runs for the optimization of the application system.

During the study we found that a lot of potential bottlenecks are hidden in the system

configuration (e.g., web server connections, session beans, database connection pool). As

these software bottlenecks limit the throughput and thus the hardware utilization, the

comparison with predicted values fails. For the determination of resource profiles those

effects are less relevant, as they typically increase response times, but do not change the

absolute resource consumption. However, the QN models cannot be validated until the

configured bottlenecks are removed and the model hardware resources become the pri-

mary bottlenecks.

Overall, analytical capacity planning and the tuning efforts mentioned above are partic-

ularly reasonable for sizing dedicated computing or storage resources. At that point in

time the hardware costs for the following years are typically determined. In contrast,

it is less relevant for smaller application systems running on shared server hardware. A

single application must not drive the hardware to its capacity limits and thus peril the

availability of the neighbored applications. Nevertheless, it is a crucial factor for new

investments whether an average application uses 1 % or 10 % of the processor or I/O ca-

pacity. Due to the difficulties of measuring and allocating the resource consumption in

distributed environments, the BMW Group does not consider it for cost allocation keys.

Here, resource profiles determined during obligatory approval tests could fill a gap.

6.3.5 Other Application Platform Technologies

Common application platforms at the BMW Group are, besides Java/J2EE, Microsoft/.NET,

Mainframe (z/OS) and SAP. In the following we analyze whether and how the Java/J2EE-

based experiences of the previous sections can be transferred to the other platforms.

170 6. Proof of Concept: BMW Group

Microsoft/.NET The process and the software toolkit for the determination of re-

source profiles is directly applicable to Microsoft/.NET based application systems. Load

test scripts for web-based applications can be recorded with the Virtual User Generator

(see section 3.5.4.1). For Windows GUI applications Mercury offers the tool WinRun-

ner (see Mercury, 2004, p. 967 et seqq.). The BMW Group uses Microsoft/.NET only

for desktop integration. Accordingly, Microsoft/.NET-based systems are less distributed

than Java/J2EE-based systems and cost allocation (e.g., direct costing) is easier.

Mainframe (z/OS) Mainframe computers typically are not dedicated to a test envi-

ronment or to a load test. The concept of measuring and allocating the total observed

resource consumption to a specific service invocation is not applicable. However, the

Resource Measurement Facility (RMF) shipped with the z/OS operating system enables

a detailed analysis and allocation of resource consumption during a load test (see IBM,

n.d.c). The data can be exported to common spreadsheet formats and thus integrated

into the resource profiles. This is reasonable, for instance, when a Java/J2EE-based ap-

plication system accesses a database running on a mainframe computer. If the mainframe

is used as OLTP platform, the BMW Group already uses the information collected by the

System Management Facility (SMF) (see IBM, n.d.b) for the determination of usage-based

cost allocation keys. As the actual resource consumption can be efficiently measured and

allocated, resource profiles with consumption estimates are not required.

SAP From a technical point of view the process and the software toolkit is directly

applicable to SAP systems. The LoadRunner toolkit supports web interfaces of SAP

systems as well as the SAP GUI protocol. Compared to Java/J2EE application systems,

the BMW Group has fewer, but larger, SAP-based OLTP systems. The server hardware

is mostly dedicated. Furthermore, the SAP platform provides internal means to analyze

system performance as well as executed business transactions. Accordingly, there is no

immediate need for consumption estimates.

Beyond these technical considerations, an overall organizational problem is that for Mi-

crosoft/.NET, Mainframe (z/OS) and SAP-based application systems an approval test is

not obligatory. This hampers the direct transfer of the concept and significantly increases

the effort required for the determination of resource profiles.

6.4. Summary 171

6.4 Summary

During the proof of concept we analyzed whether the concept and the software for the

determination of resource profiles and capacity planning is applicable in an industrial

data center. Prior to a concrete feasibility study, we verified if the overall assumptions on

requirements, objectives and practiced approaches of IT Infrastructure Cost Allocation

are in accord with the situation of the BMW Group (see chapter 2). As this could be

confirmed and customer-oriented services emerged as a promising complement to the ex-

isting planning and control perspectives, we tested the determination of adequate resource

profiles by means of Java/J2EE-based application systems and proposed an integration

of the concept into the existing IT Service Management Processes.

The majority of the considered application systems were relatively small, e.g., regarding

the number of concurrent users or the implemented use cases, and ran on shared hard-

ware. During the feasibility study most efforts were required for setting up the systems

in a dedicated environment and preparing the load tests. If this is already achieved, e.g.,

for obligatory approval tests, the extra efforts for the determination of resource profiles

are acceptable. Concerning the definition of services we introduced two simplifications.

First, we considered the logon to an application system as the default form of service

invocation. Thus, we could use the authentication and authorization infrastructure as a

central meter for service invocation and avoided the analysis of application log files and

operational databases. Second, we determined an interval instead of a discrete estimate

for the expected resource consumption. In the example scenarios these simplifications

turned out to be viable and significantly enhanced the practicability of the concept. How-

ever, for evaluating their general applicability more experiments are required.

Overall, we could demonstrate that resource profiles, acquired during obligatory approval

tests, are an efficient possibility to incorporate the resource consumption into the de-

termination of cost allocation keys. Furthermore, we identified a number of additional

advantages of resource profiles, beyond cost accounting.

1. Capacity planning for dedicated resources In the experiments we could demon-

strate that the resource profiles include valuable inputs for analytical capacity plan-

ning. While the motivating cost allocation concept mainly addresses shared re-

sources, the support for capacity planning is particularly relevant for sizing dedi-

cated resources. From the corporate perspective, at that point in time costs for the

subsequent years are fixed, independent of their later apportionment.

172 6. Proof of Concept: BMW Group

2. Evaluation of different IT architectures The experiments illustrated the large

impact of system and software architectures on the resource consumption (see for

instance table 6.1). Today, the resource consumption can barely be considered in

the early project phases when architectural alternatives are evaluated2. At the

BMW Group the supported alternatives are specified by the Center of Competence

IT Architectures in master solution guidelines. We recommend enhancing these

guidelines with a section including example resource profiles to improve the basis

for decision-making.

3. Definition of targets for developers and architects Once, resource profiles can

be determined and appropriate benchmark values are specified in master solution

guidelines, they can be used as targets for software developers and architects. Up

to now, apart from response time behavior, it is only verified whether the average

processor and memory utilization at the application server remains under certain

absolute thresholds. The respective load tests are conducted with the expected

number of concurrent users. The resource consumption is not analyzed on a per

service or per user basis and the results are only relevant if the application system

is installed on shared server resources. So, if the performance requirements are ful-

filled, no more incentives for economic resource usage exist today. At that point an

analysis of potential savings was out of scope, but we assume that the determina-

tion of resource profiles would already positively influence the cost consciousness of

developers and architects.

Against this background, we propose the enhancement of the existing approval tests

by the determination of resource profiles. More and more resource profiles of different

application systems will then become available. On this basis our assumptions on services

and on resource consumption can be verified. Depending on the operational experiences

and the customer acceptance, the management can then decide whether further steps are

taken toward an infrastructure cost allocation based on services and resource profiles.

2 Scheeg (2005) analyzes this problem and proposes an alternative solution based on performance
benchmarks (see section 3.7).

Chapter 7

Conclusions

7.1 Summary of Results

The starting point of this thesis was the question of how IT Service providers can de-

termine usage-based cost allocation keys for shared IT infrastructures. We analyzed the

question in the context of operational, interactive OLTP systems and proposed estimates

for the expected resource consumption of customer-oriented services as a basis for cost

allocation. In this way, we aimed to avoid elaborate and costly measurements during

regular operations. For an assessment of the concept’s technical viability, we developed a

method and a software toolkit for the determination of consumption estimates (resource

profiles) during standard load tests. The method is based on the hypothesis that the cu-

mulated resource consumption increases linearly with the number of service invocations.

In experiments with three-tier database applications we could confirm the hypothesis for

computing resources (processor time) and communication resources (transferred bytes).

We also analyzed the block transfer between a database server and a Storage Area Net-

work (read/write blocks). There, high variations in the sample measurements complicated

the determination of unbiased estimates.

Furthermore, we evaluated the method and the software toolkit with regard to four major

requirements that we consider essential for the successful application in a professional IT

Service Management organization:

1. Accuracy For computing and communication resources, we obtained in all experi-

ments very precise and repeatable results. In particular, we verified in experiments

with Queuing Network Models that the determined processor time estimates also

hold in scenarios with varying system workloads and with multiple concurrently

174 7. Conclusions

active services. Nevertheless, the accuracy of the consumption estimates is subject

to two major conditions: First, if a service requires interactions or parameters en-

tered by the users, assumptions on the expected user behaviors must reflect reality.

Second, resource profiles are always tied to a certain infrastructure configuration. If

this configuration changes during regular operations (e.g., due to growing database

sizes), the predictive accuracy of the consumption estimates can be biased. The

concerned software architects and load test engineers must be aware of those effects

and, if possible, anticipate them in the resource profiles.

2. Consistency The software toolkit fully relies on standard operating system tools

for resource consumption measurements during the profiling process. It is there-

fore equally applicable to various kinds of hardware and software infrastructures

without a need to change the respective systems or install additional software. We

successfully verified this consistency concept in experiments with Windows, Unix

and Linux operating systems.

3. Capacity Planning By means of Queuing Network Theory, we could demonstrate

the appropriateness of processor time estimates as input parameters for analytical

performance models. We compared forecasted server utilizations with measure-

ments from a load test and determined a surprisingly high accuracy of the model

predictions.

4. Operating Efficiency We analyzed in a proof-of-concept the integration of the

approach for the determination of resource profiles into the existing IT Service

Management processes at the BMW Group. In a feasibility study with Java/J2EE-

based application systems, the most effort was required to fulfill preconditions such

as setting up the systems in a dedicated environment and preparing the load tests.

In professional IT organizations similar load tests are typically conducted prior to

the roll-out of a new software release. If the determination of resource profiles could

be combined with such obligatory approval tests, the extra efforts are acceptable.

During the feasibility study we required approximately half a day for the adaption

of an existing load test scenario, the execution of the load test and the data analysis.

There are two main advantages of the presented method and the software toolkit

compared to related scientific work and commercial profiling tools. First, services can

be defined according to customers’ needs, irrespective of system boundaries. Resource

7.2. Outlook 175

profiles can be determined even if the service includes multiple user requests or causes

complex interactions between distributed applications on different software and hard-

ware platforms. Second, as the software toolkit fully relies on the standard performance

monitors of operating systems, no additional measurement agents are required and new

resources can be easily integrated.

Nevertheless, in spite of precise measurement and analysis techniques, uncertainties about

the expected user behavior, variations as observed at the Storage Area Network and in-

frastructure changes such as growing database sizes can bias the consumption estimates.

Against this background, we propose considering intervals rather than exact consumption

estimates as the basis for cost allocation. We argue that intervals already allow for a clas-

sification of services. This might be sufficient for cost allocation. Furthermore, they could

compensate to a certain degree variations of mean resource consumption values. So, extra

analysis efforts can be reduced. At least in the experiments with two different application

systems at the BMW Group, this simplification emerged as viable. However, such results

are not generalizable. Further experiences with different kinds of applications are required.

The overall goal of this thesis was to contribute a viable alternative to existing cost

allocation approaches. We claim that this has been achieved. The next step now is to

gain more operational experiences with different kinds of application systems. On this

basis, companies can then decide whether cost allocation based on services and resources

profiles is an appropriate means to achieve their organization-level objectives on IT Cost

Accounting and Chargeback.

7.2 Outlook

Topics such as IT Cost Accounting and Chargeback or IT Capacity Planning fall under

the realm of IT Service Management. Despite the development of widely accepted stan-

dards such as ITIL or CobiT and the increasing importance of IT Service Management for

the industry, little academic research has focused on this domain. Deficits of IT Service

Management become apparent in a comparison with Operations Management. In the in-

dustrial production of physical goods and services it is for instance common practice that

mathematical models and methods are used to optimize machine utilization, job schedul-

ing or stock-keeping. Although most of these techniques would in principle be applicable

to the production of digital goods and services, they are rarely used in today’s data center.

176 7. Conclusions

In the adoption of respective models and methods, we see a large advancement potential

for IT Service Management and interesting topics for future research.

Certainly, one may argue that data centers are not comparable to shop floors, the pro-

vision of IT services is often complex and hardware costs are less important than labor

costs or costs for industrial production facilities. However, we observe that with rising

budget pressure and competition on the outsourcing market, IT Service Providers are

being forced to optimize their data center operations and resource utilization. Let us

consider, for instance, the situation of dedicated application or database servers. Their

initial sizing was typically based on estimated peak load requirements. During regular

operations their mean utilization is often below 10 %. The industry has identified this

as cost-saving potential and propagates the consolidation of servers by means of virtu-

alization technologies (see also the discussion in section 2.5). The well-studied capacity

planning methods from Operations Research could directly support the management of

such shared resource pools and thus leverage the cost-savings. Example methods include

combinatorial optimization techniques as generally applied to bin-packing problems or

algorithms from Queuing Network Theory (see Bennani and Menascé, 2005; Chen et al.,

2007; Urgaonkar et al., 2007, for example applications). However, this requires basic

model input parameters such as the resource consumption of services or demand curves

to become readily available. In the present work, we showed how resource profiles for

customer-oriented services can be determined and demonstrated their appropriateness as

input parameters for analytical performance models. This information on the resource

consumption of services is applicable not only for IT Cost Accounting, but for various

functions within IT Service Management. Until now, the resource profiles have been

static and subject to certain assumptions, for instance on user behavior or infrastructure

configuration. We claim that if that information could be determined in real-time, a vast

potential for optimization of system and capacity management could be realized. There

are recent developments in the domain of application transaction profiling tools, but these

tools have not yet achieved a technology maturity level sufficient for a significant market

penetration (see section 3.5.1).

Besides the shortcomings of monitoring tools, the optimization of resource utilization is

often complicated by unpredictable and non-prioritized customer demands causing un-

necessary peak loads on the components. For grid resources, researchers have proposed

(market) mechanisms to regulate supply and demand (see for instance Kenyon and Che-

liotis, 2004; Neumann et al., 2006). However, their concepts mainly apply to computing-

7.2. Outlook 177

intensive jobs and not to the interactive workload of the online resources in today’s data

centers. An efficient and effective demand control could be realized, for instance, by clas-

sifying and prioritizing customer requests. While in communication networks established

mechanisms allocate the available bandwidth to differently ranked customers and services,

there are few approaches to realize similar concepts for computing resources (see Bichler

and Setzer, 2007, for an admission control example).

Beyond all technical aspects, however, we consider the establishment of a common under-

standing of what the real end-products of data centers or IT units are to be the major

organizational challenge. While this question typically does not arise in the production of

physical goods, we regularly encounter different perceptions and discussions on the nature

of IT services. An IT unit considers, for instance, the provision of a server as an IT ser-

vice, while its customers have support or automation of certain business processes in mind.

Generally, such misunderstandings complicate the communication between providers and

customers. We have discussed some of the arising problems against the background of

Cost Allocation and Capacity Planning. However, the underlying question affects IT Ser-

vice Management as a whole. Uebernickel et al. (2006a,b) recently addressed this problem

and proposed a transfer of industrial product-engineering methods to IT Service Manage-

ment. We claim that for an advancement of the discipline, further contributions in that

direction are required.

Bibliography

Aberdour, Mark. n.d. Performance test tools . URL http://www.opensourcetesting.org/

performance.php. Viewed 2006-11-22.

Adobe. n.d. Pet Market Blueprint Application. Adobe Systems Incorporated. URL

http://www.adobe.com/devnet/blueprint. Viewed 2007-03-12.

Albaugh, Virgil, Hari Madduri. 2004. The utility metering service of the Universal Man-

agement Infrastructure. IBM SYSTEMS JOURNAL 43(1) 179–189.

Allen, Arnold O. 1990. Probability, Statistics, and Queuing Theory With Computer Sci-

ence Applications . 2nd ed. Academic Press, San Diego, California.

Apache. n.d. HTTP Server Project . Apache Software Foundation. URL http://httpd.

apache.org. Viewed 2007-02-26.

Appel, Andrew M., Neeru Arora, Raymond Zenkich. 2005. Unraveling the mystery of IT

costs. McKinsey on IT (No. 5, Fall 2005) 12–17.

Aurenz, Heiko. 1997. Controlling verteilter Informationssysteme. Client/Server-Architek-

turen. Peter Lang, Frankfurt am Main.

Bard, Yonathan. 1979. Some Extensions to Multiclass Queueing Network Analysis. The

3rd International Symposium on Modelling and Performance Evaluation of Computer

Systems . Vienna, Austria, 51–62.

Bartels, Andrew. 2006. Global IT Budget Composition: 2006. Tech. rep., Forrester

Research, Inc. Published 2006-06-08.

Barton, Neil. 2006. Benchmarking, Outsourcing, And Evaluation In The IT Industry or

“Commoditization Is In The Eye Of The Stakeholder”. The 13th European Conference

on Information Technology Evaluation. Genoa, Italy.

180 Bibliography

Baskett, Forest, K. Mani Chandy, Richard R. Muntz, Fernando G. Palacios. 1975. Open,

Closed, and Mixed Networks of Queues with Different Classes of Customers. Journal

of the ACM 22(2) 248–260.

BEA. n.d.a. BEA certified Petstore Demo (1.3.1 02). BEA Systems, Inc. URL https:

//petstore.projects.dev2dev.bea.com. Viewed 2007-03-12.

BEA. n.d.b. BEA WebLogic Product Family . BEA Systems, Inc. URL http://www.bea.

com/weblogic. Viewed 2007-02-26.

Bennani, Mohamed N., Daniel A. Menascé. 2005. Resource Allocation for Autonomic Data

Centers using Analytic Performance Models. The 2nd IEEE International Conference

on Autonomic Computing . Seattle, Washington.

Bertleff, Claudia. 2001. Einführung einer IT-Leistungsverrechnung zur Unterstützung des

strategischen IT-Controllings. Heidi Heilmann, ed., Strategisches IT-Controlling . HMD

- Praxis der Wirtschaftsinformatik, dpunkt.Verlag, Heidelberg, 57–66.

Bertoli, Marco, Giuliano Casale, Giuseppe Serazzi. 2006. Java Modelling Tools: an Open

Source Suite for Queueing Network Modelling and Workload Analysis. The 3rd Inter-

national Conference on the Quantitative Evaluation of Systems . Riverside, California,

119–120.

Bichler, Martin, Thomas Setzer. 2007. Admission control for media on demand services.

Service Oriented Computing and Applications 1(1) 65–73.

Biethahn, Jörg, Harry Mucksch, Walter Ruf. 2004. Ganzheitliches Informationsmange-

ment - Band I: Grundlagen. 6th ed. Oldenbourg, München.

Blosch, Marcus, Roger Woolfe, Jeremy Grigg. 2003a. Chargeback: How Far Should You

Go? Tech. Rep. ID Number: G-11-4621, Gartner, Inc.

Blosch, Marcus, Roger Woolfe, Jeremy Grigg. 2003b. Chargeback: How Far Should

You Go? (Executive Summary, freely available). Tech. Rep. ID Number: G-11-5501,

Gartner, Inc.

BMW Group, ed. 2006. Annual Report 2005 . Bayerische Motoren Werke Aktienge-

sellschaft, Munich.

Bibliography 181

Bolch, Gunter, Malte Gaebell, Hermann Jung. 1992. Analyse offener Warteschlangen-

netze mit Methoden für geschlossene Warteschlangennetze. Jahrestagung der Deutsche

Gesellschaft für Operations Research. Aachen, 324–332.

Bolch, Gunter, Stefan Greiner, Hermann de Meer. 2006. Queueing Networks and Markov

Chains . 2nd ed. Wiley-Interscience, Hoboken, New Jersey.

Bolch, Gunter, Helmut Riedel. 1997. Leistungsbewertung von Rechensystemen mittels

analytischer Warteschlangenmodelle. Teubner, Stuttgart.

Borland. n.d. SilkPerformer . Borland Software Corporation. URL http://www.borland.

com/us/products/silk/silkperformer. Viewed 2006-11-18.

Brenner, Walter. 2004. Auf dem Weg zur Produktorientierung. Computerwoche (No. 45,

published 2004-10-29) 38.

Bristol. n.d. TransactionVision. Bristol Technology Inc. URL http://www.bristol.com/

transactionvision. Viewed 2006-12-21.

Buzen, Jeffrey P., Annie W. Shum. 1996. Beyond Bandwidth-Mainframe Style Capacity

Planning for Networks and Windows NT. The 22nd International Computer Measure-

ment Group Conference. San Diego, California, 479–485.

Carr, Nicholas G. 2003. IT Doesn’t Matter. Harvard Business Review 81(5) 41–49.

Carr, Nicholas G. 2005. The End of Corporate Computing. MIT Sloan Management

Review 46(3) 67–73.

Chang, Kay, Anthony Dasari, Hari Madduri, Alfredo Mendoza, John Mims. 2004. Design

of an enablement process for on demand applications. IBM SYSTEMS JOURNAL

43(1) 190–203.

Chaudhuri, Surajit, Umeshwar Dayal. 1997. An overview of data warehousing and OLAP

technology. SIGMOD Record 26(1) 65–74.

Chen, Yuan, Subu Iyer, Xue Liu, Dejan Milojicic, Akhil Sahai. 2007. SLA Decomposition:

Translating Service Level Objectives to System Level Thresholds. Tech. Rep. HPL-2007-

17, Hewlett-Packard Development Company.

182 Bibliography

Cherkasova, Ludmila, Diwaker Gupta, Amin Vahdat. 2007. When Virtual is Harder than

Real: Resource Allocation Challenges in Virtual Machine Based IT Environments. Tech.

Rep. HPL-2007-25, Hewlett-Packard Development Company.

CIMS Lab. n.d. System Description Manual . CIMS Lab, Inc. URL http://www.cimslab.

com. Viewed 2006-06-01.

Controller Verein. 2004. Unbekanntes Wesen IT-Kosten. Internationaler Controller

Verein. URL http://www.controllerverein.com/ cmsdata/ cache/cms 103944.html.

Viewed 2007-08-01.

Cooper, Robin, Robert S. Kaplan. 1987. How Cost Accounting Systematically Distorts

Product Costs. William J. Bruns, Robert S. Kaplan, eds., Accounting and Management:

Field Study Perspectives . Harvard Business School Press, Boston, Massachusetts, 204–

228.

Cooper, Robin, Robert S. Kaplan. 1988. Measure Costs Right. Make the Right decisions.

Harvard Business Review 66(5) 96–103.

DIN 66273. 1991. Messung und Bewertung der Leistung von DV-Systemen (DIN 66273

Part 1). Deutsches Institut für Normung.

Dirlewanger, Werner. 1994. Messung und Bewertung der DV- Leistung. Auf Basis der

Norm DIN 66273 . Hüthig, Heidelberg.

Drury, Donald H. 1997. Chargeback systems in client/server environments. Information

& Management 32(4) 177–186.

Econet. n.d. cMatrix DataXRay . Econet AG. URL http://www.econet.de/product/

dataxray. Viewed 2006-07-13.

Erlang, Agner Krarup. 1909. The Theory of Probability and Telephone Conversations.

Nyt Tidsskrift for Matematik B (20) 33–39.

Foster, Ian, Steven Tuecke. 2005. Describing the Elephant: The Different Faces of IT as

Service. ACM Queue 3(6) 26–34.

Fürer, Patrick J. 1994. Prozesse und EDV-Kostenverrechnung. Die prozeßbasierte Ver-

rechnungskonzeption für Bankrechenzentren. Paul Haupt, Bern.

Bibliography 183

Friedman, Mark, Odysseas Pentakalos. 2002. Windows 2000 Performance Guide. O’Reilly,

Sebastopol, California.

Frisch, Jürgen. 2002. Tools ordnen IT-Ausgaben ihrem Verursacher zu. Computer Zeitung

(No. 35) 14.

Fujitsu Siemens. n.d. RAV System Resource Accounting . Fujitsu Siemens Comput-

ers GmbH. URL http://www.fujitsu-siemens.de/products/software/utilities/rav.html.

Viewed 2006-07-29.

Funke, Harald. 1999. Kosten- und Leistungsrechnung in der EDV. Stand und Entwurf

einer prozeßorientierten DV-Kostenverrechnung . Kassel University Press, Kassel.

Gadatsch, Andreas, Jens Juszczak, Martin Kütz. 2005. Ergebnisse der Umfrage zum

Stand des IT-Controlling im deutschsprachigen Raum, Schriftenreihe des Fachbere-

iches Wirtschaft Sankt Augustin, vol. 12. Fachhochschule Bonn-Rhein-Sieg. Fachbereich

Wirtschaft Sankt Augustin, Sankt Augustin.

Gadatsch, Andreas, Elmar Mayer. 2006. Masterkurs IT-Controlling . 3rd ed. Vieweg,

Wiesbaden.

Gammel, Robert. 2005. Wer Agilität verliert, verpasst Chancen. Interview mit BMW

CIO Jürgen Maidl. Computerwoche (No. 20, published 2005-05-12) 36.

Gartner. 2006. Hype Cycle for IT Operations Management 2006. Tech. Rep. ID Number:

G00141081, Gartner, Inc.

Gerlach, James, Bruce Neumann, Edwin Moldauer, Martha Argo, Daniel Frisby. 2002.

Determining the cost of IT services. Communications of the ACM 40(9) 61–67.

Gerlinger, Annette, Alexander Buresch, Helmut Krcmar. 2000. Prozeßorientierte IV-

Leistungsverrechnung - Der Weg zur totalen Transparenz? Helmut Krcmar, Alexander

Buresch, Michael Reb, eds., IV-Controlling auf dem Prüfstand . Gabler, Wiesbaden,

105–142.

Godard, Sebastien. n.d. Sysstat utilities . URL http://perso.orange.fr/sebastien.godard.

Viewed 2006-09-04.

Gomolski, Barbara. 2005. Selecting a Chargeback Method Depends on the Business Unit

and IT Service. Tech. Rep. ID Number: G00126916, Gartner, Inc.

184 Bibliography

Gordon, William J., Gordon F. Newell. 1967. Closed queueing systems with exponential

servers. Operations Research 15(2) 254–265.

Gross, Donald, Carl M. Harris. 1998. Fundamentals of Queueing Theory . 3rd ed. John

Wiley & Sons, New York.

Hamilton, George. 2005. Application Load Testing Market Is Poised for Growth. Tech.

Rep. Pub ID: YANL1164955, Yankee Group Research, Inc.

Harvard Business Review. 2003. Does IT Matter? An HBR Debate. Harvard Business

Review. URL http://harvardbusinessonline.hbsp.harvard.edu/b02/en/files/misc/Web

Letters.pdf. Viewed 2007-01-14.

Haverkort, Boudewijn R. 1998. Performance of Computer Communication Systems: A

Model-Based Approach. John Wiley & Sons, New York.

Hübner, Dirk G, Christoph Waschbüsch, Christof Weinhardt, Peter Bruhns, Markus Ko-

erner. 1999. Prozessorientiertes IT-Kostenmanagement in Banken. State-of-the-art,

Trends, Strategien. Fachverlag Moderne Wirtschaft, Frankfurt am Main.

Heilmann, Heidi, ed. 2001. Strategisches IT-Controlling . HMD-Praxis der Wirtschaftsin-

formatik, dpunkt.verlag, Heidelberg.

Heine, Jack. 2006. Tiering Requirements Simplify Application Chargebacks. Tech. Rep.

ID Number: G00143226, Gartner, Inc.

Heinrich, Lutz J. 2002. Informationsmanagement . 7th ed. Oldenbourg, München.

Hevner, Alan R., Salvatore T. March, Jinsoo Park, Sudha Ram. 2004. Design Science

Research in Information Systems. MIS Quarterly 28(1) 75–105.

Hewlett-Packard. n.d.a. rstatd - Kernel Statistics Server (HP-UX Reference Release

11i). Hewlett-Packard Development Company. URL http://www.docs.hp.com/en/

B2355-90692/rstatd.1M.html. Viewed 2007-03-15.

Hewlett-Packard. n.d.b. sar - System Activity Reporter (HP-UX Reference Release

11i). Hewlett-Packard Development Company. URL http://www.docs.hp.com/en/

B2355-90692/sar.1M.html. Viewed 2007-02-06.

Bibliography 185

Hlynka, Myron. n.d. List of Queueing Theory Software. URL http://www2.uwindsor.ca/

∼hlynka/qsoft.html. Viewed 2006-09-26.

Hochstein, Axel, Andreas Hunziker. 2003. Serviceorientierte Referenzmodelle des IT-

Managements. Walter Brenner, Andreas Meier, Rüdiger Zarnekow, eds., Strategisches

IT-Management , HMD - Praxis der Wirtschaftsinformatik , vol. 232. dpunkt.Verlag,

Heidelberg, 46–56.

Hochstein, Axel, Rüdiger Zarnekow, Walter Brenner. 2004. ITIL als Common-Practice-

Referenzmodell für das IT-Service-Management - Formale Beurteilung und Implikatio-

nen für die Praxis. WIRTSCHAFTSINFORMATIK 46(5) 382–389.

Horngren, Charles T., Srikant M. Datar, George Foster. 2005. Cost Accounting. A Man-

agerial Emphasis . 12th ed. Prentice Hall, Englewood Cliffs, New Jersey.

Horváth, Peter, Reinhold Mayer. 1989. Prozesskostenrechnung. Der neue Weg zu mehr

Kostentransparenz und wirkungsvolleren Unternehmensstrategien. Controlling 1(4)

214–219.

Horváth, Péter. 2006. Controlling . 10th ed. Vahlen, München.

Häusler, Oliver, Axel C. Schwickert, Sascha Ebersberger. 2005. IT-Service-Management :

Referenzmodelle im Vergleich. Tech. Rep. 06/05, Professur für BWL und Wirtschaftsin-

formatik. Justus-Liebig-Universität Giessen.

IBM. 2004. IBM Accelerates On Demand Initiative to Meet Growing Demand . IBM

poration. URL http://www-03.ibm.com/press/us/en/pressrelease/7313.wss.Viewed

2006-11-26.

IBM. n.d.a.CIMS Chargeback System (now: Tivoli Usage and Accounting Manager).

IBM Corporation. URL http://www.cimslab.com. Viewed 2006-07-13.

IBM. n.d.b. Using System Management Facility . IBM Corporation.URL

publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqsav.

csq83aq.htm#csq83aq. Viewed 2007-01-18.

IBM. n.d.c. z/OS Resource Measurement Facility . IBM Corporation. URL

www-03.ibm.com/servers/eserver/zseries/zos/rmf. Viewed 2007-02-27.

http://

http://

doc/

Cor-

186 Bibliography

Ideal Observer. n.d. Einkaufsführer Web Analytics . Ideal Observer. URL http://www.

idealobserver.de. Viewed 2006-09-04.

Intel. n.d. Intel VTune Performance Analyzer . Intel Corporation. URL http://www.

intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm. Viewed 2006-11-18.

ISO 14756. 1999. Measurement and rating of performance of computer-based software

systems. International Organization for Standardization.

IT Governance Institute, ed. 2005. COBIT 4.0 . Information Systems Audit and Control

Association, Rolling Meadows, Illinois.

IT Governance Institute, ed. 2006. IT Governance Global Status Report - 2006 . Informa-

tion Systems Audit and Control Association, Rolling Meadows, Illinois.

ITFMA. n.d. IT Financial Management Association. IT Financial Management Associ-

ation (ITFMA). URL http://www.itfma.com. Viewed 2006-08-06.

Jackson, James R. 1957. Networks of waiting lines. Operations Research 5(4) 518–521.

Jackson, James R. 1963. Jobshop-Like Queueing Systems. Management Science 10(1)

131–142.

JavaPerformanceTuning. n.d. Tool reports. JavaPerformanceTuning.com. URL http:

//www.javaperformancetuning.com/tools. Viewed 2006-07-13.

Juse, Kai S., Samuel Kounev, Alejandro P. Buchmann. 2003. PetStore-WS: Measur-

ing the Performance Implications of Web Services. The 29th International Computer

Measurement Group Conference. Dallas, Texas, 113–123.

Kaplan, Robert S., Anthony A. Atkinson. 1998. Advanced management accounting . 3rd

ed. Prentice Hall, Englewood Cliffs, New Jersey.

Kargl, Herbert. 1999. DV-Controlling . 4th ed. Oldenbourg, München.

Kemper, Alfons, André Eickler. 2006. Datenbanksysteme. 6th ed. Oldenbourg, München.

Kendall, David G. 1953. Stochastic processes occurring in the theory of queues and

their analysis by the method of the imbedded Markov chain. Annals of Mathematical

Statistics 24(3) 338–354.

Bibliography 187

Kenyon, Chris, Giorgos Cheliotis. 2004. Grid Resource Commercialization. Jarek

Nabrzyski, Jennifer M. Schopf, Jan Weglarz, eds., Grid Resource Management: State

of the Art and Future Trends . Kluwer Academic Publishers, Norwell, Massachusetts,

465–478.

Kleinrock, Leonard. 1975. Queueing Systems. Volume 1: Theory . John Wiley & Sons,

New York.

Kleinrock, Leonard. 1976. Queueing Systems. Volume 2: Computer Applications . John

Wiley & Sons, New York.

Kounev, Samuel, Alejandro P. Buchmann. 2003. Performance Modeling and Evaluation of

Large-Scale J2EE Applications. The 29th International Computer Measurement Group

Conference. Dallas, Texas, 273–283.

Krcmar, Helmut. 2004. Informationsmanagement . 4th ed. Springer, Berlin.

Krcmar, Helmut, Alexander Buresch. 1994. IV-Controlling - Ein Rahmenkonzept für die

Praxis. Tech. rep., Lehrstuhl für Wirtschaftsinformatik. Universität Hohenheim.

Krcmar, Helmut, Alexander Buresch, Michael Reb. 2000. IV-Controlling auf dem

Prüfstand . Gabler, Wiesbaden.

Krüll, Jürgen. 1997. UNIX-Accounting als Datenbasis des IV-Controlling - Möglichkeiten

und Grenzen. Tech. Rep. Diskussionspapier Nr. 345, Fakultät für Wirtschaftswis-

senschaften. Universität Bielefeld.

Lazowska, Edward D. 1984. Quantitative System Performance. Computer System Analysis

Using Queuing Network Models . Prentice Hall, Englewood Cliffs, New Jersey.

Liebmann, Lenny. 1996. The Meter is running. Communications Week (Issue 1996-09-23)

50–55.

Liu, Xue, Jin Heo, Lui Sha. 2005. Modeling 3-Tiered Web Applications. The 13th

IEEE International Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems . Atlanta, Georgia.

Luftman, Jerry, Rajkumar Kempaiah, Elby Nash. 2006. Key Issues for IT Executives

2005. MIS Quarterly Executive 5(2) 81–99.

188 Bibliography

MacDougall, Myron H. 1987. Simulating computer systems: techniques and tools . MIT

Press, Cambridge, Massachusetts.

Mai, Jan. 1996. Konzeption einer controllinggerechten Kosten- und Leistungsrechnung für

Rechenzentren. Peter Lang, Frankfurt am Main.

March, Salvatore T., Gerald F. Smith. 1995. Design and Natural Science Research on

Information Technology. Decision Support Systems 15(4) 251–266.

Marsan, Marco Ajmone, Gianfranco Balbo, Gianni Conte. 1984. A Class of Generalized

Stochastic Petri Nets for the Performance Analysis of Multiprocessor Systems. ACM

Transactions on Computer Systems 2(2) 93–122.

McKinnon, William P., Ernest A. Kallman. 1987. Mapping Chargeback Systems to Or-

ganizational Environments. MIS Quarterly 11(1) 5–20.

Menascé, Daniel A., Virgilio A. F. Almeida. 2000. Scaling for E-Business: Technologies,

Models, Performance, and Capacity Planning . Prentice Hall, Upper Saddle River, New

Jersey.

Menascé, Daniel A., Virgilio A. F. Almeida. 2002. Capacity Planning for Web Services.

Metrics, Models, and Methods . Prentice Hall, Upper Saddle River, New Jersey.

Menascé, Daniel A., Virgilio A. F. Almeida, Larry W. Dowdy. 2004. Performance by

Design: Computer Capacity Planning by Example. Prentice Hall, Upper Saddle River,

New Jersey.

Mercury. 2004. Mercury Virtual User Generator User’s Guide (Version 8.0). Mercury

Interactive Corporation, Sunnyvale, California.

Mercury. n.d.a. Mercury LoadRunner . Mercury Interactive Corporation. URL http://

www.mercury.com/us/products/performance-center/loadrunner. Viewed 2006-07-13.

Mercury. n.d.b. Mercury LoadRunner Data Sheet . Mercury Interactive Corporation. URL

http://www.mercury.com/us/pdf/products/datasheets/DS-0990-0506-loadrunner.pdf.

Viewed 2006-01-31.

Mercury. n.d.c. Mercury LoadRunner Protocols . Mercury Interactive Cor

URL http://www.mercury.com/us/pdf/products/loadrunner/

protocols.pdf. Viewed 2007-01-31.

poration.

1855-1006-loadrunner-

Bibliography 189

Michels, Jochen K. 2003a. IT-Benchmarking . 2nd ed. VDM Verlag Dr. Müller, Düsseldorf.

Michels, Jochen K. 2003b. IT-Finanzmanagement . 2nd ed. VDM Verlag Dr. Müller,

Düsseldorf.

Michels, Jochen K. 2003c. Pricing für SAP-Dienste. 2nd ed. VDM Verlag Dr. Müller,

Düsseldorf.

Michels, Jochen K. 2004. IT-Betriebsabrechnung. Der BAB des Rechenzentrums . VDM

Verlag Dr. Müller, Düsseldorf.

Microsoft. n.d.a. Microsoft .NET Pet Shop. Microsoft Corporation. URL http://www.

gotdotnet.com/team/compare/petshop.aspx. Viewed 2007-03-12.

Microsoft. n.d.b. Overview of Performance Monitoring (Windows 2000 Server Resource

Kit). Microsoft Corporation. URL http://www.microsoft.com/technet/prodtechnol/

windows2000serv/reskit/prork/preb mon ofnh.mspx?mfr=true. Viewed 2007-02-05.

Miller, Jeffrey G., Thomas E. Vollmann. 1985. The Hidden Factory. Harvard Business

Review 63(5) 142–150.

Müller-Clostermann, Bruno. 2001. Kursbuch Kapazitätsmanagement . Books on Demand,

Norderstedt.

Nagaprabhanjan, Bellari, Varsha Apte. 2005. A Tool for Automated Resource Consump-

tion Profiling of Distributed Transactions. The 2nd International Conference on Dis-

tributed Computing and Internet Technology . Bhubaneshwar, India, 154–165.

Neumann, Dirk, Carsten Holtmann, Carsten Orwat. 2006. Grid-Economics.

WIRTSCHAFTSINFORMATIK 48(3) 206–209.

Neuse, Doug, K. Mani Chandy. 1981. SCAT: A heuristic algorithm for queueing network

models of computing systems. ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems . Las Vegas, Nevada, 59–79.

Nicetec. n.d. netinsight . Nicetec GmbH. URL http://www.nicetec.de. Viewed 2006-07-13.

Object Refinery. n.d. JFreeChart . Object Refinery Limited. URL http://www.jfree.org/

jfreechart. Viewed 2006-07-13.

190 Bibliography

Office of Government Commerce, ed. 2001. Service Delivery . IT Infrastructure Library

(ITIL), Stationery Office Books, London.

Office of Government Commerce, ed. 2002a. ICT Infrastructure Management . IT Infras-

tructure Library (ITIL), Stationery Office Books, London.

Office of Government Commerce, ed. 2002b. Planning to Implement Service Management .

IT Infrastructure Library (ITIL), Stationery Office Books, London.

Office of Government Commerce. n.d. Glossary of Terms, Definitions and Acronyms .

Office of Government Commerce. URL http://www.best-management-practice.com/

gempdf/ITILGlossary.pdf. Viewed 2007-01-14.

Oleson, Thomas D. 1998. Price of precision. CIO Magazine (Issue 1998-02-15) 34–38.

OpTier. n.d. CoreFirst . OpTier, Inc. URL http://www.optier.com/Site/products/

technology.asp. Viewed 2006-12-21.

Owen, Gary, Jonathan Law. 2005. A Dictionary of Accounting . Oxford University Press,

New York.

Padhye, Jitendra, Anirudha D. Rahatekar, Lawrence W. Dowdy. 1995. A Simple LAN File

Placement Strategy. The 21st International Computer Measurement Group Conference.

Nashville, Tennessee, 396–406.

Paul-Zirvas, Jana, Markus Bereszewski. 2004. Gründlich verrechnet. Informationweek

(No. 5-6, published 2004-04-08) 12–14.

Quinlan, Terence A. 1989. EDP cost accounting . John Wiley & Sons, New York.

Redman, Bill, Bill Kirwin, Tom Berg. 1998. TCO: A Critical Tool for Managing IT. Tech.

Rep. ID Number: R-06-1697, Gartner, Inc.

Reichmann, Thomas. 2006. Controlling mit Kennzahlen und Management-Tools. Die

systemgestützte Controlling-Konzeption. 7th ed. Vahlen, München.

Reiser, Martin. 1981. Mean-Value Analysis and Convolution Method for Queue-

Dependent Servers in Closed Queueing Networks. Performance Evaluation 1(1) 7–18.

Reiser, Martin, Stephen S. Lavenberg. 1980. Mean-Value Analysis of Closed Multichain

Queuing Networks. Journal of the ACM 27(2) 313–322.

Bibliography 191

Riebel, Paul. 1994. Einzelkosten- und Deckungsbeitragsrechnung . 7th ed. Gabler, Wies-

baden.

Rolia, Jerome A., Kenneth C. Sevcik. 1995. The Method of Layers. IEEE Transactions

on Software Engineering 21(8) 689–700.

Ross, Jeanne W., Michael R. Vitale, Cynthia Mathis Beath. 1999. The untapped potential

of IT chargeback. MIS Quarterly 23(2) 215–237.

SAP. n.d.a. SAP NetWeaver . SAP AG. URL http://www.sap.com/platform/netweaver.

Viewed 2006-01-19.

SAP. n.d.b. SAP Standard Application Benchmarks . SAP AG. URL http://www.sap.

com/solutions/benchmark. Viewed 2006-12-11.

Schauer, Hanno. 2006. IT-Controlling. Vergleichende Buchbesprechung. WIRT-

SCHAFTSINFORMATIK 48(3) 212–218.

Scheeg, Jochen Michael. 2005. Integrierte IT-Kostentabellen als Instrument für eine ef-

fiziente IT-Leistungserbringung im Informationsmanagement: Konzeption und praktis-

che Umsetzung . Difo-Druck, Bamberg.

Schmitz, Ludger. 2005. Rechenleistung aus dem großen Topf. Computerwoche (No. 4,

published 2005-01-27) 16.

Schweitzer, Paul J. 1979. Approximate analysis of multiclass closed networks of queues.

International Conference on Stochastic Control and Optimization. Amsterdam, Nether-

lands, 25–29.

Schwichtenberg, Holger. n.d. Tools and Software Components for the .NET Framework .

URL http://www.dotnetframework.de/dotnet/tools.aspx. Viewed 2006-07-13.

Siebertz, Jens. 2004. IT-Kostencontrolling. Nutzenpotenziale von Controlling-Tools . VDM

Verlag Dr. Müller, Düsseldorf.

Simon, Herbert A. 1996. The Sciences of the Artificial . 3rd ed. MIT Press, Cambridge,

Massachusetts.

Singh, Inderjeet, Beth Stearns, Mark Johnson. 2002. Designing Enterprise Applications

with the J2EE Platform. Addison-Wesley, Boston, Massachusetts.

192 Bibliography

Son, Sertaç, Thomas Gladyszewski. 2005. Return on IT-Controlling 2005. Eine em-

pirische Untersuchung zum Einfluss des IT-Controllings auf die unternehmensweite IT

Performance. E-Finance Lab, Frankfurt am Main.

SourceForge. n.d. Java Modelling Tools . SourceForge.net. URL http://jmt.sourceforge.

net. Viewed 2006-09-05.

SPEC. n.d.a. CPU2000 (CPU Benchmark). Standard Performance Evaluation Corpora-

tion. URL http://www.spec.org/cpu2000. Viewed 2006-08-31.

SPEC. n.d.b. SPECjAppServer2002 (Java Application Server Benchmark). Standard Per-

formance Evaluation Corporation. URL http://www.spec.org/jAppServer2002. Viewed

2006-12-14.

Spitta, Thorsten. 2000. Kostenrechnerische Grundlagen für das IV-Controlling. Kosten-

rechnungspraxis 44(5) 279–288.

Spitta, Thorsten, Fred G. Becker. 2000. Zeiterfassung in der IV - Personalkontrolle oder

Transparenz? WIRTSCHAFTSINFORMATIK 42(Sonderheft IT & Personal) 48–55.

Sun Microsystems. n.d.a. Java Pet Store Sample Application. Sun Microsystems, Inc.

URL http://java.sun.com/blueprints/code/jps132/docs. Viewed 2006-07-13.

Sun Microsystems. n.d.b. Sample Application Design and Implementation. Sun Mi-

crosystems, Inc. URL http://java.sun.com/blueprints/guidelines/designing enterprise

applications 2e/sample-app/sample-app1.3.1.pdf. Viewed 2007-03-12.

Sun Microsystems. n.d.c. The Java 2 Platform, Enterprise Edition (J2EE). Sun Mi-

crosystems. URL http://java.sun.com/j2ee/1.3. Viewed 2007-03-10.

Symantec. n.d. Application Performance Management . Symantec Corporation. URL http:

//www.symantec.com/Products/enterprise?c=prodcat&refId=1021. Viewed 2006-07-

13.

Syskoplan. 2002. Optimierung der Total Cost of Ownership in IT-Abteilungen scheitert

an der fehlenden Leistungsverrechnung . Syskoplan AG. URL http://www.syskoplan.

de/content/pressemitteilungen/sysko pres 260802.pdf. Viewed 2006-11-30.

TeamQuest. n.d. TeamQuest Model . TeamQuest Corporation. URL http://www.

teamquest.com/solutions-products/products/model. Viewed 2006-09-05.

Bibliography 193

Teubner, Alexander, Stefan Klein. 2002. Informationsmanagement. Vergleichende

Buchbesprechung. WIRTSCHAFTSINFORMATIK 44(3) 285–299.

Tjims, Henk C. 1995. Stochastic Models: An Algorithmic Approach. John Wiley & Sons,

New York.

TPPC. n.d.a. TPC-App (Application server and web services benchmark). Transaction

Processing Performance Council. URL http://www.tpc.org/tpc app. Viewed 2006-06-

26.

TPPC. n.d.b. TPC-C (On-line transaction processing benchmark). Transaction Process-

ing Performance Council. URL http://www.tpc.org/tpcc. Viewed 2006-12-11.

Uebernickel, Falk, Carlos Bravo-Sànchez, Rüdiger Zarnekow, Walter Brenner. 2006a. Eine

Vorgehensmethodik für das IT-Produktengineering. Multikonferenz Wirtschaftsinfor-

matik . Passau.

Uebernickel, Falk, Carlos Bravo-Sànchez, Rüdiger Zarnekow, Walter Brenner. 2006b. IS

Service-Engineering: A process model for the development of IS services. European and

Mediterranean Conference on Information Systems . Alicante, Spain.

University of Cambridge. n.d. The Xen virtual machine monitor . University of Cam-

bridge Computer Laboratory. URL http://www.cl.cam.ac.uk/Research/SRG/netos/

xen. Viewed 2006-08-29.

Urgaonkar, Bhuvan, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, Asser Tantawi.

2007. Analytic Modeling of Multitier Internet Applications. ACM Transactions on the

Web 1(1).

USU. n.d. Costing/Charging Manager . USU AG. URL http://www.usu.de/it

management solutions/finance management/costing charging manager.html. Viewed

2006-07-13.

Verner, June M., Kranti Toraskar, R. Brown. 1996. Information systems chargeout: a

review of current approaches and future challenges. Journal of Information Technology

11(2) 101–117.

von Dobschütz, Leonhard, Manfred Barth, Heidi Jäger-Goy, Martin Kütz, Hans-Peter

Möller, eds. 2000. IV-Controlling. Konzepte - Umsetzungen - Erfahrungen. Gabler,

Wiesbaden.

194 Bibliography

Weill, Peter, Richard Woodham. 2002. Don’t Just Lead, Govern: Implementing Effective

IT Governance. Tech. Rep. MIT Sloan Working Paper No. 4237-02, Sloan School of

Management.

Wheatley, Malcolm. 2003. Chargeback for good or evil. CIO Magazine (Issue 2003-03-01).

Woodside, C. Murray, J. E. Neilson, Dorina C. Petriu, Shikharesh Majumdar. 1995. The

Stochastic Rendezvous Network Model for Performance of Synchronous Client-Server-

like Distributed Software. IEEE Transactions on Computers 44(1) 20–34.

Zhang, Qi, Ludmila Cherkasova, Guy Mathews, Wayne Greene, Evgenia Smirni. 2007. A

Capacity Planning Framework for Multi-tier Enterprise Services with Real Workloads.

The 10th IFIP/IEEE International Symposium on Integrated Management . Munich.

Ziehm, Oliver. 2004. Government on Demand. Neue Wege in der Projektfinanzierung. 7.

Deutscher Verwaltungskongress Effizienter Staat . Berlin.

Appendix A

Appendix

A.1 List of Symbols

a Resource consumption of background activities

b Baseline (load-independent) resource consumption of a service

i Service (i = 1 . . . m)

j Resource (j = 1 . . . n)

pi Resource profile of service i consisting of n values pij

pij Estimate of the expected resource consumption of service i at resource j

r Pearson product-moment correlation coefficient (r ε [−1; 1])

t Time (length of a measurement interval)

u Load-dependent resource consumption of a service

u Constant approximation of u

x Number of concurrent or subsequent service invocations

y Total resource consumption

196 A. Appendix

A.2 Test Infrastructure

Load Generator Web Server
Application

Server
Database Server

Application
Vuser scripts and
load test scenario

static web content
(*.html, *.gif, *.jpg)

*.ear and *.war Oracle tablespace

Software and
Server

Infrastructure

LoadRunner 8.0
JRE 1.5.0

Apache http 2.0.54
Bea Weblogic 8.1

JRE 1.3.1
Oracle 9.1

Operating
Systems

Windows 2000
Advanced Server

Red Hat Linux
Advanced Server 2.1

(Pensacola)

Windows 2000
Advanced Server

HP-UX 11.11

Number of
CPUs

2 2 2 2

CPU
Performance

1000 MHz 1400 MHz 1000 MHz 440 MHz

CPU Type
Intel x86 Pentium
III Coppermine

Intel x86 Xeon MP
Intel x86 Pentium
III Coppermine

PA 8500 CPU
Module 2.3

CPU
Architecture

CISC (32 bit) CISC (32 bit) CISC (32 bit) RISC (64 bit)

Disk Storage 3 * 73 GB RAID 5 3 * 72 GB RAID 5 3 * 18 GB RAID 5

2 * 36,4 GB RAID 1
and 13 GB LUN on
SAN (HP XP128)

via FC

Network 100 Mbps 100 Mbps / 1Gbit 100 Mbps
100 Mbps and Fibre

Channel

Memory 2 GB 2 GB 2 GB 2 GB

Server Type HP DL360 IBM X360-03 HP DL360 HP N4000

Network Name xxxxxx20 xxxxxx03d xxxxxx15 xxxxxx01a

Table A.1: Overview of the Test Infrastructure

A.3. Experimental Results: Resource Profiles 197

A.3 Experimental Results: Resource Profiles

A.3.1 Resource Profiles

A.3.1.1 PASTA

Experiment PA01 1

Load test 1 2006-08-14 22:41:15.0 – 2006-08-14 23:53:12.0

Runtime (test 1) 1 h 11min 57 sec

No. of users x 1 – 20 (20 steps)

No. of services i 2

No. of intervals 40 (20 per service)

Resource j i p r

Application server - Network - all - Bytes Total read user 237,149 0.999

Application server - Network - all - Bytes Total edit user 602,794 1.000

Application server - Processor - all - Processor Time read user 0.625 0.990

Application server - Processor - all - Processor Time edit user 1.651 0.996

Client computer - Network - all - Bytes Total read user 182,322 0.998

Client computer - Network - all - Bytes Total edit user 376,897 0.995

Database server - Disk - SAN - Read/Write blocks read user 0 n/a

Database server - Disk - SAN - Read/Write blocks edit user 142.111 0.914

Database server - Processor - all - Processor Time read user 2.672 0.997

Database server - Processor - all - Processor Time edit user 7.337 1.000

Web server - Processor - all - Processor Time read user 0.028 0.925

Web server - Processor - all - Processor Time edit user 0.080 0.982

Table A.2: Resource Profile: PASTA – Services including multiple Client

Requests

Experiment PA03 1

Load test 1 2006-08-20 12:23:39.0 – 2006-08-20 13:45:53.0

Runtime (test 1) 1 h 22min 14 sec

No. of users x 1 – 20 (20 steps)

No. of services i 13

No. of intervals 260 (20 per service)

198 A. Appendix

Resource j i p r

Application server - Network - all - Bytes Total logon.do 3,023 0.998

Application server - Network - all - Bytes Total actedit.do 54,584 1.000

Application server - Network - all - Bytes Total statussave.do 28,339 1.000

Application server - Network - all - Bytes Total statusedit.do 27,292 1.000

Application server - Network - all - Bytes Total logon.do submit 29,362 1.000

Application server - Network - all - Bytes Total listsearch.do submit 20,915 0.999

Application server - Network - all - Bytes Total listsearch.do 10,831 0.999

Application server - Network - all - Bytes Total listcurrent.do 12,581 1.000

Application server - Network - all - Bytes Total frameset 4,493 0.996

Application server - Network - all - Bytes Total actview.do 49,479 1.000

Application server - Network - all - Bytes Total actitemsave.do 62,020 1.000

Application server - Network - all - Bytes Total actitemedit.do 30,146 1.000

Application server - Network - all - Bytes Total logout.do 12,381 1.000

Application server - Processor - all - Processor Time listcurrent.do 0.043 0.720

Application server - Processor - all - Processor Time logon.do 0.018 0.638

Application server - Processor - all - Processor Time statussave.do 0.061 0.886

Application server - Processor - all - Processor Time statusedit.do 0.061 0.795

Application server - Processor - all - Processor Time logout.do 0.051 0.867

Application server - Processor - all - Processor Time logon.do submit 0.122 0.826

Application server - Processor - all - Processor Time actedit.do 0.109 0.933

Application server - Processor - all - Processor Time frameset 0.010 0.359

Application server - Processor - all - Processor Time actview.do 0.111 0.964

Application server - Processor - all - Processor Time actitemsave.do 0.135 0.969

Application server - Processor - all - Processor Time actitemedit.do 0.075 0.855

Application server - Processor - all - Processor Time listsearch.do 0.029 0.596

Application server - Processor - all - Processor Time listsearch.do submit 0.039 0.797

Client computer - Network - all - Bytes Total actitemsave.do 29,195 0.999

Client computer - Network - all - Bytes Total logout.do 5,511 0.995

Client computer - Network - all - Bytes Total logon.do submit 7,874 0.994

Client computer - Network - all - Bytes Total logon.do 4,414 0.819

Client computer - Network - all - Bytes Total listsearch.do submit 16,721 0.999

Client computer - Network - all - Bytes Total listsearch.do 44,206 0.836

Client computer - Network - all - Bytes Total listcurrent.do 17,637 1.000

Client computer - Network - all - Bytes Total actview.do 23,675 0.998

Client computer - Network - all - Bytes Total actitemedit.do 16,019 0.999

Client computer - Network - all - Bytes Total actedit.do 30,376 1.000

Client computer - Network - all - Bytes Total statussave.do 27,838 0.999

Client computer - Network - all - Bytes Total statusedit.do 22,874 1.000

Client computer - Network - all - Bytes Total frameset 67,143 1.000

Database server - Disk - SAN - Read/Write blocks logon.do 0 n/a

Database server - Disk - SAN - Read/Write blocks actedit.do 2.518 0.326

Database server - Disk - SAN - Read/Write blocks statusedit.do 1.123 0.156

continued next page

A.3. Experimental Results: Resource Profiles 199

continued

Resource j i p r

Database server - Disk - SAN - Read/Write blocks logon.do submit 29.462 0.842

Database server - Disk - SAN - Read/Write blocks statussave.do 27.749 0.654

Database server - Disk - SAN - Read/Write blocks listsearch.do submit 0 n/a

Database server - Disk - SAN - Read/Write blocks listsearch.do 0.866 0.306

Database server - Disk - SAN - Read/Write blocks listcurrent.do 0 n/a

Database server - Disk - SAN - Read/Write blocks frameset 1.651 0.258

Database server - Disk - SAN - Read/Write blocks actview.do 0 n/a

Database server - Disk - SAN - Read/Write blocks actitemsave.do 35.540 0.746

Database server - Disk - SAN - Read/Write blocks actitemedit.do 0.878 0.085

Database server - Disk - SAN - Read/Write blocks logout.do 5.086 0.539

Database server - Processor - all - Processor Time listsearch.do 0.001 0.109

Database server - Processor - all - Processor Time actitemedit.do 0.424 0.999

Database server - Processor - all - Processor Time actitemsave.do 0.662 0.999

Database server - Processor - all - Processor Time actview.do 0.440 0.999

Database server - Processor - all - Processor Time frameset 0.003 0.382

Database server - Processor - all - Processor Time listcurrent.do 0.212 0.999

Database server - Processor - all - Processor Time statussave.do 0.218 0.999

Database server - Processor - all - Processor Time listsearch.do submit 0.710 1.000

Database server - Processor - all - Processor Time logon.do 0 n/a

Database server - Processor - all - Processor Time logon.do submit 0.643 0.999

Database server - Processor - all - Processor Time actedit.do 0.441 1.000

Database server - Processor - all - Processor Time statusedit.do 0.211 0.999

Database server - Processor - all - Processor Time logout.do 0.211 0.998

Web server - Processor - all - Processor Time listcurrent.do 0.004 0.919

Web server - Processor - all - Processor Time statussave.do 0.004 0.929

Web server - Processor - all - Processor Time statusedit.do 0.004 0.950

Web server - Processor - all - Processor Time logout.do 0.002 0.859

Web server - Processor - all - Processor Time logon.do submit 0.006 0.969

Web server - Processor - all - Processor Time logon.do 0.001 0.494

Web server - Processor - all - Processor Time listsearch.do 0.002 0.851

Web server - Processor - all - Processor Time frameset 0.007 0.826

Web server - Processor - all - Processor Time actview.do 0.006 0.931

Web server - Processor - all - Processor Time actitemsave.do 0.006 0.962

Web server - Processor - all - Processor Time actitemedit.do 0.006 0.793

Web server - Processor - all - Processor Time actedit.do 0.005 0.934

Web server - Processor - all - Processor Time listsearch.do submit 0.004 0.933

Table A.3: Resource Profile: PASTA – Services including single Client

Requests

200 A. Appendix

A.3.1.2 Java Pet Store

Experiment PE01 1

Load test 1 2006-10-06 13:29:32.0 – 2006-10-06 14:13:55.0

Runtime (test 1) 44min 23 sec

No. of users x 10 – 100 (10 steps)

No. of services i 4

No. of intervals 40 (10 per service)

Resource j i p r

Application server - Network - all - Bytes Total determined shopper 280,466 1.000

Application server - Network - all - Bytes Total first time shopper 464,655 1.000

Application server - Network - all - Bytes Total power shopper 594,286 1.000

Application server - Network - all - Bytes Total curious visitor 174,622 1.000

Application server - Processor - all - Processor Time curious visitor 0.172 0.844

Application server - Processor - all - Processor Time determined shopper 0.252 0.945

Application server - Processor - all - Processor Time first time shopper 0.461 0.958

Application server - Processor - all - Processor Time power shopper 0.473 0.912

Client computer - Network - all - Bytes Total power shopper 587,170 1.000

Client computer - Network - all - Bytes Total curious visitor 228,617 1.000

Client computer - Network - all - Bytes Total determined shopper 294,606 1.000

Client computer - Network - all - Bytes Total first time shopper 476,526 1.000

Database server - Disk - SAN - Read/Write blocks determined shopper 50.198 0.916

Database server - Disk - SAN - Read/Write blocks first time shopper 74.184 0.938

Database server - Disk - SAN - Read/Write blocks power shopper 54.138 0.917

Database server - Disk - SAN - Read/Write blocks curious visitor 8.628 0.417

Database server - Processor - all - Processor Time power shopper 0.073 0.993

Database server - Processor - all - Processor Time curious visitor 0.002 0.395

Database server - Processor - all - Processor Time determined shopper 0.046 0.992

Database server - Processor - all - Processor Time first time shopper 0.064 0.976

Web server - Processor - all - Processor Time curious visitor 0.012 0.977

Web server - Processor - all - Processor Time determined shopper 0.017 0.992

Web server - Processor - all - Processor Time first time shopper 0.026 0.994

Web server - Processor - all - Processor Time power shopper 0.032 0.997

Table A.4: Resource Profile: Java Pet Store – Services including multiple

Client Requests

Experiment PE03 1

Load test 1 2006-09-27 10:58:44.0 – 2006-09-27 13:00:32.0

Runtime (test 1) 2 h 1min 48 sec

A.3. Experimental Results: Resource Profiles 201

No. of users x 1 – 70 (70 steps)

No. of services i 13

No. of intervals 910 (70 per service)

Resource j i p r

Application server - Network - all - Bytes Total main.screen 13,654 1.000

Application server - Network - all - Bytes Total cart.do 17,430 0.999

Application server - Network - all - Bytes Total update customer.screen 26,720 1.000

Application server - Network - all - Bytes Total signon welcome.screen 15,976 0.998

Application server - Network - all - Bytes Total product.screen 15,122 1.000

Application server - Network - all - Bytes Total j signon check 20,134 0.999

Application server - Network - all - Bytes Total item.screen 15,102 0.999

Application server - Network - all - Bytes Total enter order information.screen 22,099 1.000

Application server - Network - all - Bytes Total customer.do updated 25,132 1.000

Application server - Network - all - Bytes Total customer.do 18,788 0.999

Application server - Network - all - Bytes Total category.screen 15,089 1.000

Application server - Network - all - Bytes Total cart.do update 17,479 1.000

Application server - Network - all - Bytes Total search.screen 14,984 1.000

Application server - Processor - all - Processor Time enter order information.screen 0.015 0.981

Application server - Processor - all - Processor Time main.screen 0.017 0.948

Application server - Processor - all - Processor Time update customer.screen 0.021 0.988

Application server - Processor - all - Processor Time signon welcome.screen 0.007 0.972

Application server - Processor - all - Processor Time search.screen 0.013 0.984

Application server - Processor - all - Processor Time product.screen 0.010 0.967

Application server - Processor - all - Processor Time cart.do 0.017 0.977

Application server - Processor - all - Processor Time customer.do updated 0.026 0.993

Application server - Processor - all - Processor Time customer.do 0.017 0.984

Application server - Processor - all - Processor Time category.screen 0.010 0.979

Application server - Processor - all - Processor Time cart.do update 0.017 0.990

Application server - Processor - all - Processor Time item.screen 0.013 0.989

Application server - Processor - all - Processor Time j signon check 0.027 0.989

Client computer - Network - all - Bytes Total category.screen 10,258 0.865

Client computer - Network - all - Bytes Total search.screen 11,165 0.937

Client computer - Network - all - Bytes Total product.screen 11,148 0.897

Client computer - Network - all - Bytes Total main.screen 55,612 0.981

Client computer - Network - all - Bytes Total j signon check 14,036 0.998

Client computer - Network - all - Bytes Total item.screen 16,581 0.895

Client computer - Network - all - Bytes Total enter order information.screen 17,386 0.956

Client computer - Network - all - Bytes Total customer.do 14,940 0.983

Client computer - Network - all - Bytes Total cart.do update 11,761 0.898

Client computer - Network - all - Bytes Total cart.do 20,195 0.959

Client computer - Network - all - Bytes Total update customer.screen 20,861 0.966

continued next page

202 A. Appendix

continued

Resource j i p r

Client computer - Network - all - Bytes Total signon welcome.screen 12,740 0.849

Client computer - Network - all - Bytes Total customer.do updated 18,575 0.989

Database server - Disk - SAN - Read/Write blocks main.screen 0 n/a

Database server - Disk - SAN - Read/Write blocks cart.do 0 n/a

Database server - Disk - SAN - Read/Write blocks signon welcome.screen 0 n/a

Database server - Disk - SAN - Read/Write blocks product.screen 0 n/a

Database server - Disk - SAN - Read/Write blocks update customer.screen 0 n/a

Database server - Disk - SAN - Read/Write blocks j signon check 0 n/a

Database server - Disk - SAN - Read/Write blocks item.screen 0.007 0.076

Database server - Disk - SAN - Read/Write blocks enter order information.screen 0 n/a

Database server - Disk - SAN - Read/Write blocks customer.do updated 0 n/a

Database server - Disk - SAN - Read/Write blocks customer.do 0.013 0.077

Database server - Disk - SAN - Read/Write blocks category.screen 0 n/a

Database server - Disk - SAN - Read/Write blocks cart.do update 0 n/a

Database server - Disk - SAN - Read/Write blocks search.screen 0 n/a

Database server - Processor - all - Processor Time item.screen 0.002 0.250

Database server - Processor - all - Processor Time cart.do update 0.002 0.747

Database server - Processor - all - Processor Time category.screen 0.001 0.629

Database server - Processor - all - Processor Time customer.do 0.002 0.171

Database server - Processor - all - Processor Time customer.do updated 0.004 0.883

Database server - Processor - all - Processor Time enter order information.screen 0.001 0.517

Database server - Processor - all - Processor Time update customer.screen 0.003 0.858

Database server - Processor - all - Processor Time j signon check 0.004 0.236

Database server - Processor - all - Processor Time main.screen 0.000 0.019

Database server - Processor - all - Processor Time product.screen 0.001 0.344

Database server - Processor - all - Processor Time cart.do 0.002 0.238

Database server - Processor - all - Processor Time signon welcome.screen 0 n/a

Database server - Processor - all - Processor Time search.screen 0.004 0.804

Web server - Processor - all - Processor Time enter order information.screen 0.001 0.694

Web server - Processor - all - Processor Time update customer.screen 0.001 0.594

Web server - Processor - all - Processor Time signon welcome.screen 0.001 0.565

Web server - Processor - all - Processor Time search.screen 0.001 0.592

Web server - Processor - all - Processor Time product.screen 0.000 0.453

Web server - Processor - all - Processor Time main.screen 0.004 0.911

Web server - Processor - all - Processor Time item.screen 0.001 0.542

Web server - Processor - all - Processor Time customer.do updated 0.001 0.694

Web server - Processor - all - Processor Time customer.do 0.001 0.659

Web server - Processor - all - Processor Time category.screen 0.000 0.524

Web server - Processor - all - Processor Time cart.do update 0.000 0.513

Web server - Processor - all - Processor Time cart.do 0.001 0.690

Web server - Processor - all - Processor Time j signon check 0.001 0.801

Table A.5: Resource Profile: Java Pet Store – Services including single

Client Requests

A.3. Experimental Results: Resource Profiles 203

A.3.2 Background Activities

Figure A.1: Background Resource Consumption at the SAN

Figure A.2: Background Resource Consumption at the Network (excerpt
showing 45 seconds)

204 A. Appendix

A.3.3 Repeatability

A.3.3.1 Experiment PA01

Resource j i min max sd cv

Application server - Network - all - Bytes Total read user 237,149 243,515 2,653 0.011

Application server - Network - all - Bytes Total edit user 602,794 613,230 4,637 0.008

Application server - Processor - all - Processor Time read user 0.591 0.631 0.017 0.027

Application server - Processor - all - Processor Time edit user 1.651 1.666 0.006 0.004

Client computer - Network - all - Bytes Total read user 175,744 189,366 6,759 0.037

Client computer - Network - all - Bytes Total edit user 376,897 404,564 11,442 0.029

Database server - Disk - SAN - Read/Write blocks read user 0 0 n/a n/a

Database server - Disk - SAN - Read/Write blocks edit user 125.514 224.173 45.739 0.258

Database server - Processor - all - Processor Time read user 2.672 2.802 0.060 0.022

Database server - Processor - all - Processor Time edit user 7.337 7.440 0.040 0.005

Web server - Processor - all - Processor Time read user 0.026 0.030 0.001 0.051

Web server - Processor - all - Processor Time edit user 0.074 0.080 0.002 0.030

Table A.6: Repeatability: PASTA – Services including multiple Client

Requests

A.3.3.2 Experiment PA03

Resource j i min max sd cv

Application server - Network - all - Bytes Total actitemsave.do 61,749 62,163 168.786 0.003

Application server - Processor - all - Processor Time actitemsave.do 0.135 0.142 0.003 0.021

Client computer - Network - all - Bytes Total actitemsave.do 29,195 29,973 332.671 0.011

Database server - Disk - SAN - Read/Write blocks actitemsave.do 34.136 49.599 7.566 0.182

Database server - Processor - all - Processor Time actitemsave.do 0.645 0.702 0.021 0.031

Web server - Processor - all - Processor Time actitemsave.do 0.006 0.009 0.001 0.168

Table A.7: Repeatability: PASTA – Services including single Client

Requests

A.3.3.3 Experiment PE01

Resource j i min max sd cv

App - NW - all - Bytes Total determined shopper 280,004 280,721 298.276 0.001

App - NW - all - Bytes Total first time shopper 464,501 465,401 393.261 0.001

App - NW - all - Bytes Total power shopper 593,405 594,286 478.314 0.001

App - NW - all - Bytes Total curious visitor 174,466 174,774 126.227 0.001

continued next page

A.3. Experimental Results: Resource Profiles 205

continued

Resource j i min max sd cv

App - Proc. - all - Proc. Time curious visitor 0.172 0.186 0.006 0.034

App - Proc. - all - Proc. Time determined shopper 0.252 0.268 0.007 0.027

App - Proc. - all - Proc. Time first time shopper 0.461 0.541 0.035 0.068

App - Proc. - all - Proc. Time power shopper 0.461 0.473 0.005 0.011

Client - NW - all - Bytes Total power shopper 586,353 587,170 365.553 0.001

Client - NW - all - Bytes Total curious visitor 228,617 228,842 99.931 0.000

Client - NW - all - Bytes Total determined shopper 294,584 294,817 105.669 0.000

Client - NW - all - Bytes Total first time shopper 476,104 476,526 193.669 0.000

DB - Disk - SAN - R/W blocks determined shopper 41.963 60.214 8.095 0.155

DB - Disk - SAN - R/W blocks first time shopper 44.162 74.184 13.560 0.211

DB - Disk - SAN - R/W blocks power shopper 49.299 60.525 4.909 0.088

DB - Disk - SAN - R/W blocks curious visitor 0 0 n/a n/a

DB - Proc. - all - Proc. Time power shopper 0.073 0.113 0.017 0.180

DB - Proc. - all - Proc. Time curious visitor 0 0 n/a n/a

DB - Proc. - all - Proc. Time determined shopper 0.044 0.077 0.016 0.277

DB - Proc. - all - Proc. Time first time shopper 0.064 0.105 0.018 0.202

Web - Proc. - all - Proc. Time curious visitor 0.010 0.014 0.001 0.111

Web - Proc. - all - Proc. Time determined shopper 0.016 0.017 0.000 0.029

Web - Proc. - all - Proc. Time first time shopper 0.023 0.026 0.001 0.057

Web - Proc. - all - Proc. Time power shopper 0.028 0.032 0.002 0.055

Table A.8: Repeatability: Java Pet Store – Services including multiple

Client Requests

A.3.3.4 Experiment PE03

Resource j i min max sd cv

Application server - Network - all - Bytes Total cart.do 17,430 17,978 240.046 0.014

Application server - Processor - all - Processor Time cart.do 0.017 0.018 0.000 0.029

Client computer - Network - all - Bytes Total cart.do 20,195 23,942 1,555 0.072

Database server - Disk - SAN - Read/Write blocks cart.do 0 0 n/a n/a

Database server - Processor - all - Processor Time cart.do 0.002 0.002 0.000 0.047

Web server - Processor - all - Processor Time cart.do 0.001 0.001 0.000 0.248

Table A.9: Repeatability: Java Pet Store – Services including single

Client Requests

206 A. Appendix

A.3.4 Load-dependent Behavior

A.3.4.1 Experiment PA02

Resource j i x=1 x=5 x=10 x=15 x=20

App - NW - all - Bytes Total edit user 660,617 618,110 615,329 614,377 611,402

App - Proc. - all - Proc. Time edit user 3.692 2.733 2.395 2.314 2.474

Client - NW - all - Bytes Total edit user 446,004 388,547 390,260 400,458 400,759

DB - Disk - SAN - R/W blocks edit user 151.900 258.600 162.325 168.483 167.002

DB - Proc. - all - Proc. Time edit user 7.508 7.417 7.462 7.520 7.485

Web - Proc. - all - Proc. Time edit user 0.209 0.086 0.082 0.077 0.082

Table A.10: Load-dependent Behavior: PASTA – Services including

multiple Client Requests

A.3.4.2 Experiment PA04

Resource j i x=1 x=5 x=10 x=15 x=20

App - NW - all - Bytes Total actitemsave.do 65,515 62,422 62,243 62,305 62,127

App - Proc. - all - Proc. Time actitemsave.do 0.183 0.156 0.167 0.157 0.150

Client - NW - all - Bytes Total actitemsave.do 34,686 30,463 30,122 30,072 29,847

DB - Disk - SAN - R/W blocks actitemsave.do 14.632 10.560 21.485 23.310 18.403

DB - Proc. - all - Proc. Time actitemsave.do 0.705 0.662 0.656 0.664 0.664

Web - Proc. - all - Proc. Time actitemsave.do 0.020 0.008 0.007 0.007 0.006

Table A.11: Load-dependent Behavior: PASTA – Services including single

Client Requests

A.3.4.3 Experiment PE02

Resource j i x=1 x=10 x=30 x=50 x=70

App - NW - all - Bytes Total power shopper 729,202 602,770 598,615 596,979 596,034

App - Proc. - all - Proc. Time power shopper 1.530 0.591 0.577 0.575 0.587

Client - NW - all - Bytes Total power shopper 715,437 593,885 590,265 589,083 588,531

DB - Disk - SAN - R/W blocks power shopper 10.353 43.232 53.323 59.518 69.726

DB - Proc. - all - Proc. Time power shopper 0.350 0.143 0.175 0.179 0.203

Web - Proc. - all - Proc. Time power shopper 0.344 0.048 0.039 0.036 0.034

Table A.12: Load-dependent Behavior: Java Pet Store – Services

including multiple Client Requests

A.3. Experimental Results: Resource Profiles 207

A.3.4.4 Experiment PE04

Resource j i x=1 x=10 x=30 x=50 x=70

App - NW - all - Bytes Total cart.do 20,285 17,761 17,531 15,529 15,712

App - Proc. - all - Proc. Time cart.do 0.052 0.027 0.021 0.017 0.018

Client - NW - all - Bytes Total cart.do 18,983 22,552 19,276 17,915 22,316

DB - Disk - SAN - R/W blocks cart.do 0 0 0 0 0

DB - Proc. - all - Proc. Time cart.do 0.023 0.005 0.004 0.002 0.002

Web - Proc. - all - Proc. Time cart.do 0.014 0.002 0.001 0.001 0.001

Table A.13: Load-dependent Behavior: Java Pet Store – Services

including single Client Requests

A.3.5 Linear Regression

A.3.5.1 Experiment PA05

Resource Service tt=1s tt=2s tt=4s tt=8s tt=16s

App - NW - all - Bytes Total edit user 602,794 611,470 607,552 605,678 602,380

App - Proc. - all - Proc. Time edit user 1.651 1.652 1.505 1.594 1.831

Client - NW - all - Bytes Total edit user 376,897 399,086 392,452 378,885 388,361

DB - Disk - SAN - R/W blocks edit user 142.111 174.943 214.378 115.965 80.589

DB - Proc. - all - Proc. Time edit user 7.337 7.512 7.535 7.301 7.530

Web - Proc. - all - Proc. Time edit user 0.080 0.072 0.065 0.043 0.033

Table A.14: Linear Regression: PASTA – Services including multiple

Client Requests

A.3.5.2 Experiment PA05

Resource Service tt=2s tt=4s tt=8s tt=16s

App - NW - all - Bytes Total power shopper 594,695 595,566 595,787 593,441

App - Proc. - all - Proc. Time power shopper 0.524 0.510 0.544 0.583

Client - NW - all - Bytes Total power shopper 586,534 587,381 587,546 592,134

DB - Disk - SAN - R/W blocks power shopper 42.255 53.358 30.190 57.819

DB - Proc. - all - Proc. Time power shopper 0.283 0.296 0.308 0.308

Web - Proc. - all - Proc. Time power shopper 0.031 0.033 0.020 0.043

Table A.15: Linear Regression: Java Pet Store – Services including

multiple Client Requests

208 A. Appendix

A.3.6 Linear Regression (cross check)

A.3.6.1 Experiment PA06

Resource Service tt=1s tt=2s tt=4s tt=8s tt=16s

App - NW - all - Bytes Total edit user 614,192 613,690 618,423 631,138 662,395

App - Proc. - all - Proc. Time edit user 2.387 2.578 2.010 2.848 3.093

Client - NW - all - Bytes Total edit user 389,469 389,155 404,624 417,417 450,580

DB - Disk - SAN - R/W blocks edit user 162.165 156.745 160.680 160.190 125.759

DB - Proc. - all - Proc. Time edit user 7.429 7.570 7.575 7.608 7.706

Web - Proc. - all - Proc. Time edit user 0.081 0.087 0.086 0.138 0.241

Table A.16: Linear Regression (cross check): PASTA – Services including

multiple Client Requests

A.3.7 Database Size

A.3.7.1 Experiment PE07

Resource j i p r

Application server - Network - all - Bytes Total determined shopper 279,745 1.000

Application server - Network - all - Bytes Total first time shopper 463,072 1.000

Application server - Network - all - Bytes Total power shopper 593,579 1.000

Application server - Network - all - Bytes Total curious visitor 174,544 1.000

Application server - Processor - all - Processor Time curious visitor 0.182 0.842

Application server - Processor - all - Processor Time determined shopper 0.250 0.943

Application server - Processor - all - Processor Time first time shopper 0.487 0.976

Application server - Processor - all - Processor Time power shopper 0.470 0.895

Client computer - Network - all - Bytes Total power shopper 587,261 1.000

Client computer - Network - all - Bytes Total curious visitor 228,836 1.000

Client computer - Network - all - Bytes Total determined shopper 294,703 1.000

Client computer - Network - all - Bytes Total first time shopper 477,865 1.000

Database server - Disk - SAN - Read/Write blocks determined shopper 26.307 0.823

Database server - Disk - SAN - Read/Write blocks first time shopper 24.579 0.047

Database server - Disk - SAN - Read/Write blocks power shopper 39.870 0.790

Database server - Disk - SAN - Read/Write blocks curious visitor 0 n/a

Database server - Processor - all - Processor Time power shopper 0.412 0.992

Database server - Processor - all - Processor Time curious visitor 0.003 0.318

Database server - Processor - all - Processor Time determined shopper 0.343 0.986

Database server - Processor - all - Processor Time first time shopper 0.387 0.979

Web server - Processor - all - Processor Time curious visitor 0.013 0.963

Web server - Processor - all - Processor Time determined shopper 0.017 0.994

continued next page

A.4. Experimental Results: Analytical Models 209

continued

Resource Service p r

Web server - Processor - all - Processor Time first time shopper 0.024 0.995

Web server - Processor - all - Processor Time power shopper 0.030 0.994

Table A.17: Resource Profile: Java Pet Store – Services including multiple

Client Requests - 90% full Tablespace

A.4 Experimental Results: Analytical Models

A.4.1 Services including single Client Requests

Experiment PE08 1

Load test 1 2006-10-22 17:51:13.0 – 2006-10-22 19:21:33.0

Runtime (test 1) 1 h 30min 20 sec

Load test script see section A.5.1

Number of users 10 – 180 (18 intervals)

Think time outside classes: 1 sec (random range 50 %–150%)

Interval length 5min (first minute excluded from analysis)

QN Type closed QN

No. of classes 13 (see table A.18)

No. of queues 4 (see figure 5.10)

Solution algorithm Self Correcting Approximation Technique (ε = 0.001)

Mean absolute deviation of measured utilization and model

predictions (|u − uqn|):
Application Server 3.6%

Web Server 0.9%

Database Server 0.9% (see table A.19 for complete results)

Resource (queue) Service (class) p (sd)

Application server - Processor - all - Processor Time cart.do update 0.017

Application server - Processor - all - Processor Time signon welcome.screen 0.007

Application server - Processor - all - Processor Time search.screen 0.013

Application server - Processor - all - Processor Time product.screen 0.011

continued next page

210 A. Appendix

continued

Resource (queue) Service (class) p (sd)

Application server - Processor - all - Processor Time main.screen 0.017

Application server - Processor - all - Processor Time j signon check 0.027

Application server - Processor - all - Processor Time cart.do 0.017

Application server - Processor - all - Processor Time item.screen 0.013

Application server - Processor - all - Processor Time enter order information.screen 0.015

Application server - Processor - all - Processor Time customer.do updated 0.026

Application server - Processor - all - Processor Time customer.do 0.017

Application server - Processor - all - Processor Time update customer.screen 0.021

Application server - Processor - all - Processor Time category.screen 0.011

Database server - Processor - all - Processor Time cart.do update 0.003

Database server - Processor - all - Processor Time category.screen 0.002

Database server - Processor - all - Processor Time customer.do 0.002

Database server - Processor - all - Processor Time customer.do updated 0.005

Database server - Processor - all - Processor Time update customer.screen 0.003

Database server - Processor - all - Processor Time enter order information.screen 0.000

Database server - Processor - all - Processor Time item.screen 0.002

Database server - Processor - all - Processor Time j signon check 0.005

Database server - Processor - all - Processor Time main.screen 0.000

Database server - Processor - all - Processor Time product.screen 0.002

Database server - Processor - all - Processor Time search.screen 0.004

Database server - Processor - all - Processor Time signon welcome.screen 0

Database server - Processor - all - Processor Time cart.do 0.002

Web server - Processor - all - Processor Time j signon check 0.001

Web server - Processor - all - Processor Time cart.do 0.001

Web server - Processor - all - Processor Time cart.do update 0.001

Web server - Processor - all - Processor Time category.screen 0.001

Web server - Processor - all - Processor Time customer.do 0.001

Web server - Processor - all - Processor Time customer.do updated 0.001

Web server - Processor - all - Processor Time item.screen 0.001

Web server - Processor - all - Processor Time main.screen 0.004

Web server - Processor - all - Processor Time product.screen 0.001

Web server - Processor - all - Processor Time search.screen 0.001

Web server - Processor - all - Processor Time signon welcome.screen 0.001

Web server - Processor - all - Processor Time update customer.screen 0.001

Web server - Processor - all - Processor Time enter order information.screen 0.001

Table A.18: QN Model Input Parameter: Processors – Services including

single Client Requests. Service demands (sd) taken from Experiment

PE03 0

A.4. Experimental Results: Analytical Models 211

Column titles in tables A.19 and A.21:

u Mean processor utilization during interval with a constant number of users

uqn QN Model prediction for mean processor utilization during the interval

u − uqn absolute deviation

ε relative deviation |u−uqn

u |

Application Server Database Server Web Server

user u uqn u − uqn ε u uqn u − uqn ε u uqn u − uqn ε

10 0.067 0.079 -0.013 18.8% 0.023 0.011 0.011 50.3% 0.008 0.006 0.002 23.1%

20 0.152 0.159 -0.007 4.5% 0.037 0.022 0.015 40.1% 0.012 0.012 -0.000 1.9%

30 0.231 0.238 -0.007 3.1% 0.040 0.034 0.006 15.2% 0.017 0.018 -0.001 7.3%

40 0.254 0.317 -0.063 24.8% 0.050 0.045 0.005 9.7% 0.020 0.024 -0.003 17.1%

50 0.444 0.397 0.047 10.5% 0.062 0.056 0.005 8.9% 0.025 0.030 -0.005 20.9%

60 0.344 0.475 -0.131 38.2% 0.070 0.067 0.003 4.5% 0.029 0.036 -0.007 25.0%

70 0.550 0.552 -0.001 0.2% 0.082 0.078 0.004 4.8% 0.034 0.042 -0.008 23.2%

80 0.574 0.627 -0.053 9.1% 0.096 0.089 0.008 7.8% 0.038 0.047 -0.009 23.9%

90 0.661 0.700 -0.039 5.8% 0.100 0.099 0.001 1.3% 0.043 0.053 -0.010 23.1%

100 0.819 0.768 0.051 6.3% 0.117 0.109 0.008 6.7% 0.045 0.058 -0.013 27.7%

110 0.809 0.826 -0.017 2.1% 0.131 0.117 0.014 10.7% 0.049 0.062 -0.013 26.7%

120 0.929 0.877 0.052 5.6% 0.133 0.124 0.009 6.8% 0.053 0.066 -0.013 25.1%

130 0.958 0.908 0.050 5.2% 0.140 0.129 0.012 8.3% 0.056 0.069 -0.013 22.9%

140 0.974 0.934 0.040 4.1% 0.148 0.132 0.016 10.7% 0.056 0.071 -0.014 25.0%

150 0.980 0.948 0.032 3.3% 0.147 0.134 0.013 8.9% 0.057 0.072 -0.014 24.8%

160 0.981 0.961 0.020 2.1% 0.148 0.136 0.012 8.0% 0.057 0.073 -0.015 26.7%

170 0.978 0.966 0.013 1.3% 0.152 0.137 0.016 10.3% 0.057 0.073 -0.016 29.0%

180 0.981 0.973 0.008 0.8% 0.143 0.138 0.005 3.6% 0.058 0.073 -0.015 26.6%

Table A.19: QN Model Validation: Processor Utilization – Services

including single Client Requests

A.4.2 Services including multiple Client Requests

Experiment PE09 1

Load test 1 2006-10-25 10:24:59.0 – 2006-10-25 12:05:46.0

Runtime (test 1) 1 h 40min 47 sec

Load test script see section A.5.2

Number of users 10 - 200 (20 intervals)

Think time inside class: 40 x 1 sec (random range 50%–150 %)

Interval length 5min (first minute excluded from analysis)

212 A. Appendix

QN Type closed QN

No. of classes 1 (see table A.20)

No. of queues 4 (see figure 5.10)

Solution algorithm Exact Mean Value Analysis

Mean absolute deviation of measured utilization and model

predictions (|u − uqn|):
Application Server 5.7%

Web Server 0.3%

Database Server 0.3% (see table A.21 for complete results)

Resource (queue) Service (class) p (service demand)

Application server - Processor - all - Processor Time power shopper 0.436

Database server - Processor - all - Processor Time power shopper 0.042

Web server - Processor - all - Processor Time power shopper 0.031

Table A.20: QN Model Input Parameter: Processors - Services including

multiple Client Requests (values extracted from the resource profile of the

adapted power shopper user profile, see section A.5.)

Application Server Database Server Web Server

user u uqn u − uqn ε u uqn u − uqn ε u uqn u − uqn ε

10 0.052 0.054 -0.002 2.9% 0.008 0.005 0.003 35.2% 0.007 0.004 0.003 43.2%

20 0.109 0.108 0.001 1.3% 0.015 0.010 0.005 31.7% 0.010 0.008 0.002 24.1%

30 0.203 0.161 0.042 20.5% 0.018 0.016 0.002 12.7% 0.013 0.011 0.002 12.2%

40 0.155 0.215 -0.060 38.9% 0.023 0.021 0.003 11.2% 0.017 0.015 0.002 10.4%

50 0.377 0.269 0.108 28.7% 0.029 0.026 0.004 12.0% 0.021 0.019 0.001 7.1%

60 0.214 0.323 -0.108 50.6% 0.033 0.031 0.002 5.2% 0.025 0.023 0.002 8.3%

70 0.428 0.376 0.052 12.2% 0.038 0.036 0.002 4.6% 0.027 0.027 0.000 1.6%

80 0.436 0.430 0.007 1.5% 0.047 0.041 0.006 12.8% 0.031 0.031 0.001 2.5%

90 0.463 0.483 -0.020 4.4% 0.049 0.047 0.003 5.2% 0.034 0.034 -0.001 2.2%

100 0.701 0.536 0.165 23.5% 0.054 0.052 0.002 4.3% 0.037 0.038 -0.001 3.2%

110 0.532 0.589 -0.057 10.8% 0.061 0.057 0.005 7.7% 0.040 0.042 -0.002 3.9%

120 0.770 0.641 0.129 16.7% 0.058 0.062 -0.004 6.1% 0.044 0.046 -0.002 4.4%

130 0.694 0.693 0.000 0.1% 0.066 0.067 -0.001 1.4% 0.047 0.049 -0.002 4.0%

140 0.828 0.744 0.083 10.0% 0.080 0.072 0.009 10.8% 0.051 0.053 -0.002 4.4%

150 0.907 0.794 0.113 12.4% 0.076 0.077 -0.000 0.3% 0.055 0.056 -0.002 3.6%

160 0.910 0.843 0.068 7.4% 0.079 0.081 -0.002 2.2% 0.056 0.060 -0.004 7.9%

continued next page

A.5. Example LoadRunner Scripts 213

continued

user u uqn u − uqn ε u uqn u − uqn ε u uqn u − uqn ε

170 0.963 0.888 0.075 7.8% 0.092 0.086 0.006 6.7% 0.057 0.063 -0.006 9.9%

180 0.965 0.928 0.037 3.8% 0.090 0.089 0.000 0.2% 0.059 0.066 -0.007 12.3%

190 0.946 0.961 -0.015 1.6% 0.084 0.093 -0.009 10.2% 0.055 0.068 -0.013 24.0%

200 0.976 0.983 -0.007 0.7% 0.092 0.095 -0.003 3.0% 0.059 0.070 -0.011 18.2%

Table A.21: QN Model Validation: Processor Utilization – Services

including multiple Client Requests

A.5 Example LoadRunner Scripts

The following LoadRunner scripts (Mercury LoadRunner 8.0) were used during the ex-

periments with Java PetStore. To facilitate reading, we omitted code that solely triggers

the transfer of static pictures (e.g., the Java PetStore logo).

Modifications of the scripts for experiments PE08 and PE09: Services including

single client requests require a synchronous fulfillment of the requests. Those kinds of ser-

vices are not applicable to asynchronous backend applications such as the order processing

center in the Java Pet Store example (see section 4.1.2.2). Thus, the asynchronous “or-

der.do” request could not be analyzed during experiment PE08 (script in section A.5.1).

Hence, we removed in experiment PE09 this request from the power shopper script (see

section A.5.2). The intention was to use the same applications in both experiments and

thus enable a mutual comparison of results. Furthermore, as we wanted to emulate un-

synchronized service invocations, we omitted the rendezvous points in both scripts.

A.5.1 Services including single Client Requests
1

2 #include "web_api.h"
3 #include "lrw_custom_body.h"
4

5 vuser_init()
6 {
7 return 0;
8 }
9

10 #include "web_api.h"
11

12 Action()
13 {
14 web_reg_find("Text=petstore", LAST);
15 lr_rendezvous("main.screen");
16 lr_start_transaction("main.screen");
17

18 web_url("main.screen",
19 "URL={url}/main.screen",
20 "Resource=0",

214 A. Appendix

21 "RecContentType=text/html",
22 "Referer=",
23 "Snapshot=t1.inf",
24 "Mode=HTTP",
25 LAST);
26

27 (... pictures ...)
28

29 lr_end_transaction("main.screen", LR_AUTO);
30

31 lr_think_time(7);
32

33 web_reg_find("Text=petstore", LAST);
34 lr_rendezvous("signon_welcome.screen");
35 lr_start_transaction("signon_welcome.screen");
36

37 web_url("Sign in",
38 "URL={url}/signon_welcome.screen",
39 "Resource=0",
40 "RecContentType=text/html",
41 "Referer={url}/main.screen",
42 "Snapshot=t2.inf",
43 "Mode=HTTP",
44 LAST);
45

46 (... pictures ...)
47

48 lr_end_transaction("signon_welcome.screen", LR_AUTO);
49

50 lr_think_time(7);
51

52 web_reg_find("Text=petstore", LAST);
53 lr_rendezvous("j_signon_check");
54 lr_start_transaction("j_signon_check");
55

56 web_submit_data("j_signon_check",
57 "Action={url}/j_signon_check",
58 "Method=POST",
59 "RecContentType=text/html",
60 "Referer={url}/signon_welcome.screen",
61 "Snapshot=t3.inf",
62 "Mode=HTTP",
63 ITEMDATA,
64 "Name=j_username", "Value={user}", ENDITEM,
65 "Name=j_password", "Value={password}", ENDITEM,
66 "Name=submit", "Value=Sign In", ENDITEM,
67 LAST);
68

69 (... pictures ...)
70

71 lr_end_transaction("j_signon_check", LR_AUTO);
72

73 lr_think_time(7);
74

75 web_reg_find("Text=petstore", LAST);
76 lr_rendezvous("customer.do");
77 lr_start_transaction("customer.do");
78

79 web_url("Account",
80 "URL={url}/customer.do",
81 "Resource=0",
82 "RecContentType=text/html",
83 "Referer={url}/signon_welcome.screen",
84 "Snapshot=t4.inf",
85 "Mode=HTTP",
86 LAST);
87

88 (... pictures ...)
89

90 lr_end_transaction("customer.do", LR_AUTO);
91

92 lr_think_time(7);
93

94 web_reg_find("Text=petstore", LAST);
95 lr_rendezvous("update_customer.screen");
96 lr_start_transaction("update_customer.screen");
97

98 web_url("Edit Your Account Information",
99 "URL={url}/update_customer.screen",

100 "Resource=0",
101 "RecContentType=text/html",
102 "Referer={url}/customer.do",
103 "Snapshot=t5.inf",

A.5. Example LoadRunner Scripts 215

104 "Mode=HTTP",
105 LAST);
106

107 (... pictures ...)
108

109 lr_end_transaction("update_customer.screen", LR_AUTO);
110

111 lr_think_time(7);
112

113 web_reg_find("Text=petstore", LAST);
114 lr_rendezvous("customer.do_updated");
115 lr_start_transaction("customer.do_updated");
116

117 web_submit_data("customer.do",
118 "Action={url}/customer.do",
119 "Method=POST",
120 "RecContentType=text/html",
121 "Referer={url}/update_customer.screen",
122 "Snapshot=t6.inf",
123 "Mode=HTTP",
124 ITEMDATA,
125 "Name=action", "Value=update", ENDITEM,
126 "Name=given_name_a", "Value=XYZ", ENDITEM,
127 "Name=family_name_a", "Value=ABC", ENDITEM,
128 "Name=address_1_a", "Value=1234 Anywhere Street", ENDITEM,
129 "Name=address_2_a", "Value=Unit 555", ENDITEM,
130 "Name=city_a", "Value=Palo Alto", ENDITEM,
131 "Name=state_or_province_a", "Value=California", ENDITEM,
132 "Name=postal_code_a", "Value=94303", ENDITEM,
133 "Name=country_a", "Value=USA", ENDITEM,
134 "Name=telephone_number_a", "Value=555-16-48", ENDITEM,
135 "Name=email_a", "Value=reinhard.ba.brandl@bmw.de", ENDITEM,
136 "Name=credit_card_number", "Value=123456789", ENDITEM,
137 "Name=credit_card_type", "Value=California", ENDITEM,
138 "Name=credit_card_expiry_month", "Value=01", ENDITEM,
139 "Name=credit_card_expiry_year", "Value=01", ENDITEM,
140 "Name=language", "Value=en_US", ENDITEM,
141 "Name=favorite_category", "Value=REPTILES", ENDITEM,
142 "Name=mylist_on", "Value=on", ENDITEM,
143 "Name=banners_on", "Value=on", ENDITEM,
144 LAST);
145

146 (... pictures ...)
147

148 lr_end_transaction("customer.do_updated", LR_AUTO);
149

150 lr_think_time(7);
151

152 web_reg_find("Text=petstore", LAST);
153 lr_rendezvous("search.screen");
154 lr_start_transaction("search.screen");
155

156 web_submit_data("search.screen",
157 "Action={url}/search.screen",
158 "Method=GET",
159 "EncType=",
160 "RecContentType=text/html",
161 "Referer={url}/customer.do",
162 "Snapshot=t16.inf",
163 "Mode=HTTP",
164 ITEMDATA,
165 "Name=keywords", "Value=Test{zufall}", ENDITEM,
166 LAST);
167

168 (... pictures ...)
169

170 lr_end_transaction("search.screen", LR_AUTO);
171

172 lr_think_time(7);
173

174 web_reg_find("Text=petstore", LAST);
175 lr_rendezvous("category.screen");
176 lr_start_transaction("category.screen");
177

178 web_url("Birds",
179 "URL={url}/category.screen?category_id=BIRDS",
180 "Resource=0",
181 "RecContentType=text/html",
182 "Referer={url}/search.screen",
183 "Snapshot=t7.inf",
184 "Mode=HTTP",
185 LAST);
186

216 A. Appendix

187 (... pictures ...)
188

189 lr_end_transaction("category.screen", LR_AUTO);
190

191 lr_think_time(7);
192

193 web_reg_find("Text=petstore", LAST);
194 lr_rendezvous("product.screen");
195 lr_start_transaction("product.screen");
196

197 web_url("Amazon Parrot",
198 "URL={url}/product.screen?product_id=AV-CB-01",
199 "Resource=0",
200 "RecContentType=text/html",
201 "Referer={url}/category.screen?category_id=BIRDS",
202 "Snapshot=t8.inf",
203 "Mode=HTTP",
204 LAST);
205

206 (... pictures ...)
207

208 lr_end_transaction("product.screen", LR_AUTO);
209

210 lr_think_time(7);
211

212 web_reg_find("Text=petstore", LAST);
213 lr_rendezvous("item.screen");
214 lr_start_transaction("item.screen");
215

216 web_url("Adult Male Amazon Parrot",
217 "URL={url}/item.screen?item_id=EST-18",
218 "Resource=0",
219 "RecContentType=text/html",
220 "Referer={url}/product.screen?product_id=AV-CB-01",
221 "Snapshot=t9.inf",
222 "Mode=HTTP",
223 LAST);
224

225 (... pictures ...)
226

227 lr_end_transaction("item.screen", LR_AUTO);
228

229 lr_think_time(7);
230

231 web_reg_find("Text=petstore", LAST);
232 lr_rendezvous("cart.do");
233 lr_start_transaction("cart.do");
234

235 web_url("Add to Cart",
236 "URL={url}/cart.do?action=purchase&itemId=EST-18",
237 "Resource=0",
238 "RecContentType=text/html",
239 "Referer={url}/item.screen?item_id=EST-18",
240 "Snapshot=t10.inf",
241 "Mode=HTTP",
242 LAST);
243

244 (... pictures ...)
245

246 lr_end_transaction("cart.do", LR_AUTO);
247

248 lr_think_time(7);
249

250 web_reg_find("Text=petstore", LAST);
251 lr_rendezvous("cart.do_update");
252 lr_start_transaction("cart.do_update");
253

254 web_submit_data("cart.do",
255 "Action={url}/cart.do",
256 "Method=GET",
257 "EncType=",
258 "RecContentType=text/html",
259 "Referer={url}/cart.do?action=purchase&itemId=EST-18",
260 "Snapshot=t11.inf",
261 "Mode=HTTP",
262 ITEMDATA,
263 "Name=action", "Value=update", ENDITEM,
264 "Name=itemQuantity_EST-18", "Value=2", ENDITEM,
265 LAST);
266

267 (... pictures ...)
268

269 lr_end_transaction("cart.do_update", LR_AUTO);

A.5. Example LoadRunner Scripts 217

270

271 lr_think_time(7);
272

273 web_reg_find("Text=petstore", LAST);
274 lr_rendezvous("enter_order_information.screen");
275 lr_start_transaction("enter_order_information.screen");
276

277 web_url("Check Out",
278 "URL={url}/enter_order_information.screen",
279 "Resource=0",
280 "RecContentType=text/html",
281 "Referer={url}/cart.do?action=update&itemQuantity_EST-18=2",
282 "Snapshot=t12.inf",
283 "Mode=HTTP",
284 LAST);
285

286 (... pictures ...)
287

288 lr_end_transaction("enter_order_information.screen", LR_AUTO);
289

290 web_cache_cleanup();
291 web_cleanup_cookies();
292

293 lr_think_time(7);
294

295 return 0;
296 }
297

298 #include "web_api.h"
299

300 vuser_end()
301 {
302 return 0;
303 }
304

A.5.2 Services including multiple Client Requests
1

2 #include "web_api.h"
3 #include "lrw_custom_body.h"
4

5 vuser_init()
6 {
7 return 0;
8 }
9

10 #include "web_api.h"
11

12 Action()
13 {
14 lr_rendezvous("power_shopper");
15 lr_start_transaction("power_shopper");
16

17 web_url("main.screen",
18 "URL={url}/petstore/main.screen",
19 "Resource=0",
20 "RecContentType=text/html",
21 "Referer=",
22 "Snapshot=t59.inf",
23 "Mode=HTTP",
24 LAST);
25

26 (... pictures ...)
27

28 lr_think_time(1);
29

30 web_submit_data("search.screen",
31 "Action={url}/petstore/search.screen",
32 "Method=GET",
33 "EncType=",
34 "RecContentType=text/html",
35 "Referer={url}/petstore/main.screen",
36 "Snapshot=t60.inf",
37 "Mode=HTTP",
38 ITEMDATA,
39 "Name=keywords", "Value=iguna", ENDITEM,
40 LAST);
41

42 (... pictures ...)

218 A. Appendix

43

44 lr_think_time(1);
45

46 web_submit_data("search.screen_2",
47 "Action={url}/petstore/search.screen",
48 "Method=GET",
49 "EncType=",
50 "RecContentType=text/html",
51 "Referer={url}/petstore/search.screen?keywords=iguna",
52 "Snapshot=t61.inf",
53 "Mode=HTTP",
54 ITEMDATA,
55 "Name=keywords", "Value=reptile", ENDITEM,
56 LAST);
57

58 (... pictures ...)
59

60 lr_think_time(1);
61

62 web_url("Venomless Rattlesnake",
63 "URL={url}/petstore/item.screen?item_id=EST-11",
64 "Resource=0",
65 "RecContentType=text/html",
66 "Referer={url}/petstore/search.screen?keywords=reptile",
67 "Snapshot=t62.inf",
68 "Mode=HTTP",
69 LAST);
70

71 (... pictures ...)
72

73 lr_think_time(1);
74

75 web_url("Add to Cart",
76 "URL={url}/petstore/cart.do?action=purchase&itemId=EST-11",
77 "Resource=0",
78 "RecContentType=text/html",
79 "Referer={url}/petstore/item.screen?item_id=EST-11",
80 "Snapshot=t63.inf",
81 "Mode=HTTP",
82 LAST);
83

84 (... pictures ...)
85

86 lr_think_time(1);
87

88 web_submit_data("cart.do",
89 "Action={url}/petstore/cart.do",
90 "Method=GET",
91 "EncType=",
92 "RecContentType=text/html",
93 "Referer={url}/petstore/cart.do?action=purchase&itemId=EST-11",
94 "Snapshot=t64.inf",
95 "Mode=HTTP",
96 ITEMDATA,
97 "Name=action", "Value=update", ENDITEM,
98 "Name=itemQuantity_EST-11", "Value={Zufallszahl}", ENDITEM,
99 LAST);

100

101 (... pictures ...)
102

103 lr_think_time(1);
104

105 web_url("Birds",
106 "URL={url}/petstore/category.screen?category_id=BIRDS",
107 "Resource=0",
108 "RecContentType=text/html",
109 "Referer={url}/petstore/cart.do?action=update&itemQuantity_EST-11=1",
110 "Snapshot=t65.inf",
111 "Mode=HTTP",
112 LAST);
113

114 (... pictures ...)
115

116 lr_think_time(1);
117

118 web_url("Finch",
119 "URL={url}/petstore/product.screen?product_id=AV-SB-02",
120 "Resource=0",
121 "RecContentType=text/html",
122 "Referer={url}/petstore/category.screen?category_id=BIRDS",
123 "Snapshot=t66.inf",
124 "Mode=HTTP",
125 LAST);

A.5. Example LoadRunner Scripts 219

126

127 (... pictures ...)
128

129 lr_think_time(1);
130

131 web_url("Adult Male Finch",
132 "URL={url}/petstore/item.screen?item_id=EST-19",
133 "Resource=0",
134 "RecContentType=text/html",
135 "Referer={url}/petstore/product.screen?product_id=AV-SB-02",
136 "Snapshot=t67.inf",
137 "Mode=HTTP",
138 LAST);
139

140 (... pictures ...)
141

142 lr_think_time(1);
143

144 web_url("Add to Cart_2",
145 "URL={url}/petstore/cart.do?action=purchase&itemId=EST-19",
146 "Resource=0",
147 "RecContentType=text/html",
148 "Referer={url}/petstore/item.screen?item_id=EST-19",
149 "Snapshot=t68.inf",
150 "Mode=HTTP",
151 LAST);
152

153 (... pictures ...)
154

155 lr_think_time(1);
156

157 web_submit_data("cart.do_2",
158 "Action={url}/petstore/cart.do",
159 "Method=GET",
160 "EncType=",
161 "RecContentType=text/html",
162 "Referer={url}/petstore/cart.do?action=purchase&itemId=EST-19",
163 "Snapshot=t69.inf",
164 "Mode=HTTP",
165 ITEMDATA,
166 "Name=action", "Value=update", ENDITEM,
167 "Name=itemQuantity_EST-11", "Value={Zufallszahl}", ENDITEM,
168 "Name=itemQuantity_EST-19", "Value={Zufallszahl}", ENDITEM,
169 LAST);
170

171 (... pictures ...)
172

173 lr_think_time(1);
174

175 web_url("Fish",
176 "URL={url}/petstore/category.screen?category_id=FISH",
177 "Resource=0",
178 "RecContentType=text/html",
179 "Referer={url}/petstore/cart.do?action=update&itemQuantity_EST-11
180 =1&itemQuantity_EST-19=1",
181 "Snapshot=t70.inf",
182 "Mode=HTTP",
183 LAST);
184

185 (... pictures ...)
186

187 lr_think_time(1);
188

189 web_url("Goldfish",
190 "URL={url}/petstore/product.screen?product_id=FI-FW-02",
191 "Resource=0",
192 "RecContentType=text/html",
193 "Referer={url}/petstore/category.screen?category_id=FISH",
194 "Snapshot=t71.inf",
195 "Mode=HTTP",
196 LAST);
197

198 (... pictures ...)
199

200 lr_think_time(1);
201

202 web_url("Adult Male Goldfish",
203 "URL={url}/petstore/item.screen?item_id=EST-20",
204 "Resource=0",
205 "RecContentType=text/html",
206 "Referer={url}/petstore/product.screen?product_id=FI-FW-02",
207 "Snapshot=t72.inf",
208 "Mode=HTTP",

220 A. Appendix

209 LAST);
210

211 (... pictures ...)
212

213 lr_think_time(1);
214

215 web_url("Fish_2",
216 "URL={url}/petstore/category.screen?category_id=FISH",
217 "Resource=0",
218 "RecContentType=text/html",
219 "Referer={url}/petstore/item.screen?item_id=EST-20",
220 "Snapshot=t73.inf",
221 "Mode=HTTP",
222 LAST);
223

224 (... pictures ...)
225

226 lr_think_time(1);
227

228 web_url("Goldfish_2",
229 "URL={url}/petstore/product.screen?product_id=FI-FW-02",
230 "Resource=0",
231 "RecContentType=text/html",
232 "Referer={url}/petstore/category.screen?category_id=FISH",
233 "Snapshot=t74.inf",
234 "Mode=HTTP",
235 LAST);
236

237 (... pictures ...)
238

239 lr_think_time(1);
240

241 web_url("Adult Female Goldfish",
242 "URL={url}/petstore/item.screen?item_id=EST-21",
243 "Resource=0",
244 "RecContentType=text/html",
245 "Referer={url}/petstore/product.screen?product_id=FI-FW-02",
246 "Snapshot=t75.inf",
247 "Mode=HTTP",
248 LAST);
249

250 (... pictures ...)
251

252 lr_think_time(1);
253

254 web_url("Add to Cart_3",
255 "URL={url}/petstore/cart.do?action=purchase&itemId=EST-21",
256 "Resource=0",
257 "RecContentType=text/html",
258 "Referer={url}/petstore/item.screen?item_id=EST-21",
259 "Snapshot=t76.inf",
260 "Mode=HTTP",
261 LAST);
262

263 (... pictures ...)
264

265 lr_think_time(1);
266

267 web_submit_data("cart.do_3",
268 "Action={url}/petstore/cart.do",
269 "Method=GET",
270 "EncType=",
271 "RecContentType=text/html",
272 "Referer={url}/petstore/cart.do?action=purchase&itemId=EST-21",
273 "Snapshot=t77.inf",
274 "Mode=HTTP",
275 ITEMDATA,
276 "Name=action", "Value=update", ENDITEM,
277 "Name=itemQuantity_EST-11", "Value={Zufallszahl}", ENDITEM,
278 "Name=itemQuantity_EST-21", "Value={Zufallszahl}", ENDITEM,
279 "Name=itemQuantity_EST-19", "Value={Zufallszahl}", ENDITEM,
280 LAST);
281

282

283 (... pictures ...)
284

285 lr_think_time(1);
286

287 web_url("Bulldog",
288 "URL={url}/petstore/product.screen?product_id=K9-BD-01",
289 "Resource=0",
290 "RecContentType=text/html",
291 "Referer={url}/petstore/category.screen?category_id=DOGS",

A.5. Example LoadRunner Scripts 221

292 "Snapshot=t79.inf",
293 "Mode=HTTP",
294 LAST);
295

296 (... pictures ...)
297

298 lr_think_time(1);
299

300 web_url("Male Adult Bulldog",
301 "URL={url}/petstore/item.screen?item_id=EST-6",
302 "Resource=0",
303 "RecContentType=text/html",
304 "Referer={url}/petstore/product.screen?product_id=K9-BD-01",
305 "Snapshot=t80.inf",
306 "Mode=HTTP",
307 LAST);
308

309 (... pictures ...)
310

311 lr_think_time(1);
312

313 web_url("Add to Cart_4",
314 "URL={url}/petstore/cart.do?action=purchase&itemId=EST-6",
315 "Resource=0",
316 "RecContentType=text/html",
317 "Referer={url}/petstore/item.screen?item_id=EST-6",
318 "Snapshot=t81.inf",
319 "Mode=HTTP",
320 LAST);
321

322 (... pictures ...)
323

324 lr_think_time(1);
325

326 web_submit_data("cart.do_4",
327 "Action={url}/petstore/cart.do",
328 "Method=GET",
329 "EncType=",
330 "RecContentType=text/html",
331 "Referer={url}/petstore/cart.do?action=purchase&itemId=EST-6",
332 "Snapshot=t82.inf",
333 "Mode=HTTP",
334 ITEMDATA,
335 "Name=action", "Value=update", ENDITEM,
336 "Name=itemQuantity_EST-11", "Value={Zufallszahl}", ENDITEM,
337 "Name=itemQuantity_EST-21", "Value={Zufallszahl}", ENDITEM,
338 "Name=itemQuantity_EST-19", "Value={Zufallszahl}", ENDITEM,
339 "Name=itemQuantity_EST-6", "Value={Zufallszahl}", ENDITEM,
340 LAST);
341

342 (... pictures ...)
343

344 lr_think_time(1);
345

346 web_url("Reptiles",
347 "URL={url}/petstore/category.screen?category_id=REPTILES",
348 "Resource=0",
349 "RecContentType=text/html",
350 "Referer={url}/petstore/cart.do?action=update&itemQuantity_EST-11
351 =1&itemQuantity_EST-21=1&itemQuantity_EST-19=1&
352 itemQuantity_EST-6=1",
353 "Snapshot=t83.inf",
354 "Mode=HTTP",
355 LAST);
356

357 (... pictures ...)
358

359 lr_think_time(1);
360

361 web_url("Iguana",
362 "URL={url}/petstore/product.screen?product_id=RP-LI-02",
363 "Resource=0",
364 "RecContentType=text/html",
365 "Referer={url}/petstore/category.screen?category_id=REPTILES",
366 "Snapshot=t84.inf",
367 "Mode=HTTP",
368 LAST);
369

370 (... pictures ...)
371

372 lr_think_time(1);
373

374 web_url("Green Adult Iguana",

222 A. Appendix

375 "URL={url}/petstore/item.screen?item_id=EST-13",
376 "Resource=0",
377 "RecContentType=text/html",
378 "Referer={url}/petstore/product.screen?product_id=RP-LI-02",
379 "Snapshot=t85.inf",
380 "Mode=HTTP",
381 LAST);
382

383 (... pictures ...)
384

385 lr_think_time(1);
386

387 web_url("Add to Cart_5",
388 "URL={url}/petstore/cart.do?action=purchase&itemId=EST-13",
389 "Resource=0",
390 "RecContentType=text/html",
391 "Referer={url}/petstore/item.screen?item_id=EST-13",
392 "Snapshot=t86.inf",
393 "Mode=HTTP",
394 LAST);
395

396 (... pictures ...)
397

398 lr_think_time(1);
399

400 web_url("Cats",
401 "URL={url}/petstore/category.screen?category_id=CATS",
402 "Resource=0",
403 "RecContentType=text/html",
404 "Referer={url}/petstore/cart.do?action=purchase&itemId=EST-13",
405 "Snapshot=t87.inf",
406 "Mode=HTTP",
407 LAST);
408

409 (... pictures ...)
410

411 lr_think_time(1);
412

413 web_url("Persian",
414 "URL={url}/petstore/product.screen?product_id=FL-DLH-02",
415 "Resource=0",
416 "RecContentType=text/html",
417 "Referer={url}/petstore/category.screen?category_id=CATS",
418 "Snapshot=t88.inf",
419 "Mode=HTTP",
420 LAST);
421

422 (... pictures ...)
423

424 lr_think_time(1);
425

426 web_url("Adult Male Persian",
427 "URL={url}/petstore/item.screen?item_id=EST-17",
428 "Resource=0",
429 "RecContentType=text/html",
430 "Referer={url}/petstore/product.screen?product_id=FL-DLH-02",
431 "Snapshot=t89.inf",
432 "Mode=HTTP",
433 LAST);
434

435 (... pictures ...)
436

437 lr_think_time(1);
438

439 web_url("Cats_2",
440 "URL={url}/petstore/category.screen?category_id=CATS",
441 "Resource=0",
442 "RecContentType=text/html",
443 "Referer={url}/petstore/item.screen?item_id=EST-17",
444 "Snapshot=t90.inf",
445 "Mode=HTTP",
446 LAST);
447

448 (... pictures ...)
449

450 lr_think_time(1);
451

452 web_url("Manx",
453 "URL={url}/petstore/product.screen?product_id=FL-DSH-01",
454 "Resource=0",
455 "RecContentType=text/html",
456 "Referer={url}/petstore/category.screen?category_id=CATS",
457 "Snapshot=t91.inf",

A.5. Example LoadRunner Scripts 223

458 "Mode=HTTP",
459 LAST);
460

461 (... pictures ...)
462

463 lr_think_time(1);
464

465 web_url("Tailless Manx",
466 "URL={url}/petstore/item.screen?item_id=EST-14",
467 "Resource=0",
468 "RecContentType=text/html",
469 "Referer={url}/petstore/product.screen?product_id=FL-DSH-01",
470 "Snapshot=t92.inf",
471 "Mode=HTTP",
472 LAST);
473

474 (... pictures ...)
475

476 lr_think_time(1);
477

478 web_url("Cats_3",
479 "URL={url}/petstore/category.screen?category_id=CATS",
480 "Resource=0",
481 "RecContentType=text/html",
482 "Referer={url}/petstore/item.screen?item_id=EST-14",
483 "Snapshot=t93.inf",
484 "Mode=HTTP",
485 LAST);
486

487 (... pictures ...)
488

489 lr_think_time(1);
490

491 web_url("Persian_2",
492 "URL={url}/petstore/product.screen?product_id=FL-DLH-02",
493 "Resource=0",
494 "RecContentType=text/html",
495 "Referer={url}/petstore/category.screen?category_id=CATS",
496 "Snapshot=t94.inf",
497 "Mode=HTTP",
498 LAST);
499

500

501 (... pictures ...)
502

503 lr_think_time(1);
504

505 web_url("Add to Cart_6",
506 "URL={url}/petstore/cart.do?action=purchase&itemId=EST-17",
507 "Resource=0",
508 "RecContentType=text/html",
509 "Referer={url}/petstore/item.screen?item_id=EST-17",
510 "Snapshot=t96.inf",
511 "Mode=HTTP",
512 LAST);
513

514 (... pictures ...)
515

516 lr_think_time(1);
517

518 web_submit_data("cart.do_5",
519 "Action={url}/petstore/cart.do",
520 "Method=GET",
521 "EncType=",
522 "RecContentType=text/html",
523 "Referer={url}/petstore/cart.do?action=purchase&itemId=EST-17",
524 "Snapshot=t97.inf",
525 "Mode=HTTP",
526 ITEMDATA,
527 "Name=action", "Value=update", ENDITEM,
528 "Name=itemQuantity_EST-11", "Value={Zufallszahl}", ENDITEM,
529 "Name=itemQuantity_EST-21", "Value={Zufallszahl}", ENDITEM,
530 "Name=itemQuantity_EST-19", "Value={Zufallszahl}", ENDITEM,
531 "Name=itemQuantity_EST-17", "Value={Zufallszahl}", ENDITEM,
532 "Name=itemQuantity_EST-13", "Value={Zufallszahl}", ENDITEM,
533 "Name=itemQuantity_EST-6", "Value={Zufallszahl}", ENDITEM,
534 LAST);
535

536 (... pictures ...)
537

538 lr_think_time(1);
539

540 web_url("Check Out",

224 A. Appendix

541 "URL={url}/petstore/enter_order_information.screen",
542 "Resource=0",
543 "RecContentType=text/html",
544 "Referer={url}/petstore/cart.do?action=update&itemQuantity_EST-11
545 =1&itemQuantity_EST-21=1&itemQuantity_EST-19
546 =1&itemQuantity_EST-17=1&itemQuantity_EST-13
547 =1&itemQuantity_EST-6=1",
548 "Snapshot=t98.inf",
549 "Mode=HTTP",
550 LAST);
551

552 (... pictures ...)
553

554 lr_think_time(1);
555

556 web_submit_data("j_signon_check",
557 "Action={url}/petstore/j_signon_check",
558 "Method=POST",
559 "RecContentType=text/html",
560 "Referer={url}/petstore/enter_order_information.screen",
561 "Snapshot=t99.inf",
562 "Mode=HTTP",
563 ITEMDATA,
564 "Name=j_username", "Value={user}", ENDITEM,
565 "Name=j_password", "Value={password}", ENDITEM,
566 "Name=submit", "Value=Sign In", ENDITEM,
567 LAST);
568

569 (... pictures ...)
570

571 lr_think_time(1);
572

573 web_submit_data("order.do",
574 "Action={url}/petstore/order.do",
575 "Method=POST",
576 "RecContentType=text/html",
577 "Referer={url}/petstore/enter_order_information.screen",
578 "Snapshot=t100.inf",
579 "Mode=HTTP",
580 ITEMDATA,
581 "Name=given_name_a", "Value=XYZ", ENDITEM,
582 "Name=family_name_a", "Value=ABC", ENDITEM,
583 "Name=address_1_a", "Value=1234 Anywhere Street", ENDITEM,
584 "Name=address_2_a", "Value=Unit 555", ENDITEM,
585 "Name=city_a", "Value=Palo Alto", ENDITEM,
586 "Name=state_or_province_a", "Value=California", ENDITEM,
587 "Name=postal_code_a", "Value=94303", ENDITEM,
588 "Name=country_a", "Value=California", ENDITEM,
589 "Name=telephone_number_a", "Value=555-{Zufallszahl}-48", ENDITEM,
590 "Name=email_a", "Value=reinhard.ba.brandl@bmw.de", ENDITEM,
591 "Name=given_name_b", "Value=XYZ", ENDITEM,
592 "Name=family_name_b", "Value=ABC", ENDITEM,
593 "Name=address_1_b", "Value=1234 Anywhere Street", ENDITEM,
594 "Name=address_2_b", "Value=Unit 555", ENDITEM,
595 "Name=city_b", "Value=Palo Alto", ENDITEM,
596 "Name=state_or_province_b", "Value=California", ENDITEM,
597 "Name=postal_code_b", "Value=94303", ENDITEM,
598 "Name=country_b", "Value=California", ENDITEM,
599 "Name=telephone_number_b", "Value=555-{Zufallszahl}-48", ENDITEM,
600 "Name=email_b", "Value=reinhard.ba.brandl@bmw.de", ENDITEM,
601 LAST);
602

603 (... pictures ...)
604

605 lr_think_time(1);
606

607 web_url("Sign out",
608 "URL={url}/petstore/signoff.do",
609 "Resource=0",
610 "RecContentType=text/html",
611 "Referer={url}/petstore/order.do",
612 "Snapshot=t101.inf",
613 "Mode=HTTP",
614 LAST);
615

616 (... pictures ...)
617

618 lr_think_time(1);
619

620 web_url("Java Pet Store Demo logo",
621 "URL={url}/petstore/main.screen",
622 "Resource=0",
623 "RecContentType=text/html",

A.5. Example LoadRunner Scripts 225

624 "Referer={url}/petstore/signoff.do",
625 "Snapshot=t102.inf",
626 "Mode=HTTP",
627 LAST);
628

629 (... pictures ...)
630

631 lr_end_transaction("power_shopper", LR_AUTO);
632

633 web_cleanup_cookies();
634 web_cache_cleanup();
635

636 lr_think_time(15);
637

638 return 0;
639 }
640

641 #include "web_api.h"
642

643 vuser_end()
644 {
645 return 0;
646 }
647

