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Abstract

Electrical power system stabilization continues to be a challenging problem in the
area of power system networks. Power electronic devices that are being increas-
ingly used in the community to achieve better and faster responses offer an
opportunity to relook at control algorithms. Much of the prevailing theory and
control design however, relies on simplified models. In this monograph, we tackle
the stabilization problem using more realistic models as well as actuator dynamics.
Further, the single machine infinite bus (SMIB) system has been considered
extensively in the literature of power system stabilization using field excitation so
far, due to simplicity of the problem. Here we employ a controllable series
capacitor (CSC)—a power electronic device–as the actuator. The synchronous
generator is often described by one of the two nonlinear Reduced Network Models
(RNMs)—the swing equation or the third order flux-decay model. Here, we have
also used the Structure Preserving Model (SPM) which consists of differential
algebraic equations (DAEs), to describe the power system. In general, control
synthesis for DAEs is a hard problem. We employ the CSC as the power electronic
device actuating the power system. This device is modeled in two different ways—
(a) an injection model, (b) a first order model. The first order model is an attempt
to account for the actuator dynamics. Two nonlinear control strategies developed
in the recent years are employed to stabilize the power system: (1) Interconnection
and Damping Assignment Passivity-based Control (IDAPBC) and (2) Immersion
and Invariance (I&I) control. Both these control strategies offer certain advantages
over conventional methods in terms of exploiting the structure of the system and
the use of energy-based control. The IDA-PBC control strategy consists of two
parts:

• changing the interconnection structure and damping structure of the closed-loop
system, and

• shaping the energy of the closed-loop system.

We approach the SMIB stabilization via IDA-PBC. The SMIB is modeled by
the two RNM models. The CSC is described by the two different models.
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We achieve the control objectives of energy shaping and damping assignment for
this system. Estimates of the domain of attraction for the closed-loop system are
also presented. Further, we synthesize a stabilizing control law for a two machine
infinite bus system.

In the I&I control technique we choose a suitable lower order target dynamics
depending on the open loop dynamics and then immerse the target dynamics on a
manifold in the original space by a suitable mapping. We design a control law to
render the manifold invariant and to match the closed-loop trajectories to the
immersed target dynamics asymptotically. Using this framework, we have suc-
cessfully achieved the control objective of transient stabilization of the RNM as
well as the SPM models. We have then used the I&I framework for the two-
machine stabilization problem as well.

Keywords Power system stabilization � SMIB system � Multimachine system �
RNM � SPM � CSC � Port-Hamiltonian systems � IDA-PBC � I&I

vi Abstract



Acknowledgments

This work was partially supported by an Indo-French research project (Project No.
3602-1) under the aegis of the Indo-French Centre for the Promotion of Advanced
Research (IFCPAR). We are thankful to Dr. Romeo Ortega from LSS, Supélec,
France for his ever-willing discussions, prompt and enthusiastic feedback on
email, and constructive suggestions regarding this work. We are also thankful to
Prof. A. M. Kulkarni from the Department of Electrical Engineering, IIT Bombay
for providing helpful references and for sharing many insights into the engineering
aspects of the problem.

vii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 A Brief Literature Survey . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Modeling of Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Modeling of Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The Reduced Network Model . . . . . . . . . . . . . . . . . . . . 8
2.2.2 The Structure Preserving Model . . . . . . . . . . . . . . . . . . 10

2.3 Controllable Series Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Part I Interconnection and Damping Assignment -Based
Control Synthesis

3 Stabilization via Interconnection and Damping Assignment:
Injection Model for the CSCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Interconnection and Damping Assignment . . . . . . . . . . . . . . . . 17
3.3 Transient Stabilization of the SMIB System . . . . . . . . . . . . . . . 18

3.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Transient Stabilization of a Two Machine Infinite Bus System . . . 23

3.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix

http://dx.doi.org/10.1007/978-3-642-27531-9_1
http://dx.doi.org/10.1007/978-3-642-27531-9_1
http://dx.doi.org/10.1007/978-3-642-27531-9_1#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_1#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_1#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_1#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_1#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_1#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_1#Bib1
http://dx.doi.org/10.1007/978-3-642-27531-9_2
http://dx.doi.org/10.1007/978-3-642-27531-9_2
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec5
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec5
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_2#Bib1
http://dx.doi.org/10.1007/978-3-642-27531-9_3
http://dx.doi.org/10.1007/978-3-642-27531-9_3
http://dx.doi.org/10.1007/978-3-642-27531-9_3
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec7
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec7
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec8
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Sec8
http://dx.doi.org/10.1007/978-3-642-27531-9_3#Bib1


4 Stabilization Via Interconnection and Damping Assignment:
First Order Model of the CSC . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 IDA-PBC Control Synthesis for the Swing Equation . . . . . . . . . 31

4.2.1 Controller Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Asymptotic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Domain of Attraction. . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 The Flux-Decay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Controller Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Asymptotic Stability and Domain of Attraction . . . . . . . 39

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 The Swing Equation Model . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 The Flux Decay Model . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Part II Immersion and Invariance -Based Control Synthesis

5 Stabilization via Immersion and Invariance with the First Order
Model of the CSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Immersion and Invariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 I&I-Based Control Synthesis for Transient Stabilization

of the SMIB System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 Control Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 Controller Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Damping Assignment for the SMIB System . . . . . . . . . . . . . . . 55
5.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 An Application of Immersion and Invariance to a Class
of Differential Algebraic Systems . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Immersion and Invariance for a Differential Algebraic

System (IIDAS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 The SMIB with a CSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.2 Control objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.3 Controller Synthesis Using IIDAS. . . . . . . . . . . . . . . . . 68
6.3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Two Machine Stabilization Using a CSC . . . . . . . . . . . . . . . . . 72
6.4.1 Control Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x Contents

http://dx.doi.org/10.1007/978-3-642-27531-9_4
http://dx.doi.org/10.1007/978-3-642-27531-9_4
http://dx.doi.org/10.1007/978-3-642-27531-9_4
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec5
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec5
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec7
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec7
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec8
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec8
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec9
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec9
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec10
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec10
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec11
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec11
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec12
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Sec12
http://dx.doi.org/10.1007/978-3-642-27531-9_4#Bib1
http://dx.doi.org/10.1007/978-3-642-27531-9_5
http://dx.doi.org/10.1007/978-3-642-27531-9_5
http://dx.doi.org/10.1007/978-3-642-27531-9_5
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec5
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec5
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec7
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec7
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec8
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec8
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec9
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Sec9
http://dx.doi.org/10.1007/978-3-642-27531-9_5#Bib1
http://dx.doi.org/10.1007/978-3-642-27531-9_6
http://dx.doi.org/10.1007/978-3-642-27531-9_6
http://dx.doi.org/10.1007/978-3-642-27531-9_6
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec4
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec5
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec5
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec6
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec7
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec7
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec8
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec8
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec9
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec9


6.4.2 Controller Synthesis Using IIDAS. . . . . . . . . . . . . . . . . 76
6.4.3 Simulation Results for the Two Machine System . . . . . . 83

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Conclusions and Scope for Future Work. . . . . . . . . . . . . . . . . . . . 89
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1.1 Comparison Between the Two Control
Design Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Contents xi

http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec10
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec10
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec11
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec11
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec12
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Sec12
http://dx.doi.org/10.1007/978-3-642-27531-9_6#Bib1
http://dx.doi.org/10.1007/978-3-642-27531-9_7
http://dx.doi.org/10.1007/978-3-642-27531-9_7
http://dx.doi.org/10.1007/978-3-642-27531-9_7#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_7#Sec1
http://dx.doi.org/10.1007/978-3-642-27531-9_7#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_7#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_7#Sec2
http://dx.doi.org/10.1007/978-3-642-27531-9_7#Sec3
http://dx.doi.org/10.1007/978-3-642-27531-9_7#Sec3


Part I
Interconnection and Damping

Assignment-Based Control Synthesis



Chapter 3
Stabilization via Interconnection and Damping
Assignment: Injection Model for the CSCs

3.1 Introduction

The method of Interconnection and Damping Assignment [1] is a passivity-based
control synthesis technique. It is based on matching a closed-loop system with a
desired behaviour, specified using a desired interconnection and damping structure
and a desired energy function. Applications of this technique for synthesizing sta-
bilizing control laws for excitation control of electrical power systems have been
reported in the literature. In this chapter the IDA-PBC methodology is used to derive
stabilizing control laws for electrical power systems using controllable series capac-
itors. The swing equation model is used to represent the generators. The CSC is
modeled using the injection model. The control objective is to asymptotically sta-
bilize a desired operating point and modify the transient response of the system. It
is achieved by assigning a suitable energy function to the closed-loop system and
modifying the interconnection and damping structures. Estimate of the domain of
attraction of the operating point are also given.

The chapter is organized as follows: A short introduction to the IDA-PBC method-
ology is given in Sect. 3.2. In Sect. 3.3 the control technique is applied to the SMIB
system with a CSC. The SMIB is modeled by the swing equation model and the CSC
is modeled by the injection model. Simulation results are provided. In Sect. 3.4 a
two machine infinite bus system is considered and a stabilizing control law is syn-
thesized based on IDA-PBC. Simulation results are provided to assess the controller
performance. Section 3.5 concludes the chapter.

3.2 Interconnection and Damping Assignment

The IDA-PBC control approach is based on treating the components of a (complex,
nonlinear) dynamical system as energy-processing components and interconnecting
them in a specific manner to get the complete dynamical system. Then, the objective

N. S. Manjarekar and R. N. Banavar, Nonlinear Control Synthesis for Electrical Power 17
Systems Using Controllable Series Capacitors, SpringerBriefs in Applied Sciences
and Technology, DOI: 10.1007/978-3-642-27531-9_3, © The Author(s) 2012
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of the control law to be designed becomes- ‘to shape the energy of the closed-
loop system along with modifying the internal structures in a suitable way’. The
classical control/performance objectives are thus achieved as by-products of the
energy-shaping. The port-Hamiltonian formulation [2–4] of a dynamical system has
been found to be suitable for this methodology, as it gives the important information
about the physical structure of the system, internal structures, as well as energy of
the system. We now present the main result in [1].

Theorem 3.2.1 Consider the state space model of the system

ẋ = f (x) + g(x)u (3.1)

where x ∈ IRn is the state vector and u ∈ IRm, m < n, is the control action. Let x�

be the stable equilibrium of the system. We assume that the closed system is of the
form:

ẋ = (Jd(x) − Rd(x))
∂ Hd(x)

∂x
(3.2)

where Jd(x) = −J T
d (x) is a desired interconnection structure matrix, Rd(x) =

RT
d (x) ≥ 0 is a desired damping matrix, and Hd (x) is a desired Hamiltonian function

such that x� = arg min Hd(x), and satisfying the following equations:

g⊥(x)

(
f (x) − (Jd(x) − Rd(x))

∂ Hd(x)

∂x

)
= 0, (3.3)

where g⊥(x) is a full rank left annihilator of the input matrix g(x). Then the closed-
loop system (3.1) with a feedback control law given by

u =
(

gT (x)g(x)
)−1

gT (x)

(
(Jd(x) − Rd(x))

∂ Hd(x)

∂x
− f (x)

)
(3.4)

will be a port-controlled Hamiltonian (PCH) system with dissipation of the form
(3.2) with x� a stable equilibrium. Further, x� will be asymptotically stable if the
largest invariant set under the closed-loop system (3.2) contained in{

x ∈ IRn

∣∣∣∣∣
(

∂ Hd(x)

∂x

)T

Rd(x)
∂ Hd(x)

∂x
= 0

}
(3.5)

equals {x�}. An estimate of its domain of attraction is given by the largest bounded
level set {x ∈ IRn | Hd(x) ≤ c } .

3.3 Transient Stabilization of the SMIB System

In this section we synthesize a stabilizing control law based on IDA-PBC for the
SMIB system.The SMIB system as shown in Fig. 3.1 consists of a synchronous
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Fig. 3.1 The SMIB system with a CSC

generator connected to the infinite bus or reference bus. The magnitude of the voltage
and the frequency for the infinite bus is assumed to be constant. In Fig. 3.1 the
generator bus is numbered as 1 and the infinite bus as 2. They are connected to each
other through a series combination of the line reactance X12 and a CSC denoted
by − j xc.

We use the following notation: δ is the rotor angle and ω is the rotor angular speed
deviation with respect to a synchronously rotating reference for the generator. Let
D > 0, M > 0 and P > 0 be the damping constant, moment of inertia constant
and the mechanical power input to the generator, respectively. The dynamics of the
synchronous generator is described by the swing equation model as,

(
ẋ1
ẋ2

)
=

(
x2

1
M (P − b1 sin x1 − Dx2)

)
+

(
0

− b1
M sin x1

)
u (3.6)

where x1 = δ and x2 = ω and are the state variables, u is the input to the CSC, xl� is
the open loop reactance between buses 1 and 2, and b1 = EV

xl�
. We assume that the

domain of operation is

D =
{
(x1, x2) ∈ S1 × IR1 | d1 < x1 <

π

2
− d1, d1 > 0

}
. (3.7)

The open loop equilibria of (3.6) are given by x̄ = (x̄1, 0), where x̄1 = arcsin
(

P
b1

)
.

We denote the operating equilibrium by x� = (x1�, 0) where x1� = x̄1|(0, π
2 ). With

H(x) = 1

2
Mx2

2 − Px1 − b1 cos x1 (3.8)

as the energy function we can rewrite (3.6) as the following port-Hamiltonian system,

(
ẋ1
ẋ2

)
= (J (x) − R(x))

∂ H(x)

∂x
+ g(x)u

=
(

0 1
M− 1

M − D
M2

)(−P + b1 sin x1
Mx2

)
+

(
0

− b1
M sin x1

)
u.

(3.9)
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Fig. 3.2 Variation of the energy function with respect to x1: Dotted line (open loop energy function),
dashed line (closed-loop energy function with β = 0.5), solid line (closed-loop energy function
with β = 2.0)

Using (3.8) as a Lyapunov function, it can be shown that (3.9) is asymptotically
stable at x�. The energy function H(x) is quadratic in x2, and hence has a minimum
at the desired value, that is, at x2 = 0. However, in the x1 coordinate it is given by
−Px1 − b1 cos x1 and is plotted in Fig. 3.2. Although it has a minimum at x1 = x1�,

due to its shape we get a restrictive estimate of the domain of attraction. As a part of
the control objective we shape the closed-loop energy function in x1 as follows:

Hd(x) = 1

2
Mx2

2 − β cos x̃1 (3.10)

where x̃1 := (x1 − x1�) and β > 0 to be chosen. Further, from (3.9) it is evident that
there is a damping term in the x2 coordinate, which is typically low. For efficient
damping of power oscillations an additional damping γ > 0 can be assigned in the
x2 coordinate. The desired dynamics, then, can be written as

(
ẋ1
ẋ2

)
= (Jd(x) − Rd(x))

∂ Hd(x)

∂x

=
(

0 1
M

− 1
M −

(
D

M2 + γ
)

)(
β sin x̃1

Mx2

)
.

(3.11)

Through straightforward computations it can be shown that the open loop system
(3.6) and the desired behaviour (3.11) satisfy the matching Eq. (3.3). Thus, from
Theorem 3.2.1 we can compute the IDA-PBC control law (3.4) as
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u = β sin x̃1 + γ M2x2 + P − b1 sin x1

b1 sin x1
(3.12)

Here, note that due to presence of the term sin x1 in the denominator of u, the
magnitude of the control (3.12) becomes unbounded at x1 = 0. This can cause
saturation in the actuator. However, in the domain of operation the control magnitude
is bounded, especially for heavily loaded machines.

Further, it can be shown that the energy function Hd(x) is strongly convex in
D, and hence entire D is an estimate of the domain of attraction for the closed-
loop system at x�. We summarize the above discussion on control synthesis in the
following proposition:

Proposition 3.3.1 The closed-loop system (3.6) with the control law (3.12) is asymp-
totically stable at x� ∈ D with the energy function (3.10) and the closed-loop
Hamiltonian form (3.11). An estimate of the domain of attraction is given by D.

Proof Based on the arguments given above. ��

3.3.1 Simulation Results

We use the following system parameters for the SMIB system (3.6): M = 8
100π

,

D = 0.4
100π

, P = 1.1pu, b1 = 1pu, xl� = 0.4, − 1
3 ≤ u ≤ 1 and the operating

equilibrium is x� = (0.4556, 0). To assess the performance of the proposed control
law we assume that a short circuit fault occurs at the far end of the transmission line
at time t = 1 s for a duration of 0.1 s. The tuning parameters are β and γ .

Figure 3.3 shows the responses of the system to the transient. The open loop
response, represented by the dotted lines, shows heavy and sustained oscillations in
x1, x2 and the generated power PG . We examine the closed-loop response for three
different sets of tuning parameters. It can be observed that an increase in the value
of γ damps the oscillations at a faster rate. This change is shown from the dash-dot
lines to dashed lines. The response of the system to an increase in β is shown by the
solid line. An increase in the value of β makes the shape of the closed-loop energy
function deeper, see Fig. 3.4 , and hence improves the response of the system. The
control magnitude u is also shown in the plot. The saturation limits for the control
magnitude is assumed to be

(− 1
3 , 1

)
. The actuator doesn’t saturate for the test fault.

Another view of the response is shown in Fig. 3.5 in terms of the phase portrait, that
is, the plot of x2 against x1.

Comparison of the Control Law

In [1] a nonlinear control law based on the concept of Control Lyapunov Function
(CLF) is proposed. It is shown there that, the control law

u = kx2 sin x1 (3.13)

where k > 0 (to be chosen), assigns (3.8) as a CLF to the closed-loop system.
Further, with the input (3.13), the time derivative of (3.8) along the trajectories of
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Fig. 3.3 Response of the SMIB system (3.6) with the IDA-PBC control law (3.12): Dotted line
(open loop response), dash-dot line (closed-loop response with β = 0.5 and γ = 100), dashed line
(closed-loop response with β = 0.5 and γ = 500), solid line (closed-loop response with β = 2
and γ = 500)
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Fig. 3.4 Variation of the energy function with respect to time: Dotted line (open loop response),
dash-dot line (closed-loop response with β = 0.5 and γ = 100), dashed line (closed-loop response
with β = 0.5 and γ = 500), solid line (closed-loop response with β = 2 and γ = 500)
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Fig. 3.5 Phase plots for the SMIB system (3.6) with the IDA-PBC control law (3.12): Dotted line
(open loop response), dash-dot line (closed-loop response with β = 0.5 and γ = 100), dashed line
(closed-loop response with β = 0.5 and γ = 500), solid line (closed-loop response with β = 2
and γ = 500)

the closed-loop system is negative semi-definite, and hence the closed-loop system
is stable.

In Fig. 3.6 we compare the the performance of the proposed control law with the
control law in [5]. Both the performances match closely. However, it can be noted
that the control law from [5] has a tuning parameter to decide the way the control law
performance. The proposed control law, on the other hand, consists of two tuning
parameters: one of them decides the shape of the energy function and the other one
decides the rate at which the oscillations are damped. This gives more freedom on
deciding the closed-loop response.

The other two plots show the variation of the energy function with respect to time
and x1 for different values of the tuning parameters.

3.4 Transient Stabilization of a Two Machine Infinite
Bus System

In this section we synthesize a stabilizing control law for another system using
IDA-PBC. The power system is as shown in Fig. 3.7. The two generators G1 and
G2 are connected to bus 1 and bus 2, respectively and the infinite bus is denoted
by bus 3. A CSC (not shown in the figure) is connected between buses 1 and 3,
and another CSC (not shown in the figure) between buses 2 and 3. The synchronous
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Fig. 3.6 Comparison of the IDA-PBC control law (3.12) with a CLF-based control law (3.13):
Dotted line (open loop response), dash-dot line (closed-loop response for the control law (3.13)
with k = 0.5), solid line (closed-loop response for the control law (3.12) with β = 2 and γ = 500)

Fig. 3.7 A two machine infinite bus system

generator dynamics are described by the swing equation for each generator, while the
CSCs are modeled by the injection model. With δi as rotor angles, ωi rotor angular
velocities of the i-th generator for i = 1, 2 we can write the state space model for the
system as
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⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x3
x4

1
M1

(P1 − b12 sin(x1 − x2) − b1 sin x1 − D1x3)
1

M2
(P2 + b12 sin(x1 − x2) − b2 sin x2 − D2x4)

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 0
0 0

− b1
M1

sin x1 0

0 − b2
M2

sin x2

⎞
⎟⎟⎠

(
u1
u2

)
(3.14)

where x1 = δ1, x2 = δ2, x3 = ω1 and x4 = ω2 are the state variables, u1, u2 are
the inputs to the CSCs, and Di , Mi , bi and b12 are system constants for i = 1, 2. In
[5] the following control law is proposed:

u1 = k1x3 sin x1 (3.15a)

u2 = k2x4 sin x2 (3.15b)

with tuning parameters ki > 0, i = 1, 2. It is shown there that, (3.15) make

H(x) = 1

2

(
M1x2

3 + M2x2
4

)
− P1x1− P2x2−b1 cos x1−b2 cos x2−b12 cos(x1−x2)

(3.16)
a Control Lyapunov Function for the system (3.14) and is a stabilizing control law.
Further, it is shown that each CSC contributes to the negativeness of Ḣ(x), thus
making the slope of H(x) sharper. This amounts to better damping of the system.

We now propose an IDA-PBC control law for (3.14). Using (3.16) as an energy
function we can obtain the following Hamiltonian representation for (3.14)

⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ = (J (x) − R(x))

∂ H(x)

∂x
+ g(x)u

=

⎛
⎜⎜⎜⎜⎝

0 0 1
M1

0
0 0 0 1

M2

− 1
M1

0 − D1
M2

1
0

0 − 1
M2

0 − D2
M2

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

−P1 + b12 sin(x1 − x2) + b1 sin x1
−P2 − b12 sin(x1 − x2) + b2 sin x2

M1x3
M2x4

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 0
0 0

− b1
M1

sin x1 0

0 − b2
M2

sin x2

⎞
⎟⎟⎠

(
u1
u2

)
. (3.17)

From (3.17) we have that, the x3 and x4 coordinates have damping, however
generally it is poor. Thus, as a control objective we introduce additional damping
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Fig. 3.8 Response of the two machine infinite bus system (3.14) with the IDA-PBC control law
(3.20): Dotted line (open loop response), dash-dot line (closed-loop response with β1 = 1, β2 =
4, γ1 = 5 and γ2 = 5), solid line (closed-loop response with β1 = 1, beta2 = 4, γ1 = 10 and
γ2 = 10), α = 0 for all plots

γ1 > 0 and γ2 > 0 in x3 and x4, respectively. In addition, we introduce an intercon-
nection α > 0 between x3 and x4. Further, we propose to use the following energy
function as the desired Hamiltonian for the closed-loop system:

Hd(x) = 1

2

(
M1x2

3 + M2x2
4

)
− β1 cos x̃1 − β2 cos x̃2 (3.18)

where x̃i := (xi − xi�), i = 1, 2 and x� = (x1�, x2�, 0, 0) denotes the open loop
equilibrium of (3.14). It is clear that (3.18) has a strict local minimum at x�. Thus,
the desired behaviour we have chosen can be written as

⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ = (Jd(x) − Rd(x))

∂ Hd(x)

∂x

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1
M1

0
0 0 0 1

M2

− 1
M1

0 −
(

D1
M2

1
+ γ1

)
α

0 − 1
M2

−α −
(

D2
M2

2
+ γ2

)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

β1 sin x̃1
β2 sin x̃2

M1x3
M2x4

⎞
⎟⎟⎠ . (3.19)
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Fig. 3.9 Phase plots for the two machine infinite bus system (3.14) with the IDA-PBC control law
(3.20): Dotted line (open loop response), dash-dot line (closed-loop response with β1 = 1, β2 =
4, γ1 = 5 and γ2 = 5), solid line (closed-loop response with β1 = 1, β2 = 4, γ1 = 10 and
γ2 = 10), α = 0 for all plots

Through straightforward computations it can be shown that the open loop system
(3.14) and the desired behaviour (3.19) satisfy the matching Eq. (3.3) and hence the
IDA-PBC control law can be computed from (3.4) as

u1 = β1 sin x̃1 + γ1 M2
1 x3 − αM2x4 + P1 − b12 sin(x1 − x2) − b1 sin x1

b1 sin x1
(3.20a)

u2 = β2 sin x̃2 − γ2 M2
2 x4 + αM1x3 + P2 + b12 sin(x1 − x2) − b2 sin x2

b2 sin x2
.

(3.20b)
It is to be noted here that the proposed control law, (3.20) grows unboundedly

as x1 and x2 approach zero, which can cause saturation of the actuator. However,
for heavily loaded machines the magnitude of the control law is well within bounds,
and provides more flexibility in terms of additional damping, interconnection and
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Fig. 3.10 Response of the two machine infinite bus system (3.14) with the IDA-PBC control law
(3.20): Dotted line (open loop response). Closed-loop response: β1 = 2, γ1 = 5, u2 = 0 and,
dash-dot line (α = 10), solid line (α = 50)

properly shaped energy function. Further, in a straightforward way it can be shown

that the Hessian ∂2 Hd (x)

∂x2 is strongly convex in the domain of operation

D =
{
(x1, x2, x3, x4) ∈ S1xS1xIR2 | di < xi <

π

2
− di , di > 0, i = 1, 2

}
,

(3.21)

and hence D is an estimate of the domain of attraction for the closed-loop system.
We summarize the above discussion on control synthesis in the following proposition:

Proposition 3.4.1 The closed-loop system (3.14) with the control law (3.20) is
asymptotically stable at x� ∈ D with the energy function (3.18) and the Hamiltonian
model (3.19). An estimate of the domain of attraction is given by D.

Proof Based on the arguments given above. ��

3.4.1 Simulation Results

We use the following system parameters for the SMIB system (3.14), as given in
[5]: M1 = M2 = 8

100π
, D1 = D2 = 0.4

100π
, b1 = b2 = 2(p. u.), b12 = 2.5(p. u.),

xl� = 0.4, P1 = 1.2(p.u.), P2 = 1.6(p.u.), − 1
3 ≤ u ≤ 1 and and the operating
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Fig. 3.11 Phase plots for the two machine infinite bus system (3.14) with the IDA-PBC control
law (3.20): Dotted line (open loop response). Closed-loop response: β1 = 2, γ1 = 5, u2 = 0 and,
dash-dot line (α = 10), solid line (α = 50)

equilibrium is x� = (0.7447, 0.807, 0, 0). The tuning parameters are β1, β2, γ1 and
γ2 . To assess the performance of the proposed control law we assume that a short
circuit fault occurs at bus 1 at time t = 1 s for a duration of 0.1 s.

In Fig. 3.8 oscillatory nature of the open loop response in response to the distur-
bance is shown by dotted line. For the closed-loop response we consider two different
cases. In the first case the effect of increasing the value of γ1 is shown in the plot for
x1 from the dash-dot line to the solid line. In the second case the effect of β2 > β1
is shown. The oscillations x2 are negligibly small as compared to those in x1. The
phase portraits of the open loop and the closed-loop responses are shown in Fig. 3.9
.

For the same transient we consider another case with only one CSC between
buses 1 and 3, and u2 = 0. In this case the role of the interconnection parameter α is
shown in Figs. 3.10 and 3.11. An increase in the value of α improves the closed-loop
response as indicated by the dash-dot line and the solid line plots.
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3.5 Summary

In this chapter we presented IDA-PBC control laws for transient stabilization of
electrical power systems. A power electronic device, a CSC, was used as the actuator.
It was modeled by the injection model. We considered two systems- an SMIB system
and a two machine system. For the SMIB system we achieved a two-fold control
objective- damping injection and energy shaping. For the two machine case we
achieved damping and interconnection assignment with energy shaping and proposed
an IDA-PBC control law. Simulation results were provided to examine the controller
performance.
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Chapter 4
Stabilization Via Interconnection and Damping
Assignment: First Order Model of the CSC

4.1 Introduction

While studying the role of the CSCs for power system stabilization, the dynamics of
the CSC can be accounted for by modeling it as a dynamical system. However, for
stability studies it is not necessary to have a detailed model. It is adequate to assume
that the desired value of the CSC reactance is achieved within a specified time
interval. Hence, a first order model is sufficient for this purpose [1]. In this chapter
we apply the IDA-PBC methodology to the SMIB system with a CSC, where the CSC
is modeled by a first order model and synthesize stabilizing control laws. The SMIB
system is modeled by the swing equation model and the classical flux-decay model.
In the control synthesis process we assign (a) a suitable interconnection and damping
structure and (b) a desired energy function, to the closed-loop system. In this way,
we synthesize a control law to asymptotically stabilize the closed-loop system at a
desirable equilibrium and to improve the transient damping in the system. Estimates
of the domain of attraction of the operating point are also given.

The chapter is organized as: In Sect. 4.2 the SMIB is described by the swing
equation. The IDA-PBC control strategy is used to synthesize a stabilizing control.
An estimate of the domain of attraction for the closed-loop system is given. In
Sect. 4.3 the SMIB system is described by the third order flux-decay model. The IDA-
PBC control strategy is used to synthesize a stabilizing control and an estimate of the
domain of attraction for the closed-loop system is given. In Sect. 4.4 a few simulation
results are presented to assess the performance of the controller. Section 4.5 concludes
the chapter.

4.2 IDA-PBC Control Synthesis for the Swing Equation

Consider the SMIB system with a CSC as shown in Fig. 3.1. Here the control system
consists of two subsystems: one describing the SMIB system and the other describing
the actuator (CSC) dynamics. We describe the SMIB system using the swing equation
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model given by (2.2). The actuator dynamics is represented by (2.10). Here, we
assume that the region of operation is

D =
{
(δ, ω, E, xl)

∣∣∣ d1 < δ <
π

2
− d1, E > d2, xl > d3

}
,

where d1 > 0, d2 > 0 and d3 > 0 are small numbers.
We define the state variables of the system as x1 = δ, x2 = ω, x3 = xl and let

x = [x1 x2 x3]T be the state vector. The open loop system can then be written as

ẋ1 = x2 (4.1a)

ẋ2 = 1

M

(
P − Dx2 − EV sin x1

x3

)
(4.1b)

ẋ3 = 1

TCSC

(−x3 + x3� + u
)
, (4.1c)

where x3� = EV sin x1�

P for a given x1� . Equivalently, we can rewrite (4.1) as

ẋ = f (x) + g(x)u

=
⎡
⎢⎣

x2
1
M

(
P − Dx2 − EV sin x1

x3

)

1
TCSC

(−x3 + x3�

)

⎤
⎥⎦ +

⎡
⎣

0
0
1

TCSC

⎤
⎦ u.

(4.2)

The open loop system is given by (4.2) with x3 ≡ x3� , u ≡ 0, and hence ẋ3 ≡ 0.

It takes the following form:

ẋ1 = x2 (4.3a)

ẋ2 = 1

M

(
P − Dx2 − EV sin x1

x3�

)
. (4.3b)

For the swing equation model (4.3) of the SMIB system we take the following energy
function,

H(x) = −Px1 + Mx2
2

2
− EV cos x1

x3�

. (4.4)

http://dx.doi.org/10.1007/978-3-642-27531-9_2
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Using the theory of port-Hamiltonian systems [2], we can represent (4.3) in the
port-Hamiltonian form as follows:

ẋ = (J (x) − R(x))
∂ H

∂x
(4.5)

with

J (x) =
[

0 1
M− 1

M 0

]
(4.6a)

R(x) =
[

0 0
0 D

M2

]
(4.6b)

where J (x) = −J T (x) is the interconnection structure matrix, R(x) = RT (x) ≥ 0
is the damping matrix, and H(x) is as in (4.4).

The system given by (4.3) has one open loop equilibrium in D, and using (4.4) as
a Lyapunov function it can be shown the equilibrium is a stable equilibrium. It is the
operating point of the open loop system (4.2) and is denoted by x� = (x1� , 0, x3� ).

From (4.6) we get that, there is an interconnection between x1 and x2, and also
there is a dissipation term given by D

M2 in the x2 coordinate of (4.3). Generally, this
dissipation is negligibly small, and hence to improve the transient performance of
the SMIB system we aim at introducing additional dissipation in the x2 coordinate.
This could be achieved by introducing additional damping in the actuator dynamics,
and then assigning an interconnection term between x2 and the actuator dynamics.
At the same time we aim at assigning a suitable energy function to the closed-loop
dynamics such that the closed-loop system is stable at x�.

4.2.1 Controller Synthesis

Consider the swing equation model (4.2) of the SMIB with CSC. We propose the
following energy function for the closed-loop dynamics:

Hd(x) = −Px1 + Mx2
2

2
− EV cos x1

x3�

+ 1

2
(x3 − x3� )

2. (4.7)

It is evident that ∂ Hd (x)
∂x

∣∣∣
x=x�

= 0 and ∂2 Hd (x)

∂x2

∣∣∣
x=x�

> 0, that is, the energy function

(4.7) has an isolated minimum at x� ∈ D. Further, we choose the desired intercon-
nection matrix Jd(x) and damping matrix Rd(x) as

Jd(x) =
⎡
⎣

0 1
M 0

− 1
M 0 Jd23

0 −Jd23 0

⎤
⎦ (4.8a)
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Rd(x) =
⎡
⎣

0 0 0
0 D

M2 0
0 0 1

TCSC
+ γ3

⎤
⎦ (4.8b)

where Jd23 = EV sin x1
Mx3x3�

. The matrix Jd is chosen in order to have a coupling between
the SMIB system and the CSC dynamics. The damping matrix is chosen such that it
introduces additional damping γ3 ≥ 0 in the x3 coordinate.

Through straightforward calculations we can show that the closed-loop system
(3.2) with Hd , Jd and Rd given by (4.7), (4.8a) and (4.8b) respectively, and the open
loop system (4.2) satisfy the matching Equation (3.3). Then, using (3.4) we compute
the control law u(x) as

u(x) = −TCSC

(
EV x2 sin x1

x3x3�
+ γ3(x3 − x3� )

)
. (4.9)

The control law u(x) consists of two components- energy shaping control ue(x)

given by

ue(x) = −TCSC EV x2 sin x1

x3x3�

, (4.10)

and damping injection control ud(x) given by

ud(x) = −TCSC γ3(x3 − x3� ), (4.11)

that is, u(x) = ue(x) + ud(x).

4.2.2 Asymptotic Stability

From Theorem 3.2.1 the closed-loop system (4.2) with the control (4.9) is stable.
To show the asymptotic stability we use LaSalle’s invariance principle. The time
derivative of Hd(x) along the trajectories of the closed-loop system is

Ḣd(x) = −
(

∂ Hd (x)
∂x

)T
Rd(x)

∂ Hd (x)
∂x

= −Dx2
2 −

(
1

TCSC
+ γ3

)
(x3 − x3� )

2.
(4.12)

Then, we have that, Ḣd(x) ≡ 0 implies that x2 ≡ 0 as well as x3 ≡ x3� . From (4.9)
this further implies that u ≡ 0. From the closed-loop system (4.2) with u ≡ 0, x2 ≡
0, and x3 ≡ x3� we get

0 ≡ ẋ2 = P − EV sin x̂1

x3�

http://dx.doi.org/10.1007/978-3-642-27531-9_3
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or

x̂1 = arcsin

(
Px3�

EV

)
.

Further, we have that x̂1
∣∣D = x1� . Thus, the closed-loop system (4.2) with the control

(4.9) is asymptotically stable at x� ∈ D.

4.2.3 Domain of Attraction

We now give an estimate of the domain of attraction for the closed-loop system. We
follow the discussion in [3] and check the strong convexity property of the Hessian
∂2 Hd (x)

∂x2 to give the estimate. We denote the sublevel sets of the Lyapunov function

Hd(x) by Ωc : = {
x ∈ S1×IR2

∣∣ Hd(x) ≤ c
}
.

Proposition 4.2.1 Fix a small number d1 > 0. Estimates of the domain of attraction
of the stable equilibrium x� of the closed-loop system (4.2) with the control input
given by (4.9) are the sublevel sets Ωc that are contained in Sε ∩ D where

Sε : =
{

x ∈ S1×IR2
∣∣∣∣

EV cos x1

x3�

> ε, ∀0 < ε < min

{
1, M,

EV sin d1

x3�

}}
.

Proof Based on the arguments given above. �	
We summarize the above discussion on control synthesis in the following propo-

sition:

Proposition 4.2.2 The closed-loop system (4.2) with the control law as in (4.9)
is asymptotically stable at x� ∈ D with the energy function (4.7), interconnection
structure matrix (4.8a) and damping matrix (4.8b). An estimate of the domain of
attraction is given by Proposition 4.2.1.

Proof Based on the arguments given above. �	

4.3 The Flux-Decay Model

Consider the SMIB system with a CSC as shown in Fig. 3.1. Similar to the previous
section, the control system here consists of two subsystems: one describing the SMIB
system and the other describing the actuator (CSC) dynamics. We describe the SMIB
system using the classical third order flux-decay model. This model includes the flux
decay effect in addition to the rotor dynamics described by the second order swing
equation. Once again the actuator dynamics is represented by (2.10).

http://dx.doi.org/10.1007/978-3-642-27531-9_3
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We define the state variables of the system as x1 = δ, x2 = ω, x3 = E and
x4 = xl , and x = [x1 x2 x3 x4]T as the state vector. Further, we define the following
variables:

Xd = xd + xline − xc

X ′
d = x ′

d + xline − xc

Xq = xq + xline − xc.

Normally, it is assumed that Xq = X ′
d . The complete control system can then be

written as

ẋ1 = x2 (4.13a)

ẋ2 = 1

M

(
P − Dx2 − V x3 sin x1

x4

)
(4.13b)

ẋ3 = 1

Td0

(
E f d − V cos x1 + xd − x ′

d + x4

x4
(V cos x1 − x3)

)
(4.13c)

ẋ4 = 1

TCSC

(−x4 + x4� + u
)
, (4.13d)

where x4� = V x3� sin x1�

P = − (xd−x ′
d )(V cos x1�−x3� )

E fd −x3�
, for a given x1� and x3� , is the

effective line reactance at the operating equilibrium. We can rewrite (4.13) as

ẋ = f (x) + g(x)u

=

⎡
⎢⎢⎢⎢⎣

x2
1
M

(
P − Dx2 − V x3 sin x1

x4

)

1
Td0

(
E fd − V cos x1 + xd−x ′

d+x4
x4

(V cos x1 − x3)
)

1
TCSC

(−x4 + x4�

)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

0
0
0
1

TCSC

⎤
⎥⎥⎦ u.

(4.14)

The open loop system given by (4.14) with x4 ≡ x4� , u ≡ 0, and hence ẋ4 ≡ 0,

takes the following form:

ẋ1 = x2 (4.15a)

ẋ2 = 1

M

(
P − Dx2 − V x3 sin x1

x4�

)
(4.15b)

ẋ3 = 1

Td0

(
E fd − V cos x1 + xd − x ′

d + x4�

x4�

(V cos x1 − x3)

)
. (4.15c)

Following the discussion in [3] it can be shown that there are two open loop
equilibria in D denoted by x̄ = (x̄1, 0, x̄3, x4� ), where x̄1 and x̄3 are the solutions of
the following set of equations:
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P − V x̄3 sin x̄1

x4�

= 0

E fd − V cos x̄1 + xd − x ′
d + x4�

x4�

(V cos x̄1 − x̄3) = 0.

One of the equilibria is stable and is denoted by x�, while the other is an unstable
equilibrium which we denote by xu . Further, (4.15) can be rewritten in the port-
Hamiltonian form [2], using the energy function

H(x) = −Px1 + Mx2
2

2
− V x3 cos x1

x4�

− E f d x3

xd − x ′
d

+ (xd − x ′
d + x4�)x2

3

2x4�(xd − x ′
d)

(4.16)

as follows:

ẋ = (J (x) − R(x))
∂ H

∂x
(4.17)

with

J (x) =
⎡
⎣

0 1
M 0

− 1
M 0 0

0 0 0

⎤
⎦ (4.18a)

R(x) =
⎡
⎢⎣

0 0 0
0 D

M2 0

0 0
xd−x ′

d
Td0

⎤
⎥⎦ (4.18b)

where J (x) = −J T (x) is the interconnection structure matrix and R(x) = RT (x) ≥
0 is the damping matrix. From the damping matrix it is clear that there is dissipation
in the x2 and x3 coordinates given by D

M2 and xd−x4�

Td0
, respectively. Generally, the

dissipation in x2 is negligibly small, and hence to improve the transient performance
of the SMIB system we aim at introducing additional dissipation in the x2 coordinate.
This could be achieved by assigning additional damping in the actuator dynamics,
and then assigning an interconnection term between x2 and the actuator dynamics.
At the same time we aim at assigning a suitable energy function to the closed-loop
dynamics such that the closed-loop system is stable at x�.

4.3.1 Controller Synthesis

In this section we consider the classical flux-decay model (4.14) of the SMIB with
a CSC to design an asymptotically stabilizing control law. The control objective is
to make x� asymptotically stable and assign a desired damping and interconnection
structure to the closed-loop system.
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We propose the following energy function for the closed-loop dynamics:

Hd (x) = −Px1 + Mx2
2

2
− V x3 cos x1

x4�
− E f d x3

xd − x ′
d

+ (xd − x ′
d + x4�)x2

3
2x4�(xd − x ′

d )
+ (x4 − x4�

)2

2
.

(4.19)
This energy function has an isolated local minimum at x�. Further, it is positive
definite in some neighbourhood of x�, for all d2 >

V (xd−x4� )

xd d1
for a given x4� and

d1. Next, we choose the desired interconnection matrix Jd(x) and damping matrix
Rd(x) as

Jd(x) =

⎡
⎢⎢⎣

0 1
M 0 0

− 1
M 0 0 Jd24

0 0 0 Jd34
0 −Jd24 −Jd34 0

⎤
⎥⎥⎦ (4.20a)

Rd(x) =

⎡
⎢⎢⎢⎣

0 0 0 0
0 D

M2 0 0

0 0
xd−x ′

d
Td0

0
0 0 0 1

TCSC
+ γ4

⎤
⎥⎥⎥⎦ (4.20b)

where Jd24 = V x3 sin x1
Mx4x4�

, and Jd34 = (xd−x ′
d )(x3−V cos x1)

Td0x4x4�
. The matrix Jd is chosen in

order to have a coupling between the SMIB system and the CSC dynamics. Similar to
the swing equation model we introduce a damping term γ4 > 0 in the x4 coordinate.

Through straightforward calculations it can be shown that the closed-loop system
(3.2) with Hd , Jd and Rd given by (4.19), (4.20a) and (4.20b) respectively, and the
open loop system (4.14) satisfy the matching equation (3.3). Then, using (3.4) we
can compute the control u(x) as

u(x) = − TCSC(xd − x ′
d )(x3 − V cos x1)

(
(xd − x ′

d + x4� )x3 − x4� E fd − (xd − x ′
d )V cos x1

)

Td0x4x2
4�

(xd − x ′
d )

− TCSC

(
V x3x2 sin x1

x4x4�

+ γ
4
(x4 − x4� )

)
.

(4.21)
The control law given by (4.21) consists of two components- energy shaping control,
ue(x), given by

ue(x) = − TCSC(xd − x ′
d )(x3 − V cos x1)

(
(xd − x ′

d + x4� )x3 − x4� E fd − (xd − x ′
d )V cos x1

)

Td0x4x2
4�

(xd − x ′
d )

− TCSCV x3x2 sin x1

x4x4�

,

(4.22)
and damping injection control, ud(x), given by

ud(x) = −TCSC γ4(x4 − x4� ), (4.23)

or in other words, u(x) = ue(x) + ud(x).

http://dx.doi.org/10.1007/978-3-642-27531-9_3
http://dx.doi.org/10.1007/978-3-642-27531-9_3
http://dx.doi.org/10.1007/978-3-642-27531-9_3


4.3 The Flux-Decay Model 39

4.3.2 Asymptotic Stability and Domain of Attraction

Fix two numbers d1 > 0 and d2 > 0 such that d1d2 >
V (xd−x ′

d )

xd−x ′
d+x4�

for a given x4� . Let

Sε : =
{

x ∈ S1 × IR3

∣∣∣∣∣
V x3 sin x1(xd − x ′

d + x4�) − (xd − x ′
d )(V sin x1)2

x4�

((
xd − x ′

d

)
V x3 cos x1 + xd − x ′

d + x4�

) > ε,

∀0 < ε < min

{
1, M,

xd − x ′
d + x4�

x4�
(xd − x ′

d )
,

V d2 cos d1

x4�

}}
.

The energy function (4.19) has an isolated local minimum at x� and (4.19) is
strongly convex in a neighbourhood Sε of x�. Hence, the closed-loop system (4.14)
with the control law (4.21) is asymptotically stable at x�.

The region of operation D contains both x� and xu . Due to presence of the unstable
equilibrium there is a restriction on the domain of attraction for the stable equilib-
rium x�. Next, we give an estimate of the domain of attraction for the closed-loop
system around the operating equilibrium x�. Similar to the swing equation model

case, here we check for the strong convexity property of the Hessian ∂2 Hd (x)

∂x2 to
give the estimate. We denote the sublevel sets of the Lyapunov function Hd(x) by
Ωc : = {

x ∈ S1×IR3 | Hd(x) ≤ c
}
.

Proposition 4.3.1 Estimates of the domain of attraction of the stable equilibrium
x� of the closed-loop system (4.14) with the control law (4.21) are the sublevel sets
Ωc that are contained in Sε ∩ D.

Proof Based on the arguments given above. �	
We summarize the above discussion on control synthesis in the following propo-

sition:

Proposition 4.3.2 The closed-loop system (4.14) with the control input (4.21) is
asymptotically stable at x� ∈ D with energy function (4.19), interconnection struc-
ture matrix (4.20a) and damping matrix (4.20b). An estimate of the domain of attrac-
tion is given by Proposition 4.3.1.

Proof Based on the arguments given above. �	

4.4 Simulation Results

We assume the following simulation parameters: M = 8
100π

, D = 0.4
100π

, P =
1.1 pu, V = 1 pu, TCSC = 0.02 s, To assess the performance of the proposed control
law we assume that a short circuit fault occurs at the far end of the transmission line
at time t = 1 s for a duration of 0.1 s.
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Fig. 4.1 Response of the SMIB system (4.2) with the IDA-PBC control law (4.9): Dotted line (open
loop response), solid line (closed-loop response with γ3 = 0)

4.4.1 The Swing Equation Model

For the swing equation model we assume E = 1.075 pu, 0.2 ≤ x3 ≤ 0.6 and
the operating equilibrium is x� = (0.4217, 0, 0.4). The tuning parameter is γ3 .

The transient response of the swing equation model is shown in Fig 4.1. The open
loop response is oscillatory as shown by dotted lines. The closed-loop response with
γ3 = 0 is shown by the solid lines. The oscillations decay in about 1 s. As the time
constant, TCSC, of a CSC is sufficiently small, there is inherent damping, given by

1
TCSC

, in the dynamics of the CSC. Hence there is no need of any external damping γ3 .

The inherent damping in the CSC dynamics, then, propagates in the SMIB dynamics
through the interconnection term. Notice that the input doesn’t cross the saturation
limits. Figure 4.2 shows phase portraits of the responses.

4.4.2 The Flux Decay Model

For the flux-decay model we assume that 0.6 ≤ x4 ≤ 1.0xd = 0.95, E fd = 1.5 pu,

Td0 = 10 s. and the operating equilibrium is x� = (0.7179, 0, 1.4214, 0.85). The
tuning parameter is γ4 . The transient response of the swing equation model is shown
in Fig. 4.3 . The open loop response, represented by the dotted lines, shows heavy
oscillations in x1 and x2 due to poor mechanical damping. On the other hand, the
generator voltage shows a sluggish response due to comparatively large time constant.
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Fig. 4.2 Phase plots for the SMIB system (4.2) with the IDA-PBC control law (4.9): Dotted line
(open loop response), solid line (closed-loop response with γ3 = 0)

The closed-loop response with γ4 = 0 is shown by the solid lines. The oscillations in
x1 and x2 decay in about 2 s. The response of x3 also improves. As the time constant,
TCSC, of a CSC is sufficiently small, there is inherent damping, given by 1

TCSC
, in

the dynamics of the CSC. Hence there is no need of any external damping γ4 . The
inherent damping in the CSC dynamics, then, propagates in the SMIB dynamics
through the interconnection term. Further, the actuator doesn’t cross the saturation
limits. Figure 4.4 shows phase portraits of the responses.

4.5 Summary

Transient stabilization of the SMIB system using a CSC via IDA-PBC was investi-
gated. In an attempt to take into account the actuator dynamics, the CSC was modeled
by a first order system. We assigned a desired interconnection and damping structure,
and a desired energy function to the closed-loop system for the swing equation as
well as the flux-decay model. The closed-loop systems were shown to be asymptoti-
cally stable at the operating point. Also, estimates of the domain of attraction for the
closed-loop systems were given in both the cases. Simulation results were provided
to examine the performance of the control laws.
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Fig. 4.3 Response of the SMIB system (4.14) with the IDA-PBC control law (4.21): Dotted line
(open loop response), solid line (closed-loop response with γ4 = 0)
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Fig. 4.4 Phase plots for the SMIB system (4.14) with the IDA-PBC control law (4.21): Dotted line
(open loop response), solid line (closed-loop response with γ4 = 0)
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Chapter 5
Stabilization via Immersion and Invariance with
the First Order Model of the CSC

5.1 Introduction

The IDA-PBC methodology relies on the concept of exact model matching of the
closed-loop system with a certain desired behaviour. Immersion and Invariance [1],
on the other hand, is based on (a) immersing a lower order desired target dynamics
onto a manifold in the original space, and (b) matching the closed-loop system with
the immersed system asymptotically. The control objective is to make the immersed
manifold attractive and invariant. This methodology, as it is based on the concept of
asymptotic model matching, offers more flexibility over IDA-PBC. In this chapter
we apply I&I to synthesize stabilizing control laws for the SMIB system using a
CSC. The SMIB is expressed using the RNM model. The CSC is modeled by a first
order model.

The chapter is organized as follows: In Sect. 5.2 a brief introduction to the I&I
control synthesis is given. In Sect. 5.3 we propose a control law for the SMIB system
with a CSC using the I&I strategy. The simulation results are provided in Sect. 5.4.
In Sect. 5.5 we propose a target dynamics with additional damping and synthesize a
control law using this target dynamics. Simulation plots are provided to assess the
performance. Finally Sect. 5.6 concludes the chapter.

5.2 Immersion and Invariance

The method of I&I for stabilization of nonlinear systems is proposed in [1]. We now
state the stability result of I&I.

Theorem 5.2.1 Consider the state space model of the system

ẋ = f (x)+ g(x)u (5.1)

N. S. Manjarekar and R. N. Banavar, Nonlinear Control Synthesis for Electrical Power 47
Systems Using Controllable Series Capacitors, SpringerBriefs in Applied Sciences
and Technology, DOI: 10.1007/978-3-642-27531-9_5, © The Author(s) 2012
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where f (x) and g(x) are smooth functions, with state x ∈ IRn and control u ∈ IRm,

with an equilibrium point x� ∈ IRn to be stabilized. Let p < n and assume we can
find mappings

α : IR p → IR p,Π : IR p → IRn, c : imΠ → IRm , φ : IRn → IR p, ψ : IRn × IRn−p → IRm ,

such that the following hold.

1. (H1) (Target system) The system

ξ̇ = α(ξ) (5.2)

with state ξ ∈ IR p has an asymptotically stable equilibrium at ξ� ∈ IR p and
x� = Π(ξ�).

2. (H2) (Immersion condition) For all ξ ∈ IR p

f (Π(ξ))+ g(Π(ξ))c(Π(ξ)) = ∂Π

∂ξ
α(ξ). (5.3)

3. (H3) (Implicit manifold) The following set identity holds
{

x ∈ IRn | φ(x) = 0
} = {

x ∈ IRn | x = Π(ξ) for some ξ ∈ IR p} . (5.4)

4. (H4) (Manifold attractivity and trajectory boundedness) All trajectories of the
system

ż = ∂φ

∂x
[ f (x)+ g(x)ψ(x, z)] (5.5)

ẋ = f (x)+ g(x)ψ(x, z) (5.6)

are bounded and satisfy

lim
t→∞ z(t) = 0. (5.7)

Then x� is an asymptotically stable equilibrium of the closed-loop system

ẋ = f (x)+ g(x)ψ(x, φ(x)).

The I&I philosophy can be can be interpreted with the help of Fig. 5.1 as: Given
the system (5.1) and the target dynamical system (5.2), find if possible, a manifold
M such that

1. Restriction of the closed-loop system to M is the target dynamics.
2. M can be rendered invariant and attractive.

The left hand side of (5.4) gives an implicit description of M while the right
hand side is a parametrized description. The control law u = c(Π(ξ)) renders M
invariant. A measure of the distance of the system trajectories to M is given by it z,
called as off-the-manifold coordinate. Our aim is to design a control law u = ψ(x, z)
that keeps the system trajectories bounded and drives the coordinate it z to zero.
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Fig. 5.1 Immersion & invariance strategy

5.3 I&I-Based Control Synthesis for Transient Stabilization of
the SMIB System

Consider the SMIB system with a CSC as shown in Fig 5.1. The SMIB system is
described using the swing equation model, and the actuator dynamics using the first
order system (2.10). The SMIB system with a CSC is then described by (4.2) which
is reproduced here for convenience, as

ẋ = f (x)+ g(x)u

=
⎛

⎜
⎝

x2
1
M

[
P − Dx2 − EV sin x1

x3

]

1
TCSC

[−x3 + x3�

]

⎞

⎟
⎠ +

⎛

⎝
0
0
1

TCSC

⎞

⎠ u
(5.8)

where x3� = EV sin x1�
P for a given x1� . The open loop operating equilibrium is

denoted by x� = (x1� , 0, x3� ). We assume that,

Assumption 5.3.1 The region of operation is

D =
{

x ∈ S1 × IR2| d1 < x1 <
π

2
− d1, d3 < x3 < d3

}
,

where d1 > 0 and 0 < d3 < d3 are small numbers.

5.3.1 Control Objective

As mentioned earlier, x� denotes the operating stable equilibrium in D. We assume
that x� is known to us and state the control objective as “to synthesize a control law

http://dx.doi.org/10.1007/978-3-642-27531-9_2
http://dx.doi.org/10.1007/978-3-642-27531-9_4
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u in order to make the system (5.8) asymptotically stable at x�, and to improve the
transient response of the closed-loop system.”

5.3.2 Controller Synthesis

Next, we synthesize a stabilizing controller for the SMIB system with a CSC. The
control system is given by (5.8) and it consists of two subsystems- one is the second
order swing equation, a slow system, and the other is the CSC which is the fast
dynamics as compared to the swing dynamics.

We use the Immersion and Invariance methodology described earlier to synthesize
the controller.

Target system

In general, selection of the target dynamics is a nontrivial task. As discussed in [1]
we make a natural choice for the target system as the mechanical subsystem. As a
first step in the control synthesis we define a two dimensional dynamical system as
follows: Let ξ = [ξ1, ξ2]T ∈ S1 × IR be the state of the dynamical system.

ξ̇1 = ξ2 (5.9a)

ξ̇2 = −∂V (ξ1)

∂ξ1
− R(ξ)ξ2 (5.9b)

where V (ξ1) denotes the potential energy of the system which is to be chosen, and
R(ξ1, ξ2) is a (possibly nonlinear) damping function which is to be chosen. The target
system (5.9) is a simple pendulum system with a stable equilibrium ξ� = (ξ1� , 0)
and with the energy function

H(ξ1, ξ2) = 1

2
ξ2

2 + V (ξ1). (5.10)

To ensure the stability at the equilibrium we assume that

Assumption 5.3.2

1. The potential energy function V (ξ1) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂V (ξ1)
∂ξ1

∣
∣
∣
ξ1=ξ1�

= 0

∂2V (ξ1)

∂ξ2
1

∣
∣
∣
∣
ξ1=ξ1�

> 0

2. The damping function satisfies R(ξ�) ≥ 0.
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Immersion condition

Once we define a desired target dynamics, we define a mapping Π : S1 × IR →
S1 × IR2 as follows:

Π(ξ) : =
⎡

⎣
ξ1
ξ2

Π3(ξ)

⎤

⎦ (5.11)

whereΠ3(ξ) is to be chosen. Then with this choice ofΠ(ξ) and the target dynamics
(5.2), Eq. 5.3 becomes

⎡

⎢
⎣

ξ2
1
M

[
P − Dξ2 − EV sin ξ1

Π3(ξ)

]

1
TCSC

[−Π3(ξ)+ x3�

]

⎤

⎥
⎦ +

⎡

⎣
0
0
1

TCSC

⎤

⎦ c(Π(ξ))

=
⎡

⎣
1 0
0 1

∂Π3(ξ)
∂ξ1

∂Π3(ξ)
∂ξ2

⎤

⎦

[
ξ2

− ∂V (ξ1)
∂ξ1

− R(ξ)ξ2

]

.

(5.12)

Next we choose Π3(ξ) and c(Π(ξ)) to satisfy the above equation as follows: The
first row of (5.12) is already satisfied. From the second row we have

1

M

[
P − Dξ2 − EV

sin ξ1

Π3(ξ)

]
= −∂V (ξ1)

∂ξ1
− R(ξ)ξ2.

We choose R(ξ) = D
M and V (ξ1) = −β cos ξ̃1 for some β > 0 (to be chosen). We

use ξ̃1 to denote ξ1 − ξ1� . Then the above equation becomes

1

M

[
P − EV

sin ξ1

Π3(ξ)

]
= −β sin ξ̃1

from which we get

Π3(ξ) = EV sin ξ1

P + Mβ sin ξ̃1
.

Notice that Π3 is a function of ξ1 only. Here we make the following assumption:

Assumption 5.3.3 β < P
M .

This assumption makes Π3(ξ1) bounded for all ξ1. From the third row we have

1

TCSC

[−Π3(ξ1)+ x3�

] + 1

TCSC
c(Π(ξ)) = ∂Π3(ξ1)

∂ξ1
ξ2.

By substituting for Π3(ξ1) and V (ξ1) in the above equation we get
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c(Π(ξ)) = TCSC EV ξ2

⎡

⎢
⎣

cos ξ1
P + Mβ sin ξ̃1

− Mβ sin ξ1 cos ξ̃1
[

P + Mβ sin ξ̃1
]2

⎤

⎥
⎦+ EV sin ξ1[

P + Mβ sin ξ̃1
] − x3� .

Thus we get Π(ξ) and c(Π(ξ)).

Implicit manifold

The manifold M is implicitly described by

M =
{

x ∈ S1 × IR2|φ(x) = 0
}

with

φ(x) = x3 −Π3(x1)

= x3 − EV sin x1

P + Mβ sin x̃1

where x̃1 denotes x1 − x1� .

Manifold attractivity and trajectory boundedness

Here the off-the-manifold coordinate is z = φ(x) and we have that

ż = ẋ3 − Π̇3(x1)

= ẋ3 − ∂Π3(x1)

∂x1
ẋ1

= 1

TCSC

[−x3 + x3� + ψ(x, z)
] − ∂Π3(x1)

∂x1
x2

= ψ(x, z)

TCSC
+

[−x3 + x3�

TCSC
− ∂Π3(x1)

∂x1
x2

]
.

To ensure the boundedness of the trajectories of the off-the-manifold coordinate it z
and also that limt→∞ z(t) = 0 we take

ż = − γ z, γ > 0 (5.13)

and then we have

ψ(x, z) = TCSC

[
− γ z + x3 − x3�

TCSC
+ ∂Π3(x1)

∂x1
x2

]
.
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The control law

Next we calculate the control law as

u =ψ(x, φ(x))
=TCSC

[
− γφ(x)+ x3 − x3�

TCSC
+ ∂Π3(x1)

∂x1
x2

]

=(x3 − x3� )− TCSC γ

[
x3 − EV sin x1

P + Mβ sin x̃1

]
−

[
TCSC EV x2 Mβ sin x1 cos x̃1

[
P + Mβ sin x̃1

]2

]

+
[

TCSC EV x2 cos x1

P + Mβ sin x̃1

]
.

(5.14)

Finally, we establish boundedness of the trajectories of the closed-loop system
(5.8) with the control law (5.14) and the off-the-manifold coordinate z

ẋ1 = x2 (5.15a)

ẋ2 = 1

M

[
P − Dx2 − EV

sin x1

x3

]
(5.15b)

ẋ3 = 1

TCSC

[−x3 + x3� + u
]
, (5.15c)

ż = − γ z. (5.15d)

Here x ∈ S1 × IR2 and z ∈ IR. This implies x1 ∈ L∞ where L∞ denotes the space
of bounded functions. Now,

ẋ2 = 1

M

[
P − Dx2 − EV

sin x1

x3

]

= − D

M
x2 +�(x1, x3)

(5.16)

whereΔ(x1, x3) = 1
M

[
P − EV sin x1

x3

]
. From Assumption 5.3.1 we have x3 ≥ d2 >

0 and also x1 is bounded as stated earlier. This implies δ(x1, x3) is bounded. As we
have D > 0 and M > 0, (5.16) is an asymptotically stable linear system in x2 with
a bounded driving function Δ(x1, x3). This implies x2 ∈ L∞.

Next, we have x3 = z +Π3(x1). We have from (5.13) that it z is bounded. Also,
from Assumption 5.3.3 we have thatΠ3(x1) is bounded for all x1, and hence we can
conclude boundedness of x3.

The above discussion on the control synthesis can be summarized in the following
proposition which is the main result of this chapter.

Proposition 5.3.1 The closed-loop system (5.8) with the control law (5.14) is locally
asymptotically stable at x�.
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Fig. 5.2 Response of the SMIB system (5.8) with the I&I control law (5.14): Dotted line (open loop
response), dash-dot line (closed-loop response with β = 5 and γ = 5), dashed line (closed-loop
response with β = 5 and γ = 50), solid line (closed-loop response with β = 10 and γ = 50)

Proof Based on the arguments given above. ��

5.4 Simulation Results

We assume the following simulation parameters: M = 8
100π , D = 0.4

100π ,

P = 1.1pu, E = V = 1pu, TCSC = 0.02 s, 0.2 ≤ x3 ≤ 0.6 and the operat-
ing equilibrium is x� = (0.4556, 0, 0.4). The tuning parameters are β and γ . From
Assumption 5.3.3 an upper bound on the tuning parameter β is 43.19. To assess the
performance of the proposed control law we assume that a short circuit fault occurs
at the far end of the transmission line at time t = 1s for a duration of 0.1 s.

The open loop system exhibits heavy and sustained oscillations in x1, x2 and PG

in response to the applied transient as shown by dotted lines in Fig. 5.2. The closed-
loop response is plotted for three different sets of tuning parameters. An increase in
the value of β results in making the energy function of the target dynamics deeper,
and hence improves the closed-loop response. By increasing the value of γ makes the
closed-loop system to match with the trajectories of the desired dynamics at a faster
rate. The change in the response for increased value of γ is shown from the dash-dot
line to the solid line. Note that in this case the oscillations in PG die out quickly, in
about 1 s. The phase portraits of the system are shown in Fig. 5.3. Further, the plot
of φ(x) is presented in Fig. 5.4. Notice that, as discussed earlier the manifold M is
implicitly described by φ(x) = 0.
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Fig. 5.3 Phase plots for the SMIB system (5.8) with the I&I control law (5.14): Dotted line (open
loop response), dash-dot line (closed-loop response with β = 5 and γ = 5), dashed line (closed-
loop response with β = 5 and γ = 50), solid line (closed-loop response with β = 10 and γ = 50)
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Fig. 5.4 Plots of φ(x) for the SMIB system (5.8) with the I&I control law (5.14): Dotted line (open
loop response), dash-dot line (closed-loop response with β = 5 and γ = 5), dashed line (closed-
loop response with β = 5 and γ = 50), solid line (closed-loop response with β = 10 and γ = 50)

5.5 Damping Assignment for the SMIB System

In the previous section we proposed a stabilizing control law for the SMIB system
using I&I. There we chose the target dynamics based on the open loop system by
properly choosing an energy function, but keeping the damping term unchanged.
In this manner, as evident from the simulation plots, the stability property can be
improved by properly choosing the shape of the energy function. However, the open
loop system is poorly damping, in general, the transient response is not satisfactory.
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In this section. we modify the target dynamics (5.9) by introducing an additional
damping term as follows:

ξ̇1 = ξ2 (5.17a)

ξ̇2 = −∂V (ξ1)

∂ξ1
− R(ξ)ξ2 (5.17b)

with V (ξ1) = −β cos ξ̃1) and R(ξ) = D
M + γd where γd > 0 is the additional

damping. Then, the immersion condition (5.12) modifies to

⎡

⎢
⎣

ξ2
1
M

[
P − Dξ2 − EV sin ξ1

Π3(ξ)

]

1
TCSC

[−Π3(ξ)+ x3�

]

⎤

⎥
⎦ +

⎡

⎣
0
0
1

TCSC

⎤

⎦ c(Π(ξ))

=
⎡

⎣
1 0
0 1

∂Π3(ξ)
∂ξ1

∂Π3(ξ)
∂ξ2

⎤

⎦
[

ξ2

−β sin ξ̃1 − ( D
M + γd

)
ξ2

]
.

(5.18)

In this case Π3(ξ) modifies to

Π3(ξ) = EV sin ξ1

P + M(γd ξ2 + β sin ξ̃1)
.

Here note that Π3 is a function of both ξ1 and ξ2. To make Π3(ξ1) bounded in a
domain of operation we make the following assumptions: we assume that the domain
of operation is

Assumption 5.5.1

D =
{

x ∈ S1 × IR2| d1 < x1 <
π

2
− d1, |x2| < d2, d3 < x3 < d3

}
,

where d1 > 0, d2 > 0 and 0 < d3 < d3 are small numbers.

Further, we make the following assumption:

Assumption 5.5.2 β < P
M − γd d2.

This assumption makesΠ3(ξ1) bounded for all ξ1. Then, from the third row of (5.18)
we have

c(Π(ξ)) = TCSC EV ξ2

⎡

⎢
⎣

cos ξ1

P + M(γd ξ2 + β sin ξ̃1)
− Mβ sin ξ1 cos ξ̃1

[
P + M(γd ξ2 + β sin ξ̃1)

]2

⎤

⎥
⎦

+
EV M γd sin ξ1

(
β sin ξ̃1 + ( D

M + γd
)
ξ2

)

[
P + M(γd ξ2 + β sin ξ̃1)

]2 + EV sin ξ1[
P + M(γd ξ2 + β sin ξ̃1)

] − x3� .
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Thus we get Π(ξ) and c(Π(ξ)).

Implicit manifold

The manifold M is implicitly described by

M =
{

x ∈ S1 × IR2|φ(x) = 0
}

with

φ(x) = x3 −Π3(x1)

= x3 − EV sin x1

P + M(γd x2 + β sin x̃1)

where x̃1 denotes x1 − x1� .

Manifold attractivity and trajectory boundedness

Here the off-the-manifold coordinate is z = φ(x) and we have that

ż = ẋ3 − Π̇3(x1, x2)

= ẋ3 − ∂Π3(x1, x2)

∂x1
ẋ1 − ∂Π3(x1, x2)

∂x2
ẋ2

= 1

TCSC

[−x3 + x3� + ψ(x, z)
] − ∂Π3(x1, x2)

∂x1
x2 − ∂Π3(x1, x2)

∂x2
ẋ2

= ψ(x, z)

TCSC
+

[−x3 + x3�

TCSC
− ∂Π3(x1, x2)

∂x1
x2 − ∂Π3(x1, x2)

∂x2
ẋ2

]
.

To ensure the boundedness of the trajectories of the off-the-manifold coordinate
z and also that limt→∞ z(t) = 0 we choose the dynamics of the it z coordinate as in
(5.13) and then we have

ψ(x, z) = TCSC

[
− γ z + x3 − x3�

TCSC
+ ∂Π3(x1, x2)

∂x1
x2 + ∂Π3(x1, x2)

∂x2
ẋ2

]
.

The control law

Next we calculate the control law as



58 5 Stabilization via Immersion and Invariance with the First Order Model of the CSC

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10
0

0.5

1

1.5

Fig. 5.5 Response of the SMIB system (5.8) with the I&I control law (5.19): Dotted line (open
loop response), dash-dot line (closed-loop response with β = 38, γ = 1 and γd = 5

π
), solid line

(closed-loop response with β = 38, γ = 10 and γd = 5
π
)

u =ψ(x, φ(x))
=TCSC

[
− γφ(x)+ x3 − x3�

TCSC
+ ∂Π3(x1, x2)

∂x1
x2 + ∂Π3(x1, x2)

∂x2
ẋ2

]

=(x3 − x3� )− TCSC γ

[
x3 − EV sin x1

P + M(γd x2 + β sin x̃1)

]
−

[
TCSC EV x2 Mβ sin x1 cos x̃1
[
P + M(γd x2 + β sin x̃1)

]2

]

−
⎡

⎣
TCSC EV sin x1

(
1
M

[
P − Dx2 − EV sin x1

x3

])

[
P + M(γd x2 + β sin x̃1)

]2

⎤

⎦ +
[

TCSC EV x2 cos x1

P + M(γd x2 + β sin x̃1)

]
.

(5.19)
Finally, we can establish boundedness of the trajectories of the closed-loop system

(5.8) with the control law (5.19) and the off-the-manifold coordinate it z as in the
previous section. However, note that we have x3 = z + Π3(x1, x2). We have from
(5.13) that it z is bounded. Also, from Assumption 5.3.3 we have that Π3(x1, x2),

and hence x3 is bounded in Dδ2 .

The above discussion on the control synthesis can be summarized in the following
proposition which is the main result of this chapter.

Proposition 5.5.1 The closed-loop system (5.8) with the control law (5.19) is locally
asymptotically stable at x�.

Proof Based on the arguments given above. ��
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Fig. 5.6 Phase plots the SMIB system (5.8) with the I&I control law (5.19): Dotted line (open
loop response), dash-dot line (closed-loop response with β = 38, γ = 1 and γd = 5

π
), solid line

(closed-loop response with β = 38, γ = 10 and γd = 5
π
)

5.6 Simulation Results

We assume the following simulation parameters M = 8
100π , D = 0.4

100π , P =
1.1 pu, E = V = 1 pu, TCSC = 0.02 s, 0.2 ≤ x3 ≤ 0.6 and the operating
equilibrium is x� = (0.4556, 0, 0.4). The tuning parameters are β, γd and γ . We
choose γd = 5

π
and assume d2 = 2.5rad/s and then from Assumption 5.5.2 an

upper bound on the tuning parameter β is 39.2. To assess the performance of the
proposed control law we assume that a short circuit fault occurs at the far end of
the transmission line at time t = 1s for a duration of 0.1 s. As plotted in Figs. 5.5
and 5.6 the additional damping term in the target dynamics improves the transient
response. Figure 5.7 gives an idea about the way the closed-loop system approaches
the manifold M.

5.7 Summary

In this chapter we presented a control law based on the I&I methodology to stabilize
the SMIB system at an equilibrium. The SMIB was described by the swing equation
model and the actuator by a first order model. A simple pendulum system with a
suitable energy function was chosen as the target dynamics. We chose a manifold
such that the closed-loop system restricted to the manifold is the target dynamics. The
control law was synthesized in order to render the manifold invariant and attractive.
Simulation results were provided to demonstrate the controller performance. Another
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Fig. 5.7 Plots of φ(x) for the SMIB system (5.8) with the I&I control law (5.19): Dotted line (open
loop response), dash-dot line (closed-loop response with β = 38, γ = 1 and γd = 5

π
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(closed-loop response with β = 38, γ = 10 and γd = 5
π
)

control law was synthesized to introduce additional damping in the target dynamics
and the performance was assessed through the simulations.

Reference

1. A. Astolfi, R. Ortega, Immersion and invariance: a new tool for stabilization and adaptive control
of nonlinear systems. IEEE Trans. Autom. Control 48(4), 590–606 (2003) April



Chapter 6
An Application of Immersion and Invariance to
a Class of Differential Algebraic Systems

6.1 Introduction

Electrical power systems are naturally described by nonlinear differential-algebraic
equations (DAEs). The dynamics of the dynamical components in the system such
as the synchronous generators are given by the set of differential equations, while
various network constraints such as power balance equations at different nodes are
expressed by a set of algebraic equations. In this chapter we extend the I&I method-
ology to a class of differential algebraic systems, without the need for solving for
the nonlinear algebraic equations explicitly. This class of systems is defined by the
condition that, the Jacobian of the algebraic constraints with respect to the algebraic
variables is full rank in a region of interest. We apply the control synthesis method-
ology to an SMIB system with a load bus, and then to a system of two machines with
two load buses. The SPM model is used for the power systems and the actuator, the
CSC, is modeled by a first order system.

The chapter is organized as follows: In Sect. 6.2 we propose an I&I-based stability
result for a class of dynamical systems with algebraic constraints. In Sect. 6.3 we
state a model of the SMIB system with the CSC and state the control objective. We
use the result derived in Sect. 6.2 to synthesize a stabilizing control law for the SMIB
system and provide a few simulation results. In Sect. 6.4 we consider a two machine
system with a CSC and synthesize a stabilizing control law. Simulation results are
given to assess the controller performance. Finally Sect. 6.5 concludes the chapter.

Next we extend the stability result from [1] to a class of nonlinear dynamical
systems with algebraic constraints.

N. S. Manjarekar and R. N. Banavar, Nonlinear Control Synthesis for Electrical Power 61
Systems Using Controllable Series Capacitors, SpringerBriefs in Applied Sciences
and Technology, DOI: 10.1007/978-3-642-27531-9_6, © The Author(s) 2012
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6.2 Immersion and Invariance for a Differential Algebraic
System (IIDAS)

Consider a smooth dynamical system of the form

ẋ = f (x, y)+ g(x, y)u (6.1a)

h(x, y) = 0 (6.1b)

on a smooth manifold X of dimension n + q. Locally, f : IRn × IRq → IRn, g :
IRn × IRq → IRn×m and h : IRn × IRq → IRq are smooth functions in U ⊂ X and
input u ∈ IRm . Further, the function h satisfies

Rank

⎡
⎢⎣

gradh1
...

gradhq

⎤
⎥⎦ = q ∀(x, y) ∈ U.

We wish to propose a constructive procedure for asymptotically stabilizing the system
to an equilibrium (x∗, y∗) in a region U ⊂ X . ��

The rank condition on the gradient ensures that the system evolves on an immersed
submanifold S of dimension n.S is described by the coordinate slice

S = {(x, y) ∈ IRn × IRq | h(x, y) = 0
}
.

Philosophy of immersion and invariance: The objective of the control philos-
ophy based on the Immersion and Invariance technique is to asymptotically stabilize
the system to (x�, y�) in a region U ⊂ X in the following way.

1. Construct an immersed submanifold M of S ⊂ X of dimension p < n and
containing (x�, y�). Synthesize a feedback control law ui to make M invariant
and to make the closed-loop system restricted to M asymptotically stable at
(x�, y�). This implies all trajectories originating in M stay in M for all time
(backward and forward) and asymptotically converge to (x�, y�).

2. Make the manifold M attractive in U
⋂S. This implies that trajectories of the

closed-loop system (6.1) with a feedback control law uoff (where the subscript
of f denotes being “off” the manifold M) originating anywhere in U

⋂S would
be attracted towards M. Further, we make this attraction “asymptotic.”

��
Remark 6.1 Since M is an immersed submanifold of X sitting in S (M ⊂ S ⊂
X ), M could be described once again as a coordinate slice as

M =
{(x, y) ∈ U : φ1(x, y) = 0, . . . , φn−p(x, y) = 0, h1(x, y) = 0, . . . , hq(x, y) = 0}

(6.2)
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where φ1, . . . , φn−p are smooth functions from U to IR, with the assumption

Assumption 6.2.1

Rank

⎡
⎢⎣

gradφ1
...

gradφn−p

⎤
⎥⎦ = n − p ∀(x, y) ∈ U ⊂ X

��
An alternate characterization of the manifold M in terms of p parameters ξ : =
(ξ1, . . . , ξp) ∈ IR p and a smooth mapping Π : = (Πx ,Πy) = (Πx1, . . . ,Πxn ,

Πy1, . . . ,Πyq ) : IR p → IRn × IRq is

M : = {(Πx (ξ),Πy(ξ)) | ξ ∈ IR p, h(Πx (ξ),Πy(ξ)) = 0,

rank

(
∂Πx

∂ξ
(ξ)

)
= p, ∀ξ ∈ IR p

}
.

(6.3)

The rank condition on the mapping Π ensures that the manifold M is an immersed
submanifold of dimension p.

For objective 1, we select the dynamics of the system in M to satisfy the invariance
condition as well as asymptotic convergence. Through the parametrization (6.3),
given

(x, y) = (Πx (ξ),Πy(ξ)) ∈ M

the dynamics on the manifold M is described by

ẋ |(x,y)∈M = f (x, y)+ g(x, y)ui = f (Πx (ξ),Πy(ξ))+ g(Πx (ξ),Πy(ξ))ui = ∂Πx

∂ξ
(ξ)ξ̇

(6.4)
with the equilibrium defined as

(x�, y�) : = (Πx (ξ�),Πy(ξ�)).

Objective 1 involves

1. Choosing a vector field α(ξ) that renders the evolution of ξ given by

dξ

dt
= α(ξ) (6.5)

to be Lyapunov stable and further, satisfies

lim
t→∞ ξ(t) = ξ� ∀ ξ(0) ∈ IR p Asymptotic stability.
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2. The selection of the functions Πx (ξ),Πy(ξ) and a feedback control ui (Πx (ξ),

Πy(ξ)) to satisfy

f (Πx (ξ),Πy(ξ))+ g(Πx (ξ),Πy(ξ))ui (Πx (ξ),Πy(ξ)) = ∂Πx (ξ)

∂ξ
α(ξ) (6.6)

which ensures

(x(0), y(0)) ∈ M ⇒ (x(s), y(s)) ∈ M ∀ s ∈ (−∞,∞) Invariance,

and at the same time,

h(Πx (ξ),Πy(ξ)) = 0. (6.7)

For objective 2, any initial condition x0 ∈ U \ M must move towards M. This
involves choosing a feedback control uoff(x, y) that renders the dynamics of the φi s
such that

lim
t→∞φi (x(t), y(t)) = 0 ∀ i = 1, . . . , n − p (6.8)

The dynamics of φ : = (φ1, . . . , φn−p)
T could be written as

dφ(x, y)

dt
= ∂φ

∂x
ẋ + ∂φ

∂y
ẏ = β(φ(x, y))

where β(·) ensures the previous condition (6.8). However, to synthesize the control
law, an explicit expression for ẏ would be required.

Remark 6.2 Please note that so far the assumption is only on the rank condition on
the gradient of h. In many applications, y could be expressed as an implicit function
of x and hence the functions φi s could be modified as φ̃i s that are functions of x alone.
In this case, we have an alternate description for M in terms of a smooth function
φ : IRn → IRn−p as

M : =
{
(x, y) ∈ IRn × IRq | φ̃(x) = 0

}
. (6.9)

So we wish to make the dynamics of φ̃(x) along the trajectories of (6.1) with input
uoff such that

lim
t→∞ φ̃(x(t)) = 0. (6.10)

Then, we have

∂φ̃

∂x
ẋ = β(φ̃(x))

��



6.2 Immersion and Invariance for a Differential Algebraic System (IIDAS) 65

Substituting for the dynamics of x, we have

∂φ̃

∂x
( f (x, y)+ g(x, y)uoff (x, y)) = β(φ̃(x))

In other words, if there exists a control uoff(x, y) such that the trajectories of the
system

˙̃
φ(x) = ∂φ̃

∂x
(x) [ f (x, y)+ g(x, y)uoff (x, y)] (6.11)

ẋ = f (x, y)+ g(x, y)uoff(x, y) (6.12)

h(x, y) = 0; (6.13)

are bounded and satisfy (6.10) then, the manifold M is attractive for (6.1) with input
uoff(x, y).Further, (x�, y�) is an asymptotically stable equilibrium of (6.1) with input
uoff(x, y).

Remark 6.3 Please note that on the manifold M, uoff = ui . ��
Remark 6.4 When the conditions of Remark 2 do not apply, we impose a stronger
condition that

[∂h(x, y)

∂y
]q×q

is invertible in the region U. This would ensure an explicit form of the dynamics of
y as

ẏ = −[∂h(x, y)

∂y
]−1[∂h(x, y)

∂x
][ f (x, y)+ g(x, y)u]

��
The above theorem can be interpreted with the help of Fig. 6.1 as: Given the

system (6.1) and the target dynamical system (6.5), find if possible, a submanifold
M ⊂ S such that

1. restriction of the closed-loop system to M is the target dynamics
2. M can be rendered invariant and attractive.

An implicit description of M is given by (6.2), while (6.3) gives a parametrized
description. The control law u = ui (Πx (ξ),Πy(ξ)) renders M invariant. A measure
of the distance of the system trajectories to M is given by z = φ̃(x), called as off-
the-manifold coordinate. Our aim is to design a control law u = uoff(x, y, z) that
keeps the system trajectories bounded and drives the coordinate z to zero.

An important class of systems to which the above result proves very helpful
in control synthesis is electrical power systems with load buses, expressed in the
structure preserving model (SPM) form. We now demonstrate the application of the
IIDAS to a two power systems.
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Fig. 6.1 Immersion and invariance for constrained systems

Fig. 6.2 SMIB system with CSC

6.3 The SMIB with a CSC

In [2] the nonlinear swing equation model of the SMIB system has been stabilized
using a CSC where the control law is synthesized using the I&I strategy. Here we
synthesize a stabilizing control law for the SMIB system with a load modeled by
differential algebraic equations. We model the CSC as a first order system to take
into account the actuator dynamics.

Consider the SMIB system with a CSC as shown in Fig. 6.2. The generator bus 1
is connected to bus 2 through the reactance j X1.A CSC is connected in between bus
1 and bus 2, and is represented by the variable capacitor − j Xc. The terminal bus is
connected to the infinite bus through a reactance j X2. The voltages at the infinite bus
and the generator terminal bus are 1∠0 and 1∠y1, respectively. We use the following
notation: x1 is the rotor angle and x2 is the rotor angular speed deviation with respect
to a synchronously rotating reference for the generator. Let D > 0, M > 0, P, PL

be the damping constant, moment of inertia constant, the mechanical power input, and
load power at bus 2, respectively. Next we assume that the rotor is round rotor type,
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and hence neglect the effect of the saliency of the rotor. Let the effective reactance
between bus 1 and 2 be denoted by x3.

6.3.1 Modeling

The generator rotor dynamics is modeled by the second order swing equation model
and the CSC dynamics is by a first order system. The state vector is denoted by
x = [x1 x2 x3]T ∈ S1 × IR2 and let y = y1 ∈ S1 be the algebraic variable. We use
[x y]T = [x1 x2 x3 y1]T .

The open loop dynamics is then given by

ẋ1 = x2 (6.14a)

ẋ2 = 1

M

(
P − Dx2 − sin(x1 − y1)

x3

)
(6.14b)

ẋ3 = 1

TCSC

(−x3 + x3� + u
)

(6.14c)

and

sin(x1 − y1)

x3
− b sin y1 − PL = 0 (6.14d)

where b = 1
X2
, TCSC is the time constant of the actuator dynamics, x3� is the steady

state value of x3 at a given operating equilibrium and u is the input to the actua-
tor. Equation (6.14d) is the power balance equation at node 2, and is an algebraic
constraint on the system dynamics. Thus, the system given by (6.14) can be consid-
ered as a dynamical system moving on a manifold S ⊂ S1 × IR2 × S1 defined by
the algebraic constraint (6.14d) as

S :=
{
(x, y) ∈ S1 × IR2 × S1

∣∣∣∣
sin(x1 − y1)

x3
− b sin y1 − PL = 0

}
. (6.15)

We assume,

Assumption 6.3.1 The region of operation is

D =
{
(x, y) ∈ S1 × IR2 × S1 | − π

2
+ d1 < x1 − y1 <

π

2
− d1, x3 ≥ d2,

−π
2

+ d1 < y1 <
π

2
− d1

}
,

where d1 > 0 and d2 > 0 are small numbers.

Note that the system (6.14) doesn’t have singularities in U := D ∩ S and hence the
result of IIDAS can be used for control synthesis locally on this region. Further, this is
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a conservative estimate of such a neighbourhood of (x�, y�) and actual neighbourhood
can be larger than U.

For the nonlinear system given by (6.14) we can determine the open loop equilibria
as follows: ẋ1 = 0 ⇒ x2 = 0, while ẋ3 = 0 with u ≡ 0 together implies x3 = x3� .

By substituting x2 = 0 and x3 = x3� and equating ẋ2 to zero, we get from (6.14b),
sin(x̄1−ȳ1)

x3�
= P, where x̄1 and ȳ1 denote the values of x1 and y1 at an equilibrium.

Substituting sin(x̄1−ȳ1)
x3�

= P in (6.14d), we get ȳ1 = arcsin
(

P−PL
b

)
. Substituting

ȳ1 in sin(x̄1−ȳ1)
x3�

= P we get x̄1 = arcsin(Px3� )+ arcsin
(

P−PL
b

)
. Next, we denote

y1� = ȳ1|(− π
2 ,

π
2 )

and x1� = x̄1|(y1� ,y1�+ π
2 )
. We denote the open loop operating

equilibrium by (x�, y�) = (x1� , 0, x3� , y1� ).

6.3.2 Control objective

As mentioned earlier, (x�, y�) denotes the operating stable equilibrium in D. We
assume that (x�, y�) is known to us and state the control objective as “to synthesize
a control law u in order to make the system given by (6.14) asymptotically stable at
(x�, y�) and to improve the stability properties of the system using an appropriate
energy function.”

6.3.3 Controller Synthesis Using IIDAS

In this section we synthesize a stabilizing controller for (6.14). The open loop system
consists of two subsystems- one is the second order swing equation (a slow system),
and the other is the CSC which is a fast dynamics as compared to the swing dynamics.

We use the stability result derived in Sect. 6.2 to synthesize a controller. As
discussed in [1] we make a natural choice for the target system as the mechanical
subsystem. We choose the lower order target dynamics as follows: Let ξ = [ξ1 ξ2]T ∈
S1 × IR be the state vector of the target dynamics. Then the target dynamics is chosen
as

ξ̇1 = ξ2 (6.16a)

ξ̇2 = −R(ξ)ξ2 − V ′(ξ1) (6.16b)

where V (ξ1) denotes the potential energy of the target dynamics and is to be chosen,
and R(ξ1, ξ2) is a (possibly nonlinear) damping function which is to be chosen.
The target system (6.16) is a simple pendulum system with a stable equilibrium
ξ� = (ξ1� , 0) with the energy function

H(ξ) = 1

2
ξ2

2 + V (ξ1). (6.17)
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To ensure the stability at the equilibrium ξ� we assume the following

Assumption 6.3.2

1. The potential energy function V (ξ1) satisfies
{

V ′(ξ1)
∣∣
ξ1=ξ1�

= 0

V ′′(ξ1)
∣∣
ξ1=ξ1�

> 0.

2. The damping function satisfies R(ξ�) ≥ 0.

Consider the mapping Π : S1 × IR −→ S defined as

Π(ξ1, ξ2) := (ξ1, ξ2,Π3(ξ),Π4(ξ)) (6.18)

where Π3(ξ) and Π4(ξ) are to be chosen such that (6.7) is satisfied, that is,

sin(ξ1 −Π4(ξ))

Π3(ξ)
− b sinΠ4(ξ)− PL = 0. (6.19)

Further, consider the submanifold M ⊂ S defined as

M :=
{
(x, y) ∈ S | ∃ξ ∈ S1 × IR such that(x, y) = Π(ξ)

}
. (6.20)

We have to choose the mapping Π and the target dynamics (6.16) such that the
immersion condition (6.6) is satisfied on M, that is,

⎡
⎢⎣

ξ2
1
M

(
P − Dξ2 − sin(ξ1−Π4(ξ))

Π3(ξ)

)
1

TCSC

(−Π3(ξ)+ x3�

)

⎤
⎥⎦+

⎡
⎣

0
0
1

TCSC

⎤
⎦ c(Π(ξ))

=
⎡
⎣

1 0
0 1
∂Π3
∂ξ1

∂Π3
∂ξ2

⎤
⎦
[

ξ2
−R(ξ)ξ2 − V ′(ξ1)

]
(6.21)

with the constraint (6.19).
Each row of (6.21) gives a condition on the choice of the mapping Π(ξ) and

the target dynamics. The first row is satisfied for the mapping (6.18) and the target
dynamics (6.16). We choose R(ξ) = D

M , V (ξ1) = −β cos ξ̃1 for some β > 0 (to be
chosen) and ξ̃1 = ξ1 − ξ1� . Then, the second row implies

sin(ξ1 −Π4(ξ))

Π3(ξ)
= P + βM sin ξ̃1. (6.22)

Then from (6.19) and (6.22) together we get

Π4(ξ1) = arcsin

(
P − PL + βM sin ξ̃1

b

)
. (6.23)
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Notice that Π4 is a function of ξ1 only. We make the following assumption:

Assumption 6.3.3 β <
b−|(P−PL )|

M
to ensure existence of Π4(ξ1), where | · | denotes the absolute value.

Next we get Π3 from (6.22) and (6.23) as

Π3(ξ1) =
sin
(
ξ1 − arcsin

(
P−PL+βM sin ξ̃1

b

))

P + βM sin ξ̃1
. (6.24)

Notice thatΠ3 is a function of ξ1 only. Here we make the following assumption:

Assumption 6.3.4 β < P
M

to ensure boundedness of Π3(ξ1) for all ξ1 ∈ S1. Finally, from (6.24) and the
third row of (6.21) we get,

c(Π(ξ)) = − x3� +Π3(ξ1)+ TCSC
∂Π3(ξ1)

∂ξ1
ξ2,

= − x3� + sin(ξ1 −Π4(ξ1))

P + βM sin ξ̃1

+ TCSCξ2 cos(ξ1 −Π4(ξ1))

P + βM sin ξ̃1

⎛
⎜⎜⎝1 − βM cos ξ̃1√

1 −
(

P−PL+βM sin ξ̃1
b

)2

⎞
⎟⎟⎠

− TCSCξ2βM sin(ξ1 −Π4(ξ1)) cos ξ̃1(
P + βM sin ξ̃1

)2 . (6.25)

This input u = c(Π(ξ)) given by (6.25) makes the manifold M invariant.

Next, we design a control law u = ψ(·) which ensures that the trajectories of the
closed-loop system are bounded and converge to the manifold M. It can be verified
that an implicit description for the manifold M in (6.20) can be given by

M = {(x, y) ∈ S | φ(x) = 0} (6.26)

where

φ(x) = x3 −Π3(x1)

= x3 − sin
(
x1 − ŷ1

)
P + βM sin x̃1

(6.27)

with (6.14d) to be satisfied, where x̃1 := x1−x1� and ŷ1 := arcsin
(

P−PL+βM sin x̃1
b

)
.
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Let z = φ(x) denote the off-the-manifold coordinate. Then, we have

ż =ẋ3 − Π̇3(x1)

= 1

TCSC

(−x3 + x3� + ψ
(
x, y, z

))− ∂Π3(x1)

∂x1
x2

(6.28)

where we substitute for ẋ1 and ẋ3 from (6.14).
To ensure the boundedness of the trajectories of the off-the-manifold coordinate

z and also that limt→∞ z(t) = 0 we take

ż = − γ z, γ > 0. (6.29)

Then, from (6.28) and (6.29) we can write

ψ(x, y, z) = x3 − x3� + TCSC

(
− γ (x3 −Π3(x1))+ ∂Π3(x1)

∂x1
x2

)
(6.30)

Next, we compute the control law using the IIDAS methodology as,

u(x) = ψ(x, y, φ(x))

= x3 − x3� − γ TCSC

(
x3 − sin

(
x1 − ŷ1

)

P + βM sin x̃1

)
+

TCSCx2 cos(x1 − ŷ1)

P + βM sin x̃1

⎛
⎜⎜⎝1 − βM cos x̃1√

1 −
(

P−PL+βM sin x̃1
b

)2

⎞
⎟⎟⎠

− TCSCx2βM sin(x1 − ŷ1) cos x̃1

(P + βM sin x̃1)
2 . (6.31)

Finally, we establish boundedness of the trajectories of the closed-loop system
(6.14) with the control law (6.31) and the off-the-manifold coordinate z

ẋ1 = x2 (6.32a)

ẋ2 = 1

M

(
P − Dx2 − sin(x1 − y1)

x3

)
(6.32b)

ẋ3 = 1

TCSC

(−x3 + x3� + u
)

(6.32c)

0 = sin(x1 − y1)

x3
− b sin y1 − PL (6.32d)

ż = − γ z. (6.32e)

Here x1 ∈ S1 and y1 ∈ S1, and hence we have x1, y1 ∈ L∞.
We can rewrite (6.32b) as
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ẋ2 = − D

M
x2 +Δ(x1, x3, y1) (6.33)

where Δ(x1, x3, y1) = 1
M

(
P − sin(x1−y1)

x3

)
. From Assumption 6.3.1 we have x3 ≥

d2 > 0 and this impliesΔ(x1, x3, y1) ∈ L∞. As we have D > 0 and M > 0, (6.33)
is an asymptotically stable linear system in x2 with a bounded driving function
Δ(x1, x3, y1). This implies x2 ∈ L∞.

Next, we have x3 = z + Π3(x1). We have, from (6.29), that z is bounded and
limt→∞ z(t) = 0. Also, from Assumption 6.3.4 we have thatΠ3(x1) is bounded for
all x1 ∈ S1, and hence we can conclude boundedness of x3.

Thus, we have shown that the trajectories of (6.32) are bounded and limt→∞ z(t) =
0. The above discussion on the control synthesis can be summarized in the following
proposition.

Proposition 6.3.1 The closed-loop system (6.14) with the control law (6.31) is
locally asymptotically stable at (x�, y�).

Proof Based on the arguments given above. ��

6.3.4 Simulation Results

We take the following simulation parameters: M = 8
100π , D = 0.4

100π , P = 1.1 pu,
PL = 0.8 pu, b = 2.5 pu, TCSC = 0.02 s, 0.2 ≤ x3 ≤ 0.6 and the operating
equilibrium is (x�, y�) = (0.5759, 0, 0.4, 0.12). The tuning parameters are β and
γ . From Assumption 6.3.3 and Assumption 6.3.4 an upper bound on the tuning
parameter β is min{27.48, 43.19} = 27.48.

To assess the performance of the proposed control law we assume that a short
circuit fault occurs at the far end of the transmission line at time t = 1 s for a
duration of 0.1 s.

In Fig. 6.3 the open loop response of the system to the transient is shown by
dotted lines. The closed-loop response is shown for two different sets of the tuning
parameters. The dash-dot lines show the closed-loop response for the case β = 10
and γ = 10. The response shows a slight overshoot at start and then oscillations
decay in about 7 s In the other case, the oscillations are damped more effectively, in
about 3 s. Figure 6.4 shows the phase plots of the response.

6.4 Two Machine Stabilization Using a CSC

In this section we consider a two machine system with a CSC described by a set
of differential algebraic equations and synthesize a stabilizing control law based on
the IIDAS strategy. The two machine system with a CSC is shown in Fig. 6.5. For
generators G1 and G2, bus 1 and 3 are the internal buses and, bus 2 and 4 are the
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terminal buses, respectively. For i = 1, 2, let δi , θi and ωi be the rotor angle, the
terminal bus voltage angle and rotor angular speed deviation, respectively, for the
i th generator with respect to a synchronously rotating reference. Let Di > 0, Mi >

0, Pi and PLi be the damping constant, moment of inertia constant, the mechanical
power input, and the load power of the i th generator, respectively. Let Xi be the
transient reactance between the internal bus and the terminal bus of the i th generator,
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Fig. 6.5 Two machine system with a CSC

and X12 be the reactance of the transmission line connecting the two terminal buses.
A CSC, denoted by a capacitive reactance of xc, is connected in series with X12, and
the effective reactance between the terminal buses is denoted by xl . We assume that
the voltages at all the buses are constant and equal to 1 pu. Next, we assume that the
rotor is round rotor type, and hence neglect the effect of the saliency of the rotor.

We choose the state variables for the system as x1 = δ1, x2 = δ2, x3 = ω1, x4 =
ω2, and x5 = xl . Further, y1 = θ1 and y2 = θ2 denote the algebraic variables of
the system. We denote the state vector of the system by x = (x1, x2, x3, x4, x5) ∈
S1 × S1 × IR3 and the vector of algebraic variables by y = (y1, y2) ∈ S1 × S1.

Then, the dynamics of the two machine system can be described by the following
set of DAEs:

ẋ1 = x3 (6.34a)

ẋ2 = x4 (6.34b)

ẋ3 = 1

M1
(P1 − D1x3 − b1 sin(x1 − y1)) (6.34c)

ẋ4 = 1

M2
(P2 − D2x4 − b2 sin(x2 − y2)) (6.34d)

ẋ5 = 1

TCSC
(−x5 + x5� + u) (6.34e)

b1 sin(x1 − y1)− b12 sin(y1 − y2)

x5
− PL1 = 0 (6.35a)

b2 sin(x2 − y2)+ b12 sin(y1 − y2)

x5
− PL2 = 0 (6.35b)

where b1 = 1
X1
, b2 = 1

X2
, b12 = 1, and x5� is the effective open loop line reactance

between bus 3 and 4, at the operating equilibrium.
Equations (6.35) represent the power balance at bus 2 and 3, and are the algebraic

constraints of the form (6.1b) on the system dynamics. Thus, the system given by
(6.34) is a dynamical system of the form (6.1a) and it evolves on a manifold S ⊂
S1 × S1 × IR3 × S1 × S1 where S is defined by the algebraic constraints (6.35) as

S : =
{
(x, y) ∈ S1 × S1 × IR3 × S1 × S1 |h(x, y) = 0

}
. (6.36)
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6.4.1 Control Objective

From practical considerations we assume,

Assumption 6.4.1 The region of operation is

D =
{
(x, y) ∈ S1 × S1 × IR3 × S1 × S1 | 0 < x1 − y1 <

π

2
− d1, 0 < x2 − y2

<
π

2
− d1, |y1 − y2| < π

2
− d1, dl < x5 < dl

}
,

where d1 > 0, dl > 0 and dl > 0 are small numbers.

Remark 6.5 It is to be noted here that, rank (grad(h(x, y))) = 2 in D, and hence
D⋂S is a 5-dimensional immersed submanifold. The bounds 0 < xi − yi <

π
2 −d1

ensure that the i-th machine is operating in generator mode for i = 1, 2. The bound
dl < x5 implies that the capacitive compensation provided by the CSC is always
less than the inductive reactance of the transmission line. That is, the net reactance
between the buses 2 and 3 is always inductive. On the other hand, the bound x5 < dl

decides the limit on inductive compensation of the line. Further, we note that in the
region D⋂S we have rank ( ∂(h(x,y))

∂y ) = 2.This ensures that y is an implicit function
of x, and the condition in Remark 6.4 is satisfied.

In general, it is difficult to determine the open loop equilibria of a nonlinear system
of the form (6.1a), (6.1b). To obtain the open loop equilibria of the system (6.34),
(6.35) we equate ẋ = 0 on the manifold S. An open loop equilibrium of the system
is of the form (x̄, ȳ) = (x̄1, x̄2, 0, 0, x5�, ȳ1, ȳ2), where x̄1, x̄2, ȳ1, and ȳ2 are the
solutions to the simultaneous equations

P1 − b1 sin(x̄1 − ȳ1) = 0

P2 − b2 sin(x̄2 − ȳ2) = 0

b1 sin(x̄1 − ȳ1)− b12 sin(ȳ1 − ȳ2)

x5�
− PL1 = 0

b2 sin(x̄2 − ȳ2)+ b12 sin(ȳ1 − ȳ2)

x5�
− PL2 = 0.

As mentioned earlier, we denote the operating stable equilibrium in D⋂S by
(x�, y�). We assume that (x�, y�) is known to us and state the control objective
as,

1. To synthesize a control law u(x, y) in order to make the system given by
(6.34)–(6.35) asymptotically stable at (x�, y�).

2. Synchronous generators generally exhibit poor mechanical damping which results
in sustained oscillations. The second control objective is to damp the oscillations
effectively, thus improving the transient response.

3. In this direction, the control objective is to choose a suitable lower order target
dynamics (6.5) with a desired energy function on a lower dimensional submanifold
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M ⊂ S which is defined using a mapping Π as in (6.3), map the trajectories of
the target dynamics to the (original) higher order manifold using the mappingΠ,
and synthesize a control law to asymptotically match the closed-loop system with
the mapped target dynamics.

6.4.2 Controller Synthesis Using IIDAS

In this section we synthesize an IIDAS based control law to asymptotically stabilize
the closed-loop system at the given equilibrium. The first step in the control synthesis
is to choose an appropriate target dynamics. The open loop dynamics can be divided
into two subsystems- one describing the two machine system, and the other describing
the CSC dynamics. We choose the target dynamics depending on the first subsystem
as follows: Let ξ = [ξ1 ξ2 ξ3 ξ4]T ∈ S1 × S1 × IR × IR be the state vector and η ∈ S1

be an algebraic variable of the target dynamics. We choose the target dynamics as

ξ̇1 = ξ3 (6.37a)

ξ̇2 = ξ4 (6.37b)

ξ̇3 = − D1

M1
ξ3 − β1 sin(ξ̃1 − η) (6.37c)

ξ̇4 = − D2

M2
ξ4 − β2 sin(ξ̃2 − η) (6.37d)

0 = β1 M1 sin(ξ̃1 − η)+ β2 M2 sin(ξ̃2 − η) (6.37e)

where βi is a positive constant, ξ̃i : = ξi − ξi� and ξi� is the operating equilibrium
of the i th generator. We assume that the region of operation for the target dynamics
is,

DT : =
{
(ξ, η) ∈ S1 × S1 × IR × IR × S1 | ξ̃i − η ∈

(
−π

2
,
π

2

)
, i = 1, 2

}
.

(6.38)
Here, note that (6.37e) defines a smooth constraint manifold ST ⊂ DT for the target
dynamics (6.37). For (6.37) the set of equilibria is given by

ET : =
{
(a + ξ1�, a + ξ2�, 0, 0, a) ∈ S1 × S1 × IR × IR × S1 | a ∈ S1

}
. (6.39)

Further, in ST the algebraic variable η can be expressed as a function of ξ1 and
ξ2 by expanding (6.37e) and rearranging the terms as

η(ξ1, ξ2) = tan−1

(
β1 M1 sin ξ̃1 + β2 M2 sin ξ̃2

β1 M1 cos ξ̃1 + β2 M2 cos ξ̃2

)
. (6.40)
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In a similar way, by differentiating (6.37e) along the trajectories of the target system
and rearranging the terms we have,

η̇(ξ) = β1 M1 cos(ξ̃1 − η)ξ3 + β2 M2 cos(ξ̃2 − η)ξ4

β1 M1 cos(ξ̃1 − η)+ β2 M2 cos(ξ̃2 − η)
(6.41)

where, η(ξ1, ξ2) is given by (6.40).
By differentiating (6.37e) with respect to η we have

β1 M1 cos(ξ̃1 − η)+ β2 M2 cos(ξ̃2 − η) = 0. (6.42)

Next, we differentiate (6.37e) with respect to time along the trajectories of the target
dynamics,

β1 M1 cos(ξ̃1 − η)
(
ξ̇1 − η̇

)+ β2 M2 cos(ξ̃2 − η)
(
ξ̇2 − η̇

) = 0

or

β1 M1 cos(ξ̃1 − η)ξ̇1 + β2 M2 cos(ξ̃2 − η)ξ̇2

−
(
β1 M1 cos(ξ̃1 − η)+ β2 M2 cos(ξ̃2 − η)

)
η̇ = 0.

We can rewrite the above equation using (6.42) as,

β1 M1 cos(ξ̃1 − η)ξ̇1 + β2 M2 cos(ξ̃2 − η)ξ̇2 = 0,

that is,

dξ1

dξ2
= − β2 M2 cos(ξ̃2 − η)

β1 M1 cos(ξ̃1 − η)ẋ1
. (6.43)

In the three dimensional space IR3, ET can be visualized as a straight line joining
the point (1 + ξ1�, 1 + ξ2�, 1) with the point (ξ1�, ξ2�, 0). Then, the projection of ET

(constrained in DT ) in ξ1 −ξ2 plane is a line with strictly positive slope. On the other
hand, from (6.43) we can say that the tangents to the projection of the trajectories
(constrained in DT ) in ξ1 − ξ2 plane have strictly negative slopes. Thus, we can
conclude that, for a given initial condition (ξ0, η0) ∈ DT the trajectory of (6.37), (if
at all), intersects L at a unique point in DT which is the equilibrium for that initial
condition.

Let the operating equilibrium of (6.37) be denoted by (ξ�, η�). We next show
that the target dynamics (6.37) is asymptotically stable at (ξ�, η�) using the energy
function

H(ξ, η) = −β1 cos(ξ̃1 − η)− β2 cos(ξ̃2 − η)+ 1

2
(ξ2

3 + ξ2
4 ). (6.44)

Clearly, the energy function is minimum on ET . The time rate of change of the
energy function along the trajectories of the target system is given by
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Ḣ(ξ, η) = ∂H(ξ, η)

∂ξ
ξ̇ + ∂H(ξ, η)

∂η
η̇.

Note that, from (6.37e) we have ∂H(ξ,η)
∂η

= 0. Then,

Ḣ(ξ, η) =β1 sin(ξ̃1 − η)ξ3 + β2 sin(ξ̃2 − η)ξ4 − D1

M1
ξ2

3 − β1 sin(ξ̃1 − η)ξ3

− D2

M2
ξ2

4 − β2 sin(ξ̃2 − η)ξ4

= − D1

M1
ξ2

3 − D2

M2
ξ2

4 .

As Ḣ(ξ, η) is negative semidefinite, we can infer that the target dynamics is stable
in the sense of Lyapunov. Using LaSalle’s invariance principle we can show that
(ξ�, η�) is asymptotically stable. Consider the situation where ξ3 ≡ 0 and ξ4 ≡ 0.
In that case, from (6.37) we have ξ̇1 = ξ̇2 = ξ̇3 = ξ̇4 ≡ 0 and hence ξ̃1 ≡ η ≡ ξ̃2.

Thus, by LaSalle’s invariance principle we conclude that the trajectories of the target
dynamics asymptotically approach ET . In other words, if the target dynamics is
perturbed from the the given initial condition of (ξ�, η�), then (ξ�, η�) itself is the
only point which can be assumed by the system.

Consider the mapping Π : ST −→ S defined as

Π(ξ1, ξ2, ξ3, ξ4, η) : = (ξ1, ξ2, ξ3, ξ4,Π5(ξ, η),Π6(ξ, η),Π7(ξ, η)). (6.45)

where Π5(ξ, η), Π6(ξ, η) and Π7(ξ, η) are to be chosen such that,

b1 sin(ξ1 −Π6(ξ, η))− b12 sin(Π6(ξ, η)−Π7(ξ, η))

Π5(ξ, η)
− PL1 = 0 (6.46a)

b2 sin(ξ2 −Π7(ξ, η))+ b12 sin(Π6(ξ, η)−Π7(ξ, η))

Π5(ξ, η)
− PL2 = 0. (6.46b)

Further, consider the manifold M ⊂ S defined as

M : = {(x, y) ∈ S | ∃(ξ, η) ∈ ST such that(x, y) = Π(ξ, η)} . (6.47)

We have to choose the mappingΠ(ξ, η) for the target dynamics (6.37) such that the
immersion condition (6.6) is satisfied on M, that is,
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⎡
⎢⎢⎢⎢⎢⎣

ξ3
ξ4

1
M1

[P1 − D1ξ3 − b1 sin(ξ1 −Π6(ξ, η))]
1

M2
[P2 − D2ξ4 − b2 sin(ξ2 −Π7(ξ, η))]

1
TCSC

[−Π5(ξ, η)+ x5�

]

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

TCSC

⎤
⎥⎥⎥⎥⎦

ui (Π(ξ, η))

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

∂Π5(ξ,η)
∂ξ1

∂Π5(ξ,η)
∂ξ2

∂Π5(ξ,η)
∂ξ3

∂Π5(ξ,η)
∂ξ4

∂Π5(ξ,η)
∂η

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ξ3
ξ4

− D1
M1
ξ3 − β1 sin(ξ̃1 − η)

− D2
M3
ξ4 − β2 sin(ξ̃2 − η)

η̇

⎤
⎥⎥⎥⎥⎦

(6.48)
with the constraint (6.46).

The first two rows of (6.48) are trivially satisfied for the mapping (6.45) and the
target dynamics (6.37). From the third row we get,

1

M1
(P1 − b1 sin(ξ1 −Π6(ξ, η))) = −β1 sin(ξ̃1 − η)

or,

Π6(ξ1, η) = ξ1 − arcsin

(
P1 + β1 M1 sin(ξ̃1 − η)

b1

)
. (6.49)

In a similar way, from the fourth row we get,

Π7(ξ2, η) = ξ2 − arcsin

(
P2 + β2 M2 sin(ξ̃2 − η)

b2

)
. (6.50)

Note that Π6(ξ1, η) is a functions of ξ1 and η, and Π7(ξ2, η) is a function of ξ2 and
η. Here, we make the following assumptions:

Assumption 6.4.2 β1 <
b1−P1

M1
and β2 <

b2−P2
M2

to ensure existence of Π6(ξ1, η) and Π7(ξ2, η), respectively.

Next, we substitute forΠ6(ξ1, η) andΠ7(ξ2, η) in (6.46). Then, it is clear that we
can solve (6.46) for Π5(ξ, η) if

P1 + P2 + β1 M1 sin(ξ̃1 − η)+ β2 M2 sin(ξ̃2 − η)− PL1 − PL2 = 0, (6.51)

that is, if

β1 M1 sin(ξ̃1 − η)+ β2 M2 sin(ξ̃2 − η) = 0 (6.52)

as, from (6.34) and (6.35) at (x, y) = (x�, y�) it can be shown that P1 + P2 − PL1 −
PL2 = 0. Notice that, (6.52) is the same as (6.37e), the constraint defined on the
target dynamics. Thus, we can compute Π5(ξ, η) as
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Π5(ξ, η) = 2b12 sin(Π6(ξ1, η)−Π7(ξ2, η))

b1 sin(ξ1 −Π6(ξ, η))− b2 sin(ξ2 −Π7(ξ, η))− PL1 + PL2

or

Π5(ξ1, ξ2, η) =
b12 sin

(
ξ1 − ξ2 − ζ̂1 + ζ̂2

)

P1 − PL1 + β1 M1 sin(ξ̃1 − η)
(6.53)

where we denote ζ̂i : = arcsin
(

Pi +βi Mi sin(ξ̃i −η)
bi

)
for i = 1, 2. Here we make the

following assumption:

Assumption 6.4.3 β1 <
|P1−PL1|

M1
and β2 <

|P2−PL2|
M2

.

This assumption makesΠ5(ξ1, ξ2, η) bounded for all (ξ1, ξ2, η) ∈ S1 × S1 × S1.

Thus we have selected the mapping Π(ξ, η) which maps the trajectories of the
target dynamics from ST into the manifold M ⊂ S. Here, note thatΠ5 is a function
of ξ1, ξ2 and η.

Finally, from (6.53) and the last row of (6.48) we get,

ui (Π(ξ, η)) = − x5� +Π5(ξ1, ξ2, η)

+ TCSC

(
∂Π5(ξ1, ξ2, η)

∂ξ1
ξ3+ ∂Π5(ξ1, ξ2, η)

∂ξ2
ξ4+ ∂Π5(ξ1, ξ2, η)

∂η
η̇

)
,

or

ui (Π(ξ, η)) = − x5� +
b12 sin

(
ξ1 − ξ2 − ζ̂1 + ζ̂2

)

P1 − PL1 + β1 M1 sin(ξ̃1 − η)

+
TCSCb12 cos

(
ξ1 − ξ2 − ζ̂1 + ζ̂2

)

P1 − PL1 + β1 M1 sin(ξ̃1 − η)⎛
⎜⎜⎜⎜⎝
ξ3 − ξ4 + β1 M1 cos(ξ̃1 − η) (−ξ3 + η̇)

b1

√
1 −

(
P1+β1 M1 sin(ξ̃1−η)

b1

)2
+ β2 M2 cos(ξ̃2 − η) (ξ4 − η̇)

b2

√
1 −

(
P2+β2 M2 sin(ξ̃2−η)

b2

)2

⎞
⎟⎟⎟⎟⎠

+
TCSCb12β1 M1 cos(ξ̃1 − η) sin

(
ξ1 − ξ2 − ζ̂1 + ζ̂2

)

(
P1 − PL1 + β1 M1 sin(ξ̃1 − η)

)2 (−ξ3 + η̇)

(6.54)
This input u = ui (Π(ξ, η)) given by (6.54) makes the manifold M invariant.

Next, we design a control law u = uoff(·) which ensures that the trajectories
of the closed-loop system are bounded and converge to the manifold M. Under
the mapping Π we have that, ξi �→ xi for i = 1, . . . , 4. Then, it is clear that
η(ξ1, ξ2) �→ ηx := η(x1, x2) and η̇(ξ) �→ η̇x := η̇(x1, x2, x3, x4). Then, an implicit
description of M can be given as

M : =
{
(x, y) ∈ S | φ̃(x) = 0

}
. (6.55)
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where

φ̃(x, ηx ) = x5 −Π5(x1, x2, ηx )

= x5 − sin
(
x1 − x2 − ŷ1 + ŷ2

)
P1 − PL1 + β1 M1 sin(x̃1 − ηx )

.
(6.56)

with (6.35) to be satisfied, where x̃i : = xi−xi� and ŷi : = arcsin
(

Pi +βi Mi sin(x̃i −ηx )
bi

)

for i = 1, 2.
Let z = φ̃(x, ηx ) denote the off-the-manifold coordinate. Then, we have

ż =ẋ5 − Π̇5(x1, x2, ηx )

=ẋ5 − ∂Π5(x1, x2, ηx )

∂x1
ẋ1 − ∂Π5(x1, x2, ηx )

∂x2
ẋ2 − ∂Π5(x1, x2, ηx )

∂ηx
η̇x

= 1

TCSC

[−x5 + x5� + uoff(x, y, z)
]− ∂Π5(x1, x2, ηx )

∂x1
x3 − ∂Π5(x1, x2, ηx )

∂x2
x4

− ∂Π5(x1, x2, ηx )

∂ηx
η̇x (6.57)

where we have substituted for ẋ1, ẋ2 and ẋ5 from (6.35).
To ensure the boundedness of the trajectories of the off-the-manifold coordinate

z and also that limt→∞ z(t) = 0 we take

ż = − γ z, γ > 0. (6.58)

Then, from (6.57) and (6.58) we can write

uoff (x, ηx , z) =x5 − x5� − γ TCSC (x5 −Π5(x1, x2, ηx ))

+ TCSC

(
∂Π5(x1, x2, ηx )

∂x1
x3 + ∂Π5(x1, x2, ηx )

∂x2
x4 + ∂Π5(x1, x2, ηx )

∂ηx
η̇x

)
.

(6.59)
Thus a stabilizing IIDAS control law is synthesized as

u(x) =uoff (x, ηx , φ̃(x))

=x5 − x5� − γ TCSC

(
x5 − b12 sin

(
x1 − x2 − ŷ1 + ŷ2

)
P1 − PL1 + β1 M1 sin(x̃1 − ηx )

)

+ TCSCb12 cos
(
x1 − x2 − ŷ1 + ŷ2

)
P1 − PL1 + β1 M1 sin(x̃1 − ηx )⎛

⎜⎜⎝x3 − x4 + β1 M1 cos(x̃1 − ηx ) (−x3 + η̇x )

b1

√
1 −

(
P1+β1 M1 sin(x̃1−ηx )

b1

)2
+ β2 M2 cos(x̃2 − η) (x4 − η̇x )

b2

√
1 −

(
P2+β2 M2 sin(x̃2−η)

b2

)2

⎞
⎟⎟⎠

+ TCSCb12 sin
(
x1 − x2 − ŷ1 + ŷ2

)
(β1 M1 cos(x̃1 − ηx )) (−x3 + η̇x )

(P1 − PL1 + β1 M1 sin(x̃1 − ηx ))
2 . (6.60)
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Finally, we establish boundedness of the trajectories of the closed-loop system
(6.34) with the control law (6.60) and the off-the-manifold coordinate z. The closed-
loop system is

ẋ1 = x3 (6.61a)

ẋ2 = x4 (6.61b)

ẋ3 = 1

M1
[P1 − D1x3 − b1 sin(x1 − y1)] (6.61c)

ẋ4 = 1

M2
[P2 − D2x4 − b2 sin(x2 − y2)] (6.61d)

ẋ5 = 1

TCSC

[−x5 + x5� + u
]

(6.61e)

0 = b1 sin(x1 − y1)− b12 sin(y1 − y2)

x5
− PL1 (6.61f)

0 = b2 sin(x2 − y2)+ b12 sin(y1 − y2)

x5
− PL2 (6.61g)

ż = − γ z. (6.61h)

Here x1, x2, y1, y2 ∈ S1, and hence we have x1, x2, y1, y2 ∈ L∞.
Next, we can rewrite (6.61c) and (6.61d) as

ẋ3 = − D1

M1
x3 +Δ1(x1, y1) (6.62a)

ẋ4 = − D2

M2
x4 +Δ2(x2, y2) (6.62b)

where Δ1(x1, y1) = 1
M1

[P1 − b1 sin(x1 − y1)] and Δ2(x2, y2) = 1
M2

[P2 − b2
sin(x2 − y2)]. Clearly, both Δ1(x1, y1) ∈ L∞ and Δ2(x2, y2) ∈ L∞. As we have
D1 > 0 and M1 > 0, (6.62a) is an asymptotically stable linear system in x3 with a
bounded driving function Δ1(x1, y1). This implies x3 ∈ L∞. In a similar way we
can show that x4 ∈ L∞.

Next, we have x5 = z +Π5(x1, x2). We have, from (6.58), that z is bounded and
limt→∞ z(t) = 0. Also, from Assumption 6.4.3 we have thatΠ5(x1, x2) is bounded
for all (x1, x2) ∈ S1 × S1, and hence we can conclude boundedness of x5.

Thus, we have shown that the trajectories of (6.61) are bounded and limt→∞ z(t) =
0. The above discussion on the control synthesis can be summarized in the following
proposition which is an important result in this chapter:

Proposition 6.4.1 The closed-loop system (6.34)–(6.35) with the control law (6.60)
is locally asymptotically stable at (x�, y�).

Proof Based on the arguments given above. ��
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Fig. 6.6 Response of the two machine system (6.34)–(6.35) with the I&I control law (6.60): dotted
line (open loop response), solid line (closed-loop response with β1 = 5, β2 = 5 and γ = 5)

6.4.3 Simulation Results for the Two Machine System

The simulation parameters for the two machine system shown in Fig. 6.5 are assumed
as follows: M1 = M2 = 8

100π , D1 = D2 = 0.4
100π , P1 = P2 = 1.4 pu, PL1 =

1.2 pu, PL2 = 1.6 pu, b1 = b2 = 2.5 pu, b12 = 1 pu, TCSC = 0.02 s 0.2 ≤ x5 ≤ 0.6
and the operating equilibrium is (x�, y�) = (0.32, 0.2349, 0, 0, 0.4,−0.274,−0.36).
From Assumption 6.4.2 and Assumption 6.4.3 an upper bound on the tuning para-
meters βi , i = 1, 2 is min{43.19, 7.85} = 7.85. We choose βi = 5, i = 1, 2.

We assume that a short circuit fault occurs at bus 2 for a duration of 0.1 s at t = 1
s. The rotors of both the machines start swinging in response to the transient. Due to
poor mechanical damping the oscillations sustain for a long period as shown by dotted
plots in Fig. 6.6. The closed-loop response for the tuning parameters β1 = β2 = 5
and γ = 5 is denoted by solid lines. For the closed-loop system the oscillations in
both generators die out in about 5 s. The phase portraits for the open loop response
and the closed-loop response are shown in Fig. 6.7. The power variations are shown
in Fig. 6.8.

Note that, the algebraic equations of the SPM models given by (6.14d) and (6.34)
do not correctly describe the algebraic part of a DAE system, since the impact of the
reactive power balances are not included. These constraints (reactive power balance)
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Fig. 6.7 Phase plots of the two machine system (6.34)–(6.35) with the I&I control law (6.60):
dotted line (open loop response), solid line (closed-loop response with β1 = 5, β2 = 5 and γ = 5)
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Fig. 6.8 Power variations of the two machine system (6.34), (6.35) with the I&I control law (6.60):
dotted line (open loop response), solid line (closed-loop response with β1 = 5, β2 = 5 and γ = 5)

are indeed quite important and the voltages at the load buses cannot be considered
constant.
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Fig. 6.9 Response of the detailed model of SMIB system with the I&I control law (6.31): dotted
line (open loop response), solid line (closed-loop response with β = 25 and γ = 10)
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Fig. 6.10 Phase plots of the detailed model of SMIB system with the I&I control law (6.31): dotted
line (open loop response), solid line (closed-loop response with β = 25 and γ = 10)

However, in this attempt to use I&I for synthesizing stabilizing control laws, we
have used these somewhat simplified models-(6.14d) and (6.34), similar to the ones
given by Bergen and Hill [3] where they assumed frequency dependent load and
constant voltage at the buses. In their model all buses in the transmission network
are considered as P-V buses and Q at these nodes is not explicitly considered. That
is, there is no algebraic equation for reactive power at the buses. As a first step
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Fig. 6.11 Response of the detailed model of two machine system with the I&I control law (6.60):
dotted line (open loop response), solid line (closed-loop response with β1 = 15, β2 = 15 and
γ = 5)

in applying the nonlinear control synthesis technique (I&I) for the power systems
with the structure preserving models (SPM) we use a similar modeling approach.
This assumption simplifies the control synthesis procedure considerably, as we the
number of the algebraic variables as well as the constraints reduce by one each,
for every bus to which a load is connected. We agree that, for these control laws
to be used in practical scenario we need to include voltage variations in the control
synthesis procedure, and the future work has to concentrate on the inclusion of voltage
variations and reactive power balance.

Given below are simulation results showing performance of the proposed control
law when applied to the more detailed model (with reactive power balance). Figure
6.9 shows the time response and Fig. 6.10 shows the phase plot for the SMIB system.
In this case y2 denotes the voltage at the load bus. For the two machine system, the
time response is shown in Fig. 6.11 and the phase plot is shown in Fig. 6.12. Here,
y3 and y4 denote the voltages at buses 2 and 3, respectively. In both the examples,
we have that the control law works satisfactorily to a certain extent.
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Fig. 6.12 Phase plots of the detailed model of two machine system with the I&I control law (6.60):
dotted line (open loop response), solid line (closed-loop response with β1 = 15, β2 = 15 and
γ = 20)

6.5 Summary

The I&I methodology available for unconstrained dynamical systems was extended
to a class of constrained dynamical systems. The result was then used to synthesize an
asymptotically stabilizing control law for an SMIB system and a two machine system
with a set of algebraic constraints, using a CSC as an actuator. The power system
was modeled using the SPM model, where the rotor dynamics of each machine
was described by the swing equation model and the power balance equations at
the generator terminal buses were given by the algebraic constraints. The CSC was
modeled by a first order system. The simulation results show significant improvement
in terms of the magnitude and settling time of the oscillations.
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Chapter 7
Conclusions and Scope for Future Work

7.1 Conclusions

We now summarize the work done in this monograph. We have presented two nonlin-
ear control techniques for power system stabilization at an equilibrium using a CSC.
Both the control laws were based on passivity ideas: one involves the notion of inter-
connection and damping assignment, the other is based on choosing target dynamics
on a lower dimensional manifold. The synchronous generator was described using
two well known nonlinear models—the second order swing equation and the third
order flux-decay model. The actuator, that is the CSC, was modeled using an injection
model and a first order model.

So overall, we considered four different cases.

1. In the first case the CSC was modeled by the injection model. This model is based
on the assumption that the CSC dynamics is very fast as compared to the SMIB
dynamics and hence can be approximated by an algebraic equation. Doing this,
we neglect the CSC dynamics and in the open loop system the input vector g(x)

takes a complex form—the injection model. Using this injection model and IDA-
PBC control methodology we synthesized passivity-based controllers for the two
power systems: the SMIB system and a two machine system. For both systems we
achieved asymptotically stabilizing control laws. The simulation results show that
the control scheme works satisfactorily and improves the transient performance
of the power systems. The control effort was smooth with initial sharp spikes.

2. In the second case we included the CSC dynamics as a first order system. We
achieved energy shaping control to asymptotically stabilize the closed-loop sys-
tem for both the models of the SMIB system (the swing equation model and the
flux-decay model). The controller performance was found to be effective in the
sense that it gave an improved transient response for the closed-loop system. The
control effort in these techniques was smooth with just initially sharp transients.

3. In the third case we used a different control methodology, I&I, to synthesize an
asymptotically stabilizing control law for the SMIB system with a CSC. Once

N. S. Manjarekar and R. N. Banavar, Nonlinear Control Synthesis for Electrical Power 89
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again the CSC was described by a first order system. We synthesized a control
law to stabilize the swing equation model of the SMIB. The plots show a slow
but considerably smooth response to the transients as compared to the IDA-PBC
based control law.

4. In the last case we incorporated the power balance algebraic constraint in the load
bus to the SMIB swing equation, and extended the I&I to a class of differential
algebraic systems and, proposed a stability result. Simulation results showed
significant improvement in the transient response. Using the same approach, we
presented results for the two-machine case with one CSC.

7.1.1 Comparison Between the Two Control Design Strategies

An important difference between the two control synthesis strategies is as follows.
In IDA-PBC, the target dynamics is of the same dimension as that of the open loop
system and it is selected by modifying the interconnection and damping structure,
and energy of the open loop system. Then, the control synthesis problem becomes
one of matching the target system with the closed-loop system exactly. On the other
hand, in the I&I strategy a lower dimensional target dynamics is immersed in the
original higher dimensional manifold. The control objective is to match the two
dynamics on the lower dimensional manifold as also ensuring that the trajectories
off-the-manifold reach it asymptotically, that is to say, off-the-manifold the control
aim is to match the two models asymptotically. This gives more freedom in choosing
the target dynamics in case of the I&I strategy, as compared to IDA-PBC.

In the IDA-PBC strategy, the transient performance of the closed-loop system
improves over the open loop response in terms of the magnitude of the oscillations
as well as the settling time. In the I&I case as well, the closed-loop response shows
similar improvement. Moreover, in the latter case, there are two ways of tuning the
response of the system—one is by affecting α (the target dynamics) through elements
of the energy function and secondly by changing γ which affects how rapidly the
system approaches the desired manifold.

For the IDA-PBC control law it is quite straightforward to give estimates of the
domain of attraction using the convexity property of the energy functions for the
closed-loop systems. For the I&I strategy however, the improvement in the domain
of attraction can be shown through simulations.

7.2 Future Work

The work proposed here could be extended in the following manner

1. The I&I strategy can be applied to multimachine power systems described by
models that are more complex and closer to the actual physical system.

2. Further, a combination of excitation control with the CSC can be investigated
from the I&I point of view.
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