Springer Texts in Education

Peter Wulff
Marcus Kubsch

Christina Krist Editors

Applying Machine
Learning in
Science Education
Research

When, How, and Why?

OPEN ACCESS @ Springer

Springer Texts in Education

Springer Texts in Education delivers high-quality instructional content for gradu-
ates and advanced graduates in all areas of Education and Educational Research.
The textbook series is comprised of self-contained books with a broad and compre-
hensive coverage that are suitable for class as well as for individual self-study. All
texts are authored by established experts in their fields and offer a solid method-
ological background, accompanied by pedagogical materials to serve students such
as practical examples, exercises, case studies etc. Textbooks published in the
Springer Texts in Education series are addressed to graduate and advanced grad-
uate students, but also to researchers as important resources for their education,
knowledge and teaching. Please contact Yoka Janssen at Yoka.Janssen@
springer.com or your regular editorial contact person for queries or to submit your
book proposal.

mailto:Yoka.Janssen@springer.com

Peter Wulff - Marcus Kubsch - Christina Krist
Editors

Applying Machine Learning
in Science Education
Research

When, How, and Why?

@ Springer

Editors

Peter Wulff Marcus Kubsch
Heidelberg University of Education Freie Universitit Berlin
Heidelberg, Baden-Wiirttemberg, Germany Berlin, Germany

Christina Krist

Graduate School of Education
Stanford University

Stanford, CA, USA

ISSN 2366-7672 ISSN 2366-7680 (electronic)
Springer Texts in Education
ISBN 978-3-031-74226-2 ISBN 978-3-031-74227-9 (eBook)

https://doi.org/10.1007/978-3-031-74227-9
This work was supported by Peter Wulff, Marcus Kubsch and Christina Krist.

The publication was made possible through open-access funds from the Heidelberg University of
Education and co-financing for open-access monographs and edited volumes by Freie Universitit Berlin.

© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-5471-7977
https://orcid.org/0000-0002-9738-4308
https://orcid.org/0000-0001-5497-8336
https://doi.org/10.1007/978-3-031-74227-9
http://creativecommons.org/licenses/by/4.0/

What I cannot create, I do not understand.

—Richard Feynman

Foreword

In the last three years, Al and machine learning have found their way into our
daily lives, including research activities. How can Al, particularly machine learning,
support our research activities in science education? Peter Wulff, Marcus Kubsch,
and Christina Krist in “Applying Machine Learning in Science Education Research:
When, how, and why?” take you on an essential journey on how you can use machine
learning to analyze and categorize trends in large data sets to explore important
science education questions or reduce the work we need to do.

As they argue, as science educators, it is not our research focus to perform funda-
mental research in Al, but as researchers, we do need to know enough about Al and
machine learning to use ML in our research. The various chapters in the book will
help you develop the technical skills and principles for making informed decisions
on when, how, and why to use ML in science education research.

The fusion of machine learning (ML) with science education research stands as
a beacon of innovation, heralding a new era of research that will help us to improve
learning by tailoring science learning environments to the needs and backgrounds of
teachers and learners throughout the globe using data-driven support. Peter Wulff,
Marcus Kubsch, and Christina Krist offer a comprehensive exploration of how ML
can help reshape the way we teach and learn science through research using ML and
how we understand the processes underpinning science education.

Machine learning, a subset of artificial intelligence focused on building systems
that learn from data, has transformed how individuals engage in work across the
globe, and education is no exception. In science education, where the complexity
of concepts and the diversity of learner needs present unique challenges, ML offers
possible solutions that were unimaginable just a decade ago. ML holds the potential
to support us in the development of automated assessment tools that provide instant
and meaningful feedback to students, the creation of dynamic learning environments
that adjust to individual learning trajectories, and the use of predictive analytics to
support at-risk students. As such, ML empowers educators and learners alike, making
science education more accessible, engaging, and effective.

The book takes you on a journey through the complex world of ML, helping
you understand ideas such as supervised and unsupervised machine learning and

vii

viii Foreword

large language models, and provides rich case studies that guide you along the path.
However, using ML does take intellectual work and prior knowledge, as does the
book. To get the most out of the book, knowledge of either Python or R is a prereq-
uisite. One critical aspect of the book that I found valuable is its warning regarding
whether we need to use ML and Al in our research. ML and Al are only tools, but
like any tool, ML is designed for a purpose, and learning how to use it effectively
takes time.

Machine learning can have a significant influence on science education research.
Through the meticulous collection and analysis of data, ML algorithms uncover
insights into learning behaviors, educational outcomes, and the efficacy of teaching
methodologies. This book delves into how you can use machine learning in your
research. Peter Wulff, Marcus Kubsch, and Christina Krist provide the theoret-
ical background and case studies to start you on your journey of using ML in
science education research. The case studies they present illuminate the transfor-
mative power of ML. Beyond its immediate impact on teaching and learning, inte-
grating ML into science education research offers the potential to gleam new insights
into how students learn challenging ideas and practices in science. Researchers can
identify broader trends and patterns by analyzing vast datasets, contributing to a
more nuanced understanding of how educational theories and practices intersect with
learner outcomes. This book explores these possibilities, offering readers a glimpse
into a future where education is not only informed by data but is also continually
adapted and improved based on empirical evidence.

Two additional chapters by scholars in the field also explore the unique possi-
bilities of ML in gleaming insights from extensive data sets. A chapter by Hall and
Krist builds on ideas in the book to demonstrate how researchers can use various
unsupervised pattern recognition approaches to analyze text data to answer research
questions. They also discuss using exploratory data analysis tools to explore large
text-based datasets before using unsupervised natural language processing tech-
niques to understand the data better. Rosenberg and his colleagues, Bhidya and
Pritchard, explain how researchers can use quantitative and qualitative approaches
to study complex constructs present in large data sets. As other chapters in the book,
these chapters provide valuable insights into how ML can support researchers as a
tool for exploring large data sets to find patterns and analyze data.

The book provides a testament to the critical pioneering contributions the authors
have made in using ML to improve science education. It challenges other educators
and researchers to use these emerging technologies to improve science teaching
and learning. Through their insights, readers will gain an appreciation of the
complexity and potential of using ML in science education and practical knowledge
on implementing ML solutions in their own teaching and research practices.

As we stand on the brink of a new paradigm in education, this book serves as both
a guide and an inspiration. It challenges us to rethink our approaches to research,
teaching, and learning, advocating for a future where education is more tailored to
students’ needs to help foster inclusive and effective science education environments
than what currently exists. The journey of integrating ML into science education is
fraught with challenges, including ethical considerations, the need for robust data

Foreword ix

privacy measures, and the imperative to ensure equity in access to technology. Yet,
the opportunities it presents for enhancing science education are boundless. The
authors touch upon these challenges. Peter Wulff, Marcus Kubsch, and Christina
Krist in “Applying Machine Learning in Science Education Research: When, How,
and Why?” takes you on a journey that requires cognitive engagement, but that
journey is essential for anyone interested in the future of science education and the
use of machine learning. The book offers a vision of how machine learning and
science education research can work together to create more informed, effective,
and engaging learning experiences for learners. As we move forward, we need to
embrace ML and Al to change education and transform it for the better, making
science learning more engaging, accessible, and impactful for students worldwide.
Applying Machine Learning in Science Education Research presents a giant step in
this direction.

May 2024 Joseph Krajcik
Michigan State University
East Lansing, USA

Contents

1 Introduction i 1
Christina Krist, Marcus Kubsch, and Peter Wulff
PartI Theoretical Background

2 Basics of Machine Learning 15
Peter Wulff, Marcus Kubsch, and Christina Krist

3 Datain Science Education Research 49
Peter Wulff, Marcus Kubsch, and Christina Krist

4 Applying Supervised ML 69
Peter Wulff, Marcus Kubsch, and Christina Krist

5 Applying Unsupervised ML 89
Peter Wulff, Marcus Kubsch, and Christina Krist

6 Sequencing Unsupervised and Supervised ML 107
Peter Wulff, Marcus Kubsch, and Christina Krist

7 Natural Language Processing and Large Language Models 117
Peter Wulff, Marcus Kubsch, and Christina Krist

8 Human-Machine Interactions in Machine Learning Modeling:
The Roleof Theory 143
Christina Krist, Marcus Kubsch, and Peter Wulff

Part II Hands-On Case Studies

9 Working with Data—Getting Started 157
Marcus Kubsch, Peter Wulff, and Christina Krist

10 Automation—Supervised Machine Learning 167
Marcus Kubsch, Christina Krist, and Peter Wulff

xi

xii

11

12

13

14

15

Pattern Recognition—Unsupervised Machine Learning

Marcus Kubsch, Christina Krist, and Peter Wulff

Automation and Explainability: Supervised Machine

Learning with Text Data

Peter Wulff, Marcus Kubsch, and Christina Krist

Unsupervised ML with Language Data

Peter Wulff, Marcus Kubsch, and Christina Krist

Unsupervised ML with Text Data

Kevin Hall and Christina Krist

Triangulating Computational and Qualitative Methods

to Measure Scientific Uncertainty

Joshua M. Rosenberg, Hadi Bhidya, and Cody Pritchard

Part III Future Directions

16

17

18

Risks and Ethical Considerations in the Context of Machine

Learning Research in Science Education

Cynthia M. D’ Angelo

Future Directions

Christina Krist

Conclusions

Marcus Kubsch, Christina Krist, and Peter Wulff

Contents

Acronyms

1D, 2D, 3D, ...
AGI

Al

ANN(s)
HDBSCAN

LLM(s)
ML
MLP
NLP
PCA
RVM
SVD
t-SNE
UMAP

One-, two-, three- or Higher Dimensional Data
Artificial General Intelligence

Artificial Intelligence

Artificial Neural Network(s)

Hierarchical Density-Based Spatial Clustering of Applications
with Noise

Large Language Model(s)

Machine Learning

Multi-layer Perceptron

Natural Language Processing

Principal Components Analysis

Relevance Vector Machine

Singular Value Decomposition

T-distributed Stochastic Neighbor Embedding

Uniform Manifold Approximation and Projection for Dimension

Reduction

Xiii

Chapter 1 ®)
Introduction Check for

Christina Krist, Marcus Kubsch, and Peter Wulff

Abstract This chapter introduces the purpose and goals of this book. It motivates
why applying machine learning in science education could offer novel opportuni-
ties for data-driven modeling of learning processes and answering novel research
questions. It also introduces the grand themes of this textbook: providing basics of
machine learning and natural language processing, arguing for the importance of
augmenting human analytic capabilities with what machine learning has to offer,
and introducing the challenges that might occur when applying machine learning in
science education.

1.1 Purpose and Goals of This Book

This book is meant to familiarize science education researchers with introductory
machine learning (ML) principles and techniques in a way that allows you to apply
them to research projects right away. It is written by science education scholars, for
science education scholars.

We, the three authors, have each come to appreciate ML through different paths,
and it takes up different spaces in our work and research agendas. Dr. Wulff has come
to appreciate ML and Al as tools to (partly) tame the complexity of language data,
extract patterns in it, and potentially use ML and Al to enhance pre-service science
teacher education and science learning more generally. Dr. Kubsch is interested in
the potential of ML as (a) a method that allows the integration of qualitative and
quantitative data to better understand science learning and (b) the potential of ML to
provide more adaptive learning at scale. For Dr. Kirist, it has become an invaluable

C. Krist (X)
Graduate School of Education, Stanford University, Stanford, CA, USA
e-mail: stinakrist@stanford.edu

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

P. Wulff
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany

© The Author(s) 2025 1
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_1&domain=pdf
mailto:stinakrist@stanford.edu
https://doi.org/10.1007/978-3-031-74227-9_1

2 C. Krist et al.

tool for augmenting (and at times restructuring) the qualitative research she does
using classroom video and audio data—though she will surely caution you that using
ML, or any Al-based tool, should actually make your research harder and more
complicated rather than easier!

Our experiences have collectively shown us how ML could advance our research
agendas in exciting and innovative ways. At the same time, we have noticed that
people who have started to take up ML approaches in their work are either largely
self-taught or come from a handful of specialized lab groups. In other words, there
is a systematic lack of educational opportunity in science education research. This is
both an access issue, and a potential ethics issue: when focused primarily on learning-
by-doing, there is often not space for considering or developing a broader framework
for how one should (or should not) go about integrating ML into science education
research.

It is with both issues of access and ethics in mind that we write this book. In terms
of access, we intend for this book to be well suited for science education researchers
who are new to machine learning but curious about whether and how it might be
used. Often we have found that this curiosity is driven by the fear that one is missing
out on some “magic bullet” technique that can suddenly make one’s research much
easier. If this is you, we have some bad news. There is no magic bullet. But we hope
that you will continue reading, and we think you will find a tool or application that
will make you think about your research question in a new way, explore a new facet
of your data, or propose a new set of questions altogether that you may not otherwise
have considered.

In terms of ethics, we aim to provide sufficient technical background for concep-
tual understanding of the underlying algorithms at play (without getting too bogged
down in the computational weeds); a broad framework for questions one should ask
when considering when, how, and why to apply ML in your own science education
research; and concrete examples that walk you through using various ML techniques
along with us. We hope this background will equip to you be able to decide when
NOT to use ML as expertly as you can decide when and how to use it in your work.

The concrete examples in this book take two forms: “toy models,” or simplified
examples that illustrate key concepts (Part I), and worked examples in which we
provide you with both datasets and code to run yourself as you read (Part II). In
both types of examples, we intentionally walk through code excerpts in the body of
each chapter, using them as the basis to explain various mechanisms, concepts, and
principles of ML in context. We encourage you to try and make sense of the code
yourself (as tempting as it might be to just hit “run™!).

A related note of caution regarding the case studies and analyses presented in
this book: they are motivated primarily by pedagogy. Thus, the case studies and
analyses are explicitly not meant to answer a question or address a problem in the best
possible way. If you are someone who already has some understanding of machine
learning, or if you come back to this book some time after you worked through it,
you may consider some analyses too simple, some issues not debated with enough
mathematical rigor, or have questions about why we did not use advanced technique
X,Y or Z. This is intentional! We have written this book for researchers that are

1 Introduction 3

just starting out with using machine learning to serve as an initial map of the realm
of machine learning that empowers you to explore that realm—not to be the entire
territory. Once you begin raising questions and critiques, we congratulate you. You
have learned a lot.

To that end, this book is organized into three main parts. In Part I we outline
theoretical underpinnings (i.e., the “basics”) that are important to reflect upon when
applying ML in one’s research projects. In Chap. 2 we outline the basics for different
forms of ML and what particular challenges researchers might encounter in their ML
projects. In Chap. 3 we then motivate using ML for complex data analysis and show
in what ways educational data can be considered complex. In Chaps. 4, 5, and 6 we
present illustrative examples of how ML can be employed to analyze data and outline
workflows for different use cases of ML. In Chap. 7 we introduce natural language
processing and large language models which are crucial for processing language
data. Part I ends with Chap. 8 on considerations for human-machine tandems (Sherin,
2013), and how ML might augment human analytical powers (or limit it).

In Part II we provide hands-on case studies that demonstrate how the ML
approaches introduced in Part I can be realized in science education research projects
with science education-specific data sets. In Chap. 9 we first introduce readers to how
they can implement the case studies using open-source, freely available software
tools. In Chap. 10, a case study is presented with the goal to automate annotation and
coding of numerical research data. In Chap. 11 the important goal of pattern recogni-
tion for ML is applied to a science education research example. In Chap. 12 we show
how annotation of textual data can be automated with ML. In Chaps. 13 and 14, we
extend the goal of pattern recognition to unstructured language data. Finally, Chap.
15 utilizes computational tools in conjunction with qualitative methods to triangulate
evidence in a science education research problem (measuring scientific uncertainty).

Finally, Part III outlines future perspectives for ML in science education. Chapter
16 features a critical examination of risks and ethical considerations for applying ML
in science education research. Chapter 17 assembles ideas for how this rapidly evolv-
ing field of applying ML in science education might proceed. Concluding remarks
on this textbook as well as its situatedness in the evolving field of applying ML in
science education research are presented in Chap. 18.

1.2 Further Reading

As mentioned above, we will not mathematically derive any of the concepts, nor
will we engage much with the technical details of the ML algorithms that are used
throughout. We refer interested readers to these other resources:

e A classic introduction with advanced mathematics in deep learning is the book by
Goodfellow et al. (2016).

e A more recent book called Understanding Deep Learning is highly recommended
as it provides thorough mathematical as well as precise conceptual explanations

4 C. Kirist et al.

of relevant neural network architectures, focusing on ideas behind important
architectures rather than proofs (Prince, 2023).

e Marsland (2015) provides a thorough introduction of many ML algorithms with
Python code to implement the ML algorithms on a rather technical level.

e Similar to Marsland (2015), Bishop (2006) and Bishop and Bishop (2024) present
in-depth surveys of ML (focus on deep learning) algorithms with Python code to
implement the examples.

e There are other ML-related textbooks that introduce specific libraries such as
keras (Chollet, 2018).

e ML as particularly applied in physics contexts is provided by Rauf (2021).

e Both an introduction to ML and advanced topics (alongside Python code) can be
found in Murphy (2022) and Murphy (2023) as well as Murphy (2012). These
books provide depth in terms of mathematical background to the concepts.

Readers who are interested in data science, data mining, and mathematical details
of ML are referred to the following resources:

e Hastie et al. (2008) provide a reference introduction for statistical learning, which
undergirds the success of ML.

e Brunton and Kutz (2019) relate ML to dynamical systems and introduce many
underlying concepts for ML with mathematical rigor.

e Also, Kuhn and Johnson (2016) introduce predictive modeling where they outline
and detail many important concepts in ML that we also reference in this textbook.

e Similarly, Nisbet et al. (2009) present a thorough survey of mathematical details
for implementing data mining and statistical data analysis.

1.3 Why Apply Machine Learning in Science Education?

The current global vision for science education engaging learners in incrementally
developing explanatory models for natural phenomena, drawing together core sci-
ence ideas through participation in science practices (see for example the US Next
Generation Science Standards (NGSS, 2013), the German Bildungsstandards (in
physics) (KMK, 2020), or Korean science standards (Song et al., 2019)). Assess-
ing science practices and competencies requires assessment formats where learners
can use their knowledge to solve problems and display competencies. In addition,
facilitating learning environments that support students’ participation in scientific
practices requires that teachers provide feedback that is responsive to student think-
ing. Providing such feedback is resource-intensive. It requires substantial resources
from instructors in terms of both time and attention to a broad range of individuals and
their specific needs. Compounding this challenge are the social and cultural dimen-
sions of learning: building and sustaining classroom environments in which students
interact with each other to develop ideas, and which recognize and value students’
culturally diverse ways of knowing, requires both deep pedagogical flexibility and
deep knowledge of students.

1 Introduction 5

In the following sections, we describe how various ML tools could be well-suited
to assisting scholars in studying the messy and complex learning processes in align-
ment with this global vision for science education.

Complex constructs and real-world learning processes

A key goal of science education research is to improve science teaching and learn-
ing across contexts, including both in-school and out-of-school settings (Abell and
Lederman, 2007). However, processes of teaching and learning are complex and
dynamic. They are complex because they are multidimensional and hierarchically
determined. For example, in formal schooling, individuals are grouped into class-
rooms, which are embedded in schools, which are often part of larger districts, etc.
These levels influence and shape each other, as districts or countries might have dif-
ferent curricula, and individual classrooms can develop social dynamics that largely
impact learning and teaching processes.

Moreover, the multidimensionality of learning processes refers to the many fac-
tors that influence learning such as prior knowledge and prior experiences as well
as other cognitive and motivational constructs such as intelligence or self-efficacy
beliefs. In fact, most constructs in educational research are considered to be com-
plex. For example, intelligence and competencies are multidimensional and require
complex measurement instruments to validly assess them. Moreover, motivational
constructs such as self-efficacy, expectancy of success, sense of social belonging, or
task-related values are intricately influenced by situative and culturally focused fac-
tors. Also, teaching and learning processes are inherently time-bound, i.e., dynamic.
For example, a teacher’s curriculum implementation might be adaptively changed in
the course of the school year based on the needs of specific learners. Also within learn-
ers, knowledge becomes refined as more or different connections between concepts
are formed. Moreover, experience and deliberate practice enable effective chunking
of knowledge that then changes the engagement with learning materials and requires
sensitive measurement tools to be detected.

As an empirically-focused science, science education researchers strive to develop
theories on teaching and learning processes in science based on empirical data, which
encapsulates the complexity of the aforementioned constructs and processes to vari-
ous degrees. Empirical data can enable science education researchers to understand,
explain, and predict complex science-related teaching and learning processes and
their outcomes. Science education researchers seek to gather empirical evidence
through multiple sources of evidence. These sources of evidence include qualitative
observations, surveys, interviews, digital sensor data, and content-based assessments.
Patterns and structures in the collected data can then be used to inform instruction,
and improve teaching and learning in science education.

Digitally-enhanced learning environments have added additional possibilities for
gathering evidence on teaching and learning processes. For example, computer-based
learning environments provide not only information about students’ learning prod-
ucts such as their answers to an open ended question but also information about

6 C. Krist et al.

students’ learning processes, e.g., which elements in the environment students inter-
act with and for how long. In addition, other modalities of data such as video, audio,
or sensor data become increasingly easy to gather and can provide new insights into
teaching and learning. Also, digitally-enhanced learning environments can provide
support to learners, e.g., providing just-in-time and adaptive guidance for solving
problems. In sum, digitally-enhanced learning environments can provide science
education researchers with increasingly big and diverse data sets to further under-
standing and predicting complex science-related teaching and learning processes (we
will bracket out privacy and ethical issues that might come up in these environments
for the moment).

However, making sense of these multiple types and amounts of empirical data
(e.g., extracting patterns and structures in it, efficiently utilizing large amounts of
data, or enhancing teaching and learning through extracted patterns) can be daunting,
given the size, complexity, and limited resources available. Sophisticated data-driven
discovery tools and approaches can often help to make sense of these rich and com-
plex data sets. This calls for science education researchers to rethink, reconsider,
and expand their methodological toolset.

Artificial Intelligence and Machine Learning

Emerging technologies and methods in the realm of artificial intelligence (AI)
can provide novel means to enhance science education research through guiding
researchers in making sense of complex data sets, and implement reliable and valid
analytics for teaching and learning process analytics. Technologies and methods
in the realm of Al can relate to speech-to-text applications, automated translation,
generation of text and images with conversational Al, or complex data analysis.
Applications of Al infuse most areas of business, industry, and research. In one
form or another almost everyone today uses Al applications in professional or non-
professional contexts such as speech-to-text translation, machine translation, movie
or song rankings, image classification, object detection, mastering games, prov-
ing mathematical theorems, painting pictures, composing music, or solving science
problems. And as with most new technologies, applicability in various fields has to
be critically and reflectively examined because many challenges and pitfalls (both
pragmatically and fundamentally) await.

“Most of what is now classified as Al is really a case of machine learning” (Krauss,
2023, p. 223). Machine learning (ML) is a form of inductive learning to enable
computer programs certain capabilities (e.g., pattern identification or classification).
As such, ML can be considered a go-to method (sometimes referred to as a workhorse
of AI) to process and analyze complex data, and it enables researchers to perform
data-driven discovery. As many scientific disciplines increasingly rely on data-driven
discovery, it has been described as a fourth paradigm of scientific discovery (see Box
in Sect. 1.3).

ML algorithms inductively solve problems based on various amounts of data. For
example, ML can be used to extract patterns from complex unstructured data sets that
can be “large, noisy, and messy” (Nisbet et al., 2009, p. 17) such as natural language

1 Introduction 7

data, or train computers to automatically solve well-defined or ill-defined tasks like
single-digit addition (see Chap. 4), or image classification. With the advent of large
language models and foundation models many novel generative capabilities such as
textual summarization, image creation from text, or all sorts of writing tasks became
targets for Al. Al tools powered by ML also enter(ed) many educational software
applications such as automated feedback for students.

Science paradigms

Computer scientist Jim Gray outlined a broad-brush, high-level picture of sci-
entific inquiry capturing broad paradigms of discovery. For thousands of years,
according to Gray, mostly natural phenomena were described (Hey etal., 2009).
This empirical period was then extended for the last few hundred years with a
theoretical modeling branch, where models and generalizations were produced
(Hey et al., 2009). Examples might include Johannes Kepler’s derivation of
laws of planetary motion, Isaac Newton’s mathematical description of classical
mechanics, or James Clarke Maxwell’s derivation of fundamental equations
governing electromagnetism. These equations and models grew too compli-
cated for many problems to be solved analytically, hence, people started to
simulate processes either digitally or analogically(!). Ada Lovelace can be con-
sidered the first person to anticipate the importance of simulations (Pontzen,
2023). Simulations then became an important approach for science. Finally,
Jim Gray proposes a new, fourth, paradigm called eScience, where IT meets
scientism and theory, experiment, and simulations can be unified: “The tech-
niques and technologies for such data-intensive science are so different that it
is worth distinguishing data-intensive science from computational science as
a new, fourth paradigm for scientific exploration” (Hey et al., 2009, p. xix).
While in the fourth paradigm discovery is driven by data science and machine
learning, already a fifth paradigm has been proposed “where cognitive sys-
tems seamlessly integrate information from human experts, experimental data,
physics-based models, and data-driven models to speed discovery” (Zubarev
and Pitera, 2019, p. 103).

1.4 Current Applications and Challenges of Machine
Learning in Science Education Research

In science education scholarship, many researchers already use Al-based methods
such as ML to help them answer their research questions. A vast variety of different
ML approaches have been utilized and the recent (i.e., approximately since 2022)
evolution of generative large language models such as GPT-4 provides opportunities
for science education researchers to answer novel research questions and potentially

8 C. Krist et al.

enhance instruction. Research questions can be qualitative, or quantitative, as well as
confirmatory, or exploratory. For all alternatives, ML offers the potential to leverage
larger data sets and find patterns in a rather systematic way. It also poses novel
challenges for each. Let us dive into some of the applications.

Among the early implementations was Wang et al. (2008) who utilized ML to
evaluate problem solving with open-ended questions. They found high agreement of
human ratings and machine scores for the tasks and concluded that ML could support
the use of open-ended questions for assessment. Following this research, science
education researchers have used ML to automate assessments (Donnelly et al., 2016;
Zhai et al., 2020, 2022; Wulff et al., 2021; Nehm and Ha, 2011; Graesser et al.,
2004).

In contrast to these confirmatory research goals, others have used ML to explore
patterns in large data, including shifts in those patterns over time (Odden et al.,
2019; Sherin, 2013). Odden et al. (2020) utilized a pattern-seeking approach to
extract structures (time trends) from conference abstracts of the Physics Education
Research Conference (PERC) between the years 2001 and 2018 in order to analyze
waxing and waning topics in science education. Kubsch et al. (2023) used a similar
approach to investigate what were the main topics covered in the journal “Unter-
richtswissenschaft” (a German journal covering instructional science) and how they
changed over time. Still others have begun to leverage ML to develop more accurate
qualitative rubrics for assessing complex constructs such as scientific argumenta-
tion, explanations, or reflections (Tschisgale et al., 2023; Martin et al., 2023; Wulff
et al., 2022). While these applications mostly relate to textual data, also image data
was analyzed using ML. Zhai et al. successfully analyzed students’ drawings with
ML methods (Zhai et al., 2022). Moreover, Rosenberg and Krist (2020) combined
confirmatory and exploratory approaches and used ML for pattern-seeking in an
assessment context, leveraging ML to develop more accurate qualitative rubrics for
scoring, and a classification model that can then be used to automatically classify
unseen responses.

In most of these studies, it is also apparent that novel challenges have to be
addressed when applying ML in science education research. For example, valida-
tion of an ML model is an intricate process where substantial human expertise and
involvement is required. We bring in a cautionary tale from a study utilizing ML for
image recognition in medicine. This highly cited study sought to identify COVID-19
cases via chest X-rays (a task human raters are not able to perform reliably). The ML
algorithm performed well above chance. Some years later, another group re-analyzed
the same data and found that the algorithm also performed well above chance even
when trained on parts of the images that did not include any sections of the chest
in them! This highlights that applying ML in research can be tricky: algorithms
might "learn" patterns in the data that you are not aware of, and researchers need to
critically examine what pitfalls might occur if, for example, the basis for detecting
COVID-19 is something other than the clinically-determined radiological markers
for COVID-19. There are several valuable insights from this story, including that
data sets should be intentionally curated and that both data sets and details on the
ML algorithms used should be open sourced; and that scholars should LOOK at their

1 Introduction 9

datasets and data relevant to results with the assumption that the ML algorithm is
doing something other than they intended.

Another set of challenges is methodological. For instance, assessing model valid-
ity is often not a straightforward task. Liu et al. (2016) point out the importance of
evaluating whether a given ML model provides valid scores for relevant subgroups,
e.g., gender. Additionally, a more general challenge with inductive learning (extract-
ing patterns from examples) is the fact that it relies upon existing (training) data
sets. These training data sets are almost certainly biased in some way; ML algo-
rithms can propagate (and sometimes amplify) these biases. Carefully evaluating
which biases matter and in what ways they might impact scientific claims for a given
research question is an essential task for researchers. This is particularly difficult in
ML research, because it is not always clear how the complex ML algorithms reach
their decisions. Even the supposed versatile large language models exhibit many
flaws after closer inspection. They might hallucinate! knowledge even in innocuous
tasks such as textual summarization. Ecological, ethical, and epistemological issues
related to large language models have to be critically examined by researchers when
using these tools for research, which then might impact practice.

Finally, there are issues of technical access and ethics. Tools for performing ML-
based analyses might be proprietary and closed-source, and thus not accessible to
anyone without sufficient amounts of money (or other resources such as computer
clusters) available. In addition, the processing power required to run ML algorithms
comes at a significant environmental and human labor cost, utilizing large amounts
of fresh water and often (at least partly) relying on fossil fuels.

1.5 Conclusion

Applying ML in science education research can enhance the formative assessment
of competencies in knowledge-in-use assessments, and help automate assessment
which can facilitate scaling high-quality learning opportunities. We expect ML and
Al more generally to continue to push the frontiers of learning environment design
and analysis of complex educational data sets. However, if applied under wrong
pretenses, in unsuitable circumstances, or without sufficient thoughtfulness and care,
learning and teaching in science education might suffer.

In light of both the potential benefits and challenges, this book aims to equip sci-
ence education researchers with the background knowledge, concrete tools, and tech-
nical acumen needed to effectively and responsibly apply ML to their own research
projects. Importantly, we contend that the application of existing ML methods and
tools is possible without a deep background in statistics and computer science. We
aim to maintain the global vision for science teaching and learning described above
as we explore applications of ML to support teaching and learning throughout this
book, resisting both purely didactic forms of instruction and purely individualized

! This refers to making up false information by composing various knowledge fragments.

10 C. Krist et al.

ones (Biesta, 2016)—each insufficient in some way for achieving the vision for
science teaching and learning.

The remainder of this book will give interested readers (you!) an accessible intro-
duction on why, when, and how to apply ML in your (science) education projects,
enable you to conduct ML-based analyses, and provide you with a conceptual com-
pass that empowers you to navigate the ML landscape when learning about new meth-
ods, evaluating ML methods used by others, and devising your own ML applications.
We hope you enjoy the journey!

References

Abell, S. K., & Lederman, N. G. (2007). Preface. In S. K. Abell & N. Lederman (Eds.), Handbook of
research on science education. Mawhah, New Jersey: Lawrence Erlbaum Associates Publishers.

Biesta, G. (2016). Ict and education beyond learning: A framework for analysis, development
and critique. In E. Elstad (Ed.), Digital expectations and experiences in education (pp. 29—43).
Dordrecht: Sense Publishers.

Bishop, C. M. (2006). Pattern recognition and machine learning. Information science and statistics.
New York, NY: Springer Science+Business Media LLC.

Bishop, C. M., & Bishop, H. (2024). Deep learning: Foundations and concepts. Cham: Springer.

Brunton, S. L., & Kutz, J. N. (2019). Data-driven science and engineering. Cambridge University
Press.

Chollet, F. (2018). Deep learning with Python. Safari Tech Books Online Manning, Shelter Island,
NY.

Donnelly, P. J., Blanchard, N., Samei, B., Olney, A. M., Sun, X., Ward, B., Kelly, S., Nystran,
M., & D’Mello, S. K. (2016). Automatic teacher modeling from live classroom audio. In Umap
’16: Proceedings of the 2016 conference on user modeling adaptation and personalization (pp.
45-53).

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, Massachusetts and
London, England: MIT Press.

Graesser, A. C., McNamara, D., Louwerse, M. M., & Cai, Z. (2004). Coh-metrix: Analysis of
text on cohesion and language. Behavior Research Methods, Instruments, & Computers, 36(2),
193-202.

Hastie, T., Tibshirani, R., & Friedman, J. (2008). The elements of statistical learning: Data mining,
inference, and prediction. Springer.

Hey, T., Tansley, S., Tolle, K., & Gray, J. (2009). The fourth paradigm: Data-intensive scientific
discovery. Microsoft Research.

KMK. (2020). Bildungsstandards im fach physik fiir die allgemeine hochschulreife: Beschluss der
kultusministerkonferenz vom 18.06.2020.

Krauss, L. M. (2023). The known unknowns: The unsolved mysteries of the cosmos. London: Head
of Zeus.

Kubsch, M., Sorge, S., & Wulff, P. (2023). Emotionen beim reflektieren in der lehrkréftebildung.
In L. Mientus, C. Klempin, & A. Nowak (Eds.), Reflexion in der Lehrkrdftebildung: Empirisch
— Phaseniibergreifend — Interdisziplindr (pp. 261-270). Potsdam: Universitétsverlag Potsdam.

Kuhn, M., & Johnson, K. (2016). Applied predictive modeling. New York: Springer. Corrected at
Sth printing edition.

1 Introduction 11

Liu, O. L., Rios, J. A., Heilman, M., Gerard, L., & Linn, M. C. (2016). Validation of automated
scoring of science assessments. Journal of Research in Science Teaching, 53(2), 215-233.

Marsland, S. (2015). Machine learning: An algorithmic perspective. Chapman & Hall/CRC machine
learning & pattern recognition series. CRC Press, Boca Raton, FL, second edition edition.

Martin, P. P, Kranz, D., Wulff, P., & Graulich, N. (2023). Exploring new depths: Applying machine
learning for the analysis of student argumentation in chemistry. Journal of Research in Science
Teaching, 1-36.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Adaptive computation and
machine learning series. Cambridge MA: MIT Press.

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press.

Murphy, K. P. (2023). Probabilistic machine learning: Advanced topics. MIT Press.

Nehm, R. H., & Ha, M. (2011). Item feature effects in evolution assessment. Journal of Research
in Science Teaching, 48(3), 237-256.

NGSS. (2013). Next generation science standards: For states, by states. Washington: National
Academies Press.

Nisbet, R., Elder, J. E.,, & Miner, G. (2009). Handbook of statistical analysis and data mining
applications. Amsterdam and Boston: Academic Press/Elsevier.

Odden, T. O. B., Lockwood, E., & Caballero, M. D. (2019). Physics computational literacy: An
exploratory case study using computational essays. Physical Review Physics Education Research,
15(2).

Odden, T. O. B., Marin, A., & Caballero, M. D. (2020). Thematic analysis of 18 years of physics
education research conference proceedings using natural language processing. Physical Review
Physics Education Research, 16(1), 1-25.

Pontzen, A. (2023). The universe in a box: Simulations and the quest to code the cosmos. New
York: Penguin Publishing Group.

Prince, S. J. D. (2023). Understanding deep learning. MIT Press.

Rauf, I. A. (2021). Physics of data science and machine learning. Boca Raton: CRC Press.

Rosenberg, J. M., & Kirist, C. (2020). Combining machine learning and qualitative methods to elab-
orate students’ ideas about the generality of their model-based explanations. Journal of Science
Education and Technology.

Sherin, B. (2013). A computational study of commonsense science: An exploration in the automated
analysis of clinical interview data. Journal of the Learning Sciences, 22(4), 600-638.

Song, J., Kang, S.-J., Kwak, Y., Kim, D., Kim, S., Na, J., Do, J.-H., Min, B.-G., Park, S. C., Bae,
S.-M., Son, Y.-A., Son, J. W, Oh, P. S, Lee, J.-K., Lee, H. J., Ihm, H., Jeong, D. H., Jung, J.
H., Kim, J., & Joung, Y. J. (2019). Contents and features of ‘korean science education standards
(kses)’ for the next generation. Journal of the Korean Association for Science Education, 39(3),
465-478.

Tschisgale, P., Wulff, P., & Kubsch, M. (2023). Integrating artificial intelligence-based methods into
qualitative research in physics education research: A case for computational grounded theory.
Physical Review Physics Education Research, 19(020123), 1-24.

Wang, H.-C., Chang, C.-Y., & Li, T.-Y. (2008). Assessing creative problem-solving with automated
text grading. Computers & Education, 51(4), 1450-1466.

Waulff, P, Mientus, L., Nowak, A., & Borowski, A. (2021). Stirkung praxisorientierter
hochschullehre durch computerbasierte riickmeldung zu reflexionstexten. die hochschullehre,
11.

Waulff, P, Buschhiiter, D., Westphal, A., Mientus, L., Nowak, A., & Borowski, A. (2022). Bridg-
ing the gap between qualitative and quantitative assessment in science education research with
machine learning — a case for pretrained language models-based clustering. Journal of Science
Education and Technology, 31,490-513.

Zhai, X., Haudek, K. C., & Ma, W. (2022). Assessing argumentation using machine learning and
cognitive diagnostic modeling. Research in Science Education.

12 C. Krist et al.

Zhai, X., Haudek, K., Shi, L., Nehm, R., & Urban-Lurain, M. (2020). From substitution to redefini-
tion: A framework of machine learning-based science assessment. Journal of Research in Science
Teaching, 57(9), 1430-1459.

Zubarev, D. Y., & Pitera, J. W. (2019). Cognitive materials discovery and onset of the 5th discovery
paradigm. ACS symposium series. In E. O. Pyzer-Knapp & T. Laino (Eds.), Machine learning
in chemistry (Vol. 1326, pp. 103—120). Washington, DC: American Chemical Society.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Part I
Theoretical Background

Chapter 2 ®)
Basics of Machine Learning e

Peter Wulff, Marcus Kubsch, and Christina Krist

Abstract This chapter presents a historical brief of artificial intelligence and
machine learning as well as an overview of conceptual basics of how ML works,
alongside examples. Different approaches to ML are reviewed and the challenges of
applying ML in research are addressed.

2.1 The Inception of Artificial Intelligence and Machine
Learning

Today the term ‘artificial intelligence’ is regularly used in public parlance and can be
found in standard repositories such as the Oxford dictionary or the DUDEN (in Ger-
many). The terms ‘artificial intelligence’ and ‘machine learning” were only coined
as recently as the fifties and sixties, primarily in the US. In this chapter, we seek to
provide background knowledge on where the historical roots of these terms can be
found, how machines are enabled to learn, and what pitfalls occur when applying arti-
ficial intelligence and machine learning. If you are more interested in applying ML in
science education research, you can skip the following chapters to part II of this book.

Multi-disciplinary origins of Al and ML
Many disciplines have contributed valuable analytical tools and theoretical argu-

ments that have enabled and justified the study of Al and ML. Early (natural)
philosophy engaged with questions about the nature of algorithms and methods used

P. Wulff (<)
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany
e-mail: peter.wulff@ph-heidelberg.de

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 15
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_2&domain=pdf
mailto:peter.wulff@ph-heidelberg.de
https://doi.org/10.1007/978-3-031-74227-9_2

16 P. Wulff et al.

to discover them. Moreover, the limits of computability and rule extraction from
data were outlined. Another important contribution from mathematics came from
the field of statistics, where quantifying possible outcomes of events and degrees
of subjective belief helped address uncertain situations and intractable problems.
Cognitive psychology contributed to the understanding of human actions, among
others, by stressing the importance of information processing and transformation
of internal (mental) representations. Computer engineering enabled the building of
digital electronic computers as promising devices to mimic intelligent behaviors and
reasoning, and computer engineers developed important hardware and software that
enable large-scale implementation of AL' In linguistics, theories that could explain
the creative and productive use of language were developed, and, with insights
from pragmatics, it became increasingly appreciated that language and meaning are
largely ambiguous, context-dependent, and grounded in usage. Above all, language
serves as an important medium of knowledge representation and communication,
however, much is left unsaid either in spoken and written communication. Systemat-
ically processing language, analyzing it, and even generating human-like language
became a testbed for both human and computer (artificial) intelligence.

Coining of artificial intelligence and machine learning

The first recognized work on Al was the development of an artificial neural network
(ANN) in 1943 drawing on physiological insights, propositional logic, and the theory
of computation. It was discovered that an updating rule for the connection strengths
between artificial neurons enabled the ANN to learn, e.g., a dividing hyperplane for
multi-dimensional data. This work led to the development of early chess programs
and theorem provers (e.g., “Logic Theorist”), but it also encountered significant
skepticism. Fundamental questions arose related to its place within science and its
potential contributions to solving practical, real-world problems. The Dartmouth
workshop in 1956 is recognized as the beginning event of the field “artificial intelli-
gence.” Two traditions were often distinguished: logicist and connectionist. Where
programs such as “Logic Theorist” (and later the “General Problem Solver”) fell into
the logicist (symbolist) group, the ANNs were categorized within the connectionist
group.?

In the 1980s, the logicist group pursued the goal of engineering relevant knowledge
into machines (i.e., instructing machines) that could then assist humans. Projects such
as Cyc tried to represent all knowledge in machine code and thus enable machines
to reason. These efforts, however, did not really pan out. The reasoning capabilities
of Cyc were found to be rather shallow and brittle. Eventually, researchers had to

! Artificial intelligence is widely recognized as an unsuitable term for the phenomena and issues
under study. Valiant (2024) proposed the concept of educability, which would eventually better suit
the issues at stake. Later on, we will also highlight the misuse of cognitive language in the field of
Al and beyond related to computer programs.

2 As with many dichotomies, there is much gray area and overlap between the two groups, partly
because it is not unambiguously agreed upon what constitutes as a symbol and other complexities.

2 Basics of Machine Learning 17

embrace data mining to scrape the web and incorporate knowledge into Cyc. How-
ever, logistic programs achieved some fame. The rule-based conversational program
called ELIZA simulated (in a very restricted sense) a psychotherapist. It basically
responded to statements with generic questions, a process which does not require
world-knowledge. Providing this program with knowledge was found to be an intri-
cate problem (we will revisit this example in a background box). Engineering knowl-
edge explicitly into machines eventually requires a large amount of specification that
is hardly feasible with finite resources. Moreover, specifying the knowledge that goes
into classifying a cat on an image is nearly impossible.

The connectionist group was successful when conceptual basics, hardware, and
software were available to update parameters (weights) in an ANN in a way that
enabled the ANN to classify previously unseen samples. Different approaches to
perform the training were called machine learning (ML). ML was first applied
when a computer (a.k.a., a machine) not only played the game of checkers, but also
improved upon its gameplay. A novel algorithmic approach was used to optimize
this computer-based player. Traditional approaches provided indexed lookup tables
that identify correct moves for each possible board configuration. However, for
checkers, an indexed lookup table is both ineffective and inefficient: the number of
possible board configurations in checkers is astronomical. Instead, an early version
of reinforcement learning was used to enable the computer to use an evaluation
function while playing. This allowed the computer to improve (i.e., learn) over time.

Moving goalposts?

From the 1960s onward, ML algorithms primarily solved specific problems in well-
defined environments. Some researchers (especially outside the field of AI) remained
skeptical regarding Al in general. They adopted the belief that “computers could
never do X,” where X represented any conceivable task. A related phenomenon in
the history of public perception of Al and ML research is termed the “Al effect”.
The Al effect refers to the tendency for the public to perceive that once Al and ML
methods can solve a complex problem, such as recognizing hand-written digits, Al
is no longer seen as part of the solution: “Every time we figure out a piece of it [a
problem deemed intractable by ML], it stops being magical; we say, ‘Oh, that’s just
a computation.””?

ML and games

ML researchers demonstrated that ML algorithms could in fact be used to solve many
of these Xs. In addition to novel theorem-provers (e.g., for geometry), performance in
games (e.g., Atari games, checkers, Othello, Go, chess, StarCraft, Jeopardy) played
an important role in raising awareness of ML and its capabilities. Ever since checkers,
ML has outperformed human players in many other games. This theme also found
its way into 1980s movies such as WarGames, where computers were programmed

3 https://www.wired.com/2002/03/everywhere/, last access: Nov 2023.

https://www.wired.com/2002/03/everywhere/

18 P. Wulff et al.

to learn from errors in games. In the movie, the machine WOPR learned through
self-play the most important lesson about global thermonuclear war: not to play,
since there cannot be a winner. Notably, the IBM chess program Deep Blue defeated
a world chess champion in 1996 (though it was not until 1997, with improved pro-
gram size, that Deep Blue won an entire competition). Deep Blue learned certain
chess parameters by systematically analyzing chess books and past games. In 2011,
IBM developed Watson, which successfully defeated a Jeopardy champion. Watson
is an Al-based program designed to parse natural language, retrieve information, and
provide answers to questions. In 2016, the Al company DeepMind trained a machine
called AlphaGo to outperform the Go world champion. In game 2 on move 37, the
system shocked the Go-community with a seemingly nonsensical move that later
proved to be essential fifty moves later. In 2019, AlphaStar defeated professional
StarCraft players, now world champions, in all games. AlphaStar was restricted to
human-like click-rates, however, it could see the entire map (i.e., the virtual playing
ground) simultaneously, which is not possible for human players. Expert commenta-
tors dubbed AlphaStar’s gameplay as phenomenal and superhuman, with particular
advantages in micromanagement (i.e., controlling individual units) and multitasking.

Games have always been an important testbed and popularizing engine for Al
and ML algorithms: First, the general public could more easily appreciate perfor-
mance in games compared to, say, proving mathematical theorems. Second, games
require substantial expertise and relate in different ways to real-word human actions.
For example, many games, such as StarCraft, require rapid decision-making in
complex, uncertain environments. Impressive as these successes in various games
might be, these systems also fail glaringly in situations they have not encountered
properly during their training. The research firm FAR Al developed a program to
systematically track weaknesses in the Go program KataGo, enabling humans to
exploit a specific (fairly simple) strategy that helped them win 14 of the 15 games
against the Al. Similarly, unusual actions by human players in StarCraft could also
trick AlphaStar, revealing that some learned strategies are rather brittle (Vincent,
2019). As such, these ML programs like Watson, AlphaGo, and others also point to
important (and fundamental) limitations associated with data-driven discovery and
inductive inference, which we will introduce more thoroughly.

ML, computer vision and natural language processing

The connectionist tradition in ML, based on ANNS, experienced a difficult time after
its early successes. Computing resources were rather scarce, and training deep artifi-
cial neural networks did not really solve any relevant problems that garnered public
interest and investment. This led to an “Al winter,” where funding was scarce, and
working on artificial neural networks was not a field where researchers could thrive.
The Al winter ended in 2006 when it was demonstrated that an ANN could be trained
to recognize hand-written digits with state-of-the-art precision, a feat previously con-
sidered impossible. Essentially, Moravec’s paradox states that tasks that are simple
(i.e., deeply rooted, sensorimotor) for humans (e.g., recognizing hand-written digits)
are particularly difficult for machines, whereas more involved reasoning tasks (e.g.,

2 Basics of Machine Learning 19

chess) are comparably easy. Hence, recognizing hand-written digits was a genuine
breakthrough. The term “deep learning” was coined in this context and the interest
of the scientific community in ML rose. It was also recognized that deep learning
applications could improve performance for many language-related problems, such
as language translation, making deep learning architectures the de-facto standard for
many language processing tasks.

The development of large language models (LLMs) was pivotal in language and
image processing. Researchers leveraged large data sets such as the Common Crawl
of the Internet, book corpora, or Wikipedia, which are (for the most part) publicly
available sources of natural language data (note that privacy issues and proprietary
questions are at times still unresolved). Researchers trained LLMs based on these
large data repositories. As such, LLMs are potential sources of collective opinion,
knowledge and ideas, reflecting the fact that they systematically incorporate and
combine different sources of knowledge-related data such as Wikipedia (impossible
for a human being). Once LLMs have been trained on these data sets they could then
be fine-tuned and used in specific tasks such as classifying student responses into
predefined categories. Even more so, LLMs could accurately solve tasks without
specific training, and with the advent of generative, conversational LLMs, these
capabilities could be utilized on a larger scale. Generative LLMs have already
sparked significant research activity across various disciplines, including science
education, where high performance in certain tasks is often coupled with flaws in
other (domain-specific) tasks. While some flaws have diminished with advances in
the underlying LLMs, others that relate to biases in training data, explaining model
decisions, or reliably presenting correct information seem much more difficult to
overcome. Some researchers argue that LLMs are essentially “stochastic parrots.” A
concern is that LLMs “only” interpolate (or mimic) the training data and regurgitate
patterns that they have seen during training. While this may be true to some extent,
researchers also showed that these LLMs can generalize beyond the seen training
examples, so that to some degree the models are more versatile than presenting
efficient storage of humongous amounts of data. This also references the grand
questions to what extent LLMs truly understand the world and form world models
that they can reason with. We will engage with this question later on, in Chap. 7.

ML and scientific research

Al and ML have also found entrance into the natural sciences, especially in dis-
ciplines that tackle particularly complex problems such as biology. An often cited
example of MLs success is protein folding, which exemplifies how ML can achieve
remarkable capabilities. The problem, in essence, is to predict the 3D protein structure
based on an amino acid input sequence, i.e., a 1D sequence of amino acids. Experi-
mentally determining the protein structure is time and cost intensive, and simulating
the structure only achieved modest accuracy. ML was found to be an effective and
efficient means to help tackle this problem. DeepMind’s deep-learning-based model
AlphaFold learned to accurately predict 3D protein structure based on an amino acid
input sequence (protein folding) by being given sample amino acid sequences with

20 P. Wulff et al.

the respective, experimentally determined 3D structures as the training data. At this
time, a set of about 100,000 3D structures (of the billions of possible structures)
was experimentally determined. AlphaFold outperformed all computer competitors
in predicting 3D folding of novel (i.e., unseen to the model) amino acid sequences
with nearly experimental accuracy—doing so in a fraction of the time needed by
traditional methods. The 2024 Nobel Prize in Chemistry went in fact to AlphaFold’s
leading researchers. Similar ML models helped to develop COVID-19 drugs and
vaccines. AlphaFold 3 is allegedly capable of “predicting the structure of proteins,
DNA, RNA, ligands and more, and how they interact,” eventually transforming “our
understanding of the biological world and drug discovery.”* However, this does not
exempt researchers from performing actual laboratory experiments to corroborate
their understanding.

ML also excelled in other tasks where it is deemed intricately difficult to outline
a reasonable set of instructions for a machine to solve a problem. For example,
DeepMind used ML to improve weather forecasting in 2023. They motivate their
ML approach, deep learning in particular, as follows:

Forecasts typically rely on Numerical Weather Prediction [..], which begins with carefully

defined physics equations, which are then translated into computer algorithms run on super-

computers. While this traditional approach has been a triumph of science and engineering,

designing the equations and algorithms is time-consuming and requires deep expertise, as
well as costly compute resources to make accurate predictions.

Deep learning offers a different approach: using data instead of physical equations to create
a weather forecast system. GraphCast is trained on decades of historical weather data to
learn a model of the cause and effect relationships that govern how Earth’s weather evolves,
from the present into the future.’

Moreover, researchers showed that magnetic confinement in a nuclear fusion
reactor could be enhanced with the help of ML. As such, ML might complement
first-principles based research approaches and present a novel form of validating
relationships and models that researchers build from the real world.

The extent to which Al can expand true scientific understanding is highly contested
(as well as the question what true scientific understanding actually is). Some claimed
that Al cannot surpass pure numerics (“To predict is not to explain.”). While this
is an extreme position, barely seen in the literature, a more productive outline was
presented by Krenn et al. (2022, p. 761): “First, Al can act as an instrument revealing
properties of a physical system that are otherwise difficult or even impossible to probe.
Humans then lift these insights to scientific understanding. Second, Al can act as a
source of inspiration for new concepts and ideas that are subsequently understood
and generalized by human scientists. Third, Al acts as an agent of understanding.
Al reaches new scientific insight and — importantly — can transfer it to human
researchers.” We notice the crucial links to humans in this outline, and will emphasize

4See: https:/blog.google/technology/ai/google-deepmind-isomorphic-alphafold- 3-ai-model/,
last access: May 2024.

5 See: https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-
global-weather-forecasting/, last access: Nov 2023.

https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/
https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/
https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/

2 Basics of Machine Learning 21

these links for science education research as well, e.g., in Chap. 8. The kinds of
insights that Al will provide and the fields in which it will be useful will probably
be determined post facto as it is rather challenging to anticipate specific capabilities
of Al and ML as outlined above.

2.2 ML as a Data-driven Discovery Procedure

Definition of ML

Let us seek a better understanding of how ML acquires the capabilities reviewed
above. As outlined, ML is constituted by truly integrating many different fields of
study, drawing from statistics, artificial intelligence, philosophy, information theory,
biology, cognitive science, computational complexity, and control theory. ML refers
to computer programs (software); however, it has nowadays become intricately linked
to hardware such as accelerating computations with specialized processor design, or
moving to quantum computing to perform computations. Given the above examples,
ML refers to performing well in problems or tasks such as classifying hand-written
digits, categorizing images, summarizing and producing text, or playing games. To
acquire the capabilities to perform well in these tasks, data related to the tasks is
typically necessary as inputs to the machine. Moreover, traditional paradigms of
simulation and modeling where primitives, laws, or rules are provided as instruction
to transform inputs are transcended and complemented. ML departs from providing
the machine instructions (rules) with inputs (data) to providing input-output (data-
answer) samples.

A widely recognized (high-level) definition of ML reads: “[Machine learning is
the] field of study that gives computers the ability to learn without being explicitly
programmed” (as cited in Géron (2017)). A more concrete definition is:

Definition 2.1 A computer program is said to learn from experience E with respect
to some classes of task T and performance measure P if its performance can improve
with E on T measured by P. (Mitchell, 1997, p. 2).

Experience refers to a set of training data, and classes of tasks can be as diverse
as the classification or clustering of the data. As such, ML is in essence a form of
inductive learning: Patterns are directly learned from the given training data. This
highlights the importance of readily available data sets of appropriate size to cover
a reasonable amount of cases to generalize to unseen cases. This also poses novel
challenges for researchers to posit what kind of generalizability they expect and
in what ways the available data is suitable to cover relevant cases. Generalizing
to unseen examples is associated with an empirical risk, because mostly not all
cases have been observed. Especially in empirical research contexts it is literally
not possible to observe all cases. Say, you want to train an ML model to predict
students’ exam performance. This raises the question of what the target population

22 P. Wulff et al.

is. Even though you could sample all of them at one time, students with different
characteristics (e.g., prior knowledge) might enter your course next year which might
also be part of the target population. Given the diversity of learners, it is impossible
to sample all relevant cases from the target population. As such, the prediction model
is inherently associated with an empirical risk of being built on features that might
not account for all possible cases and thus misclassify some students. As an inductive
form of inference, ML is implicitly guided by the following assumption, called the
inductive learning hypothesis:

Any hypothesis found to approximate the target function well over a sufficiently large set
of training examples will also approximate the target function well over other unobserved
examples” (Mitchell, 1997, p. 23).

When applying ML to a research problem, this is an important assumption to keep
in mind. However, while empirical risk in this sense was long associated exclusively
with inductive inference, similar concerns were outlined for deductive inference.
Researchers noted that deductive inference is associated with risk, because “His
argument [Popper’s argument against induction, i.e., that not all cases onto which
should be generalized can be known; authors] can also be used to make deduction
useless for it, too, is based on an incomplete set of known facts. Even if the identified
fact resembles the members of the set, how can we be sure that every possible
feature of either the unknown or the members of the set itself has been considered?”
(Rothchild, 2006, p. 3). Say, you extracted the features and rules on how to predict
exam scores from theory and prior literature, this will not exempt you from the risk
of missing important features and misclassifying students that might be particularly
consequential in educational (high-stakes) settings. Ideally, both approaches should
be utilized, and ML excels in the inductive extraction of patterns from data. As such,
it features well to extend the methodological toolkit in any data-intensive scientific
research.

Growth of ML and data-driven discovery

Inductive extraction of patterns from data is a particularly important means for
researchers to gain insights into their objects (phenomena, processes, etc.) under
scientific investigation. It was particularly important for the growth of ML that
limitations with regards to human and/or computational processing power as well
as limited general-purpose algorithms to find patterns in complex data were over-
come. Technological advances in computing power, storage capabilities, reducing
cost of training Al systems, massive capital investment, and algorithmic advances
have boosted Al and ML, and data-driven discovery processes have become more
feasible. Coupled with advances in cloud computing, benchmark data sets, and big
data, ML has tremendously expanded the possibilities for modeling, predicting, and
understanding complex systems. A key advantage of ML is that considerably unas-
suming (e.g., regarding specific content areas) algorithms perform well across many
different classes of rather complex problems. For example, dimensionality reduction
such as principal components analysis (PCA) can be used to find a common factor,

2 Basics of Machine Learning 23

g, for intelligence-related tasks, explore phase transitions in physical systems (see
Chap. 5), or probe measurement instruments for unidimensionality.

ML models have been found to generalize well in daunting problems where the
number of model parameters (especially for ANNs) far outweighs the number of
training examples. For example, with only a couple million images in the ImageNet
competition artificial neural networks with 60 million parameters are trained suc-
cessfully to recognize objects on some images. In addition to empirical success,
theoretical investigations on the capabilities of ML algorithms have buttressed their
capabilities to model and predict the behaviors of complex systems and thus facil-
itate understanding them. For example, with appropriate size, ANNs can already
approximate functional relationships of interest which is stated by the universal
approximation theorem. The extent to where data-driven discovery and knowledge
extraction can ultimately go remains an interesting question. We will also encounter
the no-free-lunch theorem, which restricts the possibility of extracting knowledge
from mere data without assumptions. It was shown that any ML algorithm is as
effective as any other when the generalization performance is evaluated over all
possible data-generating distributions and tasks. Fortunately, in real-world settings,
reasonable assumptions on algorithms and features already exist, allowing us to
circumvent this sobering conclusion.

ML algorithm versus ML model

Differentiating ML from other forms of statistical modeling is not always straight-
forward (for a discussion of the two cultures in statistics, see Box). We chose to adopt
the following rule of thumb: Whenever parameters, as in the case of PCA a lower
dimensional transformation of the data or weights in a neural network, are learned
from data, we refer to this as ML. We further differentiate ML algorithms (linear
regression, ANN, decision tree, or k-nearest neighbor) from ML models. Algorithms
are procedures implemented through computer code that are run on data. Models,
then, are outputs of algorithms that contain model data and a prediction algorithm.
The algorithm is used as a template and the model is then stored (e.g., the matrices
of weights in the ANN) and used for prediction.

Algorithmic modeling versus data modeling

In an influential paper (Breiman, 2001), “two cultures” in statistics are differen-
tiated, namely algorithmic modeling and data modeling. Algorithmic modeling
refers to a culture in statistics where the data-generating mechanism is con-
sidered unknown, and algorithms (decision trees, neural nets) are fit to map
predictor (features) and response variables. However, data modeling assumes
a stochastic data model and seeks to estimate parameters from the data, by
additionally including noise in the model. Although this differentiation is con-
tested and many argue that both approaches are necessary (see Mitra (2021)),

24 P. Wulff et al.

ML can be categorized as an algorithmic modeling approach with the key
goal of estimating the predictive accuracy of the trained model, whereas more
established statistical approaches such as comparing competing data models by
goodness-of-fit are grouped into the data modeling culture. We concur that both
approaches are essential to understand complex phenomena and processes,
however, algorithmic modeling offers a novel perspective that can complement
and enrich traditional data-driven stochastic modeling. Adding prediction as a
key component of modeling is what makes ML particularly powerful and also
incited critique to move science from its traditional domain, namely expla-
nation. In particular, data-driven modeling was beset with intricate problems
of model misspecification that eventually yielded “irrelevant theory and ques-
tionable scientific conclusions” (Breiman, 2001). In the algorithmic modeling
paradigm there is less concern about the mechanism producing the data, and
rather gaining information “about how nature is associating the response vari-
ables to the input variables” (Breiman, 2001, p. 199). To what extent ML can
yield more relevant theory is, to our estimation, still an open question, and
considerate and critical application of ML is required to answer this question.

2.3 Forms of Machine Learning

ML algorithms are commonly differentiated into different forms, i.e., learning
paradigms/categories/approaches that accomplish specific goals such as inferring
patterns or predicting behavior. Popular forms of learning are called supervised
(including: semi-supervised, active learning, and reinforcement learning), and unsu-
pervised. In the following, we will briefly describe how these forms of learning work
and the important features of each form of learning.

2.3.1 Supervised ML

Goals, tasks, and definition

The most common type of ML used in scientific research is supervised ML. The goal
of supervised ML is to train an ML algorithm that picks up on patterns as presented
by features (input variables), and then learns to imitate a researcher (teacher/expert,
i.e., a ground truth) in classifying or scoring training data. Supervised ML typically
involves performance improvement (P) in a desired task (T) by means of utilizing
incoming data (E). P is assessed by comparing predictions with the ground truth
provided by the researcher. For an ANN, Goodfellow et al. (2016, p. 274) define
the training of an ML model as the process of “finding the parameters [..] of a
neural network that significantly reduce a cost function [..], which typically includes

2 Basics of Machine Learning 25

a performance measure evaluated on the entire training set as well as additional
regularization terms.” To achieve this, the ML algorithm is provided training sam-
ples with correct labels or scores (ground truth/gold standard). In this sense, it is
sometimes referred to as imitating a researcher or a teacher. Given a reasonable
loss function that determines the discrepancy in prediction and ground truth, and an
appropriate approach to optimize the parameters, the ML algorithm ideally finds the
best model to predict unseen instances in the data.

Model validation

To what extent the trained ML model correctly classifies unseen samples and selects
meaningful features is a crucial question when applying supervised ML in research.
The capability of the trained ML model to generalize is one of the most central
questions when applying supervised ML. It is commonly assessed in a procedure
called (hold-out) cross-validation, where, in its simplest form, the data set is split
into training and test data to evaluate the performance, P, of the trained ML model to
predict unseen examples in the test data (as applied in Chap. 10). The test data need to
be a representative sample of the target population about which scientific claims are
made for otherwise the claims may be unjustified. There are more sophisticated forms
of cross-validation, e.g., by performing multiple testing and aggregating accuracies.
To prevent data leakage (see challenges below), another data set besides the training
and test sets is extracted, namely the validation (or development) data set in order to
fine-tune your model. Here, fine-tuning refers to setting up hyper-parameters, which
are training parameters that are set before training the model and which control
the ML algorithm in some way, e.g., by how much parameters should be updated
(learning rate). Finding optimal hyper-parameters and weights means finding a
balance between fitting the seen training data with keeping the ability to incorporate
unseen data. Merely learning to imitate the training data (called overfitting) would
translate into poor performance for unseen cases in most real-world scenarios, given
the complexity and uncertainty of the real world (see above).

Model classes

Typical tasks in supervised ML are classification, regression, time-series modeling,
and sequence-to-sequence models. To accomplish these tasks, researchers developed
different model classes (covering different hypothesis spaces) for supervised ML.
Model classes can be broadly subdivided into linear models, kernel-based methods,
decision-trees, and artificial neural networks (ANNSs):

e Linear models (e.g., regression models) transform a feature vector into an output
vector by applying linear transformations. To cope with specific constraints in the
feature vector (e.g., nominal data) or outcomes (e.g., binary decision), generalized
linear models provide extensions to linear models. In linear models, the weights
are learned to predict the data optimally. (Generalized) linear models are widely
used in (science) education research.

26 P. Wulff et al.

e Kernel-based methods transform the feature space into a higher-dimensional space,
and, in the case of support vector machines, classify data in this new space.

e Tree-based methods seek to split the feature space by applying binary splits with
the goal to find clusters of data with minimal variance. Heuristics are used to find
an optimal initial split of the training data, and methods such as pruning the trees
are used to minimize overfitting the training data (we will elaborate on overfitting
shortly). A tree with fewer leaves and the same accuracy on the test set is preferred
over a tree with more leaves and similar accuracy on the test set. Random forests
are an advancement of decision trees (see Box).

e Finally, ANNs apply linear- and non-linear transformations on the data at hand to
reach the outputs. Many variations on ANNs were invented once deep learning has
been shown to be a promising means for image data processing and processing of
natural language data (such as LLMs).

Applications in science education

Supervised ML has been widely employed in science education to score and label
responses. For example, Zhu et al. (2017) utilized c-rater-ML to automatically
score science students’ arguments according to quality of explanations about cli-
mate change, and uncertainty attribution. They found that the supervised ML model
could reliably code the students’ responses (quadratic weighted kappa values, as
a measure for interrater agreement ranging from 0 (random agreement) to 1 (per-
fect agreement), above .70, see Williamson et al. (2012)). Uhl et al. (2021) built
a constructed-response classifier to classify students’ responses (ideas) on cellular
respiration. They found that the tools based on ML could accurately identify ideas
on cellular respiration in the constructed responses (see also: Sripathi et al. (2023)).
Sripathi et al. (2023) utilized supervised ML to classify students’ responses accord-
ing to ideas on the question of weight loss (where does the mass go?). They achieved
substantial human-machine agreement on unseen data (Sripathi et al., 2023). Putting
these ML models into practice, science education researchers established automated
feedback applications such as web interfaces (Donnelly et al., 2015; Gerard et al.,
2019).

2.3.2 Unsupervised ML

Goals, tasks, and definition

In contrast to supervised ML, unsupervised ML builds upon complex input data
without any labels with the goal “to infer the underlying structure or patterns of a
system from the observed data” (Patriarcha et al., 2020, p. 10), or “to directly infer
the properties of [a] probability density without the help of a supervisor [...] provid-
ing correct answers or degree-of-error for each observation” (Hastie et al., 2008, p.

2 Basics of Machine Learning 27

486). Tasks then range from retrieving patterns and structures from data, and eventu-
ally reducing the input data (dimensionality reduction) for further analyses (feature
engineering) or visualization. Another task is to cluster instances (i.e., grouping sim-
ilar examples), de-noise data, model time-series (e.g., auto-regressive modeling) or
estimate the probability distribution of the input data. Unsupervised ML can also
provide generative models. Generative data models seek to model the data density
distribution in a way that it coincides with the observed density distribution of the
data, thereby reflecting or explaining the data-generation process. By sampling from
generative models, it is possible to generate artificial training data, or explore the data
generating process with different parameters. Others also considered the pre-training
of language models as an instance of unsupervised ML. The pre-trained language
models in a domain then provide meaningful learned representations that can be
utilized in further tasks.

For machines to learn in an unsupervised form, an internal criterion that is inde-
pendent of the task and data is used. Often this internal criterion is generated using
vectors. The data as represented through features is transformed to a set of vectors
in feature space. For example, students’ constructed responses could be transformed
into a term-document matrix (see Chaps. 3 and 7), and each document could then
be represented as a vector in the space of all possible words that were used by the
students. These vectors can then be grouped based on how close they are (i.e., to
what extent similar words were used) to one another within that feature space. More
sophisticated forms could then further decompose the term-document matrix and
model it with more mathematically involved means such as latent semantic analysis.

Model validation

Validating an unsupervised ML model is typically more involved than validating
supervised ML models, given that no gold standard labels are available that would
indicate the accuracy of a model to predict unseen data. Unsupervised ML algo-
rithms have many hyper-parameters that must be tuned. For example, in a clustering
algorithm you might need to adjust the minimal distance between data points or
the threshold value when clusters are formed. Moreover, algorithms such as latent
Dirichlet allocation have multiple parameters such as the number of topics, and
a parameter for how mixed these topics should be. Researchers typically have to
make sense of unsupervised ML models by interpreting outcomes based on their
substantive domain knowledge, and by systematically varying the parameters of the
models and inspecting differences in outputs. Moreover, the generative capabilities
of these unsupervised ML models can be probed and cross-validated using unseen
samples. For example, the coherence of extracted topics can be evaluated by insert-
ing intruder words into these topics and observing whether human raters can identify
these intruder words. Ascertaining the model validity of unsupervised ML models
requires multiple procedures and human expertise. In supervised ML, this expertise
typically enters through sensible and meaningful labeling of the data in the first place,
as this determines what the supervised ML model can learn.

28 P. Wulff et al.
Model classes

Similar to supervised ML, a vast variety of unsupervised ML algorithms have been
proposed over the years. The respective Wikipedia article distinguishes quite sen-
sibly between ANN-based techniques and probabilistic methods for unsupervised
ML. ANNs can be used to attempt to mimic the data at hand, where the ANN seeks to
generate sample data and receives an error signal of how far off it is. Such techniques
are used in auto-encoders that then can represent and approximate the seen data.
Such encoders can even be utilized to capture the behavior of physical systems. For
probabilistic methods, several approaches such as clustering through hierarchical
clustering, k-means clustering, t-SNE or (H)DBSCAN (see Chap. 5) are differen-
tiated. Furthermore, approaches for learning discrete or continuous latent variable
models such as a mixture of Gaussian, principal component analysis, or singular
value decomposition can count as unsupervised ML (see Chap. 5). Latent variables
relate to sub-manifolds which encapsulate meaningful patterns in the data set and
can be utilized to model it (we will see an example in Chap. 5, see also Bishop (2006)).

Applications in science education

Unsupervised learning has been used in science education research to compress the
data and exploratively differentiate (i.e., cluster) it (Sherin, 2013; Odden et al., 2020,
2021; Rosenberg and Krist, 2020; Wulff et al., 2022a). For example, Sherin (2013)
utilized unsupervised ML to explore conceptions about the seasons in middle school
students’ interview transcripts. He showed that transforming the language responses
into a vector space enabled clustering and identification of different explanations
related to seasons. Odden et al. (2021) utilized a model called latent Dirichlet allo-
cation to find thematic clusters in the articles retrieved from the journal Science
Education over the last 100 years. Not only could they single out distinct themes
over the last 100 years, but they could also quantify the rise and fall of these themes
over time and track intellectual cross-pollination (Odden et al., 2021). Moreover,
Waulff et al. (2022a) applied topic modeling with the help of LLMs and found that
interpretable topics could be extracted from a rather small data set of pre-service
physics teachers’ written reflections.

2.3.3 Further Forms of ML

Self-supervised learning, semi-supervised learning, reinforcement learning, met-
alearning and transfer learning are further, specific learning approaches in ML
research that become increasingly important where pre-trained ML models should
be further developed to perform well in specific contexts. Even though these forms
of ML are not the focus of this introductory textbook, we will briefly outline the
main ideas behind some of these approaches:

2 Basics of Machine Learning 29
Self-supervised learning

Self-supervised learning uses inherent relationships in the input data. The ML algo-
rithm is then expected to predict a subset of the input based on another subset of
the input. An illustrative example is natural language and the training of LLMs
(see Chap. 7). A typical objective in these LLMs is to predict next words—a task
that resembles the hypothesized brain mechanisms of predictive coding and active
inference. Training models under this objective yielded efficient representations for
language data, however, the extent to which meaningful world models have been
developed is rather contested. While researchers showed that meaningful internal
representations (“Emergent World Representations”) could be learned by an LLM
(“OthelloGPT”) for a rather simple board game, that linguistic information is stored
in LLMs, or that LLMs based on textual learning could ground (map) the concepts
in a conceptual space, other researchers argued that there is a chasm between these
world models on “ultrasimple” (Mitchell et al., 2023) worlds and humans more
actionable world models.

Semi-supervised learning

Semi-supervised learning makes use of labeled and (typically much more) unla-
beled data to enhance the predictive performance of the ML model. The availability
of supervised (labeled) and unsupervised (unlabeled) ML was compared with the
icing of a cake and the cake itself, indicating that unsupervised ML makes much
more use of the available data, and much more data is available. For example,
in semi-supervised classification, both unlabeled and labeled data can be used to
train a classifier that is more capable than one trained on labeled data alone. Semi-
supervised learning, among others, is important in contexts where labeling data is
expensive; however, large amounts of unlabeled data are also available. For example,
speech transcription (labeled) takes hours, whereas recording speech (unlabeled) is
effortless. In addition, in protein 3D structure prediction, tremendous experimental
efforts are required for crystallographers to determine the structure (label), whereas
DNA sequences (unlabeled) are readily available (unlabeled).

Reinforcement learning

Reinforcement learning (the cherry on the cake, in the iced cake image from above)
is concerned with finding the actions in an environment that maximizes specific
rewards. In reinforcement learning there is typically a trade-off between exploration
of the problem space, and exploitation of well-performing strategies to act in the
environment. In games, a reinforcement learner can then play against each other in
order to learn the environment and circumvent the problem that information on a
good strategy is sparse. However, in science education research, mostly plain super-
vised or unsupervised ML approaches are currently being applied (Zhai et al., 2020).
This might be explained by the fact that many researchers explored the capabilities

30 P. Wulff et al.
of ML with existing data sets that were either labeled or unlabeled.
Metalearning

Metalearning is concerned with automating ML to address the challenge of find-
ing the best ML algorithms for specific tasks and data sets. Metalearning typically
encompasses multiple approaches such as meta-modeling, learning to learn, continu-
ous learning, ensemble learning (combining the decisions by multiple base-learners),
and transfer learning. And in all these cases it has been shown that metalearning can
make ML more “efficient, easier, and more trustworthy” (Brazdil et al., 2022, p. 4).
Metalearning makes use of meta-knowledge, such as knowledge of an algorithm’s
performance in a specific task. Typical tasks in metalearning include algorithm
selection, hyper-parameter optimization, workflow synthesis, architecture search
and/or synthesis, and few-shot learning (also referred to as transfer learning).

Transfer learning

Transfer learning is concerned with how ML models can transfer knowledge across
tasks, given that “a learning algorithm should exhibit the ability to adapt through
a mechanism dedicated to the transfer of knowledge gathered from previous expe-
rience” (as cited in Vilalta and Meshki (2022, p. 219)). Representational transfer
refers to the case in which the source model has been trained in a certain context and
the target model is trained later by using explicit knowledge from the source model.
Functional transfer refers to the case in which source and target models are trained
simultaneously, where the models can share some internal structure. Homogenous
and non-homogenous transfer within representational transfer refer to either the same
or a different feature space for source and target models. A common way to transfer
knowledge is through parameter-based transfer learning as a form of representational
learning. An initial set of parameters can be trained in a general setting and used in
more specific tasks where less data is available, often called few-shot learning. Trans-
fer learning has been used in science education research to enhance classification
tasks and provide robust structures for clustering approaches even for comparably
small sample sizes.

2.3.4 Sequencing Different Types of ML

The different ways of ML discussed so far are already powerful tools by themselves.
However, they can become even more powerful when used in conjunction. Consider
for example first using unsupervised learning to discover meaningful patterns in
your data and then using supervised machine learning to automatically identify the
discovered patterns in new data. An example of this can be found in the study of
Tschisgale et al. (2023) who used a combination of supervised and unsupervised
learning to first discover the different types of steps that students went through when

2 Basics of Machine Learning 31

solving a physics problem and then used supervised learning to create an algorithmic
representation of the identified problem solving steps and provide further evidence
for the validity of the found steps. In Chaps. 8 and 15 you will see this idea of
sequencing supervised and unsupervised learning coming up again. For now the
key message is that to answer a research question it can sometimes be helpful or
even required to not just use one type of machine learning but combine multiple in
productive ways.

2.4 Why ML in Your Research Project?

You saw that ML is quite a diverse field that offers a host of learning approaches
that can help you answer research questions that rely on finding patterns in complex
data sets. Applying ML is complex and requires careful consideration of the assump-
tions and constraints of your analyses. After all, ML is mostly a statistical modeling
approach based on induction, and researchers in these fields cautioned that “the map
is not the territory” (Korzybski, 1933) or quipped that “[a]ll models are wrong],]
but some are useful” (Box, 1979, p. 2). ML is certainly not a silver bullet that can
produce meaningful outputs by itself based on your research data.

The reasons ML is used in your project should be carefully considered. Malik
(2020) singles out hierarchical decisions for why using ML in the first place:

1. To use quantitative analysis over qualitative analysis;

2. To use probabilistic modeling over other mathematical modeling or simulation;
3. To use predictive modeling over explanatory modeling;

4. To rely on cross-validation to evaluate model performance.

Applying ML will in some ways limit you to these four dimensions, mostly to
quantitative, probabilistic, and predictive modeling with the use of cross-validation.
We consider these dimensions as very important to reflect on when deciding for or
against the use of ML in your research, however, we also emphasize that ML can
be used to bridge qualitative (more “narrative understandings of meaning-making”
(Malik, 2020, p. 2)) and quantitative analysis (see Chap. 8) (Wulff et al., 2022b).
Regarding point 2, there are interesting cross-pollinations where physics laws (math-
ematical modeling) are combined with ML to acquire informed and more accurate
models. However, for educational research, no such laws are available to ground
the models and further exploration in this area is necessary. Moreover, besides pre-
dictive modeling, researchers who utilize ML should also strive to explain model
decisions. We will provide some methods and apply them in the following sections
and chapters of this textbook. Moreover, Malik (2020) points out that “the results of
cross-validation will only be as meaningful as the setup of a machine learning model,
which will only be as meaningful as the way the world is put into observations and
properties, which will only be as meaningful as how a phenomenon is quantified and
measurement is done” (Malik, 2020, p. 2). As such, it is crucial for researchers who
apply ML to recognize shortcomings, pitfalls, and limitations that are introduced

32 P. Wulff et al.

either from specific procedures such as cross-validation, or more generally from the
employed ML modeling pipeline.

2.5 Limitations and Challenges of ML

In various stages when applying ML in your research, different choices can limit and
threaten the validity and generalizability of your findings. In fact, in many different
disciplines, studies were found to lack rigor and standards of reporting and presenting
ML-based findings. A valued goal in scientific research is reproducibility, which in
the context of ML was defined as follows: Reproducible research is granted “if
the code and data used to obtain the finding are available and the data are correctly
analyzed” (Kapoor and Narayanan, 2023, p. 2). However, in practice, reproducibility
was often threatened by the misapplication of ML, which is related to several intricate
issues. Let us outline some important issues that might arise in your research, and
ways to circumvent and report these issues. We grouped these issues into separate,
yet highly interrelated, categories, namely data-related issues, procedural issues, and
fundamental issues.

2.5.1 Data-related Issues

Insufficient quantity of training data

ML models such as deep ANNs or foundation models are trained on large data sets,
given that many parameters need to be tuned for a representative sample of the target
population (inductive learning). If meaningful natural language is to be generated,
the ML algorithm should observe a representative and sufficient proportion of the
target language. LLMs such as GPT are trained on trillions of tokens that enable
these models to generate natural language (see Chap. 7), although they are not always
accurate (knowledge hallucinations). Even more traditional deep learning models in
computer vision are estimated to require about 1,000 examples per category (e.g.,
1000 cats) to achieve a good performance. Science education researchers found
that in science education research contexts sometimes 500 samples are sufficient
to accurately classify constructed responses to a specific assessment task. How-
ever, researchers seldom acquire these big data sets in science education research.
Moreover, learning paradigms such as transfer learning, fine-tuning or prompting
with LLMs (see Chap. 7) can be utilized to augment educational data, or fine-tune
large language models to your specific data set with fewer examples, which then
leverages generic capabilities of LLMs and requires less training data. However,
utilizing pre-trained models might introduce novel challenges such as a lack of
representativeness in your research context.

2 Basics of Machine Learning 33
Nonrepresentative training and test data

In your research you should explicitly specify for which population you want to build
a model, and accordingly sample your training and test data. In other words, your
training and test data should be representative of your target population (which also
depends on your research goals and questions). Procedures to ensure representative
sampling are then required and estimation of representativeness should be reported.
For example, if you want to build an automated assessment tool for exam success
in your class, you should be assured that you sample exams from students in your
class. If, for some reason, a subgroup of students (e.g., those who are not interested
in science) does not participate in the course and you have no feature scores for
them, you will build a biased estimator, regardless of how good your ML algorithm
is and whether you utilized LLMs to enhance classification performance. Amazon
notoriously trained an ML algorithm to browse job applications and find quality
candidates. They trained the ML algorithm on prior hiring data, which favored males
for software developer and other technical jobs. The engineers neglected the fact that
times were changing with more females entering these kinds of jobs, however, the
trained ML models preferentially chose males because they were overrepresented
in the training data, which then biased the hiring procedure and put women at a
disadvantage. In your methods section, you might want to include information on
your target population and build an argument for why, how, and to what extent you
consider and assure that you were able to collect a representative sample. Especially
when building applications in the education sector, which is considered a particu-
larly sensitive area, for example, in the European Union’s Al Act, scrutiny of the
representativeness of your data set is important.

Poor-quality data

In computer science and meta-analysis research the “garbage in, garbage out” (short:
GIGO) concept was introduced to emphasize problems with false, invalid inputs
(computer science), or mixing high- and low-quality studies into the meta-analysis.
This counts for ML research similarly: If your data is noisy or invalid for some
reason, then the ML model will not learn anything meaningful. Typically, errors,
outliers, and noise occur in empirical data. You then need to critically examine your
data set for errors. For example, some students might have refused to specify their
age. Handling missing data is an important procedure, to which we will return in
Chap. 10. Moreover, it might make sense to delete outliers, as well as train multiple
ML models and compare them to assess the impact of outliers or imputed values.
A review study revealed that few researchers using ML currently address issues of
missing data or data quality.

Irrelevant or unexpected features

The features that enter your ML algorithm should be chosen carefully. ML algorithms
were found to pick up on any relationship or pattern in the data, and utilize it to

34 P. Wulff et al.

maximize predictive accuracy, regardless of whether the researchers intended the
ML algorithm to pick up these particular features. Early adopters of ANNs were
surprised when the ML algorithm picked up on unexpected features:

In the early days of the perceptron, the army decided to train an artificial neural network to
recognize tanks partly hidden behind trees in the woods. They took a number of pictures of
a woods without tanks, and then pictures of the same woods with tanks clearly sticking out
from behind trees. They then trained a net to discriminate the two classes of pictures. The
results were impressive, and the army was even more impressed when it turned out that the
net could generalize its knowledge to pictures from each set that had not been used in training
the net. Just to make sure that the net had indeed learned to recognize partially hidden tanks,
however, the researchers took some more pictures in the same woods and showed them to
the trained net. They were shocked and depressed to find that with the new pictures the net
totally failed to discriminate between pictures of trees with partially concealed tanks behind
them and just plain trees. The mystery was finally solved when someone noticed that the
training pictures of the woods without tanks were taken on a cloudy day, whereas those
with tanks were taken on a sunny day. The net had learned to recognize and generalize the
difference between a woods with and without shadows! (Dreyfus and Dreyfus, 1992, p. 21)

Other vision models picked up on water to distinguish water birds from other
birds, or, as mentioned above, identify cancer without seeing the relevant organs.
You should therefore carefully craft and design the input features and be aware of
their utmost relevance to any classification problem or similar problem amenable to
ML.

Unbalanced data

A notoriously common characteristic of labeled data is class imbalance. This typ-
ically refers to the distribution of positive and negative examples (samples) in a
classification problem. Say, you want to train a model that detects absenteeism with
students. Hopefully this data set is largely imbalanced, with fewer students exhibiting
absenteeism. Being absent from school can then be the positive class in a classifi-
cation problem. L.e., you want to train a classifier that detects if a student will be
absent in, say, the next week or so. A first problem with unbalanced data is that your
model will have less training data for the positive class in this example. This might
be traded-off with the fact that there might be less variability in students who become
absent, however, this must certainly not be true. Another problem is that if you train
your model on unbalanced data, it might simply always say no and achieve a high
accuracy. If 99% of your students do not show absenteeism, then the accuracy of
the model could easily be 99%. You might want to check this with a baseline classi-
fier that always predicts the overpopulated class. Metrics such as confusion matrix,
receiver-operator characteristic, and F1 score will help you identify such problems in
classification problems and we will elaborate on these performance metrics in Chap.
10. In fact, utilizing inappropriate metrics (e.g., accuracy) for evaluating model per-
formance on imbalanced data has been identified as a problem in several studies in
ML research.

2 Basics of Machine Learning 35

2.5.2 Procedural Issues

Bias-Variance Trade-Off

When deciding on a suitable ML algorithm for a given problem and during its training
and testing, researchers face what is known as the bias-variance trade-off. In general,
you can choose from a vast variety of ML algorithms (see Chaps. 4 and 5, among
others). These algorithms differ by the degrees of freedom (e.g., parameters to vary)
they have to fit your data. More degrees of freedom will also enable the model to
more accurately capture patterns in more complex data sets. However, these patterns
might be unique to this particular data set and may not generalize well to unseen
data, making the trained ML model less useful in practice. This is the essence of the
bias-variance trade-off:

Variance: One the one hand, complex, non-linear models such as ANNs can cap-
ture arbitrarily complex patterns (that might include spurious relationships) in the
training data samples. This then often translates into poor generalizability, because
the model is overly attuned to the training samples, i.e., it has a high variance. Con-
sequently, unseen data samples that are slightly different from the training samples
typically cannot be accurately classified.

Bias: On the other hand, utilizing a very simple, linear ML model might not be
appropriate for the problem at hand. Bias refers to overly simplistic assumptions that
go into modeling a phenomenon. The error in the training and test sets may be very
high because the model is simply unable to capture any relevant variation in the data.

Marsland (2015, p. 35) captured the bias-variance trade-off with reference to
the nature of quantum physics: “Just like the Heisenberg Uncertainty Principle in
quantum physics, there is a fundamental law at work behind the scenes that says
that we can’t have everything at once.” Researchers need to evaluate this, e.g.,
through comparing different ML algorithms, through cross-validation, and through
preventing data leakage in their ML project (see next issue of data leakage). More-
over, regularization procedures are appropriate means to partly control for such
issues. A widely shared rule-of-thump in scientific research is Ockham’s razor: You
should prefer a model that is simpler but has a similar power to explain and/or
predict the phenomenon or problem. In ML, explainability may be replaced with
predictability by choosing a simpler model with equal predictive accuracy. How-
ever, there might be another trade-off introduced here: balancing predictability and
explainability. While a complex ANN model might be able to perfectly predict, say,
students’ performance in an assessment, it might be difficult to understand why the
model makes these decisions. This lack of interpretability makes it unsuitable in
high-stakes environments where accountability for decisions is of utmost importance.

Data leakage

Data leakage was among the most prevalent factors affecting the reproducibility
of ML research. Data leakage can lead to an inflated performance estimation, and

36 P. Wulff et al.

thus false scientific claims. Leakage refers to the “spurious relationship between the
independent variables and the target variable that arises as an artifact of the data
collection, sampling, or pre-processing strategy” (Kapoor and Narayanan, 2023, p.
2). “Data leakage occurs when one or more features used to train the algorithm has
hidden within itself the result of the outcome, and is considered one of the most
frequent mistakes in machine learning” (Filho et al., 2021, p. 1). Data leakage has
been found even in high-stakes, consequential settings such as child maltreatment
prediction, a field where “human judgments, [..] themselves are biased and imperfect”
(Chouldechova et al., 2018, p. 1). Filho et al. (2021, p. 1) described a telling example
of learning spurious correlations:

A classic example from machine learning textbooks is the inclusion of the ID number of
the patient as a predictor. While this should not have predictive importance if randomly
assigned, it is common that patients coming from the same hospital have similar ID numbers
in multicenter data sets. In the case of cancer prediction, for example, machine learning
algorithms will learn that similar ID numbers that come from oncology hospitals have a
higher probability of cancer.

One study in medicine sought to predict hypertension in patients one year prior.
They utilized an ML algorithm called XGBoost and reached a high area under the
curve (AUC), i.e., a good predictive accuracy (see Marsland (2015, pp. 24), and Chap.
10) of .870. However, researchers critically examined these findings and found that
popular anti-hypertensive drugs were among the most important predictors. As such,
the ML algorithms could have picked up on “predicting those [patients] already with
hypertension but did not have this information on their medical record at baseline”
(Filho et al., 2021, p. 2). Kapoor and Narayanan (2023) add that “the model would
not have access to this information when predicting the health outcome for a new
patient. Further, if the fact that a patient uses anti-hypertensive drugs is already
known at prediction time, the prediction of hypertension becomes a trivial task™ (p.
4). This stresses the importance for researchers to have a “conceptual pathway” of
how predictors affect outcomes longitudinally.

To remind researchers of the intricacies related to data leakage, Kapoor and
Narayanan (2023) present a taxonomy of data leakage, which we will outline below
and illustrate with examples:

e Lack of clean separation of training and test data set: As we emphasized before,
to adequately evaluate your model’s performance on unseen data (generalizability),
it is important to train and test the model in a setting where no information from
the test set could already be used to train the model in the first place: “the model
learns relationships between the predictors and the outcome that would not be
available in additional data drawn from the distribution of interest” (Kapoor and
Narayanan, 2023, p. 4). Several issues arise in this context:

— No test set: This example refers to cases in which the same data set is used for
training and testing. Of course, this would not provide you useful information
about model performance in novel contexts, i.e., for unseen data. An example
would be the scenario where only a few samples are available such that splitting
them would prevent you from training the ML model.

2 Basics of Machine Learning 37

— Pre-processing on training and test sets: This case is more subtle. Say, you
build a term-document matrix (see Chap. 7) to train a classifier for your text data.
To do this, you utilize the entire data set available to build the term-document
matrix and then split the data set into training and test sets. Building the term-
document matrix on the entire data set would cause data leakage, because you
might inform the trained ML model of words that only occur in the test data.
You should have separated the training and test data beforehand, because the test
data distribution is considered unknown and cannot be used to inform anything
for the trained ML model. In addition, when imputing values or correcting for
under-/oversampling, the test data should always be separated. Separating the
test data from the training data should be the first step, once the data are collected.

— Feature selection on training and test sets: Moreover, if feature engineering
or feature selection is performed and the entire data set is used, data leakage is
also caused, as the trained ML model will pick up on features in the test data.
For example, if you perform dimensionality reduction based on the entire data
set, the test data influence this procedure and likely inflate the performance.

— Duplicates in data sets: Duplicates are data samples that occur multiple times.
This could lead to having the same samples in both the training and test data
sets, which would then also inflate model performance estimates.

e Model uses features that are not legitimate: This problem can occur when a
feature is a proxy for the outcome variable, as in the example above, with anti-
hypertensive drugs being a proxy for hypertension. In educational research, you
might want to predict social status of students and include information on whether
some financial benefits are already granted to the students by the school. Kapoor
and Narayanan (2023) emphasize that “the judgment of whether the use of a given
feature is legitimate for a modeling task requires domain knowledge and can be
highly problem specific.” (p. 4). In fact, data set contamination seems to be a
problem in LLMs.

e Test set is not drawn from the distribution of scientific interest: Differences in
target distribution and test distribution will likely cause the model to be invalid in
the context of scientific interest.

— Temporal leakage: Regarding longitudinal data, researchers should ensure that
the training set does not contain information from the future that might constitute
leakage and invalid conclusions. For example, if you want to predict students’
end of year performance in a concept inventory based on their engagement in
class and include their final exam score as a predictor, this might constitute
temporal leakage. After all, in the real world you would not have the final exam
score to predict conceptual understanding.

— Nonindependence between training and test samples: This is an often
encountered threat to validity in many ML studies in different disciplines. Typ-
ically, you want to make predictions about unseen test data with a distribution
that is similar to that of the training data. However, if the training and test data
are dependent, e.g., if responses from one student appear in training and test

38 P. Wulff et al.

data, this likely inflates the performance estimation of the model, given that the
model has information that it would not have when applied in the field.

— Sampling bias in test distribution: This occurs when you test your model on
data from a class, say, in your local region (spatial bias), however, the distribu-
tion of scientific interest refers to the entire country, or vice versa. As in a study
on predicting autism, borderline cases were omitted from the test data, which
constituted data leakage (and inflated performance estimation). Moreover, pre-
dicting borderline cases is considered the most difficult, and if cases are omitted
from the test set this does not represent the target population anymore.

Kapoor and Narayanan (2023) outline three arguments that researchers engaging
in ML should address to prevent data leakage: 1) clean train-test split, 2) each feature
in the model is legitimate, and 3) the test set is drawn from the distribution of sci-
entific interest. We will introduce the procedures in Python and R to ensure a clean
train-test split. As indicated, ensuring that features are meaningful and sampling is
representative of the distribution of scientific interest requires domain knowledge
and knowledge of designing and conducting rigorous empirical research in educa-
tion, which is equally important in ML-based science education research as in other
empirical science education research.

2.5.3 Fundamental Issues

Explainability

Even though ML algorithms can be accurate in prediction tasks, many successful ML
models, especially deep learning applications, remain largely black-boxes. Although
prediction is a key goal for any scientific discipline, it is equally important to under-
stand the influencing (causal) factors of phenomena and processes. An important
branch of research in ML deals with interpreting and explaining model decisions,
which is called explainable AI. While the best explanation of a simple model can be
considered the model itself, this is not true for complex models such as ensemble
models or deep ANNS. Billions of parameters in an ANN are not human-interpretable.
Additional means to make sense of model decisions are required.

Methods for explaining ML models can be differentiated along several criterion
dimensions:

e Intrinsic or extrinsic: The former refers to the case where an ML model is in
itself interpretable such as a decision tree, Naive Bayes, or rule-based classifiers;
the latter refers to the case where another interpretation method to make model
decisions interpretable.

e Model specific or model agnostic: The former case refers to means of interpretation
that only account for certain ML models, such as weights in logistic regression.
Model agnostic methods can be used on any ML model to interpret outputs, such
as the systematic analysis of false positive classification in classification models.

2 Basics of Machine Learning 39

e Local or global: Local refers to methods that explain a specific sample, whereas
global methods seek to interpret an entire model.

Different outcomes for interpretation procedures can be differentiated which helps
researchers interpret the ML models. For example, (1) a feature summary statistic
can highlight the importance of features. Some common methods use additive feature
attributions, in which the contribution of each feature to the output is displayed. (2)
Model internals such as the learned weights in a logistic regression classifier can
be interpreted. (3) Moreover, researchers can create new data such as adversarial or
counterfactual examples to make the model change the output class and interpret the
created data. (4) Intrinsically interpretable models can be used as explanation models
for black box models such as ANNS.

We will deal with various methods to illuminate ML black-boxes (i.e., white-
boxing) and better understand model decisions. In Chap. 10 we introduce SHAP
(SHapley Additive exPlanations) values and in Chap. 12 we introduce integrated
gradients. Both concepts help to understand the contributions of features in the model
for a certain prediction, which is an important quality to understand a model’s output.

Explanation versus prediction

Researchers also highlighted the potentials that a shift towards prediction incited
by ML can offer for scientific understanding of phenomena and processes in psy-
chology. Yarkoni and Westfall (2017, p. 1) argued that historically the goal of
psychological research is to understand (explain and predict) human behavior, with
a focus on “explaining the causal mechanisms that give rise to behavior,” by means
of randomized controlled experiments, with “investigations of the various mediating
and moderating variables that govern various behaviors,” giving rise to “intricate
theories of psychological mechanism, but that have little (or unknown) ability to
predict future behaviors with any appreciable accuracy.” We appreciate this call for
improving the predictability of models in science education as well, and contend
that both explanation and prediction are important guideposts for any scientific
enterprise with the goal of developing an understanding of its relevant phenomena
and processes.

Statistical causal inference

Focusing on predictive modeling as in ML also has its downsides. Even though
an ML model might very well predict an outcome variable (called a dependent
variable in the context of causal modeling) by merely accounting for all sorts of
input features, nothing might be learned about the causal structure of the phenom-
ena or processes under study. Even worse, controlling for certain input features
might conflate effects. In causal modeling, mediators (e.g., smoke in the fire —
smoke — alarm-chain; X — Y — Z), colliders (X — Y <« Z), and confounders
(X < Y — Z) are differentiated. Controlling for mediators and colliders might
reverse these effects (introducing backdoor paths) and distort the assumed causal

40 P. Wulff et al.

structure. Not controlling for confounding variables introduces further problems.
ML researchers who simply include all available predictors (independent variables)
in a model may be at risk of producing spurious relationships. Researchers must
carefully consider the assumed underlying causal structure of the problem at hand
and design their studies in order to be capable of causal modeling. For example,
performing randomized controlled studies is still considered the gold standard,
because it allows the estimation of a direct causal effect from a predictor without
worrying about uncontrolled confounding variables. Even though we do not focus
on it exclusively in this book, causal modeling can be performed with ML.

Generalizability

Inductive learning from data poses intricate risks of overfitting and propagating
bias that are inherently related to ML algorithms and the studied research problem.
Examples from ML research illustrate that overfitting is a serious concern in ML-
based research. For example, some argued that radiologists could be replaced by
computers in the foreseeable future because of ML models’ superior performance
on detecting cancer on X-ray images. However, it turned out that the performance
of the developed ML models largely depended on the technical specifications of the
X-ray scanner such that the test set performance declined when different scanners
were used. Here, the ML models selected irrelevant features from the training data
and overgeneralized the importance of these features. Images of military tanks were
also observed to be separated from non-tank images with 100 percent accuracy.
However, tank images were lighter (see above) than non-tank images, that is, there
was a subtle (i.e., construct-irrelevant) bias in the data. In vision models for water-
bird classification, for example, the ML model uses water to distinguish waterbirds
from other birds, jeopardizing the generalizability of the model. Moreover, object
identification algorithms can be tricked using adversarial examples to identify them
as bears or whatever they are trained for. Researchers showed that merely random
looking images (adversarial samples) could be constructed in a way to trick classi-
fication ML models into “seeing” a bear in these random-looking images. Thus, the
ML model selects features that are not human-interpretable in any straightforward
manner. Hence, the extent to which these models function reliably in real-world
settings remains questionable. Similar tricks have been reported for LLMs, e.g.,
through clever questions (called prompts). Entire lists of failures have then been
collected. If researchers do not understand why ML models make certain decisions, it
is difficult to clearly evaluate the generalizability capabilities of the models, besides
from field-testing them with out-of-sample cases, and documenting successes and
failures. This becomes more intricate with increasing model sizes and data sets.

Bias and stereotypes
Bias, stereotypes, and more generally fairness of decisions by ML models become

increasingly important as ML applications penetrates high-stakes decisions related to
loans, hiring, trial and detention, and diagnostics. Biased decisions have been found

2 Basics of Machine Learning 41

in all types of ML applications, and may be caused by unbalanced representation in
the training data. Unfairness can arise from data, ML algorithms, or user interactions
(see Fig. 2.1). Data biases are manifold and can arise from measurement bias, such
as when minority groups are arrested more often, and it is falsely concluded that
they are more prone to criminal behavior. This might be due to a systemic bias
in controlling one group more than the other. Data biases might also be related to
representation biases which we will consider more deeply below. Algorithmic biases
are related to the outcomes of algorithms that can affect user behavior. Presentation
and ranking biases, for example, relate to the fact that presented and ranked outcomes
can be manipulated by fake data (e.g., movie reviews). Moreover, evaluation biases
relate to model evaluation with biased data sets, such as hand sanitizers that do
not recognize certain skin colors. Furthermore, biased outcomes might interact with
users that can then amplify and perpetuate biases, such as when a search engine’s
future recommendations are influenced early on by user behavior that tends to neglect
search items lower in the list. Biases with optimization techniques and performance
metrics can also have disadvantage, e.g., minority groups, without problems in the
input data.

Representation bias may be alleviated by emerging LLMs. LLMs are currently
trained on the Common Crawl of the Internet, Wikipedia, etc. (where all sorts of
biases prevail). Special care must be taken to ensure that these models do not perpet-
uate, or even magnify, bias. For example, LLMs capture gender biases. When asked
to predict the next word in a sentence like “She was a ...” more likely “nurse” is
output by many LLMs, while males are more likely to be “doctors.” Given that text
on the Internet rather represents the world as it is, this is not surprising. In 2008,
90 percent of registered nurses were female. Similar distortions can be expected in
natural sciences and engineering, where prestigious positions are still dominated by
men. ML models that were designed to promote gender-neutral advertisements in
science, technology, engineering and mathematics (STEM) were devised, however,
gender-biases cropped in because fewer women saw the adverts and the ML algo-
rithms “optimized” it in a way that women were at a disadvantage. However, societal

y Behavioral Bias
ﬁ Content Production Bias

User Data
Interaction
Algorithm

Ranking Bias Aggregation Bias

Emergent Bias

Longitudinal Data Fallacy

Fig. 2.1 Biases in data, algorithms, and use interactions, taken from Mehrabi et al. (2022)

42 P. Wulff et al.

efforts are in place to equilibrate gender imbalances, as laid out, among others, in
the sustainable development goals by the UN. LLMs and other ML models are then
at risk of perpetuating entrenched stereotypes and biases, and counteracting these
goals.

Given the potential of ML, it also needs to be ensured that all humans will have
equal access to these systems and non are instrumentalized to improve them. Other-
wise, novel forms of modern colonialism are created. Certain people, languages, and
other characteristics dominate most data sets and ML models. This leads to unequal
distributions of wealth, agency, and empowerment. In many large companies, people-
analytics are used to track work engagement and foster learning of future skills.
While these systems can certainly enhance firms’ productivity, it is crucial to closely
monitor the individual agency and prevent that only the upper management oversees
the data, thus controlling employers. Moreover, instrumentalizing humans to refine
large generative LLMs in lower-income countries can be considered a modern form
of abusing workforce. In such contexts, these systems may have adverse effects and
increase a culture of control, surveillance, disengagement, and exploitation. The
same holds true for learning analytics systems in educational contexts.

Human alignment

The more versatile ML programs and Al chatbots become, the more urgent is the
discussion aboutregulating them (see: “Al Act” by the European Union), and aligning
them with goals that humanity has. Aligning AI to human values has become a
controversial issue. An entire research branch is dedicated to Al alignment, where
it is sought to implement human values in Al systems and programs. Companies
strive to regulate their models, however, rather heuristically. For example, generative
LLMs and generative image models can be prevented from generating text or images
when customers search for, say, hazardous information. While these early attempts
work in certain circumstances, many agree that much more effort is required to define
human values (some doubt that there even exist universal human values, or at least
that they are easily discernable), enable machines to learn and adhere to them, and
reconcile issues such as preventing ML from utilizing humans as a means to reach a
certain end, e.g., eradicating humans to solve the climate crisis—given that they are
the ultimate cause (emission of CO, into the earth’s atmosphere) of the problem in
the first place. This relates to the issue of incomplete representations of one’s goals
and to Goodhart’s Law: “When a measure becomes a target, it ceases to be a good
measure” (as cited in Thomas and Uminsky, 2022).

There are other issues related to tackling the alignment problem, such as defin-
ing metrics that really measure what one is interested in (e.g., creativity) or gaming
metrics. Educational researchers, especially those concerned with measuring compe-
tencies, are well aware of the intricate difficulties in measuring innocuous-sounding
constructs such as motivation, intelligence, emotions, and many others. As previously
mentioned, these are complex constructs insofar as they are determined by many

2 Basics of Machine Learning 43

influencing factors both external and internal to the individual. Choosing unsuitable
metrics for one’s goals may result in unintended consequences. For example, using
easy and short-term metrics, such as time spent watching YouTube was found to
indirectly and unintentionally incentivize conspiracy theories (cited in: Thomas
and Uminsky, 2022). Moreover, using students’ test scores to evaluate teachers’
effectiveness incentivized teachers to cheat test scores to earn higher rankings. This
is a crucial aspect when applying ML as well.

Artificial General Intelligence and Artificial Superintelligence

Conversational Al programs such as ChatGPT are well-versed to converse with
non-experts in almost any conceivable topic (given that the training data, i.e., the
Common Crawl of the Internet, already cover much ground, and companies track user
inputs and adjust model responses). While ChatGPT cannot solve domain-specific
problems that reach a certain degree of sophistication, experts almost unanimously
agree that the performance of ChatGPT is “thoroughly remarkable,” even surprising
experts in the field of AL. With these language- and even image-generative capabilities
some researchers wondered to what extent an artificial general intelligence (AGI) or
even artificial superintelligence (ASI) can be created. After all, ML models such as
ANN:Ss are in some structural and computational aspects similar to the human brain
architecture, which is provably capable of inventing science and discovering insights
about nature. From mere hardware considerations, computers even today seem to be
superior to particulars of the (otherwise remarkable) human brain, e.g., in speed of
signal passing, or operation speed of biological neurons versus processors. (However,
they are also more inefficient, merely by observing that silicon computers generate a
large amount of heat while the human brain remains at equilibrium). Physicist David
Deutsch furthermore argues that AGI must be possible, “because of a deep property
of the laws of physics, namely the universality of computation.”®~though it might
be a long way to accomplishing it.

While some researchers argued that some advanced LLMs already show “‘sparks
of artificial general intelligence” (Bubeck et al., 2023), others remain more skeptical
and remind the research community on the brittleness and limitations of LLMs.
Among others, they consider the architectures to be fundamentally flawed to acquire
whatever counts as general intelligence, or even sensible language processing. Others
argued that the terms “intelligence” are misplaced, because intelligence is a multi-
faceted construct that, among others, requires embodiment and exploration in the real
world. As of this writing, it is reasonable to assume that we are nowhere near science
fiction scenarios (Terminator) where Al-based systems (Skynet) become self-aware
and nearly wipe out the human race with nuclear weapons. Current LLMs merely
interpolate textual and image data, and are to some extent “stochastic parrots,” indeed.

AGTI inspired researchers to project futures with runaway systems. Specification
of a certain goal (e.g., safeguarding the planet from global warming) for the AGI

6 https:/acon.co/essays/how-close-are-we-to-creating-artificial-intelligence, last access: Dec
2023.

https://aeon.co/essays/how-close-are-we-to-creating-artificial-intelligence

44 P. Wulff et al.

system could cause adverse effects (e.g., eradicating humanity as the most efficient
solution). Alternatively, by failing to value humans into the value system of an AGI,
and the task of producing a maximum number of paper clips, the AGI system with
excess power over its environment could seek to convert all matter into paper clips,
including human beings. A more subtle concept is “counterfeit people” by LLMs
(Dennett, 2023). It is important for human societies to operate based on shared
(though implicit) knowledge. If LLMs and AGIs overtake large amounts of tasks (e.g.,
consultation or therapy), AGIs could subvert this societal contract and consequently
spoil civilization, given that one cannot necessarily know the knowledge base of
one’s interlocutor. Given these challenges, it is necessary to boost programs on Al
safety, human alignment, and other ethical issues related to the implemention of Al
and AGI systems.

Even today, Al technologies were shown to be powerful enough to invent thou-
sands of highly toxic chemical and biological weapons (molecules). Alongside this
prospect comes the concern about open source Al models that are capable of such
inventions, given that eventually unauthorized people could use the technology for
nefarious purposes.

Privacy and data sovereignty

Intricate issues with data privacy, privacy leakage of personally identifiable informa-
tion, and data sovereignty occur with black-box models such as ANNs and LLM:s.
Once your private data is used for training an LLM (update weights), it is notoriously
difficult to undo it and act upon your right for data withdrawal. Moreover, once your
personally identifiable information is in the model, it is hard to undo this informa-
tion, and subtle prompting strategies exist to recover forgotten personally identifiable
information. Companies that use Al for decision-making processes should also be
held accountable (e.g., by the EU AI Act) for transparently explaining (or at least:
describing) how a certain decision was made, e.g., what influencing factors were.
This is, of course, most pertinent in high-stakes decision making processes. With
increasingly large models this is currently not impossible.

Ecological concerns

In addition, AT applications should be considered with increasing awareness of sus-
tainable development. It was estimated that simulating the human brain would cost
ten terawatts of power, while the remarkable human brain only uses (give or take)
20 watts to do the things it does. Moreover, training foundational models signifi-
cantly taxes the environment in terms of CO, emission, and every single request to
LLMs such as GPT-4 (or it’s successors) costs a significant amount of energy. Only
private companies can spearhead this development by investing billions of (mostly)
dollars in data centers and computing resources. Moreover, the electricity use of the
global tech sector is predicted to grow substantially by 2030 (approximately 60%),
and much of the production of chips is fossil fuelled, given that supply chains are

2 Basics of Machine Learning 45

often not renewable. Given such concerns, it is worthwhile to consider simpler ML
algorithms for ecological reasons compared with more complex ML models that
disproportionally tax the environment.

2.6 Applying ML in Science Education Research

With all that said, it hopefully becomes clear that ML provides valuable opportunities
for science education research to enhance data processing and data analysis, i.e.,
data-driven scientific discovery, yet it requires careful reflection of goals, data sets,
algorithms, biases, ethics, privacy, and ecology. ML broadens the scope of research
questions that can be addressed and the hypotheses that can be empirically tested. On
the other hand, ML also introduces new challenges that science education researchers
who apply ML have to deal with.

In the context of science education research, ML is probably best situated in
a (post-)positivist research paradigm in science education (Treagust et al., 2014),
where “meaningful knowledge claim[s] [...] should be supported by logical reasoning
and empirical data that are self-evident and verifiable.” (cited in Treagust et al.
(2014, p. 4)). Positivists emphasize the possibility of drawing inferences (inductively)
to underlying general relationships and theories. ML, then, can be of great value
to advance this research paradigm and strengthen the inference step by capturing
patterns in complex educational data sets, and reliably automating tasks that enhance
science education research and instruction.

Throughout this book, we will provide glimpses of how other paradigms can (and
should!) inform how we use, evaluate, and critique ML in science education. For
example, in Chaps. 4 and 5 we seek to provide accessible examples of how supervised
and unsupervised ML can be used, which is then applied to science education-specific
problems in Chaps. 10 and 11. We emphasize that while a computer may treat the data
we input in a (post)-positivist way, humans are still an essential part of the analytic
system. Thus, critical evaluation of what and who are represented in data sets—
and what and who are not represented—is essential for (at least) preventing uses of
ML that cause harm, and (at best) generating uses of ML that work toward equity
in science education, and improving analysis and implementation of teaching and
learning processes. In addition, we describe in Chap. 8 how ML can be used within
an interpretivist paradigm, and argue that such an approach is especially important
in that it actively prevents the ceding of analytic agency from a human researcher.

References

Bishop, C. M. (2006). Pattern recognition and machine learning. Information science and statistics.
New York, NY: Springer Science+Business Media LLC.

Box, G. E. P. (1979). Robustness in the strategy of scientific model building: Technical Report
#1954.

46 P. Wulff et al.

Brazdil, P. B., van Rijn, J. N., Soares, C., & Vanschoren, J. (Eds.). (2022). Metalearning: Appli-
cations to automated machine learning and data mining (2nd ed.). Springer eBook Collection:
Springer, Cham

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199-231.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T.,
Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T., & Zhang, Y. (2023). Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv.

Chouldechova, A., Benavides-Prado, D., Fialko, O., & Vaithianathan, R. (2018). A case study of
algorithm-assisted decision making in child maltreatment hotline screening decisions. In Friedler,
S. A. and Wilson, C., editors, Proceedings of the 1st Conference on Fairness, Accountability and
Transparency, volume 81 of Proceedings of Machine Learning Research, pp. 134-148. PMLR.

Dennett, D. C. (2023). The problem with counterfeit people. The Atlantic.

Donnelly, D. E, Vitale, J. M., & Linn, M. C. (2015). Automated guidance for thermodynamics
essays: Critiquing versus revisiting. Journal of Science Education and Technology, 24(6), 861—
874.

Dreyfus, H. L., & Dreyfus, S. E. (1992). What artificial experts can and cannot do. Al & Society, 6,
18-26.

Filho, A. C., Batista, A. F. D. M., & Dos Santos, H. G. (2021). Data leakage in health outcomes
prediction with machine learning. comment on ’prediction of incident hypertension within the
next year: Prospective study using statewide electronic health records and machine learning’.
Journal of medical Internet research, 23(2), €10969.

Gerard, L., Kidron, A., & Linn, M. C. (2019). Guiding collaborative revision of science explanations.
International Journal of Computer-Supported Collaborative Learning, 14(3), 291-324.

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, tools,
and techniques to build intelligent systems. Beijing and Boston and Farnham and Sebastopol and
Tokyo: O’Reilly.

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, Massachusetts and
London, England: MIT Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2008). The elements of statistical learning: Data mining,
inference, and prediction. Springer.

Kapoor, S., & Narayanan, A. (2023). Leakage and the reproducibility crisis in machine-learning-
based science. Patterns (New York, N.Y.), 4(9), 100804.

Korzybski, A. (1933). Science and sanity: An introduction to non-Aristotelian systems and general
semantics: International Non-Aristotelian Library.

Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-Lierta, A., Friederich, P., Dos Passos
Gomes, G., Hise, F., Jinich, A., Nigam, A., Yao, Z., & Aspuru-Guzik, A. (2022). On scientific
understanding with artificial intelligence. Nature Reviews Physics, 4(12), 761-769.

Malik, M. M. (2020). A hierarchy of limitations in machine learning. arXiv.

Marsland, S. (2015). Machine Learning: An Algorithmic Perspective (2nd ed.). Chapman &
Hall/CRC machine learning & pattern recognition series. Boca Raton, FL: CRC Press

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2022). A survey on bias and
fairness in machine learning. arXiv.

Mitchell, M., Palmarini, A. B., & Moskvichev, A. (2023). Comparing humans, gpt-4, and gpt-4v
on abstraction and reasoning tasks. arXiv.

Mitchell, T. (1997). Machine learning. New York, NY: McGraw-Hill Education.

Mitra, N. (2021). Introduction. Observational Studies, 7(1), 1-2.

Odden, T. O. B., Marin, A., & Caballero, M. D. (2020). Thematic analysis of 18 years of physics
education research conference proceedings using natural language processing. Physical Review
Physics Education Research, 16(1), 1-25.

Odden, T. O. B., Marin, A., & Rudolph, J. L. (2021). How has science education changed over
the last 100 years? an analysis using natural language processing. Science Education, 105(4),
653-680.

2 Basics of Machine Learning 47

Patriarcha, M., Heinsalu, E., & Léonard, J. L. (2020). Languages in space and time: Models and
methods from complex systems theory. Cambridge University Press.

Rosenberg, J. M., & Krist, C. (2020). Combining machine learning and qualitative methods to elab-
orate students’ ideas about the generality of their model-based explanations. Journal of Science
Education and Technology.

Rothchild, I. (2006). Induction, deduction, and the scientific method: An eclectic overview of the
practice of science. SSR.

Sherin, B. (2013). A computational study of commonsense science: An exploration in the automated
analysis of clinical interview data. Journal of the Learning Sciences, 22(4), 600-638.

Sripathi, K. N., Moscarella, R. A., Steele, M., Yoho, R., You, H., Prevost, L. B., Urban-Lurain,
M., Merrill, J., & Haudek, K. C. (2023). Machine learning mixed methods text analysis: An
illustration from automated scoring models of student writing in biology education. Journal of
Mixed Methods Research, 155868982311539.

Thomas, R. L., & Uminsky, D. (2022). Reliance on metrics is a fundamental challenge for ai. arXiv.

Treagust, D. F., Won, M., & Duit, R. (2014). Paradigms in science education research. In N. G.
Lederman & S. Abell (Eds.), Handbook of research on science education (Vol. 11, pp. 3-17). New
York: Routledge.

Tschisgale, P., Wulff, P., & Kubsch, M. (2023). Integrating artificial intelligence-based methods into
qualitative research in physics education research: A case for computational grounded theory.
Physical Review Physics Education Research, 19(020123), 1-24.

Uhl, J. D., Sripathi, K. N., Meir, E., Merrill, J., Urban-Lurain, M., & Haudek, K. C. (2021). Auto-
mated writing assessments measure undergraduate learning after completion of a computer-based
cellular respiration tutorial. CBE Life Sciences Education, 20(3), ar33.

Valiant, L. (2024). The importance of being educable: A new theory of human uniqueness (1st ed.).
Princeton: Princeton University Press.

Vilalta, R., & Meskhi, M. M. (2022). Transfer of knowledge across tasks. In P. B. Brazdil, J. N. van
Rijn, C. Soares, & J. Vanschoren (Eds.), Metalearning, Springer eBook Collection, page 219.
Cham: Springer.

Vincent, J. (2019). Deepmind’s ai agents conquer human pros at starcraft ii.

Williamson, D. M., Xi, X., & Breyer, F. J. (2012). A framework for evaluation and use of automated
scoring. Educational Measurement: Issues and Practice, 31(1), 2—13.

Waulff, P., Mientus, L., Nowak, A., & Borowski, A. (2022a). Utilizing a pretrained language
model (bert) to classify preservice physics teachers’ written reflections. International Journal
of Artificial Intelligence in Education.

‘Waulff, P, Buschhiiter, D., Westphal, A., Mientus, L., Nowak, A., & Borowski, A. (2022b). Bridg-
ing the gap between qualitative and quantitative assessment in science education research with
machine learning—A case for pretrained language models-based clustering. Journal of Science
Education and Technology, 31, 490-513. https://doi.org/10.1007/5s10956-022-09969-w

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons
from machine learning. Perspectives on Psychological Sciencedl™: A Journal of the Association
for Psychological Science, 12(6), 1100-1122.

Zhai, X., Haudek, K., Shi, L., Nehm, R., & Urban-Lurain, M. (2020). From substitution to redefini-
tion: A framework of machine learning-based science assessment. Journal of Research in Science
Teaching, 57(9), 1430-1459.

Zhu, M., Lee, H.-S., Wang, T., Liu, O. L., Belur, V., & Pallant, A. (2017). Investigating the impact
of automated feedback on students’ scientific argumentation. International Journal of Science
Education, 39(12), 1648-1668.

https://doi.org/10.1007/s10956-022-09969-w

48 P. Wulff et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 3 ®)
Data in Science Education Research Check for

Peter Wulff, Marcus Kubsch, and Christina Krist

Abstract In this chapter, we explain why ML can be valuable for analyzing complex
data in science (education) and show what types of data you might encounter in your
research project. We single out important characteristics of these types of data that
can become particularly important for the performance of ML algorithms.

3.1 The Importance of Data in Science

Several scientific disciplines hinge on (real-world) data to answer empirical research
questions. Let us first briefly reflect on why data-driven discovery and ML might be
important in many scientific disciplines such as science education research.

Data-driven discovery in science

Data have become a key “currency” in the 21st century, sometimes called the “infor-
mation age” (Castells, 2010). Many commercial companies crave for customer data,
and oftentimes you “pay” with your data to access certain services. In science,
research approaches that are grounded in data were argued to increasingly com-
plement (not replace) more traditional approaches that work with models and strong
assumptions (see also Box): “The most pressing scientific and engineering prob-
lems of the modern era are not amenable to empirical models or derivations based
on first-principles. Increasingly, researchers are turning to data-driven approaches
for a diverse range of complex systems, such as turbulence, the brain, climate, epi-
demiology, finance, robotics, and autonomy. These systems are typically nonlinear,
dynamic, multi-scale in space and time, high-dimensional, with dominant under-

P. Wulff ()
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany
e-mail: peter.wulff@ph-heidelberg.de

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 49
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_3&domain=pdf
mailto:peter.wulff@ph-heidelberg.de
https://doi.org/10.1007/978-3-031-74227-9_3

50 P. Wulff et al.

lying patterns that should be characterized and modeled for the eventual goal of
sensing, prediction, estimation, and control.” (Brunton and Kutz, 2019, p. ix). While
this might sound like a strong statement, we are reminded of many problems even
in scientific disciplines that utilize analytics and reductionism, and thus often con-
strain their analyses to highly idealized systems. Think of the classical three-body
problem in physics where no general (closed-form) analytical solution is attainable.
When science deals with complex phenomena, such as the Earth’s climate, folding of
proteins, or the social behavior of humans, the importance of numerical approaches
and simulations has long been recognized. In particular, data-driven discovery is a
valuable means of scientific inquiry, especially when no theoretical expectations can
guide the inquiry.

Data-driven discovery has been a feature of scientific investigation and part of
the scientific method from early on, as empirical data enabled scientists to develop
and refine theories. For example, in the early 17th century the laws of planetary
motion were inferred by examining planetary motion data points (based on metic-
ulous observations). Similarly, a modern understanding of quantum mechanics was
derived, among others, from the inspection of atomic spectra. Moreover, Darwin’s
“Origin of Species,” the theory of punctuated equilibrium in paleontology, and blood
circulation stand out as inductive, data-driven discoveries, founded in observation
and pattern recognition. As such, data-driven discovery is a crucial part of the sci-
entific method: “We start a research project with observations made either in the
field, the library, or the laboratory. How these observations are collected, classified,
interpreted, and used as the basis of theorizing (from a hunch to a eureka) is, more
or less, what science is about” (Rothchild, 2006, p. 4).

In addition, for science education research, data is key to answering research
questions related to real-world phenomena. Below, we outline that science educa-
tion researchers deal with particularly complex systems; thus, empirical, data-driven
approaches are important to probe theories or develop them in the first place.

“Big Data”

In modern times, the availability of data increases rapidly in size: “Global data has
been doubling approximately every two years and is expected to reach 175 zettabytes
(i.e., 175 billion-million-megabytes) in 2025'. The unprecedented availability and
size of data motivated the metaphor “Big Data.” Big Data can be characterized by
attributes such as velocity (of access and growth), volume (of size), and variety
(of sources and types). However, other V’s have been subsequently added, such as
veracity, valence, variability, and value. Velocity refers to the speed at which data are
created. Volume is attributed to the sheer size of the data (e.g., terabytes or petabytes),
which requires specialized environments to access and store it. Variety refers to the
different forms of data, such as structured (e.g., annotated Wikipedia articles). It is
important to note that the vast majority of data is unlabeled, such as videos, emails,

! https://www.diamandis.com/blog/scaling-abundance-series-26, last access: Nov 2024.

https://www.diamandis.com/blog/scaling-abundance-series-26

3 Data in Science Education Research 51

etc. This means that no information on how to categorize these data into different
buckets is presented alongside the raw data.

In the education sector, researchers have increasingly utilized Big Data to model,
understand, and eventually improve individual learning processes, or parts of the
educational system (e.g., institutions). The education sector is among the active sec-
tors that produce vast amounts of data in high-stakes environments: educational data
is most sensitive especially when related to the personal information of students.
For example, the European Union passed the General Data Protection Regulation
(GDPR) to ensure that data in all sectors are carefully handled in accordance with
protective rights of individual citizens.

Complexity and complex systems

Complexity looms in the social world, and researchers are increasingly embracing
this complexity in their research questions as mathematical tools to handle have
advanced. Complex systems can be found in the natural and social sciences. For
example, matter can be modeled as a complex system in which a collection of tiny
particles can exhibit large-scale behaviors such as vortices in fluid flows or ferromag-
netism (see Chap. 5). Ecosystems are complex systems involving multiple feedback
loops and distal causes of events, such as how the application of fertilizer in a housing
development contributes to fish killing in a pond several miles away. Diverse systems
such as the economics of societies, the human immune systems, ant colonies, mar-
ket behavior, earth and even cognitive processes and learning were modeled based
on a complex systems perspective. For example, the human brain comprises many
individual neurons that in their combined behavior give rise to cognition. Equally,
(classical) computers can be thought of as complex systems with many interacting
transistors. The brain is eventually better equipped to understand complex systems
(e.g., seeing large-scale patterns and symmetries), whereas the computer is better at
simulating them, as it can systematically keep track of a large number of arbitrary
interacting objects.

Complex systems are not always precisely defined, but rather characterized by
more or less typical attributes such as being comprised of many (interconnected)
parts (e.g., molecules, cells, words, people, or human organizations), existing on
different scales (such as biological organisms), and having a sense of purpose or
function. Understanding complex systems requires understanding parts in relation
to other parts of the system. Almost by design complex systems are closely related
to complex data that might be linked to “Big Data” as well. Given the many parts
of a complex system, they are characterized by high-dimensional state-spaces (i.e.,
possible configurations of the system). Importantly, small interactions can have large
effects so that simple (e.g., linear) models are ill-equipped to capture the behavior
of complex systems.

32 P. Wulff et al.

Considering the many interacting parts and non-linearities, adequate modeling
techniques capable of capturing rich a hypothesis space” are necessary. Linear models
that are widely used in research mostly assume that small causes lead to small effects.
Especially early parametric models in statistics leveraged linear models. While these
models are convenient to fit to data, they are by design incapable of appropriately
capturing non-linear relationships appropriately. To model complex systems, it has
been argued that first-principles approaches are rather ill-suited to capture relevant
system dynamics and predicting behavior. Instead, data-intensive discovery tools
such as ML provide promising tools for modeling such systems, and we seek to
explore opportunities to do so in the context of science education research in this
textbook.

3.2 Complexity in Science Education Research

Modeling teaching and learning as complex processes

Arguably, education sciences and disciplines that seek to understand and explain
human behavior, human cognitive processes, learning and teaching, and social pro-
cesses more generally are required to embrace complexity without expecting to
reduce it to a few underlying laws (the reductionist approach). This is a central
tenet in the study of emergentism. It is questionable to what extent it can be expected
that a few underlying laws would be capable to capture all the variety and hetero-
geneity that is characteristic of teaching and learning situations. Science education
researchers and educational psychologists have embraced complex systems perspec-
tives in their research, recognizing that such perspectives can adequately approxi-
mate intra- (cognition, motivation) and inter- (teacher-student) person phenomena.
As such, processes of learning and teaching, cognition, and language itself have been
modeled with complex systems approaches. For example, it was shown that com-
plex systems-based framing is adequate for research on scientific problem solving
which is a complex cognitive process where equilibria and stasis play important roles
(Stamovlasis, 2006, p. ix):

[The] [p]roblem solving process through regressive steps and up to the fixed-point attractor

(solution) could be seen also as following a punctuated equilibrium model analogous to the

evolutionary dynamics seen in genetic systems, where long periods of stasis or slow changes

are alternated by short periods of rapid changes. These changes are phase transitions and
could be modeled as catastrophes.

Moreover, many teaching and learning processes are intricately related to lan-
guage as a medium for knowledge generation, communication, and sense making.
However, language and language use are complex (e.g., multi-dimensional, hier-
archical, and compositional) such that no few underlying laws would be capable

2 Hypothesis space in ML refers to the set of all possible models that an ML algorithm can utilize
to predict target phenomena, given a set of features.

3 Data in Science Education Research 53

of fully explaining the progression of communication situations: ‘“Perhaps when it
comes to natural language processing and related fields [that model human behav-
ior], we’re doomed to complex theories that will never have the elegance of physics
equations” (Halevy et al., 2009, p. 8). In a nutshell: “we can’t reduce what we want
to say to the free combination of a few abstract primitives” (Halevy et al., 2009, p. 9).

Reducing complexity

While no few abstract principles might be expected, it is nonetheless important to
reduce complex data, e.g., by extracting patterns that exist in this data. Reducing
complex data has been an important approach for educational research. Take the
measurement of intelligence or personality factors as examples. The g-factor in intel-
ligence research was derived by extracting the common variability in many different,
but related tasks. These researchers demonstrated that complexity could be mean-
ingfully reduced. Similarly, for extracting personality traits researchers hypothesized
that these traits would manifest in language. Reducing complex language data then
yielded a five factor model for personality traits that are widely used in psycholog-
ical research. Complexity science research posits that such meaningful reductions
can be expected for natural phenomena: “In many naturally occurring systems, it
is observed that data exhibit dominant patterns, which may be characterized by a
low-dimensional attractor or manifold” (Brunton and Kutz, 2019, p. 4). It might be
considered among the great contributions of complexity science to show that in fact
few underlying laws help to understand the systems.

Example: Problem solving research

Let us now provide an example that is more pertinent to science education research.
An area of great interest in science education research, particularly in physics, is prob-
lem solving. Problem solving research engages, among others, in questions related to
how problem solving proceeds, what cognitive and reasoning-related processes are
involved, and what other factors determine successful problem solving. Researchers
postulated models on how problem solving proceeds, both general and discipline-
specific; however, most of them concentrate on isolated, well-defined problems.
Even though most well-defined problems are studied, there still looms complex-
ity. Constructed-responses for problem solving assessments exhibit a vast variety of
problem solving strategies, fragmented knowledge, claims, statements, idealizations,
meta-comments, etc. Validly and reliably assessing complex constructs such as prob-
lem solving can be guided by the assessment triangle (NRC, 2001). The assessment
triangle differentiates a theory of cognition, observations, and a framework for inter-
pretation of observations. Within the theory of cognition, researchers should detail
what is known about the cognitive processes under study, such as problem solving
as outlined in process models. Observations of student performance on tasks that
elicit respective cognitive processes then form the data and empirical evidence. It
was argued that constructed response formats (e.g., think-aloud interviews) are ben-
eficial compared to closed-form questions (e.g., multiple-choice) to elicit relevant

54 P. Wulff et al.

cognitive processes and document them via language. However, the complexity of
the elicited data was considered a challenge. Finally, the framework for interpretation
allows to draw inferences about students’ problem solving processes. It should link
performance (observations) with cognitive processes, based on substantive theory.

Data-driven discovery approaches can facilitate the use of constructed response
item formats and pattern extraction. Thus, linking observations, interpretation thereof,
and the theory of cognition can be enhanced. Ultimately, data-driven modeling
approaches might enhance our understanding of some of the cognitive and meta-
cognitive processes that undergird problem solving in greater detail, and are more
grounded in empirical evidence.

3.3 Engaging with Your Research Data

We should expect our educational data to be complex. When engaging in an ML
project to process and analyze this complex data, it is important to critically examine
any step of data collection and processing. Therefore, we now engage in greater
detail with important steps that help you understand your data and make it amenable
for ML and NLP applications. Three broad steps for data handling in an ML research
project can be differentiated: Obtaining the data, Exploring the data, and Preparing
the data. We now focus on each of these three steps.

3.3.1 Getthe Data

Suppose that your research questions require the collection of data, then opportunities
for obtaining data and obtaining different types of data (see below) are vast and even
expand with advanced in technology. For example, with the digitization of learning
environments and technological advances novel measurement tools and novel oppor-
tunities for obtaining data open up. Researchers engaged to utilize eye-tracking,
log-data, or to dynamically record classroom communications and transcribe it auto-
matically with the help of Al-based technologies (see Chap. 15). While due care
for privacy rights and data protection are necessary, evidence-based improvement of
learning and teaching processes will also rely on the collection and analysis of such
data.

Methodological advances such as ML and NLP allow you to expand data collec-
tion. Depending on your research questions, you may administer in an assessment
project closed-form questionnaires or open-ended questions (constructed-response
items). While constructed-response items were mostly used in small-scale projects,
closed-form questions have been also used in large-scale projects. This is unfortu-
nate, given that constructed-response items seem beneficial in terms of expressiveness
and thus the anticipated diagnostic value is generally higher than that of closed-form
items. Learners are encouraged to outline their reasoning in constructed-response

3 Data in Science Education Research 55

items, as compared to closed-form questions. With the help of ML, large-scale use
of constructed-response items may become possible.

Either for sensor data, constructed-response data, recordings, or Big Data such
as journal editorials, once data is collected, further processing is required. Language
data collected from constructed-response items have characteristics that are distinct
from numerical data collected from Likert-scale® items. For the sake of this text-
book, we focus on the common data types that you likely encounter in your research
project: numerical data, categorical data, and language data. We will see that any
type of data can be represented as vectors in numerical form.

Numerical data

Numerical data is a common form of data and comprise real-valued or integer-valued
numbers that can be arranged into an array. In alignment with ML lingo, we refer to
rows in the array as samples (also: examples, instances, or cases), and columns as
features (also: inputs). For example, if a survey has a number of Likert-scale items,
answered by a number of students, these data can be represented in a 2D array with
as many columns as items, and as many rows as student answers. Each response
will receive the respectively chosen answer option, say 1, which then refers to a
lower agreement with this item compared to a response of 5 (given that the item
is not inversely coded, e.g., through negation). Oftentimes in quantitative science
education, numerical data refers to discrete, bounded measures such as Likert-scale
items. If these scales are represented by numerical data (1,2,...), it is assumed that
the distances between all subsequent response options are equal, which might not be
true.

Not only forced-choice, Likert-scale questionnaire data can be represented as
numerical arrays. In addition, images can be represented as numerical arrays (see
Chap. 5), as well as language data (see below). Moreover, audio recordings or eye-
tracking data can be represented as numerical arrays.

An important characteristic of numerical data is their distributional properties.
The so-called normal distribution played a key role in many empirical scientific
disciplines such as education and psychology. It is recognized that many naturally
occurring processes give rise to normal distributions, which results (given large sam-
ples) from merely adding independently and identically distributed random variables.
However, expectations of normal and normal error distributions are not always jus-
tified. Normal distributions tend to underestimate rarely-occurring events, however,
many types of data such as language data are characterized by rare events that might
be important for the meaning of the data. In addition, multinominal distributions are
prevalent in educational data and would give rise to a vast variety of different cumu-
lative probability distributions, only one among them being the normal distribution.
It was noted that correlations among test items of .40 produce flatter distributions
than normal. Moreover, all sorts of issues such as unidentified subgroups in a sample,

3 Likert-scale refers to an ordered categorical rating scale where users can express their degree of
(dis-)agreement with statements, etc.

36 P. Wulff et al.

ceiling and floor effects, etc. would threaten the assumption of normality of errors in
educational measurements. Consequently, modeling tools are required that can deal
with non-normal data and arbitrarily-shaped distributions in general, which presents
a powerful argument for utilizing also ML in your research. After all, the extent to
which your numerical data follow certain distributions (e.g., normal) is an empirical
question, and can be tested, among others, with statistical tests (e.g., Shapiro-Wilk)
and by visually inspecting the data distribution (e.g., histogram). It should also be
noted that violation of normality does not always constitute problems with your anal-
yses.

Categorical data

Categorical data are also prevalent in ML and discipline-based educational research.
For example, classification problems (is this image a dog versus a cat; you identify
as diverse, female, or male) produce categorical data where no inherent ordering
is present, which is then called nominal data. Nominal variables can also be trans-
formed into a numerical data array. This is known as dummy coding. For example, the
self-reported gender of a person can be transformed into an array with columns for
any gender that you define. A respective cell value of 1 then identifies a person with
a certain gender. Multiple-choice questions produce such numerical arrays, where
answer choice can be an integer-valued number representing the selected response
option by the students. This can then be transformed into a binary (0 and 1) array,
where correct responses are scored as 1, and 0 otherwise (missing data can be typi-
cally represented through nan/NA values).

Language data

Language data are increasingly used in quantitative science education research.
Advances in NLP will eventually boost the popularity of constructed-response items.
In addition, science education researchers utilized language data bacause language
is an important medium for communication and sense-making. However, language,
as data, can be difficult to handle. Language is comprised of units (e.g., phonemes
and morphemes) that interact at different levels. Consequently, complex system per-
spectives have been applied to language as well. Language in general and in science
disciplines can be characterized by underlying laws (e.g., subject-verb-object struc-
tures) that govern the behavior of language use. Unprocessed language data (spoken
or written) represents a 1D sequence of symbols that are structured into words,
sentences, paragraphs, or texts. For research purposes, mostly the complexity of lan-
guage data needs to be reduced to be meaningfully processed. Language or language
use can be characterized as unsegmented and ambiguous. Unsegmented, because
spoken language comes as a stream of noise without boundaries. Researchers then
have to segment it into meaningful chunks such as sentences. However, sentences
are also connected to other sentences, because words in them might refer to words
in other sentences, etc. Hence, segmentation of language data plays an important
role in processing and analyzing it. Language is ambiguous, because meaning is

3 Data in Science Education Research 57

context-dependent. Moreover, words in sequences are structured hierarchically: In
a sentence the subject and object depend on the root verb, and texts more generally
are hierarchically structured, where the headline predisposes the overall meaning,
and paragraphs structure messages. In addition, pragmatics, i.e., the communication
situation plays an important role for meaning making.

To process and analyze language data, more compressed representations have to be
found. One method is to transform language data into numerical arrays, i.e., vectors
and matrices. Take as an example the following sentence (Koponen and Huttunen,
2013, from: p. 2238):

The current creates the voltage between these points.

This example comprises a fairly simple English sentence (uttered by a hypotheti-
cal human who got it the wrong way around regarding current and voltage). A simple
approach to analysis is to transform this sentence (we may call the sentence a doc-
ument, given that this is the unit of interest) into a numerical representation. To do
s0, a so-called one-hot encoding is the method of choice:

Imagine that we form a vector out of this document by forming a column for each
unique word in the vocabulary (of this one sentence) and indicating in each cell how
often this word from the vocabulary occurs in the sentence:

v = array([[1, 1, 1, 1, 2, 1, 1]], dtype=int64)

For example, the value in the first cell indicates that the first word from the
vocabulary occurs one time in our document, i.e., the sentence. Now, imagine a
high-dimensional vector space with 7 dimensions, because we have 7 unique words
and each word receives its own dimension (0 if not present, 1 if present). If we have
a second document, say:

The voltage between these points creates a current.

We can use the vocabulary from above to represent it. The one-hot vector repre-
sentation (similar encoding as above) for this new document would be:

w = array([[1, 1, 1, 1, 1, 1, 1]], dtype=int64)

Vectors can be—to some extent—represented in a diagram. Each element in the
vectors represents a dimension in a respective vector space (also called feature space).
We exemplify this with the terms ‘current’ and ‘the’ in the two documents. The
vectors indicate that the documents are indeed different—if only for a single word.
The dimensionality of 7 cannot be represented visually, however, but we can imagine
that each term reserves another dimension in this vector space: They are independent
of each other. Then, the documents can be compared by means of the similarity
between two vectors in this space, e.g., by calculating the similarity of vectors with

58 P. Wulff et al.

mmmm

The current creates the voltage between these points.

NOUN VERB NOUN ADP NOUN

The voltage between these points creates a current.

NOUN ADP NOUN VERB NOUN

Fig. 3.1 Dependency tree representation of two sentences as generated through spaCy: Nsubj ...
nominal subject, dobj ... direct object, pobj ... object of preposition, prep ... preposition

the scalar product. In our case, the scalar product* of these two documents would be
8., indicating positive alignment.

The documents differ only by the word ‘the.” We might want to apply a technique
called stopwords removal, to remove words that often bear little meaning. Further
techniques could be employed to weight the terms by their importance. A frequently
used technique is term-frequency inverse-document-frequency (tf-idf). As the name
implies, terms are weighted by their frequency in a document and their overall occur-
rence. This technique gives greater weight to terms that appear in a document (and
are potentially unique for this document), as compared to terms that occur across
documents. This automatically filters stopwords to a certain extent.

Any form of representation such as these encodings has implicit assumptions. For
the one-hot encoded language data, it is assumed that word ordering is irrelevant.
This is a rather strong assumption that is (hands down) untrue in most circumstances.
Moreover, the hierarchical structure of language as represented in Fig. 3.1 is destroyed
through one-hot encoding. To find a representation with fewer assumptions it would
be important to recognize the hierarchical structure of language.

4 As areminder: in a scalar product, each component (dimension) of one vector is summed with the
respective component of a second vector. Visually, the scalar product is the projection of one vector
onto the other. Hence, it ranges from O to a value that depends on the magnitudes of the vectors. If
the scalar product is zero, the vectors are perpendicular; otherwise, they have components that are
(anti-)parallel.

3 Data in Science Education Research 59

Dependency parsing is an important means for NLP researchers to determine
dependency relations between words. For example, today, with the capabilities of
LLMs, dependency parsing can be reliably automated. Patterns in language are com-
plex: the dependency tree shows a hierarchical organization of sentences (the root
verb rules noun phrases in the sentence). Moreover, noun phrases can be nested
within each other (“the current that causes the wire to heat creates the voltage”).
Thus, ordering in sentences matters for meaning making. In fact, sentence 2, where
the voltage is the subject comes closer to the actual physical situation, where a voltage
(in conducting materials) causes current. Sentence 1 represents a common precon-
ception by students about current and voltage. Even more so, sentences are nested
in paragraphs, paragraphs in chapters, etc. Patterns appear in language in a variety
of forms. Dependency parsing could be utilized to capture false statements such as
“current creates voltage.” E.g., to capture sentences like “current creates voltage”
we parse the dependency tree, extract subject, verb, and object and compare them to
the misconception template.

Even with most sophisticated data structures, at some point, a numerical array is
mostly the desired outcome, because it needs to be forwarded as features into the ML
algorithm. Either for numerical data and textual data, the researcher has to conduct
steps in a preprocessing phase to ensure the data is suited for the used ML algorithm.
More concretely, in part II we engage with real-world numerical and language data.

3.3.2 Explore the Data

Given that you collected your data, now it is time to engage in exploring your data.
In Chap. 2 we encountered many requirements that need to be checked for your
data, such as missing values, or outliers (anomaly detection). Science education
researchers often employ descriptive statistical analyses to get to know their data
sets. One typically reports mean, median, standard deviation, and variance, i.e., dis-
tributional properties of the numerical data. In categorical data summary statistics
such as samples per category can be reported, and in language data response length is
an informative quantity to be reported. Some researchers go further to display other
distributional properties for numerical data such as quantiles. Quantiles are scores
from a given variable that output the values for which a certain percentage (e.g.,
25%) of the values are below. Another valuable resource for getting to know your
data is through a pairwise correlation matrix (they can also be tricky, see: Géron,
2017). It is also advisable to display the histograms of each numerical/categorical
input feature, to visually inspect the distributions.

In ML, we typically assume that training and test data sets are generated by a
probability distribution based on a certain (unknown) data-generating process. For
example, if people are sampled randomly in some locations and their heights are
measured, there is an (unknown) underlying distribution of all heights from which
these people are sampled, and approximating this underlying distribution can be an
important research goal. Typical further assumptions are then that your data is i.i.d.,

60 P. Wulff et al.

that is: independent, identically distributed. The former refers to the point that each
sample in your data set is unrelated to another sample. This would not be true if
you sampled multiple responses from one person in time-series data (see below).
Sampling heights in one family that is above average will also not approximate the
underlying distribution well. Moreover, one typically assumes that training and test
data sets are drawn from the same unknown distribution. Critically reflecting upon
your data and displaying descriptive statistics such as mean and standard deviation
will already provide you valuable information about these assumptions (e.g., largely
different standard deviations would hint at different underlying distributions), which
can be buttressed with statistical tests (e.g., Levene’s test).

While descriptive statistics are important for critical inspection, there are some
particular challenges with data sampling and inherent relationships in data that should
be inspected as well as they might introduce bias, affect your choice of algorithms or
your conclusions. First, the representativeness of your data is an important dimension
to consider, given that answering your research questions that are related to certain
groups of people intricately depends on it. Moreover, distributional properties and
sparsity should be critically inspected. Also, the linear separability of your data can
affect the choice of algorithms that you might use, as well as considerations of global
and local structures present in your data.

Representativeness of your data

One important quality of your research data is that they should be representative of
your target population. Say, you want to assess the preconceptions about electrical
current in grade 8 in country X. Your target population would then be the students
in grade 8 from country X. For example, if boys and girls represent 49/51 percent,
respectively, then these percentages should be similarly represented in your sample,
if you really want to generalize to the population of grade 8 students in country X.
Of course, a similar share would not prevent you from sampling bias. For example,
if your study requires students to respond to questions online, you might find out that
students who have no internet access at home might be disproportionally missing
from your sample. Consequently, your conclusions and generalizations would be
unwarranted. It is even more difficult. While there are known background charac-
teristics that might be important (gender, ethnicity, race, prior knowledge, interests,
...), there might also be “unknown unknowns,” i.e., variables that you might not even
think of to be relevant to your research questions. For example, students with a certain
religion might be missing on the day when your survey was administered. Alterna-
tively, some religious students in your classroom refused to respond to a certain
question, and this goes unnoticed and these response sets are then deleted because
of missing data. Conclusions to the target population might then be unwarranted. If
your research goals are related to such population characteristics, it is important to
draw an unbiased sample. Prior literature might help you identify important back-
ground variables and procedures that might help you to anticipate sources of bias. It
is then important to critically reflect upon such sources of bias and how they might
have affected your conclusions. It is particularly important in the context of ML

3 Data in Science Education Research 61

where ML models might be used in practice, because otherwise your trained ML
model might make biased predictions. Checking for representativeness of your data
involves checking for missing values and potentially for correlations of missing val-
ues with covariates such as religiosity, gender, age, etc. Once you notice that there is
missing data and it relates to some important attributes, then you would address this
as a limitation for your trained ML model.

Outliers in your data

Another important analysis can be a check for outliers. Outliers can screw predic-
tion in many ML algorithms. For example, principal components analysis (a linear
method) seeks to find a reduced-dimensional space to represent your data, and out-
liers will affect the representation. In k means clustering that is based on finding
centroids of clusters, outliers might interfere with the determination of the centroids,
and in k-nearest neighbors that is based on clustering data based on closeness to
other samples, which might be spoiled. And least squares in regression analysis is
highly sensitive to outliers such that model predictions for unseen data might be
spoiled. You might be able to detect outliers by calculating z-scores and excluding
samples with very high z-values or by inspecting specific visualizations of your data,
such as a boxplot where outliers are typically points in the plot. You might even use
ML techniques such as k-nearest neighbors to exclude samples with high average
distances to other data points. You will likely use multiple methods and triangulate
evidence to exclude data points. Note that detecting and potentially eliminating out-
liers is always a trade-off. You do not want to exclude any values just because they
are extreme. This might be an important feature in your population under study, and
eliminating this information certainly needs qualification and substantial arguments.

Sparsity of data

Another point of concern is sparsity of data, i.e., having few or no examples for rel-
evant categories. For example, languages allow for an infinite number of sentences
to be produced, and any reasonable sample (say of constructed responses) will only
display a tiny subset of possible responses. Imagine you collected sample responses
on the following item (see Box). For this item, N = 448 written responses by stu-
dents were collected with a mean number of words per response of 15.3, an overall
vocabulary of 942 different words was calculated. In fact, redundant words (so-
called stopwords) were already deleted from the responses. Given that any response
is encoded with the respective words that occur (one-hot encoding), this encoding
would already have a dimensionality of 942.

62 P. Wulff et al.

mass

direction of motion

E

vertical loop

Fig. 3.2 Vertical loop where a mass starts to move downwards through the loop

Conceptual physics problem: The vertical loop

Prompt: A very small mass slides along a track with a vertical loop (see figure).
The mass starts from a height above the highest point of the loop. Assume the
motion to be frictionless.
Determine the minimum starting height above the lowest point of the loop
necessary for the mass to run through the loop without falling down.
Describe clearly and in full sentences how you would solve this problem
and what physics ideas you would use (Fig. 3.2).

We can further calculate the co-occurrence of two word sequences (bigrams)
in the text. An ML model could use bigrams for predicting text. For example, the
word following “centripetal ...” is oftentimes “force”. A model that encapsulates
this pattern would be more predictive. To be capable to predict this, it would need
to see representative text where bigrams co-occur in their natural frequencies for
the representative target population, which are written responses on this particular
item. However, even our data set for the vertical loop (which is quite large, given
that 448 students were sampled) has no single bigrams that occurs even twice. This
relates to sparsity of language data: One has to sample large amounts of text to
get a representative language sample of the target distribution. This also introduces
challenges for language prediction tasks, where architectural choices have led to
significant progress in addressing the sparse-data challenge.

3 Data in Science Education Research 63
Linear separability of data

Test scores are often a product of the complex interactions between many different
constructs. Since there is no clear path from one construct to the test score, the result
can be non-linearity of the data and noise, because not all influences can be tracked
and modeled. This might result in the data being non-linearly separable. Linear sep-
arable data is characterized by the fact that a lower-dimensional hyper-plane can
separate all instances in one cluster from those in another cluster. If you don’t know
the group membership in the first place (unlabeled data) this cannot be calculated,
however, if your clusters are known, linear separability of your data can be calcu-
lated. To calculate linear separability, you can use ML classification algorithms as
tools such as support vector machines. Support vector machines with a linear ker-
nel seek to find a (the best) separating hyper-plane for data points. Support vector
machines have a hyperparameter, C, that can be set to very high values, which forces
the machine to minimize errors when classifying points. If the machine is trained
this way, it is likely to overfit the data, as it adjusts its parameters to perfectly predict
every data point, including noise and outliers. If your data is truly linearly separable,
a linear SVM with an appropriate margin will classify the data perfectly without
overfitting. If your data is linearly separable, more simple (shallow) ML algorithms
might perform well, e.g., in clustering the data. The following code is an implemen-
tation with sklearn in Python (see Code 3.3.2, in the online code repository, this
code is applied to a real data set). If in this code a high accuracy results, your data
can be linearly separated well.

Python code: Determine if your data is linearly separable
from sklearn import svm
from sklearn.metrics import accuracy_score

import numpy as np

Define the SVM with a high C value
clf = svm.SVC(C=1e6, kernel=’linear’)

Train the model for your data set X1_ and y
clf. fit(X1_, y)

Predict the labels for the training set
y_pred = clf.predict(X1_)

Calculate the accuracy
accuracy = accuracy_score(y, y_pred)

print(f"Accuracy: {accuracy * 100}%")

64 P. Wulff et al.

Local and global structure of data

As you collect complex data such as language data, you might have long-range and
short-range correlations. Interestingly, DNA behaves somewhat similarly to language
in this regard. After all, as with language, DNA is comprised of an alphabet of the
“characters” A, T, C, and G, that are arranged in 1D linear sequence to store informa-
tion. As with language, the genome has long-range and short-range correlations, and
understanding and predicting them is an important goal for science. Local and global
structures also arise in semantic networks. In natural language, bigrams can account
for short-range correlations, whereas themes/topics in a text account for long-range
correlations. Once you simplify your data through models, it would be preferable
to preserve both local and global correlations to accurately describe your data. Of
course, there might also be settings where you are rather interested in one than the
other, but in general, models are preferred to be capable of preserving both to avoid
distorting the information.

Local and global structure are particularly important in ML approaches where
distances between data points are utilized to cluster them or reduce dimensionality.
In Chap. 5 we will introduce how unsupervised ML algorithms also seek to capture
local and global structure. See the swiss roll data set colored in the spectrum colors
(see Fig. 3.3, left). All points have specific distances towards each other in 3D (swiss
roll), which could be calculated and depicted in a distance matrix (where each point’s
distance to each other point is stored as a number). Now, if you perform a projection
technique such as PCA or, as done here, local linear embedding, you will distort the
local and/or global structure (see Fig. 3.3, middle). Local linear embedding has the
goal to preserve local structure, and proceeds by first choosing nearest neighbors of
data points, then reconstructing the points from their respective neighbors, and finally
finding a suitable low dimensional space. While the local structure (i.e., distances
towards closer neighbors) is reasonably preserved for most samples (see Fig. 3.3,
middle), global structure is distorted to a substantial degree. Multidimensional scal-
ing, on the other hand, has the goal to preserve all distances (i.e., overall structure) of
the data set. This projection can be seen in Fig. 3.3, right. The global whirl structure
of the swiss roll is much better preserved in it.

While local and global correlations/structure are not specifically defined and might
vary from data set to data set, it might help you as an idea to keep in mind when pro-
cessing your data. In the data exploration stage, it is probably advisable to recognize
in what ways your data might have local and global structures. In your project team
you might ask questions like: Do we expect that our time-bound data exhibits corre-
lations from time X to time Y ? This is obviously a serious issues in most time-bound
data, such as time-series data, where intra-individual correlations are present.

Depending on the specific assumptions that your algorithm makes towards data
(we will go into more detail in Chap. 4), such as distributional assumptions, you
will have to perform tailored analyses to check that these assumptions are met, or

3 Data in Science Education Research 65

2D Projection by Locally Linear Embedding 2D Projection by Multidimensional Scaling
15
0.06
2 9
Original Swiss Roll in 3D .vd 4 F] o 0
0.04 ..‘.' §"0. - 10 o S :W‘ﬁ ®
. oo
W ?'. % ,o : ..O‘ M&‘ 4
P §2°0% o X oA
0.02 & oo 3
s 8% 5 €p2se 20y, o>
v Tl et
% he o L I]
0001 o ¥ g od o L o,
o:s‘& .'io 0 ﬁ.’.l N %
L oy R\ %
—0.02{ o g ¥ » 'f'.l Ce Vg 5
o A S EN
“ L
-0.04 ® * ‘.‘ « " °o®
ool N o
4 o O%e °
c e * -10
0061 @ 0pe ®
Se =~ o
-0.08 .(~2 °
e - o 0

—-0.04 -0.02 0.00 0.02 0.04 0.06 0.08 =15 -10 =5 0 S

-
S
o
&

Fig. 3.3 The swiss roll data set colored with the spectrum colors (left) that is projected onto two
dimensions with the goal to preserve local structure (middle), and with the goal to preserve overall
structure (right). Find code for creating this figure in the accompanying notebook for this chapter

otherwise choose different ML algorithms. Having explored your data, you are now
in a position to further process your data so that it can be fed into the ML algorithms.

3.3.3 Prepare the Data

Appropriately preparing your data for further input into the ML algorithms is crucial.
First, all transformations to your data directly determine what assumptions you put
into your analyses. For example, if you choose to represent your language data in a
one-hot encoding, you eliminate the possibility that word order will be accounted by
the ML algorithm. Second, preparing your data can speed up calculations or make
them feasible in the first place. For example, color depth of images might increase the
size of the data to handle and thus unreasonably tax your computer’s working mem-
ory. Oftentimes, degrading color depth will not much affect the important features
in the images related to your research questions. It will, however, boost performance
of the ML algorithm and eventually speed up the training process. In any case, there
will be some preparation steps necessary to make your data amenable for the ML
algorithm to be trained on or explore patterns. Let us explore some important steps.

Data cleaning
Almost certainly, you will not directly utilize your collected raw data for analysis.

It can be useful to clean your data to make it more manageable. Moreover, you
might even be required to delete some information from the data set (e.g., sensitive

66 P. Wulff et al.

information that could be used to identify students), pursuing the data sparsity prin-
ciple. Cleaning data involves a range of different transformations that need to be in
alignment with your research goals. In Chap. 2 we reviewed many ways that could
screw up your data (remember that code or participant ID information was in one
study related to a specific hospital which then constituted data leakage and eventually
rendering scientific claims unjustified).

Imagine that your data, as in many ML applications, is constituted of features
and values. Considering the abovementioned issues, you can start by dropping irrel-
evant features that have no relevance to your study, e.g., participant ID information,
timestamps, or similar meta-data. For other features, such as age, you might want
to transform dates into actual age values, or create dummy codes for gender (0—
female, 1-male, 2—unspecified, etc.). This can be easily performed in Python with
the LabelBinarizer from the sklearn.preprocessing module. For language
data, there are additional important steps such as stopwords removal or lemmatization
(see Chap. 7; find implementation of stopwords removal in the accompanying note-
book for the LLM chapter). Next, you have to consider normalizing your features,
and checking for missing values and outliers. For many ML algorithms, normalized
features are important to enable sensible learning and that is not dominated by some
features. The same argument counts for outliers. Moreover, some ML algorithms
are designed to deal well with missing values, however, others cannot handle them
and you have to find ways to account for this. We will engage in greater depth with
handling missing values and outliers in Chap. 10.

Feature engineering

The features that represent the data are crucial for the performance of the ML models
(we also stressed this and potential pitfalls in Chap. 2). Two ways of feature engi-
neering are differentiated: feature selection, and feature extraction. In the former
method you select the most relevant features from a given set of existing features
(e.g., emotions among a set of emotions to predict learning). In the latter approach
you combine different features to form new features. A famous method for feature
extraction would be dimensionality reduction with the goal of reducing the number
of input features by retrieving as much information as possible (see Chap. 5). As
we discussed earlier, data gathered from complex systems can often be decomposed
into few dimensions (attractor states) of variability that capture important properties
or dynamics of the system. It is then possible to reduce the data to these states with-
out losing (relevant) information. A major difference between shallow (sometimes
referred to as traditional) ML and deep learning ML algorithms is that the latter also
excels at representing the raw features and finding effective representations by them-
selves, e.g., in the first layers of an ANN, sparing you this to be worked out manually.
Howeyver, to understand model decisions, the human researcher then would have to
understand what features the deep learning ML model picked up on, which might be
difficult.

3 Data in Science Education Research 67
Feature scaling

Feature scaling, i.e., bringing features on a common scale, is crucial for ML algo-
rithms (especially ANNs or regression) to work well. And it is worth mentioning that
you need to perform scaling only on the training data, for otherwise sensible infor-
mation would leak into the training process and generalizability of your trained ML
model cannot be tested anymore (some speak of data leakage, see Chap. 2). Feature
normalization and feature standardization are differentiated. The former refers to fit-
ting values in the range between 0 and 1 (subtracting min and dividing by max), and
the latter refers to z-standardization (subtracting by mean and dividing by standard
deviation).

3.4 Summary

The 21st century will offer science education researchers a vast variety of data sets
and different types of data to make sense of teaching and learning processes, such
as language, audio, video, numerical, or sensor data. Different types of data will be
encountered, such as natural language data or numerical data, as well as categori-
cal data, and even image and audio data. As explained above, a complex systems
perspective can be a helpful analytical lens to understand relevant phenomena. More-
over, ML can be a valuable modeling tool, and in order to apply ML in your analyses
you need to get, explore, and prepare this data. Thoughtful preprocessing and careful
reflection on issues of representativeness and bias are important for drawing valid
conclusions from the analyses.

References

Brunton, S. L., & Kutz, J. N. (2019). Data-Driven science and engineering. Cambridge University
Press.

Castells, M. (2010). The information age: Economy, society and culture (2nd ed.). Chichester, West
Sussex and Malden, MA: Wiley-Blackwell, with a new pref edition.

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, tools,
and techniques to build intelligent systems. Beijing and Boston and Farnham and Sebastopol and
Tokyo: O’Reilly.

Halevy, A., Norvig, P., & Pereira, F. (2009). The unreasonable effectiveness of data. IEEE Intelligent
Systems, 8—12.

Koponen, I. T., & Huttunen, L. (2013). Concept development in learning physics: The case of
electric current and voltage revisited. Science & Education, 22(9), 2227-2254.

NRC (2001). Knowing what students know: The science and design of educational. National
Academies Press.

68 P. Wulff et al.

Rothchild, I. (2006). Induction, deduction, and the scientific method: An eclectic overview of the
practice of science. SSR.

Stamovlasis, D. (2006). The nonlinear dynamical hypothesis in science education problem solving:
A catastrophe theory approach. Nonlinear Dynamics, Psychology and Life Science, 10, 37-10.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 4 ®
Applying Supervised ML e

Peter Wulff, Marcus Kubsch, and Christina Krist

Abstract This chapter introduces the basics of how supervised ML works. We
present a pipeline which encapsulates the essential parts of an ML research project
that utilizes supervised ML.

4.1 Basics of Supervised ML

Learning a mapping from inputs to outputs

Supervised ML is most commonly applied in science education research, because it
allows the automation of tasks ranging from scoring students’ written responses to
making predictions about being at risk of failing a class (see Chap. 2). Automation
and prediction are key goals for supervised ML, but how can we automate some-
thing using supervised ML? Supervised ML allows us to automate things because
in supervised ML the goal is to learn a rule/mapping that relates inputs (features) to
outputs (outcome variables), e.g., score on a test and give a grade. When this map-
ping from inputs to outputs has been learned, we have a ML model that encapsulates
the relation between inputs and outputs. Then, the task of assigning outputs (e.g.,
grades) based on new inputs can be automated using this ML model.

We already emphasized that ML is an inductive learning approach. As such, in
supervised ML the mapping is learned by providing a set of examples, called the
training data. The training data needs to be split from test data that is later used to
estimate the generalizability of your ML model. The training data needs to provide
representative examples to the mapping between the inputs and outputs, e.g., a set of

P. Wulff (<)
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany
e-mail: peter.wulff@ph-heidelberg.de

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 69
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_4&domain=pdf
mailto:peter.wulff@ph-heidelberg.de
https://doi.org/10.1007/978-3-031-74227-9_4

70 P. Wulff et al.

test scores and the respective grades. You then need to specify which supervised ML
algorithms should be used for the problem at hand (we outline multiple candidate
algorithms below). There are already ways to automate this decision, for instructive
purposes, however, we stick to the setup from scratch here. With the particular ML
algorithm, you already constrain the hypothesis space of possible mappings that can
be learned. For example, some supervised ML algorithms assume linear relationships
between inputs and outputs, which might or might not be appropriate for your problem
at hand.

Having split the data and chosen an ML algorithm, you then train the ML algo-
rithm with your training data. This can be done instance based or batch based (i.e.,
providing multiple examples at a time). In either case, your ML algorithm provides
predictions, which are rather random in the beginning of the training phase. These
predictions are then compared to the actual (gold standard) outputs, e.g., grades.
The difference (called: loss) between predictions and gold standards is then used to
adjust the model with the goal of minimizing this difference. Large differences will
typically lead to greater learning. The ML algorithm is trained for multiple epochs
(runs through the training data), and the training loss is expected to decrease during
training otherwise the ML algorithms gets no better at capturing the mapping from
inputs to outputs. This was compared to a teacher pointing out the mistakes of a
student, that is, supervising them. The training stops when the difference between
predictions and gold standard either reaches a threshold or cannot be (reasonably)
reduced any further. Now, the model trained using the training data is evaluated by
applying it to another set of examples—called test data—and compared to how well
the predictions match the gold standard values in the test data.

Supervised ML workflow

A workflow for implementing supervised ML that also recognizes the overall research
problem that is to be addressed as well as the loops within the decision making related
to supervised ML is depicted in Fig. 4.1.

We place particular emphasis on the following four major steps (after having
posed your research question), as they are crucial for validation studies and assuring
reproducibility:

1. Data splitting: splitting the data into a training and a test set.

2. Model setup: decide on a (or more) supervised ML model.

3. Model training: learning the mapping between inputs and outputs by minimizing
the difference between the model predictions and the gold standard values in the
training data.

4. Model evaluation: Using the test set to check to what extent the learned mapping
between inputs and outputs generalizes beyond the training set.

This process is potentially iterative, e.g., when the evaluation step provides no
satisfactory outcome, the model may be modified or a different type of model may
be trained.

4 Applying Supervised ML 71

Problem

Identification of
required data

_ Data pre-processing

Definition of
training set

Algorithm
selection

Evaluation
with test set

Fig. 4.1 Workflow of supervised ML, taken from Kotsiantis (2007, p. 250)

4.2 Example: Adding Two-Digit Numbers

Research problem

To see how supervised ML works and can be applied, we will start with a simple
example that played quite an interesting role in the history of Al (McCloskey and
Cohen, 1989): addition of natural, two-digit numbers. Let us first operationalize the
problem of adding two natural numbers: Adding two-digit natural numbers is as
simple as “9+5=?". Humans learn addition early on in school, however, it requires
rather complex cognitive processing such as keeping track of carryover, generalizing
what one knows about single-digit addition, etc.

Why using ML?
How can a machine learn to do this? The fundamental idea of supervised ML is to

learn from data and involves the four steps as outlined above. The advantage of this
problem is that we can easily utilize the computer’s mathematics engine (calculator)

72 P. Wulff et al.

to generate a wealth of train and test samples. Actually, there are overall 10,000 dif-
ferent possible two-digit additions. Equivalent additions (e.g.,4 4+ 3 = 3 + 4) count
as two distinct additions. For humans, once principles such as commutativity and
associativity are understood, these problems become easier. However, we will not
explicitly program the computer to recognize these underlying principles. If we
were to show the computer all 10,000 examples and train it for sufficient time,
then, given the capacity of ML algorithms such as the multilayer perceptron (see
Fig. 4.2), we can expect it to memorize all additions and become capable of solving
all of them if they are encountered. Mere memorization would give us little advan-
tage, because in reality we hardly ever encounter problems were all data is available
or all possible examples and outcomes are known. In practice, much less than the
actual set of all response options is seen. For example, in language processing, even
very simple, short-response items can elicit a wealth of possible responses of which
only very few are seen in practice. Moreover, the trained ML model would likely not
be able to generalize beyond two-digit addition.

Choosing ML algorithms

In this example, we will engage ourselves with two important ML algorithms, the
single-layer and multi-layer perceptron, the sometimes called hydrogen atom of
the field of AI given its preponderance to illustrate capabilities. There are many
different ML algorithms to choose from (for a brief overview of some important
algorithms see Table 4.1). They are sometimes differentiated into shallow and deep
learning algorithms. Shallow algorithms rather depend on the given features. Hence,
the researcher has to wisely choose how the input data is represented, i.e., what
features are given to the ML algorithm. For example, imagine you want to predict
class performance and insert self-efficacy as measured through validated Likert-

Single Layer Perceptron Multi Layer Perceptron
N
(x)
_
. 7
(e = (5)

/x,,/ A e

X

Fig. 4.2 Structure of single and multi-layer percepton. Left in both algorithms are inputs (features).
The £ to hy refer to hidden nodes. y are outputs. The step-function is called activation function
and might also be used in the multi-layer perceptron

4 Applying Supervised ML 73

scale items. You could insert the average scores or the individual scores as features.
Both might result in different performance of the ML algorithm. On the other hand,
deep learning-based algorithms (based on ANNs) have the capacity to train their
own representation of the input data. Here, you would most probably insert the
individual scores and let the ANN decide which representations are formed. These
representations are typically formed in the early layers of the ANNS.

Science education researchers are familiar with logistic regression models, as they
also underlie the Rasch model used in item response theory. In Al research, logistic
regression models are referred to as single layer perceptron (SLP, see Fig. 4.2). They
might be called ANNSs, because they consist of nodes and connections between the
nodes. However, they are shallow, because they have no intermediate (hidden) nodes,
which are quite important to make ANNs capable of representing the inputs in an
efficient manner. It has been established that SLPs can classify linearly separable
problems (it has been proven that they find a separating hyperplane for linearly
separable data). Linearly separable means that the data points can be separated by a
(hyper-)plane (in 2D a line). ML algorithms such as logistic regression and versions
of support vector machines with linear kernels (see Table 4.1) are designed to find
the optimal hyperplanes that separate the classes of data points. These algorithms
are eventually less useful if the problem at hand is known to be non-linear.

The Multi Layer Perceptron (MLP) advances the SLP by introducing a hidden
layer. It was established that MLPs are universal function approximators. Hence,
they can fit almost arbitrary mappings, including non-linear mappings. This makes
them ideal candidates for applying them to fit the addition example. Moreover, MLPs
are the workhorse of ML researchers, actually forming the template for as advanced
architectures as transformer models that power modern NLP applications such as
LLMs (see Chap. 7).

Supervised ML—in a nutshell

In supervised ML a machine is shown a set of N training examples which can
be complex vectors. In supervised ML each training example comes with a so-
called “label,” which can be complex as well, but is typically simpler compared
to the input vectors. The learning goal in supervised ML is to find a function
that approximates this mapping from inputs to outputs. Typical tasks are classi-
fication or regression. In classification, we search for a functional relationship
from input vectors to a number of desired categories. In text-sequence clas-
sification, categories could refer to elements in argumentation, such as claim,
evidence/data, warrants, reasoning (Lee et al., 2019), explanatory elements in
students’ evolutionary explanations (Nehm and Hirtig, 2012), or elements in
reflections on physics teaching enactments (Wulff et al., 2021). In regression,
the mapping is from inputs to a target space that can be integer as well. This
includes predicting a real-valued score, or similar. For example, education
researchers predicted the utility-score for science given the students’ essays

74

P. Wulff et al.

Table 4.1 Common supervised machine learning approaches. Generated with assistance by Chat-
GPT (version GPT-4), conversation can be accessed here: https://chat.openai.com/share/a521048d-
7993-4434-9b5d-acd7b99e9a25. For a more detailed ranking of different ML algorithms with
respect to various criteria see Table 4 in Kotsiantis (2007)

Name Main Idea Benefits Challenges Application
example
Logistic Regression | Probabilistic Simple, Not suitable for Medical diagnosis
approach for binary | interpretable complex
classification relationships

Decision trees

Iterative splitting of
data by feature
values to fine
optimal grouping

Simple; well
interpretable

Not suitable for
complex
relationships;
simple trees can
only partition data
into
hyper-rectangles
(Kotsiantis, 2007)

Classifying written
reflections

Support Vector Finds the optimal Effective in high Requires careful Image classification
Machine (SVM) hyperplane for dimensional spaces | kernel selection
classification
Naive Bayes Uses Bayes’ Handles uncertainty | Computationally Spam filtering
classifier theorem for well; speed; intensive;
probabilistic tolerance to missing | independence
inference values; assumption (i.e.,
explainability naive assumption)
of features is most
certainly wrong
(semi-naive
versions are
available)
k-Nearest Identify the k Accurate Large storage Recommendation
Neighbours nearest (in feature | classification requirements, systems
space) instances to | possible, stable sensitive to choice
the sample and compared to of similarity

classify based on
the most frequent
class label

decision trees and
some kinds of
neural nets
(Breiman, 1996)

function, lack of
principled way to
choose k
(Kotsiantis, 2007)

Feedforward Neural
Network

Layers of artificial
neurons (with
weights as
parameters) are
trained by gradient
descent and
back-propagation to
achieve optimal
weights for
classification or
regression problems

Flexible, handles
complex patterns

Requires a lot of
data, prone to
overfitting

Speech recognition

https://chat.openai.com/share/a521048d-7993-4434-9b5d-acd7b99e9a25
https://chat.openai.com/share/a521048d-7993-4434-9b5d-acd7b99e9a25

4 Applying Supervised ML

(Beigman Klebanov et al., 2017). A recently evolved strategy in the context of
deep learning is sequence-to-sequence modeling (Carleo et al., 2019). Here,
input and output dimensions are greater than 1. It is commonly used in NLP
applications such as machine translation or textual summarization. It is possi-
ble, to also predict multiple categories (multi-class classification), or multiple
scores and values.

The function hypothesis space (i.e., all possible mappings) has to be
restricted. In recent times, a powerful ML model became ANNs that can cope
with high-dimensional data which is desirable in many contexts. In this book,
we will concern ourselves with ANNs, because they proved to be versatile tools
for a multitude of problems oftentimes with better generalization performance
compared to other ML models such as support vector machines (Bishop, 2006,
p- 226). A task for ML researchers is then to choose wisely from among the
many algorithms. This choice depends special structure of the problem at hand.
For example, language-related tasks typically have to attribute for the depen-
dency structure inherent in language, e.g., similar words in certain positions.
In our case studies we will highlight widely used functions that can be utilized
in science education research problems.

In order to learn the mapping from inputs to outputs it is important to
provide the model feedback as to how far off it is from the desired labels.
This is accomplished through a loss function (also: objective function) that
expresses the deviance between predicted outputs and the targets. Designing
the loss function is of utmost importance to building an accurate ANN. The
loss function can be extended to include penalties for too complex models, or
even physics laws that must not be violated by the outputs. We will discuss
these issues later on. In fact, ANNs will shortcut any loops that you build into
the loss function. Common choices are mean squared error loss for regression
problems or cross-entropy loss for classification problems. Based on the loss
function it is then calculated, a quantity called empirical risk. During training,
the model parameters (weights) are adjusted so as to minimize the empirical
risk and the training error tracks the success of this strategy.

In the learning process these parameters are constantly updated in a process
called gradient descent. Then, the learning rate should be carefully chosen,
because it typically impacts the training process substantially. Too low training
rates will make convergence slow or impossible, i.e., the ANN does not learn
anything; too high training rates will cause overshooting the optimum and
eventually not converging either. In batch learning, the parameters are updated
after a pass through the entire training data set. In online learning, on the other
hand, the updates are performed after each data point. Typically the empirical
risk is not calculated over the entire training data set, but rather over a mini-
batch, i.e., a fraction of the training data set. The model parameters are then
constantly adjusted.

75

76

P. Wulff et al.

Once a set of parameters has been trained, the model can be used for infer-
ence. To do so, an input vector is passed through the model. As discussed
above, at this point performance should be assessed on the unseen test data to
get some estimation for the models’ generalizability capabilities. It is crucial
that the entire data is randomly split and data leakage avoided at all costs, which
can be intricate especially with time-series data sets or multiple responses by
the same persons. Assessing generalizability for regression or simple binary
classification is straightforward, as mean square error or accuracy measures
such as Cohen’s k are well understood. However, for multi-class classification
problems additional problems occur. For example, oftentimes certain cate-
gories are overrepresented (see Chap. 2). In this case the area under curve
(AUC), precision, recall, and F1-score are used to assess the performance.

Feed-forward Neural Networks, artificial neurons, and deep learning

Artificial neural networks are widely used ML algorithms. In ANNs the num-
ber of basis functions is fixed and they are adaptive through tunable parameters
that can be fixed during training. They are a directed, acyclic graph of layers.
At the core of many ANNSs are linear functions that operate in a paradigm
called “integrate-and-fire.” Again, there are input variables, weights as
parameters, and biases (also parameters) that determine the baseline firing
threshold. Similar to a biological neuron, the artificial neuron fires once the
threshold is surpassed. Each of these functions is then wrapped into a nonlinear
activation function to produce outputs. Layers can be arbitrarily stacked onto
each other, and except for experience and intuition, there are few guideposts
that help researchers to setup ANNSs (e.g., determine width, or depth of ANNGs).
Each layer-wise application of weights onto the inputs represents a data trans-
formation in the form of a tensor multiplication. Chollet (2018) compares the
application of a feed-forward neural network with the unwrapping of a paper.
In a regression context, the final output is simply the output of the activa-
tion function. For multiple binary outputs, the final activations can be passed
through a sigmoid function. For multiclass problems, a softmax function can be
used. Sufficiently deep feed-forward neural networks can approximate arbitrar-
ily well any functional relationship, hence they are universal function approx-
imators. Even a two layer feed-forward neural network with arbitrary size of
hidden units can approximate “any continuous function on a compact input
domain to arbitrary accuracy” (Bishop, 2006, p. 319). Researchers found a
class of functions that can be approximated much more efficiently with deep
networks (i.e., more hidden units). Shallow networks would need exponentially
more units—a phenomenon called depth efficiency. To what extent real-world
problems fall into this class is another open problem in ML research.

4 Applying Supervised ML 7

It is also insightful to note the resemblance of ANN s (and artificial neurons)
with human neurons that are made for information processing, i.e., passing a
signal in a robust way. Inputs (in the form of activation potentials) arrive in
dendrites. If these inputs are sufficiently large in sum (see summing function in
SLP above), the neuron will “fire”, i.e., pass the signal through the myelinated
axon trunk to the terminals that are connected to other neurons. However,
many researchers noted the degeneracy of analogizing the human brain with
ML, noting that “there is scant evidence that brain computation works in the
same way as neural networks” (Prince, 2023, p. 36).

Implementing ML algorithms in Python

The SLP and MLP can be implemented in Python as follows (see Code snippet 4.2).
We will rely on the torch module to implement the ANNs. The SLP and MLP
are then implemented as class objects in Python. They inherit some attributes from
the nn.Module from the torch module. There are two functions for these classes.
The former initialized the ANN, i.e., set up the linear layers, whereas the latter is
used during inference time to process the input and provide predictions. All details
regarding the updating of the model parameters (i.e., learning) are abstracted away
by the torch module, which helps us to focus on the important aspects such as
defining the architecture of the ANNs. The ReLU (rectified linear unit) is a so-called
activation function which is important to introduce non-linearities into the model. It
simply keeps positive values and sets negative values to zero. The sigmoid function
maps any input value to the open interval (0, 1).

Python code: Build ANNSs from scratch in pytorch

define network:
class SLP(nn.Module):
Single layer perceptron
def __init__(self,
dim_input=52,
dim_output=36):

super (SLP, self).__init__(Q)
self.input_layer = nn.Linear(dim_input,dim_output)
self.relu = nn.ReLUQ)

self.sigmoid = nn.Sigmoid()

def forward(self,input_):

78 P. Wulff et al.
output = self.sigmoid(self.relu(self.input_layer(input_)))

return output
class MLP(nn.Module):

multilayer perceptron

def __init__(self,
dim_input=52,
dim_hidden=80,
dim_hidden2=80,
dim_output=36):

super (MLP, self).__init__(Q)

self.input_layer = nn.Linear(dim_input,dim_hidden)
self.hidden_layer = nn.Linear(dim_hidden,dim_hidden2)
self.hidden_layer2 = nn.Linear(dim_hidden2,dim_output)
self.relu = nn.ReLUQ)

self.sigmoid = nn.Sigmoid()

def forward(self,input_):
x = self.relu(self.input_layer(input_))
x = self.relu(self.hidden_layer(x))
output = self.sigmoid(self.hidden_layer2(x))

return output

Given that ML models can learn arbitrary mapping from inputs to outputs, we
should be able to train an ML model to learn this two-digit addition. Even more, it
should be capable of generalizing to unseen output. For example, if the ML model
has not seen the problem 74 + 23 in the training data, we would expect it to be able
to generalize from the other examples and output the correct response.

Data representation

Before diving into training the ML algorithms, we have to think about our data more
carefully. Data representation is a crucial part of ML research, both in supervised and
unsupervised ML. Most naively, we could simply create 100 input nodes for the first
summand, and another 100 nodes for the second, leaving us with 200 input nodes
that are mapped to the output nodes, which would be the natural numbers from 0
(04 0) to 198 (99 + 99), i.e., 199 output nodes. While this might work, it creates
a large network. A more efficient representation is through a so called (distributed)
one-hot encoding of the numbers 0 to 9. In this encoding, every number is represented
as a vector in 11-dimensional vector space with three dimensions 1.0 and the other

4 Applying Supervised ML 79

dimensions 0.0. We start with zero occupying the first three dimensions, and then
subsequently move through the dimensions. The numbers O to 2 are then represented
as a one-hot encoded distributed vector:

Python output: Distributed representations of numbers 0 to 2

0 1 2 3 4 5 6 7 8 9 10 11
0 1.6 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.6 1.0 1.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Each number in an addition is represented through its respective vector. To do so,
we concatenate the vector for 1 with the vector for O (this is: 10), and so forth. For
example, the addition example of 10 + 23 will be represented as:

Python output: Distributed representation of 10 + 23

tensor([0®., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
1., 1., 1., 0., 0., 0., 0., 6., 0., 0., 0., 0.,
0., 0., 1., 1., 1., 0., 0., 6., 0., 0., 0., 0.,
0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0.1

Testing for linear separability of your data set

Linear separability is an important property of data in ML research (see
Chap. 2). Linear models are robust, and MLPs might be an overkill, if data is
linearly separable. However, if the data is not linearly separably, linear models
are not adequate for your data. Linear separability is also important in human
object recognition, where non-linearly separable objects are harder to learn.
ML algorithms such as SVMs actually find a linear hyperplane to separate the
data, however, they also find linear hyperplanes for non-linear separable data
(they first map the data into some other Euclidean space).

Testing for linear separability can be done with, among others, quadratic
programming or ANNSs, namely the SLP. In quadratic programming, a SVM
is fit to the data. It is important to note that there are also ways to estimate the
difficulty/complexity of a classification problem, which can help researchers
determine which ML algorithms to use.

80 P. Wulff et al.

To generate correct responses, we rely on the internal calculator of Python to
generate additions. We then write a wrapping function (see notebook in online sup-
plement) to generate random samples of two-digit addition, specifying input, output,
and the actual problem in plain notion.

We can now initialize the SLP and MLP models, and input a randomly generated
value to see what the ANN returns:

Python code: Initialize ML models

SLP_model SLPO)
MLP_model = MLP(Q)

x = dataset_generator.generate()
SLP_model(x[’input’])

An appropriate output is presented, i.e., another concatenated vector for the result
of this addition. As expected with randomly initialized ML algorithms that were not
trained so far, outputs are randomly scattered around 0.5, which yield zero when
applied to the sigmoid function. This is good and well, given that we haven’t trained
the ANN.

Generate and split train and test data

Now, let’s generate the train and test data. We simply randomly generate 10,000
train samples (with replacement). We then generate 1,000 test samples. Moreover,
we exclude any case, where a test sample occurred in the train data. As such, we can
genuinely test if the model acquired generalizability, given that we assure that it has
not seen the test data during training. Note that in practice train and test data will
overlap to some extent, given, for example, that we can assume that students in the
future will write similar responses compared to students in the past. However, this is
not necessarily the case and always should be critically reflected in ML projects.

Decide for a loss function

The ANN is meant to learn the mapping based on the train set. Therefore, the ANN
is shown an input vector and is supposed to predict the correct result. The degree
of difference between both is captured in the loss function (sometimes called objec-
tive function). Minimization of the loss relates to the empirical risk associated with
ML. Researchers can come up with any kind of loss function, and in fact, the loss
function to a large extent can determine the learning behavior. There are important
differences between traditional ML versus deep learning, as well as for the specific
tasks of regression, classification, and unsupervised ML (clustering, and dimension
reduction).

4 Applying Supervised ML 81

In the original paper with the addition problem, McCloskey and Cohen (1989)
used the following loss function: d = (f — a)(a)(! — a), where d is the loss value,
f is the target activation level (i.e., 0.0 or 1.0 of the gold standard output vector), a
is the activation level of the prediction, and (a) (I — a) is the derivative of the logistic
function (sigmoid). A sensible first choice is to simply measure the mean absolute
difference between model output (predicted response) and true response, which is
called absolute loss or L1 loss. In our case of adding two-digit numbers this loss
function was found to not lead to successful learning (i.e., reduce the training loss).
We then tried binary cross-entropy loss, which is a widely used loss function. Cross-
entropy loss generally captures the difference in the probability distributions between
predicted and expected output. The smaller the value, the closer these distributions
are. Cross-entropy loss noticeably improved the learning behavior.

Optimization procedure

Besides the particular loss function, a procedure needs to be decided on which updates
the parameters of the ML algorithm optimally, called optimizer, so that the loss
function becomes minimal in fact. In other terms, we need to find a parameter set
that minimizes the loss function and then forms, alongside the algorithm, the final
ML model. Derivatives of functions are important here, because they indicate what
small changes in parameters might do with the loss, and thus how to minimize the
loss function (find mathematical details in Goodfellow et al. (2016), p. 79. One
important such method is gradient descent, a procedure that can be envisioned as
hill-climbing a mountain range. One problem is that you might get stuck in a local
valley and believe that you have found the global minimum. It is important for ML
researchers to ensure that they have found a good solution, e.g., through probing the
generalizability capacity of the trained ML model. In our case, the optimizer Adam
is used to update the model parameters which is typically a very good optimizer in
many ML applications. It is an efficient improvement of stochastic gradient descent.

To pass the loss signal through the model, in this case the network, back-
propagation is a method of choice. Back-propagation played historically an impor-
tant role in Al research, because it was found to enable ANNSs to learn effi-
ciently, making it the connectionists’ master algorithm. In the original paper, they
utilized the back-propagation algorithm to update the weights in the ANN. We also
used back-propagation. This can be implemented with the loss_value.backprop ()
command. This command computes the gradients for the nodes, and the following
command then updates the parameters: optimizer.step().

82 P. Wulff et al.
Hyperparameters

As you can see from all the setups we have done so far, there is much for researchers
to control and optimize. While the model parameters are updated during training,
there are other parameters that are not updated during training and set in advance that
control the learning process. These are called hyperparameters. There are many. For
once, the model architecture (number of layers, i.e., depth of ANN; the width of the
layers), the training (e.g., number of epochs, i.e., times to cycle through the training
data), the learning rate (typically very important, too low values will result in essen-
tially no learning, and too high values will prevent the algorithm from finding the
optima), optimization function and loss function are all hyperparameters that can be
controlled by the researcher. There are rules-of-thumb and empirical evaluations on
how to set the hyperparameters. However, it is always also the task for the researcher
to understand the impact of important hyperparameters. With procedures such as
grid search you can systematically browse through hyperparameter configurations
and find an optimal set of hyperparameters.

Training the ML model

We now train the SLP and MLP architecture. We actually tracked the training loss by
writing out the actual loss for a sample in the training data set, and adding all train-
ing losses up with each other. We verified that this sum decreases over the epochs of
training (see notebook in online supplement). We also fit the model after one epoch
to the validation data set (not the test data), and found that this loss also decreased.

Evaluating the ML model

In the following plots, we track the loss value on predicting cases in the train and
validation data plotted over different sizes of the training data (see Fig. 4.3). The
MLP solves the problem for any sizes of the training data from 1000 samples to
7000 samples. It can be seen that the training loss increases slightly with more
training samples (which can be expected, because it has to learn more), however,
the loss on the validation data set decreases, given that probably the overlap with
the training data increases. The trained ML model (MLP) then perfectly predicts the
test data (see Python output). We also tested a simple logistic regression algorithm
(SLP) for this problem and found that it did not succeed in solving the problem.

Python output: Classification report for MLP on test set for addition problem

precision recall fl-score support
004 1.00 1.00 1.00 97
005 1.00 1.00 1.00 109

006 1.00 1.00 1.00 98

4 Applying Supervised ML 83

007 1.00 1.00 1.00 95

008 1.00 1.00 1.00 114

009 1.00 1.00 1.00 93

010 1.00 1.00 1.00 111

011 1.00 1.00 1.00 90

012 1.00 1.00 1.00 101

013 1.00 1.00 1.00 92

accuracy 1.00 1000
macro avg 1.00 1.00 1.00 1000
weighted avg 1.00 1.00 1.00 1000

Conclusion

Two-digit addition is a well-defined task of specific operations. The utilized MLP was
able to perfectly learn this task, based on incomplete information. Just like human
learners, we would now move on to train the model to also excel at subtraction. We
pose a novel problem: simple addition with ones (O + 1,14+ 1,2+ 1,...,1+9).
After 150 epochs the model had the capacity to solve this problem with 100% accu-
racy. We then trained this model on addition with seven (0+7,1+7,...,7+9).
The model also learns solving the addition with seven with 100% accuracy. While
doing so, however, the model completely forgot how to solve addition with ones
(0% accuracy). This behavior is arguably much different from human learning and
became known as “catastrophic inference” or “catastrophic forgetting” (McCloskey
and Cohen, 1989). This was a challenge for ML researchers for quite some time until

1072 4 :
=~ train loss

val loss
10—3 .

1078

1000 2000 3000 4000 5000 6000 7000
Size of train data set (number of samples)

Fig. 4.3 Loss plotted over train set size for train loss (blue), and val loss (orange)

84 P. Wulff et al.

advanced ANN architectures were devised that could better incorporate their prior
capabilities, e.g., by slowing down weight upgrading for important weights required
for prior tasks. Moreover, different types of ANN architectures were advanced that
could process information better and preserve task performance. Also, sleep-like
procedures where found to partly alleviate catastrophic forgetting in ANNs. And
architectures such as baseline or foundational models, e.g., transformer-based lan-
guage models or memory-augmented ANNs where past events are remembered more
efficiently, are quite robust to not forget capabilities when novel tasks are learned,
i.e., the models upgraded.

Recent developments

The Perceptron was a milestone in ML research. A subsequent book on the percep-
tron by Minsky and Papert (1972) (first edition in 1969) showed limitations of the
perceptron. In fact, the authors concluded that the SLP can only classify linearly
separable problems. They erroneously (somewhat ironically) generalized that MLPs
have similar limitations, allegedly affecting a so-called Al winter where funding
plummeted. In the early days of Al (good-old-fashioned-AI, GOFAI symbolic Al),
researchers focused on expert systems, hence deductive systems based on formal
logic. These were considered well versed in solving well-defined, logic problems,
however, they suffered at more complex, fuzzy problems such as speech recognition
or language translation. With the increasing power of hardware, it became feasible
to train large ANNS. It was called the “bitter lesson of AI” (Sutton, 2019) that these
statistical, inductive approaches in fact excelled at many relevant problems: “Seek-
ing an improvement [for a relevant task] that makes a difference in the shorter term,
researchers seek to leverage their human knowledge of the domain, but the only thing
that matters in the long run is the leveraging of computation.”

The networks then have a capacity for patterns that they can learn through back-
propagation and specific training data. Specific ANN architectures of these networks
helped to boost ML into a new Al spring. Alongside ANNSs, a plethora of different
algorithms has been developed over the decades that are tailored to specific tasks such
as regression, classification, clustering, density estimation, dimensionality reduction,
or representation learning. Modern deep ANN s have adjustable parameters in the bil-
lions. While humans can be considered an existence proof for a quite general learner
where ANNs with billions of parameters and connections should be capable to learn
in principle, the ANNSs in deep learning are less general and more specific to certain
classes of tasks (e.g., language processing), even though this increasingly changes
with versatile NLP tools such as LLMs that learn problem solving in domains which
it hasn’t been explicitly trained for. We will consider LLMs later on in this book (see
Chap. 7). If researchers are able to choose a suitable ANN architecture, it was shown
extensively that deep ANNs can generalize even though the number of parameters
far outweighs the number of training examples, up to the point where ANNs can
learn even random mappings. Another robust finding is that more (e.g., parameters
in the model, training samples, training time) is typically better in these kinds of

4 Applying Supervised ML 85
architectures.
Implications

While we can be quite certain that we have a well functioning model for two-digit
addition in our case, such evaluations are much more difficult in practice. For once,
testing the generalizability of the trained ML model requires researchers to have a
solid understanding of the expected responses. Oftentimes, generalizability can be
estimated through random splitting of the given data in train and test sets. However,
certain stratifications of the data might be important to consider when testing for
generalizability. Notoriously, certain groups related to, among others, genders, eth-
nicities, or races might not be adequately represented in the training data, such that
probing for generalizability is inherently flawed (see Chap. 2). More generally, the
models oftentimes live in their own world, which is known as the open category prob-
lem (Christian, 2021, p. 281). A computer vision model would only know a world of
1000 categories that are provided by the researchers, and decide for a complete white
noise picture that it looks more like a dog than a cat, given that it is forced to make
a choice. These categories drastic simplifications of what would be encountered in
real life to what would be encountered in real life. Uncertainty was often not well
integrated into these models (Christian, 2021, p. 283ff).

4.3 Considering Limitations

Under- and overfitting

When training your model, two goals are important: making the training error small,
and making the gap between training and test error small. Two major challenges are
related to these goals: underfitting and overfitting, also related to the variance and
bias of your model. Bias is often associated with simpler models (e.g., linear models)
that approximate complex real world problems. A high bias relates to underfitting
the training data. Variance refers to a model’s sensitivity to variability in the training
data set. Deep learning models are typically high in variance, i.e., they are capable
of approximating arbitrarily complex training data. This is related to overfitting. In
ML research problems, you typically face the bias-variance trade-off. You will likely
find no optimal solution, but you have to balance bias and variance in order to build
a practically meaningful ML model.

Underfitting occurs when your training error does not get sufficiently small. This
could be caused by an inappropriate hypothesis space. Say, your data distribution is
quadratic and you only allow linear models to be fit then the training error cannot
get smaller than a certain value. Here, you could explore different hypothesis spaces
and thus provide the model more flexibility to approximate the training data.

On the other hand, you might be in risk of overfitting your data. This refers to the
case where your model will perform well on the training data, but does not perform

86 P. Wulff et al.

well for unseen samples. Here, your model approximates the training distribution too
closely which does not map well onto the test distribution. Remember: training and
test distributions are ideally identical (i.i.d. assumption). However, in practice you
will sample only a finite amount of examples and both distributions will necessarily
differ to some extent. This can have multiple reasons such as data for training and
test sets were collected differently and some background variables in the students
differ. For ANNSs it was found that dropping certain artificial neurons during training
(“Dropout”) could work as a regularizer and help prevent the network from overfitting
the training data. Useful techniques to counteract overfitting are regularizations.
These add a penalty to the cost function in your model training which effectively
enables the model to eliminate or shrink some parameters and generate a sparse
model, i.e., increase the bias.

In any case, this needs to be critically monitored during the training process of the
model, and it is therefore crucially important to use cross-validation and other forms
to assure that your model is neither under- nor overfitting, and generalizes well to
unseen samples.

Noise and the gold standard

In supervised learning, researchers train models that seek to map inputs to outputs.
However, if inputs (features) and outputs are empirical measurements, they are char-
acterized by noise. For example, if features (called predictors in predictive modeling)
are characterized by noise, then this can be propagated through the model and hamper
predictive performance. Another source of noise is including uninformative predic-
tors, i.e., those which have no relationship with the outcome. Finally, the outcome
(response variable) might be noisy. Some outcomes may only be measured with
some degree of unwanted, systematic noise. Say, you want to categorize sentences in
students’ written arguments according to some argumentation model. We noted that
language is ambiguous, and if your training data is mislabeled some percentage of
times, then you can only expect a certain performance from the model. This is: you
will chase ghosts if you seek to tune hyper-parameters and improve model perfor-
mance if already your training data classification is only 90% accurate. Therefore,
it is crucial to evaluate human inter-rater performance for the classification of your
training data.

Constraining hypotheses spaces and the no-free-lunch theorem

When applying ML it is important to recognize that “the designer of the learning
algorithm implicitly defines the space of all hypotheses that the program can ever
represent” (Mitchell, 1997, p. 23). This is called the hypothesis space, and an example
would be that of a linear regression algorithm that has all linear functions in this
set. This also relates to the No-free-Lunch theorem: As models can be thought of
as simplifications of the observations/data, one has to make certain assumptions
about the data in order to find a best performing model. However, these assumptions
constrain the hypothesis space. The no-free-lunch theorem states that over all possible

4 Applying Supervised ML 87

data-generating distributions and all possible tasks any ML algorithm performs as
well as any other, say a classifier that always predicts the same class. While this
is true in theory, in practical applications of ML this is of minor relevance. Baxter
and Lederman (1999) outlined that the no-free-lunch theorem assumes that training
and testing distributions are non-overlapping. This is not often true in real-world
applications. Nevertheless, researchers who apply ML in their research should be
explicit about the constraining assumptions on hypotheses that can be modeled with
their ML algorithm. This is particularly true for shallow ML algorithms, while deep
learning ML algorithms such as ANNs can approximate arbitrary data distributions.

References

Baxter, J. A., & Lederman, N. G. (1999). Assessment and measurement of pedagogical content
knowledge. Examining pedagogical content knowledge (pp. 147-161). Dordrecht: Springer.

Beigman Klebanov, B., Burstein, J., Harackiewicz, J. M., Priniski, S. J., & Mulholland, M. (2017).
Reflective writing about the utility value of science as a tool for increasing stem motivation and
retention - can Al help scale up? International Journal of Artificial Intelligence in Education,
27(4), 791-818.

Bishop, C. M. (2006). Pattern recognition and machine learning. Information science and statistics.
New York, NY: Springer Science+Business Media LLC.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.

Carleo, G., Cirac, 1., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., & Zde-
borovd, L. (2019). Machine learning and the physical sciences. Reviews of Modern Physics,
91(4).

Chollet, F. (2018). Deep learning with Python. Safari Tech Books Online, Manning, Shelter Island,
NY.

Christian, B. (2021). The alignment problem: How can machines learn human values? London:
Atlantic Books.

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, Massachusetts and
London, England: MIT Press.

Kortemeyer, G. (2023). Could an artificial-intelligence agent pass an introductory physics course?
Physical Review Physics Education Research, 19(1), 15.

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Infor-
matica, 31, 249-268.

Lee, H.-S., Pallant, A., Pryputniewicz, S., Lord, T., Mulholland, M., & Liu, O. L. (2019). Auto-
mated text scoring and real-time adjustable feedback: Supporting revision of scientific arguments
involving uncertainty. Science Education, 103(3), 590-622.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of learning and motivation (vol. 24, pp. 109-165).
Academic Press.

Minsky, M., & Papert, S. A. (1972). Perceptrons: An introduction to computational geometry. The
MIT Press, Cambridge/Mass., 2. print. with corr edition.

Mitchell, T. (1997). Machine learning. New York, NY: McGraw-Hill Education.

Nehm, R. H., & Hirtig, H. (2012). Human vs. computer diagnosis of students’ natural selection
knowledge: Testing the efficacy of text analytic software. Journal of Science Education and
Technology, 21(1), 56-73.

88 P. Wulff et al.

Prince, S. J. D. (2023). Understanding deep learning. MIT Press.

Sutton, R. S. (2019). The bitter lesson.

Wulff, P, Mientus, L., Nowak, A., & Borowski, A. (2021). Stirkung praxisorientierter
hochschullehre durch computerbasierte riickmeldung zu reflexionstexten. die hochschullehre,
11.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 5 ®
Applying Unsupervised ML e

Peter Wulff, Marcus Kubsch, and Christina Krist

Abstract This chapter provides a more in-depth treatment of unsupervised ML
alongside a workflow for applying unsupervised ML in your research. We showcase
the workflow with a toy example for unsupervised ML with numerical data.

5.1 Basics of Unsupervised ML

The availability of unlabelled data

While supervised ML is the prevailing method for utilizing ML in science education
research and other scientific disciplines, the vast majority (more than 90%) of the
estimated 1600 Exabytes of data that exist in the world today are unstructured, i.e.,
unlabelled, according to some estimates more than 95% of it. It is oftentimes too
restrictive and resource consuming to label data, say billions of pictures. Moreover,
it is not always known a priori what labels should be given. Labeling data, after all, is
a theoretically involved procedure. Content analytical procedures such as inductive-
deductive coding are almost unfeasible for big data. Principled and systematic pro-
cedures are required, and unsupervised ML is a promising technique that provides
researchers with the means to explore patterns such as clusters in unstructured data.
We reviewed that most complex dynamical systems can be reduced to a few dimen-
sions (attractor states, or manifolds) that govern important aspects of the system’s
behavior (see Chap. 3). For example, in complex fluid dynamics, regular vortexes
might introduce non-random patterns in the system’s behavior. Unsupervised ML
methods can be utilized to uncover relevant dimensions in high-dimensional data

P. Wulff (<)
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany
e-mail: peter.wulff@ph-heidelberg.de

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 89
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_5&domain=pdf
mailto:peter.wulff@ph-heidelberg.de
https://doi.org/10.1007/978-3-031-74227-9_5

90 P. Wulff et al.

sets. Even texts and images have this property. Dimensionality reduction can be used
to compress data sets to make them manageable and visualize relationships in them.

Unsupervised ML workflow

The general principle of many unsupervised ML approaches is to come up with some
mathematical description of what we mean by a pattern or structure. Typically, this
comes down to comparing how similar or different instances in our data are and
grouping them based on that similarity. The result is an assignment of the instances
in our data to a set of groups. The challenge is that the groupings are not speaking for
themselves: knowing that, based on answers to an interest survey, 20 students are in
group ‘A’ and 20 other students are in group ‘B’ is not informative. Furthermore, these
groupings can be meaningful or not—depending on the problem or question at hand.
In contrast to supervised learning, we do not know what the true grouping (assuming
a true grouping even exists) is. In consequence, the groups found using unsupervised
ML need to be interpreted qualitatively, e.g., students in group ‘A’ might be primarily
interested in biological and chemical phenomena whereas students in group ‘B’ might
be primarily interested in physics and astronomy. With the qualitatively described
groups at hand the question of validity comes up. This includes questions such as
Are the groups distinct?, Do the groups generalize?, and Can we craft a validity
argument in light of our question or problem?.
Overall, several major steps in unsupervised ML can be identified

1. Set your research goals

e Determine your research questions according to unsupervised ML, such as
dimensionality reduction, denoising, or clustering.

2. Gather unlabelled data

e E.g.,images/drawing, natural language data, questionnaire responses, network
data
e Choose representations for your data, e.g., embeddings for language data

3. Pattern recognition: using a mathematical model to find patterns in data

e Choose appropriate ML algorithm (if problem is linear, some algorithms might
be more appropriate than others; more complex algorithms also capture local
and global structures that can be non-linear)

4. Fit algorithm to the data
e E.g., find appropriate hyperparameter configuration
5. Qualitative pattern interpretation: describing the groups qualitatively

e Visualize low-dimensional map points, visualize clusters, output representa-
tive samples for clusters, determine relation to covariates

5 Applying Unsupervised ML 91

e Compare different approaches for the problem

6. Pattern validation: Depending on the context, determining how the found pattern
can be used

Tasks and goals for unsupervised ML

Among the primary goals for unsupervised learning are complexity reduction (e.g.,
dimensionality reduction, sometimes referred to as feature extraction), density esti-
mation, denoising data, or clustering. It is then the target to retrieve important aspects
of the original data. Unsupervised ML is often used as a preprocessing procedure
(see Chap. 2) before training supervised ML or to support humans in interpreting
complex data sets, given that it is capable of reducing the data to be processed to
the essential dimensions. Early theoretical work dates back at least 150 years in the
year 1873 (Brunton and Kutz, 2019). Science education researchers have employed
unsupervised techniques for decades, namely principal components analysis (PCA)
that is used, among others, to determine the underlying structures of a questionnaire.
For example, Huffman and Heller (1995), and Eaton and Willoughby (2018) used
exploratory and confirmatory approaches to find or confirm patterns in complex data
as collected by administering the widely used force concept inventory in physics.
Such approaches can advance our understanding of actual students’ conception in
these inventories, and how to improve the measurement instruments.

5.2 Examples: Dimensionality Reduction and Clustering

We will start introducing unsupervised ML with a most generic and widely employed
technique called singular value decomposition (SVD, see Box 5.2.1) applied to a sim-
ple image, that can take us quite far in terms of preprocessing data. We then illustrate
the capabilities of data-driven discovery of unsupervised ML. We will utilize complex
data gleaned from the simulation of a real-world system in a physics context, namely
identifying phase transitions in ferromagnetic materials (Wang, 2016). Classifying
states of matter and phase transitions is a major goal for condensed matter physicists.
However, identifying phases and phase transitions can be challenging when prob-
lems are complex, e.g., certain order parameters are elusive. Unsupervised ML can
be used to “extract information of phases and phase transitions directly from many-
body configurations” (Wang, 2016, p. 1). Finally, we will take an example from
astrophysics, where researchers can use unsupervised ML to cluster astronomical
objects such as stars and galaxies.

92 P. Wulff et al.

5.2.1 Dimensionality Reduction with Image Data

Why dimensionality reduction?

Reducing dimensionality of data is important for various reasons. First, when visual-
izing data, two or three dimensions cannot be surpassed to make them visually inter-
pretable in our spatially 3D world. Also, the dimensionality of the data affects the
computational cost for many ML algorithms, hence, lowering dimensionality also has
a benefit there. Moreover, noise might be removed from the data. High-dimensional
data of complex systems can be typically reduced to a set of essential dimensions
that capture much of the dynamics and complexity. However, it is often important to
preserve important structures in the data because it might reveal important properties
about the problem of interest.

The problem: dimensionality reduction with image data

We consider the case of a single image. Analysis of images is used in many scientific
disciplines. In particular, in science education researchers analyzed students’ draw-
ings with supervised ML algorithms (Zhai et al., 2022). Images have symmetries
that can be exploited. For example, translational symmetry in space and time, i.e.,
close pixels tend to have the same color and, in a sequence of images (movie), a
pixel tends to have the same color throughout some time. Consequently, an image of
10,000 pixels (i.e., dimensions) might be captured with three latent dimensions that
relate to geometrical translation and rotation.

Gathering and representing the data

The following image can be retrieved from the Internet and represented in array-
form (see Python output 5.2.1), where, in this case, the array is of dimension
(2736, 3648, 3) for height, width, and color-intensity, respectively (and, if color
information is omitted, only height and width dimensionality remains as well as, for
black and white images, one dimension for indicating whether a pixel is black or
white). However, the pixels are highly correlated (in complex ways) with each other.
For example, larger areas in the image share a similar color, hence, knowing the color
of one pixel there almost determines the color of the other pixels.

Python output: picture as array

array([[172, 172, 172, ..., 164, 162, 164],
[170, 172, 175, ..., 161, 162, 162],
[171, 172, 174, ..., 159, 161, 161],

5 Applying Unsupervised ML 93

[83, 81, 79, ..., 153, 151, 147],
[85, 82, 79, ..., 147, 144, 137],
[92, 88, 83, ..., 146, 139, 128]], dtype=uint8)

Choosing an unsupervised ML algorithm

We now might be satisfied with a smaller version of this image, which is of reduced
size. This could be due to resource-related issues, such as storage capacity, working
memory limitations, etc. If we are only interested in the object in the picture, we
might not need minute details and resolution. Removing color would be a first step,
given that colors are represented with three numbers for red, green, and blue, rather
than one number for grayscale intensity. Let’s apply SVD to our sample image. We
perform SVD with Python as follows (see Box 5.2.1 and Python code below). For
SVD, the mathematics library numpy in its 1inalg (linear algebra) subroutines has
a function called svd that is used to perform the decomposition.

Python code: Perform the SVD

u, s, vh = np.linalg.svd(img, full_matrices=True)
fig,ax = plt.subplots(2,2)
sizes = [10,20,50,200]
for n,i in enumerate(sizes):
a,b = np.where(np.ones(len(sizes)).reshape(2,2)==1.)

r=1
X_hat = u[:,:r]@np.diag(s[:r])@vh[:r,:]
s_ =ul[:,:r].size + s[:r].size + vh[:r,:].size

ax[a[n]][b[n]].set_title(£’{s_} /
{s_/org_size*100:.2f} \%’,)
ax[a[n]][b[n]].imshow(X_hat, cmap=’'gray’, vmin=0, vmax=255)

Find appropriate hyperparameter configuration

We can then access a submatrix which captures underlying dimensions. The larger
the matrix we access, the more closely will the image resemble the final image. In
Fig. 5.1 we represent 10, 20, 50, and 200 dimensions (originally the dimension was
1725). We can see that even 50 dimensions almost capture all the information that is

94 P. Wulff et al.

required to generate the image. This is typically also true for language data, where
entire texts might be summarized with a few number of topics.

5.2.1 Background: Singular Value Decomposition (SVD) and Principal
Component Analysis (PCA)

Many techniques to perform dimensionality reduction transform the data to
identify a lower-dimensional set of axes (dimensions) that accurately represent
main characteristics (e.g., variation) of the data (Marsland, 2015). In essence,
SVD is a matrix decomposition, where the original matrix such as the array of
grayscale values for pixels is approximated with smaller matrices. The original
high-dimensional data matrix is decomposed into the matrices where in the
truncated form only a subset of the columns is considered. The subset is chosen
so that the matrices can still reconstruct the original matrix well (Note: Details
about the computations and characteristics of these matrices can be found in
Brunton and Kutz (2019)).

Reference to PCA

The SVD is an optimal representation of the original matrix, given mean
squared error loss (Brunton and Kutz, 2019). PCA makes use of SVD, how-
ever, first the data in the original matrix is centered, and variance is set to unity
(Brunton and Kutz, 2019). Then SVD is computed to extract principal compo-
nents (which are orthogonal to each other) that capture the maximal variance
within the data. The eigenvalues then indicate the importance of the principal
component (explained variance ratios can be calculated through dividing the
eigenvalues by the sum of the eigenvalues). Researchers typically only keep
the first few dimensions (i.e., principal components), hence, the dimensionality
of the data is reduced. SVD is a widely used technique also in particle physics,
geophysics, and many other fields.

Model validation

In this example, we primarily used “face validity” to confirm that the retrieved lower-
dimensional image data meaningfully captures patterns in the data: The authors are
well recognizable even with only a small fraction of the original dimensionality. For
resource-related issues, we indicated the percentage of storage requirements for the
respective images above them (see Fig. 5.1). An interesting parallel of SVD as a
lossy compression of data is that generative LLMs also resemble lossy compres-
sions of the Internet and other large data repositories. You might get an approximate
reconstruction, but not an entirely precice reconstruction from this compression.

5 Applying Unsupervised ML 95

63850/ 0.64 % 127700/1.28 %

2000 2500 3000 1000 1500 2000 2500 3000

1277000/12.79 %

1500 2000 2500 3000 3500 1500 2000 2500 3000 3500

Fig.5.1 SVD withincreasingly more dimensions as applied to the picture of the book editors (Stina,
Marcus, and Peter, from left to right) in Heidelberg (photograph taken as a “selfie”). The first number
above the pictures refers to the dimensions (u[: , :r].size + s[:r].size + vh[:r,:].size),
and the second number refers to the size of the image as compared to the original size

Dimensionality reduction with text data

Dimensionality reduction can also be valuable in working with text data. Text can
be represented in a co-occurrence matrix, such as the term-document matrix (see
Chap. 3). We have done this for some 5000 sentences of Jane Austen’s masterpiece
“Pride and Prejudice” (see code in online supplement). There are over 7000 unique
words in these sentences, and the term-document (a document here refers to a sen-
tence, as extracted with the spaCy library in Python) matrix has the dimensionality of
(5129 x 7457) (i.e., sentences over unique words). We then applied PCA to decom-
pose the term-document matrix (note that it is a sparse matrix, with only 0,3% of the
cells occupied with actual co-occurrence values). While there are better techniques,
we found that even with only 1 dimension, the reconstruction loss (mean squared
error of the reconstructed matrix and the original term-document matrix) could be
substantially lowered, compared to a matrix with any cell zero (see Fig. 5.2).

96 P. Wulff et al.

Reconstruction Loss (MSE) vs. Number of Features

0.004

0.003

0.002

Reconstruction Loss (MSE)

0.001

10 10! 10° 10°
Number of Features (log scale)

Fig. 5.2 PCA applied to text data. Displayed is the reconstruction loss (MSE) between the orig-
inal term document matrix and the reconstructed matrix based on different numbers of features
1,2,5,10,100, and 1000, as well as for the matrix with all zeros (red dashed line)

5.2.2 Clustering Different States of Matter

What is clustering?

Another goal for unsupervised ML is grouping or clustering data. “Clustering is the
problem of finding a set of groups of similar objects within a data set while keeping
dissimilar objects separated in different groups or the group of noise” (Campello
et al., 2020, p. 1). Science education researchers examined, among others, in what
ways students’ explanations on the seasons can be clustered with unsupervised ML
(Sherin, 2013). Unsupervised ML offers different types of clustering procedures,
such as density-based clustering, or hierarchical agglomerative clustering, or some
mixture. Many clustering approaches in fact seek to minimize some within-cluster
distance measure and increase between-cluster distance, essentially a parametric
approach where the parameters of the underlying (Gaussian) distribution (a mixture
of as many distributions as there are clusters). In contrast, density-based clustering
approaches do not make parametric assumptions, but rather consider high-density
volumes as clusters. Again, density-based clustering provides a less restrictive way
to cluster complex data (e.g., within-distances in a cluster do not necessarily need
to be low) that might be used to improve clustering results. Moreover, density-based
clustering approaches do not need a pre-specification of numbers of clusters, which
might be advantageous in explorative research contexts.

5 Applying Unsupervised ML 97
The problem: ferromagnetism and states of matter

To illustrate some of the underlying principles of clustering techniques and how to
apply unsupervised ML to actual data, we will take data as can be gathered from
physics systems. A classic example in condensed matter physics of a phase transition
is the emergence of magnetism (ferromagnetism), given a collection (many bodies) of
elementary spins. Those who experimented with ferromagnets probably noticed that
above a certain temperature (Curie temperature) the magnetic field of the ferromagnet
vanishes, and reappears once the ferromagnet is cooled below this temperature again
(by analogy, think of evaporating water molecules (fluid) at 100°C [212°F]—a phase
transition from fluid to gas). Whether a ferromagnet has magnetic properties or not
then results from the interaction between minuscule elementary magnets that may or
may not align in one direction. If they point in one direction, their magnetic fields add
up and a magnet is formed on macroscopic scales. However, increasing movement
of these elementary magnets due to rising temperature causes elementary magnets to
randomly flip. In ferromagnetic materials (at ambient temperature iron, nickel, and
cobalt are ferromagnetic) the elementary magnets can interact with each other. This
results in areas of magnetization (Weiss domains), that add up to form a noticeable
magnetic field, which can reinforce or diminish an external magnetic field.

Gathering and representing the data

In ferromagnets, the interaction of two elementary magnets is related to a certain
amount of energy that this alignment costs or stores. In the simplest case (Ising
model, see Box 5.2.2) we assume that the elementary magnets have only one spatial
directionality, up or down, and they can align parallel (ferromagnetic) or anti-parallel
(anti-ferromagnetic). Also we assume that only neighboring elementary magnets will
interact with each other. The alignment of two elementary magnets will add/subtract
a certain amount of energy to the system. When they align, the overall energy of
the system is reduced, and increased if they do not align. Physical systems in gen-
eral strive to minimize the energy in the system. Hence, at low temperatures, the
ideal configuration would be for all elementary magnets to align with each other. A
ferromagnet is the result.

5.2.2 Background: The Ising model of ferromagnetism

A well-studied model for the emergence of ferromagnetism is the Ising model.
The Ising model assumes that only spins o; (up or down, i.e.,0; = +1, —1) are
important and that each body i in the problem can be represented by one spin.
See Fig. 5.3 for a 5x5 square lattice with white and black spins (i.e., +1, —1)
representing the spins. As indicated, each elementary magnet interacts with
other elementary magnets. However, we assume interactions of spins only

98 P. Wulff et al.

Fig. 5.3 Very simple
2D-Ising model visualization
(see: https://de.wikipedia.
org/wiki/Ising-Modell)

with direct neighbors, and we also assume there to be no external magnetic
field. A specific configuration of white-black-fields on the lattice is referred to
as a state of the system. The red lines indicate opposite elementary magnets,
which store a certain amount of energy, that depends on the material, can be
considered constant for all opposite elementary magnets and is stored in the
system. In order to reach the energy minimum, red borders (especially at low
temperatures) are to be minimized. The Hamilton function, i.e., the energy,
(without external magnetic field) can then be calculated.

The minimum in energy can be achieved when all neighboring elemen-
tary magnets align parallel with each other (ferromagnetic state). This is what
physical systems strive to achieve, however, things are complicated by thermal
movement which introduces random flipping of the spins. So much so that
above a critical temperature 7¢ (7'/J = 2.269) no alignment will be achieved,
and hence the material cannot become ferromagnetic anymore.

Note: The Ising model is not only capable of explaining ferromagnetism.
Rather, physicists used it (the Hopfield net with energy function) to model
associative memory in ANNs and calculated the memory capacity of these
networks (see: https://de.wikipedia.org/wiki/Hopfield-Netz, last access Sept
2023). This work was recognized in the Nobel Prize in Physics 2024, which
went, among others, to John Hopfield.

We now assume that we only have a measurement of the elementary magnets of
the system (see notes). Actually, we then have an array of minus and plus ones quite
similar to the data representation of the image above. We also know the temperature
for the configurations. We use a Monte Carlo sampling to generate data points for a
square lattice of binary spins at a given temperature using the 2-dimensional Ising

https://de.wikipedia.org/wiki/Ising-Modell
https://de.wikipedia.org/wiki/Ising-Modell
https://de.wikipedia.org/wiki/Hopfield-Netz

5 Applying Unsupervised ML 99

model without an external magnetic field present. The temperature will be varied and
each time we draw 100 samples on a 40 x 40 grid with the simulation. Examples for
each temperature (y-axis) can be seen in Fig.5.4.

Merely from inspecting these images visually, one notices that at very low temper-
atures we find spin configurations where all spins show in either one direction (i.e.,
all black or white). At times, however, at these low temperatures, there is a half-half
split where certain areas point in one direction and other areas in another direction.
In either case, the material will be magnetic to the outside, given that all spins align
and the magnetic fields add up. At higher temperatures there is a much more fine-
grained splitting of spins in either one direction. The threshold temperature where
the phase transition happens is referred to as the critical temperature below which
the spins will align. However, it would be barely possible with visual inspection to
identify this critical temperature state. The system will be scale invariant at critical
temperature.

-

Fig. 5.4 Spin configurations for 10 MC samples for each temperature

100 P. Wulff et al.
Reduce dimensionality to process data more efficiently

Given these unlabelled arrays, it is now our goal, to use unsupervised ML to cluster
the images into groups and reconstruct the order parameter (magnetization) and the
critical temperature of the system. As we indicated when we talked about dimen-
sionality reduction and unsupervised ML, dimensionality reduction can often be
a beneficial first step (feature engineering and extraction) in order to make your
data more amenable to further processing and clustering. Thus, we will first uti-
lize dimensionality reduction here. To do so, we will use the t-SNE algorithm (see
Box 5.2.2) to reduce the samples in dimensionality. T-SNE can be implemented via
Python as indicated in Code 5.2.2. The TSNE method takes multiple arguments, such
as n_components which refers to the target dimensionality, here 2, perplexity,
which indicates to what extent the algorithm considers local versus global struc-
ture of the data, and some parameters on the learning process (learning_rate,
and n_iter). The argument random_state can be enabled to make the output of
this stochastic algorithm reproducible. We can hypothesize that either all spin (i.e.,
elementary magnet) up or all spin down should occur as separate clusters, given
that they are well recognizable configurations. We specify that t-SNE will map the
40 x 40 = 1600 dimensional samples into 2D mapped samples (projections). The
resulting projections can be visualized as depicted in Fig. 5.5.

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Fig. 5.5 Identical t-SNE projections of the configurations. Colors refer to temperature (left) and
magnetization (right)

5 Applying Unsupervised ML 101
Python code: Apply t-SNE to Ising samples

from sklearn.manifold import TSNE
np.random.seed(42) # Set the random seed

Create t-SNE instance and perform the embedding
tsne = TSNE(n_components=2,

perplexity=200,

learning_rate=200.0,

n_iter=10000,

random_state=42)
tsne_embeddings = tsne.fit_transform(mc_samples_arr)

Note that each point in this 2D space (Fig. 5.5) refers to one configuration of the
lattice of elementary magnets. The color-coding refers to the temperature (left) and
magnetization (right) for this configuration. We see two discernible clusters at low
temperatures (dark shaded data points) and high magnetizations. They are clusters
of all elementary magnets up versus all elementary magnets down, which result at
low temperatures. The high temperature samples arrange themselves in between the
low temperature clusters.

Choosing an unsupervised ML algorithm for clustering

We now want to extract clusters from the t-SNE-reduced data representations. We
apply a hierarchical, density-based clustering technique called HDBSCAN (see Box
5.2.2) do perform this task. HDBSCAN makes no parametric assumptions and can
find clusters of different densities. Moreover, it suggests a number of clusters based
on systematic processing of the data. We can see that a clustering algorithm extracts
three clusters (Fig. 5.6). HDBSCAN can be implemented as indicated in Code 5.2.2.

Interpret the clusters

The three clusters in fact refer to the constellations of all spin up, all spin down,
and random mixing, as we see when visualizing samples from each cluster in
Fig. 5.6 (right). In fact, we hypothesize that the bottom-row cluster refers to the
paramagnetic state (see also: Carrasquilla and Melko (2017), pp. 11). The sample
spin configurations that belong to each cluster (see Fig. 5.6) confirm that one cluster
(top row) attributes to only elementary magnets down, the other cluster (middle row)
attributes to elementary magnets up, and the final cluster (down row) attributes to
configurations of random mixing of elementary magnets.

102 P. Wulff et al.

Fig. 5.6 HDBSCAN clustering algorithm applied to t-SNE embeddings (left), and 5 random
samples (columns) from each cluster (rows) (right)

5.2.2 Background: HDBSCAN

Hierarchical density-based spatial clustering of applications with noise (HDB-
SCAN) is an unsupervised ML algorithm to extract clusters from complex
data. The basic idea of density-based clustering is to find dense volumes in the
data that are then interpreted to be clusters. In contrast to clustering approaches
where parameters of known (assumed) probability density distributions for the
clusters are fit, density-based clustering makes no such parametric assump-
tions (Campello et al., 2020). In a simplified water analogy, one can imagine
that the probability density distributions for the data points represents a moun-
tainous landscape. Water is then added to this landscape. A certain water level
corresponds to a threshold for cluster extraction. The extracted clusters can
be thought of as the islands (i.e., regions above the water level) that remain
(see Campello et al. (2020) for an illustrative explanation of this method).
HDBSCAN then utilizes a data transformation into the space of pairwise dis-
similarities, utilizing linkage trees and minimal spanning trees of data points
and finds dense clusters that can even be of varying density for all possible
epsilon values (a distance threshold) with the parameter min points that fixes the
minimal count of points in a cluster, i.e., a density threshold (Campello et al.,
2020). It was found that HDBSCAN is quite robust across certain parameter
variations which can be an advantageous feature. Moreover, clusters of differ-
ent densities can be extracted and the algorithms per design suggests stable
clusters and noise points.

Python code snippet: Apply HDBSCAN to t-SNE embeddings

import hdbscan
cluster = hdbscan.HDBSCAN(min_cluster_size=50,
metric="euclidean’,
cluster_selection_method="eom’
). fit(tsne_embeddings)

5 Applying Unsupervised ML 103

o 2 a 6 8 10 a0 “30 -20 -1o 0 10 20 30 40

Fig. 5.7 PCA of the configuration points

Using PCA to extract patterns

Moreover, we can utilize a more familiar algorithm for educational researchers,
such as PCA to get information on the underlying data. We fit a PCA on the data.
The explained variance ratios indicate that really only the first principal component
determines the variance in the data. As can be seen in Fig. 5.7 as projected into the
first two principal components, the variance relates to the temperature. This suggests
that the temperature is an important (order) parameter in this problem.

Data-driven discovery with unsupervised ML

Finally, we want to find the phase transition with the unsupervised ML approach:
“Discovering a phase transition amounts to finding a hypersurface which divides the
data points into several groups, each representing a phase.” (Wang, 2016, p. 2). We
employ HDBSCAN to group the data. In fact, the lower (third) cluster should capture
the critical temperature, i.e., the temperature when the material is undergoing a phase
transition (e.g., from magnetic to non-magnetic). Calculating the mean temperature
for these points yields 2.36, which can be considered close to the actual critical
temperature (see Box 5.2.2).

5.2.2 Background: t-SNE

Van der Maaten and Hinton van der Maaten and Hinton (2008) introduced
t-SNE, which proved to be a powerful method for dimensionality reduction for
high-dimensional data. The aim of dimensionality reduction methods is often

104 P. Wulff et al.

to preserve important structures in the original data set when transformed into
a low-dimensional representation. Science educators might be well familiar
with principal components analysis (PCA) (Hotelling, 1933). PCA is a linear
technique, where axes are found that capture most of the variation in the data
set. However, these techniques are typically unable to adequately keep structure
for high-dimensional data, especially with keeping non-linear local structure
(find reasoning in van der Maaten and Hinton (2008)). Among the non-linear
techniques, t-SNE proves particularly capable of retaining global and local
structure of the data.

SNE seeks to align the probability distribution for data points in the high-
and low-dimensional versions of the data set (van der Maaten and Hinton,
2008). The similarity between two data points is denoted by the conditional
probability. The similarity, i.e., the conditional probability, will be modeled
with a normalized Gaussian. In the low-dimensional space, an analogous dis-
tribution for the new, corresponding, datapoints will also be calculated. Itis now
the goal to make these probability density distributions in both spaces (high-
and low-dimensional) approximately equal, which would indicate that the sim-
ilarity is modeled similarly in the low-dimensional space. Statisticians use the
Kullback-Leibler divergence to calculate the match between two probability
distributions as a cost function.

However, given that the density may vary across the space, there might not
be an optimal value for all data points (van der Maaten and Hinton, 2008). The
value for the variance is determined through a search to produce a probability
distribution with a certain perplexity, which is a hyperparameter that is meant
to be set by the researcher. The perplexity is related to the effective number of
neighbors (see kNN technique). Typical values of perplexity range from 5 to
50, and SNE is robust to changes in it.

Stochastic gradient descent can be used to find an optimal set of map points.
First, map points are randomly sampled from an isotropic Gaussian. The gra-
dient function resembles an energy function of a network of springs along the
directions between each of the map points (can be attracting or repelling). The
force exerted by a spring is proportional to the length and to the mismatch in
probability distributions (i.e., similarities). Finding an optimal spring constel-
lation will then result in a set of map points. A learning rate has to be specified
by the researcher as well. This optimization problem is difficult and requires
extra simulations to find appropriate parameter choices.

t-SNE uses a more suitable version of the cost function (symmetrized) and
rather than Gaussian to compute similarity between the map points it uses the
heavy-tailed student-t distribution. Furthermore, given that distances in high-
and low-dimensional need not match on face value, in the low dimensional
space a heavy-tailed distribution (student-t with one degree of freedom) is
used. This allows distances to be better modeled in low-dimensional space

5 Applying Unsupervised ML 105

(find reasoning in van der Maaten and Hinton (2008)). It is also important to
note that t-SNE and UMAP depend critically on initialization of parameter
values for preserving global data structure (Kobak and Linderman, 2021).

5.3 Considering Limitations

Algorithms, hyperparameters, and data representation

Unsupervised ML is seemingly innocuous: algorithms are utilized to reduce dimen-
sionality or cluster complex data. However, as with supervised ML, many decisions
go into setting up an unsupervised ML procedure (see workflow above). There is
a vast variety of different algorithms to choose from for different purposes. More-
over, each algorithm is determined by a set of hyperparameters that have more or
less impact on the quality of found dimensions or the extracted clusters. Moreover,
assumptions that go into data representations are also of importance. In Chap. 3 we
outlined in what ways your data representation impacts the potential structures and
patterns that you can extract. We saw that bag-of-words language representations
cancel out information on word ordering in sequences and hence no patterns related
to word ordering can be found.

Model validation

Model validation is typically rather complex, given that we have no gold-standards
that would suggest to what extent the model is capable of extracting meaningful
clusters. We outlined in the workflow section that interpretation of clusters is a crucial
phase. In this phase, it is important that you find representations and indicators that
enable you to give meaning to the clusters. From our provided toy examples, this could
relate to 2D representations or considering eigenvalues in PCA. With educational
data, this will become even more complex, given that oftentimes complex language
data is assessed or no sound theoretical expectations exist as to concrete parameter
values as in the example of ferromagnetism (i.e., the Curie temperature). We will
provide some means of validating model decisions when we consider a case study
that utilizes unsupervised ML in Chaps. 11 and 13.

106 P. Wulff et al.

References

Brunton, S. L., & Kutz, J. N. (2019). Data-Driven Science and Engineering. Cambridge University
Press.

Campello, R. J., Kroger, P., Sander, J., & Zimek, A. (2020). Density-based clustering. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(2).

Carrasquilla, J., & Melko, R. G. (2017). Machine learning phases of matter. Nature Physics, 13(5),
431-434.

Eaton, P., & Willoughby, S. D. (2018). Confirmatory factor analysis applied to the force concept
inventory. Phys Rev Spec Top Phys Edu Res.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24(6), 417—441.

Huffman, D., & Heller, P. (1995). What does the force concept inventory actually measure? The
Physics Teacher, 33(3), 138—-143.

Kobak, D., & Linderman, G. C. (2021). Initialization is critical for preserving global data structure
in both t-sne and umap. Nature biotechnology, 39(2), 156—157.

Marsland, S. (2015). Machine Learning: An Algorithmic Perspective (2nd ed.). Chapman & Hall /
CRC machine learning & pattern recognition series. Boca Raton, FL: CRC Press.

Sherin, B. (2013). A computational study of commonsense science: An exploration in the automated
analysis of clinical interview data. Journal of the Learning Sciences, 22(4), 600-638.

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning
Research, 9, 2579-2605.

Wang, L. (2016). Discovering phase transitions with unsupervised learning. Physical Review B,
94(19).

Zhai, X., Haudek, K. C., & Ma, W. (2022). Assessing argumentation using machine learning and
cognitive diagnostic modeling. Research in Science Education.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6 ®)
Sequencing Unsupervised and Gresho
Supervised ML

Peter Wulff, Marcus Kubsch, and Christina Krist

Abstract In this chapter we provide an example application where unsupervised
and supervised ML are sequenced. Unsupervised ML is first used to identify clusters
in a complex data set (of galaxies, stars, and quasars). Then, supervised ML picks
up on these clusters in order to be used as an automated classifier for unseen data.

Sequencing unsupervised and supervised ML is a sophisticated process of apply-
ing ML in science education, where human involvement becomes crucial (Nelson,
2020). For the purpose of demonstrating the process of sequencing unsupervised and
supervised ML we will first engage with a data set from astronomy, which is arguably
better suited to demonstrate the main rationale behind this approach. Afterwards, we
will comment on a study that applied this approach in science education research
and highlight crucial steps which are likely more pertinent to our readers.

6.1 Applying Unsupervised ML to Find Clusters

Classifying celestial objects is of great importance for astronomy to better map
and understand our universe (Clarke et al., 2020). Future telescopes are expected
to increase data availability on newly observed objects in ways humans will not be
capable of classifying by hand in reasonable time (which is already true with current
data). Moreover, gaining detailed data on all objects (spectroscopical and multi-
wavelength observations) is also not feasible, and researchers would fare well with
capable algorithms to classify them from less data, e.g., from photometry alone. Let

P. Wulff (<)
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany
e-mail: peter.wulff @ph-heidelberg.de

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 107
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_6&domain=pdf
mailto:peter.wulff@ph-heidelberg.de
https://doi.org/10.1007/978-3-031-74227-9_6

108 P. Wulff et al.

us seek to sequence unsupervised and supervised ML in order to extract meaningful
clusters from observational data that is provided by Clarke et al. (2020), and then
utilize these clusters further to train a classifier that can classify unseen data samples
automatically.

Clustering is generally an important goal in many different applications. We
already saw that spin configurations of (simulated) matter can be grouped into differ-
ent states. In other circumstances, one might have different properties of objects (or
students) and may want to cluster them according to these attributes. For example,
in astrophysics, researchers might want to cluster astronomical objects into clusters
(galaxies, quasars, stars) (see Box 1). As for the purpose of computational grounded
theory (CGT) we now pretend that we do not know the true underlying categories,
and begin with an unsupervised clustering approach (see also Chap. 5).

Box: 6.1 the data set

The data set is publicly made available by Clarke et al. (2020). It contains
photometric measurements on five optical bands (first five columns), and four
infrared bands (next four columns). Finally, a measure for how extended the
object is is provided (last column in Code 6.1). Moreover, the researchers
provide predicted classes (STAR, GALAXY, QSO [quasar]) by their trained
ML model. The first four samples in a data set comprising 10k samples are
displayed in Box 1. A detailed description of the careful procedure to retrieve
and clean the data can be found in Clarke et al. (2020).

Python output: Sample of galaxy data set, and classes

STAR

[[21.5 18.6 17.2 16.5 16.1 14. 14. 13.3 9.1 0.]
[19.2 18. 17.5 17.2 17.1 15.3 15.1 12.8 9.2 0. 1]

GALAXY

[[21.4 20. 19.5 19.1 18.9 14.6 14.4 11.1 8.9 2.4]
[22.8 22.5 21.3 20.4 22.8 13.5 13.6 12. 9. 0.6]]

Qso

[[20.6 20.1 20.1 20.1 19.9 17.1 16. 13.1 8.9 0.]
[19.9 19.8 19.5 19.6 19.6 15.4 14.2 11.4 9.3 0. 1]

Setting up the data

To make the problem computationally more tractable, we sampled 10,000 instances
from the original data set, and retrieved an unbalanced sample with GALAXY:

6 Sequencing Unsupervised and Supervised ML 109

7141, STAR: 1622, and QSO: 1237. Any instance is represented through 10 fea-
tures (see Box 1). Before performing any analyses, we split the data set into train,
validation, and test set to prevent data leakage (see Chap. 2). To test our model on
unseen data, we first split the data set into a train and test data set (note: if hyperpa-
rameters should be tuned, another validation data set would be necessary). This can
be done with the train_test_split-function from the sklearn library in Python.

Choosing an unsupervised ML algorithm for dimensionality reduction

Now, based on these features, the goal is to find clusters for these astronomical
objects (overall 10,000 objects) and combine them with a supervised ML algorithm
to have a classification model for unseen data. If we inspect the mere correlations
of the different variables (see Chap. 3) among each other as pairwise scatter plots
(see Fig. 6.1), we hardly identify any discernible patterns such as major clusters.
From the original paper, we then take the recommendation to use the non-linear
dimensionality reduction technique called UMAP (see Box 1). UMAP is capable of

Fig. 6.1 Pairwise scatterplots of the variables in the training data set

110 P. Wulff et al.

UMAP Embeddings Retrieved clusters Original clusters

8 - - -
6 e g
(o] o~ o~
c c (o=t
.2 Ke] K]
(%] [%2] 1%}
c 4+ c c
()] ()] <]
£ £ E
a) [a) [a)
a. o|a. a.
< < <
z 5] s | s |
> =) =)
0 . .
0 10 0 10 0 10
UMAP Dimension 1 UMAP Dimension 1 UMAP Dimension 1

Fig. 6.2 UMAP reduced embedding space visualization for galaxies, stars, quasars data set (left).
Cluster membership indicated with colors (middle). Original clusters in UMAP embedding space
(right)

restoring global and local features in complex data, and it can be utilized to transform
new data according to the learned model (this is, for example, not possible with t-
SNE). First, UMAP is used to reduce the 10 features to only 2 features that can be
displayed in a 2D space (see Fig. 6.2). The 2D space visualization suggests there to
be three distinct clusters.

Box: 6.2 Dimensionality reduction with UMAP
Mclnnes et al. (2020) write:

Atahighlevel, UMAP uses local manifold approximations and patches them together
with their local fuzzy simplicial set representations to construct a topological repre-
sentation of the high dimensional data. Given some low dimensional representation
of the data, a similar process can be used to construct an equivalent topological
representation. UMAP then optimizes the layout of the data representation in the
low dimensional space, to minimize the cross-entropy between the two topological
representations. (Mclnnes et al., 2020, p. 4)

6 Sequencing Unsupervised and Supervised ML 111

As any ML algorithm, also UMAP requires the specification of hyperparam-
eters. In particular, dimensionality of the target embeddings (low-dimensional
data space), number of neighbors (lower values prefer more local structure to
be preserved), and minimum allowed distance between points in embedding
space (lower values preserve true manifold structure, but may lead to dense
clouds) (Allaoui et al., 2020).

While t-SNE (see Box 2) is considered more focused on local structure,
UMAP to some extent preserves both local and global structure. Moreover,
UMAP seems to better scale with large data sets compared to t-SNE (Allaoui
et al., 2020). Similar to t-SNE, it is capable of capturing non-linear rela-
tionships, as compared to PCA, which is a linear procedure (Allaoui et al.,
2020). Actually, UMAP was found to improve clustering algorithms’ (e.g.,
k-means, HDBSCAN, Gaussian mixture models, and Agglomerative Hier-
archical Clustering) performance substantially as reported by Allaoui et al.
(2020).

Choosing an unsupervised ML algorithm for clustering

For clustering purposes, we utilize HDBSCAN (see Box 2), since it suggests a
number of clusters. It can be seen that some clusters are probably not correctly
classified, which might be mended by tinkering with the UMAP hyperparameters to
get a clearer separation of the clusters. Moreover, hyperparameters in HDBSCAN
were chosen by us to retrieve a fairly reasonable looking distribution of clusters.
In reality, cluster interpretation should be more theoretically involved. The feature
values for the different classes could be compared and experts in astronomy will
likely be able to discern galaxies, quasars, and stars from average feature values.
However, we will accept these clusters for our present purposes.

Choosing a supervised ML algorithm for classification

We finally want to utilize this clustering to predict unseen data. We utilize a random
forest classifier (see Box 1) is fit to the train data, which is an advanced version
of decision trees. The random forest classifier can be implemented in Python as
displayed in the Python code. Note that UMAP is applied as well to the unseen test
data. We took care that no information from the validation or test data leaked into
the UMAP or clustering algorithms. The Python output shows the random forest
classifier could accurately classify instances in the unseen test data set with slight
differences for the different categories. As we hinted at before proves true in this
example problem as well: the category with the most support could be classified
with the highest accuracy. The unbalanced nature of this data set can be seen by
inspecting the F1 scores. The macro F1 score is noticeably lower compared to the
weighted score. This indicates that some categories are underrepresented and have
different (lower) class-based F1 scores.

112 P. Wulff et al.

Random forest classifier

We already encountered the decision tree algorithm in Chap. 4. Decision trees
seek to separate the input data through binary decisions into classes that best
approximate the gold-standards. Random forests utilize multiple trees: “The
idea is largely that if one tree is good, then many trees (a forest) should be
better, provided that there is enough variety between them” (Marsland, 2015,
p- 275). Random forests generate random decision trees by either presenting
each decision tree with a different training data set, and by restricting the
features that each tree can use to make decisions (Marsland, 2015). The subset
of features to consider is actually a new parameters, but random forests do
not seem to be very sensitive to this parameter. Moreover, the number of trees
to put into the forest is another hyperparameter to set up (Marsland, 2015).
The introduction of randomness through restricting training data and features
reduces the variance, but does not affect the bias (Marsland, 2015) (See Chap.
2 for more information on variance and bias). Decision making is then formed
by a majority vote of decision trees, hence it is a committee/ensemble method.

Python code: Apply UMAP and Random Forest Classifier to the train/test data

rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train_umap, y_train_pred)

Using UMAP to transform the test data
X_test_umap = reducer.transform(X_test)

Using the Random Forest model to predict the labels
on the UMAP-transformed test data

y_pred = rf.predict(X_test_umap)

print(classification_report(y_test, y_pred))

Classification report: Random forest

precision recall fl-score support
GALAXY 0.94 0.98 0.96 1444
Qso 0.81 0.78 0.79 240

STAR 0.99 0.83 0.91 316

6 Sequencing Unsupervised and Supervised ML 113

accuracy 0.93 2000
macro avg 0.91 0.86 0.89 2000
weighted avg 0.93 0.93 0.93 2000

6.1.1 Considering Limitations

In this chapter, we showed how sequencing unsupervised and supervised ML could
be used to extract patterns in data and utilize them for classifying unseen samples. For
this example, we found a quite high accuracy as measured, among others, through
the F1 score. In our example, we utilized our knowledge about astronomy (actually
about this data set) that three distinct structures are to be expected in the embedding
spaces. Inreality, more theory-driven arguments and systematic ablation studies (e.g.,
through systematic variation of hyperparameters, see Tschisgale et al. (2023)) are
necessary in order to come up with robust and justifiable ways to extract meaningful
patterns in these data sets. Moreover, researchers could utilize means to balance the
unbalanced data set (see Chap. 2). Furthermore, explainable Al approaches could be
reasonable ways to find important features for classification and clustering. In the
original paper, Clark et al. (2020) retrieved the relative feature importance for the
random forest classifier. They found that the measure of how extended the object
is played the most important role in classification. This was not possible for our
analysis, given that we utilized random forests on the UMAP embeddings which are
inherently difficult to interpret. Researchers could therefore decide that it would be
more meaningful to utilize all 10 features in a classifier and find out the feature with
greatest importance in order to learn something about the problem at hand.

6.2 An Applied Example in Science Education Research

While the stars, galaxies, and quasars data set illustrates the main steps of sequencing
unsupervised and supervised ML in a comparably straightforward context, applying
this method in science education with real-world, complex data is somewhat more
intricate. Tschisgale et al. (2023) used this method in physics education to extract
clusters in students’ problem textual solutions, and open sourced the data set and
Python code.! You can implement the entire analysis on your own computer with
these resources. Here, we will briefly highlight the main steps in the analysis with
the accompanying code.

! Find the data and code here: https://osf.io/d68ch/, last access: May 2024

https://osf.io/d68ch/

114 P. Wulff et al.

The goal of this study was to identify clusters in students’ textual descriptions of
their problem solutions to the vertical loop problem already mentioned in Box 3.3.2
(Chap. 3), and to train a classifier that assigns a cluster to the respective sentences.
It is important to note that this study did not attempt to develop a classifier that
would perform well on unseen data, as this would entail splitting the data into train,
validation, and test set beforehand (see Chap. 2).

In order to utilize unsupervised ML, in a first step LLMs were used with
the SentenceTransformer-class from the sentence_transformers library in
Python. These embeddings (high-dimensional vectors) could then be piped into a
clustering algorithm. However, beforehand, dimensionality reduction was performed
(UMAP), given that we already mentioned that complex data can typically be reduced
to a few dimensions. Finally, a clustering algorithm (HDBSCAN) was utilized to cal-
culate the resulting clusters. The influence of hyperparameters (e.g., the number
of dimensions that the embeddings should be reduced to) was carefully evaluated
against resulting clusters, and by considering the theory articles on these techniques
and prior analyses with similar goals.

Python code snippet: embeddings, dimensionality reduction, and clustering

model = SentenceTransformer (
modules = [word_embedding_model,
pooling_model])
embeddings_orig = model.encode(
sentence_corpus,
show_progress_bar = False)

UMAP_object = umap.UMAP(n_neighbors = 15,
n_components = 5,
metric = ’cosine’,
random_state = 7276744,
min_dist = 0).fit(embeddings_orig)
embeddings = UMAP_object.transform(embeddings_orig)

cluster = hdbscan.HDBSCAN(min_cluster_size = 15,
metric = ’euclidean’,
cluster_selection_method =
"eom’) . fit(embeddings)

df_step_1[’Cluster’] = cluster.labels_

The resulting clusters (see Fig. 8 in Tschisgale et al. (2023)) were then read by
human raters with complementary information such as a condensed tree (see Fig.
9 in Tschisgale et al. (2023)). A rubric of clusters was established (Table I), and
based on theoretical arguments and the complementary information human raters
considered merging several clusters with one another (see Python code). In the end,

6 Sequencing Unsupervised and Supervised ML 115

5 distinct clusters were identified: assumptions and idealizations (AI), conceptual
aspects (CA), quantitative aspects (QA), formulation of a solution (FS), and general
descriptions (GD).

Python code: pattern refinement

dat_CGT_step_2[’Cluster_global’] =
[’" for k in range(np.shape(dat_CGT_step_2)[0])]
for k in range(np.shape(dat_CGT_step_2)[0]):
if dat_CGT_step_2.loc[k,’ ’Cluster_adapted’] in [0]:
dat_CGT_step_2.loc[k, ’Cluster_global’] = 0
elif dat_CGT_step_2.loc[k,’Cluster_adapted’] in [5, 6, 9, 10]:
dat_CGT_step_2.loc[k,’Cluster_global’] =1

In the last step, a relevance vector machine (RVM) was trained (supervised ML)
with the embeddings as input and the cluster label as output. Accuracies were 0.77
and 0.76 for females and males, such that it could be concluded that the classifier did
not exhibit bias with regards to gender. Even though this process requires substantial
work, the end product would be a classifier for this particular physics problem (we
assume here that the test data would be equally distributed as the training data).
Such a classifier might be used as a means to indicate to students which steps in the
problem-solving process (e.g., making assumptions) are still missing.

Python code: pattern confirmation

model = EMRVC(kernel = "rbf")
model.fit(X_train, y_train)
y_predict = model.predict(X_test)

References

Allaoui, M., Kherfi, M. L., & Cheriet, A. (2020). Considerably improving clustering algorithms
using umap dimensionality reduction technique: A comparative study. In A. El Moataz, D.
Mammass, A. Mansouri, & F. Nouboud (Eds.), Image and Signal Processing, Springer eBook
Collection (pp. 317-325). Cham: Springer International Publishing and Imprint Springer.

Clarke, A. O., Scaife, A. M. M., Greenhalgh, R., & Griguta, V. (2020). Identifying galaxies, quasars,
and stars with machine learning: A new catalogue of classifications for 111 million sdss sources
without spectra. Astronomy & Astrophysics, 639, A84.

Marsland, S. (2015). Machine Learning: An Algorithmic Perspective (2nd ed.). Chapman & Hall /
CRC machine learning & pattern recognition series. Boca Raton, FL: CRC Press.

116 P. Wulff et al.

Mclnnes, L., Healy, J., & Melville, J. (2020). Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv.

Nelson, L. K. (2020). Computational grounded theory: A methodological framework. Sociological
Methods & Research, 49(1), 3-42.

Tschisgale, P., Wulff, P., & Kubsch, M. (2023). Integrating artificial intelligence-based methods into
qualitative research in physics education research: A case for computational grounded theory.
Physical Review Physics Education Research, 19(020123), 1-24.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 7
Natural Language Processing and Large izl
Language Models

Peter Wulff, Marcus Kubsch, and Christina Krist

Abstract In this chapter we introduce the basics of natural language processing
techniques that are important to systematically analyze language data. In particular,
we will utilize simple large language models and showcase examples of how to apply
them in science education research contexts. We will also point to recently advanced
large language models that are capable of solving problems without further training,
which opens up novel potentials (and challenges) for science education research.

7.1 Natural Language Processing

The necessity to systematically process language data

Language data was singled out as a key resource for evidence on learning and
teaching-related processes (see Chap. 3). The difficulty with language is that it is
ambiguous, unsegmented, and noisy. For example, the meaning of a term is depen-
dent on the context in which it is used (distributional semantics), i.e., “the semantic
values associated with words are flexible, open-ended and highly dependent on the
utterance context in which they are embedded” (Evans, 2006, p. 491). It is therefore
difficult to specify “the” meaning of a term in a lexicon. For example, the term “work™
has many different meanings, depending on whether you relate it to everyday life
(“T go to work.”) or in science contexts (“Work is force exerted to an object along a
path.”). However, even in science (here: physics) at least half a dozen different usages
of the term “work” can be differentiated. Rather, flexible methods are required to
make sense of a term in context, a task also called word sense disambiguation. More-
over, language typically comes as a 1D sequence of words, where only in written

P. Wulff ()
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany
e-mail: peter.wulff@ph-heidelberg.de

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 117
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_7&domain=pdf
mailto:peter.wulff@ph-heidelberg.de
https://doi.org/10.1007/978-3-031-74227-9_7

118 P. Wulff et al.

language speakers (often) use signs (e.g., punctuation such as period, semicolon, or
comma) to signify segmentation boundaries in language. However, these boundaries
might not be most relevant in your research, and other coding units might have to be
defined. Thus, systematic means are required to segment language data into meaning-
ful units in order to further analyze it. Finally, real world experiences and situations
are high-dimensional and language use about such experiences and situations can
only capture parts of it. Hence, noise and ambiguities are characteristic of language
utterances, both spoken and written.

It is important to remember, however, that systematic tools for processing lan-
guage cannot compensate for substantive domain knowledge as human experts have
(see Chap. 8). While it is crucial to systematically segment language and retrieve
specific word senses in context, this does not exempt researchers from assuring that
the processing of language is meaningful given their research goals and interpret the
results. For example, one study might be interested in calculating the frequency of
specific words (types) used in science textbooks. The idea that human raters perform
this task is quite absurd given the redundant nature of the tasks and the size of the
textbooks. Anyways, computers excel at systematically browsing through large data
sets such as science textbooks. Yet, a capable segmentation procedure is required
to extract specific words. Simply segmenting text by spaces might not be sufficient
for the research question. It might be important to treat terms such as “free fall”
or “cell division” as one entity, given that they are intentionally used by the writer
to designate a specific concept. Human researchers need to critically monitor such
assumptions that go into the systematic processing of their language data. This can
at times be daunting, and we seek to provide some guidance in this chapter on what
assumptions might crop up and what NLP procedures can facilitate your research.
Let’s start with the historical development of language processing by computers,
which can be considered as old as computers are themselves.

A historical brief of Natural Language Processing

Natural language processing (NLP) is an umbrella term for a vast variety of methods
related to computer-based processing of spoken and written language data in a sys-
tematic, computer-based way. NLP researchers developed arich tool set of methods to
systematically process and analyze natural language utterances with boosts through
advances in ML. The history of the field of NLP parallels the development of AI. NLP
can be divided into four phases: (1) machine translation (1950-1969), (2) syntax and
co-reference handling (1970-1992), (3) adoption of shallow ML algorithms (1993-
2012), and (4) deep learning and ANN (2013-present) (Manning, 2022). In phase 1,
NLP systems were mere word-level lookup tables to perform translations of “comi-
cally small” (Manning, 2022) data sets (compared to the present). In phase 2, some of
the complexity of human language was embraced and put into rule-based NLP sys-
tems that separated declarative linguistic knowledge and the procedural processing
of it. A prequel to the fame of ChatGPT in 2022/23 was already demonstrated by the
program ELIZA. ELIZA enables through preset scripts human-machine interaction
in natural language. Most famously, ELIZA could model a non-directive psychother-

7 Natural Language Processing and Large Language Models 119

apist. In it’s simplest form, ELIZA had access to a rule-based list of words. A request
by a human is then searched for a word in this list. For most words, also hypernyms
are linked to them. An interaction could then look like:

User: I have problems with my father.
ELIZA: Tell me more about your family.

Allegedly, this simple rule-based NLP system was used by many people. This
so-called ELIZA-effect is nowadays observed in many NLP systems and we will
come to it later when talking about LLMs. In any case, the ELIZA program was
hard-coded and not able to learn from data unless the human designer improved the
word list.

In phase 3, large data sets (some millions of words) became available and NLP
researchers embraced statistical modeling, ML algorithms in particular, to extract
information from these data sets (empirical orientation). It was noticed in 1996: “In
the space of the last ten years, statistical methods have gone from being virtually
unknown in computational linguistics to being a fundamental given” (see: https://
norvig.com/chomsky.html). In particular, researchers sought to develop annotated
data sets, so that supervised ML algorithms could be trained on specific NLP tasks,
such as part-of-speech tagging (i.e., singling out a word as a noun, etc.). Finally,
in phase 4, the empirical orientation was extended and ever larger data sets (now
billions to trillions of words, i.e., Big Data) and powerful ML algorithms became
available that also required NLP researchers to embrace novel strategies to efficiently
and effectively train the ML models. Deep learning methods enabled more perfor-
mant models. A hallmark moment came in 2017/2018 when it could be shown that
self-supervised learning alongside a self-attention mechanism enabled ML models
to develop linguistic capabilities which made them useful in many different tasks.
The now omnipresent LLMs were introduced.

Large Language Models

Since November 2022, when the conversational AI ChatGPT was made available by
OpenAl, the public as well as researchers and practitioners from various disciplines
suddenly became acquainted with a novel technology: LLMs. While modeling lan-
guage such as texts was an important objective for NLP researchers from early on, the
introduction of the transformer architecture enabled new degrees in predictive accu-
racy and generative capabilities for LLMs. LLMs can be used in different ways, e.g.,
fine-tuning or prompting (see below), and are trained in a self-supervised form of ML
(see Chap. 2). Given the self-supervised training, similarities to mechanisms of how
human brains interact with the world (not only language) were noticed. The human
brain was conceptualized as an experience machine that is constantly predicting its
environment, incorporates received error messages (i.e., unfulfilled predictions), and
updates expectations as a key mechanism (also known as predictive coding, or active
inference). It is then probably not surprising that predicting language in context is a
valuable training objective and enabled LLMs to be versatile tools for a broad range
of (linguistic) tasks, such as textual summarization or translation between languages

https://norvig.com/chomsky.html
https://norvig.com/chomsky.html

120 P. Wulff et al.

(we will inspect limitations later on), with the (debated) limitation to be restricted
to (false) knowledge that has been seen during training (see Chap. 2). This training
objective enables English LLMs to possess “basic capabilities in syntax, semantics,
pragmatics, world knowledge, and reasoning, but these capabilities are sensitive to
specific inputs and surface features” (Chang and Bergen, 2023, p. 1), which tricked
some people into believing these LLMs are human writers (see Box 1).

Box 1: The imitation game and LLMs

In the mid-20th century, the imitation game was introduced. In this game
an interlocutor who does not know if s/he is talking to a human or Al will
have to figure this out through questioning. Conditions were specified under
which this game could be won: “an average interrogator will not have more
than 70 percent chance of making the right identification after five minutes of
questioning” (Turing, 1950, p. 442). This is a quite famous experimental setup
in Al research and has spurred much research as well as criticism. An early Al
system was said to have won the imitation game. The Russian chatbot Eugene
Goostman was able to convince 33 percent of its human interlocutors that it
was human rather than a chatbot.! This program came second in the Loebner
prize, which is awarded to a computer system that can interact for at least 25
minutes with the interlocutor (a strong Turing test). In fact, Eugene Goostman
“pretends to be a thirteen-year-old foreigner and proceeds mainly by ducking
questions and returning canned one-liners” (Marcus et al., 2016, p. 3). Many
researchers considered this example to be flawed.

Since using natural language is a characteristic feature of humans (also
argued to be related to science literacy in a fundamental sense (Norris and
Phillips, 2003)), it is certainly understandable to utilize such a test as an
approximation of intelligent behavior. However, the importance of natural
language should not be overrated for intelligent behavior. Some of the raised
concerns with the Turing test then relate to the fact that intelligence is
multidimensional and no simple test can measure it. Others relate to the fact
that intelligence requires embodiment and physical manipulation of things,
etc. (Marcus et al., 2016). After all, it would be very easy for a human to probe
whether s/he is interlocuting with a human or Al: simply ask a question that
only an Al can quickly answer, such as “write 100 words with the letter ‘a’
included,” or, more advanced in modern Al systems, “calculate 980 divided
by 35.” If no human biases (as in the testing of AlphaStar system, see Chap.
1) are implemented in the Al system, that should definitively do the job.

With recent advances in LLMs, researchers also tested if these systems
(such as GPT-4) could pass the Turing test. Jones and Bergen (2023) utilized
an online environment where “average” humans from social media were invited

7 Natural Language Processing and Large Language Models 121

to interlocute with several different AI systems. The ranking was as follows,
where percentages in parenthesis indicate how many games were passed: GPT-
4 with prompting (41%), ELIZA (27%), and GPT-3.5 (14%). The authors
also investigated participants’ decisions and summarize that “[p]articipants’
decisions were based mainly on linguistic style (35%) and socio-emotional
traits (27%), supporting the idea that intelligence is not sufficient to pass the
Turing Test” (Jones and Bergen, 2023). This is also interesting in the sense that
ELIZA as a simple rule-based system (see above) outperformed GPT-3.5, and
indicated that even in the year 2023 fairly easy programs can fool people. To be
fair, however, it is also not clear what can be excepted from such conversations,
and either ELIZA and GPT-4 show that generation of well-sounding text can
be performed with such systems.

NLP in science education

Science education researchers utilized NLP methods to answer their research ques-
tions. For example, Nehm and Hirtig (2012) devised a rule-based NLP system to
extract concepts in students’ short-form constructed responses on evolutionary biol-
ogy. Sherin (2013) then utilized a transformation of documents (here: interview
excerpts) into a high-dimensional vector space that was then forwarded into an unsu-
pervised ML algorithm to identify clusters in the interviews on seasons. Later on,
Carpenter et al. (2020) used deep learning-based methods that could enhance feature
representation of their data on students reflections in a biological hazard scenario.
Related to LLMs, many researchers showed that these can successfully solve science
problems to some extent, however, with severe limitations that we will detail later
(Kieser et al., 2023; Krupp et al., 2023; West, 2023; Kortemeyer, 2023). Let’s dive
into some of these NLP methods more closely and see how they can be applied in
science education research.

7.2 An Applied Example

Context

We start by merely focusing on the surface level of texts, i.e., what words appear in
them (we put aside the question of what a word exactly is, which is more difficult than
one might naively think. The different words that, say, students use in their written
responses to a question or task are certainly linked to the ideas that students want
to express, even though they are no one-to-one mapping. We will call a constructed
response by a student a document, which is an established term in NLP. Focussing
on the document level, we can begin by building a vocabulary (i.e., all different
words that appear throughout documents), and then counting the frequency of each

122 P. Wulff et al.

Table 7.1 Term-document matrix for student responses

Student Ball Force | Gave | Gravitational | Hand Energy | Gravity | Upward | Throw Just
Student 1 | 1 0 2 0 1 3 0 0 1 0
Student 2 | 2 3 2 0 1 0 1 0 1 1
Student3 | 3 3 1 0 1 0 3 0 1 2
Student4 | 7 6 0 5 1 1 0 3 0 0

word in each document. In short: we build a term-document matrix. Imagine students
answered on an item posing the following physics question: “Imagine you throw a
ball vertically upward (on earth): Describe what happens to the force on the ball?
Neglect air resistance” (Gregorcic and Pendrill, 2023). The (synthetic) responses
could read” as follows:

Student 1 (Confusing force and energy [own generation]): When you throw the ball up, the
energy you gave it to go up keeps it moving for a while. Even after it leaves your hand, I
think that the energy is still pushing it upwards, and gets weaker. When it’s coming down,
all the energy you gave it is all gone.

Student 2 (Impetus Preconception): When you throw the ball up, the force you gave it to
go up keeps it moving for a while. Even after it leaves your hand, I think that force is still
pushing it upwards, but it gets weaker and weaker until the ball stops and starts to come back
down. When it’s coming down, I guess the force you gave it is all gone, and it’s just gravity
that’s pulling it back to the ground.

Student 3 (Correct Concept, Less Sophisticated Language): Okay, so when you throw the
ball into the air, the only force acting on it after it leaves your hand is gravity, which pulls it
down toward Earth. There’s no force pushing it up anymore; it just goes up because of the
speed you gave it when you threw it. Gravity slows the ball down until it stops at the top of
its path, then it makes it come back down. So, the force on the ball is always the same—it’s
just gravity.

Student 4 (Correct Concept, More Sophisticated Language): Upon releasing the ball with
an initial upward velocity, the exertion of an upward force ceases the moment the ball
loses contact with the hand. Subsequently, the ball is solely under the influence of a constant
gravitational force directed towards the Earth’s center. This gravitational force, which is equal
to the product of the mass of the ball and the gravitational acceleration (mg), continuously
opposes the ball’s upward motion, thereby reducing its kinetic energy and decelerating it until
it momentarily comes to rest at the peak of its trajectory. Thereafter, the same gravitational
force accelerates the ball earthward. Throughout the entire process, the gravitational force
remains constant in both magnitude and direction, acting as the sole force on the ball in the
absence of air resistance.

Transforming the responses into a term-document matrix

A term-document matrix for three responses might read as follows (which can be
easily generated with the CountVectorizer from the scikit-learn module in
Python (see Python code below).

2 Generated with GPT-4; conversation can be accessed here: https://chat.openai.com/share/
Sc6ad151-56a9-4b8e-9d2c-5¢9abbc4575d.

https://chat.openai.com/share/5c6ad151-56a9-4b8e-9d2c-5c9abbc4575d
https://chat.openai.com/share/5c6ad151-56a9-4b8e-9d2c-5c9abbc4575d

7 Natural Language Processing and Large Language Models 123

Interestingly, even this simple term-document matrix of word co-occurrences can
already provide insights. Note that, before calculating the term-document matrix,
we removed common words such as “and” (called stopwords) from the documents.
This step should be critically examined in your research, however, for illustration
purposes this is reasonable to focus on the more important content words. Given that
the frequencies are absolute counts and not normalized (e.g., relative frequencies
with respect to overall document length), they give us an impression of the length of
the responses. Student 4 apparently wrote more compared to the others. Response
length is oftentimes an important proxy (though rather uninformative) for quality.
You should make sure to examine length differences in responses, which is reported
in many other (science) education studies that use NLP and analysis of text data
more generally. Furthermore, the term-document matrix gives us an impression of
the themes and writing quality in a more detailed sense. Note that students 2 and
3 used gravity, whereas student 4 used gravitational (force), which is more aligned
with academic language rather than everyday language. Most importantly, student 2
used the word “gave” two times. This is consistent with the impetus preconception
of forces, where an object is given a force that is then consumed or used up. As such,
the term-document matrix can be of diagnostic value to examine students’ ideas.
Moreover, student 1 used energy instead of force, compared to the others. Note that
instead of entire documents, the documents could also be split into sentences (e.g.,
with the spaCy module in Python) and these sentences could be used as documents
which would allow a more nuanced analysis of ideas. Note also the limitations of
merely analyzing documents based on frequency of terms. First, word order and con-
text information is lost, which is an important feature for expressing ideas in natural
languages. Therefore, such approaches are referred to as “Bag-of-Words” models.
For example, student 3 also used the word “gave” once, however, in the context of
velocity rather than force. Second, very long documents might make it difficult the
see important differences between documents.

Weighting terms in the term-document matrix

The length dependence can be counteracted against with normalization. Typical
normalization procedures for such count vectors are L1 or L2 normalization. The
former refers to the procedure where all cells in a row are summed and each cell
in a row (i.e., document) is then divided by this summed value. The latter refers
to the common procedure where all values are squared and then summed. Finally,
the square root is taken and each cell in a row divided by this value. Both these
normalizations refer to the length of the vector (if the row is understood as a vector,
where each cell maps to one dimension of this vector). We used L1 normalization
and output the resulting normalized term-document matrix in a table (see Table 7.2).
We now see that student 4 on average uses the term “force” as often as students 2
and 3, which seemed quite differently in the frequency-based term-document matrix.
The term “force” might not be as informative after all. Student 2 with the impetus
preconception used “force” equally often, and the term “force” was also given in the
problem statement.

124 P. Wulff et al.

Table 7.2 Normalized term-document matrix for student responses

Student | Ball Force Gave Energy | Hand Gravity | Weaker | Pushing | Leaves | Throw
Student 1 | 0.056 0.000 0.111 0.167 0.056 0.000 0.056 0.056 0.056 0.056
Student 2 | 0.071 0.107 0.071 0.000 0.036 0.036 0.071 0.036 0.036 0.036
Student 3 | 0.100 0.100 0.033 0.000 0.033 0.100 0.000 0.033 0.033 0.033
Student 4 | 0.104 0.090 0.000 0.015 0.015 0.000 0.000 0.000 0.000 0.000

Table 7.3 TF-IDF Term-document matrix for student responses

Student | Force Ball Energy | Gave Gravity | Weaker | Leaves | Throw | Pushing | Just

Student 1 | 0.000 0.040 0.183 0.099 0.000 0.061 0.049 0.049 0.049 0.000
Student 2 | 0.092 0.050 0.000 0.061 0.038 0.075 0.031 0.031 0.031 0.038
Student 3 | 0.082 0.067 0.000 0.027 0.101 0.000 0.027 0.027 0.027 0.067
Student 4 | 0.064 0.061 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000

We might furthermore weight the terms by their occurrence within the documents.
The idea is that documents are similar that use specific terms, i.e., terms that only
appear in some, rather than all, documents. A commonly applied technique in infor-
mation retrieval to resolve this issue is term frequency inverse document frequency
(tf-idf) transformation. As the name suggests, term frequency is traded off with
how often the term appears throughout documents (inverse document frequency).
Tf-idf transformation can be utilized through the TfidfTransformer, again from
the versatile scikit-learn module in Python (see Python code below). In the first
line after to dots, the TfidfTransformer () is initialized and applied to the list
of documents, named X, in the final line. The argument norm="11" specifies the
normalization for the count vectorization, which is performed beforehand. There are
then some other mathematical details (adding 1 to prevent division by zero, etc.)
that are of minor importance here. The resulting matrix is displayed in Table 7.3.
Now, the term “force” gets less weight, whereas, for example, “gave” appears more
prominent in the responses from students 1 and 2. Moreover, values for “force” differ
for students 2 and 3 (even though they have similar term frequencies), because the
matrix is first normalized.

Python code: Determine term-document matrix and tf-idf matrix

vectorizer = CountVectorizer(stop_words="english’)
X = vectorizer.fit_transform(docs)

tfidf_transformer = TfidfTransformer(norm='11", ...)
X_tfidf = tfidf_transformer.fit_transform(X)

7 Natural Language Processing and Large Language Models 125
Representing documents in embedding space

In the context of information retrieval research, term-document matrices and tf-idf
matrices can be thought of as vector spaces. In fact, the matrices are transformed
(columns and rows are switched) first, and then each column (i.e., document) repre-
sents a vector for the respective document in a space that is spanned by the vocabu-
lary. In the term-document matrix, each dimension (i.e., a term) is rather unbounded,
because it represents the frequency. In the tf-idf matrix, the dimension is bound to 0
and 1, which is advantageous for many ML applications. We can represent this tf-idf
matrix in a 2D vector space, where the tf-idf values for the words “ball” and “gave”
span the axes (see Fig. 7.1).

More advanced NLP techniques allow us also to separate verbs (“gave”) from
nouns (“ball”) which enables us to perform more fine-grained analyses of the con-
structed responses. You could use part-of-speech tagging for this with the spaCy
library in Python. Furthermore, looking at these points in space in Fig. 7.1 might
enable us to apply some clustering techniques as outlined in Chaps. 5 and 11. For
example, clusters of students could be identified that use certain terms more fre-
quently compared to others with k-means clustering, PCA, or t-SNE.

Term-term co-occurrence matrix

Analyses can also be done with the term-term or word-word matrix. This is also a
co-occurrence matrix of words in contexts rather than documents. Here, oftentimes
a context window around 4 words to left and right of the target word is considered.
Then, a cell in this matrix represents the times a target word co-occurs with another
word in this particular context window. Words then can have similar vectors, i.e.,
similar cell frequencies. We included code in the supplement on how to generate

2D TF-IDF Vector Representation for "ball" and "gave"

etudent 1

0.8 1 Student 2
v
©
) 0.6
8
e
[=]
2 0.4 etudent 3
w
2
u
=

0.2

0.0 etudent 4

0.4 0.5 0.6 0.7 0.8 0.9 1.0

TF-IDF Score for "ball"

Fig. 7.1 2D representation of the tf-idf matrix for the terms “ball” and “gave”

126 P. Wulff et al.

this matrix. The matrix looks similar to the term-document matrix. Now, rows and
columns refer to individual words, and documents have no meaning anymore in this
matrix.

Python output: term-document matrix

array([[0, 1, 1, ..., O, 1, O],
[1, 0, 1, ..., 0, 1, 0],
[, 1, 0, ..., 0, 1, 0],
[0, 0, O, ..., O, O, 3],
[, 1, 1, ..., 0, 0, 0],
[0, ®, 0, ..., 3, 0, 0]], dtype=int64)

A reasonable training corpus is then necessary to retrieve meaningful estimations,
depending on your research goals. Again, vectors can encapsulate similarity of two
target words, if they occupy a nearby location in the vector space, or have a similar
direction. Cosine similarity is typically used here. Cosine similarity is the length-
normalized dot product between two vectors. The problem with the dot product is
that it favors long vectors. However, more frequent words also have longer vectors.
Normalizing the dot product for length equals the cosine of the angle between the two
vectors. The cosine similarity ranges from -1 (opposite direction) to 1 (same direc-
tion). Cosine of O refers to orthogonal vectors. Since frequencies are non-negative
integers (in the term-term matrix), the cosine similarity then ranges from O to 1. In
this term-term matrix, “force” is related to “energy” with .98, whereas “force” and
“gets” are related with .81. Hence, the vector for “force” is more similar to the vector
of “energy” as to the vector of “gets.” We should not over-interpret these values,
based on only four documents. Depending on your research goals, much larger cor-
pora could be processed such as journal articles or students’ writing.

Word meaning from distributional properties

Co-occurrence analyses of natural language hinge on the assumption that words that
have a similar meaning appear in similar contexts. This is sometimes referred to as
distributional semantics, or use theory of meaning (Manning, 2022): Meaning here
merely is a function of context. Another important conceptualization is denotational
semantics. Meaning, here, is a property of reference, i.e., the set of objects, processes,
or phenomena in the world that a word, sentence, or similar refers to. It is crucial to
remind ourselves that meaning of a word, phrase, or sentence is not static, but rather
dynamic, context-dependent where no universal meaning for a word exists.

7 Natural Language Processing and Large Language Models 127

7.3 Advanced Language Modelling with LLMs

Early language models

Language modelling refers to the task of predicting the next word given previous
words. More generally, language modelling seeks to “capture regularities of natural
language for the purpose of improving the performance of various natural language
applications” (Rosenfeld, 2000, p. 1270). You could try to generate massive look-up
tables (rule-based systems) where for each possible sentence reasonable next words
are suggested. However, there are infinitely many conceivable sentences making this
undertaking futile. Language is characterized by “the infinite use of finite means”
(Chomsky [1965] quoting von Humboldt). Finite means refer to the limited alphabet
and set of conceivable words. Early language models simply sought to estimate the
probability function of a sentence (i.e., a sequence of words). As with the term-
term co-occurrence matrix, a window size can be defined and probabilities of co-
occurrences can be estimated. For example, to build a language model researchers
could seek to determine the conditional probability of a certain word given it’s context
of words. The context size partly determines the quality of the language model. A
so-called n-gram model has a context size n. It was shown that even n-gram models
of n = 3 generate reasonable sounding text. While these language models for a long
time powered NLP applications such as speech recognition, they are challenged
by the sparse estimation problem: observing frequencies of all possible 3-grams
(i.e., trigrams) requires tremendously large (and in most contexts unattainable) text
corpora.

Furthermore, ML algorithms such as decision trees have been employed to esti-
mate probability distributions of words. Again, the space of possible combinations
quickly becomes very large. For a 20 word sequence with a 100, 000 size vocabulary,
there is a space of possibilities of the size 10!% (or: one Googol).

Static embeddings through ANNs

A means to tackle this explosion of complexity is the use of word/document embed-
dings. These embeddings help to generalize better and be more flexible compared to
exact word matches, as used in n-gram models. Take the sentence: “T have to make
sure when I get home to feed the ...”. If during training only the sequence “to feed the
cat” was seen, n-gram models would only predict ‘cat’ after “to feed the”. However,
embedding-based approaches make use of the fact that ‘cat’ and ‘dog’ appear overall
in similar contexts, hence, ‘dog’ would also be presented as a reasonable candidate
word.

In fact, such embeddings can be calculated with ANNs and LLMs. At the heart of
many modern NLP techniques lie ANNs with sophisticated architectures. It has been
found that task performance on many NLP tasks could be improved with ANNs and
deep learning. In particular, language modeling proved to be of particular relevance
to tackling language-related problems such as translating text between languages.
ML-based language models then predict distributions of words by self-supervised

128 P. Wulff et al.

training, and typically output scores or string predictions. For example, if a string is
to be continued: “Throwing a ball into the ...”, the language model proposes likely
candidates for continuation, such as “air,” “water,” etc. Training LL.Ms hinges on the
availability of Big Data (such as the Common Crawl of the Internet), and computing
infrastructure (resources). Moreover, if this training data is biased or lacks examples
from certain domains (e.g., chemistry-specific text), then the LLMs may struggle to
generate reasonable words for chemistry-specific text completion tasks. At least, it
is highly questionable to what extent they would be able to do so, and we will come
back to these issues when considering the limitations of LLMs.

To train embeddings for words, sentences, paragraphs, or even documents, ANNs
proved to be versatile tools. A feed-forward neural network can be utilized to train
word embeddings. Training the feed-forward neural network is done by calculating
a loss function (e.g., given a predicted word and the observed word) and using
stochastic gradient descent to update the weights in the matrix. Stochastic gradient
descent is a variation of gradient descent, which can be described as finding the
low point in a valley by always following the steepest ascent (note that in complex
landscapes, it is not assured that the global optimum can be found this way—you
might get stuck in a high valley). Stochastic gradient descent utilizes subsamples of
the data to approximate the gradients. After training, for each word we will receive
a probability. This feed-forward neural network can then be used to auto-complete a
sentence merely based on probabilities and the recent past context.

Such ANNS of various architectures with static embeddings power(ed) many NLP
applications and enabled researchers to retrieve more performant vector space rep-
resentations for words and documents. Important embeddings were, among others,
Word2Vec, and GloVe (Global Vectors) that are sophisticated means of estimating
embeddings. These are static embeddings. This means that a training corpus (as
large and representative as possible) is required. Word2Vec has also been extended
to include document vectors and topic vectors. Furthermore, it has been shown that
reconstruction of text based on embedding vectors is also possible to some extent.
Moreover, these embeddings can be calculated for specific data sets to adopt them to
the purposes of different researchers. In science education, these embeddings could
be used to enhance representation of students’ constructed responses (Carpenter
et al., 2020). However, before we mentioned that word sense is largely a function of
context, hence: embeddings should also vary with context.

Contextualized embeddings with LLMs

Static embeddings were superseded with the introduction of the transformer-
architecture for LLMs. These LLMs typically have a fixed vocabulary of 30K to
250K possible tokens, and each token is mapped to a fixed vector embedding. In the
pre-training phase, these embeddings are learned. The embeddings are then passed
through the transformer architecture, which “results in a ‘contextualized’ represen-
tation for each token” (Chang and Bergen, 2023, p. 4), which is then used to generate
output tokens. LLMs in this form are typically trained with 500 to 2000 token input
sequences, or even much longer.

7 Natural Language Processing and Large Language Models 129
Masked and auto-regressive language models

Researchers differentiate between masked and auto-regressive LLLMs, otherwise also
known as encoder and decoder LLMs. Encoder models such as BERT (we will utilize
this in Chap. 12) represent an input sequence as an embedding, which can then
be utilized in classification tasks or similar tasks. Decoder models such as GPT-3
or GPT-4 (we utilize ChatGPT which is based on GPT-4 in Chap. 3 to simulate
data) can be utilized for text generation with specific goals (see below). Both types
of LLMs are trained in a similar, self-supervised way, namely to predict masked
and upcoming tokens in a sequence. In particular, auto-regressive LLMs seek to
maximize the probability for a next word in a sequence so as to be utilized later
for generative purposes. Auto-regressive LLMs such as GPT are typically much
larger compared to masked LLMs. They are trained using gradient descent (see
Chap. 4) with a text corpus of up to 1.5 trillion tokens. Training data set size should
increase according to increases in model size, and some 100K to 4M tokens per
batch (optimization step) are seen by the model to update token embeddings and
weights. It was found that with sufficient pretraining and model size certain task-
related capabilities in LLMs only begin to emerge. Moreover, scaling laws were
identified that link performance of LLMs with data set size and model size. Also,
the quality of the training data was found to be of crucial importance. Given the
size and the versatility, such pretrained LLMs were also called “foundation models”
(Bommasani et al., 2022). Typically, these foundation models are only trained once
and then further fine-tuned and adjusted for specific purposes (transfer learning).

Auto-regressive LLMs such as ChatGPT are also further trained on non-task-
specific tasks, such as curated human-written examples. These approaches are
called supervised fine-tuning. Model parameters can then be updated through gra-
dient descent. LLMs such as Bidirectional Encoder Representation for transformers
(BERT) were versatile tools for being fine-tuned for specific tasks such as classifica-
tion. This incited a research field called “BERTology” (Rogers et al., 2020), where
many different findings regarding the linguistic “understanding” of such models and
even world knowledge were performed. Other models such as GPT were found to
be capable of systematically generalizing an abstract pattern that they were given as
inputs, which is considered a capability that is also crucial in human reasoning and
thinking (Lake & Baroni 2023).

Generative LLMs

Auto-regressive, generative LLMs output a probability distribution of next words.
At inference time, auto-regressive LLMs can be utilized to continue a given input
sequence by iteratively sampling next tokens, e.g., by choosing the most probable
token, by providing a temperature parameter to introduce more randomness, to sam-
ple from top-k tokens (i.e., the k highest ranking tokens), or some other ways (Chang
and Bergen, 2023). Given these generative capabilities, auto-regressive LLMs such
as GPT are referred to as generative Al or generative LLMs.

130 P. Wulff et al.
Prompting and prompt engineering

Generative LLMs such as GPT were found to improve performance on tasks when
provided specific context, e.g., examples on how a task is to be performed (few-
shot prompting, or in-context learning): Few-shot prompting then refers to the case
“where the model is given a few demonstrations of the task at inference time as
conditioning [..], but no weight updates are allowed” (Brown et al., 2020, p. 6).
Prompting is essential to effectively and efficiently interact with LLMs, and enforce
the outcomes to have desired qualities. A simple prompt was providing examples
on what solving a task would look like. This was called few-shot prompting. With
few-shot prompting, these LLMs were found to perform better at tasks that they were
not explicitly trained on. A few-shot prompt could look as follows:

Few-shot prompt (see: Brown et al., 2020)

Translate English to French # task

sea otter => loutre de mer # 3 examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => # prompt

Even prompting LLMs by simply adding “Let’s think step by step” could help
ChatGPT (based on GPT-4) to improve performance, distantly resembling what has
been documented in research on “thinking slow” for humans. Based on this, chain-of-
thought® prompting forces LLMs to generate several short sentences that lay out the
involved reasoning steps in a problem, e.g., instead of providing the example “You
have 3 apples; 2 are taken away; how many apples do you have? The answer is 17
we provide it ““You have 3 apples; 2 are taken away; how many apples do you have?
You have 3-2=1 apples. The answer is 1.” This can be further improved by consider-
ing multiple reasoning paths and checking for self-consistency. In self-consistency
prompting the LLMs is required to produce several solutions with chain-of-thought
prompting, and cross-check them before producing a final answer. This has also
been documented to improve performance in many well-defined tasks. Moreover,
tree-of-thought prompting leverages chain-of-thought prompting and evaluates mul-
tiple reasoning paths. With all limitations of LLMs in mind, these techniques can
also be used to automatically code data (Tan et al. 2024).

3 We emphasize the critique uttered by Polverini and Gregorcic (2024) for the inadequate use of
cognitive terms such as “thought” or “reasoning” in many NLP contexts. This critique dates back at
least to the beginnings of the field of AI (McDermott, 1976, p.4), dubbed “wishful mnemotics”: “A
major source of simple-mindedness in Al programs is the use of mnemonics like ‘UNDERSTAND’
or “GOAL” to refer to programs and data structures.”

7 Natural Language Processing and Large Language Models 131
Research with LLMs in science education

Generative Al offers many potentials for education in research and teaching. It was
shown that knowledge of Al and LLMs is important in enabling students to mean-
ingfully engage with generative LLMs. Krupp et al. (2023) observed that students
in physics tended to accept the outputs of LLMs as is, and Zamfirescu-Pereira et al.
(2023) found that students with no knowledge about LLMs used prompts as if they
were talking to another human, which is less effective compared to other strategies
that were outlined above.

LLMs have been used from the time of their inception, either masked and auto-
regressive LLMs. It was shown that LLMs in the fine-tuning paradigm could improve
classification and generalization performance for pre-service physics teachers’ writ-
ten reflections (Wulff et al., 2022a), and provide researchers opportunities to share
their models across research sites and further train existing models (Sorge et al.,
XXX). Moreover, various researchers experimented with opportunities to utilize
auto-regressive LLMs alongside with prompting to showcase useful features for sci-
ence education research.

Also, prompt engineering has been extensively used in science education research
(Gregorcic and Pendrill, 2023). Polverini and Gregorcic (2024) synthesize guidelines
on effective prompt design in physics education research contexts and show that
specifying the domain or specifying how to act (e.g., answer like a physics teacher)
can improve LLM outputs for a physics problem. They also mention limitations of
prompting with examples where the LLM attends to superfluous details and gets
slightly off track when answering. For example, Kieser et al. showed that ChatGPT
could simulate (answer as-if) students’ preconceptions in mechanics (Kieser et al.,
2023). Furthermore, West (2023) and Kortemeyer (2023) showed that ChatGPT
(based on GPT-4) was capable of solving open and closed response conceptual ques-
tions in physics. However, problems with generating incorrect information or failing
to evaluate the generated problem solutions were also highlighted (Gregorcic and
Pendrill, 2023; Kieser and Wulff, 2024). Wan and Chen (2024) showed that specific
prompting for feedback generation for physics problems improved feedback to levels
that were considered equally correct and even more useful compared to human expert
feedback. Prompt-engineering offers science education researchers many novel ways
to extract information from students’ responses and automatically generate adaptive
guidance. However, with regards to prompting strategies it remains largely unclear
to what extent these strategies also improve LLM performance in more complex
reasoning tasks as they are typical for science education research (Polverini and
Gregorcic, 2024). Moreover, for chain-of-thought prompting it was also critically
mentioned that basically the humans-in-the-loop do much of the planning/problem
solving (Valmeekam et al., 2023). Just like the horse Hans* that allegedly learned
to count by recognizing signals from the human investigator, the LLMs leverage the
humans’ questioning to arrive at meaningful solutions.

4 This story is beautifully told in Crawford (2021).

132 P. Wulff et al.

7.4 Applying LLMs in Science Education Research

Extracting static embeddings for science terms

Imagine you want to compute the similarity of terms in physics based on a large data
set, such as Wikipedia. Pre-trained embeddings can then be a resource for you, which
can be accessed through R or Python. A famous library to access static embeddings
such as Word2Vec is gensim. This library allows researchers to efficiently either
retrieve word vectors that have been trained on large language data sets such as the
Internet, Wikipedia or book corpora.

Python code snippet: Utilizing gensim to retrieve word embeddings

import gensim.downloader as api wv =
api.load(’word2vec-google-news-300’)

display word vector:

wv[’current’]

calculate similarity for two word vectors: wl = ’current’
w2 =’voltage’ wv.similarity(wl, w2)

wl = ’current’ w2 = ’stream’ wv.similarity(wl, w2)

The word vector here is a 300D vector with floating point numbers. We find that
the average similarity (cosine similarity) between “current” and “voltage” is 0.13,
and between “current” and “stream” is 0.02. At first sight, this seems reasonable:
current should be positively linked to voltage. And it should be linked closer to
voltage than to stream. Interestingly, word vectors as retrieved from Word2Vec or
GloVe also encapsulate features such as representing analogies (king is to queen,
as man is to women). These can be visually displayed in 2D space. However,
closer inspection of these word vectors already yields problems. To have a com-
parison for the similarity values, we randomly selected 200 words from the models
(word2vec-google-news-300) vocab and calculated the average similarity (SD)
was 0.13 (0.11). As such, voltage is no more closely related to current as other
randomly chosen words. This is not as expected. In physics current and voltage
are conceptually closely related. When we search for the most similar words for
“force”, we get: forces (0.52); Faulcon_resigned (0.46); Mohammed_Majah (0.42);
Nato_Isaf (0.41) and professional_nonpolitical_militarily (0.41). This highlights a
problem with these word vectors when applied in science education: the training data
sets are not sensitive to our contexts and specific training with discipline-based data
sets would be necessary. There are probably millions of tweets and other texts in the

7 Natural Language Processing and Large Language Models 133

training data singling out the joint forces in political situations, which has nothing
to do with the scientific concept of force.

Moreover, calculating analogies with embeddings (“king is to queen, as man is
to women”) seems convincing at first. However, the symmetrical relation between
them is quite different from how humans infer on analogies in reality. For exam-
ple, human processing of analogies is intricately related to knowledge, e.g., average
humans see North Korea as similar to China, but not vice versa. Moreover, these
pretrained embedding vectors are static. I.e., the embedding vector for a word is
fixed, irrespective of the context it appears in. Yet, the meaning for “bank” in “river
bank” and “bank robbery” differs categorically. Hence, approaches are necessary,
where the context is considered as well.

Utilizing LLMs to calculate embeddings (encoder)

LLMs can solve some of these problems and provide researchers with contextualized
embeddings for the words. A famous LLM became known as BERT. BERT processes
the entire input before forming a context-sensitive word vector. For the sentences:
“The force may be with you.” and “Gravitational force acts on a mass in the grav-
itational field.” we would expect different word vectors for “force”. Here (the code
can be found in the Supplement), the cosine similarity between both embeddings
for force is 0.38. Thus, they do not inhabit the same spot in embeddings space and
indicate differences in meaning. Comparing vectors for individual words without
context is not as meaningful as for static word embeddings from Word2Vec, hence
we will omit it here. As with static embeddings, however, one can represent words
or sentences now in the same embedding space. For example, if we add another
sentence to the above responses, say: “When you throw a ball up, the force you gave
it to move up keeps it moving for a while. Even after it leaves your hand, that force is
still pushing it, but it gets weaker and weaker until the ball stops and starts to come
back. When it’s coming down, the force you gave it is all gone, and it’s just gravity
that’s pulling it back.”, which is slightly modified from student 1’s response, then
you will see that they are at a similar location in embedding space:

This, again, could be used to cluster similar responses with unsupervised ML
techniques (see Chaps. 5 and 11) and thus identify patterns for answering a certain
question such as the one above. For example, you could extract all similar sentences
to the above sentence: “Gravitational force acts on a mass in the gravitational field.”
This will give you insights about the language used by your learners.

One intricate problem with embeddings in general and LLMs in particular is what
these dimensions in the embedding space actually mean. For the simple encoding
of the term-document matrix above it is clear: the dimensions refer to how often
a certain word is used in a document. However, with the static and contextualized
embeddings as generated through LLMs, this is more difficult. Researchers suggested
that certain word embeddings could be correlated with the dimensions, which then
would indicate that the dimension relates to the word. However, these approaches
require substantial efforts and only approximate the true meaning of the dimension.
This problem is comparable with interpretation of the dimensions in a PCA analysis.
Substantial human expertise is required to make sense of the mathematical outputs.

134 P. Wulff et al.

2D PCA of BERT Document Embeddings

Student 2
15 4 uaen @ Student 1
Student 2
@ Student 3
"é‘ 10 @ Studentd
[
[=
Q
£
5 051
(=)
°
p=
£ 001
= Stydent 3
—0.5 ﬁtudent 1
udant 4
T T T T T T T
-2 -1] 1 2 3 4

Principal Component 1

Fig. 7.2 Response embeddings through BERT for the four student responses

Utilizing generative LLMs

Besides embeddings we outlined the novel opportunities that arise from generative
LLMs, such as synthetic data generation. For the task: “Imagine you throw a ball
vertically upward (on earth): Describe what happens to the force on the ball? Neglect
air resistance” synthetic responses such as the following were generated with the
additional prompt “Student 1 has the impetus misconception, student 2 and student 3
have the correct for force concept, however, answer with differing degree of language
sophistication”:

Student 1 (Confusing force and energy [own generation]): When you throw the ball up, the

energy you gave it to go up keeps it moving for a while. Even after it leaves your hand, I

think that the energy is still pushing it upwards, and gets weaker. When it’s coming down,
all the energy you gave it is all gone.

Note in student 1’s response that instead of force (which is typically associated
with the impetus preconception), energy is used by the synthetic student. While
energy is transformed when the ball moves up, it is inconsistent with physics instruc-
tion to attribute that the energy “pushes” the ball and “gets weaker”. As such, these
responses are quite fruitful instances for pre-service teachers in science education to
reflect upon.

Generative LLMs such as ChatGPT could also be used to generate adaptive feed-
back to science education problems as illustrated by Wan and Chen (2024). In line
with the prompt guidelines by Polverini and Gregorcic (2024), the authors show that
well-designed prompts can enable GPT-3.5 to provide students adaptive feedback
for a physics problem. In particular, the authors show that expectations of what the
feedback should look like, the students response, examples of feedback, as well as
an expert solution make a difference in feedback quality. The template the authors
outline looks as follows:

7 Natural Language Processing and Large Language Models 135
Prompt design for adaptive feedback

#Context A physics instructor is rating students’

answers to the following physics problem:

Physics Problem: A student pushes two boxes (...)

The instructor rates students’ answer and gives feedback
based on how similar it is to this expert answer:

Expert Response: No, the 200 N force is not
’transmitted" to box B. (...)

Physics principles involved:

1. The net force on an object is equal to the mass times
its acceleration.

2. ‘“‘Force’’, ‘‘energy’’, and ‘‘power’’ (...)

The feedback should start with whether the answer
is correct or incorrect, followed by a justification,
and then a follow up question for further thinking.
The feedback should not give away the expert answer.
Those physics principles should not all be repeated
in the feedback to students.

Here are several examples of student answer and
instructor feedback: Answer: No because in order (...)

Answer: [new student response goes in here.]
Feedback:

This template shows that designing effective prompts in science education specific
problems is a rather involved process and requires substantive domain expertise.
However, once such a template has been devised, it can be shared across contexts
and implemented at scale. Hence, carefully devising effective prompts for assessment
instruments such as the force concept inventory could leverage resources to improve
instruction.

7.5 Considering Limitations

We will provide a deeper look into LLMs in Chap. 12 and conclude this chapter with
considering limitations of LLMs in particular. Chang and Bergen conlude in a review
of LLM’s capabilities that they “are still prone to unfactual responses, commonsense

136 P. Wulff et al.

errors, memorized text, and social biases” (Chang and Bergen, 2023, p. 1). Let us
explore some of these frailties in greater depth.

Explainability

Even though LLMs allowed new possibilities and showed promising results even in
unseen (during training) tasks, it is oftentimes not possible to explain the model deci-
sions (issue of explainability and black-boxes, see Chap. 2). Explainability is crucial
for trust in Al systems and for researchers to advance their models (Lipton, 2018;
Zhao et al., 2023). The goal for explainable Al is to understand model decisions in
human-understandable terms (Zhao et al., 2023). By merely considering the size of
most LLMs, and the size of the training data sets, it is understandable that no simple
explanations will account for generated outputs. Rather, explanation models for the
LLMs are required. Researchers devised approaches to understand model decisions
and we will illustrate one such approach in Chapter 12 that can at least highlight which
tokens in the input are important for the output generation. Particularly for LLMs,
explainability for fine-tuned LLMs and prompting LLMs are differentiated (Zhao
et al., 2023). Some procedures in the prompting paradigm relate to counter-factual
reasoning and might be applicable for science education researchers. However, as
of now, this is largely uncharted territory and progress is urgently needed in order
to get a better understanding of LLMs. As of now, science education researchers
probe generative LLMs and outline heuristics that eventually condition outputs so
that informative outputs can be expected. It has to be constantly kept in mind that
these outputs are statistical in nature (Polverini and Gregorcic, 2024).

Shortcut learning

One recognized problem in many fine-tuned LLMs such as BERT is called shortcut
learning. For example, in the Argument Reasoning Comprehension Task, BERT was
found to excel in tasks such as the following:

Argument: Felons should be allowed to vote. A person who stole a car at 17 should not be
barred from being a full citizen for life. Statement A: Grand theft auto is a felony. Statement
B: Grand theft auto is not a felony.

The task here is to determine which statement is consistent with the presented
argument, which in this case should be statement B.

However, instead of meaningful considerations, BERT simply picked up on some
words such as “not” which are highly correlated with the correct answer. This is
called shortcut learning, and is deceptive, given that humans cannot possibly under-
stand why these unrelated words should have any bearing on the prediction. Hence,
decisions are intransparent. BERT excels “by exploitation of spurious statistical cues
in the dataset” (Niven and Kao, 2019, p. 4658). On an appropriately designed adver-
sarial data set, these LLMs reach only accuracies that amount to random guesses.
The underlying issue here relates to the fact that warrants in arguments are often left
implicit, relating to world knowledge that is assumed to be shared. As such, BERT or
other LLMs that are trained on some example argumentation comprehension tasks

7 Natural Language Processing and Large Language Models 137

cannot possibly insert missing information, at least it would be rather unlikely for
these models to have acquired such competencies.

Mimicry of examples in the training data

Similar to shortcut learning, also generative LLMs such as GPT-4 can stick to train-
ing examples too closely, which was called approximate (memory) retrieval. For
example, while it was shown that GPT-3.5 could recognize the classic Monty Hall
problem (choosing a goat behind three doors), slight modifications in the problem
statement (that rendered the problem trivial) could not be recognized by GPT-3.5.
The model sticked to the exemplary solution of the Monty Hall problem. This was
also found for many other counterfactual tasks such as reasoning about chess posi-
tions where certain chess figures are swapped (and thus it was rather unlikely for
the LLM to have seen these examples in the training data). Sometimes, such frailties
seem to be fixed with increasing model size and training. However, it is also known
that companies crowd source click-workers to fix such recognized flaws manually,
rather than conceptually.

An interesting case in science education is presented by Polverini and Gregorcic
(2024). They find a dialogue-based prompting enabled GPT-4 to provide reasonable
solutions for an inclined plane problem. However, the presented solutions are not
entirely satisfactory, given that the friction coefficient is not given in the problem
but used in the solution (adding the prompt: “Isn’t there another way to do it?”
then solved the problem). The authors conjecture that this solution might be a relic
from the fact that many textbook problems that might have been seen by the gener-
ative LLM during training likely included the friction coefficient and thus GPT-4’s
response mimicked these training examples. On the other hand, it was also found
that being exposed to certain problems during training does not necessarily enable
the models to recognize these problems (Macmillan-Scott and Musolesi 2024).

Unreliability and extrapolation

Moreover, generative LLMs commonly make up facts, i.e., they hallucinate knowl-
edge, which refers to presenting false information as facts. Even in innocuous tasks
such as textual summarization. Even though ChatGPT (based on GPT-4 and the
multimodal version based on GPT-4V) seemed to have acquired many human-like
capabilities, rigorous testing of abstraction and reasoning abilities show that such
models are fundamentally constrained. The physicist Sean Carroll prompted Chat-
GPT (based on GPT-4) with the problem of a toroidal (instead of square) chess board,
where the edges and borders are connected and pieces can cross them seamlessly.
This is an interesting problem since, given that White typically starts in chess, with-
out rule-adaptation, it will instantly win over Black given that the king would be
checkmated from the start of the game. However, he found that ChatGPT could not
resolve this transfer problem (and other interesting problems), besides belaboring
how different the game would be etc. etc. This all indicates that, after all, LLMs are
capable of mimicking data that was seen during training and recompose it in well-

138 P. Wulff et al.

crafted texts, however, emergent reasoning and thinking abilities require abstraction
and synthetization of information as well which LLMs currently do not seem to
have. It was concluded that “[m]any of these weaknesses [by LLMs] can be framed
as over-generalizations or under-generalizations of learned patterns in text” (Chang
and Bergen, 2023, p. 1). LLMs might seem creative to individuals who have not seen
the entire training data (which is impossible for individual humans), however, if you
knew the entire training data it might seem less creative.

There is evidence that test data set and task contamination is largely present in
many LLMs, which went unnoticed by some of the developers of foundational LLMs.
LLMs such as GPT-3.5 were tested in a few-shot or zero-shot paradigm and it was
found that these models performed markedly better on data sets that were released
prior to training the model, compared to data sets that became public only after the
training of the model. This indicates that much of the acclaimed zero-shot learning
might be interpolation of seen examples as well, and capabilities of LLMs to perform
reasoning tasks and similar tasks are somewhat overestimated. All these studies point
out that researchers need to be very cautious when investigating the performance of
the utilized LLMs in their research. It oftentimes might merely mimic examples that
were seen during training.

Understanding

It is often asked (e.g., in the context of AGI discussions) to what extent LLMs truely
understand the world as humans do. This is certainly not the case. LLMs do not
acquire world models as humans do (even very young children can abstract and gen-
eralize in ways LLMs cannot do). However, it is also probably not true that LLMs
merely mimick what was seen in the training data. Some researchers suggest that
LLMs learn models of semantic spaces and can do inference in these spaces. As of
now, the limited access to other sensory experiences and interaction with the world
prevent LLMs from developing human-like understanding of the world. What will
become possible with regards to understanding the world when LLMs also “experi-
ence” ultrasonic and infrared, or UV radiation (even ionizing radiation) are exciting
questions for future research.

Ethical and environmental issues

Finally, privacy concerns (as with other ML models as well) are also problematic,
given that researchers can’t train their own models (most lack the resources), nor
can they inspect the models thoroughly. Given that these models are almost exclu-
sively trained by private companies and conversation data in implementations such
as ChatGPT are forwarded to the company, it raises the issue of making certain com-
panies even stronger, potentially fostering monopolies. Companies such as Meta or
Aleph Alpha started to open source their models (e.g., Llama or Luminous) which
could raise transparency of why these models perform well or worse in certain tasks.
Copyright issues with training data have already appeared in image models as well
as language models.

7 Natural Language Processing and Large Language Models 139

Moreover, the substantial ecological footprint that training and accessing LLMs
requires is another concern that should not be neglected when applying these models,
as outlined in Chap. 2. We suggest that the presented conventional ML algorithms
(see Chaps. 4, 5, 10 and 11) in many cases might be valuable alternatives, because
they can be better inspected (transparency and explainability), they do not involve
forwarding of data to private companies, and they do not bring along as negative
ecological footprints.

7.6 Summary

Researchers called some generative LLMs “zero-shot reasoners” (Kojima et al.,
2022) with “sparks of artificial general intelligence” (Bubeck et al., 2023). How-
ever, LLMs can be unreliable sources of information and should be treated with
due caution, because “Slight changes in input word choice and phrasing can lead
to unfactual, offensive, or plagiarized text” (Chang and Bergen, 2023, p. 2). As any
other tool, LLMs should be applied in the contexts in which they were shown to work
well and for which they are developed. In terms of practical applicability, LLMs have
to be much improved in terms of explainability, ecological issues, as well as ethical
issues in order to become useful at scale: “Although model performance [of LLMs]
on broad benchmark datasets is relatively consistent for a given model size and
architecture, responses to specific inputs and examples are not. This feature makes
large language models tempting but unreliable to use in many practical applications”
(Chang and Bergen, 2023, p. 2). Ganguli et al. (2022) outline the unpredictability
of LLMs in practice, which needs to be solved before reliable implementation in
high-stakes or sensitive decision making processes (besides the many issues related
to privacy, personally identifiable information, and bias).

Science education researchers might engage in research related to the capabilities
of (generative) LLMs for relevant science education problems. Good-practice exam-
ples and contexts in which these LLMs excel in science education should be outlined
and eventually an understanding of LLMs for many science education problems can
be developed. Even though models change and progress is rapid, larger and newer
generative LLMs consistently outcompete older models, oftentimes without losing
their specific capabilities. What is learned for one model will likely stand the test of
time and be established as a body of knowledge in this entirely novel field of research.
Moreover, the particular use-cases of generative LLMs, e.g., generating ideas without
providing provably correct solutions to problems need to be critically examined. Uti-
lizing these models under the wrong pretenses could otherwise introduce confusion
and frustration for learners and instructors.

140 P. Wulff et al.

References

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Arx, S. v., Bernstein, M. S., Bohg,
J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N.,
Chen, A., Creel, K., Davis, J. Q., Demszky, D., Donahue, C., Doumbouya, M., Durmus, E.,
Ermon, S., Etchemendy, J., Ethayarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel,
K., Goodman, N., Grossman, S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D. E.,
Hong, J., Hsu, K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling,
G., Khani, F.,, Khattab, O., Koh, P. W., Krass, M., Krishna, R., Kuditipudi, R., Kumar, A., Ladhak,
F, Lee, M., Lee, T., Leskovec, J., Levent, I, Li, X. L., Li, X., Ma, T., Malik, A., Manning, C. D.,
Mirchandani, S., Mitchell, E., Munyikwa, Z., Nair, S., Narayan, A., Narayanan, D., Newman,
B., Nie, A., Niebles, J. C., Nilforoshan, H., Nyarko, J., Ogut, G., Orr, L., Papadimitriou, I., Park,
J. S., Piech, C., Portelance, E., Potts, C., Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani,
Y., Ruiz, C., Ryan, J., Ré, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A., Srinivasan, K.,
Tamkin, A., Taori, R., Thomas, A. W., Tramer, F., Wang, R. E., Wang, W., Wu, B., Wu, J., Wu,
Y., Xie, S. M., Yasunaga, M., You, J., Zaharia, M., Zhang, M., Zhang, T., Zhang, X., Zhang, Y.,
Zheng, L., Zhou, K., & Liang, P. (2022). On the opportunities and risks of foundation models.
arXiv.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P, Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, 1., & Amodei, D.
(2020). Language models are few-shot learners. arXiv.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P, Lee, Y. T,,
Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T., & Zhang, Y. (2023). Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv.

Carpenter, D., Geden, M., Rowe, J., Azevedo, R., & Lester, J. (2020). Automated analysis of middle
school students’ written reflections during game-based learning. In L. I. Bittencourt, M. Cukurova,
K. Muldner, R. Luckin, & E. Millan (Eds.), Artificial Intelligence in Education (pp. 67-78). Cham:
Springer International Publishing.

Chang, T. A., & Bergen, B. K. (2023). Language model behavior: A comprehensive survey. arXiv.

Chomsky, N. (1965). Aspects of the theory of syntax, volume 11 of Special technical report. Cam-
bridge: M.L.T. Press, Mass., 3. print edition.

Crawford, K. (2021). Atlas of Al. Power, politics, and the planetary costs of artificial intelligence.
New Haven: Yale University Press.

Evans, V. (2006). Lexical concepts, cognitive models and meaning-construction. Cognitive Lin-
guistics, 17(4).

Ganguli, D., Hernandez, D., Lovitt, L., Askell, A., Bai, Y., Chen, A., Conerly, T., Dassarma, N.,
Drain, D., Elhage, N., El Showk, S., Fort, S., Hatfield-Dodds, Z., Henighan, T., Johnston, S.,
Jones, A., Joseph, N., Kernian, J., Kravec, S., Mann, B., Nanda, N., Ndousse, K., Olsson, C.,
Amodei, D., Brown, T., Kaplan, J., McCandlish, S., Olah, C., Amodei, D., & Clark, J. (2022).
Predictability and surprise in large generative models: Facct *22 (pp. 1747-1764).

Gregorcic, B., & Pendrill, A.-M. (2023). Chatgpt and the frustrated socrates. Physics Education,
58(3), 035021.

Jones, C., & Bergen, B. (2023). Does gpt-4 pass the turing test? arXiv.

Kieser, F., & Wulff, P. (2024). Using large language models to probe cognitive constructs, augment
data, and design instructional materials. In M. S. Khine (Ed.), Machine Learning in Educational
Sciences: Approaches. Applications and Advances: Springer Nature.

Kieser, F., Wulff, P.,, Kuhn, J., & Kiichemann, S. (2023). Educational data augmentation in physics
education research using chatgpt. Physical Review Physics Education Research, 19(2), 1-13.
Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large language models are

zero-shot reasoners: 36th conference on neural information processing systems (neurips 2022).

7 Natural Language Processing and Large Language Models 141

Kortemeyer, G. (2023). Could an artificial-intelligence agent pass an introductory physics course?
Physical Review Physics Education Research, 19(1), 15.

Krupp, L., Steinert, S., Kiefer-Emmanouilidis, M., Avila, K. E., Lukowicz, P., Kuhn, J., Kiichemann,
S., & Karolus, J. (2023). Unreflected acceptance—investigating the negative consequences of
chatgpt-assisted problem solving in physics education. arXiv.

Lake, B. M., & Baroni, M. (2023). Human-like systematic generalization through a meta-learning
neural network. Nature, 623.

Lipton, Z. C. (2018). The mythos of model interpretability. Machine Learning.

Macmillan-Scott, O., & Musolesi, M. (2024). (ir)rationality and cognitive biases in large language
models. arXiv.

Manning, C. D. (2022). Human language understanding & reasoning. Daedalus, 151(2), 127-138.

Marcus, G., Rossi, F., & Veloso, M. (2016). Beyond the turing test. Al Magazine, 37(1), 3-4.

McDermott, D. (1976). Artificial intelligence meets natural stupidity. SIGART Newsletter, 57, 4-9.

Nehm, R. H., & Hirtig, H. (2012). Human vs. computer diagnosis of students’ natural selection
knowledge: Testing the efficacy of text analytic software. Journal of Science Education and
Technology, 21(1), 56-73.

Niven, T., & Kao, H.-Y. (2019). Probing neural network comprehension of natural language argu-
ments: Proceedings of the 57th annual meeting of the association for computational linguistics.

Norris, S. P, & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific
literacy. Science Education, 87(2), 224-240.

Polverini, G., & Gregorcic, B. (2024). Performance of chatgpt on the test of understanding graphs
in kinematics. arXiv.

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in bertology: What we know about
how bert works: Transactions of the association for computational linguistics., 8, 842—866.

Rosenfeld, R. (2000). Two decades of statistical language modeling: Where do we go from here?
proceedings of the IEEE.

Sherin, B. (2013). A computational study of commonsense science: An exploration in the automated
analysis of clinical interview data. Journal of the Learning Sciences, 22(4), 600-638.

Sorge, S., Wulff, P, and Kubsch, M. (submitted). Using a pretrained language model to provide
individualized feedback for pre-service physics teachers’ reflective thinking.

Tan, Z., Beigi, A., Wang, S., Guo, R., Bhattacharjee, A., Jiang, B. et al. (2024). Large language
models for data annotation: A survey. arXiv.

Turing, A. (1950). Computing machinery and intelligence. MIND, LIX(236), 433-460.

Valmeekam, K., Marquez, M., Sreedharan, S., & Kambhampati, S. (2023). On the planning abilities
of large language models : A critical investigation. arXiv.

Wan, T., & Chen, Z. (2024). Exploring generative ai assisted feedback writing for students’ writ-
ten responses to a physics conceptual question with prompt engineering and few-shot learning.
Physical Review Physics Education Research.

West, C. G. (2023). Ai and the fci: Can chatgpt project an understanding of introductory physics?
arXiv.

‘Waulff, P., Buschhiiter, D., Westphal, A., Mientus, L., Nowak, A., & Borowski, A. (2022). Bridg-
ing the gap between qualitative and quantitative assessment in science education research with
machine learning—a case for pretrained language models-based clustering. Journal of Science
Education and Technology, 31, 490-513.

Zamfirescu-Pereira, J. D., Wong, R. Y., Hartmann, B., & Yang, Q. (2023). Why johnny can’t prompt:
How non-ai experts try (and fail) to design llm prompts: Chi ’23, april 23-28, 2023 (pp. 1-21).
Germany: Hamburg.

Zhao, H., Chen, H., Yang, F,, Liu, N., Deng, H., Cai, H., Wang, S., Yin, D., & D. Mengnan (2023).
Explainability for large language models. A survey. arXiv

142 P. Wulff et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 8 ®)
Human-Machine Interactions in Gresho
Machine Learning Modeling: The Role

of Theory

Christina Krist, Marcus Kubsch, and Peter Wulff

Abstract This chapter provides guidance for how to think about the role that humans
play in conducting analyses that include ML as part of the workflow. It introduces a
stance towards ML as “intelligence augmentation” rather than “artificial intelligence”
and articulates four key questions for an analyst to consider when setting up analysis.
It also introduces computational grounded theory as an alternative to automation-
focused applications of ML.

8.1 Introduction

It can be easy to focus on the “thinking” work that a computer can do. After all,
this book is focused on teaching you to understand the underpinnings of various
computational models and how you might apply them in your own research. But there
are two important assumptions that undergird our stance toward machine learning
that we want to make explicit here:

1. ML is not always the appropriate or most useful tool; it may actually make your
analysis more difficult and of lower quality.

We often see researchers who are beginning to wade into computational
approaches drawn to ML out of a kind of fear of missing out, thinking that there
exists some magical tool that will automate the “hard part” of their analysis and
make their life and their research much better. This is false. No such tool exists. If
anything, integrating ML will add more steps to your analytic workflow (as described
in the previous chapters). In addition, because the “decisions” made in an ML model
are black-boxed to varying degrees, it may make your results less interpretable. This

C. Kirist (X)
Graduate School of Education, Stanford University, Stanford, CA, USA
e-mail: stinakrist@stanford.edu

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

P. Wulff
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany

© The Author(s) 2025 143
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_8&domain=pdf
mailto:stinakrist@stanford.edu
https://doi.org/10.1007/978-3-031-74227-9_8

144 C. Kirist et al.

is what we mean by saying it may make your analysis of “lower quality”—it may
make it more difficult for you to construct a compelling claim from ML output.

2. Computers are not intelligent, critical, or innovative.

Despite the name “artificial intelligence” (a marketing ploy more than anything),
it is important to remember that an algorithm is essentially a set of instructions.
Computers are really good at following those exactly. And while more sophisticated
machine learning models (e.g., ANNs; LLMs) appear to be “generative” in that they
output something beyond specifically what they were given (e.g., solving a novel
mathematics problem after being trained on a specific set of problems), these models
are justidentifying patterns that reflect the data they have to work with. These patterns
may or may not make sense; the articulation of the abstraction is not the goal. Instead,
functionally what occurs is a reproduction of patterns that exist within current data
sets (Mitchell, 2023). This is the basis of many of the social critiques of Al: because
even the most sophisticated ML algorithms are pattern identifiers and replicators,
they reproduce existing social biases and inequalities (e.g., D’Ignazio and Klein,
2020; Noble, 2018).

In stating these assumptions, and after having read the descriptions of ML in the
previous chapters, we hope to bring ML down from the pedestal, shrouded in mystery,
that newcomers tend to place it on. ML is just a tool. And, like any methodological
tool, it can be useful or it can be useless. What matters is when, how, and why it’s
used.

In this chapter, we provide some guidelines for how to think about whether and
how using ML is right for your research project. As part of these guidelines, we focus
equally on the role that humans can and should play as we do on the role that com-
putational algorithms can play. After all, you' are also an important methodological
instrument, with different strengths and weaknesses that you bring to any research
task.

Thankfully, people who have worked on Al for decades, across multiple contexts,
have also thought deeply about how humans and machines should interact and be
integrated. For example, a recent report from the US Department of Education’s
Office of Educational Technology advocates for “Intelligence Augmentation” (IA)
rather than “Artificial Intelligence” (Al) in order to “keep[] humans in the loop
and position[] Al systems and tools to support human reasoning” (2023, p. 14).
They describe that IA centers “intelligence” and “decision making” in humans but
recognizes that people sometimes are overburdened and benefit from assistive tools.
Intelligence Augmentation (IA) uses the same basic capabilities of Al, employing
associations in data to notice patterns, and, through automation, takes actions based
on those patterns. However, IA squarely focuses on helping people in the human
activities of teaching and learning, whereas Al tends to focus attention on what
computers can do. For instance, IA may help teachers make better decisions because
computers notice patterns that teachers can miss. When a teacher and student agree

I We mean “you” to be understood in a broad sense here or elsewhere, i.e., including team members,
collaborators, etc.

8 Human-Machine Interactions in Machine Learning Modeling: The Role ... 145

that the student needs reminders, an Al system may provide reminders in whatever
form a student likes without adding to the teacher’s workload.

8.2 A Guiding Metaphor for Centering ‘“Intelligence
Augmentation” Versus “Artificial Intelligence”:
Self-driving Cars

Because this is a relatively new approach in education, and because teaching and
learning are massively complex tasks, we find the analogy to the ways Al has been
used in cars to be helpful. For at least the past 100 years, engineers have sought to
develop self-driving cars: machines that fully automate nearly all aspects of driving,
so that humans only need to step in and intervene if anomalous situations arise.
Despite the continuous enthusiasm (not to mention loads of money poured into their
development), self-driving cars have yet to become a ubiquitous reality. Safety issues
continue to halt any promising progress, even to this day.

So does this mean that the use of Al in cars is a failure? No, not necessarily.
There are many very successful features in cars that utilize Al. These features, such
as anti-lock brakes, air bags, parking assist, stay-in-your-lane warnings, and driver
focus alerts are perhaps less flashy than a fully automated driving system, yet they
significantly increase the safety of driving in vehicles equipped with these systems.
These are examples of “intelligence augmentation”—tools that maintain the human
activity of driving as the central goal, supported by specific tools targeted to notice
and respond to specific patterns that humans can sometimes miss given the complex
cognitive demands of driving. Most importantly, these tools are effective because
they leverage the strengths of both humans and computers, identifying specific tasks
where those strengths complement each other. In contrast, self-driving cars are a near-
impossible engineering task because they are asking computers to mimic strengths
of humans that they are simply not designed to be able to do (Fig. 8.1).

Consistent across the US DOE’s (2023) recommendations for Al in education
and the history of successes and failures in integrating Al into cars is the idea that
it is crucial to think about humans and computers as a distributed system. With this
perspective, we never consider just the strengths and limitations of an ML model in
isolation, such as the type or structure of data it is best suited for or the particular biases
of a specific algorithm. Instead, these considerations should always be contextualized
within a broader ecosystem that includes the human researchers as part of the system.
This extends these questions from, for example, “What type or structure of data is
this ML model best suited for?” to, “What does utilizing this ML model for this
type or structure of data serve to automate or augment, and is that automation or
augmentation appropriate given the other tasks the human researchers will carry out
as part of this analysis?”

The rest of this chapter elaborates the complexities of thinking through these
contextualized considerations. In doing so, we highlight four guiding questions that

146 C. Krist et al.

DRIVING: Taking in lots of detail Detecting and stepping

and making continuous, | in “justin time” to

nuanced judgements correct a specific,

about what to pay detailed error

attention to

 —
Humans:
Self-driving cars

Computers:

/ e.g., Anti-lock brakes

Fig. 8.1 How IA features such as anti-lock brakes take advantage of humans’ and computers’
strengths to complement weaknesses

are helpful for researchers to return to in deciding whether or how to use ML as part
of a research project:

1. What is the degree of inference that I aim to draw from my data? Who is best
suited to make those inferences, and how?

2. How will theory be used to guide interpretation of ML outputs, including
identification of absences of features or patterns?

3. How is this ML analysis integrated and sequenced within a larger analytic
workflow?

4. Is ML really augmenting my interpretive and analytic power as a researcher, or
could this be done just as well (or better!) without it?

8.3 What are the Relative Strengths that Humans Versus
Computers Bring to Conducting Research?

Before delving in to these four questions, we first want to make explicit some of
the relative strengths of humans and computers when it comes to the task of doing
research. Like driving, doing research is a complex and non-linear task. And, as with
driving, humans are generally good at taking in lots of detail and making continuous,
theoretically-informed judgements about what to pay attention to (Table 8.1). This
does take practice: it requires developing an education-research-data-specific version
of what Goodwin (1994) called “professional vision” coupled with deep knowledge
of the existing literature to decide what is salient and relevant to contemporary ques-
tions and debates. It also takes time to learn to reduce the many visual and auditory
inputs that a driver is bombarded with, cognitively automate the processing of that
input, and direct attention to specific, salient aspects—a classical account of procedu-
ral learning (e.g., Corbett and Anderson, 1995). In other words, it’s not that humans

8 Human-Machine Interactions in Machine Learning Modeling: The Role ... 147

Table 8.1 Relative strengths and weaknesses of humans versus computers for data analysis

Human strength/computer weakness for data | Computer strength/human weakness for data
analysis: analysis:

Taking in lots of detail and making continuous, | Detecting patterns; performing the same
theoretically-informed judgements about what | specific, detailed operation many times

to pay attention to

are naturally or innately able to take in lots of detail and make continuous judgements
about it; but rather, with training and practice, humans are good at learning to do this
in a specialized way.

In contrast, computers are distinctly not good at taking in lots of detailed informa-
tion and making judgements about what to pay attention to, without specific, detailed
instructions for what to pay attention to and how. These specific, detailed instructions
may come “hard coded” in an algorithm, or they may come from emergent patterns
based on a very large data set. In either case, what a computer *is* good at doing
is detecting patterns, and at performing the same, specific, detailed operation many,
many times (Table 8.1). Humans are distinctly bad at both of these things: we tend
to pay attention to anomalies and outliers rather than patterns (one reason why sta-
tistical methods are so important as assistive analytic tools!), and we tend to become
fatigued and make mistakes when performing repetitive tasks.

There are likely many more tasks or subtasks that we could articulate in terms of
strengths and weaknesses, but we find these few broad comparative strengths to be
sufficiently generative for getting started in thinking about how to distribute tasks.

What we hope to emphasize is that all of the intellectual work and decision-
making that determines the quality of the ML analysis is done by the human. The
computer simply carries out what the human tells it to do. (Remember Grounding
Assumption 2: Computers are not intelligent, critical, or innovative). In other words,
the appropriateness and quality of your analysis, and the kinds of claims that can be
made from it, is entirely dependent upon your careful, critical thinking at each step
of the process.

If this seems overwhelming and like a lot of responsibility, good! It is. This is part
of what we mean when we say that using ML will definitely not make your research
easier, and it may actually make it harder. We suggest going back and re-reading the
chapters on supervised and unsupervised learning with this lens. Ask yourself, what
are the key decisions I need to make? And what are the criteria I should use in order
to make and justify those decisions? We have tried to make explicit these decision
points and ways of thinking in context as we have walked through the previously
presented examples, and future chapters will continue to do the same.

The next sections will attempt to tackle the four questions introduced above that
make explicit a more general version of these decision points and criteria. In doing
so, we will also provide some theoretical and methodological guidance on how to
approach thinking about these questions.

148 C. Krist et al.

8.4 What is the Degree of Inference that I Aim to Draw
From My Data? Who is Best Suited to Make Those
Inferences, and How?

As we split apart the work of the human from the work of the computer in the
supervised/unsupervised machine learning workflows above, a feature of the task
that was not made explicit but still influenced each stage of activity was the degree
of inference required to transform the collected data into a variable that can then
be visualized and used. To unpack this dimension, we will focus on one aspect of
the workflow: assigning codes or numbers to data. The epistemic function of this
aspect can be characterized by how well-defined the coding categories are a-priori.
That is, do we know what we are looking for because there is an existing survey,
coding manual, or rubric? Or, does part of the task involve developing emergent
categories and codes (i.e., a grounded approach)? This distinction is similar to the
difference between inductive and deductive analysis in qualitative content analysis
(e.g., Kuckartz, 2014) and supervised versus unsupervised ML techniques.

Both deductive and inductive (or supervised and unsupervised) approaches can
vary in the degree inference required. Some data transformations require very little
inference. For example, whether a student continued on to Stage 2 of the Physics
Olympiad can be very clearly mapped to a binary coding scheme (0 = did not con-
tinue, 1 = continued). Or, when using text data, when we are looking for the usage of
technical language, the sequences of letters that signify key terms are clear. In con-
trast, mappings might be less well-defined and require large amounts of inference
for constructs such as students’ notions of uncertainty. Specific terms may not be
clear signals, and the literature includes a wide range of definitions and operational-
izations. In this sense, the human plays a much larger inferential role in deciding
whether a given student response represents a particular epistemic belief and how to
map that evaluation to a coding scheme.

Figure 8.2 presents these dimensions as four quadrants where each quadrant serves
a different epistemic function.

8.5 How Will Theory be Used to Guide Interpretation
of ML Outputs?

As mentioned previously, one of the key roles that a human plays is “seeing” data
through the lens of theory. This includes identifying which theories might be relevant
to interpreting data, both early on and throughout the analytic process. Of course,
theory is useful for generating codes as described in the previous section. But there
are also two additional roles for theory that we highlight here:

1. Theory guides interpretation of claims.
2. Theory helps analysts see what is not present in the data.

8 Human-Machine Interactions in Machine Learning Modeling: The Role ... 149

High inference High inference

High inference | priori / supervised grounded / unsupervised

Low inference Low inference

Low inference a priori / supervised grounded / unsupervised

A priori / supervised Grounded / unsupervised

Fig. 8.2 Epistemic functions and level of inference of four different kinds of tasks in assigning
codes or numbers to data based on characteristics of the data and question. Reprinted from Kubsch
et al. (2023) which is licensed under CCA

In terms of guiding interpretation of claims, theory is what supports human ana-
lysts in being able to make decisions about whether a particular output—e.g., a way
of parsing data into clusters—is meaningful or not. Here, “meaningfulness” means
“contributing new insights.” Does this way of dividing up the data tell me something
new and interesting about the phenomenon I am studying? Does it help me answer
my research question in some way? In other words, the theoretically informed human
analyst is essential for interpreting computational outputs in ways that can lead to
new insights.

What’s important to keep in mind here is that the same data, clustered in the
same way, may be meaningful or “junky” depending on the research question at
hand and the theoretical lens applied. And, maintaining a theoretically informed lens
helps prevent overstatement of claims or overattribution of certainty to computational
results. Simply because a computer clustered data in a particular way, even with a
great deal of statistical certainty, does not mean that those clusters are interpretable
or meaningful for addressing a question of educational importance.

Theory is also essential for helping analysts to see what is not present in the
data. This is true for both quantitative and qualitative analyses, and remains true for
computational analyses as well. For instance, if a theoretical framework identifies
four epistemic criteria (e.g., Berland et al., 2016) but computational outputs only
identify or work for three, this is itself an interesting finding. Similarly, critical
theoretical lenses are especially important here for identifying potential social biases
in the data sets themselves, in the algorithms being applied to analyze the data, or
even to evaluate the theoretical frameworks being used in the first place.

These high-level roles for theories are ones that guide how an analyst draws
inferences from data. The details of how this is done varies by the type of analysis

150 C. Krist et al.

being performed, e.g., whether it tends to be more qualitative or quantitative in nature.
We briefly provide some examples of what this work can look like in each case.

8.5.1 Theory in Quantitative and/or Supervised ML Analysis

In quantitative research, the work of drawing inferences from data outputs is tradi-
tionally shared by humans and computers functioning as a complementary system. In
this system, humans specify relations based on substantive theory and use computa-
tional statistical tools to quantify the relations, test hypotheses, and draw inferences
about generalizability. There are two distinct ways to approach this, serving different
goals: explanation and prediction.

Traditional statistical models tend to be better for explanatory goals. A typical
example of this would be to set up a regression model based on substantive theory and
use statistical software to calculate the regression coefficients and conduct statistical
tests of the model. The result of such an analysis is a descriptive and potentially
explanatory model of the phenomenon under study.

In contrast, ML models tend to be better for predictive goals. Instead of letting
humans specify the relations between the codes or numbers in the form of a statistical
model such as a regression, humans may just specify which codes or numbers x is
supposed to be related to codes or numbers y and let the computer find a function
f(x) = y that describes the relation. The result is a model, often uninterpretable to
humans, that can predict y given x with a certain accuracy. This approach is typical
of many supervised ML use cases. In essence, predictive accuracy is traded for the
interpretability and causality of a traditional statistical model (Breiman, 2001; Pearl
and Mackenzie, 2018; Scholkopf, 2019).

8.5.2 Theory in Qualitative and/or Unsupervised ML Analysis

In (grounded) qualitative research, the work of looking for relations and drawing
inferences is traditionally done by humans. In evaluating “meaningfulness,” a primary
consideration that continually guides qualitative analysis is whether a pattern or
theme is meant to be representative or anomalous, as both have value (Glaser, 2002).

Commercially available qualitative analysis software (e.g., NVivo, MAXQDA)
increasingly provide a suite of tools to assist in consolidating, organizing, and visu-
alizing qualitatively analyzed data. These tools range from quite simple, such as
displaying the total count of each code across a set of documents, to more complex,
such as network-type visualizations of code co-occurrences. The goal of such tools
is not to produce statistical outputs, but rather to assist the researcher in conducting
second-stage coding or building qualitative claims. In other words, these high-level
patterns, such as the number of times a particular code occurred, are often an impor-
tant starting point in supporting qualitative analysis, even though the counts of codes

8 Human-Machine Interactions in Machine Learning Modeling: The Role ... 151

themselves are typically not the claim being made. Rather than the end (i.e., a claim),
these patterns are the beginning of a qualitative analytic process.

Unsupervised ML approaches such as topic modeling or anomaly detection serve
a similar role: they are not themselves generating a claim about the data, but they
are surfacing a pattern from qualitative data that an analyst could then interrogate
more deeply. Both theory and continued empirical work are needed to construct and
evaluate the resulting qualitative claims.

8.6 How is ML Analysis Integrated and Sequenced Within
a Larger Analytic Workflow?

The most common use of ML currently within the science education literature is for
automation: to integrate a computer to do some of the work that humans would other-
wise do. In response to the first two considerations, we have provided some guidance
for how to think about which tasks to automate and how. With this consideration,
we would like to provide an alternative purpose for ML: generating new insights.
Rather than taking the human coding, or existing knowledge and processes, as a
“gold standard” and training a computer to replicate human effort, ML can instead
complement the human researcher towards a goal of developing the “gold standard”
claim in the first place.

There are a few emerging examples of this in the science education literature. One
example used unsupervised clustering techniques to triangulate human-conducted
analyses of student interviews, using the clustering as an additional source of valid-
ity evidence for the qualitative claims made from the data (Sherin, 2013). Another
example similarly used unsupervised clustering to refine a theoretically-informed
coding scheme: in making sense of the clusters in light of the original coding scheme,
Rosenberg and Krist (2020) identified a new type of code that led to a re-structuring
of the original coding scheme. Their revised scheme led to better qualitative reliabil-
ity between human coders as well as improved reliability of supervised automation
of coding.

One common theme of these examples is the careful sequencing of human and
computational approaches to analysis. Work in other fields has identified method-
ological frameworks for guiding such sequencing. We highlight one such framework
here that has been foundational for our own work and for emerging work in science
education: that of computational grounded theory.

Computational Grounded Theory (CGT) was originally developed by sociologist
Laura Nelson (2020) to investigate the political logics in first- and second-wave
feminist movements, primarily using documents produced by political organizations
in New York and Chicago during each era. We highly recommend reading her original
paper, as the findings themselves are very interesting! But for the remainder of this
chapter, we focus on the methodological framework generally.

152 C. Krist et al.

Broadly speaking, in CGT, one first leverages the power of computational tech-
niques, especially unsupervised ML techniques, for pattern detection in large data
sets—those of a size and scope that may prohibit human-driven analyses from the
outset. Then, one leverages the interpretative power of humans to add quality and
depth to the quantity and breadth of the first step. Finally, one uses computers to test
the reliability and generalizability of the human refined pattern detection and inter-
pretation from the second step. We use the following terms to describe the purpose
of each of these steps:

e Step 1: Pattern Identification
e Step 2: Pattern Refinement
e Step 3: Pattern Confirmation

Importantly, in each of these three steps, assigning codes or numbers to data is
followed by looking for relations and drawing inferences, which inform the next step
leading up to the final sociological conclusions. This process is inherently cyclical,
and the nature of the analytic work varies slightly at each stage. In other words, rather
than assigning codes once and drawing inferences once, multiple rounds of analyses
are chained together such that the inferences drawn from Step 1 are not final-form
claims, but instead are used to guide the nature of the analytic work in Step 2, and
SO on.

Specifically, in Step 1, Nelson utilized unsupervised computational methods to
identify both low-inference patterns (via lexical analysis, i.e., basic natural language
processing techniques) and high-inference patterns (via topic modeling). In Step
2—the pattern refinement step—the analytic work remains grounded (and primarily
done by the human analyst) but is predominantly high-inference. In this step, the
human analyst uses a standard qualitative method—content analysis via guided deep
reading—to interrogate the patterns that were identified using the computational tech-
niques in Step 1, though only utilizing a small subset of the data set. In Step 3, pattern
confirmation, the analytic work, can be characterized as high-inference, supervised/a
priori. Nelson strategically selected supervised computational techniques that would
examine the generality of the claims identified in Step 2 across the entire data corpus.

This framework demonstrates careful consideration of when and how to integrate
computational methods to complement the work of the human analyst. By strategi-
cally sequencing methods, a CGT approach explores usages of ML in all but one of
the four quadrants in Fig. 8.1, using computation in a way where it complements the
role of the human analyst, aiming at “preserving the superior abilities to interpret
text holistically provided by humans but incorporating the formal rigor, reliability,
and reproducibility of computer-assisted methods.” (Nelson, 2020, p. 8).

The use of CGT has recently gained some traction within science education
research (e.g., Martin et al., 2023; Tschisgale et al., 2023). We will also provide
examples of careful consideration of sequencing in Chaps. 6 and 15. In this way, we
hope that the field of science education can continue to innovate in terms of how we
are integrating ML into our analytic workflows in ways that move beyond automation
and purely predictive applications.

http://dx.doi.org/https://doi.org/10.1007/978-3-031-74227-9_6
http://dx.doi.org/https://doi.org/10.1007/978-3-031-74227-9_15

8 Human-Machine Interactions in Machine Learning Modeling: The Role ... 153

8.7 1Is ML Really Augmenting My Interpretive and
Analytic Power as a Researcher, or Could This be Done
Just as Well (or Better!) Without It?

Finally, it is always worth keeping this question in mind. What are the costs, both
in terms of time spent learning a new technique, downloading and installing soft-
ware, cleaning or re-formatting data, and in terms of the enviornmental impact and
human labor costs of the computational infrastructure you are using (e.g., the cost
of letting ChatGPT perform your tasks)? And—most importantly—can I make the
case that integrating ML will produce a substantial payoff in terms of generating new
knowledge that could not be generated without it?

As educators and science education scholars, we are always in favor of learning
new techniques and tools. From that perspective, we encourage you to continue
working through this book in order to be able to answer those questions in an informed
way. We see value in gaining this knowledge, even if you end up never using it
yourself. To us, that is decidedly not a waste of time! You will have expanded your
intellectual and methodological toolkit in ways that can help you better assess your
own and others’ research. It may also give you new ideas and perspectives on your
data or research questions to pursue, with or without ML tools. This is an important
learning outcome.

We do hope that at some point, you are excited about a potential use for ML within
your own research and see how a set of tools could augment your own interpretive
and analytic power. This is the exciting part of new tools and computational develop-
ments! We see great potential for creativity and innovation as more and more science
education scholars take up ML and other Al-based techniques in their research. At
the same time, we do want to emphasize that just because emerging computational
approaches are in the spotlight (now more so than ever) does not mean that you need to
use them in order for your research to be relevant. Good questions, thoughtful insights
grounded in the realities of practice, and careful interpretation and application of
theory are evergreen—essential for all research, both with and without ML.

References

Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016). Episte-
mologies in practice: Making scientific practices meaningful for students. Journal of Research
in Science Teaching, 53(7), 1082-1112.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199-231.

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted Interaction, 4, 253-278.

D’Ignazio, C., & Klein, L. F. (2020). Data Feminism. Strong Ideas Cambridge: The MIT Press.

Glaser, B. G. (2002). Conceptualization: On theory and theorizing using grounded theory.
International Journal of Qualitative Methods, 1(2), 23-38.

154 C. Kirist et al.

Goodwin, C. (1994). Professional vision. American Anthropologist, 96(3), 606—633.

Kuckartz, U. (2014). Qualitative text analysis: A guide to methods, practice and using software.
Los Angeles: Sage.

Martin, P. P, Kranz, D., Wulff, P., & Graulich, N. (2023). Exploring new depths: Applying machine
learning for the analysis of student argumentation in chemistry. Journal of Research in Science
Teaching, pp. 1-36.

Mitchell, M. (2023). Ai’s challenge of understanding the world. Science, 382(6671), eadm8175.

Nelson, L. K. (2020). Computational grounded theory: A methodological framework. Sociological
Methods & Research, 49(1), 3-42.

Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. New York:
New York University Press.

Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect (1st ed.).
New York: Basic Books.

Rosenberg, J. M., & Krist, C. (2020). Combining machine learning and qualitative methods to elab-
orate students’ ideas about the generality of their model-based explanations. Journal of Science
Education and Technology.

Scholkopf, B. (2019). Causality for machine learning. H. Geffner et al. (eds): Probabilistic and
Causal Inference: The Works of Judea Pearl, ACM, 27, 765-804.

Sherin, B. (2013). A computational study of commonsense science: An exploration in the automated
analysis of clinical interview data. Journal of the Learning Sciences, 22(4), 600-638.

Tschisgale, P., Wulff, P., & Kubsch, M. (2023). Integrating artificial intelligence-based methods into
qualitative research in physics education research: A case for computational grounded theory.
Physical Review Physics Education Research, 19(020123), 1-24.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Part 11
Hands-On Case Studies

Chapter 9 ®)
Working with Data—Getting Started e

Marcus Kubsch, Peter Wulff, and Christina Krist

Abstract In order to enable readers to implement the case studies on their com-
puters, we will introduce essential information for implementing the necessary soft-
ware. Comprehensive reviews and tutorials for the respective software can be found
elsewhere and we will point to some of these resources.

9.1 Introduction

You have made it through the theory section of the book and arrived at the case
study part where we start to work with data and do some actual machine learning
in the context of science education. The following case studies contain code and we
recommend executing the code as you progress through the case studies. At some
points we only display important code, and full implementation details can be found
in an online supplement, which can be freely accessed.

We decided to use two programming languages in this book: R and Python. While
this may not seem helpful at first, we think it has value to know ones’ way around
in these two languages. Both, R and Python are open source and widely popular in
the fields of data science and ML. Sometimes, however, specific challenges in ML
are easier to tackle in one language due to the exclusive availability of packages,
which consist of functions handling specific tasks within that language. Similarly,
case studies or examples might be available in one language but not the other. In
these cases, it is helpful if one is able to use both languages flexibly. Using different
programming languages flexibly is in fact increasingly supported in popular tools
like RStudio or Google Colab.

M. Kubsch ()
Freie Universitit Berlin, Berlin, Germany
e-mail: m.kubsch@fu-berlin.de

P. Wulff
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 157
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_9&domain=pdf
mailto:m.kubsch@fu-berlin.de
https://doi.org/10.1007/978-3-031-74227-9_9

158 M. Kubsch et al.

Before we get started with the actual case studies, we will provide a quick start
guide to get both R and Python up and running and cover some of the most important
commands and packages that we use throughout the following chapters. If you are
already familiar with R and Python, you can skip the rest of this chapter.

Note of caution

If you run the analyses either in browser or especially on your own computer,
you might get slightly different outputs. The outputs should not differ substan-
tially, however, slight differences are always possible given that your hardware
and software differs which can impact the calculations in the algorithms.

9.2 Getting Started with R

The objective of this section is to enable you to begin executing the code presented
in the case studies. If you want to go more in-depth with R, Hadley Wickham’s R
for DataScience is an excellent and accessible resource, which can be found here:
https://r4ds.hadley.nz (last access: Nov 2024).

9.2.1 Installation

To install R go to https://cran.r-project.org, download the version for your operating
system and install it. Once you have R installed you could theoretically just write all
code into the command line and execute it. However, that course of action is error
prone and tiresome. A better way to use R is to work with scripts, i.e., you have a
plain text editor in which you write down the code in the order you want to run it
and then copy and paste it into the command line to actually run it. In this way, your
analysis is automatically documented. We recommend using RStudio which is an
open source development interface for R from Posit, that is, it is a program that gives
you a text editor and command line in one application that comes with numerous
helpful supporting functions like autocomplete for commands, an overview of the
created objects, etc. You can download RStudio here: https://posit.co/downloads/.

9.2.2 Loading Packages and Data

Many of the functions we will use are not included in the basic R instal-
lation. To be able to use them you need to first install them and then load
them every time you want to use them. Packages are installed with the

https://r4ds.hadley.nz
https://cran.r-project.org
https://posit.co/downloads/

9 Working with Data—Getting Started 159

install.packages() command, e.g., to install the required tidymodels pack-
age type install.packages(“tidymodels”) and run the command. Once
the package is installed you can load it with the library() command, e.g.,
library(tidymodels) loads the tidymodels package so that the functions
within it become available. In the following case studies, we will load packages as
they are needed. If you try to load a package you have not installed a warning will
appear. In that case install the package. Afterwards you should be able to load it.
The case studies utilize data and code accessible on either one of the book’s
accompanying websites (Google Drive: https://drive.google.com/drive/folders/
1JNPLA7gu7-YeaTwYS0-dGDXmftYIb220?usp=sharing, GitLab: https://gitlab.
com/ml_sci-ed/notebooks).! For the R based case studies, the website contains
folders that include R projects files, scripts, and data. With RStudio, you can just use
the project and then open the script. Paths to the data are configured automatically
using the here package so that you should be able to execute the code without
manual setup. If you do not want to use RStudio you can load the data using the
load () function but you will need to specify a path to the respective datafile.

9.2.3 Important Operators: Assignment and Pipe

To assign data to variables, the assignment operator <- is used. The following
example command stores the number 3 in the variable df:

df <- 3

To inspect the object df just type df and execute the command.

Another important operator is the pipe operator %>%. You can think of the pipe
operator as pushing the output of one command or function to the input of the next
command or function. The following code uses the pipe operator to get the maximum
value of the variable df from the example above and then plot it:

df %>% max() %>% plot()

Lastly, the # is used in R to comment on code, i.e., code (and everything else) in
a line that starts with # will not be interpreted by R (in Python this will be also #,

B N

and larger sections can be commented out in between .

9.3 Getting Started with Python

Python is a widely used programming language both in academia and industry, espe-
cially for AI and ML. Python provides researchers “efficient high-level data struc-
tures and a simple but effective approach to object-oriented programming.” (see:

1 Note that the Google Drive folder has also all pre-trained model in it, thus is relatively large in
size.

https://drive.google.com/drive/folders/1JNPLA7gu7-YeaTwYS0-dGDXmftYIb220?usp=sharing
https://drive.google.com/drive/folders/1JNPLA7gu7-YeaTwYS0-dGDXmftYIb220?usp=sharing
https://gitlab.com/ml_sci-ed/notebooks
https://gitlab.com/ml_sci-ed/notebooks

160 M. Kubsch et al.

https://docs.python.org/3/tutorial/, last access: Nov 2023). Readers who are inter-
ested in learning to program with Python are referred to resources such as https://
learnpython.org/, or https://docs.python.org/3/tutorial/ (last access: June 2023).
Also, Al resources such as Codex and ChatGPT (both by OpenAl) provide effi-
cient resources that help you to implement code, as you can work with them using
natural language. Say, you want to get help with calculating some statistic or plotting
your data, simply prompt some general-purpose LLM with “Provide R/Python code
to plot a histogram for variable X.” These requests to LLMs such as GPT-4 yield
helpful outputs for most common problems such as data visualization.

9.3.1 Installation

To install Python go to https://www.python.org/, download the version for your
operating system and install it. A user friendly platform is Anaconda (https://docs.
anaconda.com/). Anaconda is a platform that supports managing software such as
Python and R. You will be able to run Python and R from Anaconda, and also Jupyter
notebooks which are used in this textbook. As with R, once you have Python installed
you could theoretically just write all code into the Python interpreter (e.g., through
your terminal), by starting it through typing python into your console/terminal, and
then engage in a so-called interactive mode to use Python. However (as with R), that
is error prone and sometimes tiresome. A convenient way to use Python is to work
with scripts, i.e., you have a plain text editor in which you write down the code in the
order you want to run it and then copy and paste it into the Python terminal to actually
run it. Or better, you run the scripts in script mode where you store your script and run
it from the console/terminale via >python name-of-script.py. In this way, your
analysis is automatically documented. If you want to write scripts and run them,
we recommend using Spyder which is an open source development interface for
Python which functions as an interactive development environment (IDE) (similar
to RStudio for R) where you have a lot of command over you Python programming
and data infrastructure. You can get it for free here: https://www.spyder-ide.org/.

Another way to execute Python code is through computational notebooks. In
Python, Jupyter notebooks (or Jupyter lab) are a versatile way to use notebooks.
They are more accessible compared to scripting Python code. However, there are also
drawbacks that relate to performance issues, reproducibility, and debugging, among
others. Given that we seek to provide readers easily accessible, simple applications
of important ML algorithms and data processing procedures, Jupyter notebooks are
nonetheless considered the optimal way to do so.

https://docs.python.org/3/tutorial/
https://learnpython.org/
https://learnpython.org/
https://docs.python.org/3/tutorial/
https://www.python.org/
https://docs.anaconda.com/
https://docs.anaconda.com/
https://www.spyder-ide.org/

9 Working with Data—Getting Started 161

9.3.2 Loading Modules and Data

For ML in particular, many of the most powerful modules (this is Python lingo
for “libraries”, however, these terms are sometimes used interchangeably, and we
use both terms in this book) were developed for Python such as scikit-learn
(Pedregosa et al., 2011), tensorflow (and the closely related keras) (Martin
Abadiet al., 2015), or pytorch (Paszke et al., 2019). These modules allow you
to implement most of the available ML algorithms, and train and test them. Some
of them are designed for efficient usability. For example, scikit-learn offers a
variety of ML algorithms and data preprocessing functions, and it allows to access
them very consistently with unified, thought-through functions (we will do so in
Chap. 6). It is designed with the purpose to raise consistency, inspection, nonprolif-
eration of classes, composition, and sensible default values (see further information
on this library in Géron (2017)). Over time, many derived libraries emerged that
will simplify your implementation of specific ML algorithms such as clustering and
finding topics in language data, such as bertopic (which we will use in Chap. 13)
or sentence-transformers.

For natural language processing, the spaCy library (Honnibal and Montani, 2017)
has become a go-to reference. You can outsource many of your language prepro-
cessing tasks to it such as removing redundant words, tokenization, part-of-speech
tagging, etc. We will more deeply dive into these possibilities in chapters 7 and 12.
Particularly for LLMs and data sets to download and use, the huggingface module
present a rich resource (Wolf et al., 2020).

In this book, we will only use a selected range of the methods supplied by the
abovementioned libraries. Readers who want to get a more comprehensive start with
these libraries and learn about their capabilities are referred to the excellent tutorials
provided by all major ML libraries nowadays, e.g., for pytorch see https://pytorch.
org/tutorials/.

9.3.3 Implement Case Studies with Jupyter Notebooks

To implement the case studies and examples in Python, we provide the reader with
Jupyter-Notebooks that can be downloaded and executed (Python version greater
3.8 is recommended). An important aspect in Python (or any other) program-
ming is to control the versions of the libraries that you are using. This is done
in Python typically through a so-called requirements.txt file (that you find in
the GitLab supplement https://gitlab.com/ml_sci-ed/notebooks, or in the Google
Drive repository https://drive.google.com/drive/folders/1JNPLA7gu7-YeaTwY SO-
dGDXmftYIb220?usp=sharing), where modules and their versions are stored that
will allow the user to re-run your project. A requirements file can be build with pip
through pip freeze > requirements.txt, which stores a requirements file in
your current working tree. Moreover, with pip check you can verify if any ver-
sion conflicts of packages exist. In the requirements. txt file one line might read:
scikit-learn==0.23.2, referencing the specific version of the scikit-learn

https://pytorch.org/tutorials/
https://pytorch.org/tutorials/
https://gitlab.com/ml_sci-ed/notebooks
https://drive.google.com/drive/folders/1JNPLA7gu7-YeaTwYS0-dGDXmftYIb220?usp=sharing
https://drive.google.com/drive/folders/1JNPLA7gu7-YeaTwYS0-dGDXmftYIb220?usp=sharing

162 M. Kubsch et al.

library that is used for our notebooks. This then enables researchers in the future
to replicate our outputs, given that later versions of scikit-learn might change
some default parameters in the functions or the algorithms themselves. As such, it is
crucially important to keep track of your used module versions for other to be able
to reproduce your analyses. In fact, computational reproducibility was an issue as
singled out in a review study (Kapoor and Narayanan, 2023).

R and Python develop rapidly, as does the field of Al research in general. This
causes older projects with specific modules/libraries to sometimes fail to work in
newer versions. It is therefore good practice to set up a virtual environment where
all modules/libraries for this specific project are statically stored with the specific
versions, or at least create a file where all versions of modules/libraries are stored
(oftentimes named requirements. txt, see: https://learnpython.com/blog/python-
requirements-file/).

9.3.4 Python Objects, Functions, and Data Types

Python relies on specific data types, functions, and other resources. Data types include
integers, strings, lists, tuples, or dictionaries. The details do not matter here, and
interested readers can find an accessible introduction here: https://docs.python.org/
3/tutorial/datastructures.html (last access: 15 Oct 2023). As with R, you might assign
anumber a variable viaa = 1. Instead of a number (integer), you could assign many
different things such as strings or dictionaries to this variable and then access them
through the variable name. You can even assign functions and classes to this variable
(which then would not be called variable anymore). The Python rules (PEP) specify
naming conventions for variables as: “should be lowercase, with words separated by
underscores as necessary to improve readability”.? Functions have similar naming
conventions. A function can be very handy. It takes parameters, performs some
computations, and (oftentimes) returns some output, or writes out output into an
external file. A simple function that adds two numbers could look similar to what is
found in Code 9.3.4. You additionally might want to assure that a and b are integers
(or whatever), since Python would simply concatenate strings (and not return an
error), if a and b are (unintentionally) strings.

Python code: Addition function

def addition(a,b):
return a + b

2 See https://peps.python.org/pep-0008/#introduction, last access: Nov 2023.

https://learnpython.com/blog/python-requirements-file/
https://learnpython.com/blog/python-requirements-file/
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://peps.python.org/pep-0008/#introduction

9 Working with Data—Getting Started 163

Python commonly uses objects to store functions and data, and make them flexibly
accessible. A common object is the class. A class enables you to store data
and functions together in one object. For example, you might create a class called
student (see Code 9.3.4. This is a class object with two functions: __init__,
and give_name. The def __init__(self) function is executed once the class is
initialized, e.g., through s = student () in your Python script. This function then
sets the age of the student to 16 (age=16), which is then attached to this object s via
the self.age. The age can then be accessed later on. For example, if yourun s. age,
the number 16 will be returned. The second function enables one to give this student
object a name, e.g., s.give_name("Test"), which can then also be accessed via
s.name later on.

We will use class objects often when initializing ML algorithms such as BERTopic
(see Chap. 13). We will then load the raw model from within a specific module via:
from bertopic import BERTopicasaclass object. We then initialize this class
with specific parameters and assign it to a new object that inherits all data and func-
tionality from the class: topic_model = BERTopic(language = "english",

.). Once assigned and initialized, we can then train it with our data and visualize
results (see Chap. 7).

Python code: implementing a class object

class student:
def __init__(self):
self.age = 16
def give_name(self,name):
self.name = name

Further reading

Python introductions:

e Mark Lutz. Learning Python. 5th ed. O’Reilly Media, 2013.

e Fabrizio Romano. Learn Python Programming. 2nd ed. Packt Publishing, 2018.

e Chollet, F. (2018). Deep learning with Python (Safari Tech Books Online). Shel-
ter Island, NY: Manning. Retrieved from http://proquest.safaribooksonline.com/
9781617294433.

Using Jupyter notebooks:
Throughout the book, we will show Python program code excerpts that are part of

larger Jupyter notebooks which can be accessed in the online supplement(s). If readers
are unfamiliar with Jupyter notebooks, the following textbook presents an accessible

http://proquest.safaribooksonline.com/9781617294433
http://proquest.safaribooksonline.com/9781617294433

164 M. Kubsch et al.

introduction (see: Chap. 2 in Géron (2017)). If you want to use the notebooks in your
browser, we suggest that you use Google colab (https://colab.research.google.com/,
Google account required), and copy the notebooks into your Google drive, which
can be mounted to colab (we included code for this in the notebooks).

9.4 How to Access the Notebooks for This Book

This textbook seeks to provide you with the first steps on how to get an ML research
project started in the context of science education research. Hence, we open source
all our computational analyses as notebooks and script files. You can access the note-
books via the companion website for this book via: https://drive.google.com/drive/
folders/1JNPLA7gu7-YeaTwYS0-dGDXmftYIb220?usp=sharing (Google Drive).
To run these notebooks, either R or Python are required, which are also freely avail-
able and open source. In the beginning of chapter 9 we introduced you to some basics
on how to get started with R and Python in order for you to implement and run these
notebooks.

9.5 (Some) Good-Practices in Scientific Programming

Let us finish with a list of recommendations (not conclusive) that can help you to
efficiently and effectively set up science education research projects that involve
running computer code:

e Setup a virtual environment for your project where you store all packages/modules
(with their specific version) in order to be able to re-run analyses later on. This
also aligns with open science standards for reproducible research.

e In your computations, whenever possible and meaningful, set a random seed so
that the computations become more deterministic, which allows other researchers
to check your computations.

e Try to comment your code (this is a thing LLMs such mostly do by default when
they generate code). Later on in your project that might run several years, you will
otherwise have a hard time to figure out what purposes and functions certain code
had. Find guidelines here: https://realpython.com/python-comments-guide/ (last
access May 2024).

e Use sanity checks in your code, as many algorithms are so complex that you cannot
reasonably evaluate the validity of the outputs. A sanity check might be simply
assuring, after scaling, that all means of your numerical features are zero.

e Especially for larger projects, modularization of code might be helpful, e.g., to
write out own modules with often-used functions in it. Also, preprocessing of data

https://colab.research.google.com/
https://drive.google.com/drive/folders/1JNPLA7gu7-YeaTwYS0-dGDXmftYIb220?usp=sharing
https://drive.google.com/drive/folders/1JNPLA7gu7-YeaTwYS0-dGDXmftYIb220?usp=sharing
https://realpython.com/python-comments-guide/

9 Working with Data—Getting Started 165

and analysis of data should be separated from each other. Oftentimes, preprocess-
ing takes up a lot of time, and re-running preprocessing every time would basically
waste your time.

e As in many analyses, you should consult with your fellow researchers to double-
check your code and get ideas for improving it.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard, M., Jia, Y., J6zefowicz,
R., Kaiser, L., Kudlur, M., Yuan, Y., ... & Zheng, X. (2015). Tensorflow: Large-scale machine
learning on heterogeneous systems. arXiv.

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, tools,
and techniques to build intelligent systems. Beijing and Boston and Farnham and Sebastopol and
Tokyo: O’Reilly.

Honnibal, M., & Montani, I. (2017). spacy 2: Natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing.

Kapoor, S., & Narayanan, A. (2023). Leakage and the reproducibility crisis in machine-learning-
based science. Patterns (New York, N.Y.), 4(9), 100804.

Paszke, A., Gross, S., Massa, F,, Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-
Buc, E. Fox, & R. Garnett (Eds,), Advances in neural information processing systems (Vol. 32,
pp. 8024-8035). Curran Associates, Inc.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-
tenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12, 2825-2830.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., Davison, J., Shleifer, S., Platen, P. v., Ma, C., Jernite, Y., Plu, J., Xu, C., Le
Scao, T., Gugger, S., Drame, M., Lhoest, Q., & Rush, A. M. (2020). Huggingface’s transformers:
State-of-the-art natural language processing. arXiv.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 10 ®)
Automation—Supervised Machine e
Learning

Marcus Kubsch, Christina Krist, and Peter Wulff

Abstract In this chapter we will apply ML with the purpose of building a
reliable classifier for either classifying students into groups, or predicting test scores
of students.

10.1 Introduction

In a recent study, Kenneth Holstein and colleagues (2019) asked teachers the fol-
lowing question “If you could have any superpowers you wanted, to help you do
your job, what would they be?” One of the most desired superpowers turned out
to be omniscience. In particular, teachers were eager for the ability to see students’
thought processes including misconceptions, whether students were truly stuck, or
whether they had nearly reached mastery. With this kind of information available,
teachers argued, they would be in a better position to support struggling students.
While teachers can get glimpses of students’ thought processes in well-designed
learning environments, it is almost impossible to do so for every student in a typical
classroom. However, when students are learning in digital learning environments,
their actions in these environments can reveal a lot about their thought processes. This
information can then be relayed to teachers (and also to the students themselves).
This raises the question of how students’ actions in a digital learning environ-
ment can be translated into information about their thought processes and learning.
Theoretically, the data collected in a digital learning environment could be analyzed
by a trained rater and then forwarded to the teacher or the students directly, e.g., in
the form of feedback. However, this would not allow real-time feedback, and real-
istically, there are neither the financial resources nor the number of trained raters

M. Kubsch ()
Freie Universitit Berlin, Berlin, Germany
e-mail: m.kubsch@fu-berlin.de

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

P. Wulff
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany

© The Author(s) 2025 167
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_10&domain=pdf
mailto:m.kubsch@fu-berlin.de
https://doi.org/10.1007/978-3-031-74227-9_10

168 M. Kubsch et al.

available to do this. Thus, this challenge calls for automation, i.e., automating the
process of rating the data. This brings us to the realm of supervised ML techniques.
To briefly reiterate, supervised ML is the set of ML techniques where a computer
is trained to predict an assigned code, label, or score based on a set of features.
In terms of the above example, this would mean that a computer learns to predict
human assigned labels, like identifying misconceptions, using students’ interactions
such as typed text or clicked buttons within a digital learning setting. Supervised ML
techniques vary based on whether the computer learns to predict categorical aspects,
such as identifying misconceptions, or continuous elements, such as counting the
steps during problem-solving, labeled as classification and regression, respectively.
This means that whenever we want to use ML to automate something—for example
automatically coding students’ misconceptions so that a teacher can see prevalent
misconceptions in their class on a dashboard—the task we face is either a classifica-
tion or a regression problem.

In this chapter, we will use supervised ML to tackle a classification and a regression
problem in two case studies, including a discussion of the challenges regarding bias
and fairness.

10.2 Supervised Classification

Our first case study in this chapter is situated in the context of the Physics Olympiad, a
world-wide physics competition with selection processes in many different countries
(Petersen et al.,2017). The selection process for the Physics Olympiad is a task-based
science competition where students work individually on challenging theoretical and
experimental problems. This selection process has four rounds in German (where
we collected the data). While the initial two rounds involve tasks conducted by
students at home or at school, primarily focusing on theoretical aspects, the third
and fourth rounds incorporate a significant emphasis on experimental tasks. In each
round, students have to meet a certain threshold of correct answers to proceed to
the next round. While this selection process is primarily a competition, it is also an
enrichment opportunity as it provides learning opportunities for students talented and
interested in physics. Currently, there are ongoing discussions within the Olympiad
about enhancing the emphasis on this enriching aspect by offering additional support
to participating students. However, resources for providing individual supports are
scarce. To make the most of these limited resources, i.e., make decisions about who
can get what kind and what level of support, it is helpful to know how students are
doing. The challenge is that students only hand in their exams at the end and, unlike
in a regular classroom, there is no information about how students are doing as they
work on the tasks. A potential solution to this issue is to use background information
about students and build an ML model that predicts whether they will pass on to the
next round. Predictions from the model could then be used to make decisions about
who gets what level of support. In the following sections, you will build this model; a
model that makes predictions about students passing on to the next round. As passing

10 Automation—Supervised Machine Learning 169

around is a categorical or more specifically a dichotomous outcome (meaning there
are two possible outcomes), this can be described as a classification task.

10.2.1 Getting to Know the Data Set

An important first step in any data analysis is getting to know the data set. We need
to know what variables we have, what type of variables (numerical, factor, date)
there are, whether there is missing data, and what distributional properties (normally
distributed, long tailed, bi-modal, etc.) the variables have, as this will restrict our
choices of ML algorithms and inferences we can make (see Chap. 2).

Variable types

Variables can describe many different things, e.g., students’ gender, letter
grades, or test scores. When we are doing machine learning, we are doing
calculations with these variables. Which calculations are adequate, depends
on the type of variable. Generally, three broad types of variables can be distin-
guished based on their measurement properties:

e Nominal variables distinguish between levels without information about
order or distance between levels. Gender is a typical example of a nominal
variable.

e Ordinal variables distinguish between levels and provide information about
the order of levels. Letter grades are an example of ordinal variables as
there is a defined order of the levels (A > B > C > D > E > F) but the
distance between levels is not defined, i.e., the difference between A and B is
not necessarily identical to the difference between E and F. Note that Likert
type variables are also ordinal variables although they are often treated as if
they were interval scale variables.

e Interval scale variables provide both—an order and equal distance between
values. Appropriately scaled test scores are an example of interval scale
variables.

Note that nominal and ordinal variables may (and at some point of working
with data need to) be represented by numbers, e.g., | = Female, interest = 4.
Which mathematical operations are appropriate with these numbers however
needs to be critically considered.

170 M. Kubsch et al.

Looking at distributions

Many machine learning techniques rely on calculated summaries of vari-
ables, e.g., the mean or the variance of a variable. These summaries may not
always appropriately capture a variable if its’ distribution is not easily captured
by the summary. Consider for example the bi-modal variable plotted below
(Fig.10.1). It is questionable, that the mean of the variable is a meaningful
summary.

count

wn

Fig. 10.1 Bi-modal variable

Therefore, it is important to consider the distributional properties of vari-
ables before working with them.

All this is important to know so that we do not make erroneous assumptions when
modelling the data and interpreting our results later on.

In this chapter, we will use the statistical programming language R. The following
code loads the packages we need for now and loads the dataset we want to work with.

library(Chere)

library(tidyverse)

library(tidymodels)

library(GGally)

loadChere("data", "supervised_classification_data.RData"))

10 Automation—Supervised Machine Learning 171

To take a first look at the data we run the command

R Code: Taking a first look at the data

head(df) (the glimpse() function is a good
alternative to head() as the output is returned
as a list - try it out) which outputs the first
couple rows of the data:

> head(df)

grit mastery sob apt prev_part success
13.25 4.00 3.40 NA 1 1
2 3.62 4.00 3.33 11 0 1
3 1.75 3.75 3.40 NA 0 0
4 2.62 3.75 3.47 NA 1 1
5 NA NA NA NA <NA> 0
6 3.12 3.75 3.07 4 0 0

The data set is organized so that one row of data represents one person and each
column represents a variable. There are 6 variables in total. Success is a categorical
variable with 1 indicating that a person continued to the next round and O indicating
that a person did not. Prev_part is also a categorical variable and indicates whether
a person has previously participated in the physics Olympiad (1 = has previously
participated, 0 = has not previously participated). The four remaining variables rep-
resent constructs that are expressed on a numeric scale and treated as interval data.
Apt represents participants’ physics problem solving ability, sob represents partici-
pants’ sense of belonging to physics, mastery represents participants’ mastery goal
orientation, i.e., their motivation to learn for the sake of understanding (Elliot &
McGregor, 1999), and grit represents participants’ “perseverance and passion for
long-term goals” (Duckworth et al., 2007). For the sake of this case study, we assume
these variables adequately represent the underlying constructs.

Now that you have an idea about the variables and the type of data that they
contain, the summary () function provides an overview of the actual data:

R Code: The summary () function
> summary (df)
grit mastery sob

Min. :1.380 Min. :1.750 Min. :2.000
1st Qu.:2.500 1st Qu.:3.500 1st Qu.:3.070

172 M. Kubsch et al.

Median :2.880 Median :3.750 Median :3.400
Mean :2.822 Mean :3.711 Mean :3.304
3rd Qu.:3.120 3rd Qu.:4.000 3rd Qu.:3.530

Max. :4.000 Max. :4.000 Max. :4.000

NA’s 113 NA’s 115 NA’s 121
apt prev_part success

Min. : 0.000 O :111 0:150

1st Qu.: 5.000 1 1138 1:132

Median : 7.000 NA’'s: 33

Mean 7.369

3rd Qu.: 9.000

Max. :14.000

NA’s 1141

You should see the minimum, maximum, 1st and 3rd quartile, median, and mean
for the numeric variables and the number of Os and 1s for the two categorical variables.
You also get information about the amount of missing data per variable (NA).

You can already see that all variables have variability. Variability is important
because if a variable has only little variation, it is usually not helpful. It is not helpful,
because variables with little variability do not allow to distinguish between cases.
As an example, consider the extreme case of a variable having no variability, that
is, all cases have the same value. Based on that variable alone, we will not be able
to discern between different cases and that is not helpful if we want to build models
that make predictions about those cases.

Another pattern to note is the degree of missing data. You can see that the variable
apt has a lot of missing data with 141 NAs out of 282 rows of data (you can get the
total number of rows in the dataset using nrow(df)).

While this is a good start, it is hard to get a sense of the distributional properties
of the numerical variables from the output of the summary function alone. Plotting
data is really helpful to better understand its properties. To take a look at single
numeric variables, histograms are useful: df % >% ggplot(aes(x = grit)) +
geom_histogram().

A quick look at the histogram (Fig. 10.2) for the variable grit shows that the data
appears to be more or less normally distributed around its mean. By changing the
variable name in the ggplot command, you can take a look at the other variables.
Go ahead and try it.

Gaining an understanding of the distributional properties of a single variable is a
good starting point. Additionally, comprehending the relationships among different
variables in your data set is equally valuable. Here, a so-called pairs plot is helpful.

10 Automation—Supervised Machine Learning 173

.Jllilliu

2 3 4
grit

count

Fig. 10.2 Histogram for grit

A pairs plot (Fig. 10.3) shows the distributions of the variables in a data set and how
they are related to each other. Take a look at the pairs plot of the numeric variables in
the data set: df %>% select(grit, mastery, sob, apt) %>% ggpairs().

Along the diagonal of the plot, you can see the distributions of the variables.
Below the diagonal, you can see how the variables are related to each other and
above the diagonal you get the respective correlations. When examining these plots,
the objective is to obtain a comprehensive understanding of the interrelationships
among different variables. Generally, as explained before, you do not want variables
to be too highly correlated because then the information they hold is potentially
redundant. In addition, the pairs plot also provides a quick overview of the overall
variability of the data.

Across the panels below the diagonal, you can see how the variables covary
and infer a small to medium amount of correlation between the variables. This is
a positive observation. Additionally, you can see that the variable mastery has only
low variability and thus might not be particularly helpful in making predictions.

Now that you are familiar with the properties of the data set, the actual machine
learning process is nearly ready to commence. Prior to that, it’s crucial to undertake
data cleaning and transformation, which involves actions like removing, recoding, or
rescaling data (see Chap. 2). Data cleaning and transformation at this stage describes

174 M. Kubsch et al.

mastery sob apt

b

fasew

-
-
=
ee oo
- ;e ¢
oo
- .
= we—
qos

o odoee oo
JiEEe ...c. N

Fig. 10.3 A pairs plot of the variables in the data-set

all changes to the data that is either aesthetic (e.g., converting letter grades to numer-
ical values) or inevitable because the data present irreparable flaws (e.g., eliminating
rows containing exclusively missing data or erroneous entries, like negative ages
resulting from data entry errors). Later during the ML workflow, further transforma-
tions on the data may be necessary but those reflect modeling choices and thus should
be part of the actual ML workflow where the consequences of different choices in
how data are transformed can be easily compared.

At the moment, data cleaning will be limited to excluding all rows where all the
variables we use to make predictions—the predictor variables—are missing. While
some missing data can be handled using techniques such as imputation (see Box
in Sect. 10.3.2), imputing all data for a case can be misleading. Therefore, you
should exclude cases where all data is missing: df <- df[rowSums(is.na(df[,
c("grit","mastery","sob","apt")]1)) != 4 ,].

Now, let’s start building a model for predicting success in the selection process
of the Physics Olympiad in Germany.

10 Automation—Supervised Machine Learning 175

10.3 The Supervised ML Modeling Workflow

In supervised machine learning, the workflow entails three main steps: (1) data split-
ting, (2) training the actual model or models and, (3) evaluating a model or set of
models.

10.3.1 Data Splitting

First, the data is split into a training and a test set (this is called hold-out cross-
validation). The training set is used to build and iteratively optimize a model; the test
set is used for a final test of the most promising model developed using the training
set.

So how do you split the data? You just split the data randomly with a proportion
of about 70 to 80% for the training set and 20-30% for the test set, depending on
the problem at hand and the available data. When splitting the data, you should
consider whether the data set consists of any subgroups, e.g., students from different
schools, students from different classes etc. When such subgroups are present, you
need to make sure that when you split the data, the proportions of these subgroups
are accurately reflected in the train and test set. Otherwise, you might accidentally
train your ML model on one subset of the population which will (most likely) lead
to low model performance when evaluating the model using the test set.

In the data set you are using now, prev_part is a variable that denotes a subgroup
of students that have previously participated in the Olympiad. You can specify this
as a variable to stratify by using the strata argument when splitting the data:

R Code: The strata argument

Set.seed(42) # makes the script reproducible
split <- initial_split(df, strata = prev_part)

df_train <- training(split)
df_test <- testing(split)

You can use the following command to check that the proportions of prev_part
in fact remain intact in the training and test set:

R Code: Check of the strata argument

> table(df_train$prev_part)/length(df_train$prev_part)

176 M. Kubsch et al.

0 1
0.4079602 0.5074627
> table(df_test$prev_part)/length(df_test$prev_part)

0 1
0.4264706 0.5294118

With 51% of students having previously participated in the selection process of the
German Physics Olympiad in the training set and 53% of students having previously
participated in the selection process of the German Physics Olympiad in the test set,
the split data adequately maintains the original proportions. Note that the percentages
do not sum up to 100% due to some missing data.

As a last step before starting to train models you need to set up an object for
cross-validation. Cross-validation basically allows us to get an estimate of how well
a trained model will predict new data. Thus, we can use cross-validation to compare
and evaluate different models with the training data and get a viable idea of how
well they will perform when we eventually test our models against the test set. While
there are different ways of doing cross-validation, they all follow the same principle
which is based on resampling the data: partition the data into subsets, i.e., resample
it, use one of those for training a model, use that model to predict the data in the other
subset to evaluate the model, and iterate this using different partitions of the data. This
provides us with a model evaluation for each partition and that information provides
a better estimate of the model’s predictive power than just using a single training and
test set. Different methods of cross-validation differ in how exactly the data subsets
are created. The code above used what is called k-fold cross-validation with £k = 10
folds. K indicates the number of roughly equally sized subsets of data—the so-called
folds (somewhat confusingly, the number of folds in vfold_cv function is set using
the parameter v). Figure 10.4 illustrates the principle for 3-fold cross validation:

You can create the cross-validation data set using cv < — vfold_cv(df_train,
v =10, strata = prev_part).

Here, strata = prev_part makes sure, that across all folds, the proportion of
students that have previously participated in the Physics Olympiad remains similar.

10.3.2 Training Models

In the tidymodels framework utilized in this book, the process of training a model
involves various steps consolidated into what is termed a workflow. A workflow
integrates model specification and data preprocessing into a “recipe” object, along
with the model type intended for fitting into a separate “model” object.

We initiate the process by utilizing a basic recipe to predict student’s performance
in the initial round of the selection process of the German physics Olympiad based

10 Automation—Supervised Machine Learning 177

Inital split with
initial_split() function

Resampling with
vfold_cv(v=3)

function
Fold 1

Use fold 1 to evaluate model trained with folds 2 and 3.
Use fold 2 to evaluate model trained with folds 3 and 1.
Use fold 3 to evaluate model trained with folds 1 and 2.

Fig. 10.4 Cross validation

on the four predictor variables grit, mastery, sob, and apt. Due to notable
missing data, especially in the apt variable, it becomes imperative to impute this
data using bagged tree models by adding step_impute_bag() to the recipe:

R Code: Using bagged tree models

success_rec <- df_train %>%

recipe(success "~ grit + mastery + sob + apt) %%
step_impute_bag(all_predictors()) # imputation based on all
predictor variables in recipe

Handling missing data

Encountering missing data is common. Hence understanding how to address
it is essential. Although there are comprehensive textbooks dedicated to this
subject (e.g., Flexible Imputation of Missing Data by Stef van Buuren), three
fundamental steps should be taken into account.

1. Investigate: When data is missing, your first step should be to investigate
why it is missing. Someone forgot to administer a survey in a class? Not
ideal but probably not recurrent and causally related with any outcomes
you are interested in. Standard methods to address this issue exist. Only
students from a select demographic did not answer a question on a survey?
There is possibly an underlying reason for this. Not accounting for this will
probably distort your results and you should be careful in the interpretation
of your results and clearly state the limitations.

178 M. Kubsch et al.

2. Impute and Evaluate: A powerful technique to accommodate missing data
is imputation. Imputation means that missing data is estimated based on
available data and analysis are then carried out using these imputed values.
While there are numerous considerations to make when imputing data (see
recommended textbook above), the benefit of imputing data (and different
imputation techniques) can be assessed. Thus we can empirically evaluate
the effect of imputing data and report it.

3. Go back to design: When data is missing this often has an underlying
reason—one that is often reflective of structural inequalities in our society.
Understanding why data are missing, can lead to a better understanding of
the educational context in which we are situated, helping us design more
equitable approaches to education and improving outcomes.

Next, you define the type of model to fit. Let’s start with something relatively
simple, logistic regression, an extension of the traditional linear model for binary
outcomes:

R Code: Set up model

model_log_reg $<$- logistic_reg() %>%
set_engine("glm™)

specifiy the specific package
for estimation, we use "glm" which is the default

Now, you can combine the recipe and model in a workflow and finally fit it on the
training data:

R Code: Fitting on the training data

success_log_reg_wf <-
workflow() %>%
add_recipe(success_rec) %>%
add_model (model_log_reg)
fit model
success_log_reg_fit <- fit(success_log_reg_wf, df_train)

You can now view the fitted model by typing success_log_reg_£fit. However,
the model parameters are not really that interesting. After all, the model’s job is to
do predictions.

10 Automation—Supervised Machine Learning 179

Models

You might have heard many things about what models are but, most impor-
tantly, models are tools. Tools, that help us explain past events and make pre-
dictions about the future based on abstractions of the world. Tools are always
used with some intent. Thus, when we discuss models, the question is not
whether we have the “right” model (remember: “All models are wrong|[,] but
some are useful” (Box, 1979, p. 2); rather we should reflect on whether the
model is adequate for the intended purpose. Reflection on the equitability of
the intended use should be a fundamental aspect to consider.

10.3.3 Evaluating Models

To evaluate the model, you use it to make predictions for the test set and then build
an object that has the prediction from the model and the test set data so you can
compare the model predictions with the actual data:

R Code: Predictions for the test set

success_log_reg_pred <- predict(success_log_reg_fit,
new_data = df_test)

success_log_reg_pred <- bind_cols(success_log_reg_pred,
df_test %>% select(success))

To evaluate classification models, a confusion matrix is a good start. A confusion
matrix tabulates the true and predicted values. A perfect model would result in a
matrix that has zeros everywhere but on the diagonal because the diagonal shows the
correct classifications.

R Code and output: Confusion matrix

success_log_reg_pred %>% conf_mat(truth = success,
estimate = .pred_class)
Truth
Prediction 0 1
0 23 14
116 15

180 M. Kubsch et al.

The confusion matrix shows that 15 out of 29 students that are successful in the
first round were correctly identified as successful and that 23 out of 39 students that
do not continue were correctly identified as not successful. 14 students that were
in fact successful in the selection process of the German physics olympiad were
predicted not to be successful in the selection process and 16 students that are in fact
not successful in the selection process were predicted to be. The confusion matrix
can be helpful to diagnose why a model is not performing well.

The confusion matrix can also be summarized in multiple ways to allow for
easier comparison between models. Accuracy, precision, recall, the F1, and AUC-
ROC score are classification metrics commonly found in the literature. For now,
we will just look at one of them—accuracy as it is intuitive and its definition does
not require a reference case. Accuracy simply provides the proportion of correctly
classified cases:

R Code and output: Example for the computation of accuracy

> accuracy(success_log_reg_pred, truth = success, estimate
= .pred_class)
A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 accuracy binary 0.559

The resulting value is somewhat disheartening, as it indicates that the model is not
really better than guessing. However, you also just walked through the ML modeling
workflow successfully for the first time! Now, let’s try again and do better in the
second round.

Classification metrics

e Accuracy: Accuracy is the proportion of correctly classified instances out of
the total instances in the dataset. It’s a simple and intuitive metric, calculated
as (True Positives + True Negatives) / Total Instances. However, it may not
be the best metric for imbalanced datasets.

e Precision: Precision is the proportion of true positive instances among those
predicted as positive. It measures how precise the model is in identifying
positive instances. Precision is calculated as True Positives / (True Positives
+ False Positives). High precision means low false positive rate.

e Recall: Recall, also known as sensitivity or true positive rate, is the proportion
of true positive instances among all actual positive instances. It measures the

10 Automation—Supervised Machine Learning 181

model’s ability to correctly identify positive instances. Recall is calculated
as True Positives / (True Positives + False Negatives). High recall means
low false negative rate.

e F1 Score: The F1 score is the mean of precision and recall, providing a
balanced measure of both metrics. It ranges from O to 1, where 1 represents
the best possible score and 0 the worst. The F1 score is particularly useful
when dealing with imbalanced datasets. It is calculated as (2 * Precision *
Recall) / (Precision + Recall).

e AUC-ROC is a classification metric used to evaluate binary classification
models. It measures how well a model distinguishes between positive and
negative instances by plotting the True Positive Rate (Recall) against the
False Positive Rate for different thresholds. AUC is the area under this curve.
AUC-ROC values range from 0 to 1. A value of 0.5 means the model is as
good as random, while 1 indicates perfect performance. Higher AUC-ROC
values show better classification

It is also important to keep in mind that the cost associated with wrong classifi-
cation may differ across classes and applications. For example, automatically
being given a hint in an online course if you do not need it is probably not as
problematic as not getting the hint that is direly needed. This should always
be considered and questioned when evaluating models with metrics.

10.4 Another Model

To get a better fitting model, you will now get in the weeds with a different class
of models that is generally used with high success in educational contexts (e.g.,
Grinsztajn et al., 2022; Hilbert et al., 2021): tree-based models. The simplest tree-
based model is a decision tree. A decision tree makes predictions by asking a series
of yes or no questions. Imagine you are trying to identify a bird you see on a hiking
trip. A tree-based model would ask a series of questions like “Can it fly?.” If you
answered “no” it would know that the bird is probably a penguin or ostrich. Now
it would ask the next question such as “Can it swim?” and could infer that the bird
is more likely to be a penguin than an ostrich and ask the next question to further
narrow down the species. This process of asking questions continues until the model
can make an educated guess about the bird you have in mind. In ML terminology,
these yes or no questions which split the data into different branches are called nodes
and the final nodes that do not allow any further splitting are called “leaf nodes.” The
model “learns” by analyzing data and finding the best questions to ask in order to
make accurate predictions or classifications. Tree-based models are popular because

182 M. Kubsch et al.

they are powerful yet easy to understand and visualize, can handle both numerical
and categorical data, and work well with large data sets. Note that they can be used
to predict both categorical and numerical outcomes. Now let us dive into the thicket
and train a model.

10.4.1 Training Models

As you will work with the same data, you can work with the same split of the data and
recipe as before. You will need to specify a new model object however. The model you
will specify is an extension of a simple decision tree model called arandom forest (see
also Box in Sect. 6.1 in Chap. 6). Instead of relying on a single decision tree, random
forests consist of many decision trees. Each tree is built slightly differently due to
randomness in the algorithm, making the “forest” diverse and better at capturing
various patterns in the data. This addresses two key issues of simple decision tree
models, that is, (1) their tendency to be sensitive to small changes in the training
data and (2) their tendency to overfit. As random forests combine the predictions
of multiple trees based on random subsets of the data, the overall model becomes
less sensitive to small changes in the input data. The same mechanism also helps to
reduce the tendency of overfitting the data so that random forests tend to generalize
better to new, unseen data.

To set up the model, use the rand_forest () function. However, in addition to
setting an engine to fit the model, you need to specify for more options. You need
to set the mode which determines whether we want to predict a continuous or cate-
gorical outcome and you need to set three so called hyperparameters: trees, mtry,
and min_n. trees describes the number of trees in the forest. Increasing the number
of trees can improve the models’ performance but it also increases the computa-
tional cost and can lead to diminishing returns. mtry controls the number of features
considered for splitting at each node. A smaller value introduces randomness in the
tree-building process, leading to a more diverse set of trees and better generaliza-
tion. min_n is the minimum number of data points required to split a node further.
Increasing this value can help prevent overfitting by ensuring that each split is based
on a larger number of samples. These hyperparameters control fundamental aspects
of the model and how well it will work. So, how do you determine their values? In
fact, you do not directly assign them; instead, you allow the data to inform these
values through a process known as hyperparameter tuning. To set up the model and
prepare it for tuning, use the following code:

R Code: Specifying the model

model_rf <-
rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%

10 Automation—Supervised Machine Learning 183

set_mode("classification") %>%
set_engine("ranger")

Note that this sets the trees hyperparameter directly and only prepares mtry and
min_n for tuning using the tune () function. Setting trees to 1000 means that our
forest will consist of 1000 trees which can be considered sufficient given the data
and in the context of this case study, the computational cost is still acceptable.

10.4.1.1 Hyperparameter Tuning

To actually tune the hyperparameters means that you will fit many models with differ-
ent combinations of hyperparameters, compare how well they perform at prediction
using cross-validation, and then decide on a final set of hyperparameters for eval-
uating the model using the test-set. To do so, first create a new workflow with the
random forest model:

R Code: Add Random Forest Model to Workflow

success_rf_wf <-
workflow() %>%
add_recipe(success_rec) %>%
add_model (model_rf)

To save yourself some time and make use of the multiple cores modern processors
have, load the doParallel library which allows to train multiple models at the same
time during tuning.

R Code: doParallel library

library(doParallel)
doParallel: :registerDoParallel (cores = detectCores())
Then, the following codes does the actual tuning:
tune_res <- tune_grid(

success_rf_wf,

resamples = cv,

grid = 40, metrics = metric_set(accuracy)

184 M. Kubsch et al.

Here, grid tuning, which is the most straightforward way of tuning, is used: simply
specify a number of hyperparameter combinations for which models are fit. You
can supply these values by hand based on your knowledge of the data or—as done
here—simply use the helper function that sets up a grid of 40 semi-random candidate
parameter combinations. Further, samples = cv tells the tune_grid() function
to use the cross-validation object to train and evaluate models on. Lastly, metrics
= metric_set(accurarcy) specifies to use accuracy as a classification metric for
evaluating the hyperparameter combinations. To get a sense of the results, plot them
with the following command:

R Code: Grid tuning

tune_res %>%

collect_metrics() %>%

select(mean, min_n, mtry) %>%

pivot_longer(min_n:mtry, values_to = "value",
names_to = "parameter") %>%

ggplot(aes(x = value, y = mean)) +

geom_point() +

facet_wrap(“parameter, scales = "free") +

labs(y = "accuracy")

which gives this plot (Fig. 10.5):
From the plot, you can read off that there is indeed some variation with regard to
model performance. With this kind of plot the goal is to look for patterns that indicate

min_n mtry
. ® o .
0 < 059
. o0 . s s .
. Y . .
o . ¢ . .
0.58- o 058-
. 0 oo 3]
e o . . Y .
e . .
o ®0e® o o . . . °

0.57 - 0.57 -

accuracy

0.55- 0.55-

10 20 30 40 1 2 3 4
value

Fig. 10.5 Accuracy for different hyperparamter values

10 Automation—Supervised Machine Learning 185

that the best values for the parameters are probably in the grid and whether the grid
is sufficiently large. For min_n it seems that values of around 20 result in the highest
accuracy, with accuracy decreasing both at higher and lower values. For mtry you
can see model performance increasing from one to three but not further increasing
at four. Thus, we can conclude that the best set of parameters is probably within the
grid. Now, select the best set of hyperparameters using the select_best () function

best_acc <- select_best(tune_res, "accuracy")
and modify the workflow object to reflect these hyperparameter values using the
finalize_workflow() function:

success_rf_wf_final <- finalize_workflow(model_rf, best_acc).

With this updated workflow you can now fit the random forest model with the
best set of hyperparameters on the training data, use that model to predict the test
data and are then ready to find out to what extent the random forests model performs
better than the logistic regression.

R Code: Fit the model

fit model
success_rf_fit <- fit(success_rf_wf_final, df_train)

#use model for prediction
success_rf_pred <- predict(success_rf_fit, new_data = df_test)
success_rf_pred <- bind_cols(success_rf_pred, df_test %>%
select(success))

10.4.2 Evaluating Models

With the fitted model at hand, let’s find out how well the random forest did. First, take
a look at the metrics again before digging deeper into the model using explainable
machine learning techniques and asking the big question: should you use this model?

104.2.1 Comparing Metrics

Start by taking a look at the confusion matrix and compare it to the confusion matrix
of the logistic regression model:

186 M. Kubsch et al.

R Code and output: compare with logistic regression model

success_rf_pred %>% conf_mat(truth = success,
estimate = .pred_class)
Truth
Prediction 0 1
021 6
118 23

If you compare this with the confusion matrix you got from the logistic regression
model above you can see a stark improvement when it comes to correctly predicting
success (23 correct predictions with random forests compared to just 15 with logistic
regression) and there are far fewer false negatives (6 vs. 14), i.e., cases where the
true outcome is “success” but the model predicted no “success.” However, the model
did not really get better at avoiding false positives. Both models, random forest and
logistic regression, classify quite a few students as “successful” although they are
not classified as “successful” in the data set.

Now, take a look at what this means in terms of the accuracy metric. Running
accuracy(success_rf_pred, truth = success,
estimate = . pred_class) returns a value of 0.647. This is a noticeable increase
compared to the accuracy of 0.559 we got from the logistic regression!

10.4.2.2 Beyond Just Metrics

What else can you do to evaluate a model besides looking at how well it does at
prediction? You can look at the model parameters and to what extent they align with
our theoretical and substantive understanding. In the case of the logistic regression
model we ran before, this is straightforward (well, as straightforward as the interpre-
tation of parameters from logistic models gets). The following command extracts the
model parameters from the model and transforms them to so that you can interpret
them (the odds column gives the transformed model parameters):

R Code and output: extracting and transforming the parameters

> tidy(success_log_reg_fit) %>% mutate(odds = exp(estimate))

A tibble: 5 x 6

term estimate std.error statistic p.value odds

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -2.30 1.89 -1.21 0.225 0.100
2 grit 0.384 0.324 1.19 0.235 1.47

w

mastery 0.201 0.455 0.442 0.659 1.22

10 Automation—Supervised Machine Learning 187

4 sob -0.0465 0.435 -0.107 0.915 0.955
5 apt 0.0781 0.0660 1.18 0.237 1.08

The transformed parameters are what is called odds ratios (OR). If the OR of a
parameter is greater than one, the parameter is positively associated with the out-
come, i.e., an increase in the variable increases the chances of the outcome to be
of value 1. Respectively, if the OR of a parameter is less than one, the parameter is
negatively associated with the outcome, i.e., an increase in the variable decreases the
chances of the outcome to be of value 1. This means that grit, mastery, and
apt are all positively associated with success in the physics Olympiad while sob is
negatively associated. From a substantive perspective, only the negative association
of sob is surprising. At the same time the large standard errors (std.error col-
umn) also suggest that the parameter estimates generally lack precision, making any
interpretation questionable.

Logistic Regression

We can think of logistic regression as an extension of linear regression models
to handle binary outcome variables. A simple linear regression model can be
expressed as y ~ a + bx where y is the continuous outcome, x the predictor
variable and a and b are coefficients. a is the intercept and b is the slope. The
intercept tells us the value of y when x = 0. The slope tells us how y changes
when x changes. A positive slope means that y increases when x increases and a
negative slope means that y decreases when x increases (for x > 0). In logistic
regression, the outcome either takes the value O or 1. We can transform this into
a continuous value by looking at the probability of the outcome y being equal to

1 whichis p = %. This expression is also called the odds. Now, taking the
natural logarithm In of the odds which we write logi?(p) = In (%) which

is also called the log-odds. Taking the natural logarithm is helpful because it

allows us to establish a linear relationship between the input variables and the
odds of the outcome. This makes it easier to estimate the model coefficients or
weights using standard linear regression techniques. This means we can write a
logistic regression as logit(p) ~ a + bx. In consequence, the coefficients are
on the scale of the log-odds which is hard to interpret. To make the coefficients
more interpretable, we need to transform them with the exponential function,
e.g., exp (b). The resulting value will give us how the odds of the outcome
being 1 will change. If for example exp (b) = 1.27 this means that there is a
27% increase in the odds of the outcome being one for each unit change in b.

Now, take a closer look at the random forest model. Since the random forest model
is an aggregate of many tree-based models, there are no parameters that can directly
be interpreted in the same way in which you just looked at the logistic regression

188 M. Kubsch et al.

model. Rather, you need to apply some explainable machine learning techniques, i.e.,
methods that try to bring some light into the more black-box like machine learning
models.

Model interpretability vs. model complexity

A model with only a few parameters is easy to interpret. As an example,
consider Ohm’s law which (in its integral form) is a linear model that describes
the relation between voltage U, current I and resistance R in an electric circuit.
It can be written as U = R x I. The model predicts that for a fixed voltage,
the current is proportional to the resistance, i.e., the higher the resistance, the
lower the current and vice versa. However, the model has serious limitations
when we want to apply it in real world contexts, e.g., the resistance may be time
dependent because with passing time a circuit may heat up which in turn may
influence the resistance. Extending the model so that it fits such additional
affordances of the real world will make the mathematical structure of the
model harder to interpret. The same is true for the models we use when we
apply machine learning techniques in science education research. A regression
model is easier to interpret than a random forest model but the random forest
model will in most cases fit better. To navigate this tension, it is helpful to think
back to the reasons for which we are using the model and whether what we
may gain in better predictions is worth the loss in interpretability.

First, we want to better understand how the random forest comes to its prediction
for individual cases. To do so, you will use the DALEXtra package and prepare an
explainer object with the following code:

R Code: DALEXtra

library(DALEXtra)
train_baked <- success_rec %>% prep() %>% bake(new_data = df_train)
prepare explainer object
eval_success_rf <- explain_tidymodels(success_rf_fit,
data = train_baked[,c("grit","mastery","sob","apt")],
y = as.numeric(df_train$success),
label = "random forest",

verbose = F

Note, that first a new data object train_baked is created. This object contains
the transformed version of the data stored in df_train which the recipe() pro-
vided in the previous steps. Now you can take a look at an individual case with

10 Automation—Supervised Machine Learning 189

random forest

grit=3

apt=11

sob =2.85

mastery = 3.25

contribution

Fig. 10.6 Plot of SHAP results

train_baked[7,] (The “7” in the brackets selects the 7th row of the dataframe.
Different numbers will return different rows.)

grit mastery sob apt success
<dbl> <dbl> <dbl> <dbl> <fct>
1 3 3.25 2.85 111

The output shows that the student was ultimately “successful.” Now, use the
predict_parts() function to calculate Shapley Additive Explanations (SHAP,
Lundberg and Lee, 2017) and plot them (Fig. 10.6):

predict_parts(
explainer = eval_success_rf,
new_observation = train_baked[7, c("grit","mastery",
"sob","apt")],
type = "shap", B = 10) %% plot(Q)

190 M. Kubsch et al.

SHAP values show how much each variable contributes to a particular prediction.
For the calculation of the contribution, the order in which the variables are considered
is important. Therefore, it makes sense to average the contributions of variables under
different orderings. We set B = 10 in the predict_parts() function to look at 10
random orderings. The bars in the plot show the average contribution of each feature
for this case and the overlaid boxplots visualize the distribution of contributions from
the 10 orderings that were used. Thus, the boxplots can help to get an idea of the
variation of the contribution of a variable. The plot shows that grit and apt had the
greatest contribution in the prediction. While grit also seemed to have the biggest
influence in the logistic regression, the contribution of apt appeared relatively small in
the logistic regression. Instead, mastery appeared important in the logistic regression
model which only plays a relatively small role in this prediction. This is a good hint
at why the random forest model is more successful as it can capture non-linearity
that the logistic regression cannot.

Understanding how a model comes to its predictions for single cases is useful when
you want to fine tune the model. Looking at cases where the prediction was wrong
can be especially enlightening. However, you may mistake the forest for the trees
when you focus too much on single cases. Therefore, we now want to find out which
variables contribute most to driving the predictions overall, i.e., aggregated over the
whole training set. To do so an idea that goes back to the seminal paper of Breiman
(2001) is helpful: variable permutation. The idea behind variable permutation is that
if a variable is important for getting the prediction right, the model should make
worse predictions if we were to shuffle (permute) the values stored in that variable.
The following command does just that and thus helps to get an idea of the importance
of the variables:

R Code and output: Variable permutation

> model_parts(eval_success_rf, loss_function
= loss_default("classification"))
variable mean_dropout_loss label
1 _full_model_ 0.6302189 random forest
2 grit 0.5461380 random forest
3 sob 0.5801448 random forest
4 apt 0.5838872 random forest
5 0.6178502 random forest
6 0.4974882 random forest

mastery
baseline

The first line gives the accuracy of the full model, the last line gives the accuracy of
a base model that just guesses. The other lines provide the accuracy if the respective
variable is permuted. You can see that a permutation of mastery only leads to a rather
small drop in accuracy (from 0.63 to 0.62). Permuting grit however leads to a quite

10 Automation—Supervised Machine Learning 191

large drop in accuracy (from 0.63 to 0.55). Thus, overall grit is more important for
making predictions than mastery for the random forest model. In this way, variable
importance can provide helpful information when deciding which variables to include
in a model. Imagine that a variable about protected information such as gender had
little to no importance in the prediction or that a variable was hard to measure—
variable importance can help to make decisions in such cases.

To provide you with even more information when making the decision about
which variables to include in a model there is a last tool to explore in this chapter:
partial dependence profiles. Partial dependence profiles show how the predicted out-
come of a model changes as variables change their values. This is especially helpful
in discovering non-linearity and boundary cases. Using the model_profiles()
function, you can calculate profiles for all variables across all students (N = NULL)
in the data set and then plot them:

R Code: Partial dependence profiles

model_profile(eval_success_rf, N = NULL,
variables = c("grit","mastery","sob","apt")) %>% plot()

The plot (Fig. 10.7) reflects what you could already see in the variable importance
results: mastery seems of little importance in making predictions as the profile more
or less resembles a horizontal line. Further, the profiles of apt, grit, and sob show
highly non-linear behavior; supporting the hint you got from the single case analysis

Partial Dependence profile

&med for the random forest model qrit

Nw

3
mastery sob

///M\/\/\//

20 25 30 35 40 20 25 3.0 35 4.0

o

4

average prednchon
o

Fig. 10.7 Partial dependence plot

192 M. Kubsch et al.

with SHAP that the random forest model may do better than logistic regression
because it can capture non-linear effects.

10.4.2.3 Should You Use It?

You have come a long way in this chapter. You trained two models and extensively
investigated one of them. A question that still awaits is whether you should use the
model in the wild. This question will come up again and again, especially if you
consider using machine learning for automation. Automation brings scale and with
scale both the potential benefits and the risks increase. In this case the best performing
model with an accuracy of around 0.65 (the random forest model) does not seem
good enough to be used with real students. The risk of misclassification appears
just to be too high. Especially since there was a high number of false positives, i.e.,
cases where the model predicted “success” but there was no “success” in the data.
This means that many students that could profit from additional support during the
selection process of the physics Olympiad would not get that support if decisions
were made based solely on the model. This shows that after all, ML is no magic
bullet.

10.5 Supervised Regression

In the second case study you will take a look at students’ learning about energy.
The outcome you will look at is a continuous score so we move from supervised
classification to supervised regression. After working through the previous parts, the
general procedure should seem familiar. However, you will explore another type of
model, and finally combine models to improve fit.

10.5.1 Getting to Know the Data

Start with loading the here and tidyverse libraries and loading the data:
R Code and output: loading data and libraries

loading packages

library(here)

library(tidyverse)

load data

load(here("data","learning.RData"))

Next, let’s get an overview of the data using glimpse():

10 Automation—Supervised Machine Learning 193

Rows: 490

Columns: 16 (truncated)

$ total <dbl> 4, 73, 28, 38, 46, 2, 18, 44, 3,
$ P1_M.Radiant <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1,
$ P1_M.Electric <dbl> 0, 0, 0, 0, 0, 6, 0, 0, O,
$ P1_T.Process <dbl> 0, 0, 0, 1, 1, 0, 0, 0, O,
$ P1_LP.M <dbl> 0, 0, 0, 0, 0, 0, 0, 0, O,
$ P1_LP.T <dbl> 0, 0, 0, 0, 6, 0, 0, 0, O,
$ P1_P_expl <dbl> 2, 1, 2, 2, 2, 1, 2, 2, 2,
$ P1_Practice <dbl> 2, 1, 2, 2, 2, 1, 2, 2, 2,
$ P2_M.Radiant <dbl> ®, 5, 1, 3, 3, 0, 3, 3, 0,
$ P2_M.Electric <dbl> 1, 4, 1, 3, 1, 0, 1, 3, 0,
$ P2_T.Process <dbl> 0, 3, 1, 1, 1, 0, 1, 1, 0,
$ P2_LP.M <dbl> 0, 1, 0, 0, 6, 0, 0, 0, O,
$ P2_LP.T <dbl> 0, 1, 0, 0, 6, 0, 0, 0, O,
$ P2_P_expl <dbl> 0, 1, 0, 0, 6, 0, 0, 0, O,
$ P2_P_ana <dbl> 0, 2, 0, 2, 1, 0, 2, 2, O,
$ P2_Practice <dbl> 0, 3, 0, 2, 1, 0, 2, 2, 0,

Some background on the data set is needed to understand what is visible here: the
data comes from a digital learning environment where students engaged in a unit on
learning about energy that followed project-based learning pedagogy. Specifically,
the unit was built around the driving question “What is the best way to set up solar
cells?” During the five parts of the unit, students learned about electric and radia-
tion energy and how those two forms of energy may transform into each other in
solar cells and related phenomena. As the course followed project-based learning
pedagogy, students engaged in scientific practices like constructing explanations or
analyzing data. All tasks that students engaged in were scored by a set of experienced
scorers (the scores can actually be reproduced automatically using machine learning
and natural language processing, for details see Gombert et al., 2022). The tasks
were coded relative to three distinct categories: (1) evidence for specific knowledge
elements such as electric energy or radiation energy presented in an answer, (2) evi-
dence for engaging in a scientific practice such as analyzing data, and (3) evidence
for successfully engaging in a learning performance, i.e., integrating elements of
scientific practices and scientific knowledge in a way that demonstrates knowledge-
in-use (e.g., Harris et al., 2019; Kubsch et al., 2019). With this background, you can
further unpack the variables.

The variable total contains the sum score for each student across all tasks and
codes in the unit, in this way it indicates students’ learning over the course of the unit.
All other variable names starting with PX refer to sum scores across the respective
knowledge elements, practices, and learning performances in the part of the unit
indicated by X, that is, P2_M.Radiant refers to the sum score across all scores for the

194 M. Kubsch et al.

knowledge element “radiant energy” in part two of the unit. In essence, the variable
“total” provides an indicator for learning across all five parts of the unit while the
other variables provide indicators for students holding knowledge elements, engaging
in scientific practices, and demonstrating knowledge-in-use about energy during the
first two parts of the unit.

The goal will be to predict student learning at the end of the unit, based on how they
do during the first two parts of the unit. That prediction can be the basis for providing
numerous interventions to personalize learning so that all students can unfold their
potentials, i.e., struggling students may be provided with additional feedback and
scaffolds while high performing students could profit from less scaffolded tasks that
are more challenging or get the chance to dive deeper into some topics.

Now that you have an idea of what the variables mean it is time to explore them.
Start by taking a look at the variable “total” using a histogram again:

df %>% ggplot(aes(x = total)) + geom_histogram()

The resulting plot (Fig. 10.8) shows that the scores vary over a broad range. Espe-
cially the data point at around 120 is peculiar. This is because this value is actually not
a part of the real data set. Rather it is the theoretical maximum score possible. Thus,
remove the row containing this value from the data set using the filter () function
and saving the resulting object: df <- df %>% filter(total < 120). Find-
ing such outliers is exactly, why taking a look at the data before starting the actual
machine learning process is so important.

40-

count

20-

total

Fig. 10.8 Histogram of “total”

10 Automation—Supervised Machine Learning 195

In the last case study, you only had a few variables so it was easy to look at the
variables by looking at individual plots. This time, it is not that easy; there are more
variables. To visually inspect large sets of variables in a convenient way, a stacked
plot of those variables is helpful. Using the ggridges package allows us to create
such a plot. The following code loads the library, transforms the data from wide into
long format (which is the format required for the plot) using the pivot_longer ()
function and finally creates the plot:

R Code: Create the plot

library(ggridges)
df %>% pivot_longer(cols = starts_with("P"),
names_to = "variable") %>%
ggplot(aes(y = variable, x = value))
+ geom_density_ridges(stat = "binline")

Long, Wide, and Tidy data

Long Data: Long data, also known as “tall” or “stacked” data, is a data format
where each observation has its own row, and there are multiple rows for each
subject or entity. In long data, each row contains a single data point, with
columns representing the subject, variable, and value.

Wide Data: Wide data, sometimes called “unstacked” or “cross-sectional”
data, is a data format where each row represents a single subject or entity, and
each column represents a variable. In wide data, all information about a subject
is contained within a single row, making it easier to see relationships between
variables for a particular subject.

Tidy Data: Tidy data is a data format that adheres to a set of principles
aimed at making the data easy to analyze, manipulate, and visualize. In tidy
data, each variable forms a column, each observation forms a row, and each
type of observational unit forms a table. Tidy data makes it easier to work with
and analyze data using various statistical and visualization tools.

The plot (Fig. 10.9) shows that some variables like P1_LP .M have very little vari-
ance while others such as P2_M.Radiant have values spread across the whole range.
Based on this information you may decide to remove variables from the data frame
that essentially carry no information. The following command removes the bottom
three variables of the plot from the data frame:

df <- df %>% select(!c("P1_LP.M", "P1_LP.T", "P1_M.Electric")

196 M. Kubsch et al.

P2_T.Process -

P2_Practice -

P2_P_expl-

P2_P_ana-

] H| EHE
]

P2_M.Radiant -

HEllEDN

|

P2_M.Electric -

P2_LP.T-

P2_LP.M-

variable

P1_T.Process -

o |

P1_Practice -

P1_P_expl-

P1_M.Radiant -

P1_M.Electric -

P1_LP.T-

P1_LP.M-

o- - H l| IH 5 = II lI IH L_WL_iTTE]

value

Fig. 10.9 Distribution of variable values

Before moving on to the data splitting, let’s load the additional packages we will
need for the remainder of the analysis.

R Code: Additional packages

library(tidymodels)
library(xgboost)
library(finetune)
library(vip)
library(kernlab)
library(GGally)
library(stacks)

10.5.2 Data Splitting

The data splitting progression in analog to the last case study. Note that only 5 folds
for cross validation are used to decrease the time required for computation as you
will use more computationally demanding models.

10 Automation—Supervised Machine Learning 197

data splitting
set.seed(42)

split <- initial_split(df)
df_train <- training(split)
df_test <- testing(split)

set up cross validation

cv <- vfold_cv(df_train, v = 5)

10.5.3 Training Models

Start with defining the recipe using the following code:

learn_rec <- df_train %%
recipe(total ~ .) %%
step_normalize(all_numeric_predictors())

This time there are no missing values, however for some of the models you want to
use, predictors should be normalized, i.e., they are transformed so that their mean is
0 and standard deviation is 1. If you wonder about suggested preprocessing required
by different models there is a great overview in Tidy Modeling with R: https://www.
tmwr.org/pre-proc-table.html.

Now you have come to the part where the models are defined. Last time you ran
one model after the other and compared their performance. This is already somewhat
tiresome with two models but what do you do if you want to screen many different
model types? Luckily, the tidymodels framework has you covered. You can define a
range of models and then combine them in a workflow set to fit, tune, and compare
them simultaneously. You will define three increasingly complex models, starting
with a decision tree:

model_tree <- rand_forest(mtry = tune(), min_n = tune(),
trees = 1) %%

https://www.tmwr.org/pre-proc-table.html
https://www.tmwr.org/pre-proc-table.html

198 M. Kubsch et al.

set_mode("regression") %>%
set_engine("ranger")

This is basically the random forest model you already know. However, you just
fit one tree instead of a whole forest by setting the trees argument to 1.
Next, define a support vector machine.

R Code: Support vector machine

model_svm_r <- svm_rbf(cost = tune(), margin = tune(),
rbf_sigma = tune()) %>%
set_mode("regression") %>%
set_engine("kernlab")

The conceptual idea behind support vector machines (SVM) is to find the line that
best separates different groups or classes in a given data set. Consider an example:
suppose you have two different kinds of coins—nickels and pennies—in your wallet
and empty them on a table. The task now is to find the line through the coins so
that all nickels are on one side of the line and all pennies are on the other side.
The coins are your data points and the type of coin—nickel or penny—refers to
the class or group of the coins. To find the best line, an SVM tries to maximize
the margin between the line and the closest nickels and pennies. The line is your
decision boundary, and the margin is the distance between the line and the closest
nickels and pennies on either side. The nickels and pennies that are closest to the line,
those on the edge of the margin, are the most difficult to classify since they are the
most similar. These are called support vectors. They support or define the decision
boundary. This is how the name support vector machine comes to be. SVMs are often
used for classification tasks but can be expanded to work with regression tasks as
well. For regression problems, SVMs try to find the function that best fits all the data
points and minimizes a margin of error around that line. Support vector machines
are often effective when there are many predictors. However, they are not suitable
for large data sets as they are computationally expensive. Thus, in the context of this
example they are a versatile alternative to tree-based models.

Lastly, define an ANN as another widely used supervised (and unsupervised) ML
algorithm.

R Code: Artificial neural network

model_mlp <- mlpChidden_units = tune(),
penalty = tune(),
epochs = tune()) %>%

10 Automation—Supervised Machine Learning 199

set_engine("nnet") %>%
set_mode("regression")

The ANN is the most complex model so far. ANNS are a class of models inspired
by the human brain (see Chaps. 2 and 4). “Inspired” is important here because while
there are some analogs to how brains work (at least to our current understanding) there
are many differences between actual neurons in a brain and the neurons in a neural
network. In ANNS, the neurons are organized into three kinds of layers: (1) the input
layer, (2) the hidden layer or layers, and (3) the output layer. The input layer is the
first layer where the model receives information—in this case the neurons in the first
layer receive information from the variables in the dataset starting with P[X]. These
neurons are then all connected to the neurons in the hidden layer. In the hidden
layer, each neuron receives inputs from neurons in the previous layer, performs a
calculation on these inputs, and then passes its output to neurons in the next layer.
There may be more than one hidden layer. The name “deep learning” refers to neural
networks that have many hidden layers, i.e., they are “deep” in terms of layers. The
last layer is the output layer, where the model produces its final output. In this case
this corresponds to the estimated total score. Each connection between neurons has
a “weight,” which is a numerical value that the model learns during training. When
an input comes in, it gets multiplied by the weight. The neuron adds up all the
weighted inputs and applies a mathematical function called an “activation function.”
The activation function decides whether and to what extent that input should progress
further through the network. This allows neural networks to introduce non-linearity.
During training, the model adjusts the weights based on the difference between its
prediction and the actual value. The goal is to minimize this difference. The process
of adjusting the weights is typically done using a method called “backpropagation.”
Research shows that neural networks typically perform well on complex data such
as language data, image and video data, and time series forecasting. However, they
typically require large data sets for training and are relatively hard to interpret (later
in the book, there are examples of using pre-trained neural nets which circumvents
some of these challenges). Further, on medium size tabular data—the kind of data we
often encounter in science education contexts and in this case study—they usually
perform worse or similar as tree-based models (Wilson et al., 2016; Grinsztajn et
al., 2022; Kiichemann et al., 2020). While there is some work on models that use
an ANN architecture and work well on tabular data, these models either still require
more data than we usually have in science education contexts (e.g.,TabNet (Arik
& Pfister, 2021)) or are optimized for classification tasks (TabPFN, Hollmann et al.,
2023). Still, you will use an ANN now; with the rapid progress in the field, ANNs
should never be discarded entirely. Some word regarding the hyperparameters: hidden
refers to the number of nodes in the hidden layers, epochs refers to the number of
training iterations, and penalty refers to a parameter that aims at avoiding overfitting.

With the models at hand, it is time to combine them in a workflow set:

200 M. Kubsch et al.

wf_set <- workflow_set(preproc = list(learn_rec = learn_rec),
models = list(rand_forest = model_tree,
neuralnet = model_mlp,
svm_r = model_svm_r)

Now you can start the tuning process. To be able to use the tuning results in a
combined model, set control parameters so that predictions are saved and the try to
use parallel computation as much as possible:

tune_ctrl <-
control_race(
save_pred = TRUE,
parallel_over = "everything",
save_workflow = TRUE

Given that you tune the hyperparameters of three models and that especially the
ANN is computationally expensive, running the tuning command may take some
time:

tune_results <-
wif_set %%
workflow_map (
seed = 42,
resamples = cv,
grid = 20

Note that the grid of size 20 is probably too small to explore the whole parameter
space given the many hyperparameters. Again, this small value is chosen to limit
computation time.

10 Automation—Supervised Machine Learning 201

When you have successfully tuned the model, you need to find out which model
performed best.

R Code: Search for the best performing model

tune_results %>% rank_results(select_best = T) %%
filter(.metric == "rsq")

will provide you with a table and you can also

create a plot with

tune_results %>% autoplot(select_best = T, metric = "rsq")

The plot (Fig. 10.10) suggests that the SVM performed best, followed by the neural
network and the random forest. However, the error-bars in the plot show that over the
resampling process there was quite some variation so the differences in performance
between the models are not necessarily robust. The performance metric rsq used
here is short for r-squared (R?). R? gives the variance explained, i.e., the part of the
variance in the data that is explained by the model. The range you can see here is
actually good in the context of education.

0.55-
preprocessor

® recipe

model

rsq

mip
0.50- ~o- rand_forest

svm_rbf

0.45-

.
1.0 1.5 2.0 25 3.0
Workflow Rank

Fig. 10.10 Model performance

202 M. Kubsch et al.

Regression metrics

In regression tasks, the aim is to predict a continuous value. The performance
of regression models is typically evaluated using some form of metric which
captures the difference between the model’s predictions and the actual values.
Commonly used metrics are:

Mean absolute error (MAE): This is the simplest and most intuitive metric. It
calculates the average absolute difference between predicted and actual values.
This metric is on the scale of the outcome.

Root Mean Squared Error (RMSE): This calculates the average squared
difference between predicted and actual values and then takes the root. Because
errors are squared in the process, this metric penalizes large errors more than
small ones. This metric is on the scale of the outcome.

R?: R? measures the measures the proportion of variance in the data that
is explained by the model. It ranges from O (no portion of variance explained)
to 1 (all variance explained). R? is often used in science education research in
the context of regression models and their extensions. Thus, you might have
an intuition for what is a “good” value for R?. However, R? is not on the scale
of the outcome so it can be hard to understand what the R? value means on the
actual scale.

After having screened three types of models, you can extract the hyperparameters
from the model that performed best (the SVM) and fit the model to evaluate it against
the test data:

R Code: Extracting the hyperparameters

select best set of hyperparamters from the SVM
best_rsq <-
tune_results %>%
extract_workflow_set_result("learn_rec_svm_r'") %>%
select_best(metric = "rsq")

set up a workflow to train SVM model
learn_wf_final <- workflow() %>%

add_recipe(learn_rec) %>%

add_model (model_svm_r)

learn_wf_final <- finalize_workflow(learn_wf_final, best_rsq)

fit model
learn_fit <- fit(learn_wf_final, df_train)

10 Automation—Supervised Machine Learning 203

#use model for prediction
learn_pred <- predict(learn_fit, new_data = df_test)

learn_pred <- bind_cols(learn_pred, df_test %>% select(total))

10.5.4 Evaluating Models

Now, you can evaluate the SVM model using the following command:

R Code and output: Evaluate the SVM model

>rsq(learn_pred, truth = total, estimate = .pred)
A tibble: 1 x 3

.metric .estimator .estimate

<chr> <chr> <dbl>
1 rsq standard 0.586

The output shows an R? close to .60 which is a good value in the context of science
education research, especially when you consider that you predict students’ outcomes
after a unit consisting of five parts after the first two parts. However, you might want
to do better and when you looked at the plot of the hyperparameter tuning results,
you saw that all models performed similarly. Different types of models can capture
different aspects of a phenomenon so when you have different types of models it
can be worthwhile to explore if you can combine their predictions to make a better
overall prediction. The conceptual idea of combining multiple models so that they
can complement each other is known as multi-model thinking (Page, 2018) and in
the machine learning and statistical literature known as model “stacking”. Within
the tidymodels framework, stacking is actually very easy so let’s do it.

10.5.5 Training a Stack of Models

First, you create a stack object. For the sake of simplicity we will create a stack with
just two models: the decision tree and the SVM. To do so, we will re-run some of
the previous code but with a newly specified workflowset:

204 M. Kubsch et al.

R Code: Stack object

wf_set <- workflow_set(preproc = list(learn_rec = learn_rec),
models = list(rand_forest = model_tree,
svm_r = model_svm_r)

tune model hyperparamters
tune_ctrl <-
control_race(
save_pred = TRUE,
parallel_over = "everything",
save_workflow = TRUE

tune_results <-
wi_set %%
workflow_map (
seed = 42,
resamples = cv,
grid = 20,
control = tune_ctrl

display tune results
tune_results %>% rank_results(select_best = T) %>%
filter(.metric == "rsq")

plot tune results
tune_results %>% autoplot(select_best = T, metric = "rsq")

extract paramters from best model

best_rsq <-
tune_results %>%
extract_workflow_set_result("learn_rec_svm_r") %>%
select_best(metric = "rsq")

set up a workflow to train model which had best results
learn_wf_final <- workflow() %>%

add_recipe(learn_rec) %>%

add_model (model_svm_r)

learn_wf_final <- finalize_workflow(learn_wf_final, best_rsq)

10 Automation—Supervised Machine Learning 205

fit model
learn_fit <- fit(learn_wf_final, df_train)

#use model for prediction
learn_pred <- predict(learn_fit, new_data = df_test)

learn_pred <- bind_cols(learn_pred, df_test %>% select(total))

evaluate model
rsq(learn_pred, truth = total, estimate = .pred)

using all the models with model stacking

create a model stack object
learn_stack <- stacks() %>% add_candidates(tune_results)

Next, you create a “meta-model” by blending the predictions using a linear model
with regularization. The regularization is used to prevent overfitting by making the
meta-model prefer simpler models unless additional complexity leads to a substantial
improvement in performance on the training set.

R Code: meta-model

create a multimodel object
multimodel <- blend_predictions(learn_stack, times = 100)

The times argument controls the number of the resamples used to determine the
model coefficients that determine the blending of the meta-model.

You can plot the resulting object using the autoplot () function:

multimodel %>% autoplot()

You can see (Fig. 10.11), that the rsq value stays relatively stable before increasing
sharply at a penalty value of 0.1. This suggests that the default range was not helpful
in our case. What you are looking for is a clear maximum value for rsq (or a clear
minimum or RMSE). Rerun the blend_predictions () function with an extended
range for the penalty value and plot (Fig. 10.12) the results again:

R Code: Blend predictions
multimodel $<$- blend_predictions(learn_stack,

penalty = 10\"{}(seq(-3, 1, length.out = 40)), times = 100)
multimodel \%$>$\% autoplot()

206 M. Kubsch et al.

num_members
19.50-

19.25-
19.00-
18.75-
18.50 -
18.25-

rmse

13.000 -
12.975-

& 12.950-

Q

€ 12.925-

12.900 -

rsq

1e-05 1e-03 1e-01
penalty

Fig. 10.11 Model metrics

num_members
9.25-

9.00-

8.75-

8.50-

8.25-

rmse
12.540-
12.535-
c
8 12530~
S 12
12.525-
12.520-

0.5450 -

0.5445 -

v ' . .
0.001 0.010 0.100 1.000
penalty

Fig. 10.12 Model metrics with adjusted range

Now, you can see that there is a minimum at the vertical line for the rmse value.
Further reducing the number of parameters also does not lead to a substantive increase

10 Automation—Supervised Machine Learning 207

penalty = 0.429

model

. rand_forest
. svm_rbf

Member

00 02 04 06
Stacking Coefficient

Fig. 10.13 Stacking coefficients

in rsq. You can also use the “weight” option in the autoplot command to take a
look at the blending results:

multimodel %>% autoplot("weight")

The plot (Fig. 10.13) shows the coefficient for each model in the linear model
that comprises the meta-model. Larger values suggest a larger contribution of the
respective model. You can see that the SVM model which was already the best
performing model alone also has the largest contribution here. However, the decision
tree model is also added to the mix. Running multimodel$equations gives the
actual equation of the meta-model:

2.21498499721433 +

(learn_rec_rand_forest_1_03 * 0.0103002372251664) +
(learn_rec_rand_forest_1_14 * 0.082561414300202) +
(learn_rec_rand_forest_1_05 * 0.125891863223886) +
(learn_rec_rand_forest_1_02 * 0.0111194179105971) +
(learn_rec_rand_forest_1_08 * 0.114711425173477) +
(learn_rec_svm_r_1_19 * 0.628839233188363)

Now, we can use that formula to fit the meta-model:
multimodel <- fit_members(multimodel)

208 M. Kubsch et al.

10.5.6 Evaluating the Model

Using the predict function you can now use the meta-model to make predictions for
the test data and get an R? value:

R Code: Make predictions for the test data and get an R? value

predict(multimodel, df_test) %>%
+ bind_cols(df_test) %>% rsq(truth = total, estimate = .pred)
A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rsq standard 0.59

The resulting R? value of 0.59 is slightly better than what you got from just
the SVM (0.586). This shows that combining different models can lead to better—
although not by a large margin at all—predictions. In fact, the difference observed
here is is within in the range of sampling variability and thus needs to be taken with
a grain of salt. In general, a caveat of stacking models or ensemble methods is that
with combining various models, interpretability is drastically reduced. Thus, one
always needs to consider if a potential increase in predictive accuracy justifies a loss
in interpretability.

10.6 Summary

In this chapter you have walked through two case studies where you used supervised
ML with the goal of automation. The first case study aimed at predicting success in
the selection process of the German physics Olympiad—a classification task. The
second case study aimed at predicting students’ final score in a unit on energy—a
regression task. You have covered the basics of running supervised ML within the
tidymodels framework. This includes ways of getting to know the data, the data
splitting approach, different types of ML models and different ways to evaluate a
model. You have seen how techniques of explainable ML can help you to understand
how a trained model is coming to its predictions and how to screen many models at the
same time and even combining many models into a meta-model for better predictive
performance. In sum, this chapter should prepare you to start using supervised ML
in your work and have provided you with the knowledge to follow current research
and dive deeper into more specific aspects of supervised ML.

10 Automation—Supervised Machine Learning 209

10.7 Tasks

Comprehension

1. Explain the concept of supervised machine learning and provide an example
application in science education research.

2. What are the three broad types of variables discussed in the chapter? Give an
example of each and discuss how this is relevant in the context of machine
learning.

3. Why is it important to understand the distributional properties of variables before
working with them in machine learning?

4. What is cross-validation, and why is it used in the supervised machine learning
workflow?

5. What is hyperparameter tuning, and why is it essential in building machine
learning models?

Application

1. Go back to the model that predicted success in the physics olympiad and choose
another method of imputation. Compare the results with the original outcomes.

2. Evaluate the performance of a logistic regression model using accuracy, preci-
sion, recall, and F1 score. Write the R code to calculate these metrics.

3. Write R code to build a decision tree model and plot it. To do this, take a variable
in the data set and split it into groups. Then define a decision tree model to
predict the group membership. Plot the resulting decision tree. Use the rpart and
rpart.plot libraries (you may need to install them) for this.

4. Create a new variable (also referred to as feature) that combines ‘grit’ and ‘mas-
tery’ into a single variable called ‘effort’. Write the R code to add this feature to
the dataset and build a logistic regression model using this new variable.

5. Implement hyperparameter tuning for the random forest model predicting suc-
cess using random search instead of grid search. Compare the performance with
the grid search results.

References

Arik, S. O., & Pfister, T. (2021). TabNet: Attentive interpretable tabular learning. In Proceedings
of the AAAI conference on artificial intelligence (Vol. 35, No. 8, pp. 6679-6687). https://doi.org/
10.1609/aaai.v35i8.16826

Box, G. E. P. (1979). Robustness in the strategy of scientific model building: Technical Report
#1954.

Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and
passion for long-term goals. Journal of Personality and Social Psychology, 92(6), 1087-1101.
https://doi.org/10.1037/0022-3514.92.6.1087

Elliot, A. J., & McGregor, H. A. (1999). Test anxiety and the hierarchical model of approach and
avoidance achievement motivation. Journal of Personality and Social Psychology, 76(4), 628.

https://doi.org/10.1609/aaai.v35i8.16826
https://doi.org/10.1609/aaai.v35i8.16826
https://doi.org/10.1037/0022-3514.92.6.1087

210 M. Kubsch et al.

Gombert, S., Di Mitri, D., Karademir, O., Kubsch, M., Kolbe, H., Tautz, S., Grimm, A., Bohm, I.,
Neumann, K., & Drachsler, H. (2022). Coding energy knowledge in constructed responses with
explainable NLP models. Journal of Computer Assisted Learning, jcal.12767. https://doi.org/10.
1111/jcal. 12767

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform
deep learning on tabular data? http://arxiv.org/abs/2207.08815

Harris, C., Krajcik, J. S., Pellegrino, J. W., & DeBarger, A. H. (2019). Designing knowledge-in-use
assessments to promote deeper learning. Educational Measurement: Issues and Practice, 38(2),
53-67.

Hilbert, S., Coors, S., Kraus, E., Bischl, B., Lindl, A., Frei, M., Wild, J., Krauss, S., Goretzko, D.,
& Stachl, C. (2021). Machine learning for the educational sciences. Review of Education, 9(3).

Hollmann, N., Miiller, S., Eggensperger, K., & Hutter, F. (2023). TabPFN: A transformer that solves
small tabular classification problems in a second. http://arxiv.org/abs/2207.01848

Kubsch, M., Nordine, J., Neumann, K., Fortus, D., & Krajcik, J. (2019). Probing the relation
between students’ integrated knowledge and knowledge-in-use about energy using network anal-
ysis. Eurasia Journal of Mathematics, Science and Technology Education, 15(8). https://doi.org/
10.29333/ejmste/ 104404

Kiichemann, S., Klein, P., Becker, S., Kumari, N., & Kuhn, J. (2020). Classification of students’
conceptual understanding in STEM education using their visual attention distributions: A compar-
ison of three machine-learning approaches. In Proceedings of the 12th international conference
on computer supported education (pp. 36—46). https://doi.org/10.5220/0009359400360046

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions: 31st
conference on neural information processing systems (nips 2017), Long Beach, CA, USA.

Petersen, S., Blankenburg, J., & Hoffler, T. N. (2017). Challenging gifted students in science: The
German science olympiads (pp. 157-170). Abingdon: Routledge.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1111/jcal.12767
https://doi.org/10.1111/jcal.12767
http://arxiv.org/abs/2207.08815
http://arxiv.org/abs/2207.01848
https://doi.org/10.29333/ejmste/104404
https://doi.org/10.29333/ejmste/104404
https://doi.org/10.5220/0009359400360046
http://creativecommons.org/licenses/by/4.0/

Chapter 11 ®)
Pattern Recognition—Unsupervised e
Machine Learning

Marcus Kubsch, Christina Krist, and Peter Wulff

Abstract In this chapter we will engage with a case study that utilizes unsupervised
ML techniques to extract and interpret patterns in complex science education related
data.

11.1 Introduction

Learning about science is a complex phenomenon. Many factors across multiple
dimensions affect how students learn, e.g., students motivation (Hong et al., 2020),
teacher’s enthusiasm (Keller et al., 2017), or schools norms (Yeager et al., 2019).
What makes issues even more complex is that many of these factors interact with
each other as they change over time, e.g., students’ motivation to learn at one time
can influence to what extent they experience competence which in turn influences
their future motivation to learn. To make sense of this complex phenomenon, sci-
ence education researchers develop and test models and theories. A critical step in
developing models and theories is to recognize patterns as our models and theories
often start off as hypotheses that aim at explaining observed patterns. Alas, recog-
nizing patterns is hard when phenomena are complex. Further, while humans excel
at recognizing patterns in images, humans typically struggle with identifying pat-
terns in large, tabular data. Luckily, computational approaches can help us with this.
Specifically, unsupervised ML provides us with a set of powerful tools to recognize
patterns.

Unsupervised ML techniques typically work on some variation of the following
idea: to recognize a pattern means to find a set of cases in the data that are more
similar—based on some metric of similarity—to each other than the remaining cases.

M. Kubsch ()
Freie Universitit Berlin, Berlin, Germany
e-mail: m.kubsch@fu-berlin.de

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

P. Wulff
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany

© The Author(s) 2025 211
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_11&domain=pdf
mailto:m.kubsch@fu-berlin.de
https://doi.org/10.1007/978-3-031-74227-9_11

212 M. Kubsch et al.

In this way, unsupervised ML techniques take data and provide us with subgroups
of that data. Depending on where you look and the exact technique used, these
subgroups are called clusters, groups, profiles or (latent) classes but the basic idea is
the same. In this way, unsupervised ML is an exploratory approach and the resulting
clusters require careful interpretation by the researchers.

In this chapter, you will use unsupervised ML to recognize patterns in how stu-
dents’ epistemic emotions change over the course of short units about energy in
middle school.

11.2 Epistemic Emotions in Science Learning

The case study in this chapter is situated in the context of investigating students*
epistemic emotions as they learn about energy in short, 4—6 lessons long units. Epis-
temic emotions are emotions that relate to the generation of knowledge (e.g., Pekrun
etal., 2017). Examples are the joy people feel when they have solved a problem, the
curiosity that is sparked by observing a phenomenon that escapes explanation, or
the confusion that arises when contradictions between what is expected and what is
observed cannot be resolved. Epistemic emotions can impact learning (D’Mello
& Graesser, 2012) as modern and effective science learning explicitly engages
students in the doing of science (e.g., National Research Council, 2012), i.e., students
engage in scientific practices to learn about science ideas.

Over time, the emotions people feel and their intensity varies. Therefore, students
were asked to report the epistemic emotions they felt during the units multiple times
using Likert scales. With such data, you could now ask structural questions about
the epistemic emotions such as “How is curiosity correlated with joy?”. While this
is a valid and interesting research question, let us take a more holistic approach here.
The holistic approach centers on the individual student (see also person-centered
approach (Magnusson, 2003); for an example in the context of science education see
e.g., Hong et al. (2020)) and the set of epistemic emotions that they reported they felt
at any of the measurements. This acknowledges the complex interactions between
epistemic emotions within students.

11.2.1 Why Unsupervised ML

Analytically, this means identifying students that expressed similar sets of epistemic
emotions, i.e., epistemic emotion profiles, that can then be describe qualitatively. In a
next step, you can then try to find patterns in how students transition between profiles
over time. Both of these tasks come down to recognizing patterns in complex data;
a task well suited for unsupervised ML.

11 Pattern Recognition—Unsupervised Machine Learning 213

Exploratory data analysis Frameworks
|
| | |
Unsupervised ML Visualization Approaches
Clustering
|
| | |

Latent Class Analysis k-means Techniques

Fig. 11.1 Different frameworks for data analysis

Latent Profile Analysis vs. Clustering vs. Unsupervised machine learning

Depending on where you look and who you talk to, you might find the terms
latent profile analysis, latent class analysis, cluster analysis, or unsupervised
machine learning being used interchangeably or one being described as an
example for the other, e.g., sometimes latent class analysis is labeled as an
unsupervised machine learning technique as it is argued that a representation
of the data is learned. Let’s try and bring some order into all of this.

We consider Fig. 11.1 to be helpful to think about these terms. There are
different Frameworks for data analysis such as exploratory data analysis or
confirmatory data analysis. Within exploratory data analysis we have different
approaches for doing exploratory data analysis—unsupervised machine learn-
ing and data visualization for example. Within different approaches we have
different techniques; one of them is clustering. Finally, there are different ways
to do clustering with latent class analysis being an example of model-based’
clustering and k-means an example of a model free clustering approach.

11.2.2 Getting to Know the Data Set

Let us start with getting to know the data set again. You will continue to use R for
this chapter. The following code loads the packages and data needed in this chapter:

R Code: Packages and data

load required packages
libraryChere)

! Model based in the sense that there are relatively strong distributional assumptions involved, e.g.,
the assumption that the groups all have the same variance and only differ in the mean value is often
made.

214 M. Kubsch et al.

library(tidyverse)

library(tidyclust)

library(tidymodels)

library(dbscan)

library(umap)

library(GGally)

load data

load(here("Data", "unsupervised_learning_emotions.RData"))

Next, use the glimpse() function to get an overview of the variables in the
dataframe df:

R Code and output: the glimpse () function

> glimpse(df)
Rows: 214
Columns: 11

userid <chr> "1001", "1003", "1005", "1007", "1009...
.666667, 3.000000, 3.250000, 2.00000...
.000000, 1.000000, 1.500000, 2.00000...
.000000, 3.333333, 3.000000, 3.00000...
boredom <dbl> 2.000000, 1.500000, 2.333333, 3.00000...

$

$ joy <dbl> 3 2
$ 1 2
$ 4 3
$ 2 3
$ anxiety <dbl> 1.00, 1.00, 1.00, 3.00, 4.75, 1.00, 1...
$ 1 4
$ 4 3
$ 4 4
$ 3 4
$

confusion <dbl>
curiosity <dbl>

frustration <dbl> 1.000000, 000000, 1.750000, 4.00000...
interested <dbl> .00000. ..

control <dbl>

1.
.000000, 3.666667, 3.500000,
.333333, 3.000000, 4.250000, 4.00000...
value <dbl> 3.666667, 2.666667, 3.250000, 4.00000...
total <dbl> 22.0, 21.0, 34.0, 12.0, 35.0, 18.0, 3...

In the data, each row represents a student identified by the userid column
and the other columns give the scores on different emotions (joy, confusion,
curiosity, boredom, anxiety, frustration, interest), emotion related
appraisals (control, value), and the total score students received during the unit
based on scoring artefacts that were collected (total). Control and value appraisals
are strongly related to understanding (epistemic) emotions (Pekrun, 2006; Pekrun &
Linnenbrink-Garcia, 2014). Control appraisals describe to what extent someone feels
able to influence or manage a situation. When students feel in control as they learn
and conduct investigations in the science classroom, it influences their emotional
responses and promotes positive emotions like curiosity. Value appraisals describe
to what extent someone considers a task or topic relevant or important. If learners

11 Pattern Recognition—Unsupervised Machine Learning 215

see a task as valuable or relevant to their goals and learning, it can trigger posi-
tive epistemic emotions, such as interest or enjoyment, that support deep learning
and persistence. Conversely, if learners consider a task as unimportant, it can lead
to negative emotions, like boredom or frustration. Thus, understanding control and
value appraisals can provide insight into the emotional experiences of learners and
potentially guide strategies for supporting learning and motivation. All scores are
averages calculated from multiple measurements over the course of the unit.

The output also shows that the total variable and the emotion related variables
are on different scales. The total variable that represents a measure of students overall
learning during the unit ranges from O to 82 as range (df$total) shows. In contrast,
the emotion related variables only ranges from 1 to 5 as the data was collected using
Likert scales ranging from 1 (not at all) to 5 (very much). To check for missing data
use sum(is.na(df)) which returns 0. How does this work? When you apply the
function is.na() to the data; the function checks for every cell in df whether it is
NA or not and returns TRUE or FALSE respectively. Then you sum over the resulting
object with R evaluating TRUE as 1 and FALSE as 0. Thus, the result of O tells you
that there are no NAs. After checking this, take a closer look at the data using a pairs
plot (Fig. 11.2):

df %>% select(-userid) %>% ggpairs()

Overall, there is nothing really striking; all variables show variance. Notably,
anxiety and frustration and to some extent confusion show power law like (see Box
below), long tailed distributions.

21051 T3 4 81 & B 4 81 b & 4 51 £ 5 4 51 5 3 4 o m b w

Fig. 11.2 A pairs plot

216 M. Kubsch et al.

10-

Fig. 11.3 Powerlaw function

Power law function

A power law is a function of the form f(x) = x*. The black line in Fig.
11.3 shows how such a function looks like for k = —1. Data that is distributed
in this way has the property that some values are very likely to occur while
others are much rarer but have relatively similar frequencies. This becomes
clear when you look at the red line in the plot (Fig. 11.3). The red line shows
the derivative of the function f(x) = x~'; the derivative describes how much
the values of the function change. The red line quickly approaches 0, indicating
that the values change very little. The distribution of words in languages is an
example for data that follows a power law. Words like “the” or “a” occur very
often while words like “source” or “choice” have much smaller but in fact
similar frequencies.

11.3 Unsupervised ML Modeling Workflow

Now that you have a general understanding of the data, it is time to look for pat-
terns using unsupervised machine learning. The general workflow for unsupervised
machine learning has three steps: (1) pattern recognition, (2) qualitative pattern
interpretation, (3) pattern validation.

11 Pattern Recognition—Unsupervised Machine Learning 217

5- e e ° °
L]
o o L]
° °
O ° ° °
4- e o ° °
o o L]
[} o 8
- °*
L]
g o % ’I >
B3- e e © o 000 om0 00 o o oo
2
S o ®e° oo
< ° ° o| © °
; S T
co oo o %S 8 o
2- ° L BN o0 (B J (X] o ® ° °
e%e s ° ° o o
o0 ®e
° e o oo °
° o o o .. °
L ° °
1- e e 00 0 o o0 o e o
1 2 3 4 5
value

Fig. 11.4 Plot of boredom and value

11.3.1 Pattern Recognition

To start with something simple, look for patterns in just two variables—boredom
and value—using clustering. Take a closer look at these variables by plotting them:
df %>% ggplot(aes(y =boredom, x =value)) + geom_point().

Some parts in the plot (Fig. 11.4) certainly look more populated than others, sug-
gesting that there might be something to uncover here. When there is two-dimensional
data as in this case here, you can use simple clustering to look for patterns. One of
the most used—and often quite effective—techniques is k-means clustering. The ‘k’
in k-means refers to the number of clusters the algorithm aims to partition the data
into.

The underlying principle of k-Means is quite straightforward: it assumes that every
data point belongs to one of k clusters, each represented by a centroid—the center
of the cluster. Starting with randomly positioned centroids, the algorithm iteratively
assigns each data point to the nearest centroid and recalculates the centroids based
on these assignments until the clusters become stable, or a pre-specified number of
iterations have been completed. The following code sets up a k-means model:

218 M. Kubsch et al.
R Code: k-means model

kmeans_model <- k_means(num_clusters = 4) %>%
set_mode("partition") %>%
set_engine("stats") %>%
set_args(nstart = 50)

num_clusters is a hyperparameter that describes the number of clusters. This
value needs to be set. Set it so that you start with four clusters. nstart is also a
hyperparameter that decides how often the algorithm starts with new random values.
As the results of k-means clustering are sensitive to the starting values, trying a range
of starting values and then selecting the one with the best solution is a good strategy.
The best solution is determined by the solution that minimizes the average distance of
all points to their cluster centroid. You can think of this as a form of hyperparameter
tuning already built into the function. Having defined the model, you can now fit it:

R Code: Define the model

fit model
set.seed(42)
kmeans_fit <- kmeans_model %>%

fit("., data = df[,c("boredom", "value")])
df_fit <- cbind(df, extract_cluster_assignment (kmeans_fit))
df_fit %>% ggplot(aes(y = boredom, x = value, colour = .cluster))
+ geom_point()

As k-means involves a random component with the starting values, a seed
is set to ensure reproducibility. In the next line, the model is fit and then the
extract_cluster_assignment () function is used to add the cluster assignment
to the data and create a new object df_fit that stores this information. Finally, the
clustering results are plotted (Fig. 11.5):

11.3.2 Qualitative Pattern Interpretation

You have now used k-means clustering to detect patterns—the clusters—in the data.
However, what is the meaning of these patterns? How can they be characterized?
Answering these questions is what the qualitative interpretation step is all about.
While the computer can be used to find patterns in data, it cannot interpret what these
patterns mean. This is where the theoretical sensitivity and substantive knowledge of

11

Pattern Recognition—Unsupervised Machine Learning

5- @ ° (] °
®
L 3N] [}
[J ®
o ° ° °
4- e o o
o0 []
8 d 8 .Cluster
: [] .. ’
[
g i Gen S ° ® Cluster_1
B3- e e e o omoecm®o ee © o o ® Cluster_2
b
o o o ()
S . S o . ° . ® Cluster_3
° oo 8 %S o g ° ® Cluster_4
e0e® ®© 000 oo
2- o o0 e 00 o0 o ® o o
% se®) o
L N] .O
° e o oo °
° o0 0 ° [] °
[] L]
1= [] o000 0 o o0 0 o [] []
1 2 3 4 5
value

Fig. 11.5 Clusters in boredom and value data

the human analyst come into play. Cluster 1 contains students that have rather high
value scores and low to average boredom scores. These students might be character-
ized as valuing the activities and being mostly not bored. Cluster 2 contains students
that have average value scores and similarly low boredom scores as the students in
Cluster 1. These students might be characterized as somewhat valuing the tasks and
mostly not being bored. Cluster 3 contains students with value scores comparable
to Cluster 2 but higher boredom and can be characterized as somewhat valuing the
tasks while being also somewhat bored. Finally, Cluster 4 contains students that have
high boredom scores and low value scores. Being bored and perceiving tasks as low
value seems like a valid description.

11.3.3 Pattern Validation

Using k-means clustering, you just grouped students into four different groups that
seem ... reasonable? What do you make of these four groups? Should you use them in
further analyses? Answering these questions comes down to considering the validity
of the patterns you found. Before going into further detail here, take a step back and
reconsider what you are doing and why you are doing it.

What you are doing is exploratory data analysis. But why are you doing it? Actu-
ally, no reason was provided for doing it and there are different reasons for doing
exploratory data analysis. It is helpful to differentiate two cases here: (1) finding pat-
terns that can be expected within existing theory and (2) finding patterns for the sake

220 M. Kubsch et al.

of developing theory. In the first case, one draws on existing theory and asks to what
extent the patterns are compatible with that theory. In the second case—developing
theory—the question is whether the identified patterns can help to better understand
whatever phenomenon is under study. If the patterns seem helpful, one may develop
new or propose to expand or revise existing theory. In future work, the new theory
or expansions and revisions of existing theory can be tested.

Within the framework of this case study, you can actually rely on a well-developed
literature on emotions. Boredom and value can be expected to be negatively associ-
ated (e.g., Pekrun, 2006) and cluster 1 and cluster 4 fit this expectation. Clusters 2
and 3 are also compatible with a broadly negative association between boredom and
value. When you think of how you ended up with these clusters, however, there are
some things to be skeptical about. First, the number of clusters was just set to four
in the algorithm without any theoretical or methodological consideration for doing
so. Second, measurement error was not considered in any way. The variables used
for clustering have measurement error and in consequence there is uncertainty in the
cluster assignment. K-Mean clustering, however, ignores this uncertainty in cluster
assignment. While there is little you can do about k-means clustering ignoring mea-
surement error, you can go back and see how setting a different number of clusters
affects the results. To do so, tune the respective hyperparameter.

11.3.4 Once More with Tuning

For tuning, follow the same steps as in the last chapter on supervised learning: set
up a model and specify which hyperparamters to tune, build a workflow, create folds
for cross-validation, set up a tuning grid for number of clusters ranging from 1 to 10,
and finally tune the hyperparameters. The following code does all that:

R Code: Tuning hyperparamters

tune hyperparamter

define model

kmeans_model_tune <- kmeans_model %>%
set_args(num_clusters = tune())

build workflow

kmeans_wf <- workflow() %>%
add_model (kmeans_model_tune) %>%
add_formula(™.)

set folds for cross-validation
cv <- df %>% select(boredom, value) %>% vfold_cv(v = 10)

set tuning grid

11 Pattern Recognition—Unsupervised Machine Learning 221
grid <- tibble(num_clusters = 1:10)

tune

system.time(tune_res <- tune_cluster(
object = kmeans_wf,
resamples = cv,
grid = grid

D))

When you look at the code closely, you will notice the function system. time ()
that was used on the tuning process and running the code, you will get a reading of the
time it took to run the tuning process. It is included here to show how parallelization
can save a lot of time. Whenever analyses that are independent of each other are
run, you can use the multiple processors in your computer to run these analyses in
parallel instead of one after another. Grid tuning is exactly such a case. The following
commands load the doParallel library that provides an easy way to run analyses
in parallel and specifies how many processor cores to use:

R Code: doParallel library for parallelization

parallel computation
library(doParallel)
registerDoParallel(detectCores())

Now, let us run the tuning process again:
R Code: Parallel tuning process

system.time(tune_res <- tune_cluster(
object = kmeans_wf,
resamples = cv,
grid = grid

)

You will notice that—depending on the specifics of your computer—processing
time has decreased a lot. After this short detour, let us take a look at the results of
the tuning process by running the following code:

222 M. Kubsch et al.
R Code: Results of the tuning process

tune_res %>%
collect_metrics()

tune_res %>%
autoplot()

The resulting plot (Fig. 11.6) shows two metrics—sse_total and
sse_within_total—and how they change as the number of clusters increases.

sse_total is the sum of squared errors about the centroid of a one cluster solution
which just gives a sense of the overall variability of the data. sse_within_total is
the sum of the sum of squared errors for each cluster. Therefore, sse_within_total
is identical to sse_total for the model with just one cluster. Increasing the number
of clusters generally reduces the sse_within_total. Try this for yourself using
this code:

sse_total

336.900 -

336.875-

336.850 -

336.825 -

sse_within_total

300 -
200~
100~

25 50 75 10.0
Clusters

Fig. 11.6 Cluster tuning

11 Pattern Recognition—Unsupervised Machine Learning 223
R Code: Increase the number of clusters to reduce sse_within_total

#expand grid
set tuning grid
grid_large <- tibble(num_clusters = 1:100)

tune_res_large <- tune_cluster(
object = kmeans_wf,
resamples = cv,
grid = grid_large

tune_res_large %>%
autoplot()

sse_within_total behaves like this because having more clusters allows more
data points to be closer to the centroids of their clusters. This becomes intuitively
clear when you take the number of clusters to its extreme and have as many clusters
as you have data points. In that case, every cluster will reflect one data point and the
squared error will be zero.

Squared errors

Why are errors squared? Because error can occur in different directions! Let
us look at a simple example to see what this means. Imagine you have two data
points a x = 3 and y = 5 and two respective predictions with x,,..q = 4 and
Yprea = 4. Now, if you just calculated the error by subtracting actual value from
the predicted value you would get X,y =4 —3 =1 and ygror =4 —5 =
—1. Summing these two errors leads to a total error of error;,yy = 1 + (—1) =
0. This result is clearly not helpful because the predictions are erroneous. The
solution is to square the errors before summing to get rid of negative numbers:
P+ (-D)2=1+1=2.

To select the number of clusters based on this plot, you can use the so-called elbow
method. You might be familiar with this approach from exploratory factor analysis—
a technique that is also sometimes referred to as unsupervised ML. Factor analysis
is used to find a reasonable number of dimensions in a data set that captures most of
the variation. The idea of the elbow method is to find the point where increasing the
number of clusters starts leading to diminishing returns in terms of reduced error.
This point is located at the “elbow;” the point where a linear decrease in error with

224

Fig

M. Kubsch et al.
5-e ® ® @
°
o0 °
° °
. e o °
4- oo o °
oo ®
g &8
:. .. | t
° .Cluster
E LA PR
83- 0 © 00M0D00O O © 00 ® Cluster_1
o o °F oo
a . L= G- ® Cluster_2
L) e
cesd ® oo .3 o
2- ® ©e0 @ 00 o®» o0 o o
% 8° ee o
oo %
° e ooo °
e ®°° o
e o o
1- ® 0000 0o ®mo o o o
1 2 3 4 5
value

. 11.7 K-means clusters of boredom and value

increasing number of clusters transitions to a curved relationship between decrease
in error and increasing number of clusters. In this case, this happens when the number
of clusters is two (Fig. 11.6).

Take that results and run a final model with two clusters and plot it (Fig. 11.7):

set-up final model

kmeans_model_final <- k_means(num_clusters
set_mode("partition") %>%
set_engine("stats") %>%

50)

2) %>%

set_args(nstart
fit final model
kmeans_fit_final <- kmeans_model_final %>%

fit("., data = df[,c("boredom”, "value")])
plot final model
df_fit_final <- cbind(df, extract_cluster_assignment(kmeans_fit_final))
df_fit_final %>% ggplot(aes(y = boredom, x = value, colour .cluster))

+ geom_point()

11 Pattern Recognition—Unsupervised Machine Learning 225

A qualitative interpretation of the two clusters suggests that Cluster 1 represents
high boredom, low value students while Cluster 2 represents high value, low boredom
students. This aligns with substantive theory. In contrast to the last solution we looked
at, we now have clusters that align with the substantive theory on emotions (e.g.,
Pekrun, 2006) and can be justified by a data driven procedure.

11.3.5 Adding Dimensions

After clustering two variables in the last section, let us now consider the whole range
of emotions in the data set. Overall, there are a total of nine variables here: joy, con-
fusion, curiosity, boredom, anxiety, frustration, interested, control and value. When
looking at the pairs plot at the beginning of the chapter, you already saw relatively
strong correlations between many of these variables—interest and curiosity for exam-
ple are correlated with r = .8. When there are strong correlations between many of
the variables this can lead to a range of issues such as redundancy and distortion of
distance measures. Redundancy means that highly correlated variables often provide
mostly redundant information. Essentially expressing the same underlying informa-
tion, they may not add much value to the clustering algorithm but still increase the
dimensionality and computational cost. Increasing dimensionality without a need to
increase it leads to what is called the curse of dimensionality: in high-dimensional
spaces, data tends to become increasingly sparse, and the distance between sample
points starts losing its meaningfulness. Distortion of distance measures means that
clustering algorithms often use some form of distance measure to assess the similar-
ity between instances in the data. If variables are highly correlated, they may unduly
influence the distance measure, leading to a distortion in the perceived similarity
between instances. To avoid these issues, dimensionality reduction techniques can
be a useful preprocessing step. In the following case study, you will explore the use
of dimensionality reduction and use a different clustering algorithm that allows us
to classify data as noise, i.e., instead of forcing clusters onto data like was the case
with k-means clustering, the algorithm can decide not to classify data points.

11.3.6 Pattern Recognition

The packages that you will use in the following are not compatible with the tidymod-
els framework so the code will look somewhat different. As outlined above, there
are two goals here—reducing the dimensionality of the data and then clustering it.
For dimensionality reduction you will use Uniform Manifold Approximation and
Projection (UMAP, Mclnnes et al. (2020)) and Hierarchical density based cluster-
ing (Campello et al., 2013) via the HDBSCAN package (Mclnnes et al., 2017) for

226 M. Kubsch et al.

clustering. UMAP is state-of-the-art dimension reduction technique that seeks to
preserve the local structure of the data while also revealing the global structure, lead-
ing to improved performance of well-known clustering procedures (Allaoui et al.,
2020). HDBSCAN is a hierarchical clustering algorithm that has three properties
that make it attractive for us: (1) we do not have to specify the number of clusters, as
the number of clusters is determined in a data-driven way, (2) it is conservative in the
sense that it is willing to leave points unassigned rather than forcing them into clus-
ters; grouping points together only when they truly form a cluster, (3) HDBSCAN
is stable and predictive, i.e., when the algorithm is run multiple times with different
random starting conditions the resulting clusters remain very similar and changes in
the hyperparameters lead to relatively stable and predictable changes in the resulting
clusters.

Hierarchical vs. non-hierarchical clustering

Hierarchical and non-hierarchical clustering are two prominent types of clus-
tering algorithms used for unsupervised machine learning tasks. Hierarchical
clustering builds a tree-like hierarchy of clusters, either by starting with
individual points and merging them (agglomerative) or by starting with the
complete data set and dividing it (divisive). Non-hierarchical clustering, on
the other hand, typically works by optimizing an objective function (such as a
distance metric) and requires the number of clusters to be set in advance, as
seen in methods like k-means. The table below shows their primary strengths
and weaknesses. Note that the choice between different techniques often
depends on the specific use case and trying several approaches is often a good
idea.

Hierarchical clustering Non-hierarchical clustering

Strengths Weaknesses Strengths Weaknesses

No need to specify Computationally complex Highly efficient Sensitive to initial
number of clusters starting values
Distance measures Sensitive to outliers Robust to outliers Issues with irregu-
can be chosen flexibly larly shaped clusters
to fit the task

Hierarchy in the data Requires you to spec-
is preserved ify the number of

clusters

UMAP and HDBSCAN both have a number of hyperparameters. To keep things
simple, you will only tune one of the central hyperparameters for each algorithm and
use defaults for the others (https://hdbscan.readthedocs.io/en/latest/parameter_
selection.html and https://umap-learn.readthedocs.io/en/latest/parameters.html
have excellent and extensive documentation of how major hyperparameters affect
the results). For UMAP, this is n_neighbors. n_neighbors controls the balance

https://hdbscan.readthedocs.io/en/latest/parameter_selection.html
https://hdbscan.readthedocs.io/en/latest/parameter_selection.html
https://umap-learn.readthedocs.io/en/latest/parameters.html

11 Pattern Recognition—Unsupervised Machine Learning 227

between local and global structure by setting the maximum number of neighboring
sample points to consider. For HDBSCAN, tune the primary parameter minPts.
minPts is the minimum size (in terms of datapoints) a cluster can consist of. To tune
the hyperparameters, some metric to judge the results is needed (for k-means clus-
tering this was the sse_within_total measure). The HDBSCAN implementation
used here (Hahsler et al., 2019) provides such a metric in the form of probabilities
for the assigned cluster. The higher the probability, the more confident you can be in
the cluster assignment. To find the combination of hyperparameters that provides the
best average classification accuracy, use the mean of this probability. Depending on
the use case, you could also define a different metric, e.g., trying to find the solution
with the least cases where the probability is below 10%.

Now, it is time to do the actual tuning. The idea is to run UMAP for a range of
n_neighbors values and for each of those values run HDBSCAN on the resulting
projection (the result of the dimensionality reduction is called a projection) for a
range of minPts values and store the results. The following code does just that:

R Code: Tuning
set.seed(42)

prob <- cQ
for(n in seq(from = 5, to = 50, by = 5)){
emo.proj <- df %% select(all_of(emotions)) %>% umap(n_neighbors = n)
for(i in 2:50){
hclust <- emo.proj$layout %>% hdbscan(minPts = i)
prob$prob <- append(prob$prob, mean(Chclust$membership_prob))
prob$minPts <- append(prob$minPts, i)
prob$n_neighbors <- append(prob$n_neighbors,n)

First, set a seed for reproducibility of the analysis (there is randomness involved
in UMAP). Next, an object prob is created in which the classification probability as a
metric is stored. Then a for loop is used. A for loop is a function that reiterates the com-
mands in it for all values of a variable. In this case, the for loop will run all code within
it once while the variable n sequentially takes each of the values in seq(from =
5, to = 50, by = 5). seq(from = 5, to = 50, by = 5) creates a list of
number from 5 to 50 in increments of 5, i.e., 5, 10, 15, 20, ...50. In the next line of
code, variable n comes up:

emo.proj <- df %>% select(all_of(emotions)) %>% umap(n_neighbors = n)
the code takes the dataframe df, selects all of the emotion variables, applies the
umap () function with n_neighbors set to the current value of n, and finally stores
the result in the object emo . proj. This means that in the first iteration of the for loop,

228 M. Kubsch et al.

the object emo . proj will store the UMAP projection of the emotions resulting from
setting n_neighbors to 5. Note that umap () creates a two dimensional projection
of the data by default. Next, we have another for loop within the for loop.

R Code: The inner for loop

for(i in 2:50){
hclust <- emo.proj$layout %>% hdbscan(minPts = i)
prob$prob <- append(prob$prob, mean(Chclust$membership_prob))
prob$minPts <- append(prob$minPts, i)
prob$n_neighbors <- append(prob$n_neighbors, n)

In this for loop, the variable i sequentially takes all the values in 2:50—a sequence
from 2 to 50 in increments of 1. In the first line of the loop, the two dimensional
projection of the emotions stored in emo.proj$layout is taken, the hdbscan()
function with the hyperparameter minPts set to i is applied, and finally the results
are stored in the object hclust. In the next line, the mean classification probability is
calculated and written to the end of the prob column within the prob object created
before starting the outer for loop. The next two lines of code store the current values of
i and n in the prob objects in columns named by the respective hyperparameter. This
continues for all values that i can take. In essence, what this inner for loop does is
clustering the UMAP projection for different values of minPts ranging from 2 to 50,
calculating a metric, and storing the metric as well as the respective hyperparameter
values in the prob object. After this inner for loop has ended, the outer for loop will
start again for the next value that n can take. This continues for all values of n and
you end up with an object prob that contains the average classification probability
of HDBSCAN clusterings with minPts ranging from 2 to 50 of UMAP projections
of the emotions data with n_neighbors values ranging from 5 to 50.

You can visually inspect these tuning results and get the best combination of
hyperparameters using the following commands:

R Code: Visually inspect tuning results

plot search results
data. frame(prob) %>% ggplot(aes(y = prob, x = minPts,
colour = as.factor(n_neighbors))) +
geom_line()
find best combination
data.frame(prob) [which.max(data.frame(prob) $prob),].

11 Pattern Recognition—Unsupervised Machine Learning 229

Now, use the returned hyperparameter values (minPts = 4, n_neighbors = 30)
and fit a final model and save it in the object hclust. final:

R Code: UMAP

emo.proj.final <- df %>% select(all_of(emotions)) %>%
umap (n_neighbors = 30)
hclust.final <- emo.proj.final$layout %>% hdbscan(minPts = 4)

Running hclust. final gives the following summary output:
R Output: Results of HDBSCAN

HDBSCAN clustering for 214 objects.

Parameters: minPts = 4

The clustering contains 3 cluster(s) and 0 noise points.

1 2 3
49 61 104

Available fields: cluster, minPts, coredist,
cluster_scores, membership_prob,
outlier_scores, hc

The summary shows that the clustering resulted in three clusters and 0 data points
were classified as noise. Further, the sizes of the three clusters are displayed. You can
also plot the hclust.final object using plot (hclust.final, show_flat = T).

The plot (Fig. 11.8) shows what is called a dendrogram; it illustrates the hier-
archical relationships in the data. The x-axis does not represent any meaningful
information; it shows the different partitions of the data. The y-axis represents how
denesly clusters are packed (eps is a distance metric used in the algorithm), i.e., clus-
ters that have smaller eps values are more dense. Lastly, the width of the vertical lines
represents the number of data points in a cluster. The clusters with boxes labelled
1, 2, and 3 are clusters from the summary output. The dendrogram suggests that
clusters 2 and 3 are more similar to each other than in comparison to cluster 1. The
dendrogram can be a helpful tool in the qualitative interpretation step to triangulate
decisions about merging or splitting clusters.

230 M. Kubsch et al.

HDBSCAN*
T 1
o I
(0] T B)
3 o |
§ o
8- —
o <
o | C 1 —
1 Freem B e
o]
o

Fig. 11.8 Plot of the clustering results with HDBSCAN

You can also plot the clustering in the two dimensional projection from UMAP
using the following code:

R Code: Clustering in the two dimensional projection

df.clust.emo <- cbind(df, hclust.final$cluster)
df.clust.emo <- cbind(df.clust.emo, unlist(emo.proj.final$layout))
df.clust.emo <- df.clust.emo %>%

rename(cluster = ’hclust.final$cluster’, diml = ’1’, dim2 = ’2’)

plot solution
df.clust.emo %>% ggplot(aes(y= dim2, x = diml,
color = as.factor(cluster))) +
geom_point()

While this plot (Fig. 11.9) may look interesting, it actually provides very little
information for us as there is no straight forward interpretation of the x and y axis.
The two axes are the result of the projection from UMAP and cannot directly be
linked to any construct. To learn more about what the clusters actually represent in
terms of emotions, qualitative interpretation is needed.

11 Pattern Recognition—Unsupervised Machine Learning

80.0‘.
o= ‘\.." °
o®® o
5 % “. - o
o°. ": (]
f. ° °®
e, Py
g ° @
%l o 5;"' o...:.':°.oo
5 ® o * 0
° ° &«
(9 o® °
e ‘~ (] =
L L] -~
P _ o
2- b] .:‘° *o
.. []
o O .;'
°
4 5 ; ;
dim1

Fig. 11.9 Clusters in UMAP dimensions

11.3.7 Qualitative Pattern Interpretation

as.factor(cluster)
o 1
L]

2
e 3

231

To interpret the three clusters qualitatively, they need to be related back to the
constructs—the epistemic emotions. To do so, plot the epistemic emotions by cluster

(Fig. 11.10):

R Code: Qualitative pattern interpretation

df.clust.emo %>% select(all_of(emotions) | cluster) %>%

pivot_longer(!cluster, values_to = "score",
names_to = "construct") %>%
ggplot(aes(x = score, y = construct)) +

geom_boxplot() + facet_wrap(. cluster, ncol = 1) +

theme(text = element_text(size = 15))

Cluster 1 can be described as average on all constructs. However, compared to the
other clusters it has the highest values for negative emotions frustration, confusion,
and anxiety. Thus one might describe cluster 1 as feeling stuck with reference to
the model of affect dynamics by D’Mello & Graesser (2012). Cluster 2 shows low
values on all constructs but control and boredom. This cluster may be interpreted
as disengaged but following along with students that are not really touched by the
material but probably doing at least ok so they feel in control but also bored as the
material does not engage them. Cluster 3 is relatively high on most constructs with

232

-
[&]

=
[Z2]
c
Q
o

value -

joy-
interested -
frustration -
curiosity -
control -
confusion -
boredom -
anxiety -

value -
joy-
interested -
3 frustration -
curiosity -
control -
confusion -
boredom -
anxiety -

value -

joy-
interested -
frustration -
curiosity -
control -
confusion -
boredom-
anxiety -

M. Kubsch et al.

e o0 ,:Ij e o L]
—— T+ -
. o e o _m—. - o . .
—1
o e 1T 1 o .
—— T]
e

2
- —(T +— :
— I .
—T T +—
II—.I .
|II—.
. — 7
—T > -
] | =
—— - -
3
— T 3+

I |— . .
_| I Ii .
I L L LN 1} .
1 2 3 4 5
score

Fig. 11.10 Constructs by cluster

the exception of frustration, confusion, boredom, and anxiety. Thus, students in this
cluster may be characterized as engaged and motivated.

11.3.8 Pattern Validation

To validate the three clusters, let us turn to substantive theory on emotions. From a
theoretical perspective these clusters are sensible, e.g., high value and control in clus-
ter 3 typically lead to positive emotions such as joy and are negatively associated with
negative emotions such as confusion and anxiety. Further, other data can be used to
look at criterion related validity (American Educational Research Association, 2014).

11 Pattern Recognition—Unsupervised Machine Learning 233

Criterion validity refers to the extent to which a measurement or a test is related to an
outcome—the criterion—that it is expected to predict or correlate with. One would
expect epistemic emotions to correlate with students learning. Based on the cluster
interpretation, students in cluster 3—engaged and motivated—should show strong
evidence of learning, students in cluster 2 are probably also relatively successful
given that they feel in control but bored. For cluster 1 which we characterized as
stuck relatively little learning can be expected.

Now, you can test these assumptions by looking at the total variable in the data
set. Remember that total is a measure of students learning over the course of the
unit. Plot students’ scores by cluster and also run a respective ANOVA with post-hoc
Tukey tests:

R Code: Clusters and learning

relation between clusters and learning
df.clust.emo %>% ggplot(aes(y = total, x = as.factor(cluster))) + geom_boxplot()
df.clust.emo %>% aov(total ~ as.factor(cluster), data = .) %>% TukeyHSD(Q)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = total ~ as.factor(cluster), data = .)
$‘as.factor(cluster)’
diff lwr upr p adj

2-1 5.708933 -0.7203072 12.138173 0.0931013

3-1 8.655024 2.8479509 14.462096 0.0015388

3-2 2.946091 -2.4587964 8.350978 0.4043009

Residual standard error: 14.2 on 211 degrees of freedom
Multiple R-squared: 0.05543, Adjusted R-squared: 0.04648
F-statistic: 6.191 on 2 and 211 DF, p-value: 0.002438

The resulting plot (Fig. 11.11) generally supports the assumptions that the students
in cluster 1 learned the least, and students in clusters 2 and 3 learned more. The results
from the post-hoc Tukey test show that students in cluster 3 learned significantly
more than students in cluster 1. The difference in learning between cluster 2 and 1 is
marginally statistically significant while the difference in learning between clusters
2 and 3 is clearly not statistically significant with a p-value of .4.

Regarding the validity of the clusters, one can conclude that the clusters are theo-
retically sensible with further evidence from the relationship between the qualitative
interpretation of the clusters and another variable (total learning) supporting this
interpretation.

234 M. Kubsch et al.

80~

60~

total
a
o

20~

1 2 3
as.factor(cluster)

Fig. 11.11 Total score at the end of the unit by cluster

11.4 Exploring Additional Dimension with a New
Technique

In the pattern validation step of the last section, you already looked at the relationship
between students’ epistemic emotions and learning. In this final case study of the
chapter, you will to go one step further and look at patterns in students learning
about numerous ideas about energy and a set of epistemic emotions together. To do
so, you will explore another technique that is somewhat different from those two
used before: Latent Profile Analysis® (LPA). What sets LPA apart is that it is model
based. This means that LPA assumes a statistical model for the data and estimates
parameters of the model to identify the clusters—these clusters are referred to as
latent profiles within the context of LPA. The other techniques we explored, k-means
and hierarchical clustering, are not model based as they rely on geometric or other
forms of distance or similarity measures to assign data points to clusters. The benefit
of a model-based approach is that it provides you with a whole range of statistical
measures to help determine the optimal number of clusters and other aspects of the
model specification (essentially, you can think of the number of clusters and details of
the model specification as hyperparameters). Further LPA is very flexible regarding
the kind of variables used together, i.e., it can handle a combination of categorical
and continuous variables. LPA also allows soft-clustering, i.e., unlike in the case
of k-means, cluster assignments are not absolute but LPA provides a probability
of the assignment (similar to the one you used for tuning the hyperparameters of
UMAP and HDBSCAN). These probabilities can then be used in follow-up analyses
to provide more reliable and valid results. Further, you could also decide to limit

2 Regarding terminology: Latent Profile Analysis and Latent Class Analysis (LCA) are both con-
ceptually similar. When the variables that make up the clusters in the data are categorical this is
often referred to as LCA, when the variables are continuous LPA is used.

11 Pattern Recognition—Unsupervised Machine Learning 235

follow-up analyses to cases where the probability of an instance belonging to a
cluster is sufficiently high. Lastly, LPA models can be implemented as structural
equation models (SEMs). SEM is a powerful modeling framework and when you
use SEM software for estimating LPA models, you can incorporate LPA into larger
SEMs. In this way, you can think of LPA as a technique that provides a bridge
between unsupervised machine learning and more traditional statistical modelling
techniques used in educational measurement and assessment.

Now, before diving into LPA, take a look at the data that you will use here (note
that the output is abbreviated here due to space limitations):

R Code and output: Data

load(here("Data",
"unsupervised_learning_emotions_knowledge.RData"))

glimpse(df)

Rows: 160

Columns: 19

$ userid <chr> "1001", "1003", "1005"...

$ joy <dbl> 3.666667, 3.000000, 3.250000...

$ confusion <dbl> 1.000000, 1.000000, 1.500000, 3.000000...
$ curiosity <dbl> 4.000000, 3.333333, 3.000000, 2.500000...
$ boredom <dbl> 2.000000, 1.500000, 2.333333, 2.000000...
$ anxiety <dbl> 1.000000, 1.000000, 1.000000, 4.750000...
$ frustration <dbl> 1.000000, 1.000000, 1.750000, 4.250000...
$ interested <dbl> 4.000000, 3.666667, 3.500000, 2.500000...
$ control <dbl> 4.333333, 3.000000, 4.250000, 3.500000...
$ value <dbl> 3.666667, 2.666667, 3.250000, 1.500000...
$ total <dbl> 22.0, 21.0, 34.0, 35.0, 34.0, 37.0...

$ LP.M <dbl> 0.4, 0.2, 0.0, 0.0, 0.2, 0.0, 0.0..

$ LP.T <dbl> 0.4, 0.2, 0.0, 0.0, 0.2, 0.0, 0.0..

$ Practice <dbl> 1.0, 1.2, 1.6, 1.6, 1.6, 1.0, 1.2..

$ M.Radiant <dbl> 2.0, 1.6, 4.0, 4.4, 3.2, 4.6, 1.6..

$ M.Electric <dbl> 0.8, 6.8, 0.8, 0.6, 0.8, 0.8, 0.8...

$ T.Process <dbl> 0.2, 0.4, 0.4, 0.4, 0.6, 0.6, 0.4...

$ pre <dbl> 1.43474564, -0.45652054, 0.44383939...

$ post <dbl> 2.245116218, -0.002572408, 0.587175737...

The emotion variables and total are familiar variables by now. The new variables
are LP.M, LP.T, Practice, M.Radiant, M.Electric, T.Process, pre,
and post. Pre and post are test scores for the respective assessments before and after
the unit. M.Radiant and M.Electric refer to evidence for knowledge about mani-
festations of radiation (M.Radiant) and electric (M.Electric) energy; T.Process
refers to evidence for knowledge about energy transformation processes. Practice

236 M. Kubsch et al.

reflects students’ engagement in numerous scientific practices throughout the unit
such as constructing explanation or conducting investigations. Lastly, LP.Mand LP. T
reflect evidence of students applying their knowledge about manifestation of energy
(LP.M) or energy transformation processes (LP.T) in the context of scientific prac-
tices. Justlike the emotions, M.Radiant,M.Electic, T.Process,Practice,LP.M,
and LP.T are averaged across the whole unit. The next step in getting to know the
data would be to do a pairs plot again. However, a pairs plot with 18 variables does
not come across well in a book so go ahead, type

df %>% select(-userid)%>% ggpairs(), and take a look at the plot on
your machine. You will not encounter anything you have not seen before, so let us
go ahead and continue with the pattern recognition step.

11.4.1 Pattern Recognition

Start by loading the tidyLPA package (Rosenberg et al., 2018) and define an object
that stores the names of the emotions and knowledge related variables:

R Code: tidyLPA
library(tidyLPA)
emo_kn <- c("control"”, "value","joy","interested",
"curiosity", "confusion", "boredom",
"frustration", "anxiety","M.Radiant",
"M.Electric", "T.Process",

"Practice","LP.M", "LP.T")

Now, you are already good to go for estimating

latent profiles:

emo.kn.lpa <- df %% select(all_of(emo_kn))%>%
estimate_profiles(1:10, models = c(1,3))

The code takes the data, selects all of the emotion and knowledge variables stored
in emo_kn and estimates profiles. 1:10 specifies to estimate models with 1 to 10
profiles and models = c(1,3) tells the function to estimate these models with a
range of different model specifications (1 and 3 refer to different model specification
so in total 20 models will be estimated. There are also more specifications® but here
we focus on two for the sake of brevity and accessibility. The different model speci-
fications refer to the model implied assumptions. Model 1 makes strong assumptions
that become more relaxed in model 3. The more assumptions a model makes, the less

3 The mclust package (Scrucca et al., 2016) for R allows to specify an even wider range of models
in a flexible way.

11 Pattern Recognition—Unsupervised Machine Learning 237

parameters need to be estimated which allows estimation with relatively little data. At
the same time, model assumptions may not be met which may lead to uninterpretable
profiles and / or not reflect the real underlying profiles. Relaxing assumptions can
solve these issues but requires more data for precise estimation and may lead to
overfitting.

With twenty estimated models, you now want to find the model solution that best
fits the data. To do so, we use the compare_solutions () function.

Compare tidyLPA solutions:

tidyLPA solution

The best (least wrong) model according to BIC is Model 3 with 4 classes.

An analytic hierarchy process, based on the fit indices AIC, AWE, BIC, CLC,
and KIC (Akogul & Erisoglu, 2017), suggests the best solution is Model 3 with
8 classes.

Model Classes BIC Warnings
1 7153.788
6479.586
6137.853
5962.805
5923.172
5900.532
5857.432
5729.532
5756.237
5790.178
5395.248
5319.694
5353.034
5253.824
5325.760
5257.404
5303.932
5285.852
5340.181
5359.552

e
O 00 NO VT b W

w
= =
(=]

O 00 NO VT W W IN

W wWwwwwwwww

.
(=]

238 M. Kubsch et al.

Fit indices

Fit indices are a method to compare the relative fit of different models. They
balance how well a model fits the data against the complexity of the model, with
the general rule being that simpler models are better unless a more complex
model provides a significantly better fit. Lower numbers generally indicate bet-
ter fit. Indices primarily differ in how exactly they penalize model complexity
and how well they perform across sample sizes.

You get an overview of the fitted models with the BIC (Bayesian Information
Criterion) values and a notification about potential warnings from the algorithm.
Further, the function shows what model is best according to BIC and in addition also
outputs what model is best according to the analytic hierarchy process (Akogul &
Erisoglu, 2017) which is a procedure that uses multiple metrics to assess model fit.
In this case, the analytic hierarchy process and the BIC suggest different solutions.
So, what do you do now?

Deciding on the number of profiles is often challenging and in practice typi-
cally involves considering multiple solutions, comparing and contrasting them, and
potentially running further follow-up analyses with both solutions in the spirit of a
multiverse analysis* (Steegen et al., 2016). The key question that should guide this
endeavour is: What do more profiles add to the understanding of the phenomenon at
hand? Profile analysis is primarily done to look for differences in kind, not degree.
Profiles that effectively reflect levels in the variables provides little insight (you knew
that there were differences along the variables before) and if you are interested in dif-
ferences in degree you can turn to related techniques (e.g., regression, latent growth
curve, etc.). Thus, solutions with more profiles should add qualitatively new profiles.
With this in mind, now take a look at the 4 profile solution suggested based on BIC:

R Code: Profile solution

get_estimates(emo.kn.lpa$model_3_class_4) %>%
filter(Category == "Means") %>%
ggplot(aes(y = Estimate, x = Parameter,
colour = as.factor(Class),
group = as.factor(Class))) +
geom_point() + geom_line() +
theme(text = element_text(size = 15),
axis.text.x = element_text(angle = 90,
vjust = 0.5, hjust=1))

4 The idea of a multiverse analysis is to follow along all forking paths where we make decisions in
an analytical process and present all results together or average them. In this way, we can get an
intuition for how analytical choices influence the results.

11 Pattern Recognition—Unsupervised Machine Learning 239

as.factor(Class)
-1

Estimate
£

_—
~——

=~
s wn

>
-

anxiety-
LP.M-
LT
M.Electric-
M.Radiant
Practice -
T Process
value -

boredom-
confusion
control
curiosity
frustration -
nterested

Parameter

Fig. 11.12 Variable values for 4-profile solution

The plot (Fig. 11.12) shows that the four profiles show similar shapes across all
variables from joy to value; profile four showing some difference in degree here.
From anxiety to interested, profiles 1 and 4 show similar shapes and profiles 2 and 3
have shapes that are distinct from each other and also the shapes of profiles 1 and 2.
This suggests you have four profiles with clear distinction here. Now, take a look at
the suggested eight profile solution (Fig. 11.13):

R Code: Get estimates

get_estimates(emo.kn.lpa$model_3_class_8) %>%
filter(Category == "Means") %>%
ggplot(aes(y = Estimate, x = Parameter,
colour = as.factor(Class),
group = as.factor(Class))) +
geom_point() + geom_line() +
theme(text = element_text(size = 15),
axis.text.x = element_text(angle = 90,
vjust = 0.5, hjust=1))

240 M. Kubsch et al.

as.factor(Class)

Estimate

>
2

anxiety -
boredom -
contro
curiosity -
terested -
LP.M
LP.T-
Practice -
T.Process-
value-

confusion -
frustration -
M.Electric-

Parameter

Fig. 11.13 Variable values for 8-profile solution

Again, there is little differentiation in kind to be seen on the variables on the right
side of the plot. When you look at the left side, there is profile 3 which is high on
anxiety, confusion and frustration which stands out. This profile is comparable in
shape to profile 3 from the four-profile solution. The remaining profiles often show
similar shapes such as profiles 1 and 4 and generally are similar in shape to the
profiles 1, 2 and 4 from the four-profile solution with some added differences in
degree.

There are not really any new shapes with the eight-profile solution compared to
the four-profile solution. So far, the four-profile solution seems preferable. Let us
also compare the comprehensive set of fit indicies and metrics for those solutions.

You can access the respective indices by storing the results of the
compare_solutions() function in the object fit and then filtering for the two
solutions that are of interest:

R Code and output: Storing the results

fit <- compare_solutions(emo.kn.lpa)
fit$fits %%

filter(Model == 3 & Classes %in% c(4,8)) %%
glimpse()

Rows: 2

Columns: 19

$ Model <dbl> 3, 3

$ Classes <dbl> 4, 8

11 Pattern Recognition—Unsupervised Machine Learning 241

LogLik <dbl> -2128.142, -1969.723
AIC <dbl> 4622.284, 4433.445
AWE <dbl> 6798.430, 7371.367
BIC <dbl> 5253.824, 5285.852
CAIC <dbl> 5436.824, 5532.852
CLC <dbl> 4258.218, 3941.336
KIC <dbl> 4808.284, 4683.445
SABIC <dbl> 4673.804, 4502.983
ICL <dbl> -5262.106, -5309.282

Entropy <dbl> 0.9671096, 0.9454112
prob_min <dbl> 0.9761424, 0.8864891
prob_max <dbl> 0.9972789, 0.9996584
n_min <dbl> 0.11587983, 0.02575107
n_max <dbl> 0.4806867, 0.3175966
BLRT_val <dbl> 186.4271, 105.2969
BLRT_p <dbl> 0.00990099, 0.00990099
Warnings <chr> NA, NA

B I T A - B - - A A R A e R - N - -

Using glimpse provides a vertical orientation of the output which is handy for
viewing the data in the R console (if you have a large screen, running the command
without glimpse () will provide a regular table). In the vertical orientation, the left
number belongs to the four-profile solution. For AIC to ICL, lower values represent
better fit.> Four indices favor the four-profile solution and four indices favor the
eight-profile solution—a draw. Now, take a look at n_min next. n_min gives the
size of the smallest profile in percent. With more profiles, the number of students
assigned to each profile has to get smaller. For the eight-profile solution, the smallest
profile only has 6 students and for the four-profile solution, the smallest profile
has 27 students. The low number of students in the smallest profile of the eight-
profile solution will be problematic for any follow-up analyses. Finally, prob_min
is interesting to consider as it gives the lowest classification probability. The value
should be as high as possible, otherwise you end up with classifications that are very
uncertain themselves. Here, the four-profile solution is clearly superior to the eight-
profile solution. In sum, the metrics favor the four-profile solution. In conclusion the
four-profile solution will be in focus for the remainder of the chapter.

5 For a more in depth discussion of the different fit parameters and also BLRT which we will not
discuss here as there is no meaningful difference for this metric for the two solutions, we recommend
Spurk et al. (2020).

242 M. Kubsch et al.

11.4.2 Qualitative Pattern Interpretation

For the qualitative interpretation of the profiles, go back to the profile plot Fig. 11.12:

Profiles 1 and 4 are overall relatively similar. Values for control, value, curiosity,
interested and joy are rather high, while the values for boredom, confusion, anxiety,
and frustration are rather low. When it comes to the knowledge related variables, there
is difference in degree favoring profile 4, especially for M.Radiant, M.Electric,
and LP.T; profile 1 scores are mostly identical to those of profile 2 and 3. Thus one
may characterize profile 1 as overall engaged with average performance and profile 4
as overall engaged with high performance. Profiles 2 and 3 show little differentiation
regarding the knowledge related constructs between each other and in comparison to
profile 1. What sets these profiles apart are the emotions. High values for boredom,
and frustration set them apart from profiles 1 and 4; high anxiety further distinguishes
profile 3 from 2. In consequence, profile 2 may be characterized as frustrated and
bored with average performance and profile 3 as anxiously frustrated and bored with
average performance.

11.4.3 Pattern Validation

For pattern validation, you will now again turn to an external criterion, specifically
asking whether the profiles help to make sense of students’ learning over the course
of the unit as measured by the pre- and post-test. Based on our characterization of
the profiles, it seems fair to assume that profile 1 learned the most, followed by
profile 4. The rather negative affect of profiles 2 and 3 probably also influenced their
learning; given the high anxiety for profile 3 probably more so for profile 3 than 2.
The following code prepares a new object that has the profile assignment and the
pre- and post-test data:

R Code and output: Preparing further analysis

prepare further analysis

df.clust.emo_kn <-
cbind(df,emo.kn.lpa$model_3_class_4$dff$Class)
df.clust.emo_kn <-

df.clust.emo_kn %>%

rename(class = ’emo.kn.lpa$model_3_class_4$dff$Class’)

Now, we run a regression model to see the influence of the profile on learning
from pre- to post-test:

11 Pattern Recognition—Unsupervised Machine Learning 243
R Code and output: Regression model

df.clust.emo_kn %>%

Im(post ~ pre + as.factor(class), data = .) %%
summary ()
Call:
Im(formula = post ~ pre + as.factor(class), data = .)
Residuals:

Min 1Q Median 3Q Max

-3.01950 -0.46777 0.08598 0.53326 1.65719

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.11527 0.10146 1.136 0.2576
pre 0.57791 0.06504 8.885 1.31le-15 ***
as.factor(class)2 -0.10708 0.22702 -0.472 0.6378
as.factor(class)3 -0.51328 0.20003 -2.566 0.0112 *
as.factor(class)4 0.18587 0.14901 1.247 0.2141
Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.65 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.822 on 159 degrees of freedom
(69 observations deleted due to missingness)

Multiple R-squared: ©.3813, Adjusted R-squared: 0.3657

F-statistic: 24.5 on 4 and 159 DF, p-value: 8.3e-16

The output shows that (as can be expected) there is a strong relationship between
prior knowledge (pre) and the post-test score. Further, there are effects for classes 2,
3, and 4. What about class 1? Class 1 is the reference class here (this is an automatic
assignment happening with the Im() function). The estimated coefficients tell that
classes 2 and 3 indeed learned less than class 1 (just as expected) and that class 4
learned more. You need to be careful with this interpretation however, because only
the coefficient for class 3 is statistically significant. More data is needed to further
substantiate these results.

However, keeping in mind the question of whether the profiles help to make sense
of students’ learning, one can also take a look at the R-squared. The pre-test and the
four profiles together explain about 38% of the variance in the data. Compare that
with the variance that the pre-test alone explains:

244 M. Kubsch et al.

R Code and output: R-squared

df.clust.emo_kn %>% lm(post ~ pre, data = .) %>% summary()

Call:
Im(formula = post ~ pre, data = .)

Residuals:
Min 1Q Median 3Q Max
-2.99270 -0.54185 0.06994 0.59617 1.86011

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.10621 0.07225 1.470 0.143
pre 0.60048 0.06615 9.077 3.66e-16 ***

Signif. codes: 0 ‘***’ §.001 ‘**’ §.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8429 on 162 degrees of freedom
(69 observations deleted due to missingness)

Multiple R-squared: 0.3371, Adjusted R-squared: 0.333

F-statistic: 82.39 on 1 and 162 DF, p-value: 3.658e-16

The pre-test alone explains about 34% of the data. This means that the profiles
help to explain 5 percentage points more of the variance—an increase of about 10%.
You can even check whether this increase is statistically significant. To do so, store
the results from the two regressions in respective objects and then run an ANOVA

on them:

R Code and output: ANOVA

modl <- df.clust.emo_kn %>%

Im(post ~ as.factor(class) + pre, data = .)

mod® <- df.clust.emo_kn %>% lm(post ~ pre, data = .)
anova(mod®, modl)

Analysis of Variance Table

Model 1: post ~ pre

Model 2: post " as.factor(class) + pre
Res.Df RSS Df Sum of Sq F Pr(GF)

1 162 115.609

2 159 107.43 3 7.6671 3.7826 0.01175 *

11 Pattern Recognition—Unsupervised Machine Learning 245

Signif. codes: 0 ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The output shows, that the increase in explained variance is statistically significant.
In this way, the profiles do indeed help to better understand how students learn during
the unit.

11.5 Summary

This chapter covered a lot of ground. You went from simple clustering using k-means
to state of the art hierarchical clustering to latent variable models. You should now
have a good idea of the landscape of different unsupervised ML techniques and
know what questions to ask when someone presents you with such an analysis. How
did they determine the number of classes? Are they accounting for uncertainty in
measurement or the classification? Lastly, does the analysis add to the substantive
understanding of the phenomenon?

11.6 Tasks

Comprehension

1. Explain the concept of unsupervised machine learning and how it differs from
supervised machine learning.

2. Describe the difference between hierarchical and non-hierarchical clustering
techniques, providing an example of each.

3. What research question in your field of study could be addressed using unsuper-
vised machine learning? What are benefits and drawbacks of using unsupervised
machine learning compared to the methods that are more commonly used?

4. Discuss the importance of dimensionality reduction in unsupervised machine
learning.

5. Summarize the steps involved in the unsupervised machine learning workflow
described in the chapter.

Application

1. Design a validation study to test the robustness of the clusters identified through
unsupervised ML techniques. Describe the steps you would take and the criteria
you would use.

2. Use k-means clustering to investigate the relationships between control, value,
joy, and anxiety.

246 M. Kubsch et al.

3. Use UMAP for dimensionality reduction on the provided dataset using all vari-
ables but total, control, and value. Explore what effect different settings of the
hyperparameters have on the outcome.

4. Use HDBSCAN to look for clusters in the set of total, control, and value variables.
Discuss the outcome with respect to the literature on emotions in education.

5. Develop a checklist of things you would like to see reported in a journal article
that uses unsupervised machine learning so that you would feel comfortable to
be able to reproduce the analysis.

References

Akogul, S., & Erisoglu, M. (2017). An approach for determining the number of clusters in a
model-based cluster analysis. Entropy, 19(9), 452. https://doi.org/10.3390/e19090452

American Educational Research Association, American Psychological Association, & National
Council on Measurement in Education. (2014). Standards for educational and psychological
testing. American Educational Research Association.

Allaoui, M., Kherfi, M. L., & Cheriet, A. (2020). Considerably improving clustering algo-
rithms using UMAP dimensionality reduction technique: A comparative study. In International
conference on image and signal processing (pp. 317-325).

Campello, R. J., Moulavi, D., & Sander, J. (2013). Density-based clustering based on hierarchical
density estimates. In J. Pei, V. S. Tseng, L. Cao, H. Motoda, & G. Xu (Eds.), Advances in
knowledge discovery and data mining, (pp. 160-172). Berlin, Heidelberg: Springer.

D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning
and Instruction, 22(2), 145—157. https://doi.org/10.1016/j.Jearninstruc.2011.10.001

Hahsler, M., Piekenbrock, M., & Doran, D. (2019). dbscan: Fast density-based clustering with R.
Journal of Statistical Software, 91(1). https://doi.org/10.18637/jss.v091.i01

Hong, W., Bernacki, M. L., & Perera, H. N. (2020). A latent profile analysis of undergraduates’
achievement motivations and metacognitive behaviors, and their relations to achievement in
science. Journal of Educational Psychology. https://doi.org/10.1037/edu0000445

Keller, M. M., Neumann, K., & Fischer, H. E. (2017). The impact of physics teachers’ pedagogi-
cal content knowledge and motivation on students’ achievement and interest: Physics teachers’
knowledge and motivation. Journal of Research in Science Teaching, 54(5), 586—-614. https://doi.
org/10.1002/tea.21378

Magnusson, D. (2003). The person approach: Concepts, measurement models, and research strategy.
New Directions for Child and Adolescent Development, 2003(101), 3-23. https://doi.org/10.1002/
cd.79

Mclnnes, L., Healy, J., & Astels, S. (2017). hdbscan: Hierarchical density based clustering. The
Journal of Open Source Software, 2(11), 205. https://doi.org/10.21105/joss.00205

Mclnnes, L., Healy, J., & Melville, J. (2020). UMAP: Uniform manifold approximation and
projection for dimension reduction. http://arxiv.org/abs/1802.03426

National Research Council. (2012). A framework for K-12 science education. The National
Academies Press. http://www.worldcat.org/oclc/794415367

Pekrun, R., Elliot, A. J., & Maier, M. A. (2006). Achievement goals and discrete achievement
emotions: A theoretical model and prospective test. Journal of Educational Psychology, 98(3),
583-597. https://doi.org/10.1037/0022-0663.98.3.583

Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2017). Achievement emotions
and academic performance: Longitudinal models of reciprocal effects. Child Development, 88(5),
1653-1670. https://doi.org/10.1111/cdev.12704

https://doi.org/10.3390/e19090452
https://doi.org/10.1016/j.learninstruc.2011.10.001
https://doi.org/10.18637/jss.v091.i01
https://doi.org/10.1037/edu0000445
https://doi.org/10.1002/tea.21378
https://doi.org/10.1002/tea.21378
https://doi.org/10.1002/cd.79
https://doi.org/10.1002/cd.79
https://doi.org/10.21105/joss.00205
http://arxiv.org/abs/1802.03426
http://www.worldcat.org/oclc/794415367
https://doi.org/10.1037/0022-0663.98.3.583
https://doi.org/10.1111/cdev.12704

11 Pattern Recognition—Unsupervised Machine Learning 247

Pekrun, R., & Linnenbrink-Garcia, L. (Eds.). (2014). International handbook of emotions in
education. Routledge, Taylor & Francis Group.

Rosenberg, J., Beymer, P, Anderson, D., van Lissa, C. j., & Schmidt, J. (2018). tidyLPA: An
R package to easily carry out latent profile analysis (LPA) using open-source or commercial
software. Journal of Open Source Software, 3(30), 978. https://doi.org/10.21105/joss.00978

Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification
and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289.

Spurk, D., Hirschi, A., Wang, M., Valero, D., & Kauffeld, S. (2020). Latent profile analysis: A
review and “how to” guide of its application within vocational behavior research. Journal of
Vocational Behavior, 120, 103445. https://doi.org/10.1016/j.jvb.2020.103445

Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through
a multiverse analysis. Perspectives on Psychological Science, 11(5), 702—712. https://doi.org/10.
1177/17456916166586372

Yeager, D. S., Hanselman, P., Walton, G. M., Murray, J. S., Crosnoe, R., Muller, C., Tipton, E.,
Schneider, B., Hulleman, C. S., Hinojosa, C. P., Paunesku, D., Romero, C., Flint, K., Roberts,
A., Trott, J., Iachan, R., Buontempo, J., Yang, S. M., Carvalho, C. M., & Dweck, C. S. (2019). A
national experiment reveals where a growth mindset improves achievement. Nature. https://doi.
org/10.1038/s41586-019-1466-y

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.21105/joss.00978
https://doi.org/10.1016/j.jvb.2020.103445
https://doi.org/10.1177/17456916166586372
https://doi.org/10.1177/17456916166586372
https://doi.org/10.1038/s41586-019-1466-y
https://doi.org/10.1038/s41586-019-1466-y
http://creativecommons.org/licenses/by/4.0/

Chapter 12)
Automation and Explainability: e
Supervised Machine Learning with Text

Data

Peter Wulff, Marcus Kubsch, and Christina Krist

Abstract In this chapter we revisit supervised ML and apply it to text data. We
particularly utilize a LLM in the fine-tuning paradigm to showcase how these models
can be used in science education research projects.

12.1 Supervised ML for Textual Data

12.1.1 Classifying Written Reflections of Science Teachers

In this case study we consider an example where NLP and supervised ML are uti-
lized in science teacher education. It has been increasingly recognized that teaching
practice in science teacher education programs is of great value to enable pre-service
science teachers to apply their professional knowledge and reflect it. This helps them
to develop action-oriented professional knowledge. To support the reflection of pre-
service physics teachers teaching enactments, Anna Nowak and colleagues (Nowak
et al., 2019) developed a reflection-supporting model (based on the ALACT reflec-
tion model by Korthagen et al. (1999)), which helps pre-service teachers to structure
their written reflections. Among others, the authors differentiate several elements
that constitute a full reflection. In this model, pre-service teachers are required to
outline the circumstances of the lesson (e.g., goals), describe what happened during
the lesson and evaluate specific situation. Finally, they devise alternative modes of
action and consider consequences for their professional development. An instruc-
tors task could now be to apply this reflection-supporting model in practice, which
requires her/him to read through the individual written reflections of the pre-service

P. Wulff (<)
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany
e-mail: peter.wulff@ph-heidelberg.de

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 249
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_12&domain=pdf
mailto:peter.wulff@ph-heidelberg.de
https://doi.org/10.1007/978-3-031-74227-9_12

250 P. Wulff et al.

teachers. This requires expertise, after all, the teachers make a lot of experiences that
relate to various content-related and pedagogical issues such as students’ precon-
ceptions or classroom management. These substantive issues alongside the fact that
even pre-service teachers teach a lot and instructors only have limited resources to
assess the reflections and provide feedback. Also, the feedback situation in teacher
training can be unbalanced as to power-differentials. Typically, instructors will also
grade the teacher trainees, and the teacher trainees might be inhibited to disclose
sensitive issues to their instructors, given that they know that they will grade and
evaluate them. For example, teacher trainees might shy away from disclosing uncer-
tainty about some content-related issues to not give the impression that they don’t
know about it.

As such, Al and supervised ML could be part of a solution to automate parts of
the process to provide pre-service teacher guidance for their teaching and reflections.
For example, if we had a supervised ML model that could classify teachers written
reflections according to the reflection-supporting model we outlined, we could pro-
vide the students with some guidance on the structure of their reports (research found
that written reflections tend to be overly descriptive and judgemental). As outlined
in part I of this textbook and the preceding case studies, we will start with getting
acquainted with the data.

12.1.2 Getting to Know Your Data

To train an ML model that can perform classifications according to a reflection-
supporting model as outlined above (or any other model with distinct categories), we
need data from pre-service teachers that actually reflected upon their or someones
teaching. While some former research utilized rule-based approaches (e.g., defining
specific words that are reflective), we seek to leverage the power of ML to detect
patterns in complex data and utilize these patterns for classification problems. The
data set! comprised 1091 segments. We segmented the data by sentences, which can
be done with the spaCy module in Python, or by hand. As a first step, we split the
data into train and test sets (cross-validation), and made sure to never touch the test
data until the very last ML model was trained (which is sometimes difficult and most
certainly an exciting moment in your project). The train_test_split function
from the scikit-learn module in R and Python can be used. We did not stratify our
data by students, which could be done and might be a wise decision in your project.
After all, having sentences from the same student in train and test data might comprise
unjustified data leakage and should be critically discussed (see Chap. 2). Stratification
can also be done with the train_test_split function (for an application see
Chap. 10). For illustrative purposes, we keep it simple and randomly split the entire

! The data set was collected in a research project, ARETE.KI, conducted by Marcus Kubsch, Stefan
Sorge, and Peter Wulff.

12 Automation and Explainability: Supervised Machine Learning with ... 251

data set into 872 sample sentences for training (and development) and 219 sample
sentences for final testing.

Now we can start to explore our data. Just for you to get an impression of the kinds
of sentences that are written and how they are classified by human raters, say a sample
sentence reads: “The students take the materials and conduct the experiments.” This
would be classified as “description” according to the reflection-supporting model. A
sentence that would be classified as evaluation could read: “The lesson overall went
bad, because the students did not perform the experiment correctly.”

Tokenization

Tokenization is an important procedure in NLP. It can be done on a word
level (through word_tokenizer from the nltk library in R and Python), or
through wordpiece tokenization. Wordpiece tokenization does not seek to split
text into individual words, but rather into a finite number of wordpieces that
can but must not be words. LLMs are typically restricted to a finite vocabularly
(e.g., for BERT some 30,000 tokens) which enables the LLMs to partition any
language input into recognizable units that do oftentimes not map directly to
words, and has been found to improve LLM performance on some tasks. For
example, the word “experiment” will be tokenized into: ‘exper’ + ‘##iment’.

To get an idea of the complexity of the data that we are dealing with we calculate
the overall vocabulary size (i.e., a list of unique words) for the train data set, which
is 2701. Vocabulary already provides you some idea on the complexity of your
data (large number of unique words would correspond to greater variability in your
data which might make classification more difficult). Another informative statistic is
length of responses. Looking at the individual lengths of the sentences requires further
wordpiece tokenization (see Box). We expect the wordpiece tokenized sentences to be
longer compared to the word tokenized sentences, after all, wordpieces by definition
mostly split words. This can be verified through the density plot (see Fig. 12.1). In
this plot, the lengths and the respective proportions for both tokenizers are depicted.

All sentences were classified according to the reflection-supporting model by
expert human raters. As well-established standard, one is here required to assure
human interrater agreement, which can be calculated through Cohen’s «, if seg-
mentation boundaries are clear (see Box). In our case, segmentation boundaries are
sentences.

Segmentation

As we outlined in Chap. 7, language data typically comes unsegmented. How-
ever, in classification problems (or coding more generally) you typically aspire
for a consistent coding unit, so that two raters get the same segments. How-

252 P. Wulff et al.
Density Plot of Sentence Lengths by Different Tokenizers

[NLTK Tokenizer Length
BERT Tokenizer Length

\
\

\

A

0.04

0.03 |

Density

0.02 |

|
" ‘J \

0.00 T T T
0 20 40
Sentence Length

Fig. 12.1 Length of the train sentences as measured through word tokenization and wordpiece

tokenizer

ever, this is not naturally the case and segmenting your data is quite an intricate
problem. A more meaningful way to segment language data are elementary
discourse units. Segmenting language data into elementary discourse units in
itself is an intricate problem where human expertise is required and human
interrater agreement should be assessed. Agreement metrics such as Cohen’s
k (or Krippendorff’s o) are of no help in this context. Other metrics such as
y have been proposed to estimate agreement on segmenting language data (or
other unsegmented data) (Mathet et al., 2015).
Often, researchers in science education for convenience purposes use sen-
tence segmentation. However, sentence boundaries, especially with dialogues,
can be intricate to determine as well. In Chap. 7 we also showed how sentence

segmentation can be performed with Python.

We should inspect the proportions of the sentences that are classified into each
category (see Table 12.1). In fact, descriptions and evaluations are prevalent, which
is not surprising, because one probably has to describe a situation at greater length in
order to devise alternative modes of actions for it. Another important point to notice
is the imbalance of samples in each category (unbalanced data set). This is quite
common, rarely are categories in a data set balances and you might encounter it with
your data as well (see some problems with unbalanced data, and strategies to address

this problem in Box).

12 Automation and Explainability: Supervised Machine Learning with ... 253

Table 12.1 Summary statistics for the reflection elements. The absolute count and relative propor-
tion are displayed

Category Count Proportion
Circumstances 64 0.07
Description 407 0.47
Evaluation 263 0.30
Alternatives 99 0.11
Consequences 39 0.04

Dealing with unbalanced data

There are several techniques that can be applied to accommodate for this prob-
lem. After all, it is known in ML research that categories with more samples
also typically are more accurately classified by the final ML model. ML is
an inductive learning approach, and providing samples is crucial to enable
the machine to learn. You could apply oversampling, where you balance the
distribution of categories by replicating samples from the minority classes.
You could draw samples randomly from the minority classes. You could also
downsample the majority class. Generative LLMs might be of help to pro-
duce semantically similar sentences, rather than replicate existing sentences.
Of course, due caution has to be given to bias and hallucinations that these
generative LLMs might introduce. In any case, you should be aware that you
artificially manipulate your training data and introduce novel assumptions that
have to be critically examined alongside the model performance. You might
cause overfitting, for example, when you draw multiple times the same sample
and use it for training the ML model. You could also undersample (down-
sample) the majority class, however, then you constrain your valuable training
data, which can be costly given that ML models typically perform better with
larger sample sizes. Moreover, you might distort the underlying data distribu-
tion which can constrain the generalizability of the ML model. In this case
study, we will leave the sample distribution in categories undistorted.

12.1.3 Applying Supervised ML to this Problem

After exploring your data, the next step is to decide on a supervised ML model
in order to classify the data. We got to know many different classification algo-
rithms (e.g., logistic regression or naive Bayes). In this case study, we will employ
a more advanced NLP technique: Large Language Models (LMM). An accessible
and widely used large language model is Bidirectional Encoder Representations for
Transformers (BERT). Among the many ANN architectures, BERT is based on the

254 P. Wulff et al.

so-called transformer architecture. Transformer models were found to particularly
excel with NLP tasks, among others, because they rely on a self-attention mecha-
nism that facilitates that for each word the relation to the other words is modelled.
We won’t bother with the details and accept that it works for certain tasks, given the
performance on many NLP tasks, and the implementation of transformers in all sorts
of models such as Generative Pretrained Transformers (GPT), in ChatGPT, etc. You
can access the BERT model with the transformers library in Python as laid out
in the Python code. This is a pretrained BERT model, which means that the model
parameters were already trained through self-supervised training such that BERT
provides meaningful contextualized embeddings (see Chap. 7).

OpenScience and LLMs

Given the intention of this book to encourage OpenScience (e.g., using Open-
Source ML models on OpenSource software), we like to highlight that Python
and R provide valuable resources to access transformer models on your own
hardware and fine-tune (i.e., adjust model weights to be more suitable to your
data) them to your data without any subscriptions and access fees, and without
providing commercial, third-party companies your research data. Many of the
models such as the BERT model in our present case study are by far not as
capable as LLMs such as GPT-4, however, they are also mostly smaller and
faster. On another note, you might consider that accessing ChatGPT each time
you code written reflections billions of parameters are accessed and used for
calculations. One request is estimated to average to 2.9 Wh of energy. This
approximately equals the energy needed to lift a car (mass approx. 1 ton) one
meter high! And this for only one average request. ChatGPT reached over 100
million users and of early 2023 had an estimated 195 million requests per day
(de Vries, 2023). This all substantially taxes the environment, and should be
critically reflected. Hence, training smaller models for specific purposes might
be a reasonable way to solve this problem (of course, training costs a lot more
energy - and these various goals have to be balanced).

Python Code: Loading pretrained BERT model

from transformers import BertTokenizer, BertModel
tokenizer =
BertTokenizer. from_pretrained(
’pretrained_models/bert-base-uncased’)
model =
BertModel. from_pretrained(
’pretrained_models/bert-base-uncased’)

12 Automation and Explainability: Supervised Machine Learning with ... 255

For once, with only the pretrained BERT we can use it to represent our data. LLMs
can output dense, contextualized embeddings (see Chap. 7), which can be visualized
in 2D space. The embeddings can be accessed through the forward() function the
pytorch models have, via output.last_hidden_state. These are the contextu-
alized, dense, and high dimensional embeddings for our sample sentence. We can
then use our knowledge on dimensionality reduction to visualize these embeddings
in 2D. You could use functions such as PCA, UMAP, or t-SNE for the dimensionality
reduction (see Chap. 5). We will actually perform similar analyses in the subsequent
chapter and will jump to supervised classification here.

What the pretrained LLMs such as BERT are particularly capable for is fine-tuning
and, with much larger LLMs such as GPT-4, few-shot and zero-shot learning, which
means that they do not need specific training, but rather a prompt that exemplifies
the task at hand to be performed once or zero times. Oftentimes you find different
versions for certain LLMs. BERT “base” comprises 110 million parameters and 768
hidden layers, while BERT “large” uncased comprises 340 million parameters and
1024 hidden layers. Fine-tuning could be desirable for science education researchers,
given that they for example developed a specific model in a research context and
want the LLMs to be capable to code data according to this model. This is also
conveniently done by using the pytorch library in R or Python. We will adhere to
the implementation by Ostendorff et al. (2019) to wrap a simple ANN (e.g., FFNN)
around BERT to essentially use BERT to represent the input data through dense,
contextualized embeddings and use these as length-standardized inputs for the ANN
that then can be trained to classify data according to the model of interest in the
specific research context. The model can be initialized as depicted in the Python
code.

Python code snippet: Implement LLM

from torch import nn
import numpy as np

class BertMultiClassifier(nn.Module):
def __init__(self, labels_count, hidden_dim=768, dropout=0.1):
super().__init__Q

self.config = {
’labels_count’: labels_count,
’hidden_dim’: hidden_dim,
’dropout’: dropout,

}

use BERT as pretrained LLM:
self.bert =

BertModel. from_pretrained("bert-base-german-cased")
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(hidden_dim, labels_count)
self.sigmoid = nn.Sigmoid()

256 P. Wulff et al.

def forward(self, encoded_input):
pooled_output = self.bert(**encoded_input).pooler_output
dropout_output = self.dropout(pooled_output)

linear_output = self.linear(dropout_output)
proba = self.sigmoid(linear_output)

return proba

Again, we will not worry about the details here, but only say that in the mid-
dle the BERT model is implemented via BertModel . from_pretrained("bert-
base-german-cased"), and embedded into a feed-forward neural net through
nn.Linear(hidden_dim, labels_count). Note that one can also access basi-
cally the same model via BertForSequenceClassification that does a similar
job: a classification layer is added on top the encoder. In fact, you could add a deci-
sion tree or logistic regression classifier on top that you encountered in Chap. 4. As
such, BERT can be trained with your specific data set. However, classification is only
one among many NLP tasks for which LLMs could be utilized. A comprehensive
overview and implementation details can be found here: https://huggingface.co/. As
in other classification models, it is important to use cross-validation, monitoring of
training and validation loss, and similar measures to keep track of the models’ per-
formance. A common flaw in ML research is overfitting and any measure to prevent
it should be taken (see Chap. 2).

Our data set at hand is rather small. The strategy is now to utilize BERT to
form contextualized embeddings for the sentences that can be used as inputs for a
classifier, i.e., the feed-forward neural net with each category as an output node.
Again, we had to specify hyperparameters such as the learning rate, the number
of epochs, or the batch size input to the model. There are suggestions for these
hyperparameters in prior studies. In your project, you might want to perform a grid
search, i.e., systematically varying the hyperparameters and track performance on
the validation data set. Remember that performance cannot be tested yet on the test
data set, for otherwise our final model might overfit this test data set (we cannot
stress this point enough, because otherwise your final model might be flawed and
not perform as expected in practice).

The BERT model now runs multiple times through the training data set and we
track the train loss, i.e., a measure of the discrepancy between actual prediction and
gold standard, which mostly are human labels. A binary cross-entropy loss function
was utilized as a convenient loss function for such a multi-class problem. Note that
there are also multi-label classification problems. The difference is that in multi-class
problems any sample x; is assigned only one class, y; € {1...K} (K is the number
of classes). In a multi-label problem, each sample can be assigned multiple non-
exclusive labels. Having finished the training (it might take some time, since even
BERT is quite a large model) we now evaluate the model performance on the test data.
Ahandy method is the classification_report function fromthe scikit-learn
library. This yield the following output:

https://huggingface.co/

12 Automation and Explainability: Supervised Machine Learning with ... 257

Python Output: Classification report

precision recall fl-score support

0 0.78 0.67 0.72 21

1 0.91 0.71 0.80 105

2 0.60 0.89 0.72 65

3 0.75 0.33 0.46 9

4 0.89 0.84 0.86 19

accuracy 0.76 219
macro avg 0.79 0.69 0.71 219
weighted avg 0.80 0.76 0.76 219

In this report you see the performance as measured through precision, recall, and
fl-score (see Box in Chap. 10). Support refers to the number of samples in the test
data set for each category (above) and overall (below). The numbers refer to the
categories (alphabetically: alternatives, ...). The lower three lines refer to aggregate
performance. In unbalanced data problems, it is important to monitor the macro
and weighted avg (average) for precision, recall, and fl-score, because the macro
average treats all categories equally, and the weighted average weights the scores for
respective support.

When interpreting this output, we first see that also the test data set is unbalanced
(see last column, the support for each category). This also accounts for the discrep-
ancy in macro and weighted average performances. Except category 4 (which would
be circumstances), performance is linked to support. Most important are the last three
rows, where we find the macro and weighted averages for precision, recall, and f1
score. BERT achieved a performance (macro F1) of .71, which translates into sub-
stantial agreement between computer and human rater. This value is dragged down
by the only 9 samples of consequences and the low F1 value for it. We would now
conclude to collect more data on consequences particularly to improve model per-
formance for this category. Similar to our comparison with the addition example in
Chap. 4 we also here employed a shallow learning ML algorithm to put performance
of BERT into some perspective (you find the implementation details in the online
supplement). A SVM classifier with the same data and no particular hyperparameter
optimization reached a macro F1 of .52, which is substantially lower compared to
the LLM. While this is no definitive proof that LLMs are always more capable in
NLP task (in fact, sometimes simpler models are better), it is suggestive that LLMs
are versatile and can provide valuable tools to try in your research problems.

BERT has been widely employed in science education research (Dood et al., 2022;
Gombert et al., 2022; Winograd et al., 2021; Wulff et al., 2022). Our trained ML
model can now be utilized in practice. Note that it is important to employ it in similar

258 P. Wulff et al.

contexts in which it has been trained in. If learners of different linguistic background
(e.g., younger age with different vocabulary) write in different style and with different
words, this model might not perform well. This taps into the interesting question to
what extent LLMs are good at extrapolation. To develop a better understanding of
BERT’s decision making, we will seek to utilize methods from explainable Al in
the subsequent section. Before that, let us also say that another benefit of using this
LLM approach over more shallow ML algorithms is that the BERT model can be
conveniently further trained with novel samples and even in novel contexts (Wulff
etal., 2023). You would use the trained model as the baseline model and further train
it with data that you collected in a novel context.

12.1.4 Inspecting the LLM’s Decisions

A key ingredient to trustworthy models and Al in general is explainability of model
decisions (XAI, explainable AI).? LLMs are complex, deep learning-based ML mod-
els, and we already mentioned that explaining model decisions is quite tricky. It is
not easily possible to reconstruct all the individual artificial neurons and establish
an understanding what they are doing. Hence, we need an easier model that can be
inspected. For example, one can examine the outputs of a complex model in depth
and find similarities and differences in them. This could help to find features that are
important for classification decisions.

When investigating explainability of ML models, researchers differentiate between
local and global explanations. Local explanations would ask the question why a cer-
tain response of student A got the classification it got, and global explanations would
ask why an entire set of students was attested with a certain preconception or similar.
Both can indicate valuable information on why an ML model made a certain decision.

Integrated Gradients

A means to analyze local explanations is provided by integrated gradients. Integrated
gradients work by calculating an attribution score for the importance of each input
feature for a given output. This importance is measured against some (ideally unin-
formative) background (e.g., in image analysis an entirely black picture). Integrated
gradients fulfill important properties of sensitivity and implementation invariance,
i.e., they should attribute non-zero values to input features that are related to the
output (compared to an uninformative baseline), and, if inputs and outputs of two
differently implemented ANNs are different, attributions should be the same for the
inputs. Say, you want to predict students’ performance in an assessment based on their
sense of belonging to science and their prior knowledge as input features. Assume
that zero sense of belonging and zero prior knowledge would form the baseline.
From this baseline, a stepwise procedure would then calculate an attribution score

2 See also Chap. 2.

12 Automation and Explainability: Supervised Machine Learning with ... 259

that indicates to what extent a certain value in sense of belonging or prior knowledge
would predict performance.

We can illustrate this with our addition toy example from Chap. 4. Calculating
integrated gradients in Python is enabled through the captum module. In this toy
problem, a feed-forward neural network was trained to perform simple addition prob-
lems. Remember, a distributed representation for the inputs was used. For example,
the number one was represented as the vector:

Distributed representation of number one

The input for a problem such as 1 4+ 1 = 2 was then a 52 dimensional vector, i.e.,
the network has 52 input features and 36 output dimensions (3 x 12 = 36). It was
shown that simple addition could be learned perfectly, even for out-of-sample, unseen
additions. We can now use integrated gradients to inspect the attribution scores for
each of the 52 input features. We compare them to a baseline of zero as input. As
such, all inputs that are zero will receive no attribution score per definition. We
compare the trained model against an entirely untrained model to better understand
what changes in the attributions (see Fig. 12.2).

While in the untrained model the attribution scores for the ones in the input are
small and rather randomly scattered around zero, this changes for the trained model
(see Fig. 12.2). The attribution scores become almost exclusively positive and large,
indicating that these input features attribute to the actual output.

Integrated gradients can be used also for our text classification model. After all,
text is oftentimes tokenized into a finite number of distinct tokens. Each token can
then receive an attribution score for how much it contributed to the output, say a
classification. In our above example, we categorized sentences into distinct categories
(circumstances, description, evaluation, alternatives, and consequences). However,
multi-class problems are difficult to implement.? To circumvent this issue you can
simplify your model into a binary classifier. For example, you could simply retrain
your model to predict if a sentence is an evaluation or not. To do this, you have to
adjust your data into binary categories, adjust the BertMultiClassifier (i.e., set
the labels indicator to 1), and re-train the model. The trained binary classification
model even yields a better performance in terms of F1 score compared to the multi-
class (5-way) classifier (see Python code). This is oftentimes the case: less categories
to predict increase the model performance.

3 See our conversation with the captum developers here: https://github.com/pytorch/captum/issues/
355, last access 22 Nov 2023.

https://github.com/pytorch/captum/issues/355
https://github.com/pytorch/captum/issues/355

260 P. Wulff et al.
Integrated Gradients Attributions for Input Values

Untrained Model

Attribution Score

0.00 e o c oo oo oo e~ e e o e oo oo ® o 00000 o oo $g = = = S S S

input Values
Trained Model

Attribution Score

°
0.00 eoceoceeeee 6o 0060000 ¢ ¢ 0000000 66000000 ! o0o
°

AR P ¥ P P P ¥ 0¥ P ¥ A AP AP P P P P P P P ¥ AT AP A P P P P ¥ T P ¥ T P AP AP AT P P P P P P ¥ PP P P

Input values

Fig. 12.2 Attribution scores for each input of the addition model for untrained (above) and trained
(below) model. Red vertical lines indicate the positions for the numbers. Remember: the last four
input features simply indicate that it is an addition problem

Classification report for binary classifier

precision recall fl-score support

0.0 0.90 0.86 0.88 154

1.0 0.70 0.77 0.74 65

accuracy 0.84 219
macro avg 0.80 0.82 0.81 219
weighted avg 0.84 0.84 0.84 219

Now that we have the binary classifier we can move on to calculate the
integrated gradients. For complex LLMs such as BERT, the captum module provides
LayerIntegratedGradients, which keep track of the gradients throughout the
layers. As afirst step, youinitialize the theclass 1ig = LayerIntegratedGradien

12 Automation and Explainability: Supervised Machine Learning with ... 261

ts(...), and then apply it with the respective input_ids for a particular sentence
(see Python code).

Calculate integrated gradients for BERT model

lig = LayerIntegratedGradients(
evaluations_model,
evaluations_model.bert.embeddings)

Compute attributions using LayerIntegratedGradients
attributions_ig, delta =
lig.attribute(
inputs=input_ids,
baselines=input_ids * 0,
additional_forward_args=(attention_mask,),
target=0,
return_convergence_delta=True)

There is also a visualization class provided in the captum module:
VisualizationDataRecord. You find more information on how to apply it in the
online supplement. In Fig. 12.3 you see a visualization of sample sentences. Words
that are highlighted in green contribute positively to the classification, whereas red
highlighted words contribute negatively. As might be expected, evaluative words
such as “good” or “bad” score positively for classifying a segment as evaluation.
In fact, when calculating attributions for all tokens and averaging their attribution
values we can create a list of the top 20 words that most positively contribute to clas-
sifying a segment as evaluation (see 12.1.4). Interestingly, negative words (‘“bad”,
“missing”, “typical”) score highest. This might relate to the issue that teachers tend
to negatively judge teaching, which would be an important research topic given that
positively and productively judging one’s own and others teaching could contribute
to a more positive image of the teaching profession.

Top 20 words with highest attribution values.

[(’schwierig’, 0.5768174216263907),
("keine’, 0.5834361107807192),
(’ansonsten’, 0.5851991596999772),
(’verloren’, 0.5872418299226642),
(’fast’, 0.6489399595433871),
("kaum’, 0.6511844824380291),
('nicht’, 0.6672528365162796),

262 P. Wulff et al.

In [71]: sentence = "Ich hitte auch eine Kamera nehmen kénnen."
process_display_attributions(sentence)

Legend: M Negative (J Neutral B Positive

True Label Predicted Label Attribution Label ~Attribution Score Word Importance
0 1(1.00) 0 0.96 [CLS] ich hatte auch eine kam ##era nehmen kon ##nen . [SEP]
In [70]: sentence = "Es war eine gute Stunde, die viel Interaktivitit beinhaltete.”

process_display_attributions(sentence)

Legend: B Negative (] Neutral B Positive

True Label Predicted Label Attribution Label Attribution Score Word Importance

0 1(1.00) 0 121 [CLS] es war eine [gUiBlist ##unde , die viel inter ##aktiv ##itat beinhaltet ##e . [SEP]

Fig. 12.3 Caption

('weniger’, 0.668545931361491),
('positiv’, 0.6770763150585619),
(Cerweist’, 0.7085249840084905),
("will’, 0.7228655488377653),
(’erinnert’, 0.749258007727709),
(’schlechte’, 0.7839921846245187),
("bereit’, 0.8026147073352417),
("kein’, 0.8189304757309708),
(’geringer’, 0.8370266931064063),
(’mangelnde’, 0.8586549366857567),
(’fehlt’, 0.9314228513614882),
(’typisch’, 0.9571113614605622),
(’##spart’, 0.9681103299410895)]

12.2 Summary

In this chapter, we applied supervised ML to text data: pre-service physics teachers’
written reflections on teaching enactments. We showed how particularly LLMs could
be leveraged to be fine-tuned to your particular data and achieve accurate classifica-
tion performance. We also showed how you can make sense of model decisions, even
though they come from rather complex LLMs. Unfortunately, the utilized inspection
methods do not allow to derive a comprehensive understanding of the decision-
making of the LLMs and they remain black boxes as of now.

12 Automation and Explainability: Supervised Machine Learning with ... 263

12.3 Tasks

Comprehension

1. Explain the significance of supervised ML in classifying written reflections
according to the reflection-supporting model.

2. What goals will you typically pursue with supervised ML, and what kinds
of constructed-response items do you typically encounter in science education
research?

3. What is your research focus, and what kind of model would be suitable for such
a classification problem?

4. What is tokenization and why is it important in NLP?

5. *What are integrated gradients, and how and why are they used in the context of
this chapter?

Application

1. Based on the Python code provided for training the BERT model, extend the evalu-
ation code for using the pretrained reflection-supporting model in a function (def
function(...)) where input_text can be provided as an input parameter and
the resulting category is predicted. (Remember, the text has to be in German,
given that the model was trained in German. You could also use Google translate
in Python the translate the language input into German as a possible extension.)

2. Implement a Python function using the BERT tokenizer to tokenize and print out
a sample sentence.

3. *Create a complete script that trains a BERT-based classifier on a data set of
science teachers’ reflections (or a data set of your choosing) and evaluates its
performance.

4. Propose a strategy to deal with unbalanced data in the context of classifying
written reflections.

5. *Write Python code to visualize the integrated gradients for a specific input sen-
tence classified by a BERT model.

12.4 Solutions

Comprehension

1. The outlined reflection-supporting model allows researchers to annotate writ-
ten reflections, based on substantive theory on experiential learning and profes-
sional actions. The annotated data can then be used as training samples to train
a classifier that automatically annotates this data. These annotations can spare

264 P. Wulff et al.

resources and enable instantaneous feedback for pre-service teachers. The out-
lined reflection-supporting model is rather generic as to be applicable across dif-
ferent contexts. More domain-specific models would require annotation/coding
of content-related themes. For this task computational grounded theory and unsu-
pervised ML approaches can be helpful, as outlined in Chaps. 13 and 15.

2. Typical goal include classification and regression. Input-output mappings could
be language data (transformed into numerical representation) to categories (multi-
label or multi-class classification), or numerical data with scores (regression). Typ-
ical constructed-response item formats would be essays, or short-text responses.

3. If your research focus were argumentation processes in science education, you
could employ a shallow ML model such as random forest classifier to automati-
cally and reliably assign categories to sentences (claim, evidence, or reasoning).
Of course, segmentation plays a crucial role here, and also cross-segment cor-
relations would be important to capture. More involved models would include
LLMs such as BERT to improve classification accuracy or even generative LLMs
to automate annotation.

4. Tokenization refers to the process of transforming a text string into elementary
units that form a meaningful representation of the text.

5. Integrated Gradients are one way to help understand decision-making processes
in ANNSs. They can even be used with LLMs (which often include transformer-
based ANNs). Integrated Gradients assign the input tokens/features a score which
attributes to the importance of this input for the output. In the reflection example
above we showed that tokens with high scores were also considered by us as
important for certain categories in the reflection-supporting model.

Application

Please see online notebook.

References

de Vries, A. (2023). The growing energy footprint of artificial intelligence. Joule, 7(10),2191-2194.

Dood, A., Winograd, B., Finkenstaedt-Quinn, S., Gere, A., & Shultz, G. (2022). Peerbert: Automated
characterization of peer review comments across courses: Lak22, March 21-25, 2022, online,
USA (pp. 492-499).

Gombert, S., Di Mitri, D., Karademir, O., Kubsch, M., Kolbe, H., Tautz, S., Grimm, A., Bohm, 1.,
Neumann, K., & Drachsler, H. (2022). Coding energy knowledge in constructed responses with
explainable nlp models. Journal of Computer Assisted Learning.

Korthagen, F. A., & Kessels, J. P. A. M. (1999). Linking theory and practice: Changing the pedagogy
of teacher education. Educational Researcher, 28(4), 4-17.

Mathet, Y., Widlocher, A., & Métivier, J.-P. (2015). The unified and holistic method gamma for
inter-annotator agreement measure and alignment. Computational Linguistics, 41(3), 437-479.

Nowak, A., Kempin, M., Kulgemeyer, C., & Borowski, A. (2019). Reflexion von physikunterricht
[reflection of physics lessons]. In C. Maurer (Ed.), Naturwissenschaftliche Bildung als Grundlage

12 Automation and Explainability: Supervised Machine Learning with ... 265

fiir berufliche und gesellschaftliche Teilhabe: Jahrestagung in Kiel 2018 (p. 838). Regensburg:
Gesellschaft fiir Didaktik der Chemie und Physik.

Ostendorff, M., Bourgonje, P., Berger, M., Moreno-Schneider, J., Rehm, G., & Gipp, B.
(2019). Enriching bert with knowledge graph embeddings for document classification.
arXiv:1909.08402v1.

Winograd, B. A., Dood, A. J., Moeller, R., Moon, A., Gere, A., & Shultz, G. (2021). Detecting
high orders of cognitive complexity in students’ reasoning in argumentative writing about ocean
acidification: Lak21, April 12-16, 2021, Irvine, CA, USA (pp. 586-591).

Waulff, P, Buschhiiter, D., Westphal, A., Mientus, L., Nowak, A., & Borowski, A. (2022). Bridg-
ing the gap between qualitative and quantitative assessment in science education research with
machine learning — a case for pretrained language models-based clustering. Journal of Science
Education and Technology, 31, 490-513.

Waulff, P., Westphal, A., Mientus, L., Nowak, A., & Borowski, A. (2023). Enhancing writing analytics
in science education research with machine learning and natural language processing—Formative
assessment of science and non-science preservice teachers’ written reflections. Frontiers in Edu-
cation, 7, 1-18. https://doi.org/10.3389/feduc.2022.1061461

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://arxiv.org/abs/1909.08402v1
https://doi.org/10.3389/feduc.2022.1061461
http://creativecommons.org/licenses/by/4.0/

Chapter 13 ®)
Unsupervised ML with Language Data e

Peter Wulff, Marcus Kubsch, and Christina Krist

Abstract This chapter introduces a case study of how to apply unsupervised ML to
science education-related language data. We will start with dimensionality reduction
and hierarchical-agglomerative clustering. Later on, we will extend these analyses
using LLMs and more involved clustering techniques.

13.1 Collecting Unstructured Language Data in a Science
Education Research Context

As previously indicated, unsupervised ML typically seeks to find patterns in unla-
belled data. As we also stressed, most data today must be considered unlabelled. In
fact, it would be of great value to have algorithms that can extract meaningful pat-
terns in these data sets or compress the data in ways that keeps as much meaningful
information as possible. Unsupervised ML algorithms are well versed to do so. As
with supervised ML algorithms, there is a vast variety of different unsupervised ML
algorithms and the researcher has to decide for herself, which algorithm suits the
problem at hand best. Unsupervised ML algorithms can be applied to all kinds of
numerical data. However, particularly with images or language data, the researcher
has to perform more involved pre-processing in order to transform the data at hand
into a numerical representation.

Outline of the data set

Let’s dive into a concrete example of a research context where unsupervised
ML might come handy. In a collaborative project, we collected students’ written

P. Wulff (X))
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany
e-mail: peter.wulff@ph-heidelberg.de

M. Kubsch
Freie Universitit Berlin, Berlin, Germany

C. Krist

Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 267
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,

Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_13&domain=pdf
mailto:peter.wulff@ph-heidelberg.de
https://doi.org/10.1007/978-3-031-74227-9_13

268 P. Wulff et al.

reflections on two short physics videos that showed a teacher inciting students to
think about energy and force. The students were instructed to reflect upon this video,
i.e., they wrote on what the observed situation was about, how they evaluate the situ-
ation, what alternative actions they would imagine, and what personal consequences
they might draw based on the video for their own professional development (based on
original research by Nowak et al. (2019)). Our research goal was to identify themes
that the students’ addressed in their written reflections. Data from 19 teachers was
collected, with an average of 23 (SD=6) sentences, with an average of 501 (SD=119)
words. Overall, we received some 441 sentences, which are all different except for
one. As a matter of fact, one can see how complex language data is. Only 19 teachers
produced a variety of sentences that are connected in some ways, however, different
in others. For this reasonably-sized context, we could engage student workers and
begin inductively (we have no specific hypotheses on what the teachers notice) to
code the data through content analysis. However, given that we could have easily
received data from 200 students, then content analysis becomes increasingly infeasi-
ble. After all, computers are versatile tools to systematically apply rules to large data
sets and group this data. In particular, unsupervised ML offers a variety of methods
for purposes such as dimensionality reduction and clustering.

Pre-processing the data

Let us start with transforming our data into a numerical representation. As a first
step, we load the data set, i.e., the written reflections. Also, we load the spaCy
library as we introduced it as a good choice for many NLP-related tasks. We can
also calculate the overall vocabulary size (unique words), which is 833. Having
loaded the relevant NLP models, we can then simplify our data, as, for example,
punctuation or highly redundant words (so-called stopwords) could be discarded for
further analyses. Please note that this might not be true for other research questions,
given that stopwords such as “and” can have discourse-related functions. Moreover,
we use the lemma of a word (asking — ask), as this reduces this vocabulary size and
also might improve clustering results, as similar terms are more easily recognized
by the clustering algorithm. All this is performed with the spaCy module in Python
(see accompanying notebook).

Now we have a list of sentences (stored in the texts_structured) that we
can use further. Our goal now is to group together sentences with a similar mean-
ing/common theme or topic. This is trickier than one might expect. For example,
the representation of the data plays a crucial role on what features the algorithm can
pick up. The arguably simplest representation is a one-hot encoded vector for each
sentence (see Chap. 3), indicating which words in the vocabulary are present in the
sentence and which are not, which can be done with the help of the scikit-learn
(sklearn) library in Python as outlined in the Python code.

13 Unsupervised ML with Language Data 269
Pyhton code: create term-document matrix

restructure dataset into Sent[words]
sent_word_list = [’ ’.join([w for w in s])
for t in texts_structured for s in t]

from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer,
CountVectorizer

cv = CountVectorizer()
raw_count_df = cv.fit_transform(sent_word_list).toarray()

The term-document matrix (Table 13.1) is a sparse matrix, i.e., many cells are
zero. This is a rather inefficient way of storing information, however, it enables us
to utilize it for clustering. Before clustering, a meaningful step here would be to find
some form of dense representation for the sentences. Researchers used for similar
applications (actually the co-occurrence matrix of words in a corpus) PCA to find
robust, dense representations for words. We will start here by using the familiar SVD
(that also powers PCA, see also Chap. 5) to compress the sparse term-document
matrix into a much smaller matrix with 50 dimensions (it can be verified that 50
dimensions already capture most of the variation in this data set). From applying
SVD we now received a reduced matrix (dimension 441 x 50). Essentially, we went
down from 833 columns to “only” 50 columns at the expense of interpretability. It is
often asked what these dimensions refer to, or what they mean. Quite unfortunately,
the 50 columns do not refer to any specific word in the vocabulary, but rather are
rotated axes that account for variance in the data. This is, by the way, also why many
researchers consider SVD and PCA as a learning approach, because new axes are
learned to represent the complex data. However, we can further reduce the matrix to
only 2 dimensions, which is a common procedure to visually inspect the data in a
scatterplot (which, in this case, does not yield much valuable information).

Table 13.1 Excerpt of term-document matrix. Rows refer to sentences, columns to terms in the
vocabulary

Ability | Able Accompaniment | Accompany Accord Accordingly Accurately Achieve
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0

270

13.2 Finding Clusters in the Data

We will first apply (see Python code) a rather simple (bottom-up) approach, namely
hierarchical agglomerative clustering using Ward distance that (as many other of

these approaches) proceeds as follows:

1.

Python code: apply SVD to term-document matrix and clustering

Initially, imagine there to be a forest including all data points (i.e., sentences)
from the above reduced representations in which each sentence forms its own

cluster.

One can then calculate a distance matrix (oftentimes Euclidean distance), where
distances between any two sentences are calculated.

Most similar clusters are then merged (agglomerated) and updated distances are
calculated, and clusters are merged according to their similarity again.

This algorithm proceeds until all clusters are merged into only one large cluster.

from sklearn.cluster import AgglomerativeClustering
from sklearn.decomposition import TruncatedSVD

import scipy.cluster.hierarchy as shc
import matplotlib.pyplot as plt

n_components = 50 # The number of dimensions you want
svd = TruncatedSVD(n_components, random_state=42)

X_reduced = svd.fit_transform(raw_count_df)

clustering_model = AgglomerativeClustering(
n_clusters=num_clusters,
metric=’"euclidean’,
linkage="ward’)

clustering_model. fit(X_reduced)

plt.figure(figsize=(10, 7))
plt.title("Dendrogram")

clusters = shc.linkage(X_reduced,
method="ward’,
metric="euclidean")
shc.dendrogram(Z=clusters)
plt.show(Q)

13 Unsupervised ML with Language Data 271

This algorithm can be implemented in Python as outlined in the Python code, and
results can be visualized in a stepwise dendrogram as equally outlined in this code
chunk. The resulting dendrogram (see Fig. 13.1) indicates that there are groups of
sentences that are closer related (more similar) than others. It is now the task of the
researcher to use this dendrogram as well as representative documents, and interpret
the clusters, e.g., by comparing them with each other. A horizontal line can be drawn
through the dendrogram as a cutoff for clusters. The belonging leaves are included
sentences within this cluster. We can then determine which words are used most
often in the respective clusters. This will give us an idea of what the clusters actually
are about. Some clusters are rather small with only one or three sentences in it.

To choose a number of topics, an approach as performed by Sherin (2013) can
be utilized. The frequency distribution of topics for each different cut of topics is
depicted. We can see in the beginning that there is a cluster with only 3 sentences
(see accompanying notebook), which remains quite stable throughout the algorithm.
Moreover, we can see that at certain points, large clusters disintegrate into smaller
ones at certain points. We consider a number of 10 clusters (which yields the following
counts of documents in topics: 47, 23, 86, 20, 56, 33, 71, 74, 28, and 3) as areasonable
first choice to do some interpretations and see what patterns can be found in the data.
In particular, a number of 9 clusters had one large cluster of 107 documents, which
breaks down into smaller topics in the following steps.

Dendrogram

17.5
15.0
12.5
10.0
7.5

l

|

I

i Eﬁrﬁ;ﬁ T T[«M!Tﬂu’ i

0.0

Fig. 13.1 Stepwise dendrogram of hierarchical agglomerative clustering approach

272 P. Wulff et al.

Finally, it is the task of the researcher to make sense of the resulting clusters.
Interpretability also hinges on the preprocessing of the data. For example, if a bag-
of-words assumption was introduced as in our case, word ordering effects play no
role in determining the clusters which should be considered. Typically, most rep-
resentative words for clusters and most representative documents (here: sentences)
are displayed (Table 13.2). For example, cluster O with 47 documents seems to
relate to more general statements with representative words such as: ‘teacher’, ‘stu-
dent’, ‘answer’, ‘research’, and ‘question’. Other clusters such as cluster 6 with 43
documents seem more content-related, with representative words such as: ‘energy’,
‘conversion’, ‘student’, ‘1k’, and ‘concept’.

13.3 Utilizing LLLMs and Advanced Clustering

The above mentioned hierarchical agglomerative clustering approach is comparably
simple as related to analysis of language data. As such, there are many aspects of the
analysis that we can further advance:

1. First, we saw that the representation of sentences in the term-document matrix is
sparse and arguably rather poor. After all, the term-document matrix eliminates
all information on word order (bag-of-words assumption). However, word order
is certainly important when more nuances in scientific reasoning should be ana-
lyzed (“current causes voltage”, and “voltage causes current” are semantically
different).

2. Second, dimensionality reduction can be improved. Local and global structure
in complex data sets are important (see also Chap. 3). Dimensionality reduction
algorithms typically preserve either one of those two. For example, SVD and PCA
can be categorized into the former, while t-SNE can be categorized into the latter.
Algorithms such as Uniform Manifold Approximation and Projection (UMAP)
can preserve (to some extent) both. UMAP preserves local structure like t-SNE
while better keeping also global structure. It is thus a versatile algorithm to reduce
complex data with the goal to preserve meaningful information.

3. Third, clustering methods can be improved as well. For example, density-based
approaches might provide beneficial results for very complex data, such as lan-
guage data. A density-based clustering approach is hierarchical density-based
spatial clustering of applications with noise (HDBSCAN).

This is all very complex and sophisticated, however, researchers devised spe-
cialized Python modules to make these analyses comparably easy to implement.
For example, a pipeline of applying an LLM to your data, reducing dimensional-
ity with UMAP, and utilizing HDBSCAN for clustering can be implemented with
the BERTopic Python package (find the extensive code with more elaboration on
interpretation in the notebooks):

273

13 Unsupervised ML with Language Data

(panunuoo)

11q asuodsar yuapnys puedxa a3ueyd

jdwope ‘osroardwr

Jomsue ‘uopeuedxo

1991109 19yoed) uoturdo {piom 3021109 309[1a1ur APJoLIq 10Yoe], ‘arordwoour ‘puedxa ‘109[10)u] I0YOBQ] JUIPNIS 1O1I0D) (81) 01
BIOUWIED JUWNIOP Surim UO0SSI[‘UonNgLIUOD
9[qe) JIOM IOUOEBI) JU)X U0SS] ued JeIAdp SUI[[IM Ioyoea], ‘BIOUIED ‘POJEATIOW “QOIU ‘Q[qE], ‘uonjeue[dxo Quopnis ‘Ioyoea], (€96
JOOJIOA0 WAISAS dInjeu paso[d A31oua jdeouod
[[BI2A0 SSAIPPE $S2001d UOISIQAU0D AFIQUD ULI0) ¢A3I10Ud JI9AUOD
[eurIoy) A310u0 onse[o A3I10UQ WLI0) [euonIppe sSNosIp axmboy | Suins 9radxo ‘sok ‘qeurioy ‘onserq Quopmis ‘w0 ‘oneury ‘AS1oug (61) 8
A319u9 uoISIAUOD UoUdWOoUAYd
A[remoe A310ua onaury AS1ous onjoudew AS1ous onjoury AS10U9
enuajod uouswouayd areme JUIPNIS YW [BIQUST ATI0UD
UOTSIOAUOD Y[B) JOyoed) (ASI0Ud orjouny| ASIOUQ UOISIOAUOD
uonow asned ure[dxa J9[19Yoe9) AJ100[A Y31y AF10U9 drjoury y[e) ‘ozifeurul uonou ‘[enuajod
ys1y genbo A310u0 JuoweSesus azijeuroiur Apuaredde Juopmg quowoesuo ‘arenba ‘A110070A UOTSIOAUOD ‘Onjoury ‘AS1oug ©) L
SSNOSIP JoUSEW YOr)S UOISIOAUO0D AZISUD {UONISUUOD uonounsIp ydoouoo
1y31y31y A319U9 90103 UOIOW 3dAdUOD UOTOUNISIP AJLIR]D ‘3unq ‘A3oreue ‘yoeys ‘[eordAy, N[‘YUapNIs ‘UOISIAAUOD ‘AJ1oUH (€v) 9
J[IwIs ‘SUI[OYMIIA0 juopnys
yeads Aem o[rwis JuapIad ‘A[Surreds yury], | ‘A[eanesou ‘Apusroyjns ‘A[Surredg QOUIPIAQ ‘09PIA ‘IAYILD) ‘SSB[D (S9) ¢
as11 192[qo Y3y uonsanb <ast JyS1oy 1sey uonow 19s Apoq snoo,] | 192[qo ‘[[ed “Isey ‘[euoneIARIS ‘OsTy | ISeJ 19s ‘uonowr ‘uonsanb 109(qO €D v
JuowrdAoIdur S AJBWSSE[O JIoM JoeX9 ‘quowoAoidur yse
‘preoqirewrs dinba wooissed paziferoads Apjuaredde wooy ‘QI3UIS ‘QJBWISSBIO ‘Q0IM], | ‘IOUIE9) ‘JomSUE Juapnis ‘uorsand) L) €
uonuawW wd) [ernboyjoo Jury uonou ‘ureuwral
BIIOUT {PAISAOISIPUN UTBWIAT ULID) UOT)OU s[eJ uoridoouodsIjy ‘paronodsipun ‘Jury ‘fembof[o) | osn ‘quapns ‘10yoe9) ‘A3I0US ‘WA, €Dz
K)JIATIOR WOOISSBO QAJOAUT A[ATIOR JUIPN)S Sum3ie jueyrodwt ‘93 pajmouy
‘o3e1oAr UOTIBATIOW YSIY MOI JIS JUIPN)S [QISTA J[qISSOq | ‘@3e3us 9y3u ‘A[enunuod ‘AIAnoy quowrtradxa 909[qns Quopms U1
Iomsue preoq uonsanb oALIp 109[[00 AF10u9 Jrun 9)e[ox
uonsaonb opIng JuaIaJIp UOHEMIS WIOOISSB[O PAAIISQO AJLIB[D uoneuowLadxe IoYoBI) QUIpMS
jo1 Sunyred uornsenb 309[[0d uonsanb jrun JuryoRS) PIAIISQO U 91odxo ‘urerdxa ‘Ax ‘sox ‘TOMSUE ‘UYOIBasalI ‘uonsan() 22X
sooujuas odweg (Jp1-p-o) spiom dog, (Junod) spiom dog, (N) 'ON

's01d0) pajoeIIXa Ay} 10J sAouuas J[duwres aaneIuasaidar pue ‘Surfess Jpr-J1 Yum spiom ¢ doj ‘spiom ¢ doJ, 7'€T dqeL

P. Wulff et al.

274

uoneue[dxa oynuards juopuadopur sjowoxd
juopnys Joddns oI9S JuSIU0d 9jedronue A[pIey Ioyoea) Juapms
QALISP A[[NJ }[NSAI UOISSNISIP WOOISSED A[SIRINOdk Jomsue

KTorex ‘A[oAIsn[ox9

uonsanb

juowroddns ozrirewrwins I9yoea) A[s1oard romsue Juopms ‘sson3 ‘Apueoyrudis ‘A[1eIndoy ‘A310U9 ‘I1070BQ) ‘ToMSUR ‘JUIPNIS oD +1
uoneue[dxa
ogmuards Surpuejsiapun aenbapeur dojoaap juopn)s JSuI deoar quawdinba ogmuards ‘uonsanb
‘uoneue[dxa J1oddns deoar juowdmbs [ejuowiradxe uoneigojuy 0npur ‘uoneI3UI ‘QueN ‘TeorsAyd ‘yuapnys ‘uoneuedxg &0 €1
910 A310U9
oneuew A31ous [enuajod aoue)sIp oFe10)s AF1ou0 uouswouayd
[eorsAyd Surpuy wio) [BoIUyd9) AIESsa0au Juawele)s juowd[ddns
UoIN[OS [opow uone[NULIO} apIaoid juowale)s Juapms uonnjos ‘@onoeid [opouu ‘TearsAyd
aye) Juopmis Ajejeridordde Suruosear eorsAyd aonoead 1oyoea], ‘A1orenrdoxdde ‘Surpuy ‘o3e101§ Quopn)s ‘yuowdle)s ‘A3Ioug M
uosso[uerd ordnnu
9s1n02 puadap A[qissod uonesiaoidur Lyruejuods pasu a1ed ‘Suruuerd Jiun
‘uonjeredard uosso[Teroyradns A[qrssod anSuo) difs uoseay] 9rede ‘vonjeIopIsuod ‘A[yuge | ‘ASI0UQ ‘aInjonms uopnis ‘UOSSI a2 11
soouojuos odureg (Jp1-p-o) spiom dog, (Junod) spiom dol, | (N) 'ON
(panunuod) Z'¢1 AqeL,

13 Unsupervised ML with Language Data 275
Python code: Apply BERTopic

from bertopic import BERTopic
from umap import UMAP

umap_model = UMAP(n_neighbors=9,
n_components=5,
min_dist=0.0,
metric=’cosine’)

topic_model = BERTopic(
language="english",
top_n_words=3,
min_topic_size=4,
embedding_model="all-MinilLM-L6-v2",
umap_model=umap_model)

topic_model.visualize_documents(docs,
reduced_embeddings=reduced_embeddings)

It can be verified that well interpretable topics can be identified with BERTopic
(see Fig. 13.2, more visualizations and reasoning can be found in the accompanying
notebook) without too much effort such as tuning hyperparameters. Physics-related
topics separate from other, more general, topics (see Fig. 13.2). Moreover, similar
sentences are grouped into the similar clusters. You then have many options with
BERTopic to inspect the clusters. In Fig. 13.3 you can see association strengths of
tokens in the sentence “The students note that there must always be another form
of energy present for kinetic energy to be created” with all relevant topics that are
partly existent in this sentence. You see that the token “energy” has particularly high
association with different, energy-related topics. However, in this sentence the forms
of energy are most central. Moreover, you can visualize the genesis of clusters (see
Fig. 13.4). Note, for example, the joint origin of the “energy” clusters, topics 29, 10,
2, and 14.

The BERTopics module thus offers you valuable tools to better understand clus-
tering decisions of these complex models. It is also important to remember that these
models oftentimes are not sensitive to science education specific contexts. We there-
fore cannot expect the models to make meaningful classifications with respect to
science education contents, but rather based on usage of terms in public parlance and
co-occurrence statistics in the present texts.

276 P. Wulff et al.

Documents and Topics

0_motion_object_sets
b1 1_research_question_questions
2_pendulum_energy_magnet
3_correct_corrected_technical
4_experiments_supports_justifications
5_structuring_would_students
6_misconceptions_evidence_explanation
10_energy_system_kinetic Sl e thelezen 7_answer_teacher_only
8_praise_through_her
9_scientific_as_learn
10_energy_system_kinetic
11_collected_driving_question
12_how_fast_become
26_topic_conversion_since 13_time_many_answering
14_Ik_energy_concludes
15_not_actively_refer
16_knowledge_subject_competence
17_posters_principles_past
18_have_everything_formulate
19_form_must_another
20_same_video_throughout
21_concept_about_had
22_Ik_answers_she
23_classroom_among_centered
24_larger_context_why
25_Ik_verbally_summarizes
26_topic_conversion_since
27_newtonian_axioms_explicit
28_physical_everyday_explanation
29 when enerav force

14_lk_enerdy: concludes

2_gendulum_energy_magnet
' 19_form_must_another

29_when_efiergy_force
21_conceptbabout_had

27_newtonian_axioms_explicit

Fig. 13.2 Parts of the scatterplot of the first two dimensions of BERTopic’s embedded documents.
Different colors refer to different topics, indicated also by the numbers

The students note that there must aluays be another of energy present for kinetic energy to be created
2_pendulum_energy_magnet 0600 0698 0561 0423 0216
5_structuring_would_students y 0617 0417 0364 0207 0.104
10_energy_system_kinetic 0.100 X Il 1.009 0789 0.459
14_Ik_energy_concludes : 0187 0364 0543 0766 0713 0697 0765 0964 0776 0587 0309

18_have_everything_formulate 0111 0111 0411

18_form_must_another 0.159 0.348 0658 0689 0440

21_concept_about_had

28_when_energy_force 0101 0101 0.101 0.101
31_experiments_topic_on 0143 0310 0310 0310 0.167

Fig. 13.3 Association strengths of tokens in a given sentence (top) and the respective Topics (left)

13.4 Applying Unsupervised ML to Cluster Language Data

In this chapter, we applied a shallow and deep-learning based clustering technique
to unlabelled text data, which counts as unsupervised ML. Unsupervised ML for
language data can reveal clusters of sentences that relate to each other. The relation
is then defined by the feature selection process. For example, when one-hot encoding
is employed to encode the language data, unsupervised ML algorithms will deter-
mine topics (i.e., clusters of sentences or words) based on the similarity in the words
used in the sentences. A novel approach to encode language data is by utilizing
LLM-based contextualized, dense embeddings. LLM-based embeddings can often
account better for context and synonyms. Furthermore, using non-linear dimension-
ality reduction and clustering approaches such as UMAP and HDBSCAN can help
to partly preserve local and global structure of your data. In our applied example,
we saw that the BERTopic Python library yielded well interpretable clusters without
any further necessity to fine-tune the LLM or the hyperparameters. LLM, UMAP,

13 Unsupervised ML with Language Data 277

Hierarchical Clustering

'
29_when_energy._forc
19_form_must_another
10_energy_system_kinetic
2_pendulum_energy_magnet
25_Ik_verbally_summari:
14_Ik_energy_conclud l’ﬁ—
22_lk_answers_sh
12_how_fast_becom 1
0_motion_object_sets
7_answer_teacher_only - _—
1_research_question_questions -
11_collected_driving_question -
17_posters_principles_past-

4_experiments_supports_just...
31_experiments_topic_on |_|
20_same_video_throughout
26_topic_conversion_since
30_participation_very_sit-
15_not_actively_refer-
13_time_many_answering -
3_correct_corrected_technical -
8_praise_through_her- A
16_knowledge_subject_compet... -
21 _concept_about_had
24_larger_context_why-
27_newtonian_axioms_explicit-

28_physical_everyday_explan...
9_scientific_as_learn
6_mi _evidence_e...
5_structuring_would_student:
18_have_everything_formulat:

23 classroom_among_centered

0 0.2 0.4 0.6 0.8 1 1.2

Fig. 13.4 Genesis of topics in the present clustering approach

and HDBSCAN have been utilized in conjunction to cluster language data in science
education research. However, to get a full understanding for clustering decisions we
are still lacking appropriate means in order to increase transparency.

13.5 Tasks

(Note: Some of the tasks and solutions were generated with ChatGPT, by prompting
the LLM with the entire chapter’s text and the instruction to generate comprehension
and application tasks; difficult tasks are marked by *)

Comprehension

1. Summarize the process described in the text for transforming written reflections
into a numerical representation.

2. Explain the significance of using SVD (Singular Value Decomposition) in reduc-
ing the dimensions of the term-document matrix.

3. Describe the hierarchical agglomerative clustering approach mentioned in the
text. What steps are involved in this method?

4. *What are advantages of using LLM-based embeddings for clustering language
data compared to traditional one-hot encoding?

5. Interpret the importance of visualizing clusters using dendrograms as described
in the text. How does this visualization aid researchers?

278 P. Wulff et al.

6. Do the numbers of the topics in the agglomerative clustering have any meaning?
If so, what meaning do they have?

7. *Critically reflect under what circumstances human-machine collaboration can
be effective for unsupervised ML with text data.

8. *What particular biases and constraining assumptions go into applying the pre-
sented unsupervised ML approaches?

Application

1. Restructure this sample dataset: texts_structured = [["The experiment
demonstrated that friction slows down a rolling ball."],
["Photosynthesis allows plants to convert sunlight into
energy."], ["Water’s boiling point is a key concept in
understanding states of matter."]] into a term-document matrix
and perform SVD on it. Document the steps and results. Plot the reduced
“embeddings” in a 2D diagram.

2. Apply hierarchical agglomerative clustering with the sample dataset: "biol-
ogy_wikipedia_articles_sample.csv", found in Google Drive folder for chapter
13, /data/Wikipedia_science_data/. Visualize the resulting dendrogram and give
some reasoning for how you interpret one or more clusters formed.

3. *Using the BERTopic Python package, cluster a collection of text documents (data
set: “biology_wikipedia_articles_sample.csv”, found in Google Drive folder for
chapter 13, /data/Wikipedia_science_data/). Provide a detailed analysis of the
clusters identified, including representative words and sample sentences.

4. *Compare the outputs of the previous two tasks (using traditional methods versus
advanced methods, e.g., BERTopic). Discuss the differences in cluster quality
and interpretability.

5. Develop a simple NLP pipeline in Python to preprocess text data (remove stop-
words, lemmatize, and vectorize). Use this pipeline on a dataset of your choice
and explain the preprocessing steps and their significance.

13.6 Solutions

Comprehension

1. Transforming written reflections into a numerical representation can be performed
in multiple ways. A common way is to use one-hot encoding, where each word is
represented as a column in a matrix (term-document matrix) and the rows refer
to documents, which can be sentences, responses, or other meaningful structures.

2. SVD calculates dimensions (eigenvectors) of maximum variance in a data set. This
is a commonly used technique to reduce the dimensionality of the original data.
Oftentimes, such dimensionality reduction can be sensibly used in ML analyses

13 Unsupervised ML with Language Data 279

to retrieve essential features in a data set (feature extraction). These features can
then be used as compressed, new features in the further ML pipeline.

3. The hierarchical agglomerative clustering starts with calculating each pairwise
distances (e.g., Euclidean distance or Manhatten distance) between the data points.
Closed clusters (each data point is a cluster at first) are merged and the distance
matrix is calculated once again. These steps proceed until eventually only one
cluster exists. The resulting distances and merges can be represented visually in
a dendrogram.

4. LLM-based embeddings, also called contextualized embeddings, capture the con-
text in which a word is used. L.e., the embedding vector depends on the context.
This is advantageous, given that word meaning is a function of context (think of
using “force” in the context “may the force be with you,” “they forced them to do
this,” or “the gravitational force pulls objects.”).

5. A dendrogram provides you some insight into what documents evolved from
a similar branch, or when certain clusters form. These information can then be
utilized to make sense of the resulting clusters or even determine a sensible number
of clusters.

6. The agglomerative (hierarchical) clustering will by design produce as many clus-
ters as there are data points. Hence, the researcher has to critically examine what
the clusters actually mean. This can be done in multiple ways, many of which
are presented in this textbook. First, determining the number of clusters is chal-
lenging and hinges on assumptions such as what the individual dimensions refer
to. Agglomerative (hierarchical) clustering does not produce a number which
determines the number of clusters. One meaningful way to determine a number
of clusters was through observing the distribution of clusters. In many research
contexts it is probably not meaningful to have clusters with only one document
in them. Moreover, a cluster with nearly all documents in it is also not meaning-
ful. Hence, a good balance of clusters would be desirable. Moreover, interpreting
the clusters is a next challenging task where the human researcher’s substan-
tive domain knowledge is required. The researcher could concurrently analyze
the documents that belong to one particular cluster, e.g., by comparing frequent
words in the sentences.

7. Human-machine collaboration is a crucial part in any unsupervised ML project.
ML and NLP techniques might help you find patterns, however, deciding on the
algorithms, the data format and representation, and interpretations are key tasks
for human researchers that cannot be outsourced.

e Hierarchical agglomerative clustering: In this approach, we represented the
data through a term-document matrix and used SVD do compress the data. We
already mentioned that one-hot encoding cancels information on word ordering
which is disadvantageous when nuanced analysis of language data is required.
Moreover, SVD is a linear dimensionality reduction procedure and if your data
set is non-linear, this might be inappropriate.

e BERTopics: This LLM-based approach hinges on the quality of the pre-trained
LLM thatis utilized, as well as on the dimensionality reduction procedure (here:

280 P. Wulff et al.

UMAP), and the clustering approach (here: HDBSCAN). The pre-trained LLM
might be spoiled by biased training data. We reviewed that the training data
is in fact crucial for quality of the LLM. UMAP and HDBSCAN introduce
a range of hyperparameters that have to be set. For detailed instructions and
information on these hyperparameters, see: Tschisgale et al. (2023).

Application

See notebooks online.

References

Nowak, A., Kempin, M., Kulgemeyer, C., & Borowski, A. (2019). Reflexion von physikunterricht
[reflection of physics lessons]. In C. Maurer (Ed.), Naturwissenschaftliche Bildung als Grundlage
fiir berufliche und gesellschaftliche Teilhabe: Jahrestagung in Kiel 2018 (p. 838). Regensburg:
Gesellschatft fiir Didaktik der Chemie und Physik.

Sherin, B. (2013). A computational study of commonsense science: An exploration in the automated
analysis of clinical interview data. Journal of the Learning Sciences, 22(4), 600-638.

Tschisgale, P., Wulff, P., & Kubsch, M. (2023). Integrating artificial intelligence-based methods into
qualitative research in physics education research: A case for computational grounded theory.
Physical Review Physics Education Research, 19(020123), 1-24.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 14 ®)
Unsupervised ML with Text Data e

Kevin Hall and Christina Krist

Abstract This chapter builds on the techniques introduced in the previous Chaps. 12
and 13. Specifically, we will demonstrate how unsupervised pattern recognition
approaches can be applied to text data to answer a research question. Because pre-
processing and “knowing” your data are especially important when using unsuper-
vised approaches with text, we will introduce additional techniques with an emphasis
on exploratory data analysis tools such as token frequency analysis, basic text analyt-
ics, and n-gram analysis to explore large text-based datasets before using this infor-
mation in support of the application of unsupervised natural language processing
(NLP) techniques.

14.1 Basics of Natural Language Processing

As stated in previous chapters, working with language as data comes with a range
of challenges based on the complex intricacies of human language and the diffi-
culties faced by computers when working with that language. Words have multiple
and sometimes conflicting meanings that require contextual information to decode
properly. While the mature human brain does this naturally (using context cues,
etc.), computers make a lot of mistakes. They are tripped up by lexical, syntactic, or
semantic ambiguity. For example, the statement “Flying planes can be dangerous”
represents a sentence that exhibits numerous ambiguities. A first ambiguity is lexical
whether the term “flying” represents a verb or an adjective, or if the word “plane”
is referring to an airplane or alternatively the geometrical sense of it being a “flat
surface”. A second ambiguity is syntactic. Is the sentence suggesting that the act of
flying a plane (i.e., piloting) is a dangerous one? Or does it mean that planes that
are flying, rather than grounded, can be dangerous? A third ambiguity is a semantic
one in which these other ambiguities lead to confusion about where the danger itself

K. Hall ()
College of Education, University of Illinois Urbana-Champaign, Champaign, IL, USA
e-mail: knhall@illinois.edu

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

© The Author(s) 2025 281
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_14&domain=pdf
mailto:knhall@illinois.edu
https://doi.org/10.1007/978-3-031-74227-9_14

282 K. Hall and C. Krist

as well as where it stems from. Is it the physical planes in flight themselves or is it
specifically talking about the act of flying planes? These forms of ambiguity become
compounded when additional aspects of human language are introduced, such as
idioms, slang, dialects, or other variations.

These word-level distinctions matter because, as described in Chap. 12, the dataset
will be tokenized into smaller pieces that the computer will use as the unit of anal-
ysis. However, unlike in Chap. 12, when we are planning to utilize unsupervised
approaches to analyzing text-based data, carefully considering how data can and
should be tokenized and how it can be put back together in order for the human
analyst to make sense of it is an essential consideration throughout the analytic
process—including in the pre-processing phase!

As such, in this chapter, we will discuss how the three important stages (Fig. 14.1)
that have been introduced so far—pre-processing, feature extraction, and pattern
exploration and interpretation—are overlapping and non-linear when one’s goal is an
unsupervised analysis of text-based data. Specifically, we emphasize how decisions
made in each “stage” must be informed by the theoretical and empirical goals of
the other stages. We will give examples of how the same techniques can be used
for multiple “stages” and why opposing decisions might be made within each stage,
given your specific research goals.

14.1.1 Text Pre-processing

Text pre-processing includes cleaning and standardizing the text in order to lower
the background “noise” that is intrinsic to large text-based datasets. Common steps
in this process include lowercasing (converting all characters in the data corpus to
lowercase) and removal of punctuation and special characters. Both of these steps
lead to the standardization of words which helps with the removal of duplicates (e.g.,
“large” vs. “Large” vs. “large.” vs. “large;” will now all be treated as the same token:
“large”).

In addition, although often treated as a standard part of preprocessing (as done
in Chap. 12), processes such as tokenization, lemmatization, stemming, and stop-
word removal involve decisions that should be carefully considered and theoretically
informed when engaging in these steps when planning on utilizing unsupervised tech-
niques. This is because, depending on one’s research question, different decisions
about each may be more or less relevant—or even essential-when exploring patterns
in the data.

e Tokenization: The process of converting the unstructured characters of a text
corpus into discrete structured elements with clear properties that allow for eas-
ier processing with a computer. For example, the prior sentence when read by a
computer would show up as a string of 175 characters. Keeping text as individ-
ual characters can become computationally intensive when trying to figure out

14 Unsupervised ML with Text Data 283

Cleaning &
Preprocessing

Qualitative Feature
Insights Extraction

Fig. 14.1 Non-linearity of early stages of working with text data for unsupervised pattern
recognition

context and meaning. Strings of text can instead be tokenized into various recog-
nizable chunks, such as sentences and words. Sentence tokenization breaks down
paragraphs into their constituent sentences. Word tokens are formed from decom-
posing sentences into their constituent words. NLTK has a unique tokenizer called
Text Objects that adds an additional wrapper of metadata, allowing for advanced
analysis features.

e Stemming: The process of converting words back into their normalized root
form by using hard and fast predetermined rules. Stemming uses a brute force

9% (] ,00 <6

approach by trimming suffixes (“-ing”, “ly”, “-es”, “-s”, or “-er”). This serves
to convert the words “walking”, “walked”, “walks” into one stem: “walk”. This
brute force approach allows for quick processing with much lower use of computa-
tional resources. However, stemming is done devoid of context. Depending on the
stemmer used, this can lead to issues of over- or under-stemming where unrelated
words are converted to the same stem or vice versa. For example, “university”,

“universe”, and “universal” would all be stemmed to “univers.”

284 K. Hall and C. Krist

e Lemmatization: Similar to stemming in that it aims to reduce words to their
normalized base words so that duplicates are eliminated, lemmatization takes a
more sophisticated approach by considering context. It does this by analyzing each
word’s part of speech and comparing the words to a lexical database. Depending
on the lemmatizing tool used, the word “better” is more likely to be reduced to its
contextual lemma of “good” instead of possibly being over-stemmed and converted
to the word “bet”.

e Stopword removal: Eliminating common words that are unlikely to contribute
to the analysis of the data corpus. A common practice is to remove the 50-100
most common words in the data corpus, as these tend to include words like “the”,
“and”, “as”, “be”, “because”, “no”, “their”, “was”, “should”, “won’t”, etc. How-
ever, sometimes words that appear in the most common words list are essential for
the research question at hand. For example, if my question was about differences
in pedagogical agency (i.e., how responsibility for pedagogical decision-making
is indexed differently) in various versions of curriculum materials, modal verbs
like “should” vs. “could” vs. “might” vs. “must” contribute significantly to dif-
ferences in that indexing (Martin, 2016). Therefore, these modal verbs should
NOT be included in the list of stopwords, even if they are quite common. Another
important decision in a science education context is one about technical vocabu-
lary. While standard practice is to leave these words in, given their relative rarity,
they also become strong signals. In other words, all documents containing the
word “molecule” are likely to be analyzed as more similar to each other than
to documents containing the word “equilibrium.” This is a desirable outcome if
sorting or analyzing based on specific content is the goal. However, if a research
question is attempting to understand a construct that is cross-cutting or to analyze
how it compares across content areas (Rosenberg and Krist, 2021), then including
content-specific words as part of the stoplist (i.e., removing them from the dataset)
may lead to cleaner identification of the patterns of interest.

14.1.2 Feature Extraction

Similar to preprocessing, feature extraction serves to improve computational accu-
racy by selecting relevant components, or removing irrelevant components, from
the dataset, which will ideally lead to better results and more informative analysis.
However, feature extraction is different in that the goal is selecting only those aspects
of the data corpus that are useful for a particular task. These important features will
differ depending on the goals that we have when working with the data and might
change at different times throughout the process.

Feature extraction techniques generally involve various ways of quantifying or
otherwise processing text-based data into a format that can then be processed by
machine learning algorithms. These techniques typically involve converting words
into vectors or matrices. Converting text into a bag of words is the most fundamental
version of feature extraction. This involves representing a document or set of text as

14 Unsupervised ML with Text Data 285

a frequency distribution of those words, without attending to order or context. There
are other more sophisticated versions of this as well, such as Term Frequency-Inverse
Document Frequency (TF-IDF), which provides a statistical measure of how often a
term appears in a given document relative to the number of documents containing the
word, or n-grams, which provide frequencies of word sequences of n length. These
techniques vary greatly in terms of both complexity and purpose. Our rule of thumb
is that simpler is often better, and we recommend starting with that assumption. More
complex techniques can be leveraged as needed, but with more complexity comes
more computational obfuscation—which can hinder, rather than support, the kind
of qualitative exploration that unsupervised uses of ML with text data tend to be
oriented towards.

Feature extraction techniques can also be leveraged for necessary (human) pro-
cessing of a dataset. For example, one could utilize part-of-speech tagging to run a
search for all proper nouns found within the data corpus to anonymize personal data
found throughout a transcription of an interview or classroom discussion. However,
here is where decisions about pre-processing become critical. If all words in the
data corpus have been lowercased during preprocessing, then it might now be more
difficult to find and anonymize someone whose last name is “Brown” or “White,” for
example. In this scenario it might be best to do an initial round of feature extraction
before blindly running all preprocessing options.

When aiming to do unsupervised analyses with text data, feature extraction can
also function as a way of beginning to familiarize oneself with the dataset. In this
way, feature extraction can also be used as a form of initial data exploration. For
example, you could compare word frequencies of a subset of key terms (e.g., the
50 most frequent words; a self-constructed dictionary of key terms relevant to your
research topic) across multiple documents. Or you could again utilize part-of-speech
tagging to look at differences between amount of pronoun use vs. proper noun use
across various documents, or to extract all the questions in a document set. However,
once again, pre-processing decisions really matter in terms of the specific words or
punctuation marks that were removed. We hope these examples encourage you, even
as a beginning user, to ask questions and think carefully about the implications of
any step or process that is described as a “standard” part of NLP!

We will also pause here to point out even more overlaps and nonlinearities between
“stages” present in these examples. The feature extraction examples described above
could also be utilized as pattern exploration. This is actually the first stage of com-
putational grounded theory introduced in Chap. 3. In examining documents from the
first and second wave feminist movements in Chicago vs. New York, Nelson (2020)
used parts-of-speech tagging and identified notable differences between abstract vs.
proper noun use that seemed to vary by location (Chicago vs. New York) but not by
time. This then motivated her deeper qualitative content analysis of the documents,
including guiding her selection of which subset of the 200+ documents to analyze
in depth. This example highlights how it is the purpose and goal of using a specific
technique, rather than the technique itself, that matters.

286 K. Hall and C. Krist

14.1.3 The Unsupervised ML Workflow

Finally, as we have hinted at above, unsupervised ML with text data follows the
same general workflow introduced in Chapter Pattern Recognition—Unsupervised
Machine Learning: (1) pattern recognition, (2) qualitative pattern interpretation, (3)
pattern validation. Again, all of the techniques described in previous chapters can
be applied to these stages. Rather than reiterating these techniques here, the remain-
der of this chapter will focus on how to go about the pre-processing and feature
extraction techniques relevant to working with text data, as well as some additional
tools for getting to know your data in ways that matter for the kinds of empirically
and theoretically guided decision-making that are needed for utilizing unsupervised
techniques with a text-based data corpus.

14.2 Pre-processing and Feature Extraction with General
Science Quarterly/Science Education Editorials

14.2.1 Introduction to the Data Corpus

To introduce and practice using various pre-processing and feature extraction tech-
niques in service of unsupervised (and qualitative-leaning) explorations of text-base
data, we will utilize two datasets generated from the journal Science Education
(originally named General Science Quarterly).

The first data corpus that we will be using includes the editorials from volumes I
and Il of General Science Quarterly (GSQ) published between 1916 and 1918. GSQ,
now Science Education (SE), has long been a seminal journal for the publication
of academic research connected specifically to science education. In fact the very
first article published in GSQ was Method in Science Teaching written by the well-
known philosopher and educational scholar John Dewey. These original early copies
are easily found on the web and have been made available in digitized form thanks
to Google’s OCR work on older undigitized documents and publications. We will
use this data corpus to do some preliminary natural language processing, as well as
to gain some initial familiarity with the data. Specifically, we are wondering: What
was topical to research in science education in 19167 We will draw on any insights
gained to aid our decisions about the usage of unsupervised learning NLP techniques
in the second dataset. This second dataset consists of two corpora: one of some
early-period editorials published in GSQ/SE and another of later-period editorials,
published in the 2000s. We will use this broader corpus to look for historic trends in
science education’s stated priorities. For both datasets, we will use Python’s Natural
Language Toolkit (NLTK).

14 Unsupervised ML with Text Data 287

14.2.2 Pre-processing the Documents for Data Corpus 1

For this original data corpus (GSQ volume I), we have already converted the 1916
editorials to an easy-to-use text document—a text file. Using text files reduces issues
related to special characters and other formatting problems. If any documents in
your text corpus are not in text file format, they should be converted before we start
processing. While it is possible to start with other document types such as DOC,
CSV, Excel, or JSON files, working with text files is easier to begin with.

14.2.3 Setting Up the Environment

For this chapter we will be using Python’s Natural Language Toolkit (NLTK) and
several support libraries:

1. Natural Language Toolkit (NLTK): Library containing a wide range of tools for
natural language processing

2. Matplotlib: Library for creating data visualizations

3. NumPy: Library for performing complex mathematical operations as well as
data manipulation.

4. Pandas: Another library for data analysis and manipulation.

The following code will load the packages that we will use throughout this chapter.
You will only need to install these packages once unless you decide to change the
version of Python that you were using when you installed the packages. The code
that we will utilize throughout this chapter can be downloaded and found within
the Jupyter Notebook that it is linked in the resources section. This notebook can
be opened and interacted with using the free source-code editor Visual Studio Code
after simply installing the Jupyter Notebook support extensions. Alternatively, feel
free to interact with the Python code in whichever Integrated Development Editor
(IDE) you are comfortable with.

Python code snippet

load required Python packages
pip install nltk

pip install matplotlib

pip install numpy

pip install pandas

288 K. Hall and C. Krist

14.2.4 Loading Your Text File into a Data Corpus

Next, we will import the first data corpus so that you can begin to “read” it and get to
know it in the NLTK environment. The following code will import the text file and
allow you to view it to ensure that it has loaded properly.

Python code snippet

Define the path to the text file
filename = ’editorials\editorialGSQ1916.txt’

try:
Open the text file for reading with UTF-8 encoding and
replace any errors in character encoding with
open(filename, ’'rt’, encoding=’utf-8’, errors=’replace’) as
editorialGSQ1916Text:
Read the entire contents of the file into a variable
raw_GSQ1916Text = editorialGSQ1916Text.read()

Print the contents of the file
print (raw_GSQ1916Text[0:249])

except FileNotFoundError:
Handle the case where the file is not found
print(f"Error: The file ’{filename}’ was not found. Please
check the file path.")

except IOError:
Handle other input/output errors
print(f"Error: An error occurred while reading the file
*{filename}’.")

As this script executes it will locate and read the contents of the text file named
editorialGSQ1916. txt at the path listed, after which it will copy this entire text
into a variable named raw_GSQ1916Text before printing the the first 250 characters
of raw_GSQ1916Text so that you can do some cursory checking to see that the
process worked. Alternatively, if it does not find that specific file or is unable to open
it, you will be notified in the form of an error message. If this process does not work,
the most likely error is that the path to the text is incorrect in some way and that
the filename variable needs to be fixed. The path convention used for the filename
variable shows the relative path from the Python script to the text file. Currently, this
script will only work if the text file is located in a subfolder named ’editorials’ next

14 Unsupervised ML with Text Data 289

to the Python script or Jupyter Notebook that you are running. If the text file was not
located in a subfolder then the code could be changed to read:

filename = ’editorialGSQ1916.txt’

Alternatively, an absolute path could instead be used that could point to any
location on your computer or network. For example:

filename = ’C:\GeneralScienceQuarterlyResearch\editorials\
editorialGSQ1916. txt’

While it may make sense to use absolute paths throughout this initial process as
you practice, it is not a great idea over the long run. Using absolute paths limits the
flexibility of the scripts that you will be using due to issues that will occur if someone
else tries to use your code on their machine. You end up with broken links that will
then need to be fixed, whereas you will not face this same issue with relative links.
We will be using relative paths as well as trying our best to put files in folders moving
forward.

Another consideration to begin thinking about is naming conventions for the
different text corpora that will be created and interacted with throughout this process.
At this point, we have only two, but that is already double the number that we started
with, and we will be adding three more during our next step. What do we mean
by this? Well, we started with a text file called editorialGSQ1916.txt whose
entire contents were copied into a variable called raw_GSQ1916Text. In doing so,
we moved the contents of the text file from the hard drive to the system’s memory
(RAM) where it can be accessed and manipulated faster and more efficiently. These
two formats are identical other than the fact that if you were to restart your computer
only editorialGSQ1916.txt would exist on reboot.

14.2.5 Converting the Data Corpus into Tokens

Now that we have the text corpus loaded into our system memory as a named variable,
we can interact with it in numerous ways that we could not when it was solely a
text file. In fact raw_GSQ1916Text is only useful to us as an intermediate stage as
part of the tokenizing of our data corpus. We separated this stage in this chapter
so that you could get a better understanding of tokenization. As described above,
tokenization serves to break down or help to normalize our large stream of text
into words, sentences, paragraphs, or other meaningful textual elements which are
then individually called tokens. Converting streams of text into tokens allows the
algorithms used to better understand the context and meaning throughout the text.
For example, if the text is tokenized into words, then the computer knows that it is
dealing with a word and does not have to “figure this out” from a string of letters.

290 K. Hall and C. Krist

These tokens also allow for an easier path to extracting the specific features that we
want from the data corpus. We will largely be working with word tokens and Text
objects for our cursory analysis, but sentence tokens will become important when we
begin our focus on looking for patterns and themes in the entire Science Education
Editorial text corpus later on.

These next lines of code will convert raw_GSQ1916Text into three different
variables. One contains word tokens, another contains sentence tokens, and the last
one will be made up of NLTK-modified tokens called text objects.

Python code snippet

Importing necessary libraries

import nltk

from nltk.tokenize import word_tokenize, sent_tokenize
nltk.download(’ punkt’)

relative file path
filename = ’editorials/editorialGSQ1916.txt’

try:
1. Open and read the text file
with open(filename, ’'rt’, encoding='utf-8’,
errors='replace’) as file:
raw_GSQ1916Text = file.read()

2. Tokenize the raw text into words
GSQ1916_wordTokens = word_tokenize(raw_GSQ1916Text)

3. Tokenize the raw text into sentences
GSQ1916_sentTokens = sent_tokenize(raw_GSQ1916Text)

4. Convert word our tokens into NLTK Text objects
GSQ1916_wordTextObjects = nltk.Text(GSQ1916_wordTokens)

except FileNotFoundError:
print(f"Error: The file ’{filename}’ was not found. Check
the file path.")

except Exception as e:
print(f"An error occurred: {e}")

14 Unsupervised ML with Text Data 291

Running this code will result in the generation of three more data corpora all
stemming from our raw text. The text will still be identical in each corpus, the big
difference being the number of tokens in each as well as what each token represents:

GSQ1916_wordTokens = Our original raw text converted into word
tokens

GSQ1916_sentTokens = Our original raw text converted into
sentence tokens

GSQ1916_wordTextObjects = Our original raw text converted into
NLTK Text object tokens

14.2.6 The Need for Normalization During
the Pre-processing Phase

Run the print functions to look inside each container. This code will print the first
two tokens inside each container:

Python code snippet

print("Here are the first 2 tokens in number 0:
" raw_GSQ1916Text[0:2])

print("Here are the first 2 tokens in number 1:
",GSQ1916_wordTokens[0:2])

print("Here are the first 2 tokens in number 2:
",GSQ1916_sentTokens[0:2])

print("Here are the first 2 tokens in number 3:
",GSQ1916_wordTextObjects[0:2])

You should see the following output:

Here are the first 2 tokens in number 0:
GE

Here are the first 2 tokens in number 1:
[’GENERAL’, ’SCIENCE’]

Here are the first 2 tokens in number 2:
[’GENERAL SCIENCE QUARTERLY\nEditorials\nGeneral Science
at the National Education Association In New York.’, ’'The
four special sessions on four different days were devoted
respectively to chemistry, physics, biology, and science.’]

292 K. Hall and C. Krist

Here are the first 2 tokens in number 3:
[’GENERAL’, ’SCIENCE’]

Based on these outputs, we can intuit some of the differences between these token
types. The first two characters in the raw file are “G” and “E”, which we can see are
the first two letters in GENERAL. In this untokenized raw text, we can see that the
computer will have to process every letter individually to discern meaning, a task
that has incredible computational overhead even for humans. When we get to our
tokenized file we can see that each list starts and ends with brackets [], and each
token is separated by a comma. Looking at the word tokens and text object tokens we
see that the first two tokens are indeed words: “GENERAL” AND “SCIENCE”. And
the first two tokens in the sentence tokens file contain similar separation characters,
but much more text:

1.’ GENERAL SCIENCE QUARTERLY\nEditorials\nGeneral Science at
the National Education Association In New York.’,

2.’The four special sessions on four different days were
devoted respectively to chemistry, physics, biology, and
science.’

You might also notice \n showing up in the first sentence and possibly wondering
if that is a typo contained in the text itself. It is not; rather, it is an artifact of sentence
tokenization. There are various tokenizers within NLTK. These tokenizers differ in
the features and heuristics that they use to identify the boundaries that they are looking
for. For example, words can be tokenized based on whitespace, punctuation, special
characters, regular expression, or other features and heuristics. Sentence boundaries
for tokenization can be discerned using punctuation marks, capitalization, and so on.
Each boundary selection choice brings with it its own affordances and constraints.
One such constraint is seen here with the \n indicating that a new line began in the
text file, basically denoting a paragraph break.

The following text and formatting is actually what appears at the beginning of the
first editorial section:

GENERAL SCIENCE QUARTERLY
Editorials
General Science at the National Education Association In New York.

The four special sessions on four different days were devoted
respectively to chemistry, physics, biology, and science. One
paper at least on general science was on the program...

In this case, the tokenizer we used started at the first word and kept moving forward
until it made it to the period found at the end of New York, at which point it tokenized
that whole section as one sentence.

14 Unsupervised ML with Text Data 293

If you are ever uncertain as to what type of token you are dealing with, using the
Python type and len functions we can also take a quick structural look:

Python code snippet

print("Number ® is a: ",type(raw_GSQ1916Text), "It contains:
", len(raw_GSQ1916Text), "tokens")

print("Number 1 is a: ",type(GSQ1916_wordTokens), "It contains:
",1en(GSQ1916_wordTokens), "tokens")

print("Number 2 is a: ",type(GSQl916_sentTokens), "It contains:
",1en(GSQ1916_sentTokens), "tokens')

print("Number 3 is a: ",type(GSQ1916_wordTextObjects), "It
contains: ",1en(GSQ1916_wordTextObjects), "tokens")

You should get an output similar to the following:

Number 0 is a: <class ’'str’> It contains: 11300 tokens

Number 1 is a: <class ’'list’> It contains: 2073 tokens

Number 2 is a: <class ’'list’> It contains: 91 tokens

Number 3 is a: <class ’'nltk.text.Text’> It contains: 2073
tokens

Here we can see that word and sentence tokens are converted from a raw sentence
string to a list of either words or sentences. Word tokens and NLTK Text objects are
identical in token count, but show up as different types of tokens. We can also use
this for a quick data point, seeing that the editorials found in the 1916 volume of
GSQ contained 2073 words divided into 91 sentences.

So far we have run some cursory commands to look at the outputs of the tok-
enization preprocessing. The next step of preprocessing is the normalization of our
resulting word tokens to remove multiple versions of our words. To begin this step,
we will run a word frequency distribution query that will output a list of the most
frequently appearing words along with their frequencies.

There are numerous ways to query word frequencies using Python. In this case,
we will use the text tokenized as Text objects to generate a list of the top 26 most
common words found in the GSQ1916 editorial corpus.

Python code snippet
#Run the NLTK Frequency distribution method using our Text

objects
FdGSQ1916 = nltk.FregDist(GSQ1l916_wordTextObjects)

294 K. Hall and C. Krist

print("Most common words in GSQ1916 editorial:
" ,FAGSQ1916.most_common(26))

You should see the following output:

Most common words in GSQ1916 editorial: [(’the’, 106),
,’, 103), C.’, 91), Cof’, 79), (’science’, 58),
(’to’, 54), ('in’, 44), ('and’, 42), (’general’, 31),
(’a’, 31), (’is’, 30), (’teachers’, 25), (’for’, 18),
("be’, 18), (’some’, 18), ('on’, 17), ('was’, 15),
(’school’, 15), ('The’, 14), (’high’, 14), (’it’, 13),
(’are’, 13), (C’which’, 12), (’that’, 12), (’year’, 12),
(’General’, 10)]

This check helps us to notice the issues that occur based on a lack of normalization
of words in our corpus. Unsurprisingly, the most frequent word found in the dataset
is “the”. We also see frequencies for punctuation marks, which were tokenized and
counted as words. In addition, note that the word “general” (9th most frequent word)
is tallied separately from “General” (26th most frequent word). Remember that any
difference in word case leads the computer to believe that these words are distinct
from each other. As such, while we have tokenized our text, we have not normalized
the resulting tokens and are therefore still left with quite a bit of background noise.

As mentioned before, there are numerous ways to tokenize the text and there is no
perfect sequence of tokenizing. The process will be specific to the type of research
that you are planning to conduct with the text corpus. In all likelihood, you will need
to make multiple sets of tokenized text and each will need to be preprocessed in their
own specific ways. It is possible that you want to do the preprocessing iteratively
or all in one go depending once again on what you are searching for in your data
(Fig. 14.2). For the exploration you will be doing for the rest of this chapter, we will
tokenize and normalize our raw text corpus using a script that does it all in one go.
The code snippet below performs multiple steps to first tokenize and then normalize
our text corpus. These steps include:

1. Tokenization: Creating sentence and word tokens, as well as NLTK Text objects.

2. Lowercasing: normalizes all characters in the text corpus to their lowercase
version.

3. Remove Punctuation: Punctuation marks are removed from each token. This is
done by translating each string using a translation table that removes punctuation
marks.

4. Retain Alphanumeric characters: characters that are not purely alphabetic are
filtered out to keep only words containing alphabetic characters.

5. Remove Stopwords: Finally, common stopwords like ’and’, ’the’, etc., are
removed from the list of tokens. The NLTK library provides a list of such
stopwords for the English language.

14 Unsupervised ML with Text Data 295

\ 1. Raw Text Corpus

S
e ctuati
N Convert all letters to SR e LS Filter out NLTK
Tokenization & non alphabetic
lowercase . " stopwords
characters

2. Word Word | Word Word Word
Tokens Tokens Tokens Tokens Tokens
| | 3. Sentence | | Sentence | | Sentence | | Sentence | | Sentence
Tokens Tokens Tokens Tokens Tokens
r)] (Bl
| | 4. NLTK Text || NLTK Text || NLTK Text | | NLTK Text | | NLTK Text
Objects Objects Objects Objects Objects

Fig. 14.2 Graphical representation of tokenization and normalization steps in NLTK’s combined
all in one pre-processor

The resulting list will contain tokens that are all lowercase, clear of punctuation,
alphanumeric, and are not stopwords. Use the following code to run this all-in-one
script:

#Combined All in one Pre-processor (Tokenization/Normalization)

import os

import nltk

import string

from nltk.corpus import stopwords

from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.text import Text

nltk.download(’ punkt’)
nltk.download(’ stopwords’)

filename = ’editorials/editorialGSQ1916.txt’

try:
with open(filename, ’rt’, encoding="utf-8’, errors=’replace’)
as file:
raw_GSQ1916Text = file.read()
except FileNotFoundError:
print(f"Error: The file ’{filename}’ was not found. Check the
file path.")
exit()

296 K. Hall and C. Krist

Tokenize the raw text into sentences
GSQ1916_sentTokens = sent_tokenize(raw_GSQ1916Text)

Initialize containers for cleaned data and removed elements

cleaned_GSQ1916_sentTokens = []

removed_elements = {’punctuation’: [], ’non_alpha’: [],
"stop_words’: []}

Load stopwords once for efficiency
stop_words = set(stopwords.words(’english’))

for sentence in GSQ1916_sentTokens:
words = word_tokenize(sentence.lower())
cleaned_words = []
for word in words:
if word.isalpha() and word not in stop_words:
cleaned_words.append (word)
else:
if not word.isalpha(Q):
removed_elements[’non_alpha’].append(word)
if word in stop_words:
removed_elements[’stop_words’].append(word)
if any(char in string.punctuation for char in word):
removed_elements[’punctuation’].append(word)
cleaned_sentence = ’ ’.join(cleaned_words)
cleaned_GSQ1916_sentTokens.append(cleaned_sentence)

output_filename = ’editorials/preProcessed_GSQ1916Text.txt’
os.makedirs(os.path.dirname(output_filename), exist_ok=True)
with open(output_filename, 'w’, encoding="utf-8’) as file:
for sentence in cleaned_GSQ1916_sentTokens:
file.write(sentence + ’\n’)

Now, read back the cleaned text for further processing
with open(output_filename, 'rt’, encoding="utf-8’) as file:
cleaned_text = file.read()

Tokenize the cleaned text into sentences and words
preProcessed_GSQ1916_wordTokens = word_tokenize(cleaned_text)
preProcessed_GSQ1916_textObjects = Text(cleaned_word_tokens)

Output results for verification
print(f"Cleaned text saved to {output_filename}'")

14 Unsupervised ML with Text Data 297

print (f"Number of cleaned word tokens:
{len(preProcessed_GSQ1916_wordTokens)}")

#Run the NLTK Frequency distribution method using our Text
objects

FdGSQ1916 = nltk.FregDist(preProcessed_GSQ1916_textObjects)

print("Most common words in Pre-Processed GSQ1916 editorial:
" FdGSQ1916.most_common(26))

You should now see the 26 most common word tokens and their counts:

Most common words in Pre-Processed GSQ1916 editorial:
[(’science’, 72), (’general’, 45), (’teachers’, 28),
(’school’, 28), (’high’, 18), (’year’, 12), (’one’, 9),
(’teaching’, 9), ('course’, 8), (’junior’, 8), (new’, 7),
(’special’, 7), ('club’, 7), (’physics’, 6), ('two’, 6),
(’college’, 6), (’much’, 6), (’pupils’, 6), ('different’, 5),
(’subject’, 5), ('given’, 5), (’discussion’, 5), (’best’, 5),
(’find’, 5), (Cfive’, 5), (Cper’, 5)]

Compare this output to the previous word frequency output. What are the
differences that you notice?

You should see that all occurrences of “general” have been normalized to all fall
into one bucket, giving us a better overall count of common words in our corpus.
We also see some reshuffling of the list as stop words and punctuation have been
removed from the corpus.

To be clear, this is not an ideal corpus by any stretch of the imagination. There
is probably some level of data loss that occurs with each one of these preprocessing
steps. Going through all possible ways of preprocessing is out of the scope of this book
chapter and much of it will have to be glossed over due to space constraints. It should
also be noted that we have made a variable container for each step of preprocessing
done (i.e., one tokenized by sentences; one tokenized by Text objects), and we can
continue to use any or all of them for analysis. This will provide flexibility and allow
us to do some exploration look for interesting themes or patterns before settling on
one processed version of our text corpus.

298 K. Hall and C. Krist

14.2.7 Extracting Features from Our Corpora

Before moving on to our data analysis phase we will also produce two more text
corpora, creating each by extracting a specific feature from our text corpus. The two
feature extraction techniques we will use here are extracting n-grams and part-of-
speech (POS) tagging.

Extracting n-grams: The n-gram extraction will result in a compilation of words
that are found together in pairs (bigrams), or the three words most frequently found
together (trigrams). We will use the frequency and distribution of n-grams later to
explore patterns and trends across the hundred-plus years of Science Education edito-
rials. During our upcoming EDA, we will analyze the frequency and the distribution
of our extracted n-grams. Use the following code to extract n-grams:

Python code snippet

import nltk

from nltk.tokenize import word_tokenize
from nltk.util import ngrams

from collections import Counter

tokens = preProcessed_GSQ1916_wordTokens

Generate bigrams
bigrams = list(ngrams(tokens, 2))

Generate trigrams
trigrams = list(ngrams(tokens, 3))

Count and print the frequency of the top 10 bigrams
bigram_frequency = Counter(bigrams)
print("Bigram Frequency:", bigram_frequency.most_common())

Count and print the frequency of the top 10 trigrams
trigram_frequency = Counter(trigrams)
print("Trigram Frequency:", trigram_frequency.most_common())

You should see the following output. What do you notice? What does it make you
wonder?

Bigram Frequency: [((’general’, ’'science’), 41),
(C’high’, ’school’), 14), ((’science’, ’teachers’), 13),

14 Unsupervised ML with Text Data 299

(C’junior’, ’high’), 8), (('per’, ’'week’), 4),
(C’new’, ’york’), 3), ((’senior’, ’high’), 3),
((’science’, ’club’), 3), ((C’year’, ’'junior’), 3),
((’science’, ’required’), 3)]

Trigram Frequency: [((’junior’, ’'high’, ’school’), 4),
((’senior’, ’high’, ’school’), 3),

((’general’, ’science’, ’'club’), 3),
(C’year’, ’junior’, ’high’), 3),

((’general’, ’science’, ’'required’), 3),
((’general’, ’science’, ’quarterly’), 2),
((’teaching’, ’general’, ’science’), 2),
((’general’, ’science’, ’'main’), 2),
((’science’, ’teachers’, ’'associations’), 2),
((C’attention’, ’given’, ’general’), 2)]

Even a cursory look over this output gives us a general idea of some of the topics
discussed in the 1916 editorials. For example, if you did not know the nature of the
publication, it should start to become clear to you that this journal is based in the field
of education. The group that these editorials seem to talk most about are “science
teachers”, it also seems to have an educational leaning towards 7—12th grade students.
It also seems to be overwhelmingly focused on the discussion of “general science”,
which of course makes sense based on the fact that at this point the journal was
named General Science Quarterly. In less than ten years the journal will transition
away from this title towards Science Education. This first set of data points from this
n-gram extraction captures this moment in time and will be used as a comparison as
we look at the evolution of the journal over time.

Part-of-Speech (POS) tagging: POS tagging looks at all words found in the
text corpus and assigns parts of speech to them based on features and heuristics.
The resulting list can then be used to perform other NLP tasks and analyses. Once
again, there are numerous POS taggers accessible through Python; NLTK defaults to
the Penn Treebank tagset (example link https://www.cis.upenn.edu/~bies/manuals/
tagguide.pdf). Each tag represents a different part of speech. In this case:

e JJ = adjective
e NN = Noun, singular or uncountable nouns
e NNS = Noun, plural

Use the following script to carry out POS tagging on our data corpus:
Python code snippet
import nltk

from nltk.tokenize import word_tokenize
from nltk import pos_tag

https://www.cis.upenn.edu/~bies/manuals/tagguide.pdf
https://www.cis.upenn.edu/~bies/manuals/tagguide.pdf

300 K. Hall and C. Krist

Ensure you’ve downloaded the necessary NLTK data
nltk.download(’ punkt’)
nltk.download(’averaged_perceptron_tagger’)

try:
Read the cleaned text file
with open(filename, ’'r’, encoding="utf-8’) as file:
cleaned_text = file.read()

Apply POS tagging to the word tokens
preProcessed_GSQ1916_pos_tags =
pos_tag(preProcessed_GSQ1916_wordTokens)

Print the POS tags for the first few tokens as a sample
print("First 10 POS tags:")
for token, tag in preProcessed_GSQ1916_pos_tags[:10]:
Adjust the slice for more or fewer samples
print(f"{token} - {tag}")

except FileNotFoundError:
print(f"File {filename} not found. Please check the path.")

You should see the following output:

First 10 POS tags:

general - JJ, science - NN, quarterly - JJ, editorials - NNS,
general - JJ, science - NN, national - JJ, education - NN,
association - NN, new - JJ]

In the output, we can see that each word has been connected to some tag and that
tags can be repeated.

14.3 Exploratory Data Analysis Using a Larger Data
Corpus

We are now able to start doing some exploratory data analysis using our cleaned
word tokens and textObjects as the corpus. At this early stage in our analysis, it is
sometimes difficult to ascertain what might be interesting about our data corpus. This
is where carefully utilized unsupervised analyses can help to support the (qualitative)

14 Unsupervised ML with Text Data 301

analyst in doing good qualitative research: observing patterns, noting themes, and
making decisions about when and how a human should dive in more deeply.

In the interest of diving into some exploratory data analysis, we will now be
looking at more than just the one set of editorials from 1916. For this exploration,
we will do a comparative analysis of an early (1916, 1917, 1926, and 1929) vs. a late
set (2000, 2002, 2005, and 2016) of published editorials from Science Education.
We have (somewhat arbitrarily) decided to segment the corpus by period (editorials
from the first and last four volumes of the journal) to make it manageable to take a
cursory look for patterns over time in how the themes and content of editorials about
science education have evolved over 100+ years.

An important note about this text corpus: editorials were not written for every
volume of this journal, and even then they differ greatly in format, size, or who wrote
the editorial (e.g., editor-in-chief vs. section editor). There are also sometimes guest
editorials as well as swaths of volumes that do not contain editorials at all. This is
important to keep in mind as we move forward because this affects our choice of
editorials to analyze for this exercise.

For this exploration, we have already converted the individual editorials into clean
text files, which were then merged based on the time they were published, resulting in
two different text corpora to run our analysis. These text files were then pre-processed
and had features extracted following the methods discussed in the previous section.

In the following subsections, we will provide guidance for conducting a range of
analyses to begin to give us a glimpse into the data. However, we will leave it up
to the reader to observe, ask questions, and begin to make sense of these patterns.
Again, as this is exploratory, the goal is to look for patterns that you, as the human
analyst, find interesting or worth exploring further, based on your own theoretically-
informed questions and curiosities. This is a cyclical and iterative process, and we
recommend utilizing these NLTK-based tools in conjunction with other qualitative
analysis tools like analytic memos and jottings to keep track of your observations
and questions along the way.

As you try out each of the following analyses, keep in mind the broad research
question that motivated us to compile this dataset in the first place: How have the
expressed priorities of the journal Science Education (previously General Science
Quarterly) evolved over time? We were also interested specifically in how priorities
related to diversity and equity have entered into editorial priorities. If you have a more
specific topical focus, feel free to jot that down and keep an eye out for indicators
related to that topical focus as you go along as well.

With these corpora, we will conduct a set of analyses that are all versions of token
frequency analysis. Looking at these various frequencies and related descriptive data
will offer us potential analytic insights about the richness of the vocabulary used,
trends in highest frequency word usage, domain specific word usage, differences in
editor writing styles, trends and patterns in science education, and changes in areas
such as readability or complexity of words used.

We will introduce a description and the input code for each technique. We will
also provide a sample output text in order to show the structure and syntax of what
this code should be producing for you. However, keep in mind that the substance

302 K. Hall and C. Krist

of that output (e.g., the specific words or counts) will likely differ from what you
see, depending on the corpus you are working with. The code for pre-processing and
comparing the new corpora is found in the Jupyter notebook.

14.3.1 Average Sentence Length

Average Sentence Length uses the total number of words and total number of sen-
tences in a corpus to calculate exactly what it says: the average sentence length.
While the equation is very basic and straightforward it provides information that can
be used to infer, for example, how complex sentences are on average throughout a
given text corpus. Because we will be comparing by decade, this can also be useful
to identify potential indicators for patterns like changes in writing styles and stylistic
preferences when looking at how editorials have been written over time.

Python code snippet

print("Early File:™)

print("Number of sentences:", len(cleaned_early_sentences))

print("Number of word tokens:", len(early_word_tokens))

Calculate the average sentence length

average_sentence_length_early = len(early_word_tokens) /
len(cleaned_early_sentences)

print("Average sentence length for early is:",
average_sentence_length_early)

print("\nLate File:")

print("Number of sentences:", len(cleaned_late_sentences))

print ("Number of word tokens:", len(late_word_tokens))

Calculate the average sentence length

average_sentence_length_late = len(late_word_tokens) /
len(cleaned_late_sentences)

print("Average sentence length for late is:",
average_sentence_length_late)

Here is an example of what your output structure should look like:

Number of sentences: 284
Number of word tokens: 3144
Average sentence length for early is: 11.070422535211268

14 Unsupervised ML with Text Data 303

14.3.2 Word Frequency Distributions

Word frequency distributions are what we ran initially when looking at the most
common words found in a text corpus. While simple at first glance, this metric can
also point to qualities such as author’s style and tone, giving us the ability to again
infer trends and patterns over time such as main topics, themes, or subjects discussed
in a text corpus. Word frequency distributions can also be used in applications such
as topic modeling.

Python code snippet

#Top 25 most common words with their counts
fdEarly = nltk.FregDist(early_text_objects)
print("Most common words in early file:",fdEarly.most_common(25))

fdLate = nltk.FregDist(late_text_objects)
print("Most common words in late file:",fdLate.most_common(25))

Here is an example of what your output structure should look like:

Most common words in early file: [(’science’, 199),
(’general’, 108), (’school’, 67), (’teachers’, 53),

(’high’, 49), (Cone’, 32), (’education’, 28), (’'new’, 28),
(’course’, 25), ('college’, 24), (’year’, 22), (’university’,
(’elementary’, 20), (’work’, 19), (’teaching’, 17),
(’courses’, 16), (’schools’, 16), (’special’, 15),

(’junior’, 15), ('may’, 15), (’physics’, 14), (’club’, 14),
(C’pupils’, 14), ('michigan’, 14), (’free’, 13)]

14.3.3 Lexical Diversity

Lexical diversity quantifies the variety of unique words found in a document. It
produces a numerical measure that indicates how diverse the vocabulary is that is
used in a text. Broadly speaking, scores of 0.8—1 are considered extremely high and
difficult to maintain in typical communicative texts. Scores of 0.4—0.79 are considered
moderate to high; most high-quality texts fall in this range. Scores of 0-0.39 are
considered low lexical diversity and tend to suggest highly specialized or technical
texts (e.g., instruction manuals) or texts aimed at young readers. While this measure
is sensitive to text length (longer texts have more opportunities to repeat words),
comparing lexical diversity scores over time can allow for quantitative comparison

304 K. Hall and C. Krist

that might suggest potential changes in how the usage of academic language has
changed over time. This might indicate changes in, for example, editorial stylistic
preferences, changes in editors, or changes in readership expectation.

Python code snippet
lexical_diversity_early = len(set(early_word_tokens)) /
len(early_word_tokens)
lexical_diversity_late = len(set(late_word_tokens)) /

len(late_word_tokens)

print("Lexical diversity for early file:", lexical_diversity_early)
print("Lexical diversity for late file:", lexical_diversity_late)

Here is an example of what your output structure should look like:

Lexical diversity for early file: 0.3880407124681934
Lexical diversity for late file: 0.43950617283950616

14.3.4 Word Length Distribution

Again, a fairly straightforward measure that can provide insight into how long, on
average, words are in a given corpus.

Python code snippet

Average word length

avg_word_length_early = sum(len(word) for word in early_word_tokens)
/ len(early_word_tokens)

avg_word_length_late = sum(len(word) for word in late_word_tokens)
/ len(late_word_tokens)

print("Average word length for early file:", avg_word_length_early)
print("Average word length for late file:", avg_word_length_late)

Here is an example of what your output structure should look like:

Average word length for early file: 6.74236641221374
Average word length for late file: 7.292901234567902

14 Unsupervised ML with Text Data 305

14.3.5 Unique Words

Unique words can be used to identify the frequency of words that appear only once
in a given corpus. We can also print a list of these word tokens. Looking at unique
words between or across text corpora can allow us to look for the appearances and
disappearances of specialized educational terminology over time.

To find the frequency (number) of unique words, use the following code:

Python code snippet

unique_words_early = set(early_word_tokens)
unique_words_late = set(late_word_tokens)

print("Number of unique words in early file:", len(unique_words_early))
print ("Number of unique words in late file:", len(unique_words_late))

Here is an example of what your output structure should look like:

Number of unique words in early file: 1220
Number of unique words in late file: 1424

To generate a list of words that are unique to that corpus compared to the others,
use the following code:

Python code snippet
Convert word tokens to sets for set operations
unique_words_early = set(early_word_tokens)

unique_words_late = set(late_word_tokens)

Find words that are in the early set but not in the late set
exclusive_to_early = unique_words_early - unique_words_late

Find words that are in the late set but not in the early set
exclusive_to_late = unique_words_late - unique_words_early

print("Words exclusive to early set:", exclusive_to_early)
print("\nWords exclusive to late set:", exclusive_to_late)

306 K. Hall and C. Krist
Here is an example of what your output structure should look like:

Words exclusive to early set: {’small’, ’electric’, ’sought’,
"subjects’, ’judgment’, ’termed’, ’'kalamazoo’, ’'nine’, ’china’,
"lecture’, ’divided’, ’pretentious’, ’bound’, ’periodical’,
'soon’, ’'richard’, ’discoursed’, ’lines’, ’usage’, ’contribute’,
'needs’, ’suitability’, ’providence’, ’said’, ’encouraged’,
’albany’, ’whose’, ’columbia’, ’hotel’, ’'provoked’, ’advised’,
'miller’, ’title’, ’webb’, ’situation’, ’'ably’, ’stratification’,

"market’, ’subscribers’, ’es’, ’continued’, ’suggestive’,
’craig’, ’numerous’, ’enough’, ’forty’, ’'richardson’, ’full’,

'expound’, ’ohio’, ’souled’, ’carrying’, ’'seldom’

Words exclusive to late set: {’community’, ’consistently’,
"hold’, ’gap’, ’'ongoing’, ’compromise’, ’inequities’,
’sophisticated’, ’visibility’, ’assert’, ’'unified’, ’assess’,
"rudolph’, ’middle’, ’level’, ’unrealized’, ’production’,
'robb’, ’interaction’, ’observing’, ’criteria’, ’observed’,
’ends’, ’'relations’, ’agree’, ’reading’, ’'retort’, ’intent’,
"disability’, ’'round’, ’advocates’, ’glancing’,
"quantification’, ’produce’, ’kong’, ’symposium’,
'understanding’, ’inherent’, ’able’, ’evaluate’, ’proposals’,
"upshot’, ’engagement’, ’target’, ’superficial’, ’tantalizing’,
’judge’, ’plenary’, ’exercise’, ’proficiency’, ’'mobility’,
"fr{\o}yland’, ’'impossible’, ’regarding’

14.3.6 N-grams

N-grams point out recurring word combinations found throughout the text corpus.
As described earlier, bigrams (e.g., New York; science teachers; high school) and
trigrams (e.g., gold standard research; junior high school) are the most commonly
used. In our earlier explorations of the 1916 corpus, we saw how bigrams conveyed
a lot of information about the contents of the text corpus.

To generate an ordered list of the most common bigrams, use the following code:

Python code snippet

display frequency of highest 25 bigrams

finder = nltk.collocations.BigramCollocationFinder.from_words
(early_text_objects)

finder.ngram_fd.tabulate(50)

finder2 = nltk.collocations.BigramCollocationFinder. from_words

14 Unsupervised ML with Text Data 307

(late_text_objects)
finder2.ngram_£fd.tabulate(50)

Here is an example of what your output structure should look like:

Early List

(’general’, ’science’) ("high’, ’'school’) (’science’, ’teachers’)
(’junior’, ’'high’) (’new’, ’york’) (’teachers’, ’college’)
(’elementary’, ’'science’) (’science’, ’'education’)

(’high’, ’schools’) (’science’, ’courses’) (’senior’, ’high’)
(’science’, ’'club’) (’special’, ’science’) (’board’, ’education’)
(’school’, ’education’) (’science’, ’general’) (’per’, ’week’)
(’school’, ’science’) (’sent’, ’free’) ('normal’, ’school’)
(’university’, ’'michigan’) (’college’, ’columbia’)

(’columbia’, ’university’) (’science’, ’one’)

(’physics’, ’chemistry’) (’special’, ’sciences’)

(’science’, ’teaching’) (’science’, ’course’) (’ninth’, ’grade’)
(’specialized’, ’sciences’) (’introductory’, ’science’)

(’state’, ’'board’) (’science’, ’'work’) (’education’, ’'university’)
(’editorial’, ’board’) (’york’, ’'city’) (’science’, ’quarterly’)
(’science’, ’taught’) (’science’, ’association’) (’year’, ’junior’)
(’school’, ’'general’) (’science’, ’required’) (’required’, ’subject’)
(’two’, ’periods’) (’periods’, ’'per’) (’science’, ’elementary’)
(’seventh’, ’eighth’) (’domestic’, ’science’) (’club’, ’new’)
(’new’, ’england’)

Late List

(’science’, ’education’) (’gold’, ’standard’) (’good’, ’research’)
(’science’, ’teaching’) (’educational’, ’research’)

(’test’, ’scores’) (’teaching’, ’'learning’) (’science’, ’educators’)
(’john’, ’dewey’) (’standard’, ’research’) (’review’, ’process’)
(’education’, ’researchers’) (’scientific’, ’literacy’)

(’student’, ’learning’) (’research’, ’science’)

(’general’, ’science’) ('manuscript’, ’central’)

(’scholars’, ’science’) (’education’, ’research’) (’aims’, ’science’)
(’policy’, ’'practice’) (’learning’, ’outcomes’)

(’nancy’, ’brickhouse’) (’nature’, ’science’) (’school’, ’science’)
(’plenary’, ’articles’) (’science’, ’quarterly’) ("united’, ’states’)
(’latest’, ’issue’) (’across’, ’'globe’) (’research’, ’programs’)
(’lead’, ’good’) (’educational’, ’sciences’) (’improve’, ’'quality’)
(’quality’, ’education’) (’educational’, ’aims’)

(’potential’, ’influencing’) (’nclb’, ’'gold’) (’value’, ’science’)

(’everyday’, ’'lives’) (’science’, ’curriculum’)

308 K. Hall and C. Krist

(’education’, ’programs’) (’educational’, ’researchers’)
(’way’, ’getting’) (’getting’, ’'process’) (’years’, ’science’)
(’learning’, ’science’) ("multicultural’, ’science’)
(’modern’, ’'science’) (’stanley’, ’brickhouse’)

To generate an ordered list of the most common trigrams, use the following code:
Python code snippet
display frequency of highest 25 trigrams
finder = nltk.collocations.TrigramCollocationFinder.from words
(early_text_objects)
finder.ngram_£fd.tabulate(25)
finder2 = nltk.collocations.TrigramCollocationFinder. from_words

(late_text_objects)
finder2.ngram_£fd.tabulate(25)

Here is an example of what your output structure should look like:

Early File

(’junior’, ’'high’, ’school’) (’senior’, ’'high’, ’school’)
(’general’, ’science’, ’club’) (’teachers’, ’'college’, ’columbia’)
(’college’, ’columbia’, ’'university’)

(’science’, ’'general’, ’science’) (’high’, ’school’, ’science’)
(’school’, ’education’, ’'university’) (’new’, ’york’, ’city’)
(’general’, ’science’, ’quarterly’) (’general’, ’science’, ’general’)
(’general’, ’science’, ’teachers’) (’general’, ’science’, ’course’)
(’junior’, ’'high’, ’schools’) (’year’, ’junior’, ’high’)

(’high’, ’school’, ’general’) (’school’, ’general’, ’science’)
(’general’, ’science’, ’'required’) (’periods’, ’per’, ’week’)
(’general’, ’science’, ’elementary’) (’science’, ’'club’, ’new’)
(’club’, ’new’, ’england’) (’normal’, ’school’, ’salem’)
(’michigan’, ’schoolmasters’, ’club’)

(’state’, ’board’, ’education’)

Late File

(’science’, ’education’, ’researchers’)

(’gold’, ’standard’, ’research’) (’aims’, ’science’, ’education’)
(’science’, ’teaching’, ’learning’)

(’general’, ’science’, ’quarterly’)

(’scholars’, ’science’, ’education’) (’lead’, ’good’, ’'research’)

14 Unsupervised ML with Text Data 309

(’improve’, ’'quality’, ’education’)

(’educational’, ’aims’, ’science’) (’nclb’, ’gold’, ’standard’)
(’science’, ’education’, ’'research’) (’way’, ’getting’, ’process’)
(’years’, ’science’, ’education’) (’teaching’, ’learning’, ’science’)
("multicultural’, ’science’, ’education’)

(’issue’, ’science’, ’education’) (’began’, ’'general’, ’science’)
(’science’, ’quarterly’, ’article’) (’quarterly’, ’article’, ’john’)
(’article’, ’john’, ’dewey’)

(’journal’, ’credible’, ’significant’)

(’science’, ’education’, ’continue’) (’'research’, ’lead’, ’'good’)
(’research’, ’science’, ’education’) (’child’, ’left’, ’behind’)

14.3.7 Concordance

Concordance is an NLTK Text object method that also looks for word distribution,
but specifically searches for words found before and after a specific word of choice.
Concordance allows you to find out how words are used contextually throughout
the corpus. This can be particularly powerful when looking at trends over time. For
example, in the sample below we search for the all the contextual occurrences of the
word “science” in two separate corpora. What trends or patterns do you see between
the two? What might those changes be pointing to in terms of shifts over time?

Python code snippet

print(early_text_objects.concordance("science™))
print(late_text_objects.concordance("science"))

Here is an example of what your output structure should look like:

Early

Displaying 25 of 199 matches:

general science quarterly editorials general scienc

cience quarterly editorials general science national educati
pectively chemistry physics biology science one paper least
ogy science one paper least general science program sessions
s many subjects sidetracked general science prominence subje
discussion provoked subject general science general science

ked subject general science general science one live issue i
authors discoursed bearing general science later courses ph
s chemistry general feeling general science taught prepare f

310 K. Hall and C. Krist

erce plan two years course required science advocated replac
advocated replace one year general science widely adopted r
ion special sciences must done make science general final sc
ust done make science general final science session dewey ga
on dewey gave us masterpiece method science teaching general
ece method science teaching general science main theme enthu

Late
Displaying 25 of 144 matches:
editorial talking issues many years science education provid
ant ideas related teaching learning science perhaps livelies
multiculturalism debate began pages science education derek
son elegant rationale multicultural science education sensit
e cultural context hodson described science education would
standard cultural framework modern science rationale came w
eliefs experiences including rubric science would fact viole
rubric science would fact violence science science universa
science would fact violence science science universal hence
tandard universalist account nature science flawed nature sc
ccount nature science flawed nature science fact reflect mul
good strongly rejected idea school science curricula expand

Whew—you have made it to the end of our descriptive exploration! We hope you
now have a rich set of jottings and memos giving you ideas for more sophisticated
analyses.

Atthis point, based on the insights you have garnered, you can choose to utilize any
of the ML techniques described in the previous chapters on unsupervised machine
learning, such as Topic Modeling, K-Means Clustering, or Latent Derelicht Analysis
(LDA). We encourage you to refer back to those chapters and revise the code provided
as needed to conduct the analyses that best support your desired analyses.

14.4 Tasks

Comprehension

1. Discuss the importance of pre-processing in text data analysis and how it affects
the outcomes of unsupervised learning models. What are issues that may occur
if the pre-processing stage is skipped?

2. Describe the challenges associated with lexical ambiguity in natural language
processing and how they affect text analysis.

3. How does feature extraction impact the subsequent stages of text analysis in
unsupervised learning?

14 Unsupervised ML with Text Data 311

4.

What are the primary challenges mentioned in the chapter when applying
unsupervised learning to text data?

What is the role of stopword removal in preprocessing text data, and how might
it differ depending on the research question?

Application

. Much of the code in this chapter has been kept as simple as possible to avoid

obscuring what is happening in the background. For instance, we use paths to
single files in a folder, which ensures we always know what the subsequent vari-
able names are. However, processing 100 files with this current code would be
incredibly cumbersome. This is an ideal situation to use an LLM such as Chat-
GPT to extend the capabilities of the existing code. Formulate a prompt using
the current code as a base, asking ChatGPT to generate code that can automate
the pre-processing of a folder of text or CSV files. Additionally, you will need
to discuss with ChatGPT how to modify the subsequent notebook cells to work
with the new variable names.

Develop a workflow using NLTK to pre-process, extract features, and conduct
unsupervised analysis on a corpus of your own choosing.

Take that text corpus and apply different pre-processing techniques such as tok-
enization, stemming, and stopword removal. Compare the outputs and discuss
how each technique affects the analysis of the text.

Implement an n-gram analysis of the dataset. Identify the most frequent bi-grams
and tri-grams and interpret what their frequency might suggest about the dataset’s
content.

. Construct a system using unsupervised learning to automatically generate

summaries of the dataset, by identifying key themes and patterns in the text.

References

Martin, J. (2016). The grammar of agency: Studying possibilities for student agency in science

classroom discourse. Learning, Culture and Social Interaction, 10, 40-49.

Rosenberg, J. M., & Krist, C. (2021). Combining machine learning and qualitative methods to elab-

orate students’ ideas about the generality of their model-based explanations. Journal of Science
Education and Technology, 30, 255-267.

312 K. Hall and C. Krist

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 15)
Triangulating Computational and e
Qualitative Methods to Measure

Scientific Uncertainty

Joshua M. Rosenberg, Hadi Bhidya, and Cody Pritchard

Abstract This chapter outlines steps to analyze a complex construct of interest
to science education researchers in a very commonly used digital media platform,
YouTube, particularly popular science education-related videos. The construct of
interest is uncertainty—established as important but challenging for teachers and
researchers alike to recognize and understand as many definitions and operational-
izations of uncertainty as it relates to learning science exist. To study uncertainty,
transcripts of videos are created using Python and the Python packages pytube and
Whisper, and a two-step triangulation approach that combines a computational (a
dictionary-based text analysis) and qualitative approach. In the text analysis step,
transcripts of videos are searched for key uncertainty-related terms using the statis-
tical software R. Next, qualitative coding of the transcripts is carried out, with the
output from the first step as a support for the task of developing an initial set of
codes for the types of uncertainty present in the science education videos.The pro-
posed chapter contributes to the book by providing a practical guide for researchers
interested in studying complex constructs using an approach that merges some of the
benefits of quantitative and qualitative approaches. Python and R code are provided
to support researchers to replicate and draw on the analysis carried out.

15.1 Introduction

Educational stakeholders are often most interested in supporting students in develop-
ing competencies that are complex, like an identity as someone who can do science
(Brickhouse and Potter, 2001) or students’ conceptual understanding of scientific

J. M. Rosenberg (&) - H. Bhidya - C. Pritchard
University of Tennessee, Knoxville, USA
e-mail: jrosenb8 @utk.edu

J. M. Rosenberg
513 Claxton, 1122 Volunteer Blvd., Knoxville, TN 37996, USA

H. Bhidya - C. Pritchard
1122 Volunteer Blvd., Knoxville, TN 37996, USA

© The Author(s) 2025 313
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_15&domain=pdf
mailto:jrosenb8@utk.edu
https://doi.org/10.1007/978-3-031-74227-9_15

314 J. M. Rosenberg et al.

mechanisms or processes (Krist et al., 2019). A key challenge pertinent to support-
ing students to develop such competencies is measuring or assessing them, which is
concomitantly complex. One way to approach the complexity of measuring complex
educational outcomes is to triangulate methodological approaches. In this chapter,
we pursue such a triangulation approach.

Our triangulation strategy for measuring complex constructs differs from more
conventional approaches in that it involves the combination not of quantitative and
qualitative methods, but instead from combining computational and qualitative meth-
ods in a manner inspired by (Nelson, 2020) in the computational grounded theory
three-step approach. Such an approach has been used in some prior science education
research (Rosenberg and Krist, 2021). Here, we loosely follow this approach’s first
two steps of computationally exploring a large and complex data source (the first
of the three computational grounded theory steps) and then qualitatively analyzing
the data in light of the output of the first step (the second computational grounded
theory step). We do so with a focus on the construct of uncertainty, a central element
of science teaching and learning (Manz and Sudrez, 2018).

The goal of this chapter is to demonstrate how we employ a triangulation
approach. Our approach loosely follows Nelson (2020) computational grounded the-
ory approach to specifically measure a complex construct (i.e., the use of uncertainty
within an informal science learning environment (Youtube)). While this chapter
specifically measures how uncertainty is used with science learning videos on
YouTube, a similar approach can be applied to measuring other scientifically-related
complex constructs in other online educational spaces (e.g., Khan Academy and
Coursera), with the exception of YouTube-specific data mining techniques discussed
within the chapter.

In addition to showing how we can carry out a triangulation approach to measure a
complex construct, we have a secondary aim: showing how a relevant data source can
serve as the basis for a new kind of learning analytics- or educational data science-
inspired investigation of uncertainty as it pertains to science teaching and learning.
Namely, we show how we can efficiently collect data from a large corpus of science
education videos, using the speech (and transcripts of speech that we can create) to
play out and test the ideas about the nature of uncertainty that have been explored
primarily in classroom contexts, but not in the context of educational media.

Before describing our data collection and data analysis method, we first briefly
review some of the prior research on uncertainty and science education in the next
section.

15.2 Prior Research on Uncertainty and Science Education

Uncertainty is ubiquitous in conversations among scientists Kirch (2008, 2010) and
is a fundamental driver for continued research and the refinement of knowledge
Allchin (2012). The Framework for K-12 Science Standards states that “Scientific
knowledge is a particular kind of knowledge with its own sources, justifications, ways

15 Triangulating Computational and Qualitative Methods to Measure ... 315

of dealing with uncertainties, and agreed-on levels of certainty” (National Research
Council, 2012, p. 251). Despite its presence and importance in scientific inquiry
and learning, there is little consensus on how uncertainty is conceived in specific
domains.

In the scientific community, uncertainty is communicated alongside its relation-
ship with probability and often refers to the level of variability that exists in rela-
tionship to a scientific model or hypothesis. However, uncertainty is not a concept
exclusive to the scientific community, but rather is a fact and condition present in
our daily lives Pollack (2003). Jordan and McDaniel (2014) define uncertainty as a
cognitive feeling or “an individual’s subjective experience of doubting, being unsure,
or wondering about how the future will unfold, what the present means, or how to
interpret the past” (p. 492). (Kahneman and Tversky, 1982) discuss how variants of
psychological uncertainty, which may not follow rules of formal scientific inquiry,
may be correlated with expressions within our natural language. The discourses sur-
rounding our understanding of uncertainty are complex enough that some researchers
have suggested discipline-specific typologies of uncertainty because data types and
scientific models vary so widely based on one’s domain Bateman et al. (2022).

To determine how “uncertainty” is conveyed through language, we employ (Kirch,
2010) typology of uncertainty as a starting point for our exploration of uncertainty in
educational videos. Kirch (2010) define uncertainty as both a psychological experi-
ence and a mathematical object. Kirsch writes, “uncertainty refers to a psychological
condition of being in doubt (e.g., I am uncertain about something or someone. . .).
It also refers to a statistical (or mathematical) object (e.g., a statistical estimation of
uncertainty)” (Kirch, 2011, p. 57). As a psychological condition, uncertainty can be
procedural, sociocultural, epistemological, and ontological. As a statistical object, it
refers to measurement, sampling, repeatability, and predictive value Kirch (2011).
We use this framework later in our analysis, focusing on psychological uncertainty
as an initial step.

Thus, our aim in this analysis is to try to understand the nature of psychological
uncertainty as it is expressed in educational videos in the science domain. To do so,
we triangulate methodological approaches, using both an automated, computational
approach, and a qualitative approach.

15.3 Data Analysis Overview

This is structured into four distinct sections. The first section—Data Analysis Step
#1—guides you through extracting audio streams from YouTube playlist URLSs using
‘Pytube’. In the second section—Data Analysis Step #2—we focus on converting
these audio files into transcriptions, which can be in the form of SRT or plain text
files.

Each section is designed to be comprehensive, providing step-by-step instructions
to ensure a smooth and effective learning experience.

316 J. M. Rosenberg et al.

We then proceed to two analytic steps, one computational (Data Analysis Step 3)
and one qualitative (Data Analysis Step 4).

15.4 Data Analysis Step #1: Programmatically Accessing
YouTube Video Data

The primary aim of this and the second step is to develop a method that converts
YouTube playlists into transcriptions of all videos within those playlists. For these
steps, we employ Python. If you haven’t used python before, the easiest way to get
started in our view is to download the Anaconda distribution, a particular version of
Python combined with some already-included python libraries and tools for using
Python: https://www.anaconda.com/.

We will be using two Python libraries: ‘pytube’ for downloading videos and
‘whisper” for converting audio to text.

To replicate this process, the prerequisites are minimal. You’ll need a computer
capable of running Python and some understanding of how Python works. For begin-
ners, assistance from Al tools like ChatGPT can also be invaluable in navigating the
learning curve.

15.4.1 Converting Playlists to Audio

Pytube is a highly capable Python library, freely available for interacting with
YouTube via URL links. Its primary function is to download audio and video streams,
captions, and search results. In this first part of our tutorial, we will focus on using
Pytube to retrieve audio streams from YouTube playlists.

Before diving into the code, it’s essential to install Pytube. This can be done by
running the following command in your terminal or command prompt:

Python code snippet: installing pytube

pip install pytube

Additionally, familiarizing yourself with Pytube’s documentation (available
at https://pytube.io/en/latest/) is highly recommended. It provides a wealth of
information and will enhance your understanding of the library’s capabilities.

This segment of the tutorial will guide you through creating a program that down-
loads and saves the audio streams of a YouTube playlist’s videos into a specified
folder using Pytube.

https://www.anaconda.com/
https://pytube.io/en/latest/

15 Triangulating Computational and Qualitative Methods to Measure ... 317

Start by importing the Playlist class from Pytube and then create a Playlist object
by passing the URL of the playlist—here, for a playlist from the YouTube channel
Veritasium on the physics concept of intertia—as a string:

Python code snippet: importing the playlist class and reading in a playlist
URL

from pytube import Playlist
playlist_url = ’https://www.youtube.com/playlist?1ist=PLAB27A3C12C31E663’
playlist = Playlist(playlist_url)

Iterate through each video in the playlist using a for loop. The loop will handle two
main tasks: extracting the highest resolution audio stream and downloading it to a
specified path. This ensures all videos in a playlist are stored in a single folder, aiding
in organization and future analysis. We did this for around one dozen playlists from
two channels: Crash Course (https://www.youtube.com/user/crashcourse) and Ver-
itasium (https://www.youtube.com/channel/UCHnyfMqiRRG1u-2MsSQLbXA).

Python code snippet: iterating through each video

for video in playlist.videos:
try:
Get the highest resolution audio stream, the first

audio_stream = video.streams.filter(only_audio=True).first()

Download the audio stream and save it to the path below
For each playlist downloaded, change the folder it goes to

print(f’Downloading: {video.title}’)
audio_stream.download(output_path=
’ /Users/actualuser/Desktop/path/to/save/veritasium/Inertia’)

except Exception as e:
print(f"Error downloading {video.title}: {str(e)}"™)

By following these steps, you will be able to download audio streams from
YouTube playlists, setting the stage for the next part of our tutorial where these
audio files will be transcribed. We did this for a total of 282 videos, 146 from Crash
Course and 126 from Veritasium.

https://www.youtube.com/user/crashcourse
https://www.youtube.com/channel/UCHnyfMqiRRG1u-2MsSQLbXA

318 J. M. Rosenberg et al.

15.5 Data Analysis Step #2: Creating Transcripts Using
an Automatic Speech Recognition Tool

Whisper, developed by OpenAl (the same organization behind ChatGPT), is an open-
source speech recognition model designed to handle a variety of tasks involving audio
files, including automatic speech recognition. Some early work suggests that it may
be better than other automatic speech recognition tools, especially when the audio is
not wholly clear (Palaguachi et al., 2023).

In this part of our project, we’ll use Whisper to convert the audio files we’ve
gathered into subtitle—transcript—files.

To work with Whisper, you need to install its Python library. This can be done
using the command:

Python code snippet: installing the Python package Whisper

pip install -U openai-whisper

Additionally, you’ll need the Command Line tool ’ffmpeg’, essential for handling
multimedia files. Detailed instructions and additional information about Whisper,
including its GitHub repository, can be found at https://github.com/openai/whisper.
Note that the other required libraries for this part of the project are already included
in the standard Python installation, so there’s no need for additional downloads.

Whisper, while robust, does have some known limitations. Specifically, it may
struggle with transcribing videos longer than 10 minutes and could inaccurately insert
words like “oks” and “yeahs” in the transcript. If you encounter these issues or want to
learn more about potential solutions and workarounds, visit the discussion at https://
github.com/openai/whisper/discussions/679. This page offers valuable insights and
community-driven advice on addressing these challenges.

This program utilizes Whisper to transcribe audio streams into subtitle files from
the folder created using Pytube.

Begin by importing the necessary libraries. Whisper for transcribing audio, os
and pathlib for handling file paths, and get_writer from Whisper utils for creating
subtitle files.

Python code snippet: importing Whisper and other libraries

import whisper

from whisper.utils import get_writer
import os

import pathlib

https://github.com/openai/whisper
https://github.com/openai/whisper/discussions/679
https://github.com/openai/whisper/discussions/679

15 Triangulating Computational and Qualitative Methods to Measure ... 319

Define the folder containing your audio files and convert it into a path object for
easier handling. This should be the same path the files in the above step were saved
to. Then, generate a list of all files in the specified directory, filtering only audio files
(in this case, .mp4 files).

directory_path = r"path_to_files"
directory_path = pathlib.Path(directory_path)

all_files = os.listdir(directory_path);
all_mp4 = [audio for audio in all_files if audio.endswith(".mp4")]

Next, load the Whisper model with a suitable model size. The choice of model
(‘small’, ‘medium’, and ‘large’) impacts the speed and accuracy of transcription, with
larger models potentially being more accurate, but also taking considerably longer.
For this tutorial, we use the *small” model, though for research uses, the additional
time may be worth the investment. A counter is used to track progress.

model = whisper.load_model("small")

i=0
for mp4s in all_mp4:

Convert the current .mp4 file to a string as a parameter

mp4s_path = directory_path / mp4s
result = model.transcribe((str(mp4s_path)), fpl6=False)

whisper.utils get_writer will output the text with timestamps
srt_writer = get_writer("srt", directory_path)
srt_writer(result, (str(mp4s_path)))

printing out the name of the file just written
name = str(mp4s)

320 J. M. Rosenberg et al.

print (name)
i+=1
print(i)

The transcript files should be saved to the same folder as the audio files. These
end in the extension .srt.

The result was transcripts for each of the 272 videos we accessed in the last stpe.
On average, each video has 8 minutes, 12 seconds of speech, for a total of 36,780
utterances, or around 1.54 days worth of speech (36.96 hours, or 2,217 minutes).
In other words, a fairly large collection of transcribed speech data, motivating the
computational approach described next.

15.6 Data Analysis Step #3: Computational Analysis

Let’s pick up where we left off from the first two steps, with one big difference —we’1l
be using R, a statistical software and programming language used in other chapters
in this book—instead of Python.

You can find instructions on downloading R and RStudio here, in a chapter
in the book Data Science in Education Using R (Estrellado et al., 2020): https://
datascienceineducation.com/c05.

We’ll assume some basic knowledge of R here.

First, let’s load the tidyverse library—a set of R packages that work together for
common analytic tasks.

library(tidyverse)

Then, let’s find the . srt files we created in the last step and then read them in,
saving them to the object 1. We have now read in the transcripts! They should look
like this (here is the first one, accessed by indexing the first list item—the first ten
rows):

R code snippet and output: Reading in the transcripts

file_paths <- list.files(path = ".",
pattern = "\\.srt$§",
recursive = TRUE,
full.names = TRUE)

1 <- map(file_paths, read_lines)

1[[11] %%
head(10)

https://datascienceineducation.com/c05
https://datascienceineducation.com/c05

15 Triangulating Computational and Qualitative Methods to Measure ... 321

s [1] "1
[2] "00:00:00,000 --> 00:00:07,160"
[3] "Hey folks, Phil Plait here, and for the past few episodes”

[4] ""

[5] "2"

[6] "00:00:07,160 --> 00:00:11,880"

[7] "know about the structure, history, and evolution of the universe"
[8] "

[9] "3"

[10] "00:00:11,880 --> 00:00:14,160"

Now, we have our transcripts loaded, and our data ready. The next step is a big one
that we’ll introduce primarily through comments—this is code to create a manual
function that we will use to read each of the transcript files:

R code snippet: A function to process transcripts

process_transcripts <- function(d) {
my_nrow <- length(d) # this is to find out how long each transcript file is

d %>%
as_tibble() %>%
rename(X1 = 1) %>% # to make this easier to type
create different values for each of the rows of the transcript
mutate(id = rep(c("i", "time", "transcript", "blank"), my_nrow/4),
index = rep(l:(my_nrow/4), times = 4) %>% sort()) %>%
spread(id, X1) %>% # change the data from long to wide format
select(-1i) %%
process the time stamps
separate(time, into = c("start", "end"), sep = "-->") %%
trim the time stamps so they are easier to read and use
mutate(start = str_trim(start),
end = str_trim(end))

Whereas with Python we used a “for loop”, in R, for loops are less common than
apply functions. These two approaches share a commonality: they are both used for
iteration. Given the kinds of data R is chiefly intended to work with and how R as
a programming language most efficiently works, apply functions are generally the
better way to go. Here, we will use the map () function that is a part of the tidyverse
package (specifically, the purrr package).

322 J. M. Rosenberg et al.

R code snippet: Iterating to create a single data frame with processed
transcripts

11 <- 1 %%
here, we use the apply function; possibly is used to handle errors
map (possibly(process_transcripts, NULL))

this removes any NULL list items that resulted from errors
11 <- compact(1ll)

this adds an index for the rows associated with each transcript
11 <- imap(ll, ~ mutate(.x, group = .y))

bound_rows <- 11 %>%
map_df(”.) # this changes the list of data frames into a single data frame

We are getting close to ready for analyses. Next, we process the transcript to create
several variables that will be useful for our analysis. Most important among these is
two variables we have created:

For these purposes, we employ Kirch’s (2011) typology of uncertainty as both a
psychological experience and a mathematical object. Kirsch writes, “uncertainty
refers to a psychological condition of being in doubt (e.g., I am uncertain about
something or someone...). It also refers to a statistical (or mathematical) object
(e.g., a statistical estimation of uncertainty)” (Kirch, 2011, p. 57). As a psycholog-
ical condition, uncertainty can be procedural, sociocultural, epistemological, and
ontological. As noted earlier, we focus on psychological uncertainty as a starting
point and illustration.

Our computational approach is a dictionary-based approach (see Nelson et al.,
2021 for a definition). This approach is a relatively straightforward text-analysis
technique—it involves searching for key words in text. The dictionary is provided by
the analayst, but we can use R to conduct the search automatically. We acknowledge
that more complex approaches could be helpful, but we chose this approach given our
aim of triangulating evidence—qualitative analyses can complement this approach
by providing context and depth to what the computational approach reveals.

Our dictionary corresponding to our conception of psychological uncertainty
follows.

R code snippet: Defining dictionaries

psychological_uncertainty <- c(
"unsure", "not sure", "maybe", "kind of", "sort of", "don’t know",
"doubt", "doubtful", "no clue", "unclear", "confused", "confusing",
"hesitant", "don’t get", "don’t understand", "ambivalent",

15 Triangulating Computational and Qualitative Methods to Measure ... 323

"can’t decide", "questioning", "question", "wondering", "wonder",
"weird", "strange", "odd", "weirded out", "puzzled", "puzzling",
"don’t get it", "weird feeling", "weirdly", "skeptical", "skeptic",
"guessing", "guess", "vague", "ambiguous", "indefinite",
"uncertain", "iffy", "on the fence", "mixed up", "unsure what to do"

First, let’s process the transcripts a bit further to create some useful variables and
select columns.

R code snippet and output:

out <- bound_rows %>%
mutate(start = str_sub(start, 1, 8),
end = str_sub(end, 1, 8)) %%
mutate(start = chron::chron(times = start),
end = chron::chron(times = end)) %>%
mutate(duration = end - start) %>%
select(index, start, end, duration, everything())

Next, we can apply these lists.

R code snippet: Conducting the dictionary-based analysis

function to count words from a dictionary in a text
count_words <- function(text, dictionary) {
sum(str_count (text, paste®("\\b", dictionary, "\\b")))

apply the function to each row of your dataframe
out <- out %>%
mutate(transcript = tolower(transcript)) %>%
mutate(
count_psychological_uncertainty = map_dbl(transcript,
“count_words(.x, psychological_uncertainty))

The result of this step is the following data frame (represented through the use of
an R function that summarizes data frames) below. We can see that the data frame

324 J. M. Rosenberg et al.

contains over 36,000 rows, one for each utterance in the video. We can also see
counts of psychological uncertainty for each utterance.

> d %>% glimpse()

Rows: 36,780

Columns: 12

$ group <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ channel <chr> "crash course", "crash cours...
$ playlist <chr> "astronomy", "astronomy", "a...
$ video <chr> "audio_A Brief History of th...
$ start <time> 00:00:00, 00:00:07, 00:00:1...
$ end <time> 00:00:07, 00:00:11, 00:00:1...
$ duration <time> 00:00:07, 00:00:04, 00:00:0...
$ blank <lgl> NA, NA, NA, NA, NA, NA, NA,

$ transcript <chr> "hey folks, phil plait here,...
$ count_psychological_uncertainty <dbl> 6, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ path <chr> "./crash course/astronomy/au...

We can briefly explore the prevalence of psychological uncertainty with the fol-
lowing R code, which shows us that 747 utterances contain one word from our
psychological uncertainty dictionary, and 36 utterances contain two.

> d %>% count(count_psychological_uncertainty)
A tibble: 3 x 2
count_psychological_uncertainty n
<dbl> <int>
0 35997
1 747
3 2 36

We are now ready to proceed to the qualitative analysis phase.

15 Triangulating Computational and Qualitative Methods to Measure ... 325

15.7 Data Analysis Step #4: Qualitative Analysis

In this step, we conduct a qualitative analysis in two phases.

15.7.1 Inspecting the Utterances with the Most Uncertainty
Detected

First, we inspect the utterances with the most uncertainty detected for psychological
uncertainty. We do so by arranging the above data frame in descending order based
simply on the count (or frequency) of the number of uncertainty-related words in
our dictionary detected.

For psychological uncertainty, we examined the 50 utterances with the most
uncertainty-related words by reading the utterances and considering them in light
of our definition of psychological uncertainty: “a psychological condition of
being in doubt” (Kirch, 2011, p. 57), which includes procedural, sociocultural,
epistemological, and ontological elements.

The most common forms of psychological uncertainty were procedural and
epistemological.

Epistemological uncertainty was fairly common, evidenced by around one-third
of the utterances with the greatest amounts of psychological uncertainty detected.
Examples are as follows.

e “We don’t know what kind of atmospheres these planets will have or what they’re
composed.” (Crash Course—Astronomy)

e “like maybe that animal is hard to find in the wild, or maybe it can’t be kept in
captivity.” (Crash Course—Zoology)

Procedural uncertainty was also fairly common, present in around one-half of the
utterances.

e “Well, we don’t know what we don’t know.” (Crash Course—Biology)
e “i guess maybe about that far?” (Veritasium—Misconceptions)

We also saw a degree of measurement or statistical uncertainty, even in these
utterances that the computational analysis suggested were psychological in nature;
these were relative uncommon:

e “maybe the observation is wrong, or maybe we’re misinterpreting it.” (Crash
Course—Astronomy)

e “although the numbers are a little bit uncertain, something like a third to half of
all stars”

As this is a tutorial, let us consider that a more systematic qualitative analysis
indeed suggested that there are three forms of uncertainty that are common in science

326 J. M. Rosenberg et al.

education videos: epistemological, psychological, and measurement. Were we to
expand on this analysis, we would likely want to qualitatively investigate other videos
to understand whether forms of uncertainty—and to substantially deepen our analysis
of the utterances above by understanding their context in the videos and how truly
common (or not) they are across the entire set of transcript data. For now, our purpose
was to demonstrate how a finer-grained qualitative approach could complement the
automated computational approach we carried out in the last step.

15.8 Findings and Discussion

In this chapter, we sought to demonstrate how a triangulating approach that combines
computational and qualitative methods could be used to measure uncertainty. We
played out this approach at the same that that we developed a data set that could
be suitable for answering it—a collection of 272 science education-related YouTube
videos. We showed four data analysis steps:

1. Downloading YouTube Videos: The study utilized Python libraries, namely
‘pytube’ and ‘whisper’, to extract and transcribe audio streams from selected
YouTube playlists. This process efficiently converted a substantial corpus of
science education-related videos into a format suitable for text-based analysis.

2. Transcription Using Whisper: The Whisper tool was employed to transcribe
the audio files into textual data. This transformation was crucial in standardizing
diverse video content into a uniform textual format, primed for computational
analysis.

3. Computational Text Analysis: Applying a computational approach with the
use of R, the study focused on a dictionary-based text analysis to identify the
presence and frequency of terms related to scientific uncertainty in the video
transcripts. This quantitative analysis provided an overarching perspective of the
manifestation of uncertainty in the video content.

4. Qualitative Analysis: Complementing the computational analysis, a qualitative
examination of the context and nuances surrounding uncertainty-related terms in
the videos was conducted. This approach offered a deeper and more nuanced
understanding of the nature and presentation of scientific uncertainty in the
educational content.

The findings from this tutorial suggest that the representation of scientific uncer-
tainty in educational videos is predominantly characterized by procedural and epis-
temological uncertainties. We note that the intent of working through these four
steps was to illustrate how to access and create transcripts of YouTube videos and to
demonstrate a triangulation approach. Of course, more systematic inquiry would be
necessary to substantiate this finding. Here, we showed the very first stages of doing
so, setting the stage for the establishment of the reliability and validity of a measure
that we could use to answer substantive questions about the nature of uncertainty

15 Triangulating Computational and Qualitative Methods to Measure ... 327

in educational videos. Later, such an approach could help us to better understand
the role of uncertainty in science teaching and learning within and beyond class-
room settings. We also note that the methodology delineated here can be adapted for
analyzing other complex constructs across various digital platforms, thereby expand-
ing the research scope within the field of educational technology and digital media
analysis.

15.9 Tasks

Comprehension Tasks

SO

Explain the two main steps in the triangulation approach used in this study to
analyze uncertainty in science education videos.

Summarize why uncertainty was chosen as a focal construct for this analysis.
Describe the different use cases of python and R in the example.

Summarize Kirch’s (2011) typology of uncertainty as presented in the text.
Explain what a dictionary-based text analysis approach is and how it was used in
this analysis.

Application Tasks

. Design a dictionary-based approach to analyze another complex construct in sci-

ence education (e.g., scientific reasoning). Provide a list of ten or more key terms
you would include in your dictionary.

Outline a research plan to apply the triangulation method described in this chapter
to study the representation of a different scientific concept (e.g., evolution or
climate change) in online educational resources.

Propose modifications to the computational analysis step that could potentially
improve the detection of uncertainty in the video transcripts.

Develop a coding scheme for a more detailed qualitative analysis of uncertainty
in science education videos, based on the findings from this study and your own
insights.

Create a plan to validate the findings from this triangulation approach, including
suggestions for additional data sources or methods that could be used to cross-
check the results.

Link to analytic code (python and R) in the OSF: https://osf.io/v2x7j/.

https://osf.io/v2x7j/

328 J. M. Rosenberg et al.

References

Allchin, D. (2012). Teaching the nature of science through scientific errors. Science Education,
96(5), 904-926.

Bateman, K. M., Wilson, C. G., Williams, R. T., Tikoff, B., & Shipley, T. F. (2022). Explicit
instruction of scientific uncertainty in an undergraduate geoscience field-based course. Science
& Education, 31, 1541-1566.

Brickhouse, N. W., & Potter, J. T. (2001). Young woman’s scientific identity formation in an urban
context. Journal of Research in Science Teaching, 38, 965-980.

Jordan, M., & McDaniel, R. R. (2014). Managing uncertainty during collaborative problem solving
in elementary school teams: The role of peer influence in robotics engineering activity. Journal
of the Learning Sciences, 23(4), 490-536. https://doi.org/10.1080/10508406.2014.896254

Kahneman, D., & Tversky, A. (1982). Variants of uncertainty. Cognition, 11(2), 143-157.

Kirch, S. A. (2011). Understanding scientific uncertainty as a teaching and learning goal. In B.
Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education,
volume 24 of Springer international handbooks of education. Dordrecht: Springer.

Kirch, S. A. (Ed.). (2008). A comparative science study: Uncertainty in the laboratory and in the
science education classroom. New York.

Kirch, S. A. (2010). Identifying and resolving uncertainty as a mediated action in science: A
comparative analysis of cultural tools used by scientists and elementary science students at work.
Science Education, 94, 308-335.

Krist, C., Schwarz, C. V., & Reiser, B. J. (2019). Identifying essential epistemic heuristics for guiding
mechanistic reasoning in science learning. Journal of the Learning Sciences, 28(2), 160-205.
Mangz, E., & Sudrez, E. (2018). Supporting teachers to negotiate uncertainty for science, students,

and teaching. Science Education, 102(4), 771-795.

National Research Council (2012). A framework for K-12 science education: Practices, crosscutting
concepts, and core ideas. National Academy of Sciences.

Nelson, L. K. (2020). Computational grounded theory: A methodological framework. Sociological
Methods & Research, 49(1), 3—42.

Nelson, L. K., Burk, D., Knudsen, M., & McCall, L. (2021). The future of coding: A comparison of
hand-coding and three types of computer-assisted text analysis methods. Sociological Methods
& Research, 50(1), 202-237.

Palaguachi, C., Cox, E., Rosenberg, J., Dyer, E., & Krist, C. (2023). Automatic speech recognition
(asr) in noisy classrooms: Evaluating the usefulness of three popular asr tools. In Learning
sciences graduate student conference 2023.

Pollack, H. N. (2003). Uncertain science. . .Uncertain world. New York: Cambridge University
Press.

Rosenberg, J. M., & Krist, C. (2021). Combining machine learning and qualitative methods to elab-
orate students’ ideas about the generality of their model-based explanations. Journal of Science
Education and Technology, 30, 255-267.

https://doi.org/10.1080/10508406.2014.896254

15 Triangulating Computational and Qualitative Methods to Measure ... 329

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Part 111
Future Directions

Chapter 16 ®)
Risks and Ethical Considerations St
in the Context of Machine Learning

Research in Science Education

Cynthia M. D’Angelo

Abstract Besides the tremendous potentials of machine learning (ML) methods,
many ethical challenges such as biased datasets with regard to gender or race have
to be considered. In this chapter, a conclusive reflection on the particular challenges
in science education research based on the case studies and prior research will be
outlined. Paths to address these challenges will finish this chapter.

16.1 Bias and Ethics and Equity

Hopefully you are committed to minimizing biases in your research and interrogating
your process in order to help achieve this goal. It may not be possible to remove all
biases, but the more that you can engage in the reflection and strategies necessary
to minimize biases, the more your work will be able to address issues of equity and
justice in science education.

There are lots of potential biases to consider: race/ethnicity, language/linguistics,
gender, disability, and socio-economic status. While that is a long list of biases to
consider and interrogate in your work, the more you can address these biases, the
stronger your work will be and more able to address the true diversity of experiences
that students and teachers bring into a science classroom or learning environment.

It’s not magic. It’s math. It’s important to remember that as you use these advanced
techniques. They do not magically get rid of the biases in our society by doing
complicated math. The biases come from the humans that are creating these ML
methods and models and from the data being fed into them, all of which reflect the
biases of our society. These ML techniques have been created to do specific things by
humans. The more you can understand these motivations and the designed use cases
of these different approaches, the more you will be able to understand the inherent
trade-offs when making decisions about whether or not to use ML techniques and
which one is most appropriate for your purposes and research situation.

C. M. D’ Angelo (X))
1310 S. Sixth St., Champaign, IL 61820, USA
e-mail: cdangelo@illinois.edu

© The Author(s) 2025 333
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_16&domain=pdf
mailto:cdangelo@illinois.edu
https://doi.org/10.1007/978-3-031-74227-9_16

334 C. M. D’Angelo

Part of this equity-focused approach is the need to be intentional about what you
mean by equity. What or who are you designing for? Who are you centering? Who is
being marginalized in this process? What kinds of questions are you asking and how
are these questions privileging certain ways of being in a science class or teaching
science? What does it mean for a ML model to be “accurate”? Who is it accurate for?
Under what circumstances and contexts is it accurate? Is your model only accurate for
students who fall in the most common categories that you are looking at or is it more
inclusive of students that typically fall outside those majority categories? With ML
techniques, you need to think carefully about low-occurrence categories or situations
and the students/teachers that fall into them. It is much more difficult to accurately
model these low-occurrence events, so if these kinds of events are something you
are interested in, you might want to consider different methods or modifications that
will allow more of a focus on these events. If you are working with text data and
natural language processing types of approaches that might help with auto-grading
or evaluating short answers in science there are many issues to be aware of. For short
science answers specifically, it’s really complicated to do well. If you just want to
check for some keywords or simple constructions, that’s not too difficult, but it’s a
simple approach and will give you limited information about the science concepts.
It also privileges native English speakers, especially those who are particularly good
at school English. You need to also ensure that you’re not just checking to see if
someone knows science vocabulary, but actually understands the concepts behind
those words. That is much harder. More recent advances in ML are improving this
type of task, but it is always important to look into what kinds of science answers
were being used to train these more advanced models and who is represented (and
not) in those data sets.

If you are working with video or image data and are using vision-based ML
approaches you have another set of challenges. For instance, if you’re trying to extract
human skeletons to look at, you need to think about students with disabilities and why
those skeletons (and the resulting analysis) might not be accurate/fair/appropriate for
certain students and contexts. This challenge is not just for visible physical disabili-
ties, but also for students that exhibit neurodivergent behaviors and how that might
show up when tracking a person’s movement. Again, with vision-based ML, it is
essential to understand about the images (and labels) that have been used to train
the models, as these historically have been not representative of the diversity of our
student populations.

16.2 Purposes and Trade-Offs

When considering whether or which ML techniques you should use with your
research, you need to think about your research questions and what you are try-
ing to achieve with your research and for whom. In order to address the challenges
of these kinds of approaches you will have to make decisions that involve trade-offs
with different approaches. Part of this process is to think carefully about why you are

16 Risks and Ethical Considerations in the Context of Machine Learning ... 335

using ML and what your goals with it are. Would other kinds of analyses or methods
be better? Sometimes there is a tendency to want to use the more “advanced” or
newer techniques just because they are more advanced or newer. But that doesn’t
mean that they are better for answering your particular research questions with your
data set and context. What are the trade-offs with different kinds of uses of ML or
algorithms? Is ML the right tool for accomplishing your goals or would another
approach be more appropriate?

One potential pitfall is to choose ML techniques in order to be more efficient with
your research. Prioritizing efficiency can lead to problems—you are always making a
trade-off when choosing one approach over another. You might want to ask yourself
why you are prioritizing efficiency. Why is it important that this process be efficient?
Is it because you don’t have sufficient resources to do this a different way? Is that a
good enough reason to risk the many potential issues with a ML approach?

If you are using ML to predict outcomes for students or teachers, there are addi-
tional questions to consider. What is the goal of prediction for your study? Will the
predictions end up coming back to the students or the teachers? How might a predic-
tion about their future behavior or learning affect them? Care needs to be given if you
are going to reveal these predictions to students or teachers, making sure to message
effectively about their ability to change. It also means that you need to be even more
sure that there are not major biases or errors in your model and analysis. It raises
the stakes considerably for your analysis and you should be even more intentional in
your design and reflection on your data set and approach.

Are these data about people learning (i.e., something that is in progress) or is it
assessment data to evaluate learning that has happened? There are different consider-
ations to make about your models depending on the kind of data you have. The stakes
are higher for assessment or evaluative models, so it’s more important to consider the
ways in which your model might be biased towards certain groups or certain kinds
of outcomes. These types of data are also typically missing context to a larger extent
than in-progress learning data are. The stakes are lower for process learning data,
but also it’s important to consider the nature of learning (or teaching) and wanting
to perhaps reach different kinds of conclusions or produce different kinds of models
with this type of data.

16.3 Data Characteristics

The plan for collecting the data (including the structure of it, the modality of it, the
levels of it, the conditions under which it was collected) to be used in your machine
learning approach is the most important part of the process. The more you know
about your data and why and how it was collected in the way that it was, the better
able you will be to make careful and considered decisions about the construction of
your model (including important pre-processing steps).

The modality of the data can also prioritize certain people and/or certain ways of
demonstrating knowledge and skills. So it’s important to consider these questions at

336 C. M. D’Angelo

the beginning of your research, when you are planning your data collection strategies,
not just toward the end when you’re doing analysis.

Is this (the output) going to narrow avenues for students or expand them? There are
lots of different ways students can show up and demonstrate their knowledge. What
do you do with any outliers? What do outliers even mean in this situation? Sometimes
outliers are just ignored or even deleted. But, in a lot of science education research
contexts, these outliers are students. Would it make sense to ignore a student? Trying
to fit people into boxes or categories just to put them into those boxes or categories
may not be a good use of this kind of technology/tool, even if that is what it is
especially good at.

There is also the issue of context in your data set. How much information do you
have about the contexts under which the data were collected? How much information
should you have? How do different contextual factors change within your data set
and how are you taking that into account in your model?

Missing data is another important aspect of your data set to consider when using
ML techniques. There are different kinds of missing data. Are the data missing
because a student was absent that day? Or is it incomplete because a student wasn’t
able to finish an assignment? Do you, as the researcher, know why a student didn’t
finish something? Could there have been a fire alarm in the building or a medical
issue or did they run out of time or did they not know the answer? As much as possible
it’s important to know about why the data are missing—what that incompleteness
means—as different kinds of missing data need to be handled differently in how you
process and interpret your data.

16.4 Privacy, Transparency, and Agency

Privacy is an important issue to consider not just when reporting your results but
throughout the whole process, including the plan for your data collection. One way
to help protect your participants’ privacy is to not collect more data than what you
actually need to answer your research questions. That includes meta-data that could
potentially identify or expose your participant if the data were stolen. Some advanced
ML techniques are able to identify individuals, even if names aren’t included, because
of the amount and detail of the data collected. So, taking care to protect and anonymize
data as early as possible can be crucial to protecting the privacy of your participants.

One way to mitigate some issues related to privacy is to allow your research
participants more agency in the data collection process. For instance, you might build
in ways for participants to opt-out temporarily of data collection when they don’t
want certain things about them being collected. Giving participants more agency by
allowing them to choose how and when their data is being collected and providing
them more context and information about how their data is going to be used by you
and your team should be an important part of regular ethical practice.

You also need to think about what kinds of services you are accessing when using
different ML approaches. For instance, some software might require you to upload

16 Risks and Ethical Considerations in the Context of Machine Learning ... 337

your data to their servers in order to use the algorithms. This type of access is typi-
cally disallowed by the guidelines of most ethics boards (e.g., Institutional Review
Boards)—mostly due to the risk of putting your potentially sensitive education-
related data on the servers of a company. Local solutions (that is, solutions that
reside on your local computer or on a server that you or your institution control) are
occasionally more difficult to implement, but are much safer for your participants.

16.5 Paths to Address These Challenges

There is no one central path to address these challenges. The challenges themselves,
as outlined above, are myriad and depend on many factors unique to your data set,
research questions, and science education setting. But a set of questions can help with
finding the right path for you to wrangle the challenges that you face. The sections
above contain many questions that you can ask of yourself as a researcher, your
dataset, and your models in order to help minimize the challenges of using these
kinds of techniques.

Data and algorithm auditing can be an important strategy to help mitigate some
of the risks of using these techniques. This involves scheduling time as part of your
project to intentionally investigate your data and the algorithms used and models
produced for biases. You can proactively look for instances of different kinds of
bias in your data. If you find them, you can then make changes to whichever part of
the process you find the bias. Additionally, being transparent about this process and
reporting it along with your more typical results can help others see the limitations
and caveats with your results (that are true with all findings, but are not always
disclosed). This can also help you and others be more intentional in your next data
collection plan to help minimize these biases in the future.

Part of the solution to address these challenges with the risks of ML approaches
is to use these tools conscientiously, understanding the risks, and only when willing
to mitigate the challenges and be responsible. Continuously educating yourself, stu-
dents, and research partners on how these algorithms work and how they could impact
their lives (or learning or teaching) remains an important element of conducting
ethical ML research.

338 C. M. D’Angelo

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 17 ®)
Future Directions Check for

Christina Krist

In many ways, it is a fool’s errand to attempt to write a “future directions” chapter
given the rapid pace at which Al is developing. Case in point: when we began writing
this book, ChatGPT did not exist, and now, less than a year later, the conversation
about the role of generative Al in education has taken up significant space in both
formal and informal conversations. We have no doubt that technological advances
are going to continue at a rapid pace. So, in light of this, rather than predict or project
future applications of machine learning or AI more broadly in science education
(see Zhai’s (2023) concluding chapter if you are looking for these types of insights),
we would like to offer our perspective on our responsibilities and obligations as we
continue to engage with the methodological advances in the field.

In our view, more than simply naming ethical principles, our responsibility is
to think carefully, critically, and creatively about whether and how to take up—and
influence the direction of-those advances. We view our role as science education
researchers as standing in the “bridge space” between technological advancements
and educational theory and practice. In this role, we offer three touchpoints for
shaping how we make decisions about taking up ML and Al in our future directions
as a field.

17.1 Considering How to Include Human-in-the-Loop, and
When to Utilize Which Tools, as Informed by the
(Science) Education Literature

It has (hopefully) become clear that human-in-the-loop approaches to utilizing ML or
Al lead to not only more effective predictions (e.g., Wang et al., 2023), but also leave

C. Krist (X)
Graduate School of Education, Stanford University, Stanford, CA, USA
e-mail: stinakrist@stanford.edu

© The Author(s) 2025 339
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_17&domain=pdf
mailto:stinakrist@stanford.edu
https://doi.org/10.1007/978-3-031-74227-9_17

340 C. Krist

space for careful, theoretically informed consideration of which decisions humans
versus computers should be making and why (Kubsch et al., 2023). Importantly, there
are more than likely not universal principles for which decisions should be made by
whom and when.

In evaluating who should be making these decisions, we suggest asking and
attempting to answer two key questions. One: to what problem is the Al- or ML-
based tool the solution? And two: what do we know from the science educa-
tion literature about that problem—what works, and what conditions are impor-
tant to make it work? The combination of these questions should lead researchers
to carefully consider whether and how automation might undo part of “what
works” in an attempt to address the focal problem through efficiency-oriented
means.

Early versions of teacher dashboards or automated assessment systems suffered
from this universal pivot to efficiency. In part this is due to an underspecification
of the design problem: “teachers don’t have enough time” is not precise enough
to carefully define what should and should not be automated about the multitude
of tasks and subtasks involved in good teaching. Recent advances in both of these
areas have done a more careful job with this specification, targeting the integration
of Al-based tools in ways that keep teachers in the driver’s seat in terms of making
the important professional decisions involved in tasks that they are aiming to support
with the Al-based tools. For instance, Steinert et al. (2023) developed LEAP, a novel
platform using large language models to provide feedback to students. An important
feature of this platform is that it involves teachers pre-prompting and assigning tasks
to the large language model, customized to fit their instructional needs. They also
present examples of prompt designs that lead to feedback focused on a wide range of
outcomes, including sense-making, elaboration, self-explanation, and metacognition
and motivation. In another recent example, He et al. (in press) present a four-part
framework for supporting teachers in using Al-based knowledge-in-use assessments
as part of their teaching practices. The four stages of this framework are (a) engaging
with the Al system via professional learning support; (b) evaluating the automatically
generated assessment reports; (c) considering Al-suggested instructional strategies;
and (d) determining instructional decisions and actions. Rather than a framework
for how to design the Al tool itself, this framework aims to facilitate its meaningful
integration into the work of teaching.

Another key area ripe for advancement is the integration of additional types of
data (e.g., physiological data) to improve the accuracy and real-time efficiency of
ML systems that aim to anticipate student learning needs and provide individual-
ized instructional supports. For example, Bertolini et al. (2021) showed that ML
could identify patterns in students’ neurocognitive data when learning about DNA
replication while watching a video or engaging with a VR simulation that predicted
their post-session content scores more accurately (85 percent vs. 55 percent) than
algorithms trained on other types of data, and could act on those predictions more
quickly, enabling better real-time alerts for students in need of additional support.
The paper shows the potential of machine learning for tapping into data that hold
deep information about student learning but are too complex to be analyzed using

17 Future Directions 341

traditional methods. Drawing on neural imaging data the paper also demonstrates
how this combination of data accrued as students learned and how machine learning
can be utilized to predict learning outcomes in a less invasive way.

However, applications focused on individual assessment or feedback tend to per-
petuate individualized, and often cognitively-centric, theories and models of learn-
ing. These are not the only types of learning goals we have—and in fact, the current
vision for science education within the US as well as elsewhere emphasizing stu-
dents’ participation in science and engineering practices as the means for building
science knowledge is explicitly grounded in sociocultural theories of learning (e.g.,
NRC, 2012). So, while schooling systems tend to be dominated by logics and sys-
tems emphasizing individual achievement and are therefore more “friendly” towards
Al-based interventions that align with and appear to ease the burdens associated
with enacting these logics, as science education researchers we should be loudly
challenging this emphasis as the locus for innovation that could be brought about by
Al-based tools.

Breideband et al. (2023) have explicitly begun to do this via the development
of CoBi, a multi-party Al tool that focuses on relational aspects of collaboration.
By visualizing multi-party student talk, CoBi supports students to reflect on four
dimensions of their collaborative processes: respect, equity, community, and think-
ing. Importantly, this tool was developed through intense collaboration between
human-computer interaction (HCI) scholars, learning scientists, and team science
researchers.

Another example of a base of knowledge in science education that further chal-
lenges the individualized default orientation of Al-based tools is the growing body
of work on the role of epistemic affect in students’ sense-making as they partici-
pate in science and engineering practices (e.g., Jaber and Hammer, 2016) as well
as developing teachers’ epistemic empathy to support responsive teaching (Jaber,
2021; Jaber et al., 2022). Distinct from the literature on the importance of collabo-
ration more broadly, this body of scholarship emphasizes the importance of teachers
and students developing an awareness of how it feels to engage in the uncertain-
ties of scientific knowledge-building and to make instructional decisions rooted in
that awareness. Thus, a key facet of teacher expertise involves developing this sense
of epistemic empathy; and a key goal for student learning is to develop this sense
of epistemic empathy as students engage with one another. In many ways, tools
that emphasize individualized models of learning are antithetical to these teacher
and student learning goals. Notably, the PISA 2025 Science Framework (https://
pisa-framework.oecd.org/science-2025/) emphasizes similar goals at the interna-
tional level. It includes attitudes and dispositions toward science as well as environ-
mental awareness, concern, and agency as target assessment outcomes for science
education.

We see (at least for now) two potential ways of engaging with constructs such as
epistemic empathy that we know are central for science teaching and learning but
are in conflict with the underlying ideologies of Al. One is to take the approach that
Breideband et al. (2023) have taken: to explicitly center those literature-based goals,
and to harness a multidisciplinary team of scholars to creatively develop Al-based

https://pisa-framework.oecd.org/science-2025/
https://pisa-framework.oecd.org/science-2025/

342 C. Krist

tools as part of systems that support those goals. A second is less sexy, but equally
important: to explicitly draw boundaries around interactions and goals that Al should
not touch. Arguing that in-person, individualized interactions between teachers and
small groups of students, unmediated by digital tools, is the most powerful means
of developing and fostering something like epistemic empathy is just as important
of an empirical outcome as showing that the integration of an Al-based tool may
improve some other learning- or teaching-related outcome (with a similar caveat
to the one that we have articulated above: just like Al applications originally over-
specified the problem of “teachers don’t have time,” it is all too easy if you find
yourself hesitant about, suspicious of, or downright opposed to Al to offer gestalt
scorched-earth declarations that Al should never be used. This is a similarly unhelp-
ful argument, and we encourage a similar level of theoretical precision in articulating
when, why, and how Al is not helpful in particular learning context, for particular
learning goals).

The studies cited above help us to expand and articulate some different dimen-
sions of consideration when thinking about what keeping a teacher in the so-to-speak
professional drivers seat means: considering which decisions they should be making,
which aspects of a task can be automated in ways that support this decision-making,
and critically evaluating what might be lost (including time, given the investment
required for learning to navigate a new system). These decisions include design deci-
sions (e.g., which types of questions or prompts do I want to use for assessment and
feedback, and why; He et al., in press; Kiichemann et al., 2023); decisions grounded in
teachers’ knowledge of individual students (e.g., Steinert, personal communication);
and decisions about which learning goals to center alongside careful articulation of
how Al can be integrated (or not) to support those goals (e.g., Breideband et al.,
2023).

17.2 Remaining Vigilant for Unintended Consequences
and Unanticipated Impacts

A second touchpoint is the encouragement to consider both short-term and long-
term consequences of the use of Al in education. We think about this as something
like the intersection of the call to focus on ethics in the use of Al (which has been
elaborated elsewhere in this book) and the call to focus on ethics in science (e.g.,
genetics research or the introduction of new species into an ecosystem; Hammer,
personal communication). This kind of ethical thinking requires considering both
short-term and long-term consequences. Some of these short-term consequences are
already obvious, such as large language models being based on datasets that include
social (racial, gendered, ableist) biases and therefore perpetuate these social biases
as they are used—often amplifying them in ways that surpass expectations (Straw and
Wu, 2022; Tanksley, 2022). As additional types of data, such as physiological data,
are brought into the development of Al models, additional expertise in medical ethics

17 Future Directions 343

and psychology should be brought in to help anticipate (or study) both intended and
unintended short-term consequences for students and teachers.

The longer-term consequences are much more difficult to predict, but are perhaps
more important to attempt to anticipate. What might be the long-term consequences—
for teachers, for learners, for society’s view of the role of teachers and schools, for
students’ affective and social engagement in schooling—of how we introduce Al
into education? For example, Dennett put forth the argument that generative Al has
the potential to “counterfeit people,” ultimately spoiling a sort of societal contract
where you can with reasonable certainty assume what other societal members know
(common sense) and do (2023). Be that as it may, fake videos of politicians or
celebrities are just recent (as of early 2024) examples of how generative Al might
interfere with interpersonal affairs.

We offer three actionable strategies for how to concretely maintain this vigilance
throughout a research project. First, attempting to even begin to anticipate these short-
and long-term consequences requires deep technical expertise. In other words—
please do not become an armchair ethicist about Al without at least attempting to
gain a rudimentary understanding of the computer science involved! We hope that
this book is a helpful starting point in developing a baseline of computational literacy
for the science education community.

Second, in many ways, Al is just the next technological advancement. Looking
to past integrations of technological tools in education can help us see past the shiny
(or scary) newness of Al and the tech-bro discourses of “disruption” and instead
take a measured, perhaps more principled approach to how we should proceed.
For example, the introduction of television was ushered into education with similar
promises of “revolutionizing” and “democratizing” education—of making the quality
of schooling not dependent on the quality of teachers, but instead making the same
type of programming available to all students. Similarly, the introduction of graphing
calculators in the 1990s was both celebrated and met with fierce skepticism and hand-
wringing. These, and other, integrations are well-documented and we can learn from
them. What was the hype, and how was it framed? What was the panic? When
things were tried, what worked well? What promises never panned out? What were
the unintended or unanticipated consequences of those tools, and how does their
historical introduction continue to shape our educational landscape? Although Al
feels new, history can be our teacher.

And finally, a third strategy is to conceptualize the process of learning as an
impossibly complex system. This means that attempting to anticipate unintended
consequences requires holding broad and complex models of, and goals for, learn-
ing. Drawing from the examples introduced above, one needs to hold goals of
learning individual content knowledge and self-regulation of that knowledge, col-
laboration, collective sense-making, and epistemic empathy together. How does an
influx of resources to support self-regulated learning, for example, impact a group’s
capacity for collective sense-making, both positively and negatively? In addition
to considering these questions, empirically documenting and reporting these kinds
of systems-level impacts is a crucial focus for research, moving beyond simply

344 C. Krist

demonstrating a single positive impact of an Al-based tool on a single outcome in
isolation.

17.3 Centering Student and Teacher Well-Being Over
Technocratic Priorities to Set Educational Outcomes

The final touchpoint that we offer is one requiring attention to the ideological bases
underpinning the rhetoric surrounding science education goals. While the NGSS-
based vision does promote interaction and co-construction of ideas, the NGSS stan-
dards themselves are still guided by neoliberal vision of science: a utilitarian approach
to understanding the natural world for technological development and economic
benefit (Morales-Doyle et al., 2019; Weinstein, 2017). Without intentional efforts
otherwise (Carlone et al., 2016; Strong et al., 2016), NGSS-aligned instructional
approaches do little to explicitly counter the dominant technocratic role of science
in society (Lemke, 1990; Sharma and Alvey, 2021). Funding agencies around the
world similarly tend to prioritize these technocratic discourses and aims, making it
relatively likely for Al-focused research to be funded but incredibly challenging to
carry it out in ways that then go on to challenge these aims. And similarly, neolib-
eral schooling pressures feed into individualistic and abstracted measures of success
which often come at the expense of attending to holistic student well-being (Dadvand
and Cuervo, 2020).

In other words: at every level, the education and educational research systems are
set up to promote the individualized, utilitarian, andro-centric, military-industrial,
and technocratic ideologies that drive dominant developments and uses of Al
Attempting to push back on these, at any level, will be met with resistance.

And yet, we take the stance that attending to holistic student well-being and
promoting human thriving—including but more importantly going beyond economic
thriving—is at the heart of what it means to support learning. And so, again, as schol-
ars who are shaping the national and international knowledge bases and priorities
about how people learn and teach, we are obligated to continually re-center these
ideologies and goals, both in theory and in practice. Similar to how attempting to
anticipate unintentional consequences requires technical expertise, recognizing, and
then choosing how to counter, these ideological underpinnings requires expertise
in critical scholarship within and beyond the science education literature. We see
this again as highlighting the need for interdisciplinary teams and organizational
structures within those teams that elevate and integrate this expertise throughout the
technical design and research processes.

In closing, we hope that this chapter—and this book as a whole!-will empower
you to develop new skills, expand your expertise, and to position yourself as a
science education leader in the bridge space between our contemporary technological
advances and a vision for science education theory and practice that contributes to
human flourishing.

17 Future Directions 345
References

Breideband, T., Bush, J., Chandler, C., Chang, M., Dickler, R., Foltz, P., Ganesh, A., Lieber, R.,
Penuel, W. R., Reitman, J. G., Weatherley, J., & D’Mello, S. (2023). The community builder
(cobi): Helping students to develop better small group collaborative learning skills: Cscw ’23
companion (pp. 376-380).

Carlone, H. B., Benavides, A., Huffling, L. D., Matthews, C. E., Journell, W., & Tomasek, T.
(2016). Field ecology: A modest, but imaginable, contestation of neoliberal science education.
Mind, Culture, and Activity, 23(3), 199-211.

Dadvand, B., & Cuervo, H. (2020). Pedagogies of care in performative schools. Discourse: Studies
in the Cultural Politics of Education, 41(1), 139-152.

Dennett, D. C. (2023). The problem with counterfeit people. The Atlantic.

He, P., Shin, N., Zhai, X., & Krajcik, J. S. (in press). A design framework for integrating artificial
intelligence to support teachers’ timely use of knowledge-in-use assessment. In X. Zhai, & J. S.
Krajcik (Eds.), Uses of artificial intelligence in STEM education. Oxford University Press.

Jaber, L. Z. (2021). He got a glimpse of the joys of understanding - the role of epistemic empathy
in teacher learning. Journal of the Learning Sciences, 30(3), 433-465.

Jaber, L. Z., Dini, V., & Hammer, D. (2022). “well that’s how the kids feel!”—epistemic empathy as
a driver of responsive teaching. Journal of Research in Science Teaching, 59(2), 223-251.

Jaber, L. Z., & Hammer, D. (2016). Engaging in science: A feeling for the discipline. Journal of
the Learning Sciences, 25(2), 156-202.

Kubsch, M., Sorge, S., & Wulff, P. (2023). Emotionen beim reflektieren in der lehrkréftebildung.
In L. Mientus, C. Klempin, & A. Nowak (Eds.), Reflexion in der Lehrkriiftebildung: Empirisch -
Phaseniibergreifend - Interdisziplindr (pp. 261-270). Potsdam: Universitétsverlag Potsdam.

Kiichemann, S., Steinert, S., Revenga, N., Schweinberger, M., Dinc, Y., Avila, K. E., & Kuhn, J.
(2023). Physics task development of prospective physics teachers using chatgpt. arXiv.

Lemke, J. L. (1990). Talking science: Language, learning, and values. Language and educational
processes. Norwood, NJ: Ablex Publ.

Morales-Doyle, D., Childress Price, T., & Chappell, M. J. (2019). Chemicals are contaminants too:
Teaching appreciation and critique of science in the era of next generation science standards
(ngss). Science Education, 103(6), 1347-1366.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting
concepts, and core ideas. National Academy of Sciences

Sharma, A., & Alvey, E. M. (2021). The undercurrents of neoliberal ethics in science curricula: A
critical appraisal. Ethics and Education, 16(1), 122—136.

Steinert, S., Avila, K. E., Ruzika, S., Kuhn, J., & Kiichemann, S. (2023). Harnessing large language
models to enhance self-regulated learning via formative feedback. arXiv.

Straw, I., & Wu, H. (2022). Investigating for bias in healthcare algorithms: A sex-stratified analysis of
supervised machine learning models in liver disease prediction. BMJ Health & Care Informatics,
29(1).

Strong, L., Adams, J. D., Bellino, M. E., Pieroni, P., Stoops, J., & Das, A. (2016). Against neoliberal
enclosure: Using a critical transdisciplinary approach in science teaching and learning. Mind,
Culture, and Activity, 23(3), 225-236.

Tanksley, T. (2022). Race, education and #blacklivesmatter: How online transformational resis-
tance shapes the offline experiences of black college-age women. Urban Education, page
004208592210929.

Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., Chandak, P,, Liu, S., van Katwyk, P., Deac,
A., Anandkumar, A., Bergen, K., Gomes, C. P., Ho, S., Kohli, P., Lasenby, J., Leskovec, J., Liu,

346 C. Krist

T.-Y., Manrai, A., ... Zitnik, M. (2023). Scientific discovery in the age of artificial intelligence.
Nature, 620(7972), 47-60.

Weinstein, M. (2017). Ngss, disposability, and the ambivalence of science in/under neoliberalism.
Cultural Studies of Science Education, 12(4), 821-834.

Zhai, X. (2023). The Role of Al and Technologies in Science Learning Progression: Commentary for
Section IV. In Handbook of Research on Science Learning Progressions (pp. 499-512). Routledge.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 18 ®)
Conclusions Creck for

Marcus Kubsch, Christina Krist, and Peter Wulff

You have come a long way. Congratulations! On you journey into the world of
machine learning in science education research you traveled along the coasts of
technical fundamentals of ML and methodological considerations that guide the use
of ML. Later, you ventured into the wild and took your first steps on the sometimes
slippery slopes of the case studies. Finally, you took a walk through the park of
ethical and procedural principles that may guide your future ML journey and where
offered a vista on the emerging topics in the field.

We hope that this journey made a lasting (and pleasant) impression on you and
has left you a skillful navigator for your future ML journeys. We quoted Richard
Feynman in the beginning with “What I cannot create, I cannot understand.” Take
this with a grain of salt: We showed you some important decisions in applying ML and
how to implement them. Obviously, we build on shoulders of (thousands of) giants—
those who created the open-source software and packages that we utilized. It cannot
be our responsibility to create such packages. Computer scientists are much better
equipped to build efficient and versatile packages and software. However, we should
maintain some degree of control over important steps in the workflows of applying
ML. We believe that open-source software and basic programming as displayed in
this textbooks can be of great value to maintain this control, and thus develop a
better understanding of the validity with which you can make scientific claims in
your research.

M. Kubsch ()
Freie Universitit Berlin, Berlin, Germany
e-mail: m.kubsch@fu-berlin.de

C. Krist
Graduate School of Education, Stanford University, Stanford, CA, USA

P. Wulff
Heidelberg University of Education, Heidelberg, Baden-Wiirttemberg, Germany

© The Author(s) 2025 347
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74227-9_18&domain=pdf
mailto:m.kubsch@fu-berlin.de
https://doi.org/10.1007/978-3-031-74227-9_18

348 M. Kubsch et al.

Moreover, we hope that beyond technical skills, you took away a set of principles
that allow you to make informed decisions on when, how, and why to use ML in
science education research. Prime among these, is to never forget that ML—however
exciting and powerful the possibilities it provides are—is just one tool among many
in our methodological toolkit and not every tool fits every task. Sometimes ML
may allow you to solve intricate problems with ease and provide great value in
terms of advancing both—our knowledge about science teaching and learning and
science teaching and learning itself. At other times, ML will not help you solve your
problems and the consequences of applying it may actually counteract the goal of
advancing science teaching and learning. As science education researchers it is our
moral obligation to apply ML responsibly ourselves and hold others in our community
accountable to the same standard.

Let us also emphasize that such a short book can only provide you with rather
general conceptual basics of ML and with a handful of applications with different
ML algorithms. We point again to the excellent references (listed in Chap. 1) that
you might be better equipped after reading this book to delve into. We also only
marginally touched upon image data. This is supposed to be a feature, and not a
bug. Other scholars are better equipped to provide examples of ML-based image
processing and analysis. We consider language and numeric data to be a good starting
point, given that it is considered rather straightforward to analyse (as many science
education researchers already did), and common to more traditional analyses.

In this sense, we hope to see you leveraging the power of ML to do great things—
from answering your research questions to building the tools, apps, and learning
environments that help students and teachers thrive.

Peter, Marcus & Stina.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Notes

Chapter 1

Complexity of learning and teaching processes, see: Koopmans and Stamovlasis
(2016)

Complexity of constructs such as competencies, or intelligence, see: Marcus
(2019), McClelland (1973), Harris et al. (2019)

e Motivational determinants of decision processes, see: Eccles and Wigfield (2020)
e Interconnections with knowledge, see: Reinhold et al. (1999); Chunking in experts,

see: Simon and Gilmartin (1973), Berliner (001), Ericsson (2003), van Es and
Sherin (2002)

e Digitally enhanced learning environments, see: Kubsch et al. (2022)
e Rethinking the science education research methodological toolset, see: Fleener

(2016), Brunton and Kutz (2019)

Applications of Al, see: Domingos (2015), Du Sautoy (2020), Mitchell (2020),
Bishop and Bishop (2024)

ML as inductive, data-driven problem solving, see: Rauf (2021), Hastie et al.
(2008)

Automated feedback for students, see: Graesser (2016)

Reproducibility crisis in ML, see: Ball (2023), Kapoor and Narayanan (2023)
Propagation of bias with ML, see: Christian (2021)

Intransparency of complex ML models, see: Cheuk (2021)

Hallucination of LLMs in simple tasks, see: Metz (2023); Some suggested to
call hallucination “confabulation” as human memory at times is struck by similar
pitfalls, see: https://www.youtube.com/watch?v=N1TEjTeQeg0, last access: May
2024

Knowledge-in-use assessments, see: Harris et al. (2019)

Importance of feedback for learning, see: Hattie and Timperley (2007)
Resources required for individualized instruction, see: Chen et al. (2020), and Gay
(2015)

© The Editor(s) (if applicable) and The Author(s) 2025 349
P. Wulff et al. (eds.), Applying Machine Learning in Science Education Research,
Springer Texts in Education, https://doi.org/10.1007/978-3-031-74227-9

https://www.youtube.com/watch?v=N1TEjTeQeg0
https://doi.org/10.1007/978-3-031-74227-9

350 Notes

Chapter 2

e Historical roots and multi-disciplinarity of Al, see Russell and Norvig (1995);

e Foraninteresting discussion of differences in problem solving capabilities between
machines and humans, see Aaronson (2011).

e Implicit assumptions in argumentation, see: Walton (2008)

o Differentiation of knowledge-engineering approaches (Cyc) and connectionism,
see: Domingos (2015).

e It is said that ELIZA’s originator was somewhat irritated by the suggestion to
develop computational therapists based on such simple rule-based programs and
became a critic of society, see: https://de.wikipedia.org/wiki/ELIZA, last access:
Oct 2023.

e Story of early ANN training, see: Sutton and Barto (2015).

e DeepMind’s AlphaGo startled the community by counter-intuitive moves, see:
Tegmark (2018); and for AlphaStar, see: Vincent (2019)

e KataGo tracked weaknesses, see: https://www.engadget.com/human-convincin
gly-beats-ai-at-go-with-help-from-a-bot-100903836.html?guce_referrer=aHRO
cHMO6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAAspAcZ-DP
k0z5SwKIZGsOgn4HD_g3X1kmrEaYuzrdjayhO-JKfUuyqiu-JqBX_hIzkL8imH
KT40IVstgd9HImZPoqYLiDJ6zJ1QwzHzhYnn9pz6AlsgsSdk62belJYfCwt5x01
-cSu609WIpdXCBNEk9qpCsp1-zdqLNYZgH76K4\& guccounter=2, last access:
Dec 2023.

e Recognizing hand-written digits with precision, see: Hinton et al. (2006), Géron
(2017)

e Moravec’s paradox, see: Zador (2019)

e Coining of the term “deep learning”, see: Géron (2017); Not only the scientific
community is interested: companies provide the small Caribbean island Anguilla
a fortune because it owns the “.ai”” internet domain, outcompeting Pacific island
Tuvalu which owns the “.tv”” domain.

e See important applications of deep learning technologies regarding language in
Jurafsky and Martin (2014), Manning (2022)

e Use of ML for air-pollution prediction, see: Bodnar et al. (2024)

e LLMs and prompting, see: Vaswani et al. (2017), Devlin et al. (2018), Brown et al.
(2020)

e LLMs as sources of collective opinion, see: Crokidakis et al. (2023)

e Limitations of generative LLMs in domain-specific tasks, see: Gregorcic and Pen-
drill (2023)

e Advanced LLMs become more performant in domains such as physics education,
see: West (2023)

e The term “stochastic parrots” for LLMs was introduced by Bender et al. (2021)

o Issues of “true understanding” in LLMs, see: Mitchell (2023); researchers devised
a novel test, the ARCathon (Abstraction and Reasoning Corpus) to better test
capabilities of LLMs, see: https://lab42.global/arcathon/ (last access: June 2024)

e Original research on protein folding, see: Jumper et al. (2021)

e ML for Covid-19 research, see: Keshavarzi Arshadi et al. (2020)

https://de.wikipedia.org/wiki/ELIZA
https://www.engadget.com/human-convincingly-beats-ai-at-go-with-help-from-a-bot-100903836.html?guce_referrer=aHR0
https://www.engadget.com/human-convincingly-beats-ai-at-go-with-help-from-a-bot-100903836.html?guce_referrer=aHR0
cHM6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAAspAcZ-DPk0z5wKIZGsOgn4HD\protect \LY1\textunderscore g3X1kmrEaYuzr4jayhO-JKfUuyqiu-JqBX_hIzkL8imH
cHM6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAAspAcZ-DPk0z5wKIZGsOgn4HD\protect \LY1\textunderscore g3X1kmrEaYuzr4jayhO-JKfUuyqiu-JqBX_hIzkL8imH
KT4oIVstg49HJmZPoqYLiDJ6zJlQwzHzhYnn9pz6AlsgsSdk62beJJYfCwt5x01-cSu609WIpdXCBNEk9qpCsp1-zdqLNYZgH76K4\&guccounter=2
KT4oIVstg49HJmZPoqYLiDJ6zJlQwzHzhYnn9pz6AlsgsSdk62beJJYfCwt5x01-cSu609WIpdXCBNEk9qpCsp1-zdqLNYZgH76K4\&guccounter=2
https://lab42.global/arcathon/

Notes 351

e Issue of providing explicit instruction for problems, see: LeCun et al. (1998)

e Al and ML for magnetic confinement in nuclear fusion, see: Degrave et al. (2022)

e Al and ML should complement first-principles based approaches to scientific
research, see: Brunton and Kutz (2019)

e Research related to explanding scientific understanding with AI and ML: Krenn
et al. (2022)

e Definition and involved disciplines in ML, see: Mitchell (1997). In the list provided
in the main text, physics is missing (Marsland, 2015). In fact, statistical physics
has contributed tremendously to the inceptions of machine learning, such as in
Hopfield networks or simulation of random processes, etc.

e ML as deviating from traditional programming paradigms, see: Chollet (2018)

e Definition of ML: For a comprehensive list of tasks T, performance P, and expe-
rience E, see Goodfellow et al. (2016).

e Risksof generalization in inductive learning, see: Vapnik (1996) and Valiant (1984)

e Growth of Al and ML: The exponential growth in many technological domains
is captured in the “Law of Accelerating Return” (Kurzweil, 2004), and Moore’s
law captures the relationship between doubling of transistors on an integrated cir-
cuits doubles every two years or so, depending on source, see https://en.wikipedia.
org/wiki/Moore%?27s_law, last access: Dec 2023. Reasons for Al growth are out-
lined (among others) here: https://www.diamandis.com/blog/scaling-abundance-
series-26, last access: Dec 2023.

e Surprising trainability of ML models where number of parameters compared to
training samples is large, see: Domingos (2015)

e Training models in ImageNet competition, see: Krizhevsky et al. (2012)

e Theoretical arguments that buttress the capabilities of ML models, see: Engel and
den van Broeck (2001), Giraud-Carrier and Provost (2005)

e Universal approximation theorem, see: Hornik et al. (1989) and Goodfellow et al.
(2016); Note that this does not assure that appropriate parameter weights are found
in training with the training data, and this also does not account for extrapola-
tion, see here: https://en.wikipedia.org/wiki/Universal_approximation_theorem,
last access Nov 2023.

e ML algorithm vs. ML model, see: Marsland (2015)

e Issue of explainability versus prediction in science, see: Domingos (2015), Raz
et al. (2024); Problems of model mis-specification, see: Vansteelandt (2021)

o Differentiation of forms of ML, see: Hastie et al. (2008), Zhai et al. (2020); For
further learning approaches, such as online-learning, batch learning, and instance-
and model-based learning see Géron (2017).

e Supervised ML as common approach, see: Chollet (2018), Zhai et al. (2020);
cross-validation approaches, see: Chollet (2018); typical tasks, see: Rauf (2021),
Bishop (2006), Goodfellow et al. (2016); a comprehensive review of model classes
for supervised ML in Hastie et al. (2008); Linear models in science education, see:
Theobald et al. (2019); kernel-based methods, see: Smola and Scholkopf (2003),
Hilbert et al. (2021); tree-based methods, see: Hilbert et al. (2021) and Kotsiantis
(2007); ANNSs, see: Hilbert et al. (2021); Other (but similar) differentiations of
model classes, see: Kotsiantis (2007);

https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Moore%27s_law
https://www.diamandis.com/blog/scaling-abundance-series-26
https://www.diamandis.com/blog/scaling-abundance-series-26
https://en.wikipedia.org/wiki/Universal_approximation_theorem

352 Notes

Unsupervised ML, tasks, see: Bishop (2006), Carleo et al. (2019), Khanum et al.
(2015), Rauf (2021); Re-use pretrained representations, see: Khanum et al. (2015);
Latent semantic analysis, see: Deerwester et al. (1990), Hofmann (2001); Tun-
ing hyper-parameters in unsupervised ML, see: Campello et al. (2013); Latent
Dirichlet allocation, see: Blei et al. (2003) and (in science education) Odden et al.
(2020) (they used the intruder words in the topics); Model classes, see: https://
en.wikipedia.org/wiki/Unsupervised_learning (last access Dec 2023); Capture
behavior of physical systems with encoders, see: Cranmer et al. (2020); Markov
Chain Monte Carlo sampling, see: Bishop (2006);

Next token prediction and active inference in humans, see: Pezzulo et al. (2021),
Clark (2023)

Discussion about learning meaningful representations, see: Li et al. (2023), Hewitt
and Manning (2019), Patel and Pavlick (2022), and Mitchell et al. (2023).
Semi-supervised learning, see: Brunton and Kutz (2019); Zhu and Goldberg
(2009); Ice-cake metaphor: https://www.youtube.com/watch?v=0unt2Y4qxQo&
t=1072s (timestamp: 20:40, last access Dec 2023); application of semi-supervised
ML, see: Zhu and Goldberg (2009)

e Reinforcement learning, see: Bishop (2006)
e Metalearning, see: Brazdil et al. (2022); applications in science education research,

see: Carpenter et al. (2020), Wulff et al. (2022)

Combine physics laws with ML algorithms, see: Liu and Tegmark (2021), Udrescu
and Tegmark (2020), Karniadakis et al. (2021)

Reproducibility crisis in ML, see: Kapoor and Narayanan (2022)

Foundation models, see: Bommasani et al. (2022)

Estimates for required training samples, see: Mitchell (2020)

Call for data sharing, see: Hey et al. (2009)

Use LLMs for educational data augmentation, see: Kieser et al. (2023), Fang et al.
(2023)

Issue with Amazon models, see: https://incidentdatabase.ai/cite/37/#1r2461 (last
access: Dec 2023)

Researchers currently do not address issues of missing data, see: Kapoor and
Narayanan (2022)

Vision model to detect water birds picks up on water as irrelevant feature, see:
Christian (2021)

Imbalanced data as problem in ML research, see: Kapoor and Narayanan (2022);
an insightful example of how to deal with it in physics education research, see: ?.
Regularization as means to control for bias-variance trade-off, see: Goodfellow
et al. (2016)

Hypertension study, see: Ye et al. (2018)

Data set contamination as a problem in LLMs, see: Li et al. (2023)

Sampling bias, see: Bone et al. (2015)

Importance of understanding influencing factors for phenomena, see: Pearl (2021)
XA, see: Molnar (2022); Best explanation of a simple model is the model itself
Lundberg and Lee (2017); methods for XAl, see: Molnar (2022) and Wickramas-

https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://www.youtube.com/watch?v=Ount2Y4qxQo&t=1072s
https://www.youtube.com/watch?v=Ount2Y4qxQo&t=1072s
https://incidentdatabase.ai/cite/37/#r2461

Notes 353

inghe et al. (2021); additive feature explanation techniques, see: Lundberg and
Lee (2017)

e Application of SHAP values in science education, see: Martin et al. (2023)
o Integrated gradients, see: Sundararajan et al. (2017); application in science edu-

cation, see: Wulff et al. (2022a)

Statistical causal modeling, see: Adlakha and Kuo (2023), Kapoor and Narayanan
(2023); ML predominantly engaged with predictive modelling, see: Malik (2020);
identification of conflating effects, see: Adlakha and Kuo (2023)

X-ray identification declined with different scanners, see: Liang et al. (2021);
problem of identifying tanks, see: Domingos (2015) and Yang etal. (2022); tricking
ML models with adversarial examples, see: Christian (2021); clever prompting
LLMs, see: https://github.com/giuven95/chatgpt-failures (last access: Dec 2023)
Bias and stereotypes, see: Mehrabi et al. (2022); gender bias in LLMs, see: Caliskan
etal. (2017), Brown et al. (2020), Borchers et al. (2022); 90 percent of nurses were
female in 2008, see: Ulrich (2010); natural science and engineering dominated
by men, see: Handelsman et al. (2005); modern forms of colonialism and Al,
see: https://www.chathamhouse.org/publications/the- world-today/2023-10/why-
ai-must-be-decolonized-fulfill-its-true-potential (last access: Dec 2023), and ?
In Silicon Valley, the term “the GPU poor” refers to agents that have less specific
compute power, indicating the novel resource categories for innovation and power
“OpenAl used Kenyan workers on less than $2 per hour to make ChatGPT
less toxic”, see: https://time.com/6247678/openai-chatgpt-kenya-workers/ (last
access: June 2024)

Al Act by EU, see: https://artificialintelligenceact.eu/ (last access: May 2024)
Alignment problem in Al, see: Christian (2021)

Policies of OpenAl for tackling with hazardous information, see: OpenAl (2023)
It took an Al less than 6 hours to invent over 40,000 potentially lethal molecules,
many among them similar to the most potent nerve agent VX, see: https://www.
theverge.com/2022/3/17/22983197/ai-new-possible-chemical-weapons- generati
ve-models-vx (last access: June 2024)

e Doubts about easily discernable human values, see: Krauss (2023)
e Unfortunate incentives for teachers, see: Thomas and Uminsky (2022)
e Capabilities of LLMs, see: Wolfram (2023), Gregorcic and Pendrill (2023); perfor-

mance of ChatGPT as “thoroughly remarkable” (Wolfram, 2023); AGI and ASI,
see: Chalmers (2010); Human brain versus machine in terms of performance, see:
Bostrom (2017)

Brittleness of LLM performance, see: Lenat and Marcus (2023), Marcus (2019),
Mitchell and Krakauer (2023)

Power requirements of the human brain, see: Krauss (2023); Energy use for training
and using GPT-4, see: de Vries (2023)

Fossil fuels in supply chains and electricity demands in global tech sector, see:
https://www.greenpeace.org/eastasia/press/7698/microsoft-google-reliant-on-fo
ssil-fuels-despite- 100-renewable-energy-pledges-study/, last access: May 2024.

e Problem of privacy leakage of personally identifiable information, see ?.
e Positivist science, see: Bortz and Doring (2002).

https://github.com/giuven95/chatgpt-failures
https://www.chathamhouse.org/publications/the-world-today/2023-10/why-ai-must-be-decolonized-fulfill-its-true-potential
https://www.chathamhouse.org/publications/the-world-today/2023-10/why-ai-must-be-decolonized-fulfill-its-true-potential
https://time.com/6247678/openai-chatgpt-kenya-workers/
https://artificialintelligenceact.eu/
https://www.
theverge.com/2022/3/17/22983197/ai-new-possible-chemical-weapons-generative-models-vx
theverge.com/2022/3/17/22983197/ai-new-possible-chemical-weapons-generative-models-vx
https://www.greenpeace.org/eastasia/press/7698/microsoft-google-reliant-on-fossil-fuels-despite-100-renewable-energy-pledges-study/
https://www.greenpeace.org/eastasia/press/7698/microsoft-google-reliant-on-fossil-fuels-despite-100-renewable-energy-pledges-study/

354 Notes

Chapter 4

e Data in educational research, see: Baig et al. (2020)
e Size of data in the world: “If data had mass, the earth would be a black hole”

(Marsland, 2015, p.1)
Importance of numerical approaches for science, see: Wolfram (2002); importance
of data-driven discovery, see: Pontzen (2023)

e ML as data-driven discovery, see: Prince (2023)
e Importance and examples of inductive discovery approaches in science, see:

Rothchild (2006)

Expected data size in the world, see: https://www.diamandis.com/blog/scaling-
abundance-series-26 (last access Dec 2023)

V’s for Big Data, see: Da Xu and Duan (2019)

Fish killed in pond as complex systems, see: Grotzer and Shane Tutwiler (2014)
Complex systems modelling, see: Bar-Yam (1997), Solé et al. (2019)

Computers as interacting transistors, see: Bar-Yam (1997); The brain is better
equipped to detect large-scale patterns and symmetries, see: Bar-Yam (1997), and
Aaronson (2011)

Attributes of complex systems, see: Koopmans and Stamovlasis (2016) and Bar-
Yam (1997); Complex systems are characterized by high-dimensional state spaces,
see: Brunton and Kutz (2019); Phases of complex systems, see: Sole (2011)
Emergence, see: Wei et al. (2022); Emergent capabilities in LLMs, see: Wei et al.
(2022)

e Phase changes, see: Sole (2011)
e Also the brain has been posited to optimally function at states of criticality and

near phase transitions (Chialvo, 2010)

e Hypothesis spaces, see: Nisbet et al. (2009)
e Assumption of linear effects in linear models, see: Kantz and Schreiber (2003);

Inability of linear models to capture non-linear relationships, see: Nisbet et al.
(2009) and Brunton and Kutz (2019)

Complex systems in education sciences, see: Sawyer (2002), and emergentism,
see: Sawyer (2002)

Notably, there are attempts to derive a “theory of everyone” based on few under-
lying laws: (1) the law of energy, (2) the law of innovations and efficiency, the low
of cooperation, and the law of evolution (Muthukrishna, 2023). Though, applying
those to understand and improve teaching and learning is still non-trivial

Intra- and interperson phenomena and complex systems, see: Hilpert and Marc-
hand (2018)

Applications of complex systems to educational research problems, see: Stamovla-
sis and Koopmans (2014), Thelen and Smith (1996), and Patriarcha et al. (2020)
Some even suggested that the properties of complexity in language map to com-
plexity in cognition (see: https://www.preposterousuniverse.com/podcast/2024/
01/01/260-ricard-sole-on-the-space-of-cognitions/, last access: Jan 2024),

https://www.diamandis.com/blog/scaling-abundance-series-26
https://www.diamandis.com/blog/scaling-abundance-series-26
https://www.preposterousuniverse.com/podcast/2024/01/01/260-ricard-sole-on-the-space-of-cognitions/
https://www.preposterousuniverse.com/podcast/2024/01/01/260-ricard-sole-on-the-space-of-cognitions/

Notes 355

because language and cognition are intricately related to each other (Boroditsky,
2011; Deacon, 1997)

o Identify g-factor (as dimensionality reduction) in IQ research, see: Gottfredson
(1998); reduce personality traits, see: Asendorpf (2004)

e Dimensionality reduction of data sets, see (Bishop, 2006, p. 559) for an illustrative
example for images that can be reduced from 10,000 dimensional data space to
three degrees of freedom (Bishop, 2006); Note that data space and state space
are used interchangeably in this context. State space is a term originating from
complex system’s theory, whereas data space is a term more used in ML research

e Complexity reduction is possible, see: Bar-Yam (1997)

e Problem solving, see: Dunbar (1998); Insight problems as emergent phenomena,
see: Koopmans and Stamovlasis (2016); Davis and Sumara (2006); Process models
for problem solving, see: Friege (2001), and Docktor et al. (2016)

e Differentiation of Get the data, Explore the data, and Prepare the data, see: Géron
(2017)

e Constructed-response items, see: Chung et al. (2003), and Nehm and Hartig (2012)

e Unreasonable assumption of normality, see: Taleb (2020), Nunnally (1978), and
Micceri (1989)

e Language as amedium for sense making and communication, see: Halliday (1978);
Language as comprised of units, see: Nowak et al. (2002)

e Complex system’s perspectives on language, see: Montemurro and Zanette (2010),
Zanette (2014)

e Subject-verb-object ordering, see: Alvarez-Lacalle et al. (2006)

e Languageis noise, unsegmented, and ambiguous, see: Jurafsky and Martin (2014)

e Word meaning is a function of context, see: Evans (2006); Multi-facetedness of
meaning, see: McNamara et al. (1996)

e Variety of patterns in language, see: Batterink and Paller (2016)

e Data exploration and visualization as science, see: https://en.wikipedia.org/wiki/
Exploratory_data_analysis (last access: Oct 2023); You can find valuable resources
for further reading in Gelman (2004).

e Train and test data are generated by a probability distribution, see: Goodfellow
et al. (2016)

e Access to conceptual physics problem, see: Tschisgale et al. (2023), and Wulff
(2023)

e Genome with short- and long-range patterns, see: Lyubchenko et al. (2002); Local
and global structures in networks, see: Steyvers and Tenenbaum (2005)

e ANNS find effective representations of data, see: Goodfellow et al. (2016)

https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Exploratory_data_analysis

356 Notes

Chapter 5

Workflows for supervised ML, see: Kotsiantis (2007) and Chollet (2018)
Complexity of constructed responses in language, see: Meurers (2012)
Perceptron as hydrogen atom, see: Engel and den van Broeck (2001)
Representations are formed in ANN layers, see: Chollet (2018)

Importance of loss function, see: Russell and Ermon (2016), and Chollet (2018);
Penalities in loss function, see: Bishop (2006), and Russell and Ermon (2016)
ANNSs as directed acyclic graphs, see: Chollet (2018)

e Data transformation in ANNs as tensor multiplications, see: Chollet (2018)
e Jaron Lanier (see this video: https://www.youtube.com/watch?v=caepEUi2IZ4,

last access Feb 2024) offers the metaphors of deep learning as learning a forest
of blended towers, where generating enables accessing different towers and com-
bining them to produce outputs. The notion of “stochastic parrots” holds true,
however, as Lanier puts it, the magic comes from combination of towers. Gener-
ative Al can generate virtual towers, but it cannot surpass existing towers by far,
which might be linked to missing genuine creativity of these architectures.
ANNSs as universal function approximators, see: Hornik et al. (1989), and Prince
(2023)

Depth-efficiency of ANNs, see: Prince (2023)

Non-linear separable problems are harder to learn, see: Elizondo (2006)
Empirical risk and loss function, see: Wang et al. (2022)

Details on many different loss function can be found in reference textbooks (see
Chap. 1), as well as in Wang et al. (2022)

Stochastic gradient descent, see: https://optimization.cbe.cornell.edu/index.php?
title=Adam (last access: Dec 2023)

Connectionists’ master algorithm, see: Domingos (2015), Bishop (2006)

e See an overview of different ANN architectures in: Brunton and Kutz (2019), p.

222

Slowing down weight loss in ANNSs, see: Kirkpatrick et al. (2017)

Sleep and ANNS, see: Tadros et al. (2022)

Foundation models, see: Vilalta and Meskhi (2022), Bommasani et al. (2022)

Al winter, see: Bishop (2006)

GOFAI and symbolic Al see: Chollet (2018)

For a concise overview of human brain and learning, see: Marsland (2015) or
Dehaene (2021).

ANNSs with billions of parameters should be able to learn in principle, see: Giraud-
Carrier and Provost (2005)

e More is typically better in ANNS, see: Kaplan et al. (2020)
e Assumptions constrain the hypothesis space, see: Géron (2017)

https://www.youtube.com/watch?v=caepEUi2IZ4
https://optimization.cbe.cornell.edu/index.php?title=Adam
https://optimization.cbe.cornell.edu/index.php?title=Adam

Notes 357

Chapter 6

e Dominance of supervised ML in science education, see: Wang (2016)
e Predominance of unlabelled data, see: Marsland (2015)
e Generative LLMs such as ChatGPT as lossy compressions of data (“ChatGPT as

a blurry jpeg of all the text on the Web”), see: https://www.newyorker.com/tech/
annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web.

Lower dimensionality of text, see: Deerwester et al. (1990)

Patterns in images, see: Flicker (2022)

Capturing an image with three latent dimensions, see: Marsland (2015)
Mathematical details of some clustering techniques, see: Kriegel et al. (2011), and
Miillner (2011); Density-based clustering, see: Kriegel et al. (2011)

We simulate the directions of elementary magnets based on: https://rajeshrinet.
github.io/blog/2014/ising-model/ (last access: May 2024). The procedure for the
sampling can be summarized into the following steps: “(1) Prepare an initial con-
figuration of N spins; (2) Flip the spin of a randomly chosen lattice site. (3)
Calculate the change in energy dE. (4) If dE < 0, accept the move. Otherwise
accept the move with probability exp~?£/7. This satisfies the detailed balance
condition, ensuring a final equilibrium state. (5) Repeat 2-4.”, because with the
simplifying assumptions, quick simulation is possible)

e Monte Carlo sampling is based on metropolis algorithm, see: Scherer (2017)
e T-SNE has also been utilized to cluster quarks, gluons, and Higgs in high

energy physics, which typically deals with very high dimensional data, see:
https://indico.physics.Ibl.gov/event/975/contributions/8262/attachments/4079/54
90/BOOST_Krupa_2.pdf, last access: Feb 2024

Chapter 8

o Different definitions (uses) of “work” in physics, see: Williams (1999)
e For details on ELIZA, see: https://de.wikipedia.org/wiki/ELIZA (last access Dec

2023)

e Deep learning enabled more performant models, see: Prince (2023)
e The human brain as an experience machine, see: Clark (2023)
e Problems with defining what a word is, see: https://en.wikiversity.org/wiki/Psychol

inguistics/What_is_a_Word (last access Dec 2023)
Response length as a predictor for high scores, see: Nehm and Hirtig (2012), Lai
and Calandra (2010), Powers (2005)

Problems with dot product, see: Jurafsky and Martin (2014)

What are language models, see: Jurafsky and Martin (2014)

Simple n-gram models produce reasonable text, see: Jurafsky and Martin (2014)

Sparse estimation problem with language data, see: Rosenfeld (2000)

https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
https://rajeshrinet.github.io/blog/2014/ising-model/
https://rajeshrinet.github.io/blog/2014/ising-model/
https://indico.physics.lbl.gov/event/975/contributions/8262/attachments/4079/5490/BOOST_Krupa_2.pdf
https://indico.physics.lbl.gov/event/975/contributions/8262/attachments/4079/5490/BOOST_Krupa_2.pdf
https://de.wikipedia.org/wiki/ELIZA
https://en.wikiversity.org/wiki/Psycholinguistics/What_is_a_Word
https://en.wikiversity.org/wiki/Psycholinguistics/What_is_a_Word

358 Notes

Complexity explosion is referred to as the curse of dimensionality (Bishop, 2006),
which is a serious problem in many real-world applications: Examples in the
training set are sparse compared to the number of possible observations overall.
The boon of statistical (language) modelling approaches is that they can more
or less tackle this challenge—or, at least, make it less problematic. In fact, for
deep learning Sejnowski (2024) mentions the surprise of researchers when it was
found that high-dimensional optimization and generalization with highly over-
parameterized models is possible. He called it a “blessing of dimensionality”
instead.

Document embeddings are more flexible compared to n-gram models, see: Bengio
et al. (2003)

ANNSs can be used to train document embeddings, see: Bengio et al. (2003) and
Mikolov et al. (2013)

Reconstruction of text based on word vectors is sometimes possible, see: Morris
et al. (2023)

Transformer-based LLMs, see: Vaswani et al. (2017). Find excellent resources
forhow LLMs, particularly transformers, work here: https://e2eml.school/transfor
mers (last access Feb 2024), http://jalammar.github.io/illustrated-transformer/
(last access Feb 2024), in Bishop and Bishop (2024), or in Wolfram (2023)
Architecture choices of transformer LLMs, see: Chang and Bergen (2023), Prince
(2023)

Explanation of the self-attention mechanism: see a detailed explanation how they
work in Prince (2023)

Scaling laws for LLMs, see: Kaplan et al. (2020); for the importance of the quality
of the training data, see: ?.

e Encoder and decoder LLMs, see: Prince (2023)
e Emergent capabilities of LLMs with increasing training size, etc., see: Devlin et al.

(2018), Wei et al. (2022)

Prompting, see: White et al. (2023); Performance comparisons with varying
prompting strategies, see: Brown et al. (2020); Prompt engineering, see: Bubeck
etal. (2023), Kojima et al. (2022), Wang et al. (2023), Yao et al. (2023); prompting
“step-by-step reasoning” as “thinking slow”, see: Wang et al. (2023), Polverini and
Gregorcic (2024), Kahneman (2011); general guidelines on effective prompting
strategies are documented in White et al. (2023)

Automated annotation and coding with generative LLM, see: ?

Potentials of LLMs in education, see: Kasneci et al. (2023)

gensim module, see: Rehurek and Sojka (2010)

For an overview of deep semantic models (from: Lenci et al. (2022))
Asymmetry of analogical reasoning in humans, see: Christian (2021)

BERT model, see: Devlin et al. (2018)

Shortcut learning in BERT, see: Mitchell (2023); Example of shortcut learning
with BERT, see: Niven and Kao (2019)

Warrants in arguments are often left implicit, see: Walton and Reed (2005)

https://e2eml.school/transformers
https://e2eml.school/transformers
http://jalammar.github.io/illustrated-transformer/

Notes 359

Approximate memory retrieval as a limitation of LLMs, see: https://cacm.acm.org/
blogcacm/can-1lms-really-reason-and-plan/?utm_source=substack&utm_mediu
m=email (last access: May 2024)

LLMs between developing a world model and merely mimicking the train-
ing data, see: https://www.preposterousuniverse.com/podcast/2024/06/24/280-
francois-chollet-on-deep-learning-and-the-meaning-of-intelligence/ (last access:
June 2024)

Monty Hall problem with LLMs, see: Wu et al. (2024); fixes with LLM size, see:
Macmillan-Scott and Musolesi (2024)

e Hallucination in textual summarization, see: Hughes (2023)
e Toroidal chess example, see: https://www.preposterousuniverse.com/podcast/202

3/11/27/258-solo-ai-thinks-different/ (last access Nov 2023)
Problem of test data set contamination in LLMs, see: Li et al. (2023)

Chapter 12

e Wordpiece tokenization improves LLM’s performance, see: Wu et al. (2016)
e Segmenting language data into elementary discourse units, see: Stede and Neu-

mann (2014)

Idea of using generative LLMs for educational data augmentation, see: Kieser
et al. (2023)

An accessible introduction to transformer LLMs can be found in Alammar
(2018), and a Python implementation from scratch in http://nlp.seas.harvard.edu/
annotated-transformer/.

Energy expenditure of LLMs, see: Dodge et al. (2022), de Vries (2023); inequity
in environmental impacts, see: https://themarkup.org/hello-world/2023/07/08/ai-
environmental-equity-its-not-easy-being-green (last access: June 2024)
Information on BERT model, see: Devlin et al. (2018)

Sometimes simpler model are better, see: Urrutia and Araya (2024)

Integrated gradients, see: Schrouff et al. (2022)

Explainable Al, see: Lipton (2018); the company Anthropic (among others)
actively seeks to research the “inner workings” of Al models such as LLMs.
Requirements for Integrated Gradients, see: Sundararajan et al. (2017)

e Tutorial for Integrated Gradients can be found here: https://captum.ai/docs/extensi

on/integrated_gradients (last access: Dec 2023)

Some of the tasks and solutions can be found here: https://chatgpt.com/share/
0fff74d5-a22a-40d2-80ee-21b7a1733707 (May 2024); difficult tasks are marked
by *.

https://cacm.acm.org/
blogcacm/can-llms-really-reason-and-plan/?utm_source=substack&utm_medium=email
blogcacm/can-llms-really-reason-and-plan/?utm_source=substack&utm_medium=email
https://www.preposterousuniverse.com/podcast/2024/06/24/280-francois-chollet-on-deep-learning-and-the-meaning-of-intelligence/
https://www.preposterousuniverse.com/podcast/2024/06/24/280-francois-chollet-on-deep-learning-and-the-meaning-of-intelligence/
https://www.preposterousuniverse.com/podcast/2023/11/27/258-solo-ai-thinks-different/
https://www.preposterousuniverse.com/podcast/2023/11/27/258-solo-ai-thinks-different/
http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/
https://themarkup.org/hello-world/2023/07/08/ai-environmental-equity-its-not-easy-being-green
https://themarkup.org/hello-world/2023/07/08/ai-environmental-equity-its-not-easy-being-green
https://captum.ai/docs/extension/integrated_gradients
https://captum.ai/docs/extension/integrated_gradients
https://chatgpt.com/share/0fff74d5-a22a-40d2-80ee-21b7a1733707
https://chatgpt.com/share/0fff74d5-a22a-40d2-80ee-21b7a1733707

360 Notes

Chapter 13

e For reflections about preservation of local and global structures in data, see:
Mclnnes et al. (2020)

More information and reasoning on HDBSCAN, see: Campello et al. (2013)
BERTtopic module, see: ?

PCA for reducing co-occurrence matrix, see: Lebret and Collobert (2013)

Chapter 16

e For another example of using computational grounded theory for science education
research, see: Tschisgale et al. (2023)

e More information on a contemporary approach to assessment development in
education, see: Wilson (2023)

e For a summary of a Bayesian approach to teaching and learning about and under
conditions of uncertainty, see: Rosenberg et al. (2022)

References

Aaronson, S. (2011). Why philosophers should care about computational complexity. arXiv.

Adlakha, V., & Kuo, E. (2023). Critical issues in statistical causal inference for observational physics
education research. Physical Review Physics Education Research, 19(2).

Alammar, J. (2018). The illustrated transformer [blog post].

Alvarez-Lacalle, E., Dorow, B., Eckmann, J.-P., & Moses, E. (2006). Hierarchical structures induce
long-range dynamical correlations in written texts. Proceedings of the National Academy of
Sciences of the United States of America, 103(21), 7956-7961.

Asendorpf, J. B. (2004). Psychologie der Personlichkeit. Berlin and Heidelberg and New York:
Springer.

Baig, M. I, Shuib, L., & Yadegaridehkordi, E. (2020). Big data in education: A state of the art,
limitations, and future research directions. International Journal of Educational Technology in
Higher Education, 17(1).

Ball, P. (2023). Is Al leading to a reproducibility crisis in science? Nature.

Bar-Yam, Y. (1997). Dynamics of complex systems. Studies in nonlinearity. Reading Mass.: Addison-
Wesley.

Batterink, L. J., & Paller, K. (2016). Picking up patterns in language. Psychological Science Agenda.

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic
parrots. FAccT, 610-623.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model.
Journal of Machine Learning Research, 3, 1137-1155.

Berliner, D. C. (2001). Learning about and learning from expert teachers. International Journal of
Educational Research, 35, 463-482.

Bishop, C. M. (2006). Pattern recognition and machine learning. Information science and statistics.
New York, NY: Springer Science+Business Media LLC.

Bishop, C. M., & Bishop, H. (2024). Deep learning: Foundations and concepts. Cham: Springer.

Blei, D. M., Ng, A. Y., & Jordan, M. 1. (2003). Latent dirichlet allocation. Journal of Machine
Learning Research, 3(4-5), 993-1022.

Notes 361

Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Brandstetter, J., Garvan, P. (2024). Aurora: A
foundation model of the atmosphere. In: arXiv.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Arx, S. v., Bernstein, M. S., Bohg,
J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N.,
Chen, A., Creel, K., Davis, J. Q., Demszky, D., Donahue, C., Doumbouya, M., Durmus, E.,
Ermon, S., Etchemendy, J., Ethayarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel,
K., Goodman, N., Grossman, S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D. E.,
Hong, J., Hsu, K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling,
G., Khani, F,, Khattab, O., Koh, P. W., Krass, M., Krishna, R., Kuditipudi, R., Kumar, A., Ladhak,
F, Lee, M., Lee, T., Leskovec, J., Levent, I, Li, X. L., Li, X., Ma, T., Malik, A., Manning, C. D.,
Mirchandani, S., Mitchell, E., Munyikwa, Z., Nair, S., Narayan, A., Narayanan, D., Newman,
B., Nie, A., Niebles, J. C., Nilforoshan, H., Nyarko, J., Ogut, G., Orr, L., Papadimitriou, I., Park,
J. S., Piech, C., Portelance, E., Potts, C., Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani,
Y., Ruiz, C., Ryan, J., Ré, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A., Srinivasan, K.,
Tamkin, A., Taori, R., Thomas, A. W., Tramer, F., Wang, R. E., Wang, W., Wu, B., Wu, J., Wu,
Y., Xie, S. M., Yasunaga, M., You, J., Zaharia, M., Zhang, M., Zhang, T., Zhang, X., Zhang, Y.,
Zheng, L., Zhou, K., & Liang, P. (2022). On the opportunities and risks of foundation models.
arXiv.

Bone, D., Goodwin, M. S., Black, M. P, Lee, C.-C., Audhkhasi, K., & Narayanan, S. (2015).
Applying machine learning to facilitate autism diagnostics: Pitfalls and promises. Journal of
Autism and Developmental Disorders, 45(5), 1121-1136.

Borchers, C., Gala, D. S., Gilburt, B., Oravkin, E., Bounsi, W., Asano, Y. M., & Kirk, H. R. (2022).
Looking for a handsome carpenter! debiasing gpt-3 job advertisements. In Proceedings of the the
4th workshop on gender bias in natural language processing (gebnlp) (pp. 212-224).

Boroditsky, L. (2011). How language shapes thought. Scientific American, 304(2), 63-65.

Bortz, J., & Doring, N. (2002). Forschungsmethoden und Evaluation. Berlin, Heidelberg: Springer.

Bostrom, N. (2017). Superintelligence: Paths, dangers, strategies. Oxford University Press, Oxford,
United Kingdom, reprinted with corrections 2017 edition.

Brazdil, P. B., van Rijn, J. N., Soares, C., & Vanschoren, J. (Eds.). (2022). Metalearning: Appli-
cations to automated machine learning and data mining. Springer eBook collection. Cham:
Springer. second edition edition.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P, Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, 1., & Amodei, D.
(2020). Language models are few-shot learners. arXiv.

Brunton, S. L., & Kutz, J. N. (2019). Data-Driven Science and Engineering. Cambridge University
Press.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P, Lee, Y. T.,
Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T., & Zhang, Y. (2023). Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv.

Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language
corpora contain human-like biases. Science (New York, N.Y.), 356(6334), 183—186.

Campello, R. J., Moulavi, D., & Sander, J. (2013). Density-based clustering based on hierarchical
density estimates. In J. Pei, V. S. Tseng, L. Cao, H. Motoda, & Xu, G. (Eds.), Advances in
knowledge discovery and data mining (pp. 160-172). Springer: Berlin, Heidelberg.

Carleo, G., Cirac, ., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., & Zde-
borovd, L. (2019). Machine learning and the physical sciences. Reviews of Modern Physics,
91(4).

Carpenter, D., Geden, M., Rowe, J., Azevedo, R., & Lester, J. (2020). Automated analysis of middle
school students’ written reflections during game-based learning. In I. I. Bittencourt, M. Cukurova,
K. Muldner, R. Luckin, & E. Millan (Eds.), Artificial intelligence in education (pp. 67-78). Cham:
Springer.

362 Notes

Chalmers, D. J. (2010). The singularity: A philosophical analysis. Journal of Consciousness Studies,
17, 7-65.

Chang, T. A., & Bergen, B. K. (2023). Language model behavior: A comprehensive survey. arXiv.

Chen, S., Fang, Y., Shi, G., Sabatini, J., Greenberg, D., Frijters, J., & Graesser, A. C. (2020).
Automated disengagement tracking within an intelligent tutoring system. Frontiers in Artificial
Intelligence, 3, 595627.

Cheuk, T. (2021). Can Al be racist? color-evasiveness in the application of machine learning to
science assessments. Science Education, 105(5), 825-836.

Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics, 6(10), 744-750.

Chollet, F. (2018). Deep learning with Python. Safari Tech Books Online. Manning, Shelter Island,
NY.

Christian, B. (2021). The alignment problem: How can machines learn human values? London:
Atlantic Books.

Chung, Gregory K. W. K., & Baker, E. L. (2003). Issues in the reliability and validity of automated
scoring of constructed responses. Automated essay scoring: A cross-disciplinary perspective (pp.
23-40). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.

Clark, A. (2023). The experience machine: How our minds predict and shape reality. New York:
Knopf Doubleday Publishing Group.

Cranmer, M., Sanchez-Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K., Spergel, D., & Ho, S.
(2020). Discovering symbolic models from deep learning with inductive biases. arXiv.

Crokidakis, N., Menezes, M. A. D., & Cajueiro, D. O. (2023). Questions of science: chatting with
chatgpt about complex systems. arXiv.

Da Xu, L., & Duan, L. (2019). Big data for cyber physical systems in industry 4.0: A survey.
Enterprise Information Systems, 13(2), 148-169.

Davis, B., & Sumara, D. (2006). Complexity and education: Inquiries into learning, teaching, and
research. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

de Vries, A. (2023). The growing energy footprint of artificial intelligence. Joule, 7(10),2191-2194.

Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. New
York: W.W. Norton. 1st ed. edition.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing
by latent semantic analysis.

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R.,
Abdolmaleki, A., & de las Casas, D., Donner, C., Fritz, L., Galperti, C., Huber, A., Keeling, J.,
Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M., Noury, S., Pesamosca, F., Pfau, D., Sauter,
0., Sommariva, C., Coda, S., Duval, B., Fasoli, A., Kohli, P,, Kavukcuoglu, K., Hassabis, D.,
& Riedmiller, M. (2022). Magnetic control of tokamak plasmas through deep reinforcement
learning. Nature, 602(7897), 414-419.

Dehaene, S. (2021). How we learn: The new science of education and the brain. Dublin: Penguin
Books.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv:1810.04805

Docktor, J. L., Dornfeld, J., Frodermann, E., Heller, K., Hsu, L., Jackson, K. A., Mason, A., Ryan,
Q. X., & Yang, J. (2016). Assessing student written problem solutions: A problem-solving rubric
with application to introductory physics. Physical Review Physics Education Research, 12(1),
010130.

Dodge, J., Prewitt, T., Des Combes, R. T., Odmark, E., Schwartz, R., Strubell, E., Luccioni, A. S.,
Smith, N. A., DeCario, N., & Buchanan, W. (2022). Measuring the carbon intensity of Al in cloud
instances: Facct ’22. arXiv.

Domingos, P. (2015). The master algorithm : How the quest for the ultimate learning machine will
remake our world. Basic Books.

Du Sautoy, M. (2020). The creativity code: Art and innovation in the age of Al. Harper Collins Publ.

Dunbar, K. (1998). Problem solving. In W. Bechtel & G. Graham (Eds.), A companion to cognitive
science (pp. 289-298). London, England: Blackwell.

http://arxiv.org/abs/1810.04805

Notes 363

Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value
theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contem-
porary Educational Psychology, 101859.

Elizondo, D. (2006). The linear separability problem: Some testing methods. /EEE Transactions
on Neural Networks, 17(2), 330-344.

Engel, A., & den van Broeck, C. (2001). Statistical mechanics of learning. Cambridge: Cambridge
University Press.

Ericsson, K. A. (2003). The acquisition of expert performance as problem solving: Construction
and modification of mediating mechanisms through deliberate practice. In J. E. Davidson & R.
J. Sternberg (Eds.), The psychology of problem solving (pp. 31-83). Cambridge, UK: Cambridge
University Press.

Evans, V. (2006). Lexical concepts, cognitive models and meaning-construction. Cognitive Lin-
guistics, 17(4).

Fang, L., Lee, G.-G., & Zhai, X. (2023). Using gpt-4 to augment unbalanced data for automatic
scoring. arXiv.

Fleener, M. J. (2016). Re-searching methods in educational research: A transdisciplinary approach.
In M. Koopmans & D. Stamovlasis (Eds.), Complex Dynamical Systems in Education. Springer.

Flicker, F. (2022). The magick of matter: Crystals, chaos and the wizardry of physics. London:
Profile Books.

Friege, G. (2001). Wissen und Problemlosen: Eine empirische Untersuchung des wissenszentri-
erten Problemlosens im Gebiet der Elektrizititslehre auf der Grundlage des Experten-Novizen-
Vergleichs. Berlin: Logos.

Gay, G. (2015). Culturally responsive teaching: Theory, research, and practice. Multicultural edu-
cation. New York: Teachers College Press.

Gelman, A. (2004). Exploratory data analysis for complex models. Journal of Computational and
Graphical Statistics, 13(4), 755-779.

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, tools,
and techniques to build intelligent systems. Beijing and Boston and Farnham and Sebastopol and
Tokyo: O’Reilly.

Giraud-Carrier, C., & Provost, F. (2005). Toward a justification of meta-learning: Is the no free
lunch theorem a show-stopper? In: Proceedings of the icml-2005 workshop on meta-learning,
Bonn, Germany.

Goodfellow, L., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, Massachusetts and
London, England: MIT Press.

Gottfredson, L. S. (1998). The general intelligence factor. Scientific American.

Graesser, A. C. (2016). Conversations with autotutor help students learn. International Journal of
Artificial Intelligence in Education, 26(1), 124-132.

Gregorcic, B., & Pendrill, A.-M. (2023). Chatgpt and the frustrated socrates. Physics Education,
58(3), 035021.

Grotzer, T. A., & Shane Tutwiler, M. (2014). Simplifying causal complexity: How interactions
between modes of causal induction and information availability lead to heuristic-driven reasoning.
Mind, Brain, and Education, 8(3), 97-114.

Halliday, M. A. K. (1978). Language as social semiotic: The social interpretation of language and
meaning. London: Arnold.

Handelsman, J., Cantor, N., Carnes, M., Denton, D., Fine, E., Grosz, B., Hinshaw, V., Marrett, C.,
Rosser, S., Donna, S., & Sheridan, J. (2005). More women in science. Science (New York, N.Y.),
309, 1190-1191.

Harris, C., Krajcik, J. S., Pellegrino, J. W., & DeBarger, A. H. (2019). Designing knowledge-in-use
assessments to promote deeper learning. Educational Measurement: Issues and Practice, 38(2),
53-67.

Hastie, T., Tibshirani, R., & Friedman, J. (2008). The elements of statistical learning: Data mining,
inference, and prediction. Springer.

364 Notes

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1),
81-112.

Hewitt, J., & Manning, C. D. (2019). A structural probe for finding syntax in word representations.
In Proceedings of naacl-hlt 2019.

Hey, T., Tansley, S., Tolle, K., & Gray, J. (2009). The fourth paradigm: Data-intensive scientific
discovery. Microsoft Research.

Hilbert, S., Coors, S., Kraus, E., Bischl, B., Lindl, A., Frei, M., Wild, J., Krauss, S., Goretzko, D.,
& Stachl, C. (2021). Machine learning for the educational sciences. Review of Education, 9(3).

Hilpert, J. C., & Marchand, G. C. (2018). Complex systems research in educational psychology:
Aligning theory and method. Educational Psychologist, 53(3), 185-202.

Hinton, G., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527-1554.

Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine
Learning, 42, 177-196.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5), 359-366.

Hughes, S. (2023). Cut the bull. . .. detecting hallucinations in large language models: Vectara.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J.,
Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., ... Hassabis, D. (2021). Highly
accurate protein structure prediction with alphafold. Nature, 596(7873), 583-589.

Jurafsky, D., & Martin, J. H. (2014). Speech and language processing. Always learning. Pearson
Education, Harlow, 2. ed., pearson new internat. ed. edition.

Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar Straus and Giroux. first edition
edition.

Kantz, H., & Schreiber, T. (2003). Nonlinear time series analysis (Kantz, Schreiber) (Cambridge
2004) (2nd ed). Cambridge University Press.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A.,
Wu, J., & Amodei, D. (2020). Scaling laws for neural language models. arXiv.

Kapoor, S., & Narayanan, A. (2022). Leakage and the reproducibility crisis in ml-based science.

Kapoor, S., & Narayanan, A. (2023). Leakage and the reproducibility crisis in machine-learning-
based science. Patterns (New York, N.Y.), 4(9), 100804.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-
informed machine learning. Nature Reviews Physics, 3(6), 422-440.

Kasneci, E., Sessler, K., Kiichemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh,
G., Glinnemann, S., Hiillermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer,
J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., ... Kasneci, G. (2023). Chatgpt for good? on
opportunities and challenges of large language models for education. Learning and Individual
Differences, 103, 102274.

Keshavarzi Arshadi, A., Webb, J., Salem, M., Cruz, E., Calad-Thomson, S., Ghadirian, N., Collins,
J., Diez-Cecilia, E., Kelly, B., Goodarzi, H., & Yuan, J. S. (2020). Artificial intelligence for
covid-19 drug discovery and vaccine development. Frontiers in Artificial Intelligence, 3, 65.

Khanum, M., Mahboob, T., Imtiaz, W., Abdul Ghafoor, H., & Sehar, R. (2015). A survey on unsuper-
vised machine learning algorithms for automation, classification and maintenance. International
Journal of Computer Applications, 119(13), 34-39.

Kieser, F., Wulff, P., Kuhn, J., & Kiichemann, S. (2023). Educational data augmentation in physics
education research using chatgpt. Physical Review Physics Education Research, 19(2), 1-13.
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan,
J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., & Hadsell, R.
(2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National

Academy of Sciences of the United States of America, 114(13), 3521-3526.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large language models are zero-

shot reasoners. In 36th conference on neural information processing systems (neurips 2022).

Notes 365

Koopmans, M., & Stamovlasis, D. (2016). Introducation to education as a complex dynamical
system. In M. Koopmans & D. Stamovlasis (Eds.), Complex Dynamical Systems in Education.
Springer.

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Infor-
matica, 31, 249-268.

Krauss, L. M. (2023). The known unknowns: The unsolved mysteries of the cosmos. London: Head
of Zeus.

Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-Lierta, A., Friederich, P., Dos Passos
Gomes, G., Hise, F., Jinich, A., Nigam, A., Yao, Z., & Aspuru-Guzik, A. (2022). On scientific
understanding with artificial intelligence. Nature Reviews Physics, 4(12), 761-769.

Kriegel, H.-P., Kroger, P., Sander, J., & Zimek, A. (2011). Density-based clustering. WIREs Data
Mining and Knowledge Discovery, 1(3), 231-240.

Krizhevsky, A., Sutskever, 1., & Hinton, G. (2012). Imagenet classification with deep convolutional
neural networks: Neurips proceedings.

Kubsch, M., Krist, C., & Rosenberg, J. (2022). Distributing epistemic functions and tasks - a
framework for augmenting human analytic power with machine learning in science education
research. Journal of Research in Science Teaching.

Kurzweil, R. (2004). The law of accelerating returns. In C. Teuscher (Ed.), Alan turing: Life and
legacy of a great thinker (pp. 381-416). Berlin and Heidelberg: Springer.

Lai, G., & Calandra, B. (2010). Examining the effects of computer-based scaffolds on novice
teachers’ reflective journal writing. Educational Technology Research and Development, 58(4),
421-437.

Lebret, R., & Collobert, R. (2013). Word embeddings through Hellinger PCA. arXiv.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Lenat, D., & Marcus, G. (2023). Getting from generative Al to trustworthy Al: What llms might
learn from cyc. arXiv.

Lenci, A., Sahlgren, M., Jeuniaux, P., Cuba Gyllensten, A., & Miliani, M. (2022). A compara-
tive evaluation and analysis of three generations of distributional semantic models. Language
Resources and Evaluation, 56(4), 1269-1313.

Liang, X., Nguyen, D., & Jiang, S. B. (2021). Generalizability issues with deep learning models in
medicine and their potential solutions: Illustrated with cone-beam computed tomography (cbct)
to computed tomography (ct) image conversion. Machine Learning: Science and Technology,
2(1), 015007.

Lipton, Z. C. (2018). The mythos of model interpretability. Machine Learning.

Li, Y., Sha, L., Yan, L., Lin, J., Rakovié¢, M., Galbraith, K., Lyons, K., Gasevi¢, D., & Chen,
G. (2023). Can large language models write reflectively. Computers and Education: Artificial
Intelligence, 4, 100140.

Liu, Z., & Tegmark, M. (2021). Al poincaré: Machine learning conservation laws from trajectories.
arXiv.

Lundberg, S. M., & Lee, S.-1. (2017). A unified approach to interpreting model predictions. In 315t
conference on neural information processing systems (nips 2017), Long Beach, CA, USA.

Lyubchenko, Y., Shlyakhtenko, L., Potaman, V., & Sinden, R. (2002). Global and local dna structure
and dynamics. Single molecule studies with aftm. Microscopy and Microanalysis, 8(S02), 170-
171.

Macmillan-Scott, O., & Musolesi, M. (2024). (ir)rationality and cognitive biases in large language
models. arXiv.

Malik, M. M. (2020). A hierarchy of limitations in machine learning. arXiv.

Manning, C. D. (2022). Human language understanding & reasoning. Daedalus, 151(2), 127-138.

Marcus, G. (2019). Rebooting Al: Building artificial intelligence we can trust. New York: Pantheon
Books. first edition edition.

Marsland, S. (2015). Machine learning: An algorithmic perspective. Chapman & Hall/CRC machine
learning & pattern recognition series. Boca Raton, FL: CRC Press. second edition edition.

366 Notes

Martin, P. P, Kranz, D., Wulff, P., & Graulich, N. (2023). Exploring new depths: Applying machine
learning for the analysis of student argumentation in chemistry. Journal of Research in Science
Teaching, 1-36.

McClelland, D. C. (1973). Testing for competence rather than for ‘intelligence.’. American Psy-
chologist, 28(1), 1-14.

Mclnnes, L., Healy, J., & Melville, J. (2020). Umap: Uniform manifold approximation and projec-
tion for dimension reduction. arXiv.

McNamara, D., Kintsch, E., Butler Songer, N., & Kintsch, W. (1996). Are good texts always better?
interactions of text coherence, background knowledge, and levels of understanding in learning
from text. Cognition and Instruction, 14(1), 1-43.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2022). A survey on bias and
fairness in machine learning. arXiv.

Metz, C. (2023). Chatbots may ‘hallucinate’ more often than many realize. The New York Times.

Meurers, D. (2012). Natural language processing and language learning. In C. A. Chapelle (Ed.),
The encyclopedia of applied linguistics. New York, NY: Wiley.

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological
Bulletin, 105(1), 156-166.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations
of words and phrases and their compositionality. In C. J. Burges, L. Bottou, M. Welling, Z.
Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems.
(Vol. 26). Curran Associates Inc.

Mitchell, M. (2020). Artificial intelligence: A guide for thinking humans. Pelican Books.

Mitchell, M. (2023). Ai’s challenge of understanding the world. Science, 382(6671), eadm8175.

Mitchell, M., Palmarini, A. B., & Moskvichev, A. (2023) Comparing humans, gpt-4, and gpt-4v on
abstraction and reasoning tasks. arXiv.

Mitchell, T. (1997). Machine learning. New York, NY: McGraw-Hill Education.

Mitchell, M., & Krakauer, D. C. (2023). The debate over understanding in AI’s large language
models. Proceedings of the National Academy of Sciences of the United States of America,
120(13), €2215907120.

Molnar, C. (2022). Interpretable machine learning: A guide for making black box models explain-
able. Christoph Molnar, Munich, Germany, second edition edition.

Montemurro, M. A., & Zanette, D. (2010). Towards the quantification of the semantic information
encoded in written language. Advances in Complex Systems, 13(02), 135-153.

Morris, J. X., Kuleshov, V., Shmatikov, V., & Rush, A. M. (2023). Text embeddings reveal (almost)
as much as text. arXiv.

Miillner, D. (2011). Modern hierarchical, agglomerative clustering algorithms. arXiv.

Muthukrishna, M. (2023). A theory of everyone: The new science of who we are, how we got here,
and where we’re going. Cambridge, Massachusetts: The MIT Press.

Nehm, R. H., & Hartig, H. (2012). Human vs. computer diagnosis of students’ natural selection
knowledge: Testing the efficacy of text analytic software. Journal of Science Education and
Technology, 21(1), 56-73.

Nisbet, R., Elder, J. E.,, & Miner, G. (2009). Handbook of statistical analysis and data mining
applications. Amsterdam and Boston: Academic Press/Elsevier.

Niven, T., & Kao, H.-Y. (2019). Probing neural network comprehension of natural language argu-
ments. In Proceedings of the 57th annual meeting of the association for computational linguistics.

Nowak, M. A., Komarova, N. L., & Niyogi, P. (2002). Computational and evolutionary aspects of
language. Nature, 417(6889), 611-617.

Nunnally, J. C. (1978). Psychometric theory. McGraw-Hill series in psychology. New York:
McGraw-Hill. 2. ed. edition.

Odden, T. O. B., Marin, A., & Caballero, M. D. (2020). Thematic analysis of 18 years of physics
education research conference proceedings using natural language processing. Physical Review
Physics Education Research, 16(1), 1-25.

OpenAl. (2023). Gpt-4 technical report. arXiv.

Notes 367

Patel, R., & Pavlick, E. (2022). Mapping language models to grounded conceptual spaces. In
Published as a conference paper at iclr 2022.

Patriarcha, M., Heinsalu, E., & Léonard, J. L. (2020). Languages in space and time: Models and
methods from complex systems theory. Cambridge University Press.

Pearl, J. (2021). Causally colored reflections on leo breiman’s ‘statistical modeling: The two cul-
tures’ (2001). Observational Studies, 7(1), 187-190.

Pezzulo, G., Parr, T., & Friston, K. (2021). The evolution of brain architectures for predictive coding
and active inference. Philosophical Transactions of the Royal Society B.

Polverini, G., & Gregorcic, B. (2024). Performance of chatgpt on the test of understanding graphs
in kinematics. arXiv.

Pontzen, A. (2023). The universe in a box: Simulations and the quest to code the cosmos. New
York: Penguin Publishing Group.

Powers, D. E. (2005). “wordiness”: A selective review of its influence, and suggestions for investi-
gating its relevance in tests requiring extended written responses. ETS Research Report.

Prince, S. J. D. (2023). Understanding deep learning. MIT Press.

Rauf, I. A. (2021). Physics of data science and machine learning. Boca Raton: CRC Press.

Raz, A., Heinrichs, B., Avnoon, N., Eyal, G., & Inbar, Y. (2024). Prediction and explainability in
Al: Striking a new balance? Big Data & Society, 11(1).

Rehurek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. In
N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, D. Tapias
(Eds.), Proceedings of the LREC, 2010 (pp. 45-50).

Reinhold, P, Lind, G., & Friege, G. (1999). Wissenszentriertes problemlosen in physik. Zeitschrift
fiir Didaktik der Naturwissenschaften, 5(1), 41-62.

Rosenberg, J. M., Kubsch, M., Wagenmakers, E.-J., & Dogucu, M. (2022). Making sense of uncer-
tainty in the science classroom: A Bayesian approach. Science & Education, 31(5), 1239-1262.

Rosenfeld, R. (2000). Two decades of statistical language modeling: Where do we go from here?
In Proceedings of the IEEE.

Rothchild, I. (2006). Induction, deduction, and the scientific method: An eclectic overview of the
practice of science. SSR.

Russell, S., & Ermon, S. (2016). Label-free supervision of neural networks with physics and domain
knowledge. arXiv.

Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach. Englewood Cliffs, NJ:
Prentice Hall.

Sawyer, K. R. (2002). Emergence in psychology. Human Development, 45, 2-28.

Scherer, P. O. J. (2017). Computational physics: Simulation of classical and quantum systems.
Graduate texts in physics. Cham; Springer. 3rd edition 2017 edition.

Schrouff, J., Baur, S., Hou, S., Mincu, D., Loreaux, E., Blanes, R., Wexler, J., Karthikesalingam, A.,
& Kim, B. (2022). Best of both worlds: Local and global explanations with human-understandable
concepts. arXiv.

Sejnowski, T. J. (2024). ChatGPT and the future of Al. The deep language revolution. Cambridge,
Massachusetts, London, England: The MIT Press.

Simon, H. A., & Gilmartin, K. J. (1973). A simulation of memory for chess positions. Cognitive
Psychology, 5, 29-46.

Smola, A. J., & Scholkopf, B. (2003). A tutorial on support vector regression.

Sole, R. V. (2011). Phase Transitions. Primers in complex systems. Princeton: Princeton University
Press.

Solé, R., Moses, M., & Forrest, S. (2019). Liquid brains, solid brains. Philosophical transactions
of the Royal Society of London. Series B, Biological Sciences, 374(1774), 20190040.

Stamovlasis, D., & Koopmans, M. (2014). Introduction to the special issue: Nonlinear dynamics in
education. Psychology and Life Science, 18.

Stede, M., & Neumann, A. (2014). Potsdam commentary corpus 2.0: Annotation for discourse
research. In Proceedings of the Language Resources and Evaluation Conference (LREC), Reyk-
Javik.

368 Notes

Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: Statistical
analyses and a model of semantic growth. Cognitive Science, 29, 41-78.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th international conference on machine learning, Sydney, Australia. PMLR,
70.

Sutton, R. S., & Barto, A. G. (2015). Reinforcement learning: An introduction. MIT Press.

Tadros, T., Krishnan, G. P,, Ramyaa, R., & Bazhenov, M. (2022). Sleep-like unsupervised replay
reduces catastrophic forgetting in artificial neural networks. Nature Communications, 13(1),7742.

Taleb, N. N. (2020). Statistical consequences of fat tails: Real World preasymptotics, epistemology,
and applications: Papers and commentary. The Technical Incerto Collection. STEM Academic
Press.

Tegmark, M. (2018). Life 3.0: Being human in the age of artificial intelligence. New York: Vintage
Books. first vintage books edition edition.

Thelen, E., & Smith, L. (1996). A dynamic systems approach to the development of cognition and
action. MIT Press.

Theobald, E. J., Aikens, M., Eddy, S. L., & Jordt, H. (2019). Beyond linear regression: A reference
for analyzing common data types in discipline based education research. Physical Review Physics
Education Research, 15.

Thomas, R. L., & Uminsky, D. (2022). Reliance on metrics is a fundamental challenge for Al arXiv.

Tschisgale, P., Wulff, P., & Kubsch, M. (2023). Integrating artificial intelligence-based methods into
qualitative research in physics education research: A case for computational grounded theory.
Physical Review Physics Education Research, 19(020123), 1-24.

Udrescu, S.-M., & Tegmark, M. (2020). Al Feynman: A physics-inspired method for symbolic
regression. Science Advances, 6.

Ulrich, B. (2010). Gender diversity and nurse-physician relationships. American Medical Associa-
tion Journal of Ethics, 12(1), 41-45.

Urrutia, F., & Araya, R. (2024). Who’s the best detective? large language models vs. traditional
machine learning in detecting incoherent fourth grade math answers. Journal of Educational
Computing Research, 61(8), 187-218.

Valiant, L. G. (1984). A theory of the learnable. Communication of the ACM, 27.

van Es, E., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations
of classroom interactions. Journal of Technology and Teacher Education, 10(4), 571-596.

Vansteelandt, S. (2021). Statistical modelling in the age of data science. Observational Studies,
7(1), 217-228.

Vapnik, V. (1996). Structure of statistical learning theory. In A. Gammerman (Ed.), Computational
learning and probabilistic reasoning (pp. 3-31). Chichester and New York: Wiley.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, £.., & Polo-
sukhin, I. (2017). Attention is all you need: Conference on neural information processing systems.
Advances in Neural Information Processing Systems, 6000-6010.

Vilalta, R., & Meskhi, M. M. (2022). Transfer of knowledge across tasks. In P. B. Brazdil, J. N.
van Rijn, C. Soares, & J. Vanschoren (Eds.), Metalearning, Springer eBook Collection (p. 219).
Cham: Springer.

Vincent, J. (2019). Deepmind’s ai agents conquer human pros at starcraft ii.

Walton, D. (2008). Informal logic: A pragmatic approach (2nd ed.). Cambridge MA: Cambridge
University Press.

Walton, D., & Reed, C. A. (2005). Argumentation schemes and enthymemes. Synthese, 145, 339—
370.

Wang, L. (2016). Discovering phase transitions with unsupervised learning. Physical Review B,
94(19).

Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., Chandak, P., Liu, S., van Katwyk, P., Deac,
A., Anandkumar, A., Bergen, K., Gomes, C. P,, Ho, S., Kohli, P., Lasenby, J., Leskovec, J., Liu,
T.-Y., Manrai, A., ... Zitnik, M. (2023). Scientific discovery in the age of artificial intelligence.
Nature,620(7972), 47-60.

Notes 369

Wang, Q.,Ma, Y., Zhao, K., & Tian, Y. (2022). A comprehensive survey of loss functions in machine
learning. Annals of Data Science, 9(2), 187-212.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le Quoc, & Zhou, D.
(2022). Chain-of-thought prompting elicits reasoning in large language models. arXiv.

West, C. G. (2023). Al and the FCI: Can chatgpt project an understanding of introductory physics?
arXiv.

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., &
Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt.
arXiv.

Wickramasinghe, C. S., Amarasinghe, K., Marino, D. L., Rieger, C., & Manic, M. (2021). Explain-
able unsupervised machine learning for cyber-physical systems. IEEE Access, 9, 131824—131843.

Williams, H. T. (1999). Semantics in teaching introductory physics. American Journal of Physics,
67(8), 670-680.

Wilson, M. (2023). Constructing measures: An item response modeling approach. Taylor & Francis.

Wolfram, S. (2002). A new kind of science. Champaign, Ill.: Wolfram Media, 1. edition edition.

Wolfram, S. (2023). What is ChatGPT doing and why does it work? Wolfram Media.

Wu, Z., Qiu, L., Ross, A., Akyiirek, E., Chen, B., Wang, B., Kim, N., Andreas, J., and Kim, Y.
(2024). Reasoning or reciting? exploring the capabilities and limitations of language models
through counterfactual tasks. arXiv.

Wu, Y., Schuster, M., Chen, Z., Le V, Q., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao,
Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y.,
Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J.,
Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., & Dean, J. (2016). Google’s neural machine
translation system: Bridging the gap between human and machine translation. arXiv.

Waulff, P, Mientus, L., Nowak, A., & Borowski, A. (2022). Utilizing a pretrained language model
(bert) to classify preservice physics teachers’ written reflections. International Journal of Artifi-
cial Intelligence in Education.

Wulff, P. (2023). Network analysis of terms in the natural sciences insights from wikipedia through
natural language processing and network analysis. Education and Information Technologies, 28,
14325-14346.

Waulff, P., Buschhiiter, D., Westphal, A., Mientus, L., Nowak, A., & Borowski, A. (2022). Bridg-
ing the gap between qualitative and quantitative assessment in science education research with
machine learning — a case for pretrained language models-based clustering. Journal of Science
Education and Technology, 31, 490-513.

Yang, Y.-Y., Chou, C.-N., & Chaudhuri, K. (2022). Understanding rare spurious correlations in
neural networks. arXiv.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y., & Narasimhan, K. (2023). Tree of
thoughts: Deliberate problem solving with large language models. arXiv.

Ye, C., Fu, T., Hao, S., Zhang, Y., Wang, O., Jin, B., Xia, M., Liu, M., Zhou, X., Wu, Q., Guo,
Y., Zhu, C., Li, Y.-M., Culver, D. S., Alfreds, S. T., Stearns, F., Sylvester, K. G., Widen, E.,
McElhinney, D., & Ling, X. (2018). Prediction of incident hypertension within the next year:
Prospective study using statewide electronic health records and machine learning. Journal of
Medical Internet Research, 20(1), e22.

Zador, A. M. (2019). A critique of pure learning and what artificial neural networks can learn from
animal brains. Nature Communications, 10(1), 3770.

Zanette, D. (2014). Statistical pattern in written language. arXiv:1412.3336.

Zhai, X., Haudek, K., Shi, L., Nehm, R., & Urban-Lurain, M. (2020). From substitution to redefini-
tion: A framework of machine learning-based science assessment. Journal of Research in Science
Teaching, 57(9), 1430-1459.

Zhu, X., & Goldberg, A. B. (Eds.). (2009). Introduction to semi-supervised learning. Cham:
Springer.

http://arxiv.org/abs/1412.3336

	Foreword
	Contents
	Acronyms
	1 Introduction
	1.1 Purpose and Goals of This Book
	1.2 Further Reading
	1.3 Why Apply Machine Learning in Science Education?
	1.4 Current Applications and Challenges of Machine Learning in Science Education Research
	1.5 Conclusion
	References

	Part I Theoretical Background
	2 Basics of Machine Learning
	2.1 The Inception of Artificial Intelligence and Machine Learning
	2.2 ML as a Data-driven Discovery Procedure
	2.3 Forms of Machine Learning
	2.3.1 Supervised ML
	2.3.2 Unsupervised ML
	2.3.3 Further Forms of ML
	2.3.4 Sequencing Different Types of ML

	2.4 Why ML in Your Research Project?
	2.5 Limitations and Challenges of ML
	2.5.1 Data-related Issues
	2.5.2 Procedural Issues
	2.5.3 Fundamental Issues

	2.6 Applying ML in Science Education Research
	References

	3 Data in Science Education Research
	3.1 The Importance of Data in Science
	3.2 Complexity in Science Education Research
	3.3 Engaging with Your Research Data
	3.3.1 Get the Data
	3.3.2 Explore the Data
	3.3.3 Prepare the Data

	3.4 Summary
	References

	4 Applying Supervised ML
	4.1 Basics of Supervised ML
	4.2 Example: Adding Two-Digit Numbers
	4.3 Considering Limitations
	References

	5 Applying Unsupervised ML
	5.1 Basics of Unsupervised ML
	5.2 Examples: Dimensionality Reduction and Clustering
	5.2.1 Dimensionality Reduction with Image Data
	5.2.2 Clustering Different States of Matter

	5.3 Considering Limitations
	References

	6 Sequencing Unsupervised and Supervised ML
	6.1 Applying Unsupervised ML to Find Clusters
	6.1.1 Considering Limitations

	6.2 An Applied Example in Science Education Research
	References

	7 Natural Language Processing and Large Language Models
	7.1 Natural Language Processing
	7.2 An Applied Example
	7.3 Advanced Language Modelling with LLMs
	7.4 Applying LLMs in Science Education Research
	7.5 Considering Limitations
	7.6 Summary
	References

	8 Human-Machine Interactions in Machine Learning Modeling: The Role of Theory
	8.1 Introduction
	8.2 A Guiding Metaphor for Centering ``Intelligence Augmentation'' Versus ``Artificial Intelligence'': Self-driving Cars
	8.3 What are the Relative Strengths that Humans Versus Computers Bring to Conducting Research?
	8.4 What is the Degree of Inference that I Aim to Draw From My Data? Who is Best Suited to Make Those Inferences, and How?
	8.5 How Will Theory be Used to Guide Interpretation of ML Outputs?
	8.5.1 Theory in Quantitative and/or Supervised ML Analysis
	8.5.2 Theory in Qualitative and/or Unsupervised ML Analysis

	8.6 How is ML Analysis Integrated and Sequenced Within a Larger Analytic Workflow?
	8.7 Is ML Really Augmenting My Interpretive and Analytic Power as a Researcher, or Could This be Done Just as Well (or Better!) Without It?
	References

	Part II Hands-On Case Studies
	9 Working with Data—Getting Started
	9.1 Introduction
	9.2 Getting Started with R
	9.2.1 Installation
	9.2.2 Loading Packages and Data
	9.2.3 Important Operators: Assignment and Pipe

	9.3 Getting Started with Python
	9.3.1 Installation
	9.3.2 Loading Modules and Data
	9.3.3 Implement Case Studies with Jupyter Notebooks
	9.3.4 Python Objects, Functions, and Data Types

	9.4 How to Access the Notebooks for This Book
	9.5 (Some) Good-Practices in Scientific Programming
	References

	10 Automation—Supervised Machine Learning
	10.1 Introduction
	10.2 Supervised Classification
	10.2.1 Getting to Know the Data Set

	10.3 The Supervised ML Modeling Workflow
	10.3.1 Data Splitting
	10.3.2 Training Models
	10.3.3 Evaluating Models

	10.4 Another Model
	10.4.1 Training Models
	10.4.2 Evaluating Models

	10.5 Supervised Regression
	10.5.1 Getting to Know the Data
	10.5.2 Data Splitting
	10.5.3 Training Models
	10.5.4 Evaluating Models
	10.5.5 Training a Stack of Models
	10.5.6 Evaluating the Model

	10.6 Summary
	10.7 Tasks
	References

	11 Pattern Recognition—Unsupervised Machine Learning
	11.1 Introduction
	11.2 Epistemic Emotions in Science Learning
	11.2.1 Why Unsupervised ML
	11.2.2 Getting to Know the Data Set

	11.3 Unsupervised ML Modeling Workflow
	11.3.1 Pattern Recognition
	11.3.2 Qualitative Pattern Interpretation
	11.3.3 Pattern Validation
	11.3.4 Once More with Tuning
	11.3.5 Adding Dimensions
	11.3.6 Pattern Recognition
	11.3.7 Qualitative Pattern Interpretation
	11.3.8 Pattern Validation

	11.4 Exploring Additional Dimension with a New Technique
	11.4.1 Pattern Recognition
	11.4.2 Qualitative Pattern Interpretation
	11.4.3 Pattern Validation

	11.5 Summary
	11.6 Tasks
	References

	12 Automation and Explainability: Supervised Machine Learning with Text Data
	12.1 Supervised ML for Textual Data
	12.1.1 Classifying Written Reflections of Science Teachers
	12.1.2 Getting to Know Your Data
	12.1.3 Applying Supervised ML to this Problem
	12.1.4 Inspecting the LLM's Decisions

	12.2 Summary
	12.3 Tasks
	12.4 Solutions
	References

	13 Unsupervised ML with Language Data
	13.1 Collecting Unstructured Language Data in a Science Education Research Context
	13.2 Finding Clusters in the Data
	13.3 Utilizing LLMs and Advanced Clustering
	13.4 Applying Unsupervised ML to Cluster Language Data
	13.5 Tasks
	13.6 Solutions
	References

	14 Unsupervised ML with Text Data
	14.1 Basics of Natural Language Processing
	14.1.1 Text Pre-processing
	14.1.2 Feature Extraction
	14.1.3 The Unsupervised ML Workflow

	14.2 Pre-processing and Feature Extraction with General Science Quarterly/Science Education Editorials
	14.2.1 Introduction to the Data Corpus
	14.2.2 Pre-processing the Documents for Data Corpus 1
	14.2.3 Setting Up the Environment
	14.2.4 Loading Your Text File into a Data Corpus
	14.2.5 Converting the Data Corpus into Tokens
	14.2.6 The Need for Normalization During the Pre-processing Phase
	14.2.7 Extracting Features from Our Corpora

	14.3 Exploratory Data Analysis Using a Larger Data Corpus
	14.3.1 Average Sentence Length
	14.3.2 Word Frequency Distributions
	14.3.3 Lexical Diversity
	14.3.4 Word Length Distribution
	14.3.5 Unique Words
	14.3.6 N-grams
	14.3.7 Concordance

	14.4 Tasks
	References

	15 Triangulating Computational and Qualitative Methods to Measure Scientific Uncertainty
	15.1 Introduction
	15.2 Prior Research on Uncertainty and Science Education
	15.3 Data Analysis Overview
	15.4 Data Analysis Step #1: Programmatically Accessing YouTube Video Data
	15.4.1 Converting Playlists to Audio

	15.5 Data Analysis Step #2: Creating Transcripts Using an Automatic Speech Recognition Tool
	15.6 Data Analysis Step #3: Computational Analysis
	15.7 Data Analysis Step #4: Qualitative Analysis
	15.7.1 Inspecting the Utterances with the Most Uncertainty Detected

	15.8 Findings and Discussion
	15.9 Tasks
	References

	Part III Future Directions
	16 Risks and Ethical Considerations in the Context of Machine Learning Research in Science Education
	16.1 Bias and Ethics and Equity
	16.2 Purposes and Trade-Offs
	16.3 Data Characteristics
	16.4 Privacy, Transparency, and Agency
	16.5 Paths to Address These Challenges

	17 Future Directions
	17.1 Considering How to Include Human-in-the-Loop, and When to Utilize Which Tools, as Informed by the (Science) Education Literature
	17.2 Remaining Vigilant for Unintended Consequences and Unanticipated Impacts
	17.3 Centering Student and Teacher Well-Being Over Technocratic Priorities to Set Educational Outcomes
	References

	18 Conclusions
	Appendix Notes
	References

