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Preface

Our purpose in writing a multivariable calculus text has been to help students learn
that mathematics is the language in which scientific ideas can be precisely for-
mulated and that science is a source of mathematical ideas that profoundly shape
the development of mathematics.

In calculus, students are expected to acquire a number of problem-solving
techniques and to practice using them. Our goal is to prepare students to solve
problems in multivariable calculus and to encourage them to ask, Why does cal-
culus work? As a result throughout the text we offer explanations of all the
important theorems to help students understand their meaning. Our aim is to foster
understanding.

The text is intended for a first course in multivariable calculus. Only knowledge
of single variable calculus is expected. In some explanations we refer to the fol-
lowing theorems of calculus as discussed for example in Calculus With Applications,
Peter D. Lax and Maria Shea Terrell, Springer 2014.

• Monotone Convergence Theorem A bounded monotone sequence has a limit.
• Greatest Lower Bound and Least Upper Bound Theorem A set of numbers

that is bounded below has a greatest lower bound. A set of numbers that is
bounded above has a least upper bound.

Chapters 1 and 2 introduce the concept of vectors in Rn and functions from R
n to

R
m. Chapters 3 through 8 show how the concepts of derivative and integral, and the

important theorems of single variable calculus are extended to partial derivatives
and multiple integrals, and to Stokes’ and the Divergence Theorems.

To do partial derivatives without showing how they are used is futile. Therefore
in Chapter 8 we use vector calculus to derive and discuss several conservation laws.
In Chapter 9 we present and discuss a number of physical theories using partial
differential equations. We quote a final passage from the book:

We observe, with some astonishment, that except for the symbols used, the
equations for membranes in which the elastic forces are so balanced that they do not
vibrate, and heat-conducting bodies in which the temperature is so balanced that it
does not change, are identical.

v



There is no physical reason why the equilibrium of an elastic membrane and the
equilibrium of heat distribution should be governed by the same equation, but they
are, and so

Their mathematical theory is the same.
This is what makes mathematics a universal tool in dealing with problems of

science.
We thank friends and colleagues who have given us encouragement, helpful

feedback, and comments on early drafts of the book, especially Louise Raphael of
Howard University and Laurent Saloff-Coste and Robert Strichartz of Cornell
University. We also thank Cornell students in Math 2220 who suggested ways to
improve the text. We especially thank Prabudhya Bhattacharyya for his careful
reading and comments on the text while he was an undergraduate Mathematics and
Physics major at Cornell University.

The book would not have been possible without the support and help of Bob
Terrell. We owe Bob more than we can say.

New York, USA Peter D. Lax
Ithaca, USA Maria Shea Terrell
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Chapter 1
Vectors and matrices

Abstract The mathematical description of aspects of the natural world requires a
collection of numbers. For example, a position on the surface of the earth is
described by two numbers, latitude and longitude. To specify a position above the
earth requires a third number, the altitude. To describe the state of a gas we have
to specify its density and temperature; if it is a mixture of gases like oxygen and
nitrogen, we have to specify their proportion. Such situations are abstracted in the
concept of a vector.

1.1 Two-dimensional vectors

Definition 1.1. An ordered pair of numbers is called a two-dimensional vec-
tor. We denote a vector by a capital letter

U = (u1,u2).

The numbers u1 and u2 are called the components of the vector U. The set of
all two-dimensional vectors, denoted R

2, is called two-dimensional space.

We introduce the following algebraic operations for two-dimensional vectors

(a) The multiple of a vector U = (u1,u2) by a number c, cU, is defined as the vector
obtained by multiplying each component of U by c:

cU = (cu1,cu2). (1.1)

(b) The sum of vectors U = (u1,u2) and V = (v1,v2), U+V, is defined by adding the
corresponding components of U and V:

U+V = (u1+ v1,u2+ v2). (1.2)

c© Springer International Publishing AG 2017
P. D. Lax and M. S. Terrell, Multivariable Calculus with Applications,
Undergraduate Texts in Mathematics, https://doi.org/10.1007/978-3-319-74073-7 1
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2 1 Vectors and matrices

We denote (0,0) as 0 and call it the zero vector. Note that U+ 0 = U for every
vector U. The symbol −U denotes the vector (−u1,−u2). The vector V−U defined
as V+ (−U) is called the difference of V and U.

Multiplication by a number (or scalar) and addition of vectors have the usual
algebraic properties:

U+V = V+U commutative
(U+V)+W = U+ (V+W) associative

c(U+V) = cU+ cV distributive
(a+b)U = aU+bU distributive
U+ (−U) = 0 additive inverse

In Problem 1.6 we ask you to verify these properties. Vectors U = (x,y) can be
pictured as points in the Cartesian x,y plane. See Figure 1.1 for an example of two
vectors (3,5) and (7,2) and their sum.

30

5

7

2

(3,5)

(7,2)

30

5

(7,2)2

7

(3,5)

(10,7)

Fig. 1.1 Left: Points in the plane. Right: Addition of vectors (3,5) and (7,2).

By visualizing vectors as points in the plane, multiplication of a vector U by a
number c and the addition of two vectors U and V have the following geometric
interpretation.

(a) For a nonzero vector U and a number c, the point cU lies on the line through the
origin and the point U. Its distance from the origin is |c| times the distance of U
from the origin. The origin divides this line into two rays; when c is positive, U
and cU lie on the same ray; when c is negative, U and cU lie on opposite rays.
See Figure 1.2.

(b) If the points 0, U, and V do not lie on a line, the four points 0, U, V, and U+V
form the vertices of parallelogram. (We ask you to prove this in Problem 1.7.)
See Figure 1.3.

(c) For c between 0 and 1 the points V+cU lie on the line segment from V to V+U.
That side of the parallelogram is parallel to the segment from 0 to U and has
the same length. The directed line segment from V to V+U is another way to
visualize the vector U. See Figure 1.4.

We can visualize vector addition and multiplication by a number in two dimen-
sions. But we will see in Section 1.4 that in dimensions higher than three it is the
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0
−U

cU

U

Fig. 1.2 Points 0, U, and cU are on a line, c > 0.

V

0

U+V

U

Fig. 1.3 0, U, U+V, and V form a parallelogram.

0

cU
U

V+cU

V

V+U

Fig. 1.4 For 0 ≤ c ≤ 1 the points V+ cU lie on a line segment from V to V+U.

algebraic properties of vectors that are most useful. Two basic concepts we will use
are linear combination and linear independence.

Definition 1.2. A linear combination of two vectors U and V is a vector of
the form

aU+bV (1.3)

where a and b are numbers.

Example 1.1. The vector
U = (5,3)

is a linear combination of (1,1) and (−1,1) since
U = 4(1,1)− (−1,1).

�



4 1 Vectors and matrices

Example 1.2. Every vector (x,y) is a linear combination of (1,0) and (0,1)
since

(x,y) = x(1,0)+ y(0,1).

�
You might wonder if every vector in R2 can be obtained as some combination of

two given vectors U and V. As we will see in Theorem 1.1, the answer depends on
whether or not U and V are linearly independent.

Definition 1.3. Two vectors U and V are called linearly independent if the
only linear combination aU+ bV of them that is the zero vector is the trivial
linear combination with a = 0 and b = 0.

Example 1.3. Are the vectors (1,0) and (0,1) are linearly independent? Sup-
pose

a(1,0)+b(0,1) = (0,0).

Then (a,0)+ (0,b) = (a,b) = (0,0). This implies

a = 0, b = 0.

Therefore the only linear combination of (1,0) and (0,1) that is (0,0) is the
trivial one 0(1,0)+ 0(0,1). The vectors (1,0) and (0,1) are linearly indepen-
dent. �

Two vectors are called linearly dependent if they are not independent.

Example 1.4. Are U = (1,2) and V = (2,4) linearly independent? Suppose

a(1,2)+b(2,4) = (0,0).

Then (a+ 2b,2a+ 4b) = (0,0). This is true whenever a = −2b. For example
take a = 2 and b = −1. Then

2U+ (−1)V = 2(1,2)+ (−1)(2,4) = (0,0).
The vectors (1,2) and (2,4) are linearly dependent. �

The next theorem tells us that if C and D are linearly independent then we can
express every vector U in R2 as a linear combination of C and D.

Theorem 1.1. Given two linearly independent vectors C and D in R
2, every

vector U in R2 can be expressed uniquely as a linear combination of them:

U = aC+bD.

Proof. Neither of the vectors is the zero vector, for if one of them, say C were, then
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1C+0D = 0

would be a nontrivial linear combination of C and D that is the zero vector. Next we
show that at least one of the vectors C or D has nonzero first component. For if not,
C and D would be of the form

C = (0,c2), D = (0,d2), c2 � 0, d2 � 0.

But then d2C− c2D = (0,d2c2)− (0,c2d2) = (0,0) = 0, a nontrivial linear relation
between C and D.

Suppose the first component c1 of C is nonzero. Then we can subtract a multiple

a =
d1
c1

of C from D and obtain a vector D′ whose first component is zero:

D′ = D−aC,
say D′ = (0,d). Since D′ is a nontrivial linear combination of C and D, D′ is not the
zero vector, and d � 0. We then subtract a multiple of D′ from C to obtain a vector
C′ whose second component is zero and whose first component is unchanged:

C′ = C−bD′ = (c1,0).
Since c1 and d are not zero, every vector U can be expressed as a linear combination
of C′ and D′. Since C′ and D′ are linear combinations of C and D, so is every linear
combination of them.

To check uniqueness suppose there were two linear combinations of C and D for
a vector U,

U = aC+bD = a′C+b′D.

Subtract to get
(a−a′)C+ (b−b′)D = 0.

Since C and D are linearly independent, this linear combination must be the trivial
one with

a−a′ = b−b′ = 0.
That proves a′ = a and b′ = b. This completes the proof of Theorem 1.1. ��

A basic tool for studying vectors and functions of vectors is the notion of a linear
function.

Definition 1.4. A function � from R
2 to the set of real numbers R whose input

U is a vector and whose value �(U) is a number is called linear if

(a) �(cU) = c�(U) and
(b) �(U+V) = �(U)+ �(V)

for all numbers c and vectors U and V.
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Combining these two properties of a linear function � we deduce that for all
numbers a, b and all vectors U, V

�(aU+bV) = �(aU)+ �(bV) = a�(U)+b�(V). (1.4)

Theorem 1.2. A function � from R
2 to R is linear if and only if it is of the form

�(x,y) = px+qy. (1.5)

for some numbers p and q.

Proof. Suppose � is linear. Take E1 and E2 to be the vectors (1,0) and (0,1). We can
express the vector (x,y) as xE1 + yE2. By linearity

�(x,y) = �(xE1+ yE2) = x�(E1)+ y�(E2).

Let p = �(E1) and q = �(E2), then �(x,y) = px+qy for all (x,y) in R2.
Conversely, we ask you in Problem 1.12 to show that every function of the form

�(x,y) = px+qy is linear. ��

Problems

1.1. Use a ruler to estimate the value c shown in Figure 1.2.

1.2. Make a sketch of two linearly dependent nonzero vectors U and V in R2.

1.3. Let U = (1,−1) and V = (1,1).

(a) Find all numbers a and b that satisfy the equation

aU+bV = 0.

Prove that U and V are linearly independent.
(b) Express (2,4) as a linear combination of U and V.
(c) Express an arbitrary vector (x,y) as a linear combination of U and V.

1.4. Find a number k so that the vectors (k,−1) and (1,3) are linearly dependent.

1.5. Find a linear function � from R
2 to R that satisfies �(1,2) = 3 and �(2,3) = 5.

1.6. Let U = (u1,u2), V = (v1,v2), and W = (w1,w2) be vectors in R
2 and let a, b,

and c be numbers. Use the definitions U+V = (u1+v1,u2+v2), cU = (cu1,cu2), and
−U = (−u1,−u2) to show the following properties.

(a) U+V = V+U
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(b) U+ (V+W) = (U+V)+W
(c) c(U+V) = cU+ cV
(d) (a+b)U = aU+bU
(e) U+ (−U) = 0
1.7. Suppose that the points 0 = (0,0), U = (u1,u2), and V = (v1,v2) do not all lie on
a line. Show that the quadrilateral with vertices 0,U,U+V, andV is a parallelogram
by proving the following properties.

(a) the line through 0 and U is parallel to the line through V and U+V,
(b) the line through 0 and V is parallel to the line through U and U+V.

1.8.(a) Make a sketch of two nonzero vectors U and V in R
2 such that U is not a

multiple of V.
(b) Using U and V from part (a) make a sketch of the vectors U+V, −V, and U−V.

V

U

W

Fig. 1.5 Vectors in Problem 1.9.

1.9. Three vectorsU,V, andW are drawn as directed segments between points in the
plane in Figure 1.5. ExpressW in terms ofU andV, and show thatU+V+W = 0.

1.10. Several vectors are drawn in Figure 1.6 as directed segments between points
in the plane.

(a) Express Y as a linear combination of U and V and verify that U+V+Y = 0.
(b) Express Y as a linear combination of W and X and verify that W+X−Y = 0.
(c) Show that U+V+W+X = 0.

U

Y

W

VX

Fig. 1.6 A polygon of vectors in Problem 1.10.

1.11. Let U = (u1,u2). Show that the function �(U) = u1−8u2 is linear.
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1.12. Let � be a function from R
2 to R of the form �(x,y) = px+ qy where p and q

are numbers. Show that � is linear by showing that for all vectors U and V in R2 and
all numbers c, the following properties hold.

(a) �(cU) = c�(U)
(b) �(U+V) = �(U)+ �(V)

1.13. Write the vector equation

(4,5) = a(1,3)+b(3,1)

as a system of two equations for the two unknowns a and b.

1.14. Consider the system of two equations for the two unknowns x and y,

3x+ y = 0

5x+12y = 2.

The word “system” means that we are interested in numbers x,y that satisfy both
equations.

(a) Write this system as a vector equation xU+ yV =W.
(b) Solve for x and y.

1.15. Let U = (1,2) and V = (2,4). Find two ways to express the vector (4,8) as a
linear combination

(4,8) = aU+bV.

Are U and V linearly independent?

1.16. Consider the vectors U = (1,3) and V = (3,1).

(a) Are U and V linearly independent?
(b) Express the vector (4,4) as a linear combination of U and V.
(c) Express the vector (4,5) as a linear combination of U and V.

V

W

U

y

x

Fig. 1.7 Three points as in Problem 1.17.
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1.17. Let U, V, andW be three points on the unit circle centered at the origin of R2,
that divide the circumference into three arcs of equal length. See Figure 1.7.

(a) Show that rotation by 120 degrees around the origin carries U+V+W into itself.
Conclude that the sum of the vectors U, V, and W is 0.

(b) Conclude that
sin(θ)+ sin

(
θ+ 2π

3
)
+ sin

(
θ+ 4π

3
)
= 0

for all θ.

(c) Show that
n∑

k=1

cos
(
θ+ 2kπ

n

)
= 0 for all θ and all n = 2,3, . . ..

1.18. Let f (U) be the distance between the points U and 0 in R2.

(a) For what numbers c is f (cU) = c f (U) true?
(b) Is f a linear function?

1.19. Suppose f is a linear function and f (−.5,0) = 100. Find f (.5,0).

1.20. Suppose f is a linear function and f (0,1) = −2, f (1,0) = 6.

(a) Find f (1,1).
(b) Find f (x,y).

1.2 The norm and dot product of vectors

Definition 1.5. The norm of U = (x,y), denoted as ‖U‖, is defined as

‖U‖ =
√

x2+ y2.

A unit vector is a vector of norm 1.
Applying the Pythagorean theorem to the right triangle whose vertices are (0,0),

(x,0), and (x,y), (see Fig. 1.8), we see that the norm of (x,y) is the distance between
(x,y) and the origin. The norm of U is also sometimes called the length of U.

Example 1.5. The norm of U = (1,2) is

‖U‖ =
√
12+22 =

√
5.

The norm of V =
( √2

2 ,
√
2
2
)
is

‖V‖ =
√
( √2

2
)2
+
( √2

2
)2
= 1,

so V is a unit vector. �
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0

U = (x,y)

(x,0)

||U||

Fig. 1.8 ‖U‖ is the distance between U and the origin.

A concept related to norm is the dot product of two vectors U and V.

Definition 1.6. The dot product of U = (u1,u2) and V = (v1,v2) is

U ·V = u1v1+u2v2. (1.6)

The dot product has some of the usual properties of a product.

(a) Distributive: for vectors U, V, and W

U · (V+W) = U ·V+U ·W,
(b) Commutative: for vectors U and V

U ·V = V ·U.
In Problem 1.21 we ask you to verify the distributive and commutative properties.

It follows from Definitions 1.5 and 1.6 of the norm and dot product that the dot
product of a vector with itself is its norm squared:

U ·U = ‖U‖2. (1.7)

We have shown in Theorem 1.2 that every linear function from R
2 to R is of the

form �(U) = �(x,y) = px+qy. This result can be restated in terms of the dot product:

Theorem 1.3. A function � from R
2 to R is linear if and only if it is of the form

�(U) = C ·U,
where C = (p,q) is some vector in R2.

Example 1.6. Let � be a linear function for which

�(1,1) = 5 and �(−1,1) = −1.



1.2 The norm and dot product of vectors 11

Let’s find the vector C = (p,q) so that �(U) = C ·U. By Theorem 1.3 we have

5 = �(1,1) = (p,q) · (1,1) = p+q, −1 = �(−1,1) = (p,q) · (−1,1) = −p+q.
Solving for p and q we get 2q = 4, q = 2, and p = 3, so

�(x,y) = (3,2) · (x,y) = 3x+2y.
�

An interesting relation between norm and dot product follows from the distribu-
tive and commutative laws applied to the dot product. Using the distributive law we
see

(U−V) · (U−V) = U · (U−V)−V · (U−V) = U ·U−U ·V−V ·U+V ·V.
Using the notation of norm and commutativity of the dot product, U ·V = V ·U, we
can rewrite the equation above as

‖U−V‖2 = ‖U‖2+ ‖V‖2−2U ·V. (1.8)

Since ‖U−V‖2 is nonnegative, it follows from (1.8) that

U ·V ≤ 1
2‖U‖2+ 1

2 ‖V‖2. (1.9)

We show next that an even sharper inequality holds:

Theorem 1.4. For all vectors U and V in R2 the following inequality holds.

U ·V ≤ ‖U‖‖V‖. (1.10)

Proof. If either U orV is the zero vector, inequality (1.10) holds, because both sides
are zero. If both U and V are unit vectors, inequality (1.10) follows from (1.9). For
all nonzero vectors U and V,

1
‖U‖U,

1
‖V‖V

are unit vectors and therefore by inequality (1.9)

U ·V
‖U‖‖V‖ ≤ 1,

from which inequality (1.10) follows. ��
For all vectors U and V,

0 ≤ (‖U‖− ‖V‖)2 = ‖U‖2+ ‖V‖2−2‖U‖‖V‖.
Therefore
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‖U‖‖V‖ ≤ 1
2‖U‖2+ 1

2 ‖V‖2.
By (1.10) we see that

U ·V ≤ ‖U‖‖V‖ ≤ 1
2 ‖U‖2+ 1

2‖V‖2

Thus (1.10) is a “sharper” inequality than (1.9).

x

x’

y’
y

Fig. 1.9 Coordinate axes x, y, and x′, y′.

Suppose we replace the coordinate axes by another pair of perpendicular lines
through the origin. See Figure 1.9. Let x′ and y′ be the coordinates in the new system
of a vector U whose coordinates in the original system were x and y. Then

x′2 + y′2 = x2+ y2

because both sides express the square of the distance between the point U and the
origin.

The dot product of two vectors calculated in the new coordinates is equal to their
dot product calculated in the old coordinates. To see that we note that formula (1.8)
holds in both coordinate systems. The term on the left and the first two terms on the
right are norms and therefore have the same value in both coordinate systems; but
then the remaining term on the right, two times the dot product of U and V, must
also have the same value in both coordinate systems.

x

x’

y’
y

U

V

θ

x

x’

y’
y

U

V

θ

Fig. 1.10 The angle θ between vectors U and V.
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The independence of the dot product of the coordinate system suggests that the
dot product of two vectors U and V, introduced algebraically, has a geometric sig-
nificance. To figure out what it is we use a coordinate system where the new positive
x′ axis is the ray through the origin and the point U; see Figure 1.10. In this new
coordinate system the coordinates of U and V are:

U = (‖U‖,0), V = (‖V‖cosθ,‖V‖sinθ),
where θ is the angle between U and V. That is, the angle θ between the positive
x′ axis and the line through 0 and V, where 0 ≤ θ ≤ π. So in this coordinate system
the dot product of U and V is

U ·V = ‖U‖‖V‖cosθ.
Since the dot product in our two coordinate systems is the same, this proves the
following theorem.

Theorem 1.5. The dot product of two nonzero vectors U and V is the product
of the norms of the two vectors times the cosine of the angle between the two
vectors,

U ·V = ‖U‖‖V‖cosθ.

In particular if two nonzero vectors U and V are perpendicular, θ = π2 , their dot
product is zero, and conversely. When the dot product of vectors U and V is zero we
say that U and V are orthogonal.

Problems

1.21. Let U = (u1,u2), V = (v1,v2), and W = (w1,w2). Prove

(a) the distributive property U · (V+W) = U ·V+U ·W.
(b) the commutative property U ·V = V ·U.
1.22. Which vectors are orthogonal?

(a) (a,b), (−b,a)
(b) (1,−1), (1,1)
(c) (0,0), (1,1)
(d) (1,1), (1,1)

1.23. Which of these vectors are unit vectors?

(a) ( 35 ,
4
5 )

(b) (cosθ,sinθ)
(c) (
√
.8,
√
.2)

(d) (.8, .2)
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1.24. Use equation (1.8) and Theorem 1.5 to prove the Law of Cosines: for every
triangle in the plane with sides a, b, c and angle θ opposite side c, (see Figure 1.11),

c2 = a2+b2−2abcosθ.

c

a
θ

b

Fig. 1.11 A triangle in Problem 1.24.

1.25. Let � be a linear function from R
2 to R for which �(2,1) = 3 and �(1,1) = 2.

Find the vector C so that �(U) = C ·U.
1.26. Find the cosine of the angle between the vectors U = (1,2) and V = (3,1).

1.27. Use equation (1.8) to show that for every U and V in R2,

‖U+V‖2 = ‖U‖2+ ‖V‖2+2U ·V.
1.28. Let U = (x,y). Find a vector C to express the equation of a line y = mx+b as
C ·U = b.
1.29. If C and D are orthogonal nonzero vectors, there is a simple expression for a
and b in a linear combination

U = aC+bD.

(a) Dot both sides of this equation with C to show that a =
C ·U
‖C‖2 .

(b) Find a formula for b.
(c) If (8,9) = a

( 3
5 ,

4
5
)
+b
(− 4

5 ,
3
5
)
, find a.

tU

V

U

α
f(t)

Fig. 1.12 Vectors V and U for Problem 1.30.
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1.30. Let U be a nonzero vector and t a number. Let f (t) be the distance between a
point V and the point tU on the line through 0 and U as shown in Figure 1.12.

(a) Use calculus to find the value of t that minimizes ( f (t))2.
(b) Use a dot product to find the value of t that makes the angle α in the figure a right

angle.
(c) Confirm that the numbers t that you found in parts (a) and (b) are the same.

1.31. Express the vectors U = (1,0), V = (2,2) in the coordinate system rotated π4
counterclockwise.

1.32. A regular octagon is shown in Figure 1.13. It shows vertex P = (c, s) where c
and s are the cosine and sine of π8 .

(a) Show that vertex Q is (s,c).

(b) Show that sin
( π
8
)
= 1

2

√

2− √2.

R

P

Q

Fig. 1.13 The octagon in Problem 1.32.

1.3 Bilinear functions

Definition 1.7. A function b whose input is an ordered pair of vectors U and
V and whose output is a number is called bilinear if, when we hold U fixed,
b(U,V) a linear function of V, and when we hold V fixed, b(U,V) is a linear
function of U.

As we shall see, many important functions are bilinear.

Example 1.7. Let U = (u1,u2), V = (v1,v2),W = (w1,w2), and define the func-
tion b by

b(U,V) = u1v1.
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To see that b is bilinear, we first hold U fixed and check that b(U,V) is linear
in V. That is, check that for all numbers c and vectors V and W,

b(U,V+W) = b(U,V)+b(U,W), b(U,cV) = cb(U,V).

For the first we have

b(U,V+W) = u1(v1+w1) = u1v1+u1w1 = b(U,V)+b(U,W).

For the second,

b(U,cV) = u1(cv1) = cu1v1 = cb(U,V).

So b is linear in V. We ask you in Problem 1.33 to show by a similar argument
that b is linear in U when we hold V fixed. �

We saw in Example 1.7 that u1v1 is a bilinear function of (U,V). Similarly u1v2,
u2v1, and u2v2 are bilinear. The next theorem describes all bilinear functions.

Theorem 1.6. Every bilinear function b of U = (u1,u2) and V = (v1,v2) is of
the form

b(U,V) = eu1v1+ f u1v2+gu2v1+hu2v2, (1.11)

where e, f , g, and h are numbers.

Proof. For fixed V, b(U,V) is a linear function of U. According to Theorem 1.2,
b(U,V) has the form (1.5):

b(U,V) = pu1+qu2, (1.12)

where the numbers p and q depend onV. To determine the nature of this dependence
first let U = E1 = (1,0) and then U = E2 = (0,1). We get

b((1,0),V)= (p)(1)+ (q)(0)= p= p(V), b((0,1),V)= (p)(0)+ (q)(1)= q= q(V).

Since b is bilinear, the functions p and q are linear functions of V. Therefore they
are of the form

p(V) = ev1+ f v2, q(V) = gv1+hv2,

where e, f , g, and h are numbers that do not depend on V. Setting these formulas
for p and q into formula (1.12) gives

b(U,V) = (ev1+ f v2)u1+ (gv1+hv2)u2,

which gives
b(U,V) = eu1v1+ f u1v2+gu2v1+hu2v2.

��
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We ask you in Problem 1.36 to prove the following theorem.

Theorem 1.7. A linear combination of bilinear functions is bilinear.

Example 1.8. The dot product U ·V has the properties

(cU) ·V = cU ·V, (U+V) ·W = U ·W+V ·W, U · (V+W) = U ·V+U ·W.

This shows that U ·V is a bilinear function of U and V. Its formula

U ·V = u1v1+u2v2
is a special case of formula (1.11) in Theorem 1.6. �

Example 1.9. Let
b(U,V) = u1v2−u2v1,

where U = (u1,u2), V = (v1,v2). The terms u1v2 and u2v1 are bilinear. By
Theorem 1.7 b is a bilinear function. �

Problems

1.33. Let U = (u1,u2), V = (v1,v2). Show that the function b(U,V) = u1v1 is linear
in U when we hold V fixed.

1.34. Let U = (u1,u2), V = (v1,v2). Is the function b(U,V) = u1u2 bilinear?

1.35. Define f (p,q,r, s) = qr + 3rp− sp. Sort two of the variables p,q,r, s into a
vectorU and the other two into a vectorV to express f as a bilinear function b(U,V).

1.36. Prove Theorem 1.7. That is, suppose b1(U,V) and b2(U,V) are bilinear func-
tions and c1,c2 are numbers; show that the function b defined by

b(U,V) = c1b1(U,V)+ c2b2
(
U,V)

is a bilinear function.

1.4 n-dimensional vectors

We extend the concepts of vectors and their algebra from two dimensions to n
dimensions, where n is any positive integer.
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Definition 1.8. An ordered n-tuple

U = (u1,u2, . . . ,un)

of numbers is called an n-dimensional vector. The numbers u j are called the
components of the vector U, and u j is called the j-th component of U. The set
of all n-dimensional vectors, denoted R

n, is called n-dimensional space.

The vector all of whose components are zero is called the zero vector and is
denoted as 0:

0 = (0,0, . . . ,0).

There is an algebra of vectors in Rn entirely analogous to the algebra in R2 described
in Section 1.1.

(a) Let U = (u1,u2, . . . ,un) and let c be a number. The multiple cU is defined by
multiplying each component of U by c:

cU = (cu1,cu2, . . . ,cun).

(b) The sum of U = (u1,u2, . . . ,un) and V = (v1,v2, . . . ,vn) is defined by adding the
corresponding components of U and V:

U+V = (u1+ v1,u2+ v2, . . . ,un+ vn).

In Problem 1.37 we ask you to verify that Rn has the usual algebraic properties

c(X+Y) = cX+ cY, X+Y = Y+X, X+ (Y+Z) = (X+Y)+Z.

According to the third of these we write X+ (Y+Z) as X+Y+Z.

Definition 1.9. Let k be a positive integer. A linear combination of vectors
U1,U2, . . . ,Uk in Rn is a vector of the form

c1U1+ c2U2+ · · ·+ ckUk =

k∑

j=1

c jU j,

where c1,c2, . . . ,ck are numbers. The set of all such linear combinations is
called the span of U1,U2, . . . ,Uk.

A linear combination is called trivial if all the numbers c j are zero.

Example 1.10. Let

U = (3,7,6,9,4),

V = (2,7,0,1,−5).
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The vector
2U+3V = (12,35,12,21,−7)

is a linear combination of U and V. In Problem 1.43 we ask you to show that
the vector

(− 1
2 ,− 7

2 ,3,
7
2 ,7
)

is also a linear combination of U and V. �

Definition 1.10. The vectors U1, . . . ,Uk in R
n are called linearly independent

if the only linear combination of them that is the zero vector is the trivial one.
That is,

if c1U1+ c2U2+ · · ·+ ckUk = 0 then c1 = 0, c2 = 0, . . . , ck = 0.

If U1, . . . ,Uk are not linearly independent, they are called linearly dependent.

Example 1.11. The vectors

E1 = (1,0,0,0), E2 = (0,1,0,0), E3 = (0,0,1,0), E4 = (0,0,0,1)

in R4 are linearly independent because the linear combination

c1E1+ c2E2+ c3E3+ c4E4 = (c1,c2,c3,c4)

is the zero vector only when c1 = c2 = c3 = c4 = 0. �

Definition 1.11. LetU1,U2, . . . ,Uk be linearly independent vectors inRn, with
k < n. Let t1, t2, . . . , tk be numbers and let U be a vector in R

n. The set of all
vectors of the form

U+ t1U1+ · · ·+ tkUk

is called a k-dimensional plane in R
n through U. When k = n− 1 we call it a

hyperplane. When U = 0 the k-dimensional plane through the origin is called
the span of U1,U2, . . . ,Uk.

Theorem 1.8. n+1 vectors U1,U2, . . . ,Un+1 in Rn are linearly dependent.

Proof. The proof is by induction on n. Take first n = 1, and let u and v be in R. If
both u and v are zero then u+ v = 0 is a nontrivial linear combination. Otherwise
(v)u+ (−u)v = 0 is a nontrivial linear combination. Therefore the theorem holds for
n = 1.

Suppose inductively that the theorem holds for n−1. Look at the n-th components
of the vectors U1,U2, . . . ,Un+1 in R

n. If all of them are zero, then there are n+ 1
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vectors in R
n−1 obtained by omitting the final zeros; so by the induction hypothesis

they are linearly dependent.
Consider the case where one of the vectors, call it Un+1, has a nonzero n-th com-

ponent. Subtract a suitable multiple ci of Un+1 from each of the other vectors Ui so
that the n-th component of each difference

U′i = Ui− ciUn+1 (i = 1,2, . . . ,n)

is zero. Omitting the final zero of U′i we obtain n vectors Vi in R
n−1. According to

the induction hypothesis they are linearly dependent, that is they satisfy a nontrivial
linear relation

n∑

i=1

kiVi = 0.

Adjoining a final zero component to each of the vectorsVi gives the nontrivial linear
relation

n∑

i=1

kiU′i = 0. (1.13)

Setting U′i = Ui− ciUn+1 into equation (1.13) we get the nontrivial relation

n∑

i=1

ki(Ui− ciUn+1) = 0. (1.14)

This proves the linear dependence of U1, . . . ,Un+1. This completes the proof by
induction. ��

Example 1.12. The vectors in R3,

E1 = (1,0,0), E2 = (0,1,0), E3 = (0,0,1), X = (2,4,3)

are linearly dependent: Since

X = 2E1+4E2+3E3,

we have a nontrivial linear combination equal to zero:

2E1+4E2+3E3−X = 0.
�

Figure 1.14 illustrates other examples of linear dependence and independence in
R
3.

Theorem 1.9. Suppose U1, . . . ,Un are linearly independent in R
n. Then each

vector X in Rn can be expressed uniquely as a linear combination of the Ui:

X = c1U1+ · · ·+ cnUn. (1.15)
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U1
U2

U3

V1

V2

V3

z

x

z

y

x

y

Fig. 1.14 U1, U2, U3 are linearly dependent. V1, V2, V3 are linearly independent.

Proof. According to Theorem 1.8 there is a nontrivial relation among the n+1 vec-
tors X,U1, . . . ,Un:

a0X+a1U1+ · · ·+anUn = 0.

In this relation, a0 is not zero. If it were zero then the linear independence of the
Ui would imply that all the ai are zero. Divide by a0 to get relation (1.15) with
ci = −ai/a0.

If there were two different representations ofX of the form (1.15), their difference
would be a nontrivial linear relation among the Ui contrary to their linear indepen-
dence. ��
Linear functions. Just as for two-dimensional vectors, a function � that assigns a
number to each vector in Rn is called linear if for all U and V in Rn

(a) �(cU) = c�(U) for all numbers c, and
(b) �(U+V) = �(U)+ �(V).

Combining properties (a) and (b) we deduce that a function � from R
n to R is linear

if for all U and V in Rn and numbers a and b, � satisfies

�(aU+bV) = a�(U)+b�(V). (1.16)

Every function � of U = (u1,u2, ...,un) of the form

�(U) = c1u1+ c2u2+ · · ·+ cnun, (1.17)

where c1,c2, . . . ,cn are numbers, has properties (a) and (b), and therefore is a linear
function. (See Problem 1.45.) Conversely, we have the following theorem.
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Theorem 1.10. Let � be a linear function from R
n to R. Then there are num-

bers c1, . . . ,cn such that

�(U) = c1u1+ c2u2+ · · ·+ cnun
for every vector U = (u1,u2, . . . ,un) in Rn.

Proof. Let E j be the vector in R
n whose j-th coordinate is 1 and all other coordi-

nates are zero,

E1 = (1,0,0,0, . . . ,0)

E2 = (0,1,0,0, . . . ,0)

E3 = (0,0,1,0, . . . ,0)

...

En = (0,0,0,0, . . . ,1).

The vector U = (u1,u2, . . . ,un) can be expressed as the linear combination of the E j:

U = u1E1+u2E2+ · · ·+unEn

Set c j = �(E j), j = 1, . . . ,n. Since � is linear,

�(U) = u1�(E1)+u2�(E2)+ · · ·+un�(En)

= c1u1+ c2u2+ · · ·+ cnun.
��

As in the two-dimensional case, we call a function b of two vectors in Rn bilinear
if for every vector V, b(U,V) is a linear function of U, and for every vector U it is
a linear function of V.

Every function of the form u jvk is bilinear, and as in Theorem 1.7, so are linear
combinations of them. The following result, an extension of Theorem 1.6, charac-
terizes all bilinear functions.

Theorem 1.11. Let b be a bilinear function of U = (u1, . . . ,un) and V =
(v1, . . . ,vn). Then b is a linear combination of the functions f jk defined by

f jk(U,V) = f jk(u1, . . . ,un,v1, . . . ,vn) = u jvk, j = 1, . . . ,n, k = 1, . . . ,n.

Proof. We fix the vector V and consider b(U,V) as a linear function of U. By The-
orem 1.10 it has the form



1.4 n-dimensional vectors 23

b(U,V) = c1u1+ c2u2+ · · ·+ cnun, (1.18)

where c1,c2, . . . ,cn are functions of V. Since b is a bilinear function, the ci are linear
functions of V. According to Theorem 1.10 each ci is a linear combination of the
vk. Setting this into formula (1.18) we get an expression of b(U,V) as a linear com-
bination of u jvk, as asserted. ��

Problems

1.37. Let V = (v1, . . . ,vn), U = (u1, . . . ,un), and W = (w1, . . . ,wn) be vectors in R
n,

and let c and d be numbers. Show that

(a) V+W =W+V
(b) (V+U)+W = V+ (U+W)
(c) c(U+V) = cU+ cV
(d) (c+d)U = cU+dU

1.38. Express the vector (1,3,5) as a linear combination of the vectors

U1 = (1,0,0), U2 = (1,1,0), U3 = (1,1,1).

1.39. Show that every vector in R3 is a linear combination of the vectors

U1 = (1,0,0), U2 = (1,1,0), U3 = (1,1,1).

1.40. Determine whether the vectors

U1 = (1,0,0), U2 = (1,1,0), U3 = (1,1,1).

are linearly independent.

1.41. Show that the vectors

(1,1,1,1), (0,1,1,1), (0,0,1,1), (0,0,0,1)

are linearly independent in R
4.

1.42. Are the vectors

(1,2,1), (1,2,2), (1,2,3), (1,2,4)

linearly dependent or independent? What theorem of this section is particularly
applicable to them?
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1.43. Let
U = (3,7,6,9,4),

V = (2,7,0,1,−5).
Show that the vector

(− 1
2 ,− 7

2 ,3,
7
2 ,7
)

is a linear combination of U and V.

1.44. The set of points (x,y,z) in R3 satisfying

−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1,
is a solid cube. Write out the coordinates of the eight corner points of the cube. Is
there a linear function that is equal to 8 on every corner?

1.45. A function � from R
n to R is defined by

�(U) = c1u1+ c2u2+ · · ·+ cnun
where U = (u1,u2, . . . ,un) and c1, . . . ,cn are numbers.

(a) Show that �(cU) = c�(U) for all vectors U and numbers c.
(b) Show that for all vectors U and V in Rn, �(U+V) = �(U)+ �(V).

1.46. Let U = (1,3,1) and V = (2,2,2). ExpressW = (3,5,3) as a linear combination
of U and V.

1.47. Show that the vectors (1,1,1), (1,2,3), and (3,2,1) are linearly dependent.

1.48. Let P be the set of all the points (x,y,0,0), and let Q be the set of all points
(0,0,z,w) in R4. P and Q are two-dimensional planes in R4. How many points do P
and Q have in common?

1.49. Let X = (x1, x2, . . . , xn) and Y = (y1,y2, . . . ,yn) in R
n. Which functions are

bilinear? Of the bilinear functions, which are symmetric: b(X,Y) = b(Y,X)? Which
ones are antisymmetric: b(X,Y) = −b(Y,X)?
(a) b(X,Y) = x1yn
(b) b(X,Y) = x1yn− xny1
(c) b(X,Y) =

√
x21 + x

2
2 + · · ·+ x2n

√
y21+ y

2
2+ · · ·+ y2n

(d) b(X,Y) = x1y1+ x2y2+ · · ·+ xnyn
1.50. Let U = (u1,u2,u3,u4), V = (v1,v2,v3,v4), andW = (w1,w2,w3,w4). Which of
the following functions f have the antisymmetry property

f (U,V,W) = − f (V,U,W)?

(a) f (U,V,W) = u1v1w1

(b) f (U,V,W) = u1w3− v1w2

(c) f (U,V,W) = (u2v3−u3v2)w4
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1.51. Let U = (u1,u2,u3) and V = (v1,v2,v3). Which bilinear functions b have the
symmetry property

b(U,V) = b(V,U)?

(a) b(U,V) = 10u1v1
(b) b(U,V) = u1v2−u2v1
(c) b(U,V) = u1v3+u2v2+10u3v1
(d) b(U,V) = u1v3+10u2v2+u3v1

1.52. Let U = (u1,u2,u3) and V = (v1,v2,v3). Which bilinear functions b have the
antisymmetry property

b(U,V) = −b(V,U)?
(a) b(U,V) = 10u1v1
(b) b(U,V) = u1v2−u2v1
(c) b(U,V) = u1v3+u2v2+10u3v1
(d) b(U,V) = u1v3+10u2v2+u3v1

1.5 Norm and dot product in n dimensions

We define now, in analogy with two-dimensional vectors, the norm of a vector in
R
n, and the dot product of two vectors in Rn.

Definition 1.12. The norm of a vector U = (u1,u2, . . . ,un) is defined as

‖U‖ =
√
u21+u

2
2+ · · ·+u2n. (1.19)

The zero vector 0 has norm zero, and conversely only the zero vector has norm
zero. As in R2 we think of the norm of U as the length of U or the distance from the
origin to the point U.

Definition 1.13. We define the dot product, U ·V, of U = (u1,u2, . . . ,un) and
V = (v1,v2, . . . ,vn) as

U ·V = u1v1+u2v2+ · · ·+unvn. (1.20)

We ask you in Problem 1.53 to verify that the dot product is distributive and
commutative:

U · (V+W) = U ·V+U ·W, U ·V = V ·U.



26 1 Vectors and matrices

The dot product of a vector with itself is its norm squared:

U ·U = ‖U‖2.
Theorem 1.10 can be restated as follows:
Every linear function � from R

n to R can be expressed as

�(U) = C ·U,
where C is some vector in Rn.

Inequalities. The relation in R
2

‖U−V‖2 = ‖U‖2+ ‖V‖2−2U ·V (1.21)

was derived using only the distributive and commutative rules for the dot product.
Therefore it holds for vectors in Rn as well. We show you in Problem 1.59 a different
proof.

Next we prove a very useful inequality that compares U ·V to ‖U‖‖V‖.

Theorem 1.12. The Cauchy–Schwarz inequality. Let U and V be vectors in
R
n. Then

|U ·V| ≤ ‖U‖‖V‖. (1.22)

Example 1.13. We have

(1,1,0) · (0,1,1) = 1, (1,−1,0) · (0,1,1) = −1,
and in both cases the absolute value of the dot product is less than the product
of norms,

√
2
√
2. �

Proof. If U is the zero vector then both sides of the inequality are zero, so it holds
in that case. Since the square is nonnegative

0 ≤ ‖V− (U ·V)U‖2. (1.23)

Using (1.21) rewrite the right side of (1.23) to get

0 ≤ ‖V‖2+ ‖(U ·V)U‖2−2(U ·V)2

= ‖V‖2+ (U ·V)2‖U‖2−2(U ·V)2.
If U is a unit vector, ‖U‖ = 1 and we get

0 ≤ ‖V‖2− (U ·V)2

so (U ·V)2 ≤ ‖V‖2. Taking square roots we get that for unit vectors U,
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|U ·V| ≤ ‖V‖.
Next if U is a nonzero vector, 1

‖U‖U is a unit vector, so

∣∣∣∣∣
1
‖U‖U ·V

∣∣∣∣∣ ≤ ‖V‖.

Multiply by ‖U‖ to get (1.22). ��
We ask you in Problem 1.64 to find out when equality holds in the Cauchy–

Schwarz inequality. An important consequence of the Cauchy–Schwarz inequality
is the triangle inequality for vectors in Rn.

Theorem 1.13. Triangle inequality If U and V are vectors in Rn then

‖U+V‖ ≤ ‖U‖+ ‖V‖.

Proof. We have seen in equation (1.21) that

‖U−V‖2 = ‖U‖2+ ‖V‖2−2U ·V.
Replace V by −V and use the Cauchy–Schwarz inequality to get

‖U+V‖2 = ‖U‖2+ ‖V‖2+2U ·V
≤ ‖U‖2+ ‖V‖2+2‖U‖‖V‖ = (‖U‖+ ‖V‖)2.

Take the square root to get ‖U+V‖ ≤ ‖U‖+ ‖V‖ as asserted. ��
Using the Cauchy–Schwarz inequality we can define the angle between two

nonzero vectors U and V in R
n as follows. From the Cauchy–Schwarz inequality

we see that for U and V nonzero

−1 ≤ U ·V
‖U‖‖V‖ ≤ 1.

We define the angle θ between U and V to be

θ = cos−1
(

U ·V
‖U‖‖V‖

)

, 0 ≤ θ ≤ π,

or cosθ =
U ·V
‖U‖‖V‖ . Using this definition we can rewrite the formula (1.21)

‖U−V‖2 = ‖U‖2+ ‖V‖2−2U ·V
as

‖U−V‖2 = ‖U‖2+ ‖V‖2−2‖U‖‖V‖cosθ.
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‖U−V‖, ‖U‖, and ‖V‖ are the lengths of sides of the triangle 0UV in Figure 1.15.
Thus (1.21) is the Law of Cosines in R

n.

U−V

θ

V

U

Fig. 1.15 For U and V in Rn, ‖U−V‖2 = ‖U‖2 + ‖V‖2 −2‖U‖‖V‖cosθ.

Orthonormal set. We have used the set of coordinate vectors E j in R
n whose j-th

component is 1 and all other components are zero.

E1 = (1,0,0,0, . . . ,0)

E2 = (0,1,0,0, . . . ,0)

E3 = (0,0,1,0, . . . ,0)

...

En = (0,0,0,0, . . . ,1)

Every vectorU= (u1,u2, . . . ,un) in Rn can be written as a linear combination of these
vectors,

U = u1E1+u2E2+ · · ·+unEn.

The list of vectors E j is called the standard basis in Rn.

Definition 1.14. A list of vectors V1,V2, . . . ,Vm in R
n is called an orthonor-

mal set when two properties hold:

(a) The vectors V j are pairwise orthogonal:

V j ·Vk = 0 for all j � k.

(a) Each vector V j has norm 1:

‖V j‖ = 1 for all j.

The standard basis of Rn is an orthonormal set.

Example 1.14. The vectors

Q1 = (1,1,1,1), Q2 = (1,1,−1,−1),
Q3 = (1,−1,1,−1), Q4 = (−1,1,1,−1)
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are pairwise orthogonal. For example, Q2 ·Q3 = 1− 1− 1+ 1 = 0. Each has
norm 2. For example, ‖Q4‖ =

√
1+1+1+1 = 2. Dividing by the norms there-

fore gives unit vectors V j =
1
2Q j;

V1 =
( 1
2 ,

1
2 ,

1
2 ,

1
2
)
, V2 =

( 1
2 ,

1
2 ,− 1

2 ,− 1
2
)
,

V3 =
( 1
2 ,− 1

2 ,
1
2 ,− 1

2
)
, V4 =

(− 1
2 ,

1
2 ,

1
2 ,− 1

2
)

are an orthonormal set in R4. �
We show now that there are many more orthonormal sets. The basic result is the

following.

Theorem 1.14. Let n≥ 2 and k< n. LetW1,W2, . . . ,Wk be vectors inRn. Then
there is a nonzero vectorV orthogonal to each of the vectorsWi, i= 1,2, . . . ,k.

Proof. We argue by induction on n. The case n= 2 is simple. IfW1 is the zero vector
we may take any vector for V. If W1 = (a,b) � 0 we take V = (−b,a). Suppose
inductively that the theorem holds for n − 1, where n ≥ 3. The desired relations
W j ·V = 0, j = 1,2, . . . ,k, form a system of k linear equations for the n components
v1,v2, . . . ,vn of V:

wj1v1+wj2v2+ · · ·+wjnvn = 0, j = 1,2, . . . ,k. (1.24)

We look at the last terms on the left, wjnvn. If all the numbers wjn, j = 1,2, . . . ,k are
zero, then we can satisfy these equations by choosing v1,v2, . . . ,vn−1 equal to zero
and vn equal to 1. If one of the numbers wjn is nonzero, we use the j-th equation
in (1.24) to express vn as a linear combination of v1,v2, . . . ,vn−1. In case k = 1 there
is no further equation and v1,v2, . . . ,vn−1 may be chosen arbitrarily; otherwise set
the expression for vn into the remaining equations (1.24) we get a system of k− 1
equations of form (1.24) for the n− 1 unknowns v1,v2, . . . ,vn−1. By the induction
hypothesis this system has a nonzero solution. ��

We use Theorem 1.14 to construct many orthonormal sets V1,V2, . . . ,Vn in R
n:

Choose V1 as any vector of norm 1. According to Theorem 1.14 there is a nonzero
vector, call it V2, orthogonal to V1. Again using Theorem 1.14 with k = 2, there is
a nonzero vector V3 that is orthogonal to both V1 and V2. Proceeding in this way
we construct a set of n nonzero vectors V j that are pairwise orthogonal. Then we
multiply each vector with a suitable number to make a vector of norm 1.

Theorem 1.15. If vectors V1, . . . ,Vm are an orthonormal set in R
n, then they

are linearly independent.

Proof. Suppose there is a linear relation
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c1V1+ · · ·+ cmVm = 0.

Take the dot product with Vi; since Vi ·V j = 0 when j � i, and Vi ·Vi = 1, we get
ci = 0. Since this holds for each i this proves the linear independence. ��

By Theorem 1.9 every vector X in R
n can be expressed as a linear combination

of the linearly independent vectors V1, . . . ,Vn

X = c1V1+ · · ·+ cnVn.

To find the c j when the V j are orthonormal, dot both sides of the equation with V1

to see that

V1 ·X = V1 · (c1V1+ · · ·+ cnVn) = c1‖V1‖2+ c2V1 ·V2+ · · · = c1.
Similarly each c j = V j ·X. Thus we have proved the following theorem.

Theorem 1.16. Let V1, . . . ,Vn be an orthonormal set of vectors in R
n. Then

every vector X in Rn can be expressed as the linear combination

X = (V1 ·X)V1+ · · ·+ (Vn ·X)Vn. (1.25)

Example 1.15. To write X = (1,2,3,4) as a linear combination of the set of
orthonormal vectors V1, V2, V3, V4 in Example 1.14, we find

c1 = V1 ·X = 1
2 (1)+

1
2 (2)+

1
2 (3)+

1
2 (4) = 5

c2 = V2 ·X = −2
c3 = V3 ·X = −1
c4 = V4 ·X = 0

and so

X = (1,2,3,4) =
4∑

j=1

(V j ·X)V j = 5V1−2V2−V3.

�

Problems

1.53. Denote the dot product function b(U,V) = U ·V. Verify that the dot product
is distributive and commutative and show that it is a symmetric bilinear function by
verifying the following properties:

(a) b(U,V) is bilinear
(b) b(U,V) = b(V,U)
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1.54. Let U, V, W, and X be the points on the rectangular box in R
3 shown in

Figure 1.16. Find the following distances:

(a) ‖V−U‖,
(b) the distance between U and the origin,
(c) the distance between U and V+W,
(d) ‖W−X‖.

2
3

1

x

y

z

W
U V

X

Fig. 1.16 The points used in Problem 1.54.

1.55. Find a vector W in R5 orthogonal to all three of the vectors

(1,2,0,0,−2), (−2,1,2,0,0), (0,−2,1,0,2).
1.56. Which of the following vectors are unit vectors?

(a) 1
50 (3,4,5),

(b) −U if U is,
(c) (−u1,u2,−u3,u4,−u5,u6), if U = (u1,u2,u3,u4,u5,u6) is.
(d) 1

3 (1,−
√
2,
√
3,−√3).

1.57. Determine whether the following pairs of vectors are orthogonal to each other.

(a) (1,1,1,1,1) and (−1,−1,−1,−1,−1),
(b) (1,1,1,1) and (−1,−1,−1,3),
(c) (1,1,1) and (−1,2,−1).
1.58. Show that if X and Y are orthogonal to each other in Rn then

‖X+Y‖2 = ‖X‖2+ ‖Y‖2.
This is sometimes called the Pythagorean theorem in Rn.

1.59. Let u and v be numbers. Use the algebraic identity

(u− v)2 = u2−2uv+ v2

n times to prove that for all vectors U and V in Rn,

‖U−V‖2 = ‖U‖2+ ‖V‖2−2U ·V.
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1.60. Find the maximum norm of X = (x1, x2, . . . , x100) in the unit cube in R100,

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, . . . 0 ≤ x100 ≤ 1.
1.61. Imagine an n-dimensional cube in Rn with edge length c > 0, consisting of all
the points X = (x1, x2, . . . , xn) with

0 ≤ xk ≤ c, k = 1, . . . ,n.

(a) Find the point P in the cube that has the largest norm. Call P the far corner of the
cube.

(b) For what value of c is the far corner P on the unit sphere of Rn, ‖X‖ = 1?
(c) Keeping the far corner point on the unit sphere, what happens to the edge length

c as the dimension n tends to infinity?

1.62. Let C = (c1, . . . ,cn) be a given vector in R
n and let X = (x1, . . . , xn). Show that

the function
f (X) = x1+C ·X

is linear, by finding D = (d1, . . . ,dn) to express f in the form f (X) = D ·X.
1.63. LetW1 = (1,1,1,0) andW2 = (0,1,1,1). Find two linearly independent vectors
that are orthogonal to bothW1 andW2.

1.64. Our proof of the Cauchy–Schwarz inequality, Theorem 1.12, used that when
U is a unit vector,

0 ≤ ‖V− (U ·V)U‖2 = ‖V‖2− (U ·V)2.
(a) Show that if U is a unit vector and |U ·V| = ‖U‖‖V‖, then V = (U ·V)U.
(b) Show that equality occurs in the Cauchy–Schwarz inequality for two arbitrary

vectors V and W only if one of the vectors is a multiple of the other vector.

y

z

x

D

C

B

A

Fig. 1.17 The icosahedron in a cube, for Problem 1.65.
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1.65. The regular icosahedron fits nicely into a cube, as shown in Figure 1.17. It has
twenty equilateral triangle faces. In the cube, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, and 0 ≤ z ≤ 2.
Points A and B are located on the face of the cube where x = 2, and are equally
spaced from the center of that face, so A = (2,1−h,1) and B = (2,1+h,1) for some
number h > 0.

(a) Find the coordinates of points C and D in terms of h.
(b) Express the distance between A and B in terms of h.
(c) Express the distance between A and D in terms of h.
(d) Find h.

1.66. Let

V1 = (a,b, . . . ,b), V2 = (b,a,b, . . . ,b), V3 = (b,b,a, . . . ,b), . . . Vn = (b, . . . ,b,a)

be n vectors in R
n, where n > 1. Find numbers a and b so that V1, . . . ,Vn is an

orthonormal set.

1.67. Use the triangle inequality as needed to prove the following inequalities,
where a and b are numbers and X and Y are vectors in Rn.

(a) |a| ≤ |a−b|+ |b|
(b) |a| − |b| ≤ |a−b|
(c)
∣∣∣|a| − |b|∣∣∣ ≤ |a−b|

(d)
∣∣∣‖X‖− ‖Y‖∣∣∣ ≤ ‖X−Y‖

1.6 The determinant

The determinant of order n is a number valued function of an ordered list of n vectors
V1,V2, . . . ,Vn, each with n components. We denote it as

det(V1,V2, . . . ,Vn).

Before giving the formula for the determinant we list its algebraic properties:
(i) det(V1,V2, . . . ,Vn) is a multilinear function, that is, a linear function of each

Vi when all other V j, j � i are held fixed.
(ii) If two vectors Vi and V j of the ordered list are equal, the value of the deter-

minant is zero:
det(. . .V, . . . ,V, . . .) = 0.

(iii) det(E1,E2, . . . ,En) = 1, where Ei is the vector whose i-th component is 1 and
all other components are zero.

We deduce three further properties from the properties above:
(iv) If two of the vectors in the ordered list are interchanged, the value of the

determinant is multiplied by −1.
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Proof. Using repeatedly properties (i) and (ii) of the determinant we get the follow-
ing sequence of identities, where we only indicate the i-th and j-th vectors U and V
of the ordered list:

0 = det(U+V,U+V) = det(U,U)+det(U,V)+det(V,U)+det(V,V).

Therefore
0 = det(U,V)+det(V,U).

This proves property (iv). ��
(v) If V1,V2, . . . ,Vn are linearly dependent, then det(V1,V2, . . . ,Vn) = 0.

Proof. If theVi are linearly dependent, one of theVi, sayV1, is a linear combination
of the others:

V1 =

n∑

i=2

mjV j

Using the multilinear property of the determinant we have

det(V1,V2, . . . ,Vn) = det

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑

i=2

mjV j,V2, . . . ,Vn

⎞
⎟⎟⎟⎟⎟⎟⎠ =

n∑

i=2

mjdet(V j,V2, . . . ,Vn).

In each term of the sum on the right side of the last equation two of the vectors in
det are equal. Therefore by property (ii) each term of the sum is zero. It follows that
the whole sum is zero. This proves property (v). ��

Next we show the converse of property (v).
(vi) If the vectors V1,V2, . . . ,Vn are linearly independent, det(V1,V2, . . . ,Vn) is

not zero.

Proof. Since the vectors V1,V2, . . . ,Vn are linearly independent, according to The-
orem 1.9 we can express every vector as a linear combination of them. In particular
the unit coordinate vectors Ei can be expressed:

Ei =

n∑

j=1

b jiV j.

Since the determinant is a multilinear function, we write

det(E1,E2, . . . ,En) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

b j1V j,E2, . . . ,En

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

n∑

j=1

b j1det(V j,E2, . . . ,En)

=

n∑

j=1

b j1det

⎛
⎜⎜⎜⎜⎜⎜⎝V j,

n∑

k=1

bk2Vk,E3, . . . ,En

⎞
⎟⎟⎟⎟⎟⎟⎠ =

n∑

j=1

b j1

n∑

k=1

bk2det(V j,Vk,E3, . . . ,En)

(1.26)
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Continuing in this fashion we get an expression of det(E1,E2, . . . ,En) as a linear
combination of the determinants det(V j,Vk, . . . ,Vz) where V j,Vk, . . . ,Vz is a per-
mutation of V1,V2, . . . ,Vn and therefore

det(E1,E2, . . . ,En) =
∑

permutations jk···z
(b j1bk2 · · ·bzn)det(V j,Vk, . . . ,Vz).

But for each permutation, either

det(V j,Vk, . . . ,Vz) = det(V1,V2, . . . ,Vn)

or
det(V j,Vk, . . . ,Vz) = −det(V1,V2, . . . ,Vn)

Therefore det(E1,E2, . . . ,En) is a multiple of det(V1,V2, . . . ,Vn). Since

det(E1,E2, . . . ,En) = 1

it follows that det(V1,V2, . . . ,Vn) is not zero. This proves property (vi). ��
We shall show that properties (i), (ii), and (iii) completely characterize the deter-

minant. First we derive from these three properties a formula that holds for every
function satisfying the properties. Then we show that a function defined by this
formula satisfies the three properties.

To use properties (i), (ii), and (iii) of det to devise a formula for the determinant,
we take an ordered list of n vectors V1,V2, . . . ,Vn in Rn. Denote the k-th component
of V j by vk j, ( j = 1,2, . . . ,n; k = 1,2, . . . ,n). We write each vector V j as a linear
combination of the unit vectors Ek:

V j =

n∑

k=1

vk jEk. (1.27)

Using the above expression for V1 we write

det(V1,V2, . . . ,Vn) = det

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑

k=1

vk1Ek,V2, . . . ,Vn

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Using multilinearity of the determinant we can rewrite the right side as

n∑

k=1

vk1det(Ek,V2, . . . ,Vn).

Next we use the expression (1.27) for V2 in each term of the sum above, and multi-
linearity to rewrite each term of this sum. We get the double sum

det(V1,V2, . . . ,Vn) =
n∑

k=1

n∑

�=1

vk1v�2det(Ek,E�,V3, . . . ,Vn).
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Proceeding in this manner we get the formula as an n-tuple sum

det(V1,V2, . . . ,Vn) =
n∑

k,�,...,z=1

(vk1v�2 · · ·vzn)det(Ek,E�, . . . ,Ez). (1.28)

Next we use properties (i), (ii), and (iii) to determine det(Ek,E�, . . . ,Ez).
According to property (ii) the determinant is zero when two of the vectors in the

list are equal. This shows that in formula (1.28) we can restrict the summation to the
case where k, �, . . . ,z is a permutation of 1,2, . . . ,n.

Next we define the signature of a permutation as follows. Denote by

p = p1p2 · · · pn
a permutation of 1,2, . . . ,n. That is,

p(1) = p1, p(2) = p2, . . . p(n) = pn.

Form the two products ∏

i< j

(xpi − xp j) (1.29)

and ∏

i< j

(xi− x j) (1.30)

Each factor in the product (1.29) is equal to one of the factors in the product (1.30)
or its negative. Therefore the two products are equal or are the negatives of each
other.

Definition 1.15. We define the signature of a permutation p of 1,2, . . . ,n to be
the number s(p) = 1 or −1, such that

∏

i< j

(xpi − xp j ) = s(p)
∏

i< j

(xi− x j). (1.31)

Signature s(p) has following properties:

(a) The signature of an interchange is −1.
(b) The signature of the composite of two permutations is the product of their signa-

tures:
s(pq) = s(p)s(q).

Proof. (a) When we interchange xk and xm, (k < m), for every � between k and m
both x� − xk and xm − x� change sign, an even number of sign changes. In addition
xm− xk changes sign, an odd total number of sign changes.

Property (b) follows directly from the definition (1.31), as we ask you to show in
Problem 1.75. ��
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Every permutation p can be obtained as a composite of interchanges. Let c(p) be
the number of interchanges. If follows from properties (a) and (b) that

s(p) = (−1)c(p).

Example 1.16. Let p = 312 be a permutation of 1,2,3, that is,

p1 = 3, p2 = 1, p3 = 2.

Two interchanges bring 312 into 123: one interchange takes 312 to 132, and a
second interchange takes 132 to 123. Therefore s(p) = 1. �

Example 1.17. One interchange takes 15342 to 12345, so s(15342) = −1. �
According to property (iv) a factor of −1 is introduced with each interchange of

vectors, and using (iii) we get

det(Ep1 , . . . ,Epn ) = (−1)c(p) det(E1, . . . ,En) = (−1)c(p) = s(p).

Set this result into formula (1.28) for the determinant. We have shown that if a
function satisfies the three properties (i), (ii), and (iii) then the value it assigns to
(V1, . . . ,Vn) is ∑

p

s(p)vp11vp22 · · ·vpnn

summed over all permutations p = p1p2 · · · pn of 1,2, . . . ,n. Therefore we make the
following definition.

Definition 1.16. Let V1, . . . ,Vn be vectors in Rn written as columns,

V1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v11
v21
...

vn1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v12
v22
...

vn2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . Vn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1n
v2n
...

vnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The determinant is defined as

det(V1,V2, . . . ,Vn) =
∑

p

s(p)vp11vp22 · · ·vpnn (1.32)

where the sum is over all permutations p = p1p2 · · · pn of 1,2, . . . ,n.

The 2×2 case. For n = 2 let p = 12 and q = 21 be the permutations of two numbers
1,2. No interchanges are needed for p, so the signature s(p) = 1. One interchange
takes 21 to 12 so s(q) = −1. For

V1 =

[
v11
v21

]

, V2 =

[
v12
v22

]
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the determinant is

det(V1,V2) = s(p)vp11vp22+ s(q)vq11vq22
= s(12)v11v22+ s(21)v21v12
= v11v22− v21v12

where the sum is over the two permutations of 1,2.

Example 1.18. det
([

2−2
]
,
[
5
1

])
= (2)(1)− (−2)(5) = 12. �

We verify now that the determinant as defined by formula (1.32) has the three
algebraic properties listed at the beginning of this section:

(i) Each term in the sum on the right in (1.32) is a multilinear function of the V j.
Therefore so is their sum.

(ii) In definition (1.32) interchange Vi and V j where i < j. We get

det(. . . ,V j, . . . ,Vi, . . .) =
∑

p

s(p)(· · ·vp ji · · ·vpi j · · · ). (1.33)

Let r be the interchange of i and j, and denote the permutation pr as q. Since the
factors vp ji and vpi j can be interchanged with no effect, we can rewrite (1.33) as a
sum over all permutations q:

det(. . . ,V j, . . . ,Vi, . . .) =
∑

q

s(p)(vq11vq22 · · ·vqnn) (1.34)

According to the product formula s(q) = s(pr) = s(p)s(r). The signature s(r) of an
interchange r is −1. Therefore s(q) = −s(p). Set this in formula (1.34); we get

det(. . . ,V j, . . . ,Vi, . . .) = −det(. . . ,Vi, . . . ,V j, . . .). (1.35)

In words: if two vectors in the list are interchanged, the value of det is multi-
plied by −1. It follows from (1.35) that if two of the vectors Vi and V j are equal,
det(V1, . . . ,Vn) = 0.

(iii) For V j = E j, ( j = 1,2, . . . ,n), the sum on the right side of formula (1.32) for
the determinant has only one nonzero term, corresponding to the trivial permutation
12 · · ·n, and that term is equal to 1. This shows that

det(E1,E2, . . . ,En) = 1.

This completes the proof that the determinant defined by formula (1.32) has the
three properties listed at the beginning of this section.

The components of n column vectors in R
n form a rectangular array of numbers

called a matrix. (See also Section 1.8.) We write

M = [V1 V2 · · · Vn] , detM = det(V1,V2, . . . ,Vn).
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We use Definition 1.16 to compute the determinant of M. For example, using the
vectors in Example 1.18,

det

[
2 5
−2 1

]

= (2)(1)− (−2)(5) = 12.

The 3×3 case. Let M =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. For n = 3 there are six permutations,

123, 132, 213, 231, 312, 321.

Using (1.32)

detM = s(123)m11m22m33+ s(132)m11m32m23+ s(213)m21m12m33

+ s(231)m21m32m13+ s(312)m31m12m23+ s(321)m31m22m13

= m11m22m33−m11m32m23−m21m12m33

+m21m32m13+m31m12m23−m31m22m13. (1.36)

This sum can be expressed in several ways; for example we can factor out the num-
bers of the first column, mj1, giving

detM = m11
(
m22m33−m32m23

)

−m21
(
m12m33−m32m13

)
+m31

(
m12m23−m22m13

)
. (1.37)

If we factor out the numbers of the first row, m1k, we get

detM = m11(m22m33−m32m23)+m12(−m21m33+m31m23)+m13(m21m32−m31m22)

and this is equal to

= m11det

[
m22 m23

m32 m33

]

−m12det

[
m21 m23

m31 m33

]

+m13det

[
m21 m22

m31 m32

]

.

Example 1.19.

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2
5 6 7
−1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0−1det

[
5 7
−1 2

]

+2det

[
5 6
−1 3

]

= 0− (10+7)+2(15+6) = 25.

�

Example 1.20. Let

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 d
0 b 0 0
a 0 0 0
0 0 c 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The determinant must be either abcd or −abcd, since the only nonzero term in
detM is the one containing m31m22m43m14 = abcd. In Problem 1.72 you find
that the signature of 3241 is +1. Therefore

detM = abcd.

�
Determinant and orientation.We turn now to the geometric meaning of the deter-
minant. We use the notion of determinant to define algebraically the orientation of
an ordered list of n linearly independent vectors in Rn.

Definition 1.17. Let V1,V2, . . . ,Vn be an ordered list of n linearly inde-
pendent vectors in R

n. The ordered list is called positively oriented if
det(V1,V2, . . . ,Vn) is positive, and negatively oriented if det(V1,V2, . . . ,Vn)
is negative. By property (vi) det(V1,V2, . . . ,Vn) � 0.

Note that by property (iii) of the determinant det(E1,E2, . . . ,En) = 1 and by prop-
erty (i) det is multilinear. Therefore

(a) the ordered list of vectors E1,E2, . . . ,En is positively oriented.
(b) the ordered list of vectors E1,E2, . . . ,En−1,−En is negatively oriented.

See Figures 1.18 and 1.19.

E3

E2

E
1

Fig. 1.18 E1,E2,E3 are positively oriented in R3.

An n-tuple U(t) =
(
u1(t),u2(t), . . . ,un(t)

)
of continuous functions ui from an inter-

val in R to R is called a continuous vector function in R
n. A deformation of an

ordered list of linearly independent vectors is an ordered list of continuous vec-
tor functions V1(t),V2(t), . . . ,Vn(t) in R

n such that for every t the vectors are lin-
early independent. The determinant of a deformation is nonzero for every t. Since
det
(
V1(t), . . . ,Vn(t)

)
is a sum of products of the component functions and each com-

ponent of V j(t) is a continuous function of t, det
(
V1(t), . . . ,Vn(t)

)
is continuous. It

follows from the Intermediate Value Theorem that the continuous function of one
variable,

det(V1(t),V2(t), . . . ,Vn(t)) � 0,
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has the same sign for all t. This shows that the ordered lists V1(t),V2(t), . . . ,Vn(t)
have the same orientation for all t.

E
1

E2

V1V2

E
1

−E
2

V1 V2

Fig. 1.19 Left: The ordered list V1,V2 is negatively oriented. Right: The ordered list V1,V2 is
positively oriented.

The following is the basic result about the geometric meaning of orientation.

Theorem 1.17.(a) Every positively oriented ordered list of n linearly
independent vectors V1,V2, . . . ,Vn in Rn can be deformed into the ordered
list of unit vectors E1,E2, . . . ,En.

(b) Every negatively oriented ordered list of vectors in R
n can be deformed

into the ordered list E1,E2, . . . ,−En.

Proof. We outline a proof by induction on n. See Figure 1.20.

(a) Suppose the vectors V1, . . . ,Vn are positively oriented. There is a rotation that
takes the vector Vn into pEn, p a positive number. This rotation carries the
vectors V j into vectors we denote as W j, ( j = 1,2, . . . ,n− 1). We follow this by
shrinking the n-th component of each of the vectors W j, j < n, to zero. This
amounts to adding a multiple of the n-th vector Wn = pEn to each W j, j < n,
which does not change the determinant of the resulting set of vectors. Therefore
the resulting vectors in the hyperplane xn = 0 are linearly independent.
Denote by Z j, j < n, the (n− 1)-dimensional vectors obtained by omitting the
n-th component of W j. Since the omitted components are zero, these are a set
of (n−1) linearly independent vectors with (n−1) components. The determinant
of the n vectors in their new position is equal to p times the (n− 1) by (n− 1)
determinant of the vectors Z1,Z2, . . . ,Zn−1. Since the determinant is nonzero
under a deformation, its sign doesn’t change. Since p is positive, it follows that
det(W1,W2, . . . ,Wn) is positive. By the induction hypothesis this list of (n− 1)
positively ordered vectors with (n − 1) coordinates can be deformed into the
ordered list E1,E2, . . . ,En−1. In one dimension a positively oriented vector is a
positive number, which can be deformed into the number 1.
This completes the outline of the proof that the positively oriented list of vectors
V1,V2, . . . ,Vn can be deformed into the list of vectors E1,E2, . . . ,En.
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(b) Analogously one shows that if the ordered list V1,V2, . . . ,Vn negatively oriented,
it can be deformed into the ordered list E1,E2, . . . ,−En.

��

3pE

E2
E

1

3pE

E2
E

1

V3

2W

V2
V1

1W

Z 1
Z2

Fig. 1.20 Notation in the proof of Theorem 1.17 for n = 3.

Problems

1.68. Evaluate the determinants

(a) det

[
1 0
0 1

]

(b) det

[
1 0
0 −1

]

(c) det

[
1 2
0 −1

]

(d) det

[
1 4
1 4

]

(e) det[U V], where the columns U and V are linearly dependent in R2.

1.69. Show det[U V] is a bilinear function of pairs of column vectors U, V in R2 by
verifying that:

(a) det[U+WV] = det[U V]+det[WV] and det[U V+W] = det[U V]+det[UW],
(b) det[cU V] = cdet[U V] and det[U cV] = cdet[U V].

1.70. Use bilinearity of the determinant function to show that each expression is
zero.

(a) det

[
5a b
5c d

]

−5det
[
a b
c d

]
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(b) det

[
x y− z
v w

]

−det
[
x y
v w

]

+det

[
x z
v 0

]

1.71. Evaluate the determinants.

(a) det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c) det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 −1 0
0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(d) det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 2
0 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(e) det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 3
0 2 0
1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1.72. Find the signature s(3241) from the equation

(x3− x2)(x3− x4)(x3− x1)(x2− x4)(x2− x1)(x4− x1)
= s(3241)(x1− x2)(x1− x3)(x1− x4)(x2− x3)(x2− x4)(x3− x4).

1.73. In the permutation 3241 there is an even number of cases where a larger num-
ber is to the left of a smaller one, 41, 21, 31, 32, and the signature is +1. (See
Problem 1.72.)

(a) Prove in general that the signature of a permutation is +1 if there is an even
number of such cases and is −1 if there is an odd number.

(b) Find s(1237456).
(c) Find s(1273456).

1.74. Evaluate the determinants.

(a) det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 2 0 · · · 0
0 0 3 · · · 0
...

. . .
...

0 0 0 · · · n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n 1 1 · · · 1
0 n−1 1 · · · 1
0 0 n−2 · · · 1
...

. . .
...

0 0 0 3 1
0 0 0 · · · 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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1.75. When p and q are permutations of 1,2,3, . . . ,n we write the composition q
followed by p as pq. Show that the signature of permutations has the property
s(pq) = s(p)s(q).

1.76. Use the result of Problem 1.75 to show that a permutation and its inverse have
the same signature.

1.77. Show that the orientation of the ordered list of vectors E1, E3, E2 in R
3, and

the signature s(132), are both negative.

1.78. Show that the orientation of the ordered list of vectors E3, E1, E2 in R
3, and

the signature s(312), are both positive.

1.7 Signed volume

We start by defining a simplex.

Definition 1.18. Let k ≤ n and let V1, . . . ,Vk be linearly independent vectors
in Rn. A k-simplex with vertices 0,V1, . . . ,Vk in Rn is the set of all points

X = c1V1+ c2V2+ · · ·+ ckVk where 0 ≤ ci and
k∑

i=1

ci ≤ 1.

We say the simplex is ordered if the order of the vertices is specified.

Example 1.21. The 2-simplex with vertices (0,0), (1,0), (0,1) is the triangular
region of R2 drawn in the left side of Figure 1.21. The 3-simplex with vertices
(0,0,0), (1,0,0), (0,1,0), (0,0,1) is the solid tetrahedron in R

3 shown in the
center of the figure. The 2-simplex with vertices (0,0,0), (0,1,0), (0,0,1) is
the triangular surface in R3 shown at the right of the figure. �

x

y

x

y

z z

x

y

1

1

1

1

1
1

1

Fig. 1.21 Left: A 2-simplex in R
2. Center: A 3-simplex in R

3. Right: A 2-simplex in R
3. See

Example 1.21.

For each j = 1, . . . ,k the j-face of the k-simplex is the ordered (k − 1)-
simplex whose vertices are the vectors 0,V1, . . . ,Vk omitting V j.
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Example 1.22. The 1-face of the ordered 3-simplex with vertices

(0,0,0), (1,0,0), (0,1,0), (0,0,1)

in Example 1.21 is the ordered 2-simplex with vertices

(0,0,0), (0,1,0), (0,0,1).

See Figure 1.21. �
We define the distance from a point V in R

n to the hyperplane spanned by n−1
linearly independent vectors as follows: By Theorem 1.14 there is a unit vector N
that is orthogonal to the hyperplane. Define the distance from V to the hyperplane
to be |V ·N|.

The volume of an n-simplex is defined to be the product of the (n−1)-dimensional
volume of the j-face times the distance from V j to the hyperplane spanned by the
Vi, (i � j) that contains the j-face, divided by n. As we shall see, this number is
the same for all j. To complete this definition we need the volume of the face. In
the case of a 3-simplex in R

3, the face is a triangular region that lies in a two-
dimensional plane. The volume of the face is then the area of that triangle. In higher
dimensions it is possible to introduce a coordinate system with n− 1 coordinates
in the hyperplane containing the face, so that the volume of a face can be defined
inductively by dimension.

Definition 1.19. The signed volume, denoted S (V1, . . . ,Vn), of the ordered
n-simplex with vertices 0,V1, . . . ,Vn is defined as the n-dimensional volume
of the simplex in case the ordered collection V1, . . . ,Vn is positively oriented,
and as minus the volume in case the ordered collectionV1, . . . ,Vn is negatively
oriented,

We shall derive a formula for the signed volume and show that it is a multilinear
function of V1, . . . ,Vn,

Let V1, . . . ,Vn be an ordered set of linearly independent vectors. We define the
signed distance s(V j) of a vector V j from the hyperplane spanned by the vectors
V1, . . . ,Vi, . . . ,Vn, (i � j) as follows:

(a) s(V j) is the distance ofV j from the hyperplane spanned by the vectorsVi, (i� j),
in case the n-simplex S (V1, . . . ,Vn) is positively oriented.

(b) s(V j) is −1 times the distance of V j from the hyperplane spanned by the vectors
Vi, (i � j), in case the n-simplex S (V1, . . . ,Vn) is negatively oriented.

(c) In case the vectors Vi are linearly dependent, we define s(V j) as zero.

In Problem 1.83 we ask you to verify that the function s(V) is a linear function
in each half-space outside the hyperplane. Let W be the reflection of V across the
hyperplane. It follows from the definition above of signed distance that s(W) =
−s(V). This shows that s(V) is a linear function in the whole space.
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The signed volume of the n-simplex is equal to the product of s(Vn) times the
(n − 1)-dimensional volume of the face with vertices 0,V1,V2, . . . ,Vn−1. By the
induction hypothesis the (n−1)-volume of this face is a multilinear function of the
variables Vi, (i < n). This proves that the signed volume S (V1,V2, . . . ,Vn) is a
multilinear function. That is property (i) of the determinant as defined in Section 1.6.

If two of the V j are the same, the volume is zero. That is property (ii) of the
determinant.

The volume of the simplex whose vertices are the unit vectors E1,E2, . . . ,En is
1
n! . This shows that

n!S (V1,V2, . . . ,Vn)

has the property (iii) of the determinant. We have seen that the three properties
characterize the determinant. Therefore it follows that n!S (V1,V2, . . . ,Vn) is the
determinant. Dividing by n! we get the formula for the signed volume of an ordered
simplex:

S (V1,V2, . . . ,Vn) =
1
n!

det(V1,V2, . . . ,Vn).

column 2

y

z

x

column 3

column 1

Fig. 1.22 The tetrahedron in Example 1.23.

Example 1.23. The tetrahedron with ordered vertices (0,0,0), (1,1,3), (2,4,1),
(5,2,2) (see Figure 1.22) has signed volume

1
3! det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5
1 4 2
3 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1

3!
(
1
(
4(2)−1(2))−2(1(2)−3(2))+5(1(1)−3(4)))

= 6+8−55
6 = − 41

6 .

�
The parallelopiped in Rn determined by vectors V1, . . . ,Vn is the set of points

c1V1+ · · ·+ cnVn, 0 ≤ ci ≤ 1.
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The signed volume of the parallelopiped determined by V1, . . . ,Vn is n! times the
signed volume of the n-simplex and is equal to

det(V1, . . . ,Vn).

Example 1.24. The signed volume of the parallelopiped determined by ver-
tices (1,1,3), (2,4,1), (5,2,2) is

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5
1 4 2
3 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −41.

See Example 1.23 and Figure 1.23. �

y

z

x

Fig. 1.23 The parallelopiped in Example 1.24. Compare the darkened vertices with Figure 1.22.

Problems

1.79. Justify the following items to prove that the area of the triangle with vertices
0, U = (u1,u2) and V = (v1,v2) is 1

2 |u1v2−u2v1|. (See Figure 1.24.)
(a) The area of the triangle is 1

2 ‖U‖
(‖V‖sinθ).

(b) sinθ =
√

1−
(

U·V
‖U‖‖V‖

)2
.

(c) The area is equal to 1
2

√‖U‖2‖V‖2− (U ·V)2.
(d) The expression ‖U‖2‖V‖2− (U ·V)2 is equal to the perfect square (u1v2−u2v1)2.
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U

0

V

θ

Fig. 1.24 The triangle in Problem 1.79.

1.80. Show that the signed area of the ordered triangle with vertices 0, U = (u1,u2)
and V = (v1,v2) is 1

2 (u1v2−u2v1). (See Figure 1.24 and Problem 1.79.)

1.81. Find the area of the parallelogram with vertices (0,0), (1,3), (2,1), and (3,4).
(See Problem 1.79.)

1.82. Draw the ordered tetrahedra (ordered simplices in R3) with the following ver-
tices and find their signed volume.

(a) 0, U = (2,1,0), V = (1,2,0) and W = (0,0,7).
(b) 0, U = (2,1,0), V = (1,2,0) and W = (7,7,7).
(c) 0, U = (2,1,0), W = (7,7,7) and V = (1,2,0).

V

0
s(V)

V1

Fig. 1.25 Signed distance s(V) for positively oriented vectors V1,V. See Problem 1.83.

1.83. Let V1 � 0, V and W be vectors in R
2 with V1,V and V1,W positively ori-

ented. See Figure 1.25. Let s(V) be the distance from V to the line containing V1.
Use a sketch to illustrate the following.

(a) s(cV) = c s(V) for all numbers c ≥ 0,
(b) s(V+W) = s(V)+ s(W).

1.8 Linear functions and their representation by matrices

The notion of linear function is basic.
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Definition 1.20. A function F from R
n to R

k is called linear when it has the
following properties:

(a) For all numbers c and vectors V in Rn, F(cV) = cF(V).
(b) For all vectors V and W in Rn, F(V+W) = F(V)+F(W).

Combining properties (a) and (b) we deduce that for all vectors V1,V2, . . . ,V�
and numbers c1,c2, . . . ,c�

F(c1V1+ c2V2+ · · ·+ c�V�) = c1F(V1)+ c2F(V2)+ · · ·+ c�F(V�). (1.38)

We describe now all linear functions from R
n to Rk.

We express vector V = (v1, . . . ,vn) as a linear combination of the standard basis
vectors E1, . . . ,En

V = v1E1+ v2E2+ · · ·+ vnEn.

Using equation (1.38) we get

F(V) = v1F(E1)+ v2F(E2)+ · · ·+ vnF(En). (1.39)

This shows that the linear function F is determined by the vectors F(E1), . . . ,F(En).
Next we use formula (1.39) to characterize all linear functions.

Choose vectors M1,M2, . . . ,Mn in Rk. We define the function F by

F(V) = v1M1+ v2M2+ · · ·+ vnMn (1.40)

for every V = (v1,v2, . . . ,vn) in R
n. It is easy to verify, and we ask you to show in

Problem 1.87 that the function F defined by formula (1.40) is linear. According to
(1.39) all linear functions are of this form. So we have proved the following theorem.

Theorem 1.18. A function F from R
n to R

k is linear if and only if there is a
list of vectors M1, . . . ,Mn in Rk so that for every V = (v1, . . . ,vn) in Rn

F(V) = v1M1+ v2M2+ · · ·+ vnMn.

Matrix notation. If F is a linear function denote the components of the vectors Mi

asm1i,m2i, . . . ,mki, (i= 1,2, . . . ,n). We arrange these numbers in a rectangular array:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 · · · m1n

m21 m22 · · · m2n
...
... · · · ...

mk1 mk2 · · · mkn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.41)

The j-th column consists of the components of the vector M j.
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Definition 1.21. A rectangular array of numbersM in (1.41), with k rows and
n columns is called a k by n (or k×n) matrix. The number in the i-th row and
j-th column is denoted as mi j.

Definition 1.22. The product MV of a k by n matrix M and a column vector
V whose components are v1,v2, . . . ,vn, is the column vector whose i-th com-
ponent is

mi1v1+mi2v2+ · · ·+minvn (i = 1,2, . . . ,k)

In words: the i-th component of MV is the dot product of the i-th row of the
matrixM and the vector V.

Example 1.25. Here are three examples:

[
1 2
3 4

] [−1
1

]

=

[
1
1

]

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
4 5 6
7 8 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
3
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4
2 1
−3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[−1
1

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
−1
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

�
Matrices give us an alternative way to represent linear functions.

Theorem 1.19. Every linear function F from R
n to Rk can be written in matrix

form
F(V) =MV

for some k×n matrixM.

Linear functions can be multiplied by a number, added and composed, and the
result is a linear function; we formulate these operations as an “algebra” of linear
functions.

(i) For a linear function F from R
n to Rk and a number c the product cF is defined

by
(cF)(V) = cF(V).

(ii) For a pair of linear functions F andG both mapping Rn to Rk, their sum F+G
is defined by

(F+G)(V) = F(V)+G(V).

(iii) Denote by F a linear function from R
n to Rk and by G a linear function from

R
k to Rm. Their composition is defined by

G◦F(V) =G(F(V)).
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It is a function from R
n to Rm.

We ask you in Problem 1.90 to verify that constant multiples, sums, and compos-
ites of linear functions are linear.

Since linear functions are represented by matrices, these operations can be
expressed as an algebra of matrices:

(i)’ For a matrixM and number c, cM is defined to be the matrix whose elements
are c times the elements of M.

(cM)i j = cmi j.

(ii)’ For a pair of k by n matrices M and N, their sum M+N is defined to be the
k by n matrix whose elements are the sums of the elements ofM and N:

mi j+ni j.

(iii)’ For a k by n matrix M and a m by k matrix N the matrix product NM is an
m by n matrix whose i j-th element is the sum

k∑

h=1

nihmh j.

One can think of this sum as the dot product of the i-th row of the matrix N and j-th
column of the matrixM.

Formulas (i)’ and (ii)’ clearly express rules (i) and (ii) for linear functions. We
ask you in Problem 1.91 to verify that formula (iii)’ expresses rule (iii).

Example 1.26. Here are some examples of matrix products:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
4 5 6
7 8 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
2 −1
3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 0
32 −3
50 −6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[
1 3
4 5

] [
2 1
−1 3

]

=

[−1 10
3 19

]

.

�
Matrix multiplication is not commutative; that is, KL and LK are in general not

equal.

Example 1.27. Let

K =
[
1 2
3 4

]

, L =
[

1 −1
−3 4

]

.

then

KL=
[
1 2
3 4

] [
1 −1
−3 4

]

=

[−5 7
−9 13

]

, LK=
[

1 −1
−3 4

] [
1 2
3 4

]

=

[−2 −2
9 10

]

.

�
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If K and L are matrices, it is possible that one of the two products KL and LK is
defined and the other not defined.

We turn now to square matrices; they represent linear functions from R
n to R

n.
Denote by In the n× n matrix whose diagonal elements are 1 and off-diagonal ele-
ments are zero. For n = 3

I3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In is called the n×n identity matrix. Multiplication by In is the identity function:

InV = V

for every vector V in Rn.
The basic result about square matrices is the following.

Theorem 1.20. Let M be an n× n matrix, and let U, V and W be vectors in
R
n.

(a) If MV = 0 only for V = 0, then every vector W can be represented as
W =MU for some U.

(b) If every vectorW can be represented asMU for some U thenMV = 0 only
for V = 0.

We say that a function F is one to one if F(U) = F(V) only when U = V. Before
presenting the proof of Theorem 1.20 we draw some of its consequences. In case (a)
the function F defined by F(V) =MV is one to one. For if

F(V) = F(U),

then by linearity F(V−U) = F(V)−F(U) = 0. Since the only vector mapped into
zero by multiplication by M is the zero vector, it follows that V−U = 0 and so
V = U. Therefore every vector W can be represented as W =MU = F(U) for some
U, and U is uniquely determined because F is one to one. That is, F has an inverse
function that we denote F−1.

We show now that F−1 is linear. Let F(U) =W and F(V) = Z. Then by linearity

F(U+V) = F(U)+F(V) =W+Z.

By definition of inverse

U = F−1(W), V = F−1(Z) and U+V = F−1(W+Z).

Therefore
F−1(W)+F−1(Z) = F−1(W+Z).

One can verify similarly that
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F−1(cW) = cF−1(W).

According to Theorem 1.19 the inverse function F−1 can be represented by a
matrix. We make the following definition.

Definition 1.23. Let M be a square matrix, and denote the corresponding lin-
ear function from R

n to Rn as F:

F(V) =MV.

If F has an inverse function F−1 then we say M is invertible and denote by

M−1

the matrix that represents F−1. We call M−1 the inverse of the matrix M.

We present now a proof of Theorem 1.20.

Proof. (a) Take the case that MV = 0 only for the vector V = 0. We show that the
n vectors ME1,ME2, . . . ,MEn are linearly independent. For suppose there were a
nontrivial linear relation

c1ME1+ c2ME2+ · · ·+ cnMEn = 0.

By properties of matrices (i)’–(iii)’ we can write this relation as

M(c1E1+ c2E2+ · · ·+ cnEn) = 0.

Since MV = 0 only for V = 0, it follows that c1 = c2 = · · · = cn = 0. This proves the
linear independence of the vectors ME j. According to Theorem 1.9, every vector
W can be represented uniquely as

W = a1ME1+a2ME2+ · · ·+anMEn.

By linearity we can write this relation as

W =M(a1E1+a2E2+ · · ·+anEn).

This proves that every vector W can be represented as MU.
(b) Take the case that every vector can be represented as MU. Then the unit

vectors Ei can be represented as

Ei =MUi. (i = 1,2, . . . ,n)

By linearity, for all numbers c1,c2, . . . ,cn we have

M(c1U1+ c2U2+ · · ·+ cnUn) = c1MU1+ c2MU2+ · · ·+ cnMUn
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= c1E1+ c2E2+ · · ·+ cnEn. (1.42)

The right side is nonzero unless all the numbers ci are zero. Therefore so is the left
side. It follows that M(c1U1 + c2U2 + · · ·+ cnUn) is nonzero unless all numbers ci
are zero. Consequently c1U1+c2U2+ · · ·+cnUn is nonzero unless all the numbers ci
are zero. This shows that the vectors Ui are linearly independent. By Theorem 1.9,
every vector W is some linear combination c1U1 + c2U2 + · · ·+ cnUn of the linearly
independent vectors U1, . . . ,Un. It follows from equation (1.42) that MW = 0 only
if all the numbers ci are zero. But then W = 0. This proves part (b). ��

In Problems 1.92, 1.93, and 1.94 we ask you to justify some additional results
regarding matrices and determinants:

(a) For square matrices A and B of the same size,

det(AB) = det(A)det(B).

(b) If the n×n matrix A has an inverse matrix A−1, then

AA−1 = In = A−1A

and
det(A−1) = (det(A))−1.

Problems

1.84. Evaluate the products.

(a)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 2 0
0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b)

[
3 −4
4 3

] [
6
6

]

(c)

[
cosθ −sinθ
sinθ cosθ

] [
1
0

]

(d)

[
cosθ −sinθ
sinθ cosθ

]2
=

[
cosθ −sinθ
sinθ cosθ

] [
cosθ −sinθ
sinθ cosθ

]

1.85. Evaluate the products, where

X =
[
1
3

]

, Y =
[−3

1

]

, A =
[

0 1
−1 0

]

, B =
[
b11 b12
b21 b22

]

.

(a) AX (b) X ·Y (c) Y · (AX) (d) Ei ·BE j, i, j = 1,2

1.86. Evaluate the products, where
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X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 0 0
0 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(a) AX (b) X ·Y (c) Y · (AX) (d) Ei ·BE j, i, j = 1,2,3

1.87. Show that the function defined in equation (1.40) is linear.

1.88. Express these formulas as a product AX of a matrix A and a column vector X.

(a)

[
x1+ x2
x1− x2

]

where X is in R2

(b) x2−4x3, where X is in R3

(c) x2−4x3, where X is in R4

(d)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2−4x3
x1+ x4

x1+ x2+ x3+ x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
where X is in R4.

1.89. Express these formulas as X · (AY), where X and Y are column vectors of R2

and A is a matrix.

(a) x1y1+2x2y2
(b) x1y2− x2y1
(c) x1(y1+3y2)+ x2(y1− y2)
1.90. Let F andG be linear functions from R

n to Rm, letH be a linear function from
R
m to Rk, and let c be a number. Show the following.

(a) F+G is a linear function.
(b) cF is a linear function.
(c) H◦F is a linear function.

1.91. Let N be an m by k matrix, M a k by n matrix, and X in R
n. Show that the

product N(MX) can be found by multiplying X by the matrix with i j entry

k∑

h=1

nihmh j,

the dot product of row i of N with column j of M. That is,

N(MX) = (NM)X.

1.92. Assume A is an n×n matrix with detA � 0, and consider the function of n×n
matrices B defined by

f (B) =
det(AB)
detA

.

Show that f satisfies the three basic properties that characterize the determinant.
Thus by uniqueness f (B) must be equal to detB. Conclude that

det(AB) = det(A)det(B).
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1.93. Assume A and B are n×n matrices with detA = 0. Show the following:

(a) There is a vector W such that for all V, AV �W. (See Theorem 1.20.)
(b) There is a vector W such that for all U, ABU �W.
(c) det(AB) = 0.

Therefore det(AB) = det(A)det(B) holds when detA = 0.

1.94. Prove the following.

(a) If the n×n matrix A has an inverse, then AA−1 = A−1A = In.
(b) Use the formula det(AB) = det(A)det(B) to prove that det(A−1) = (detA)−1 for

every invertible matrix A.

1.9 Geometric applications

Lines, planes, and hyperplanes. We have noted that for two vectors U and V in
R
2, and all numbers c, the points

U+ cV

lie along a line through U and parallel to V. If U and V are vectors in R
n, the same

expression describes a line in Rn. See Figure 1.26 for the case n = 3.

y

z

U
V1

V2

U + sV1 + tV2

x

sV1

x

y

z

U
V

U + cV

U

N

X

x

z

y

tV2

Fig. 1.26 Left: A line in R
3. Center: A two-dimensional plane in R

3. Right: A plane specified as
in Example 1.28.

Let U, V1, and V2 be three vectors in R3, V1 and V2 linearly independent, and let
s and t be numbers. For each of the points U+ sV1 on the line though U parallel to
V1, there is a line U+ sV1+ tV2 through U+ sV1 parallel to V2. The set of points

U+ sV1+ tV2

is a plane in R
3. The same expression represents a two-dimensional plane in any

number of dimensions greater than three.
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In the case of R3 there is an alternate description for a plane, given by specifying
a normal vector N perpendicular to the plane.

Example 1.28. Let U = (1,2,3) and N = (2,6,−3), and consider the plane con-
taining U and perpendicular to N. That is the set of points X = (x,y,z) that
satisfy

N · (X−U) = 0.
For U and N specified above this equation can be written as

2(x−1)+6(y−2)−3(z−3) = 0
or as z = − 5

3 +
2
3 x + 2y. See Figure 1.26. Since N · (U − U) = N · 0 = 0, U

satisfies the equation. If X and Y satisfy the equation, then the vector X−Y is
orthogonal to N,

N · (X−Y) = N · (X−U− (Y−U)) = N · (X−U)−N · (Y−U) = 0−0 = 0.

�
When U and V1,V2, . . . ,Vn−1 are vectors in R

n and the V j are linearly indepen-
dent, we have called the set of all vectors of the form

U+ t1V1+ · · ·+ tn−1Vn−1

a hyperplane. A hyperplane in R
n can also be defined, given a point U in the hyper-

plane and a nonzero vector N orthogonal to the plane, by the equation

N · (X−U) = 0.
The distance from a point V in R

n to that hyperplane is ‖V−U‖cosθ where θ is the
angle between N and V−U. (See Figure 1.27.) In the case where N is a unit vector
that is

distance = N · (V−U), (‖N‖ = 1). (1.43)

V

θ

N

U

V−U

Fig. 1.27 Distance from point to hyperplane in equation (1.43).

Cross product in R
3. For a pair of vectors V and W in R

3 we introduce the cross
product, denoted as V×W. For all column vectors U, V, and W in R3, the array
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[
U V W

]

is a 3×3 matrix. For given vectors V and W let

�(U) = det
[
U V W

]
. (1.44)

Since the determinant is a multilinear function of its columns, �(U) is a linear func-
tion of U. According to the representation theorem for linear functions, �(U) is of
the form

�(U) = U ·Z (1.45)

Z some vector. Since the linear function �(U) is determined by the vectors V and
W, so is the vector Z. We call this vector Z the cross product of V and W,

Z = V×W. (1.46)

Combining (1.44), (1.45), and (1.46), we get that for all vectors U, V, and W

det
[
U VW

]
= U · (V×W). (1.47)

Since the determinant on the left side of (1.47) is a multilinear function of U, V, and
W, so is the right side. It follows that

The cross product V×W as defined by (1.47) is a bilinear function of V and W.
We ask you in Problem 1.103 to derive from (1.47) the following formula for the

cross product.

Definition 1.24. The cross product of two vectors

V = (v1,v2,v3), W = (w1,w2,w3)

in R3 is defined as

V×W = (v2w3− v3w2,−(v1w3− v3w1),v1w2− v2w1
)
.

Example 1.29. Let i = (1,0,0), j = (0,1,0), and k = (0,0,1). Then

i× j = k, j×k = i, k× i = j.
�

The formula for V×W in Definition 1.24 can be found by formally computing
det[U,V,W] where U is the symbolic vector [i, j,k].

The cross product has the following properties.



1.9 Geometric applications 59

Theorem 1.21.(a) V×W is orthogonal to V and toW,

V · (V×W) = 0, W · (V×W) = 0.
(b) The signed volume of the ordered tetrahedron with vertices 0,U,V,W is

1
6U ·
(
V×W).

(c) W×V = −V×W

Proof. (a) If we set U = V or U = W in (1.47), the left side is zero, because
the determinant of a matrix that has two equal columns is zero. Therefore the right
side is zero too.

(b) We have shown in Section 1.7 that 1
6det
[
U V W

]
is the signed volume of the

ordered tetrahedron 0UVW. Since det
[
U V W

]
= U · (V×W), part (b) follows.

(c) If we interchange V and W on the left side of (1.47) the sign changes by
properties of determinant. Part (c) follows from this observation. ��

We can give now four related uses for cross products and determinant. See
Figure 1.28. Let U, V, and W be vectors in R3.

• The volume of the parallelopiped determined by U,V,W is |U · (V×W)|.
• The area of the parallelogram determined by linearly independent vectors V and

W is ‖V×W‖. To see this let U be
V×W
‖V×W‖ . The volume of the parallelopiped

determined by U,V,W is ‖V×W‖ and its height is 1. Therefore the area of its
base is ‖V×W‖.

• The area of the triangle with vertices 0, V, and W is 1
2‖V×W‖.• Imagine that at each point in space the velocity of a fluid is U = (u1,u2,u3). Con-

sider a parallelogram determined by vectors V = (v1,v2,v3) andW = (w1,w2,w3)
as shown in Figure 1.28. Then U · (V×W) is the volume of fluid that flows across
the parallelogram in one time unit. This is called the volumetric flow rate or flux.
Define a unit vector orthogonal to the parallelogram as N = V×W

‖V×W‖ ; we get

flux = U · (V×W) = U ·N‖V×W‖,

Example 1.30. Find a plane containing three noncollinear points U,V, andW.

(a) We can express the plane as the set of all points

X = U+ s(V−U)+ t(W−U)

as s and t vary over all real numbers.
(b) A normal vector to the plane isN= (V−U)×(W−U), so we get an equation

for the plane,
N · (X−U) = 0.

�
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(1)

V

W

W

V
V

U

U
W

Fig. 1.28 One volume, two areas, and a flux, all based on the cross product.

Example 1.31. Let U = (1,1,−2) [length/time] be the velocity of a fluid flow.
Find the volumetric flow rate across the oriented triangles 0VW, where V and
W have length dimensions.

(a) V = (2,2,−4),W = (3,2,1)
(b) V = (1,0,0),W = (3,2,1)

The flow rate through the triangle is half that through the parallelogram, so it
is 1

2U · (V×W). In (a), V is parallel to U, and

1
2U · (V×W) = 1

2 det
[
U 2UW

]
= 0.

No fluid flows across the triangle because the fluid velocity is parallel to it. In
(b) the flow rate is

1
2U · (V×W) = 1

2 det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3
1 0 2
−2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. = − 5

2 .

The minus sign means that the angle between U and V×W is greater than
π/2. �

We ask you in Problem 1.106 to explore other properties of the cross product.

Problems

1.95. Find equations in the form ax+by+ cz = d for the following planes in R3.

(a) The plane through the origin with normal (1,0,0).
(b) The plane through (0,0,0), (0,1,1), and (−3,0,0).
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(c) The plane containing the point (1,1,1) and parallel to the plane with equation
x−3y+5z = 60.

1.96. Which of these points are on the line 2x1+ x2 = 0 in R2?
(a) (0,0) (b) (−1,2) (c) cX if X is. (d) X+Y if X and Y are.

1.97. Which of these points are on the line 10x1+5x2 = 0 in R2?
(a) (0,0) (b) (−1,2) (c) cX if X is. (d) X+Y if X and Y are.

1.98. Which of these points are on the line 2x1+ x2 = 100 in R2?
(a) (0,0) (b) (50,0) (c) (50,0)+Y if 2y1+ y2 = 0 (d) cX if X is.

1.99. Which of these points are on the plane in R3 given by 20x1+10x2−50x3 = 0?
(a) (0,0,0)
(b) (0,5,1)
(c) (−1,2,0)
(d) cX if X is.
(e) X+Y if X and Y are.

1.100. Which of these points are on the plane in R3 given by 2x1+ x2−5x3 = 100?
(a) (0,0,0)
(b) (50,0,0)
(c) (0,100,0)
(d) (0,100,0)+Y if 2y1+ y2−5y3 = 0.
(e) X+Y if X and Y are.

1.101. Let U = 0, V1 = (0,1,1), and V2 = (−3,0,0).
(a) Find an equation of the line through U and V1 in the form X(s) = U+ sV1.
(b) Find an equation of the line through U and V2 in the form X(t) = U+ tV2.
(c) Find an equation of the plane through U, V1, and V2 in the form

X(s, t) = U+ sV1+ tV2.

1.102. Which of these points are on the hyperplane inR4 where x1+ x2+ x3+ x4 = 0?
(a)
( 1
5 ,− 1

5 ,
1
5 ,− 1

5
)

(b) (a,a,a,−3a) (c) (−1,1) (d) cX ifX is. (e) (1,−3,2)
1.103. Let

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

w3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Write expressions a, b, and c in terms of the components of V and W so that

det
[
U V W

]
= au1+bu2+ cu3.

Compare your results to formula (1.47), det
[
UVW

]
=U ·V×W, to derive a formula

for V×W.
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1.104. Evaluate the cross products using the formula

V×W = (v2w3− v3w2,v3w1− v1w3,v1w2− v2w1).

(a) (1,0,0)× (0,1,0)
(b) (0,1,0)× (1,0,0)
(c) (0,0,1)× (a,b,c)
1.105. Using i× j = k, j× k = i, k× i = j, and the distributive and anticommutative
lawsU× (V+W) = U×V+U×W, V×W = −W×V, evaluate the following cross
products.

(a) (1,0,0)× (0,1,0)
(b) j× (i+k)
(c) (2i+3k)× (ai+bj+ ck)
1.106. Verify the following properties of the cross product in R3.

(a) the product is anticommutative: U×V = −V×U
(b) the “back-cab” rule: A× (B×C) = B(A ·C)−C(A ·B),
(c) the product is not associative: A× (B×C) � (A×B)×C. In fact there is a product

rule similar to the product rule for derivatives:

A× (B×C) = (A×B)×C+B× (A×C).
(d) As a function of V, the product U×V is linear, so can be written as U×V =MV

for some matrix M. Find M.
(e) ‖U×V‖2+ (U ·V)2 = ‖U‖2‖V‖2.
(f) Use part (e) and U ·V = ‖U‖‖V‖cosθ, where θ is the angle between the vectors,

to show that ‖U×V‖ = ‖U‖‖V‖sinθ.
1.107. Find the volumetric flow rate U · (V×W) of a fluid of velocity U through
the parallelogram determined by V andW. Sketch the parallelogram, and the paral-
lelopiped determined by U,V, and W.

(a) U = (2,0,0), V = (0,2,0), W = (0,0,7).
(b) U = (−2,0,0), V = (0,2,0), W = (0,0,7).
(c) U = (2,1,0), V = (1,2,0), W = (7,7,7).



Chapter 2
Functions

Abstract The concept of function is central to mathematics. In single variable cal-
culus we studied functions that assign to each number in their domain a number. In
multivariable calculus we study functions that assign to each vector with n compo-
nents in their domain a vector with m components.

2.1 Functions of several variables

We use the notation F : D ⊂ R
n → R

m for a function F that assigns a vector F(X)
in R

m to each vector X in a subset D of Rn, and say that F is a function from R
n to

R
m. When the domain D of a function F of n variables is not specified we assume,

as we have with functions of a single variable, that the domain is the largest set for
which the definition makes sense. We call the set of outputs F(D) the range of F or
the image of D. We call F one to one if F(U) = F(V) only when U = V. We say F
maps D onto a set B in Rm if F(D) = B. We usually denote a function whose output
is a vector by a bold capital letter. A function whose output is a number is called
a scalar valued, or real valued, function and we usually denote it by a lower case
letter.

If f and F are functions then f (X) and F(X) are values assigned to X. It is some-
times convenient to indicate names of domain and range variables by speaking of “a
function” r = f (θ), U = F(X), V = (u(x,y, t),v(x,y, t)), and so on.

Definition 2.1. A function F : D ⊂ R
n → R

m assigns a vector F(X) in R
m to

each X in D, denoted

F(X) = (f1(X), f2(X), . . . , fm(X)).

The function fj is called the j-th component function of F.

Next we look at some examples of functions.

c© Springer International Publishing AG 2017
P. D. Lax and M. S. Terrell, Multivariable Calculus with Applications,
Undergraduate Texts in Mathematics, https://doi.org/10.1007/978-3-319-74073-7 2
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Definition 2.2. A function that assigns the same vectorC in Rm to each vector
X in Rn is called a constant function.

Example 2.1. The functions f (x,y) = 7 and G(x,y) = (8,3,2) are examples of
constant functions. f is a constant function from R

2 to R, and G is a constant
function from R

2 to R3. �

Linear functions In Chapter 1 we defined linear functions from R
n to R

m. We
review that definition and Theorem 1.19 about representing linear functions.

Definition 2.3. A function L from R
n to Rm is linear if

aL(U) = L(aU), and L(U+V) = L(U)+L(V) (2.1)

for all numbers a and all vectors U and V in Rn.

Example 2.2. Is L(x,y) = (2x−3y,x,5y) a linear function from R
2 to R3? Let’s

check to see whether (2.1) holds.
Let a be a number, and let (x,y) and (u,v) be vectors in R2.

aL(x,y) = a(2x−3y,x,5y) = (2ax−3ay,ax,5ay) = L(ax,ay) = L(a(x,y)).
Also,

L(x,y)+L(u,v) = (2x−3y,x,5y)+ (2u−3v,u,5v)
= (2(x+u)−3(y+ v),x+u,5(y+ v)) = L(x+u,y+ v).

So L is linear. �
In Problem 2.4 we ask you to show that a constant function F from R

n to R
m is

linear if and only if F(x1,x2, . . . ,xn) = 0.
Recall that according to Theorem 1.10 every linear function � from R

n to R is of
the form

�(x1,x2, . . . ,xn) = c1x1+ c2x2+ c3x3+ . . .+ cnxn,

which we can write as
�(X) = C ·X,

for some C = (c1,c2, . . . ,cn) in Rn.
Let’s look again at why a linear functionL fromR

n toRm can be represented using
matrix multiplication. Let �k be the k-th component function of L, k = 1,2, . . . ,m.
Since L is linear it follows that each component �k (X) is a linear function. So by
Theorem 1.10 there is a vector Ck in R

n so that �k (X) = Ck ·X. Denote the vectors
Ck = (ck1,ck2, ...ckn) as row vectors and denote X and L(X) as column vectors. Let
C be the matrix whose k-th row is Ck . The relations �k (X) = Ck ·X, k = 1,2, . . . ,m
can be expressed as the product of the matrix C and the vector X:

http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
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L(X) = CX.

Theorem 2.1. Every linear function L from R
n to Rm can be written in matrix

form

L(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1n
c21 c22 · · · c2n
...
... · · · ...

cm1 cm2 · · · cmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= CX. (2.2)

C is called the matrix of L or the matrix that represents L. (See also Theo-
rem 1.19.)

We use the following definition to quantify the size of a matrix.

Definition 2.4. For an m×n matrix C = [cij], the norm ‖C‖ of C is defined by

‖C‖ =
√√√ m∑

i=1

n∑

j=1

c2ij. (2.3)

There is an important relation between the norms of X, CX, and C.

Theorem 2.2. Let C be an m×n matrix. Then
‖CX‖ ≤ ‖C‖‖X‖

for every vector X in Rn.

Proof. The k-th component of CX is the dot product of the k-th row of C,

Ck = (ck1,ck2, . . . ,ckn)

with X = (x1,x2, . . . ,xn). By the definition of norm,

‖CX‖ =
√

(C1 ·X)2+ (C2 ·X)2+ · · ·+ (Cm ·X)2.
According to the Cauchy–Schwarz inequality, Theorem 1.12, applied to each com-
ponent this is

≤
√
‖C1‖2‖X‖2+ ‖C2‖2‖X‖2+ · · ·+ ‖Cm‖2‖X‖2

= ‖X‖
√
‖C1‖2+ ‖C2‖2+ · · ·+ ‖Cm‖2 = ‖X‖

√√√ m∑

i=1

n∑

j=1

c2ij = ‖C‖‖X‖. �

http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
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Combining Theorems 2.1 and 2.2 we see that for every linear function L from
R
n to Rm

‖LX‖ ≤ ‖C‖‖X‖.
That is, the norm of the output of a linear function is not greater than ‖C‖ times the
norm of the input.

Functions from R
n to R Next we look at some examples of functions from R

n to R.

Example 2.3. The area a of a rectangle that has length x, width y is given by
a(x,y) = xy. The domain of a is the set D of all ordered pairs (x,y) with x > 0
and y > 0, a :D ⊂R2→R. Notice that even though the rule for a makes sense
for all ordered pairs (x,y), we restricted the domain based on the context of
the problem. �

Example 2.4. The volume v of a rectangular box that has length x, width y,
and height z is given by the function v(x,y,z) = xyz. The domain of v, D, is
the set of all ordered triples (x,y,z) with x > 0, y > 0, and z > 0. The function
v : D ⊂ R3→ R. �

Example 2.5. Let g(x,y) =
√
x2+ y2, g : R2→ R. g(x,y) is the norm of (x,y),

g(x,y) = ‖(x,y)‖. �

Visualizing functions; graphs of functions from R
2 to R. In single variable cal-

culus we visualized a function f by sketching its graph, the set of all points (x, f (x)).
For a function from R

2 to R, the graph of f is the set of ordered triples (x,y, f (x,y)),
and often looks like a surface in (x,y,z) space, as in Figure 2.1.

(x,y,f(x,y))

(x,y)
y

z

x

Fig. 2.1 The graph of a function f : R2→ R is a subset of R3.

Next we sketch the graph of a few functions from R
2 to R.

Example 2.6. Figure 2.2 shows the graph of the constant function f (x,y) = 7.
�

Example 2.7. To sketch the graph of f (x,y) = x2+ y2 we notice that the points
in the domain where f (x,y) = c, c ≥ 0, lie on a circle of radius

√
c. The circle

of radius zero is one point. On the left side of Figure 2.3. we sketched the
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Fig. 2.2 The graph of the constant function in Example 2.6.

points in the domain satisfying x2 + y2 = c for c = 0,1,4,9. On the right hand
side of Figure 2.3. we sketched the corresponding points on the graph of f . �

Definition 2.5. Let f :D ⊂ Rn→ R be a real valued function, and c a number.
The set of all points (x1,x2, . . . ,xn) in the domain D where f (x1,x2, . . . ,xn) = c
is called the c level set of f .

For functions of two variables we can draw level sets in the domain and plot
corresponding points (x,y,c) on the graph. This gives an idea what the graph looks
like, as we did in Example 2.7. The set of points on the graph that correspond to a
level set f (x,y) = c is called the contour curve of the graph at z = c.

Fig. 2.3 Left: level sets c = 0,1,4,9 for f (x,y) = x2 + y2, Right: the graph (cut away for clarity) of
f (x,y) with contour curves shown at z = 1,4 and 9. See Example 2.7.

Example 2.8. Let f (x,y) =
x2− y2
x2+ y2

, (x,y) � (0,0). Find level set c =
x2− y2
x2+ y2

,

or x2−y2 = c(x2+y2) with x2+y2 � 0. First we consider some simple choices
for c. When c = 1 we find that x2 − y2 = x2 + y2. Thus the c=1 level set is the
set of all points y = 0, the x axis, with the origin removed. Similarly, the level
set for c = −1 satisfies x2 − y2 = −(x2 + y2) with x2 + y2 � 0. So this level set
is the set of points x = 0, the y axis, with the origin removed. For c � −1 and
x � 0 we can divide by x2 to get
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1− y2

x2
= c

(

1+
y2

x2

)

.

Solving for
(y
x

)2
we get

(y
x

)2
=
1− c
1+ c

. Thus, each c level set is a pair of lines

y =

√
1− c
1+ c

x and y =−
√

1− c
1+ c

x. So for example, the level set for c=− 1
2 is the

pair of lines y =
√
3x, y =−√3x, origin deleted. In Figure 2.4 we sketched the

level sets for c = − 1
2 ,0,1 and the graph of f with the corresponding contour

lines on the graph. �

Fig. 2.4 Left: level sets c = − 1
2 ,0,1 of f (x,y) =

x2 − y2
x2 + y2

. Right: the graph of f with contour lines at

z = 0 shown. See Example 2.8.

Here are some further examples of level sets of a function.

Example 2.9. Figure 2.5 shows a circular disk,D, and all the points inDwhere
the value of a function t(x,y) is 2, 3, 4, 5, 6, 8, 10 or 10.5. The level sets t = 2
and t = 10.5 are points. The level sets t = 3, t = 4, t = 6, and t = 8 are curves.
The level set t = 5 consists of all the points of the shaded band. �

Fig. 2.5 Level sets in Example 2.9.

Example 2.10. Let f (x,y,z) =
1

√
x2+ y2+ z2

. The domain of f is the set of all

points (x,y,z) � (0,0,0). The graph of f is the set of points (x,y,z, f (x,y,z)).
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The c level set of f for c > 0 is the set of points that satisfy
1

√
x2+ y2+ z2

= c,

or x2+y2+ z2 =
1

c2
. It is the sphere with radius

1
c
centered at the origin of R3.

�
Functions from R to Rn Next we look at examples of functions from R to Rn.

Example 2.11. Let I be an interval [a,b]. Let x, y, and z be functions from I
to R and let

P(t) = (x(t),y(t),z(t)).

Figure 2.6 shows a, t1, t2 and b on the interval I and the corresponding image
positions in space P(a), P(t1), P(t2), and P(b). �

Fig. 2.6 Position P(t) in Example 2.11.

Example 2.12. Let F(t) = (cos t,sin t, t), 0 ≤ t ≤ 4π. Figure 2.7 shows solid
dots as points F(t) where t = 0, π2 ,π,2π,

5π
2 ,3π, and 4π, and a curve for the

other points in the range of F. The resulting curve is called a helix. �

Fig. 2.7 The helix in Example 2.12 and its projection (dotted) on the x,y plane.

Example 2.13. Let F(t) = t(2,3,4) = (2t,3t,4t). Figure 2.8 shows points in the
range where t = −.5,−.25,0,1.1. The range of F is the line that goes through
the origin and (2,3,4). �

Example 2.14. Let G(t) = (1,2,0)+ t(2,3,4) = (1+2t,2+3t,4t). The range of
G is the line in Figure 2.9 that goes through (1,2,0) and (3,5,4). �
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Fig. 2.8 The line in Example 2.13.

Fig. 2.9 The line in Example 2.14.

In Examples 2.11–2.14 we sketched the range of the functions. In Examples 2.11
and 2.12 we sketched the domain of each function showing how a point gets mapped
to a point in Rn.

Functions from R
n to R

n Next we consider functions from R
n to R

n, called vec-
tor fields. One way to visualize a vector field from R

2 to R
2 is to draw an arrow

representing F(x,y) starting at the point (x,y). Let’s look at an example.

Example 2.15. Describe the vector field F(x,y) = (−y,x) by sketching a few
vectors. We first make a list.

(x,y) (1,0) (0,1) (−1,0) (0,−1) (2,2) (−2,2) (−2,−2) (2,−2)
F(x,y) (0,1) (−1,0) (0,−1) (1,0) (−2,2) (−2,−2) (2,−2) (2,2)

See Figure 2.10. The vectors (x,y) and F(x,y) are perpendicular since the
dot product (x,y) · (−y,x) = 0. In fact if we take (x,y) on a circle centered at
(0,0) we see that F(x,y) has magnitude equal to the radius of the circle, and
direction tangent to the circle. �

Example 2.16. Let

F(x,y,z) =

⎛
⎜⎜⎜⎜⎜⎝

x
√
x2+ y2+ z2

,
y

√
x2+ y2+ z2

,
z

√
x2+ y2+ z2

⎞
⎟⎟⎟⎟⎟⎠ .
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Fig. 2.10 A sketch of F(x,y) = (−y,x) in Example 2.15.

Let X = (x,y,z), then ‖X‖ = √x2+ y2+ z2 and we can express F as

F(X) =
X
‖X‖ .

The domain of F contains every point in R
3 except the origin. Every value

of F is a unit vector. The range of F is the unit sphere centered at the origin.
Figure 2.11 shows a sketch of this vector field. �

Fig. 2.11 The vector field in Example 2.16. Left: a sketch of two points and the vectors assigned
by the vector field F. Right: a display of 45 points in the first octant and the vectors assigned by F.

Example 2.17. Let F be the vector field

F(x.y.z) = − 1

(
√
x2+ y2+ z2)3

(x,y,z).

that can also be expressed as

F(X) = − X
‖X‖3 = −

X
‖X‖

1

‖X‖2 .
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To visualize F, plot a point X and then sketch the unit vector − X
‖X‖ whose

direction is opposite X. Adjust the length by the factor
1

‖X‖2 . We call F the

inverse square vector field. See Figure 2.12. �

Fig. 2.12 The inverse square vector field in Example 2.17. Left: a sketch of a single point (x,y,z)
and the vector F(x,y,z) assigned to it by F. Right: a display of 45 points in the first octant and the
vectors assigned to them.

For a function F from R
3 to R3 physicists employ the notation

F(x,y,z) = (f1(x,y,z), f2(x,y,z), f3(x,y,z)) = f1(x,y,z)i+ f2(x,y,z)j+ f3(x,y,z)k

where
i = (1,0,0), j = (0,1,0), k = (0,0,1).

Similarly, a function from R
2 to R2 can be written using i = (1,0), j = (0,1) as

F(x,y) = (f1(x,y), f2(x,y)) = f1(x,y)i+ f2(x,y)j.

Example 2.18. Let F(x,y,z) = (2,3,4) = 2i+ 3j+ 4k. F is a constant vector
field. A sketch of F looks like a field of arrows of the same length all pointing
in the same direction. See Figure 2.13. �

Fig. 2.13 The constant vector field F(x,y,z) = (2,3,4) = 2i+3j+4k of Example 2.18.
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Definition 2.6. Let F be a function from R
m to R

n and let G be a function
from R

k to R
m. Suppose the range of G is contained in the domain of F. We

define the composite function F◦G from R
k to Rn by

F◦G(X) = F(G(X)).

Example 2.19. Let G(x,y,z) = (x2,y2+ z2) and let f (u,v) = uv. Then

f ◦G(x,y,z) = x2(y2+ z2).

�

Problems

2.1. Express each linear function as f (X) = C ·X for some vector C or F(X) = CX
for some matrix C.

(a) f (x1,x2) = x1+2x2
(b) f (x1,x2,x3) = x1+2x2
(c) F(x1,x2) = (x1,x1+2x2)
(d) F(x1,x2,x3) = (x1,x1+2x2)
(e) F(x1,x2,x3,x4) = (x4− x2,x3− x1,x2+5x1,x1+ x2+ x3+ x4)
(f) F(x1,x2) = (x1,5x1,−x2,−2x1,x2)
(g) F(x1,x2,x3,x4,x5) = (x1,5x1,−x2,−2x1,x2)
2.2. Let f (x,y) be equal to 1 when (x,y) is inside the unit disk centered at the origin,
and 0 when x2+ y2 ≥ 1. Describe the level sets of f . Sketch a graph of f .

2.3. Let f (X) be equal to ‖X‖2 when X is inside the unit ball ‖X‖ < 1, and 0 when
‖X‖ ≥ 1. Describe the level sets of f when the domain is

(a) R,
(b) R3,
(c) R5.

2.4. Show that a constant function F : Rn→ R
m is linear if and only if

F(x1,x2, . . . ,xn) = 0.

2.5. A plane in R
3 with equation z = 2x+3y is the 0 level set of a linear function �

from R
3 to R. Find �.

2.6. The function
f (x,y) = 5+ x+ x2+ y2,
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is the sum of the constant function 5, the linear function x, and the degree 2 polyno-
mial x2+ y2.

(a) Give two examples of points (x,y) near (0,0) for which the approximation by the
first two parts,

f (x,y) ≈ 5+ x
differs from f (x,y) less than 1

100 .
(b) Show that

g(u,v) = f (1+u,2+ v)

is the sum of a constant function, a linear function of (u,v), and a degree 2 poly-
nomial function of u and v.

2.7. Let f (X) = ‖X‖2, X in R4. Let A be in R4 and define

g(X) = ‖A‖2+2A · (X−A).
(a) Let U = X−A. Use the formula

‖A+U‖2 = ‖A‖2+2A ·U+ ‖U‖2

to show that the difference between f (X) and g(X) is ‖U‖2.
(b) Show that the difference between f (X) and g(X) does not exceed 10−4 when
‖X−A‖ < 10−2.

2.8. Let L be a linear function from R
n to Rm. Show that

(a) If L(X) = 0 and L(Y) = 0, then L(X+Y) is also 0.
(b) If L(X) = 0 and c is a number, then L(cX) is also 0.

2.9. Rework Example 2.8 by assuming y � 0 rather than x � 0.

2.10. Sketch or describe the c level sets, f (x,y)= c in R2, for the following functions
f and values c. Use the level sets to help sketch the graph of the function.

(a) f (x,y) = x+2y, c = −1, 0, 1, 2
(b) f (x,y) = xy, c = −1, 0, 1, 2
(c) f (x,y) = x2− y, c = −1, 0, 1, 2
(d) f (x,y) =

√
1− x2− y2, c = 0, 12 , 1

2.11. Sketch or describe the c level sets, f (x,y)= c in R2, for the following functions
f from R

2 to R and values c.

(a) f (x,y) = x2+ y2, c = 0, 1, 2
(b) f (x,y) =

√
x2+ y2, c = 0, 1, 2

(c) f (x,y) =
1

x2+ y2
, c = 0, 1, 2. Which one is empty?

2.12. Justify the claim that Theorem 1.20 can be restated as follows: “A linear func-
tion from R

n to Rn is onto if and only if it is one to one.”

http://dx.doi.org/10.1007/978-3-319-74073-7_1
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2.13. Sketch or describe the c level sets, f (X) = c in R3, for the following functions
f from R

3 to R and values c.

(a) f (X) = ‖X‖2, c = 1
2 , 1, 2

(b) f (X) = ‖X‖, c = 1
2 , 1, 2

(c) f (X) =
1

‖X‖2 , c = 1
2 , 1, 2

(d) f (X)=U ·X, c= 1
2 , 1, 2 whereU is a unit vector. Hint: writeX as a vector parallel

to U plus a vector orthogonal to U.

2.14. Let C =
[
3 1
2 4

]

, and X =
[
1
2

]

. verify the inequality

||CX|| ≤ ||C|| ||X||.
2.15. Show that for a linear function L from R

n to R
m, the value L(X) is a linear

combination of the columns Vj of the matrix of L:

L(X) = x1V1+ · · ·+ xnVn.

2.16. Suppose C is an n by n matrix with orthonormal columns. Use Theorem 2.2
to show that for every X in Rn,

‖CX‖ ≤ √n‖X‖.
Use the Pythagorean theorem and the result of Problem 2.15 to show that in fact for
every X in Rn,

‖CX‖ = ‖X‖
for such a matrix C.

2.17. For every X � 0 in Rn let F(X) =
X
‖X‖ and let G(X) = − X

‖X‖3 and denote their

norms by f (X) = ‖F(X)‖ and g(X) = ‖G(X)‖. Describe the level sets
f (X) = 1, g(X) = 1, g(X) = 2, and g(X) = 4

in Rn. Are there any points in Rn where f (X) = 2?

2.18. Consider a function F(t) = (1− t)A+ tB, where A and B are in R2.

(a) Express F(t) as the sum of A and a multiple of B−A.
(b) For what value of t is F(t) = A? B? the midpoint 1

2 (A+B)?
(c) For what interval of t are the points F(t) on the line segment from A to B?

2.19. Consider a function given by F(t, θ) = (x(t, θ),y(t, θ)) from R
2 to R

2 such that
for each fixed θ, as t varies from 0 to 1, F(t, θ) runs along the radius of the unit
circle centered at the origin from (0,0) to (cosθ,sinθ).

(a) Write a rule for F(t, θ).
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Fig. 2.14 The plane and sphere in Problem 2.20.

(b) What is the image of the rectangle 0 ≤ t ≤ 1, |θ| ≤ 1?

2.20. Figure 2.14 shows the unit sphere centered at the origin

x2+ y2+ z2 = 1

in R
3, with the x,y plane viewed edgewise. In this problem we introduce a corre-

spondence between the x,y plane and the sphere with the North Pole (0,0,1) deleted,
known as stereographic projection.

(a) The line segment from the North Pole to (x,y,0) in the x,y plane can be
parametrized as

(1− t)(0,0,1)+ t(x,y,0),
with 0 ≤ t ≤ 1. Find t in terms of x and y, so that this point is on the sphere.

(b) Conclude that the function

S(x,y) =
1

1+ x2+ y2
(2x,2y,x2+ y2−1)

maps the plane onto the sphere, missing the North Pole.
(c) Which points of the x,y plane correspond to the upper hemisphere? the lower?
(d) Which points of the x,y plane correspond to the equator? the South Pole?
(e) Show that the function S−1 given by

S−1(s1,s2,s3) =
1

1− s3 (s1,s2),

defined for points (s1,s2,s3) of the sphere other than the North Pole, is the inverse
function of S.

2.21. Show that the linear function

L(x,y,z) = (x,z,−y)
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Fig. 2.15 The rotation L and stereographic projection S in Problem 2.21.

maps the unit sphere centered at the origin into itself. If S is the stereographic pro-
jection defined in Problem 2.20, conclude that the composition

S−1 ◦L◦S
maps the x,y plane to itself. See Figure 2.15. Where does the right half-plane (x > 0)
go?

2.22. The gravity force on a particle at point X in R3, due to a mass at the origin, is
some negative multiple of

G(X) =
X
‖X‖3 .

For pointsX=A+U near a given nonzero pointA, we compare two approximations
of G given by

G1(X) =
X
‖A‖3 =G(A)+

U
‖A‖3 =G(A)+L1(U)

and

G2(X) =G(A)+
(

U
‖A‖3 −3

A ·UA
‖A‖5

)

=G(A)+L2(U).

(a) Show that L1 and L2 are linear functions of U.
(b) Take A = (1,0,0) and U = ( 1

10 ,0,0). Show that the relative errors in these approx-
imations are about

‖G(X)−G1(X)‖
‖G(X)‖ ≈ .33, ‖G(X)−G2(X)‖

‖G(X)‖ ≈ .03.

(c) Take A = (1,0,0) and U = ( 1
100 ,0,0). Show that the relative errors are about

‖G(X)−G1(X)‖
‖G(X)‖ ≈ .03, ‖G(X)−G2(X)‖

‖G(X)‖ ≈ .0003.
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2.23. In this problem we use single variable calculus to derive the linear
approximations for

X
‖X‖3 =

A+U
(‖A‖2+2A ·U+ ‖U‖2)3/2

given in Problem 2.22.

(a) Suppose a and u are positive numbers. Use Taylor’s Theorem to show there are
numbers θ1 and θ2 between zero and u with

(a2+u)−3/2 = a−3− 3
2 (a

2+ θ1)
−5/2u, and

= a−3− 3
2 (a

2+u)−5/2u+ 15
8 (a

2+ θ2)
−7/2u2.

(b) Conclude that

G(A+U) =
(

‖A‖−3− 3
2 (‖A‖2+ θ1)−5/2(2A ·U+ ‖U‖2)

)

(A+U), and

=

(

‖A‖−3− 3
2 (‖A‖2)−5/2(2A ·U+ ‖U‖2)

+ 15
8 (‖A‖2+ θ2)−7/2(2A ·U+ ‖U‖2)2

)

(A+U).

(c) Sort those terms into the form

G(A+U) =G(A)+L1(U)+ (large) =G(A)+L2(U)+ (small)

where “large” is of order ‖U‖ and “small” is of order ‖U‖2.

2.2 Continuity

In single variable calculus we motivated the definition of continuity of f at x by ask-
ing whether approximate knowledge of x is sufficient to give approximate knowl-
edge of f (x). This is a very practical question, because we almost always round off
or approximate the input of a function. We said f is continuous at x means that for
every tolerance ε > 0 for error in the output, we can find a level of precision δ > 0
for the input, so that

if |x− y| < δ then |f (x)− f (y)| < ε.
This is also what continuity means for a function F : D ⊂ Rn→ R

m.
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Definition 2.7. A function F : D ⊂ R
n → R

m is continuous at X in D if for
every tolerance ε > 0, there exists a precision δ > 0, that depends on ε, so that

if ‖X−Y‖ < δ then ‖F(X)−F(Y)‖ < ε. (Y in D)

Let L : Rm→ R
n be a linear function. We show that L is continuous at every X.

We need to show that for every tolerance ε > 0, there is a precision δ > 0 so that if
‖Y−X‖ < δ then ‖L(Y)−L(X)‖ < ε. Denote Y as X+H. Then

‖L(Y)−L(X)‖ = ‖L(Y−X)‖ = ‖L(H)‖.
By Theorem 2.1 there is a matrix C so that L(H) = CH, and by Theorem 2.2

‖L(H‖ = ‖CH‖ ≤ ‖C‖‖H‖.
If ‖C‖ is zero then L is the constant function 0. Constant functions F are continuous
at each X because ‖F(X)−F(Y)‖ = 0. So we assume ‖C‖ � 0. Given a tolerance

ε > 0, take ‖H‖ < δ = ε

‖C‖ . We get

‖L(Y)−L(X)‖ = ‖L(H)‖ ≤ ‖C‖‖H‖ < ‖C‖ ε‖C‖ = ε.

Therefore L is continuous at X.

Definition 2.8. A function F : D ⊂ R
n → R

m is continuous on D if F is con-
tinuous at every X in D.

Definition 2.9. A sequence of pointsX1,X2, . . . ,Xk , . . . in Rn converges toX if
for every ε > 0 there is a whole number N so that if k > N , then ‖Xk −X‖ < ε.

As with functions fromR toR, a continuous function takes a convergent sequence
of points in the domain to a convergent sequence of points in the range.

Theorem 2.3. If F :D ⊂Rn→R
m is continuous on D, then for every sequence

X1, X2, . . . , Xk , . . .

of points in D that converges to a point X in D, the sequence

F(X1), F(X2), . . . , F(Xk ), . . .

converges to F(X).
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Proof. Take ε > 0. Since F is continuous at X, there is δ > 0 so that

if ‖X−Y‖ < δ, then ‖F(X)−F(Y)‖ < ε.
Since the Xk converge to X, given this δ there is a whole number N so that

if k > N , then ‖X−Xk‖ < δ.
Therefore

If k > N , then ‖F(X)−F(Xk )‖ < ε.
This proves that the sequence F(Xk ) converges to F(X). �

In Problem 2.44 we ask you to prove the converse of Theorem 2.3.
The next theorem gives us a tool to reduce the question of continuity of F to

checking the continuity of the component functions.

Theorem 2.4. A function F : D ⊂ Rn→ R
m, denoted

F(X) = (f1(X), f2(X), . . . , fm(X)),

is continuous on D if and only if each component function fj : D ⊂ Rn→ R is
continuous on D.

Proof. Suppose F is continuous at X. For every tolerance ε > 0 there is a precision
δ > 0 so that if ‖Y−X‖ < δ then ‖F(Y)−F(X)‖ < ε. Let fi be one of the component
functions. Each component of a vector has absolute value less than or equal to the
norm of the vector. Therefore

|fi(Y)− fi(X)| ≤ ‖F(Y)−F(X)‖ < ε.
So continuity of F at X implies continuity of each component function fi at X.

Now suppose each component function fi is continuous at X. We show that F is
continuous at X. For every tolerance ε > 0, there are m precisions δ1, δ2, . . . , δm, one
for each component function, so that if ‖Y−X‖ < δi then |fi(Y)− fi(X)| < ε.

Take δ to be the smallest of the δi. If ‖Y−X‖ < δ then |fi(Y)− fi(X)| < ε for all
i = 1,2, . . . ,m, and

‖F(Y)−F(X)‖ =
√
(
f1(Y)− f1(X))2+ (f2(Y)− f2(X))2+ · · ·+ (fm(Y)− fm(X))2

≤
√
ε2+ ε2+ · · ·+ ε2 = √mε.

Since ε can be chosen as small as we like, this shows that ‖F(Y)−F(X)‖ can be
made as small as we like by taking δ small enough; this shows that F is continuous
at X. �



2.2 Continuity 81

Taking n = 1 in Theorem 2.4 shows that F(t) = (f1(t), f2(t), . . . , fm(t)) is continuous
on an interval if and only if each component function fi is continuous there.

Example 2.20. F(t) = (cos t,sin t, t) is continuous at t because each component
function is continuous at t. �

The next two theorems help us find continuous functions from R
n to R.

Theorem 2.5. If f :D ⊂Rn→R and g :D ⊂Rn→R are continuous on D then

(a) f +g is continuous on D,
(b) f g is continuous on D,
(c) 1

g is continuous at every point X where g(X) � 0.

Proof.(a) Let X be in D and let ε > 0 be a tolerance. There are two precisions, δf
and δg, so that if ‖X−Y‖ < δf then |f (X)− f (Y)| < ε, and if ‖X−Y‖ < δg then
|g(X)−g(Y)| < ε.
Let δ be the smaller of δf and δg. Now if ‖X−Y‖ < δ then |f (X)− f (Y| < ε, and
|g(X)−g(Y)| < ε. According to the triangle inequality

|f (X)− f (Y)+g(X)−g(Y)| ≤ |f (X)− f (Y)|+ |g(X)−g(Y)| < 2ε.
Regrouping terms gives |(f + g)(X)− (f + g)(Y)| < 2ε. Since 2ε can be made as
small as we like, we are done.

(b) Let ε be a tolerance and let δ be as in the proof of part (a). By algebra we have

|f (X)g(X)− f (Y)g(Y)| = |f (X)g(X)− f (X)g(Y)+ f (X)g(Y)− f (Y)g(Y)|.
By the triangle inequality and properties of absolute values,

|f (X)g(X)− f (Y)g(Y)| ≤ |f (X)| |g(X)−g(Y)|+ |g(Y)| |f (X)− f (Y)|.
If ‖X−Y‖ < δ we have by continuity of f and g that

|f (X)− f (Y)| < ε and |g(X)−g(Y)| < ε.
Therefore

|f (X)g(X)− f (Y)g(Y)| < ε(|f (X)|+ |g(Y)|).
We also know by the triangle inequality (see Problem 1.67) that

∣∣∣|g(X)| − |g(Y)|∣∣∣ ≤ |g(X)−g(Y)| < ε
so |g(Y)| < |g(X)|+ ε. Therefore

|f (X)g(X)− f (Y)g(Y)| < ε(|f (X)|+ |g(X)|+ ε).

http://dx.doi.org/10.1007/978-3-319-74073-7_1
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For a given X, f (X) and g(X) are fixed numbers. Therefore the expression on the
right side can be made as small as we like by taking ε small enough.

(c) Let g(X) = k � 0. Since g is continuous at X there is a γ > 0 so that for all Y
with ‖X−Y‖ < γ, |g(Y)− g(X)| < | 12k |. Since g(X) = k, |g(Y)| > | 12k |. Now let
ε > 0. Since g is continuous at X there is a δ > 0 so that if Y is within δ of X,
|g(X)−g(Y)| < ε. For ‖X−Y‖ less than the smaller of γ and δ,

∣∣∣∣∣
1

g(X)
− 1
g(Y)

∣∣∣∣∣ =

∣∣∣∣∣
g(X)−g(Y)
g(X)g(Y)

∣∣∣∣∣ =
|g(X)−g(Y)|
|g(X)||g(Y)| <

ε
∣∣∣ 12k
∣∣∣|k | .

Since k is fixed and ε can be taken as small as we like, we have that
1
g
is contin-

uous at X.
�

Example 2.21. Consider the function from R
3 to R,

f (x,y,z) =
x2+ xy−2x+ z+7

x2− y3 .

The numerator is continuous at every (x,y,z) because it is a sum of functions
that are constants, or linear, or are products of constants and linear functions.
The denominator is a continuous function for the same reason. According to
Theorem 2.5 then f is continuous at every point (x,y,z) where the denominator
x2− y3 � 0 and z is arbitrary. �

Theorem 2.6. If F : D ⊂ R
n → R

m is continuous on D, g : A ⊂ R
m → R is

continuous on A, and the range of F is contained in A, then the composition
g◦F : D→ R is continuous on D.

Proof. Let X be in D. Since g is continuous at F(X), for every ε > 0 there is a δ > 0
so that if ‖F(X)−Y‖ < δ, then |g(F(X))−g(Y)| < ε. Since F is continuous at X, we
can find a precision γ > 0 so that if ‖X−Z‖ < γ, ‖F(X)−F(Z)‖ < δ. It follows that
for ‖X−Z‖ < γ, ∣∣∣g(F(X))−g(F(Z))∣∣∣ < ε. �

Theorem 2.7. If F : D ⊂ R
n → R

m is continuous on D, G : A ⊂ R
m → R

k is
continuous on A and the range of F is contained in A, then the composition
G◦F : D ⊂ Rn→ R

k is continuous on D.

Proof. DenoteG(y1, . . . ,ym)= (g1(y1, . . . ,ym), . . . ,gk (y1, . . . ,ym)). By Theorem 2.4, gi
is continuous on A, and by Theorem 2.6, gi ◦F is continuous on D. By Theorem 2.4,
a vector function whose components are continuous is continuous. Therefore G◦F
is continuous on D. �
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Example 2.22. Let F be the function

F(X) = − X
‖X‖3 , X � 0.

Rewriting F in coordinate notation,

F(x,y,z) =
( −x
(x2+ y2+ z2)3/2

,
−y

(x2+ y2+ z2)3/2
,

−z
(x2+ y2+ z2)3/2

)

.

According to Theorem 2.6 the function (x2 + y2 + z2)3/2 is continuous. Then
according to Theorem 2.5 the component

f1(x,y,z) =
−x

(x2+ y2+ z2)3/2

is a continuous function at every (x,y,z) in R
3 except the origin, so f1 is con-

tinuous on R
3 − {(0,0,0)}. Similarly the components f2 and f3 are continuous

on R
3−{(0,0,0)}. So by Theorem 2.4, F is continuous on R

3−{(0,0,0)}. �

Example 2.23. Consider

F(x,y,z) = (sin(x+ y),exz+y
2
, log(xz)).

The component functions f1(x,y,z) = sin(x+ y) and f2(x,y,z) = exz+y
2
are con-

tinuous at every (x,y,z), and the component f3(x,y,z) = log(xz) is continuous
at each point (x,y,z) where xz > 0. By Theorem 2.4, F is continuous at each
point (x,y,z) where xz > 0. Alternatively, let

H(x,y,z) = (x+ y,xz+ y2,xz), G(u,v,w) = (sinu,ev, logw).

Then G◦H = F. By Theorem 2.7, F is continuous at all points (x,y,z) where
xz > 0. �

Definition 2.10. A curve is the range of a continuous function X : I ⊂ R→ R
n

from an interval I to Rn,

X(t) = (x1(t),x2(t), . . . ,xn(t)), t in I .

The functionX is called a parametrization of the curve. If I is a closed interval
[a,b] then X(a) and X(b) are called the endpoints of the curve. If X(a) =X(b)
we say the curve is closed and call the curve a loop.

Definition 2.11. A subset A of Rn is connected if for all points P and Q in A
there is a curve in A with endpoints P and Q.
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Example 2.24. X(t)= (2cos t,3sin t, t) for t in [0,4π] is sketched in Figure 2.16,
part of an elliptical helix. �

Fig. 2.16 The curve in Example 2.24.

Example 2.25. The curve given by the function

X(t) = (a1+ c1t,a2+ c2t,a3+ c3t)

is a straight line in R3. See Figure 2.17. Let

A = (a1,a2,a3), C = (c1,c2,c3)

and rewrite the function as X(t) = A + tC. Since X(0) = A, the line goes
through point A. �

Fig. 2.17 The curve X(t) = A+ tC in Example 2.25.

We close this section with some useful notions about the geometry of Rn and
important theorems about continuous functions.

Definition 2.12. An open ball of radius r > 0 in Rn centered at A is the set of
all X in Rn with

‖X−A‖ < r.
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Example 2.26. The open ball of radius 2 centered at (4,5,6) is shown in
Figure 2.18. It includes all the points inside the sphere surface, but not the
points on the surface, as we indicate using dotted lines. �

Fig. 2.18 A sketch of the open ball in Example 2.26.

Definition 2.13. A point A in D ⊂ Rn is called an interior point of D if there
is an open ball centered at A that is contained in D. The interior of D is the
set of interior points of D.

Example 2.27. Take S to be the square region in R
2 consisting of all points

(x,y) where 0 < x < 1 and 0 < y < 1. See Figure 2.19. We show that every
point of S is an interior point of S. Let r be the smallest of

x, y, 1− x, 1− y.
Then the open disk of radius r centered at (x,y) is contained in S, so (x,y) is
an interior point. �

Fig. 2.19 The region S in Example 2.27 shown in gray. The dotted points are not included in S.

Example 2.28. Take D to be the unit disk x2 + y2 ≤ 1 centered at the origin in
the x,y plane. We show that every point P whose distance from the origin is
less than 1 is an interior point of D: Let r = 1−‖P‖ and let Q be a point in the
open disk of radius r centered at P. By the triangle inequality
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‖Q‖ = ‖Q−P+P‖ ≤ ‖Q−P‖+ ‖P‖
< r+ ‖P‖ = 1.

The points that are within r of P are all in D. So P is an interior point. See
Figure 2.20. �

Fig. 2.20 P is an interior point in Example 2.28.

Definition 2.14. A set D in R
n is said to be open if every point in D is an

interior point.

Definition 2.15. A point B of a set D in R
n is a boundary point of D if every

ball centered at B contains points that are in D and also points that are not in
D. The boundary of D is the set of boundary points of D, denoted ∂D.

It follows from this definition that a set and its complement have the same bound-
ary points.

We denote the complement of D as Rn −D, and more generally write A−B for
the set of points in a set A that are not in B.

Definition 2.16. A set D is called closed if it contains all its boundary points.
The closure of a set D is the union of the set D and its boundary points. The
closure of D is denoted as D.

An open set B that contains the closure C of a set C is called a neighborhood
of C.

Example 2.29. The set S in Example 2.27, where 0 < x < 1, 0 < y < 1 is an
open set since every point of S is an interior point. S is a neighborhood of the
rectangle R defined by .2 ≤ x ≤ .4 and .1 ≤ y ≤ .5. See Figure 2.21. �
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Fig. 2.21 Left: The open set in Example 2.29 is a neighborhood of rectangle R. Right: The closed
set in Example 2.30. The boundary points are drawn solid.

Example 2.30. Take S to be the square region

0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
shown in Figure 2.21. Every point with x = 0 or x = 1 or y = 0 or y = 1 is a
boundary point. Because S contains all its boundary points, S is a closed set.
�

Theorem 2.8. The closure D of a set D is a closed set.

Proof. We claim that a boundary point B of D is a boundary point of D. To see
this take any ball Σ centered at B. The ball Σ contains a point that is not in D and
therefore not in D. We must show that Σ contains a point of D. We know that Σ
contains a point A that is in D. Take a ball centered at A of radius so small that the
ball is contained in Σ. Since A belongs to D the small ball is either contained in D
or contains points of both D and the complement of D. This shows that Σ contains
points of both D and the complement D. Therefore B is a boundary point of D. �

The following result is basic in the geometry of Rn.

Theorem 2.9. The complement of an open set is a closed set and conversely.

Proof. It follows from the definition that an open setD contains none of its boundary
points. So all the boundary points of D belong the complement of D. Since a set and
its complement have the same boundary points, this proves the theorem. �

Definition 2.17. A set D in Rn is bounded if there is a number b so that

‖X‖ < b
for every X in D.
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Example 2.31. The set U of points in R2 that satisfy

x2+ y2 < 1

is bounded. It is called the open unit disk. �

Fig. 2.22 The cylinder surface, boundary of the solid cylinders in Example 2.32.

Example 2.32. The set S of points in R3 that satisfy

x2+ y2 < 1

is the solid circular cylinder of radius 1 centered about the z axis. We ask you
in Problem 2.35 to show that S is an open set. Let T be the set of points in R3

that satisfy
x2+ y2 ≤ 1.

The boundary of S and of T is the cylindrical surface of radius 1 centered on
the z axis. See Figure 2.22. T is closed. Neither S nor T is bounded because
the z coordinate of points can be arbitrarily large positive or negative. �

Theorem 2.10. If a sequence of points X1, . . . ,Xk , . . . of a closed set C in R
n

converges to a point X, then X is in C.

Proof. Suppose X is not in C. Then X is in the complement of C, which is open. So
there is an open ball of some radius r centered at X, that contains no point of C. But
the points Xk are in C and for k large enough,

‖Xk −X‖ < r.
This is a contradiction. Therefore X is in C. �

The following result is basic.
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Theorem 2.11. Extreme Value Theorem A continuous function

f : C ⊂ Rn→ R

defined on a closed and bounded set C attains its maximum value and its
minimum at some points in C.

Proof. We show first that a continuous function f defined on a closed, bounded
subset C of Rn is bounded, that is, there is a number b so that |f (X)| ≤ b for all X in
C. We argue indirectly and suppose on the contrary that f is unbounded. That means
that for every whole number k there is a point Xk in C such that

|f (Xk )| > k. (2.4)

Divide the space Rn into n-dimensional cubes of unit edge. Since C is bounded, it
is contained in a finite number of these cubes. Therefore there is a unit cube C1 that
contains infinitely many of these points Xk .

Divide C1 into n-dimensional cubes of edge 1
2 . Since the number of these cubes

is finite, one of them, call it C2, will contain infinitely many of the points Xk .
Continuing in this fashion we obtain a sequence of cubes Ck of edge length 2−k ,

each contained in the previous one, each containing infinitely many of the points
Xk .

We choose now a sequence of points Ym as follows: Ym is one of the points Xk

contained in the cube Cm that is not one of the points Yk , k < m previously chosen.
Since we have infinitely many points to choose from, such a choice is possible.
The nested sequence of cubes Cn have exactly one point in common; call it Y. The
sequence of points Ym converges to Y. Since the points Ym belong to C, and since
C is closed, it follows that Y belongs to C. Since f is a continuous function,

lim
m→∞ f (Ym) = f (Y). (2.5)

The sequence Ym is a subsequence of Xn. Since according to (2.4) the sequence
|f (Xn)| tends to infinity, it follows that also |f (Ym)| tends to infinity. This contradicts
equation (2.5).

We have arrived at this contradiction by assuming in (2.4) that the function f
is unbounded. Since this assumption led to a contradiction, we conclude that f is
bounded on C. That is, the values of f are a bounded set. Therefore, by the Least
Upper Bound Theorem referenced in the Preface, there is a least upper bound.

Let M be the least upper bound of the values of f on C. Then for each whole
number k > 0 the numberM − 1

k is not an upper bound for the values of f . Therefore
there is a point Zk where

M ≥ f (Zk ) ≥M − 1
k .

This shows that
lim
m→∞ f (Zm) =M . (2.6)
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Arguing as above we can show that this sequence has a subsequence that converges
to a point; call this limit point Z. Since C is closed, Z belongs to C. Since f is
continuous, it follows from (2.6) that

f (Z) =M .

This proves that f attains its maximum value.
Since every f has a maximum, it follows that −f has a maximum, so f has a

minimum. This completes the proof of the Extreme Value Theorem. �

Uniform continuity. The concept of uniform continuity is basic:

Definition 2.18. Denote by S a subset of Rn. A function F : S → R
m is uni-

formly continuous on S if for every tolerance ε > 0, there is a precision δ > 0
so that if X and Z in S are within δ of each other, F(X) and F(Z) are within ε
of each other. That is,

if ‖X−Z‖ < δ then ‖F(X)−F(Z)‖ < ε.

Uniform continuity on S implies continuity at every point of S. Surprisingly a
converse is true if S is closed and bounded.

Theorem 2.12. A continuous function F : C ⊂ R
n → R

m on a closed and
bounded set C is uniformly continuous on C.

A proof of this theorem is outlined in Problem 2.40.

Example 2.33. Let f (x,y) = xy on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. According
to Theorem 2.12 f is uniformly continuous. �

Problems

2.24. Rewrite the proof of Theorem 2.5, part (a), by justifying the following steps.

(a) Let X be in D and let ε > 0 be a tolerance. Show that there is a δ > 0 so that if
‖X−Y‖ < δ then |f (X)− f (Y)| < 1

2 ε and |g(X)−g(Y)| < 1
2 ε.

(b) Show that

|f (X)− f (Y)+g(X)−g(Y)| ≤ |f (X)− f (Y)|+ |g(X)−g(Y)| < ε.
(c) Show that this proves f +g is continuous at X.

2.25. Suppose F(x1, . . . ,xn) =
(
f1(x1, . . . ,xn), f2(x1, . . . ,xn)

)
is a continuous function

from R
n to R

2, and g is a continuous function from R
2 to R. Prove the following.

(This is an alternate way to prove parts (a) and (b) of Theorem 2.5).
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(a) The composite g◦F is continuous.
(b) The function g(x,y) = x+ y is continuous.
(c) Suppose f1 and f2 are continuous functions from R

n to R. Use parts (a) and (b) to
show that f1+ f2 is continuous.

(d) Suppose f1 and f2 are continuous functions from R
n to R. Use part (a) and some

function g to show that the product f1f2 is continuous.

2.26. Show that the function

f (x,y,z) =
sin(x2+ y2)

ez+y

is continuous at all points (x,y,z).

2.27. The slope of the graph of cos(cx) lies in the interval [−c,c]. Fill in the missing
numbers.

(a) if |x−a| < (?) then |cos(2x)− cos(2a)| < ε.
(b) if |y−b| < δ then |cos(3y)− cos(3b)| < (?).
(c) if ‖(x,y)− (a,b)‖ < (?) then |cos(2x)cos(3y)− cos(2a)cos(3b)| < ε.
2.28. According to the single variable Intermediate Value Theorem a continuous
function f on a closed interval assumes every value between its values at the end-
points. Suppose nowD⊂Rn is a set in which any two points can be joined by a curve
(D is connected) and let f : D→ R

n be continuous. Justify the following steps to
show that if y is a number between two values of f then y is a value of f .

Suppose A and B are points of D and y a number with

f (A) < y < f (B).

(a) Show there is a curve X(t), a ≤ t ≤ b, in D with X(a) = A, X(b) = B.
(b) The composite f ◦X is continuous on [a,b].
(c) f (X(a)) < y < f (X(b)).
(d) There is a number t1 in [a,b] such that f (X(t1)) = y.

2.29. A function f from R
2 to R is continuous in the disk x2+y2 ≤ 1, the maximum

value of f is 10 and f (1,0) = 10, f (0, 14 ) = −10. Which are true?

(a) f (x,y) = 0 at some point of the disk.
(b) f has a minimum value on the disk.
(c) −10 is the minimum value of f on the disk.
(d) If x2+ (y− 1

4 )
2 is small enough then f (x,y) < −9.98.

2.30. A function f from R
3 to R is continuous on an open set that contains the cube

where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, the maximum value of f on the cube is 10 and
f (0, 12 ,1) = 5. Which are true?

(a) f has a minimum value on the cube.
(b) f (0,0,0) is the minimum value of f on the cube.
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(c) f (x,y,z) = 2π at some point in the cube.
(d) f could be 10 at two points.
(e) If x2+ (y− 1

2 )
2+ (z−1)2 is small enough then f (x,y,z) > 4.98.

2.31. A function f from R
3 to R is continuous on R3. Show that these functions are

continuous.

(a) 10+ xf (x,y,z) on R3

(b) f (x,x,y) on R
2

(c) f (x1x2,x2x3,x3x4) on R4

2.32. A continuous function f : (a,b)→ R on an open interval does not necessarily
have a maximum or minimum value.

(a) Give an example of a continuous function f : (0,1)→ R with arbitrarily large
values.

(b) Give an example of a continuous function g : (0,1)→ R that is bounded but does
not attain a maximum or minimum value.

2.33. Sketch the graph of f (x1,x2) = x2 on x21 + x
2
2 ≤ 2 and find the maximum value

of f .

2.34. Which of the following sets are bounded?

(a) The points of R3 where x2+ y2+ z2 = 25.
(b) The points of R3 where x2+ y2− z2 = 1.
(c) The points of R2 where x < 1 and y < 1.

2.35. Show that the set x2+ y2 < 1 in R3 is an open set.

2.36. Let S be the set R2 with the origin removed. Show that 0 is a boundary point
of S.

2.37. Let T be the triangular region in R2 defined by x ≥ 0, y ≥ 0, and x+ y ≤ 1.
(a) Describe the boundary of T .
(b) Show that the point (.0001, .9998) is an interior point of T .

2.38. State the domain of each function. Is the domain closed? bounded? Is f con-
tinuous? Does f have a maximum? a minimum?

(a) f (X) = e−‖X‖2 where X is in R2

(b) f (x, t) = (4πt)−1/2e−x2/4t

(c) f (X, t) = (4πt)−n/2e−‖X‖2/4t where X is in Rn.

(d) f (x1,x2,x3,x4,x5) =
1

√

x22 + x
2
3 + x

2
4

2.39. Consider the linear function

F(X) =
[−1 5
5 −1

] [
x1
x2

]

.
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(a) Find a number c so that ‖F(X)‖ ≤ c‖X‖.
(b) Find a number d so that ‖F(X)−F(Y)‖ ≤ d‖X−Y‖.
(c) Is F uniformly continuous?

2.40. In this problem we prove Theorem 2.12. Suppose F : C ⊂ Rn→ R
m is contin-

uous on a closed and bounded set C. Either F is uniformly continuous on C, or it is
not. Justify the following statements that show that the statement that F is not uni-
formly continuous on C leads to a contradiction, hence F is uniformly continuous.

(a) Since f is not uniformly continuous there is some tolerance ε and a sequence of
pairs of points Xk , Yk in C, k = 1,2,3, . . . such that ‖Xk −Yk‖ < 1

k and

‖F(Xk )−F(Yk )‖ ≥ ε.
(b) As we saw in the proof of Theorem 2.11, the sequence Xk must have a subse-

quence Xki that converges to a point X in C. Then ‖Xki −Yki‖ < 1
ki
and since F is

continuous
lim
ki→∞

F(Xki ) = F(X).

(c) Use the triangle inequality

‖X−Yki‖ ≤ ‖X−Xki‖+ ‖Xki −Yki‖
to show that the Yki also converge to X.

(d) The sequences F(Xki ) and F(Yki ) both converge to F(X).
(e) That contradicts ‖F(Xki )−F(Yki )‖ ≥ ε.
(f) F is uniformly continuous on C.

2.41. Let C be a vector in R
n and let X and Y be vectors in R

n. Use the Cauchy–
Schwarz inequality

|A ·B| ≤ ‖A‖‖B‖
to prove:

(a) the function f (X) = C ·X from R
n to R is uniformly continuous,

(b) the function g(X,Y) = X ·Y from R
2n to R is continuous.

2.42. Let f (X) = ‖X‖ and g(X) = ‖X‖2, for X in Rn.

(a) Give examples of points X and Y one unit apart from each other, such that
∣∣∣g(Y)−g(X)∣∣∣ > 1060.

(b) Show that f is uniformly continuous.
(c) Show that g is not uniformly continuous.

2.43. Consider the function f (X) =
1
‖X‖ in the set D in R

n where ‖X‖ ≥ 2. Use the

identity
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1
‖X‖ −

1
‖Y‖ =

‖Y‖− ‖X‖
‖X‖‖Y‖

to show that f is uniformly continuous on D.

2.44. Suppose F is a function from R
n to R

m with the following property. For
every sequence X1,X2,X3, . . . that converges to X in the domain of F, the sequence
F(X1),F(X2),F(X3), . . . converges to F(X). Justify the following steps to show that
F is continuous.

(a) If F is not continuous at a point A, then there is some ε > 0 so that for every δ
there is a point B with

‖A−B‖ < δ and ‖F(A)−F(B)‖ > ε.
(b) If F is not continuous at a point A, then there is some ε > 0 so that for every

integer k > 0 there is a point Xk with

‖A−Xk‖ < 1
k

and ‖F(A)−F(Xk )‖ > ε.

(c) If F is not continuous at a point A, then there is a sequence X1,X2,X3, . . . con-
verging to A such that the sequence F(X1),F(X2),F(X3), . . . does not converge to
F(A).

2.3 Other coordinate systems

Polar coordinates. It is often convenient to use polar coordinates (r, θ) rather than
rectangular coordinates (x,y) to describe a curve or a region in the plane. Figure 2.23
shows the coordinates of a point in a plane given in terms of rectangular coordinates
and polar coordinates, where we usually take r ≥ 0 and 0 ≤ θ ≤ 2π.

Fig. 2.23 Polar and rectangular coordinates

The coordinates are related by

x = r cosθ

y = r sinθ, (2.7)
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and

r =
√

x2+ y2 (2.8)

Let F : R2→ R
2 be the function defined by

F(r, θ) = (r cosθ,r sinθ).

The component functions of F are x = r cosθ, y = r sinθ. F is called the polar
coordinate mapping. Let’s see how regions in the (r, θ) plane are mapped to the
(x,y) plane. See Figure 2.24. If we restrict F to a rectangular region 0 < a ≤ r ≤ b,
0 < α ≤ θ ≤ β < 2π, then F is one to one. Three such regions are indicated in the
figure.

Fig. 2.24 The polar coordinate mapping.

Cylindrical coordinates. An alternative to Cartesian coordinates (x,y,z) in space
uses polar coordinates in the x,y plane and retains the z coordinate.

Definition 2.19. The cylindrical coordinates (r, θ,z) that correspond to Carte-
sian coordinates (x,y,z) are related by

x = r cosθ

y = r sinθ

z = z

r ≥ 0 and 0 ≤ θ ≤ 2π.

Example 2.34. The point with Cartesian coordinates (x,y,z) = (
√
2,
√
2,3) has

cylindrical coordinates (r, θ,z) = (2, π4 ,3). �



96 2 Functions

Fig. 2.25 The region in Example 2.35.

Cylindrical coordinates can simplify the description of some regions in space.

Example 2.35. Let D be the region described in cylindrical coordinates by

1 ≤ r ≤ 2, 0 ≤ θ ≤ π, 3 ≤ z ≤ 4.
A sketch of this region is shown in Figure 2.25. Using Cartesian coordinates
D is described by

0 ≤ y, 1 ≤ x2+ y2 ≤ 4, 3 ≤ z ≤ 4.
�

If we think of the function

F(r, θ,z) = (r cosθ,r sinθ,z)

from R
3 to R3, we can see that a solid rectangular bar in (r, θ,z) space, described by

the inequalities in Example 2.35, is mapped to the region D there. If we extend the
bar to 0 ≤ θ ≤ 2π, then we get a full ring. Describing a region as the range of some
mapping will be useful later when we study the integral.

Spherical coordinates. Another way to describe the location of a point (x,y,z) is
to denote by ρ the distance between the point and the origin, let φ be the angle
between the positive z axis and the line through (0,0,0) and (x,y,z), and let θ be the
angle between the plane containing (x,y,z) and the z axis, and the x,z plane. See
Figure 2.26.
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Definition 2.20. The spherical coordinates (ρ,φ,θ) that correspond to the
Cartesian coordinates (x,y,z) are related by

x = ρsinφcosθ

y = ρsinφsinθ

z = ρcosφ.

0 ≤ ρ, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

Fig. 2.26 The spherical and cylindrical coordinate systems.

Example 2.36. The set of points in space that lie on a sphere of radius 3 cen-
tered at the origin satisfy

√

x2+ y2+ z2 = 3.

Using spherical coordinates we describe these points by

ρ = 3

and φ and θ take their full range: 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π. �

Example 2.37. To describe the set of points on the circular cone surface

z =
√

x2+ y2

shown in Figure 2.27 we note that every point on the cone has the same angle
φ. To find φ we look at the intersection of the cone with the plane y = 0.
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Fig. 2.27 The cone surface in Example 2.37.

At such points we get z =
√
x2 = |x|, so φ = π4 , and ρ and θ are unrestricted.

Another approach is to substitute the formulas x = ρsinφcosθ, y = ρsinφsinθ
and z = ρcosφ into the equation for the cone:

ρcosφ =
√

ρ2 sin2φcos2 θ+ρ2 sin2φsin2 θ

= ρsinφ.

Since 0 ≤ φ ≤ π this is satisfied only by φ = π4 . �

Example 2.38. Let D be the solid region of points that satisfy

x2+ y2+ z2 ≤ 9, x2+ y2+ z2 > 1, z ≥ 0
shown in Figure 2.28. The surface of the inner hemisphere is sketched with
dots to indicate that the points on that surface are not included. Region D is
described in spherical coordinates as

1 < ρ ≤ 3, 0 ≤ φ ≤ π2 .
�

Fig. 2.28 The region in Example 2.38.
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Problems

2.45. Consider the polar coordinate mapping illustrated in Figure 2.24. Sketch a
region in the r, θ plane that corresponds to the upper half plane y > 0.

2.46. Sketch the region in the x,y plane that corresponds to the polar coordinate
rectangle 1≤ r ≤ 2, 0≤ θ ≤ π. Find the polar coordinates of the point (x,y)= (0,1.5).
2.47. Use equations and inequalities to describe the following sets in polar coordi-
nates.

(a) The open unit disk x2+ y2 < 1.
(b) The first quadrant x > 0, y > 0.

2.48. Consider the set of points in the x,y plane whose polar coordinates satisfy

0 ≤ θ ≤ 2π, r =
1

2+ sinθ
.

Show that this is a bounded set in the x,y plane.

2.49. Let 0 < b < a and consider the set of points in the plane whose polar coordi-
nates r, θ satisfy

r =
1

a+bcosθ
.

(a) Show that the x,y coordinates of the points satisfy

1 = a
√

x2+ y2+bx.

(b) Show that the equation 1 = a
√
x2+ y2 +bx is the equation of an ellipse by com-

pleting a square and getting the equation into the form

1 =
(x−α)2

c2
+
(y−β)2
d2

.

2.50. Make a sketch to show the image of a rectangle r0 < r < r0 + h, 0 ≤ θ ≤ 2π
under the polar coordinate mapping. Find the area of the image rectangle. Show that
the ratio

area(image)
area(rectangle)

tends to r0 as h tends to 0.

2.51. Match the formulas (i–iv) in spherical coordinates with the descriptions (a–d)
of sets in R3. Note that if we don’t specify any restrictions on a coordinate, then the
usual ones apply: ρ ≥ 0, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

(i) ρ < 1 (ii) φ = 2π
3 (iii) 0 < θ < π (iv) ρ > 1 and π2 < φ

(a) a half-space
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(b) an open ball
(c) a cone surface
(d) a half-space with points removed that were within one unit of the origin

2.52. Let D be the region in R
3 where the spherical coordinate ρ is restricted:

2 ≤ ρ ≤ 4,
and let P = (0,0,1), Q = (7,0,0), R = (3,0,0) in Cartesian coordinates.

(a) Describe the region D.
(b) Is R in D?
(c) There is a point A in D that is closest to P, and a point B in D that is farthest from

Q. Use a sketch to find A and B.

2.53. Consider functions

s1(ρ,φ,θ) = e
−ρ, s2(ρ,φ,θ) = (1−ρ)ρe−ρ, d3(ρ,φ,θ) = (3cos

2φ−1)ρ2e−ρ,
of the type used to describe orbitals of an electron in an atom. (See also Section 9.5.)

(a) What is the maximum value of s1, and what do the level sets of s1 look like for
values less than the maximum?

(b) Which of the three functions is zero on some sphere centered at the origin?
(c) What are the limits of s1, s2, and d3 as ρ tends to infinity?
(d) d3 is nonnegative on the z axis and in a region enclosed by a double cone sur-

rounding the z axis. Sketch the region.
(e) Is d3 positive or negative outside the region of part (d)?

2.54. For a function that is a product f (x,y) = g(x)h(y) of nonnegative functions g
and h, show that the maximum of f is the product of the maximum values of g and
of h, if these exist. Use this idea in spherical coordinates to find the locations of the
maximum values of

d2
3 (ρ,φ,θ) = (3cos

2φ−1)2ρ4e−2ρ.
2.55. We outline a proof of the Fundamental Theorem of Algebra: For every poly-
nomial with complex coefficients

p(z) = p0+p1z+p2z
2+ · · ·+pnzn, (n > 0)

there is a complex number z where p(z) = 0.
Recall that complex numbers z = x+ iy can be identified with points (x,y) in R

2,
together with the multiplication

(x+ iy)(u+ iv) = xu− vy+ i(yu+ xv).
Thus polynomials with complex inputs can be viewed as functions from R

2 to R
2.

Prove the following statements.

http://dx.doi.org/10.1007/978-3-319-74073-7_9
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(a) Multiplication is continuous, so z2, z3, etc., are continuous functions, so polyno-
mials are continuous functions.

(b) Complex numbers have square roots, cube roots, fourth roots, etc: use the fact
that z = (x,y) can be written r(cosθ+ i sinθ) in polar coordinates, and that multi-
plication is given by

r1(cosθ1+ i sinθ1)r2(cosθ2+ i sinθ2) = r1r2(cos(θ1+ θ2)+ i sin(θ1+ θ2)).

(c) The absolute value |z| = ‖(x,y)‖ is a continuous function of x and y and, using
part (b), |zw| = |z||w|.

(d) |p(z)| tends to infinity as |z| tends to infinity. To see this, first use the triangle
inequality to show that for |z| > 1

|pn−1zn−1+ · · ·+p0| < P|z|n−1

for some number P; second use the triangle inequality

|p0+ · · ·+pnzn| ≥ |pnzn| − |pn−1zn−1+ · · ·+p0|
to show that for |z| > 1, |p(z)| ≥ |pn||z|n −P|z|n−1, that tends to infinity as |z| tends
to infinity.

(e) Now a proof by contradiction: If a polynomial p does not have a root then the
function

f (z) =
1
|p(z)|

is a continuous function from R
2 to R that tends to zero as |z| tends to infinity.

Such a function f has a maximum value at some number a. Therefore |p(z)| has
a minimum value |p(a)| = m � 0.

(f) For every polynomial q(z) of degree n and every number a, q(z) can be expressed
as a polynomial in z−a,

q(z) = q(a)+q′(a)(z−a)+q′′(a) (z−a)
2

2!
+ · · ·+q(n)(a) (z−a)

n

n!
.

(g) Use part (f) to express

p(z) = p(a)+ c(z−a)k + · · ·
where c � 0 and the dots are powers of z−a greater than k. According to part (b)
there is a k-th root h:

hk = −p(a)
c
.

Then use
p(a+ εh) = p(a)(1− εk )+ · · ·

where the dots are powers of ε greater then k. This shows that
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|p(a+ εh)| ≤ m(1− εk )+ · · · < m
for ε small, a contradiction.

2.56. Suppose two points in R
3 have cylindrical coordinates (r1, θ1,z1), (r2, θ2,z2).

Show that the distance between the points is given by

√

r21 + r
2
2 −2r1r2 cos(θ2− θ1)+ (z2− z1)2.

2.57. Suppose two points on the unit sphere centered at the origin in R3 have spheri-
cal coordinates (1,φ1, θ1), (1,φ2, θ2). Show that the dot product of the points is given
by

cos(φ2−φ1)− sinφ2 sinφ1(1− cos(θ2− θ1)).



Chapter 3
Differentiation

Abstract In this chapter we introduce the notion of derivative of functions of sev-
eral variables. We start with functions of two variables and then extend to several
variables. By using vector and matrix notation we find that many of the concepts
and results look familiar.

3.1 Differentiable functions

Recall that for a function f of a single variable x, we say that f is differentiable at a
if f is locally linear at a. That is, there is a constant m so that for all h sufficiently
close to zero the change in f at a,

f (a+h)− f (a),

is well approximated by mh. By “well approximated” we mean that the difference
between f (a+h)− f (a) and mh is small compared to h when h is small. That is,

(
f (a+h)− f (a)

)−mh
h

tends to zero as h tends to zero. In this case we say f is differentiable at a and we
write

lim
h→0

f (a+h)− f (a)
h

= m.

The numberm is called the derivative of f at a, denoted f ′(a), and the linear approx-
imation of f at a is

f (a)+ f ′(a)(x−a).
Now let’s extend the notion of “local linearity” to functions from R

2 to R. First
we recall from Theorem 1.2 that a linear function � from R

2 to R is a function of the
form

c© Springer International Publishing AG 2017
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�(h,k) = ph+qk, (3.1)

where p and q are some numbers. We recall Definition 1.5 of the norm of a vector
||(h,k)|| = √h2+ k2.

Definition 3.1. A function f defined in an open disk in R2 centered at (a,b) is
differentiable at (a,b) if

f (a+h,b+ k)− f (a,b)

can be well approximated by a linear function � in the following sense:

(
f (a+h,b+ k)− f (a,b)

)− �(h,k)
||(h,k)|| (3.2)

tends to zero as ||(h,k)|| tends to zero.

We call
L(x,y) = f (a,b)+ �(x−a,y−b)

the linear approximation of f (x,y) at (a,b).
Definition 3.1 can be rewritten in vector language. Let A = (a,b) and H = (h,k).

Definition 3.2. (Vector notation version) A function f from R
2 to R defined

on an open disk centered at A is differentiable at A if f (A+H)− f (A) can be
well approximated by a linear function � in the following sense:

(
f (A+H)− f (A)

)− �(H)
||H||

tends to zero as ||H|| tends to zero.

Theorem 3.1. If a function f from R
2 to R is differentiable at A then f is

continuous at A.

Proof. By Definition 3.2,

f (A+H)− f (A)− �(H)

tends to zero as ||H|| tends to zero. Since �(H) tends to zero as ||H|| tends to zero, so
does f (A+H)− f (A). ��

Next we relate the numbers p and q in the linear function �(h,k) = ph+ qk in
formula (3.2) to the function f .

http://dx.doi.org/10.1007/978-3-319-74073-7_1
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Suppose f is differentiable at (a,b) and �(h,k) = ph+ qk. Set k = 0 in Defini-
tion 3.1; then

lim
h→0

f (a+h,b)− f (a,b)− ph
h

= 0,

so f (x,b) is a differentiable function of a single variable x at a, and

p = lim
h→0

f (a+h,b)− f (a,b)
h

.

The number p is called the partial derivative of f with respect to x at (a,b) and is
denoted

∂ f
∂x

(a,b) or fx(a,b).

Thus
∂ f
∂x

(a,b) is found by holding y equal to the constant b and differentiating f (x,b)

with respect to x at a. Similarly if we let h = 0 in Definition 3.1 we see that if f is
differentiable at (a,b) then f (a,y) is a differentiable function of y at b and

lim
k→0

f (a,b+ k)− f (a,b)−qk
k

= 0

so that

q = lim
k→0

f (a,b+ k)− f (a,b)
k

.

The number q is called the partial derivative of f with respect to y at (a,b) and is
denoted

∂ f
∂y

(a,b) or fy(a,b).

This shows that if f is differentiable at (a,b) then it has partial derivatives fx(a,b)
and fy(a,b) there, and the linear approximation of f at (a,b) is

L(x,y) = f (a,b)+ fx(a,b)(x−a)+ fy(a,b)(y−b).
The rules for finding partial derivatives follow from the rules for ordinary differ-

entiation.

(a) ( f +g)x = fx +gx and ( f +g)y = fy+gy
(b) ( f g)x = fxg+ f gx and ( f g)y = fyg+ f gy
(c)
(
1
f

)

x
= − fx

f 2
and
(
1
f

)

y
= − fy

f 2

Example 3.1. We show that f (x,y)= xy2 is differentiable at (1,3). First we find
fx(1,3) and fy(1,3). Holding y fixed and differentiating f with respect to x we
get fx = y2, fx(1,3) = 9. Holding x fixed and differentiating f with respect to
y we get fy = 2xy, fy(1,3) = 6. Now that we have p and q we check that f is
locally linear at (1,3), where �(h,k) = 9h+6k.
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f (1+h,3+ k)− f (1,3)− �(h,k)
||(h,k)|| =

(1+h)(32+6k+ k2)− (1)(3)2− (9h+6k)
||(h,k)||

=
k2+6hk+hk2

||(h,k)|| .

By the triangle inequality |k2 + 6hk + hk2| ≤ k2 + 6|hk|+ |h|k2. Since we are
taking the limit as ||(h,k)|| tends to zero we can restrict attention to where
||(h,k)|| ≤ 1, and there |h| ≤ 1. We get

|k2+6hk+hk2| ≤ (1+ |h|)k2+6|hk| ≤ 2k2+6|hk|.
Since (h± k)2 = h2 + k2 ± 2hk ≥ 0 it follows that 2|hk| ≤ h2 + k2. Therefore if
||(h,k)|| ≤ 1 we have
|k2+6hk+hk2|
||(h,k)|| ≤ 2k2+6|hk|

||(h,k)|| ≤
2k2+3h2+3k2

||(h,k)|| ≤ 5(h2+ k2)
||(h,k)|| = 5

√
h2+ k2.

Therefore as ||(h,k)|| tends to zero
f (1+h,3+ k)− f (1,3)− �(h,k)

||(h,k)||
tends to zero, and f (x,y) = xy2 is differentiable at (1,3). �

The next example shows that the existence of partial derivatives, while necessary
for differentiability at a point, is not sufficient.

Example 3.2. Define a function f as

f (x,y) = |x+ y| − |x− y|. (3.3)

The single variable functions,

f (x,0) = |x+0| − |x−0| = 0, f (0,y) = |0+ y| − |0− y| = 0,
are both constant and therefore differentiable at (0,0), and

fx(0,0) = 0, fy(0,0) = 0.

Next we show that

f (0+h,0+ k)− f (0,0)− �(h,k)
||(h,k)||

does not tend to zero as ||(h,k)|| tends to zero. Take k = h; then
f (0+h,0+h)− f (0,0)− (0h+0h)√

h2+h2
=
|2h| − |0| −0− (0h+0k)√

2h2
=

2√
2
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does not tend to zero as ||(h,h)|| tends to zero. Therefore f is not differentiable
at (0,0). �

Next we show that if f has continuous partial derivatives on an open set contain-
ing (a,b) then f is differentiable at (a,b). We use the following theorem.

Theorem 3.2. A Mean Value Theorem. Let f be a function from R
2 to R

whose partial derivatives fx and fy exist on an open set containing (a,b).
Then for each (h,k) with ||(h,k)|| sufficiently small there are numbers h′ and k′
where a+h′ lies between a and a+h, and b+k′ lies between b and b+k, such
that

f (a+h,b+ k)− f (a,b) = h fx(a+h
′,b+ k)+ k fy(a,b+ k′). (3.4)

(a, b)

(a + h, b + k)
U

(a, b)

(a + h, b + k)(a, b + k)

(a, b + k )

(a + h , b + k)

Fig. 3.1 Left: a small rectangle in U, in Theorem 3.2. Right: points used in the proof.

Proof. Write

f (a+h,b+ k)− f (a,b) = f (a+h,b+ k)− f (a,b+ k)+ f (a,b+ k)− f (a,b).

For |h| and |k| sufficiently small all the points on the sides of a small rectangle (see
Figure 3.1) are in U and f (x,b+ k) is differentiable on the closed interval from a to
a+h. We apply the Mean Value Theorem for the single variable function f (x,b+ k)
and conclude that there is a number a+h′ between a and a+h for which

f (a+h,b+ k)− f (a,b+ k) = h fx(a+h
′,b+ k).

Similarly f (a,y) is differentiable on the interval between b and b+ k, and by the
Mean Value Theorem for single variable functions there is a number b+ k′ between
b and b+ k for which

f (a,b+ k)− f (a,b) = k fy(a,b+ k
′).

Add these two equations, and we obtain formula (3.4) to complete the proof. ��
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Theorem 3.3. If the partial derivatives of f are continuous in an open set
containing (a,b) then f is differentiable at (a,b).

Proof. Using formula (3.4) of Theorem 3.2

f (a+h,b+ k)− f (a,b)− (h fx(a,b)+ k fy(a,b))√
h2+ k2

=
h fx(a+h′,b+ k)+ k fy(a,b+ k′))− (h fx(a,b)+ k fy(a,b))√

h2+ k2

=
h
(
fx(a+h′,b+ k)− fx(a,b)

)
+ k
(
fy(a,b+ k′)− fy(a,b)

)

√
h2+ k2

(3.5)

where h′ is between 0 and h and k′ is between 0 and k. By the triangle inequality the
absolute value of the last expression is less than or equal to

|h|√
h2+ k2

∣∣∣∣ fx(a+h
′,b+ k)− fx(a,b)

∣∣∣∣+
|k|√
h2+ k2

∣∣∣∣ fy(a,b+ k
′)− fy(a,b)

∣∣∣∣.

Since
|h|√
h2+ k2

and
|k|√
h2+ k2

are less than or equal to 1, and fx and fy are con-

tinuous, each of the terms in this expression tends to zero as ||(h,k)|| tends to zero.
This proves that (3.5) tends to zero as ||(h,k)|| tends to zero. This shows that f is
differentiable at (a,b). ��

Example 3.3. Let f (x,y)= y+sin(xy)+sinh x. Use the linear approximation of
f at (0,1) to approximate f (.1, .9). The linear approximation of f at (0,1) is

L(x,y) = f (0,1)+ fx(0,1)(x−0)+ fy(0,1)(y−1).
We calculate

f (0,1) = 1+ sin(0)+ sinh(0) = 1+0+ 1
2 (e

0− e−0) = 1
fx(x,y) = cos(xy)y+ cosh x, fx(0,1) = cos(0)1+ 1

2 (e
0+ e−0) = 2

fy(x,y) = 1+ cos(xy)x, fy(0,1) = 1+ cos(0)0 = 1.

Therefore L(x,y) = 1+2(x−0)+1(y−1) and
L(.1, .9) = 1+2(.1)+1(.9−1) = 1+ .2− .1 = 1.1

is a good approximation of f (.1, .9) = 1.09005 . . .. �

Partial derivatives and differentiability, F : Rn → R
m. We extend the definitions

of differentiability, local linearity, and partial derivative. For functions f : Rn → R
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we define partial derivatives by differentiating with respect to the i-th variable while
holding the others fixed:

∂ f
∂xi
= lim

h→0

f (x1, . . . , xi+h, . . . , xn)− f (x1, . . . , xn)
h

.

Let F be a function R
n→ R

m whose component functions

F(x1, . . . , xn) =
(
f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)

are differentiable. Each function fi from R
n → R has n partial derivatives denoted

∂ fi
∂x j

or fi,x j . We arrange the partial derivatives in an m by n matrix

DF(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

(A) ∂ f1∂x2 (A) · · ·
∂ f1
∂xn

(A)
∂ f2
∂x1

(A) ∂ f2∂x2 (A) · · ·
∂ f2
∂xn

(A)
...

... · · · ...
∂ fm
∂x1

(A) ∂ fm∂x2 (A) · · ·
∂ fm
∂xn

(A)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.6)

called the matrix derivative of F at A.
Using vectors and matrices we can express the definition of differentiability of F

at A.

Definition 3.3. A function F from R
n to Rm defined on an open set U contain-

ing A is differentiable at A if F(A+H)−F(A) can be well approximated by a
linear function LA in the sense that

||F(A+H)−F(A)−LA(H)||
||H||

tends to zero as ||H|| tends to zero.

By an argument similar to the one we gave for f :R2→Rwe can show that if F is
differentiable at A then F is continuous at A. We can also show that the component
functions have partial derivatives, and that

LA(H) = DF(A)H

where DF(A) is the matrix (3.6) of partial derivatives. We ask you to justify the
steps to show this in Problem 3.9.

Example 3.4. Let f (x,y,z) = x2 sin(yz). The partial derivatives of f are

fx = 2xsin(yz), fy = zx2 cos(yz), fz = yx
2 cos(yz),

and
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fx(1, π2 ,2) = 0, fy(1, π2 ,2) = −2, fz(1, π2 ,2) = − π2 .
Therefore

Df (1, π2 ,2)) =
[
0 −2 − π2

]
.

�

Example 3.5. Let F(x,y) = (x2+ y2, x,−y3). Find DF(1,−2).
∂ f1
∂x = 2x,

∂ f1
∂y = 2y,

∂ f2
∂x = 1,

∂ f2
∂y = 0,

∂ f3
∂x = 0,

∂ f3
∂y = −3y2.

At the point (1,−2) we have

DF(1,−2) =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −4
1 0
0 −12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

�

Definition 3.4. For n = m the matrix derivative (3.6) of F at A is a square
matrix. Its determinant is called the Jacobian of F at A and is denoted as
JF(A):

JF(A) = detDF(A) (3.7)

Just as the derivative f ′(a) can be thought of as a local stretching factor by f ,
f (x)− f (a)

x−a as x− a tends to zero, the geometric meaning of the Jacobian is local

magnification of volume by F. That is, denote by Br(A) the ball of radius r centered
at A, and by Cr(A) its image under the mapping F. The ratio

Vol
(
Cr(A)

)

Vol
(
Br(A)

)

tends to |JF(A)| as r tends to zero.
Example 3.6. Let F(x,y)= (x2+y,y3+ xy). Find the Jacobian of F at (1,2), and
interpret it as a local magnification of area.

DF(x,y) =
[
2x 1
y 3y2+ x

]

, DF(1,2) =
[
2 1
2 13

]

, JF(1,2) = det
[
2 1
2 13

]

= 24.

The area of the image F(Br) of a small disk Br of radius r centered at (1,2) is
about 24 times as large as the area of Br. �

If a function X from R to Rn is differentiable at t, then by definition

X(t+h)−X(t)
h

−X′(t)
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tends to zero as h tends to zero. That means X′(t) is the limit of secant vectors
divided by h. Figure 3.2 illustrates that X′(t) is tangent to the curve at X(t).

If we think of X(t) as the position of a particle at time t, then X′(t) is the velocity
of the particle at time t and ||X′(t)|| is its speed.

t h+ta b

X’(t)

X(a) X(b)

h

X(t)

X(t+h)−X(t)

X(t+h)X

X(t+h)−X(t)

Fig. 3.2
X(t+h)−X(t)

h
tends to X′(t) as h tends to 0.

Example 3.7. Let X(t) = (cos t,sin t, t). The matrix derivative of X at t is

DX(t) = X′(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−sin t
cos t
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thinking of X′(t) as the velocity vector at time t we may write

X′(t) = (−sin t,cos t,1).
Its speed is ||X′(t)|| = √(−sin t)2+ (cos t)2+12 = √2. �

Definition 3.5. The vector of partial derivatives of a function f : Rn → R is
denoted

∇ f = ( fx1 , . . . , fxn) or grad f

and is called the gradient of f .

Example 3.8. Let f (x,y,z) = x2 sin(yz). By the calculations in Example 3.4,

∇ f (x,y,z) = (2xsin(yz),zx2 cos(yz),yx2 cos(yz))

and ∇ f (1, π2 ,2) =
(
0,−2,− π2

)
. �

Using the gradient notation the linear approximation of f (A+H) at A can be
written using the dot product

f (A+H) ≈ f (A)+∇ f (A) ·H.
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Definition 3.6. A function F from an open set U of Rn to Rm is called contin-
uously differentiable if it has partial derivatives that are continuous functions
on U. A continuously differentiable function is called a C1 function.

In Theorem 3.3 we have shown that a function of two variables that has contin-
uous partial derivatives is differentiable; the analogous theorem holds for functions
of several variables.

Theorem 3.4. If F from R
n to R

m is C1 on an open set U then F is differen-
tiable at each point of U.

In Problem 3.10 we show you how to extend the proof of Theorem 3.3 to prove
Theorem 3.4.

Problems

3.1. Find the partial derivatives.

(a) lim
h→0

(
3(x+h)2+4y

)− (3x2 +4y)
h

(b) lim
k→0

(
3x2 +4(y+ k)

)− (3x2 +4y)
k

3.2. Let f (x,y)= x2+3y. Find the linear approximation of f (x,y) near (2,4), and use
it to estimate f (2.01,4.03).

3.3. Find the indicated partial derivatives of the functions.

(a) fx(x,y) and fy(2,0) if f (x,y) = e−x
2−y2

(b)
∂

∂y
(
xey + yex

)

(c)
∂

∂x

(

cos(xy)+
∂

∂y
(
sin(xy)

)
)

3.4. Let f (x,y) = x2y3. Let (x,y) = (a+u,b+v). Use binomial expansion on the right
side of

x2y3 = (a+u)2(b+ v)3

to find the numbers c1, c2, c3 in

f (x,y) = c1+ c2(x−a)+ c3(y−b)+ · · ·
where the dots represent polynomials in (x−a) and (y−b) of degree 2 or more.
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(a) Express c1 in terms of f , a, and b.
(b) Express c2 and c3 in terms of partial derivatives of f at (a,b).
(c) Find functions � and s so that

f (a+u,b+ v) = f (a,b)+ �(u,v)+ s(u,v),

and � is linear, and s(u,v) is small compared to (u,v) as (u,v) tends to (0,0).

3.5. Two mathematics students are discussing the values of (1+ x+3y)2 for small x
and y. They find two linear functions �1 and �2 to help estimate the values,

(1+ x+3y)2 = (1+ x+3y)(1+ x+3y)

≈ (1)(1+ x+3y) = 1+ x+3y
︸︷︷︸
�1(x,y)

, and

(1+ x+3y)2 = 1+2x+6y+6xy+ x2 +9y2

≈ 1+2x+6y
︸��︷︷��︸
�2(x,y)

.

(x,y) (.1, .2) (.01, .02)

(1+ x+3y)2

1+ x+3y
1+2x+6y

Fill in the table of values, and observe that some linear functions track small
changes better than others.

3.6. Consider a linear function �(x,y,z) = ax+ by+ cz. Show that ∇� is constant.
Show that when a, b, c are not all zero ∇� is normal to the level set � = 0.

3.7. Consider two linear functions �(x,y) = x+ 2y and m(x,y) = −3�(x,y). Sketch
level sets � = −1,0,1 and m = −1,0,1. For which function are these more closely
spaced? Determine the gradient vectors ∇�(x,y) and ∇m(x,y). For which function
are these vectors longer?

3.8. Let X be in Rn. Find the gradients.

(a) ∇
(
2||X||1/2

)

(b) ∇
(
−||X||−1

)

(c) ∇
(
1
r
||X||r
)

, r � 0

3.9. Suppose a function F from R
n to Rm is differentiable at A. Justify the following

statements that prove
LAH = DF(A)H,

that is, the linear function LA in Definition 3.3 is given by the matrix of partial
derivatives DF(A).
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(a) There is a matrix C such that LA(H) = CH for all H.
(b) Let Ci be the i-th row of C. The fraction

||F(A+H)−F(A)−LA(H)||
||H|| =

||F(A+H)−F(A)−CH||
||H||

tends to zero as ||H|| tends to zero if and only if each component

fi(A+H)− fi(A)−CiH
||H||

tends to zero as ||H|| tends to zero.
(c) Set H = hE j in the i-th component of the numerator to show that the partial

derivative fi,x j(A) exists and is equal to the (i, j) entry of C.

3.10. Justify the following steps to prove Theorem 3.4, that a function with contin-
uous first partial derivatives is differentiable. In parts (a)-(d) we suppose f : Rn→ R

has continuous first partial derivatives at all points in a ball of radius r centered at
point P. In parts (e)-(f) we assume the components fi of F : Rn→ R

m have continu-
ous first partial derivatives at all points in a ball of radius r centered at point P. Let
H be a vector with ||H|| < r.
(a)

f (P+H)− f (P) = f (p1+h1, . . . , pn+hn)− f (p1, . . . , pn)

= f (p1+h1, p2+h2 . . . , pn+hn)− f (p1, p2+h2, . . . , pn+hn)

+ f (p1, p2+h2, p3+h3, . . . , pn+hn)− f (p1, p2, p3+h3, . . . , pn+hn)

+ · · ·
+ f (p1, p2, . . . , pn−1, pn+hn)− f (p1, p2, . . . , pn−1, pn).

(b) There are numbers 0 ≤ h′i ≤ hi such that

f (p1, . . . , pi−1, pi+hi, pi+1+hi+1, . . . , pn+hn)

− f (p1, . . . , pi−1, pi, pi+1+hi+1, . . . , pn+hn)

= hi fxi(p1, . . . , pi−1, pi+h
′
i , pi+1+hi+1, . . . , pn+hn).

(c) f (P+H)− f (P) =
n∑

i=1

hi fxi(p1, . . . , pi−1, pi+h
′
i , pi+1+hi+1, . . . , pn+hn).

(d)
f (P+H)− f (P)−H · ∇ f (P)

||H|| tends to zero as H tends to 0.

(e) Given ε > 0 there are numbers ri so that if ||H|| < ri, then
| fi(P+H)− f (P)−∇ fi(P) ·H|

||H|| < ε.

(f) Let r be the smallest of r1, . . . ,rm. Then if ||H|| < r,
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||F(P+H)−F(P)−DF(P)H||
||H|| < εm.

3.11. Define functions f and g from R
2 to R by

f (x,y) = cos(x+ y), g(x,y) = sin(2x− y).
Find the gradients ∇ f and ∇g, and show that

fx − fy = 0, gx +2gy = 0.

3.12. Let f1(x,y) = ex cosy, f2(x,y) = x2− y2. Find ∇ f1 and ∇ f2, and show that

∂

∂x
( fx)+

∂

∂y
( fy) = 0

for each of f1 and f2.

3.13. Let g(x,y) = eax+by, where a and b are some numbers. Find the gradient of g.

3.14. Let a, b, and c be some numbers, and define

f (x,y,z) = sin(ax+by+ cz).

Let C = (p,q,r) be a vector such that ap+bq+ cr = 0. Show that C · ∇ f = 0, that is,
p fx +q fy+ r fz = 0.

3.2 The tangent plane and partial derivatives

The geometric interpretation of the derivative f ′(a) of a function f of a single vari-
able is the slope of the line

y = f (a)+ f ′(a)(x−a)
tangent to the graph of the function. There is a similar geometric interpretation of the
partial derivatives of a function of two variables. Suppose f is differentiable at (a,b),
with partial derivatives fx(a,b) and fy(a,b) at (a,b). The geometric interpretation of
linear approximation is that the graph of

z = L(x,y) = f (a,b)+ fx(a,b)(x−a)+ fy(a,b)(y−b)
is the plane tangent to the graph of f at the point

(
a,b, f (a,b)

)
. Rewriting the equa-

tion
fx(a,b)(x−a)+ fy(a,b)(y−b)+ (−1)(z− f (a,b)

)
= 0 (3.8)

we see that a normal to the tangent plane is the vector
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N = ( fx(a,b), fy(a,b),−1).
If f is differentiable at (a,b) we say N is normal to the graph of f at

(
a,b, f (a,b)

)
.

x

a y

b

z

Fig. 3.3 A graph partly cut away for clarity at its intersections with planes x = a and y = b.

Another way to obtain an equation for the plane tangent to the graph of f at (a,b)
is to intersect the graph of f with the planes x = a and y = b (see Figure 3.3), and use
the lines tangent to the resulting curves to determine the tangent plane.

In the plane x = a an equation for the line tangent to the curve at
(
a,b, f (a,b)

)
is

c1(t) =
(
a,b, f (a,b)

)
+ t
(
0,1, fy(a,b)

)
.

Similarly, an equation for the line tangent to the intersection curve in the plane y = b
is

c2(s) =
(
a,b, f (a,b)

)
+ s
(
1,0, fx(a,b)

)
.

As we saw in Section 1.9 a parametric equation for the plane determined by these
two lines is

P(s, t) =
(
a,b, f (a,b)

)
+ s
(
1,0, fx(a,b)

)
+ t
(
0,1, fy(a,b)

)
.

A normal to this plane is the cross product of the two tangent vectors,

(
1,0, fx(a,b)

)× (0,1, fy(a,b)) = (− fx(a,b),− fy(a,b),1)
which is a normal to the tangent plane given by equation (3.8).

Example 3.9. Let f (x,y) = x1/2y1/3.

(a) Find an equation of the plane tangent to the graph of f at (1,−1), and
(b) Use the linear approximation of f at (1,−1) to estimate f (.9,−1.1).
We have fy(x,y) = 1

3 x
1/2y−2/3 and fx(x,y) = 1

2 x
−1/2y1/3. Since fx and fy are

continuous near (1,−1), f is differentiable at (1,−1).
f (1,−1) = −1, fy(1,−1) = 1

3 , fx(1,−1) = − 1
2 .

(a) An equation for the plane tangent to the graph of f at (1,−1) is

http://dx.doi.org/10.1007/978-3-319-74073-7_1
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z = f (1,−1)+ fx(1,−1)(x−1)+ fy(1,−1)(y−(−1))=−1− 1
2 (x−1)+ 1

3 (y+1),

or 3x−2y+6z+1 = 0.
(b) To approximate f (.9,−1.1) we use the linear approximation

L(x,y) = f (1,−1)+ fx(1,−1)(x−1)+ fy(1,−1)(y− (−1)).
L(.9,−1.1) = −1− 1

2 (.9−1)+ 1
3 (−1.1+1) = −1+ 1

20 − 1
30 = −.9833 . . . ,

a good approximation of f (.9,−1.1) = −.9793 . . ..
�

Example 3.10. Find all points on the graph of

f (x,y) = x2−2xy− y2 +6x−6y
where the tangent plane is horizontal. The function f has continuous partial
derivatives fx = 2x−2y+6 and fy =−2x−2y−6, so f is differentiable at every
point. A tangent plane to the graph of f at (x,y) is horizontal if fx(x,y) = 0
and fy(x,y) = 0. The equations 2x− 2y+ 6 = 0 and −2x− 2y− 6 = 0 have the
solution y = 0 and x = −3. There is one point on the graph with horizontal
tangent plane, (−3,0,−9). �

If two C1 functions f and g have the same value f (a,b) = g(a,b) and the
same partial derivatives at (a,b), then their graphs have the same tangent plane at
(
a,b, f (a,b)

)
, and we say that the graphs are tangent at that point.

Example 3.11. To find points of tangency of the graphs of

f (x,y) = x2−2xy− y2
g(x,y) = x2−3xy+4x−16

and the common tangent plane we look for points where the normal vectors,
(2x−2y,−2x−2y,−1) and (2x−3y+4,−3x,−1), are multiples of each other.
Since the third components are equal this only happens when

2x−2y = 2x−3y+4
−2x−2y = −3x,

which are satisfied by y = 4 and x = 8. We verify that the point (8,4,−16) is
on both graphs. Therefore there is a common tangent plane

z = −16+8(x−8)−24(y−4)
at the point (8,4,−16). �
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Problems

3.15. Find an equation for the plane tangent to the graph of f (x,y) = x+ y2,

(a) at (x,y) = (0,0),
(b) at (x,y) = (1,2).

3.16. Let f (x,y) =
√
1− x2− y2.

(a) Sketch the graph of f .
(b) Find an equation of the plane tangent to the graph of f at (x,y) = (

√
.4,
√
.5).

 1

-2 -1  1  2

f

g

Fig. 3.4 Cross sections of graphs of f and g in Problem 3.17.

3.17. Let f (x,y) = e−(x2+y2) and g(x,y) =
e−1

x2+ y2
.

(a) Show that f (a,b) = g(a,b) at every point (a,b) where a2+b2 = 1.
(b) Find the gradients ∇ f and ∇g.
(c) Show that the graph of f is tangent to the graph of g at every point (a,b) where

a2+b2 = 1.

See Figure 3.4 for cross sections of graphs of f and g.

3.3 The Chain Rule

Composition. There are many types of functions of several variables so the formula
for the Chain Rule takes several forms. Here is one of them.
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Theorem 3.5. Chain Rule 1 (for curves). Let f from R
2 to R be continu-

ously differentiable on an open set U, and let X(t) =
(
x(t),y(t)

)
be a differen-

tiable function from an open interval I to U. Then the composition f
(
x(t),y(t)

)

is a differentiable function from I to R and

d
dt

f
(
x(t),y(t)

)
=
∂ f
∂x

dx
dt
+
∂ f
∂y

dy
dt
.

The right side can be written as the dot product

= ∇ f (x(t),y(t)) ·X′(t).

(x(t+h),y(t+h))(x(t),y(t+h))

(x(t),y(t))

U

Fig. 3.5 Line segments used in the proof of Theorem 3.5.

Proof. BecauseX is continuous, we know that for h sufficiently small, h� 0, the line
segments from

(
x(t),y(t)

)
to
(
x(t),y(t+h)

)
and from

(
x(t),y(t+h)

)
to
(
x(t+h),y(t+h)

)

in Figure 3.5 are in U. Rewrite

f
(
x(t+h),y(t+h)

)− f
(
x(t),y(t)

)

as

=
(
f
(
x(t+h),y(t+h)

)− f
(
x(t),y(t+h)

))
+
(
f
(
x(t),y(t+h)

)− f
(
x(t),y(t)

))
.

By the Mean Value Theorem for single variable functions there is a number x∗
between x(t+h) and x(t) for which

f
(
x(t+h),y(t+h)

)− f
(
x(t),y(t+h)

)
= fx
(
x∗,y(t+h)

)(
x(t+h)− x(t)).

Similarly there is a number y∗ between y(t) and y(t+h) so that

f
(
x(t),y(t+h)

)− f
(
x(t),y(t)

)
= fy
(
x(t),y∗

)(
y(t+h)− y(t)).

Now divide by h; we get
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f
(
x(t+h),y(t+h)

)− f
(
x(t),y(t)

)

h

=
f
(
x(t+h),y(t+h)

)− f
(
x(t),y(t+h)

)

h
+

f
(
x(t),y(t+h)

)− f
(
x(t),y(t)

)

h

=
fx
(
x∗,y(t+h)

)(
x(t+h)− x(t))
h

+
fy
(
x(t),y∗

)(
y(t+h)− y(t))
h

.

As h tends to zero
x(t+h)− x(t)

h
and

y(t+h)− y(t)
h

tend to x′(t) and y′(t). Since fx

and fy are continuous, fx
(
x∗,y(t+ h)

)
tends to fx

(
x(t),y(t)

)
and fy

(
x(t),y∗

)
tends to

fy
(
x(t),y(t)

)
as h tends to zero. Hence

d
dt

f
(
x(t),y(t)

)
= fx
(
x(t),y(t)

)
x′(t)+ fy

(
x(t),y(t)

)
y′(t) = ∇ f (x(t),y(t)) ·X′(t).

��

Example 3.12. For 0≤ t ≤ 1, X(t)= (x(t),y(t))= (t,2t) is the straight path from
the origin to point (1,2). Let

f (x,y) = x2+ y4.

The derivatives of X and f are X′(t) = (1,2), , ∇ f = (2x,4y3). By the Chain
Rule,

d
dt

f (X(t)) = ∇ f (x(t),y(t)) ·X′(t) = (2(t),4(2t)3) · (1,2) = 2t+64t3.

Alternatively, the composite of f and X is

f (X(t)) = t2+16t4,

and the derivative is
d
dt
(t2 + 16t4) = 2t + 64t3 as we found using the Chain

Rule. �
We proved the Chain Rule for curves in R

2 and functions from R
2 to R. The

analogous theorem can be proved in n dimensions.

Theorem 3.6. Chain Rule 1 (for curves). Let f from R
n to R have continu-

ous partial derivatives on an open set U, and let X(t) =
(
x1(t), . . . , xn(t)

)
be a

differentiable function from an open interval I in R into U. Then the composite
f (X(t)) is differentiable on I and

d
dt

f (X(t)) =
∂ f
∂x1

dx1
dt
+ · · ·+ ∂ f

∂xn

dxn
dt
= ∇ f (X(t)) ·X′(t) = Df (X(t))DX(t).
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Example 3.13. LetX(t)= (cos t,sin t, t), −∞< t <∞ be a curve in R3 that gives
the position of a particle at time t. Let

f (x,y,z) = e−x
2−y2−z2

represent the temperature of the particle at point (x,y,z). Then the composite

f (X(t)) = e−(1+t
2)

is the temperature of the particle at time t. The rate at which the temperature
of the particle changes with respect to time is

d
dt

f (X(t)) = −2te−(1+t2).

We calculate derivatives: the velocity of the particle at time t,

X′(t) = (−sin t,cos t,1),
and the gradient of the temperature at (x,y,z)

∇ f (x,y,z) = −2e−x2−y2−z2 (x,y,z).
Using the Chain Rule we have that the rate at which the temperature of the
particle changes with respect to time is

d
dt

f (X(t)) = ∇ f (X(t)) ·X′(t)

= −2e−(1+t2)(cos t,sin t, t) · (−sin t,cos t,1) = −2te−(1+t2).
�

Directional derivative. The rate at which a function f from R
n to R changes as we

move from a point P along the straight line X(t) = P+ tV, −h ≤ t ≤ h is

lim
t→0

f
(
X(t)
)− f
(
X(0)
)

t−0 =
d
dt

f
(
X(t)
)
∣∣∣∣∣
t=0
.

By the Chain Rule for curves

d
dt

f (X(t)) = ∇ f (X(t)) ·X′(t).

At t = 0
∇ f (X(0)) ·X′(0) = ∇ f (P) ·V.
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Definition 3.7. Let f be a C1 function from an open set in Rn containing P to
R, and let V be a unit vector in Rn. We call

∇ f (P) ·V
the directional derivative of f at P in the direction ofV, and denote it DV f (P).

The directional derivative gives insight into the gradient of f at P. Since ||V|| = 1,
DV f (P) = ∇ f (P) ·V = ||∇ f (P)||cosθ

where θ is the angle between ∇ f (P) and V. We see that the directional derivative is
greatest when cosθ = 1, i.e., when V is in the direction of ∇ f (P). The unit vector in
the direction of the gradient of f at P is

∇ f (P)
||∇ f (P)|| .

Therefore the greatest directional rate of change in f at P is in the direction of the
gradient and is

∇ f (P) · ∇ f (P)||∇ f (P)|| = ||∇ f (P)||.

Example 3.14. Let f (x,y,z) = x+y2+z4. Find the direction and magnitude of
the greatest directional derivative of f at (3,2,1).

∇ f = (1,2y,4z3), ∇ f (3,2,1) = (1,4,4).
The greatest rate of change in f at (3,2,1) is

||∇ f (3,2,1)|| =
√
12+42+42 =

√
33 = 5.744 . . .

and this occurs in the direction of (1,4,4). �

Example 3.15. Let f (x,y,z) = x+ y2 + z4. In which directions is the rate of
change of f at (3,2,1) zero? From Example 3.14,

∇ f (3,2,1) = (1,4,4).
The directional derivative DV f (3,2,1) is zero if (1,4,4) ·V = 0. That is, if
we move from (3,2,1) in any direction orthogonal to the gradient, the rate of
change is zero. �

The gradient and level sets. Let k be a number, and consider the level set S given
by f (x,y,z) = k. We assume

• a point (a,b,c) is on S , so f (a,b,c) = k
• f is C1 on S
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• ∇ f (a,b,c) � 0
We show that ∇ f (a,b,c) is normal to S .

Suppose X(t) is a differentiable curve in S that goes through (a,b,c) at t = t0.
Then

f
(
X(t)
)
= k, and

d
dt

f (X(t))
∣∣∣∣∣
t=t0
=

d
dt
k = 0.

By the Chain Rule,
d
dt

f
(
X(t)
)
∣∣∣∣∣
t=t0
= ∇ f (X(t0)) ·X′(t0).

Combining these two expressions we get

0 = ∇ f (X(t0)) ·X′(t0).
Therefore ∇ f (a,b,c) is orthogonal to the tangent vector of every differentiable curve
in S through (a,b,c). This is what we mean when we say that ∇ f (a,b,c) is normal
to S at (a,b,c). See Figure 3.6. The Implicit Function Theorem in Section 3.4 will
show that there is a tangent plane to S at (a,b,c) and that it is the set of points (x,y,z)
that satisfy

∇ f (a,b,c) · (x−a,y−b,z− c) = 0. (3.9)

(a, b, c) = X(t0)

∇f(a, b, c)

f(x, y, z) = k

X (t0)

Fig. 3.6 ∇ f (a,b,c) is normal to the k level set f (x,y,z) = k at (a,b,c).

Example 3.16. Find the plane tangent to the level set

xyz+ z3 = 3

at the point (1,2,1). Let f (x,y,z) = xyz+ z3. Then ∇ f = (yz, xz, xy+3z2) and
∇ f (1,2,1) = (2,1,5). The tangent plane is given by

(2,1,5) · (x−1,y−2,z−1) = 0.
�
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A

0
X

Fig. 3.7 A sphere and its tangent plane at A, A · (X−A) = 0. See Example 3.17.

Example 3.17. Let S be the sphere of radius R in R
3 centered at the origin,

satisfying
x2+ y2+ z2 = R2.

S is the R2 level set of the function f (x,y,z) = x2 + y2 + z2. The gradient of f
is

∇ f (x,y,z) = (2x,2y,2z).
Using (3.9) the tangent plane at a point (a,b,c) on S has equation

2(a,b,c) · (x−a,y−b,z− c) = 0.
Let A = (a,b,c) and X = (x,y,z). Then the equation of the tangent plane (see
Figure 3.7) to the sphere S can also be written

A · (X−A) = 0.
�

Let S be the graph of a function f from R
2 to R. We can define a new function

from R
3 to R by

g(x,y,z) = f (x,y)− z.
The level surface g(x,y,z) = 0 is the same set of points in R

3 as the graph of f . The
gradient of g is

∇g =
(∂g
∂x
,
∂g
∂y
,
∂g
∂z

)
=
(∂ f
∂x
,
∂ f
∂y
,−1
)
.

Using (3.9) the equation of the plane tangent to the level surface g(x,y,z) = 0 at the
point

(
a,b, f (a,b)

)
is

∇g(a,b, f (a,b)) · (x−a,y−b,z− f (a,b)
)

=
(
fx(a,b), fy(a,b),−1) · (x−a,y−b,z− f (a,b)

)
= 0,
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which we rewrite as fx(a,b)(x− a)+ fy(a,b)(y− b)− (z − f (a,b)
)
= 0 as we found

earlier.
The Chain Rule also holds if the first function in the composition is a function of

n variables and the second maps R to R.

Theorem 3.7. Chain Rule 2. Suppose y = f (x1, . . . , xn) is continuously dif-
ferentiable on an open set U in R

n and z = g(y) is continuously differentiable
on an open interval V in R that contains the range of f . Then the composite
g
(
f (x1, . . . , xn)

)
is continuously differentiable on U and for each xi

∂

∂xi

(
g( f (x1, . . . , xn)

)
=
dg
dy
∂ f
∂xi
, (i = 1, . . . ,n).

Therefore

D(g◦ f )(X) = dg
dy
∇ f (X).

Proof. Since f and g are continuously differentiable onU and V their partial deriva-
tives exist and are continuous there. By the Chain Rule for single variable functions

dz
dy
∂y
∂xi
=
∂z
∂xi
.

Since
∂z
∂xi

is a product of continuous functions these partial derivatives are continu-

ous on U. ��
The most general form of the Chain Rule can be proved for compositions of

continuously differentiable functions X from R
k to Rm and F from R

m to Rn.

Theorem 3.8. Chain Rule. Let U be an open set in Rk, and let V be an open
set in Rm. Suppose that X(T) =

(
x1(t1, . . . , tk), . . . , xm(t1, . . . , tk)

)
is continuously

differentiable on U and F(X) =
(
y1(x1, . . . , xm), . . . ,yn(x1, . . . , xm)

)
is continu-

ously differentiable on V, and that the range of X is contained in V. Then the
composite F(X(T)) is continuously differentiable on U and the derivative of
the composite is the product of the derivative matrices:

D(F◦X)(T) = DF
(
X(T)

)
DX(T).

Componentwise we can write this relation as

∂yi
∂t j
=
∂yi
∂x1

∂x1
∂t j
+
∂yi
∂x2

∂x2
∂t j
+ · · ·+ ∂yi

∂xm

∂xm
∂t j
.

Figure 3.8 illustrates the composition of a function from R
3 to R2 and a function

from R
2 to R.
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T = (t1, t2, t3)

X X(T) = (x1(T), x2(T))

f

y = f (X(T))

Fig. 3.8 A composition of functions R3→ R
2→ R.

Proof. Consider each component function fi
(
X(t)
)
= yi as a function of a single

variable t j by holding the other tk constant. We can use the Chain Rule for curves,
Theorem 3.6, to find the partial derivative of the composite fi(X(T)) with respect to
t j. This gives

∂yi
∂t j
=
∂yi
∂x1

∂x1
∂t j
+
∂yi
∂x2

∂x2
∂t j
+ · · ·+ ∂yi

∂xm

∂xm
∂t j
. (3.10)

Since we have assumed that the partial derivatives of X and F are continuous, each
such partial derivative is continuous on U. Hence F ◦X is C1 on U. By Theo-
rem 3.4 F◦X is differentiable on U.

The partial derivative
∂yi
∂t j

is by definition the i, j entry of the matrix

D(F◦X)(T).
According to (3.10) it is also the i, j entry of the product

DF
(
X(T)

)
DX(T),

where

DF(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂y1
∂x1

∂y1
∂x2
. . . . . .

∂y2
∂x1

∂y2
∂x2
. . . . . .

...
...
...
...

∂yn
∂x1
. . . . . .

∂yn
∂xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, DX(T) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1
∂t1

∂x1
∂t2
. . . . . .

∂x2
∂t1

∂x2
∂t2
. . . . . .

...
...
...
...

∂xm
∂t1
. . . . . . ∂xm∂tk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

��
We can use the Chain Rule to get another version of the Mean Value Theorem.
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Theorem 3.9. Mean Value Theorem Let F =
(
f1, f2, . . . , fm

)
be a C1 map

from R
n to R

m, on an open set in R
n that contains points A, A+H, and the

line segment
A+ tH, 0 ≤ t ≤ 1

joining them. Then there exist numbers θ1, θ2, . . . , θm, with 0 < θi < 1 such that

F(A+H)−F(A) =MH

where M is the m by n matrix whose i-th row is ∇ fi(A+ θiH).

Proof. Let φi(t) = fi(A+ tH), 0 ≤ t ≤ 1. Then
φi(0) = fi(A), φi(1) = fi(A+H).

By the Mean Value Theorem for single variable functions, there exists a number θi
between 0 and 1 so that

φ′i (θi) = φi(1)−φi(0) = fi(A+H)− fi(A).

By the Chain Rule,
φ′i (t) = ∇ fi(A+ tH) ·H.

Therefore for each component of F(A+H)−F(A) we have
fi(A+H)− fi(A) = ∇ fi(A+ θiH) ·H.

This shows that F(A+H)−F(A) =MH. ��
Second derivatives. We turn now to second partial derivatives.

Definition 3.8. A function f defined in an open disk in the x, y plane is twice
continuously differentiable in the disk if its partial derivatives fx and fy exist
and have continuous partial derivatives. The partial derivatives of fx and fy are
denoted as fxx, fxy and fyx, fyy. They are called the second partial derivatives
of f .

A twice continuously differentiable function is called a C2 function.
The following result is basic:

Theorem 3.10. For a twice continuously differentiable function f on an open
disk in the x, y plane, the mixed second partial derivatives are equal:

fxy = fyx.
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Proof. Let (a,b) be a point in the open disk where f is twice continuously differ-
entiable, and consider the following combination of translates of f in the x and y
directions: Define

C(h,k) = f (a+h,b+ k)− f (a,b+ k)−
(
f (a+h,b)− f (a,b)

)
(3.11)

and let p and q be the functions

p(x) = f (x,b+ k)− f (x,b), q(y) = f (a+h,y)− f (a,y).

We can write C(h,k) in two different ways as

C(h,k) = p(a+h)− p(a)
= q(b+ k)−q(b).

Applying the Mean Value Theorem twice for single variable functions to C(h,k) we
get that there is a number h1 between 0 and h and a number k1 between 0 and k such
that

C(h,k) = hp′(a+h1) = h
(
fx(a+h1,b+ k)− fx(a+h1,b)

)
= hk fxy(a+h1,b+ k1).

Similarly there are h2 and k2 such that

C(h,k) = kq′(b+ k2) = k
(
fy(a+h,b+ k2)− fy(a,b+ k2)

)
= hk fyx(a+h2,b+ k2).

This shows that
fxy(a+h1,b+ k1) = fyx(a+h2,b+ k2).

Since fxy and fyx are assumed to be continuous functions, the left side tends to
fxy(a,b), and the right to fyx(a,b) as h and k tend to zero. This proves that the mixed
second partial derivatives are equal. ��

Problems

3.18. Find the following derivatives or partial derivatives.

(a)
d
dx
(
f (x)
)3, where f is a differentiable function from R to R

(b)
∂

∂x
(y+ x2)3

(c)
∂

∂x
g(y+ x2), where g is a differentiable function from R to R

(d)
∂

∂y
(
f (x,y)

)3, where f is a differentiable function from R to R.

3.19. Find the derivatives fxx, fxy, and fyy.

(a) f (x,y) = x2− y2
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(b) f (x,y) = x2+ y2

(c) f (x,y) = (x+ y)2

(d) f (x,y) = e−x cosy
(e) f (x,y) = e−ay sin(ax), a constant

3.20. Express the indicated derivatives of f as a constant multiple of f if this is
possible. For example

f (x,y) = yeax, fxx = a
2 f .

(a) f (x,y) = e−x cosy, fxx +2 fyy =? (constant) f
(b) f (x,y) = e−ay sin(ax), fxx =? (constant) f
(c) f (x, t) = sin(x−3t), fx −2 ft =? (constant) f
(d) f (x, t) = cos(x+ ct), fxx −a ftt =? (constant) f

f = 17

y
f = 14

Q

P

A

B
x

U

U

f = 13

f = 10

Fig. 3.9 Level sets for Problem 3.21.

3.21. Some level sets of a differentiable function f from R
2 to R are sketched in

Figure 3.9. Which of the following derivatives are positive?

(a) fx(A)
(b) fy(B)
(c) DU f (P) = U · ∇ f (P)
(d) DU f (Q)

3.22. Recall the addition formulas

cos(u+ v) = cosucosv− sinusinv, sin(u+ v) = sinucosv+ cosusinv.

(a) Use the addition formulas and the change of coordinates x = r cosθ, y = r sinθ to
express the following functions, given in polar coordinates, in terms of x and y:

f1 = r
2 cos(2θ) f2 = r

−2 sin(2θ) f3 = r
3 sin(3θ)

(b) Show that each function in part (a) satisfies the equation fxx + fyy = 0.
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3.23. Let f (x,y) = 4+ 3x+ 2y+ xy and A = (1,1). Find the directional derivatives
DV f (A) = V · ∇ f (A) in each direction.

V = (1,0), V =
( 4
5 ,

3
5
)
, V = (0,1), V =

(− 3
5 ,

4
5
)
, V = (−1,0).

Why is one of these derivatives equal to ||∇ f (A)||?

yx

z

a b

Fig. 3.10 A loaf of bread illustrates a mixed derivative fxy in Problem 3.24.

3.24. Imagine a region in space occupied by a loaf of bread, and let f (a,b) be the
volume of bread in the region where x< a and y< b, as in Figure 3.10. The following
arguments illustrate fxy = fyx.

(a) Note the difference quotient
f (a+h,b)− f (a,b)

h
; the numerator is the volume of

a certain slice of bread, and the denominator is the thickness.
(b) Conclude that fx(a,b) is the area of the shaded x = a cross section.
(c) Explain similarly why fy(a,b) is the area of the unshaded y = b cross section.

(d) Note the difference quotient
fx(a,b+ k)− fx(a,b)

k
; the numerator is the area of a

certain object, and the denominator is its width.
(e) Conclude that fxy(a,b) is the length of the vertical segment at the corner where

x = a, y = b.
(f) Conclude by a similar argument that fyx(a,b) is also the length of the same seg-

ment.

3.25. Consider the partial differential equation

ut +3ux = 0 (3.12)

for a differentiable function u(x, t).

(a) Suppose f is a differentiable function of one variable. Show that the function
u(x, t) = f (x−3t) satisfies (3.12).
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(b) Let V = 1√
10
(3,1). Show that if u(x, t) satisfies (3.12) then the directional deriva-

tive
DVu = 0.

(Here coordinates inR2 are (x, t).) Therefore u is constant on lines that are parallel
to V.

(c) Show that the line that goes through point (x, t) and that is parallel to V also goes
through the point (x−3t,0).

(d) Show that every solution u(x, t) has the property u(x, t) = u(x− 3t,0), i.e., is a
function of x−3t.

3.26. Let a(x,y) be a continuously differentiable function of x and y, and define
b(x) = a(x, x). Show that b is a differentiable function.

3.27. Consider a function that depends only on the distance to the origin, that is,

f (x,y) = g(r), r =
√

x2+ y2,

for some function g of one variable.

(a) Find the function g(r) in the case f (x,y) = (x2+ y2)3, and verify the relation

x fx + y fy = rgr. (3.13)

(b) Use the Chain Rule to show that relation (3.13) holds for all differentiable func-
tions f that depend only on r as f (x,y) = g(r).

(c) Show that for twice differentiable functions of the form f (x,y) = g(r),

fxx + fyy = grr +
1
r
gr.

3.28. For functions f of two variables let Δ f = fxx + fyy. Let a,b, p be numbers.

(a) Find examples of polynomials f (x,y) = ax2 +by2 for which Δ f is positive, zero,
or negative.

(b) Evaluate Δ f for the functions f (x,y) = x4+ y4, f (x,y) = (x2+ y2)p.
(c) Show that Δ

(
log(x2+ y2)

)
= 0. What is the domain of log(x2+ y2)?

3.29. Suppose u(x,y) is a C2 function from R
2 to R. After a change to polar coordi-

nates u(x,y) = u(r cosθ,r sinθ) we have

ur =
∂u
∂x
∂x
∂r
+
∂u
∂y
∂y
∂r
, uθ =

∂u
∂x
∂x
∂θ
+
∂u
∂y
∂y
∂θ
.

Use the Chain Rule to show that

uxx +uyy = urr +
1
r
ur +

1

r2
uθθ.

3.30. Show that the function u(x, t) = t−1/2e−x2/4t (t > 0) satisfies ut = uxx.



132 3 Differentiation

3.31. Let u(x,y) = x2− y2 and v(x,y) = 2xy.

(a) Show that ux = vy and uy = −vx.
(b) Show that uxx +uyy = 0.
(c) Define w(x,y) = u(u(x,y),v(x,y)). Show that wxx +wyy = 0.
(d) Suppose p, q, and r are a C2 functions such that

px = qy, py = −qx, rxx + ryy = 0.

Define w(x,y) = r(p(x,y),q(x,y)). Show that wxx +wyy = 0.

3.32. Given twice differentiable functions f and g, use the Chain Rule to express
the following derivatives of

u(x, t) = f (x+4t)+g(x−4t)
in terms of f , g, f ′, g′, f ′′, g′′.

(a) ux and ut
(b) uxx and utt
(c) ut +4ux.
(d) utt −16uxx.
3.33. Let z = x+ iy be a complex number, and f (z) = u(x,y)+ iv(x,y) a complex
valued function.

(a) For f (z) = z2, find u(x,y) and v(x,y).
(b) Define f to be differentiable at z if there is a complex number m so that for all

complex h near 0 the change

f (z+h)− f (z)

is well approximated by mh. Thus

f (z+h) = f (z)+mh+ r(h)

where r is some function that is small in the sense that
r(h)
h

tends to zero as the

complex number h tends to zero. Define f ′(z) = m. Show that
(
z2
)′
= 2z.

(c) Suppose f = u+ iv is differentiable. Take h real in part (b) to show that f ′ is equal
to the partial derivative ux + ivx.

(d) Take h imaginary, and show that f ′ is equal to −iuy+ vy.
(e) If f = u+ iv is differentiable conclude that

ux =vy
uy =− vx

(f) Assume that u and v have continuous second partial derivatives. Deduce that
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uxx +uyy = 0, vxx + vyy = 0,

and verify these for the cases f (z) = z2 and f (z) = z3.

3.34. Justify the following steps to prove

d
dt

∫ y2(t)

y1(t)
g(x, t)dx =

∫ y2(t)

y1(t)
gt(x, t)dx+g

(
y2(t), t

)
y′2(t)−g

(
y1(t), t

)
y′1(t)

where g(x, t) is continuously differentiable in (x, t) and y1(t) and y2(t) are continu-
ously differentiable functions of one variable.

(a) Define f (u,v,w) =
∫ v

u
g(x,w)dx. Use the Fundamental Theorem of Calculus to

show that
fu(u,v,w) = −g(u,w), fv(u,v,w) = g(v,w).

(b) Use differentiation under the integral to show that

fw(u,v,w) =
∫ v

u

dg
dw

(x,w)dx.

(c) Show that
d
dt

f (y1(t),y2(t), t) = fuy
′
1(t)+ fvy

′
2(t)+ fw.

3.4 Inverse functions

We recall the following result about differentiable functions of a single variable:

Let f be a continuously differentiable function of a single variable x on an open
interval, and suppose that at some point a in the interval, f ′(a) is nonzero. Then
f maps a sufficiently small interval around the point a one to one onto an interval
around the point f (a). Denote the inverse function of f by g, then g is differentiable

at f (a), and g′
(
f (a)
)
=

1
f ′(a)

.

In this section we state and prove the analogous theorem for functions from R
2

to R
2. That is, if a C1 function F has an invertible derivative matrix at A then there

is a disk about A where F has a differentiable inverse function. First we compare
linear approximations of F at different points near A.

Suppose F(x,y)=
(
f (x,y),g(x,y)

)
= (u,v) is a continuously differentiable function

on an open set O in R
2 and that A = (a,b) is a point in O. By the definition of

differentiability f and g can be well approximated near (a,b) by a constant plus
linear function in the sense
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u = f (x,y) = f (a,b)+ fx(a,b)(x−a)+ fy(a,b)(y−b)+ r1(x−a,y−b)
v = g(x,y) = g(a,b)+gx(a,b)(x−a)+gy(a,b)(y−b)+ r2(x−a,y−b) (3.14)

where |r1(x−a,y−b)|
√
(x−a)2+ (y−b)2

and
|r2(x−a,y−b)|
√
(x−a)2+ (y−b)2

tend to zero as
√
(x−a)2+ (y−b)2 tends to zero.

Vector and matrix notation simplifies the description. Denote the vectors

A =
[
a
b

]

, X =
[
x
y

]

, P = X−A =
[
x−a
y−b

]

, U =
[
u
v

]

.

Denote the functions F(X) =
[
f (x,y)
g(x,y)

]

, the linear function

LA(P) =
[
fx(a,b) fy(a,b)
gx(a,b) gy(a,b)

]

P = DF(A)P

and the remainder function R(P) =
[
r1(x−a,y−b)
r2(x−a,y−b)

]

. Then the vector notation for

(3.14) is

U = F(X) = F(A+P) = F(A)+LA(P)+R(P). (3.15)

The next lemma compares the remainders R(P) and R(Q) at different points
near A.

Lemma 3.1. Let F =
(
f ,g
)
be a continuously differentiable function defined

on an open set O in R2. Then for every A in O there is a disk Nr centered at A
of radius r > 0 so that

||R(P)−R(Q)|| ≤ s(P,Q)||P−Q|| (3.16)

for all A+P and A+Q in Nr, and s(P,Q) tends to zero as r tends to zero.

Proof. Let Nr be an open ball centered at A that is contained in O. For ||P|| and ||Q||
less than r, A+P and A+Q are in O. By (3.15)

R(P) = F(A+P)−F(A)−LA(P),

R(Q) = F(A+Q)−F(A)−LA(Q).

Subtract R(Q) from R(P). By the linearity of LA we get

R(P)−R(Q) = F(A+P)−F(A+Q)−LA(P−Q).
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Since A+P and A+Q are in Nr the segment from A+Q to A+P is in Nr. By the
Mean Value Theorem 3.9 there is a matrixM with rows

∇ fi(A+Q+ θi(P−Q)
)
, i = 1,2, 0 < θi < 1,

for which
F(A+P)−F(A+Q) =M(P−Q).

Therefore

R(P)−R(Q) =M(P−Q)−LA(P−Q)

=M(P−Q)−DF(A)(P−Q) =
(
M−DF(A))(P−Q).

Taking the norm of both sides and applying Theorem 2.2 we get

||R(P)−R(Q)|| ≤ ||M−DF(A)||||P−Q||.
This is inequality (3.16) with s(P,Q)= ||M−DF(A)||. By the continuity of the partial
derivatives, as r tends to zero, M tends to DF(A) so ||M−DF(A)|| tends to zero. ��

Theorem 3.11. Inverse function. Let U = F(X) be a continuously differen-
tiable function from R

2 to R
2 defined on an open set containing A. If DF(A)

is invertible, then F maps in a one to one way a sufficiently small disk around
A onto a set of points in the U plane that includes all points in some circular
disk around the point F(A). That is, on a small enough disk centered at A, F
has an inverse, G, that is differentiable at F(A) and DG

(
F(A)
)
= DF(A)−1.

Proof. (i) We show first that the function U = F(X) is one to one for X near A.
Suppose that F(X) = F(Y), where

X = A+P, Y = A+Q.

We use formula (3.15) to express both F(A+P) and F(A+Q):

F(A+P) = F(A)+LA(P)+R(P), F(A+Q) = F(A)+LA(Q)+R(Q).

If F(A+P) is equal to F(A+Q), then

LA(P)+R(P) = LA(Q)+R(Q),

which implies that
LA(P−Q) = R(Q)−R(P). (3.17)

The matrix DF(A) representing LA was assumed to be invertible. Multiply both
sides of (3.17) by DF(A)−1. We get

P−Q = DF(A)−1(R(P)−R(Q)).

http://dx.doi.org/10.1007/978-3-319-74073-7_2
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Since the two sides are equal, so are their norms:

||P−Q|| = ||DF(A)−1(R(P)−R(Q))|| ≤ ||DF(A)−1|| ||R(P)−R(Q)||. (3.18)

By Lemma 3.1 we can choose r so small that |s(P,Q)| < 1
2

∣∣∣
∣∣∣DF(A)−1

∣∣∣
∣∣∣
−1
. Then by

(3.16)

||R(P)−R(Q)|| ≤ 1

2||DF(A)−1|| ||P−Q|| for A+P and A+Q in Nr (3.19)

where Nr is the disk of radius r centered at A. Using (3.19) to estimate the right side
of (3.18) we get

||P−Q|| ≤ ||DF(A)−1|| 1

2||DF(A)−1|| ||P−Q|| =
1
2
||P−Q||. (3.20)

From this it follows that ||P−Q|| = 0; but then P =Q. This proves that the mapping
U = F(X) is one to one for ||X−A|| < r. Therefore F has an inverse function. Call
it G.

(ii) Next we show that the range of F includes all points in some small disk
around F(A). Let U be such a vector. We shall construct a vector X = A+P that is
in Nr and satisfies

U = F(X) = F(A)+LA(P)+R(P). (3.21)

Here r is the number determined in the proof of part (i). We construct P as the limit
of a sequence of approximations Pn defined recursively as follows:

P0 = 0,

U = F(A)+DF(A)Pn+R(Pn−1). (3.22)

Multiply equation (3.22) by DF(A)−1 to express Pn as

Pn = DF(A)−1
(
U−F(A)−R(Pn−1)

)
. (3.23)

By Lemma 3.1, R is continuous.
If the sequence Pn converges to a point P then (3.21) follows from (3.22).
To prove that the sequence Pn converges to a point P with A+P in Nr, we first

show by induction that for all j

||P j−P j−1|| < r

2 j+1
. (3.24)

To start the induction we need the n = 1 case of (3.24). We have P0 = 0 and

P1 = DF(A)−1
(
U−F(A)),

so
||P1−P0|| ≤ ||DF(A)−1|| ||U−F(A)||.
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We assume U is close enough to F(A) so that

||DF(A)−1|| ||U−F(A)|| < r

22
.

This makes ||P1|| < r
22

and specifies the small disk

||U−F(A)|| < r

22||DF(A)−1||
of U such that the sequence Pn converges to a point P that satisfies F(A+P) = U.

As n-th step of the induction we use the inductive assumption that

||P j−P j−1|| < r

2 j+1

for j = 1,2, . . . ,n to estimate the norm of P j, j = 1,2, . . . ,n. We write

P j = P1+ (P2−P1)+ · · ·+ (P j−P j−1).

We deduce from this and (3.24) by the triangle inequality that

||P j|| ≤ ||P1||+ ||P2−P1||+ · · ·+ ||P j−P j−1|| < r

22
+

r

23
+ · · ·+ r

2 j+1
. (3.25)

The sum of this geometric series is less than r
2 ; this gives ||P j|| < r

2 .
By definition (3.23) of Pn the difference

Pn+1−Pn = DF(A)−1
(
U−F(A)−R(Pn)

)−DF(A)−1(U−F(A)−R(Pn−1)
)

= DF(A)−1
(
R(Pn−1)−R(Pn)

)
.

Therefore by (3.19)
||Pn+1−Pn|| ≤ 1

2 ||Pn−Pn−1||.
This completes the inductive proof of inequality (3.24) which shows that the
sequence P j converges to a point P with ||P|| ≤ r

2 < r. Hence we have determined a
point A+P in Nr that is mapped by F to U. So the domain of G contains a small
disk centered at F(A).

(iii) To prove that G, the inverse of F, is differentiable at B = F(A), and to prove
that its derivative is (DF(A))−1 we show that

||G(B+K)−G(B)− (DF(A))−1K||
||K|| (3.26)

tends to zero as ||K|| tends to zero. Let
H =G(B+K)−G(B).

Since G(B) = A, we can rewrite this as
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A+H =G(B+K).

Applying F to both sides we get F(A+H) = B+K. Since B = F(A) it follows that

K = F(A+H)−F(A).
Using these relations and factoring out DF(A)−1 we see that (3.26) is equal to

||H− (DF(A))−1K||
||K|| =

||(DF(A))−1(DF(A)H−K)||
||K||

=
||(DF(A))−1

(
DF(A)H− (F(A+H)−F(A))

)
||

||K|| .

Using the matrix norm (Theorem 2.2) we get that

||G(B+K)−G(B)− (DF(A))−1K||
||K|| ≤

||(DF(A))−1||||
(
DF(A)H− (F(A+H)−F(A))

)
||

||K|| .

(3.27)
We next show that

||K|| ≥ ||H||
2||(DF(A))−1|| =

||G(B+K)−G(B)||
2||(DF(A))−1|| . (3.28)

To prove this, multiply K = F(A+H)−F(A) = DF(A)H+R(H) by DF(A)−1 to get

DF(A)−1K =H+DF(A)−1R(H).

Theorem 2.2 and the triangle inequality then give

||DF(A)−1|| ||K|| ≥ ||DF(A)−1K||
= ||H+DF(A)−1R(H)|| ≥ ||H|| − ||DF(A)−1R(H)||. (3.29)

In inequality (3.19) set P =H and Q = 0; we get

||R(H)|| ≤ ||H||
2||DF(A)−1||

which implies

||DF(A)−1R(H)|| ≤ ||DF(A)−1|| ||R(H)|| < 1
2 ||H||.

Replacing ||DF(A)−1R(H)|| in (3.29) by the larger 1
2 ||H|| we get a new inequality

||DF(A)−1|| ||K|| ≥ ||H|| − 1
2 ||H|| = 1

2 ||H||.

Dividing by ||DF(A)−1|| completes the proof of (3.28).

http://dx.doi.org/10.1007/978-3-319-74073-7_2
http://dx.doi.org/10.1007/978-3-319-74073-7_2
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Inequality (3.28) implies that G is continuous at B. If we replace ||K|| in the

denominator of (3.26) by the smaller
||H||

2||(DF(A))−1|| and use inequality (3.27) we

get

0 ≤ ||G(B+K)−G(B)− (DF(A))−1K||
||K|| .

≤ 2||(DF(A))−1||2 ||F(A+H)−F(A)−DF(A)H||
||H|| . (3.30)

It follows from the continuity of G at B that as ||K|| tends to zero, ||H|| tends to zero.
Since F is differentiable at A,

||F(A+H)−F(A)−DF(A)H||
||H||

tends to zero as ||H|| tends to zero. Using inequality (3.30) we get

||G(B+K)−G(B)− (DF(A))−1K||
||K||

tends to zero. This shows that G is differentiable at B, and its matrix derivative at B
is (DF(A))−1. That is,

DG(F(A)) = (DF(A))−1.

This concludes the proof! ��

Example 3.18. The function F(x,y) = (2−y+ x2y,3x+2y+ xy) maps R2 to R2.
It is continuously differentiable.

F(1,1) = (2,6), DF(x,y) =
[
2xy −1+ x2
3+ y 2+ x

]

, DF(1,1) =
[
2 0
4 3

]

.

Since detDF(1,1) � 0, by Theorem 3.11 F has an inverse defined in an open
set about (2,6). The inverse is differentiable and

DF−1(2,6) =
(
DF(1,1)

)−1.

Since the inverse of a 2 by 2 matrix is given by

[
a b
c d

]−1
=

1
ad−bc

[
d −b
−c a

]

the

derivative of F−1 at (2,6) is

DF−1(2,6) =
1
6

[
3 0
−4 2

]

=

⎡
⎢⎢⎢⎢⎣

1
2 0

− 2
3

1
3

⎤
⎥⎥⎥⎥⎦ .

To estimate F−1(2.1,5.8) we can use the linear approximation
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F−1
(
2+ .1,6+ (−.2)) ≈ F−1(2,6)+DF−1(2,6)

[
.1
−.2
]

=

[
1
1

]

+

[ 1
2 0
− 2

3
1
3

] [
.1
−.2
]

=

[
1.05
.86 . . .

]

.

�

Example 3.19. Given the system of equations

2− y+ x2y = 2
3x+2y+ xy = 6

we see that (x,y)= (1,1) is one solution. Let F(x,y)= (2−y+ x2y,3x+2y+ xy).
We’ve seen in Example 3.18 that F has an inverse defined in an open set about
(2,6). That means for each (u,v) in a disk centered at (2,6) of some small
enough radius, the system of equations

2− y+ x2y = u
3x+2y+ xy = v

has a unique solution (x,y) and it is close to (1,1). �
The statement and the proof of the Inverse Function Theorem make no use the of

the fact that the number variables is two. Therefore the n-dimensional analogue of
Theorem 3.11 holds for differentiable functions of any number of variables.

Theorem 3.12. Inverse function. Let F = ( f1, f2, . . . , fn) be a continuously
differentiable function on an open set O in R

n. Assume DF(A) is invertible at
a point A of O. Then F maps a sufficiently small open ball centered at A one
to one onto a set that includes an open ball centered at F(A). F has an inverse
G on this set. G is differentiable at F(A) and DG

(
F(A)
)
=
(
DF(A)

)−1.

Implicitly defined functions. A consequence of the Inverse Function Theorem is
the following theorem for functions from R

3 to R.

Theorem 3.13. Implicit Function. Let f be a continuously differentiable
function from a ball centered at a point P in x,y,z space R

3, to R. Suppose
fz(P) � 0. Then all points X sufficiently close to P that satisfy f (X) = f (P) are
of the form X =

(
x,y,g(x,y)

)
where g is a continuously differentiable function.

The partial derivatives of g are related to the partial derivatives of f by

gx = − fx
fz
, gy = −

fy
fz
.
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Proof. Define the vector function F(x,y,z) =
(
x,y, f (x,y,z)

)
. The matrix derivative

of F is

DF(x,y,z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
fx fy fz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Its determinant is fz(x,y,z). Since this is not zero at P = (p1, p2, p3), the Inverse
Function Theorem gives us that F is invertible near P, with differentiable inverse.
Let f (P) = c; then F(P) = (p1, p2,c). F maps a small ball centered at P one to one
onto a set in R

3 that includes a ball centered at F(P). See Figure 3.11. The inverse
of F is of the form

F−1(x,y,w) =
(
x,y,h(x,y,w)

)

where h is a differentiable function. Define g(x,y)= h(x,y,c). Then g is differentiable
and the relations

F−1(x,y,c) =
(
x,y,g(x,y)

)
, (x,y,c) = F

(
x,y,g(x,y)

)
=
(
x,y, f (x,y,g(x,y))

)
,

give
f
(
x,y,g(x,y)

)
= f (P) = c. (3.31)

Differentiating both sides with respect to x by the Chain Rule gives

∂ f
∂x
∂(x)
∂x
+
∂ f
∂y
∂(y)
∂x
+
∂ f
∂z
∂g
∂x
=
∂(c)
∂x
= 0

or
∂ f
∂x
+0+

∂ f
∂z
∂g
∂x
= 0.

Since fz(P) � 0 and fz is continuous, it follows that fz is not zero for points suffi-

ciently near P. Then dividing by fz we get gx = − fx
fz
. Similarly differentiating both

sides of (3.31) with respect to y by the Chain Rule gives

∂ f
∂x
∂(x)
∂y
+
∂ f
∂y
∂(y)
∂y
+
∂ f
∂z
∂g
∂y
=
∂(c)
∂y
= 0

so
∂ f
∂y
+0+

∂ f
∂z
∂g
∂y
= 0.

Therefore gy = −
fy
fz
. ��

Example 3.20. Consider the point (1,2,1) on the level surface

xyz+ z3 = 3

of the function f (x,y,z) = xyz + z3. We compute fz(x,y,z) = xy + 3z2 and
fz(1,2,1) = 5 � 0. By the Implicit Function Theorem we can solve for z as
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x

y

z

P

F(P) = (p1, p2, c)

f = c, z = g(x, y)

Fig. 3.11 A ball centered at P is mapped to a set that includes a ball centered at F(P).

a function of x and y near (1,2). That is, there is a differentiable function
g defined in an open disk centered at (1,2), with g(1,2) = 1, whose graph
(
x,y,g(x,y)

)
is in the 3-level set of f ,

f
(
x,y,g(x,y)

)
= xyg(x,y)+g(x,y)3 = 3.

The partial derivatives of g at (1,2) are

gx(1,2) = − fx(1,2,1)
fz(1,2,1)

= − yz
xy+3z2

∣∣∣∣∣
(1,2,1)

= − 2
5 ,

gy(1,2) = −
fy(1,2,1)

fz(1,2,1)
= − xz

xy+3z2

∣∣∣∣∣
(1,2,1)

= − 1
5 .

The equation of the plane tangent to the graph of g at (1,2,1) is

(− 2
5 ,− 1

5 ,−1
) · (x−1,y−2,z−1) = 0,

or (2,1,5) ·(x−1,y−2,z−1)= 0, the same equation we found in Example 3.16.
�

The Implicit Function Theorem says that a level surface S , f (x,y,z) = k, of a C1

function f is locally the graph of a differentiable function, say z = g(x,y). If (a,b,c)
is on S and fz(a,b,c) � 0 then

(
gx(a,b),gy(a,b),−1) · (x−a,y−b,z− c) = 0 (3.32)

is the equation of the tangent plane at (a,b,c). Since

gx(a,b) = − fx(a,b,c)
fz(a,b,c)

and gy(a,b) = −
fy(a,b,c)

fz(a,b,c)
,

equation (3.32) is the same as
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(
fx(a,b,c), fy(a,b,c), fz(a,b,c)

) · (x−a,y−b,z− c) = 0
or

∇ f (a,b,c) · (x−a,y−b,z− c) = 0
which is equation (3.9) in Section 3.3.

Example 3.21. The pressure P, temperature T , and density ρ of a gas are
related by

P+aρ2 =
RρT
1−bρ

where a, b, and R are nonzero constants. Find an expression for the rate at
which the density changes with respect to a change in temperature. Rather
than trying to solve for ρ explicitly in terms of T and P we use the Implicit
Function Theorem. Define

f (P,T,ρ) = P+aρ2− RρT
1−bρ .

Then

fρ = 2aρ− RT
1−bρ −

bRρT

(1−bρ)2

=

(

2a− RT

(1−bρ)2
)

ρ

is nonzero at a given P and T provided that 2a− RT

(1−bρ)2 � 0. In that case

there is a function g defined near (P,T ), ρ = g(P,T ). The partial derivative

gT (P,T ) = − fT
fρ
=

Rg(P,T )
1−bg(P,T )

(
2a− RT

(1−bg(P,T ))2
)
g(P,T )

=
R

2a(1−bg(P,T ))− RT
(1−bg(P,T ))

.

�

Remark: The physics notation for gT in Example 3.21 is

(
∂ρ

∂T

)

P
as a reminder of

what variable was held constant.
Next we state a more general version of Theorem 3.13.
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Theorem 3.14. Implicit Function. Let

F(X,Y) =
(
f1(x1, . . . , xn,y1, . . . ,ym), . . . , fm(x1, . . . , xn,y1, . . . ,ym)

)

be a C1 function from R
n+m to R

m on an open set that contains (A,B), and
consider the set S in Rn+m of points (X,Y) that satisfy the system of equations

f1(x1, . . . , xn,y1, . . . ,ym) = c1
f2(x1, . . . , xn,y1, . . . ,ym) = c2

...

fm(x1, . . . , xn,y1, . . . ,ym) = cm.

Suppose (A,B) = (a1, . . . ,an,b1, . . . ,bm) is in S and that the determinant of the
matrix of partial derivatives

[
∂ fi
∂y j

(A,B)
]

is not zero. Then there is a C1 function G from R
n to Rm such that every point

(X,Y) in S sufficiently close to (A,B) can be expressed as (X,Y) = (X,G(X)),
that is,

y1 = g1(x1, . . . , xn)

y2 = g2(x1, . . . , xn)

...

ym = gm(x1, . . . , xn).

The partial derivatives of the fi and g j are related by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x j
...
∂ fm
∂x j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂y1
· · · ∂ f1∂ym

...
...

∂ fm
∂y1
· · · ∂ fm∂ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g1
∂x j
...
∂gm
∂x j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, j = 1, . . . ,n. (3.33)

Proof. We will prove just the last part of this theorem. Assume such C1 functions
gi exist. Apply the Chain Rule to each function fi,

∂

∂x j

(
fi
(
x1, . . . , xn,g1(x1, . . . , xn), . . . ,gm(x1, . . . , xn)

))
=
∂

∂x j

(
ci
)
= 0.

That gives
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∂ fi
∂x j
+
∂ fi
∂y1

∂g1
∂x j
+
∂ fi
∂y2

∂g2
∂x j
+ · · ·+ ∂ fi

∂ym

∂gm
∂x j
= 0

or

∂ fi
∂x j
+
[
∂ fi
∂y1

∂ fi
∂y2
· · · ∂ fi∂ym

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g1
∂x j
∂g2
∂x j
· · ·
∂gm
∂x j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

as we see in the matrix equation (3.33). ��

Example 3.22. The equations

f1(x1, x2, x3,y1,y2) = 2x1y1+ x2y2 = 4

f2(x1, x2, x3,y1,y2) = x21x3y
4
1+ x2y

2
2 = 3

are satisfied by
(x1, x2, x3,y1,y2) = (1,1,−1,1,2).

Find
∂y1
∂x2

and
∂y2
∂x2

at (1,1,−1,1,2).
To see whether y1 and y2 are functions of (x1, x2, x3) near (1,1,−1,1,2) we

check the determinant there:

det

⎡
⎢⎢⎢⎢⎢⎣

∂ f1
∂y1

∂ f1
∂y2

∂ f2
∂y1

∂ f2
∂y2

⎤
⎥⎥⎥⎥⎥⎦ = det

[
2x1 x2

4x21x3y
3
1 2x2y2

]

= det

[
2 1
−4 4

]

= 12.

That is not zero so the Implicit Function Theorem applies. Equation (3.33)
gives at (1,1,−1,1,2),

⎡
⎢⎢⎢⎢⎢⎣

∂ f1
∂x2
∂ f2
∂x2

⎤
⎥⎥⎥⎥⎥⎦+

[
2 1
−4 4

] ⎡
⎢⎢⎢⎢⎢⎣

∂y1
∂x2
∂y2
∂x2

⎤
⎥⎥⎥⎥⎥⎦ =

[
2
22

]

+

[
2 1
−4 4

] ⎡
⎢⎢⎢⎢⎢⎣

∂y1
∂x2
∂y2
∂x2

⎤
⎥⎥⎥⎥⎥⎦ =

[
0
0

]

,

Multiply by the inverse matrix to get

⎡
⎢⎢⎢⎢⎢⎣

∂y1
∂x2
∂y2
∂x2

⎤
⎥⎥⎥⎥⎥⎦ = −

1
12

[
4 −1
4 2

] [
2
4

]

=

[− 1
3− 4
3

]

.

�

Problems

3.35. Let F(x,y) = (ex cosy,ex siny).

(a) Find the derivative matrix DF. That is, writing u = ex cosy, v = ex siny find
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⎡
⎢⎢⎢⎢⎣

∂u
∂x
∂u
∂y

∂v
∂x
∂v
∂y

⎤
⎥⎥⎥⎥⎦ .

(b) Show that DF(A)−1 exists at every point A = (a,b) so F is locally invertible at A.
(c) Show that F is not invertible globally; that is, find different points of the domain

that are mapped to the same value in the range.

3.36. Let F(x,y) = (xcosy, xsiny) for x > 0.

(a) Find the derivative matrix DF(A) at point A = (a,b).
(b) Show that DF(A)−1 exists at every point with a > 0 so F is locally invertible

at A.

3.37. Let F(x,y) = (x4+2xy+1,y), and consider the equations

x4+2xy+1 = u

y = v

that is, F(x,y) = (u,v).

(a) Show that for (u,v) = (0,1), one solution is (x,y) = (−1,1).
(b) Find the derivative matrix DF(x,y).
(c) Show thatDF(−1,1) is invertible, and henceF−1 exists on a small enough disk cen-

tered at (0,1).
(d) Use the linear approximation to estimate F−1(.2,1.01).

3.38. Let F(x,y) = (x+ y−1, x−1+ y), and consider the system of equations

x+ y−1 = 1.5
x−1+ y = 3

(a) Show that (x,y) = (1,2) is a solution.
(b) Show that the derivative matrix DF(1,2) is invertible.
(c) Find a linear approximation for F−1(1.49,2.9).

3.39. Suppose f is a C1 function from R
3 to R, with

f (1,0,3) = f (1,2,3) = f (1,2,−3) = 5
and

∇ f (1,0,3) = (0,1,0), ∇ f (1,2,3) = (4,1,− 1
2 ), ∇ f (1,2,−3) = (0,0,0).

(a) Can we solve the equation f (x,y,z)= 5 for z as a function of (x,y) near (1,2,−3)?
That means: does the Implicit Function Theorem guarantee existence of a func-
tion g from a disk around (1,2) into R so that g(1,2) = −3 and f

(
x,y,g(x,y)

)
= 5?

(b) Can we solve f (x,y,z) = 5 for y in terms of (x,z) near (1,0,3)?
(c) Can we solve f (x,y,z) = 5 for y in terms of (x,z) near (1,2,3)?
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(d) Can a function y = g(x,z) that satisfies part (b) also satisfy part (c)?
(e) Can we solve f (x,y,z) = 5 for x in terms of (y,z) near (1,0,3)?

3.40. Let f (x,y,z) = z4+2yz+ x, and consider the level set

z4+2yz+ x = 0.

(a) Show that (0,2,0) is on the level set.
(b) Find the partial derivatives of f .
(c) Show that there is a function z = g(x,y) defined near (0,2) so that

f
(
x,y,g(x,y)

)
= 0.

(d) Find the partial derivatives gx(x,y) and gy(x,y), and use them to find the second
derivatives gxx(0,2), gxy(0,2), gyy(0,2).

3.41. Let

f1(x,y1,y2) = 3y1+ y
2
2+4x = 0

f2(x,y1,y2) = 4y
3
1+ y2+ x = 0

(a) Verify that (x,y1,y2) = (−4,0,4) is a solution.
(b) Show that there is a function G = (g1,g2) such that g1(x) = y1, g2(x) = y2 for all

solutions near (−4,0,4).
(c) Show that at x = −4,

dg1
dx
= 4

3 ,
dg2
dx
= −1.

3.42. Let F(u,v,w) = (u+v+w,uv+vw+wu), and consider the system of equations
F(u,v,w) = (2,−4):

u+ v+w = 2

uv+ vw+wu = −4.
(a) Verify that (2,2,−2) is a solution.
(b) Writing F(u,v,w) =

(
f1(u,v,w), f2(u,v,w)

)
, find all the first partial derivatives of

f1 and f2.

(c) Verify that DF(2,2,−2) =
[
1 1 1
0 0 4

]

.

(d) Can the equations be solved for v and w in terms of u near (2,2,−2)? That
means: does the Implicit Function Theorem guarantee existence of a func-
tion G = (g1,g2) defined on some interval around 2 so that G(2) = (2,−2) and
F(u,g1(u),g2(u)

)
= (2,−4)?

(e) Can the equations be solved for u and v in terms of w near (2,2,−2)?

3.43. Let T be the set of all points (x,y,u,v) in R4 that satisfy
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(u,v)(x,y)

Fig. 3.12 A tangent vector at a point of the unit circle in Problem 3.43.

x2+ y2 = 1,

ux+ vy = 0.

T is the set of all vectors tangent to the unit circle; see Figure 3.12.

(a) We relabel coordinates to conform to the Implicit Function Theorem: Define
F(x1, x2,y1,y2) = (x21 + y

2
1, x2x1 + y2y1) where x1 = x, y1 = y, x2 = u and y2 = v.

Then T is the set defined by

F(x1, x2,y1,y2) = (1,0).

Calculate the matrix
[
∂ fi
∂y j

]
.

(b) Use the Implicit Function Theorem to deduce that near any point where y � 0,
the equations x2 + y2 = 1, ux+ vy = 0 can be solved for y and v in terms of x
and u.

(c) Find formulas for y and v in terms of x and u valid when y � 0.
(d) Find formulas for x and u in terms of y and v valid when x � 0.

3.5 Divergence and curl

In this section we introduce two combinations of partial derivatives for functions
from R

2 to R2 or from R
3 to R3. Their significance for integration will be discussed

in Chapter 8. Given

G(x,y) =
(
g1(x,y),g2(x,y)

)
and F(x,y,z) =

(
f1(x,y,z), f2(x,y,z), f3(x,y,z)

)
,

the derivative matrices of G at (x,y) and of F at (x,y,z) are

DG(x,y) =

⎡
⎢⎢⎢⎢⎢⎣

∂g1
∂x

∂gl
∂y

∂g2
∂x
∂g2
∂y

⎤
⎥⎥⎥⎥⎥⎦ =

[
g1x g1y
g2x g2y

]

, DF(x,y,z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x

∂ fl
∂y
∂ f1
∂z

∂ f2
∂x
∂ f2
∂y
∂ f2
∂z

∂ f3
∂x
∂ f3
∂y
∂ f3
∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1x f1y f1z
f2x f2y f2z
f3x f3y f3z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Two special combinations of the partial derivatives ofG and of F are the divergence,

http://dx.doi.org/10.1007/978-3-319-74073-7_8
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divG =
∂g1
∂x
+
∂g2
∂y
, divF =

∂ f1
∂x
+
∂ f2
∂y
+
∂ f3
∂z
,

and the curl,

curlG =
∂g2
∂x
− ∂g1
∂y
, curlF =

(
∂ f3
∂y
− ∂ f2
∂z
,−
(
∂ f3
∂x
− ∂ f1
∂z

)

,
∂ f2
∂x
− ∂ f1
∂y

)

.

We use the notation ∇ = ( ∂∂x , ∂∂y , ∂∂z
)
and the formulas for computing dot product,

cross product, and multiplication by a scalar to express the formulas for divF, curlF,
and the gradient of f . For a differentiable vector field F = ( f1, f2, f3),

divF = ∇ ·F = ∂
∂x

f1+
∂

∂y
f2+
∂

∂z
f3,

and

curlF = ∇×F = det
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

i j k
∂
∂x
∂
∂y
∂
∂z

f1 f2 f3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
(∂ f3
∂y
− ∂ f2
∂z

)
i−
(∂ f3
∂x
− ∂ f1
∂z

)
j+
(∂ f2
∂x
− ∂ f1
∂y

)
k.

For a differentiable scalar valued function f from R
3 to R

grad f = ∇ f =
(
∂ f
∂x
,
∂ f
∂y
,
∂ f
∂z

)

.

Example 3.23. Let F(x,y,z) = (x2, xy,zy). Then

divF = 2x+ x+ y = 3x+ y

and
curlF =

(
z−0,−(0−0),y−0) = (z,0,y).

�

Example 3.24. Let F(x,y,z) =
(x,y,z)

(x2+ y2+ z2)3/2
for (x,y,z) � (0,0,0). Then

∂

∂x

(
x

(x2+ y2+ z2)3/2

)

=
(x2+ y2+ z2)3/2− x 32 (x2+ y2+ z2)1/2(2x)

(
(x2+ y2+ z2)3/2

)2 .

Canceling a factor of (x2+ y2+ z2)1/2 we get

f1x =
x2+ y2+ z2−3x2
(x2+ y2+ z2)5/2

.

Similarly for f2y and f3z we get
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f2y =
x2+ y2+ z2−3y2
(x2+ y2+ z2)5/2

,

f3z =
x2+ y2+ z2−3z2
(x2+ y2+ z2)5/2

.

Therefore divF(x,y,z) =
3(x2+ y2+ z2)−3x2−3y2−3z2

(x2+ y2+ z2)5/2
= 0. �

Example 3.25. Let F be the inverse square vector field in Example 3.24, and
let

H(X) = −F(X).
Then

divH(X) = div(−F(X)) = −divF(X) = 0.
�

Example 3.26. Let G(x,y) = (−y, x). Then

divG(x,y) =
∂

∂x
(−y)+ ∂

∂y
(x) = 0

and

curlG(x,y) =
∂

∂x
(x)− ∂

∂y
(−y) = 1− (−1) = 2.

�

Example 3.27. Let G(x,y) =

( −y
x2+ y2

,
x

x2+ y2

)

, (x,y) � (0,0). Then

divG =
∂

∂x

( −y
x2+ y2

)

+
∂

∂y

(
x

x2+ y2

)

=
−(−y)2x
(x2+ y2)2

+
−(x)2y

(x2+ y2)2
= 0,

and

curlG(x,y) =
∂

∂x

(
x

x2+ y2

)

− ∂
∂y

( −y
x2+ y2

)

=
(x2+ y2)1− x(2x)

(x2+ y2)2
− (x2+ y2)(−1)− (−y)2y

(x2+ y2)2

=
2(x2+ y2)−2x2−2y2

(x2+ y2)2
= 0.

�
Next we investigate what the divergence and curl tell us about the vector field

itself.

Divergence. Suppose that F(x,y,z) =
(
f1(x,y,z), f2(x,y,z), f3(x,y,z)

)
represents the

velocity of a fluid at point (x,y,z) at some moment in time. Imagine a small box with
one vertex at the point P = (x0,y0,z0) and the edge lengths Δx, Δy, Δz, as illustrated
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in Figure 3.13. Let N be the outward unit normal vector at points on the surface of
the box.

y

z (xm, ym, zm)

(x0 + Δx, y0, z0)
x

(x0, y0, z0)

Fig. 3.13 Fluid flows through a box.

We estimate the rate of flow out of this box across its faces. Denote the midpoint
of the box as (xm,ym,zm). For a C1 vector field F on a small box, at points of the
bottom face F is approximately F(xm,ym,z0), and on the top face is approximately
F(xm,ym,z0 +Δz). The combined rate at which fluid flows out of the box through
these two faces is approximately

F(xm,ym,z0+Δz) · (0,0,1)ΔxΔy+F(xm,ym,z0) · (0,0,−1)ΔxΔy
=
(
f3(xm,ym,z0+Δz)− f3(xm,ym,z0)

)
ΔxΔy.

See Figure 3.14. Using the Mean Value Theorem of calculus this is equal to

∂ f3
∂z

(xm,ym,z)ΔzΔxΔy

where z lies between z0 and z0+Δz.

x y

z

F(xm, ym, z0)
Δx

Δy

(0, 0, 1)

F(xm, ym, z0 + Δz)

(0, 0,−1)

Δz

Fig. 3.14 Approximate flow across the top and bottom of the box.
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By similar arguments the approximate outward flow rate of F across the faces of
the box parallel to the x,z plane is

∂ f2
∂y

(xm,y,zm)ΔyΔxΔz

for some y between y0 and y0+Δy, and across the faces of the box parallel to the y,z
plane is

∂ f1
∂x

(x,ym,zm)ΔxΔyΔz

for some x between x0 and x0+Δx.
The total approximate outward flow rate across the surface of the box is

(
∂ f1
∂x

(x,ym,zm)+
∂ f2
∂y

(xm,y,zm)+
∂ f3
∂z

(xm,ym,z)
)

ΔxΔyΔz.

We define the average flux density to be the net outward flow rate across the surface
divided by the volume of the box. Then the average flux density of F across the
surface of the box is

∂ f1
∂x

(x,ym,zm)+
∂ f2
∂y

(xm,y,zm)+
∂ f3
∂z

(xm,ym,z).

Since the partial derivatives are continuous, as Δx, Δy, and Δz tend to zero, x and xm
tend to x0, y and ym tend to y0, and z and zm tend to z0, and the average flux density
tends to

∂ f1
∂x

(x0,y0,z0)+
∂ f2
∂y

(x0,y0,z0)+
∂ f3
∂z

(x0,y0,z0) = divF(P).

divF(P) is called the flux density of F at P.

x

y

z

Fig. 3.15 Outward flux is positive, in Example 3.28.

Example 3.28. Let F(x,y,z) = (x,0,0). Then

divF =
∂x
∂x
+
∂0
∂y
+
∂0
∂z
= 1.
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See Figure 3.15. �

Curl in R
2. Imagine that G(x,y) is the velocity of a fluid in the x,y plane at some

moment in time, and supposeG is continuously differentiable. Consider the tangen-
tial component of G as we traverse the boundary of a small rectangle as shown in
Figure 3.16.

(x0, y0)

(x0 + Δx, y0 + Δy)

x

y

G

G

(xm, ym)

Fig. 3.16 We consider the tangential component of G at the boundary.

Because G is continuous and the rectangle is small, G(x,y) for points along
the lower edge is approximately G(xm,y0), along the right edge approximately
G(x0 +Δx,ym), along the top edge approximately G(xm,y0 +Δy), and along the left
G(x0,ym). The product of the tangential component ofG on an edge times the length
of the edge is the circulation of G along that edge. The circulation of G around the
rectangle is

G(xm,y0) · (1,0)Δx+G(x0+Δx,ym) · (0,1)Δy
+G(xm,y0+Δy) · (−1,0)Δx+G(x0,ym) · (0,−1)Δy.

Applying the dot products the circulation ofG around the rectangle can be rewritten

= g1(xm,y0)Δx+g2(x0+Δx,ym)Δy−g1(xm,y0+Δy)Δx−g2(x0,ym)Δy.
By the Mean Value Theorem this equals

(−g1y(xm,y)Δy)Δx+ (g2x(x,ym)Δx)Δy.
As Δx and Δy tend to zero, x and xm tend to x0, and y and ym tend to y0. Since the
partial derivatives are continuous, the circulation densities

(−g1y(xm,y)Δy)Δx+ (g2x(x,ym)Δx)Δy
ΔxΔy

tend to
−g1y(x0,y0)+g2x(x0,y0) = curlG(x0,y0).
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Example 3.29. Let G(x,y) = (−y, x) be a velocity field. A brief calculation
shows that curlG = 2 at every point. We observe that

G(h,0) = (0,h)

G(0,h) = (−h,0)
G(−h,0) = (0,−h)
G(0,−h) = (h,0).

If you sketch this vector field with h > 0 small, it suggests that near the origin
G is the velocity of a counterclockwise rotation. �

Example 3.30. Let G(x,y) = (y,0). Then

curlG(x,y) =
∂

∂x
(0)− ∂

∂y
(y) = −1.

As Figure 3.17 shows, small objects floating in this field rotate clockwise. �

Fig. 3.17 The field in Example 3.30.

The next example shows that the overall rotation of a fluid may differ from the
local rotation or curl.

Example 3.31. Let F be the vector field F(x,y) =
(−y, x)

(x2+ y2)p
, where p > 0. A

sketch of F is illustrated in Figure 3.18. The field appears to rotate counter-

clockwise about the origin. The curlF =
2−2p

(x2+ y2)p
is negative, zero, or positive

when the exponent p is greater than 1, equal to 1, or less than 1 as we ask you
to verify in Problem 3.47. �

Curl in R
3. Take a small box with one vertex at (x0,y0,z0) and edge lengths

Δx,Δy,Δz. Denote the center point (xm,ym,zm). At the center of each face form the
product

(
N×F)(Area of the face), sum over all faces and divide by the volume of

the box. We get

(
(−1,0,0)×F(x0,ym,zm)ΔyΔz+ (1,0,0)×F(x0+Δx,ym,zm)ΔyΔz

+ (0,−1,0)×F(xm,y0,zm)ΔxΔz+ (0,1,0)×F(xm,y0+Δy,zm)ΔxΔz

+ (0,0,−1)×F(xm,ym,z0)ΔxΔy+ (0,0,1)×F(xm,ym,z0+Δz)ΔxΔy
) 1
ΔxΔyΔz

.
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y

x

Fig. 3.18 A sketch typical of the vector fields F in Example 3.31. The curl of F may be positive or
negative.

In Problem 3.52 we ask you to show that this tends to curlF((x0,y0,z0) as Δx, Δy,
and Δz tend to zero.

Gradient. In Problem 3.53 we ask you to explore how the formula for the gradient
of the pressure f at a point in a fluid arises by looking at the pressure forces on the
surface of a small box. The pressure force on each face is approximately the product
(− fN(Area of the face)

)
where f is the pressure at the midpoint of the face. We ask

you to show that the approximate total pressure force on the surface of a small box,

− f (x0,ym,zm)(−1,0,0)ΔyΔz− f (x0+Δx,ym,zm)(1,0,0)ΔyΔz,

− f (xm,y0,zm)(0,−1,0)ΔxΔz− f (xm,y0+Δy,zm)(0,1,0)ΔxΔz

− f (xm,ym,z0)(0,0,−1)ΔxΔy− f (xm,ym,z0+Δz)(0,0,1)ΔxΔy

is equal to
−( fx(x,ym,zm), fy(xm,y,zm), fz(xm,ym,z))ΔxΔyΔz

for some x between x0 and x0+Δx, y between y0 and y0+Δy, and z between z0 and
z0 +Δz. Dividing by the volume we see that for continuous partial derivatives the
force per volume

−( fx(x,ym,zm), fy(xm,y,zm), fz(xm,ym,z))

tends to
−∇ f (x0,y0,z0)

as Δx, Δy, and Δz tend to zero. Thus the gradient of the pressure at a point can be
interpreted as a vector that arises from pressure differences on opposite sides of a
small box and represents the total force per volume at that location.
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Laplace operator. Another important operator defined for scalar functions is the
composite of divergence and gradient

div grad f =
∂2 f

∂x2
+
∂2 f

∂y2
+
∂2 f

∂z2
.

It is denoted as Δ f and called the Laplace operator.
The gradient and the Laplace operators are linear: that is for all once, respectively

twice, differentiable functions f and g and all numbers a and b,

∇(a f +bg) = a∇ f +b∇g
Δ(a f +bg) = aΔ f +bΔg

We define the Laplace operator Δ for a twice differentiable vector valued function
componentwise. It is a linear operator, and so are the operators curl and div; that is,
for all twice differentiable functions F and G and numbers a and b,

Δ(aF+bG) = aΔF+bΔG

curl (aF+bG) = acurlF+bcurlG

div(aF+bG) = adivF+bdivG

Vector differential identities. Let f and g be scalar valued functions from R
3 to R

and F andG be vector fields from R
3 to R3. Assuming that all required first, second,

and sometimes third, partial derivatives exist and are continuous, we have lots of
identities.

We ask you in Problems 3.56–3.59 to verify the following identities. In (e) and
(f) we define

F · ∇G = f1Gx + f2Gy+ f3Gz = (DG)F.

(a) ∇( f g) = f∇g+g∇ f
(b) div( fF) = fdivF+F · ∇ f
(c) div(F×G) = (curlF) ·G−F · curlG
(d) curl ( fF) = f curlF+ (∇ f )×F
(e) curl (F×G) = (divG)F+G · ∇F− ((divF)G+F · ∇G)
(f) ∇(F ·G) = F× curlG+G× curlF+F · ∇G+G · ∇F
(g) curlcurlF = ∇(divF)−ΔF where ΔF =

(
Δ f1,Δ f2,Δ f3

)

(h) Δ( f g) = fΔg+2∇ f · ∇g+gΔ f .
(i) div(∇ f ×∇g) = 0
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In the next two examples we prove the identities

• divcurlF = 0
• curl∇ f = 0

Example 3.32. Assume f has continuous second partial derivatives. We verify
that curl (∇ f ) = 0.

curl (∇ f ) = curl ( fx, fy, fz)

=

(
∂

∂y
fz − ∂
∂z

fy,−
( ∂

∂x
fz − ∂
∂z

fx
)
,
∂

∂x
fy− ∂
∂y

fx

)

.

Since the mixed second partial derivatives of a twice continuously differen-
tiable function are equal, this is (0,0,0). �

Example 3.33. Let F= ( f1, f2, f3) be a twice continuously differentiable vector
function. We show that divcurlF = 0.

curlF = ∇×F =
(
∂

∂y
f3− ∂
∂z

f2,−
(
∂

∂x
f3− ∂
∂z

f1

)

,
∂

∂x
f2− ∂
∂y

f1

)

.

So

divcurlF = ∇ · (∇×F)

=
∂

∂x

(
∂

∂y
f3− ∂
∂z

f2

)

+
∂

∂y

(
∂

∂z
f1− ∂
∂x

f3

)

+
∂

∂z

(
∂

∂x
f2− ∂
∂y

f1

)

=
∂

∂x
∂

∂y
f3− ∂
∂x
∂

∂z
f2+
∂

∂y
∂

∂z
f1− ∂
∂y
∂

∂x
f3+
∂

∂z
∂

∂x
f2− ∂
∂z
∂

∂y
f1 = 0.

�

Problems

3.44. Compute the indicated curls and divergences.

(a) curl (x,0,0), div(x,0,0)
(b) curl (0, x,0), div(0, x,0)
(c) curl (0,0, x), div(0,0, x)

3.45. Let F(x,y,z) and G(x,y,z) be differentiable vector fields that satisfy

curlF(x,y,z) = (5y+7z,3x,0), curlG(1,2,−3) = (5,7,9),
divF(1,2,−3) = 6, divG(x,y,z) = x2− zy.

(a) Find div(3F+4G) at the point (1,2,−3).
(b) Show that divcurlF(x,y,z) = 0.
(c) Find curl (3F+4G) at the point (1,2,−3).
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3.46. Let F(x,y,z) = (xy2,yz2,zx2). Find curlF(1,2,3) and divF(1,2,3).

3.47. Consider the vector fieldH(x,y)=
(−y, x)

(x2+ y2)p
for points other than (0,0). Draw

the vectors H(1,0), H(0,1), H(−1,0), and H(0,−1). Show that

curlH =
(2−2p)
(x2+ y2)p

which is negative, zero, and positive when p = 1.05, 1, .95, respectively.

3.48. Verify that curl
(
u(x,y),v(x,y),0

)
= (0,0,vx −uy).

3.49. Suppose (u,v,w) satisfies curl (u,v,w) = 0 in R3, i.e.,

uy = vx, uz = wx, vz = wy.

Prove that there is p such that ∇p = (u,v,w):
px = u, py = v, pz = w,

by verifying the following steps.

(a) Define p1 =
∫ x

0
u(s,y,z)ds, Then p1x = u, and p1y = v+ n, where n does not

depend on x.

(b) Define p2 = p1− c(y,z) where c =
∫ y

0
n(t,z)dt. Then p2x = u and p2y = v.

(c) Write p2z = w+m. Then m doesn’t depend on x and y.
(d) Define p3 = p2− f (z) where fz = m. Then p3x = u, p3y = v, and p3z = w.

3.50. A vector field F has a vector potential Gwhen it can be expressed F = curlG.
Show that the inverse square field − X

||X||3 = −
(x1,x2,x3)

(x21+x
2
2+x

2
3)
3/2 has a vector potential

x3
(x21 + x

2
2 + x

2
3)

1/2

(−x2, x1,0)
x21 + x

2
2

at all points except along the x3 axis.

3.51. Suppose a differentiable vector function V(X, t), that is, three components
depending on the four variables of space and time, gives the velocity of fluid parti-
cles moving in R

3, so that
dX
dt
= V(X(t), t)

for one of the particles whose position is given by X(t) at time t.

(a) Show that the acceleration of the particle is given by

d2X
dt2
= Vt + (DV)V.
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(b) Verify that an example is X(t) =C1+ t−1C2, V(X, t) = t−1(C1−X) where C1 and
C2 are constant vectors.

3.52. Show that
(
(−1,0,0)×F(x0,ym,zm)ΔyΔz+ (1,0,0)×F(x0+Δx,ym,zm)ΔyΔz

+ (0,−1,0)×F(xm,y0,zm)ΔxΔz+ (0,1,0)×F(xm,y0+Δy,zm)ΔxΔz

+ (0,0,−1)×F(xm,ym,z0)ΔxΔy+ (0,0,1)×F(xm,ym,z0+Δz)ΔxΔy
) 1
ΔxΔyΔz

.

tends to curlF((x0,y0,z0) as Δx, Δy, and Δz tend to zero. We used this in our geo-
metric description of curlF.

3.53. Show that the sum of pressure forces over the faces of a small cube

− f (x0,ym,zm)(−1,0,0)ΔyΔz− f (x0+Δx,ym,zm)(1,0,0)ΔyΔz

− f (xm,y0,zm)(0,−1,0)ΔxΔz− f (xm,y0+Δy,zm)(0,1,0)ΔxΔz

− f (xm,ym,z0)(0,0,−1)ΔxΔy− f (xm,ym,z0+Δz)(0,0,1)ΔxΔy

is equal to
−( fx(x,ym,zm), fy(xm,y,zm), fz(xm,ym,z))ΔxΔyΔz

for some x between x0 and x0 + Δx, y between y0 and y0 + Δy, z between z0 and
z0+Δz.

3.54. Show that div(v∇u) = vΔu+∇u · ∇v for C2 functions u, v from R
3 to R.

3.55. Show that Δ(uv) = uΔv+ vΔu+2∇u · ∇v for C2 functions u, v from R
3 to R.

3.56. Prove the vector differential identities (a)–(d) listed in the text.

3.57. Prove the vector differential identity (e) listed in the text.

3.58. Prove the vector differential identity (f) listed in the text.

3.59. Prove the vector differential identities (g)–(i) listed in the text.

3.60. Let f (y,z) be a C2 function from R
2 to R, and suppose there is a number c so

that
fyy+ fzz = −c2 f .

(a) Show that the vector field F = (c f , fz,− fy) has the property
curlF = cF.

(b) Show that the function f (y,z) = sin(3y+4z) has this property, and find the corre-
sponding vector field F.



Chapter 4
More about differentiation

Abstract This chapter describes applications of the derivative to methods for find-
ing extreme values of functions of several variables, and to methods for approximat-
ing functions of several variables by polynomials.

4.1 Higher derivatives of functions of several variables

In Theorem 3.10 we showed that if all the second partial derivatives of a function
f (x,y) are continuous on an open set in R2, then

fxy = fyx.

Analogous results hold for differentiable functions of several variables, and for par-
tial derivatives of all orders.

Definition 4.1. A function f from an open set in R
k to R is called n times

continuously differentiable if it has all mixed partial derivatives up to order n,
and if all n-th partial derivatives are continuous functions.

An n times continuously differentiable function is called a Cn function.

Theorem 4.1. Let f be a Cn function from an open set in R
k to R. Then two

partial derivatives of f of order less than or equal to n, in which differentiation
with respect to each variable occurs the same number of times, are equal,
regardless of the order in which these partial differentiations are carried out.

This result can be proved by repeated application of Theorem 3.10. For example,
for a C2 function f (x,y,z) if we hold z fixed then the theorem gives fxy = fyx. Simi-
larly fyz = fzy and fzx = fxz. And, if f is C3, then five applications of Theorem 3.10
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give
fxyz = fxzy = fzxy = fzyx = fyzx = fyxz.

Example 4.1. Let
f (x,y,z) = x2yz4.

Find fxzyy. We can compute the partial derivatives in the given order.

fx = 2xyz
4, fxz = 8xyz

3, fxzy = 8xz
3, fxzyy = 0.

Alternatively by Theorem 4.1 we can write

fxzyy = fyyxz.

Since fyy = 0, we get fyyxz = 0. �
A partial differential equation or pde relates partial derivatives of a function. We

say that a function is a solution of the pde if it satisfies the equation.

Example 4.2. Let u(x,y,z, t) = e−kt(cos x+ cosy+ cosz). We show that u is a
solution of the partial differential equation

ut − kΔu = 0,
where Δ is the Laplace operator defined as Δu = uxx +uyy+uzz. A brief calcu-
lation shows that

ut = −ke−kt(cos x+ cosy+ cosz),
uxx = e

−kt(−cos x),
uyy = e

−kt(−cosy),
uzz = e

−kt(−cosz).
Therefore

kΔu = ke−kt(−cos x− cosy− cosz) = ut
and u satisfies the equation ut − kΔu = 0. �

Problems

4.1. Compute the partial derivatives.

(a) fxx and fzz for (x,y,z) � (0,0,0) if f (x,y,z) = (x2+ y2+ z2)−1/2
(b) fxyz if f (x,y,z) = xy+ yz+ zx
(c) gxxy−gxyx if g is three times continuously differentiable from R

3 to R
(d) hx j and hx jxk if h(X)=A ·X, whereA= (a1, . . . ,an) is constant andX= (x1, . . . , xn).
4.2. Find the partial derivatives.
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(a)
∂

∂x3
(x21 +2

2x22 +3
3x23)

(b)
∂

∂xk

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

j2x2j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(c) (x3y+ y3z+ z3w)yyw

(d)
∂

∂x5

(||X||2) for X in Rn, n ≥ 5

(e)
∂2

∂x5∂x3

(||X||2) for X in Rn, n ≥ 5.

4.3. Let f (x,y) = (x2+ y2)3/2. Find fxy.

4.4. Let f (X) = cos(A ·X) where X is in R
n and A is a constant vector in R

n. That
is,

f (x1, x2, . . . , xn) = cos(a1x1+a2x2+ · · ·+anxn).
(a) Show that fx1 = −a1 sin(A ·X).
(b) Find the derivatives fx2x2 and fx3x2x2x4 .
(c) Verify that fx1x1 + fx2x2 + · · ·+ fxnxn = −||A||2 f .
4.5. Define g(x,y,z,w) = eax+by+cz+dw, where a, b, c, and d are constants.

(a) Show that gx = ag.
(b) Find the partial derivatives gxxww and gyyzz.
(c) Find a relation among the constants a, b, c, and d so that g satisfies the equation

gxxww+gyyzz−2gxyzw = 0.
(d) Find a relation among the constants a, b, c, and d so that g satisfies the equation

gxxww+gyyzz−2g = 0.
4.6. For a linear combination of differentiable functions f and g from R

n to R, with
a and b constants, the partial derivatives satisfy

∂

∂xk
(a f +bg) = a

∂ f
∂xk
+b
∂g
∂xk
, k = 1, . . . ,n.

Show that the following formulas are true for C4 functions f , g, and h.

(a)
∂2

∂x2k
(a f +bg) = a

∂2 f

∂x2k
+b
∂2g

∂x2k
.

(b)
∂3

∂x2k∂x�
(a f +bg) = a

∂3 f

∂x2k∂x�
+b

∂3g

∂x2k∂x�
, � = 1,2, . . . ,n, k = 1,2, . . . ,n.

(c) (a f +bg+ ch)x1 = a fx1 +gx1 + chx1
(d) If f ,g,h are C4 functions from R

5 to R then

(a f +bg+ ch)x1x3x4x2 = a fx1x4x3x2 +bgx2x3x4x1 + chx1x3x4x2 .
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4.7. Show that the function u(X, t) = t−n/2e−||X||2/4t, where X is in Rn and t > 0, satis-
fies the equation

ut = ux1x1 +ux2x2 + · · ·+uxnxn .
4.8. There are at most three distinct second partial derivatives of a C2 function
f (x,y), namely fxx, fxy, and fyy. How many distinct third partial derivatives could
there be of a C3 function f (x1, x2, x3, x4)?

4.9. For X in R
n (n ≥ 3) and for every twice differentiable function u(X) we define

Δu = ux1x1 +ux2x2 + · · ·+uxnxn . Let r = ||X||. Show that

(a) For every constant p, (rp)x j = prp−2x j, (r � 0).
(b) Δ(r2−n) = 0, (r � 0).

4.10. Suppose u is a C4 function from R
2 to R. Define Δu = uxx +uyy.

(a) Show that ΔΔu = uxxxx +2uxxyy+uyyyy.
(b) Find examples of polynomial functions u(x,y) = ax4+bx2y2+cy4, a,b,c � 0, for

which ΔΔu is always positive, zero, negative.
(c) Show that for (x,y) � (0,0), Δ(x2+ y2)1/2 = (x2+ y2)−1/2.
(d) Suppose that u(x,y) = v(r), where v is a C2 function from R to R for r > 0 and

r =
√
x2+ y2. Show that

Δu = vrr + r
−1vr.

(e) Show that for (x,y) � (0,0), ΔΔ(x2+ y2)1/2 = (x2+ y2)−3/2.

4.11. Suppose that u(x,y,z) is aC2 function from R
3 to R. Define Δu= uxx+uyy+uzz

and let r =
√
x2+ y2+ z2.

(a) Show that for (x,y,z) � (0,0,0), Δ(x2+ y2+ z2)1/2 = 2(x2+ y2+ z3)−1/2.
(b) Suppose u(x,y,z) = v(r), where v is a C2 function from R to R. Show that for

r > 0
Δu = vrr +2r

−1vr.

(c) Show that for (x,y,z) � (0,0,0), ΔΔ(x2+ y2+ z2)1/2 = 0.

4.12. Let F(x,y,z, t) =
(
f1(x,y,z, t), f2(x,y,z, t), f3(x,y,z, t)

)
be a C2 function on an

open set in R
4. Define

curlF =
(
∂ f3
∂y
− ∂ f2
∂z
,
∂ f1
∂z
− ∂ f3
∂x
,
∂ f2
∂x
− ∂ f1
∂y

)

,

divF =
∂ f1
∂x
+
∂ f2
∂y
+
∂ f3
∂z
,

ΔF = (Δ f1,Δ f2,Δ f3).

(a) Show that curl (Ft) = (curlF)t.
(b) Show that curlcurlF = ∇divF−ΔF.
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(c) Suppose that

E(x,y,z, t) =
(
E1(x,y,z, t),E2(x,y,z, t),E3(x,y,z, t)

)
and

B(x,y,z, t) =
(
B1(x,y,z, t),B2(x,y,z, t),B3(x,y,z, t)

)

are C2 functions on an open set in R
4 that satisfy the following equations, called

Maxwell equations,

Et = curlB, Bt = −curlE, divE = 0, divB = 0.

Show that Ett = ΔE and Btt = ΔB.
(d) Verify that the functions

B(X, t) =
(
cos(y− t),0,0), E(X, t) =

(
0,0,cos(y− t))

satisfy the Maxwell equations. The fields are sketched in Figure 4.1 at one par-
ticular time t at the left, and at a slightly later time at the right.

x

z

x

z

x

z

x

z
y

y

y

y

E

B

E

B

Fig. 4.1 A sketch of the vector fields in Problem 4.12, part (d), at two different times t.

4.2 Extrema of functions of two variables

Just as in single variable calculus a function f from R
n to R may have points in the

domain at which it attains a local maximum or minimum.
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Definition 4.2. Let f : D ⊂ Rn→ R. We say that f has a local minimum f (A)
at a point A in D if there is an open ball in R

n centered at A so that for every
point X in D that is in the ball,

f (X) ≥ f (A).

f has a local maximum f (A) at a point A in D if there is an open ball in R
n

centered at A so that for every point X in D that is in the ball,

f (X) ≤ f (A).

A point that is either a local maximum or a local minimum is called a local
extremum of f on D. We say a local maximum or local minimum is strict if
the corresponding strict inequality f (X) > f (A) or f (X) < f (A) holds except
for X = A.

Recall that a differentiable function f of a single variable that has a local
extremum at an interior point a of an interval satisfies the condition

f ′(a) = 0.

This result has the following extension to functions of several variables.

A first derivative test. We have the following test for local extrema at interior
points.

Theorem 4.2. Let f be a differentiable function from D ⊂ R
n to R. Suppose

f has a local extremum f (A) at the interior point A. Then the first partial
derivatives of f are zero at A, that is,

∇ f (A) = 0.

Proof. This result is an immediate consequence of the result for functions of a single
variable. Suppose f (x1, . . . , xn) has a local extremum at an interior point A of D.
Hold all but the i-th coordinate fixed and let xi vary. (See Figure 4.2) Since A is an
interior point there is an interval on which the single variable function

f (a1, . . . ,ai−1, xi,ai+1, . . . ,an)

has a local extremum at xi = ai. At that point

∂ f
∂xi

(A) = 0.

Since this is true for each i = 1, . . . ,n, this completes the proof. 	
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x1

a1

A

a2

x2

x1 a1 a2 x2

Fig. 4.2 Left: A graph of f , that has a local maximum at (a1,a2). Center: f (x1,a2) has a local
maximum at a1. Right: f (a1, x2) has a local maximum at a2.

Example 4.3. Consider the graphs in Figure 4.3 of

f (x,y) = x2+ y2, g(x,y) = −x2− y2, h(x,y) = y3.

f has its smallest value at the point (0,0), and its partial derivatives fx = 2x
and fy = 2y are zero there. g has its largest value at (0,0), and again the partial
derivatives gx(0,0) = 0 and gy(0,0) = 0. It is also true that

∇h(0,0) = 0
since∇h(x,y)= (0,3y2). But h has neither a maximum nor a minimum at (0,0):

h(0,y) = y3

is positive for some points and negative for other points arbitrarily close to
(0,0). �

x y

z = f(x,y)

z = g(x,y)

x y

z = h(x,y)

x y

Fig. 4.3 Graphs of f ,g,h in Example 4.3.
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A second derivative test. As we saw in Example 4.3, a function f from R
n to R

that has ∇ f (A) = 0 may have a local maximum, a local minimum, or neither at A.
We turn to the second partial derivatives to test for local extrema at interior points

of the domain. Recall the case of functions of a single variable:
Taylor’s Theorem for a twice continuously differentiable function gives

f (a+h) = f (a)+ f ′(a)h+
f ′′(c)
2

h2

for some c between a and a+h. If f ′(a) = 0 we get

f (a+h)− f (a) =
f ′′(c)
2

h2.

Since f ′′ is continuous and f ′′(a) is positive, then f ′′ is positive at all points close
enough to a. By taking h small enough, c will be close to a, and f ′′(c) > 0. In that
case

f (a+h) = f (a)+
f ′′(c)
2

h2 > f (a).

Thus f has a strict local minimum at a. Similarly if f ′(a) = 0 and f ′′(a) < 0, then
f ′′(c) is negative for h small enough and

f (a+h) = f (a)+
f ′′(c)
2

h2 < f (a)

so f has a strict local maximum at a.
A function f from R

n to R has many second partial derivatives. We arrange them
as a matrix:

Definition 4.3. Given a C2 function from an open set in R
n to R, the n by n

matrix of second partial derivatives at (x1, . . . , xn)

H f (x1, . . . , xn) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fx1x1 fx1x2 · · · fx1xn
fx2x1 fx2x2 · · · fx2xn
...

...
fxnx1 fxnx2 · · · fxnxn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is called the Hessian matrix of f at (x1, . . . , xn).

H is a symmetric matrix since fxi x j = fx j xi .
We introduce the notion of positive definite matrix to use information about the

second partial derivatives of f at X. We begin with the two-dimensional case.
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Definition 4.4. A symmetric 2×2 matrix S,

S =
[
p q
q r

]

is called positive definite if the associated quadratic function

S (u,v) = U ·SU
is positive for all U = (u,v) � 0 in R

2. The matrix S is negative definite if −S
is positive definite, and S is indefinite if U ·SU has both positive and negative
values.

The next result is an important property of positive definite matrices.

Theorem 4.3. Let S =
[
p q
q r

]

. S is positive definite if and only if there exists a

positive number m such that for all (u,v) in R2,

S (u,v) = [u v]

[
p q
q r

] [
u
v

]

= pu2+2quv+ rv2 ≥ m(u2+ v2). (4.1)

Proof. If there is such a number m, then certainly S (u,v) > 0 for all (u,v) � 0, and S
is positive definite.

Conversely, suppose S is a positive definite matrix. Since S (u,v) is a polynomial
in u and v, S is a continuous function in R

2 and in particular on the unit circle
u2 + v2 = 1. By the Extreme Value Theorem, S attains a minimum m at some point
(c,d) on this circle. The minimum m = S (c,d) is positive since (c,d) � 0 and S is
positive definite. It follows that (4.1) holds for all (u,v) on the unit circle.

Next we show that (4.1) holds for every vector (u,v). Vector (u,v) can be written
as a multiple of a unit vector (z,w):

(u,v) = a(z,w) = (az,aw), a =
√
u2+ v2, z2+w2 = 1.

S (u,v) is a2 times S (z,w) because

S (u,v) = S (az,aw) = pa2z2+2qazaw+ ra2w2

= a2(pz2+2qzw+ rz2) = a2S (z,w).

For (z,w) on the unit circle we have shown that S (z,w) ≥ m = m(z2+w2). Therefore

S (u,v) = a2S (z,w) ≥ a2m(z2+w2) = m(u2+ v2),

which proves the inequality (4.1). 	
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The following result is a consequence of Theorem 4.3:

Theorem 4.4. Suppose that a symmetric matrix S is positive definite, and for
all U = (u,v) in R2

S (u,v) = U ·SU ≥ m(u2+ v2).
Then every symmetric matrix of the form S+T, where the elements of the
symmetric matrix T are small enough, is positive definite and

(S +T )(u,v) = U · (S+T)U ≥ m
2
(u2+ v2).

Proof. First we show that if the entries of the symmetric matrix T are small enough,
the associated quadratic function T (u,v) satisfies

T (u,v) ≥ −m
2
(u2+ v2).

Denote

T =
[
a b
b c

]

, T (u,v) = [u v]

[
a b
b c

] [
u
v

]

= au2+2buv+ cv2.

If b ≥ 0 we use the fact that (u+v)2 = u2+2uv+v2 ≥ 0 to get 2buv ≥ b(−u2−v2) and
au2+2buv+ cv2 ≥ au2+b(−u2− v2)+ cv2

= (a−b)u2+ (c−b)v2.

If b < 0 we use the fact that (u− v)2 = u2−2uv+ v2 ≥ 0 to get b(u2+ v2) ≤ 2buv and
au2+2buv+ cv2 ≥ au2+b(u2+ v2)+ cv2

= (a+b)u2+ (c+b)v2.

Take |a|, |b|, and |c| all less than m
4 . Then |a−b| ≤ |a|+ |b|< m

2 , so a−b≥−m
2 . Similarly

for c−b, a+b, and c+b. Therefore when |a|, |b|, and |c| are all less than m
4

T (u,v) = au2+2buv+ cv2

≥ −m
2
(u2+ v2).

Now add the inequalities for S and T to get

(S +T )(u,v) = S (u,v)+T (u,v)

≥ m(u2+ v2)− m
2
(u2+ v2) =

m
2
(u2+ v2)

for all (u,v). Since m
2 > 0 the matrix S+T is positive definite. 	
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Theorem 4.5. (Second derivative test) Suppose f is a C2 function on the
interior of D ⊂ R2 and that at some interior point (c,d) of D,

∇ f (c,d) = 0.
LetH f (c,d) be the Hessian matrix of second partial derivatives of f at (c,d),

H f (c,d) =

[
fxx(c,d) fxy(c,d)
fyx(c,d) fyy(c,d)

]

.

(a) IfH f (c,d) is positive definite then f has a strict local minimum at (c,d).
(b) IfH f (c,d) is negative definite then f has a strict local maximum at (c,d).
(c) IfH f (c,d) is indefinite then f has neither a local maximum nor local min-

imum at (c,d).

Proof.(a) SupposeH f (c,d) is positive definite. By Theorem 4.3

[u v]H f (c,d)

[
u
v

]

≥ m(u2+ v2)

for some m > 0. In the proof of Theorem 4.4 we showed that if the difference T
of the matrices H f (c,d) and H f (x,y) has entries that have absolute value less
than m

4 then
H f (x,y) =H f (c,d)+T

is positive definite. Since f has continuous second partial derivatives we can find
a disk of radius r centered at (c,d) where all these differences are within m

4 .
Let (x,y) be a point of the disk and let (u,v) be the vector from (c,d) to (x,y),
(u,v) = (x−c,y−d). Define a function of the single variable t on an open interval
containing 0 and 1 by

g(t) = f (c+ tu,d+ tv).

The function g evaluates f along the line segment from (c,d) to (x,y), with

g(0) = f (c,d), g(1) = f (x,y).

Differentiating with respect to t, the Chain Rule gives

g′(t) = u fx(c+ tu,d+ tv)+ v fy(c+ tu,d+ tv)

and

g′′(t) = u2 fxx(c+ tu,d+ tv)+2uv fxy(c+ tu,d+ tv)+ v2 fyy(c+ tu,d+ tv).

By Taylor’s Theorem for functions of a single variable we have
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f (x,y) = g(1) = g(0)+g′(0)(1)+
g′′(θ)
2

(1)2

for some θ between 0 and 1. Since g′(0) = u fx(c,d)+ v fy(c,d) = 0u+ 0v = 0 we
have

f (x,y) = f (c,d)+
g′′(θ)
2
. (4.2)

g′′(θ) = u2 fxx(c+ θu,d+ θv)+2uv fxy(c+ θu,d+ θv)+ v2 fyy(c+ θu,d+ θv)

= [u v]H f (c+ θu,d+ θv)

[
u
v

]

where (c+θu,d+θv) is on the segment between (c,d) and (x,y) and hence within
distance r of (c,d). SinceH f (c+ θu,d+ θv) is positive definite g′′(θ) is positive.
By equation (4.2) we get

f (x,y) > f (c,d).

(b) If H f (c,d) is negative definite apply part (a) to the function − f . The function f
has a strict local maximum wherever − f has a strict local minimum.

(c) IfH f (c,d) is indefinite then

g′′(0) = u2 fxx(c,d)+2uv fxy(c,d)+ v2 fyy(c,d)

is positive for some values of (u,v) and negative for others. For r small enough,
g′′(θ) is close enough to g′′(0) so that g′′(θ) will be positive for some values of
(u,v) and negative for others. So for some points (x,y), f (x,y) > f (c,d) and for
others f (x,y)< f (c,d). That is, at (c,d) the function f has neither a maximum nor
minimum, but ∇ f (c,d) = 0. Such a point is called a saddle point for f , a name
dating back to the days when people rode horses.

	


y

z

x

Fig. 4.4 The graph of a function with a saddle point.

The next theorem gives a useful criterion for a 2 by 2 matrix to be positive definite
or negative definite.
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Theorem 4.6. The symmetric matrix

S =
[
p q
q r

]

is positive definite if
p > 0 and pr−q2 > 0.

S is negative definite if p < 0 and pr−q2 > 0 and S is indefinite if pr−q2 < 0.

Proof. The quadratic function associated to S is

S (u,v) = pu2+2quv+ rv2.

For v � 0
S (u,v) = v2

(

p
(u
v

)2
+2q

u
v
+ r
)

.

Let f (t) = pt2+2qt+ r. Then

v2 f
(u
v

)
= S (u,v).

Rewrite f (t) by “completing the square”

f (t) = p

⎛
⎜⎜⎜⎜⎜⎝t
2+2

q
p
t+

(
q
p

)2⎞⎟⎟⎟⎟⎟⎠+ r−
q2

p
= p

(

t+
q
p

)2

+

(

r− q2

p

)

.

Now f
( u
v

)
is positive, and therefore S (u,v) is positive, if

p > 0 and r− q2

p > 0,

that is p > 0 and pr−q2 > 0. And f
( u
v

)
is negative, and therefore S (u,v) is negative,

if
p < 0 and r− q2

p < 0,

that is p < 0 and pr−q2 > 0. The same criteria apply when v = 0 because

S (u,0) = pu2

is positive or negative with p.

Now consider the case pr−q2 < 0. If p > 0 then pr−q2
p < 0. Pick (u,v) so that the

ratio u
v is large enough that

p

(
u
v
+
q
p

)2

> − pr−q
2

p
.
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In this case f
( u
v

)
> 0. Then S (u,v) > 0.

Alternatively, pick (u,v) so that the ratio u
v = − q

p then

f
( u
v

)
= 0+ r− q2

p .

Since p > 0 and pr−q2 < 0, f
( u
v

)
= r− q2

p < 0 and we get

S (u,v) = v2 f
( u
v

)
< 0.

Thus for p > 0 we have shown that S (u,v) is positive for some (u,v) and negative
for other (u,v). If p < 0 use a similar argument to show that again S (u,v) is positive
for some (u,v) and negative for other (u,v). 	


Example 4.4. Find the local extrema of f (x,y) = x2+2x+y2+2. The gradient

∇ f (x,y) = (2x+2,2y)
so ∇ f (−1,0) = (0,0). The Hessian matrix of f at (−1,0) is

H f (−1,0) =
[
fxx(−1,0) fxy(−1,0)
fyx(−1,0) fyy(−1,0)

]

=

[
2 0
0 2

]

.

Since fxx(−1,0)= 2> 0 and fxx(−1,0) fyy(−1,0)− f 2xy(−1,0)= 4> 0,H f (−1,0)
is positive definite and f has a strict local minimum at (−1,0). Since ∇ f (x,y)
exists at all points (x,y) of R2 and is zero only at (−1,0), there is only one
local extremum. �

Example 4.5. Find the local extrema of f (x,y) = x2− y2. The gradient
∇ f (x,y) = (2x,−2y)

so ∇ f (0,0) = (0,0). The second partial derivatives of f are

fxx(x,y) = 2, fyy(x,y) = −2, fxy(x,y) = fyx(x,y) = 0.

The matrix

H f (0,0) =

[
2 0
0 −2

]

has fxx(0,0) fyy(0,0)− f 2xy(0,0) = (2)(−2)− 02 < 0, so f has a saddle at (0,0).
See Figure 4.4 for a sketch of the graph of f . �

Example 4.6. Find the local extrema of f (x,y) = 2x2 − xy+ y4. The gradient
∇ f (x,y) = (4x− y,−x+4y3)

is zero when x = 1
4y and −x+4y3 = 0. These imply − 1

4y+4y
3 = 0. The solu-

tions are y = 0,± 1
4 , and since x = 1

4y the gradient is zero at
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(0,0),
( 1
16 ,

1
4
)
,
(− 1

16 ,− 1
4
)
.

The HessianH f (x,y) =

[
4 −1
−1 12y2

]

so

H f (0,0) =

[
4 −1
−1 0

]

, H f
( 1
16 ,

1
4
)
=

[
4 −1
−1 12

16

]

, H f
(− 1

16 ,− 1
4
)
=

[
4 −1
−1 12

16

]

.

Since 4(0)− (−1)2 < 0, f has a saddle at (0,0). Since 4 and 4
( 12
16
)− (−1)2 are

positive, f has a local minimum at
( 1
16 ,

1
4
)
. The last two Hessians are the same,

therefore f also has a local minimum at
(− 1

16 ,− 1
4
)
. �

Example 4.7. Consider the three functions

f (x,y) = x2, x3, −x2.
Each has ∇ f (0,0) = 0 and Hessian

H f (0,0) =

[
0 0
0 0

]

.

H f (0,0) is not positive or negative definite and it is not indefinite. But for
f (x,y) = x2, f (0,0) is a local minimum; for f (x,y) = x3, f (0,0) is neither a
maximum or a minimum; and for f (x,y) = −x2, f (0,0) is a local maximum.
In these examples the Hessian gives no information. �

Problems

4.13. Let f (x,y) = (x−1)2+2(y−2)2+ (y−2)3 = 1−2x+ x2 +4y−4y2+ y3.
(a) Calculate ∇ f and find the two points where ∇ f = 0.
(b) Calculate the Hessian matrixH f of f at the two points in part (a).
(c) Determine whether f has a local maximum, minimum, or saddle at the points

you found.

4.14. A symmetric 2 by 2matrixA has been computed numerically with small errors
as a symmetric matrix S, and each i, j entry of S is within 10−3 of the i, j entry of A.
If S (u,v) ≥ 3×10−2(u2+ v2) show that A is positive definite.

4.15. Write the following quadratic functions in the formX ·SX for some symmetric
matrix S.

(a) 3x21 +4x1x2+ x
2
2

(b) −x21 +5x1x2+3x22
4.16. Let f (x,y) = x2+2xy+ y3. Determine all local extrema.
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B A

C

P

Fig. 4.5 The sum of distances from P to A, B, and C is minimized in Problem 4.18.

4.17. Let f (x,y) = −x3+ x2+ xy+3y2. Show that f (0,0) is a local minimum.

4.18. Let A = (a1,a2), B = (b1,b2), and C = (c1,c2) be three points in R
2, and let

f (x,y) be the sum of the distances from point (x,y) to A, B, and C.

(a) Show that if ∇ f (P) = 0 then the sum of the unit vectors

P−A
||P−A|| +

P−B
||P−B|| +

P−C
||P−C|| = 0.

(b) Show that the sum of three unit vectors is zero if and only if the angle between
each pair of them is 120 degrees. See Figure 4.5.

4.19. Find a number m so that
x2+qxy+ y2

is positive definite when |q| < m.
4.20. Suppose a C2 function f (x,y) satisfies

fxx + fyy = 0.

(a) Suppose also that fxx is not zero at any point. Show that f does not have any
local maximum or minimum values.

(b) Suppose that at every point (x,y), at least one of the second partial derivatives
fxx, fxy, or fyy is not zero. Show that f does not have any local maximum or
minimum values.

4.21. Let f (x,y)= x2+2y2 and g(x,y)= x4+2y2. Show that f and g attain their strict
local minimums at the origin. Show that the matrix of second partial derivatives
H f (0,0) is positive definite butHg(0,0) is not positive definite.

4.22. Find the point on the plane

z = x−2y+3
that is closest to the origin, by finding where the square of the distance between the
origin and a point of the plane is a local minimum.

4.23. Confirm that the point found in Problem 4.22 is also a normal vector to the
plane there, and make a sketch to show why this is the case.
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4.3 Extrema of functions of several variables

Theorems developed in Section 4.2 for functions of two variables can be extended
to functions of several variables.

Taylor’s Theorem Recall that a function f from an open set in R
n to R is differen-

tiable at A if f (X) can be well approximated by f (A)+∇ f (A) · (X−A),
f (X) = f (A)+∇ f (A) · (X−A)+R(X−A)

where
R(X−A)
||X−A|| tends to zero as ||X−A|| tends to zero. Let

p1(X) = f (A)+∇ f (A) · (X−A) = f (A)+
n∑

i=1

fxi(A)(xi−ai).

p1 is called the first order Taylor approximation of f at A. Let H = X−A, then

p1(X) = p1(A+H) = f (A)+∇ f (A) ·H = f (A)+
n∑

i=1

fxi(A)hi.

Example 4.8. Write the first order Taylor approximation of

f (x,y,z) = sin x+2y+ eyz

at (0,0,0), and use it to approximate f (.1, .2, .01).
The gradient of f is

∇ f (x,y,z) = (cos x,2+ zeyz,yeyz)
and ∇ f (0,0,0) = (1,2,0). The first order Taylor approximation of f at (0,0,0)
is

p1(0+H) = p1(h1,h2,h3) = f (0,0,0)+∇ f (0,0,0) · (h1,h2,h3) = 1+h1+2h2,
and f (.1, .2, .01) ≈ p1(.1, .2, .01) = 1+ .1+ .4 = 1.5. �

Suppose now f from R
n to R is C3 on an open set that contains an open ball

centered at A, and let X = A+H be a point in the ball. Define the function

g(t) = f (A+ tH)

for t in an open interval that contains 0 and 1. For 0 ≤ t ≤ 1 the points A+ tH are
on a line segment from A to A+H, and g(0) = f (A), g(1) = f (A+H). Since g is a
C3 function on an open interval that contains [0,1], we can compute g′, g′′, and g′′′
and write the order 2 Taylor approximation of g, with the remainder. By the Chain
Rule,
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g′(t) = ∇ f (A+ tH) ·H =
n∑

i=1

fxi(A+ tH)hi.

By the Chain Rule again

g′′(t) =
d
dt

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑

i=1

hi fxi(A+ tH)

⎞
⎟⎟⎟⎟⎟⎟⎠ =

n∑

i=1

hi

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

fxi x j(A+ tH)h j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

n∑

i, j=1

hi fxi x j(A+ tH)h j.

At t = 0,

g′(0) =
n∑

i=1

fxi(A)hi, g′′(0) =
n∑

i, j=1

hi fxi x j(A)h j = [h1 h2 · · · hn]
[

fxi x j(A)
]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1
h2
...
hn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where
[
fxi x j(A)

]
is the Hessian matrix of f at A. By the Chain Rule again

g′′′(t) =
n∑

i, j,k=1

hih jhk fxi x j xk (A+ tH).

According to Taylor’s Theorem for functions of a single variable, there is a number
θ between 0 and 1 so that

g(1) = g(0)+g′(0)+ 1
2g
′′(0)+ 1

3!g
′′′(θ).

This expresses f (A+H) as the order 2 Taylor approximation, p2(A+H), plus a

remainder. Denote by H the column vector

⎡
⎢⎢⎢⎢⎢⎢⎣

h1
...
hn

⎤
⎥⎥⎥⎥⎥⎥⎦ and denote by HT the row vector

(h1, . . . ,hn). Then we have

f (A+H) = f (A)+∇ f (A) ·H+ 1
2H

T
[
fxi x j(A)

]
H+R2(A,H) = p2(A+H)+R2(A,H).

By the triangle inequality

∣∣∣R2(A,H)
∣∣∣ =

∣∣∣∣∣
1
3!

n∑

i, j,k=1

hih jhk fxix j xk (A+ θH)
∣∣∣∣∣ ≤ 1

3!

n∑

i, j,k=1

∣∣∣hih jhk fxix j xk (A+ θH)
∣∣∣.

Each |hi| ≤ ||H||, so we get
∣∣∣R2(A,H)

∣∣∣ ≤ 1
3! ||H||3

n∑

i, j,k=1

∣∣∣ fxi x j xk (A+ θH)
∣∣∣.

Since the third partial derivatives are continuous on the closed ball of radius ||H||
centered at A, they are bounded. Let K be the sum of the bounds of the third partial
derivatives. Then ∣∣∣R2(A,H)

∣∣∣ ≤ 1
3!K||H||3 = k||H||3.
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When H � 0 then 0 ≤ |R2(A,H)|
||H||2 ≤ k||H||, so |R2(A,H)|

||H||2 tends to zero as H tends to

zero.
For Cm functions we define the order m Taylor approximation to f at A as

pm(A+H) = f (A)+
n∑

i1=1

hi1 fxi1 (A)+
1
2

n∑

i1,i2=1

hi1hi2 fxi1 xi2 (A)

+ · · ·+ 1
m!

n∑

i1,...,im=1

(
hi1hi2 · · ·him

)
fxi1 xi2 ···xim (A).

An analogous argument to the one we used to prove Taylor’s second order
approximation can be made to prove the following theorem.

Theorem 4.7. (Taylor) Suppose f from R
n to R is a Cm+1 function on an open

ball centered at A. Then for A+H in the ball,

f (A+H) = f (A)+
n∑

i1=1

hi1 fxi1 (A)+
1
2

n∑

i1,i2=1

hi1hi2 fxi1 xi2 (A)

+ · · ·+ 1
m!

n∑

i1,...,im=1

(
hi1hi2 · · ·him

)
fxi1 xi2 ···xim (A)+Rm(A,H),

where
∣∣∣Rm(A,H)

∣∣∣ ≤ k||H||m+1 for some constant k. The remainder goes to zero
faster than ||H||m in the sense that

0 ≤
∣∣∣Rm(A,H)

∣∣∣

||H||m ≤ k||H||.

x

y

z

f

p1

p2

p

f

1

Fig. 4.6 Graphs for Example 4.9. Left: f and its Taylor polynomial p1. Right: f , p1, and p2.

Example 4.9. Let f (x,y)= x2+ 3
2y

2+ 3
4 (x

4+y4). Find the first and second order
Taylor approximations to f at (1,1).



180 4 More about differentiation

f (1,1) = 4, ∇ f (x,y) = (2x+3x3,3y+3y3), ∇ f (1,1) = (5,6),

H f (x,y) =

[
2+9x2 0

0 3+9y2

]

, H f (1,1) =

[
11 0
0 12

]

.

So
p1(1+h1,1+h2) = f (1,1)+∇ f (1,1) · (h1,h2) = 4+5h1+6h2,

p2(1+h1,1+h2) = p1(1+h1,1+h2)+ 1
2 [h1 h2]H f (1,1)

[
h1
h2

]

= 4+5h1+6h2+ 11
2 h

2
1+6h

2
2.

We can also write p1 and p2 in the form

p1(x,y) = 4+5(x−1)+6(y−1),
p2(x,y) = 4+5(x−1)+6(y−1)+ 11

2 (x−1)2+6(y−1)2.
Figure 4.6 shows graphs of f , p1, and p2. �

Example 4.10. Find the second order Taylor approximation to

f (x,y,z) = sin x+2y+ eyz

at A = (0,0,0), and use it to estimate f (.1, .2, .01). Recall we found

∇ f (x,y,z) = (cos x,2+ zeyz,yeyz)
and ∇ f (0,0,0) = (1,2,0) in Example 4.8. The second partial derivatives are

H f (x,y,z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−sin x 0 0
0 z2eyz (1+ yz)eyz

0 (1+ yz)eyz y2eyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H f (0,0,0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The second order Taylor approximation to f at (0,0,0) is

p2(H) = f (0)+∇ f (0,0,0) ·H+ 1
2H

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
H = 1+h1+2h2+h2h3,

and p2(.1, .2, .01) = 1+ .1+2(.2)+ (.2)(.01) = 1.502. �
Extrema. Suppose f is a C3 function from an open set in R

n to R, and that the
gradient of f is zero at a point A. By Taylor’s Theorem 4.7

f (A+H) = f (A)+ 1
2H

T
[
fxi x j(A)

]
H+R2(A,H)

where
[
fxi x j(A)

]
is the Hessian matrix of second partial derivatives of f at A, and
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∣∣∣R2(A,H)
∣∣∣ ≤ k||H||3

for some number k. Since
[
fxi x j(A)

]
is symmetric we can determine whether f has

a strict local minimum or strict local maximum at A by considering the sign of
HT
[
fxi x j(A)

]
H. Suppose first that the matrix is positive definite, that is

HT
[
fxi x j(A)

]
H ≥ m||H||2

for some number m > 0. Then

f (A+H)− f (A) = 1
2H

T
[
fxi x j(A)

]
H+R2(A,H) ≥ 1

2m||H||2+R2(A,H).

By Taylor’s Theorem
∣∣∣R2(A,H)

∣∣∣ ≤ k||H||3, so

f (A+H)− f (A) ≥ 1
2m||H||2+R2(A,H) > 1

2m||H||2− k||H||3 = m||H||2
( 1
2 − k

m ||H||
)
.

Since 1
2 − k

m ||H|| is positive for ||H|| small enough, we see that f has a strict local
minimum at A. This proves the second derivative test, that we state as the following
theorem.

Theorem 4.8. Second derivative test. Let f be a C3 function in an open set
of Rn containing A. If ∇ f (A) = 0 and the Hessian matrix

[
fxi x j(A)

]
is positive

definite at A, then f has a local minimum at A.

Looking further at our proof of Theorem 4.8, we can make an observation about
the sign of the error in the approximation f (A+H)≈ f (A)+∇ f (A) ·H in the general
case where ∇ f (A) might or might not be 0. We state this in the following theorem.

Theorem 4.9. Let f be a C3 function in an open set of Rn containing A. If the
Hessian matrix

[
fxi x j(A)

]
is positive definite at A, then the degree one Taylor

approximation

f (A+H) ≈ p1(A+H) = f (A)+∇ f (A) ·H
is an underestimate for all sufficiently small H,

f (A+H) ≥ p1(A+H).

Proof. By Taylor’s Theorem

f (A+H)− p1(A+H) = 1
2H

T
[
fxi x j
]
H+R2(A,H)

where |R2(A,H)| ≤ k||H||3 for some k ≥ 0. Since the Hessian is positive definite there
is some m > 0 so that
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f (A+H)− p1(A+H) ≥ 1
2m||H||2− k||H||3 = m||H||2

(
1
2 − k

m ||H||
)
.

Since 1
2 − k

m ||H|| is positive for ||H|| small enough we see that for such H,

f (A+H) ≥ p1(A+H)

and p1 is an underestimate for f . 	

In order to apply the second derivative test, Theorem 4.8, it is useful to have a

criterion for determining whether a symmetric matrix is positive definite. We state
the following result that generalizes Theorem 4.6.

Theorem 4.10. Let M = [mi j] be a symmetric matrix, n×n. Suppose

m11, det

[
m11 m12

m21 m22

]

, det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, · · · , detM

are all positive. Then M is positive definite.

For a proof of Theorem 4.10 please consult a text on matrix theory.

Example 4.11. Let f (x,y,z) = x2 + y2 + z2 + 2xyz. At which of the points
(0,0,0), (1,1,1), (−1,−1,−1) does f have a strict local minimum?

∇ f (x,y,z) = (2x+2yz,2y+2xz,2z+2xy)
so ∇ f (0,0,0) = (0,0,0), ∇ f (1,1,1) = (4,4,4), ∇ f (−1,−1,−1) = (0,0,0), Since
∇ f (1,1,1) � 0, f (1,1,1) cannot be a local minimum. The matrices of second
partial derivatives are

H f (x,y,z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 2z 2y
2z 2 2x
2y 2x 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, H f (0,0,0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, H f (−1,−1.−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 −2
−2 2 −2
−2 −2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Since UTH f (0,0,0)U = 2||U||2 is positive except when U = 0, H f (0,0,0) is
positive definite and f (0,0,0) is a strict local minimum. We could also use the
determinant criterion to see that H f (0,0,0) is positive definite, since 2 > 0,

det

[
2 0
0 2

]

= 4 > 0, and detH f (0,0,0) = 8 > 0. At the point (−1,−1,−1) we
check for positive definiteness of H f (−1,−1,−1) by the determinant crite-
rion:

2 > 0, det

[
2 −2
−2 2

]

= 4−4 = 0, det
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 −2
−2 2 −2
−2 −2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= 2(0)+2(−4−4)−2(4+4) = −32.

Since the determinant of the 2 by 2 part is zero the theorem gives no infor-
mation. If we experiment we find
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[1 0 0]H f (−1,−1,−1)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 2, [1 1 1]H f (−1,−1,−1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −8,

so the matrix is indefinite, and f (−1,−1,−1) is a saddle. �

Problems

4.24. Let f (X) = C ·X be a linear function from R
n to R, and let A be a point in Rn.

Show that the first and second order Taylor approximations to f at A, p1 and p2, are
equal to f .

4.25. Let f (x,y,z) = ey log(1+ x)+ sinz.

(a) Show that f has no local extrema.
(b) Find the second order Taylor approximation p2(h1,h2,h3) to f at (0,0,0).

4.26. Let

f (x,y,z) =
1

1− xyz .

Find the first order Taylor approximation to f at A =
( 1
2 ,

1
2 ,

1
2
)
.

4.27. Let f (x,y,z) = x2+ xy+ 1
2y

2+2yz+ z3.

(a) Show that ∇ f is the zero vector at 0 and at one other point A.
(b) Use Theorem 4.10 to show that f has a local minimum at A.
(c) Find points arbitrarily near (0,0,0) where f is positive and where f is negative,

to show that f has a saddle at (0,0,0).

4.28. Consider the set S of points in (x,y,z) space that satisfy

z2 = x2+2y2+1.

Let (a,b,0) be a point in the z = 0 plane. Find the local extrema of a function of (x,y)
to determine the points of S that are closest to (a,b,0).

4.29. Let f (X) = ||X||−1 for X � 0 in R3, and let A be a nonzero vector in R3.

(a) Find all first and second order partial derivatives of f .
(b) Find the second order Taylor approximation to f at A.

4.30. Use Theorem 4.10 to show that the following matrices are positive definite.

(a)

[
2 −1
−1 1

]

(b)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0
−1 1 0
0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(c)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0
−1 1 k
0 k 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k2 < 3

4.31. Let f (x1, x2, x3, x4) = x1 + x2 + x3 + x4 + x1x2x3x4. Find the order 1 through 5
Taylor approximations p1, p2, p3, p4, p5 for f at A = (0,0,0,0).

4.4 Extrema on level sets

The Extreme Value Theorem 2.11 guarantees that a continuous function f from a
closed and bounded set D ⊂ R

n to R has an absolute maximum and absolute mini-
mum value. In Section 4.2 we saw that if a C1 function f from D ⊂ R

n to R has a
maximum or minimum at an interior point A then ∇ f (A) = 0. This “first derivative
test” gives us a way to find candidates for extrema that occur in the interior of D.
In this section we develop a method for identifying candidates for extrema of a C1

function f on a level set that has no interior points in Rn. We state and prove the the-
orem for functions from R

3 to R but an analogous result is true in R
2 and in higher

dimensions.
Recall that a value f (P) is a local extremum of f on a set S , where P is in S , if

f (P) ≥ f (Q) for all Q in S near P, or if f (P) ≤ f (Q) for all Q in S near P.

Theorem 4.11. Lagrange multiplier. Let f and g be C1 functions from an
open set in R

3 to R, and denote by S a level set g(x,y,z) = c. Let P be a point
of S such that

(a) ∇g(P) � 0, and
(b) f has a local extremum on S at P.

Then there is a number λ such that

∇ f (P) = λ∇g(P).

Proof. By the Implicit Function Theorem it follows from (a) that there is a portion
of S containing P where one of the variables (x,y,z) can be expressed as a function
of the other two, say gz(P) � 0 and z = φ(x,y). Then

g
(
x,y,φ(x,y)

)
= c.

Since f has a local extreme value at P = (p1, p2, p3), the function

h(x,y) = f
(
x,y,φ(x,y)

)

has a local extremum at the center of an open disk about (p1, p2). Therefore the
derivatives of h(x,y) with respect to x and y are zero at (p1, p2):

http://dx.doi.org/10.1007/978-3-319-74073-7_2
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hx =
∂ f
∂x
+
∂ f
∂z
∂φ

∂x
= 0, hy =

∂ f
∂y
+
∂ f
∂z
∂φ

∂y
= 0. (4.3)

We have by differentiating g
(
x,y,φ(x,y)

)
= c that

∂g
∂x
+
∂g
∂z
∂φ

∂x
= 0,

∂g
∂y
+
∂g
∂z
∂φ

∂y
= 0. (4.4)

Therefore, using gz � 0,

∂φ

∂x
= −

∂g
∂x
∂g
∂z

,
∂φ

∂y
= −

∂g
∂y

∂g
∂z

.

Substitute these formulas for the partial derivatives of φ at (p1, p2) into formula (4.3)
for hx and hy. We get at P,

∂ f
∂x
+
∂ f
∂z

⎛
⎜⎜⎜⎜⎜⎜⎝−
∂g
∂x
∂g
∂z

⎞
⎟⎟⎟⎟⎟⎟⎠ = 0,

∂ f
∂y
+
∂ f
∂z

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
−
∂g
∂y

∂g
∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
= 0.

Let λ =
∂ f
∂z
∂g
∂z

(P). Then ∇ f (P) = λ∇g(P) as asserted. 	


f = 2

f = 1

f = 3

f = 0

∇f (P)

∇g(P)

∇g(Q)

g = c

∇f (Q)

P

Q

Fig. 4.7 The maximum value of f on g = c is f (P) = 2, where ∇ f (P) = λ∇g(P).

Example 4.12. Find the rectangular box of largest volume that has sides par-
allel to the x,y and a axes and that can be inscribed in the ellipsoid given
by

5x2+3y2+7z2 = 1.

We maximize the volume, f (x,y,z) = (2x)(2y)(2z) = 8xyz, for (x,y,z) in the
level set g(x,y,z) = 5x2 +3y2 +7z2 −1 = 0, where (x,y,z) is in the first octant.
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The equation g = 0 is often called a constraint. It is possible in this problem
to solve the constraint g = 0 for z in terms of (x,y) and use the methods of
Section 4.2. But let’s use the Lagrange multiplier method. We solve the system
of equations

5x2+3y2+7z2−1 = 0, ∇ f = (8yz,8xz,8xy) = λ∇g = λ(10x,6y,14z)
by considering cases. Either λ = 0 or not. If λ = 0 then at least two of the
coordinates x,y,z are zero, so the volume f is zero. So assume λ � 0. We
consider only points where x,y,z are all nonzero since we seek a maximum
volume. Then we can form quotients; we find

8yz
8xz
=

y
x
=
λ(10x)
λ(6y)

=
5x
3y
,

8yz
8xy
=

z
x
=
λ(10x)
λ(14z)

=
5x
7z
,

so y2 = 5
3 x

2 and z2 = 5
7 x

2. The constraint g = 0 then gives

5x2 +3y2+7z2−1 = 5x2+3( 53 x2
)
+7
( 5
7 x

2)−1 = 15x2−1 = 0.
This gives as candidates for the maximum, the eight points with coordinates

x = ± 1√
3
√
5
, y = ± 1√

3
√
3
, z = ± 1√

3
√
7
.

Since the domain of f is the first octant we take all the plus signs. The max-
imum volume of the box is then f

( 1√
3
√
5
, 1√

3
√
3
, 1√

3
√
7

)
= 8

9
√
35

for a box that

measures 2√
3
√
5
by 2√

3
√
3
by 2√

3
√
7
. �

Example 4.13. Let Q =
[
p q
q r

]

and consider the quadratic function

Q(X) = X ·QX = [x y]
[
p q
q r

] [
x
y

]

= px2+2qxy+ ry2

on the unit circle ||X||2 − 1 = x2 + y2 − 1 = 0. Since Q is continuous and the
circle is closed and bounded, Q has a maximum on the circle. If X is a point
where Q is maximum then according to Theorem 4.1

∇Q(X) = λ∇(||X||2).
or (2px+2qy,2qx+2ry)= λ(2x,2y). After dividing by 2, this is neatly expressed
as

QX = λX.

Such a number λ is known as an eigenvalue of the matrix Q, and vector X is
a corresponding eigenvector. Dot the equation QX = λX with X to get
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X ·QX = λ||X||2 = λ,
which shows that this eigenvalue is the maximum value of the quadratic func-
tion on the circle.

This example also shows that every 2 by 2 symmetric matrix has an eigen-
value. �

Example 4.14. Suppose there are three commodities A, B, C that have unit
prices p,q,r, and are purchased in amounts x,y,z, respectively. The budget or
“wealth constraint” is

px+qy+ rz = w (4.5)

where w > 0 is given. Let U(x,y,z) = xaybzc be the utility function measuring
consumer satisfaction from consuming x amount of A, y of B, and z of C,
where a,b, and c are positive. By Theorem 4.11 the maximum of U given the
wealth constraint satisfies

axa−1ybzc = λp
bxayb−1zc = λq
cxaybzc−1 = λr

w = px+qy+ rz.

If λ = 0 then at least one of x,y or z is 0 and the utility is zero. If λ � 0 multiply

the first three equations by
x
a
,
y
b
,
z
c
, respectively, to get

xaybzc = λ
x
a
p = λ

y
b
q = λ

z
c
r.

Divide by λ to get
x
a
p =

y
b
q =

z
c
r. (4.6)

So yq = b
a xp and zr = c

a xp. Substituting this into the wealth constraint (4.5)
we get

w = px
(
1+

b
a
+
c
a

)
,

so that px = w
a

a+b+ c
. The amounts the consumer spends on commodities

A, B, C are according to (4.6)

px =
aw

a+b+ c
, qy =

bw
a+b+ c

, rz =
cw

a+b+ c

respectively. �

Example 4.15. Suppose there are N particles each having one of the energies

e1, e2, . . .em.
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Let xi denote the number of particles with energy ei. The number of ways this
can be arranged is known to be

W =
(x1+ x2+ · · ·+ xm)!

x1!x2! · · · xm!
since x1 + · · ·+ xm = N is the number of particles. In physics one wants to
maximize W assuming constant total energy

g(x1, . . . , xm) = e1x1+ e2x2+ · · ·+ emxm = E.

We maximize logW subject to the same constraint and use Stirling’s approxi-
mation log(x!) ≈ x log x to approximate logW as

f (x1, . . . , xm) = (x1+ · · ·+ xm) log(x1+ · · ·+ xm)− x1 log x1− · · ·− xm log xm.
By the n-dimensional version of Theorem 4.11 a local extreme value of f
occurs at a point X that satisfies

∇ f (X) =
(

log(x1+ · · ·+ xm)− log x1, . . . , log(x1+ · · ·+ xm)− log xm
)

= λ∇g(X) = λ(e1, . . . ,em).
This gives log(x1 + · · · + xm) − log xi = λei, or xi

x1+ ···+xm = e−λei . In the case
where (x1+ · · ·+ xm) = N we get

xi = Ne−λei .

In applications to statistical mechanics, it turns out that the multiplier λ is the
reciprocal temperature! �

Problems

4.32. In calculus we learn that the farmer with 400 meters of fencing material can
maximize the area of his rectangular field by making it square, 100 meters on each
side. Use Lagrange multipliers to verify that result.

4.33. Show using Theorem 4.11 that the maximum value of the function

Q(x,y) = 3x2+2xy+3y2

on the unit circle x2+ y2 = 1 is 4.

4.34. Use the Lagrange multiplier method to find the point of the line y = mx+ b
that is closest to (0,0).
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4.35. Use the Lagrange multiplier method to find the point of the hyperplane

C ·X = 0
that is closest to a given point A in Rn.

f = 50

f = 70

f = 80

f = 90
f = 100

g = 27

y

g = 26

g = 25

f = 200 x

Fig. 4.8 Level sets in Problem 4.36.

4.36. Differentiable functions f and g in the first quadrant have some level sets as
shown in Figure 4.8. Determine from the figure:

(a) The minimum of f on the curve g = 25.
(b) The sign of the Lagrange multiplier λ in (a).
(c) The minimum of g on the curve f = 80.
(d) The maximum of f on the curve g = 27. Does the equation ∇ f = λ∇g apply here?

4.37. Let A =
[
1 2
2 −2

]

. Express the quadratic function and constraint

X ·AX, X ·X = 1
at point X = (x,y), in terms of x and y. Solve a Lagrange multiplier problem to find
the constrained maximum of the quadratic function and express the results as an
eigenvalue equation

AX = λX.

4.38. Use the Lagrange multiplier method to find the points of the curve

x3+ y2 = 1

that are closest to the point (−1,0). See Figure 4.9.
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−1

y

x

Fig. 4.9 The curve in Problem 4.38.

4.39. Use the Lagrange multiplier method to find points of the level set

x3+ y2+ z2 = 1

that are closest to the point (−1,0,0).
4.40. Let f (x,y,z) = x2y3z4. Use the Lagrange multiplier method to find the maxi-
mum value of f on the plane 12x+12y+24z = 1.



Chapter 5
Applications to motion

Abstract The concepts and techniques of calculus are indispensable for the descrip-
tion and study of dynamics, the science of motion in space under the action
of forces. Both were created by Isaac Newton in the late seventeenth century and they
revolutionized both mathematics and physics. In this chapter we describe the basic
concepts and laws of the dynamics of point masses and deduce some of their
mathematical consequences.

5.1 Motion in space

There are of course no point masses in nature—each body has a nonzero size—but
in many situations a small body can be very well approximated by a point. Small
here is a relative term; for instance in the study of the motion of planets around the
sun the earth is regarded as a point mass.

The position of a point in three-dimensional space is described by its three Carte-
sian coordinates x,y, and z. These coordinates form a vector X in R

3. When the point
is moving, its position is described as a vector valued function of time, denoted
X(t) =

(
x(t),y(t),z(t)

)
. The function X parametrizes the curve on which the particle

moves. Informally we may speak of the motion, or curve, X(t).
As we saw in Section 3.1 the derivative with respect to time of the position func-

tion is the velocity of the particle at time t; it is denoted

V(t) =
dX(t)

dt
= X′(t).

The norm of the velocity, ||V(t)||, is the speed of the particle.

Example 5.1. Let X(t) = (cos t,sin t, t), − π2 ≤ t ≤ 2π be the position of a particle
at time t. Find the position, velocity, and speed of the particle at t = 0 and at
t = π4 .

V(t) = X′(t) = (−sin t,cos t,1).
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At t = 0 the particle is at X(0) = (1,0,0) and its velocity is V(0) = (0,1,1). At
t = π4 the particle is at X( π4 )=

( 1√
2
, 1√

2
, π4
)

and V
( π

4
)
=
(− 1√

2
, 1√

2
,1
)
. The speed

at time t is

||V(t)|| =
√

(−sin t)2+ (cos t)2+12 =
√

2.

The particle moves with constant speed along the curve shown in Figure 5.1.
�

 1
x

z

y

V(0)

V(  /4)π

Fig. 5.1 The curve in Example 5.1 showing position and velocity at times t = 0 and t = π4 .

The derivative with respect to t of the velocity function is the acceleration of the
particle at time t; it is denoted

dV(t)
dt
=

d2X(t)

dt2
= X′′(t).

Example 5.2. Suppose a particle moves along a C2 curve X(t) so that the speed
is constant. We show that the velocity and acceleration are orthogonal to each
other at each time t. Since the speed is constant we have ||X′(t)|| = c, Squaring
both sides we get ||X′(t)||2 = X′(t) ·X′(t) = c2. By the product rule

d
dt
(
X′(t) ·X′(t)) = X′(t) ·X′′(t)+X′′(t) ·X′(t) = 2X′(t) ·X′′(t) = d(c2)

dt
= 0.

so X′(t) and X′′(t) are orthogonal when the speed is constant. �

Newtonian mechanics. The basic notions of mechanics are velocity, acceleration,
mass, and force. Force is a vector quantity, denoted as F. A force F, acting on a
particle with mass m, accelerates it according to Newton’s law:

Forceequalsmass timesacceleration.

In symbols

F = m
d2X
dt2
. (5.1)

Equation (5.1) is called the equation of motion, Newton’s Law of Motion.
Next we prove the following important result.
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Theorem 5.1. Suppose a particle moves in R
3 with position X in a field of

force F(X) that is parallel to X, i.e., of the form

F(X) = k(X)X

where k(X) is a scalar valued function. Then the particle travels in a plane.

Proof. First we show that for a particle moving in a force field that is parallel to X,
the cross product of X(t) and X′(t) is a constant vector. Consider (X×X′)′. By the
product rule for cross products

(X×X′)′ = X′ ×X′+X×X′′. (5.2)

Since F(X) = k(X)X we get from Newton’s Law of Motion

X′′ =
k(X)

m
X.

Set this expression into equation (5.2). Since the cross product of a vector with itself
is zero we get

(X×X′)′ = X×
(k(X)

m
X
)
=

k(X)
m

X×X = 0.
Therefore X×X′ is a constant vector C. Since the cross product is orthogonal to
each factor,

C ·X(t) = 0

for all times t. If C � 0 the equation C ·X = 0 is the equation of a plane through
the origin, so the motion takes place in this plane. If C = 0 then X(t) and X′(t) are
parallel to each other at each t and the particle moves along a line. Or X′(t) = 0 and
the particle does not move. In any case the particle remains in a plane. �

Problems

5.1. Find the velocity, the acceleration, and the speed of particles with the following
positions.

(a) X(t) = C constant,
(b) X(t) = (t, t, t),
(c) X(t) = (1− t,2− t,3+ t),
(d) X(t) = (t,2t,3t),
(e) X(t) = (t, t2, t3).

5.2. A particle moves on a line. Let X(t) be its position at time t.
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(a) Suppose X(t) = A+Bt for some constant vectors A and B � 0. What is the loca-
tion of the particle at time t = 0?

(b) Find the velocity and acceleration at time t of the particle in part (a).
(c) Suppose instead X(t) =A+ (t3− t)B. Find the velocity and acceleration at time t.

When is the speed of the particle zero?
(d) At what times is the particle of part (c) located at X(0)?

5.3. A particle moves on a circle of radius r in the plane according to

X(t) =
(
r cos(ωt),r sin(ωt)

)

where r and ω are constant.

(a) Find the velocity and show that it is orthogonal to X(t), hence tangent to the
circle.

(b) Show that the speed is rω.
(c) Find the acceleration and show that it is parallel to X(t) but directed toward the

origin.
(d) Show that the magnitude of acceleration is rω2.

5.4. A particle of unit mass moves in a gradient force field, so that

X′′ = −∇p(X)

for some function p. Show that the energy

1
2 ||X′(t)||2+ p

(
X(t)
)

does not change with time.

5.5. A particle moves with nonzero velocity along a differentiable curve X(t) on a
sphere centered at the origin, so that ||X(t)|| is constant. Show that its velocity is
tangent to the sphere.

5.6. Give an example of a particle motion X(t) =
(
x(t),y(t)

)
, a < t < b, on the circle

x2+ y2 = 4, such that the acceleration is not toward the origin.

5.7. Let A, B, K, and F be constant vectors in R
3 and let m be a number. Verify that

the function
X(t) = A+Bt+Kt2

satisfies the equation of motion F =mX′′ when K = 1
2mF. Find the relation of A and

B to the initial position and velocity X(0), X′(0).

5.8. Verify that the following functions satisfy the indicated equations of motion in
R

3. A and B denote constant vectors.

(a) X(t) = Acos t is a solution of X′′ = −X,
(b) X(t) = Asin(2t) is a solution of X′′ = −4X,
(c) X(t) = Acos(3t)+Bsin(3t) is a solution of 1

9X
′′ = −X.
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5.9. For each motion X(t) given in Problem 5.8, describe a plane (See Theorem 5.1)
in which the motion occurs.

5.10. Consider the equation of motion

X′′ =MX,

where M is a constant matrix. Suppose there is a constant vector U and number ω
such that

MU = −ω2U.

Show that X(t) = cos(ωt)U is one solution of the equation of motion.
Such a number −ω2 is known as an eigenvalue of the matrix M and vector U is a

corresponding eigenvector.

5.11. Verify that X(t) = C+
1− e−kt

k
D, where k is a positive constant and C, D are

constant vectors, satisfies the equation of motion

X′′ = −kX′.

Find the relation of C and D to the initial position and velocity X(0), X′(0). Find the
total displacement of the particle

lim
t→∞X(t)−X(0)

in terms of the initial velocity.

5.12. An ancient society once believed that the moon moved on a circle about the
earth, being pulled across the sky by horses. In view of Newton’s law, and of Prob-
lem 5.3 part (c), in which direction is the moon really being pulled?

5.13. A particle moves in R
3 with velocity V = (v1,v2,v3), and acceleration

V′ = V×B,
where B is some vector field. For example, positively charged particles follow such
a rule when B is a magnetic field. Suppose B is a constant field, B = (0,0,b). See
Figure 5.2.

(a) Show that the components of acceleration are given by

v′1 = bv2

v′2 = −bv1

v′3 = 0 (5.3)

(b) Show that the position function X(t) = (asin(ωt),acos(ωt),bt) satisfies equations
(5.3) and that X′′(t) = X′(t)×B.

(c) Describe the direction of V′(t) at points along the helical curve X(t) given in
part (b).
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1x 2x

3x

B

B

Fig. 5.2 Particle motions in Problem 5.13.

5.14. Suppose a particle of mass m with position X(t) at time t is joined by a spring
to another particle of mass m with position Y(t). Then the equations of motion are

mX′′ = k(Y−X),

mY′′ = −k(Y−X)

where k is a constant depending on the strength of the spring. Denote by W the
vector W = (X,Y) = (x1, x2, x3,y1,y2,y3) with 6 components. Define the function p
on R

6 by
p(W) = p(X,Y) = 1

2 k||X−Y||2.
(a) Show that the equations of motion can be expressed in the form

mW′′(t) = −∇p
(
W(t)
)

where ∇p(W) is the vector of partial derivatives of p with respect to the 6 vari-
ables of W.

(b) Show that the quantity
1
2 m||W′(t)||2+ p

(
W(t)
)

does not change with time.

5.2 Planetary motion

There is a large variety of force fields in nature; gravitational fields are an important
case. Take in particular the motion of a particle of mass m in the gravitational field
of a unit mass located at the origin.

According to the law of gravitation, the force F exerted by a particle of unit mass
at the origin on a particle of mass m located at the point X is directed from X to the
origin, and its strength is m times the reciprocal of the square of the distance of X
from the origin times some constant. To simplify the model we take the gravitational
constant to be 1. That is,
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F(X) = −m
1

||X||2
X
||X|| = −m

X

||X||3

For this choice of force Newton’s law of motion reads

mX′′ = −m
X

||X||3 . (5.4)

Notice that mass m occurs on both sides of (5.4) as a factor; dividing both sides by
m gives an equation of motion

X′′ = − X

||X||3 . (5.5)

That the motion under the force of gravity does not depend on the mass of the
moving object is intuitively clear, for if we imagine the moving particle cut into
two parts, the trajectory of each part is the same, although the two parts may have
different masses. So from now on we take the mass m of the moving particle to be 1.

Next we observe that the term on the right side of equation (5.5) is a gradient:

− X

||X||3 = ∇p, where p(X) =
1
||X|| . (5.6)

So we can rewrite equation (5.5) as

X′′ = ∇p(X). (5.7)

Conservation of energy. We turn now to studying the motion of a particle of unit
mass in a force field that is the gradient of a differentiable function p. We have seen
that the gravitational field of a point mass is such a field. Since the sum of gradients
is a gradient, it follows that the gravitational field of any distribution of point masses
is a gradient field.

We derive now an important property of solutions of equations of the form (5.7)
where p is a differentiable function. Take the dot product of both sides with X′; we
get

X′′ ·X′ = ∇p(X) ·X′.
The left side is the derivative with respect to t of 1

2X
′ ·X′. The right side is, by the

Chain Rule, the t derivative of p(X(t)). Since their derivatives are equal, 1
2X
′ ·X′

and p(X) differ by a constant E independent of t:

1
2X
′ ·X′ − p(X) = E. (5.8)

The first term 1
2X
′ ·X′ in (5.8) is called the kinetic energy of the moving particle;

the second term −p(X) is called the potential energy; their sum is the total energy of
the moving particle. Equation (5.8) says that the total energy of the particle remains
the same during motion. This is the Law of Conservation of Energy.



198 5 Applications to motion

Thus we have shown that for the motion of a point mass in a gradient force field,
conservation of energy is a consequence of Newton’s law of motion.

Kepler’s Laws. We return to equation (5.5), governing the motion of a particle
under the gravitational force of a unit mass at the origin.

Since by Theorem 5.1 the motion occurs in a plane through the origin, it sim-
plifies our calculations to choose coordinates in which that plane is the x,y plane.
Therefore we set z = 0 in equations (5.5), giving

x′′+
x

r3
= 0, y′′+

y

r3
= 0, r =

√

x2+ y2. (5.9)

The energy equation (5.8) can be written as

1
2

(
(x′)2+ (y′)2

)
− 1
√

x2+ y2
= E. (5.10)

where E is constant. We obtain another relation between x,y, x′, and y′ by multiply-
ing the first equation in (5.9) by y, the second equation by x and taking the difference
of the two; we get

xy′′ − yx′′ = 0.

Since xy′′ − yx′′ is the t derivative of xy′ − yx′, we conclude that xy′ − yx′ is a con-
stant, call it A:

xy′ − yx′ = A. (5.11)

We introduce polar coordinates:

x = r cosφ, y = r sinφ. (5.12)

Differentiating these equations with respect to t gives

x′ = r′ cosφ− rφ′ sinφ, y′ = r′ sinφ+ rφ′ cosφ. (5.13)

A brief calculation using formulas (5.13) shows that

(x′)2+ (y′)2 = (r′)2+ r2(φ′)2.

Setting formulas (5.12), (5.13) into equation (5.11) gives

xy′ − yx′ = r2φ′ = A.

So we can express φ′ as

φ′ =
A

r2
. (5.14)

When A is zero, φ is a constant, so the motion takes place along a straight line. Such
a one-dimensional motion is uninteresting, so we take the case that A is nonzero. In
fact we may assume A > 0 (see Problem 5.19). The energy equation (5.10) becomes
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(r′)2+ r2(φ′)2− 2
r
= 2E.

Using (5.14) for φ′ in the equation above we get

(r′)2+
A2

r2
− 2

r
= 2E. (5.15)

Both r and φ are functions of t. It follows from (5.14) that φ′ is of one sign; it follows
that φ is a monotonic function of t. Therefore we can express r as a function of φ.
By the Chain Rule

r′ =
dr
dt
=

dr
dφ
φ′.

Using (5.14) to express φ′ as
A

r2
we get

r′ =
dr
dφ

A

r2
.

Set this expression of r′ into the left side of equation (5.15); we obtain

(
dr
dφ

)2 A2

r4
+

A2

r2
− 2

r
= 2E. (5.16)

Since A is not zero, we can multiply this equation by
r4

A2
. We get

(
dr
dφ

)2
+ r2− 2r3

A2
= 2E

r4

A2
. (5.17)

We introduce the abbreviations

a =
2E

A2
, b =

1

A2
(5.18)

and rewrite the equation (5.17) as

(
dr
dφ

)2
= ar4+2br3− r2. (5.19)

The derivatives
dr
dφ

and
dφ
dr

are reciprocals of each other. (See Problem 5.20.) Taking

the reciprocal of both sides of (5.19) we get

(
dφ
dr

)2
=

1

ar4+2br3− r2
. (5.20)
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We introduce u =
1
r

as new variable. By the Chain Rule

dφ
dr
=

dφ
du

du
dr
=

dφ
du

(

− 1

r2

)

.

Use this to express the left side of (5.20), and multiply both sides by r4; we get

(
dφ
du

)2
=

r4

ar4+2br3− r2
=

1

a+2bu−u2
.

Taking the square root we get

dφ
du
=

1√
a+2bu−u2

. (5.21)

To determine φ as a function of u we have to find the integral of the function of u on
the right in (5.21). We recall that the derivative of the inverse sine function is

d
dy

sin−1 y =
1

√
1− y2

.

Set y = p+qu, p and q constants, q > 0. We get

d
du
(
sin−1(p+qu)

)
=

q
√

1− (p+qu)2
=

1√
a+2bu−u2

,

where a and b are

a =
1− p2

q2
, b = − p

q
. (5.22)

This shows that we may take φ(u) in (5.21) to be

φ(u) = sin−1(p+qu),

where p and q are related to a and b by (5.22). Therefore

sinφ = p+qu.

We omit a brief calculation with (5.22) that confirms q is positive except perhaps for
circular orbits. We guide you in Problem 5.15 to discover all circular orbits.

We recall that u is
1
r

; multiplying the equation above by r we get

r sinφ = pr+q. (5.23)

We claim that this is the equation of a conic in polar coordinates. The equation is
easily rewritten in Cartesian coordinates x and y:
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y = p
√

x2+ y2+q. (5.24)

Hence
p2(x2+ y2) = (y−q)2. (5.25)

It follows from equation (5.18) that b is positive. By equation (5.22), b = − p
q

,

therefore p is negative, in particular p is nonzero. This shows that equation (5.25) is
quadratic in x and y, hence its zero set is a conic.

In Problems 5.21 and 5.22 we ask you to discover that the conic is an ellipse
when p < −1, parabola when p = −1, and hyperbola when −1 < p < 0. Figure 7.20
is a sketch of the elliptical orbit of the moon around the earth.

Kepler based his laws on observations of the planets. His first law states that
the orbits of planets in the solar system are conics with one of the foci at the sun.
The calculation above shows that Kepler’s first law is a consequence of the inverse
square law of gravitational force. Several of the Problems discuss Kepler’s other
laws.

Newton showed that all of Kepler’s laws are consequences of the inverse square
law of gravitational force. This striking result led to the universal acceptance of the
inverse square law of gravitation.

Problems

5.15. Consider the circular orbit defined by

X(t) =
(
x(t),y(t)

)
= (acosωt,asinωt)

where a and ω are constants.

(a) Show that the radius function r =
√

x2+ y2 is the constant a.
(b) Show that if ω2a3 = 1 then X is a solution of equations (5.9):

x′′+
x

(x2+ y2)3/2
= 0, y′′+

y

(x2+ y2)3/2
= 0.

(c) Show that the constant A defined in equation (5.11) is equal to ωa2.

Remark. The constancy of ω2a3 is one case of Kepler’s laws shown in this problem
for circular orbits, and generally in Problem 5.21. An example is the prediction of
the orbit radius of Saturn:

(
1 Earth orbit radius

)3

(
1 Earth year

)2 =

(
a Earth orbit radii

)3

(
29.5 Earth year

)2

that gives aSaturn = 9.5, so that Saturn is 9.5 times as far from the sun as Earth is.

http://dx.doi.org/10.1007/978-3-319-74073-7_7
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5.16. We ask you to verify that the intersection of a circular cone with a plane is
an ellipse. There are two spheres tangent to the cone and the plane, see Figure 5.3.
Points A, B, D, and F are colinear. The points of tangency C and E of the spheres
with the plane are the foci of the ellipse. To verify this show the following proposi-
tions.

(a) Segments BD and DC have the same length.
(b) Segments FD and DE have the same length.
(c) The sum of the lengths of BD and FD is the same for every point D of the

intersection.
(d) The sum of the lengths of DC and DE is the same for every point D of the

intersection.

B
C

F

A

D
E

Fig. 5.3 A cone, two spheres, and an ellipse in Problem 5.16.

5.17. One of Kepler’s laws is that a planet “sweeps” equal areas in equal times, that
is, the rate of change of area suggested in Figure 5.4 is independent of the time.
Explain the following items that prove this.

(a) If the planet is located at U = (x(t),y(t)) at time t, then its location at time t+h is
approximately W = (x(t)+ x′(t)h,y(t)+ y′(t)h).

(b) The signed area of the ordered triangle 0UW is h
2 (xy′ − yx′).

(c) The rate of change of area is 1
2 A, where A is the constant in equation (5.11).

(d) If the orbit is a closed loop, deduce from part (c) that the area enclosed is 1
2 A

times the period T of the orbit.

5.18. Newton’s law (5.4), mX′′ = −m
X

||X||3 , is denoted in physics texts as
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U = (x(t), y(t))

W = (x(t) + x (t)h, y(t) + y (t)h)

(0, 0)

Fig. 5.4 Approximate area swept by a planet in time h, for Kepler’s law in Problem 5.17.

mr′′ = −mMG
r
|r|3 .

Define X(t) = r(kt), where the constant k is to be chosen. Use the Chain Rule to find
k so that the equation becomes (5.4), that is, we can rescale time to eliminate MG.

5.19. Suppose (x,y) =
(
f (t),g(t)

)
is a solution of the equations of motion (5.9) with

xy′ − yx′ negative. Show that

(x,y) =
(− f (t),g(t)

)

defines another solution with xy′ − yx′ positive.

5.20. Use equation (5.16) to show that there are at most two values of r at which
dr
dφ

could be zero. Deduce that away from those two values we can solve for φ as a

function of r and there
dr
dφ

and
dφ
dr

are reciprocals.

5.21. Writing the orbit curve (5.24) in the form −pr = q− y and taking the case
p < −1, prove the following statements.

(a) The motion occurs in the region where y < q.
(b) There are two points of the orbit located on the y axis. Deduce that this is an

elliptical orbit.

(c) Show that the semimajor axis is
−pq

p2−1
and the semiminor is

q
√

p2−1
.

(d) Deduce that the semiminor axis is A times the square root of the semimajor axis.
(e) The area of an ellipse is π times the product of the semimajor and semiminor

axes. Deduce from part (d) and from part (d) of Problem 5.17 that

1
2 AT = πA

(
semimajor axis

)3/2.

Hence deduce Kepler’s third law: the square of the period of the orbit is propor-
tional to the cube of the semimajor axis.

5.22. Writing the orbit curve (5.24) in the form −pr = q− y prove the following
statements.
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(a) The motion occurs in the region where y < q.
(b) If p = −1 the orbit is a parabola.
(c) If −1 < p < 0 the orbit is half a hyperbola.

5.23. We’ve seen in equation (5.14) that motion toward a gravitating mass is possi-
ble along a line, and in fact that is the only trajectory on which a collision can occur
(with a point mass). Consider now an inverse fifth power law,

X′′ = −||X||−6X.

(a) Show that a potential function is 1
4 ||X||−4, so that 1

2 ||X′||2− 1
4 ||X||−4 is conserved.

(b) Let a be a positive number. Suppose a semicircular trajectory is expressed as

X(t) =
(
a+acosθ(t),asinθ(t)

)
.

Show that
1
2

a2(θ′)2− 1

16a4(1+ cosθ)2
is constant.

(c) Take the case of zero constant in part (b), and θ′ positive. Find the constant k
such that

θ′(t) =
k

1+ cosθ(t)
.

(d) Multiply the equation above by 1+cosθ and integrate with respect to t. Assuming
θ(0) = 0, deduce that θ(t)+ sinθ(t) = kt. Sketch a graph of f (θ) = θ+ sinθ as a
function of θ to show that there is a well-defined function θ(t), 0 ≤ t ≤ πk with
this property.

(e) Show that there are trajectories that are not straight lines that tend to the origin
in finite time.

5.24. Suppose N masses m1, . . . ,mN are attracted to each other by gravity and have
position functions X1(t), . . . ,XN(t). Newton’s laws give

X′′k = −
N∑

j�k, j=1

m jG
Xk −X j

||Xk −X j||3
.

The center of mass of the system is C(t) =

∑N
k=1 mkXk(t)
∑N

j=1 m j
. Show that the acceleration

of the center of mass is zero: C′′(t) = 0.

5.25. Suppose X(t) is a solution of Newton’s law X′′ = −||X||−3X. Set Y(t) = aX(bt),
where a and b are nonzero numbers. Show that Y is also a solution of the same
equation, that is, Y′′ = −||Y||−3Y, provided that a3b2 = 1. (This includes the case
(a,b) = (1,−1), where the solution is run backward, X(−t).)

5.26. Let X j be solutions of the system of Newton’s laws in Problem 5.24, and set
Y j(t) = aX j(bt), where a and b are nonzero numbers. Show that the Y j are also
solutions of the same system provided that a3b2 = 1.



Chapter 6
Integration

Abstract In this chapter we introduce the concept of the multiple integral—the
precise mathematical expression for finding the total amount of a quantity in a region
in the plane or in space. Examples include area, volume, the total mass of a body,
the total electrical charge in a region, or total population of a country.

6.1 Introduction to area, volume, and integral

Examples of integrals We introduce the concept of the integral of a function of
two or more variables through two problems.

Mass. Let D be a set in space. Let f (x,y,z) [mass/volume] be the density at the
point (x,y,z) of some material distributed in D. How can we find the total mass
M( f ,D) contained in D?

If the density is between lower and upper bounds � and u then the total mass is
between the bounds

�Vol(D) ≤ M( f ,D) ≤ uVol(D)

where Vol (D) denotes the volume of D. This estimate for the mass in D is a good
start. But perhaps we can do better. Split D into two subsets D1 and D2. On each
one f has a lower and upper bound,

�1 ≤ f (x,y,z) ≤ u1 in D1,

�2 ≤ f (x,y,z) ≤ u2 in D2.

Thus we have

�1 Vol (D1) ≤ M( f ,D1) ≤ u1 Vol (D1),

�2 Vol (D2) ≤ M( f ,D2) ≤ u2 Vol (D2).

c© Springer International Publishing AG 2017
P. D. Lax and M. S. Terrell, Multivariable Calculus with Applications,
Undergraduate Texts in Mathematics, https://doi.org/10.1007/978-3-319-74073-7 6
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Adding these inequalities we get that

�1 Vol (D1)+ �2 Vol (D2)

≤ M( f ,D1)+M( f ,D2)

≤ u1 Vol (D1)+u2 Vol (D2).

The sum of the masses in D1 and D2 is the mass in D, M( f ,D). The upper bounds
for the density on D1 and D2 are less than or equal to u:

u1 ≤ u, u2 ≤ u.

The lower bounds are greater than or equal to �:

� ≤ �1, � ≤ �2.
Putting this all together we get that the total mass M( f ,D) satisfies

�Vol(D) ≤ �1 Vol (D1)+ �2 Vol (D2)

≤ M( f ,D)

≤ u1 Vol (D1)+u2 Vol (D2) ≤ uVol(D).

By subdividing D into n nonoverlapping subsets D1, . . . ,Dn we can repeat this pro-
cess and get a sequence of inequalities that get us closer to the value of the total
mass in D,

n∑

j=1

� j Vol(D j) ≤ M( f ,D) ≤
n∑

j=1

u j Vol(D j).

Population. In a similar manner let D be a set in the plane, say the map of a country.
Suppose the population density at (x,y) is f (x,y) [population/area] and that on D,
the population density is between � and u,

� ≤ f (x,y) ≤ u.

If we know the area of D we can estimate the total population P( f ,D) in D as

�Area(D) ≤ P( f ,D) ≤ uArea(D).

Using an approach like we did for mass, we refine the estimate by splitting D into
nonoverlapping subsets D1 and D2. Let �1 and �2 be lower bounds, and u1 and u2

upper bounds, for the population density in D1 and D2, respectively. Then

�1 Area(D1)+ �2 Area(D2) ≤ P( f ,D) ≤ u1 Area(D1)+u2 Area(D2).

Splitting D into n nonoverlapping subsets we get that the total population in D sat-
isfies

n∑

j=1

� j Area(D j) ≤ P( f ,D) ≤
n∑

j=1

u j Area(D j).
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These two examples raise two important questions.

• How do we find the area of a subset of the plane or the volume of a subset in
space?

• What properties of f and D assure that the process of taking upper and lower
estimates squeezes in on a single number?

That number, if it exists, is what we call the integral of f over D.
First we look at the question of area and volume.

Area Our discussion of area is based on three basic properties of area in the plane.
We shall explain later that what is said here about area applies, with appropriate
changes, to volume in R

3, as well as n-dimensional volume in R
n.

(a) If two sets C and D in the plane have area, and C is contained in D, then the
area of C is less than or equal to the area of D.

(b) If two sets C and D in the plane have area and have only boundary points in
common then the union of C and D has area that is the sum of the areas of C
and D.

(c) The area of a rectangle whose edges are parallel to the x and y axes is the product
of the lengths of the edges of the rectangle. It doesn’t matter whether all, some,
or none of the boundary points are included in the rectangle.

To find out whether a subset D of the plane has area we introduce the notions of
lower area and upper area of D. Take h > 0. Divide the whole plane into squares
of edge length h by the lines x = kh and y = mh, where k and m are integers. The
boundary of each h-square is included in the h-square.

0
30

1

2

3

0 3

Fig. 6.1 D is the quarter disk including its boundary. There are four 1-squares in D, and twenty-two
1
2 -squares filling more area.

For each bounded set D, let NL(D,h) be the number of h-squares that are con-
tained in D. Let AL(D,h) be the area of all those squares,

AL(D,h) = h2NL(D,h).

The squares of edge length 1
2 h that are contained in D fill out all the squares of edge

length h that are contained in D and possibly more. See Figure 6.1. Therefore their



208 6 Integration

total area is greater than or equal to the total area of squares of edge length h:

AL(D, 12 h) ≥ AL(D,h). (6.1)

Setting h = 1
2n in inequality (6.1) shows that the sequence

AL
(
D, 1

2n
)
=
( 1

2n
)2NL

(
D, 1

2n
)

n = 1,2,3, . . . (6.2)

is an increasing sequence. Since D is bounded, the total area of h-squares contained
in D is less than the area of a large square containing the set D. Therefore (6.2) is
a bounded sequence. We remind you of the Monotone Convergence Theorem, that
states that a bounded increasing sequence has a limit. Call this limit the lower area
of D and denote it as AL(D):

AL(D) = lim
n→∞AL

(
D, 1

2n
)
.

0
30

1

2

3

0

Fig. 6.2 D is the quarter disk including its boundary. Twenty 1-squares intersect D, and fifty
1
2 -squares intersect D, covering a smaller area than the 1-squares.

We next define the upper area. Denote by NU(D,h) the number of all h-squares
that intersect D. Denote by AU(D,h) the area of the union of these squares:

AU (D,h) = h2NU(D,h).

If a square of edge length 1
2 h intersects D, so does the square of edge length h that

contains it. Therefore
AU(D, 12 h) ≤ AU(D,h). (6.3)

This shows that the sequence

AU(D, 1
2n ) =

(
1
2n

)2
NU

(
D, 1

2n
)

n = 1,2,3, . . .

is decreasing. Again by the Monotone Convergence Theorem a decreasing sequence
of nonnegative numbers has a limit; call this limit the upper area of D, and denote
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it as AU(D):
AU(D) = lim

n→∞AU
(
D, 1

2n
)
. (6.4)

Since fewer h-squares are contained in D than h-squares that intersect D, AL(D,h)
is less than or equal to AU(D,h). See Figures 6.1 and 6.2. It follows that so are their
limits:

AL(D) ≤ AU(D). (6.5)

In words: the lower area is less than or equal to the upper area. We define now the
concept of area.

Definition 6.1. If the lower area of a set D is equal to its upper area, this
common value is called the Area(D), and we say that D has area.

Next we verify that area so defined has the three properties we listed at the start
of this section.

(a) If two sets C and D in the plane have area, and C is contained in D, then the
area of C is less than, or equal, to the area of D.
Since C is contained in D, for each h, AL(C,h) ≤ AL(D,h). So the lower area
AL(C) ≤ AL(D). Since C and D have area,

AL(C) = Area(C), AL(D) = Area(D),

so Area(C) ≤ Area(D).
(b) If two sets C and D in the plane have area and have only boundary points in

common then the union of C and D has area that is the sum of the areas of C
and D.
Since C and D have only boundary points in common every h-square in C or
D will be an h-square in the union C ∪D. However, C ∪D may contain more
h-squares if C and D share part of their boundaries. So

AL(C,h)+AL(D,h) ≤ AL(C∪D,h).

Similarly the number of h-squares that intersect C plus the number that intersect
D is greater than or equal to the number of h-squares that intersect C∪D since
some h-squares intersect both. Therefore

AU (C∪D,h) ≤ AU (C,h)+AU(D,h).

Let h = 1
2n tend to zero in the inequalities

AL(C,h)+AL(D,h) ≤ AL(C∪D,h) ≤ AU (C∪D,h) ≤ AU (C,h)+AU(D,h).

The right side tends to Area(C)+ Area(D), as does the left. Therefore the two
center terms tend to a common limit, that is by definition Area(C∪D).
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(c) The area of a rectangle whose edges are parallel to the x and y axes is the
product of the lengths of the edges of the rectangle. It doesn’t matter if all,
some, or none of the boundary points are included in the rectangle.
Let R be the rectangle [a,b] × [c,d]. The number of h-squares that meet the
boundary of R does not exceed twice the perimeter divided by h (when h is
smaller than the sides of R). Therefore

0 ≤ (b−a)(d− c)−AL(R,h) ≤ 4
(
(b−a)+ (d− c)

)

h
h2

and

0 ≤ AU (R,h)− (b−a)(d− c) ≤ 4
(
(b−a)+ (d− c)

)

h
h2.

Letting h tend to zero we see that the lower and upper areas of R are both equal
to (b− a)(d − c). A similar argument works whether the rectangle R contains
some or none of its boundary.

Smoothly bounded sets. We show now that all sets that we intuitively think of
having area—smoothly bounded geometric figures—have area in this sense.

Definition 6.2. A smoothly bounded set D in the plane is a closed bounded
set whose boundary is the union of a finite number of curves each of which is
the graph of a continuously differentiable function, either

y = f (x), x in some closed interval,

or
x = f (y), y in some closed interval.

2

1
y

1

D

x
Fig. 6.3 The smoothly bounded set D in Example 6.1.

Example 6.1. The set D shown in Figure 6.3 is a smoothly bounded set. The
boundary, included in D, is the union of three curves that are graphs of con-
tinuously differentiable functions:

x = f1(y) = y2 (0 ≤ y ≤ 1),
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x = f2(y) = 2− y2 (0 ≤ y ≤ 1),

and
y = f3(x) = 0 (0 ≤ x ≤ 2).

�

Example 6.2. The boundary of the set D shown in Figure 6.4 is the union
of curves that are graphs of continuously differentiable functions. D is a
smoothly bounded set. �

y

D

x

Fig. 6.4 The smoothly bounded set D in Example 6.2.

Theorem 6.1. If D is a smoothly bounded set then its upper and lower areas
are equal, so D has area.

The key result needed to prove Theorem 6.1 is the following result.

Theorem 6.2. Let C be the boundary of a smoothly bounded set D in R
2.

Denote by C(h) the number of squares of edge length h that intersect C. Then

C(h) ≤ c
h

(6.6)

where c is some number that depends on C.

Proof. D is smoothly bounded so its boundary, C, is the union of a finite number
of graphs of continuously differentiable functions. To prove the theorem we prove
inequality (6.6) for the graph of a single continuously differentiable function

y = g(x) a ≤ x ≤ b

and add the inequalities. Denote by m an upper bound for the derivative of g on
[a,b],

|g′(x)| ≤ m.
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The number of h-squares that intersect the graph of g in the strip

nh ≤ x ≤ (n+1)h

is at most m+2. Therefore the total number of h-squares that intersect the graph of
g on the interval [a,b] is at most m+2 times the number of h-intervals in [a,b]. The
number of h-intervals in [a,b] is less than or equal to b−a

h . See Figure 6.5. Therefore

C(h) ≤ (m+2)
b−a

h
=

(m+2)(b−a)
h

.

This proves that we can take c = (m+2)(b−a) in inequality (6.6) for the part of the
boundary that consists of just one smooth graph. If the boundary of D consists of a
finite number of smooth graphs, the estimate (6.6) follows by adding the coefficients
c for each part. This completes the proof of Theorem 6.2. 	


a b

Fig. 6.5 On [a,b] the graph of y = 3x is covered by no more than (3+2)
( b−a

h

)
h-squares.

We now show that the upper and lower area of a smoothly bounded set are equal.

Proof. (of Theorem 6.1) Denote by C(h) the number of h-squares that intersect the
boundary of D. Then

C(h) ≥ NU(D,h)−NL(D,h).

It follows from Theorem 6.2 that

0 ≤ h2NU(D,h)−h2NL(D,h) ≤ h2C(h) < ch (6.7)

for some number c. Let h tend to zero through the sequence h = 1
2n . We saw before

that the sequences h2NU (D,h) and h2NL(D,h) tend to the upper and lower area of
D. It follows from inequality (6.7) that the limits

AU(D) = lim
h→0

h2NU(D,h) = lim
h→0

h2NL(D,h) = AL(D) (6.8)

exist and are equal. This common limit was defined as the area. Therefore the area
exists. 	
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Remark. In the special case where B is the boundary of a smoothly bounded
set, AL(B,h) = 0 for all h and AL(B) = 0. By equation (6.8), AU(B) = AL(B) and
the area of B is zero. By properties (a) and (b) of area we see that the area of a
smoothly bounded set D with boundary B is the same whether any boundary points
are included in D or not.

Volume Divide 3-space into cubes of edge length h by the planes x = kh, y = mh,
z = nh, where k, m, and n are integers. See Figure 6.6.

y

x

z

Fig. 6.6 An h-cube in 3-space, bounded by planes. A plane y = mh is indicated.

We define in an entirely analogous fashion to area, using h-cubes in the place of
h-squares, the notion of lower volume VL(D) and upper volume VU (D) of a bounded
set D in 3-space.

Definition 6.3. If the lower and upper volumes of D are equal, this common
value is called the volume of D, Vol (D), and we say that D has volume.

Next we define a class of sets in space that we will show have volume.

Definition 6.4. A smoothly bounded set in R
3 is a closed bounded set whose

boundary is the union of a finite number of graphs of continuously differen-
tiable functions

z = f (x,y), or y = f (x,z), or x = f (y,z),

defined on smoothly bounded sets in the coordinate planes.

A solid spherical ball and a solid cube are examples of smoothly bounded sets in
R

3.
The next result is an extension to three dimensions of Theorem 6.2.
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Theorem 6.3. Let S be the boundary of a smoothly bounded set in R
3 and

denote by S (h) the number of h-cubes that intersect S . Then

S (h) ≤ s

h2
,

where s is a number that depends on S .

Fig. 6.7 The number of h-cubes in a stack that may intersect the graph of f is determined by the
derivative ∇ f .

See Figure 6.7. The proof of this theorem is modeled on the proof of Theo-
rem 6.2.

Proof. Since S is the union of the graphs of a finite number of continuously dif-
ferentiable functions, it suffices to prove the inequality for the graph of a single
differentiable function, say z = f (x,y), defined in a smoothly bounded set D in the
x,y plane. Consider an h-square contained D. For points P1 and P2 in this h-square
there is a point P so that

| f (P1)− f (P2)| = |∇ f (P) · (P1−P2)| ≤ max
Q in D

||∇ f (Q)|| ||P1−P2||

≤
(√

2 max
Q in D

{ ∣∣∣∣∣
∂ f
∂x

(Q)
∣∣∣∣∣ ,
∣∣∣∣∣
∂ f
∂y

(Q)
∣∣∣∣∣
}) √

2h.

This bound helps us see that the number of h-cubes that intersect the graph of f over
a single h-square that intersects D is less than 2m, where m is an upper bound for the
magnitudes of the first partial derivatives of f on D. Since the number of h-squares
that intersect D is less than a

h2 , where a is the area of a rectangle containing D, the

number of h-cubes that intersect the graph of f is less than 2am
h2 , as claimed. 	


It follows from Theorem 6.3 that the total volume of the h-cubes that intersect S
is less than s

h2 h3 = sh, which tends to zero as h tends to zero.
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It also follows from Theorem 6.3 that the lower and upper volume of a smoothly
bounded set D in 3-space are equal, so we can state the following theorem.

Theorem 6.4. Smoothly bounded sets in R
3 have volume.

Volume in R
n. Volume in n-dimensional space can be defined entirely analo-

gously, using n-dimensional boxes. An n-dimensional h-box consists of all points
X = (x1, x2, ...xn) for which

n jh ≤ x j ≤ (n j+1)h, ( j = 1, . . . ,n). (6.9)

where the n j are integers. The n-dimensional volume of the h-box is defined to be
hn.

The concepts of a smoothly bounded set in n-dimensional space R
n and its vol-

ume are a direct generalization of the three-dimensional case. The statement and
proof of Theorems 6.3 and 6.4 can be readily extended to n dimensions. In Prob-
lem 6.6 we ask you to determine the volume of several h-boxes.

We have shown that smoothly bounded regions in R
2 have area and similarly

smoothly bounded regions in R
3 have volume. Next we look at two examples of

bounded sets, one in the plane whose area is not defined and the other in space
whose volume is not defined.

Example 6.3. Define D to be the set of points (x,y) in the unit square 0≤ x≤ 1,
0 ≤ y ≤ 1 where both x and y are rational numbers. The h-squares of the upper
area will have total area greater than 1. As h tends to zero we see AU (D) = 1.
Since every h-square no matter how small contains points that have rational
and irrational coordinates, the interior of D is empty and we get AL(D) = 0.
Even though D is contained in a square with area we cannot say what the area
of D is, since AL(D) � AU(D). See Figure 6.8. �

x

y

10

1

Fig. 6.8 A set in R
2 with undefined area in Example 6.3.

Example 6.4. Define D to be the set of points (x,y,z) in the unit cube 0≤ x≤ 1,
0 ≤ y ≤ 1, 0 ≤ z ≤ 1 where x is irrational. That is, remove from the solid cube
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y

x

1

1

z

1

Fig. 6.9 A set in R
3 with undefined volume in Example 6.4.

all points that lie on planes satisfying x = r rational. The h-cubes that intersect
D have a total volume greater than 1 and as h tends to zero, we get VU (D) = 1.
Since D has no interior points, VL(D) = 0. So VL(D) � VU (D). D does not
have volume. See Figure 6.9. �

Examples and properties of multiple integrals Before making our formal defini-
tion of the integral we give you two examples of the integral of a function f over a
set D, and investigate some of the properties common to both examples.

Example 6.5. Let D be a smoothly bounded set in R
2, and z = f (x,y) ≥ 0 the

height of the graph of f above D. The volume V( f ,D) of the region R in R
3

defined by the inequality

0 ≤ z ≤ f (x,y), (x,y) in D,

is an example of the integral of f over D with respect to area,

V( f ,D) =
∫

D
f (x,y)dA.

See Figure 6.10. Another notation for this integral is

V( f ,D) =
∫

D
f (x,y)dxdy.

The significance of the dxdy notation will be explained in Section 6.3. �

Example 6.6. Let D be a smoothly bounded set in R
3. Denote by f (x,y,z) the

density at the point (x,y,z) of D of some material distributed in D. The total
mass M( f ,D) contained in D is an example of the integral of f over D with
respect to volume, denoted as

M( f ,D) =
∫

D
f (x,y,z)dV .
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y

z = f(x,y)

x D

R

Fig. 6.10 The region R lies under the graph of f and above D.

Again as we will see in Section 6.3 another notation for this integral is

M( f ,D) =
∫

D
f (x,y,z)dxdydz.

�
We use these two examples to illustrate key properties that we will use to define

the integral, namely dependence of the integral on the function f and on the set D.

g(x,y)

f(x,y)+g(x,y)

)y,x()y,x()y,x(

f(x,y)

DD D

Fig. 6.11 Adding the heights of thin columns.

(a) In Example 6.5 consider three regions in space with the same base D and with
heights f , g, and f + g. See Figure 6.11. The volume of a thin column with
height ( f +g)(x,y), where (x,y) is in the small base B of the column, is the sum
of the volumes of two thin columns with base B, one with height f (x,y) and the
other with height g(x,y). Therefore the volume of the region defined by

0 ≤ z ≤ f (x,y)+g(x,y), (x,y) in D

is the sum
V( f +g,D) = V( f ,D)+V(g,D).
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Denoting the volume as the integral of height with respect to area we write this
as ∫

D
( f +g)dA =

∫

D
f dA+

∫

D
gdA.

In Example 6.6 take the case that there are two materials distributed in D, with
densities f and g. Their total density is f +g, and the total mass in the region is
the sum of the total mass of each material:

M( f +g,D) = M( f ,D)+M(g,D).

Denoting the total mass as the integral of density with respect to volume we
write this as ∫

D
( f +g)dV =

∫

D
f dV +

∫

D
gdV .

(b) In Example 6.5 change the height f by a factor c. Volume is changed by the
same factor:

V(c f ,D) = cV( f ,D).

Denoting volume as an integral we write this as
∫

D
c f dA = c

∫

D
f dA.

In Example 6.6 introduce a different unit for mass. Then both density and the
total mass are changed by the same factor:

M(c f ,D) = cM( f ,D).

Denoting mass as the integral of density f we write this as
∫

D
c f dV = c

∫

D
f dV .

Properties (a) and (b) can be summarized by saying that the integral of f over
D depends linearly on f .

u

R

Fig. 6.12 Left: The region R under the graph of f . Center: The cylinder of height � is contained in
R. Right: The cylinder of height u contains R.
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(c) In Example 6.5 let � and u be lower and upper bounds, � ≤ f (x.y) ≤ u, for the
height at all (x,y) in D. Then the volume over D lies between the bounds

�Area(D) ≤ V( f ,D) ≤ uArea(D).

See Figure 6.12. We can write

�Area(D) ≤
∫

D
f dA ≤ uArea(D).

Similarly in Example 6.6 if the density at all points of D lies between two
bounds � ≤ f (x,y,z) ≤ u, then the total mass contained in D lies between the
bounds

�Vol(D) ≤ M( f ,D) ≤ uVol(D).

This is called the lower and upper bound property. We can write this as

�Vol(D) ≤
∫

D
f dV ≤ uVol(D).

(d) In Example 6.5 if D is the union of two disjoint sets C and E, the total volume
is the sum of the volume over C and the volume over E, V( f ,C∪E) = V( f ,C)+
V( f ,E). We can write it as

∫

C∪E
f dA =

∫

C
f dA+

∫

E
f dA, C and E disjoint interiors.

Similarly in Example 6.6 the total mass contained in the union of two disjoint
sets C and E is the sum of the masses contained in each set, M( f ,C ∪ E) =
M( f ,C)+M( f ,E). See Figure 6.13. This property is called the additivity prop-
erty. We can write it as

∫

C∪E
f dV =

∫

C
f dV +

∫

E
f dV .

Fig. 6.13 Additivity of mass when objects are joined at their boundaries.
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Problems

6.1. Let D be the set of points (x,y) in R
2 such that 0 ≤ y ≤ 1− x2.

(a) How many 1
4 -squares are in D?

(b) Does the 1
8 -square

[ 1
2 ,

5
8
]× [ 5

8 ,
3
4
]

intersect D?

6.2. Let D be the closed quarter disk in the first quadrant, with the disk center at the
origin and radius 3. See Figure 6.1.

(a) Find AU
(
D, 12

)
.

(b) Find AL
(
D, 1

2
)
.

6.3. Make a sketch of the rectangle D given by 0 ≤ x ≤ π, 0 ≤ y ≤ π. Find

(a) the number NL
(
D, 1

2
)

of 1
2 -squares contained in D, and their total area;

(b) the number NU
(
D, 12

)
of 1

2 -squares that intersect D, and their total area;
(c) the number C

( 1
2
)

of 1
2 -squares that intersect the boundary of D, and their total

area;
(d) Verify that C

( 1
2
) ≥ NU

(
D, 12

)−NL
(
D, 1

2
)

6.4. Show that the ball |X| ≤ 1 in R
3 is a smoothly bounded set.

D E

Fig. 6.14 Sets D and E in Problem 6.5.

6.5. The intersection of two smoothly bounded sets D and E in R
3 is along a

smoothly bounded common surface in Figure 6.14. Show that

vol (D∪E) = vol D+vol E.

6.6. Find the n-dimensional volume of each set.

(a) A union of 57 h-boxes in R
n,

(b) The box in R
3 where 0 ≤ x j ≤ 10, j = 1,2,3, n = 3,

(c) The box in R
6 where 0 ≤ x j ≤ 10, j = 1,2,3,4,5,6, n = 6.

(d) The box in R
3 where 0 ≤ x j ≤ 1

10 , j = 1,2,3, n = 3,
(e) The box in R

6 where 0 ≤ x j ≤ 1
10 , j = 1,2,3,4,5,6, n = 6.

6.7. A plate shown in Figure 6.15 has density f (x,y).
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D 1

D

D

2

5

D D4 3

D
6 D5

9

12

10

3 12

Fig. 6.15 A plate with variable density in Problem 6.7. Three subdivisions are shown.

(a) If 2 ≤ f (x,y) ≤ 7 in D show that

630 ≤mass(D) ≤ 2205.

(b) If 2 ≤ f (x,y) ≤ 4 in D1, and 4 ≤ f (x,y) ≤ 7 in D2 use additivity to show that
990 ≤mass(D) ≤ 1800.

(c) Further information becomes available, that 2 ≤ f (x,y) ≤ 4 in D3, f = 2 in D4,
4 ≤ f (x,y) ≤ 6 in D5, and 6 ≤ f (x,y) ≤ 7 in D6. Use the additive property and the
lower and upper bound properties to further narrow the mass estimate to

1230 ≤mass(D) ≤ 1686.

160−320

80−160

40−80

20−40

10−20

0−10

P

Q

R

S T

U

Fig. 6.16 A map of population density, for Problem 6.8.

6.8. A region is subdivided into counties, with the range of population density
(people/square mile) f indicated on the map in Figure 6.16. The map key gives
lower and upper bounds in each region:
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P : 0 ≤ f (x,y) ≤ 10
Q : 20 ≤ f (x,y) ≤ 40
R : 10 ≤ f (x,y) ≤ 20
S : 80 ≤ f (x,y) ≤ 160
T : 160 ≤ f (x,y) ≤ 320
U : 40 ≤ f (x,y) ≤ 80

(a) The area of county Q is 250 square miles. Give bounds for the population of Q.
(b) The Western region consists of counties P, R, and U, that have areas 80, 100, 120

square miles, respectively. Give bounds for the population of the Western region.

(c) Counties S and T have about the same area. Is it possible for
∫

S
f (x,y)dA to be

larger than
∫

T
f (x,y)dA?

(d) Show that −4600 ≤
∫

Q
f dA−

∫

U
f dA ≤ 5200.

C

D

Fig. 6.17 The liquid volumes in Problem 6.9.

6.9. A liquid of variable density ρ fills the region D in the large beaker in Fig-
ure 6.17, and another liquid of constant density δ = 200 [kg/m3] fills region C. Each
of C and D has volume .05 [m3]. The total mass of liquids is

∫

C
δdV +

∫

D
ρdV = 30.

(a) Find the value of each integral.
(b) Show that the minimum and maximum of ρ must satisfy

ρmin ≤ 400 ≤ ρmax.

6.10. Let D denote the closed unit disk x2+y2 ≤ 1 in the plane and let U denote the
open disk x2+ y2 < 1.

(a) Describe the boundary of D.
(b) Describe the boundary of U.
(c) What is Area(D)? Area(U)?
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6.2 The integral of a continuous function of two variables

We focus in this section on the definition of the integral in the case where f is a
continuous function on a smoothly bounded set D in the plane.

We shall first define the upper and lower integrals, IU( f ,D) and IL( f ,D), for con-
tinuous functions f that are nonnegative and show that they are equal; their common
value is defined as the integral of f over D and denoted I( f ,D). We then verify that
I( f ,D) has the four basic properties of the integral introduced in Section 6.1.

(a) I( f +g,D) = I( f ,D)+I(g,D)
(b) I(c f ,D) = cI( f ,D) for every number c
(c) If � ≤ f (x,y) ≤ u for all (x,y) in D, then

�Area(D) ≤ I( f ,D) ≤ uArea(D).

(d) If C and D are disjoint or have only boundary points in common,

I( f ,C∪D) = I( f ,C)+I( f ,D).

We then extend the definition of the integral to functions that may have negative
values, and verify the four properties listed above.

In Theorem 6.10 we will show that all properties of the integral follow from these
four properties.

Upper and lower integrals of a continuous function f over D. According to the
Extreme Value Theorem 2.11, f is bounded on D. Divide the plane into squares of
side h as described in Section 6.1, and take all h-squares that intersect D. In each of
these h-squares Bj we denote by u j and � j an upper and a lower bound for f :

0 ≤ � j ≤ f (x,y) ≤ u j ≤ M, (x,y) in Bj. (6.10)

Call the sum ∑

j

h2u j (6.11)

over all h-squares that intersect D an upper h-sum. Call the sum
∑

j

h2� j (6.12)

over all h-squares that are contained in D a lower h-sum.
We claim: For a nonnegative function f every upper h-sum is greater than or

equal to every lower h-sum.
To see this we observe that for an h-square that is contained in D, the term h2u j

in (6.11) is greater than or equal to the corresponding term h2� j in (6.12), since
an upper bound u j is greater than or equal to the lower bound � j. The terms in the
sum (6.11) corresponding to h-squares that intersect D but are not contained in D
do not appear in (6.12). Since the function f is nonnegative, so are the upper bounds

http://dx.doi.org/10.1007/978-3-319-74073-7_2
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u j and the terms u jh2. It follows that the upper sum is greater than or equal to the
lower sum for the same value of h.

Next we show: For a nonnegative function f , given an upper h-sum, there is an
upper h/2-sum that is less than or equal to the upper h-sum.

To prove this we observe that if an h/2-square intersects D, so does the h-square
that contains it. An upper bound u j for f in the h-square is an upper bound for f
in each h/2-square contained in it. If all four h/2-squares contained in the h-square
intersect D, their contribution to the h/2 upper sum (using the same u j) equals the
contribution of the h-square to the upper h-sum. If some of the h/2-squares don’t
intersect D, their contribution to the sum of h/2-terms using the same u j is less than
or equal to the contribution of the h-square to the h-upper sum. This shows that the
upper h/2-sum can be chosen to be less than or equal to the upper h-sum.

Since f ≥ 0 all upper h-sums are nonnegative, i.e., zero is a lower bound for
the set of upper h-sums. The Greatest Lower Bound Theorem states that if a set of
numbers has a lower bound then the greatest lower bound of that set exists. Call
it U( f ,D,h). We have shown that for f ≥ 0 every upper h-sum has a correspond-
ing upper h/2-sum that is less than or equal to the upper h-sum; it follows that
U( f ,D,h/2) is less than or equal to U( f ,D,h). This shows that

U( f ,D,h), h = 1
2n , n = 1,2, . . . (6.13)

is a decreasing sequence of numbers that are greater than or equal to zero. Therefore
by the Monotone Convergence Theorem it has a limit as n tends to infinity. This limit
is called the upper integral of f . We denote it as

IU( f ,D) = lim
n→∞U( f ,D,2−n).

There is an analogous result for lower sums: For f ≥ 0, given a lower h-sum,
there is a lower h/2-sum that is greater than or equal to the lower h-sum.

To prove this we note that the union of all h/2-squares contained in D includes
all h-squares contained in D. A lower bound � j for f in an h-square is a lower bound
for f in all h/2-squares contained in it. An h/2-square contained in D but that is not
part of an h-square that is contained in D gives a nonnegative contribution to the
h/2-sum, provided we choose a nonnegative lower bound for f . The resulting lower
h/2-sum is greater than or equal to the corresponding lower h-sum.

Each lower h-sum is less than uA, where u is an upper bound for f on D and
A is the area of a square that contains D. The Least Upper Bound Theorem states
that if a set of numbers has an upper bound then it has a least upper bound. Denote
by L( f ,D,h) the least upper bound of the lower h-sums. We showed that for f ≥ 0,
for each lower h-sum there is a greater or equal lower h/2-sum, so it follows that
L( f ,D,h/2) is greater than or equal to L( f ,D,h). Therefore

L( f ,D,h), h = 1
2n , n = 1,2, . . . (6.14)

is an increasing sequence less than or equal uA. By the Monotone Convergence
Theorem this bounded, increasing sequence has a limit, called the lower integral of
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f over D; we denote it as

IL( f ,D) = lim
n→∞L( f ,D,2−n).

Theorem 6.5. The upper and lower integrals of a continuous nonnegative
function f over a smoothly bounded set D in R

2 are equal,

IL( f ,D) = IU( f ,D).

Proof. To show that the upper integral and lower integral of a continuous function
are equal we show that for every positive tolerance ε, no matter how small, the upper
h-sum and lower h-sum differ by less than ε when h is sufficiently small.

We have shown that for f ≥ 0 every lower h-sum is less than or at most equal to
every upper h-sum.

Differences due to the boundary. The difference between the number of terms in
an upper h-sum (6.11) and the number of terms in a lower h-sum (6.12) is less than
or equal to the number C(h) of h-squares that intersect the boundary of D. We have
shown in Theorem 6.2 that C(h) is less than or equal to c/h for some constant c
determined by the boundary of D. Therefore the total contribution of these terms to
the upper h-sum is less than or equal to

Mh2C(h) ≤ Mh2 c
h
= Mch,

where M is an upper bound for the u j in that set. This tends to zero as h tends to
zero. This shows that the sum of the terms in the upper sum that are not in the lower
sum tends to zero as h tends to zero, so is less than ε2 if h is sufficiently small.

Differences due to h-squares in D. We show that the difference of the sum of the
terms that are in both the upper sum and the lower sum tends to zero as h tends to
zero. The difference of the upper and lower sums over h-squares in D is

∑

j

h2(u j− � j). (6.15)

The function f is continuous on a closed bounded set D; therefore it is uniformly
continuous: for every tolerance t, we can choose a precision p so small that if the
distance between two points in D is less than p, the values of the function f at these
two points differ less than t. Take h so small that the distance between two points in
an h-square is less than p. If ui is the maximum of f and �i is the minimum of f on
the h-square then

u j− � j < t.

Using this estimate for the terms in the sum (6.15) shows that the difference between
the sums over interior squares is less than Nh2t, where N is the number of terms in
the sum. N is the number of h-squares contained in D, which is less than A/h2, where
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A is the area of a rectangle containing D. This shows that the difference (6.15) is less
than At. Given the tolerance ε, take t = ε

2A , then the difference (6.15) is less than ε2 .
Adding our two estimates then we have shown that there are upper and lower h-

sums with difference less than ε if h is sufficiently small. This shows that the upper
and lower integrals are equal, and thereby completes the proof of Theorem 6.5. 	

Upper and lower integrals of bounded functions. Although we focused on the
basic case where f is continuous and D includes its boundary, the definitions we
made for IU( f ,D) and IL( f ,D) apply to bounded functions f , not necessarily con-
tinuous, on a smoothly bounded set D. In that case the lower and upper integrals
IL( f ,D) and IU( f ,D) both exist but they might not be equal.

Definition 6.5. Let f be a bounded function on a smoothly bounded set D. If
IU( f ,D) = IL( f ,D) we say that f is integrable on D and that the integral of f
over D exists. We write the integral as

IL( f ,D) = IU( f ,D) =
∫

D
f dA.

The function f is called the integrand. For Cartesian coordinates x,y in the
plane the integral of f over D is also denoted

∫

D
f (x,y)dxdy.

and is called a double integral.

Remark. By essentially the same argument as for Theorem 6.5 it can be shown
that a bounded function that is continuous on the interior of a smoothly bounded set
is integrable, i.e., that IL( f ,D) = IU( f ,D).

Example 6.7. Let D denote the rectangle [0,1)× (0,2), and

f (x,y) = ysin
1

1− x2
.

Then 0 ≤ f (x,y) ≤ y ≤ 2 and f is continuous in the interior of D. Therefore by
the remark above, the integral

∫

D
ysin

1

1− x2
dA

exists. �
Approximate integrals. Next we show that the integral of f over D can be estimated
with arbitrary accuracy without calculating upper or lower sums.
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Definition 6.6. Let f be defined on a smoothly bounded set D in the plane.
Divide the plane as before into h-squares and denote by C j = (x j,y j) some
point of the j-th h-square contained in D. Define an approximate integral, or
Riemann sum,

S ( f ,D,h) =
∑

j

f (C j)h
2, (6.16)

where the sum is taken over all h-squares contained in D.

Theorem 6.6. Let f ≥ 0 be an integrable function on a smoothly bounded set
D. As h = 2−n tends to zero, every sequence of approximate integrals

S ( f ,D,h) =
∑

j

f (C j)h
2

converges to ∫

D
f dA,

independent of the choice of the points C j.

Proof. Since f (C j) lies between every lower and upper bound for f on the j-th
h-square, S ( f ,D,h) is greater than or equal to every lower h-sum. It is also less than
or equal to every upper h-sum since the terms in the upper h-sum corresponding to
h-squares that are not contained in D are greater than or equal to zero, since f ≥ 0.
Therefore S ( f ,D,h) is contained between the least upper bound of all lower h-sums
and the greatest lower bound of all upper h-sums:

L( f ,D,h) ≤ S ( f ,D,h) ≤ U( f ,D,h). (6.17)

Because f is integrable on D, L( f ,D,h) and U( f ,D,h) tend to the same limit, that
we called the integral of f over D. It follows from inequality (6.17) that S ( f ,D,h)
also tends to the same limit:

lim
h→0

S ( f ,D,h) =
∫

D
f dA,

as asserted. 	


Example 6.8. Let f ≥ 0 be a continuously differentiable function on a smoothly
bounded set D in the plane, and let R be the region above D and under the
graph of f . See Figure 6.18. R is a smoothly bounded set in R

3. We show that∫

D
f dA is the volume of R. By Theorem 6.6 the Riemann sums

∑

i

f (xi,yi)h
2
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x

z = f(x,y)

yD

R

Fig. 6.18 The sets D and R in Example 6.8.

converge to
∫

D
f dA as h tends to zero. Every Riemann sum using h-squares

is greater than or equal to the h-cube lower volume of R, and is less than or
equal to the upper h-cube volume of R,

VL(R,h) ≤
∑

i

f (xi,yi)h
2 ≤ VU (R,h).

Since R is smoothly bounded the upper and lower volumes have the same limit
as h tends to zero, that is the limit of the Riemann sums as well. Therefore

∫

D
f dA = Vol(R).

�

Example 6.9. Let f (x,y) = 1 on a smoothly bounded set D, and let R be the
region under the graph, over D. By Example 6.8

Vol (R) =
∫

D
1dA.

From our definition of volume we see that

Vol (R) = Area(D)(1).

Therefore ∫

D
1dA = Area(D).

�

Example 6.10. Evaluate ∫

D
ydA

where D is the rectangle 0 ≤ x ≤ 5, 0 ≤ y ≤ 3. The graph of f (x,y) = y over D
is shown in Figure 6.19. By Example 6.8 the integral is the volume of the set
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x

z

5

(5,3,0)

f(x,y) = y

y

Fig. 6.19 The graph of f (x,y) = y where 0 ≤ x ≤ 5 and 0 ≤ y ≤ 3 in Example 6.10.

R of points (x,y,z) with 0 ≤ z ≤ f (x,y), 0 ≤ x ≤ 5, 0 ≤ y ≤ 3.
∫

D
ydA = Vol(R) = 1

2 (3)(3)(5) = 22.5.

�

We next show that our definition of
∫

D
f dA for nonnegative continuous functions

over smoothly bounded sets satisfies the four properties we stated at the start of this
section.

Theorem 6.7. Let D denote a smoothly bounded set, f and g nonnegative
continuous functions in D, and c a nonnegative number. Then

(a)
∫

D
( f +g)dA =

∫

D
f dA+

∫

D
gdA,

(b)
∫

D
c f dA = c

∫

D
f dA,

(c) If � ≤ f (x,y) ≤ u on D then �Area(D) ≤
∫

D
f dA ≤ uArea(D),

(d) If C and D are smoothly bounded sets that are disjoint or have only bound-
ary points in common, and if C∪D issmoothly bounded, then

∫

C∪D
f dA =

∫

C
f dA+

∫

D
f dA.

Proof. (a) It follows from the definition of approximate integrals that

S ( f +g,D,h) = S ( f ,D,h)+S (g,D,h)

provided we use the same points C j in forming all three approximate integrals.
Letting h tend to zero gives part (a).

(b) Similarly,
S (c f ,D,h) = cS ( f ,D,h).
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Letting h tend to zero gives part (b).
(c) To get an upper bound for the integral of f over D we replace each f (Ci) in

the Riemann sum (6.16) by the upper bound u for the values of the function f . This
gives an upper bound for the Riemann sum. The limit of this upper bound as h tends
to zero is uArea(D); it is an upper bound for the integral, as asserted in part (c). By

a similar argument �Area(D) ≤
∫

D
f dA.

(d) If C and D are disjoint, then for h small enough an h-square may belong to
C or D, but not both. In this case a Riemann sum for f over C ∪D is the sum of a
Riemann sum for f over C and a Riemann sum over D. If C and D have a boundary
curve in common, there are h-squares that belong to C ∪D but belong neither to C
nor to D. These h-squares intersect the common boundary of C and D. Since the
boundaries of C and D are smooth curves, the number of h-squares they intersect is
less than some constant multiple of 1/h. Therefore their total area tends to zero as
h tends to zero. Therefore the Riemann sum over these squares tends to zero; this
proves part (d). 	


Example 6.11. Let f (x,y) = 4+ y and let D = [0,5]× [0,3] be the rectangular
region

0 ≤ x ≤ 5, 0 ≤ y ≤ 3.

From Example 6.10 we know that
∫

D
ydA = 22.5 and from Example 6.9 we

know that 4
∫

D
1dA = 4Area(D) = 4(15). So by Theorem 6.7

∫

D
(4+ y)dA = 4

∫

D
1dA+

∫

D
ydA = 4(15)+22.5 = 82.5.

�
We now extend the definition of the integral to functions that may have negative

values.

Definition 6.7. Let f be a continuous function on a smoothly bounded set D
in R

2. Write f as the difference of two continuous functions g ≥ 0 and k ≥ 0:

f = g− k.

We define the integral of f over D as the difference of the integrals of g and k
over D, ∫

D
f dA =

∫

D
gdA−

∫

D
k dA.

There are many ways of writing f as such a difference. We show that all such
differences give the same value for the integral. Take two decompositions of f
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f = g− k, f = m−n. (6.18)

where g, k, m, and n are nonnegative and continuous on D. We show that calculating
the integral of f using either of these decompositions of f gives the same value, i.e.,
we want to show that

∫

D
gdA−

∫

D
k dA =

∫

D
mdA−

∫

D
ndA.

To prove this relation we rewrite it as
∫

D
gdA+

∫

D
ndA =

∫

D
mdA+

∫

D
k dA.

By part (a) of Theorem 6.7, since g+ n ≥ 0 and m+ k ≥ 0, we can rewrite the two
sides as ∫

D
(g+n)dA =

∫

D
(m+ k)dA

Since it follows from relations (6.18) that g+ n and m+ k are equal, so are their
integrals. This proves that the definition of the integral of f does not depend on how
we write f as a difference of two nonnegative functions.

If now f ≥ 0, use the difference

− f = 0− f .

We get that ∫

D
(− f )dA =

∫

D
0dA−

∫

D
f dA.

Since
∫

D
0dA = 0 this gives

∫

D
(− f )dA = −

∫

D
f dA.

Next we claim that Theorem 6.6—asserting that the integral of f over D is the
limit of the Riemann sums S ( f ,D,h) as h tends to zero—is valid for all continuous
functions f , not just for nonnegative ones. To see this represent f as the difference
g− k of two nonnegative functions g and k, and use the same points Ci for each
function. Then

∑
f (Ci)h

2 = S ( f ,D,h)

= S (g− k,D,h) =
∑(

g(Ci)− k(Ci)
)
h2

=
∑

g(Ci)h
2−

∑
k(Ci)h

2 = S (g,D,h)−S (k,D,h).
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Then apply Theorem 6.6 to the functions g and k. As h tends to zero, the right side
tends to ∫

D
g dA−

∫

D
k dA,

therefore so does the left side. Since g− k = f , this is by Definition 6.7 equal to∫

D
f dA.

The same reasoning, representing the integrand as the difference of nonnegative
functions, shows that Theorem 6.7 on the linearity, boundedness, and additivity of
the integral holds for continuous functions and numbers that may be negative. We
formulate this as follows.

Theorem 6.8. For continuous functions f and g on smoothly bounded sets C
and D, and all numbers c,

(a)
∫

D
( f +g)dA =

∫

D
f dA+

∫

D
gdA,

(b)
∫

D
c f dA = c

∫

D
f dA,

(c) If � ≤ f (x,y) ≤ u then �Area(D) ≤
∫

D
f dA ≤ uArea(D),

(d) If C and D are disjoint or have only boundary points in common and C∪D
is smoothly bounded then

∫

C∪D
f dA =

∫

C
f dA+

∫

D
f dA.

Example 6.12. Evaluate ∫

D
x3y2 dA

where D is the closed unit disk centered at the origin. Observe that the inte-
grand f (x,y) = x3y2 has a symmetry:

f (−x,y) = −x3y2 = − f (x,y).

Consider forming a Riemann sum, where for each point C j = (x j,y j) that we
choose in an h-square with x j > 0 we choose the corresponding point (−x j,y j)
for the h-square on the other side of the y-axis. Then the Riemann sum is
exactly zero. Since this can be done for every h, and since the integral is the
limit of Riemann sums, we get

∫

D
x3y2 dA = 0.

�
In Problem 6.23 we ask you to use the properties above to prove the next theorem.
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Theorem 6.9. For continuous functions f and g defined on smoothly bounded
sets C and D in R

2,

(a) If g(x,y) ≤ f (x,y) for all (x,y) in D then
∫

D
gdA ≤

∫

D
f dA,

(b) If C is a subset of D and f ≥ 0 on D then
∫

C
f dA ≤

∫

D
f dA.

Example 6.13. Let f ≥ 0 be a continuous population density function on D
and denote by a > 0 a number in the range of f . Suppose f ≥ a on a smoothly
bounded set C ⊂ D. Using Theorem 6.9 we estimate the population of D as

∫

D
f dA ≥

∫

C
f dA ≥

∫

C
adA = aArea(C).

See Figure 6.20. �

C D

x

y

Fig. 6.20 f ≥ 0 and f ≥ a in C. So
∫

D
f dA ≥

∫

C
f dA ≥ aArea(C). See Example 6.13.

As we noted earlier in the chapter, the case of continuous functions on smoothly
bounded sets D is basic, and we focused our attention on them. In fact analogues to
Definition 6.7 and Theorems 6.7, 6.8, and 6.9 hold for bounded functions that are
integrable on the interior of smoothly bounded sets.

Next we show that if a number I ( f ,D) is defined for all continuous functions f
on smoothly bounded sets D, that satisfies the four properties listed in Theorem 6.8
then I ( f ,D) is the integral of f over D.
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Theorem 6.10. Suppose I ( f ,D) is defined for every continuous function f
on a smoothly bounded set D and that it has the following properties.

(a) I ( f +g,D) =I ( f ,D)+I (g,D)
(b) I (c f ,D) = cI ( f ,D) for every number c
(c) If � ≤ f (x,y) ≤ u for all (x,y) in D, then

�Area(D) ≤I ( f ,D) ≤ uArea(D),

(d) For all pairs of smoothly bounded sets C and D that are disjoint or have
only boundary points in common,

I ( f ,C∪D) =I ( f ,C)+I ( f ,D),

Then

I ( f ,D) =
∫

D
f dA.

Proof. We shall deduce from these four properties that for f ≥ 0, I ( f ,D) is less
than or equal every upper sum and greater than or equal to every lower sum. To
see this, take an upper h-sum and lower h-sum and partition D into subsets Di that
are the intersections of D with the h-squares. Denote by �i and ui lower and upper
bounds for f on Di. By properties (c) and (d) we get

∑

h−squares in D

�ih
2 ≤

∑
�i Area(Di)

≤I ( f ,D) ≤
∑

ui Area(Di) ≤
∑

h−squares intersecting D

uih
2,

therefore
L( f ,D,h) ≤I ( f ,D) ≤ U( f ,D,h).

As h tends to zero we get

IL( f ,D) ≤I ( f ,D) ≤ IU( f ,D).

Since IU( f ,D) = IL( f ,D) =
∫

D
f dA, their common value is I ( f ,D).

Now given a continuous function f not necessarily nonnegative, choose a positive
function p so that f + p is positive as well. According to property (a)

I ( f + p,D) =I ( f ,D)+I (p,D).

So ∫

D
( f + p)dA =I ( f ,D)+

∫

D
pdA.
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Subtract to get

I ( f ,D) =
∫

D
( f + p)dA−

∫

D
pdA =

∫

D
f dA.

	


Problems

6.11. Use an area or a volume interpretation to evaluate the integrals.

(a)
∫

D
1dA where D is the region 1 ≤ x ≤ 2, 0 ≤ y ≤ log x.

(b)
∫

D
xdA where D is the rectangle 0 ≤ x ≤ 3, −1 ≤ y ≤ 1.

(c)
∫

U

√
1− x2− y2 dA where U is the unit disk centered at the origin.

(d)
∫

H
1dV where H is the half ball x2+ y2+ z2 ≤ 1, z ≥ 0.

6.12. Use a volume interpretation to evaluate
∫

D
f dA for each function f .

(a) f (x,y) = 3 and D is the disk of radius 5 centered at (0,0).
(b) f (x,y) = 1

2 y and D is the rectangle where −2 ≤ x ≤ 3 and 0 ≤ y ≤ 4.

(c) f (x,y) =
√

x2+ y2 and D is the unit disk centered at the origin.

6.13. Sketch rectangles D= [−a,0]×[0,b] and E = [0,1]×[−c,c] in the plane, where
a,b,c are positive. Determine without calculation which of these integrals are posi-
tive.

(a)
∫

D
xdA

(b)
∫

E
xdA

(c)
∫

E

(
1− x

)
dA

(d)
∫

E
y2 dA

6.14. Let f (x,y) be a continuous function on a smoothly bounded set D that is sym-
metric about the origin, that is, D contains the negative of each of its points, and
assume f (−x,−y) = − f (x,y) for all points of D.

(a) Find f (0,0) if (0,0) is in D.
(b) Show that there are approximate integrals of f over D that are exactly zero.

(c) Show that
∫

D
f dA = 0.
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(d) Evaluate
∫

D
xydA where D is the unit disk centered at the origin.

(e) Which of the following functions satisfy f (−x,−y) = − f (x,y)?

x, y2, xcosy, xy2, x− y.

6.15. Use properties of the integral, symmetry, and a volume interpretation to eval-
uate ∫

D

(
y3+3xy+2

)
dA

where D is the unit disk centered at the origin.

6.16. Suppose f is a bounded function and D a smoothly bounded set in R
2.

(a) Show that if Area(D) = 0 then the interior of D is empty.
(b) Show that if the interior of D is empty then IL( f ,D) = 0.

(c) Conclude that if f is an integrable function and Area(D) = 0 then
∫

D
f dA = 0.

6.17. Justify the following items which prove:

If f is continuous on R
2 and

∫

R
f dA = 0 for all smoothly bounded sets R, then f is

zero at all points of R2.

(a) If f (a,b) = p > 0 then there is a disc D of radius r > 0 centered at (a,b) in which
f (x,y) > 1

2 p.
(b) If f is continuous and f (x,y) ≥ p1 > 0 on a disk R then

∫

R
f dA ≥ p1(Area(R)) > 0.

(c) If f is continuous and
∫

R
f dA = 0 for all smoothly bounded regions R, then f

cannot be positive at any point.
(d) f is not negative at any point either.

6.18. Write a Riemann sum for
∫

[0,1]×[0,1]
x2y3 dA

using points (x j,y j) at the upper right corner of each 1
4 -square.

6.19. The sum over integers i and j,
∑

i2+ j2≤10h−2

(
(ih)2+ ( jh)2)2h2

approximates which integral,
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∫

x2+y2≤102
(x2+ y2)2 dA, or

∫

x2+y2≤10
(x2+ y2)2 dA?

6.20. Let D be a rectangle [a,b]× [c,d] and consider integrals of the form
∫

D
f (x)g(y)dA

where f and g are continuous functions of one variable. Use the notion of Riemann
sum to prove that the integral of the product is the product of the integrals:

∫

D
f (x)g(y)dA =

∫ b

a
f (x)dx

∫ d

c
g(y)dy.

6.21. The integral

J =
∫

[0,1]×[0,1]
sin

( 1

(1− x2)(1− y2)

)
dA

exists because the integrand is bounded and is continuous in the interior of the
square.

(a) Find upper and lower bounds on the integrand.
(b) Calculation using Riemann sums indicates that

∫

[0,.999]×[0,.999]
sin

( 1

(1− x2)(1− y2)

)
dA = .423

approximately. Assuming that is correct, find bounds on J.

6.22. Let f (x,y) = (4− x2 − y2)−1/2 in the disk D of radius r centered at the origin,
where r < 2. Is f bounded? integrable on D?

6.23. Prove Theorem 6.9 by justifying the following steps.

(a) For part (a):

(i) 0 ≤ f (x,y)−g(x,y).

(ii) 0 ≤
∫

D
( f −g)dA.

(iii) 0 ≤
∫

D
( f −g)dA =

∫

D
f dA−

∫

D
gdA.

(iv)
∫

D
gdA ≤

∫

D
f dA.

(b) For part (b):

(i) Every h-square in C is in D.

(ii) For every Riemann sum for
∫

C
f dA there is a Riemann sum for

∫

D
f dA that

is equal or larger.
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(iii) Every Riemann sum for
∫

C
f dA does not exceed

∫

D
f dA.

(iv)
∫

C
f dA ≤

∫

D
f dA.

6.3 Double integrals as iterated single integrals

Now that we have defined the integral
∫

D
f dA

for a continuous function f over a smoothly bounded set D in R
2 we show how to

use definite integrals of a single variable to compute it. We show in this section that
such integrals can be evaluated by performing integration with respect to x, followed
by integration with respect to y.

x

(a(y),y) (b(y),y)

d

c

D

D(y)

y

ba

(x,c(x))

(x,d(x))

D(x)

D

Fig. 6.21 Left: D is x simple. Right: D is y simple.

We say that a bounded set D is x simple if it has the following property: The set
of all points in D whose second coordinate is y is an interval D(y) parallel to the x
axis, whose endpoints a(y) and b(y) are continuous functions of y:

a(y) ≤ x ≤ b(y), c ≤ y ≤ d.

See Figure 6.21. The integral of a continuous function f (x,y) with respect to x over
the interval D(y) ∫

D(y)
f (x,y)dx =

∫ x=b(y)

x=a(y)
f (x,y)dx

is a continuous function of y. We integrate this function with respect to y between c
and d, getting ∫ d

c

(∫ x=b(y)

x=a(y)
f (x,y)dx

)
dy.
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We call this an iterated integral.
We can make similar calculations for functions over y simple sets: The set of all

points in D whose first coordinate is x is an interval D(x) that is parallel to the y axis
and whose endpoints c(x) and d(x) are continuous functions of x:

c(x) ≤ y ≤ d(x), a ≤ x ≤ b.

See Figure 6.21. We can then calculate an iterated integral

∫ b

a

(∫

D(x)
f (x,y)dy

)
dx =

∫ b

a

(∫ y=d(x)

y=c(x)
f (x,y)dy

)
dx.

Let’s look at some examples.

2 π

y

D(x)

D(x)π

x

x

Fig. 6.22 The set D in Example 6.14.

Example 6.14. Let D be the region bounded by the graphs of y= sin x and y= 0
for 0 ≤ x ≤ 2π. Find the iterated integral of the constant function f (x,y) = 7
over D. We sketch the region D in Figure 6.22. D is the union of two y simple
sets. For 0 ≤ x ≤ π we have 0 ≤ y ≤ sin x, and for π ≤ x ≤ 2π we have sin x ≤
y ≤ 0. So we set up two iterated integrals

∫ x=π

x=0

(∫ y=sin x

y=0
7dy

)
dx+

∫ x=2π

x=π

(∫ y=0

y=sin x
7dy

)
dx

=

∫ x=π

x=0
7sin xdx+

∫ x=2π

x=π
−7sin xdx =

[
−7cos x

]x=π

x=0
+
[
7cos x

]x=2π

x=π

= −7(−1−1)+7
(
1− (−1)

)
= 28.

�

Example 6.15. Let D be the region bounded by the graphs of x = y2 and x = y,
and let f (x,y)= 2xy3. See Figure 6.23. Region D is both x simple and y simple.
Every point (x,y) in D has 0 ≤ y ≤ 1, and for each y between 0 and 1, D(y) is
the interval of points with x values between y2 and y. The iterated integral

∫ 1

0

(∫

D(y)
2xy3 dx

)
dy =

∫ 1

0

(∫ x=y

x=y2
2xy3 dx

)
dy =

∫ 1

0

[
x2y3

]x=y

x=y2 dy
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x = y 2

y x = y

1

0 1
x

D(y)

Fig. 6.23 The set D in Example 6.15.

=

∫ 1

0

(
y2y3− y4y3)dy =

∫ 1

0

(
y5− y7)dy =

[
1
6 y6− 1

8 y8
]1
0
= 1

6 − 1
8 =

1
24 .

Viewing D as y simple we see that every point in D has 0 ≤ x ≤ 1. The set
D(x) is between x and

√
x. The iterated integral

∫ 1

0

(∫

D(x)
2xy3 dy

)
dx =

∫ 1

0

⎛⎜⎜⎜⎜⎜⎝
∫ y=

√
x

y=x
2xy3 dy

⎞⎟⎟⎟⎟⎟⎠ dx

=

∫ 1

0

[
1
2 xy4

]y=√x

y=x
dx =

∫ 1

0

( 1
2 x3− 1

5 x5)dx = 1
8 − 1

12 =
1

24 .

�
We can generalize the notion of an iterated integral over an x simple set to deal

with more complicated sets. Denote by D(y) the set of all points of a set D whose
second coordinate is y. For each value of y, suppose D(y) consists of a finite number
of intervals parallel to the x axis whose endpoints are piecewise continuous func-
tions of y. Since D is bounded, D(y) is empty for all y outside some interval (c,d).
From single variable calculus we know that for such a set D, the integral of a contin-
uous function f (x,y) with respect to x over D(y) is a piecewise continuous function
of y. Integrate this function with respect to y between c and d. Denote the resulting
number as

II( f ,D) =
∫ d

c

(∫

D(y)
f (x,y)dx

)
dy.

We call this the iterated integral of f over D. We show now the following.

Theorem 6.11. Let f be a continuous function on a smoothly bounded set D.

Then the iterated integral II( f ,D) is equal to the integral
∫

D
f dA.

Proof. To see this we show that the iterated integral has all four properties of the
integral listed in Theorem 6.10.

Property (a),
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II( f +g,D) = II( f ,D)+II(g,D),

follows from properties of integrals for functions of a single variable, since for each
y, the integral of f +g with respect to x over D(y) is the sum of the integral of f with
respect to x and the integral of g with respect to x over D(y). The integral of this
sum with respect to y is the sum of the integrals with respect to y of the two terms.
A similar argument shows property (b):

II(c f ,D) = cII( f ,D).

(c) To derive the lower and upper bound property of the iterated integral we apply
first the lower and upper bound property of integrals with respect to x. Denote by
L(y) the sum of the lengths of the intervals constituting D(y). Suppose the values
f (x,y) are between � and u. The integral of f (x,y) with respect to x over D(y) lies
between some bounds �L(y) and uL(y):

�L(y) ≤
∫

D(y)
f (x,y)dx ≤ uL(y)

for all y. It follows from properties of integrals of a function of a single variable that

�

∫ d

c
L(y)dy ≤

∫ d

c

(∫

D(y)
f (x,y)dx

)
dy ≤ u

∫ d

c
L(y)dy.

From single variable calculus, or by an argument similar to that in Example 6.8, we
know that the integral of L(y) with respect to y is the area of D. So the inequality
above can be rewritten as

�Area(D) ≤ II( f ,D) ≤ uArea(D),

which is property (c) for iterated integrals.
To show property (d), additivity with respect to the domain of integration, we

note that if C and D are disjoint or have only boundary points in common, then C(y)
and D(y) are disjoint or have only boundary points in common. Therefore for each y

∫
(
C∪D

)
(y)

f (x,y)dx =
∫

C(y)
f (x,y)dx+

∫

D(y)
f (x,y)dx.

Integrating both sides with respect to y we get

II( f ,C∪D) =
∫ d

c

⎛⎜⎜⎜⎜⎝
∫
(
C∪D

)
(y)

f (x,y)dx

⎞⎟⎟⎟⎟⎠ dy

=

∫ d

c

(∫

C(y)
f (x,y)dx

)
dy+

∫ d

c

(∫

D(y)
f (x,y)dx

)
dy = II( f ,C)+II( f ,D).

This completes the proof of additivity for the iterated integral.
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Now that we have shown that the iterated integral has all four properties of the
integral listed at the beginning of Section 6.2, we appeal to Theorem 6.10, that these
four properties imply II( f ,D) is equal to the integral of f over D.

Reversing the roles of x and y we have the analogous result for iterated integrals,

∫ b

a

(∫

D(x)
f (x,y)dy

)
dx.

	

In the special case where f is continuous on a rectangle D = [a,b]× [c,d] then by
Theorem 6.11 ∫

D
f dA =

∫ y=d

y=c

(∫ x=b

x=a
f (x,y)dx

)
dy,

and ∫

D
f dA =

∫ x=b

x=a

(∫ y=d

y=c
f (x,y)dy

)
dx.

Therefore ∫ b

a

(∫ d

c
f dy

)
dx =

∫ d

c

(∫ b

a
f dx

)
dy.

Example 6.16. Let D be the rectangle given by

2 ≤ x ≤ 3, 0 ≤ y ≤ 1.

Then
∫

D
xy2 dA =

∫ 3

2

(∫ 1

0
xy2 dy

)
dx =

∫ 3

2

[
1
3 xy3

]1
y=0

dx =
∫ 3

2

1
3 xdx = 5

6 .

Integrating first with respect to x and then with respect to y we get

∫

D
xy2 dA =

∫ 1

0

(∫ 3

2
xy2 dx

)
dy =

∫ 1

0

5
2 y2 dy = 5

6 .

�

 1

 1

 2 y = x

 x

 y

 D

Fig. 6.24 The region in Example 6.17.
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Example 6.17. We can compute the double integral of f (x,y) = xy3 over the
domain D shown in Figure 6.24. D is bounded by the lines y = 0, y = 1, and
the graphs of the functions (x in terms of y) x = 1 and x =

√
y. Then

∫

D
xy3 dA =

∫ 1

0

⎛⎜⎜⎜⎜⎝
∫ 1

√
y

xy3 dx

⎞⎟⎟⎟⎟⎠ dy =
∫ 1

0

1
2 (y3− y4)dy = 1

2
( 1

4 − 1
5
)
= 1

40 .

This double integral may also be evaluated by

∫

D
xy3 dA =

∫ 1

0

⎛⎜⎜⎜⎜⎜⎝
∫ y=x2

y=0
xy3 dy

⎞⎟⎟⎟⎟⎟⎠ dx

=

∫ 1

0
x
(

1
4 (x2)4)− 1

4 (0)2
)
dx =

∫ 1

0

1
4 x9 dx = 1

40 .

�

Problems

6.24. Compute ∫

D
f (x,y)dA

where D is the set in the plane bounded by the graphs of y = 1, x = y, and x = 4−y,
and f (x,y) = ex+y.

6.25. Evaluate ∫

D
ydA

where D is the half disk where x2+ y2 ≤ 1 and y ≥ 0.

6.26. Evaluate the integrals.

(a)
∫

D
(x2− y2) dA where D = [−1,1]× [0,2].

(b)
∫

D
x2y2(x+ y)dxdy where D = [0,1]× [0,1]

6.27. Consider the integrals
∫

D

√
ydA,

∫

D
xdA,

∫

D
(
√

y+ x)dA,

where D is the triangular region in Figure 6.25.

(a) List the three integrals in order from least to greatest, using inequalities among
the functions

√
y, x and

√
y+ x on D.
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−1

1

0

D

y

x

Fig. 6.25 The set D in Problem 6.27.

(b) Evaluate the integrals as iterated integrals.

0

y

x

D

5

3

1 4

Fig. 6.26 County D in Problem 6.28.

6.28. The population density [people/area] of County D, Figure 6.26, where every-
one wants to live near the Southwest corner, is

p(x,y) =
c

(
1+3x+ y

)2 .

The total population is 105 and c is a constant.

(a) Find the average population density.
(b) Express the total population as an integral over D, and set it up as an iterated

integral.
(c) Find c.

6.29. Evaluate ∫

R
sinydA

where R is the region 0 ≤ x ≤ 1, 0 ≤ y ≤ √x.

6.30. Evaluate ∫

R
eyxdA

where R is the region bounded by y = x+2 and y = x2.
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6.31. Supply the missing numbers.

∫

[0,2]×[−1,(?)]
(3xy2 +5x4y3)dA = (?)

∫ (?)

0
xdx

∫ 1

−1
y2 dy+ (?)

∫ 2

0
x4 dx

∫ (?)

−1
y3 dy.

6.4 Change of variables in a double integral

A change of variables relates two pairs of variables (x,y) and (u,v) by a function F
from R

2 to R
2.

Definition 6.8. A continuously differentiable function

F(u,v) =
(
x(u,v),y(u,v)

)

from an open set U in the plane to R
2 is called a smooth change of variables

if F is one to one and its derivative matrix is invertible at each point of U.

If F is a smooth change of variables then the Jacobian

JF(u,v) = det DF(u,v) = det

[
xu xv

yu yv

]

is nonzero and its absolute value can be interpreted as the local magnification factor
at (u,v) of area under the mapping. To see this take the triangle S whose vertices are

(u,v), (u+h,v), (u,v+h).

These points are mapped into the points

(
x(u,v),y(u,v)

)
,

(
x(u+h,v),y(u+h,v)

)
,

(
x(u,v+h),y(u,v+h)

)

in the x,y plane and are vertices of a triangle T . See Figure 6.27. We approximate(
x(u+h,v),y(u+h,v)

)
by (x+hxu,y+hyu) and approximate

(
x(u,v+h),y(u,v+h)

)
by

(x+hxv,y+hyv), where the functions x, y and their partial derivatives are evaluated
at (u,v). Denote by T ′ the triangle with vertices

(x,y), (x+hxu,y+hyu), (x+hxv,y+hyv).

For h small the shaded area of F(S ) in Figure 6.27 is close to the area of the
triangular region T . The error in the linear approximation of sides of T by the sides
of T ′ is less than a multiple of h2. Two of the side lengths of T ′ are ||(hxu,hyu)|| and
||(hxv,hyv)||, multiples of h, so changing the length of a side of T ′ by a multiple of
h2 changes the area by less than kh3, for some number k. (See Problem 6.33.) So the
area of T differs from the area of T ′ by an amount that is less than kh3. Therefore
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v

(u, v + h)

S

u

y

(x(u, v + h), y(u, v + h))

x

(u, v) (u+ h, v)

(x(u+ h, v), y(u+ h, v))

(x+ hxu, y + hyu)

T

F(S)
T (x(u, v), y(u, v))

(x+ hxv, y + hyv)

Fig. 6.27 Area(T )− Area(T ′) is less than a constant multiple of h3.

0 ≤ Area(T )− Area(T ′)
Area(S )

≤ kh3

1
2 h2

and the limit of the quotient as h tends to zero is zero. Therefore as h tends to zero,
Area(T ′)
Area(S )

and
Area(T )
Area(S )

have the same limit. The area of the triangle T ′ whose

vertices are given above is

Area(T ′) =
∣∣∣ 12 (hxuhyv−hxvhyu)

∣∣∣ = 1
2 |xuyv− xvyu|h2.

The area of S is 1
2 h2. The ratio of these two areas is

|JF(u,v)| = |xuyv− xvyu|, (6.19)

the absolute value of the Jacobian at (u,v). If the mapping F preserves orientation.
That is if it maps small positively oriented triangles in the u,v plane to positively
oriented approximate triangles in the x,y plane then the ratio of the areas is simply
the Jacobian J of the mapping.

Here is the change of variables theorem for integrals.

Theorem 6.12. Let F(u,v) = (x(u,v),y(u,v)) denote a smooth change of vari-
ables that maps a smoothly bounded set C onto a smoothly bounded set D,
so that the boundary of C is mapped to the boundary of D. Denote by f a
continuous function on D. Then

∫

D
f (x,y)dxdy =

∫

C
f (x(u,v),y(u,v))|JF(u,v)|dudv (6.20)

where JF is the Jacobian of the mapping.

Proof. Divide the u,v plane into h-squares and approximate
∫

C
f (x(u,v),y(u,v))|JF(u,v)|dudv
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by a finite sum
S ( f ,C,h) =

∑

j

f
(
F(u j,v j)

)|JF(u j,v j)|h2,

where (u j,v j) is some point in the j-th h-square, and the sum taken over all h-squares
contained in C. The mapping F carries the h-squares in the u,v plane into smoothly
bounded sets in the x,y plane that we denote as D j. The area of D j is approximately
|JF(u j,v j)|h2, with an error less than some multiple of h3.

Let D′ be the union of the sets D j. The integral of f over D′ is the sum of the
integrals of f over D j:

∫

D′
f dxdy =

∑

j

∫

D j

f dxdy.

We approximate the j-th integral above as f (u j,v j)Area(D j), and we approximate
the Area(D j) by |JF(u j,v j)|h2. The error thus committed in each term in the sum is
less than ch3, for some constant c. The total error committed is less than or equal
to the sum of the individual errors. Since each individual error is less than ch3, and

since the number of terms in the sum is less
Area(D)

h2
, the total error is less than

Area(D)

h2
(ch3) = Area(D)ch.

This shows that ∣∣∣∣∣S ( f ,C,h)−
∫

D′
f (x,y)dA

∣∣∣∣∣ ≤Ch.

So
∫

D′
f (x,y)dA and

∫

C
f
(
x(u,v),y(u,v)

)∣∣∣JF(u,v)
∣∣∣dudv differ less than some con-

stant times h. For h small enough the area of the set of points that are in D but not
in D′ does not exceed Mch where M is an upper bound on |JF(u,v)| on the closure
of C and c is a number that depends on the boundary of C. Hence the difference

between
∫

D′
f (x,y)dA and

∫

D
f (x,y)dA tends to zero as h tends to zero. 	


y

ar

br

r
xu

v

DC

Fig. 6.28 The smooth change of variables in Example 6.18 maps the circle to the ellipse.

Example 6.18. Define sets
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C = {(u,v) : u2+ v2 ≤ r2}, D = {(x,y) :
( x
a

)2
+
( y
b

)2 ≤ r2}.

The boundary of C is a circle and the boundary of D is an ellipse. See Fig-
ure 6.28. The mapping F(u,v) = (au,bv), x = au, y = bv, a > 0, b > 0 sends
points (u,v) in the set C one to one onto the points of D. Find the area of D.
We have

JF(u,v) = det DF = det

[
a 0
0 b

]
= ab > 0,

so F is orientation preserving. By the change of variables theorem

Area(D) =
∫

D
1dxdy =

∫

C
1(ab)dudv = abπr2.

�

2 π

2   /3π

/6π
u

y

x

10
0

v

2 5

2 5

Fig. 6.29 The mapping F in Examples 6.19 and 6.20.

Example 6.19. Let D be the shaded set on the right in Figure 6.29. Find∫

D
ex2+y2

dA. The iterated integrals we would obtain in x,y coordinates will

not help us evaluate this integral because we cannot find a simple antideriva-
tive for ex2+y2

with respect to x or y. So we try a change of variables F that is
suggested by the polar coordinate transformation

x = ucosv, y = usinv.

Note that F is one to one on an open set that contains the rectangle C given by
2 ≤ u ≤ 5, 0 ≤ v ≤ 2π/3. The Jacobian is

JF(u,v) = det DF(u,v) = det

[
cosv −usinv
sinv ucosv

]
= ucos2 v+usin2 v = u.

The Jacobian is positive in C. By the change of variables theorem,
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∫

D
ex2+y2

dxdy =
∫

C
eu2 cos2 v+u2 sin2 vududv =

∫ v=2π/3

v=0

(∫ u=5

u=2
eu2

udu

)
dv

=

∫ v=2π/3

v=0

[
1
2 eu2

]u=5

u=2
dv =

∫ v=2π/3

v=0

1
2
(
e25− e4)dv = 1

2
(
e25− e4) 2π

3 .

�
Remark: It is customary to write (r, θ) for polar coordinates instead of (u,v). Then

the change of variables formula is
∫

D
f (x,y)dxdy =

∫

C
f (r cosθ,r sinθ)r drdθ.

Example 6.20. Let D = {(x,y) : x2 + y2 ≤ 25} and let C denote the rectangle
0 ≤ u ≤ 5, 0 ≤ v ≤ 2π. See Figure 6.29. We evaluate

∫

D
ex2+y2

dA.

The polar coordinate mapping F(u,v) = (ucosv,usinv) is not a smooth change
of variables on a set that contains C: det DF(0,0) = 0 and also F is not one to
one, F(u,0) = F(u,2π). For 0 < ε let

Cε = {(u,v) : ε ≤ u ≤ 5, 0 ≤ v ≤ 2π− ε}
and set Dε = F(Cε). Then the change of variables theorem applies. The inte-
grand ex2+y2

is bounded on D and the area of the region C −Cε tends to zero
as ε tends to zero, as does the area of the region D−Dε . Therefore as ε tends
to zero, the relation

∫

Dε
ex2+y2

dxdy =
∫

Cε
eu2

ududv

tends to ∫

D
ex2+y2

dxdy =
∫

C
eu2

ududv.

We evaluate the last integral as an iterated integral

=

∫ v=2π

v=0

(∫ u=5

u=0
eu2

udu

)
dv =

∫ v=2π

v=0

[
1
2 eu2

]u=5

u=0
dv = 1

2
(
e25−1

)
2π.

�

Example 6.21. Let D be the parallelogram in R
2 bounded by the lines

y = −x+5, y = −x+2, y = 2x−1, y = 2x−4.

and let R be the unit square [0,1]× [0,1]. See Figure 6.30. Compute
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y = 2x−4

y = 2x−1

(2,0)

(1,1)

(3,2)

(2,3)

x

y

y = −x+2

y = −x+5

1

1

0

u

v

R D

Fig. 6.30 The region in Example 6.21.

∫

D
ex dA.

The mapping F(u,v) = (u + v + 1,−u + 2v + 1) takes R one to one onto the
parallelogram D.

DF(u,v) =

[
1 1
−1 2

]
, JF(u,v) = det

(
DF(u,v)

)
= 3.

So ∫

D
ex dxdy =

∫

R
eu+v+1|3|dudv = 3e

∫ 1

0

∫ 1

0
euev dudv

= 3e
∫ 1

0
eu du

∫ 1

0
ev dv = 3e(e−1)2.

�

Problems

6.32. Consider the mapping
[

x
y

]
=

[
1 1
0 1

] [
u
v

]
.

(a) Show that the Jacobian is 1.
(b) Sketch the triangle with vertices (1,0), (1,1), and (0,1) and its image under the

mapping. Show that its image has the same area.

6.33. Figure 6.31 shows a triangle whose sides are multiples of h. The size of the
triangle has been changed by moving one side so that one edge is changed by kh2

for some k. Use the steps below to show that the change in area is less than or equal
to some constant times h3.
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ha

hc

h k

m

2

hb

Fig. 6.31 The triangles in Problem 6.33.

(a) Show that � = k1h2 for some k1.
(b) Show that m = k2h+ k3h2 for some k2,k3.
(c) Show that the change in area is less than some multiple of h3 if h is sufficiently

small.

6.34. For a mapping of the form (x,y)= ( f (u),g(v)), verify that the Jacobian is given
by

det

[
xu xv

yu yv

]
= f ′(u)g′(v).

6.35. Consider the mapping defined by the complex square

x+ iy = (u+ iv)2,

that is, x = u2 − v2, y = 2uv. It maps the quarter annulus shown in Figure 6.32 to
the half annulus, for example. Find the Jacobian at the point (1,0), and sketch the
approximate image of the small indicated triangle, that has vertices at (1,0), (1.1,0),
and (1, .1).

x

y v

5. 11.25
u

Fig. 6.32 The mapping in Problem 6.35.

6.36. Use the change of variables (x,y) = (ucosv,usinv) to evaluate the integrals,
where U is the unit disk centered at the origin.

(a)
∫

U

√
x2+ y2 dA,

(b)
∫

U
(3+ x4+2x2y2+ y4)dA,
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(c)
∫

U
ydA.

6.37. Use the change of variables (x,y)= (r cosθ,r sinθ) to polar coordinates to eval-
uate the integral ∫

D
e−||X|| dA

where D is the set of points (x,y) with a2 ≤ x2+ y2 ≤ b2. a,b are positive constants.

6.38. Use symmetries or the change of variables (x,y) = (r cosθ,r sinθ) to evaluate
the integrals, where D is the annulus

1 ≤
√

x2+ y2 ≤ 8.

(a)
∫

D
(x2+ y2)p dA, p any number

(b)
∫

D
(3+ y− x2)dA,

(c)
∫

D
log(x2+ y2)dA.

6.39. Verify that each of the following formulas defines a mapping of the unit square
C to the rectangle D shown in Figure 6.33. In each case, make a sketch that shows
your initials written in C, and their image in D.

(a) (x,y) = (5u,3v)
(b) (x,y) = (5v,3u)
(c) (x,y) = (5v,3−3u)

y

x

u

v

5

3

1

1

0

0

CD

Fig. 6.33 The sets in Problem 6.39.

6.40. For each mapping in Problem 6.39,

(a) calculate the Jacobian det

[
xu xv

yu yv

]
, and

(b) state whether the mapping is orientation preserving or not.
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6.41. Substitutions are made in the integral
∫

D
(1+ xy)dxdy using the mappings in

Problem 6.39 and their Jacobians from Problem 6.40. Verify the formulas:

(a)
∫

D
(1+ xy)dxdy =

∫

C
(1+15uv)15dudv.

(b)
∫

D
(1+ xy)dxdy �

∫

C
(1+15vu)(−15)dudv.

(c)
∫

D
(1+ xy)dxdy =

∫

C
(1+15v(1−u))15dudv.

6.5 Integration over unbounded sets

To integrate a function f over an unbounded set we will require that the unbounded
set D is the union of an increasing sequence

D1 ⊂ D2 ⊂ D3 ⊂ · · ·
of smoothly bounded sets.

We start by giving some examples.

Example 6.22.(a) The first quadrant D, consisting of all points (x,y) with x
and y nonnegative, is unbounded. Let Dn be the square 0≤ x ≤ n, 0≤ y≤ n.
See Figure 6.34. Quadrant D is the union of the sets Dn.

(b) Let D again be the first quadrant and let Dn be the points where x≥ 0, y≥ 0,
and x+ y ≤ n. Again D is the union of the Dn. See Figure 6.34.

(c) D is the half plane consisting of all points (x,y) with x ≥ 0, and Dn is the
rectangle 0 ≤ x ≤ n, −n ≤ y ≤ n.

(d) D is the whole plane and Dn is the square −n ≤ x ≤ n, −n ≤ y ≤ n.
(e) D is the whole plane and Dn is the disc of radius n centered at the origin,

x2+ y2 ≤ n2,
�

x654 x

y y

654

Fig. 6.34 The first quadrant is the union of increasing squares or triangles.

Integration of a continuous function f over an unbounded set D is defined by
considering the limit of a sequence of integrals of f over smoothly bounded sets.
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Definition 6.9. Let D be an unbounded set in R
2. Denote by D(n) the set of

points in D whose distance from the origin is less than or equal to n. See
Figure 6.35. A nonnegative continuous function f defined on D is integrable
over D if the sequence of numbers

∫

D(n)
f dA, n = 1,2,3, . . .

converges. The limit of this sequence is called the integral of f over D. We
say that the integral exists, and write

∫

D
f dA = lim

n→∞

∫

D(n)
f dA.

654 x

y

Fig. 6.35 The sets D(n) engulf the first quadrant D. The sets D(4), D(5), and D(6) are indicated.

We show now that we may replace the sequence of subsets D(n) by any increasing
sequences of bounded subsets Dn whose union is D:

Theorem 6.13. Let D be an unbounded set, and

D1 ⊂ D2 ⊂ D3 ⊂ · · ·
an increasing sequence of smoothly bounded subsets of D whose union is D,
and let f be a nonnegative continuous function on D. Then

lim
m→∞

∫

Dm

f dA = lim
n→∞

∫

D(n)
f dA

in the sense that if one limit exists, so does the other, and the limits are equal.
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Proof. Suppose first that lim
m→∞

∫

Dm

f dA exists. For a nonnegative continuous func-

tion f both sequences of integrals above are increasing. We observe that for each
D(n), all subsets Dm for m large enough contain D(n); it follows that

lim
m→∞

∫

Dm

f dA ≥
∫

D(n)
f dA.

Therefore by the Monotone Convergence Theorem lim
n→∞

∫

D(n)
f dA exists and

lim
m→∞

∫

Dm

f dA ≥ lim
n→∞

∫

D(n)
f dA.

Now since the sets Dm are bounded, all subsets D(n) for n large enough contain Dm.
From this the opposite inequality follows. Therefore the two limits are equal. The
same argument applies if we reverse the roles of Dn and D(n). 	


Here is an example of an integral over the whole plane:
∫

R2
e−x2−y2

dA. (6.21)

We evaluate this integral over the plane in two different ways.
(i) Choose as the sequence Dn the squares −n ≤ x ≤ n, −n ≤ y ≤ n. According to

Theorem 6.11
∫

Dn

e−x2−y2
dA =

∫ n

−n

(∫ n

−n
e−x2

e−y2
dx

)
dy =

∫ n

−n
e−y2

dy
∫ n

−n
e−x2

dx.

The two integrals on the right, one with respect to x, the other with respect to y, are
equal. Therefore the right side is equal to

(∫ n

−n
e−x2

dx

)2

.

Does this sequence of numbers converge? For x ≥ 1 we have 0 ≤ e−x2 ≤ e−x and

since
∫ ∞

0
e−x dx exists,

∫ ∞

0
e−x2

dx exists as well. By symmetry

∫ 0

−∞
e−x2

dx =
∫ ∞

0
e−x2

dx.

So
∫ n

−n
e−x2

dx converges to
∫ ∞

−∞
e−x2

dx, and

∫

R2
e−x2−y2

dA =

(∫ ∞

−∞
e−x2

dx

)2

(6.22)
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exists. Next we find its numerical value.
(ii) Choose as the sequence Dn the discs x2 + y2 ≤ n2. In the integral over Dn,

make a change to polar coordinates x = r cosθ, y = r sinθ. As we saw in Exam-
ple 6.20, when we make the change of variables we get

∫

Dn

e−x2−y2
dA =

∫

Pn

e−r2
r dr dθ

where Pn is the rectangle 0 ≤ r ≤ n, 0 ≤ θ < 2π.
This integral can be carried out explicitly; it is equal to

∫ n

0

(∫ 2π

0
dθ

)
e−r2

r dr = π(1− e−n2
).

The limit is π as n tends to infinity. This shows that
∫

R2
e−x2−y2

dA = π. By equation

(6.22) we conclude that

∫ ∞

−∞
e−x2

dx =
√
π. (6.23)

It is curious that we have found the value of the integral (6.23) with respect to a sin-
gle variable by finding the value of the integral (6.21) with respect to two variables.

We remark that the evaluation of the integral (6.23) is basic in the theory of
probability. The graph of the function

f (x) =
1√
π

e−x2

is the classic bell curve, of the normal distribution. Probability is an important appli-
cation of integration over unbounded sets.

Not all functions describing probabilities are continuous on all of R
2. So we

extend the concept of integration over an unbounded set D to functions that are not
continuous on D.

Definition 6.10. Let D be an unbounded set in the plane. Let f be a bounded
nonnegative function on D that is integrable on D(m) for some m (as described
in Definition 6.9) and is continuous on D−D(m). We say that f is integrable
on D if the sequence of integrals

∫

D(m)
f dA,

∫

D(m+1)
f dA,

∫

D(m+2)
f dA, . . .

converges. We denote this limit

lim
n→∞

∫

D(n)
f dA =

∫

D
f dA.
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Definition 6.11. We say that a function p is a probability density function if

(a) p(x,y) ≥ 0 for all (x,y) in R
2, and

(b)
∫

R2
p(x,y)dA = 1.

If p is integrable on a set D then the probability that (x,y) is in D is∫

D
p(x,y)dA.

Example 6.23. Show that

p(x,y) = 1
πe−(x2+y2)

is a probability density function, and find the probability that (x,y) is in the

first quadrant. We showed that
∫

R2
e−x2−y2

dA = π, so

∫

R2

1
πe−(x2+y2) dA = 1.

Since p is nonnegative, p is a probability density function. The probability
that (x,y) is in the first quadrant is

∫

x≥0, y≥0

1
πe−(x2+y2) dA = lim

n→∞

∫ π/2

0

1
π

∫ n

0
e−r2

r drdθ = π2
1
π lim

n→∞

[−1
2

e−r2
]n
0
= 1

4 .

We might also have reasoned that by symmetry the integral of p on each of
the four quadrants is equal; therefore the probability is 1

4 . �

In the next example p is not continuous on R
2 but it is integrable on R

2.

Example 6.24. Let

p(x,y) =

⎧⎪⎪⎨⎪⎪⎩
2x+c−y

4 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2

0 otherwise

Find c so that p is a probability density function. p is not continuous on R
2

but by Definition 6.10 p is integrable over R2. The integral of p over R2 is
∫

R2
pdA =

∫

D=[0,1]×[0,2]
pdA+

∫

R2−D
pdA

=

∫ 2

0

∫ 1

0

2x+ c− y
4

dxdy+0 =
∫ 2

0

1+ c− y
4

dy =
2+2c−2

4
=

c
2
.

So c = 2. We check that p is nonnegative: in the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2
we have x ≥ 0 and 2− y ≥ 0, so
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p(x,y) =
2x+ (2− y)

4
≥ 0.

�
We end this section by extending the notion of integrability in an unbounded

domain to continuous functions that take on both positive and negative values.

Theorem 6.14. Let D be an unbounded set, and f a continuous function on D
whose absolute value is integrable over D,

∫

D
| f |dA exists.

Let Dn be an increasing sequence of smoothly bounded subsets of D whose
union is D,

D1 ⊂ D2 ⊂ · · · ⊂ Dn ⊂ · · · , ∪nDn = D.

Then the limit of the integrals of f over the sequence Dn,

lim
n→∞

∫

Dn

f dA exists,

and this limit is the same for all such sequences Dn.

Proof. Decompose f as the difference of its positive and negative parts, f = f+− f−,
where

f+(x,y) =max( f (x,y),0), f−(x,y) =max(− f (x,y),0).

The absolute value of f is the function

| f | = f+ + f−.

This shows that the nonnegative functions f+ and f− are less than or equal to | f |.
Since | f | is integrable over D, so are f+ and f− (see Problem 6.50).

According to Theorem 6.13, the integral of f+ and f− over D is the limit of the
integral of f+ and f− over any increasing sequence of smoothly bounded subsets Dn

of D whose union is D. It follows that the limit of the integral of their difference
f+ − f− over Dn is the difference of the limits of the integral f+ and of f− over the
sequence of subsets Dn. Since f+− f− = f , this completes the proof of Theorem 6.14.

	

Based on Theorem 6.14 we make the following definition.

Definition 6.12. A continuous function f that takes on both positive and neg-
ative values in an unbounded set D is called integrable over D if its absolute
value | f | is integrable over D.
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Problems

6.42. Describe the sets in which the functions below are positive.

(a) f (x,y) = 1− x2

(b) f (x,y) = xy
(c) f (x,y) = cos(2π

√
x2+ y2)

6.43. Let D be the region in R
2 where 0 ≤ x and 0 ≤ y ≤ 1.

(a) Evaluate
∫

D
e−x dxdy

(b) Evaluate
∫

D
e−x
√

y dxdy

(c) Show that e−xy is not integrable over D.

6.44. Let a > 0,b > 0. Use the change of variables theorem to show that
∫

x2+y2≤n2
e−(ax2+by2) dxdy =

∫

u2
a +

v2
b ≤n2

e−(u2+v2) 1√
ab

dudv,

and evaluate ∫

R2
e−(ax2+by2) dA.

6.45. Let U be the open unit disk in R
2 centered at the origin,

√
x2+ y2 = r < 1.

Which of these functions are integrable over R2−U?

(a) logr

(b)
1

r2

(c)
1

r2.1

(d) r−3

6.46. Verify the following identities for the positive and negative parts of numbers
x and functions f .

(a) |x| = x+ + x−
(b) x = x+− x−
(c) | f | = f+ + f−
(d) f = f+− f−

6.47. Evaluate
∫ ∞

−∞
e−(x2/4t) dx by a change of variables.

6.48. Evaluate
∫ ∞

0
e−x2

dx by a symmetry argument.

6.49. Show that if f is continuous then the positive part of f , f+, is continuous.
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6.50. Justify the following steps to prove that if f is integrable on R
2 and g is a

continuous function with 0 ≤ g ≤ f then g is integrable on R
2.

(a)
∫

D(n)
gdA exists.

(b) 0 ≤
∫

D(n)
gdA ≤

∫

D(n)
f dA.

(c) The numbers
∫

D(n)
gdA are an increasing sequence bounded above.

(d) lim
n→∞

∫

D(n)
gdA exists.

6.51. Let p be the probability density function in Example 6.24.

(a) Sketch the set in R
2 where x+ y ≤ 2.

(b) Find the probability that x+ y ≤ 2.

6.52. Let p(x,y) = 2x when 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, and p(x,y) = 0 otherwise.

(a) Show that p is a probability density function.
(b) Sketch the set in R

2 where x ≥ y.
(c) Find the probability that x ≥ y.

6.53. Let p be a probability density function in R
2. Each point of R2 is either in a

set D or not in D. What does the equation
∫

D
pdA+

∫

R2−D
pdA =

∫

R2
pdA

tell you about the probability that (x,y) is not in D?

6.54. Suppose f and g are continuous functions on R
2 so that f 2 and g2 are inte-

grable on R
2. Use the inequality

2ab ≤ a2+b2

to show that the following functions are also integrable:

(a) | f g|
(b) f g
(c) ( f +g)2

6.55. Show that f 2 is integrable on R
2 for each function f :

(a)
r

1+ r4
, where r =

√
x2+ y2

(b) e−r

(c)
|x|

1+ r4

(d) ye−r
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6.56. Justify steps (a)–(d) to prove that if a continuous function f from R
2 to R is

integrable on an unbounded set D then
∣∣∣∣∣
∫

D
f dA

∣∣∣∣∣ ≤
∫

D
| f | dA.

(a)
∫

D
f dA =

∫

D
f+ dA−

∫

D
f− dA ≤

∫

D
f+ dA+

∫

D
f− dA =

∫

D
| f | dA

(b)
∫

D
(− f ) dA ≤

∫

D
| f | dA

(c) −
∫

D
f dA ≤

∫

D
| f | dA

(d)
∣∣∣∣∣
∫

D
f dA

∣∣∣∣∣ ≤
∫

D
| f | dA.

6.6 Triple and higher integrals

We outline key definitions, state theorems, and look at many examples of integrals
of functions of three or more variables.

The notion of a smoothly bounded set in R
n is defined inductively on the dimen-

sion n.

Definition 6.13. A closed set D in R
n is smoothly bounded when its boundary

is the union of finitely many graphs of C1 functions of the form

xk = g(x1, . . . , xk−1, xk+1, . . . , xn) some k = 1, . . . ,n

defined on smoothly bounded sets in the hyperplane where xk = 0.

The notions needed to define the volume of a smoothly bounded set in R
n are

analogous to those we used to define the concept of area of a smoothly bounded set
in R

2. In a similar manner we define the lower and upper volumes and say that a set
has volume Vol(D) if its upper and lower volumes are equal. The following theorem
is analogous to Theorem 6.4.

Theorem 6.15. Smoothly bounded sets in R
n have volume.

The definition of the integral of a function of n variables mirrors the definition of
the integral of a function of two variables.
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Definition 6.14. Let f from R
n to R be a bounded function on a smoothly

bounded set D in R
n. We define the upper and lower integrals

IU( f ,D), IL( f ,D)

for bounded nonnegative functions as we did in R
2. If the upper integral equals

the lower integral we say f is integrable over D, and we write the integral

IU( f ,D) = IL( f ,D) =
∫

D
f dnX.

Just as we saw for functions from R
2 to R, we can show that continuous functions

are integrable over smoothly bounded sets.

Theorem 6.16. For a continuous function f on a smoothly bounded set D in
R

n, the upper integral of f over D is equal to the lower integral, and the
integral of f exists:

IU( f ,D) = IL( f ,D) =
∫

D
f dnX.

We have the four properties of linearity, boundedness, and additivity:

Theorem 6.17. For all continuous functions f and g from R
n to R on smoothly

bounded sets C and D, and all numbers c,

(a)
∫

D
( f +g)dnX =

∫

D
f dnX+

∫

D
gdnX,

(b)
∫

D
c f dnX = c

∫

D
f dnX,

(c) If � ≤ f (X) ≤ u then �Vol(D) ≤
∫

D
f dnX ≤ uVol(D).

(d) If C and D are disjoint or have only boundary points in common and C∪D

is smoothly bounded then
∫

C∪D
f dnX =

∫

C
f dnX+

∫

D
f dnX.

Example 6.25. The constant function f (x1, . . . , xn)= 1 is continuous on R
n and

we have 1 ≤ f (X) ≤ 1. It is integrable over every smoothly bounded set D. By
the boundedness property, Theorem 6.17 part (c),

Vol (D) ≤
∫

D
1dnX ≤ Vol(D).
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Therefore Vol (D) =
∫

D
1dnX. �

The integral is characterized by the four properties in Theorem 6.17; we have the
following theorem.

Theorem 6.18. Suppose a number I ( f ,D) is defined for every continuous
function f on a smoothly bounded set D in R

n and that it has the following
properties.

(a) I ( f +g,D) =I ( f ,D)+I (g,D)
(b) I (c f ,D) = cI ( f ,D) for every number c
(c) If � ≤ f (x1, x2, . . . , xn) ≤ u for all (x1, x2, . . . , xn) in D, then

�Vol(D) ≤I ( f ,D) ≤ uVol(D),

(d) For all pairs of smoothly bounded sets C and D that are disjoint or have
only boundary points in common,

I ( f ,C∪D) =I ( f ,C)+I ( f ,D),

Then

I ( f ,D) =
∫

D
f dnX.

The proof is similar to the proof of Theorem 6.10 for double integrals.
As with double integrals we often calculate integrals using approximate integrals

(Riemann sums).

Theorem 6.19. The integral
∫

D
f dnX of a continuous function f on a

smoothly bounded set D in R
n is equal to the limit as h tends to zero of approx-

imate integrals ∑

j

f (P j)h
n

that are sums over h-boxes in D, with any chosen points P j in the j-th box.

Average of a function. The integral allows a definition of the average of a function.

Definition 6.15. The average of an integrable function over a smoothly
bounded set D is

1
Vol (D)

∫

D
f dnX =

∫
D

f dnX
∫

D
1dnX

.
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The next theorem gives conditions under which the average of f is a value of f .
We say that a set D in R

n is connected if for every two points A and B of D, there is a
continuous function X from some interval [a,b] to D so that X(a) =A and X(b) =B.

Theorem 6.20. Mean Value Theorem for Integrals. Suppose f from R
n to

R is a continuous function on a smoothly bounded connected set D in R
n, with

Vol(D) � 0. Then there is a point P in D at which

f (P) =

∫
D

f dnX

Vol(D)
.

Proof. By the Extreme Value Theorem there are points A and B in D where f has
its minimum, m, and maximum M, on D,

m = f (A) ≤ f (X) ≤ f (B) = M.

By the boundedness property of integrals

f (A) ≤
∫

D
f (X)dnX

Vol(D)
≤ f (B).

Since D is connected there is a continuous function X from some interval [a,b] to
D with X(a) = A and X(b) = B. Thus

f ◦X(a) ≤
∫

D
f (X)dnX

Vol(D)
≤ f ◦X(b).

Since f ◦X is continuous, it follows from the Intermediate Value Theorem that there
is a number c between a and b where

f ◦X(c) =

∫
D

f (X)dnX

Vol(D)
.

Take P = X(c). 	

We focus in the rest of this section on integrals of functions of three variables.

Triple integrals. The integral of a continuous function f on a smoothly bounded
set D in R

3 is called a triple integral and is denoted
∫

D
f dV .

Example 6.26. Let f (x,y,z) = x5 and let D be the set 1 ≤ x2+y2+ z2 ≤ 4. Find
∫

D
x5 dV .
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We observe that f (−x,y,z) = − f (x,y,z) and D is symmetric about the y,z
plane. We form approximate integrals

∑

j

f (P j)h
3 by choosing symmetric

points (−xi,yi,zi) and (xi,yi,zi) in the h-boxes of D on opposite sides of the
y,z plane. If we number the h-boxes on the x > 0 side of the y,z plane from
i = 1 to N, these approximate integrals cancel

N∑

i=1

(
(xi)

5h3+ (−xi)
5h3) = 0

for all h. Therefore
∫

D
x5 dV = 0. �

Example 6.27. Let D be the set 1 ≤ x2+ y2+ z2 ≤ 4 and let

f (x,y,z) = sin(z3)+ x5+200.

We saw in Example 6.26 that
∫

D
x5 dV = 0. Similarly since sin(z3) is odd and

D is symmetric about the x,y plane we have that
∫

D
sin(z3)dV = 0. Since the

integral of the constant function 200 over D is 200Vol (D),
∫

1≤x2+y2+z2≤4

(
sin(z3)+ x5+200

)
dV = 0+0+200Vol (D).

The volume of D is the volume inside the sphere x2 + y2 + z2 = 4 minus the
volume inside the smaller sphere x2 + y2 + z2 = 1, so Vol (D) = 4

3π(2
3 − 13),

and ∫

1≤x2+y2+z2≤4

(
200+ x5 + sin(z3)

)
dV = 5600

3 π.

�

Example 6.28. Let D1 be the set of points (x,y,z) in R
3 where x2+y2+ z2 ≤ 4,

let D2 be the set where 4 < x2+ y2+ z2 ≤ 9, and let

f (x,y,z) =

⎧⎪⎪⎨⎪⎪⎩
2 (x,y,z) in D1

1 (x,y,z) in D2.

Then D = D1 ∪D2 is the solid ball of radius 3 centered at the origin. The
average value of f on D is

∫
D

f dV

Vol(D)
=

∫
D1

2dV +
∫

D2
1dV

Vol(D)
=

2Vol(D1)+ Vol(D2)
Vol (D)

= 35
27 .

�
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Similar to the case of double integrals, triple integrals can sometimes be com-
puted by computing three iterated integrals. Suppose that D is the set of points in
R

3 that satisfy
g1(x,y) ≤ z ≤ g2(x,y), (x,y) in Dxy

where Dxy is a smoothly bounded set in the x,y plane and g1 and g2 are differen-
tiable. See Figure 6.36. Then D is a smoothly bounded set in R

3. If f is continuous

on D,
∫

D
f dV exists. For each (x,y) in Dxy let D(x,y) be the interval of points

(x,y,z) with
g1(x,y) ≤ z ≤ g2(x,y).

See Figure 6.36. Integrate f with respect to z from g1(x,y) to g2(x,y),

∫

D(x,y)
f (x,y,z)dz =

∫ z=g2(x,y)

z=g1(x,y)
f (x,y,z)dz.

x

z

y

z = g1(x, y)

(x, y)

Dxy

D(x, y)

z = g2(x, y)

Fig. 6.36 A set D is between graphs, g1(x,y) ≤ z ≤ g2(x,y).

The result is a continuous function of (x,y) that we can integrate over Dxy. By
an argument similar to the argument for double integrals we can show that iterated
integrals satisfy the four basic properties of linearity, boundedness, and additivity.
Therefore by Theorem 6.18 the iterated integral equals the triple integral,

∫

Dxy

(∫ z=g2(x,y)

z=g1(x,y)
f (x,y,z)dz

)
dA =

∫

D
f dV .

If Dxy is y simple, with a ≤ x ≤ b and c(x) ≤ y ≤ d(x), where c and d are C1

functions, see Figure 6.37, then we can compute the triple integral by

∫

D
f dV =

∫ x=b

x=a

(∫ y=d(x)

y=c(x)

(∫ z=g2(x,y)

z=g1(x,y)
f (x,y,z)dz

)
dy

)
dx.
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y = c(x)

b

x

a

z

Dxy

y

y = d(x)

Fig. 6.37 Dxy is y simple.

Example 6.29. Let D be the set in the first octant that is bounded by the surface
z = x2+ y2 and the plane z = 4, and define f (x,y,z) = x. Find

∫

D
f dV .

Figure 6.38 shows a sketch of D. Dxy is the quarter disk in the x,y plane,

bounded by the x and y axes and the graph of y =
√

4− x2.

∫

D
xdV =

∫

Dxy

(∫ z=4

z=x2+y2
xdz

)
dA.

Since Dxy consists of the points (x,y) with 0 ≤ x ≤ 2 and 0 ≤ y ≤ √4− x2 we
have ∫

D
xdV =

∫

Dxy

[
xz
]z=4

z=x2+y2 dA =
∫

Dxy

x
(
4− x2− y2)dA

=

∫ x=2

x=0

⎛⎜⎜⎜⎜⎜⎜⎝
∫ y=

√
4−x2

y=0
x
(
4− x2− y2)dy

⎞⎟⎟⎟⎟⎟⎟⎠ dx=
∫ x=2

x=0

[
x
(
(4− x2)y− 1

3 y3
]y=√4−x2

y=0
dx

=

∫ x=2

x=0

2
3 x(4− x2)3/2 dx = − 2

15 (4− x2)5/2
∣∣∣∣∣
x=2

x=0
= 64

15 .

�

z = x +y2 2

xyD

xzD

xzD

z

x

xyD

x

y

y
x

z = 4
z

Fig. 6.38 The set D in Examples 6.29 and 6.30.
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Example 6.30. Let D and f (x,y,z) = x be as in Example 6.29. Now view D
as a smoothly bounded set between the graphs of the functions of x and z
given by y = 0 and y =

√
z− x2 over the smoothly bounded set Dxz indicated

in Figure 6.38.

∫

D
f dV =

∫

Dxz

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫ y=

√
z−x2

y=0
xdy

⎞⎟⎟⎟⎟⎟⎟⎟⎠ dA

=

∫ 4

z=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫ x=

√
z

x=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫ y=

√
z−x2

y=0
xdy

⎞⎟⎟⎟⎟⎟⎟⎟⎠ dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠ dz =
∫ 4

z=0

⎛⎜⎜⎜⎜⎜⎝
∫ x=

√
z

x=0
x(z− x2)1/2 dx

⎞⎟⎟⎟⎟⎟⎠ dz

=

∫ 4

z=0

[
− 1

3 (z− x2)3/2
]x=
√

z

x=0
dz =

∫ 4

z=0

1
3 z3/2 dz = 64

15 .

�
Change of variables. The change of variables theorem for double integrals, The-
orem 6.12, has an analogue for triple integrals and integrals of functions of n vari-
ables.

A smooth change of variables F is a continuously differentiable mapping from
an open set U in R

n to R
n that is one to one on U and DF(P) is invertible for each

point P in U. We recall Definition 3.4 of the Jacobian of a mapping at point P,
JF(P) = det

(
DF(P)

)
.

Theorem 6.21. Let F be a smooth change of variables that maps a smoothly
bounded set C onto a smoothly bounded set D, so that the boundary of C is
mapped to the boundary of D. Let f be a continuous function on D. Then

∫

D
f (X)dnX =

∫

C
f (F(U))

∣∣∣JF(U)
∣∣∣dnU.

In some of the following examples of the change of variables we make tacit use
of limiting arguments similar to the extension of polar coordinates in Example 6.20.

Example 6.31. Find the integral of f (x,y,z)= z
√

x2+ y2 over the region D that
is bounded by the graphs of z = 6, z = 0, x2 + y2 = 4, and x2 + y2 = 1, and
where x ≥ 0. See Figure 6.39. The iterated integral in rectangular coordinates
is ∫

Dxy

(∫ z=6

z=0
z
√

x2+ y2 dz

)
dxdy =

∫

Dxy

18
√

x2+ y2 dxdy

where Dxy is the region where 1 ≤ x2 + y2 ≤ 4 and x ≥ 0. The double inte-

gral involves integrating
√

x2+ y2 with respect to x or y. Using a change of
variables to cylindrical coordinates, x= r cosθ, y= r sinθ, z= z the Jacobian is

http://dx.doi.org/10.1007/978-3-319-74073-7_3
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x

z

y2
2

6

Fig. 6.39 The region D in Example 6.31.

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ −r sinθ 0
sinθ r cosθ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = r(cos2 θ+ sin2 θ) = r.

The map F(r, θ,z) =
(
x(r, θ,z),y(r, θ,z),z(r, θ,z)

)
takes the rectangular box C

given by 1 ≤ r ≤ 2, 0 ≤ θ ≤ π, 0 ≤ z ≤ 6 one to one onto D. By the change of
variables theorem

∫

D
f (x,y,z)dxdydz =

∫

C
f
(
F(r, θ,z)

)
rdrdθdz.

Since x2+ y2 = r2, f
(
F(r, θ,z)

)
= zr and the integral is

∫

D
f dxdydz =

∫ z=6

z=0

(∫ θ=π

θ=0

(∫ r=2

r=1
zr2 dr

)
dθ

)
dz

=

∫ z=6

z=0
zdz

∫ θ=π

θ=0
dθ
∫ r=2

r=1
r2 dr = (18)(π)

( 8−1
3
)
= 42π.

�
Here is an example why we need the mapping F to be one to one.

Example 6.32. The mapping F(r, θ,z)= (r cosθ,r sinθ,z) maps the points in the
rectangular box C given by

1 ≤ r ≤ 2, 0 ≤ θ ≤ 4π, 0 ≤ z ≤ 6

onto the region D between the two cylinders shown in Figure 6.40. The vol-
ume of D is π(22 − 12)6 = 18π. If we were to mistakenly use the change of
variables formula to compute the volume of D we would get

Vol (D) =
∫

D
1dxdydz =?

∫

C

∣∣∣JF(r, θ,z)
∣∣∣drdθdz.

The right hand side is
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x

z

y2
2

6

Fig. 6.40 The region in Example 6.32.

=

∫

C
r drdθdz =

∫ 2

1
r dr

∫ 4π

0
dθ
∫ 6

0
dz

= 1
2 (22−12)(4π)6 = 36π.

What went wrong? Even though JF(r, θ,z) = r � 0 at each point, the mapping
is not one to one on a set that has positive volume. The points with 2π≤ θ ≤ 4π
are sent to the same points in the range as those with 0 ≤ θ ≤ 2π. �

f

Fig. 6.41 The energy density f in Example 6.33 increases toward the bottom of the tank.

Example 6.33. A chemical reaction occurs in a tank D given by

x2+ y2 ≤ 4, 0 ≤ z ≤ 3.

Suppose the energy density [energy/vol] is f (x,y,z) = 100− 5z at each point
(x,y,z) in D. Find the total energy and the average energy density in the tank.
The total energy is

∫

D
f dV =

∫ θ=2π

θ=0

∫ r=2

r=0

(∫ z=3

z=0
(100−5z)dz

)
r drdθ

=

∫ θ=2π

θ=0
dθ
∫ r=2

r=0
r dr

∫ z=3

z=0
(100−5z)dz= (2π) 4

2

[
− 1

2(5) (100−5z)2
]z=3

z=0
= 4π

10 (1002−852).
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The volume of the cylindrical tank is π(22)(3) = 12π, so the average energy
density in D is

1
Vol (D)

∫

D
f dV = 1

30 (1002−852).

�

1

1

1

v

1

1

1

y

x

w z

u

Fig. 6.42 Left: The prism C, Right: the tetrahedron D in Example 6.34.

Example 6.34. Let C be the prism in R
3 given by

0 ≤ w ≤ 1, u+ v ≤ 1, u ≥ 0, v ≥ 0.

Let D be the tetrahedron given by

x+ y+ z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0.

See Figure 6.42. The function (x,y,z)=F(u,v,w)=
(
(1−w)u, (1−w)v,w

)
maps

the interior of C one to one onto the interior of D. The Jacobian is

det DF(u,v,w) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1−w 0 −u

0 1−w v
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = (1−w)2.

By the change of variables theorem,

Vol (D) =
∫

D
1dV =

∫

C
(1−w)2 dudvdw.

As an iterated integral this is equal to

∫

Cuv

(∫ w=1

w=0
(1−w)2 dw

)
dA =

∫

Cuv

[
− 1

3 (1−w)3
]w=1

w=0
dA = 1

3

∫

Cuv

dA = 1
3

1
2 =

1
6 .

�
Spherical coordinates. Let

(x,y,z) = F(ρ.φ,θ) = (ρsinφcosθ,ρsinφsinθ,ρcosφ)
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be the mapping between rectangular and spherical coordinates, ρ ≥ 0, 0 ≤ φ ≤ π,
0 ≤ θ ≤ 2π. F maps regions in (ρ,φ,θ) space to (x,y,z) space.

DF(ρ.φ,θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sinφcosθ ρcosφcosθ −ρsinφsinθ
sinφsinθ ρcosφsinθ ρsinφcosθ

cosφ −ρsinφ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

We ask you in Problem 6.62 to verify that

JF(ρ,φ,θ) = det DF(ρ,φ,θ) = ρ2 sinφ.

Note that for ρ = 0, φ = 0 and φ = π the matrix derivative is not invertible and F is
not one to one when θ = 0 and 2π. The change of variable formula can be proved by
taking the limit as ρ tends to zero, φ tends to zero or π, and θ tends to 0 or 2π. See
Example 6.20 for an analogous argument for polar coordinates.

Example 6.35. Take D to be the region between the spheres of radius a and
b centered at the origin. Find the integral of f (x,y,z) =

√
x2+ y2+ z2 over

D. Use the spherical change of coordinate mapping F(ρ,φ,θ) that maps the
rectangular box C given by a ≤ ρ ≤ b, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π onto D. By the
change of variables theorem,

∫

D

√
x2+ y2+ z2 dxdydz =

∫

C

√
ρ2ρ2 sinφdρdφdθ

=

∫ ρ=b

ρ=a
ρ3 dρ

∫ φ=π

φ=0
sinφdφ

∫ θ=2π

θ=0
dθ = 1

4 (b4−a4)(2)(2π) = π(b4−a4).

�

yx

z π/6

5

Fig. 6.43 The cone region D in Example 6.36.

Example 6.36. Let D be the cone-shaped region in (x,y,z) space shown in
Figure 6.43. D is described in spherical coordinates by 0 ≤ ρ ≤ 5, 0 ≤ φ ≤ π6 ,
0 ≤ θ ≤ 2π. The volume of D is
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Vol (D) =
∫

D
dxdydz =

∫ 2π

θ=0

∫ π/6

φ=0

∫ 5

ρ=0
ρ2 sinφdρdφdθ

=

∫ 2π

θ=0

(∫ π/6

φ=0

(∫ 5

ρ=0
ρ2 dρ

)
sinφdφ

)
dθ =

∫ 2π

θ=0
dθ
∫ π/6

φ=0
sinφdφ

∫ 5

ρ=0
ρ2 dρ

= (2π)
[
− cosφ

]π/6
φ=0

( 1
3 53) = (2π)

(
1−

√
3

2

)
1
3 (125).

�

Example 6.37. A function f gives the electric charge density [charge/volume]
inside the unit sphere ρ = 1 as

f (ρ,φ,θ) = ρ2 sin2 θ.

Find the total charge inside the sphere.

∫

ρ≤1
f dV =

∫ 2π

θ=0

∫ π

φ=0

∫ 1

ρ=0
ρ2 sin2 θρ2 sinφdρdφdθ

=

∫ 2π

θ=0
sin2 θdθ

∫ π

φ=0
sinφdφ

∫ 1

ρ=0
ρ4 dρ = π(2)

( 1
5
)
= 2π

5 .

�
Variation with a parameter. Often there is a fourth variable in a triple integral. If
f (x,y,z, t) is the energy density at (x,y,z) at time t, then the total energy in D at time
t is ∫

D
f (x,y,z, t)dxdydz,

a function of t. What is the rate of change of the total energy in D with respect to
time?

Theorem 6.22. Suppose f is a continuous function on D× [a,b] where D is a
smoothly bounded set in R

3.

(a) Then
∫

D
f (X, t)dV is a continuous function of t.

(b) If f is continuously differentiable in t then
∫

D
f (X, t)dV

is a continuously differentiable function of t and

d
dt

∫

D
f (X, t)dV =

∫

D
ft(X, t)dV
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Proof.(a)
∫

D
f (X, t)dV −

∫

D
f (X, s)dV =

∫

D

(
f (X, t)− f (X, s)

)
dV .

According to Theorem 2.12 a continuous function on a closed bounded set is
uniformly continuous; so for every positive ε there is a δ such that

| f (X, t)− f (X, s)| < ε
for |t− s| < δ and all X in D. Then for |t− s| < δ the integral of f (X, t) and the
integral of f (X, s) over D differ by less than εVol(D).

(b) Continuously differentiable in t implies that for every ε > 0 there is a δ such that
∣∣∣∣∣

f (X, t+h)− f (X, t)
h

− ft(X, t)
∣∣∣∣∣ < ε (6.24)

for |h| < δ for all X in D. Here is why: ft is uniformly continuous, so given ε there
is δ so that if |t− s| < ε then | ft(X, t)− ft(X, s)| < ε for all X. Take |h| < δ. By the
Mean Value Theorem

∣∣∣∣∣
f (X, t+h)− f (X, t)

h
− ft(X, t)

∣∣∣∣∣ =
∣∣∣∣ ft(X,c)− ft(X, t)

∣∣∣∣ < ε

where |c− t| < |h| < δ.
It follows from estimate (6.24) that as h tends to zero

∫
D

f (X, t+h)dV − ∫
D

f (X, t)dV

h
=

∫

D

f (X, t+h)− f (X, t)
h

dV

converges as h tends to zero to
∫

D
ft(X, t)dV . This derivative is continuous by

part (a).
	


Example 6.38. Suppose now that the chemical reaction of Example 6.33 has
energy density f (x,y,z, t) = e−t2 (100−5z) that depends on time. Find the rate
of change of the total energy in the tank. The total energy is

∫

D
f dV =

∫

D
e−t2 (100−5z)dV .

We showed that
∫

D
(100−5z)dV = 4π

10 (1002−852), so the total energy is

∫

D
e−t2 (100−5z)dV = e−t2 4π

10 (1002−852).

http://dx.doi.org/10.1007/978-3-319-74073-7_2
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The time rate of change is then

d
dt

∫

D
e−t2 (100−5z)dV =

∫

D
(−2t)e−t2 (100−5z)dV = (−2t)e−t2 4π

10 (1002−852).

�

Example 6.39. Let p(x,y, t) be a C1 function that represents the population
density [people/area] in a region D of R2 at each time t. Express the population
of D at time t and its rate of change with respect to time [people/area/time]
using integrals. The population at time t is

P(t) =
∫

D
p(x,y, t)dA.

Its rate of change is P′(t) =
d
dt

∫

D
p(x,y, t)dA =

∫

D
pt(x,y, t)dA. �

Probability density functions. The definition of integrable functions over
unbounded sets in R

3 can be made analogously to the definitions in Section 6.5.
We also make the following definition of probability density function p from R

3 to
R similar to the case in R

2.

Definition 6.16. A probability density function in R
3 is a nonnegative function

that is integrable over R3 and whose integral over R3 is equal to 1.

Example 6.40. We have evaluated
∫ ∞

−∞
e−x2

dx = π1/2.

Set p(x,y,z) = π−3/2e−x2−y2−z2
> 0. Then p is a probability density function:

∫

R3
π−3/2e−x2−y2−z2

dV = π−3/2 lim
n→∞

∫ n

−n

∫ n

−n

∫ n

−n
e−z2

e−y2
e−x2

dxdydz

= π−3/2
∫ ∞

−∞
e−z2

dz
∫ ∞

−∞
e−y2

dy
∫ ∞

−∞
e−x2

dx = π−3/2π1/2π1/2π1/2 = 1.

�
Example 6.41. A function of the form

f (ρ,φ,θ) = ρe−ρ cosφ

is used in chemistry to describe a “2p” orbital of an electron. (See also Prob-
lem 9.48.) In the application, the probability density function for finding the
electron at point (ρ,φ,θ) is

p(ρ,φ,θ) = c
(
f (ρ,φ,θ)

)2

http://dx.doi.org/10.1007/978-3-319-74073-7_9
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where c is chosen to make
∫

R3
pdV = 1. To find c, we calculate the integral

∫

R3
pdV =

∫ 2π

θ=0

(∫ π

φ=0

(∫ ∞

ρ=0
cρ2e−2ρ cos2φρ2 sinφdρ

)
dφ

)
dθ

= c(2π)
[
− 1

3 cos3φ
]π
φ=0

∫ ∞

ρ=0
ρ4e−2ρ dρ = c(2π) 2

3

∫ ∞

ρ=0
ρ4e−2ρ dρ.

In Problem 6.63 we ask you to show that the last integral is equal to 3
4 , thus

c = 1
π . �

Problems

6.57. Let D = [0,a]5 be the box in R
5 consisting of all points X = (x1, x2, x3, x4, x5)

where 0 ≤ x j ≤ a for j = 1,2,3,4,5. Evaluate the integrals.

(a) Vol (D)

(b)
∫

D
x2

1 d5X

(c)
∫

D
(x2

1 − x2
4 +7x5x3)d5X.

6.58. Find the average value of the function f (x,y,z) = x2+ y2− z2 on the sets

(a) [−1,1]3

(b) x2+ y2+ z2 ≤ 1.

6.59. Evaluate the integral
∫

D
xz2 dV for the two regions.

(a) the rectangular region D = [1,2]× [3,5]× [−1,10]
(b) the subset of D = [1,2]× [3,5]× [−1,10] where z > x+ y.

6.60. Let D be the cube where x,y,z each vary from −2 to 2.

(a) Explain by a symmetry argument why
∫

D
xz2 dV = 0.

(b) Evaluate
∫

D
(8x+2xz2 −4y2z+10)dV .

6.61. A planet is represented by a ball of radius R centered at the origin. Its energy

density [energy/volume] at (x,y,z) is f (x,y,z) = e−
√

x2+y2+z2
. Find the total energy

of the planet.

6.62. Verify that the Jacobian for the change from rectangular to spherical coordi-
nates is

JF(ρ,φ,θ) = ρ2 sinφ.
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6.63. In this problem we evaluate the integral
∫ ∞

0
ρ4e−2ρ dρ = 3

4 ,

that was used in Example 6.41.

(a) Verify that
∫ ∞

0
e−2ρ dρ = 1

2 .

(b) Let k and n be positive. Show that

∫ n

0
ρke−2ρ dρ = nk−e−2n

2
−
∫ n

0
kρk−1 e−2ρ

−2
dρ.

(c) Let ik =
∫ ∞

0
ρke−2ρ dρ. Show that for k ≥ 1, ik =

k
2

ik−1.

(d) Deduce that i4 = 3
4 .

6.64. An integral over the unbounded set Rn is the limit of integrals over an increas-
ing sequence of smoothly bounded sets D1 ⊂ D2 ⊂ · · ·Dn ⊂ · · · whose union is Rn.

Show by a change of variables that
∫

Rn

1
(
4πt

)n/2 e−||X||
2/(4t) dnX = 1.

6.65. Let p be a positive number and define a function f from R
3 to R by f (X) = 0

when ||X|| < p, and f (X) = e−||X|| when ||X|| ≥ p. Evaluate the integral
∫

R3
f dV

using spherical coordinates.

6.66. Let a1, . . . ,an be positive constants. Show by a change of variables that
∫

Rn
e−(a1 x2

1+···+an x2
n) dnX =

1
(
4π
)n/2 √a1a2 · · ·an

.

6.67. Consider the integral over the n-dimensional cube
∫

[0,1]n
||X||2 dnX =

∫

[0,1]n
x2

1 dnX+ · · ·+
∫

[0,1]n
x2

n dnX.

(a) Evaluate
∫

[0,1]n
x2

1 dnX as an iterated integral. By symmetry each
∫

[0,1]n
x2

j dnX

has the same value.

(b) Evaluate
∫

[0,1]n
||X||2 dnX.
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(c) Find the average value of ||X||2 on [0,1]n.
(d) Find the average value of ||X||2 on [0,2]n.

6.68. Let 0 < a < b and consider the integral
∫

D
(x2+ y2+ z2)q dV

where D is the region of R3 between the spheres of radius a and b centered at the
origin. For parts (c) and (d), see Definition 6.9 and use the corresponding concept
of integration over unbounded sets in R

3.

(a) Evaluate the integral for the case q = −3/2.
(b) Evaluate the integral for other values of q.

(c) Verify that
∫

x2+y2+z2>1
(x2+ y2+ z2)−2 dV exists and find its value.

(d) Verify that
∫

x2+y2+z2>1
(x2+ y2+ z2)−3/2 dV does not exist.



Chapter 7
Line and surface integrals

Abstract We use integrals to find the total amount of some quantity on a curve or
surface in space. Examples include total mass of a wire, work along a curve, total
charge on a surface, and flux across a surface.

7.1 Line integrals

In single variable calculus we saw that the total mass of a straight wire that lies
on an interval between x = a and x = b and that has density f (x) [mass/length] is∫ b

a
f (x)dx. We also saw that if a force f (x) varies continuously with position x and

is in the direction of the motion then the total work done in moving from a to b on

the x axis is
∫ b

a
f (x)dx. In this section we introduce line integrals to find the total

mass of a curved wire and the total work along a curve.

Definition 7.1. LetX be aC1 function from [a,b] toR3, X(t)=
(
x(t),y(t),z(t)

)
,

withX′(t)� 0 on [a,b]. The range ofX, C, is called a smooth curve fromX(a)
to X(b). X is called a smooth parametrization of C. The length of the curve,
or arclength is

Length(C) =
∫
C
ds =

∫ b

a
‖X′(t)‖dt.

c© Springer International Publishing AG 2017
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A piecewise smooth curve is a finite union of smooth curves C1, . . . ,Cm each
joined continuously, but perhaps not differentiably, to the next. The length of a piece-
wise smooth curve is the sum of the lengths of the smooth parts.

Next we compute some arc lengths.

Example 7.1. The curve C1 given by

X1(t) = (t,2t, t+1), 0 ≤ t ≤ 1
is a line segment from (0,0,1) to (1,2,2). The length of C1 is the distance
between the endpoints,

√
(1−0)2+ (2−0)2+ (2−1)2 = √6.

Using the definition for the length of C1 we find

x′(t) = (t)′ = 1, y′(t) = (2t)′ = 2, z′(t) = (t+1)′ = 1,

and we get
∫
C1

ds =
∫ 1

0

√
12+22+12 dt =

∫ 1

0

√
6dt =

√
6. �

Example 7.2. Find the length of the curve C2 given by

X2(u) = (e
u−1,2eu−2,eu), 0 ≤ u ≤ log2.

Since X′2(u) = (e
u,2eu,eu) we get

∫
C2

ds =
∫ log2

0

√
(eu)2 + (2eu)2 + (eu)2 du =

∫ log2

0

√
6eu du =

√
6(elog2 − e0) = √6.

�
Note that C1 in Example 7.1 and C2 in Example 7.2 are the same curve,

parametrized differently. Let

0 ≤ u ≤ log2, 0 ≤ t ≤ 1, t = eu−1.
Then X1 and X2 are related by X2(u) = X1

(
t(u)
)
. By the Chain Rule

X′2(u) = X
′
1
(
t(u)
)
t′(u),

and by the change of variables theorem for integrals

∫ t=1

t=0
‖X′1(t)‖dt =

∫ u=log2

u=0
‖X′1
(
t(u)
)‖ |t′(u)|du =

∫ u=log2

u=0
‖X′2(u)‖du.

We show by the same argument that the definition of the length of a curve is
independent of the parametrization of the curve. For if t = t(u), α ≤ u ≤ β is another
parameter with

dt
du

positive, then
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dX
(
t(u)
)

du
=
dX
dt

dt
du

and so by the change of variables formula

Length(C) =
∫ b

a

∣∣∣∣
∣∣∣∣dXdt
∣∣∣∣
∣∣∣∣dt =

∫ β
α

∣∣∣∣
∣∣∣∣dXdt
∣∣∣∣
∣∣∣∣ dtdu du =

∫ β
α

∣∣∣∣
∣∣∣∣dXdt

dt
du

∣∣∣∣
∣∣∣∣du =

∫ β
α

∣∣∣∣
∣∣∣∣dX
(
t(u)
)

du

∣∣∣∣
∣∣∣∣du.

Two different interpretations of the integral of ‖X′(t)‖.We saw in Chapter 5 that
if

X(t) =
(
x(t),y(t),z(t)

)
is the position of a particle at time t then X′(t) is its velocity and ‖X′(t)‖ is its speed.
Then the integral of the speed over the interval from t = a to t = b is the total distance
or length of the path traveled from t = a to t = b.

X(t+  t)Δ

t+  tΔ

−X(t)||X(t+  t)Δ ||
a

X(b)X(a)

X(t)
t

b

Fig. 7.1 A parametrization stretches or shrinks subintervals of the domain.

Alternatively, consider the interval [a,b] on the number line and imagine that it
is stretched like a rubber band onto a curve in space. See Figure 7.1. The part of the
band that was originally between t and t+Δt is now on the curve between X(t) and
X(t+Δt). Originally the length of this part of the band was Δt. Now that part has
length roughly the distance between X(t) and X(t+Δt), or

‖X(t+Δt)−X(t)‖.
By the Mean Value Theorem that is approximately

‖X′(t)‖ |Δt|.
That is, ‖X′(t)‖ is the factor by which the interval from t to t+Δt was stretched when
it was mapped to the part of the curve between X(t) and X(t+Δt). The sum of the
lengths ‖X′(t)‖Δt of the pieces tends to the length of the curve.

Arc length parametrization. Denote by C a smooth curve of length L. There are
many smooth parametrizations forC. There is one called the arc length parametriza-
tion that is natural in the sense that it maps the interval [0,L] one to one onto C
without stretching or shrinking the interval at any point in the process. That is, the

http://dx.doi.org/10.1007/978-3-319-74073-7_5
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derivative
dX(s)
ds

at each s in [0,L] is a unit vector, so that the stretching factor,

‖X′(t)‖, is 1. In Problem 7.3 we show you an example of such a parametrization.
To see that there is such a parametrization of a smooth curve, let X be a smooth
parametrization of C with domain [a,b] and define s(t) to be the length of the curve
from X(a) to X(t):

s(t) =
∫ t

a
‖X′(τ)‖dτ.

By the Fundamental Theorem of Calculus s′(t)= ‖X′(t)‖. Since X is smooth, ‖X′(t)‖
is not zero, so s′(t) is positive. Therefore s is increasing and invertible, and we can
write t as a function of s, t = t(s). By the Inverse Function Theorem for single
variable this inverse function is differentiable and

dt
ds
=

1
‖X′(t)‖ .

We define the arc length parametrization to be X
(
t(s)
)
. By the Chain Rule,

d(X
(
t(s)
))

ds
=
dX
dt

dt
ds
=

X′(t)
‖X′(t)‖ ,

which is a unit vector. In terms of speed, the arc length parametrization has speed 1
at each point of the curve.

We have shown that every smooth curve C has an arc length parametrization. It
is useful to know that it exists. The next example shows an unusual case where there
is a simple formula for it.

Example 7.3. Let C be the helix given by the parametrization

X(t) = (acos t,asin t,bt), 0 ≤ t ≤ 2π, a2+b2 � 0.

Then ‖X′(t)‖ = √a2+b2 for each t. If a2 + b2 = 1 then X is the arc length

parametrization of the helix. If not, then s =
∫ t

0
‖X′(τ)‖dτ =

√
a2+b2t, and

X
(
t(s)
)
=

(
acos

( s√
a2+b2

)
,asin

( s√
a2+b2

)
,b s√

a2+b2

)
, 0 ≤ s ≤ 2π

√
a2+b2,

is the arc length parametrization. �
Line integral To motivate the definition of the line integral consider a wire with
continuous density f (x,y,z) [mass/length] and assume the wire lies along a smooth
curve C parametrized by

X(t) =
(
x(t),y(t),z(t)

)
, a ≤ t ≤ b.
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Partition the curve into short segments Ci. By the continuity of f , if the segments
are short the density doesn’t vary much in each segment. Estimate the mass mi of
the i-th segment by using the density f

(
X(ti)

)
at one end of the segment times the

length of the segment
mi ≈ f

(
X(ti)

)
Length(Ci).

The sum of these estimates is an estimate for the total mass of the wire. (See Fig-
ure 7.2) The length of Ci is close to the length of the secant, ‖X(ti) −X(ti−1)‖.
By the Mean Value Theorem and continuity of X′, ‖X(ti) −X(ti−1‖ is close to
‖X′(ti)‖ |ti− ti−1|. So the mass of the wire is approximately the sum

∑
i

mi ≈
∑
i

f
(
X(ti)

)‖X′(ti)‖ |ti− ti−1|.

The sum on the right tends to the integral

∫ b

a
f
(
X(t)
)‖X′(t)‖dt

as the subinterval lengths ti − ti−1 tend to zero. This motivates the definition of the
line integral of f over C with respect to arc length.

Definition 7.2. Let f be a continuous function on a smooth curve C
parametrized by X(t) =

(
x(t),y(t),z(t)

)
, a ≤ t ≤ b. The integral of f over C

with respect to arc length is

∫
C
fds =

∫ b

a
f
(
X(t)
)‖X′(t)‖dt.

For a piecewise smooth curve C, we define the line integral to be the sum of
line integrals over the smooth pieces.

Just as we saw with the length of C, the integral of a continuous function f over
a smooth curve is independent of the parametrization.

Example 7.4. A wire lies along a helical curve C given by

X(t) = (cos t,sin t, t), 0 ≤ t ≤ 4π
and its density is f (x,y,z) = z [mass/length]. Find the mass of the wire. We
integrate f along C.

∫
C
fds =

∫ b

a
f
(
X(t)
)

︸��︷︷��︸
mass/length

‖X′(t)‖dt︸����︷︷����︸
length

.

X′(t) = (−sin t,cos t,1) and f
(
X(t)
)
= t. The total mass is
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X(t0)

a = t0 b = tn

C2

C1

X(ti−1)
Ci

X(ti)

Cn−1

X(tn)

t1 [ti−1, ti]

Fig. 7.2 The mass of a wire is approximated using short straight segments.

∫
C
fds =

∫ 4π

0
t
√
(−sin t)2+ (cos t)2+12 dt =

∫ 4π

0
t
√
2dt =

√
2
2 t2
∣∣∣∣∣
4π

0
= 8π2

√
2.

�

Example 7.5. The curve C given in Example 7.4 can also be parametrized by

X1(τ) =
(
cos(4τ),sin(4τ),4τ

)
, 0 ≤ τ ≤ π.

Using this parametrization for C we get that the integral of f (x,y,z) = z over
C is

∫
C
fds =

∫ π
0

f (X1(τ)
)‖X′1(τ)‖dτ =

∫ π
0
(4τ)(4

√
2)dτ = 8

√
2π2.

�

Definition 7.3. Let f be a continuous function on a smooth curve C
parametrized by X(t) =

(
x(t),y(t),z(t)

)
, a ≤ t ≤ b. The average of f over C

is ∫
C
fds∫

C
ds
=

∫ b
a
f
(
X(t)
)‖X′(t)‖dt∫ b

a
‖X′(t)‖dt

.

Example 7.6. In Example 7.4 we saw that the density f (x,y,z) varied at points
along C. To find the average density on C we divide the mass of the wire,∫
C
fds, by its length,

∫
C
ds. We compute

Length(C) =
∫
C
ds =

∫ 4π

0
‖X′(t)‖dt =

∫ 4π

0

√
2dt = 4π

√
2.
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The average density is

∫
C
fds∫

C
ds
=
8π2
√
2

4π
√
2
= 2π [mass/length]. �

Work along a curve The work done by a constant force F in moving an object
along a straight line from point A to B is

F · (B−A).
The work done by a variable force F in moving an object along a smooth curve C
from A to B motivates finding the integral of the tangential component of F over C,
called the integral of F along C.

Definition 7.4. Let F be a continuous vector field on a smooth curve C given
byX(t)=

(
x(t),y(t),z(t)

)
, a≤ t ≤ b. The unit tangent vector toC in the direction

of increasing t is

T =
X′(t)
‖X(t)‖ ,

and T orients C from A = X(a) to B = X(b). See Figure 7.3. The integral of F
along C (in the tangential direction) from A = X(a) to B = X(b) is

∫
C
F ·Tds =

∫ b

a
F
(
X(t)
) ·T(X(t))‖X′(t)‖dt =

∫ b

a
F
(
X(t)
) ·X′(t)dt.

X(t)

T(X(t)) X’(t)
CA

B

Fig. 7.3 The unit tangent vector T at the point X(t).

If C is piecewise smooth we define the integral of F along C to be the sum of the
integrals of F along the smooth pieces.

In Figure 7.4 a curve C is traversed from A to B. If C is traversed in the opposite
direction from B to A, we denote that curve by −C. Denote the unit tangents as T1

on C and as T2 on −C. The directions of T1 and T2 at each point are opposite, so
F ·T1 = −F ·T2, and ∫

−C
F ·T2ds = −

∫
C
F ·T1ds.

Example 7.7. Find the work done by F(x,y,z) = (y,−x,z) in moving from
(1,0,0) to (1,0,2π) along the helical curve C given by X(t) = (cos t,sin t, t),
0 ≤ t ≤ 2π. At the point X(t) on C,
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T1

2T

F B

A

F B

A

Fig. 7.4 Reversing the direction in which the curve is traversed reverses the direction of the unit
tangents, and F ·T1 = −F ·T2.

F
(
X(t)
)
= (sin t,−cos t, t), X′(t) = (−sin t,cos t,1), ‖X′(t)‖ = √2

and T
(
X(t)
)
=
(−sin t,cos t,1)√

2
. The work is

∫
C
F ·Tds =

∫ 2π

0
(sin t,−cos t, t) · (−sin t,cos t,1)√

2

√
2dt

=

∫ 2π

0
(t−1)dt =

[
1
2 t

2− t
]2π
0
= 2π2−2π.

�

Example 7.8. Find the work done by F(x,y,z) = (y,−x,z) in moving from
(1,0,2π) to (1,0,0) along a straight curve C2. We parametrize C2 by

X(t) = (1,0,2π)+ t(0,0,−2π) = (1,0,−2πt+2π), 0 ≤ t ≤ 1.
F
(
X(t)
)
= (0,−1,−2πt+2π), X′(t) = (0,0,−2π),

‖X′(t)‖ = 2π, T
(
X(t)
)
= (0,0,−1).

The work done is
∫
C2

F ·Tds =
∫ 1

0
F
(
X(t)
) ·T(X(t))‖X′(t)‖dt =

∫ 1

0
F
(
X(t)
) ·X′(t)dt

=

∫ 1

0
(0,−1,−2πt+2π) ·(0,0,−2π)dt =

∫ 1

0
4π2(t−1)dt = 2π2(t−1)2

∣∣∣∣∣
1

0
=−2π2.

�
There are many ways to parametrize the segment in Example 7.8. In Prob-

lem 7.12 we ask you to create two different parametrizations and verify that you
get the same answer for the work.

Example 7.9. Find the work done by F(x,y,z) = (y,−x,z) in moving an object
from (1,0,0) to (1,0,0) along the curve C = C1 ∪C2, where C1 is the helical
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C2 C1

Fig. 7.5 Work done by F(x,y,z) = (y,−x,z) along the loop C1 ∪C2 in Example 7.9 is not zero.

curve from (1,0,0) to (1,0,2π) in Example 7.7 and C2 is the straight curve
from (1,0,2π) to (1,0,0) in Example 7.8. The work done is the sum of the
work along the smooth curves,

∫
C
F ·Tds =

∫
C1∪C2

F ·Tds

=

∫
C1

F ·Tds+
∫
C2

F ·Tds = 2π2−2π−2π2 = −2π.

Note that the work by the force F(x,y,z) = (y,−x,z) in moving an object
around the loop C1∪C2 is not zero. �

Example 7.10. Let F(x,y) =
( −y
x2+ y2

,
x

x2+ y2
)
and let CR be a circle of radius

R centered at the origin traversed in the counterclockwise direction. One way
to find ∫

CR

F ·Tds

is to parametrize CR. Another way is to use the special geometric relationship
between this vector field at P, F(P), and the tangent to CR at P, T(P). See
Figure 7.6. We observe that

F(x,y) · (x,y) = 0 and T(x,y) · (x,y) = 0
and that F is a multiple of T at each point on CR. So the angle between F
and T is zero and the tangential component of F, F ·T = ‖F‖‖T‖cosθ, is equal
to the magnitude of F. The magnitude of F(x,y) is ‖F(x,y)‖ = 1√

x2+ y2
, the

reciprocal of the distance to the origin, which on CR is 1/R. Therefore
∫
CR

F ·Tds =
∫
CR

1
R
ds =

1
R
Length(CR) =

2πR
R
= 2π.

�
In Problem 7.6 we ask you to redo Example 7.10 by parametrizing CR.
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R

R

R

T

T

F

F
F

T

Fig. 7.6 In Example 7.10, T(P) and F(P) have the same direction at each point P of the circle.

Evaluation of line integrals For a piecewise smooth curve C parametrized by

X(t) =
(
x(t),y(t),z(t)

)
, a ≤ t ≤ b,

the integral of the tangential component of F = ( f1, f2, f3) over C is

∫
C
F ·Tds =

∫ b

a
F
(
X(t)
) ·X′(t)dt.

If we denote
Tds = (dx,dy,dz)

then ∫
C
F ·Tds =

∫
C
f1(x,y,z)dx+ f2(x,y,z)dy+ f3(x,y,z)dz

=

∫
C
f1(x,y,z)dx+

∫
C
f2(x,y,z)dy+

∫
C
f3(x,y,z)dz.

In terms of the parametrization X we then have

∫
C
f1(x,y,z)dx =

∫ b

a
f1
(
X(t)
)
x′(t)dt,

∫
C
f2(x,y,z)dy =

∫ b

a
f2
(
X(t)
)
y′(t)dt,

∫
C
f3(x,y,z)dz =

∫ b

a
f3
(
X(t)
)
z′(t)dt.

The benefit of this approach is that we may use different parametrizations of C for
evaluating the integrals of different components of F. Let’s look at an example.

Example 7.11. Find the integral of

F(x,y) = (x2+3,2)
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C1

2C

3C

4

2

1 3

y

x

Fig. 7.7 The curve in Example 7.11.

along the curve C shown in Figure 7.7, from (1,4) to (3,4). One way to
approach this problem is to parametrize the three segments C1,C2,C3 and
find the sum of the line integrals. Let’s look at the integrals of the component
functions over C and see whether it helps simplify the problem.

∫
C
F ·Tds =

∫
C
(x2+3)dx+2dy =

∫
C
(x2+3)dx+

∫
C
2dy

Consider the integral of the first component
∫
C
(x2+3)dx =

∫
C1

(x2+3)dx+
∫
C2

(x2+3)dx+
∫
C3

(x2+3)dx.

On C1, x′(t) = 0 because there is no change in x. So
∫
C1

(x2 + 3)dx = 0 and
∫
C3

(x2 + 3)dx = 0 for the same reason. The curve C2 is parallel to the x axis

so we can take X(t) = (t,2), 1 ≤ t ≤ 3. Then x = t, dx = dt and

∫
C2

(x2+3)dx =
∫ 3

t=1
(t2+3)dt =

∫ 3

x=1
(x2+3)dx =

[
1
3 x

3+3x
]3
1
= 26

3 +6 =
44
3 .

Similarly considering the second component function

∫
C
2dy = 2

(∫
C1

dy+
∫
C2

dy+
∫
C3

dy

)
= 2(2−4)+0+2(4−2) = 0,

so
∫
C
F ·Tds = 44

3 . �

Application of line integrals to circulation The velocity of a fluid flow in the
plane, at a moment in time, may be represented as a vector field

U(x,y) =
(
u(x,y),v(x,y)

)
.
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The functions u and v are the x and y components of the velocity at (x,y).

Example 7.12. (i) The velocity field U(x,y) = (y,0) represents a flow parallel
to the x axis, that depends only on y. The region 0 ≤ y ≤ 1 models the flow of
a river of depth 1. See Figure 7.8.

(ii) The velocity field U(x,y) = (−y, x) represents a flow that rotates coun-
terclockwise around the origin, with speed ‖U(x,y)‖ = √x2+ y2 equal to the
distance to the origin. �

Fig. 7.8 Sketches of vector fields from Example 7.12. Left:U(x,y) = (y,0). Right:U(x,y) = (−y, x).

In contexts where U is the velocity field of a fluid flow, the line integral
∫
C
U ·Tds =

∫
C
udx+ vdy

is called the circulation of U along C. Of particular interest is circulation along a
curve that is a loop. Let’s look at some examples.

U
U

U

C

Fig. 7.9 The circulation of U along C is negative.

Example 7.13. The information about the vector field U and the curve C in
Figure 7.9 indicates that U ·T < 0 at every point of C. So the circulation of U
along C is negative, ∫

C
U ·Tds < 0.

If we traverse C in the opposite direction, then the circulation of U along the
resulting curve −C is positive,
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∫
−C

U ·Tds > 0.

�

Example 7.14. Let C be a circle oriented clockwise as shown in Figure 7.10.
Unit tangent vectors T are sketched lightly. The velocity vector field

U(x,y) = (y,0)

is sketched using darker vectors. Is the circulation of U along C,
∫
C
U ·Tds

positive, negative, or zero? Let P andQ be two diametricallyoppositepoints on
C, with P on the upper half ofC, C1, andQ on the lower halfC2. Unit tangent
vectors T(P) and T(Q) point in opposite directions, and velocity vectors U(P)
and U(Q) only differ in length, with U(P) longer than U(Q). We see that

U(P) ·T(P) > 0, U(Q) ·T(Q) < 0,

and U(P) ·T(P) > U(Q) ·T(P) = U(Q) · (−T(Q)
)
. Therefore

∫
C1

U ·Tds > −
∫
C2

U ·Tds

and the total circulation along C is positive:
∫
C
U ·Tds =

∫
C1

U ·Tds+
∫
C2

U ·Tds > 0.

�

P

Q

T

T

Fig. 7.10 The circulation of U along C is positive, in Example 7.14.

In Chapter 8 we will see that the circulation of a vector field around a small closed
loop is related to the local rotation, called the curl of the velocity field, curlU(P),
that we defined in Section 3.5.

http://dx.doi.org/10.1007/978-3-319-74073-7_8
http://dx.doi.org/10.1007/978-3-319-74073-7_3
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Example 7.15. Let U(x,y) =
(−y, x)

(x2+ y2)a
, a constant. Find the circulation of U

along a circle C of radius r centered at the origin, and oriented counterclock-
wise.

At each point (x,y) of C, the vector (−y, x) is orthogonal to (x,y), and its
direction agrees with the unit tangent to C. Its norm is ‖(−y, x)‖ = r. There-

fore the unit tangent vector is T =
1
r
(−y, x). So U ·T = y2+ x2

r2a+1
=

1

r2a−1
. The

circulation is
∫
C
U ·Tds = 1

r2a−1

∫
C
ds =

1

r2a−1
2πr =

2π

r2a−2
.

�

Example 7.16. Note the special case a = 1 in Example 7.15. The circulation
of

U(x,y) =
(−y, x)
x2+ y2

along circles x2 + y2 = r2 is 2π, independent of the radius r. As we will see in
Section 8.1, along circles C that do not enclose the origin, the circulation of
U is zero. In Problem 7.17 we outline a geometric reason for this fact. �

Flux across a curve in R
2. The integral of the tangential component F ·T of a

vector field F along an oriented curve C can be interpreted as work or as circulation
along the curve. The integral of the component of F normal to C is called the flux of
F across C.

Let C be a smooth curve in the plane, parametrized by X(t) =
(
x(t),y(t)

)
with

X′(t) =
(
x′(t),y′(t)

)
� 0. There are two unit normal vectors to C at

(
x(t),y(t)

)
,

N =
(− y′(t), x′(t))
‖X′(t)‖ , −N =

(
y′(t),−x′(t))
‖X′(t)‖ .

They are orthogonal to X′(t) and point in opposite directions.

Definition 7.5. Let C be a smooth curve parametrized by X(t) =
(
x(t),y(t)

)
,

a ≤ t ≤ b, and let F = ( f1, f2) be a continuous vector field on C. The flux of F
across C in the direction of the normal

N = N(x(t),y(t)) =
(− y′(t), x′(t))
‖X′(t)‖

is
∫
C
F ·Nds =

∫ b

a
F(X(t)) ·

(− y′(t), x′(t))
‖X′(t)‖ ‖X′(t)‖dt =

∫
C
− f1 dy+ f2 dx.

Example 7.17. Find the flux of F(x,y) = (x,y) outward across the circle C of
radius 3 centered at the origin. C can be parametrized by

http://dx.doi.org/10.1007/978-3-319-74073-7_8
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X(t) =
(
3cos t,3sin t

)
, 0 ≤ t ≤ 2π.

Then X′(t) =
(−3sin t,3cos t) and T(t) = (−sin t,cos t). The two unit normals

are
N(t) = (cos t,sin t), −N(t) = −(cos t,sin t).

N points outward at each point on C. The flux outward across C is

∫
C
F ·Nds =

∫ 2π

0

(
3cos t,3sin t

) · (cos t,sin t)‖X′(t)‖dt

=

∫ 2π

0
3(cos2 t+ sin2 t)3dt = 9(2π) = 18π.

An alternative way to compute the integral is to observe that at each point
on C, F and N are parallel. So F ·N = ‖F‖‖N‖cos0 = ‖F‖. This is equal to√
x2+ y2 = 3 since (x,y) is on C. Therefore

∫
C
F ·Nds =

∫
C
3ds = 3Length(C) = 3(2π(3)) = 18π.

�
Line integrals in R

n. Analogous to Definition 7.1 we define a smooth curve C in
R
n to be the range of a C1 function X(t) =

(
x1(t), . . . , xn(t)

)
, a ≤ t ≤ b, with X′(t) � 0.

X is called a smooth parametrization of C. The length of C is defined as

Length(C) =
∫ b

a
‖X′(t)‖dt.

We note that the length of a curve as defined above is independent of the parametriza-

tion of the curve. For if t = t(u), α ≤ u ≤ β is another parameter, with
dt
du

positive,

then
dX
(
t(u)
)

du
=
dX
dt

dt
du

and so by the change of variables formula

Length(C) =
∫ b

a

∣∣∣∣
∣∣∣∣dXdt
∣∣∣∣
∣∣∣∣dt =

∫ β
α

∣∣∣∣
∣∣∣∣dXdt
∣∣∣∣
∣∣∣∣ dtdu du

=

∫ β
α

∣∣∣∣
∣∣∣∣dXdt

dt
du

∣∣∣∣
∣∣∣∣du =

∫ β
α

∣∣∣∣
∣∣∣∣dX
(
t(u)
)

du

∣∣∣∣
∣∣∣∣du.

Given a function f from R
n to R that is continuous on C, the line integral of f

over C is ∫
C
fds =

∫ b

a
f
(
X(t)
)‖X′(t)‖dt.

In particular taking f (X) = 1 we get
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Length(C) =
∫
C
ds =

∫ b

a
‖X′(t)‖dt.

We define the average of f on C as

1
Length(C)

∫
C
fds.

Example 7.18. Show that the average of the first coordinates of the points on
the line segment from A = (a1, . . . ,an) to B = (b1, . . . ,bn) in Rn is

1
2 (a1+b1).

Let X(t) =A+ t(B−A), 0 ≤ t ≤ 1 parametrize the segment from A to B and let
f (x1, . . . , xn) = x1. The average of f over the segment is

∫ 1
0 f
(
X(t)
)‖X′(t)‖dt∫ 1

0 ‖X′(t)‖dt
=

∫ 1
0

(
a1+ t(b1−a1))‖B−A‖dt∫ 1

0 ‖B−A‖dt

=
‖B−A‖∫ 10 (a1+ t(b1−a1))dt

‖B−A‖ = 1
2 (a1+b1).

In Problem 7.5 we ask you to show this is true for each coordinate. �
Let F be a vector field

F(x1, . . . , xn) =
(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)

that is continuous on a smooth curve C parametrized by X,

X(t) =
(
x1(t), . . . , xn(t)

)
, a ≤ t ≤ b.

We denote the unit tangent in the direction of increasing t as T
(
X(t)
)
=

X′(t)
‖X′(t)‖ . As

in R3 the line integral of the tangential component of F along C is

∫
C
F ·Tds =

∫ b

a
F
(
X(t)
) · X′(t)
‖X′(t)‖‖X

′(t)‖dt =
∫ b

a
F
(
X(t)
) ·X′(t)dt.

Example 7.19. Define F(X) = X in R
n and let C be a smooth curve from a

point A = X(a), to B = X(b). Then

∫
C
F(X) ·Tds =

∫ b

a
X(t) ·X′(t)dt

=

∫ b

a

(
x1(t)x

′
1(t)+ x2(t)x

′
2(t)+ · · ·+ xn(t)x′n(t)

)
dt
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=

∫ b

a

d
dt
( 1
2 (x

2
1 + · · ·+ x2n)

)
dt =

[
1
2‖X(t)‖2

]b
a
= 1

2
(‖B‖2−‖A‖2).

�

Problems

7.1. Let C be a line segment in the x,y plane with endpoints A and B. Consider
two parametrizations of C: first X(t) = A + t(B −A) for 0 ≤ t ≤ 1, and second
Y(u) = B+ 1

2u(A−B) for 0 ≤ u ≤ 2. Calculate the following integrals using both
parametrizations.

(a)
∫
C
ds,

(b)
∫
C
yds,

(c) The average of y on C.

5

C

1

2

3

C
1

2

x

y

Fig. 7.11 The curves C1 and C2 in Problem 7.2 are line segments.

7.2. Let C1 and C2 be the segments in Figure 7.11, and denote by C1∪C2 the com-
bined curve consisting of C1 followed by C2. Find the value of the line integrals by
using their geometric meaning.

(a)
∫
C1

ds

(b)
∫
C2

ds

(c)
∫
C1∪C2

ds

7.3. Let X(t) = A+ t(B−A), 0 ≤ t ≤ 1, parametrize the line segment C from A
to B. Find a number k so that the substitution t = ks gives a new parametrization
Y(s) = X(ks), with

Y(0) = A, 0 ≤ s ≤ Length(C), Y
(
Length(C)

)
= B, and ‖Y′(s)‖ = 1.

Y(s) is the arc length parametrization of C.
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7.4. Let C be the smooth curve in R4 given by X : [0,2π]→ R
4,

X(t) = (cos t,sin t,coskt,sinkt)

and k is a constant.

(a) Find X′(t) and the unit tangent vector T at X(t).
(b) Find the length of C.
(c) Verify that for each number k the curve C lies on the sphere

x21 + x
2
2 + x

2
3 + x

2
4 = 2.

(d) Let f (x1, x2, x3, x4) = x1 and g(x1, x2, x3, x4) = x4. Show that the average of f on
C is 0, but the average of g is not zero unless k is an integer.

7.5. Show that the average of the i-th component xi of the points on a line segment
from A = (a1, . . . ,an) to B = (b1, . . . ,bn), in any number of dimensions, is

1
2 (ai+bi).

7.6. Let F(x,y) =
(−y, x)
x2+ y2

, and let CR be the circle of radius R centered at the

origin and traversed in the counterclockwise direction. Use the parametrization
X(t) = (Rcos t,Rsin t), 0 ≤ t ≤ 2π to calculate

∫
CR

F ·Tds.

7.7. Let C be the triangle with vertices (0,0), (1,0), and (1,1), traversed counter-
clockwise. Evaluate the line integral

∫
C
y2 dx+ xdy.

7.8. Let F = (p,q) be a constant vector field, and C a line segment in the plane.
Choose one of the two unit normal vectors N for C. Show that the flux of F across
C is given by ∫

C
F ·Nds = F ·NLength(C).

7.9. A smooth curve C has unit tangent vectors T = (t1, t2). Take the unit normal to
C to be N = (t2,−t1) at each point. Let F = ( f1, f2) be a vector field, and define a
vector field G = ( f2,− f1) at each point. Show that

∫
C
F ·Tds =

∫
C
G ·Nds.

7.10. Let C be the line segment from (0,0) to (4,3), parametrized by

(
x(t),y(t)

)
=
( 4
5 t,

3
5 t
)
, (0 ≤ t ≤ 5)
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and let Ca be the circle parametrized by

X(t) =
(
acos t,asin t

)
, 0 ≤ t ≤ 2π, a > 0.

Let F = (8,0), a constant vector field.

(a) Find the normal vector N
(
x(t),y(t)

)
to C, that is obtained by rotating the unit

tangent vector T ninety degrees clockwise.
(b) Find the flux of F across C.
(c) Find the outward pointing unit normal vector Na at each point of Ca.
(d) Find the flux of F outward across Ca.

7.11. Let a smooth curve C be the graph of y = f (x) on [a,b]. Use the parametriza-
tion

X(t) =
(
t, f (t)

)
, a ≤ t ≤ b

to show that the length of C is given by

∫ b

a

√
1+
(
f ′(t)
)2 dt.

Verify that it gives the right answer for y = 3x, 0 ≤ x ≤ 1.
7.12. Find the work done by F(x,y,z)= (y,−x,z) in moving from (1,0,2π) to (1,0,0)
along a straight segment C. Create two smooth parametrizations for C and verify
that you get the same total work with each one.

7.13. Let C1 be the unit circle centered at the origin and C2 be the boundary of the
2 by 2 square centered at the origin of R2. Use symmetry arguments and properties
of integrals to show without calculation:

(a)
∫
C1

x2ds = 1
2

∫
C1

(x2+ y2)ds

(b)
∫
C2

x2ds = 1
2

∫
C2

(x2+ y2)ds

(c)
∫
C1

(x2+ y2)10ds = Length(C1)

7.14. Let C be the piecewise smooth closed curve shown in Figure 7.12 consisting
of graphs, C1 and C2, of two functions g1 and g2, traversed clockwise. Let F(x,y) =
(y,0). The work done by F is

∫
C1∪C2

F ·Tds =
∫
C1

F ·Tds+
∫
C2

F ·Tds =
∫
C
ydx.

(a) Write a parametrization for C2 in terms of g2, and show that

∫
C2

F ·Tds =
∫ b

a
g2(x)dx.
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g
2

g
1

ba

Fig. 7.12 The curves in Problem 7.14.

(b) Write a parametrization for C1 in terms of g1, and show that

∫
C1

F ·Tds = −
∫ b

a
g1(x)dx.

(c) Show that the area between the graphs of g1 and g2 is
∫
C
ydx.

x

p [N/m  ]2

28x10
5

10
5

.14 1 2

K

E

x  [m]

Fig. 7.13 The curves in Problem 7.15.

7.15. A container ship is driven by a large diesel engine. The engineer has measured
the pressure p in the cylinders at each piston position x. See Figure 7.13. The curve
marked K is while the piston moves upward to compress the air, and the curve
marked E is while the burning fuel expands to force the piston down. The work
[Joules] done in one cycle is the line integral

∫
K∪E

pdx.

(a) Do
∫
K
pdx and

∫
E
pdx have the same, or opposite signs? Why?
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(b) Use the results from Problem 7.14 to show that the work done in one cycle is the
area between the graphs.

7.16. Find the circulation of the vector fields

(a) U(x,y) = (−3y,2x)
(b) V(x,y) = −5U(x,y) = (15y,−10x)
counterclockwise around the circle of radius R, x2+ y2 = R2.

W
W

r2

Δθ

TΔs2

TΔs1

r1

Fig. 7.14 Figure for Problem 7.17.

7.17. Justify the following items to show that the circulation of

U(x,y) =
(−y, x)
x2+ y2

around any circle that does not enclose the origin is zero. See Figure 7.14, whereW
denotes unit vectors orthogonal to each radial line.

(a) The integral ∫
C
U ·Tds

can be well approximated by a sum over pairs of segments Δs1, Δs2 using small
angles Δθ as shown, where r1 and r2 are distances from the origin to the segments.

(b) U = 1
rW

(c) Δθ ≈ − 1
r1
W · (T1Δs1) ≈ 1

r2
W · (T2Δs2)

(d)
∫
C
U ·Tds ≈

∑(
1
r2
W · (T2Δs2)+

1
r1
W · (T1Δs1)

)
is approximately zero.

7.18. Let F(x,y) = ∇ logr, where r = √x2+ y2, and let C be the circle x2 + y2 = a2.
Find the flux of F outward across C, and show that it is independent of the radius a.

7.19. Evaluate the following line integrals along C, the line segment from A = (0,0)
to B = (3,4). Which ones are equal to the expressions on the right hand sides?
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(a)
∫
C
xdx =?

[
1
2 x

2
]B
A

(b)
∫
C
xdy =?

[
xy
]B
A

(c)
∫
C
dx+5dy =?

[
x+5y

]B
A

7.2 Conservative vector fields

Some vector fields have the property that if you integrate along any piecewise
smooth closed curve, X(t), a ≤ t ≤ b where X(a) = X(b), then the integral is zero.
We saw in Example 7.9 that not all vector fields have this property. In this section
we develop some criteria for determining which fields do have it.

Definition 7.6. We say that a vector field F is conservative if it is the gradient
of a continuously differentiable function g,

F(P) = ∇g(P)
for all P in the domain of F. The function g is called a potential function of F.

Example 7.20. Let g(x,y,z) = −(x2+ y2+ z2)−1/2 = − 1
‖X‖ . We have seen that

∇g(x,y,z) = (x,y,z)

(x2+ y2+ z2)3/2
=

X
‖X‖3 =

1

‖X‖2
X
‖X‖

is the inverse square vector field. This shows that the inverse square vector
field is conservative and that − 1

‖X‖ is a potential function. �

Theorem 7.1. Suppose F is a continuous vector field from an open connected
set D in R

n to R
n, n ≥ 2. Then the following three statements are equivalent,

that is, each implies the others.

(a) F is conservative,

(b) For every piecewise smooth closed curve C in D,
∫
C
F ·Tds = 0.

(c) For any two points A and B in D, and for any two piecewise smooth curves
C1 and C2 in D that start at A and end at B

∫
C1

F ·Tds =
∫
C2

F ·Tds
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Proof. We show that (a) implies (b), (b) implies (c), and (c) implies (a). From that
it follows that each statement implies both of the others, and so if one is false the
others must be false too. We write out the case for a vector field from R

3 to R3.
Suppose (a) holds. Then there is a function g such that

F(x,y,z) =
(
gx(x,y,z),gy(x,y,z),gz(x,y,z)

)
.

For a smooth curve C in D given by X(t), a ≤ t ≤ b,
∫
C
F ·Tds =

∫ b

a
F
(
X(t)
) ·X′(t)dt =

∫ b

a
∇g(X(t)) ·X′(t)dt.

By the Chain Rule for curves, ∇g(X(t)) ·X′(t) = d
dt
g
(
X(t)
)
. Therefore

∫
C
F ·Tds =

∫ b

a
∇g(X(t)) ·X′(t)dt =

∫ b

a

d
dt
g
(
X(t)
)
dt = g

(
X(b)

)−g(X(a)). (7.1)

If C is closed then X(b) = X(a) and g
(
X(b)

)− g(X(a)) is zero. If C is piecewise
smooth, say one smooth piece from X(a) to X(c) and a second smooth piece from
X(c) to X(b) = X(a), then we evaluate the integral over the smooth pieces, getting

g
(
X(c)

)−g(X(a))+g(X(b))−g(X(c)) = −g(X(a))+g(X(b)) = 0.
Similarly for any number of smooth pieces. This proves that (a) implies (b).

Suppose (b) holds. Let A and B be two points in D. Let C1 and C2 be any two
piecewise smooth curves in D that start at A and end at B, and let C = C1 ∪ (−C2).
Then C is a piecewise smooth closed curve, and by (b)

∫
C
F ·Tds = 0.

Using properties of line integrals we have
∫
C1∪(−C2)

F ·Tds =
∫
C1

F ·Tds+
∫
−C2

F ·Tds =
∫
C1

F ·Tds−
∫
C2

F ·Tds = 0.

Therefore ∫
C1

F ·Tds =
∫
C2

F ·Tds.

This proves that (b) implies (c).
Suppose (c) is true. We state without proof that open connected sets in R

3 have
the property, that every two points in the set can be joined by a piecewise smooth
curve in the set. Now let A be a point of D. Because D is open and connected, for
each point (x,y,z) in D there is a piecewise smooth curve C in D from A to (x,y,z).
Define a function g by
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C1

z

y
x

(x,y,z)
(c,y,z)

A

D

Fig. 7.15 A curve from A to (x,y,z) that ends parallel to the x axis.

g(x,y,z) =
∫
C
F ·Tds, (x,y,z) in D, C any curve in D from A to (x,y,z).

We will show that ∇g = F. Since (c) is true, any curve we choose from A to (x,y,z)
will result in the same number g(x,y,z). Since D is open and connected there is a
point (c,y,z) in D with c < x, so that the straight line C1 from (c,y,z) to (x,y,z) is
in D and can be combined with a curve C2 in D from A to (c,y,z). See Figure 7.15.
Using these curves,

g(x,y,z) =
∫
C=C1∪C2

F ·Tds =
∫
C1

F ·Tds+
∫
C2

F ·Tds.

Parametrize C1 by X1(t) = (t,y,z), c ≤ t ≤ x. Writing components of F = ( f1, f2, f3)
we get ∫

C1

F ·Tds =
∫ x

c
F(t,y,z) · (1,0,0)dt =

∫ x

c
f1(t,y,z)dt.

The derivative of g with respect to x is

gx(x,y,z) =
∂

∂x

(∫ x

c
f1(t,y,z)dt+

∫
C2

F ·Tds
)
.

The second integral does not depend on x so its derivative with respect to x is zero.
By the Fundamental Theorem of Calculus,

gx(x,y,z) =
∂

∂x

∫ x

c
f1(t,y,z)dt = f1(x,y,z).

Similar arguments show that gy = f2 and gz = f3. So ∇g = F, and F is conservative.
This concludes the proof that (c) implies (a), and is the last implication in our chain.

�

In the proof of Theorem 7.1 we showed that if F = ∇g then the integral of F

along every piecewise smooth curve from A to B is simply g(B)−g(A). (See equa-
tion (7.1).) This is often called the Fundamental Theorem of Line Integrals.
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Theorem 7.2. Fundamental Theorem of Line Integrals. If C is a piece-
wise smooth curve from A to B in the domain of a continuously differentiable
function g, then ∫

C
∇g ·Tds = g(B)−g(A).

We say the integral of a conservative vector field is independent of path since
g(B)−g(A) depends only on the values of the potential function at the endpoints of
the curve.

Knowing that a vector field is conservative is helpful in evaluating line integrals.

A=(1,0,1)

B = (1,0,0)x y

z

C

Fig. 7.16 The curve in Example 7.21.

Example 7.21. Find the integral of F(x,y,z)= (x,y,z) along the curveC shown
in Figure 7.16. By inspection we see that F is conservative because

F(x,y,z) = ∇g(x,y,z) = ∇( 12 (x2+ y2+ z2)).
By the Fundamental Theorem of Line Integrals,

∫
C
F ·Tds = g(1,0,0)−g(1,0,1) = 1

2 −1 = − 1
2 .

�

Example 7.22. Find the integral of F(x,y,z) = (x2 + y,siny,z) along the curve
C shown in Figure 7.17. We find by inspection that

∇
(
1
3 x

3− cosy+ 1
2 z

2
)
= (x2,siny,z).

We can write the integral as a sum,
∫
C
F ·Tds =

∫
C

(
(x2+ y)dx+ sinydy+ zdz

)
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C2

C3

C1

y

(2,2,1)

(0,2,3)

x (2,0,0)

(2,0,1)

z

Fig. 7.17 The curve in Example 7.22.

=

∫
C

(
x2 dx+ sinydy+ zdz

)
+

∫
C
ydx.

The first integral can be evaluated by the Fundamental Theorem of Line Inte-
grals: ∫

C
x2 dx+ sinydy+ zdz =

∫
C
∇
(
1
3 x

3− cosy+ 1
2 z

2
)
·Tds

=

[
1
3 x

3− cosy+ 1
2 z

2
](0,2,3)
(2,0,0)

=
(
− cos(2)+ 1

23
2
)
−
(
1
32

3−1+0
)
.

For the second integral we see there is no change in x along C1 or C2. There-
fore ∫

C
ydx =

∫
C3

ydx =
∫
C3

2dx.

Again by the Fundamental Theorem

∫
C3

2dx =
∫
C3

∇(2x) ·Tds =
[
2x
](0,2,3)
(2,2,1)

= −4.

Thus
∫
C
F ·Tds = −cos(2)+ 9

2 − 8
3 +1−4. �

In Example 7.21 we saw that F(x,y,z) = (x,y,z) is conservative by producing a
potential function g. In Example 7.9 we saw, as a result of calculating some integrals,
that F(x,y,z) = (y,−x,z) does not satisfy the independence of path property, so by
Theorem 7.1 (y,−x,z) cannot be a conservative vector field. The next theorem gives
us a useful criterion for a vector field in R

3 or R2 to be conservative.

Theorem 7.3.(a) If F is a conservative C1 vector field from R
3 to R

3, then
curlF = 0.

(b) If F is a conservative C1 vector field from R
2 to R2, then curlF = 0.

Proof. We prove part (a). If F = ∇g then F = ( f1, f2, f3) = (gx,gy,gz) and

curlF =
(
f3y− f2z,− f3x+ f1z, f2x− f1y

)
=
(
gzy−gyz,−(gzx−gxz),gyx −gxy).
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Since F = ∇g is continuously differentiable, g is twice continuously differentiable,
so its second mixed partial derivatives do not depend on the order of differentiation.
This shows that curlF = 0. �


Example 7.23. Let F(x,y,z) = (y,−x,z). Then
curlF = (0−0,−(0−0),−1−1) = (0,0,−2).

According to Theorem 7.3, since curlF � 0, F is not conservative. �
The next example shows that while curlF = 0 is a necessary condition, it is not

sufficient to imply that F is conservative.

x
y

z

x

y

Fig. 7.18 Sketches of the vector field in Example 7.24. F is not conservative.

Example 7.24. Let F(x,y,z) =
( −y
x2+ y2

,
x

x2+ y2
,0

)
, defined for (x,y) � (0,0).

Then

curlF =
(
0−0,−(0−0), y2− x2

(x2+ y2)2
− y2− x2
(x2+ y2)2

)
= 0

LetCR be the circle of radius R in the x,y plane, centered at the origin traversed
counterclockwise. See Figure 7.18. Notice that at each point along the circle
CR, the vector F(x,y,0) has magnitude R−1 and points in the same direction as
the unit tangent T(x,y,0). Hence F ·T = R−1 and

∫
CR

F ·Tds = R−1Length(CR) = R
−12πR = 2π.

Even though curlF = 0, F is not conservative since the integral along the
closed curve CR is not zero. �

Example 7.25. Figure 7.19 shows some level sets for a C1 function f in R
2,

and some piecewise smooth curves C1 and C2 in R2.

If F = ∇ f , find
∫
C1

F ·Tds and
∫
C2

F ·Tds.
∫
C1

F ·Tds =
∫
C1

∇ f ·Tds = f (Q)− f (P) = 30−40 = −10.
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C2

C1

P

Q
f = 40

f = 20

f = 30

Fig. 7.19 Level sets and curves in Example 7.25.

The line integral ∫
C2

F ·Tds = 0,

because F is conservative and C2 is a closed curve. �

Example 7.26. Show that F(x,y) = (x+ y,y2 + x) is conservative by finding a
potential function g so that F = ∇g. That is,

gx = x+ y, gy = y
2+ x.

An antiderivative for gx with respect to x is

g(x,y) = 1
2 x

2+ xy+h(y)

where h(y) is some function of y. The partial derivative with respect to y is
then

gy = x+h′(y).

Take h(y) = 1
3y

3 so that gy = y2+ x. We have found

∇( 12 x2+ xy+ 1
3y

3) = (x+ y,y2+ x).
�

Example 7.27. Is F(x,y) = (x+ y,y2) conservative? We compute

curlF(x,y) = f2x − f1y = 0−1 � 0.
By Theorem 7.3, F is not conservative. �

Problems

7.20. Find a potential function for each of these conservative vector fields.
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(a) (x,0,0)
(b) (0,z,y)
(c) a constant vector field (a,b,c)
(d) F+G, if F and G are each conservative.

7.21. Let

G(x,y) =
( x

x2+ y2
,

y

x2+ y2
)
, F(x,y) =

( −y
x2+ y2

,
x

x2+ y2
)
.

(a) Find a potential function g(x,y) so that ∇g =G. What is the domain of g?

(b) Find ∇ tan−1 ( y
x
)
. Why is tan−1

( y
x
)
not a potential function for F?

7.22. Show that the vector fields in the integrands below are conservative by finding
potential functions, and evaluate the integrals on any smooth curve C from (0,0,0)
to (a,b,c) using the Fundamental Theorem of Line Integrals.

(a)
∫
C
z2 dz

(b)
∫
C
∇(xy) ·Tds

(c)
∫
C
zdx+ ydy+ xdz

7.23. LetC be a smooth curve from (0,0,0) to (a,b,c). Which of the integrals below
can be evaluated by the Fundamental Theorem of Line Integrals? Find the values of
those that can.

(a)
∫
C
x2 dy

(b)
∫
C

(∇(xy)−3∇(z2 cosy)) ·Tds
(c)
∫
C
dx+ dy

7.24.(a) Use the fact that
2(x,y)

(x2+ y2)2
= ∇
( −1
x2+ y2

)

to evaluate ∫
C

x

(x2+ y2)2
dx+

y

(x2+ y2)2
dy

where C is any smooth curve from (1,2) to (2,2) not passing through the origin.
(b) Why do we restrict C to curves that do not pass through the origin?

7.25.(a) Use the fact that ∇(‖X‖−1) = −‖X‖−3X to evaluate
∫
C

−x1 dx1− x2 dx2− x3 dx3
(x21 + x

2
2 + x

2
3)

3/2
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where C is any smooth curve from (1,1,2) to (2,2,1) not passing through the
origin.

(b) Why do we restrict C to curves that do not pass through the origin?

7.26. Each of the vector fields below is some variant of the inverse square field

‖X‖−3X = ∇(−‖X‖−1).
Find a potential function for each of them.

(a)
2(−x,−y,−z)(
x2+ y2+ z2

)3/2
(b)

3(
x2+ y2+ z2

)3/2 (x,y,z)
(c)

(x,y−5,z)(
x2+ (y−5)2+ z2)3/2

(d)
3(x+1,y−5,z)(

(x+1)2+ (y−5)2+ z2)3/2 +
(x,y,z)(

x2+ y2+ z2
)3/2

7.27. The inverse square vector field in Problem 7.26 finds uses in modeling gravity
forces of point masses, and of electrostatic forces of point charges. Let P1, . . . ,Pk be
k different points of R3 where the masses or charges are located. Let c1, . . . ,ck be
numbers that represent the masses or charges, all of one sign in the case of gravity.
Then the vector field

F(X) =
k∑
j=1

c j‖X−P j‖−3(X−P j)

can represent the force on another mass or charge due to the k given particles. Show
that F is conservative by finding a function g(X) so that F = ∇g.

x

y

Fig. 7.20 The orbit of the moon around the earth, for Problem 7.28.

7.28. The elliptical orbit of the moon around the earth can be expressed in the form
discussed in Chapter 5,

http://dx.doi.org/10.1007/978-3-319-74073-7_5
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y = −19
√
x2+ y2+7.2×109. [meters]

See Figure 7.20, where the ellipse is to scale, and almost circular. (Moon and Earth
are drawn too large so you can see them better.)

(a) Verify from this orbit equation that the Earth-Moon distance at apogee, that is
farthest fromEarth, at the bottom of the figure, is 400×106 meters, and at perigee,
closest to Earth at top of figure, 360×106 meters.

(b) Over a six month interval, the work done on the moon to pull it from apogee
down to perigee is ∫

half orbit
F ·Tds

where the force is

F = −mMG∇
⎛⎜⎜⎜⎜⎜⎝ 1√

x2+ y2

⎞⎟⎟⎟⎟⎟⎠ ,
m and M are Moon and Earth masses, and G the gravity constant. Use the Fun-
damental Theorem 7.2 to show that the work is equal to

mMG
( 1√

perigee
− 1√

apogee

)
.

7.29. Let the conservative field

F(X) = ‖X‖−3X = ∇(−‖X‖−1)

represent the electric field due to a positive charge at the origin.

(a) For each small h > 0 the field
F
(
X+ (h,0,0)

)−F(X)
h

can represent the electric

field due to a strong positive charge at (−h,0,0) and a strong negative charge at
the origin. Show that it is conservative.

(b) Show that lim
h→0

F
(
X+ (h,0,0)

)−F(X)
h

is conservative.

(c) Denote by g a function that is three times continuously differentiable, and set
G=∇g. Show that each of the partial derivativesGx,Gy, andGz is a conservative
field.

7.30. We have seen in Problem 7.27 that a finite number of point charges produce
an electric field that is a linear combination of inverse square fields. Suppose there
is a continuous distribution of charge density c(X) [charge/volume] at each point X
in a bounded set D in R3. The potential at any point P outside of D is

g(P) =
∫
D

c(X)
‖X−P‖ dV .

(a) Suppose P is at least one unit distance from every point of D. Show that the
integrand
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c(X)
‖X−P‖

is a bounded continuous function of X in D.
(b) Integrate the Taylor approximation (See Problem 4.29)

‖X−P‖−1 ≈ ‖P‖−1+ ‖P‖−3P ·X+ 1
2‖P‖−5

(
3(P ·X)2−‖P‖2‖X‖2)

to get an approximation for the potential:

g(P) ≈
(∫

D
c(X)dV

)
‖P‖−1+

3∑
j=1

(∫
D
c(X)x j dV

)
p j‖P‖−3

+ 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3∑

j,k=1

(∫
D
c(X)3xkx j dV

)
p jpk‖P‖−5−

∫
D
c(X)‖X‖2 dV‖P‖−3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

(c) Show that the integrands c(X)x j, c(X)xkx j, and c(X)‖X‖2 are bounded continu-
ous functions in D.

(d) Show that as P tends to infinity the three terms of the approximation are bounded
by a1‖P‖−1, a2‖P‖−2, a3‖P‖−3, for various constants ai.

Remark. The gradients of the three terms of the approximation are known in Physics
as the Coulomb, dipole, and quadrupole parts of the field.

7.3 Surfaces and surface integrals

We introduce smooth surfaces in R
3, using parametrizations.

Definition 7.7. LetX be aC1 function from a smoothly bounded set D inR2 to
R
3, denotedX(u,v)=

(
x(u,v),y(u,v),z(u,v)

)
. SupposeX satisfies the following

conditions on the interior of D.

(a) X is one to one.
(b) The partial derivatives of the component functions of X are bounded.
(c) The partial derivatives

Xu(u,v) =
(
xu(u,v),yu(u,v),zu(u,v)

)
,

Xv(u,v) =
(
xv(u,v),yv(u,v),zv(u,v)

)

are linearly independent so that Xu(u,v)×Xv(u,v) � 0.

The range S ofX is called a smooth surface, parametrized byX. The plane that
contains the pointX(u,v) and has normal vectorXu(u,v)×Xv(u,v) is called the
plane tangent to S at X(u,v), and X is called a parametrization of S .

http://dx.doi.org/10.1007/978-3-319-74073-7_4
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y
x

v

u
0 π

z

2π

3

Fig. 7.21 The surface in Example 7.28.

Example 7.28. Let

X(u,v) = (3cosvsinu,3sinvsinu,3cosu)

with 0 ≤ u ≤ π and 0 ≤ v ≤ 2π. Since
‖X(u,v)‖2 = 32(cos2 v+ sin2 v) sin2 u+32 cos2 u = 32,

the points X(u,v) lie on a sphere of radius 3 centered at the origin. See Fig-
ure 7.21. X is one to one on the interior of the domain, where 0 < u < π,
0 < v < 2π. The partial derivatives

Xu(u,v) = (3cosvcosu,3sinvcosu,−3sinu)
Xv(u,v) = (−3sinvsinu,3cosvsinu,0)

are linearly independent where sinu � 0. We compute a normal vector to the
tangent plane,

Xu(u,v)×Xv(u,v) = 9sinu(cosvsinu,sinvsinu,cosu),

and its norm
‖Xu(u,v)×Xv(u,v)‖ = 9sinu.

�
One way to parametrize the graph of a C1 function f (x,y) = z is to define a new

function X(x,y) =
(
x,y, f (x,y)

)
from the x,y plane to R3.

Example 7.29. Let f (x,y) =
√
R2− x2− y2, R > 0. Define

X(x,y) =
(
x,y,
√
R2− x2− y2

)
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for x2+ y2 ≤ a2 < R2. See Figure 7.22. The partial derivatives

Xx =

⎛⎜⎜⎜⎜⎜⎝1,0,− x√
R2− x2− y2

⎞⎟⎟⎟⎟⎟⎠ , Xy =

⎛⎜⎜⎜⎜⎜⎝0,1,− y√
R2− x2− y2

⎞⎟⎟⎟⎟⎟⎠ ,

are linearly independent because the pattern of zeros and ones prevents either
vector being a multiple of the other. Since 0 ≤ x2+y2 ≤ a2 < R2 the derivatives
are bounded:

∣∣∣∣∣∣∣−
x√

R2 − x2 − y2

∣∣∣∣∣∣∣ ≤
R√

R2 − x2 − y2
≤ R√

R2 −a2
and

∣∣∣∣∣∣∣−
y√

R2 − x2 − y2

∣∣∣∣∣∣∣ ≤
R√

R2 −a2
.

The range S of X is the part of the upper hemisphere of radius R centered
at the origin, that sits above the disk of radius a > 0 centered at the origin in
the x,y plane. See Figure 7.22. A normal vector to the plane tangent to S at
X(x,y) is

Xx(x,y)×Xy(x,y) =

⎛⎜⎜⎜⎜⎜⎝ x√
R2− x2− y2

,
y√

R2− x2− y2
,1

⎞⎟⎟⎟⎟⎟⎠

and its norm is ‖Xx(x,y)×Xy(x,y)‖ = R√
R2− x2− y2

. �

S

X(x, y)

Xx(x, y) × Xy(x, y))

(x, y)

D

Fig. 7.22 The surface S in Example 7.29.

We call X(x,y) =
(
x,y, f (x,y)

)
the (x,y) parametrization of the graph of f . Here

Xx(x,y) =
(
1,0, fx(x,y)

)
, Xy(x,y) =

(
0,1, fy(x,y)

)

and a normal vector at the point
(
x,y, f (x,y)

)
is

Xx(x,y)×Xy(x,y) =
(− fx(x,y),− fy(x,y),1).
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Area Now that we have a definition of a smooth surface, we define its area.

Definition 7.8. Suppose S is a smooth surface parametrized by X from a
smoothly bounded set D in the u, v plane into R

3. The area of S is defined
as

Area(S ) =
∫
S
dσ =

∫
D
‖Xu(u,v)×Xv(u,v)‖ dudv.

Take the case where S is the graph of a function f on D, and S is parametrized

by X(x,y) =
(
x,y, f (x,y)

)
. Then ‖Xx(x,y)×Xy(x,y)‖ =

√
1+ f 2x + f 2y and the surface

area of S is

Area(S ) =
∫
D

√
1+ f 2x + f 2y dxdy.

We show that Definition 7.8 is a reasonable definition for the area of a smooth
surface by looking at some estimates for the area. Take a point X(u,v) on S and
three nearby points X(u+Δu,v), X(u,v+Δv), X(u+Δu,v+Δv). See Figure 7.23.

By holding v fixed and letting u vary, X(u,v) parametrizes a curve in S . Since X
is C1, the secant vector X(u+Δu,v)−X(u,v) is well approximated by the tangent
vector Xu(u,v)Δu. Similarly if we hold u fixed and vary v we get another curve in S
with a secant vector X(u,v+Δv)−X(u,v) well approximated by the tangent vector
Xv(u,v)Δv. By Definition 7.7, Xu(u,v) and Xv(u,v) are linearly independent. The
area of the parallelogram determined by the two tangent vectors is

‖Xu(u,v)Δu×Xv(u,v)Δv‖.
It is a good estimate for the area of the two triangles determined by the secant vectors
in Figure 7.23.

x

X(u, v + Δv)z

y

X(u + Δu, v)

X(u + Δu, v + Δv)S
X(u, v)

Fig. 7.23 Two secant triangles.

The sum of the areas of the secant triangles tends to the integral formula for the
area of S ,
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Area(S ) =
∫
D
‖Xu×Xv‖dudv.

S
X(u, v)

x
z

y
X(u, v + Δv)

X(u + Δu, v)

Fig. 7.24 Approximating area by parallelograms.

Example 7.30. Find the area of the sphere S of radius R > 0, using the
parametrization

X(u,v) =
(
Rcosvsinu,Rsinvsinu,Rcosu

)
, (0 ≤ u ≤ π, 0 ≤ v ≤ 2π).

We get

Xu(u,v)×Xv(u,v) = R
2 sinu

(
cosvsinu,sinvsinu,cosu

)

and ‖Xu(u,v)×Xv(u,v)‖ = R2 sinu. So

Area(S ) =
∫
D
‖Xu×Xv‖dudv =

∫ 2π

0

∫ π
0
R2 sinududv

= R2
∫ 2π

0
dv
∫ π
0
sinudu = R2(2π)2 = 4πR2.

�
Remark. The parametrization of the surface of a sphere in Example 7.30 is

inspired by spherical coordinates, where u and v play roles similar to latitude and
longitude on a map. This suggests denoting the parameters by (θ,φ) rather than
(u,v).

Example 7.31. Find the area of the part of the upper hemisphere given by the
(x,y) parametrization in Example 7.29,

X(x,y) =
(
x,y,
√
R2− x2− y2

)
, D : x2+ y2 ≤ a2

where 0 < a2 < R2. In Example 7.29 we showed that
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‖Xx(x,y)×Xy(x,y)‖ = R√
R2− x2− y2

,

so

Area(S ) =
∫
S
dσ =

∫
D

R√
R2− x2− y2

dxdy.

The integral is easier to evaluate if we change variables to polar coordinates.
The region D in polar coordinates is 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a. So

Area(S ) =
∫
D

R√
R2− x2− y2

dxdy = R
∫ 2π

0

∫ a

0

rdrdθ√
R2− r2

= 2πR
[
− (R2− r2)1/2

]r=a
r=0
= 2πR

(
R− (R2−a2)1/2).

In Problem 7.34 we ask you to deduce from this formula a classical discovery
by Archimedes. Note that as a tends to R, the area tends to 2πR2, the area of
the upper hemisphere of radius R. �

Now that we have shown that the area formula works for spheres let’s look at
some other simple examples where we may not know the area.

y

z

3 1
x 1 3 u

v
2π

Fig. 7.25 The surface in Example 7.32 is the part of the cone between z = 1 and z = 3. The u,v
rectangle is for the parametrization in Example 7.33.

Example 7.32. Let S be the part of the surface z2 = x2 + y2 that lies between
the planes z = 1 and z = 3. See Figure 7.25. Find the area of S . We need to find
a parametrization of S , and the simplest approach is the (x,y) parametrization
since S can be thought of as the graph of the function

z = f (x,y) =
√
x2+ y2,

defined on the annulus D in the x, y plane where 1 ≤ x2+ y2 ≤ 9. Let

X(x,y) =
(
x,y, f (x,y)

)
=
(
x,y,
√
x2+ y2

)
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on D. Then

Xx(x,y) =
(
1,0, fx(x,y)

)
=
(
1,0, x(x2 + y2)−1/2

)
Xy(x,y) =

(
0,1, fy(x,y)

)
=
(
0,1,y(x2 + y2)−1/2

)
Xx(x,y)×Xy(x,y) =

(− fx(x,y),− fy(x,y),1)

‖Xx(x,y)×Xy(x,y)‖ =
√
f 2x + f 2y +1

and we find

√
f 2x + f 2y +1 =

√
x2

x2+ y2
+

y2

x2+ y2
+1 =

√
2.

Therefore

Area(S ) =
∫
S
dσ =

∫
D
‖Xx(x,y)×Xy(x,y)‖dA

=

∫
D

√
2dxdy =

√
2Area(D) =

√
2
(
π32−π12) = 8π√2.

�

Example 7.33. Another way to compute the area of S , the part of the surface
z2 = x2+ y2 in Example 7.32, is to use the parametrization

X(u,v) =
(
ucosv,usinv,u

)
, 1 ≤ u ≤ 3, 0 ≤ v ≤ 2π

suggested by polar coordinates. D is the rectangle [1,3]× [0,2π]. When u = k
the points

X(k,v) = (kcosv,k sinv,k)

are on a circle of radius k in the z = k plane in R
3 centered at (0,0,k). As k

increases, larger circles are mapped into higher planes. We calculate

Xu(u,v) = (cosv,sinv,1)

Xv(u,v) = (−usinv,ucosv,0)
Xu(u,v)×Xv(u,v) = (−ucosv,−usinv,ucos2 v+usin2 v)
‖Xu(u,v)×Xv(u,v)‖ =

√
2u

and

Area(S ) =
∫
S
dσ =

∫
D

√
2ududv

=

∫ 2π

0

∫ 3

1

√
2ududv = 2π

√
2
32−12

2
= 8π

√
2.

�
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We have seen some examples where two different parametrizations of a surface
are used to calculate the area for the surface. Here is another class of such examples.
Take first the case where the surface S is part of a level set

g(x,y,z) = c

with ∇g � 0. According to the Implicit Function Theorem, Theorem 3.13, one or
more of the variables is a function of the other two, locally near any point of S .
Suppose we have

z = f (x,y), (x,y) in D. (7.2)

Then fx = −gxgz , fy = −
gy
gz
, and the area of S is

∫
D

√
f 2x + f 2y +1dxdy.

Example 7.34. Find the area of the part of the surface g(x,y,z)= x2+y2−z2 = 0
that lies over the set in the x,y plane where 1≤ x2+y2 ≤ 9. (See Examples 7.32
and 7.33.) By the Implicit Function Theorem for z = f (x,y),

fx =
−2x
−2z , fy =

−2y
−2z .

So the area is

∫
D

√
x2

z2
+
y2

z2
+1dxdy =

∫
D

√
x2+ y2

z2
+1dxdy

=

∫
D

√
1+1dxdy =

√
2Area(D) = 8π

√
2.

�
Suppose that the surface S expressed in (7.2) can also be expressed as the graph

of
y = h(x,z), (x,z) in E.

Then hx = −gxgy , hz = −
gz
gy
. We show now that

∫
D

√
f 2x + f 2y +1dxdy =

∫
E

√
h2x +h

2
z +1dxdz.

There is a mapping F from E onto D,

F(x,z) =
(
x,h(x,z)

)
= (x,y).

See Figure 7.26. The Jacobian of F is

http://dx.doi.org/10.1007/978-3-319-74073-7_3
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JF(x,z) = det
[
1 0
hx hz

]
= hz = −gzgy .

The change of variables formula, Theorem 6.12, gives

∫
D

√
f 2x + f 2y +1dxdy =

∫
E

√
g2x +g

2
y +g

2
z

g2z

∣∣∣∣−gzgy

∣∣∣∣dxdz =
∫
E

√
h2x +1+h2z dxdz.

D

E S

y

z

x

Fig. 7.26 S is both the graph of z = f (x,y) and the graph of y = h(x,z).

More generally suppose we have two parametrizations, oneX1(u,v) from D1 onto
S , and another X2(s, t) from D2 onto S , and a differentiable “change of parametriza-
tion” G so that

(s, t) =G(u,v)

X2(s, t) = X2
(
G(u,v)

)
= X1(u,v)

for all (s, t) in D2 and (u,v) in D1. See Figure 7.27. By the Chain Rule

DX2
(
G(u,v)

)
DG(u,v) = DX1(u,v) (7.3)

In Problem 7.45 we guide you to a proof that (7.3) implies that

X2s(u,v)×X2t(u,v)detDG(u,v) = X1u(u,v)×X1v(u,v). (7.4)

By (7.4) and the change of variables formula,

Area(S ) =
∫
D2

‖X2s(s, t)×X2t(s, t)‖dsdt

=

∫
D1

‖X2s
(
G(u,v)

)×X2t
(
G(u,v)

)‖ |detDG(u,v)|dudv

=

∫
D1

‖X1u(u,v)×X1v(u,v)‖dudv.

http://dx.doi.org/10.1007/978-3-319-74073-7_6
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The area of S is independent of the parametrization of S .

X1

X2

D2

D1

x y

z

u

v

S
G

t

s

Fig. 7.27 S is parametrized by both X1 and X2.

Surface integrals. Suppose at each point (x,y,z) on a surface S we know the charge
density f (x,y,z) [charge/area]. What is the total charge distributed over S ? Given a
parametrization of S , X(u,v) defined on D, we can approximate the charge on the
patch of S that is the image of a Δu by Δv rectangle in D by multiplying the density
at a point on the patch, f

(
X(u,v)

)
, by the approximate area of the patch:

f
(
X(u,v)

)‖Xu(u,v)Δu×Xv(u,v)Δv‖ = f
(
X(u,v)

)‖Xu(u,v)×Xv(u,v)‖ |ΔuΔv|.
The total charge is the sum of the charge on the patches. This motivates the definition
of the surface integral of f over S .

Definition 7.9. Suppose S is a smooth surface parametrized by X from a
smoothly bounded set D in the u, v plane to R

3, and suppose f is a contin-
uous function on S . The surface integral of f over S is defined as

∫
S
f dσ =

∫
D
f
(
X(u,v)

)‖Xu×Xv‖dudv.

In particular the surface area of S is the integral of f = 1.

Example 7.35. Let S be the surface x2 + y2 = z2, 1 ≤ z ≤ 3 of Examples 7.32,
7.33, and 7.34. Suppose the charge density at each point (x,y,z) of S is

f (x,y,z) = e−x
2−y2 .

Find the total charge on S . We parametrize S by

X(u,v) = (ucosv,usinv,u), (1 ≤ u ≤ 3, 0 ≤ v ≤ 2π).
The total charge is
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∫
S
f dσ=

∫
D
f
(
X(u,v)

)‖Xu×Xv‖dA=
∫ 2π

0

∫ 3

1
e−u

2 √
2ududv

= 2π
√
2
∫ 3

1
e−u

2
udu = 2π

√
2
[
− 1

2e
−u2
]3
1
= π
√
2
(
e−1− e−9).

The average charge density on S , using the area we found previously, is

faverage =

∫
S
f dσ∫

S
dσ
=
π
√
2
(
e−1− e−9)
8π
√
2

= 1
8
(
e−1− e−9).

�
Properties of surface integrals. From properties of double integrals, surface inte-
grals have these properties: If f and g are continuous functions and c is a constant,
then

•
∫
S
c f dσ = c

∫
S
f dσ

•
∫
S
( f +g)dσ =

∫
S
f dσ+

∫
S
gdσ

• If m ≤ f ≤ M then mArea(S ) ≤
∫
S
f dσ ≤ MArea(S ).

We also define the integral over piecewise smooth surfaces. If S is a union of
finitely many smooth surfaces S 1,S 2, . . . ,Sm that intersect only pairwise on common
boundaries, such as the six sides of a cube that meet along their edges, we have

∫
S 1∪S 2∪···∪Sm

f dσ =
∫
S 1

f dσ+ · · ·+
∫
Sm

f dσ.

Flux of a vector field across a surface. In Chapter 1 we defined the volumetric
flow rate or flux of a constant velocity field U across the parallelogram determined
by V and W in the direction of V×W as

U · (V×W).

See Figure 7.28. Let N be the unit normal N =
V×W
‖V×W‖ and call the parallelogram

S ; then the flux of U across S in the direction V×W is

U · (V×W) = U · V×W
‖V×W‖ ‖V×W‖ = U ·NArea(S ).

Suppose now F is a vector field whose domain contains a smooth surface S ,
parametrized by X from the u, v plane to R

3. By Definition 7.7 the vectors Xu(u,v)
and Xv(u,v) are linearly independent and determine a plane tangent to S at X(u,v).
The vector

N
(
X(u,v)

)
=

1
‖Xu(u,v)×Xv(u,v)‖Xu(u,v)×Xv(u,v)

http://dx.doi.org/10.1007/978-3-319-74073-7_1
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V

W

U
U

N

Fig. 7.28 Flux of U across the parallelogram determined by V and W.

is a unit normal to the tangent plane at X(u,v). See Figure 7.29. We call

F
(
X(u,v)

) ·N = F(X(u,v)) · Xu(u,v)×Xv(u,v)
‖Xu(u,v)×Xv(u,v)‖

the normal component of F at X(u,v). Next we define the flux of F across S .

S Xv(u, v)

Xu(u, v)

z

X(u, v)

x

y N (X(u, v))

S

X(u, v)

F (X(u, v))

N(X(u, v))

Fig. 7.29 Left: A unit normal vector N at X(u,v) on S . Right: F
(
X(u,v)

) ·N(X(u,v)) is the normal
component of F at X(u,v).

Definition 7.10. Let S be a smooth surface parametrized by X from a
smoothly bounded set D in the u,v plane to R3.

Let F(x,y,z) =
(
f1(x,y.z), f2(x,y,z), f3(x,y,z)

)
be a continuous function on

S . The integral of the normal component of F, F ·N, over S is called the flux
of F across S in the direction of N. Using Definition 7.9 it is

∫
S
F ·Ndσ =

∫
D
F
(
X(u,v)

) ·N(X(u,v))‖Xu(u,v)×Xv(u,v)‖dudv

=

∫
D
F
(
X(u,v)

) · (Xu(u,v)×Xv(u,v)
)
dudv.
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G

N N

G

F

F

N N

H

N NH

Fig. 7.30 Positive flux of F across S at the left, and negative flux of G across S at center. For the
flux of H at the right we can’t tell the sign of the flux at a glance.

Example 7.36. Let S be the surface x2 + y2 = z2, 1 ≤ z ≤ 3. Find the flux of

F(x,y,z) = (−y, x,z) across S ,
∫
S
F ·Ndσ, where N points away from the z

axis. We know from Example 7.33 that

X(u,v) =
(
ucosv,usinv,u

)
, 1 ≤ u ≤ 3, 0 ≤ v ≤ 2π

is a parametrization of S and that

Xu(u,v) = (cosv,sinv,1)

Xv(u,v) = (−usinv,ucosv,0)
Xu(u,v)×Xv(u,v) = (−ucosv,−usinv,u)
‖Xu(u,v)×Xv(u,v)‖ =

√
2u

The vector

N(u,v) =
Xu(u,v)×Xv(u,v)
‖Xu(u,v)×Xv(u,v)‖ =

(−ucosv,−usinv,u)√
2u

= 1√
2
(−cosv,−sinv,1)

is normal to S . At u = 2,v = π2 , N
(
2, π2
)
= 1√

2
(0,−1,1) points toward the z axis.

See Figure 7.31. To get the net flux of F across S in the direction away from
the z axis we use the opposite unit normal

N(u,v) =
Xv(u,v)×Xu(u,v)
‖Xv(u,v)×Xu(u,v)‖ =

1√
2
(cosv,sinv,−1).

∫
S
F ·Ndσ =

∫ 2π

v=0

∫ 3

u=1
F
(
X(u,v)

) ·N(u,v)‖Xv(u,v)×Xu(u,v)‖dudv

=

∫ 2π

v=0

∫ 3

u=1
(−usinv,ucosv,u) · 1√

2
(cosv,sinv,−1)√2ududv

=

∫ 2π

v=0

∫ 3

u=1
(−u2)dudv = 2π

[
− 1

3u
3
]3
1
= 1

32π(−26).
�
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(0,− 1√
2,

1√
2)

F

z

(−y, x, 0)

(0, 2, 2)N S

x y

Fig. 7.31 A unit normal
Xu(u,v)×Xv(u,v)
‖Xu(u,v)×Xv(u,v)‖ at the point (0,2,2) in Example 7.36 points toward

the “inside” of the cone, toward the z axis.

Orientation of surfaces. An important thing to notice in the definition of the flux

integral
∫
S
F ·Ndσ is that the sign of the integrand depends on the order in which

the cross product of Xu(u,v) and Xv(u,v) is taken. The resulting unit normals

Xu(u,v)×Xv(u,v)
‖Xu(u,v)×Xv(u,v)‖ ,

Xv(u,v)×Xu(u,v)
‖Xv(u,v)×Xu(u,v)‖

can be used to distinguish the two sides of a surface. For example, a sphere S has a
set of unit normals that point outward and a set that point inward. In Example 7.28
we parametrized a sphere of radius three centered at the origin by

X(u,v) = (3cosvsinu,3sinvsinu,3cosu), 0 ≤ u ≤ π, 0 ≤ v ≤ 2π.
Which way do the unit normals

Xu(u,v)×Xv(u,v)
‖Xu(u,v)×Xv(u,v)‖

point? We found that Xu(u,v)×Xv(u,v) = 9sinu(cosvsinu,sinvsinu,cosu).Where
sinu is positive, this is a positive multiple of X(u,v), a point on the sphere, so these
normals point outward.

When we choose a side for the normals we say the surface is oriented. If a surface
S is a union of n oriented surfaces S 1, . . . ,S n, then S is orientable if we can choose
unit normals so that if edges between the surfaces were smoothed, we would be able
to extend the normals continuously across the smoothed edges. Let’s look at another
example.

Example 7.37. Let squares S 1 and S 2 be parametrized by
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x y

z

x y

z

x y

z

Fig. 7.32 The surfaces in Example 7.37. The left and center surfaces are oriented. The surface on
the right is not oriented.

X1(x,y) = (x,y,4) 0 ≤ x ≤ 1, 2 ≤ y ≤ 3,
X2(x,z) = (x,3,z) 0 ≤ x ≤ 1, 4 ≤ z ≤ 5.

See Figure 7.32. The unit normals to S 1 are (0,0,1) or (0,0,−1), and unit
normals to S 2 are (0,1,0) or (0,−1,0). For S = S 1 ∪ S 2 to be an oriented
surface we need to choose unit normals that are consistent, so

(0,0,−1) on S 1, (0,1,0) on S 2

as at the center in the figure, or

(0,0,1) on S 1, (0,−1,0) on S 2

as at the left in the figure. �
At the right in Figure 7.32 is a surface that has two sides and is orientable, but

this way of assigning unit normals does not result in an oriented surface.
Not all surfaces are orientable or have two sides. Take a strip of paper, give it a

half twist and tape the two short ends together to make a Möbius band. The strip
before you joined the ends was an orientable surface. It had two sides. But after you
put the twist in and joined the ends any normal you try to move around the surface
comes back the opposite way after one loop.

The notion of the flux of a vector field across a surface only makes sense for
orientable surfaces; therefore we only work with orientable surfaces.

S1

S5
S3S4

S2

S6

yx

4
z

2 3

Fig. 7.33 The surface S of the box in Example 7.38.
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Example 7.38. Find the flux of F(x,y,z) = (x2,y+ 1,z− y) outward across S ,
the surface of the box [0,2]× [0,3]× [0,4] shown in Figure 7.33.

∫
S
F ·Ndσ =

∫
S 1∪S 2∪S 3∪S 4∪S 5∪S 6

F ·Ndσ

=

∫
S 1

F ·Ndσ+
∫
S 2

F ·Ndσ+
∫
S 3

F ·Ndσ+
∫
S 4

F ·Ndσ+
∫
S 5

F ·Ndσ+
∫
S 6

F ·Ndσ.

Parametrize S 1 by X1(y,z) = (2,y,z). The outward unit normal vectors are
(1,0,0) and

∫
S 1

F ·Ndσ =
∫ 4

z=0

∫ 3

y=0
(22,y+1,z− y) · (1,0,0)dydz = 4(12) = 48.

Similarly
∫
S 2

F ·Ndσ =
∫ 4

z=0

∫ 3

y=0
(0,y+1,z− y) · (−1,0,0)dydz = 0,

∫
S 3

F ·Ndσ =
∫ 4

z=0

∫ 2

x=0
(x2,3+1,z−3) · (0,1,0)dxdz = 4(8) = 32,

∫
S 4

F ·Ndσ =
∫ 4

z=0

∫ 2

x=0
(x2,1,z−0) · (0,−1,0)dxdz = −1(8) = −8,

∫
S 5

F ·Ndσ =
∫ 3

y=0

∫ 2

x=0
(x2,y+1,4− y) · (0,0,1)dxdy = 2

[
− 1

2 (4− y)2
]3
0
= 15,

∫
S 5

F ·Ndσ =
∫ 3

y=0

∫ 2

x=0
(x2,y+1,0− y) · (0,0,−1)dxdy = 2

[
1
2 y

2
]3
0
= 9.

Therefore
∫
S
F ·Ndσ = 48+0+32−8+15+9 = 96. �

Alternative ways to find the flux of F across S . If S is a graph of a C1 function
z = f (x,y) over D, we can also think of S as the level set of the C1 function g from
R
3 to R,

g(x,y,z) = z− f (x,y) = 0.

Since the gradient of g is normal at each point of S ,

∇g(x,y,z) = (− fx(x,y),− fy(x,y),1),
the two possibilities for a unit normal to S at a point

(
x,y, f (x,y)

)
are

N = ±
(− fx(x,y),− fy(x,y),1)√

f 2x + f 2y +1
.

Note that
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N · (0,0,1) = ± 1√
f 2x + f 2y +1

is plus or minus the cosine of the angle between the tangent plane to S at
(
x,y, f (x,y)

)
and the x,y plane. See Figure 7.34. That gives us a way to estimate the area of the
part of S that sits above a small part of the domain D in the x,y plane. It is the area in
the x,y plane times the reciprocal of the cosine of the angle between the two planes,

dσ ≈
√
f 2x + f 2y +1dA. So the upward flux of F across S is

∫
S
F ·Ndσ =

∫
D
F
(
x,y, f (x,y)

) · (− fx(x,y),− fy(x,y),1)dxdy
where D is the domain of f and S is the graph of f over D.

dσ

dσ

x

z

y

N

S

dA

dA

Fig. 7.34 The angle between the tangent plane and the x,y plane. N is drawn upward.

Example 7.39. Let the surface S be the part of the graph of f (x,y) = x2 + y2

above the rectangle R = [0,1]× [0,3], with unit normal vectors N having a
negative z component. The flux of F(x,y,z) = (−x,3,z) across S is

∫
S
F ·Ndσ =

∫
D
F
(
x,y, f (x,y)

) · ( fx(x,y), fy(x,y),−1)dxdy

=

∫ 3

y=0

∫ 1

x=0
(−x,3, x2 + y2) · (2x,2y,−1)dxdy =

∫ 3

y=0

∫ 1

x=0
(−3x2 − y2 +6y)dxdy = 15.

�

Evaluating
∫
S
F ·Ndσ geometrically Sometimes we can evaluate a flux integral

without parametrizing the surface, by making use of special geometric relationships
between the vector field F and the surface S .

Example 7.40. Let F(X) = − X
‖X‖3 be the inverse square vector field. Find the

flux of F outward across a sphere S R of radius R centered at the origin. The
direction of F(X) is in the opposite direction of X, and ‖F(X)‖ = ‖X‖−2 = R−2.



7.3 Surfaces and surface integrals 327

The outward unit normal vector N(X) =
X
‖X|| points in the opposite direction

of F(X). Therefore

F(X) ·N(X) = ‖F(X)‖‖N(X)‖cosθ = ‖F(X)‖(1)(−1) = −R−2.
The flux of F outward across S R is

∫
S R

F ·Ndσ =
∫
S R

− 1

R2
dσ = − 1

R2
Area(S R) = − 1

R2
4πR2 = −4π.

�
If in Example 7.40 we had computed the flux of the vector field into the sphere

we would have used the inward pointing unit normals and the cosine of the angle
between F and N would have been 1 instead of −1. The inward flux of F across S is
4π.

Example 7.41. Suppose at each point of a surface S , F(X) is tangent to S .
Find the flux of F across S . Since F(X) is tangent to S , F(X) ·N(X) = 0 at
each point. So ∫

S
F ·Ndσ = 0.

�

Example 7.42. Find the flux of F(x,y,z) = (x,y + 3x2,z) outward across a
sphere S of radius R centered at the origin. The outward pointing unit nor-
mal vectors are

N =
(x,y,z)√
x2+ y2+ z2

=
1
R
(x,y,z)

at every point (x,y,z) of the sphere. The flux is then
∫
S
F ·Ndσ =

∫
S
(x,y+3x2,z) · ( 1

R
(x,y,z)

)
dσ

=
1
R

∫
S
(x2+ y2+3x2y+ z2)dσ =

1
R

(∫
S
(x2+ y2+ z2)dσ+3

∫
S
(x2y)dσ

)
.

On S , x2+ y2+ z2 = R2, so the first integral is
∫
S
(x2+ y2+ z2)dσ = R2

∫
S
dσ = R2Area(S ) = 4πR4.

The second integral
∫
S
(x2y)dσ is zero due to symmetry. (See Problem 7.37.)

Therefore the flux is R−1(4πR4) = 4πR3. �
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Problems

7.31. Set up integrals for the areas of the graphs of z = x2 + y2 and z = x2 − y2 over
a smoothly bounded set D in R

2. Show that for all D, the two graphs have the same
area.

7.32. Let S 1 be the part of the plane

2
7 x+

3
7y+

6
7 z = 10,

that lies over the rectangle 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 in the x,y plane. Let S 2 be the
part of the same plane that lies over the rectangle 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1 in the y,z
plane. Show that Area(S 1) = 7

6 and Area(S 2) = 7
2 .

7.33. Suppose a2+b2+c2 = 1, and let S be the part of the plane ax+by+cz = d that
lies over a rectangle D in the x,y plane. Show that

|c|Area(S ) = Area(D).

7.34. Let R be the radius of a sphere. It is part of a classical discovery by Archimedes
that the area of a spherical cap of height h, 2πRh, is the same as the area of a cylinder
of the same height h and radius R.

(a) Verify that the expression
(
R− (R2−a2)1/2), found in Example 7.31, is the height

of the spherical cap there, thus proving Archimedes’ result.
(b) Without evaluating any further surface integrals, deduce another discovery by

Archimedes: that the area of every section of height h of a sphere has the same
area. See Figure 7.35.

h

h

h

Fig. 7.35 All sections of equal height through a sphere have the same surface area, in Prob-
lem 7.34.

7.35. Let X(u,v) = (
√
2uv,u2,v2), (1 ≤ u ≤ 2, 1 ≤ v ≤ 2).

(a) Calculate Xu, Xv and Xu×Xv.
(b) Show that X parametrizes a surface S in R

3, and at each point (x,y,z) of S ,
x2 = 2yz.

(c) Find the area of S .
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(d) Calculate the integral
∫
S
ydσ.

7.36. Let S be the surface of the cylinder in R
3 where x2 + y2 = r2 and 0 ≤ z ≤ h,

where r and h are positive constants.

(a) Verify that a parametrization of S is

X(u,v) = (r cosu,r sinu,v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ h.
(b) Use X(u,v) to show that the area of S is 2πrh.

(c) Evaluate
∫
S
ydσ.

(d) Evaluate
∫
S
y2 dσ.

7.37. Let S be the unit sphere in R
3 centered at the origin. S has a symmetry, that

for each point (x,y,z) on S there is another point (−x,−y,−z) also on S . Show that
∫
S
x2ydσ = 0.

7.38. Let S be the unit sphere centered at the origin in R
3. Evaluate the following

items, using as little calculation as possible.

(a)
∫
S
1dσ

(b)
∫
S
‖X‖2 dσ

(c) Verify that
∫
S
x21 dσ =

∫
S
x22 dσ =

∫
S
x23 dσ using either a symmetry argument or

parametrization without evaluating the integrals.

(d) Use the result of parts (b) and (c) to deduce the value of
∫
S
x21 dσ.

7.39. Let S be the unit sphere centered at the origin in R
3.

(a) Show that x41 + x
4
2 + x

4
3 +2(x

2
1x

2
2 + x

2
2x

2
3 + x

2
3x

2
1) = 1 on S .

(b) Evaluate
∫
S
x43 dσ using spherical coordinates.

(c) Evaluate
∫
S
x21x

2
2 dσ using items (a), (b), and a symmetry argument.

7.40. Let S be the flat parallelogram surface determined by vectors V and W, and

let N =
V×W
‖V×W‖ . Verify that the flux of a constant vector field F across S is

∫
S
F ·Ndσ = F ·NArea(S ).
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Fig. 7.36 Surfaces in Problems 7.41 and 7.42.

7.41. Find the flux of the constant vector field F = (2,3,4) through each of the four
oriented surfaces in Figure 7.36.

7.42. Find the flux of the vector field F = (2y,3z,4x) through surface (a) in Fig-
ure 7.36.

7.43. Find the flux of the vector field F = (2y,3z,4x) across the parallelogram deter-
mined by the vectors V = (1,1,1) and W = (0,0,2) in the direction of V×W.

N
N

N

z

x

y

Fig. 7.37 The oriented surface in Problem 7.44.

7.44. Let S be the oriented surface shown in Figure 7.37. Determine without calcu-
lation which of the following fluxes are positive.

(a)
∫
S
(0,1,0) ·Ndσ

(b)
∫
S
(0,3y,0) ·Ndσ

(c)
∫
S
(1,3y,0) ·Ndσ
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(d)
∫
S
(x3,0,5) ·Ndσ

7.45. Suppose A,B,C,D are vectors of R3 written as columns, and that

[A B]︸︷︷︸
3×2

[
a b
c d

]
= [C D]︸︷︷︸

3×2
.

Justify the following statements to prove that

(ad−bc)A×B = C×D. (7.5)

Remark. We used this formula in the “change of parametrization.”

(a) If we adjoin any third column Y to create square matrices, then

[A B Y]︸���︷︷���︸
3×3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a b 0
c d 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = [C D Y]︸���︷︷���︸
3×3

.

(b) Then Y · (A×B)(ad−bc) = Y · (C×D).
(c) Conclude (7.5).

7.46. As we will see in the next chapter, the flux of fluid mass across a surface S is
∫
S
ρV ·Ndσ,

where ρ is the fluid density and V the velocity. Evaluate this integral for two cases:

(a) S is a square of area A parallel to the x,y plane with unit normal vector
N = (0,0,1), ρ is constant, and V = (a,b,c) is also constant.

(b) S is a square of area A with a unit normal vector N, ρ is constant, and V is a
constant k times N.

7.47. As we will see in the next chapter, the flux of fluid momentum across a surface
S is vector valued (integrate componentwise):

∫
S

(
ρV
)
V ·Ndσ,

where ρ is the fluid density and V the velocity. Evaluate this integral for two cases:

(a) S is a square of area A parallel to the x,y plane with unit normal vector
N = (0,0,1), ρ is constant, and V = (a,b,c) is also constant.

(b) S is a square of area A with a unit normal vector N, ρ is constant, and V is a
constant k times N.

7.48. Let S be the part of the plane
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3x−2y+ z = 10
over the square D = [0,1]× [0,1] in the x,y plane, and take the normal vectors N
upward, that is with positive z component.

(a) Express the plane as the graph of a function of x and y, and find N.
(b) Find the area of S and verify that the area of S is not less than the area of D.
(c) Let F be a constant vector field (a,b,c). Find the flux of F across S .

7.49. Let S be the sphere of radius R > 0 centered at the origin of R3. Consider the

inverse square vector field F(X) =
X
‖X||3 . Show that the outward flux

∫
S
F ·Ndσ = 4π,

thus the flux does not depend on the radius of S . See Figure 7.38.

7.50. Let S be the sphere of radius R > 0 centered at the origin of R3. Consider a
vector field of the form

F(X) = k(‖X‖)X,
where k is a function only of the norm ‖X‖. Suppose the outward flux

∫
S
F ·Ndσ

does not depend on the radius of S . Prove that k(‖X‖) is some multiple of ‖X‖−3.
See Figure 7.38.

Fig. 7.38 Flux of inverse square field through sphere, in Problems 7.49 and 7.50.

7.51. Suppose surface S is parametrized by X(u,v), (u,v) in some smoothly
bounded set D, and k is a positive number. Let T be the set of points

Y(u,v) = kX(u,v), (u,v) in D.

Show that T is a smooth surface parametrized by Y. Show that

Area(T ) = k2Area(S ).



Chapter 8
Divergence and Stokes’ Theorems and
conservation laws

Abstract Green’s and Stokes’ Theorems are extensions to functions of several vari-
ables of the relation between differentiation and integration.

8.1 Green’s Theorem and the Divergence Theorem in R
2

The Fundamental Theorem of single variable calculus asserts that differentiation
and integration are inverse operations. More precisely, if f is a function that has
continuous first derivative f ′ then

∫ b

a
f ′(x)dx = f (b)− f (a). (8.1)

The analogue of this result forC1 functions of two variables is called the Divergence
Theorem. As we will see it is obtained by applying the single variable result in each
variable and integrating with respect to the other variable.

Take first the case that D is a smoothly bounded set in the plane that is both x
simple and y simple. Denote by ∂D the boundary of D. Let c and d be the smallest
and largest numbers y for which there is a point (x,y) contained in D. Since D is
x simple, for every value y0 between c and d, the set of points (x,y0) in D is a
single horizontal interval [a(y0),b(y0)] and both a(y) and b(y) are continuous on
[c,d]. Denote by a and b the smallest and largest numbers x for which there is a
point (x,y) in D. Since D is y simple, for every value x0 between a and b the set of
points (x0,y) in D is a single vertical interval [c(x0),d(x0)] and both c(x) and d(x)
are continuous on [a,b]. See Figure 8.1.

Figure 8.1 shows a set that is both x simple and y simple and Figure 8.2 shows
two that are not. Let f be a function that has continuous first partial derivatives fx
and fy in D. Fix y and apply the Fundamental Theorem of Calculus in one variable.
We get

c© Springer International Publishing AG 2017
P. D. Lax and M. S. Terrell, Multivariable Calculus with Applications,
Undergraduate Texts in Mathematics, https://doi.org/10.1007/978-3-319-74073-7 8
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y y

xx

d

b(y)
a(y)

d(x)

c(x)

ba

c

Fig. 8.1 Left: D is x simple with boundary functions x = a(y) and x = b(y). Right: D is y simple
with boundary functions y = c(x) and y = d(x).

x

y

D x

y
C

Fig. 8.2 Left: D is x simple but not y simple. Right: C is y simple but not x simple.

∫ b(y)

a(y)
fx(x,y)dx = f

(
b(y),y

)− f
(
a(y),y

)
,

where y lies between c and d.
Integrating this relation with respect to y from c to d we get

∫ d

c

∫ x=b(y)

x=a(y)
fx(x,y)dxdy =

∫ d

c

(
f (b(y),y)− f (a(y),y)

)
dy.

The iterated integral on the left is the integral of fx over D,
∫
D
fx dxdy. Next we

observe that the integral on the right side is equal to the line integral
∫
∂D

f dy

taken counterclockwise along the boundary of D, using parametrizations X1(y) =(
b(y),y

)
on the graph of b(y) with y running from c to d, and X2(y) =

(
a(y),y

)
on the

graph of a(y) with y from d down to c. Therefore the integral formula can be written
as ∫

D
fx dxdy =

∫
∂D

f dy. (8.2)

Let g be another continuously differentiable function on D. We derive an analogous
formula for the integral of gy over D:

∫ b

a

∫ d(x)

c(x)
gy(x,y)dydx =

∫ b

a

(
g(x,d(x))−g(x,c(x))

)
dx.
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The left side is
∫
D
gy dxdy and the right side is equal to a line integral of g taken

over ∂D in the clockwise direction. Taking it in the counterclockwise direction we
get ∫

D
gy dxdy = −

∫
∂D

gdx. (8.3)

Adding the two formulas (8.2) and (8.3) we get
∫
D

( fx+gy)dxdy =
∫
∂D

f dy−gdx. (8.4)

We restate this result in vector language. Let X(s) =
(
x(s),y(s)

)
be the arc length

parametrization of the boundary of D increasing in the counterclockwise direction.

s is between 0 and the length of ∂D. Since the tangent vector
(dx
ds
,
dy
ds

)
has length 1

at each point of ∂D, N =
(dy
ds
,−dx

ds
)

is the outward pointing unit normal. Recall in

Section 3.5 we defined divF = fx +gy, where F = ( f ,g). Then we can write (8.4) as

∫
D

divFdxdy =
∫
∂D

F ·Nds. (8.5)

This is called the Divergence Theorem.

F(x,y) = (x,y) F(x,y) = (x,y)

(x,y)

R

N N(x,y)

Fig. 8.3 In Example 8.1 the unit normals and F are parallel on the boundary of the disk.

Example 8.1. We verify the Divergence Theorem in the case F(x,y) = (x,y)
and D is a disk of radius R centered at the origin. At each point on the bound-
ary, the outward pointing unit normal to ∂D is parallel to F. See Figure 8.3.
Therefore at each point on ∂D, F ·N = ‖F‖ = R. The line integral is

∫
∂D

F ·Nds =
∫
∂D
‖F‖ds = R

∫
∂D

ds = R(2πR) = 2πR2.

Since divF =
∂

∂x
(x)+

∂

∂y
(y) = 2, the integral of divF over D is

http://dx.doi.org/10.1007/978-3-319-74073-7_3
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∫
D

divF dA = 2
∫
D

dA = 2πR2.

�

Example 8.2. Let F(x,y) = (x,y) and let D be the rectangular region where

−3 ≤ x ≤ 5 and −7 ≤ y ≤ 2.

Find the flux of F outward across ∂D. See Figure 8.4. Since divF = 2, by the
Divergence Theorem

∫
∂D

F ·Nds =
∫
D

divFdA =
∫
D

2dA = 2Area(D) = 2(8)(9) = 144.

�

C2

C3

C1

C4

2

y

x
5−3

−7

Fig. 8.4 The rectangle in Example 8.2 with outward pointing unit normals.

Example 8.3. We can also compute
∫
∂D

F ·Nds of Example 8.2 by computing

four line integrals.
∫
∂D

F ·Nds =
∫
C1

F ·Nds+
∫
C2

F ·Nds+
∫
C3

F ·Nds+
∫
C4

F ·Nds.

We get
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∫
C1

F ·Nds =
∫ 5

−3
(x,−7) · (0,−1)dx =

∫ 5

−3
7dx = 56,

∫
C3

F ·Nds =
∫ 5

−3
(x,2) · (0,1)dx = 16,

∫
C2

F ·Nds =
∫ 2

−7
(5,y) · (1,0)dy =

∫ 2

−7
5dy = 45,

∫
C4

F ·Nds =
∫ 2

−7
(−3,y) · (−1,0)dy = 27.

Therefore
∫
∂D

F ·Nds = 56+16+45+27 = 144. This agrees with the calcu-

lation in Example 8.2. �

Example 8.4. Let F(x,y) = (2x+ y2,y+ cos x), then divF = 3. The flux of F
outward across the boundary of a smoothly bounded set D with area 10 that
is both x simple and y simple is

∫
∂D

F ·Nds =
∫
D

divF dA = 3
∫
D

dA = 3(10) = 30.

�
We next extend the Divergence Theorem to sets that are finite unions of smoothly

bounded sets that are both x simple and y simple and have boundary arcs in common.
Let D be a smoothly bounded set in the x,y plane. Divide D into two parts D1 and

D2 by a piecewise smooth curve C in D that connects two points of the boundary of
D. See Figure 8.5.

D1 D2
B2B1

C

Fig. 8.5 Sets D1 and D2 with outward pointing normals. Curves B1, B2, and C are shown thin,
thick, and dotted, respectively.

We show now:
If a C1 vector field F satisfies

∫
D1

divF dA =
∫
∂D1

F ·Nds and
∫
D2

divF dA =
∫
∂D2

F ·Nds (8.6)

over the two sets D1 and D2 then
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∫
D

divF dA =
∫
∂D

F ·Nds

over the union D = D1∪D2.
To prove this, add the two equations in (8.6). The sum of the left sides is the

integral of divF over D. We claim that the sum of the right sides is the integral of
F ·N over the boundary of D. To see this, note in Figure 8.5 that the endpoints of the
curve C divide the boundary of D into two parts B1 and B2. The boundary of D1 is
the union of B1 and C, and the boundary of D2 is the union of B2 and C.

We note that the normal to the connecting curve C that is outward with respect to
D1 is the negative of the normal to C that is outward with respect to D2. Therefore
in the sum of the right sides of (8.6) the integrals of F ·N over C as the boundary
of D1 and as boundary of D2 cancel! The sum of the remaining integrals over the
boundary of D1 and D2 is the integral of F ·N over the boundary of D.

We can extend the Divergence Theorem to smoothly bounded sets that are the
union of sets that are both x simple and y simple.

Definition 8.1. We call a smoothly bounded set D regular if it is the union of
a finite number of smoothly bounded subsets, each of which is x simple and y
simple and any two have only a boundary arc in common.

We have proved the Divergence Theorem for a vector field that is C1 on a
smoothly bounded set that is x simple and y simple. We have also shown that if
a set D is a union of two subsets for which the theorem holds, then it holds for D.
Using this proposition repeatedly we conclude the following theorem.

Theorem 8.1. The Divergence Theorem. If F from R
2 to R

2 is C1 on a reg-
ular set D then ∫

D
divF dA =

∫
∂D

F ·Nds.

All sets of practical or theoretical importance are regular; therefore we confine
our studies to regular sets.

y d

c

x = a(y) x = b(y)x

D

Fig. 8.6 Area(D) =
∫ d

c

(
b(y)−a(y)

)
dy =

∫
∂D

xdy. See Example 8.5.
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Example 8.5. For the function F(x,y) = (x,0), divF(x,y) = 1. Let D be a reg-
ular set in R

2. By the Divergence Theorem

Area(D) =
∫
D

1dA =
∫
D

divFdA =
∫
∂D

xdy.

This shows that the area of D can be computed using only measurements taken
on its boundary. See Figure 8.6. �

y

x

Fig. 8.7 The set D in Example 8.6.

Example 8.6. Let F(x,y) = (x,−y). Find the outward flux of F across the
boundary of D shown in Figure 8.7. We compute

divF =
∂

∂x
(x)+

∂

∂y
(−y) = 1−1 = 0.

By the Divergence Theorem the outward flux of F across ∂D is
∫
∂D

F ·Nds =
∫
D

divF dA =
∫
D

0 dA = 0.

�
Next we show how to use the Divergence Theorem to find the integral of the

tangential component of F along ∂D,
∫
∂D

F ·Tds.

Suppose F is C1 on a regular set D and ∂D is traversed in a counterclockwise direc-
tion. If the outward unit normal vector at a point on ∂D is N = (n1,n2), then the unit
tangent vector there is T = (t1, t2) = (−n2,n1). See Figure 8.8.

So for F = ( f ,g),
∫
∂D

F ·Tds =
∫
∂D

( f t1+gt2)ds =
∫
∂D

(gn1− f n2)ds.

By the Divergence Theorem and the definition of curl from Section 3.5 we have

http://dx.doi.org/10.1007/978-3-319-74073-7_3
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y

x

N

T (n1, n2)

(t1, t2) = (−n2, n1)

D

Fig. 8.8 The unit normal and tangent vectors.

∫
∂D

(gn1+ (− f )n2)ds =
∫
D

(
∂g
∂x
+
∂(− f )
∂y

)
dA =

∫
D

(
∂g
∂x
− ∂ f
∂y

)
dA =

∫
D

curlFdA.

So we have proved Green’s Theorem.

Theorem 8.2. Green’s Theorem If F = ( f ,g) is continuously differentiable
on a regular set D in R2 then

∫
D

curlFdA =
∫
∂D

F ·Tds,

where the boundary of D is traversed in the counterclockwise direction.

F(x,y) = (−y,x)

F(x,y) = (−y,x) (x,y)

(x,y)

R

Fig. 8.9 In Example 8.7 the unit tangent and F(x,y) point in the same direction at each (x,y) on
the circle.

Example 8.7. Find the work done in moving a particle in the counterclockwise
direction along a circle of radius R centered at the origin in the presence of a
force field F(x,y) = (−y, x). Green’s Theorem can be applied as follows. The
work is
∫
∂D

F ·Tds =
∫
D

(
∂

∂x
(x)− ∂

∂y
(−y)

)
dA =

∫
D

(1+1) dA = 2Area(D) = 2πR2.

Alternatively, without using Green’s Theorem note that T and F have the same
direction at each point on ∂D. Hence F ·T = ‖F‖ = √

x2+ y2 = R and
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∫
∂D

F ·Tds =
∫
∂D

Rds = R
(
Length(∂D)

)
= R(2πR) = 2πR2.

�

Example 8.8. Let F(x,y) =
( −y
x2+ y2

,
x

x2+ y2

)
and let D be the disk of radius R

centered at the origin. Find ∫
∂D

F ·Tds,

where we traverse ∂D in the counterclockwise direction. We cannot use
Green’s Theorem to evaluate this integral because the domain of F does not
contain (0,0), hence F is not differentiable (or even defined) on all of D. Let’s

compute
∫
∂D

F ·Tds and
∫
D

(gx − fy) dA and compare the results.

F and T are in the same direction, and we see F ·T = ‖F‖ = 1
R . Therefore,

∫
∂D

F ·Tds =
∫
∂D

1
R

ds =
1
R

Length(∂D) =
1
R

2πR = 2π.

On the other hand

gx =
∂

∂x

( x

x2 + y2

)
=

(x2 + y2)− x(2x)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

fy =
∂

∂y

( −y
x2 + y2

)
=

(x2 + y2)(−1)− (−y)(2y)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Therefore,
∫
D

(gx − fy) dA =
∫
D

0 dA = 0. The two integrals are not equal. �

D1

D2

C
R

x

y CC

D
x

y

Fig. 8.10 Left: the loopC in Example 8.9 encircles the origin. Center: the boundary of D isC∪CR.
Right: D comprises two subregions D1 and D2.

Example 8.9. Find
∫
C

F ·Tds, where F(x,y) =
( −y
x2+ y2

,
x

x2+ y2

)
and C is the

loop shown in Figure 8.10 traversed in the counterclockwise direction. F is
not defined at (0,0) but F is defined on the regular region D between C and
CR, a circle of radius R centered at the origin that does not intersect C. The
boundary of D is C∪CR. We know from Example 8.8 that

∂

∂x

( x

x2+ y2

)
− ∂
∂y

( −y
x2+ y2

)
= 0.
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By Green’s Theorem
∫
∂D

F ·Tds =
∫
D

0 dA = 0.

Splitting D into two regions D1, D2 as in Figure 8.10 and using that CR is
oriented clockwise we get

0 =
∫
∂D

F ·Tds =
∫
∂D1

F ·Tds+
∫
∂D2

F ·Tds

=

∫
C

F ·Tds+
∫
CR clockwise

F ·Tds

In Example 8.8 we saw that the integral along CR counterclockwise is 2π, so

clockwise it is −2π. Therefore
∫
C

F ·Tds = 2π. �

Problems

8.1. Let R be the rectangular region where |x| ≤ 4 and |y| ≤ 2, U the closed unit disk
centered at 0, and S the disk where x2 + y2 ≤ 25. We define two more sets in R

2 as
follows. Let D1 be the closure of the set obtained by removing U from R. Let D2 be
the closure of the set obtained by removing R from S . Sketch D1 and D2 and show
that they are regular sets.

8.2. Show that for a regular set D with boundary oriented counterclockwise,
∫
∂D

xdy = −
∫
∂D

ydx = Area(D).

8.3. Use the Divergence Theorem to evaluate the outward flux
∫
C

(x+6y2,y+6x2) ·Nds

where

(a) C is the unit circle x2+ y2 = 1,
(b) C is the boundary of the rectangle [a,b]× [c,d].

8.4. Use the Divergence Theorem to evaluate the following integrals where D is a
regular set and the unit normals N are outward.

(a)
∫
∂D
∇(x2− y2) ·Nds

(b)
∫
∂D
∇ f ·Nds, where f is a C2 function that satisfies fxx + fyy = 0 on D.
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8.5. Let D be the right half of the unit disk,

x2+ y2 ≤ 1, x ≥ 0,

and let F(x,y) = (1+ x2y2,0). Verify the Divergence Theorem by evaluating both
sides of ∫

∂D
F ·Nds =

∫
D

divFdA

where the unit normals N are outward.

8.6. Let F(x,y) = (−y, x), and let D be the quarter disc with outward unit normals N,

x2+ y2 ≤ 1, 0 ≤ x, 0 ≤ y,
and denote by R the set drawn in Figure 8.11.

(a) Compute the integrals
∫
D

divF dA,
∫
∂D

F ·Nds

without using the Divergence Theorem.
(b) Find the flux of F outward across ∂R.

y

x x

y

D

R

Fig. 8.11 The regions D and R in Problem 8.6.

8.7. Let D be a convex polygonal region in R
2 with vertices P0,P1, . . . ,Pn. Let Ni

be the outward unit normal on the i-th edge, Di, from Pi−1 to Pi (D1 is Pn to P1).
Justify the following items to prove

n∑
i=1

‖Pi−Pi−1‖Ni = 0.

See Figure 8.12 for the case n = 3.

(a) Let F1(x,y) = (1,0) and let the unit normals N = (n1,n2) be outward. Apply the
Divergence Theorem to show that

∫
∂D

n1 ds = 0,
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(b) Let F2(x,y) = (0,1) to show that
∫
∂D

n2 ds = 0.

(c) The integral of a vector valued function is computed componentwise. Conclude
that ∫

∂D
Nds =

(∫
∂D

n1 ds,
∫
∂D

n2 ds
)
= 0.

(d) Show that
∫
Di

Ni ds = ‖Pi−Pi−1‖Ni.

(e) Show that
n∑
i=1

‖Pi−Pi−1‖Ni = 0.

Na

N
b

Nc

bc

a

Fig. 8.12 a, b, and c are the edge lengths, and aNa +bNb + cNc = 0 in Problem 8.7.

8.8. Consider a rectangular region with edges parallel to the x and y axes.

(a) Make a sketch of such a region showing the vector field F(x,y) = (0,cos x) at
various points on the boundary. Explain why the net flux across the boundary is
zero.

(b) Make another sketch to show that the net flux of the vector field G(x,y) = (y2,0)
across the boundary is zero.

(c) Show that the net flux of the vector field H(x,y) = (y2,cos x) across the boundary
of the region is zero.

8.9. Suppose C is a circle in the plane that does not go through (0,0). Show that the
circulation of

F(x,y) =

( −y
x2+ y2

,
x

x2+ y2

)

along C in the counterclockwise direction is either 0 or 2π.

8.10. Suppose F is a C1 vector field on an annulus D in R
2 whose boundary consists

of an inner circle C2 of radius 1, oriented clockwise, and an outer circle C1 of radius
3, oriented counterclockwise. If

∫
C1

F ·Tds = 11 and
∫
C2

F ·Tds = −9,
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find the average of the function curlF over D.

8.11. Let g from R
2 to R and F from R

2 to R
2 be C1 functions on a regular set D.

(a) Show that div(gF) = gdivF+F · ∇g.
(b) Suppose g = 0 on ∂D. Use the Divergence Theorem to show that

∫
D

(divF)gdA = −
∫
D

F · ∇gdA.

(c) Suppose g is C2, and take F = ∇g. If g = 0 at all points of the boundary of D,
show that ∫

D
(Δg)gdA = −

∫
D
|∇g|2 dA.

8.12. Let g1(x,y) = sin xsiny in the region D where 0 ≤ x ≤ π and 0 ≤ y ≤ π.
(a) Verify that g1 is zero at all points of the boundary of D, and that Δg1 = −2g1.
(b) Suppose that g is some C2 function that is zero at all points of the boundary of

D, and that Δg = 2g. Use the results of Problem 8.11 to show this is not possible
unless g is identically zero.

8.13. Suppose F(x,y) =
(
f (x,y),g(x,y)

)
is C1 and let X(t) =

(
x(t),y(t)

)
be a smooth

curve that satisfies the differential equation

X′ = F(X),

that is,
x′(t) = f

(
x(t),y(t)

)
, y′(t) = g

(
x(t),y(t)

)
.

We say that X is a periodic orbit of period p if p is the smallest positive number for
which

X(t+ p) = X(t).

A periodic orbit is the boundary of a regular set. Use the Divergence Theorem to
show that if divF > 0 then a curve X that satisfies X′ = F(X) cannot have a periodic
orbit.

8.14. Suppose P is a regular region in the plane whose boundary is a polygon. We
list the n vertices

(x1,y1), (x2,y2), . . . , (xn,yn)

in order counterclockwise around the boundary. Justify the following steps to show
that

2Area(P) = (−y1x2+ x1y2)+ (−y2x3+ x2y3)+ · · ·+ (−ynx1+ xny1).

(a)
∫
∂P
−ydx+ xdy = 2Area(P)

(b) If C denotes a straight segment from a point (a,b) to point (p,q) then
∫
C
−ydx+ xdy = −bp+aq.
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8.2 The Divergence Theorem in R
3

The Divergence Theorem can be proved for vector valued functions with three com-
ponents of three variables on a smoothly bounded set D in R

3 that is x and y and z
simple. The idea of the proof is the same as for two variables. We apply the Funda-
mental Theorem of Calculus in one of the variables and then integrate with respect
to the other two variables. Let

F(x,y,z) =
(
f (x,y,z),g(x,y,z),h(x,y,z)

)
.

Since D is x simple let Dyz be the set of all points (y,z) for which some point
(x,y,z) is in D. See Figure 8.13. We assume Dyz is a smoothly bounded set in the y,z
plane, and that

a(y,z) ≤ x ≤ b(y,z)

describes the interval of points (x,y,z) in D for which (y,z) is in Dyz.

D

x

z

yb

a

Dyz

Fig. 8.13 A set D in R
3, and Dyz in the y,z plane.

By the Fundamental Theorem of Calculus we have that

∫ b(y,z)

a(y,z)

∂ f
∂x

(x,y,z)dx = f
(
b(y,z),y,z

)− f
(
a(y,z),y,z

)
.

Integrating this over Dyz we get

∫
D

∂ f
∂x

dxdydz =
∫
Dyz

(∫ b(y,z)

a(y,z)

∂ f
∂x

(x,y,z)dx

)
dydz

=

∫
Dyz

(
f
(
b(y,z),y,z

)− f
(
a(y,z),y,z

))
dydz.

(8.7)

At each point on the surface x = b(y,z) the cosine of the angle between the tangent
plane to the surface and the y,z plane is N · i = n1, the x component of the outward
pointing unit normal N. See Figure 8.14.
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σ

D

x

z

y
b d

n

dydz

Dyz

Fig. 8.14 Tangent plane and unit normal N where x = b(y,z) and n1 is positive; n1 dσ = dydz.

σ

D

z

n

n

dydz

1x
1n

d

Fig. 8.15 The ratio of dydz to dσ is n1.

Therefore the relation between integrating with respect to dydz in the y,z plane
and the corresponding surface area dσ above it on x = b(y,z) is

n1 dσ = dydz

so f
(
b(y,z),y,z

)
n1 dσ= f

(
b(y,z),y,z

)
dydz. Similarly the cosine of the angle between

the y,z plane and the plane tangent to the x = a(y,z) surface is −n1, where n1 is
the x component of the outward pointing unit normal. As a result on the graph of
x = a(y,z) we have

n1 dσ = −dydz

and f
(
a(y,z),y,z

)
n1 dσ = − f (a(y,z),y,z

)
dydz. See Figure 8.16.

σ

D

x

z

d
na

y

dydz

Dyz

Fig. 8.16 Tangent plane and unit normal N where x = a(y,z) and n1 is negative; n1 dσ = −dydz.
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So summing over the graphs of x = b(y,z) and x = a(y,z),
∫
Dyz

(
f
(
b(y,z),y,z

)− f
(
a(y,z),y,z

))
dydz =

∫
∂D

f n1 dσ.

Combining this with (8.7) we have
∫
D

∂ f
∂x

dxdydz =
∫
∂D

f n1 dσ.

Now repeating the argument in the other two coordinates we have
∫
D

∂ f
∂x

dxdydz+
∫
D

∂g
∂y

dxdydz+
∫
D

∂h
∂z

dxdydz

=

∫
∂D

f n1 dσ+
∫
∂D

gn2 dσ+
∫
∂D

hn3 dσ,

giving ∫
D

divFdxdydz =
∫
∂D

F ·Ndσ (8.8)

where N is the outward unit normal to the boundary of D. Just as in R
2 we can extend

the result (8.8) to sets D that are regular, i.e., a finite union of smoothly bounded
sets in R

3 that are x, y, and z simple and have only boundary points in common. This
result is known as the Divergence Theorem.

Theorem 8.3. The Divergence Theorem. Let F be a C1 vector field on reg-
ular set D in R

3 and let N be the unit normals to ∂D that point out of D.
Then ∫

∂D
F ·Ndσ =

∫
D

divF dV .

Example 8.10. Let F(x,y,z) = (x,y,z) and let D be the solid rectangular box

2 ≤ x ≤ 4, 7 ≤ y ≤ 10, 1 ≤ z ≤ 5.

Find the flux of F outward across the boundary of D. By the Divergence The-
orem ∫

∂D
F ·Ndσ =

∫
D

divF dV .

Since divF =
∂(x)
∂x
+
∂(y)
∂y
+
∂(z)
∂z
= 1+1+1 = 3, we have

∫
∂D

F ·Ndσ =
∫
D

3 dV = 3Vol(D) = 3(2)(3)(4) = 72.
�



8.2 The Divergence Theorem in R
3 349

z

x y

h

B

Fig. 8.17 The cone in Example 8.11.

Example 8.11. Let D be a solid cone with base B of area A and height h as
shown in Figure 8.17. We use the vector field F(x,y,z) = (x,y,z) to show that
the volume of the cone is 1

3hA. Since divF = 3, the Divergence Theorem gives

∫
∂D

F ·Ndσ =
∫
D

divFdV = 3Vol(D).

The boundary of D consists of the base B and sides S . The unit normal to B is
k = (0,0,1), and the normals to S are perpendicular to F. Therefore

∫
∂D

F ·Ndσ =
∫
B

F ·kdσ+
∫
S

F ·Ndσ =
∫
B
hdσ+0 = hA,

and Vol(D) = 1
3hA. �

Example 8.12. Let F(x,y,z) =
(x,y,z)

(x2+ y2+ z2)3/2
. The divergence of this field is

zero: since
∂

∂x
x

(x2+ y2+ z2)3/2
=

(x2+ y2+ z2)−3x2

(x2+ y2+ z2)5/2
,

∂

∂y
y

(x2+ y2+ z2)3/2
=

(x2+ y2+ z2)−3y2

(x2+ y2+ z2)5/2
,

∂

∂z
z

(x2+ y2+ z2)3/2
=

(x2+ y2+ z2)−3z2

(x2+ y2+ z2)5/2
,

their sum
∂ f1
∂x
+
∂ f2
∂y
+
∂ f3
∂z
= divF = 0. In the next examples we will compute

the flux of F across various surfaces. �

Example 8.13. Let F(x,y,z) =
(x,y,z)

(x2+ y2+ z2)3/2
. Find the flux of F outward

across a sphere S R of radius R centered at the origin. We cannot apply the
Divergence Theorem since F is not defined at (0,0,0). So we compute the
surface integral. At each point on the sphere, the direction of F is radial and

normal to the surface, so F ·N= ‖F‖. At each point on S R, ‖F‖= 1

R2
. Therefore
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∫
S R

F ·Ndσ =
∫
S R

‖F‖dσ =
∫
S R

1

R2
dσ =

1

R2
4πR2 = 4π.

�

x y

z

x y

z

D W

R
S

Fig. 8.18 Left: A regular set D with the origin interior, Right: A regular set W that does not contain
(0,0,0). See Example 8.14.

Example 8.14. Let F(x,y,z) =
(x,y,z)

(x2+ y2+ z2)3/2
. Find the flux of F outward

across the boundary of a regular set D that contains the origin in its interior.
Because F is not defined at the origin, we cannot apply the Divergence Theo-
rem directly to compute the flux of F across ∂D. Since (0,0,0) is in the interior
of D, there is a small sphere S R of radius R centered at (0,0,0) contained in
the interior of D. See Figure 8.18. The region between S R and ∂D is a regu-
lar set that does not contain (0,0,0). Call it W. We can apply the Divergence
Theorem to F on W and get

∫
∂W

F ·Ndσ =
∫
W

divFdV .

In Example 8.12 we found divF= 0. Therefore
∫
W

divFdV = 0. By the Diver-

gence Theorem the outward flux of F across

∂W = (∂D)∪S R

is also zero. Using the result from Example 8.13 we get

0 =
∫
∂W

F ·Ndσ =
∫
∂D

F ·Ndσ−
∫
S R

F ·Ndσ =
∫
∂D

F ·Ndσ−4π.

Therefore
∫
∂D

F ·Ndσ = 4π. �
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Problems

8.15. Let F(X) = X. Use the Divergence Theorem to evaluate
∫
∂D

F ·Ndσ

for each of the following sets D in R
3.

(a) D is the unit ball, ‖X‖ ≤ 1.
(b) D is a ball, ‖X−A‖ ≤ r, A and r > 0 constant.

8.16. Let D be a regular set in R
3, let N be the outward pointing unit normals to ∂D,

and let F be a C2 vector field. Show that
∫
∂D

(curlF) ·Ndσ = 0.

8.17. Use the Divergence Theorem to evaluate the integrals over the sphere S given
by x2+ y2+ z2 = 82 with unit normals N pointing away from the origin.

(a)
∫
S

(x+2y,3y+4z,5z+6x) ·Ndσ

(b)
∫
S

(1,0,0) ·Ndσ

(c)
∫
S

(x,0,0) ·Ndσ

(d)
∫
S

(x2,0,0) ·Ndσ

(e)
∫
S

(0, x2,0) ·Ndσ

8.18. Use the Divergence Theorem to find the flux of F outward across the boundary
of the rectangular box D = [a,b]× [c,d]× [e, f ].

(a) F(x,y,z) = (p+qx+ rx2,0,0), p,q,r constants
(b) F(x,y,z) = (0, p+qx+ rx2,0), p,q,r constants
(c) F = ∇h, if h is a C2 function with Δh = 0.
(d) F(x,y,z) =

(
ex,ey,ez

)
.

8.19. Let F be a C1 vector field on a regular set D in R
3. Justify the following steps

to show that ∫
D

curlFdV =
∫
∂D

N×Fdσ.

Here N is the outward unit normal and the integral of a vector means to integrate
each component of the vector.

(a) (N×F) ·C = N · (F×C) where C = (c1,c2,c3) is a constant vector.
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(b)
∫
∂D

N · (F×C)dσ =
∫
D

div(F×C)dV .

(c)
∫
∂D

N · (F×C)dσ =
∫
D

(curlF) ·CdV .

(d)
∫
∂D

(N×F) ·Cdσ−
∫
D

(curlF) ·CdV = 0.

(e)

(∫
∂D

N×Fdσ−
∫
D

curlF dV

)
·C = 0.

(f)
∫
∂D

N×Fdσ−
∫
D

curlF dV = 0.

8.20. Let p be a C1 function on a regular set D in R
3. Justify the following steps to

show that ∫
D
∇pdV =

∫
∂D

Npdσ.

Here the integral of a vector means to integrate each component of the vector. Let
C = (c1,c2,c3) be a constant vector.

(a)
∫
∂D

N · (pC)dσ =
∫
D

div(pC)dV =
∫
D

(∇p ·C+ pdivC) dV =
∫
D
∇p ·CdV .

(b) 0 =
∫
∂D

Npdσ ·C−
∫
D
∇pdV ·C =

(∫
∂D

Npdσ−
∫
D
∇pdV

)
·C.

(c)
∫
∂D

Npdσ =
∫
D
∇pdV .

N
A

Fig. 8.19 The sum over all the faces, of face areas A times unit normal vectors N is the zero vector,
in Problem 8.21.

8.21. Suppose a polyhedron D has faces S 1, . . . ,S k. Let Ni be the outward unit nor-
mal vector of S i. Justify the following items to prove that the sum of areas times
unit normal vectors of the faces is zero:

k∑
i=1

Area(S i)Ni = 0.

See Figure 8.19.
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(a) Use the Divergence Theorem for the constant vector field F = (1,0,0) to show
that ∫

∂D
n1 dσ = 0,

where N = (n1,n2,n3) is the outer unit normal.

(b) Show that
∫
∂D

Ndσ = 0, where the integral of a vector means to integrate each

component of the vector.

(c) For each face of D,
∫
S i

Ni dσ = Area(S i)Ni.

8.22. Denote the inverse square vector field F(x,y,z) =
(x,y,z)

(x2+ y2+ z2)3/2
of Exam-

ple 8.12 as
F(X) = ‖X‖−3X,

and define a vector field G(X) = F(X−A), a translation of F by a constant A.

(a) What is the domain of G?
(b) Show that divG = 0.
(c) Show that the flux ∫

∂W
G ·Ndσ

of G outward through the boundary of a regular region W is zero or 4π according
to whether A is outside or inside W and A is not on ∂W.

8.23. Let G(X) = c1F(X−A1)+ · · ·+cnF(X−An) be a linear combination of inverse
square vector fields, where F(X) = ‖X‖−3X.

(a) What is the domain of G?
(b) Show that divG = 0.
(c) Show that the flux of G out of each regular set W is

∫
∂W

G ·Ndσ =
∑

Ak in W

4πck,

where the sum is over indices k for which Ak is in the interior of W and none of
the Ak is on the boundary.

8.24. Let X = (x1, x2, x3) and let H(X) =
(‖X‖−3X

)
x1

, the first x1 partial derivative
of the inverse square vector field. See Figure 8.20.

(a) Show that H = ‖X‖−3(1,0,0)−3x1‖X‖−5X.
(b) What is the domain of H?
(c) Show that divH = 0.
(d) Use the Divergence Theorem to show that the flux of H out of every regular set

D that does not contain the origin is zero.
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x , x  plane2 3

x1

Fig. 8.20 The field H in Problem 8.24, drawn in any plane containing the x1 axis.

(e) Evaluate ∫
∂B

H ·Ndσ

directly when B is the region where ‖X‖ ≤ 1. Explain why the Divergence Theo-
rem does not apply here.

8.25. Let u and v beC2 on a regular set D in R
3. Show that div(v∇u)= vΔu+∇v ·∇u,

and use the Divergence Theorem to derive

(a)
∫
D

(
uΔu+ |∇u|2)dV =

∫
∂D

u∇u ·Ndσ

(b)
∫
D

(
vΔu−uΔv) dV =

∫
∂D

(v∇u−u∇v) ·Ndσ.

8.26. Let f (x,y,z) = sin(x) sin(y) sin(z).

(a) Show that Δ f = −3 f in the cube [0,π]3 and that f = 0 on the boundary of the
cube.

(b) Suppose a function g has the properties Δg = 3g in the cube and g = 0 on the
boundary. Use the result in Problem 8.25(a) to show that g is identically 0 in the
cube.

8.27. Let D be a regular set in R
3. Suppose f is a C2 function on D and λ a number

such that
Δ f = λ f

in D and f = 0 on ∂D. Show that if λ > 0 then f is zero in D.

8.28. Define F(X) =
(‖X‖2 − 2

)
X, where X = (x,y,z), and let D be the set ‖X‖ ≤ r

where r is a positive number. Find r so that
∫
D

divFdV = 0.
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8.3 Stokes’ Theorem

Green’s Theorem says that for a C1 vector field F(x,y) =
(
f1(x,y), f2(x,y)

)
on a reg-

ular region D in the plane we have
∫
D

curlFdA =
∫
∂D

F ·Tds.

Suppose we have a flat surface S that lies in a plane z = c in R
3. Denote by S xy the

“shadow” of S in the x,y plane, that is the set of points (x,y,0) such that (x,y,c) is
in S . See Figure 8.21. We see for G(x,y,z) =

(
g1(x,y,z),g2(x,y,z),g3(x,y,z)

)
∫
S

(curlG) ·Ndσ =
∫
S

(curlG) · (0,0,1)dσ

=

∫
S xy

(
∂g2

∂x
(x,y,c)− ∂g1

∂y
(x,y,c)

)
dσ

=

∫
∂S xy

g1(x,y,c)dx+g2(x,y,c)dy =
∫
∂S

G ·Tds.

Therefore ∫
S

(curlG) ·Ndσ =
∫
∂S

G ·Tds. (8.9)

y

N

Tx

z
S

Sxy

Fig. 8.21 Left: A flat surface S and its shadow. Right: A surface that is the union of polygons.

Equation 8.9 also holds for surfaces in every plane, not just in planes parallel to
the x,y plane. Hence if our surface is the union of finitely many plane polygon faces
S i that meet along their edges then we can use the additivity of surface integrals and
line integrals to add the formulas for the faces:
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∫
S

(curlG) ·Ndσ =
n∑
i=1

∫
S i

(curlG) ·Ni dσ

=

n∑
i=1

∫
∂S i

G ·Ti dσ

=

∫
∂S

G ·Tds.

See Figure 8.21. This suggests Stokes’ Theorem, that equation 8.9 holds for piece-
wise smooth surfaces that are images of sets where Green’s Theorem holds.

Theorem 8.4. Stokes’ Theorem. Let G be a vector field that is C1 on a piece-
wise smooth oriented surface S in R

3 whose boundary ∂S is a piecewise
smooth curve, and that the domains of the parametrizations of S are regu-
lar sets in R2. Then

∫
S

curlG ·Ndσ =
∫
∂S

G ·Tds, (8.10)

where the orientation of the unit normal vector N to S and of the unit tangent
vector T to the boundary are chosen as in Figure 8.22.

S

T

N

S

N N

T N

N

Fig. 8.22 A surface S oriented two ways, and the corresponding boundary orientations in Stokes’
Theorem.

We give two proofs. The first proof approximates the surface by triangles and
applies Green’s Theorem to those. The second proof uses Green’s Theorem on the
preimages of S .

Proof. (Approximation argument) Let X from D in the u, v plane to R
3 be a

parametrization for one of the smooth surfaces that compose S . Since Xu(u,v) and
Xv(u,v) are linearly independent, a triangular region T with vertices

(u0,v0), (u0+h,v0), (u0,v0+h)

is mapped to a “curved triangular” region X(T ) on S with vertices

X(u0,v0), X(u0+h,v0), X(u0,v0+h).
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Denote by T ′ the triangle in R
3 with those vertices. See Figure 8.23.

u

v

yx

z

S
hT T’

X

Fig. 8.23 Triangles T and T ′ in the proof of Stokes’ Theorem.

By the Mean Value Theorem

X(u0+h,v0)−X(u0,v0) = Xu(ũ,v0)h,

X(u0,v0+h)−X(u0,v0) = Xv(u), ṽ)h.

The norm of the cross product of these vectors is twice the area of the triangle T ′.
The area of T is 1

2h
2. Since Xu and Xv are continuous functions, for every ε > 0 we

can choose h so small that for each point (u1,v1) in T
∫
T
‖Xu(u,v)×Xv(u,v)−Xu(u1,v1)×Xv(u1,v1)‖dudv ≤ ε( 1

2h
2).

Denote by X1(u,v) the linear approximation of X(u,v) through T ′. Since the first
derivatives of X(u,v) are continuous, for every ε > 0, for h small enough

‖curlG
(
X(u,v)

)− curlG
(
X1(u,v)

)‖ < ε.
Also since X1(u,v) is the linear approximation of X(u,v) through T ′, for h small
enough

‖X(u,v)−X1(u,v)‖ < ε
for all (u,v) in the triangle T . We show that the difference between the flux of curlG
across X(T ) and the flux of curlG across T ′ is small:

∣∣∣∣∣∣
∫

X(T )
(curlG) ·Ndσ−

∫
T ′

(curlG) ·Ndσ

∣∣∣∣∣∣

=

∣∣∣∣∣
∫
T

((
curlG

(
X(u,v)

)) ·Xu×Xv− (
curlG

(
X1(u,v)

)) ·X1u×X1v

)
dudv

∣∣∣∣∣ .
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By the triangle inequality this is

≤
∣∣∣∣∣
∫
T

((
curlG

(
X(u,v)

)− curlG
(
X1(u,v)

)) ·Xu×Xv

)
dudv

∣∣∣∣∣

+

∣∣∣∣∣
∫
T

((
curlG

(
X1(u,v)

)) · (Xu×Xv−X1u×X1v)
)
dudv

∣∣∣∣∣

≤
∫
T
‖curlG

(
X(u,v)

)− curlG
(
X1(u,v)

)‖‖Xu×Xv‖dudv

+

∫
T
‖curlG

(
X1(u,v)

)‖‖Xu×Xv−Xu(ũ,v0)×Xv(u0, ṽ)‖dudv

≤ kεArea(T ) = kε
h2

2
,

for some constant k that depends on the maximum of ‖curlG‖. There are
Area(D)

1
2h

2

triangular regions in the region D. The error in using triangular regions to approxi-
mate ∫

∪iX(Ti)
(curlG) ·Ndσ

is bounded by the sum of the errors in each triangle,

Area(D)
1
2h

2

(
kε

h2

2

)
= Area(D)kε.

By taking h small enough we can get the difference between the integrals less than
ε: ∣∣∣∣∣∣∣

∫
∪iX(Ti)

(curlG) ·Ndσ,−
∫
∪iT ′i

(curlG) ·Ndσ

∣∣∣∣∣∣∣ < ε. (8.11)

Now in each flat triangle T ′i we use Green’s Theorem,

∫
T ′i

(curlG) ·Ndσ =
∫
∂T ′i

G ·Tds

to get ∫
T ′i

(curlG) ·Ndσ−
∫
∂T ′i

G ·Tds = 0. (8.12)

We use an argument on the boundaries similar to the one we used for the triangular
regions to show that for h small enough

∣∣∣∣∣∣∣
∫
∪i∂T ′i

G ·Tds−
∫
∪i∂X(Ti)

G ·Tds

∣∣∣∣∣∣∣ < ε. (8.13)
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Similarly for h small enough
∣∣∣∣∣∣
∫
S

(curlG) ·Ndσ−
∫
∪iX(Ti)

(curlG) ·Ndσ

∣∣∣∣∣∣ < ε (8.14)

and ∣∣∣∣∣∣
∫
∂S

G ·Tds−
∫
∪i∂X(Ti)

G ·Tds

∣∣∣∣∣∣ < 2ε (8.15)

Adding relations (8.11)–(8.15) we get by triangle inequalities that
∣∣∣∣∣
∫
S

(curlG) ·Ndσ−
∫
∂S

G ·Tds
∣∣∣∣∣

can be made as small as we like by taking h small enough. This proves (8.10) of
Theorem 8.4. 	


Fig. 8.24 Preparing to view Stokes’ Theorem as a curved version of Green’s Theorem.

The second proof uses Green’s Theorem in a different way. See Figure 8.24.

Proof. We consider first the case where the surface S is the range of a single smooth
parametrization X from the u, v plane to R

3. So S = X(D), where D is a regular set
in R

2 and X(∂D) = ∂S . Then
∫
S

(curlG) ·Ndσ =
∫
D

(curlG)(X(u,v)) ·Xu×Xv dudv.

By the Chain Rule and some simplifying that we ask you to carry out in Prob-
lem 8.38 we see that

(curlG)(X(u,v)) ·Xu×Xv =
(
G(X(u,v))

)
u ·Xv− (

G(X(u,v))
)
v ·Xu.

We define a vector field on D in R
2 by

F(u,v) =
(
G(X(u,v)) ·Xu(u,v),G(X(u,v)) ·Xv(u,v)

)
;
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then

curlF(u,v) =
∂

∂u

(
G(X(u,v)) ·Xv(u,v)

)
− ∂
∂v

(
G(X(u,v)) ·Xu(u,v)

)

=G(X(u,v)) ·Xvu(u,v)+Xv(u,v) · ∂
∂u

G(X(u,v))

−G(X(u,v)) ·Xuv(u,v)−Xu(u,v) · ∂
∂v

G(X(u,v))

= (curlG)(X(u,v)) ·Xu×Xv.

So
∫
S

(curlG) ·Ndσ =
∫
D

(
curlG

)
(X(u,v)) ·Xu×Xv dudv

=

∫
D

curl
(
G(X(u,v)) ·Xu(u,v),G(X(u,v)) ·Xv(u,v)

)
dudv =

∫
D

curlFdudv.

By Green’s Theorem ∫
D

curlFdudv =
∫
∂D

F ·Tds.

Now let R(t) =
(
u(t),v(t)

)
, a ≤ t ≤ b parametrize ∂D. Then X(R(t)) parametrizes ∂S .

∫
∂D

F ·Tds =
∫ b

a
F(R(t)) ·R′(t)dt

=

∫ b

a

(
G(X(R(t))) ·Xu(R(t)),G(X(R(t))) ·Xv(R(t)),

)
·R′(t)dt

=

∫ b

a

(
g1xu+g2yu+g3zu,g1xv+g2yv+g3zv

)
·R′(t)dt

=

∫ b

a

(
(g1xu+g2yu+g3zu)u′+ (g1xv+g2yv+g3zv)v

′)dt

=

∫
∂S

g1 dx+g2 dy+g3 dz =
∫
∂S

G ·Tds.

This concludes the case where S has a single parametrization.
Suppose now that S is a union of such surfaces that meet pairwise on common

edges. We assume these are oriented so that the line integrals associated to adjoin-
ing parts cancel on these common edges. See Figure 8.25. The edges that are not
common to two parts constitute ∂S , so Stokes’ formula for S is obtained by adding
the Stokes’ formulas for the parametrized parts of S . 	


In Example 3.32 we saw that if F = ∇ f then curlF = 0. We now show that under
an additional condition on the domain of F the converse holds. Suppose that every
closed loop C in the domain of F is the boundary ∂S of a smooth surface S in D.

http://dx.doi.org/10.1007/978-3-319-74073-7_3
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N

N

Fig. 8.25 A surface parametrized in two parts, in the proof of Stokes’ Theorem. The common edge
is drawn apart to show why the line integrals cancel there.

By Stokes’ Theorem if curlF = 0 we have
∫
C=∂S

F ·Tds =
∫
S

curlF ·Ndσ = 0,

and by Theorem 7.1 there is a potential function g so that ∇g = F. Domains that
have the property that we need are called simply connected.

Definition 8.2. We say that a set in R
n is simply connected if it is connected

and if every simple closed curve in the set can be shrunk continuously within
the set to a point.

We state without proof the following result: If a set is simply connected then
every piecewise smooth simple closed curve in the set is the boundary of a piecewise
smooth surface in the set.

So we have the following theorem.

Theorem 8.5. Suppose a vector field F is C1 on an open simply connected set
U in R

3 on which curlF = 0. Then there is a function g from U to R so that
∇g = F.

Example 8.15. The set D1 of points in R
3 with ‖X‖ � 0 is simply connected.

The set D2 of points in R
3 not on the z axis is not simply connected.

If F1 is a C1 vector field with curlF1 = 0 on D1, then F1 has a potential
function.

If F2 is a C1 vector field with curlF1 = 0 on D2, then we cannot conclude
anything about the existence of a potential function for F2. �

http://dx.doi.org/10.1007/978-3-319-74073-7_7
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N

(x,y,z)

S

D

Fig. 8.26 The hemisphere in Example 8.16.

Example 8.16. Verify Stokes’ Theorem for F(x,y,z) = (z2,−2x,y5) and S the
upper hemisphere of radius 1 centered at the origin. See Figure 8.26. We com-
pute curlF(x,y,z) = (5y4,2z,−2). At each point (x,y,z) on S , the unit normal
vector is N = (x,y,z).

∫
S

(curlF) ·Ndσ =
∫
S

(5y4,2z,−2) · (x,y,z)dσ

=

∫
S

5y4xdσ+
∫
S

2zydσ−
∫
S

2zdσ.

By symmetry the first two integrals are zero. Using the parametrization of the
upper hemisphere

X(x,y) =
(
x,y,

√
1− x2− y2), 0 ≤ x2+ y2 ≤ 1, ‖Xx ×Xy‖ = 1√

1− x2− y2

with domain the disk D : 0 ≤ x2+ y2 ≤ 1 we get

∫
S

(curlF) ·Ndσ = −
∫
S

2zdσ = −2
∫
D

√
1− x2 − y2√
1− x2 − y2

dxdy = −2Area(D) = −2π.

To compute
∫
∂S

F ·Tds we use X(t) = (cos t,sin t,0), 0 ≤ t ≤ 2π to parametrize

∂S consistent with the upward pointing unit normals on S . We get
∫
∂S

F ·Tds =
∫ 2π

0
(0,−2cos t,sin5 t) · (−sin t,cos t,0)dt =

∫ 2π

0
−2cos2 tdt = −2π.

�

Example 8.17. Let F(x,y,z) =
( −y
x2+y2 ,

x
x2+y2 ,0

)
.

(a) Find the circulation of F around a piecewise smooth simple closed curve
C1 that does not encircle or intersect the z-axis.

(b) Find the circulation of F around a piecewise smooth simple closed curve
C2 that encircles the z-axis once (but does not intersect it).

See Figure 8.27. For (a) let S be a piecewise smooth surface with ∂S = C1.
Then since curlF = 0 we have by Stokes’ Theorem
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Fig. 8.27 Left: The curves and Right: the surface in Example 8.17.

∫
C1=∂S

F ·Tds =
∫
S

curlF ·Ndσ = 0.

For (b), since F is not defined on the z axis, curlF is not defined there either.
Every surface with boundary C2 would include a point on the z axis. Stokes’
Theorem cannot be applied on such a surface. Consider a circleCR of radius R
centered on the z axis in a horizontal plane z = k that does not intersect C2. Let
S be a piecewise smooth oriented surface whose boundary is CR∪C2. Stokes’
Theorem applied to this surface gives
∫
C2

F ·Tds+
∫
CR

F ·Tds =
∫
∂S=CR∪C2

F ·Tds =
∫
S

curlF ·Ndσ =
∫
S

0dσ = 0.

Suppose C2 encircles the z axis “counterclockwise” as in Figure 8.27. Then
CR goes clockwise. Parametrize CR by X(t) = (Rcos t,−Rsin t,k), 0 ≤ t ≤ 2π.
We get

0 =
∫
C2

F ·Tds+
∫
CR

F ·Tds

=

∫
C2

F ·Tds+
∫ 2π

0

(Rsin t

R2
,
Rcos t

R2
,0

)
· (−Rsin t,−Rcos t,0)dt

=

∫
C2

F ·Tds+
∫ 2π

0
(−1)dt =

∫
C2

F ·Tds−2π.

The circulation of F around C2 is 2π. Similarly if C2 encircles the z axis once
in the other direction the circulation is −2π. �

Consider two smooth surfaces S 1 and S 2 that have the same oriented boundary

∂S 1 = ∂S 2

as illustrated in Figure 8.28, and a vector field F that is C1 on both surfaces. Since
∫
∂S 1

F ·Tds =
∫
∂S 2

F ·Tds,

Stokes’ Theorem implies that the fluxes of curlF across S 1 and across S 2 are equal,
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∫
S 1

curlF ·Ndσ =
∫
S 2

curlF ·Ndσ

where the normal vectors N are consistent with the boundary orientation.

Example 8.18. Let F(x,y,z) = (z2,−2x,y5) and let S be the upper unit hemi-
sphere as in Example 8.16. Let S 1 be the unit disk x2+y2 ≤ 1 in the x,y plane,
with unit normal vectors (0,0,1). Then

∫
S

curlF ·Ndσ =
∫
S 1

curlF · (0,0,1)dσ

= −2
∫
S 1

dσ = −2Area(S 1) = −2π.

�

S 1 S2

N

N

N

N

Fig. 8.28 Two surfaces S 1 and S 2 that have the same boundary.

Electromagnetism examples. Stokes’ Theorem is often used in the study of elec-
tromagnetism. The electric field denoted E [force/charge] and magnetic field B
[force/charge/velocity] are known to satisfy the system of Maxwell’s differential
equations

μ0ε0Et = curlB−μ0J, Bt = −curlE, divE =
ρ

ε0
, divB = 0,

where μ0, ε0 are constants, ρ [charge/vol] is the density of electric charge, and J
[charge/time/area] is the current density. Several of the Problems explore relations
among these to illustrate the use of vector calculus.

Problems

8.29. Use Stokes’ Theorem to evaluate the line integrals
∫
C

F ·Tds
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(a) F(x,y,z) = (0, x,0) and C is the circle x2 + y2 = 1 in the plane z = 0, traversed in
the counterclockwise direction as you look at the plane from the positive z axis.

(b) F(x,y,z) = (y,0,0) and C is the triangular path consisting of the three line seg-
ments from A = (a,0,0) to B = (0,b,0) to C = (0,0,c) to A, where a,b,c are
positive.

8.30. Verify Stokes’ formula
∫
S

curlF ·Ndσ =
∫
∂S

F ·Tds

for the following cases by evaluating the integrals on both sides.

(a) F(x,y,z) = (−y, x,1), and S is the top face of the cube [0,1]3, with N toward +z.
(b) F(x,y,z)= (−y, x,1), and S consists of the other five faces of the cube [0,1]3, with

N inward.

8.31. Verify Stokes’ formula
∫
S

curlF ·Ndσ =
∫
∂S

F ·Tds

for the following cases by evaluating the integral on both sides.

(a) F(x,y,z) = (−y, x,2), and S is the hemisphere x2 + y2 + z2 = r2, z ≥ 0, r constant,
with N toward +z.

(b) F(x,y,z)= (−y, x,2), and S is the disk x2+y2 ≤ r2, z= 0, r constant, with N toward
+z.

V2

V1

C2

1C

S

Fig. 8.29 The flow in Problem 8.32.

8.32. A C1 vector field V models the fluid velocity in a rotating storm as in Fig-
ure 8.29. The surface S in the figure is a vertical cylinder open at top and bottom,
where C1 and C2 are boundary circles, and V1 and V2 denote the values of V on C1

and C2, respectively. We suppose two properties hold:

(a) curlV =
(
0,0,h(x,y,z)

)
is parallel to the axis of the cylinder, and

(b) V1 and V2 in the figure are tangent to C1 and C2, respectively, and have constant
norms ‖V1‖ < ‖V2‖.

Use Stokes’ Theorem to show that the properties are not consistent with each other.
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8.33. Suppose S is a sphere and the vector field F is C1 on S . Show that
∫
S

curlF ·Ndσ = 0.

8.34. Let S be the hemisphere x ≤ 0 of the unit sphere centered at the origin in R
3,

oriented with normal pointing away from the origin. Evaluate
∫
S

curl (x3z, x3y,y) ·Ndσ.

8.35. A wire of radius R along the z axis (see Figure 8.30) carries a constant current
density J = (0,0, j) and there is a magnetic field of the form

B =

⎧⎪⎪⎨⎪⎪⎩
c1(−y, x,0) (r < R)

c2
(−y,x,0)

rp (r > R)

where r =
√
x2+ y2 and c1, c2 and p are some constants. Outside the wire J = 0, and

there is no dependence on the time t in this problem.

(a) Use the Maxwell equation 0 = curlB−μ0J inside the wire to find c1.
(b) Find p so that 0 = curlB−μ0J holds outside the wire.
(c) Find c2 so that B is continuous in R

3.
(d) Let D be a disk of radius R1 > R, center on the z axis, parallel to the x,y plane

and with normal N aligned with J. Then curlB is not continuous on D. Show that
Stokes’ formula ∫

D
curlB ·Ndσ =

∫
∂D

B ·Tds

holds. Be sure to explain the meaning of the surface integral of the discontinuous
function.

8.36. We say a vector field F is a vector potential of a vector field G if G = curlF.
Show that if F is a vector potential of G then the flux of G across a surface S depends
only on the values of F on the boundary of S . As a result, we say if G has a vector
potential its flux is “independent of surface.”

8.37. Ampere’s original law related magnetic field B along the boundary of each
oriented surface S with the electric current J passing through S by

∫
∂S

B ·Tds = μ0

∫
S

J ·Ndσ,

μ0 a constant.

(a) Use Stokes’ formula to deduce

curlB = μ0J.
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S 1

S2J

B

D

Fig. 8.30 Left: Current in a wire for Problem 8.35. Right: The displaced surface acquires displace-
ment current in Problem 8.37.

(b) Show that part (a) contradicts the conservation of charge law

ρt +divJ = 0,

where ρ is the density of electric charge that can vary with time.

Remark. Maxwell later replaced Ampere’s law curlB = μ0J with

curlB = μ0(J+ ε0Et),

calling ε0Et the “displacement current.” This change allowed the unification of light
with electromagnetism. See Figure 8.30 for a sketch of a surface displaced into the
region of changing magnetic field in a capacitor.

8.38. Show that if G is a continuously differentiable vector field in a set containing
a smooth surface S , and S is parametrized by X(u,v) with domain D in the plane
then (

(curlG)(X(u,v))
)
· (Xu×Xv) = (G◦X)u ·Xv− (G◦X)v ·Xu.

We used this formula in our second proof of Stokes’ Theorem.

8.39. Use Stokes’ formula to deduce

d
dt

∫
S

B ·Ndσ = −
∫
∂S

E ·Tds

from the Maxwell law Bt = −curlE. See Figure 8.31.
Remark. This relates to generation of electric power.

8.40. Which of these sets are simply connected?

(a) The set of all points (x,y,z) in R
3 that are not on the x axis.

(b) The set of all points in R
2 other than (0,0).

(c) The set of all points in R
3 in a solid torus (doughnut).
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B

S

Fig. 8.31 Changing magnetic flux is related to electric field in a loop, in Problem 8.39.

8.4 Conservation laws

We illustrate an application of multivariable calculus by discussing conservation
laws. A conservation law expresses the fact that the rate at which the total amount of
some substance (mass, momentum, energy) contained in a set D changes is equal to
the rate at which that substance enters the set. We denote the density of the substance
as s [substance/volume], and denote the rate at which it flows [substance/area/time]
as F. Then the total amount of the substance in D at time t is

∫
D
sdV .

The amount of substance that flows out of D per unit time is
∫
∂D

F ·Ndσ

where the unit normal vectors N are outward. According to the conservation law the
rate at which the amount of substance contained in D changes,

d
dt

∫
D
s dV

is equal to the rate at which the substance flows inward through the boundary of D.
So conservation of substance is expressed by the equation

d
dt

∫
D
sdV = −

∫
∂D

F ·Ndσ. (8.16)

On the left we can carry out differentiation with respect to t under the integral sign,
and on the right we use the Divergence Theorem to transform the integral over the
boundary of D into an integral over D. We get
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∫
D
st dV = −

∫
D

divF dV .

Combining the two sides we get
∫
D

(
st +divF

)
dV = 0.

Since this relation holds for all regular regions D it follows that the integrand must
be zero (see Problem 6.17):

st +divF = 0. (8.17)

This is the differential form of a conservation law.

Conservation laws for fluid flow. We shall describe now the three basic conser-
vation laws of mass, momentum, and energy of a fluid as instances of the general
conservation law (8.17).

Fluid dynamics, the study of the flow of fluids, is an extremely interesting and
important branch of science, encompassing aspects of mathematics, physics, and
engineering. It is basic for understanding the flight of airplanes.

A. Conservation of mass. We denote the density [mass/volume] of a fluid by the
Greek letter ρ. Flow velocity [distance/time] is denoted by V = (u,v,w). Therefore
the rate at which material is transported is ρV [mass/area/time]. Setting

s = ρ, F = ρV

into the conservation law (8.17) gives the law of conservation of mass:

ρt +div(ρV) = 0. (8.18)

For an incompressible fluid the density ρ is a constant, independent of space and
time; for such a fluid the equation of conservation of mass is then

divV = 0. (8.19)

B. Conservation of momentum. As above we denote the density of the fluid by ρ
and velocity by V = (u,v,w). The pressure is P [force/area].

We will show that
ρ (Vt +V · ∇V)︸����������︷︷����������︸

accel.

= −∇P,

a version of Newton’s law of motion.
The density of momentum in the x direction is the x component of ρV, ρu. We

assume it is transported into a set D by two mechanisms:

(a) It is carried by the substance flowing across ∂D into D.
(b) It is imparted by the x component of the fluid pressure acting on ∂D.

We describe now these mechanisms in detail.

http://dx.doi.org/10.1007/978-3-319-74073-7_6
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a) The rate at which xmomentum is carried into the domain D by the flow is

−
∫
∂D
ρuV ·Ndσ,

where N = (n1,n2,n3) is the outward unit normal.
b) The rate at which x momentum is imparted to the fluid at the boundary is the

pressure force on ∂D in the x direction,

−
∫
∂D

Pn1 dσ.

We assume no forces act other than pressure forces. The total rate of change of x
momentum is the sum

−
∫
∂D

(
ρuV ·N+Pn1

)
dσ.

Thus the law of conservation of x momentum in the form (8.16) is

d
dt

∫
D
ρudV = −

∫
∂D

(
ρuV ·N+Pn1

)
dσ = −

∫
∂D

(
ρuV+ (P,0,0)

) ·Ndσ.

In the differential form (8.17) it is

(ρu)t +div
(
ρuV+ (P,0,0)

)
= 0.

We use the mass conservation equation (8.18) to express ρt as −div(ρV) in the equa-
tion above; we get

ρut −udiv(ρV)+div(ρuV)+Px = 0.

Using differentiation rules we have div(ρuV) = ∇u · (ρV)+udiv(ρV). Substitute and
simplifying we get

ρut +ρ∇u ·V+Px = 0

or
ρ(ut +uux + vuy+wuz)+Px = 0.

Similar equations hold for the other two coordinates; we write all three as the vector
equation

ρ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ut
vt
wt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+u
∂

∂x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
u
v
w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+ v
∂

∂y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
u
v
w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+w
∂

∂z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
u
v
w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Px

Py

Pz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

ρ(Vt +V · ∇V)+∇P = 0. (8.20)

We ask you in Problem 8.44 to identify the vector

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ut +uux + vuy+wuz
vt +uvx + vvy+wvz
wt +uwx + vwy+wwz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = Vt +V · ∇V
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as the acceleration X′′(t) of the fluid at the point (x,y,z, t). Thus equation (8.20)
states that

(density)(acceleration)+∇(pressure) = 0,

a version of Newton’s law of motion.

C. Conservation of energy. The total energy in a fluid contained in a set D is
the sum of its kinetic and internal energy. Internal energy density, denoted as e, is
defined as internal energy per unit volume, and depends on the density of the fluid ρ
and fluid pressure P. We assume energy is imparted to a set D by two mechanisms:

(a) Energy carried by the substance flowing across the boundary into D,
(b) The work done by the fluid pressure on the boundary of D.

The rate at which energy, both internal and kinetic, is flowing out of D is
∫
∂D

(
e+ 1

2ρV ·V
)
V ·Ndσ. (8.21)

where N is the outward normal. Therefore the rate at which energy is flowing into
D is the negative of (8.21).

The rate at which the fluid pressure does work on the boundary of D is

−
∫
∂D

PV ·Ndσ.

Therefore the total rate at which energy is imparted to D is

−
∫
∂D

(
e+ 1

2ρV ·V+P
)
V ·Ndσ;

the function e+ 1
2ρV ·V+P is called enthalpy.

The total energy E(D) of fluid contained in D is the sum of the internal energy
and kinetic energy of fluid contained in D:

E(D) =
∫
D

(e+ 1
2ρV ·V) dV .

Therefore the conservation law in the form (8.16) is

d
dt

∫
D

(
e+ 1

2ρV ·V
)
dV = −

∫
∂D

(
e+ 1

2ρV ·V+P
)
V ·Ndσ.

In the differential form (8.17) it is

et + 1
2ρtV ·V+ρV ·Vt = −div

((
e+ 1

2ρV ·V+P
)
V
)
.

Rearrange this equation as

et +div(eV) = − 1
2ρtV ·V−ρV ·Vt −div

(( 1
2ρV ·V+P

)
V
)
.
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We show now that the right hand side simplifies to −PdivV. By the differentiation
rule div( fW) = fdivW+W · ∇ f we get

div
(( 1

2ρV ·V+P
)
V
)
= 1

2 div(ρV)V ·V+ 1
2ρV · ∇(V ·V)+div(PV).

Therefore

et +div(eV) = − 1
2ρtV ·V−ρV ·Vt − 1

2 div(ρV)V ·V− 1
2ρV · ∇(V ·V)−div(PV).

Using the mass conservation law ρt+div(ρV) = 0 the first and third terms cancel on
the right side, giving

et +div(eV) = −ρV ·Vt − 1
2ρV · ∇(V ·V)−div(PV).

Using again div( fW) = fdivW+W · ∇ f the right side is

= −ρV ·Vt − 1
2ρV · ∇(V ·V)−V · ∇P−PdivV.

In Problem 8.43 we ask you to verify that V ·∇(V ·V) = 2V · (V ·∇V). Therefore the
last expression becomes

= −V · (ρVt +ρV · ∇V+∇P)−PdivV,

and by the momentum conservation law (8.20) this is

= −PdivV.

So the energy equation is

et +div(eV) = −PdivV. (8.22)

The energy equation has to be supplemented by an equation of state, that specifies
the internal energy e as a function of density and pressure. The three conservation
laws (8.18), (8.20), and (8.22) supplemented by an equation of state are the equa-
tions governing the flow of fluids when the only force is that due to the gradient of
pressure.

Problems

8.41. The integral form of the mass conservation law is

d
dt

∫
D
ρdV = −

∫
∂D
ρV ·Ndσ.

Take the case where V = (u,0,0) is aligned with the x axis, ρ and V depend on x
only, and the set D is a cylinder of cross section area A, with axis a ≤ x ≤ b. Show
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that the mass conservation implies

0 =
(
ρ(b)u(b)−ρ(a)u(a)

)
A.

8.42. Show for all differentiable functions ρ and V that

ρt +div(ρV) = ρt +V · ∇ρ+ρdivV.

8.43. Show for all differentiable functions u, v, and w that

u(u2+ v2+w2)x + v(u2+ v2+w2)y+w(u2+ v2+w2)z = 2(u,v,w) ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
uux + vuy+wuz
uvx + vvy+wvz
uwx + vwy+wwz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
to verify the formula V ·∇(V ·V) = 2V · (V ·∇V) that we used in the energy equation.

8.44. Let X(t) be the path followed by one particle moving with the fluid. This
means that the velocity agrees with that of the fluid at each point of the path:

X′(t) = V(X(t), t).

Use the Chain Rule to show that

Vt +V · ∇V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ut +uux + vuy+wuz
vt +uvx + vvy+wvz
wt +uwx + vwy+wwz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the acceleration of the particle, that is,

X′′(t) = Vt(X(t), t)+V
(
X(t), t

) · ∇V(X(t), t).

Remark: Note that V ·∇V = (DV)V where DV is the matrix derivative of u,v,w with
respect to x,y,z.

8.45. Take the fluid velocity to be V(X) = c‖X‖−3X where c is a constant.

(a) Show that divV = 0.
(b) Show that the acceleration (See Problem 8.44) is −2c2‖X‖−6X.
(c) This is a model for flow in a conical duct. For each of the three cases indicated

in Figure 8.32, indicate the direction of acceleration.

Remark: Maxwell used this flow as an analogy for a static electric field.

8.46. Use either direct calculations or the Divergence Theorem to verify that
∫
D
∇PdV =

∫
∂D

NPdσ

for the functions in (a) and (b), where D is the ball of radius r given by ‖X‖2 ≤ r2.
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c < 0c > 0

00

Fig. 8.32 Flows using V in Problem 8.45.

(a) P(X) = a‖X‖2, a > 0 constant
(b) P(X) = B ·X, B � 0 constant
(c) Using the notion of pressure,

−
∫
∂D

NPdσ = pressure force on D,

which of (a) or (b) gives a nonzero force on the ball?

8.47. Let the fluid velocity be

V(X, t) =
1

1+ t
X.

(a) Describe the fluid velocity at times t = 0 and at t = 1.
(b) Show by computing the divergence divV that this is a compressible flow.
(c) Find a number a so that the functions

ρ(X, t) = (1+ t)a‖X‖2, V(X, t) =
1

1+ t
X

satisfy the conservation of mass equation

ρt +div(ρV) = 0.

8.48. Take the case where the flow only depends on x and t, and the velocity is
parallel to the x-axis, V = (u,0,0). Show that the mass, momentum, and energy
equations become

ρt + (ρu)x = 0

ut +uux = −Px

ρ

et + (eu)x = −Pux.
Remark. Problems 8.49–8.51 introduce sound waves. The wave equation is also

discussed in Chapter 9.

8.49. For an ideal gas the pressure and energy are related to the density by

P = kργ, e =
ck
R
ργ,

http://dx.doi.org/10.1007/978-3-319-74073-7_9
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where k, c, R, and γ are constants. Show that for flows of an ideal gas the energy
equation (8.22) is implied by the mass equation (8.18) if we set

γ = 1+
R
c
.

8.50. Use the result of Problems 8.48 and 8.49 to derive the equations

ρt + (ρu)x = 0

ut +uux = −kγργ−2ρx

for flows of an ideal gas.

8.51. In the equations of Problem 8.50, consider the case where the velocity u is
very small, and the density ρ is close to a constant, say

u = ε f (x, t), ρ = ρ0+ εg(x, t),

ε small. Show that

gt +ρ0 fx = 0

ft + (kγργ−2
0 )gx = 0

approximately, ignoring powers of ε. Deduce that g satisfies the wave equation

gtt = (kγργ−1
0 )gxx.

8.52. If in addition to the effects we’ve considered, there is a gravitational accelera-
tion (0,−g,0) acting on the fluid, the conservation law in the y direction is

d
dt

∫
D
ρv dV = −

∫
∂D

(
ρvV+ (0,P,0)

)
·Ndσ+

∫
D
−ρg dV .

Show that the resulting differential equation becomes

ρ(vt +uvx + vvy+wvz+g)+Py = 0.

8.5 Conservation laws and one-dimensional flows

One way of stating the Fundamental Theorem of Calculus is this:

∫ b

a
f ′(x)dx = f (b)− f (a), f is C1.

The higher-dimensional analogue of this result is the Divergence Theorem, which
states that
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∫
D

divFdV =
∫
∂D

F ·Ndσ, F is C1, N is outer. (8.23)

As we saw in the last section, the right side of (8.23) has an interesting interpretation
when F is the rate of flow of some physical quantity like mass, momentum, or energy
(stuff per area per time). The dot product F ·N is the rate of flow in the direction N.
Therefore the integral on the right side of (8.23) is the rate at which stuff is flowing
out across the boundary of D.

The one-dimensional situation is even simpler. There the rate of flow f (x) is a
scalar quantity (stuff per time), denoting the rate at which stuff is flowing in the
positive x direction. The quantity f (b) is then the rate at which stuff is flowing out
of the interval [a,b] at its right endpoint, and f (a) is the rate at which stuff is flowing
into the interval [a,b] at its left endpoint. So f (b)− f (a) is the rate at which stuff is
flowing out of the interval [a,b].

There is another way of calculating the rate at which stuff contained in an interval
is changing. Denote by ρ the density (stuff per length) of the stuff under considera-
tion (mass, momentum, energy). The total amount of stuff contained in an interval
[a,b] is the integral of the density

∫ b

a
ρ(x)dx.

If density depends on time t, as well as on position x, so will the total amount of
stuff contained in [a,b], ∫ b

a
ρ(x, t)dx.

The rate of change of the total amount contained in [a,b] is the time derivative

d
dt

∫ b

a
ρ(x, t)dx.

Assume now that no chemical reactions take place, therefore stuff is not created
nor destroyed. Then the only way the total amount of stuff in [a,b] can change is
through stuff entering or leaving across the boundary of [a,b]. According to the
previous discussion, the rate at which stuff is leaving [a,b] through its boundary is
f (b, t)− f (a, t). The rate at which the amount contained in the interval [a,b] changes
is the negative of the rate at which stuff leaves through the boundary,

d
dt

∫ b

a
ρ(x, t)dx = − f (b, t)+ f (a, t). (8.24)

If we assume that ρ and f are continuously differentiable functions of t and x, we can
carry out the differentiation with respect to t on the left of (8.24) under the integral
sign, and rewrite the right side using the Fundamental Theorem of Calculus
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∫ b

a
ρt dx = −

∫ b

a
fx dx. (8.25)

We can rewrite this as ∫ b

a
(ρt + fx)dx = 0. (8.26)

This relation holds for every interval [a,b]; from this we conclude that

ρt + fx = 0 (8.27)

for all values of x and t. For if there were a location x0 and time t0 where (8.27)
is violated, say (ρt + fx)(x0, t0) is positive, then, since the partial derivatives ρt and
fx are assumed to be continuous, it would follow that ρt + fx is positive in a small
enough interval [x0− ε, x0+ ε] in [a,b]. But then the integral

∫ x0+ε

x0−ε
(ρt + fx)dx

would be positive, contrary to (8.27).
As we saw in the last section, the same analysis was carried out in three dimen-

sions to obtain the law of conservation of mass expressed as the differential equation

ρt +div(ρV) = 0.

Deriving differential equations that the rates of flow must satisfy is only the first
step in studying flows. The major task is to find solutions of these equations. This
will tell us how flows behave. As an example, we present, and solve, a simplified
model of the flow equations in one space dimension. The simplification is that we
assume that the rate of flow [stuff/time] is a function of density alone, f = f (ρ).
Then equation (8.27) for the flow becomes

ρt + f (ρ)x = 0. (8.28)

For the sake of simplicity we also assume that f is a quadratic function of density,
f (ρ) = 1

2ρ
2. Then the equation for the conservation law is

ρt +ρρx = 0. (8.29)

If the values of density ρ at time t = 0 are known,

ρ(x,0) = ρ0(x),

we shall show how to use equation (8.29) to obtain the values of the density ρ for
future times.

Consider functions x that satisfy the differential equation

dx
dt
= ρ(x, t). (8.30)



378 8 Divergence and Stokes’ Theorems and conservation laws

The graph of x is a curve on which we examine the values of ρ. Denote the starting
point of a curve by x0:

x(0) = x0.

Next compute the derivative of ρ
(
x(t), t

)
along such a curve. Using the Chain Rule

we get
d
dt
ρ(x(t), t) = ρx

dx
dt
+ρt. (8.31)

According to (8.30), dx
dt = ρ. Setting this into (8.31) gives

d
dt
ρ(x(t), t) = ρxρ+ρt. (8.32)

But according to the differential equation for the conservation law (8.29) satisfied

by ρ, the right side of (8.32) is zero! This shows that
d
dt
ρ(x(t), t) = 0, which is the

case only if the density at x(t) at time t, ρ(x(t), t), is independent of t.
It follows that the right side of equation (8.30) is constant and therefore the graph

of x is a straight line! The speed
dx
dt

with which this line propagates can be deter-

mined at t = 0: ρ
(
x(t)x, t

)
= ρ(x0,0), the initial value of ρ at the point x0. Denote

ρ(x0,0) as ρ0; the solution of equation (8.30) is

x(t) = x0+ρ0t (8.33)

and the solution of (8.29) satisfies

ρ(x0+ρ0t) = ρ0. (8.34)

The geometric interpretation of formula (8.33) is this: from each point x0 of the line
where t = 0 draw a ray propagating with speed ρ0 in the positive t direction. Set
ρ(x, t) = ρ0 on this ray. Using the Inverse Function Theorem we can show that if the
initial value for the density ρ0(x) is a smooth function of x, then for t sufficiently
small ρ(x, t), as defined here, is a smooth function of x and t, and is a solution of
equation (8.29). We guide you through this argument in Problem 8.62.

The interesting question is: what happens when t is no longer sufficiently small?
Suppose that for two values x1 < x2, ρ0(x1) is greater than ρ0(x2).

Then the rays given by equation (8.33) intersect at some critical positive value of t.
At this point of intersection (x, t), the density ρ(x, t) is defined to be both equal to
ρ1 = ρ0(x1) and ρ2 = ρ0(x2), a contradiction. This shows that no solution of equation
(8.29) with such prescribed initial values ρ0(x) exists for t greater than this critical
value of t.

The following example points a way of resolving this problem. Take for the initial
values ρ0 the continuous function
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x
0

0ρ0x(t) = x  +    t

x

t

Fig. 8.33 The rays in the x, t plane on which ρ(x, t) is constant, have a slope that depends on that
constant. Note the time evolves upward.

t

x1 2x

Fig. 8.34 Two rays may intersect at a certain time.

ρ0(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if x < −1,

−x if −1 ≤ x ≤ 0,

0 if 0 < x.

(8.35)

For this choice of ρ0 the rays are as follows.

(a) For x0 ≤ −1, x(t) = x0+ t.
(b) For −1 < x0 < 0, x(t) = x0− x0t.
(c) For 0 ≤ x, x(t) = x0.

For t < 1 these lines look as in Figure 8.35.

−1 0
x

t

Fig. 8.35 The rays of constant ρ(x, t), for the initial value in equation 8.35.

The rays don’t intersect for t < 1, but as t tends to 1, all rays issuing from points
of the interval −1 ≤ x ≤ 0 intersect at x = 0. So the value of ρ(x, t) at t = 1 is

ρ(x,1) =

⎧⎪⎪⎨⎪⎪⎩
1 for x < 0

0 for 0 < x,
(8.36)
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a discontinuous function.
The solution ρ of ρt + ρρx = 0 for this example is indicated in Figure 8.36, for

0 ≤ t < 1. It satisfies the initial values (8.35). We ask you in Problem 8.57 to verify
the values of ρ indicated in the figure.

t

−1

ρ = 0ρ = 1

ρ = x
t−1

x

1

0

Fig. 8.36 Solution ρ of (8.29) with initial values (8.35).

We show now how to continue such a solution ρ of

ρt + fx = 0

as a discontinuous solution. This sounds like nonsense, for a discontinuous func-
tion is not differentiable at the points of discontinuity, therefore cannot satisfy the
differential equation at such points. To give meaning to the concept of a discon-
tinuous solution we have to go back to the integral version of the conservation law,
equation (8.24), from which the differential version (8.28) was derived. Whereas the
differential version makes no sense for discontinuous functions, the integral version
does!

Suppose ρ is a function that has a discontinuity across a smooth curve in the x, t
plane. On each disk that does not intersect the curve, ρ is continuous. Describe this
curve of discontinuity as x = y(t) in Figure 8.37.

t x = y(t)

x
ba

Fig. 8.37 A discontinuity of ρ(x, t) can occur across a curve x = y(t).

Choose the interval [a,b] so that the discontinuity y(t) lies between a and b during
the time interval we are investigating. Since ρ is continuous on each side of the graph
of x = y(t) we can write the total amount of stuff in [a,b] as
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∫ b

a
ρdx =

∫ y(t)

a
ρdx+

∫ b

y(t)
ρdx.

We differentiate the above integral with respect to t, using the rule (see Prob-
lem 8.53)

d
dt

∫ y2(t)

y1(t)
g(x, t)dt =

∫ y2(t)

y1(t)
gt(x, t)dt+g(y2(t), t)y′2(t)−g(y1(t), t)y′1(t)

for differentiating an integral whose integrand and limits both depend on t. We get

d
dt

∫ b

a
ρdx =

d
dt

∫ y(t)

a
ρdx+

d
dt

∫ b

y(t)
ρdx

=

∫ y(t)

a
ρt dx+ρ(L)yt +

∫ b

y(t)
ρt dx−ρ(R)yt. (8.37)

Here ρt and yt denote derivatives with respect to t, and ρ(L), ρ(R) denote the limiting
value of ρ on the left and right sides of the discontinuity.

We apply the integral conservation law (8.24) to an interval [a,z] with z < y(t).
Since ρ is differentiable on this interval,

d
dt

∫ z

a
ρdx =

∫ z

a
ρt dx = f (a)− f (z)

Now let z tend to y(t). Then f (z) tends to f (L), the value of f on the left side of the
discontinuity. So we get ∫ y

a
ρt dx = f (a)− f (L)

Similarly ∫ b

y
ρt dx = f (R)− f (b)

where f (R) is the value of f on the right side of the discontinuity. Setting these
relations into the right side of (8.37) yields

d
dt

∫ b

a
ρdx = f (a)− f (L)+ρ(L)yt + f (R)− f (b)−ρ(R)yt. (8.38)

According to the integral conservation law,
d
dt

∫ b

a
ρdx = f (a)− f (b). So we con-

clude from (8.38) that

f (R)− f (L)+
(
ρ(L)−ρ(R)

)
yt = 0 (8.39)

It is convenient to denote the jump of ρ and f across the discontinuity by brackets:
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ρ(R)−ρ(L) = [ρ], f (R)− f (L) = [ f ].

So we can rewrite (8.39) as yt =
[ f ]
[ρ]

. The derivative yt of y is the speed with which

the discontinuity is propagating. Let’s denote it by s: s = yt. Then

s =
[ f ]
[ρ]

(8.40)

ρ = 0ρ = 1

−1 0
x

t

Fig. 8.38 A shock wave at speed 1
2 continues the solution shown in Figures 8.35 and 8.36.

We return now to our example ρt+ρρx = 0, where f (ρ) = 1
2ρ

2 and ρ(x,1) is given
by the discontinuous,

ρ(x,1) =

⎧⎪⎪⎨⎪⎪⎩
1 x < 0

0 x > 0.

The solution ρ(x, t) for t > 1 consists of two regions separated by a discontinuity
issuing from the point (0,1); see Figure 8.38. To the left of the discontinuity ρ(x, t) =
1, and to the right of the discontinuity ρ(x, t) = 0. The discontinuity is a straight
line with speed s = [ f ]

[ρ] . This moving discontinuity is called a shock wave. Here

[ρ] = 0−1 = −1 and for f = 1
2ρ

2, [ f ] = 0− 1
2 = − 1

2 , so by (8.40)

s =
[ f ]
[ρ]
=
− 1

2

−1
= 1

2 .

Similar calculations of discontinuous solutions of conservation laws for functions
of two or three variables yield the analogue of formula (8.40), where s is the speed
of propagation of the discontinuity in the direction normal to the discontinuity.

Problems

8.53. Apply the Fundamental Theorem of Calculus, and the Chain Rule in the form
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d
dt
g(a(t),b(t), t) = ∇g · (a′,b′,1),

to the function g(r, s, t) =
∫ s

r
f (x, t)dx to show that

d
dt

∫ b(t)

a(t)
f (x, t)dx = f

(
b(t), t

)
b′(t)− f

(
a(t), t

)
a′(t)+

∫ b(t)

a(t)
ft(x, t)dx,

for C1 functions f .

8.54. Show that ρ(x, t) =
x

t+8
is constant along certain rays x = x0 +mt and give a

formula relating m and x0.

8.55. Show that the function ρ(x, t) of Problem 8.54 is a solution of ρt +ρρx = 0.

8.56. Verify that the conservation law

d
dt

∫ b

a
ρ(x, t)dx = − f (b, t)+ f (a, t)

holds for the function ρ(x, t) of Problem 8.54, the flux function f = 1
2ρ

2, and the
interval [a,b] = [2,5].

8.57. For 0 ≤ t < 1 let

ρ(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, x ≤ t−1
x

t−1 , t−1 ≤ x ≤ 0
0, 0 ≤ x

as illustrated in Figure 8.36.

(a) Show that ρ is continuous for 0 ≤ t < 1.
(b) Sketch the graphs of ρ(x,0) and of ρ(x,1).
(c) Show that ρt+ρρx = 0 for 0 < t < 1 except along the segments x = t−1 and x = 0.
(d) Equation (8.34) applied to this function says that

ρ
(
x0+ (−x0)t, t

)
= −x0, (−1 < x0 < 0).

Use this to derive the
x

t−1
part of the formula for ρ.

8.58. A solution of ρt +ρρx = 0 has initial value

ρ(x,0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10, x ≤ 0

10−10x, 0 ≤ x ≤ 1
0, 1 ≤ x

At what time t does a shock wave form?
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8.59. Suppose instead of the conservation law (8.24) there is some mechanism to
generate stuff within the interval at rate g:

d
dt

∫ b

a
ρ(x, t)dx = − f (b, t)+ f (a, t)+

∫ b

a
g(x, t)dx.

If this holds for all intervals [a,b] and the functions are all continuously differen-
tiable, show that the differential equation form of the conservation law becomes

ρt + fx = g.

8.60. For the equation ρt + ( 1
2ρ

2)x = 0, show that the jump speed formula s = [ f ]
[ρ]

gives the speed as
s = 1

2 (ρ(L)+ρ(R)),

the average of the left and right limits at the discontinuity.

1
s2s

3s
4s

5
s

ρ = 3/2 ρ = 1 ρ = 0ρ = 3 x

t

Fig. 8.39 Five shock waves for ρt +ρρx = 0 in Problem 8.61.

8.61. Use the result of Problem 8.60 to find all the shock speeds indicated in Fig-
ure 8.39. The initial value ρ(x,0) is a piecewise constant function whose values are
shown along the x axis.

8.62. The solution of ρt + ρρx = 0 with differentiable initial value ρ(x,0) = ρ0(x)
requires that ρ be constant on rays x= x0+ρ0t. That means we need to find a function
ρ(x, t) that satisfies

ρ
(
x+ρ0(x)t, t

)
= ρ0(x).

Define a function F(x, t) = (x+ ρ0(x)t, t), so that we need ρ ◦F(x, t) = ρ0(x). Justify
the following steps using F to prove the existence of such a function ρ.

(a) Find the matrix derivative DF.
(b) Show that DF(x, t) is invertible when t is small.
(c) Apply the Inverse Function Theorem to conclude that F−1 is locally defined and

differentiable.
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(d) The formula ρ= ρ0◦(the first component of F−1) defines a differentiable function
that solves ρt +ρρx = 0 for small t and has ρ(x,0) = ρ0(x).

8.63. Suppose we draw two rays x = x0 + ρ0t, one starting from x0 = 0 where we
assume ρ0 = 2, and the second starting from x0 = 3 where ρ0 = 1.5. Find the critical
value of t and the value of x at which these two rays intersect.

= 1ρ

= 0ρ= 2ρ

1

J

x
0

t

Fig. 8.40 Values ρ(x, t) of the solution in Problem 8.64 are indicated in the x, t plane.

8.64. Consider the equation ρt + ( 1
2ρ

2)x = 0 with initial data ρ(x,0) = 2 if x < 0,
ρ(x,0) = 1 if 0 < x < 1, and ρ(x,0) = 0 if x > 1. See Figure 8.40.

(a) Show that the speeds of the shock waves starting from x = 0 and x = 1 are 3/2
and 1/2.

(b) Find the point J where the shock waves meet.
(c) Find the speed of the single shock that continues the solution beyond the time at

point J.
(d) If you could stand at the point x = 2 at time 0 and wait, would you observe one,

or two, shock waves passing by?

8.65. Suppose ρt + xρx = 0. Sketch curves in the (x, t) plane on which x′(t) = x(t).
Show that on those curves,

d
dt
ρ
(
x(t), t

)
= 0,

so that ρ is constant on each such curve. Find ρ(x, t) if ρ(x,0) = x2.



Chapter 9
Partial differential equations

Abstract In this chapter we derive the laws governing the vibration of a stretched
string and a stretched membrane, and the equations governing the propagation of
heat. Like the laws of conservation of mass, momentum and energy studied in the
previous chapter, and like the electromagnetism laws, these laws are expressed as
partial differential equations. We derive some properties and some solutions of these
equations. We also state the Schrödinger equation of quantum mechanics, derive a
property of the solutions and explain the physical meaning of this property.

9.1 Vibration of a string

Imagine a string stretched along the x-axis. When we pluck the string each point of
the string vibrates in a direction perpendicular to the stretched string, call it the u
direction. See Figure 9.1. Assume the vibration is in the x, u plane. The displacement
u of each point x of the string is a function of x and t. We use Newton’s law, force
equals mass times acceleration, to derive a partial differential equation satisfied by
u(x, t).

u

x

Fig. 9.1 A string displacement is shown at one value of the time. The displacement and slope of
the string are assumed very small everywhere and are exaggerated here for visibility.

Let T be the magnitude of the tension force in the elastic string, that we take to
be the same at all points of the string and at all times. Consider small vibrations of
the string, where the slope of the vibrating string differs little from the direction of
the undisturbed string.

c© Springer International Publishing AG 2017
P. D. Lax and M. S. Terrell, Multivariable Calculus with Applications,
Undergraduate Texts in Mathematics, https://doi.org/10.1007/978-3-319-74073-7 9
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Take a small piece of the string between x and x+ h, h positive. There are two
forces acting on this piece of string, the tension at each end of the piece. Let θ(x) be
the angle between the tangent to the string at the position x, and the x axis,

tanθ(x) =
∂u
∂x
. (9.1)

See Figure 9.2.

θ(x)

x x + h

θ(x + h)

Fig. 9.2 Tension forces depend on angles θ(x), θ(x+h) at the ends of a bit of the string. The angles
are drawn too large in order to make them more visible.

The forces in the (x,u) plane acting on the piece of the string at x and x+h are

−T
(
cosθ(x),sinθ(x)

)
, T

(
cosθ(x+h),sinθ(x+h)

)
.

We consider the motion of the string only in the u direction.
The force on the small piece in the u direction at x+h is T sinθ(x+h). The force

at x is −T sinθ(x). The total force is the sum of these two forces:

total force = T sinθ(x+h)−T sinθ(x).

We use the Chain Rule and the Mean Value Theorem to express the right side as

total force = hT cos(θ)
dθ
dx
, (9.2)

where θ and
dθ
dx

are evaluated at some point between x and x+ h. Since θ is small,

we approximate cosθ as 1, and tanθ as θ. Since at each point the slope of the line
tangent to the string is the tangent of θ we get

∂u
∂x
= tan

(
θ(x)
)

=
sinθ
cosθ

≈ θ
1
.
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Replacing θ by
∂u
∂x

and cosθ by 1 in formula (9.2) we get

total force = hT
∂2u

∂x2
. (9.3)

The mass of the piece of string of length h is hW, where W is the mass per unit
length of the string. The acceleration of the piece of string in the u direction is utt.
We apply the law

total force =mass times acceleration

to the motion of the piece of string. Using formula (9.3) for the total force acting on
the piece of string, and hW for its mass, we get

hT
∂2u

∂x2
= hWutt.

Dividing by hW gives
T
W uxx = utt. (9.4)

Since T and W are both positive, so is T
W . We write c =

√
T
W and set it into equation

(9.4); we get
utt − c2uxx = 0. (9.5)

Equation (9.5) is called the one-dimensional wave equation.
It follows from equation (9.5) that c has the dimension of velocity; but velocity

of what? We shall show that ±c are the velocities with which certain waves in the
string propagate along the x direction.

Example 9.1. Take u(x, t) = cos(x− t). Then u is a solution of the wave equa-
tion with c2 = 1 because

utt −uxx = −cos(x− t)− (− cos(x− t)
)
= 0.

This is a wave that propagates to the right at speed 1. See Figure 9.3. In Prob-
lem 9.5 we ask you to identify the speed and direction that other waves move.
�

−1

 1

 1  2
x

u

cos(x−1) cos(x−2)cos(x)

Fig. 9.3 The wave in Example 9.1 plotted at times t = 0,1,2.
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Example 9.2. The function

u(x, t) = cos(x− ct)+ cos(x+ ct)

is a sum of a wave moving to the right and a wave moving to the left, both at
speed c. By the addition formula for the cosine function,

u(x, t)= cos xcos(ct)+sin xsin(ct)+cos xcos(ct)−sin xsin(ct)= 2cos xcos(ct).

This is a wave that oscillates up and down. See Figure 9.4. �

−2

2

ππ− /2 /2

Fig. 9.4 The sum of waves in Example 9.2 is illustrated at several times.

It follows from the rules of calculus that every function of the form

u(x, t) = f (x− ct)+g(x+ ct)

where f and g are twice differentiable functions of a single variable, is a solution of
utt − c2uxx = 0. The theorem below shows that every solution is of this form.

We introduce the following notation: D denotes the trapezoid

a+ ct ≤ x ≤ b− ct, t1 ≤ t ≤ t2 (9.6)

in the (x, t) plane. We number its sides as C1,C2,C3 and C4. See Figure 9.5.

C2

C3

t

a

C1

C4

b

D

x

t2

t1

Fig. 9.5 The trapezoid defined in (9.6).
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Theorem 9.1. Every solution u of the wave equation

utt − c2uxx = 0

in the trapezoid D where a+ ct ≤ x ≤ b− ct, t1 ≤ t ≤ t2 is of the form

u(x, t) = f (x− ct)+g(x+ ct), (9.7)

where f and g are twice differentiable functions.

We derive Theorem 9.1 from Theorem 9.2 below. First we introduce the notion
of initial data. Denote by u(x, t) a solution of the wave equation in the trapezoid. The
pair of functions

u(x, t1), ut(x.t1), a+ ct1 ≤ x ≤ b− ct1 (9.8)

are called the initial data of u at time t1.

Theorem 9.2. Let u be a solution of the wave equation

utt − c2uxx = 0

in the trapezoid D where a+ ct ≤ x ≤ b− ct, t1 ≤ t ≤ t2. Suppose the initial
data of u at time t1 are zero. Then u(x, t) is zero in the whole trapezoid.

Before giving the proof of Theorem 9.2 we show how it implies Theorem 9.1.

Proof. (of Theorem 9.1) Let u be a solution of the wave equation in D. We show
first that there is a solution v of the wave equation of the form (9.7) whose initial
data are the same as the initial data of u. We construct two functions f and g that
satisfy the relations

u(x, t1) = f (x− ct1)+g(x+ ct1), ut(x, t1) = c
(
g′(x+ ct1)− f ′(x− ct1)

)
(9.9)

for a+ ct1 ≤ x ≤ b− ct1. Differentiate the first equation with respect to x and add
1
c times the second equation to get ux +

1
c ut = 2g′, or subtract 1

c times the second
equation to get ux − 1

c ut = 2 f ′. Therefore

g′(x+ct1) = 1
2 ux(x, t1)+ 1

2c ut(x, t1), f ′(x−ct1) = 1
2 ux(x, t1)− 1

2c ut(x, t1), (9.10)

from which f and g can be determined by integration. These formulas show that,
since u is twice differentiable, so are f and g.

Define the function v as

v(x.t) = f (x− ct)+g(x+ ct). (9.11)
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Then v is a solution of the wave equation in D. It follows from (9.9) that the initial
data of v and u at time t1 are equal:

v(x, t1) = u(x, t1), vt(x, t1) = ut(x, t1). (9.12)

Next define w as the difference of u and v,

w(x, t) = u(x, t)− v(x, t).

Being the difference of two solutions, w also is a solution of the wave equation. It
follows from (9.12) that the initial data of w are zero:

w(x, t1) = 0, wt(x, t1) = 0.

Therefore according to Theorem 9.2, w = u− v is zero in the trapezoid. This shows
that u = v in the trapezoid; therefore u is of the form (9.7). �

We turn now to the proof of Theorem 9.2.

Proof. Multiply the wave equation in Theorem 9.2 by ut and integrate over the
trapezoid D; we get ∫

D

(
ututt − c2utuxx

)
dxdt = 0.

We observe that the integrand is a divergence with respect to the (x, t) variables in
that order:

0 = ut(utt − c2uxx) =
( 1

2 u2
t
)
t − c2(utux)x+ c2utxux

= (−c2utux)x +
1
2 (u2

t + c2u2
x)t

= div
(− c2utux,

1
2 (u2

t + c2u2
x)
)
.

Using the Divergence Theorem for F =
(−c2utux,

1
2 (u2

t +c2u2
x)
)

and divF = 0 we get

0 =
∫

D
divFdxdt =

∫

∂D

(− c2utux,
1
2 (u2

t + c2u2
x)
) ·Nds

= −
∫

C1

1
2
(
u2

t + c2u2
x
)
dx+
∫

C2

1
2
(
u2

t + c2u2
x
)
dx

+

∫

C3

(− c2utux,
1
2 (u2

t + c2u2
x)
) ·Nds

+

∫

C4

(− c2utux,
1
2 (u2

t + c2u2
x)
) ·Nds.

We have used N = (0,−1) on C1 and N = (0,1) on C2. Denote the integrals over C1

and C2 as E(t1) and E(t2). Using N =
1√

1+ c2
(1,c) on C3 and N =

1√
1+ c2

(−1,c)

on C4 we get
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E(t2)−E(t1)+
∫

C3

1(−c2utux)+ c 1
2 (u2

t + c2u2
x)√

1+ c2
ds

+

∫

C4

−1(−c2utux)+ c 1
2 (u2

t + c2u2
x)√

1+ c2
ds = 0. (9.13)

The integrands in both integrals in (9.13) are perfect squares, 1
2 c(ut ± cux)2. There-

fore both integrals are nonnegative. This proves that E(t2)− E(t1) is nonpositive.
Therefore

E(t2) ≤ E(t1) (9.14)

Denote by C(t) the portion of the string represented by a horizontal line segment

drawn across the trapezoid at time t. The term
∫

C(t)

1
2 u2

t dx is the kinetic energy of

the C(t) portion of the moving string, and the term
∫

C(t)

1
2 c2u2

x dx is the elastic energy

in the C(t) portion of the stretched string. Their sum is the total energy stored in the
C(t) portion of the string. So inequality (9.14) says that the energy stored in the C(t)
portion of the string is a decreasing function of time.

In particular if E(t1) is zero, it follows that so is E(t2). Since E(t2) is the integral
of u2

t + c2u2
x over C2, it follows that if E(t2) is zero, ux and ut are zero in C2.

Since the argument applies to every value of t2, it follows that u(x, t) is constant
in the whole trapezoid. Since u is initially zero, that constant is zero. This completes
the proof of Theorem 9.2. �

Example 9.3. We solve

utt = c2uxx, u(x,0) = 0, ut(x,0) = cos(3x).

According to Theorem 9.1 we can express

u(x, t) = f (x− ct)+g(x+ ct).

By equation (9.10) in the proof the data give

g′(x) =
1
2c

cos(3x), f ′(x) = − 1
2c

cos(3x).

Integrating, we get

g(x) =
1
6c

sin(3x)+ c1, f (x) = − 1
6c

sin(3x)+ c2.

Since 0 = u(x,0) = f (x)+g(x) = c1−c2
2c we get c1 = c2, and

u(x, t) = − 1
6c sin

(
3(x− ct)

)
+ 1

6c sin
(
3(x+ ct)

)
.

�
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Example 9.4. We imagine a sound wave bouncing off a wall at x = 0 where
the displacement u is zero. Take f (x) = −g(−x) in the wave equation solution
u(x, t) = f (x− ct)+g(x+ ct), so that

u(x, t) = −g(−x+ ct)+g(x+ ct).

Then u(0, t) = −g(ct)+g(ct) = 0 for all t. Suppose g(x) is zero on all but some
positive interval, as in Figure 9.6. The resulting solution u can be viewed, for
x ≥ 0, as a wave g traveling left to a wall at x = 0, then reflected to the right,
as an echo. �

x

x

0

u(x,0)

x

f(x)

x
g(x)

u(x,t)

Fig. 9.6 The waves in Example 9.4 model an echo.

The string with tied ends. We turn now to studying the motion of a stretched string
that is tied at its two ends, located at x = 0 and at x = a (a > 0). See Figure 9.7. The
displacement of the ends is zero; we express this as the boundary conditions

u(0, t) = 0, u(a, t) = 0 for all t. (9.15)

Suppose u is of the form

u(x, t) = f (x− ct)+g(x+ ct)

and satisfies the boundary conditions.
The boundary conditions state that

f (−ct)+g(ct) = 0, f (a− ct)+g(a+ ct) = 0.
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x

t

a0

Fig. 9.7 The band 0 ≤ x ≤ a, −∞ < t <∞ corresponds to locations on the string at all times.

Denoting ct as x, the first relation says that f (−x) = −g(x). Setting this into the
second relation we get

−g(x−a)+g(x+a) = 0.

Denoting x−a as y we rewrite this as

g(y+2a) = g(y).

In words: g is a periodic function with period 2a.
Since f (y) = −g(−y), it follows that also f is periodic with period 2a. Therefore

u(x, t) = f (x− ct)+g(x+ ct) is a periodic function of t with period 2a
c .

A function with period p also has periods 2p, 3p, and so forth. Thus a string that
vibrates with period 2a

c also vibrates with period 2an
c , n any whole number.

Example 9.5. The functions

sin(x)cos(ct), sin(2x)cos(2ct), sin(3x)cos(3ct),

and so on are vibrations of a string with ends tied at x = 0 and x = π. �
The frequency of vibration is the reciprocal of the period; so the lowest frequency

is c
2a . We recall from our derivation of the wave equation that c2 = T

W . So we get the
following theorem.

Theorem 9.3. A string of length a and weight W per unit length stretched

with tension T can vibrate with the frequency 1
2a

√
T
W and each whole number

multiple of this.

This formula shows that the lowest frequency of vibration increases if

(a) the tension in the string is increased,
(b) the string is shortened,
(c) the string is replaced by a thinner string.
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All vibrations of a stretched string are multiples of the lowest frequency; it is this
property that makes string instruments musical. We show in the next section that, in
contrast, a vibrating elastic sheet does not have this property.

Problems

9.1. Suppose u is a solution of utt − c2uxx = 0, and that at a particular time t, the
graph of u as a function of x is convex (uxx > 0). Is the acceleration utt of the string
up or down?

9.2. A violin A-string has length 330 [mm] and vibrates at 440 cycles per second.
Let A4 = 2π(440) and

u(x, t) = sin
( 2πx

330
)
cos(A4t).

Find the value of T
W so that utt − T

W uxx = 0,

9.3. A violin A-string produces a vibration

u(x, t) = c1 sin
( 2πx

330
)
cos(A4t)+ c2 sin

( 2π(3x)
330
)
cos(E6t)

where c1 and c2 are some constants and utt − c2uxx = 0. Find E6 > 0 in terms of A4.

9.4. Show that the function u(x, t) = Asin(bx)cos(bct) is a string vibration with ends
tied at 0 and π, that is,

utt − c2uxx = 0, u(0, t) = 0, u(π, t) = 0,

for certain values of the constants A, b. Show that A is arbitrary but b must be an
integer.

9.5. At what speed and direction (left or right) do these waves move?

(a) cos(x+3t)
(b) 5cos(x+3t)
(c) −7sin(t−4x)

9.6. Show that the following functions are solutions of utt − c2uxx = 0.

(a) cos(x+ ct),
(b) u(kx,kt) if k is a constant and u(x, t) is a solution,
(c) au(x, t), if u is a solution and a a number.
(d) u1+u2, if u1 and u2 are solutions.
(e) sin(2x−2ct)+ cos(3x+3ct)

9.7. Verify that every function of the form

u(x, t) = f (x− ct)+g(x+ ct)
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where f and g are twice differentiable functions of a single variable, is a solution of
utt − c2uxx = 0.

9.8. Consider the string vibrations

u1(x, t) = sin(x−2t)

u2(x, t) = sin(x+2t)

u3(x, t) = u1(x, t)+u2(x, t).

(a) Sketch graphs of each one as a function of x, for times t = 0,1,2.
(b) Which one moves to the left and which to the right?
(c) Show that u3(0, t) = 0.
(d) Find values of a that give u3(a,0) = 0, and then show that for those a, u3(a, t) = 0

for all t.

9.9. Assume 2c < π. Find the energy

E(t) = 1
2

∫ b

a
(u2

t + c2u2
x)dx

of the vibration u(x, t) = cos(x+ ct) for:

(a) the interval [a,b] = [0,π] at time t = 0,
(b) the interval [a,b] = [ct,π− ct] at time t = 1.

Which is larger?

9.10. Take the case of a string with tied ends, u(0, t) = u(a, t) = 0.

(a) Why is ut also zero at the ends?
(b) Show that the energy in [0,a] is conserved, that is, E′(t) = 0, where

E(t) = 1
2

∫ a

0
(u2

t + c2u2
x)(x, t)dx.

9.11. Find a solution of each problem in the form

u(x, t) = f (x− ct)+g(x+ ct).

(a) utt − c2uxx = 0 with u(x,0) = sin x and ut(x,0) = 0.
(b) utt −uxx = 0 with u(x,0) = 0 and ut(x,0) = cos(2x).
(c) utt −25uxx = 0 with u(x,0) = 3sin x+ sin(3x) and ut(x,0) = cos(2x).

9.12. Suppose the wave g(x + ct) in Example 9.4 is a brief sound made by an
observer who waits for the echo −g(−x+ct) to return, and notes the time t1 elapsed.
Show that the distance to the wall is 1

2 ct1, and can be determined using any brief
sound g (as one knows of echos).
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9.13. For x ≥ 0 let u(x, t) be a solution of the wave equation as in Example 9.4. Let
p be a positive number. Show that the energy remaining near the wall,

1
2

∫ p

0
(u2

t + c2u2
x)dx,

is zero for large values of the time.

9.2 Vibration of a membrane

Consider an elastic membrane stretched over a frame in the x,y plane. When the
membrane is displaced in the direction perpendicular to the x,y plane and then
released, it will vibrate in the perpendicular direction. We derive the differential
equation governing this vibration and study its solutions.

a+h
a

y

b+h

b

x

z

a a+h

θ

T
T sin θ

Fig. 9.8 Left: A small portion of the membrane. Right: We approximate the perpendicular compo-
nent of the elastic force on the a+h edge as hT sinθ ≈ hT tanθ = hTzx(a+h,y, t).

Denote by z(x,y, t) the displacement at time t of point (x,y) of the membrane in
the perpendicular direction. See Figure 9.8. We study the motion of a small portion
of the membrane

(x,y,z(x,y, t)), a ≤ x ≤ a+h, b ≤ y ≤ b+h, h small . (9.16)

The motion of this portion is driven by the elastic forces acting on its four sides.
The elastic force acting on an edge of this portion of the membrane lies in the tan-
gent plane of the membrane and is perpendicular to the edge on which it acts; its
magnitude is some constant T times the length of the edge. We shall study small
vibrations, that is where the displacement z(x,y, t) and its derivatives zx and zy are
small. The vibrations are produced by forces in the direction perpendicular to the x,
y plane. We analyze them similarly to the forces on a piece of string in Section 9.1.
In this case the component of the force acting on the side x = a is well approximated
by −hTzx(a,y, t) and the force on the side x = a+h is equally well approximated by
hTzx(a+h,y, t).
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The resultant of these forces is hT
(
zx(a+ h,y, t)− zx(a,y, t)

)
, and for h small is

well approximated by h2Tzxx. Similarly the forces acting on the sides y = b+h and
y = b, in the direction perpendicular to the x, y plane, are well approximated by
h2Tzyy. The sum of these forces is h2T (zxx + zyy). The mass of the portion of the
membrane is h2ρ, where ρ [mass/area] is the density of the membrane. Therefore
the equation governing the motion of this portion of the membrane, using Newton’s
law that total force = mass times acceleration, is

h2T (zxx+ zyy) = h2ρztt,

which we rewrite as
ztt = c2(zxx + zyy) (9.17)

where c =
√

T
ρ . This equation is called the two-dimensional wave equation .

We investigate now some simple motions of a membrane spanning the square

0 ≤ x ≤ π, 0 ≤ y ≤ π. (9.18)

The membrane is fixed at the boundary of the square, therefore

z(x,y) = 0

on the boundary of the square. Define

z1(x,y, t) =sin(
√

2ct) sin(x) sin(y),

z2(x,y, t) =sin(
√

5ct) sin(x) sin(2y).

A simple calculation shows that both z1 and z2 are solutions of the wave equa-
tion (9.17), and they are zero on the boundary of the square (9.18). The solution z1

is periodic in time, with period 2π√
2c

, and the solution z2 is periodic with period 2π√
5c

,

and all integer multiples of these periods. Since no integer multiple of 2π√
2c

is equal

to an integer multiple of 2π√
5c

. It follows that the sum

z1+ z2,

that is a solution of the wave equation, is not periodic in time. It can be shown that
only very special solutions of the two-dimensional wave equation are periodic in
time.

We express this result as follows: Vibrations of one-dimensional elastic systems
are periodic in time, but the vibrations of two-dimensional systems are in general
not periodic in time. This explains why all musical instruments are essentially one-
dimensional vibrating systems. Violins and cellos use vibrating strings to generate
sound, wind instruments like flutes and clarinets use vibrating thin columns of air to
generate sound. One can point to drums as a truly two-dimensional instrument; but
the sound of a drum of is muffled, without a definite pitch!
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Problems

9.14. Show that the following functions are solutions of the wave equation

ztt = c2(zxx+ zyy).

(a) x2− y2

(b) cos(ct)cos(x)
(c) cos(ct) sin(y)
(d) sin(

√
2ct)cos(x+ y)

9.15. Show that the following functions are solutions of the wave equation

ztt = c2(zxx+ zyy).

(a) u+ v, if u and v are solutions.
(b) kz, if k is a constant and z is a solution.
(c) z(−y, x, t) if z(x,y, t) is a solution, i.e., rotate π/2.
(d) z(kx,ky,kt) if z(x,y, t) is a solution.

9.16. Show that these functions are solutions of the wave equation

ztt = c2(zxx+ zyy).

(a) cos(y+ ct)
(b) cos(x+ y+

√
2ct)

(c) cos(x−2y− √5ct)

9.17. We have said that the function

z1+ z2 = sin(
√

2ct) sin(x) sin(y)+ sin(
√

5ct) sin(x) sin(2y)

is not periodic in t. Show that the function

sin(1.414ct) sin(x) sin(y)+ sin(2.236ct) sin(x) sin(2y)

is periodic, repeating every 1000
2π
c

seconds.

9.18. Suppose a tension T [force/length] causes a force perpendicular to any short
edge drawn in an elastic membrane, the force coplanar with the material. For exam-
ple there are forces on three edges in the plane of the triangle in Figure 9.9. Denote
by α and k the angle and hypotenuse length indicated. Show that the forces are as
follows.

(a) The force on the right edge is (Tk sinα,0).
(b) The force on the bottom edge is (0,−Tk cosα).
(c) The force on the hypotenuse is Tk(−sinα,cosα).
(d) The net force on the triangle is the zero vector.
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This is why we assume a constant T in the derivation of the wave equation (9.17).

k

α

Fig. 9.9 Forces on a triangular portion of the membrane in Problem 9.18.

9.19. Let n and m be positive integers, and

z(x,y, t) = cos(
√

n2+m2t) sin(nx) sin(my).

(a) Show that z is a solution of the membrane vibration equation ztt = zxx+ zyy that is
zero on the boundary of the square 0 ≤ x ≤ π, 0 ≤ y ≤ π.

(b) Show that the number of such solutions that have frequency
√

n2+m2 ≤ 1000 is
roughly 1

4π(1000)2.

9.20. Take the case c = 1 so that the wave equation becomes ztt = zxx + zyy, and the
solutions z1 and z2 in the text become

z1 = sin(
√

2t) sin(x) sin(y), z2 = sin(
√

5t) sin(x) sin(2y).

(a) Suppose f is a twice differentiable function of one variable. Define

z(x,y, t) = f (ax+by+ t),

which is called a traveling wave. What is required of the constants a and b so
that z is a solution of the wave equation?

(b) Verify that sin(u) sin(v) = − 1
2
(
cos(u+ v)− cos(u− v)

)
. Use that and similar iden-

tities to express z2 as a sum of four traveling waves.
(c) The solution z1+ z2 can be expressed as a sum of how many traveling waves?

9.21. Let z(x,y, t) be a function of the form

z(x,y, t) = f (r) sin(kt)

where r =
√

x2+ y2 and k is a constant, so that z depends only on the time and the
distance to the origin. Show that z is a solution of the wave equation ztt = zxx+ zyy if
f satisfies

f ′′(r)+
1
r

f ′(r)+ k2 f (r) = 0.
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9.22. The wave equation for a function u(X, t) in three space dimensions is

utt = c2Δu.

(a) Find constants k so that the function u(X, t) = cos(2x1 +3x2 +6x3 + kt) is a solu-
tion of the wave equation.

(b) Find the constant vectors A so that C2 functions of the form

u(X, t) = f (A ·X± ct)

are solutions of the wave equation.

100

u(ρ, 0)

u(ρ, 99)

1
ρ

?

?

u

Fig. 9.10 A spherically symmetric solution of the wave equation in R
3 approaches the origin. See

Problem 9.23.

9.23. Let ρ =
√

x2+ y2+ z2 in R
3. For waves u(ρ, t) that are spherically symmetric

about the origin the wave equation utt = Δu becomes

utt = uρρ+ 2
ρuρ.

(a) Show that C2 functions of the form u(ρ, t) =
f (ρ± t)
ρ

are solutions of the wave

equation for ρ > 0.
(b) Suppose a solution has the form

u(ρ, t) =
f (ρ+ t)
ρ

where f (ρ) is nonzero only in a small interval near ρ = 100, and the maximum
value of u(ρ,0) is 1. See Figure 9.10. Approximately what is the maximum value
of u(ρ,99) and where does it occur?
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9.3 The conduction of heat

In this section we show that the distribution of temperature in a medium that con-
ducts heat satisfies a partial differential equation. It is a conservation law as we have
discussed in Chapter 8.

We start with the one-dimensional case, the conduction of heat in a rod. Let the
rod be on the interval [0,a] along the x axis. We denote by T (x, t) the temperature at
the position x and at time t. Assume T is a C2 function. We assume that heat energy
density is proportional to temperature, so that the heat energy in the section [b,c] of
the rod at time t is ∫ c

b
pT (x, t)dx (9.19)

where p is some positive constant.
Next we assume that heat energy is conducted from a hotter to a colder region, at

a rate proportional to the gradient of temperature. Here “gradient” refers to the rate
of change of temperature with respect to position, so in the one-dimensional case,
to Tx. Therefore heat enters the section [b,c] at its endpoints, at the rates

−r
∂T
∂x

(b, t) and r
∂T
∂x

(c, t) (9.20)

where r is some positive constant. The energy conservation law states that the rate
at which heat flows across the boundary of [b,c] is the time derivative of the total
heat energy in [b,c],

d
dt

∫ c

b
pT (x, t)dx = −r

∂T
∂x

(b, t)+ r
∂T
∂x

(c, t). (9.21)

On the left side we carry out the differentiation with respect to t under the integral
sign; we get ∫ c

b
p
∂T
∂t

dx = −r
∂T
∂x

(b, t)+ r
∂T
∂x

(c, t).

The right side is a difference of the values of the function

r
∂T
∂x

(x, t)

between x = c and x = b. We express it as the integral of its derivative; we get

∫ c

b
p
∂T
∂t

dx =
∫ c

b
r
∂2T

∂x2
(x, t)dx.

We see that this is in the conservation law form of equation (8.25),
∫ c

b
ρt dx = −

∫ c

b
fx dx,

http://dx.doi.org/10.1007/978-3-319-74073-7_8
http://dx.doi.org/10.1007/978-3-319-74073-7_8
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if we take f = −rTx and ρ = pT . We rewrite it as

∫ c

b

(

p
∂T
∂t

(x, t)− r
∂2T

∂x2
(x, t)

)

dx = 0.

Since this integral is zero over all intervals [b,c], it follows that the integrand is zero,

p
∂T
∂t
− r
∂2T

∂x2
= 0.

We rewrite this equation as
Tt −hTxx = 0, (9.22)

where h =
r
p

is a positive constant. Equation (9.22) is called the equation of heat

conduction.

Example 9.6. Verify that the function

T (x, t) = e−ht sin x

is a solution of the heat equation (9.22). We have

Tt(x, t) = −he−ht sin x = −hT (x, t)

and since Txx(x, t) = −T (x, t), this is a solution. It decays toward zero as time
increases, due to the exponential. See Figure 9.11.

Since Tx = e−ht cos x the flow of heat energy is to the left at x = 0, is zero at
x = π2 , and is to the right at x = π. �

−π π

T

x

t1

t2

Fig. 9.11 Graphs of the heat solution T (x, t) = e−ht sin x as a function of x at times t1 < t2. See
Examples 9.6 and 9.7.

Example 9.7. Suppose T is a solution of the heat equation, such that at some
time t the graph of T as a function of x is convex, Txx > 0. It follows from the
heat equation that Tt > 0. Therefore T (x, t) is an increasing function of t. See
the left half of Figure 9.11 where T is convex. �

We derive now some of the basic properties of solutions of the equation of heat
conduction in a rod whose endpoints are kept at some constant temperature.

Since the heat equation only involves the derivatives of T , it follows that if T (x, t)
is a solution of the heat equation, so is T (x, t)−k, where k is a constant. Choose k to



9.3 The conduction of heat 405

be the constant temperature at the endpoints; then T − k is zero at the endpoints. So
it suffices to study solutions of the heat equation that are zero at the endpoints of the
rod.

We show now the following property of such solutions:

Theorem 9.4. Let T be a solution of the heat equation Tt − hTxx = 0 for x in
[0,a] that is zero at the endpoints. Then the maximum of T (x, t) over x in [0,a]
is a decreasing function of t.

T(0,t) = 0 T(a,t) = 0

t

T(x,0) a0

(y,s)

Fig. 9.12 Temperature T (x, t) in a rod 0 ≤ x ≤ a.

Proof. We show first that for t > 0, T (x, t) is never larger than its maximum at t = 0.
We argue indirectly; suppose for some time s > 0 and some y in (0,a), T (y, s) is
larger than the maximum of T (x,0). Then there are positive numbers M and ε such
that for all x in [0,a],

T (x,0) < M < M+ εa2 < T (y, s).

Let R be the rectangular set [0,a]× [0, s] and consider the function

u(x, t) = T (x, t)+ ε(x− y)2

on R. Since T (x, t) is zero at the endpoints and T (x,0) < M,

u(0, t) = T (0, t)+ εy2 ≤ εa2

u(a, t) = T (a, t)+ ε(a− y)2 ≤ εa2

u(x,0) = T (x,0)+ ε(x− y)2 ≤ M+ εa2. (9.23)

Since
u(y, s) = T (y, s) > M+ εa2

the maximum of u on R is at least T (y, s), and according to (9.23) it must occur at
some point (x, t) with t > 0 and x not at either endpoint of the rod. Therefore at this
maximum we have uxx ≤ 0 and ut ≥ 0. Then



406 9 Partial differential equations

0 ≥ uxx − 1
h ut = Txx +2ε − 1

h Tt = 2ε.

This is a contradiction since ε > 0.
To complete the proof suppose 0 < t1 < t2 and set v(x, t) = T (x, t1+ t). Then v is a

solution of the heat equation. Let v(c,0) be the maximum of v(x,0) on [0,a]. Then

max
x

T (x, t2) =max
x

v(x, t2− t1)

≤ v(c,0) = T (c, t1)

≤max
x

T (x, t1).

�

Since −T (x, t) is a solution as well of the heat equation that is zero at x = 0
and x = a, it follows that the minimum value of T (x, t) over all x is an increasing
function of t. Combining the two results we deduce from Theorem 9.4 the following
corollary.

Corollary 9.1. Let T be a solution of the heat equation Tt − hTxx = 0 for x
in [0,a] that is zero at the endpoints. Then the maximum with respect to x of
|T (x, t)| is a decreasing function of t.

We can now prove the uniqueness theorem:

Theorem 9.5. Suppose T1 and T2 are two solutions of the heat equation in
[0,a], t ≥ 0, that are equal at t = 0, equal at the endpoint x = 0 and equal at
the endpoint x = a. Then T1(x, t) = T2(x, t) for all t > 0 and x in [0,a].

Proof. Set T = T1−T2. Then

Tt −hTxx = 0

T (x,0) = 0

T (0, t) = 0

T (a, t) = 0.

According to Corollary 9.1, |T (x, t)| decreases from its initial value. But that is zero.
So T is identically zero, and T1 = T2. �

Examples of the heat equation in higher dimensions The conduction of heat in a
plate can be analyzed similarly to the way we analyzed the conduction of heat in a
rod; we look at the flow of heat into a small portion of the plate b ≤ x ≤ c, d ≤ y ≤ e
across its boundary. We obtain an equation analogous to Tt −hTxx = 0,

Tt −hΔT = 0, (9.24)
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where ΔT = Txx+Tyy. In Problem 9.31 we outline a derivation of this equation using
the Divergence Theorem.

Example 9.8. Define T (x,y, t) = e−at sin(bx+cy). We find the relation of a,b,c
so that T is a solution of the equation Tt −hΔT = 0.

Tt −hΔT = −ae−at sin(bx+ cy)−he−at(−b2− c2) sin(bx+ cy)

=
(−a+ (b2+ c2)h

)
T.

That is zero if a = (b2+ c2)h. So

e−(b2+c2)ht sin(bx+ cy)

is a solution of the heat equation for all numbers b,c. �

Example 9.9. You have seen in Problem 4.7 that the function

T (X, t) = (4πt)−n/2e−‖X‖
2/(4t)

is a solution of the heat equation in n space dimensions,

Tt −ΔT = 0.

�

Problems

9.24. Show that these functions are solutions of the heat equation Tt = hTxx.

(a) mx+ k for all constants m, k
(b) T1+T2 if T1 and T2 are solutions.
(c) e−ht cos(x)
(d) some functions e−kt sin(mx); find the relation between k and m,
(e) u(x,ht) where u(x, t) is any solution of ut = uxx.

9.25. Show that these functions are solutions of the heat equation Tt = Txx.

(a) e−n2t sin(nx) for n = 1,2,3, . . .,
(b) tpe−x2/(4t) for a certain exponent p; find p,
(c) e−ax cos(ax−bt) for some constants a, b; find the relation between a and b.
(d) u(kx,k2t) for any constant k if u is a solution.

9.26. The temperature at a moderate distance x below the ground is modeled as

T (x, t) = e−ax cos(ax−bht)

http://dx.doi.org/10.1007/978-3-319-74073-7_4
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Earth

Sun
x

Fig. 9.13 Earth in Problem 9.26.

where the value of the constant b depends on whether we are discussing daily (sun-
rise, sunset) or seasonal (winter, summer) variations. See Figure 9.13.

(a) Show that Tt = hTxx if b = 2a2.
(b) Is b larger for daily or seasonal variations?
(c) Considering the factor e−ax, do daily or seasonal variations penetrate deeper into

Earth?

9.27. A rod is held at zero temperature at the ends, so that

Tt = Txx, T (t,0) = T (t,π) = 0.

(a) Fill in the missing numbers so that

T (x, t) = (?)e(?)t sin x+ (?)e(?)t sin(2x)

is a solution with initial value T (x,0) = sin x+ 1
2 sin(2x).

(b) Sketch the graph of T as function of x at times t = 0, 12 ,1.
(c) Which of the two terms decreases faster as t increases? Note the maximum tem-

perature is located left of the center point of the rod initially. Does the hot spot
move to the left or right as time increases?

9.28. We can calculate approximate solutions of the heat equation Tt = Txx by
approximating the derivatives by difference quotients, where Δt and Δx are posi-
tive numbers,

T (x, t+Δt)−T (x, t)
Δt

=
T (x+Δx, t)−2T (x, t)+T (x−Δx, t)

(Δx)2
.

(a) Solve that approximation for T (x, t+Δt) in terms of the earlier values at time t.
(b) Take Δt

(Δx)2 =
1
2 . Show that the approximation becomes

T (x, t+Δt) = 1
2
(
T (x−Δx, t)+T (x+Δx, t)

)
.
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(c) Initial values T (x,0) are given in the table. Fill in values of T for five time steps
using the approximation in (b). One of the values, T (−Δx,Δt) = 1

2
(
16+0

)
= 8, is

indicated as an example.

5Δt
4Δt
3Δt
2Δt
Δt 8
0 0 0 0 0 0 0 16 16 0 0 0 0 0 0
−6Δx −5Δx −4Δx −3Δx −2Δx −Δx 0 Δx 2Δx 3Δx 4Δx 5Δx 6Δx 7Δx

9.29. A simple model for temperature y(t) of an object at time t in an environment
of temperature s is Newton’s Law of Cooling,

y′ = −k(y− s)

where k is a positive constant. Consider two heat equation solutions

T1(x, t) = e−t sin(x), T2(x, t) = e−t sin(x)+ e−9t sin(3x)

for a rod located in the interval [0,π]. We imagine the environment s = 0, and define
the average temperature of the rods to be

y1(t) =
1
π

∫ π

0
T1(x, t)dx, y2(t) =

1
π

∫ π

0
T2(x, t)dx.

Show that Newton’s Law of Cooling holds for y1 but not for y2.

9.30. A steady state solution of Tt = hTxx is one that does not vary with time, thus
Txx = 0.

(a) Find a steady state temperature function T (x, t) for 0 ≤ x ≤ a with T (0, t) = 50 and
T (10, t) = 100.

(b) Verify that for your steady state function, the total rate that heat enters (see equa-
tion (9.20)) at left and right ends is zero,

−r
∂T
∂x

(0, t)+ r
∂T
∂x

(a, t) = 0.

(c) Verify that the total heat energy (see equation (9.19)) for your steady state func-
tion, ∫ a

0
pT (x, t)dx

is independent of the time.

9.31. In this problem you can derive the heat equation in 2 space variables

Tt −hΔT = 0.
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The analogue of the heat conservation law (9.21) states that for all regular sets D in
the plane,

d
dt

∫

D
pT (x,y, t)dA = r

∫

∂D
∇T ·Nds.

Justify the following items.

(a) The rate of change of total energy is
∫

D
pTt dA.

(b)
∫

D
pTt dA =

∫

∂D
div(r∇T )dA.

(c)
∫

D
(pTt − rΔT ) ds = 0.

(d) Tt −hΔT = 0, where h = r
p .

9.32. Suppose a solution of the two-dimensional heat equation has the form

T (x,y, t) = e−cht f (r),

where r is the polar coordinate r =
√

x2+ y2. Thus T only depends on time and on
the distance to the origin. Substitute into Tt = hΔT and use the Chain Rule to show
that f satisfies

f ′′(r)+
1
r

f ′(r)+ c f (r) = 0.

9.33. Show that T (x,y, t) = x2 + y2 + 4ht is a solution of the two-dimensional heat
equation Tt = hΔT , and describe the direction of heat conduction.

9.4 Equilibrium

In Section 9.2 we derived the differential equation governing a vibrating membrane,

ztt = c2(zxx+ zyy),

and in Section 9.3 we derived the differential equation governing the flow of heat in
a plate,

Tt = h(Txx +Tyy).

We consider now the case of equilibrium, that is membranes in which the elastic
forces are so balanced that they do not vibrate, and heat-conducting bodies in which
the temperature is so balanced that it does not change.

The equations of equilibrium can be obtained from the equations of time change
by simply setting the time derivatives in these equations equal to zero. So we obtain
from the equation of of a vibrating membrane the equilibrium equation

zxx + zyy = 0,
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and from the equation of heat conduction the equilibrium equation

Txx +Tyy = 0.

We observe, with some astonishment, that except for the symbols used, these equa-
tions are identical. The equation

Δu = 0

is called the Laplace equation and the solutions are known as harmonic functions.
There is no physical reason why the equilibrium of an elastic membrane and the
equilibrium of heat distribution should be governed by the same equation, but they
are, and so

Their mathematical theory is the same.
This is what makes mathematics a universal tool in dealing with problems of

science.
We state and prove an important property of solutions of the Laplace equation.

Theorem 9.6. Let u and v be two solutions of the Laplace equation on a con-
nected regular set D in R

2 that are equal on the boundary of D. Then u and v
are equal in D.

Another way of expressing this theorem is: Solutions of the Laplace equation in
a regular set D in R

2 are uniquely determined by their values on the boundary of D.
We give now a mathematical proof of this proposition.

Proof. Denote by z the difference of u and v,

z(x,y) = u(x,y)− v(x,y).

Since u and v are solutions of the Laplace equation, their difference z is a solution.
Since u and v are equal on the boundary of D, z is zero on the boundary. Multiply
the Laplace equation Δz = 0 by z and integrate the product over D. We get

∫

D
zΔzdxdy =

∫

D
z(zxx+ zyy)dxdy = 0. (9.25)

Using the product rule for div we get

div(z∇z) = zΔz+ ‖∇z‖2. (9.26)

Therefore

0 =
∫

D
zΔzdxdy =

∫

D

(
div(z∇z)−‖∇z‖2)dxdy.

Since z = 0 on ∂D we get from the Divergence Theorem that

0 =
∫

∂D
z∇z ·Nds−

∫

D
‖∇z‖2 dxdy = −

∫

D
‖∇z‖2 dxdy.
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Therefore

−
∫

D
(z2

x + z2
y)dxdy = 0. (9.27)

One says that (9.27) has been obtained from (9.25) using “integration by parts” and
the product rule for div in (9.26).

The integrand in (9.27) is a sum of squares and therefore nonnegative. Since the
integral is zero, so is the integrand; therefore

zx = 0, zy = 0 in D.

A function z whose partial derivatives are zero in D is a constant in D; since z is
zero on the boundary, that constant is zero. Since z = u− v, this proves that u and v
are equal in D, as claimed. �

We observe that the uniqueness result in Theorem 9.6 is intuitively clear if we
interpret z as the displacement of an elastic membrane. For if the boundary of the
membrane is constrained to lie in the plane z = 0, then the whole membrane will lie
in that plane.

We note that Theorem 9.6 and its proof can be extended to functions of three, or
any number, of variables.

A further basic result about the Laplace equation in D is that given any contin-
uous function on the boundary of D, there is a solution of the Laplace equation in
D with these prescribed boundary values. The result is plausible, for if we stretch a
membrane over a frame on the boundary of D, the membrane will take on a shape in
equilibrium. The proof of this proposition is beyond the scope of a calculus book.

Problems

9.34. Show that these functions are solutions of the Laplace equation uxx +uyy = 0.

(a) x2− y2

(b) x3−3xy2

(c) e−ax sin(by) for some constants a, b; find the relation between a and b.

9.35. Show that these functions are solutions of the Laplace equation uxx +uyy = 0.

(a) u1+u2 if u1 and u2 are solutions
(b) u(xcosθ− ysinθ, xsinθ+ ycosθ) if u is a solution and θ is a constant angle, i.e.,

rotate the solution.
(c) the product uv of two solutions, if the gradients ∇u and ∇v are orthogonal.

9.36. Figure 9.14 shows a region bounded by two level sets of T and two curves
tangent to ∇T , for a function T with Txx +Tyy = 0. Justify the following items.

(a) The curves are orthogonal at the corners.
(b) The flux of ∇T toward the right is the same across the two level sets.
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T

T
T = T

T   +T    = 0xx yy

2

T = T1

Fig. 9.14 The region in Problem 9.36.

(c) The flux of ∇T is zero across each of the other two curves.

9.37. Show that z(x,y) = log(x2+ y2) is a solution of the Laplace equation Δz = 0.

9.38. Recall that the Laplacian of f , Δ f in any number of dimensions is div∇ f .
Show that Δ

(‖X‖−1) is zero in three dimensions, but not in 2 or 4 dimensions.

9.39. Suppose u, v and w are C2 functions in a regular set D in R
3. Derive item (a)

from the Divergence Theorem for the vector field w∇w, and justify the following
items.

(a) If w = 0 on the boundary of D, then
∫

D
(Δw)wdV = −

∫

D
∇w · ∇wdV .

(b) If u solves Laplace’s equation

Δu = 0 in D

u = 0 on ∂D

then u(x,y,z) = 0 at all points of D.
(c) Suppose u and v are two solutions of the Laplace equation

Δu = 0, Δv = 0

in a regular set D that are equal on the boundary of D. Show that u and v are
equal in D. [Hint: apply item (b) to u− v.]

9.40. We derived the wave equation (9.17) from Newton’s F = ma law of motion,
assuming that the only forces on a portion of the membrane were due to the tension.
Suppose instead that the membrane is in equilibrium subject to a uniform pressure
p [force/area] on the top surface. See Figure 9.15. Then the sum of edge forces on
the portion a ≤ x ≤ a+ h, b ≤ y ≤ b+ h are balanced by the force due to p. Justify
the following statements.

(a) The upward force is −ph2 when the slopes zx, zy are small.
(b) z satisfies the differential equation zxx + zyy =

p
T where T is the tension.
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Fig. 9.15 Pressure above a membrane in Problem 9.40.

9.41. Show that the following functions are solutions of a pressurized membrane
equation zxx + zyy = 1 as in Problem 9.40

(a) 1
4 (x2+ y2)

(b) 1
6 x2+ 1

3 y2

(c) kz+ (1− k)w, if z,w are solutions and k constant,
(d) z+w, if z is a solution and w satisfies the Laplace equation wxx +wyy = 0.

9.42. Here Δu = uxx+uyy. Let h > 0, and denote the values of u at four points of the
compass as

uE =u(x+h,y)

uS =u(x,y−h)

uW =u(x−h,y)

uN =u(x,y+h).

See Figure 9.16.

(a) Use Taylor’s theorem to show that

Δu(x,y) =
1

h2

(
uE +uS +uW +uN −4u(x,y)

)
+O(h2).

(b) We use part (a) to approximate a solution of the equation

Δu = 1

in the square 0 < x < 1, 0 < y < 1 shown on the right side of the figure, with
boundary values indicated. Use the approximation

Δu(x,y) ≈ 1

h2

(
uE +uS +uW +uN −4u(x,y)

)

to set up a system of linear equations for values u1,u2,u3,u4 at the indicated
points.

9.43. Let z(x,y) = sin(nx) sinh(ny), where n is a positive integer.

(a) Verify that Δz = 0.
(b) Verify that z = 0 on the boundary of the region 0 < x < π, y > 0.
(c) Show that z(x,y) is unbounded.
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Fig. 9.16 Notation for Problem 9.42. Left: part (a) Right: part (b).

Remark: This does not happen with the heat and wave equations, and shows that
we need to specify some boundary values all the way around the boundary for the
Laplace equation. Or, as we may say, an initial condition cannot be specified.

9.44. We consider the vector field ∇u where u is a solution of the Laplace equation.

(a) If Δu = 0, show that ∇u has divergence equal to zero.
(b) Show that the functions x2− y2 and 2xy are solutions of the Laplace equation.
(c) Show that the vector fields F = ∇(x2 − y2) and G = ∇(2xy) have divergence zero

and are orthogonal to each other at each point (x,y).
(d) Show that at each point (x,y), the vectors F(x,y) and G(x,y) have the same length.
(e) Sketch the vector fields F and G. These are simple models for the velocity of an

incompressible fluid flow.

x

y

Fig. 9.17 The vector field in Problem 9.45 models incompressible fluid flow around a cylinder.

9.45. Let u(x,y) = x+
x

x2+ y2
.

(a) Show that u is a solution of the Laplace equation; therefore the vector field F=∇u
has divergence equal to zero. See Figure 9.17.

(b) Show that F is tangent to the unit circle, that is, for all points on x2+ y2 = 1,

(x,y) ·F(x,y) = 0.
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(c) Show that as x2+ y2 tends to infinity, F(x,y) tends to (1,0).

9.46. Suppose u(x,y,z) is a solution of the Laplace equation in R
3

uxx +uyy+uzz = 0.

Define a vector field F = ∇u. Show that divF = 0 and curlF = 0.

9.5 The Schrödinger equation

The Schrödinger equation is the basic equation of quantum mechanics. It is for
complex valued functions ψ = f + ig where f and g are real valued functions of
X = (x,y,z) and of t, and i2 = −1. The function ψ = f − ig is called the complex
conjugate of ψ. Complex valued functions can be differentiated by treating i as a
constant.

The Schrödinger equation is of the form

iψt = −Δψ+Vψ (9.28)

where V is a real valued function with the property that V(X) tends to zero rapidly
as ‖X‖ tends to infinity. We consider solutions ψ that tend to zero rapidly as ‖X‖
tends to infinity.

The physics interpretation of solutions of Schrödinger’s equation is based on the
following property of its solutions.

Theorem 9.7. Let ψ be a solution of Schrödinger’s equation whose partial
derivatives tend to zero rapidly as ‖X‖ tends to infinity. Then the integral

∫

R3
|ψ(X, t)|2 d3X (9.29)

is independent of t.

Proof. We write
∫

R3
|ψ(X, t)|2 d3X =

∫

R3
ψ(X, t)ψ(X, t)d3X and differentiate with

respect to t. Since ψ and its t derivative tend to zero rapidly as ‖X‖ tends to infinity,
we have

d
dt

∫

R3
|ψ(X, t)|2 d3X =

∫

R3

d
dt

(
ψ(X, t)ψ(X, t)

)
d3X

=

∫

R3

(
ψt(X, t)ψ(X, t)+ψ(X, t)ψt(X, t)

)
d3X.

We use the Schrödinger equation to express ψt and ψt. Since V is real, the integral
on the right becomes
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∫

R3

(
− i
(−Δψ+Vψ

)
ψ+ψi

(−Δψ+Vψ
))

d3X = i
∫

R3

((
Δψ)ψ−ψΔψ

)
d3X

Since ψ and its first partial derivatives with respect to x, y and z tend to zero rapidly
as X tends to infinity, we show in Problem 9.50 that the integral on the right side is
zero. It follows that

d
dt

∫

R3
|ψ(X, t)|2 d3X = 0.

This proves Theorem 9.7. �

We give now the physical interpretation of Theorem 9.7. Suppose that at t = 0 the
function ψ satisfies ∫

R3
|ψ(X,0)|2 d3X = 1.

It follows that for all t ∫

R3
|ψ(X, t)|2 d3X = 1.

Let
|ψ(X, t)|2 = p(X, t).

For each t, p(X, t) is a nonnegative function on R
3 whose integral over R3 is 1. Such

a function is a probability density function. Suppose p is integrable with respect to
X on a set S in R

3. Then

P(S , t) =
∫

S
p(X, t)d3X,

is the probability associated with the set S at time t. What is the physical interpreta-
tion of this probability? According to quantum mechanics, P(S , t) is the probability
that a particle governed by the Schrödinger equation is located at time t in the set S .

This formulation is a radical philosophical departure from the Newtonian picture;
instead of having a definite position in space, at each instant of time there is only a
probability of a particle’s location. Many physicists had to struggle to accept such a
probabilistic description, Einstein among them. He famously remarked “God does
not play dice with the Universe.” But the great success of quantum mechanics has
led to the universal acceptance by physicists of the probabilistic interpretation of
solutions of the Schrödinger equation.

Problems

9.47. Let φ(X) be a solution of the equation

Eφ = −Δφ+Vφ

where E is a real number.



418 9 Partial differential equations

(a) Show that the function
ψ(X, t) = e−iEtφ(X)

is a solution of Schrödinger’s equation (9.28).

(b) Suppose that
∫

R3
|φ(X)|2 d3X = 1. Show that the probability that the particle is

located in a smoothly bounded set S is

P(S , t) =
∫

S
|φ(X)|2 d3X,

independent of the time.

9.48. Define the function φ(X) = π−1/2ze−‖X‖, where X = (x,y,z).

(a) Show that

−φ = −Δφ+ −4
‖X‖φ.

(b) Define ψ(X, t) = eitφ(X) as in Problem 9.47, so that ψ is a solution of the

Schrödinger equation with V(X) =
−4
‖X‖ . We have shown in Example 6.41 using

spherical coordinates that
|φ(X)|2

is a probability density function. Set up an iterated integral for the probability
that the particle described by ψ is in the set S given by ‖X‖ ≤ 3.

Figure 9.18 illustrates a level set of the probability density in (b).

Fig. 9.18 Sketch of a level set in Problem 9.48. The plane z = 0 is indicated for reference.

9.49. Take V(x,y,z) = x2 + y2 + z2 in the Schrödinger equation, and consider the
corresponding equation

Eφ = −Δφ+ (x2+ y2+ z2)φ. (9.30)

http://dx.doi.org/10.1007/978-3-319-74073-7_6
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(a) Suppose X, Y and Z are functions of x, y and z respectively, and

ExX = −X′′+ x2X

EyY = −Y′′+ y2Y

EzZ = −Z′′+ z2Z

for some numbers Ex, Ey and Ez. Show that the function φ(x,y,z) = X(x)Y(y)Z(z)
satisfies (9.30) for some number E expressed in terms of Ex, Ey and Ez.

(b) For each of the numbers Ew = 1, 3 and 5, find a function of the form

W(w) = (a+bw+ cw2)e−w2/2

that satisfies EwW = −W′′+w2W.
(c) Using functions from (b), create functions φ that satisfy (9.30) with energy levels

E = 3,5,7,9,11,13 and 15.

(d) Show that the probability density |e−iEtφ(X)|2 associated with the E = 3 case is

|φ|2 = π−3/2e−x2−y2−z2
.

9.50. The integral of a complex valued function f = a+ ib, where a and b are real
valued functions, is the integral of a plus i times the integral of b.

(a) Let F = ( f1, f2, f3) have complex components f j that are C1 functions on R
3,

that is, the real and imaginary parts of each f j are C1. Then divF and curlF are
complex. Show that the Divergence Theorem 8.3 and Stokes’ Theorem 8.4 hold
for complex valued functions.

(b) Let f and g be complex valued functions on R
3 that are C2 functions, that is,

the real and imaginary parts of f and g are C2. Then ∇ f and ∇g have complex
components and Δ f and Δg are complex. Prove the formula that we used in the
proof of Theorem 9.7: if f , g, ∇ f and ∇g tend rapidly to zero as X tends to
infinity then ∫

R3

(
fΔg−gΔ f

)
d3X = 0.

http://dx.doi.org/10.1007/978-3-319-74073-7_8
http://dx.doi.org/10.1007/978-3-319-74073-7_8
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Problems of Chapter 1

Section 1.1

1.1 3.5

1.3

(a) a(1,−1)+b(1,1) = (a+b,−a+b) = (0,0).
Add the equations a+b = 0 and −a+b = 0 to get 2b = 0, so a = b = 0. Therefore
the vectors are linearly independent.

(b) a(1,−1)+b(1,1) = (a+b,−a+b) = (2,4).
Add the equations a+b = 2 and −a+b = 4 to get 2b = 6, so b = 3. Then the first
equation gives a+3 = 2 so a = −1.

(c) a(1,−1)+b(1,1) = (a+b,−a+b) = (x,y). Now 2b = x+ y so b = 1
2 (x+ y). Then

the first equation gives a+ 1
2 (x+ y) = x, so a = 1

2 (x− y).
1.5 �(x,y) = ax+ by. We need a+ 2b = 3 and 2a+ 3b = 5. Subtract twice the first
from the second to eliminate a, giving −b = −1. Then the first equation gives a = 1.
So �(x,y) = x+ y.

1.7

(a) The line through 0 and U consists of all points cU; that through V and U+V is
all V+ dU. They don’t intersect because cU = V+ dU gives a nontrivial linear
combination. Therefore they are parallel. Alternatively the line through 0 and U
has slope

u2
u1

(or is vertical if u1 = 0), and the line through V andU+V has slope

(u2+ v2)− v2
(u1+ v1)− v1 (or is vertical). These are equal, so those two sides are parallel.

(b) Similar to (a).

1.9 W = −U−V, so U+V+W = 0.
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1.11 �(U+V) = (u1+v1)−8(u2+v2), while �(U)+�(V)= (u1−8u2)+ (v1−8v2), and
these are equal. �(cU) = cu1 −8cu2, while c�(U) = c(u1 −8u2), and these are equal.
So � is linear.

1.13 a+3b = 4, 3a+b = 5

1.15 (4,8) = 4(1,2) = 2(2,4) = −3(1,2) + 7
2 (2,4) and many other combinations

U and V are linearly dependent.

1.17

(a) Rotation carries U to V, V to W, and W to U, so it carries U+V+W to itself.
No vector except 0 is rotated to itself, therefore U+V+W = 0.

(b) The sines are the y coordinates of U, V, and W where θ is the angle from the
x axis to one of the vectors.

(c) The sum of n equally spaced vectors on the unit circle is the zero vector by the
same rotation argument; the cosines are the x coordinates and therefore their
sum is zero.

1.19 f (.5,0) = − f (.5,0) = −100
Section 1.2

1.21

(a) U · (V+W) = u1(v1+w1)+u2(v2+w2) is equal to
U ·V+U ·W = (u1v1+u2v2)+ (u1w1+u2w2).

(b) U ·V = u1v1+u2v2 = v1u1+ v2u2 = V ·U
1.23 All but (d) because all have norm one except for the last one.

1.25 If �(x,y) = ax+ by then we are given 2a+ b = 3, a+ b = 2. Subtract to find
a = 1, then b = 1, so C = (1,1), �(U) = C ·U.
1.27 Replace V by −V in (1.8), or expand (u1+ v1)2+ (u2+ v2)2 = u21+2u1v1+ v

2
1+

u22+2u2v2+ v
2
2. Collecting terms gives ‖U+V‖2 = ‖U‖2+2U ·V+ ‖V‖2.

1.29

(a) U ·C = aC ·C+bD ·C = aC ·C, so a = C ·U
‖C‖2 .

(b) By similar argument, or interchange the symbols, b =
D ·U
‖D‖2 .

(c)
( 3
5 ,

4
5
)
and

(− 4
5 ,

3
5
)
are orthogonal unit vectors. Therefore a = 24+36

5 = 12.

1.31 U =
(− 1√

2
, 1√

2

)
, V =

(
2
√
2,0

)
.

Section 1.3

1.33 b(U+W,V) = (u1+w1)v1 = u1v1+w1v1 = b(U,V)+b(W,V), and
b(aU,V) = (au1)v1 = a(u1v1) = b(U,V).

http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
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1.35 Because of the term qr, the variables q and r are not both in the same vector.
Similarly r and p are not in the same vector.

Set U = (q, p) = (u1,u2) and V = (r, s) = (v1,v2). Then

f (p,q,r, s) = qr+3rp− sp = u1v1+3u2v1−u2v2 = b(U,V).
Section 1.4

1.37

(a) (v1+w1, . . .) = (w1+ v1, . . .) because addition of numbers is commutative
(b)

(
(v1 + u1) + w1, . . .

)
=
(
v1 + (u1 + w1), . . .

)
because addition of numbers is

associative
(c) c(u1+v1, . . .) =

(
c(u1+v1), . . .

)
= (cu1+cv1, . . .) = (cu1, . . .)+ (cv1, . . .) = cU+cV

(d) (c+d)(u1, . . .)=
(
(c+d)u1, . . .

)
= (cu1+du1, . . .)= (cu1, . . .)+ (dv1, . . .)= cU+dU.

1.39 X = c1U1 + c2U2 + c3U3 = (x1, x2, x3) = (c1 + c2 + c3,c2 + c3,c3) gives first
c3 = x3, then c2 = x2− x3, c1 = x1− x2.
1.41 If

c1(1,1,1,1)+ c2(0,1,1,1)+ c3(0,0,1,1)+ c4(0,0,0,1)

= (c1,c1+ c2,c1+ c2+ c3,c1+ c2+ c3+ c4) = (0,0,0,0)

then the first component gives c1 = 0, the second then gives c2 = 0, etc. Therefore
the vectors are linearly independent.

1.43 If a(3,7,6,9,4)+ b(2,7,0,1,−5) = (− 1
2 ,− 7

2 ,3,
7
2 ,7

)
then the third component,

6a = 3, shows that a must be 1
2 . Then the last component, 2− 5b = 7 gives b = −1.

Checking the other three components shows that indeed 1
2U−V =

(− 1
2 ,− 7

2 ,3,
7
2 ,7

)
.

1.45

(a) �(cU) = c1(cu1)+ · · ·+ cn(cun) = cc1u1+ · · ·+ ccnun = c�(U), and
(b) �(U+V) = c1(u1+ v1)+ · · ·+ cn(un+ vn) = (c1u1+ c1v1)+ · · ·+ (cnun+ cnvn)
= (c1u1+ · · ·+ cnun)+ (c1v1+ · · ·+ cnvn) = �(U)+ �(V).

1.47 (1,2,3) + (3,2,1) = (4,4,4) and this is 4(1,1,1). So −4(1,1,1) + (1,2,3) +
(3,2,1) = 0 is a nontrivial relation among the vectors, and they are dependent.

1.49 (a), (b), and (d) are bilinear. Only (d) is symmetric, only (b) antisymmetric.

1.51 (a) and (d) only.

Section 1.5

1.53

(a) Since U · (V+W) = u1(v1+w1)+ · · ·+un(vn+wn)
= u1v1+ · · ·+unvn+u1w1+ · · ·+unwn =U ·V+U ·W the dot product is distribu-
tive and

http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
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U · (cV) = u1(cv1)+ · · ·+ un(cvn) = c(u1v1 + · · ·+ unvn) = cU ·V, similarly (cU) ·
V = cU ·V, therefore b is a bilinear function.

(b) U ·V = u1v1 + · · ·+unvn = v1u1 + · · ·+ vnun = V ·U shows that the dot product is
commutative and b is symmetric.

1.55 Three dot products are set equal to zero:

w1+2w2−2w5 = 0

−2w1+w2+2w3 = 0

−2w2+w3+2w5 = 0

Since w4 is not in the system W = (0,0,0,1,0) satisfies the equations.

1.57 (b) and (c) only

1.59 Add the identities (uk − vk)2 = u2k − 2ukvk + v2k for k = 1, . . . ,n and recognize
∑n

k=1 u
2
k = ‖U‖2,

∑n
k=1 ukvk = U ·V and

∑n
k=1 v

2
k = ‖V‖2.

1.61

(a) (c,c,c, · · · ,c)
(b) nc2 = 1 gives c = n−1/2.
(c) c = n−1/2 tends to zero as n tends to infinity.
1.63 Equations for a vector V orthogonal toW1 and W2 are:

v1+ v2+ v3 = 0, v2+ v3+ v4 = 0.

With any choice of v2 and v3 these equations give v1 = v4 = −v2− v3. Therefore
V = (−v2− v3,v2,v3,−v2− v3).

Take for example v2 and v3 as 1,0 and 0,1. This gives independent vectors
V = (−1,1,0,−1) and (−1,0,1,−1).
1.65

(a) C = (1−h,1,2), D = (1+h,1,2).
(b) 2h
(c) The icosahedron is regular, so all edges have the same length, 2h.
(d) ‖D−A‖2 = (2h)2, so (1+h−2)2+ (1− (1−h))2+ (2−1)2 = (h−1)2+h2+1= 4h2,

or h2+h−1 = 0. Then h = 1
2 (1±

√
1+4), and it must be the plus sign since h is

positive.

1.67

(a) By the triangle inequality |a| = |a−b+b| ≤ |a−b|+ |b|
(b) Subtract |b| from both sides in (a). That gives |a| − |b| ≤ |a−b|.
(c) Switch the numbers a and b in part (b) to get |b| − |a| ≤ |a− b|. Combining that

with part (b) gives
∣∣∣|a| − |b|∣∣∣ ≤ |a−b|.
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(d) Mimic parts (a)–(c): ‖X‖ = ‖X−Y+Y‖ ≤ ‖X−Y‖+ ‖Y‖, subtract and switch X
and Y to get

∣∣∣‖X‖− ‖Y‖∣∣∣ ≤ ‖X−Y‖
Section 1.6

1.69 Denote U = (u1,u2) etc. Then

(a) det

[
u1+w1 v1
u2+w2 v2

]

= (u1+w1)v2− (u2+w2)v1 = (u1v2−u2v1)+ (w1v2−w2v1)

= det [U V]+det [WV], and similarly for det
[
U V+W

]
.

(b) det

[
cu1 v1
cu2 v2

]

= (cu1)v2−(cu2)v1 = cdet [UV] and similarly det
[
U cV

]
= cdet

[
UV

]
.

1.71 (a) 1 (b) −1 (c) 1 (d) −6 (e) −6
1.73

(a) In a permutation p1 · · · pn+1, move the number n + 1 past k smaller numbers
to its right; this can be done using k transpositions. Then the first n numbers
remaining to the left of n+ 1 are some permutation of 123 · · ·n. Complete the
argument inductively since none of the numbers 123 · · ·n will need to be moved
to the right of n+1.

(b) In 1237456 there are three cases where a larger number is to the left of a smaller
one: 74, 75, 76. So s(1237456) = −1.

(c) In 1273456 there are four cases where a larger number is to the left of a smaller
one: 73, 74, 75, 76. So s(1273456) = 1.

1.75 The signature of permutation p = p1p2 · · · pn is the number s(p) that gives
equality in ∏

i< j

(xpi − xp j ) = s(p)
∏

i< j

(xi− x j).

The composite of p and q = q1q2 · · ·qn can be expressed as

pq = pq1 pq2 · · · pqn .
Denote xpqi = yqi , that is, xpk = yk for any k. Then
∏

i< j

(xpqi − xpq j ) =
∏

i< j

(yqi −yqj ) = s(q)
∏

i< j

(yi−y j) = s(q)
∏

i< j

(xpi − xpj ) = s(q)s(p)
∏

i< j

(xi− x j).

This shows that s(pq) = s(q)s(p).

1.77 det (E1,E3,E2) = det
[
1 0 0
0 0 1
0 1 0

]
= −1 and the permutation 132 is one transposition

from 123, so s(132) = −1.
Section 1.7

1.79

(a) 1
2 (base)(height) =

1
2‖U‖(‖V‖sinθ)

http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
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(b)

√

1−
(

U·V
‖U‖‖V‖

)2
=
√
1− cos2 θ = sinθ

(c) 1
2‖U‖(‖V‖sinθ) = 1

2‖U‖‖V‖
√

1−
(

U·V
‖U‖‖V‖

)2
= 1

2

√‖U‖2‖V‖2− (U ·V)2
(d) ‖U‖2‖V‖2− (U ·V)2 = (u21+u22)(v21+ v22)− (u1v1+u2v2)2
= u21v

2
2+u

2
2v

2
1−2u1v1u2v2 = (u1v2−u2v1)2

1.81 Area is twice the area of the triangle
(
(0,0)(1,3)(2,1)

)
,

so it is 2
( 1
2
)|(1)(1)− (3)(2)| = 5.

0

s(V)
W V

V+W

s(W)

s(V+W)

0

s(V)
V s(cV)

cV

Fig. 9.19 Figure for Problem 1.83.

1.83 See Figure 9.19.
The figure shows s(V+W) = s(V)+ s(W) for vectors on the same side of the line

at left, and s(cV) = cs(V) for c > 0 at the right.

Section 1.8

1.85 (a)

[
3
−1
]

(b) 0 (c) −10 (d) bi j

1.87 The function M is defined by M(V) = v1M1 + · · ·+ vnMn where the Mk are
vectors. M is linear because:

M(cV) = (cv1)M1+ · · ·+ (cvn)Mn = c(v1M1+ · · ·+ vnMn) = cM(V),

and
M(V+W) = (v1+w1)M1+ · · ·+ (vn+wn)Mn

= v1M1+ · · ·+ vnMn+w1M1+ · · ·+wnMn = M(V)+M(W).

1.89 (a) X ·
([
1 0
0 2

]

Y
)

(b) X ·
([

0 1
−1 0

]

Y
)

X ·
([
1 3
1 −1

]

Y
)

1.91 N(MX) = N
∑

j x jME j =
∑

j x jN
(
ME j

)
and

(NM)X =
∑

j x j(NM)E j. So we must show that N(ME j) = (NM)E j:
(NM)E j is the j-th column of NM that has i-th coordinate

∑
h nihmh j.

N(ME j) is N times the j-th column ofM, that has the same i-th coordinate because
the i-th row of N is (ni1,ni2, . . .).
Therefore N(MX) = (NM)X.

http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_9
http://dx.doi.org/10.1007/978-3-319-74073-7_1
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1.93

(a) By Property (v) of the determinant, since detA= 0 the columns ofA are linearly
dependent. By Theorem 1.20 there is a vector W not representable as AV. This
proves (a).

(b) For any vector U, BU is some vector and for any such vector, by part (a),
A(BU) �W. This proves (b).

By Theorem 1.20 the columns of AB are linearly dependent. By Property (v) then
det (AB) = 0.

Section 1.9

1.95

(a) x = 0
(b) Take N = (0,1,1)× (−3,0,0) = (0,−3,3). The equation is −3y+3z = 0.
(c) Since the planes are parallel we can take the same normal N = (1,−3,5). The

equation is (1,−3,5) · (X− (1,1,1)) = 0 or x−3y+5z = 3.
1.97 All of them.

1.99 All of them.

1.101

(a) X = (0, s, s)
(b) X = (−3t,0,0)
(c) X = (−3t, s, s).
1.103 Using equation (1.37),

det [U V W] = u1(v2w3− v3w2)−u2(v1w3− v3w1)+u3(v1w2− v2w1).

Since det
[
U VW

]
= U ·V×W we get

V×W = (v2w3 − v3w2,−(v1w3 − v3w1),v1w2 − v2w1) = (v2w3 − v3w2,v3w1 − v1w3,v1w2 − v2w1).

1.105

(a) (1,0,0)× (0,1,0) = i× j = k
(b) j× (i+k) = −i× j+ j×k = −k+ i
(c) (2i+3k)× (ai+bj+ ck) = 2bi× j+2ci×k+3ak× i+3bk× j
= 2bk−2cj+3aj−3bi = −3bi+ (3a−2c)j+2bk

http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_1
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y

x

z

x

y

z

0 0 0

x

z

y

Fig. 9.20 Figure for Problem 1.107.

1.107 See Figure 9.20.

(a) U · (V×W) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0
0 2 0
0 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 28.

(b) U · (V×W) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0
0 2 0
0 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −28.

(c) U · (V×W) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 7
1 2 7
0 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 21.

http://dx.doi.org/10.1007/978-3-319-74073-7_1
http://dx.doi.org/10.1007/978-3-319-74073-7_9
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Problems of Chapter 2

Section 2.1

2.1

(a) (1,2) ·X
(b) (1,2,0) ·X
(c)

[
1 0
1 2

]

X

(d)

[
1 0 0
1 2 0

]

X

(e)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 1
−1 0 1 0
5 1 0 0
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
X

(f)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
5 0
0 −1
−2 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X

(g)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
5 0 0 0 0
0 −1 0 0 0
−2 0 0 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X

2.3 The level set f = 0 is the origin together with all the points X with ‖X‖ ≥ 1. The
level sets f = c with 0 < c < 1 are (a) the two points ±√c, (b) the sphere of radius√
c, and (c) the sphere in R5 centered at the origin of radius

√
c. All other level sets

are empty.

2.5 �(x,y,z) = 2x+3y− z defines a function � : R3→ R for which �(x,y,z) = 0 gives
the plane z = 2y+3y. Any nonzero multiple of 2x+3y− z would also work.

2.7

(a) Subtract ‖A‖2+2A ·U from each side of ‖A+U‖2 = ‖A‖2+2A ·U+‖U‖2, giving
‖A+U‖2− (‖A‖2+2A ·U) = ‖U‖2.

Since the first term ‖A+U‖2 is equal to f (X) and the second is g(X), this proves
what we want.

(b) We are assuming ‖X − A‖ < 10−2. That is, ‖U‖ < 10−2. Part (a) gives
f (X)−g(X) = ‖U‖2, so

∣∣∣ f (X)−g(X)∣∣∣ = ‖U‖2 < 10−4.

http://dx.doi.org/10.1007/978-3-319-74073-7_2
http://dx.doi.org/10.1007/978-3-319-74073-7_2
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2.9 Take x2 − y2 = c(x2 + y2) when y � 0 and c � 1. Divide by y2 to get
(
x
y

)2 − 1 =
c
(( x

y

)2
+1

)
, from which

(
x
y

)2
= 1+c

1−c . This gives two lines (minus origin) x = ± 1+c
1−c y.

Note that 1+c
1−c can be any nonzero.

2.11

(a) Level sets are the origin, unit circle, and circle of radius
√
2.

(b) Level sets are the origin, unit circle, and circle of radius 2.
(c) Level sets are empty, unit circle, and circle of radius 1√

2
.

2.13

(a) Level sets are spheres of radius 1√
2
, 1,
√
2 centered at the origin.

(b) Level sets are spheres of radius 1
2 , 1, 2.

(c) Level sets are spheres of radius
√
2, 1, 1√

2
.

(d) X = aU +V, f (X) = aU ·U +U ·V = a = c. So X = cU +V, V any vector
orthogonal to U. This is a plane through cU and orthogonal to U.

2.15 According to Theorem 2.1, L(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11x1+ · · ·+ c1nxn
c21x1+ · · ·+ c2nxn
cm1x1+ · · ·+ cmnxn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. Since this is equal to

x1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11
c21
...

cm1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+ · · ·+ xn

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1n
c2n
...

cmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

the numbers multiplying x1 are the first column, x2 the second, and so on.
So L(X) = x1V1+ · · ·+ xnVn.

2.17 We have f (X) = 1 and g(X) = ‖X‖−2 for all X � 0. So the level set f (X) = 1 is
R
3 − {0}, g(X) = 1 is the unit sphere in R

3 where ‖X‖ = 1, g(X) = 2 is the sphere of
radius 1√

2
, and g(X) = 4 is the sphere of radius 1

2 . There are no points where f = 2
because f = 1 everywhere it is defined.

2.19

(a) F(t, θ) = (tcosθ, t sinθ).
(b) The rectangle maps to a segment of the unit disk

2.21 ‖L(x,y,z)‖ = x2 + z2 + y2 = 1, so L maps the sphere into itself. The right half-
plane goes into the unit disk. The unit disk goes into the left half-plane.

2.23

(a) This uses two statements of Taylor’s Theorem

f (u) = f (0)+ f ′(θ1)u, f (u) = f (0)+ f ′(0)u+ 1
2 f
′′(θ2)u2

using the first, and then second derivative remainders.

http://dx.doi.org/10.1007/978-3-319-74073-7_2
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(b) Apply part (a) with a = ‖A‖ and u = 2A ·U+ ‖U‖2.
(c) Reading from the first derivative Taylor formula we see L1(U) = ‖A‖−3U,

“large” =
(
− 3

2 (‖A‖2+ θ1)−5/2(2A+U) ·U
)
(A+U)

with norm less than some multiple of ‖U‖, and L2(U) = U
‖A‖3 −3 A·U

‖A‖5A,

“small” = − 3
2 ‖A‖−5‖U‖2+ 15

8 (‖A‖2+ θ2)−7/2
(
2A ·U+ ‖U‖2)2(A+U),

with norm less than some multiple of ‖U‖2.
Section 2.2

2.25

(a) Combine continuity of g and of F: given ε > 0 there is δ so that
if ‖F(B)−F(A)‖ < δ then |g(F(B))−g(F(A))| < ε
and there is η so that if ‖B − A‖ < η then |F(B) − F(A)| < δ. Therefore if
‖B−A‖ < η then |g(F(B))−g(F(A))| < ε.

(b) Linear functions are continuous.
(c) Combine (a) and (b).
(d) Take g(x,y) = xy in (a). To show that g is continuous at (a,b), show that if
‖(x,y)− (a,b)‖ < δ then

|xy−ab| = |xy− xb+ xb−ab| < (|a|+δ)δ+δb ≤ Mδ.

2.27

(a) ε/2
(b) 3δ
(c) We know that |x − a| < ‖(x,y) − (a,b)‖ and |y − b| < ‖(x,y) − (a,b)‖. If
‖(x,y)− (a,b)‖ < m then

|cos(2x)cos(3y)− cos(2a)cos(3b)| = |(cos(2x)− cos(2a))cos(3y)+ cos(2a)(cos(3y)− cos(3b))|

≤ |cos(2x)− cos(2a)| |cos(3y)|+ |cos(2a)| |cos(3y)− cos(3b)|
< |cos(2x)− cos(2a)|+ |cos(3y)− cos(3b)| < 2m+3m.

Take m = ε/5.

2.29

(a) True. Observe that 0 is between the values f (1,0) and f (0, 14 ). Consider the
continuous function of one variable g(t) = f (X(t)) where X(t) parametrizes the
line segment from (1,0) to (0, 14 ). By the Intermediate Value Theorem for con-
tinuous functions of one variable, there is a t1 where g(t1) = 0.

(b) True.
(c) False, that is, there are such functions f for which this does not hold.
(d) True; this is part of being continuous at (0, 14 ).

http://dx.doi.org/10.1007/978-3-319-74073-7_2
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2.31 These are all compositions and products and sums of continuous functions.
Therefore they are continuous.

2.33 The graph is part of a plane in R
3. The maximum value of f occurs, by

inspection, at the boundary circle x21 + x
2
2 = 2 where x2 is as large as possible. This

is the point (x1, x2) = (0,
√
2), so the maximum value is

√
2.

2.35 The inequality x2 + y2 < 1 confines (x,y) to the open unit disk, and places no
restriction on z. Around any point of the unit disk you can center a small open disk
contained in the unit disk. For each point (x,y,z) then there is a small open ball of
that same small radius centered at (x,y,z) and contained in the cylinder. Therefore
the cylinder is open.

2.37

(a) Boundary is the three edges x = 0, y = 0, and x+ y = 1.
(b) The point is .0001 from the left edge, and .0001 vertically thus .0001/

√
2 >

.00005 distance from the hypoteneuse. Take r = .00001. IfQ is any point within
distance r of (.0001, .9998) then Q is certainly inside a square

.0001− r ≤ x ≤ .0001+ r, .9998− r ≤ y ≤ .9998+ r,
that is,

.00009 ≤ x ≤ .00011, .99979 ≤ y ≤ .99981.
The top right point of that square is (.00011, .99981), still inside T because

.00011+ .99981 = .999982 < 1.

Since this little square is contained in T , a disk of radius r centered at
(.0001, .9998) is also contained in T .

2.39

(a) c can be taken to be the matrix norm,
√
12+52+52+12 =

√
52, or any larger

number.
(b) d = c, using linearity of F.
(c) Yes, by part (b): if ‖X−Y‖ < ε√

52
then ‖F(X)−F(Y)‖ < ε.

2.41

(a) If C = 0 the function is constant so is uniformly continuous. Otherwise:

| f (X)− f (Y)| = |C · (X−Y)| ≤ ‖C‖‖X−Y‖.

Let ε > 0. For any X and Y with ‖X−Y‖ < ε

‖C‖ , then | f (X)− f (Y)| < ε.
(b) One way: this is a polynomial in the variables (x1, . . . , xn,y1, . . . ,yn), therefore

continuous. Or we can prove directly that g is continuous at each point (U,V):

g
(
(X,Y)

)−g(U,V)) = X ·Y−U ·V = X · (Y−V)+ (X−U) ·V
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has absolute value
≤ ‖X‖‖Y−V‖+ ‖X−U‖‖V‖

If ‖(X,Y)− (U,V)‖ < δ, then each of ‖X−U‖ and ‖Y−V‖ is less than δ, and
our estimate becomes

|g((X,Y))−g(U,V))| ≤ ‖X‖δ+δ‖V‖. ≤ (‖U‖+δ)δ+δ‖V‖.
This is sufficient to show that g is continuous at (U,V), but since the estimate
depends on (U,V) we don’t get uniform continuity.

2.43 Since ‖X‖ ≥ 2 you have
1
‖X‖ ≤

1
2 . Similarly for Y . Therefore

∣∣∣∣∣
1
‖X‖ −

1
‖Y‖

∣∣∣∣∣ =

∣∣∣∣∣
‖Y‖− ‖X‖
‖X‖‖Y‖

∣∣∣∣∣ ≤ 1
2
1
2 |‖X‖− ‖Y‖| ≤ 1

4‖X−Y‖

This shows uniform continuity.

Section 2.3

2.45 θ runs from 0 to π, and r > 0, so your sketch ought to show a “rectangle” of
height π that extends infinitely far to the right.

2.47 (a) 0 ≤ r < 1, any θ.
(b) 0 < r and 0 < θ < π2 .

2.49 (a) 1 = rr−1 = r(a+bcosθ) = ar+bx = a
√
x2+ y2+bx.

(b) Subtract bx and square: 1−bx = a√x2+ y2, 1−2bx+b2x2 = a2(x2+ y2)
So 1 = (a2−b2)x2+2bx+a2y2. Complete the square to get

1 = (a2−b2)
(

x+
b

a2−b2
)2
− b2

a2−b2 +a
2y2.

Add
b2

a2−b2 to get a2

a2−b2 = (a
2−b2)

(
x+ b

a2−b2
)2
+a2y2.Multiply by

a2−b2
a2

to get

1 =

(
x+ b

a2−b2
)2

(
a

a2−b2
)2 +

y2
( 1√

a2−b2
)2 .

That is an equation for an ellipse.

2.51 (a) (iii) (b) (i) (c) (ii) (d) (iv)

2.53

(a) 1, spheres
(b) s2(1,φ,θ) = 0.

http://dx.doi.org/10.1007/978-3-319-74073-7_2
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(c) zero.
(d) 3cos2φ−1 is zero where cosφ = ±√1/3, a cone.
(e) negative because the cos2φ is less than 1/3 there.

2.55

(a) In the expression (xu− vy,yu+ xv), each of the two components is a continuous
function of (x,y,u,v). So multiplication zw is a continuous function of z and w.
In particular, the function z2 is continuous, and then z3 = z2z is a product of
continuous functions so it is continuous, and so forth for all the powers of z.
Also multiplying zk by pk is continuous. And the sum of continuous functions
is continuous as we already know. Therefore polynomials are continuous.

(b) Squaring doubles the angle θ and squares the polar r:

(
r(cosθ+ i sinθ)

)2
= r2

(
cos(2θ)+ i sin(2θ)

)
.

Therefore to find a square root of a complex number, take half the angle, and the
square root of the absolute value. Similarly to find a cube root, divide the angle
by three and take the cube root of the absolute value, etc.

(c) |x+ iy| = √x2+ y2 is the same as the norm in R2, that we know is continuous.
When z = r(cosθ+ i sinθ) you have |z| = r, so |zw| = |z||w| follows from

r1(cosθ1+ i sinθ1)r2(cosθ2+ i sinθ2) = r1r2
(
cos(θ1+ θ2)+ i sin(θ1+ θ2)

)
.

(d) In the first part you can take P = |pn−1|+ · · ·+ |p0|.
(e) We are assuming |p(z)| is positive, and we know it is continuous and tends to

infinity as |z| tends to infinity. Therefore f is continuous on all of R2 and tends
to zero as |z| tends to infinity.

(f) By the product rule

d
da

(

q(a)+q′(a)(z−a)+q′′(a) (z−a)
2

2!
+ · · ·+q(n)(a) (z−a)

n

n!

)

= q′(a)+q′′(a)(z−a)+q′(a)(−1)+q′′′(a) (z−a)
2

2!
+q′′(a)

(− (z−a))

+ · · ·+q(n+1)(a) (z−a)
n

n!
+q(n)(a)

−(z−a)n−1
(n−1)! .

Since q has degree n, q(n+1)(a) = 0, and all other terms cancel in pairs, so the
derivative is zero. The contradiction follows from part (d), using a rather than z
as the variable. Finally taking a = z evaluates the right hand side as q(a) since
all other terms become 0.

(g) The contradiction arises because the terms indicated as · · · all involve higher
than the k-th power of ε. The sum of these terms is smaller than mεk when ε
is sufficiently small, giving |p(z+ εh)| < m, contradicting part (e).

2.57 The Cartesian coordinates of the points are
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(sinφ1 cosθ1,sinφ1 sinθ1,cosφ1), (sinφ2 cosθ2,sinφ2 sinθ2,cosφ2),

so the dot product is

sinφ1 sinφ2
(
cosθ1 cosθ2+ sinθ1 sinθ2

)
+ cosφ1 cosφ2

= sinφ1 sinφ2 cos(θ2− θ1)+ cosφ1 cosφ2
= sinφ1 sinφ2 cos(θ2−θ1)+cos(φ2−φ1)−sinφ1 sinφ2 = cos(φ2−φ1)−sinφ2 sinφ1(1−cos(θ2−θ1)).
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Problems of Chapter 3

Section 3.1

3.1 (a) 6x, (b) 4. These are the x and y partial derivatives of 3x2+4y,

3.3

(a) fx(x,y) = −2xe−x2−y2 , fy(2,0) = 0,
(b) xey+ ex

(c) −ysin(xy)+ cos(xy)− xysin(xy)
3.5

(x,y) (.1, .2) (.01, .02)

(1+ x+3y)2 2.89 1.1449
1+ x+3y 1.7 1.07
1+2x+6y 2.4 1.14

3.7 Level sets of m are closer, and ∇m is longer.

3.9

(a) Any linear function is given by some matrix.
(b) A vector tends to zero if and only if each component tends to zero.
(c) With these substitutions the fraction becomes the definition of partial derivative.

The fraction tends to fi,x j by definition. And the j-th component of row Ci is the
(i, j) entry of the matrix C.

3.11 ∇ f (x,y) = (−sin(x+y),−sin(x+y)) so fx− fy = −sin(x+y)− (−sin(x+y)) = 0.
∇g(x,y) = (2cos(2x− y),−cos(2x− y)) so
gx +2gy = 2cos(2x− y)+2(−cos(2x− y))=0.
3.13 ∇g(x,y) = (aeax+by,beax+by) = eax+by(a,b)
Section 3.2

3.15

(a) z = f (0,0)+ fx(0,0)x+ fy(0,0)y = x
(b) z = f (1,2)+ fx(1,2)(x−1)+ fy(1,2)(y−2) = 5+ (x−1)+4(y−2)
3.17

(a) If a2+b2 = 1 then

f (a,b) = e−(a
2+b2) = e−1, g(a,b) = e−1

(b) ∇ f (x,y) = e−(x2+y2)(−2x,−2y) and ∇g(x,y) = −e−1(x2+ y2)−2(2x,2y)

http://dx.doi.org/10.1007/978-3-319-74073-7_3
http://dx.doi.org/10.1007/978-3-319-74073-7_3
http://dx.doi.org/10.1007/978-3-319-74073-7_3
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(c) At point (a,b) where a2+b2 = 1 you have by part (b)

∇ f (a,b) = e−1(−2a,−2b), ∇g(a,b) = −e−1(2a,2b)
and f (a,b) = g(a,b) by part (a). Since the values and gradients of f and g agree,
the graphs are tangent.

Section 3.3

3.19

(a) fxx = 2, fxy = 0, fyy = −2
(b) fxx = 2, fxy = 0, fyy = 2
(c) fxx = 2, fxy = 2, fyy = 2
(d) fxx = e−x cosy, fxy = −e−x siny, fyy = −e−x cosy
(e) fxx = −a2e−ay sin(ax), fxy = −a2e−ay cos(ax), fyy = a2e−ay sin(ax)
3.21 (a) (b) and (c) only

3.23 ∇ f (x,y) = (3+ y,2+ x), ∇ f (1,1) = (4,3). The directional derivatives are
∇ f ·V = 4, 5, 3, 0, −4.

The second one, the largest, is equal to ‖∇ f (1,1)‖ because V is in the direction of
∇ f (1,1).
3.25

(a) If u(x, t) = f (x−3t) then according to the Chain Rule,
ux = f ′(x−3t), ut = f ′(x−3t)(−3), so ut +3ux = 0.

(b) DVu = V · ∇u = 1√
10
(3,1) · (ux,ut) = 1√

10
(3ux +ut) = 0.

(c) The slope of a line (x horizontal, t vertical) parallel to V is 1/3, as is the line
that goes through (x−3t,0) and (x, t).

(d) Since u(x, t) is constant on the line through (x− 3t,0), it follows that u(x, t) =
u(x−3t,0). This shows that every solution is a function of x−3t.

3.27

(a) (x2+ y2)3 = r6, and
(
(x2+ y2)3

)
x = 6x(x

2 + y2)2, similarly for y. Then

x
(
6x(x2 + y2)2

)
+ y
(
6y(x2+ y2)

)
= (6x2+6y2)(x2+ y2)2 = 6r2r4 = 6r5r = r

d
dr

(r6).

(b) r =
√
x2+ y2, so if f (x,y) = g(r) then fx = g′(r)rx = g′(r) xr , and similarly for fy.

Then
x fx + y fy = g

′(r)
(
x
x
r
+ y

y
r

)
= g′(r)r.

(c) fxx =
(
g′(r) xr

)
= g′′

( x
r

)2
+g′ r−

xx
r

r2
, fyy = g′′

( y
r

)2
+g′ r−

yy
r

r2
, so fxx+ fyy = g′′+r−1g′.

http://dx.doi.org/10.1007/978-3-319-74073-7_3
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3.29 Differentiate the change of variables x = r cosθ, y = r sinθ to get

xr = cosθ, yr = sinθ, xθ = −r sinθ, yθ = r cosθ.

The Chain Rule gives for any differentiable function v of x and y

vr =vx cosθ+ vy sinθ

vθ =vx(−r sinθ)+ vyr cosθ
Multiply the first by r and use the change of variables again to get

rvr =xvx + yvy
vθ =− yvx + xvy

The formula for vr applied to u gives ur = ux cosθ+uy sinθ, and the r partial of this
is

urr = urx cosθ+ury sinθ.

The formula for vr applied to ux and uy gives

urr = (uxx cosθ+uxy sinθ)cosθ+ (uyx cosθ+uyy sinθ) sinθ.

The same process gives

uθθ = −r cosθux − yuxθ − r sinθuy+ xuyθ
= −xux − yuy− y(−yuxx + xuyx)+ x(−yuyx + xuyy).

This gives uθθ = −rur + r2(uxx +uyy). Divide by r2 and add urr to get

1

r2
uθθ +urr = −1r ur +Δu,

or Δu = urr + 1
r ur +

1
r2
uθθ.

3.31

(a) ux = 2x, vy = 2x = ux, uy = −2y, vx = 2y = −uy
(b) uxx +uyy = vyx + (−vxy) = 0
(c) w(x,y) = u2− v2 = (x2− y2)2− (2xy)2 = x4−6x2y2+ y4,

so wxx +wyy = 12x2 −12y2−12x2+12y2 = 0.
(d) w(x,y) = r(p(x,y),q(x,y)) gives wx = rxpx + ryqx and wy = rxpy+ ryqy. Then

wxx = (rxx px + rxyqx)px + rxPxx + (ryxpx + ryyqx)qx + ryqxx

and
wyy = (rxxpy+ rxyqy)py+ rxPyy+ (ryxpy+ ryyqy)qy+ ryqyy.

Therefore
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wxx+wyy = (p
2
x+ p

2
y)rxx+ (2qxpx+2pyqy)rxy+ (q

2
x+q

2
y)ryy+rx(pxx+ pyy)+ry(qxx+qyy).

Since px = qy and py = −qx the last expression is

wxx +wyy = (p
2
x + p

2
y)(rxx+ ryy)+ rx(pxx + pyy)+ ry(qxx +qyy).

But pxx + pyy, qxx +qyy and rxx + ryy are all zero, so wxx +wyy = 0.

3.33

(a) (x+ iy)2 = x2− y2+2ixy so u = x2− y2 and v = 2xy.
(b) (z+h)2 = z2+2zh+h2. The term 2zh is a complex multiple of h, and h2 is small

in the sense that
h2

h
= h tends to zero when h does. Therefore (z2)′ = 2z.

(c) If h is real then z+ h = (x+ h)+ iy and by Taylor’s Theorem applied to u and v
you have

f (z+h) = u(x+h,y)+ iv(x+h,y) = u(x,y)+uxh+ i
(
v(x,y)+ vxh

)
+ s

where s is small. That says f (z+h) = f (z)+
(
ux + ivx

)
h+ s, so f ′ = ux + ivx.

(d) Take h = ik pure imaginary. Then

f (z+h) = u(x,y+ k)+ iv(x,y+ k) = u(x,y)+ kuy+ i
(
v(x,y)+ vyk

)
+ s

= f (z)+
(
uy+ ivy

)
k+ s = f (z)+

(
uy+ ivy

)
(−ih)+ s.

Therefore f ′ = −iuy+ vy.
(e) f ′ = ux + ivx = −iuy+ vy gives ux = vy and uy = −vx.
(f) If C2 then uxx = (vy)x = vxy = (−uy)y so uxx +uyy = 0,

similarly Δv = 0. For z2 you have Δ(x2− y2) = 2−2 = 0, Δ(2xy) = 0+0,
and for z3 = x3+3x2iy−3xy2− iy3 you have Δ(x3−3xy2) = 6x+ (−6x) = 0 and
Δ(3x2y− y3) = 6y−6y = 0.

Section 3.4

3.35

(a) DF =
[
ex cosy −ex siny
ex siny ex cosy

]

(b) detDF(x,y) = e2x, detDF(a,b) = e2a is not zero for any a.
(c) F(x,y+2π) = F(x,y) because of the sine and cosine.

3.37

(a) (−1)4+2(−1)(1)+1 = 0 and 1 = 1

(b) DF =
[
4x3+2y 2x

0 1

]

(c) detDF(−1,1) = det
[−2 −2
0 1

]

= −2 � 0

(d) DF−1(0,1) = DF(−1,1)−1 =
[− 1

2 −1
0 1

]

http://dx.doi.org/10.1007/978-3-319-74073-7_3
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F−1(u,v) ≈ F−1(0,1)+
[− 1

2 −1
0 1

] [
u−0
v−1

]

gives

F−1(.2,1.01) ≈ (−1,1)+
[− 1

2 −1
0 1

] [
.2
.01

]

= (−1.11, 1.01).

3.39

(a) No, since fz(1,2,−3) = 0.
(b) Yes, since fy(1,0,3) � 0.
(c) Yes, since fy(1,2,3) � 0.
(d) No, because the y values are different:

0 = gpart(b)(1,3) � 2 = gpart(c)(1,3).

(e) No, because fx(1,0,3) = 0.

3.41

(a) 3(0)+ (4)2+4(−4) = 0, 4(0)3+4+ (−4) = 0.
(b)

[
f1y1 f1y2
f2y1 f2y2

]

=

[
3 2y2

12y21 1

]

and at (y1,y2) = (0,4) this is

[
3 8
0 1

]

that is invertible. So

there is a function G.
(c) From f1

(
x,g1(x),g2(x)

)
= 0, f2

(
x,g1(x),g2(x)

)
= 0 we get

[
f1x
f2x

]

+

[
f1y1 f1y2
f2y1 f2y2

] [
g′1
g′2

]

=

[
0
0

]

.

At x = −4 this gives [
4
1

]

+

[
3 8
0 1

] [
g′1(−4)
g′2(−4)

]

=

[
0
0

]

so [
g′1(−4)
g′2(−4)

]

= −
[
3 8
0 1

]−1 [
4
1

]

= −
[
1
3 − 8

3
0 1

] [
4
1

]

=

[
4
3−1
]

.

3.43

(a)
[
2y1 0
y2 y1

]

(b) The determinant is not zero when y1 � 0.

(c) y = ±√1− x2, v = − ux
y = ∓ ux√

1−x2

(d) x = ±√1− y2, u = − vy
x = ∓ vy√

1−y2

Section 3.5

3.45

(a) div(3F+4G)(1,2,−3) = 3divF(1,2,−3)+4divG(1,2,−3)
= 3(6)+4

(
12−2(−3)) = 46

(b) divcurlF(x,y,z) = div(5y+7z,3x,0) = ∂∂x (5y+7z)+
∂
∂y (3x)+

∂
∂z (0) = 0

http://dx.doi.org/10.1007/978-3-319-74073-7_3
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(c) curl (3F+4G)(1,2,−3) = 3curlF(1,2,−3)+4curlG(1,2,−3)
= 3

(
5(2)+7(−3),3(1),0)+4(5,7,9) = (−13,37,36)

3.47 The vectorsH(1,0)= (0,1),H(0,1)= (−1,0),H(−1,0)= (0,−1), andH(0,−1)=
(1,0) suggest counterclockwise rotation. But:

curlH =
( x

(x2+ y2)p

)

x
−
( −y
(x2+ y2)p

)

y

=
1

(x2+ y2)p
−2px x

(x2 + y2)p+1
+

1

(x2+ y2)p
−2py y

(x2+ y2)p+1

=
(x2+ y2)−2px2+ (x2+ y2)−2py2

(x2+ y2)p+1
=

(2−2p)
(x2+ y2)p

The sign depends on p: negative when p = 1.05 or any p > 1, positive when p = .95
or any p < 1, and the curl is zero when p = 1.

3.49

(a) nx = (p1y− v)x = p1yx − vx = p1xy− vx = uy− vx = 0
(b) p2x = p1x = u, p2y = p1y− cy = v+n− cy = v
(c) mx = (p2z −w)x = p2xz −wx = uz −wx = 0 and my = (p2z −w)y = p2yz −wy =

vz−wy = 0.

(d) p3z = p2z− d f
dz = w+m−m = w

3.51

(a) The Chain Rule gives X′′ = (DV)X′+Vt = Vt + (DV)V.
(b) Since X(t) = C1+ t−1C2, V

(
X(t), t)

)
= X′(t) = −t−2C2 and X′′ = 2t−3C2).

Since V(X) = t−1(C1−X), you have Vt = −t−2(C1−X) and DV = −t−1I. Then
Vt
(
X(t), t)

)
+DV

(
X(t), t)

)
V
(
X(t), t)

)
= −t−2(C1−X)− t−1V(X(t), t))

= −t−2(C1− (C1+ t
−1C2))− t−1(− t−2C2

)
= −2t−3C2

and this is equal to X′′(X(t), t).

3.53 The first term is, by the Mean Value Theorem,

−( f (x0+Δx,ym,zm)− f (x0,ym,zm)
)
(1,0,0)ΔyΔz =

(− fx(x̄,ym,zm),0,0
)
ΔxΔyΔz

for some point z between z0 and z0+Δz. Similarly for the other two terms.

3.55 For each k = 1,2,3, the product rule gives (uv)xk xk = uxkxkv+ 2uxkvxk + uvxkxk .
Sum over k.

3.57 Begin with the right side. First calculate, writing terms in cyclic 123123 order,

(divG)F+G · ∇F
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=
(
(g1x1 +g2x2 +g3x3 ) f1+ (g1 f1x1 +g2 f1x2 +g3 f1x3 ),

(g2x2 +g3x3 +g1x1 ) f2+ (g2 f2x2 +g3 f2x3 +g1 f2x1 ),

(g3x3 +g1x1 +g2x2 ) f3+ (g3 f3x3 +g1 f3x1 +g2 f3x2 )
)

Interchange F and G and subtract to get

(divG)F+G · ∇F−
(
(divF)G+F · ∇G

)

=
(
g2x2 f1− f2x2g1+g2 f1x2 − f2g1x2 +g3x3 f1− f3x3g1+g3 f1x3 − f3g1x3 ,

g3x3 f2− f3x3g2+g3 f2x3 − f3g2x3 +g1x1 f2− f1x1g2+g1 f2x1 − f1g2x1 ,

g3x3 f2− f3x3g2+g3 f2x3 − f3g2x3 +g1x1 f2− f1x1g2+g1 f2x1 − f1g2x1
)

Group terms using the product rule:

=
(
( f1g2− f2g1)x2 − ( f3g1− f1g3)x3 ,

( f2g3− f3g2)x3 − ( f1g2− f2g1)x1 ,

( f3g1− f1g3)x1 − ( f2g3− f3g2)x2
)
= curl (F×G).

3.59

(a) Identity (g):

curlcurlF

=
(
( f2x1 − f1x2 )x2 − ( f1x3 − f3x1 )x3 ,

( f3x2 − f1x3 )x3 − ( f2x1 − f1x2 )x1 ,

( f1x3 − f1x1 )x1 − ( f3x2 − f2x3 )x2
)

=
(
f2x1x2 − f1x2x2 − f1x3x3 + f3x1x3 ,

f3x2x3 − f2x3x3 − f2x1x1 + f1x2x1 ,

f1x3x1 − f3x1x1 − f3x2x2 + f2x3x2
)

+
(
f1x1x1 − f1x1x1 , f2x2x2 − f2x2x2 , f3x3x3 − f3x3x3

)

= ∇(divF)−ΔF
(b) Identity (h):

Δ( f g) = ( f g)x1x1 + ( f g)x2x2 + ( f g)x3x3

= fx1x1g+2 fx1gx1 + f gx1x1 + · · · = gΔ f +2∇ f · ∇g+ fΔg.

(c) Identity (i): By Identity (d) and curl∇g = 0 we have curl ( f∇g) = ∇ f ×∇g.
Since ∇ f ×∇g is a curl and divcurlH = 0 we get div(∇ f ×∇g) = 0.
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Problems of Chapter 4

Section 4.1

4.1

(a) fx = −x(x2+ y2+ z2)−3/2, fxx = −(x2+ y2+ z2)−3/2+3x2(x2+ y2+ z2)−5/2 and by
symmetry fzz = −(x2+ y2+ z2)−3/2+3z2(x2+ y2+ z2)−5/2

(b) 0
(c) 0
(d) hx j = a j is constant, so second derivatives hx jxk are 0

4.3 fx(x,y) = 3
2 (x

2+ y2)1/2(2x) = 3x(x2 + y2)1/2, and when (x,y) � (0,0)

fxy(x,y) = 3
2 x(x

2+ y2)−1/2(2y) = 3xy(x2 + y2)−1/2.

4.5

(a) gx = aeax+by+cz+dw = ag
(b) a2d2eax+by+cz+dw, b2c2eax+by+cz+dw.
(c) a2d2+b2c2−2abcd = (ad−bc)2 = 0 so ad = bc.
(d) a2d2+b2c2−2 = 0.

4.7 ut = − n
2 t
−1−n/2e−‖X‖

2/4t +
‖X‖2
4t2

t−n/2e−‖X‖
2/4t = − n

2 t
−1u+

‖X‖2
4t2

u.

Similarly ux j = −
x j
2t
u, ux jx j = −

1
2t
u+

(− x j
2t
)2u, so

ux1x1 + · · ·+uxnxn = n
(− 1

2t
)
u+

x21 + · · ·+ x2n
4t2

u = ut.

4.9 Differentiate r2 = x21+ · · ·+ x2n to get rxk =
xk
r
. Therefore (rp)xk = prp−2xk. Then

by the product rule (rp)xk xk = p(p−2)rp−4xkxk + prp−2. Sum over k to get

Δ(rp) = p(p−2)rp−4r2+nprp−2 = p(p−2+n)rp−2.
This is zero if p = 2−n.
4.11

(a)
(
(x2+ y2+ z2)1/2

)
x = x(x2 + y2+ z2)−1/2 and

(
(x2+ y2+ z2)1/2

)
xx = (x

2+ y2+ z2)−1/2− x2(x2+ y2+ z2)−3/2.
So by symmetry Δ

(
(x2+ y2+ z2)1/2

)
= (3−1)(x2+ y2+ z2)−1/2.

http://dx.doi.org/10.1007/978-3-319-74073-7_4
http://dx.doi.org/10.1007/978-3-319-74073-7_4
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(b) ux = vrrx = vr xr and uxx = vrr x
2

r2
+ r−1vr − vr x2r3 ; similarly for uyy and uzz. Then

Δu = vrr
x2+ y2+ z2

r2
+3r−1vr − vr x

2+ y2+ z2

r3
= vrr +2r

−1vr.

(c) Using parts (a) and (b),

ΔΔr = Δ(2r−1) = 2
(
(−1)(−2)r−3+2r−1(−1)r−2) = 2(2−2)r−3 = 0.

Section 4.2

4.13

(a) ∇ f (x,y) = (−2+2x,4−8y+3y2) = (−2+2x, (y−2)(3y−2)) is zero at (1,2) and
at (1, 23 ).

(b) H(x,y) =

[
2 0
0 −8+6y

]

, H(1, 23 ) =

[
2 0
0 −4

]

, H(1,2) =

[
2 0
0 4

]

.

(c) H(1,2) is positive definite because U ·H(1,2)U = 2u2+4v2 is positive except at
the origin.H(1, 23 ) is indefinite because 2u

2−4v2 has both positive and negative
values. Therefore f has a local minimum at (1,2) and a saddle at (1, 23 ).

4.15

(a) 3x21 +4x1x2+ x
2
2 = X ·

([
3 2
2 1

]

X
)

(b) −x21 +5x1x2+3x22 = X ·
([−1 5

2
5
2 3

]

X
)

4.17 ∇ f = (−3x2+2x+ y, x+6y). The first derivatives at (0,0) are zero, and
[
fxx(0,0) fxy(0,0)
fyx(0,0) fyy(0,0)

]
=
[
2 1
1 6

]

is positive definite. Therefore f (0,0) is a local minimum.

4.19 Complete the square: x2 + qxy+ y2 =
(
x+ 1

2qy
)2
+
(
1− q2

4

)
y2. That is positive

definite if |q| < 2.

4.21 At (0,0),

[
fxx fxy
fxy fyy

]

=

[
2 0
0 4

]

,

[
gxx gxy
gxy gyy

]

=

[
0 0
0 4

]

. The corresponding quadratic

forms are
S f (u,v) = 2u

2+4v2

which is positive definite, and S g(u,v)= 4v2 which is not because the values S g(u,0)
are not positive.

4.23 The closest point is
(− 1

2 ,1,
1
2
)
. This is also a normal vector to the plane because

the equation for the plane can be written as

− 1
2 x+ y+

1
2 z =

3
2 .
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A sketch makes clear that the distance to the origin is minimum when that distance
is measured along a line normal to the plane.

Section 4.3

4.25

(a) ∇ f (x,y,z) = ( ey
1+x , log(1+ x)e

y,cosz
)
is nowhere the zero vector, so there are no

local extrema.
(b) f (0,0,0) = 0, ∇ f (0,0,0) = (1,0,1), and

H f (x,y,z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ey

(1+x)2
ey
1+x 0

ey
1+x log(1+ x)ey 0
0 0 −sinz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H f (0,0,0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0
1 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

so

p2(H) = f (0,0,0)+∇ f (0,0,0) ·H+ 1
2H

TH f (0,0,0)H = h1+h3+ 1
2 (−h21+2h1h2).

4.27

(a) ∇ f (x,y,z) = (2x+ y, x+2z+ y,2y+3z2). This is (0,0,0) when
y = −2x, z = − 1

2 x+ x, 2(−2x)+3( 14 x2) = 0,

giving (x,y,z) = (0,0,0) and (x,y,z) = A =
( 16
3 ,− 32

3 ,
8
3
)
.

(b)

H f (x,y,z) =
[
2 1 0
1 1 2
0 2 6z

]
, H f (0,0,0) =

[
2 1 0
1 1 2
0 2 0

]
, H f (A) =

[
2 1 0
1 1 2
0 2 16

]
.

ForH f (A) you have determinants 2 > 0, 1 > 0, −2(4)+ (16) = 8 > 0 so f (A) is
a local minimum.

(c) ForH f (0) the determinants are 2 > 0, 1 > 0, and −8 < 0 so the determinant test
for positive definiteness doesn’t help. But f (0,0,z) = z3 has the same sign as z
so f (0,0,0) is a saddle.

4.29

(a) f (X) =
(
x21 + · · ·

)−1/2 so fx j(X) = − 1
2
(
x21 + · · ·

)−3/22x j = −(x21 + · · ·
)−3/2x j and

fx j xk (X) = 3
(
x21+ · · ·

)−5/2xkx j− (x21+ · · ·
)−3/2 ∂x j

∂xk
= 3

(
x21+ · · ·

)−5/2xkx j− (x21+ · · ·
)−3/2δ jk

where δ jk is 1 if j = k else 0.
(b) f (A) = ‖A‖−1 and from part (a), fx j(A) = ‖A‖−3a j and

fx j xk (A) = 3‖A‖−5aka j−‖A‖−3δ jk = ‖A‖−5(3aka j−‖A‖2δ jk).
So the Taylor approximation is

http://dx.doi.org/10.1007/978-3-319-74073-7_4
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‖A+H‖−1 ≈ p2(A+H) = ‖A‖−1 + ‖A‖−3
3∑

j=1

a jh j +
1
2 ‖A‖−5

3∑

j,k=1

(
(3aka j −‖A‖2δ jk))h jhk

= ‖A‖−1 + ‖A‖−3A ·H+ 1
2 ‖A‖−5

(
3(A ·H)2 −‖A‖2‖H‖2).

4.31 p1(X) = x1 + x2 + x3 + x4 = p2(X) = p3(X) and p4(X) = x1 + x2 + x3 + x4 +
x1x2x3x4 = p5(X).

Section 4.4

4.33 ∇(3x2+2xy+3y2)= λ∇(x2+y2) gives (6x+2y,2x+6y)= λ(2x,2y). So we have
to solve

(6−2λ)x+2y = 0, 2x+ (6−2λ)y = 0, x2+ y2 = 1.

We get y = (−3+λ)x, x+ (3−λ)(−3+λ)x = 0, so x = 0 or 1− (λ−3)2 = 0. So λ = 2
or 4. Using 4, y = x and Q

( 1√
2
, 1√

2

)
= (3+ 2+ 3) 12 = 4 = Q

( −1√
2
, −1√

2

)
. That is the

maximum because using λ = 2 you find y = −x and Q
( 1√

2
,− 1√

2

)
= (3−2+3) 12 = 2 =

Q
( −1√

2
, 1√

2

)
.

4.35 We solve ∇(‖X−A‖2) = λ∇(C ·X) with C ·X = 0, or
2(X−A) = λC, C ·X = 0.

This gives
X = A+ 1

2λC, C ·X = C ·A+ 1
2λ‖C‖2 = 0.

Therefore

λ = −2C ·A‖C‖2 , X = A− C ·A
‖C‖2C,

and the minimum distance is
|C ·A|
‖C‖ .

4.37 We maximize f (x,y) = [x y]

[
1 2
2 −2

] [
x
y

]

= x2 + 4xy − 2y2 subject to g(x,y) =

x2+ y2 = 1. We solve ∇ f = λ∇g or
(2x+4y,4x−4y) = λ(2x,2y).

Note this says that 2AX = λ2X. Dividing by 2, these give

(1−λ)x+2y = 0
2x− (2+λ)y = 0.

Either (x,y) = (0,0) or the determinant

(1−λ)(−2−λ)−4 = 0.
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We get λ = 2 or −3. Therefore 2 is the maximum, and it occurs where

−x+2y = 0.
This gives x = 2y with x2+ y2 = 5y2 = 1, or

A

⎡
⎢⎢⎢⎢⎢⎣

2√
5
1√
5

⎤
⎥⎥⎥⎥⎥⎦ = 2

⎡
⎢⎢⎢⎢⎢⎣

2√
5
1√
5

⎤
⎥⎥⎥⎥⎥⎦ .

4.39 Let f (x,y,z) = (x+1)2 + y2 + z2 and g(x,y,z) = x3 + y2 + z2 = 1. Find solutions
to ∇ f = λ∇g and x3+ y2+ z2 = 1.

2(x+1) = λ(3x2), 2y = λ(2y), 2z = λ(2z).

Case 1: If y or z is not 0 then λ = 1 and x = 2±√4−4(3)(−2)
6 = 1±√7

3 .

Since y2 + z2 = 1− ( 1+
√
7

3
)3 is negative, the plus sign is not possible. Therefore only

x = 1−√7
3 is possible. Then

y2+ z2 = 1− ( 1−
√
7

3
)3
= 1+

( √7−1
3
)3,

f
( 1−√7

3 ,y,z
)
=
(
1+ 1−√7

3
)2
+y2+z2 =

(
1+ 1−√7

3
)2
+1+

( √7−1
3
)3 <

( 2
3
)2
+1+

( 2
3
)3 < 3.

Case 2: If y = 0 and z = 0 then x3 = 1 and x = 1 and f (1,0,0) = (1+1)2 = 4.
Therefore f (x,y,z) = (x+1)2 + y2 + z2 subject to x3 + y2 + z2 = 1 has a minimum

on the circle of points

x = 1−√7
3 , y2+ z2 = 1+

( √7−1
3
)3.

Problems of Chapter 5

Section 5.1

5.1

(a) velocity X′(t) = 0, acceleration X′′(t) = 0, speed ‖X′(t)‖ = 0
(b) (1,1,1), 0,

√
3

(c) (−1,−1,1), 0, √3
(d) (1,2,3), 0,

√
14

(e) (1,2t,3t2), (0,2,6t),
√
1+4t2+9t4

5.3

(a) V(t) = X′(t) = rω
(− sin(ωt),cos(ωt)) so V(t) ·X(t) = 0

(b) ‖V(t)‖ = rω‖(− sin(ωt),cos(ωt))‖
︸���������������������︷︷���������������������︸

1
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(c) X′′(t) = −rω2(cos(ωt),sin(ωt)) is a negative multiple of X(t), so is toward the
origin.

(d) ‖X′′(t)‖ = rω2 ‖(cos(ωt),sin(ωt))‖
︸�������������������︷︷�������������������︸

1

5.5 Differentiate X ·X =constant to find X′ ·X = 0. Since X(t) is on the sphere, this
means X′(t) is tangent.

5.7 X(t) =A+Bt+ 1
2mFt

2 with constant F gives X′(t) = B+ 1
mFt and X

′′(t) = 1
mF so

F = mX′′. X(0) = A, X′(0) = B.

5.9

(a) X(t) is a multiple of A, so the motion is along the line through the origin
containing A (or remains at 0 if A = 0). Many planes contain the line.

(b) Same as (a).
(c) X(t) is a linear combination of A and B so lies in the plane through the origin

containing A and B. If it happens that A and B are linearly dependent, then the
motion is along a line (or remains at 0) and there are many planes containing it.

5.11 X(0) =C, X′(t) = e−ktD, X′(0) =D, X′′(t) = −ke−ktD = −kX′(t). As t increases
from 0 to infinity, X(t) goes from C to C+ 1

kD, so the particle is displaced
1
kX
′(0).

5.13

(a) V× (0,0,b) = (v1i+ v2j+ v3k)× (bk) = −bv1j+bv2i = (bv2,−bv1,0)
(b) If X(t) = (asin(ωt),acos(ωt),bt) then

V(t)=X′(t)= (aωcos(ωt),−aωsin(ωt),b), V′(t)=X′′(t)= (−aω2 sin(ωt),−aω2 cos(ωt),0).

and
(bv2(t),−bv1(t),0) = (−baωsin(ωt),−baωcos(ωt),0)

so V′ = V×B as required.
(c) The force and acceleration are horizontal and point toward the x3 axis.

Section 5.2

5.15

(a) From
(
x(t),y(t)

)
= (acosωt,asinωt) we get

x2+ y2 = a2 cos2ωt+a2 sin2ωt = a2

so r = a.
(b) From

(
x(t),y(t)

)
= (acosωt,asinωt) we get

(x′,y′) = (−aωsinωt,aωcosωt), (x′′,y′′) = (−aω2 cosωt,−aω2 sinωt).
Observe that (x′′,y′′) = −ω2(x,y). Using that with part (a) we get

x′′+
x

(x2+ y2)3/2
=
(−ω2+a−3)x, y′′+

y

(x2+ y2)3/2
=
(−ω2+a−3)y,
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These are zero if ω2a3 = 1.
(c) The constant A is defined as

A= xy′ −yx′ = (acosωt)(aωcosωt)−(asinωt)(−aωsinωt)= a2ω(cos2ωt+sin2ωt)= a2ω.
5.17

(a) The error is small compared to h by definition of derivative.
(b) See Problem 1.80.
(c) This is direct from equation (5.11).
(d) The rate of change of area is 1

2A area/time, and T is the time required for one
loop, so the area must be 1

2AT .

5.19 We are assuming

f ′′+
f

( f 2+g2)3/2
= 0, g′′+

g

( f 2+g2)3/2
= 0.

Replacing f by − f has the same effect as multiplying the first equation by −1, so f
can be replaced by − f . The original value of xy′ − yx′ = f g′ −g f ′.
The new value is xy′ − yx′ = (− f )g′ − g(− f ′) = −( f g′ − g f ′), that is positive if the
original value is negative.

5.21

(a) −pr is positive so q− y must be positive.

(b) On the y axis, r = |y|, so −p|y| = q− y has a positive solution y =
q

1− p and a

negative solution y =
q

1+ p
. But since the orbit is left-right symmetric (due to

the x2), it can only be an ellipse.

(c) One axis has length
q

1− p −
q

1+ p
= 2

pq

1− p2 .

The other must be at the middle where y = 1
2

(
q

1− p +
q

1+ p

)

=
q

1− p2 and there

−pr = q− y = q− q

1− p2 =
−p2q
1− p2 .

So at the middle

x = ±
√

r2− y2 = ±
√

p2q2−q2
(1− p2)2 = ±

q
√
p2−1

.

Therefore the semiminor axis is
q

√
p2−1

, the semimajor
−pq
p2−1 .

(d) Using (5.18) and (5.22) we get A =
√

q
−p , therefore

q
√
p2−1

=

√
q

√
p2−1

A
√−p

= A
(
semimajoraxis

)1/2.
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(e) Therefore 1
2AT = π(semiminor)(semimajor) = πA

(
semimajor axis

)3/2.

5.23

(a) Since ∇‖X‖ = ‖X‖−1X, the Chain Rule gives ∇( 14‖X‖−4) = −‖X‖−5∇‖X‖ =
−‖X‖−6X.

(b) The energy 1
2 ‖X′‖2− 1

4 ‖X‖−4 is constant; since X′ = (−asinθ,acosθ)θ′ it is
1
2a

2(θ′)2− 1
4a
−4((1+ cosθ)2+ sin2 θ

)−2
= 1

2a
2(θ′)2− 1

4a
−4(2+2cosθ)−2.

(c) Using (b),
1
2
a2k2− 1

16a4
= 0 so k2 =

1

8a6
, or k =

1

a3
√
8
.

(d) Your sketch will show that f (θ)= θ+sinθ is an increasing function of θ on [0,π],
so it has an inverse. Then solve θ+ sinθ = kt by setting θ(t) = f −1(kt).

(e) This motion follows a semicircle into the origin at the time t when θ(t) = π
because at that time X(t) = (a+ acosπ,asinπ) = (0,0). Since θ(t) is defined by
θ+ sinθ = kt and θ(t) = π we get π+ sinπ = kt, or t = π/k.

5.25

Y′′(t) = ab2X′′(bt) = −ab2 X
‖X‖3 = −ab

2 a−1Y
‖a−1Y‖3 = −a

3b2
Y
‖Y‖3 .

That is − Y
‖Y‖3 if a3b2 = 1.

Problems of Chapter 6

Section 6.1

6.1

(a) 14
(b) Yes

6.3

(a) 36, 36
4 = 9;

(b) 64, 64
4 = 16;

(c) 39, 39
4 = 9.75;

(d) 39 > 64−36.
6.5 The h-cubes in D∪ E that intersect the common boundary have total volume
less than some multiple sh, where s only depends on the smooth common surface.
Since this tends to 0 with h the volumes add.
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6.7

(a) The plate measures 15 by 21. Using the upper and lower bounds, the mass is
between 2(15)(21) = 630 and 7(15)(21) = 2205.

(b) D1 measures 15 by 9, and D2 15 by 12. So bounds give

2(15)(9) = 270 ≤mass(D1) ≤ 4(15)(9) = 540, 720 ≤mass(D2) ≤ 1260.
Additive property gives 990 ≤mass(D) ≤ 1800.

(c) 2(9)(12)+2(3)(9)+4(5)(12)+6(10)(12) = 1230 ≤mass(D)
≤ 4(9)(12)+2(3)(9)+6(5)(12)+7(10)(12) = 1686

6.9

(a)
∫

C
δdV = δVol(C) = 200(.05) = 10, and the sum is 30, so

∫

D
ρdV = 20.

(b) ρmin(.05) ≤
∫

D
ρdV = 20 ≤ ρmax(.05). Therefore ρmin ≤ 20

.05 = 400 and

ρmax ≥ 20
.05 = 400.

Section 6.2

6.11

(a)
∫

D
1dA = Area(D). From single variable calculus we know this area is (use

integration by parts)

∫ 2

1
log xdx =

[
x log x

]2
1−

∫ 2

1
x
1
x
dx = −1+2log2

(b)
∫

D
xdA, D the rectangle 0 ≤ x ≤ 3, −1 ≤ y ≤ 1. The graph of z = x is a plane

and z ≥ 0 on D, so
∫

D
xdA is the volume under the graph of z = x over D. That

region R is a wedge.
∫

D
xdA = Vol(R) = 1

2 (3)(3)(2) = 9.

(c) half the volume inside the unit ball, 1
2
4
3π

(d) same as part (c)

6.13 (b), (c), and (d) only

6.15 Let D be the unit disk centered at the origin.
∫

D

(
y3+3xy+2

)
dA =

∫

D
y3 dA+3

∫

D
xydA+2

∫

D
dA.
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By symmetry
∫

D
y3 dA = 0 and

∫

D
xydA = 0 and

∫

D
dA = Area(D), so

∫

D

(
y3 +

3xy+2
)
dA = 2π.

6.17

(a) Suppose f (a,b) = p > 0. Since f is continuous (take ε = 1
2 p) there is an r > 0 so

that if
(x−a)2+ (y−b)2 < r2

then
| f (x,y)− f (a,b)| < 1

2 p.

Therefore f (x,y) > 1
2 p for all (x,y) in D.

(b) Part (b) is the lower bound property.

(c) Parts (a) and (b) give
∫

disk
f dA> 0 which contradicts

∫

any
f dA= 0. So f cannot

be positive at any point of R2.
(d) Apply (c) to the function − f . By part (c), − f cannot be positive at any point of

R
2. Therefore f cannot be negative at any point.

6.19 The limits on the sum are i2 + j2 ≤ 10h−2. When j = 0 this gives i2h2 ≤ 10 or
−√10 ≤ ih ≤ √10. Similarly when i = 0, −√10 ≤ jh ≤ √10. So it is the second
integral.

6.21

(a) The sine function only takes values from −1 to 1, so these are bounds on the
integrand.

(b) J = .423+
∫

C
sin

(
1

(1−x2)(1−y2)
)
dA, where C consists of all points of the square

that are within .001 of the right edge or top edge. Since Area(C) < .002 the last
integral is between −.002 and .002, and we get

.421 < J < .425.

6.23

(a) (i) g ≤ f is given.
(ii) Use Theorem 6.8 part (c): since 0 ≤ f −g, 0 ≤ ∫ ( f −g)dA
(iii) Use Theorem 6.8 parts (a) and (b):

∫
( f −g)dA = ∫ f dA− ∫ gdA

(iv) Add
∫
gdA to both sides of the inequality.

(b) (i) Because C ⊂ D.

(ii) Create a Riemann sum for
∫

D
f dA using the same points as for the Riemann

sum for
∫

C
f dA, then any additional terms in the D sum are nonnegative

because f ≥ 0.
(iii) The sums for D tend to

∫

D
f dA, and they are all larger than the C sum.

http://dx.doi.org/10.1007/978-3-319-74073-7_6
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(iv) By part (c),
∫

D
f dA is an upper bound for the C sums, so the limit

∫

C
f dA ≤

∫

D
f dA.

Section 6.3

6.25
∫ 1

−1

⎛
⎜⎜⎜⎜⎜⎜⎝

∫ √
1−x2

0
ydy

⎞
⎟⎟⎟⎟⎟⎟⎠ dx =

∫ 1

−1
1
2 (1− x2)dx = 1

2
(
2− 2

3
)
= 2

3

6.27

(a) In D, x ≤ 0 ≤ √y, so x ≤ √y+ x ≤ √y. Therefore
∫

D
xdA ≤

∫

D
(
√
y+ x)dA ≤

∫

D

√
ydA.

(b) In D, −1 ≤ x ≤ y−1 and 0 ≤ y ≤ 1.

∫

D
xdA =

∫ 1

0

[∫ y−1

−1
xdx

]

dy =
∫ 1

0

1
2
(
(y−1)2 −1)dy = 1

2

[
1
3 (y−1)3 − y

]1
0
= − 1

2 +
1
6 = − 1

3 .

∫

D

√
ydA =

∫ 1

0

[∫ y−1

−1
√
ydx

]

dy =
∫ 1

0

√
y
(
y−1− (−1))dy =

[
2
5y

5/2
]1

0
= 2

5 .

∫

D
(
√
y+ x)dA = 2

5 − 1
3 .

6.29 ∫

R
sinydA =

∫ 1

0

[∫ 1

x=y2
sinydx

]

dy =
∫ 1

0
(1− y2) sinydy

=
[
(1− y2)(−cosy)

]1

0
−
∫ 1

0
2ycosydy = 1−2

([
ysiny

]1

0
−
∫ 1

0
sinydy

)

= 1−2sin(1)−2(cos(1)−1) = 3−2sin(1)−2cos(1).
6.31 1,3,2,5,1:

∫

[0,2]×[−1,(1)]
(3xy2 +5x4y3)dA = (3)

∫ (2)

0
xdx

∫ 1

−1
y2 dy+ (5)

∫ 2

0
x4 dx

∫ (1)

−1
y3 dy.

Section 6.4

6.33

(a) Corresponding parts of the triangles are proportional, so

kh2+hc
�+ha

=
hc
ha
.

Solve to get � = h2ka
c .

http://dx.doi.org/10.1007/978-3-319-74073-7_6
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(b) Similarly
m
hb
=
h2k+hc

hc
, giving m = hb+ b

c kh
2.

(c) The change in area is

1
2m(�+ha)− 1

2 (hahb) =
1
2 (hb+

b
c
kh2)

(h2ka
c
+ha

)− 1
2 (hahb) =

1
2 k

ab
c
h3 + k2

ab
c
h4.

If h is small this is less than a multiple of h3.

6.35 det

[
2u −2v
2v 2u

]

= 4(u2+ v2), that is 4 at (1,0). The vertices of the triangle map to

(1,0), (1.21,0), and (.99, .2), so the area is about four times as large.

6.37 ∫

D
e−‖X‖ dA =

∫ 2π

0

∫ b

a
e−rrdrdθ =

∫ 2π

0
dθ
∫ b

a
e−rrdr.

Using integration by parts,

∫ b

a
e−rrdr =

[
(−1)re−r

]b

a
+

∫ b

a
e−r dr =

[
− re−r − e−r

]b

a
= (−1−b)e−b+ (1+a)e−a.

So ∫

D
e−‖X‖ dA = 2π

(
(−1−b)e−b+ (1+a)e−a).

Fig. 9.21 Initials in Problem 6.39.

6.39 See Figure 9.21. (a) stretches horizontally by a factor of 5, and 3 vertically
(b) interchanges u,v then goes by (a)
(c) right edge (u = 1) goes to the bottom (y = 0), and left edge to the top

6.41

(a) (5)(3)+ 52
2

32
2 =? 15+ (15)

2 1
2
1
2 yes.

(b) off by a minus sign
(c) (5)(3)+ 52

2
32
2 =? 15+15

2( 12 )(1− 1
2 ) yes.

Section 6.5

6.43 Dn = [0,n] × [0,1] is an increasing sequence of bounded rectangles whose
union is D.

(a)
∫

Dn

e−x dxdy =
∫ 1

0
(−e−n+1)dy→ 1 so

∫

D
e−x dxdy = 1.

http://dx.doi.org/10.1007/978-3-319-74073-7_6
http://dx.doi.org/10.1007/978-3-319-74073-7_9
http://dx.doi.org/10.1007/978-3-319-74073-7_6


Answers to selected problems 455

(b)
∫

Dn

e−x
√
y dxdy =

∫ 1

0

−e−n√y+1√
y

dy. Set y = t2, then this integral is equal to

∫ 1

0
(−e−nt +1)2dt = e−n−1

n
2+2→ 2

so
∫

D
e−x
√
y dxdy = 2.

(c) In each subrectangle where k−1
n ≤ y ≤ k

n you have e−xy ≥ e−xk/n. Then
∫ n

0

∫ k
n

k−1
n

e−xy dydx ≥
∫ n

0

1
n
e−xk/n dx = 1

k (1− e−k) > 1
2k .

Adding these,
∫

Dn

e−xy dA> 1
2
(
1+ 1

2 +
1
3 + · · ·+ 1

n

)
,which diverges. So

∫

D
e−xy dxdy

does not exist.

6.45 The third and fourth only.

6.47 Set x = y√
4t
in
∫ ∞

−∞
e−x

2
dx =

√
π to get

√
4πt.

6.49 First proof: If f (X) = p > 0, then by the definition of continuity (take ε = p
2 )

there is a small disk centered at X where f > p
2 , so f = f+ in that disk. Therefore f+

is continuous in that disk, and in particular at X. If f (X) < 0 there is a disk where
f < 0, so in that disk f+ = 0. Therefore f+ is continuous in that disk, and in particular
at X. If f (X) = 0 let ε > 0, then there is a small disk centered at X where | f | < ε.
Since f+(Y) is equal to either 0 or f (Y) at every point Y of that disk, we also have
| f+(Y)− f+(X)| = | f+(Y)| < ε there. Therefore f+ is continuous at X.

Second proof: f+ = 1
2 ( f + | f |) is a sum of continuous functions, so it is continuous.

6.51

(a) The set is the part of the rectangle [0,1]× [0,2] below the line y = 2− x.
(b)

∫

x+y≤2
p(x,y)dA = 0+

∫ 1

0

∫ 2−x

0

2x+2− y
4

dydx

=

∫ 1

0

[ (2x+2)y− 1
2y

2

4

]2−x

y=0
dx =

∫ 1

0

(2x+2)(2− x)− 1
2 (2− x)2

4
dx = 19

24 .

6.53 The probability that (x,y) is not in D is 1 minus the probability that (x,y)
is in D.

6.55

(a)
∫ 2π
0

∫ n
0

(
r

1+r4

)2
rdrdθ = 2π

∫ n
0

r3

(1+r4)2
dr = 2π

[
− 1

4 (1+r
4)−1

]n

0
converges as n→∞.
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(b) e−r goes to zero much faster than
r

1+ r4
so it is also integrable.

(c) Since |x| ≤ √
x2+ y2 = r, this function is integrable by comparison with part (a)

also.
(d)

∫ 2π

0

∫ n

0

(
ye−r

)2 rdrdθ = 2π
∫ n

0
y2e−2rrdr ≤ 2π

∫ n

0
r2e−2rrdr

= 2π
∫ n

0
e−2rr3 dr ≤ 2π

∫ n

0
e−rmax(e−rr3)dr ≤ (const.)

∫ n

0
e−r dr

converges as n→∞.
Section 6.6

6.57

(a) a5 by definition.

(b)
∫ a

0
x21 dx1(a

4) = 1
3a

7 by iterated integral.

(c) 1
3a

7 − 1
3a

7 +7a3
∫ a
0 x5 dx5

∫ a
0 x3 dx3 = 7a3

( 1
2a

2)2 = 7
4a

7 by part (b) and iterated
integral.

6.59

(a)

∫

[1,2]×[3,5]×[−1,10]
xz2 dV =

∫ 2

1
xdx

∫ 5

3
dy
∫ 10

−1
z2 dz =

3
2
(2)

1000+1
3

= 1001.

(b)

∫

D
xz2 dV =

∫ x=2

x=1

∫ y=5

y=3

∫ z=10

z=x+y
xz2 dzdydx=

∫ x=2

x=1

∫ y=5

y=3

1
3 x
(
1000−(x+y)3)dydx

=

∫ x=2

x=1

1
3 x
[
1000y− 1

4 (x+ y)
4
]y=5
y=3

dx=
∫ x=2

x=1

1
3 x
(
2000− 1

4
(
(x+5)4− (x+3)4)

)
dx

= 1
3

∫ 2

1

(
2000x− x

4
(
4x3(5−3)+6x2(52−32)+4x(53−33)+54−34

)
dx ≈ 821.6

6.61 Using spherical coordinates

∫

‖X‖≤R
e−
√
x2+y2+z2 dV = 4π

∫ R

0
e−ρρ2 dρ = 4π

[
(−ρ2 −2ρ−2)e−ρ

]R

0
= 4π

(
(−R2 −2R−2)e−R +2)

6.63

(a)
∫ n

0
e−2ρ dρ = −1

2
(
e−2n−1) tends to 1

2 as n tends to infinity.

(b) Integrate by parts.

http://dx.doi.org/10.1007/978-3-319-74073-7_6
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(c) Let n tend to infinity in part (b).
(d) Using part (c) and (a) we get i1 = 1

2 i0 =
1
4 . Using part (c) again i2 = 2

2 i1 =
1
4 .

Then i3 = 3
2 i2 =

3
8 . So i4 = 4

2 i3 =
3
4 .

6.65
∫

R3
f dV = lim

n→∞

∫ 2π

0

∫ π

0

∫ n

p
e−ρρ2 sinφdρdφdθ= lim

n→∞4π
[
−e−ρ(ρ2+2ρ+2)

]n

p
= 4πe−p(p2+2p+2).

6.67

(a)
∫

[0,1]n
x21 d

nX =
∫

[0,1]n−1

(∫ 1

0
x21 dx1

)

dx2 · · ·dxn =
∫

[0,1]n−1
1
3 dx2 · · ·dxn = 1

3

(b) n
3

(c) n
3

(d)
n
∫

[0,2]n x
2
1 d

nX

Vol
(
[0,2]n

) =
n 8
32

n−1

2n
= 4

3n.

Problems of Chapter 7

Section 7.1

7.1 Write X(t) = A+ t(B−A), Y(u) = B+ 1
2u(A−B).

Then ‖X′(t)‖ = ‖B−A‖, ‖Y′(u)‖ = 1
2 ‖A−B‖ = 1

2 ‖X′(t)‖.

(a)
∫

C
ds =

∫ 1

0
‖X′(t)‖dt = ‖B−A‖, and

∫

C
ds =

∫ 2

0
‖Y′(u)‖du = 2( 12

)‖B−A‖.

(b)
∫

C
yds =

∫ 1

0

(
a2 + t(b2 − a2)

)‖X′(t)‖dt = (
a2 + 1

2 (b2 − a2)
)‖B − A‖

= 1
2 (a2 + b2)‖B − A‖ and

∫

C
yds =

∫ 2

0

(
b2 + 1

2u(a2 − b2)
)‖Y′(u)‖du = (2b2

+ 22−02
4 (a2−b2)) 12 ‖A−B‖ = 1

2 (a2+b2)‖B−A‖.
(c) Both parametrizations agree about the integral of y and about the length of C,

so both give average = 1
2 (a2+b2).

7.3 X(t) = X(ks) = Y(s) = A+ ks(B−A).

Length(C) =
∫ 1

0
‖X′(t)‖dt = ‖B−A‖.

and Y′(s) = k(B−A) is a unit vector if k = ‖B−A‖−1. Then since 0 ≤ t ≤ 1, s runs
from 0 to 1/k = ‖B−A‖. So Y(Length(C)) = B.

7.5 Parametrize the segment C from A to B as X(t) = A+ t(B−A), 0 ≤ t ≤ 1. Then
the average of xi is

http://dx.doi.org/10.1007/978-3-319-74073-7_7
http://dx.doi.org/10.1007/978-3-319-74073-7_7
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∫

C
xi ds

Length(C)
=

1
‖B−A‖

∫ 1

0

(
ai+ t(bi−ai))‖B−A‖dt =

[
ait+ 1

2 t
2(bi−ai)

]1

0
= 1

2 (bi+ai).

7.7
∫

C
y2 dx + xdy =

∫

(0,0)→(1,0)
y2 dx + xdy +

∫

(1,0)→(1,1)
y2 dx + xdy

+

∫

(1,1)→(0,0)
y2 dx+ xdy

Parametrizations for the 3 segments are (x,y)= (t,0), (1, t), (1− t,1− t) with 0≤ t ≤ 1
in each case. We get the integral

=

∫ 1

0
(0dt+0)+

∫ 1

0
((t2)(0)+1dt)+

∫ 1

0
((1− t)2+ (1− t))(−dt) = 0+1− 1

3 − 1
2 =

1
6 .

7.9 G ·N = ( f2,− f1) · (t2,−t1) = f2t2+ f1t1 = F ·T.

7.11 X′(t) =
(
1, f ′(t)

)
so ‖X′(t)‖ =

√

1+
(
f ′(t)

)2. For the segment y = 3x,0 ≤ x ≤ 1,
∫ 1

0

√
1+32 dt =

√
1+32

agrees with the length that is given by the Pythagorean theorem.

7.13

(a) A rotation by π/2 changes x2 to y2 and takes C1 to itself without stretching, so
∫

C1

x2 ds =
∫

C1

y2 ds.

Therefore 1
2

∫

C1

(x2+ y2)ds =
∫

C1

x2 ds.

(b) Same reason.
(c) Holds because (x2+ y2)10 = 1.

7.15

(a)
∫

pdx =
∫

(y,0) ·Tds. The integrals have opposite signs for physical reasons

and because F = (y,0) is in the direction of T on K roughly, and opposite that of
T on E, that is, F ·T > 0 on K and F ·T < 0 on E.

(b) The coordinates in the figure are x, p instead of x,y, so the work done is the

same as
∫

K∪E
ydx. Problem 7.14 shows that this is the area between the graphs.

7.17

(a) This is because for small Δθ the segments are small, so can be used in a good
Riemann sum approximation.

(b) U = (−y,x)
r

1
r =W

1
r .

http://dx.doi.org/10.1007/978-3-319-74073-7_7
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(c) The factors TΔs are approximations for arc length segments, and the dot
products give the projection in the W direction. Dividing by r gives the change
in θ by definition of radian measure.

(d) This combines parts (a) and (c).

7.19

(a)
∫ 3

0
xdx = 1

23
2, yes equal

(b)
∫ 3

0
xd( 43 x) =

4
3
1
23

2, not equal to (3)(4).

(c)
∫ 3

0
dx+5d( 43 x) =

(
1+5

( 4
3
))
(3), yes, equal to 3+ (5)(4).

Section 7.2

7.21

(a) An antiderivative for gx =
x

x2+ y2
is 1

2 log(x
2 + y2)+ h(y). But checking gy we

see that we can take h = 0. So a potential is g(x,y) = 1
2 log(x

2 + y2), defined on
R
2−0.

(b) Due to algebraic simplification the rules for ∇ tan−1 ( y
x
)
and F(x,y) are the same

where their domains agree. But the domain of tan−1
( y
x
)
is R2 minus the y axis,

not R2−0. So
∇ tan−1 ( y

x
)
�
( −y
x2+ y2

,
x

x2+ y2
)
.

7.23

(a) Not.

(b)
[
xy−3z2 cosy

](a,b,c)
(0,0,0)

= ab−3c2 cosb,
(c)

[
x+ y

](a,b,c)
(0,0,0) = a+b

7.25

(a) The integral is equal to
∫

C
∇(‖X‖−1) ·Tds =

[
‖X‖−1

](2,2,1)

(1,1,2)
= 1

3 − 1√
6
.

(b) The integral has not been defined since the integrand is not defined at (0,0,0).

7.27 The Chain Rule together with ‖X‖−3X = ∇(−‖X‖−1) gives
‖X−P‖−3(X−P) = ∇(−‖X−P‖−1)

for any constant P. Then

c‖X−P‖−3(X−P) = ∇(−c‖X−P‖−1)
for any constant c. Take k different such expressions and add them to get

k∑

j=1

c j‖X−P j‖−3(X−P j) = ∇
(
−

k∑

j=1

c j‖X−P j‖−1
)
.

http://dx.doi.org/10.1007/978-3-319-74073-7_7
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7.29

(a) By the Chain Rule, −F(X) = ∇(‖X‖−1) and F(x+h,y,z) = ∇(−‖(x+h,y,z)‖−1),
so F(x+h,y,z)−F(X) = ∇(−‖(x+h,y,z)‖−1+ ‖X‖−1).

(b) The limit is ∂
∂xF which is conservative because of the interchange of mixed

partial derivatives: ∂∂x∇g = ∇ ∂∂xg.
(c) ∂∂xG is conservative because of the interchange of mixed partial derivatives:

∂
∂x∇g = ∇ ∂∂xg. Similarly for ∂∂yG and ∂∂zG.

Section 7.3

7.31 Let f (x,y)= x2+y2 and g(x,y)= x2−y2. Then∇ f (x,y)= (2x,2y) and∇g(x,y)=
(2x,−2y). The areas of the graphs are

∫

D

√
1+ f 2x + f 2y dA =

∫

D

√

1+4x2+4y2 dA

and ∫

D

√
1+g2x +g2y dA =

∫

D

√

1+4x2+4y2 dA.

These are equal.

7.33 S is the graph over D of z = 1
c (d−ax−by). So zx = − a

c , zy = − b
c and

Area(S ) =
∫

D

√
( a2
c2
+ b2

c2
+1dA =

∫

D

√
1−c2
c2
+1dA = 1

|c| Area(D).

7.35

(a) Xu(u,v)=(
√
2v,2u,0), Xv(u,v)=(

√
2u,0,2v), Xu×Xv=(4uv,−2

√
2v2,−2√2u2)

(b) Xu and Xv are bounded because 1 ≤ u ≤ 2, 1 ≤ v ≤ 2, and are linearly
independent by inspection since u and v are not zero. X is one to one because if

(
√
2uv,u2,v2) = (

√
2u1v1,u

2
1,v

2
1)

with u,u1,v,v1 positive then

u1 =
√
u21 =

√
u2 = u, v1 =

√
v21 =

√
v2 = v.

So the range S ofX is a smooth surface. At any point of S , (x,y,z)=(
√
2uv,u2,v2),

you have x2−2yz = 2u2v2−2u2v2 = 0.
(c) The area of S is

∫

S
dσ =

∫ 2

1

∫ 2

1
‖Xu ×Xv‖dudv =

∫ 2

1

∫ 2

1

√

(4uv)2 + (−2√2v2)2 + (−2√2u2)2 dudv

=

∫ 2

1

∫ 2

1

√
16u2v2+8v4+8u4 dudv =

∫ 2

1

∫ 2

1

√
8(u2+ v2)dudv

http://dx.doi.org/10.1007/978-3-319-74073-7_7
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=
√
8
∫ 2

1

[
1
3u

3+ v2u
]2

u=1
dv =

√
8
∫ 2

1

( 7
3 + v

2)dv =
√
8
( 7
3 +

7
3
)
=
√
814

3 .

(d)
∫

S
ydσ =

∫ 2

1

∫ 2

1
u2‖Xu×Xv‖dudv =

∫ 2

1

∫ 2

1
u2
√
8(u2+ v2)dudv

=
√
8
∫ 2

1

[
1
5u

5+ 1
3v

2u3
]2

u=1
dv =

√
8
∫ 2

1

( 31
5 +

7
3v

2)dv =
√
8
( 31
5 +

72

32
)
.

7.37 Define G(x,y,z) = (−x,−y,−z). Using any parametrization X1(u,v) =
(
x1(u,v),

y1(u,v),z1(u,v)
)
we get

∫

S
x2ydσ =

∫ ∫

x21(u,v)y1(u,v)‖ · · · ‖dudv

and using X2(u,v) =G◦X1 =
(− x1(u,v),−y1(u,v),−z1(u,v)) we get

∫

S
x2ydσ =

∫

x21(u,v)
(− y1(u,v))‖ · · · ‖dudv.

Since these are equal the integral is zero.

7.39

(a) x21 + x
2
2 + x

2
3 = 1. Square this to get

1 = (x21 + x
2
2 + x

2
3)

2 = x41 + x
4
2 + x

4
3 +2(x

2
1x

2
2 + x

2
2x

2
3 + x

2
3x

2
1).

(b) x3 = z = cosφ, so

∫

x43 dσ =
∫ 2π

0

∫ π

0
(cosφ)4 sinφdφdθ = 1

5
(− cos5(π)+ cos5(0))2π = 4

5π

(c) Integral of expression (a) using symmetry and Area(S ) = 4π gives

3
( 4
5π
)
+2(3)

∫

S 2
x21x

2
2 dσ = 4π,

so
∫

S 2
x21x

2
2 dσ =

1
6
(
4− 12

5
)
π = 4

15π.

7.41 (a) F ·NArea(S ) = (2,3,4) · (0,−1,0)(1) = −3
(b) −3+ (2,3,4) · (0,0,−1)(2) = −3−8 = −11
(c) +11
(d) −11+11 = 0
7.43 Use parametrization X(u,v) = uV+ vW = (u,u,u+ 2v), 0 < u < 1, 0 < v < 1.
Then Xu = V, Xv =W, Xu×Xv = V×W = (2,−2,0), and the flux is
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∫

F · (Xu×Xv)dudv =
∫ 1

0

∫ 1

0

(
2(u)(2)+3(u+2v)(−2))dudv

=

∫ 1

0

∫ 1

0
(−2u−12v)dudv = −1−6 = −7.

7.45

(a) Multiplying we get

[A B Y]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b 0
c d 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
aA+ cB bA+dB

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This is equal to [C D Y] by assumption.
(b) Take the determinant of each side and use the multiplication rule for

determinants. Use the definition of cross product det [P Q R] = R · (P×Q).
(c) Use the fact that if Y ·X =Y ·Z for all Y, then X =Z. This can be seen by taking

Y = (1,0,0), (0,1,0) and (0,0,1).

7.47

(a)
∫

S
(ρV)V · Ndσ =

∫

S

(
ρ(a,b,c)

)
(a,b,c) · (0,0,1)dσ = ρ(a,b,c)c

∫

S
dσ = ρcA(a,b,c).

(b)
∫

S
(ρV)V ·Ndσ =

∫

S

(
ρkN

)
kN ·Ndσ = ρk2N

∫

S
dσ = ρk2AN.

7.49 Denote by a the radius of S , then N = X/a, and on S , ‖X‖ = a so
∫

S
F ·Ndσ =

∫

S

X
a3
· X
a
dσ =

∫

S

a2

a4
dσ = a−2(4πa2) = 4π.

7.51 Y(u,v) is a constant times the parametrization X(u,v) so Y is differentiable on
the same set D, is one to one, and Yu = kXu and Yv = kXv are linearly independent.
Therefore Y is a parametrization and T is a smooth surface. Also

Yu(u,v)×Yv(u,v) = (kXu)× (kXv(u,v)) = k
2Xu×Xv(u,v)

so

Area(T ) =
∫

D
‖Yu×Yv‖dudv =

∫

D
k2‖Xu×Xv‖dudv = k2Area(S ).

Problems of Chapter 8

Section 8.1

8.1 One way is shown in Figure 9.22. D1 = R−U is a union of 6 parts that are x
simple and y simple. D2 = S −R is a union of 4.

http://dx.doi.org/10.1007/978-3-319-74073-7_8
http://dx.doi.org/10.1007/978-3-319-74073-7_8
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S

R
U

Fig. 9.22 Figure for Problem 8.1.

8.3 The divergence of the field is 2, so flux across C is

(a) 2Area(disk) = 2π,
(b) 2Area(rectangle) = 2(b−a)(d− c).
8.5 divF = 2xy2

∫

D
divFdA =

∫ 1

0

∫ √
1−x2

−√1−x2
2xy2 dydx =

∫ 1

0

4x
3
(1− x2)3/2 dx =

[
4
3 (1− x2)5/2 25 −12

]1

0
= 4

15 .

Parametrize the vertical part of the boundary as (x,y) = (0,1− t), 0 ≤ t ≤ 2 and the
curved part as

(x,y) = (cos t,sin t), − π2 ≤ t ≤ π2 .
Then

∫

∂D
F ·Nds =

∫

∂D
(1+ x2y2)dy =

∫ 2

0
(−dt)+

∫ π/2

−π/2
(1+ cos2 t sin2 t)cos tdt

= −2+
∫ π/2

−π/2
(1+ (1− sin2 t) sin2 t)cos tdt = −2+

[
sin t+ 1

3 sin
3 t− 1

5 sin
5 t
]π/2

−π/2

= −2+2(1+ 1
3 − 1

5
)
= 4

15 .

8.7

(a)
∫

∂D
(1,0) ·Nds =

∫

D
div(1,0)dA =

∫

0dA = 0

(b)
∫

∂D
(0,1) ·Nds =

∫

D
0dA = 0

http://dx.doi.org/10.1007/978-3-319-74073-7_8
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(c) So
∫

∂D
Nds =

(∫

∂D
n1 ds,

∫

∂D
n2 ds

)
= 0

(d) Ni is constant on Di so
∫

Di

Ni ds = NiLength(Di) = ‖Pi−Pi−1‖Ni

(e)
∫

∂D
Nds = 0 =

∑∫

Di
Ni ds =

∑‖Pi−Pi−1‖Ni.

8.9 If the loop does not surround (0,0) then the integral is zero by Green’s Theorem
since curlF = 0 throughout the region enclosed. If the loop does surround (0,0) then
the integral is 2π by Example 8.9.

8.11

(a) Adding the product rule (g f j)x j = gx j f j+g f j,x j for j = 1,2,3 you get

div
(
gF
)
= gdivF+F · ∇g.

(b) Apply the Divergence Theorem to gF. The integral over the boundary is zero
since g = 0 there, so the result follows from part (a).

(c) This follows from part (b) because when F = ∇g, divF = div∇g = Δg.
8.13 Suppose there were a periodic orbit. Denote by D the region with the orbit as
its boundary. Then

0 <
∫

D
divFdA =

∫

∂D
F ·Nds.

Use the periodic solution to parametrize the boundary. That could be either
clockwise or counterclockwise, but in either case Green’s Theorem gives

0 �
∫ p

0
f
(
x(t),y(t)

)
dy−g(x(t),y(t))dx =

∫ p

0
x′(t)y′(t)dt− y′(t)x′(t)dt = 0,

a contradiction.

Section 8.2

8.15 Since divX = 3, the integrals are 3 times the volume of D. (a) 4π, (b) 4πr3.

8.17

(a)
∫

ball
(1+3+5)dV = 9( 43π8

2)

(b) 0

(c)
∫

ball
(1)dV = 4

3π8
2

(d)
∫

ball
(2x)dV = 0 by symmetry.

(e) 0

http://dx.doi.org/10.1007/978-3-319-74073-7_8
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8.19

(a) This is a property of the dot and cross product,

(N×F) ·C = det [N F C
]
= N · (F×C).

(b) Use the Divergence Theorem.
(c) Use

div(F×C) = div( f2c3− f3c2, f3c1− f1c3, f1c2− f2c1)

= ( f2,1− f1,2)c3+ (− f3,1+ f1,3)c2+ ( f3,2− f2,3)c1 = (curlF) ·C
and part (a).

(d) Use parts (a) and (c).
(e) Factor out the constant C.
(f) Since C was any constant vector that means the vector in parentheses in part (e)

must be the zero vector.

8.21

(a) By the Divergence Theorem,
∫

∂D
(1,0,0) ·Ndσ =

∫

D
0dV , or

∫

∂D
n1 dσ = 0.

(b) Using (0,1,0) and (0,0,1) similarly each component of
∫

∂D
Ndσ is zero.

(c) A face S of D is a flat surface with a constant normal vector. So
∫

S
Ndσ = N

∫

S
dσ = Area(S )N.

8.23

(a) all points of R3 except the Ak

(b) divF = 0 so by the Chain Rule divG(X) = c1divF(X−A1)+ · · · = c1(0)+ · · · = 0
(c)

∫

D
F(X) ·Ndσ = 4π if 0 is in the interior of D and 0 is 0 is in the exterior, so

∫

∂W
G ·Ndσ =

∑

k

ck

∫

∂W
F(X−Ak) ·Ndσ

︸���������������������︷︷���������������������︸
0 or 4π

=
∑

Ak in W

4πck.

8.25 For C2 functions

div(v∇u)= (vux)x+(vuy)y+(vuz)z = vxux+vyuy+vzuz+vuxx+vuyy+vuzz =∇v ·∇u+vΔu
so the Divergence Theorem in a regular set D

∫

D
div(v∇u)dV =

∫

∂D
v∇u ·Ndσ

gives
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∫

D

(
∇v · ∇u+ vΔu

)
dV =

∫

∂D
v∇u ·Ndσ.

Taking v = u gives part (a). Since ∇u · ∇v = ∇v · ∇u, we can interchange u and v and
subtract to get part (b),

∫

D
(vΔu−uΔv) dV =

∫

∂D
(v∇u−u∇v) ·Ndσ.

8.27 The identity ∫

D
( fΔ f + |∇ f |2)dV =

∫

∂D
f∇ f ·Ndσ

gives ∫

D
(λ f 2+ |∇ f |2)dV = 0.

If λ > 0 then that integrand is nonnegative, so it must be zero in D. Therefore f is
zero in D.

Section 8.3

8.29

(a)
∫

C
F ·Tds =

∫

disk
curlF ·Ndσ =

∫

disk
(0,0,1) · (0,0,1)dσ = π

(b) Since C is oriented from A to B to C to A we need N to point away from 0.

∫

C
F ·Tds =

∫

triangular surface
curlF ·Ndσ =

∫

triangular surface
(0,0,−1) · (B−A)× (C−A)

‖(B−A)× (C−A)‖ dσ

=

∫

triangular surface
(0,0,−1) · (bc,ac,ab)

‖(B−A)× (C−A)‖ dσ

= − ab
‖(B−A)× (C−A)‖ Area(triangle) = −

ab
‖(B−A)× (C−A)‖

1
2 ‖(B−A)× (C−A)‖ = − 1

2ab

8.31

(a) curlF= (0,0,2). On the hemisphere z= g(x,y)=
√
r2− x2− y2 andN= (x,y,z)/r.

dσ =
√
1+g2x +g2y dxdy =

√

1+
x2

g2
+
y2

g2
dxdy =

r
g(x,y)

dxdy.

So
∫

S
curlF ·Ndσ =

∫

S
(0,0,2) · (x,y,g(x,y))

r
dσ =

∫

D
2
g(x,y)

r
r

g(x,y)
dxdy

where D is the disk of radius r. This is equal to 2Area(D) = 2πr2. Since z = 0
on ∂S , the line integral is, using Green’s Theorem and ∂S = ∂D,

http://dx.doi.org/10.1007/978-3-319-74073-7_8
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∫

∂S
F ·Tds =

∫

∂S
−ydx+ xdy+2dz =

∫

∂S
−ydx+ xdy =

∫

D
2dA = 2πr2

(b) The line integral is the same as in part (a) and the surface integral is
∫

D
(0,0,2) · (0,0,1)ds = 2Area(D) = 2(πr2).

8.33 Write the sphere as the union of hemispheres H and K. Then H and K have
the same but oppositely oriented boundary circle, so by Stokes’ Theorem applied to
each of H and K,
∫

S
curlF ·Ndσ =

∫

H
curlF ·Ndσ+

∫

K
curlF ·Ndσ =

∫

∂H
F ·Tds+

∫

∂K
F ·Tds = 0.

8.35

(a) The Maxwell equation gives 0 = (0,0,2)c1−μ0J, so c1 = 1
2μ0 j.

(b) We know that curl
(
(−y,x,0)

r2

)
= 0 and J = 0 so p = 2.

(c) We need for continuity on r = R that 1
2μ0 j =

c2
R2
, so c2 = 1

2μ0 jR
2.

(d) The surface integral side of Stokes’ formula is the sum over the continuous parts
∫

D
curlB ·Ndσ =

∫

r≤R
μ0J ·Ndσ+

∫

r≥R
0 ·Ndσ = μ0 jπR

2+0.

The line integral side of Stokes’ formula is, since T = (−y,x,0)
R1

,

∫

∂D
B ·Tds =

∫

∂D
c2
T
r
·Tds =

1
2
μ0 jR

2
∫

∂D

1
R1

ds

=
1
2
μ0 jR

2 2πR1

R1
= μ0 jπR

2.

These are equal, so Stokes’ formula holds in this discontinuous case.

8.37

(a) Stokes’ Theorem applied to Ampère’s original law gives
∫

S
curlB ·Ndσ = μ0

∫

S
J ·Ndσ

for all S , so curlB = μ0J.
(b) ρt = −divJ = −(μ0)−1divcurlB = 0 does not allow any time dependence of the

charge density.

8.39
d
dt

∫

S
B · Ndσ=

∫

S
Bt · Ndσ. By Maxwell’s equation this is equal to

∫

S
(−curlE) ·Ndσ. By Stokes’ Theorem this is equal to −

∫

∂S
E ·Tds.
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Section 8.4

8.41 The left hand side is zero because the time derivative is zero. The integral
over the boundary of the cylinder becomes −ρ(b)u(b)A(1,0,0) at the right end plus
−ρ(a)u(a)A(−1,0,0) at the left, so the conservation law is

0 =
(
−ρ(b)u(b)+ρ(a)u(a)

)
(A,0,0).

8.43

V · ∇(V ·V) = u(u2+ v2+w2)x+ v(u
2+ v2+w2)y+w(u

2+ v2+w2)z

= 2u(uux + vvx +wwx)+2v(uuy+ vvy+wwy)+2w(uuz+ vvz+wwz)

= 2u(uux + vuy+wuz)+2v(uvx + vvy+wvz)+2w(uwx + vwy+wwz) = 2V · (V · ∇V).
8.45 (c) The acceleration is to the left in the left figure, and to the right in the others.

8.47

(a) V(X,0) = X, V(X,1) = 1
2X, both radial outward, slower after one second.

(b) divV = 1
1+tdiv(x,y,z) =

3
1+t is not zero, so the flow is compressible.

(c) ρt +ρdivV+V · ∇ρ = a(1+ t)a−1‖X‖2+ (1+ t)a‖X‖2 3
1+t +

1
1+tX ·

(
(1+ t)a2X

)

= (1+ t)a−1‖X‖2(a+3+2). So take a = −5.
8.49

et +div(eV)+PdivV =
ck
R
γργ−1ρt +

ck
R
div(ργV)+ kργdivV

=
ck
R
γργ−1ρt +

ck
R
div

(
ργ−1(ρV)

)
+ kργdivV

=
ck
R
γργ−1ρt +

ck
R

(
ργ−1div(ρV)+ρV · ∇(ργ−1)

)
+ kργdivV

=
ck
R
γργ−1ρt +

ck
R

(
ργ−1div(ρV)+ (γ−1)ργ−1V · ∇ρ

)
+ kργdivV

Using the mass equation ρt = −div(ρV) that becomes

=
ck
R
(−γ+1)ργ−1div(ρV)+ ck

R
(γ−1)ργ−1V · ∇ρ+ kργdivV = ck

R
(−γ+1)ργdivV+ kργdivV.

This is zero if γ = 1+ R
c .

8.51 ρt + (ρu)x = εgt + (ρ0ε f + ε2 f g)x = ε
(
gt +ρ0 fx

)
if we ignore ε2.

ut +uux + kγρ
γ−2ρx = ε ft + (ε f )(ε fx)+ kγ(ρ0 + εg)γ−2(εgx) = ε

(
ft + kγρ

γ−2
0 gx

)

if we ignore ε2, because the Mean Value Theorem gives (a+εg)b = ab+b(a+θg)b−1ε
for some θ between 0 and ε. Then

http://dx.doi.org/10.1007/978-3-319-74073-7_8
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gtt = −ρ0 fxt = ρ0(kγργ−20 )gxx.

Section 8.5

8.53 Using
d
dr

∫ s

r
f (x)dx = − f (r)

we get ∇g =
(
− f (r, t), f (s, t),

∫ s

r
ft dx

)
. Then the Chain Rule gives the result as

∇g · (a′,b′,1).

8.55 ρt +ρρx = − x

(t+8)2
+

x
t+8

1
t+8

= 0.

−1 0
x

ρ

Fig. 9.23 The graph of ρ(x,0) for Problem 8.57.

8.57

(a) The three parts of the formula for ρ are continuous in their respective sets, and
agree on the common boundaries of those sets, so ρ is continuous.

(b) The graph of ρ(x,0) is shown in Figure 9.23. Your graph of ρ(x,1) ought to show
the constant 1 for x < 0, the constant 0 for x > 0, and a point of discontinuity at
x = 0.

(c) In the regions where ρ is constant, the partial derivatives are zero, so ρt+ρρx = 0.

In the region where ρ =
x

t−1 , we have

ρt +ρρx = − x

(t−1)2 +
x

t−1
1

t−1 = 0.

(d) In
ρ
(
x0+ (−x0)t, t) = −x0

set x = x0+ (−x0)t. That gives x0 = x
1− t , so

ρ(x, t) = − x
1− t .

8.59 The Fundamental Theorem gives

∫ b

a
(ρt + fx −g) dx = 0

and it holds for all [a,b], with continuous integrand, only if that integrand is zero.

http://dx.doi.org/10.1007/978-3-319-74073-7_8
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8.61 s1 = 1
2 (1+ 0) =

1
2 , s2 = 1

2 (
3
2 + 1) =

5
4 , s3 = 1

2 (3+
3
2 ) =

9
4 , s4 = 1

2 (0+
3
2 ) =

3
4 ,

s5 = 1
2 (0+3) =

3
2 ,

8.63 x= 2t and x= 3+1.5t intersect, have the same x, t values, when x= 2t= 3+1.5t.
That gives t = 6, then x = 12.

8.65 The curves satisfying x′ = x are (x, t) = (cet, t), one for each number c. These
rise from (c,0) on the horizontal x axis and separate as t increases vertically. ρ is
constant on each such curve when

d
dt
ρ
(
x(t), t

)
= ρxx

′+ρt = ρt + xρx = 0.

If ρ(x,0) = x2 we get ρ(cet, t) = ρ(c,0) = c2 =
(
(cet)e−t

)2. Therefore
ρ(x, t) = (xe−t)2 = x2e−2t.

Problems of Chapter 9

Section 9.1

9.1 Since uxx > 0 the wave equation implies that also utt > 0, so the acceleration is
upward. This agrees exactly with our derivation of the equation based on tension
forces, because these forces on the two ends of any bit of the string have an upward
resultant when the shape is convex.

9.3 utt = −A2
4

(
c1 sin

( 2πx
330
)
cos(A4t)

)
−E2

6

(
c2 sin

( 2π(3x)
330

)
cos(E6t)

)
and

uxx = −
(
2π
330

)2(
c1 sin

( 2πx
330
)
cos(A4t)

)
−
(
2π(3)
330

)2(
c2 sin

( 2π(3x)
330

)
cos(E6t)

)
. Then

utt = c2uxx gives

c2
(
2π
330

)2
= A2

4, c2
(
2π(3)
330

)2
= E2

6.

Divide these to get
E2
6

A2
4

= 32, so E6 = 3A4.

9.5

(a) speed 3 to the left
(b) speed 3 to the left
(c) speed 1/4 to the right

9.7 By the Chain Rule, ut = −c f ′(x− ct)+ cg′(x+ ct), ux = f ′(x− ct)+g′(x+ ct),
utt = c

2 f ′′(x− ct)+ c2g′′(x+ ct), uxx = f ′′(x− ct)+g′′(x+ ct).
Therefore utt = c2uxx.

9.9 ut = −csin(x+ ct), ux = −sin(x+ ct), so u2t + c2u2x = 2c2 sin2(x+ ct).

http://dx.doi.org/10.1007/978-3-319-74073-7_9
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(a) E(0) = c2
∫ π

0
sin2 xdx

(b) E(1) = c2
∫ π−c

c
sin2(x+ c)dx. E(0) is larger because

E(1) = c2
∫ π−2c

0
sin2 θdθ < c2

∫ π

0
sin2 θdθ = E(0).

9.11

(a) u(x,0) = sin x = f (x)+g(x) and ut(x,0) = 0 = −c f ′(x)+ cg′(x). Then f ′ = g′ so
f = g+C, then sin x = 2g(x)+C. So

g(x) = 1
2 (sin x−C), f (x) = 1

2 (sin x+C), u(x, t) = 1
2 sin(x− ct)+ 1

2 sin(x+ ct).

(b) Here c= 1. u(x,0)= 0= f (x)+g(x) and ut(x,0)= cos(2x)=− f ′(x)+g′(x). Then
f = −g so cos(2x) = 2g′(x). Thus g(x) = 1

4 sin(2x)+C. So

g(x) = 1
4 sin(2x)+C, f (x) = − 1

4 sin(2x)−C, u(x, t) = − 1
4 sin

(
2(x− t))+ 1

4 sin
(
2(x+ t)

)
.

(c) Similarly

u(x, t) = 3
2

(
sin(x−5t)+ sin(x+5t)

)
+ 1

2

(
sin

(
3(x−5t))+ sin (3(x+5t))

)

+ 1
225

(
− sin (2(x−5t))+ sin (2(x+5t))

)
.

9.13 u(x, t)=−g(−x+ct)+g(x+ct) and its derivatives are nonzero only when −x+ct
or x+ct is in the short interval where g � 0. As t tends to infinity, with x confined to
[0, p], neither of those numbers is in that interval. Therefore the integral is zero.

Section 9.2

9.15

(a) utt + vtt = c2(uxx + vxx +uyy+ vyy); add the wave equations for u and v
(b) Let u = kz. Then utt = kztt = kc2Δz = c2Δ(kz) = c2Δu.
(c) Set w(x,y, t) = z(−y, x, t). Then

wtt(x,y, t) = ztt(−y, x, t) wx(x,y, t) = zy(−y.x.t) wxx(x,y, t) = zyy(−y.x.t)
wy(x,y, t) = − zx(−y.x.t) wyy(x,y, t) = (−1)2zxx(−y.x.t)

so wtt = ztt(−y, x, t) = c2(zxx + zyy)(−y, x, t) = c2(wyy+wxx)
(d) Set w(x,y, t) = z(kx,ky,kt), then wtt(x,y, t) = k2ztt(kx,ky,kt), wxx = k2zxx,

wyy = k2zyy, so wtt − c2(wxx +wyy) = k2
(
ztt − c2(zxx+ zyy)) = 0.

9.17 sin(1.414c(t + 1000
2π
c
)) = sin

(
1.414ct + 1414(2π)

)
= sin(1.414ct), and

similarly for the 2.236 term. The 1000 insures that we’ve added a whole multiple of
2π.

http://dx.doi.org/10.1007/978-3-319-74073-7_9
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9.19

(a) ztt = −(n2 +m2)z, zxx = −n2z, zyy = −m2z, so ztt = zxx + zyy. Since n and m are
positive integers, from sin(nπ) = sin(mπ) = sin(0) = 0 you have the boundary
value 0.

(b) There is one such solution for each integer pair (n,m) inside the first quadrant
of the disk of radius 1000. Since each (n,m) sits at the corner of a 1×1 square,
the number of them is roughly equal to the area of the quarter disk.

9.21 zx = f ′rx sin(kt), and rx = 1
2 (x

2+ y2)−1/2(2x) = x/r.

zxx=( f ′′ x
2

r2
+ f ′(r) r−x(x/r)

r2
) sin(kt). Similarly zyy = ( f ′′ y

2

r2
+ f ′(r) r−y(y/r)

r2
) sin(kt). Adding,

zxx + zyy = ( f
′′(r)+

1
r
f ′(r)) sin(kt).

Since ztt = −k2 f (r) sin(kt) we see that f ′′+ 1
r f
′+ k2 f = 0 implies ztt = zxx + zyy.

9.23

(a) uρ = −ρ−2 f (ρ± t)+ρ−1 f ′(ρ+ t) and
uρρ = 2ρ−3 f (ρ± t)−2ρ−2 f ′(ρ+ t)+ρ−1 f ′′(ρ+ t). So

uρρ+ 2
ρuρ = ρ

−1 f ′′(ρ+ t).

But utt = ρ−1 f ′′, so u is a solution of the wave equation.
(b) u(ρ,0) = ρ−1 f (ρ) has maximum of 1 near ρ = 100. Therefore the maximum of f

is approximately 100 near ρ = 100. Then

u(ρ,99) = ρ−1 f (ρ+99)

has a maximum of approximately 100 near ρ = 1. That is, the maximum of the
wave was 1 on a spherical shell of radius 100 and becomes after 99 seconds a
maximum of 100 on a shell of radius 1.

Section 9.3

9.25

(a)
(
e−n2t sin(nx)

)
t −
(
e−n2t sin(nx)

)
xx = (−n2+n2)e−n

2t sin(nx) = 0

(b)
(
tpe−x2/(4t)

)
t = ptp−1e−x2/(4t)+ tp x2

4t2
e−x2/(4t) and

(
tpe−x2/(4t)

)
x = − x

2t t
pe−x2/(4t),

(
tpe−x2/(4t)

)
xx = − 1

2t t
pe−x2/(4t) +

( x
2t
)2tpe−x2/(4t). Therefore p = − 1

2 .
(c)

(
e−ax cos(ax−bt))t = be−ax sin(ax−bt),(
e−ax cos(ax−bt))x = −ae−ax cos(ax−bt)−ae−ax sin(ax−bt),

(
e−ax cos(ax−bt))xx = a2e−ax cos(ax−bt)+2a2e−ax sin(ax−bt)−a2e−ax cos(ax−bt).

Therefore b = 2a2

(d) With T (x, t) = u(kx,k2t) you get Tt = k2ut(kx,k2t), Txx = k2uxx(kx,k2t),
so Tt −Txx = k2(ut −uxx) = 0.
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9.27

(a) 1, −1, 1
2 , −4: T (x, t) = e−t sin x+ 1

2e
−4t sin(2x)

(b) Your sketch ought to indicate the progression described in part (c).
(c) The second term decreases much faster because of the e−4t factor. So the first

term is more important as t increases, and the hot spot moves toward the center,
to the right.

9.29 y1(t) = 1
π

∫ π
0 e−t sin(x)dx = 2

πe
−t satisfies y′1 = − 2

πe
−t = −(y1 − 0), so Newton’s

Law of Cooling holds for y1.
y2(t) = 1

π

∫ π
0

(
e−t sin(x)+ e−9t sin(3x)

)
dx = 2

πe
−t + 2

3πe
−9t. We observe that Newton’s

Law of Cooling

y′2(t) = − 2
πe
−t − 6

πe
−9t =? −k( 2πe−t + 2

3πe
−9t)

does not hold for y2 for any choice of k.

9.31

(a) Take the t derivative under the integral sign.
(b) Use the Divergence Theorem in R2.
(c) Properties and definition of Laplacian
(d) Since D is arbitrary, the integrand must be zero.

9.33 (x2 + y2 + 4ht)xx = 2 = (x2 + y2 + 4ht)yy, and (x2 + y2 + 4ht)t = 4h. So T is a
solution. The heat flux is −r∇T = −r(2x,2y) so is toward the origin, that happens to
be the coldest place.

Section 9.4

9.35

(a) Δ(u1+u2) = u1xx +u2xx +u1yy+u2yy = Δu1+Δu2 = 0+0 = 0.
(b) Write v(x,y) = u(xcosθ− ysinθ, xsinθ+ ycosθ). Then

vx = ux cosθ+uy sinθ, vy = −ux sinθ+uy cosθ,
vxx = (uxx cosθ+uxy sinθ)cosθ+ (uyx cosθ+uyy sinθ) sinθ,

vyy = −(−uxx sinθ+uxy cosθ) sinθ+ (−uyx sinθ+uyy cosθ)cosθ
So vxx + vyy = uxx(cos2 θ+ sin2 θ)+uxy(0)+uyy(cos2 θ+ sin2 θ) = uxx +uyy = 0.

(c) Δ(uv) = (Δu)v+2∇u · ∇v+u(Δv) = 0+0+0 = 0.
9.37 z(x,y) = log(x2+ y2), so

zx =
2x

x2+ y2
, zy =

2y

x2+ y2
, zxx =

2

x2+ y2
− 2x(2x)

(x2+ y2)2
, zyy =

2

x2+ y2
− 2y(2y)

(x2+ y2)2
,

so

Δz =
4

x2+ y2
− 2(2x2+2y2)

(x2+ y2)2
= 0.
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9.39

(a) div(w∇w) = wΔw+∇w · ∇w, so by the Divergence Theorem

0 =
∫

∂D
w∇w ·Ndσ =

∫

D
(wΔw+∇w · ∇w)dV

(b) Use part (a) with w = u. That gives 0 = −
∫

D
‖∇u‖2 dV . So ‖∇u‖ = 0. That makes

u constant in D, but since u is zero on the boundary it must be zero everywhere.
(c) u− v solves the Laplace equation and since it is zero on the boundary it is zero

everywhere by part (b).

9.41 (a) 1
4 (2+ 2) = 1 (b) 1

6 (2)+
1
3 (2) = 1 (c) k(zxx + zyy)+ (1− k)(wxx +wyy) =

k+ (1− k) = 1 (d) zxx +wxx + zyy+wyy = zxx+ zyy+wxx +wyy = 1+0 = 1

9.43

(a) zxx = −n2z, zyy = n2z, so Δz = 0.
(b) z(0,y)= sin(0)sinh(ny)= 0, z(π,y)= sin(π) sinh(ny)= 0, z(x,0)= sin(nx) sinh(0)=

0.
(c) z( π2n ,y) = sinh(ny) =

1
2
(
eny−e−ny) is nearly 1

2e
ny that is very large when y is large

positive.

9.45

(a) F=∇u=∇
(
x+

x

x2+ y2
)
=
(
1+

y2− x2
(x2+ y2)2

,
−2xy

(x2+ y2)2
)
= (1,0)+r−4(y2− x2,−2xy)

where r2 = x2+ y2. So

Δu = divF = 0+ r−4div(y2− x2,−2xy)−4r−5∇(r) · (y2− x2,−2xy)

= r−4(−2x−2x)−4r−5 (x,y)
r
· (y2− x2,−2xy) = r−4(−4x)−4r−6(−xy2− x3)

= 4xr−4
(−1+ r−2(y2+ x2)) = 0

(b) (x,y) ·F(x,y) = (x,y) · ((1,0)+ r−4(y2− x2,−2xy))
= x+ r−4(−xy2− x3) = x+ r−4(−xr2). This is zero when r = 1.

(c) Since |x| ≤ r and |y| ≤ r, ‖(y2− x2,−2xy)‖ is less than a multiple of r2.
Therefore ‖F− (1,0)‖ = ‖r−4(y2− x2,−2xy)‖ tends to zero as r tends to infinity.

Section 9.5

9.47

(a) ψt = −iEe−iEtφ and Δψ = e−iEtΔφ. Therefore
iψt = Ee−iEtφ = e−iEt

(−Δφ+Vφ) = −Δψ+Ve−iEtφ = −Δψ+Vψ.

(b) |ψ(X, t)|2 = ψψ = eiEtφ(X)e−iEtφ(X) = |φ(X)|2 does not depend on t. Therefore
the probability P(S , t) that is an integral of that, does not depend on t.

http://dx.doi.org/10.1007/978-3-319-74073-7_9
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9.49

(a) φx = X′YZ, −φxx = −X′′YZ = (Ex− x2)XYZ etc., so

−Δφ+ (x2 + y2 + z2)φ = −(X′′YZ+XY′′Z+XYZ′′)+ (x2 + y2 + z2)XYZ = (Ex +Ey +Ez)φ.

Therefore E = Ex +Ey+Ez.

(b) W(w) = (a+bw+ cw2)e−w2/2 gives

W′ =
(
b+2cw−w(a+bw+ cw2)

)
e−w

2/2 =
(
b+ (2c−a)w−bw2− cw3)e−w

2/2

so

−W′′ +w2W

=

(
−
(
(2c−a)−2bw−3cw2 −w(b+ (2c−a)w−bw2 − cw3)

)
+w2(a+bw+ cw2)

)
e−w

2/2

=
(−2c+a+3bw+5cw2)e−w

2/2

For this to be EwW requires

−2c+a+3bw+5cw2 = Ew(a+bw+ cw
2).

Looking at the w2 terms we find that Ew = 5 or c = 0. In case Ew = 5 we get
b = 0, a arbitrary, and c = −2a.
In case c = 0 we need

a = Ewa, 3b = Ewb.

So Ew = 3 or b = 0. In case Ew = 3 we find a = 0 and b arbitrary.
In case b = 0 we find Ew = 1 and a arbitrary.
We have found solutions

W = ae−w2/2, Ew = 1; W = bwe−w2/2, Ew = 3; W = a(1−2w2)e−w2/2, Ew = 5.

(c) Taking for X(x), Y(y), Z(z) the various functions found in (b) as listed in the
table by their E values, we get solutions φ with E = Ex +Ey+Ez.

X 1 1 1 1 1 1 3 5 3 3
Y 1 3 3 5 5 5 5 5 3 5
Z 1 1 3 1 3 5 5 5 3 3
E 3 5 7 7 9 11 13 15 9 13

(d) The E = 3 case is (some multiple of) φ(x,y,z) = e−x2/2e−y2/2e−z2/2 so
|φ|2 = e−(x2+y2+z2). We know that to normalize this requires a factor of π−3/2.
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Symbols
−C opposite curve to C, 285
A−B set difference, 86
C1 continuously differentiable, 112
C2, 127
Cn, 161
DF matrix derivative, 109
0, 18
A ·B, 10
F · ∇G, U · ∇U, 156
Δ f Laplacian, 156
R
n, 18

R, 5
R
2, 1

T unit tangent to curve, 285
dA, 216
dV , 216
dnX, 262
dσ, 313
In, 52
∇ f gradient, 111
D, 86
∂D boundary, 86
E j standard basis vector, 22

A
acceleration
of fluid, 371
of particle, 192

angle
between vectors, 13
in R

n, 27
antisymmetric, 24
approximation
linear, 104
of integral, 227
Taylor, 179

arc length, 279
parametrization of curve, 281

area
in plane, 209
lower, 208
of surface, 313
upper, 209

average
of f on a curve, 284
of f on region, 263
of f on surface, 320

B
ball

open, 84
basis

standard, 28
bilinear

function
R
2 to R, 15

in Rn, 22
boundary, 86
bounded

function, 89
set, 87
smoothly bounded set
in Rn, 261
in 3 space, 213
in plane, 210

C
Cauchy–Schwarz inequality, 26, 65
Chain Rule

for curves, 119
general, 125
second function scalar, 125

change of variables
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in R
n, 268

in R
2, 245

in double integral, 246
in multiple integral, 268

charge
conservation, 367
density, 364

circulation
and curl as local rotation, 153
in plane fluid flow, 290

closed
curve, 83, 300
set, 86

closure, 86
complete the square, 173
complex valued function
and Schrödinger equation, 416
Fundamental Theorem of Algebra, 100

component
function, 63
of vector, 1, 18

composite function, 73
conjugate, 416
connected, 83, 91, 264
simply, 361

conservation
energy
of fluid, 371
of particle, 197

law, 368
mass of fluid, 369
momentum of fluid, 369

conservative vector field, 300
and curl, 304, 361

constraint, 186
continuity equation, 369
continuous
at a point, 79
compositions, 82
on a set, 79
sums, products and quotients, 81
uniformly, 90

contours, 67
convergence
and continuous function, 79
of Riemann sums, 227
of subsequence, 89
sequence in Rn, 79

convex, 396
coordinates
cylindrical, 95
in triple integral, 268

polar, 94
in double integral, 249

spherical, 96
in triple integral, 272

cross product, 58
curl, 149

conservative vector field, 304, 361
curve

helix in R3, 69
in R

n, 83
parametrization, 83
smooth, 279

cylinder, 88
cylindrical coordinates, 268

D
deformation, 40
density

charge and current, 364
divergence as flux, 152
electric charge, 367
fluid, 369
linear mass, 279
mass of material, 205
population, 206
probability
in R3, 275
in R2, 257

dependence
linear
in Rn, 19

derivative
directional, 122
Jacobian, 110
matrix, 109
of integral with parameter, 273
partial, 105
second, 127, 168

rules
Chain, 119, 125
for div , ∇, curl, 156
sums and products, 156

derivative test
first, 166, 184
second, 171, 181

determinant
key properties, 33
of list of vectors, 37
of matrix, 39

differentiable, 103, 104
continuously, 112
n times, 161

function R
n to Rm, 109

locally linear, 103
dimension

n-dimensional space, 18
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n-dimensional vector, 18
two-dimensional vector, 1

directional derivative, 122
divergence, 148
Divergence Theorem, 335
analogue of Fundamental Theorem, 375
in R

3, 348
dot product
in R

n, 25
in R

2, 10
double integral, 226

E
Earth
Moon orbit, 308
temperature, 407

eigenvalue, eigenvector, 186
endpoints, 83
energy
internal of fluid, 371
kinetic
fluid, 371
of particle, 197

of particle in gradient, 194
potential
of particle, 197

enthalpy, 371
equilibrium and Laplace Equation, 410
Extreme Value Theorem, 89
extremum
constrained, 184
local, 166

F
fluid dynamics, 369
flux
across curve in R2, 292
across surface, 321
through parallelogram, 59

force
gravity, 196
on membrane under pressure, 413
on string, 388
on vibrating membrane, 398
pressure, 155

frequency, 395
function
bilinear, 15, 22
bounded, 89
component, 63
composite, 73
constant, 64
continuous
at point, 79

curve, 83
sequence of points converges, 79
uniformly, 90

differentiable, 104
continuously, 112

domain, 63
from R

n to Rm, 63
from R

n to Rn vector field, 70
from R to R

n, 69
harmonic, 411
implicitly defined, 140
integrable, 226
inverse, 135, 140
level set, 67
linear, 5, 21, 49
represented by matrix, 50

locally linear, 103
multilinear, 33
one to one, 63
onto, 63
range, 63

Fundamental Theorem
of Algebra, 100
of Calculus, 375
of Line Integrals, 303

G
gradient, 111
graph of function

R
3 to R, 68

R
2 to R, 66

gravity, 196
is conservative, 300
linear approximations to, 77

Greatest Lower Bound Theorem, v
Green’s Theorem, 340

H
heat equation, 404

higher dimensions, 406
helix, 69
Hessian matrix, 168
hyperplane, 19

I
image, 63
Implicit Function Theorem, 140

multivariable, 144
indefinite matrix, 169, 173
independence

linear
in Rn, 19
in R2, 4

of path, 303
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of surface, 364
inequality
Cauchy–Schwarz, 26
triangle, 27

initial data, 391
integrable
on smoothly bounded set, 226
over unbounded set, 254, 258

integral
additivity, 219
approximate, 227
continuous nonnegative function, 225
definition, 226
determined by properties, 234
double, 226
iterated, 239, 240
line
arc length, 279
Fundamental Theorem, 303
of scalar, 283
of scalar in Rn, 293
of vector, 285
of vector in Rn, 294

lower and upper bound, 219
Mean Value Theorem, 264
of bounded function, 226
of continuous function
as difference, 230
properties, 232

of scalar over surface, 319
of vector over surface, 321
over unbounded set, 254
Riemann sum, 227
triple, 264
variation with parameter, 273

integrand, 226
interior, 85
inverse
matrix, 53

Inverse Function Theorem, 135
in R

n, 140
inverse square vector field, 72

J
Jacobian, 110
in change of variables, 246

jump, 381

K
Kepler, 201
kinetic energy
fluid, 371

L
Lagrange multiplier, 184
Laplace

equation, 411
operator, 156

Law of Cosines
in R

n, 28
in R

2, 14
Least Upper Bound Theorem, v
length

of vector, 9
in Rn, 25

level set, 67, 140
line, 56
linear

approximation, 104
combination
trivial, 18

combination of vectors, 18
in R2, 3

dependence
in Rn, 19

function
R
n to Rm, 64

R
n to R, 21

R
2 to R, 5

represented by matrix, 50, 65
function R

n to Rk, 49
independence
in Rn, 19
in R2, 4

linearity of integral, 218
locally, 103

lower and upper volume in Rn, 261
lower integral, 223

M
mass

conservation law for fluid, 369
density of fluid, 369
line integral, 283
of object, 205
of particle, 192

matrix
n× k, 50
derivative, 109
eigenvalue, 186
Hessian, 168
identity, 52
inverse, 53
norm, 65
positive definite, 169
rectangular array, 38
represents linear function, 50
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symmetric, 168
maximum, 89
local, 166

Maxwell
equations, 165, 364

Mean Value Theorem, 107
for integrals, 264
multivariable, 127

membrane, 398
minimum
local, 166

momentum
conservation law for fluid, 369

Monotone Convergence Theorem, v
Moon
elliptical orbit, 201
orbit, 308

multilinear function, 33

N
negative definite matrix, 169, 173
negatively oriented list of vectors, 40
neighborhood, 86
Newton
Law of Cooling, 409
Law of Motion, 192

norm
matrix, 65
of vector
in Rn, 25
in R2, 9

normal
component of vector field, 321
outward, 335
to hyperplane, 57
to plane, 57
to tangent plane, 115
vector to plane curve, 292

O
one to one, 52, 63
onto, 63
open
ball, 84
set, 86

orbit
Moon, 201, 308
Saturn, 201

orbital, 275
orientable surface, 323
orientation
preserved by mapping, 246
reversal of curve, 285

oriented

list of vectors, 40
orthogonal, 13
orthonormal set of vectors, 28

P
pairwise orthogonal, 28
parametrization

of curve, 83
of curve by arc length, 281
of surface, 310

partial differential equation, 162
pde, 162

fluid energy, 372
fluid mass, 369
fluid momentum, 370
heat equation
1D, 403
2D, 406

Laplace, 411
Maxwell, 165, 364
membrane
under pressure, 413
vibration, 398

Schrödinger, 416
wave equation
1D, 389
2D, 399

period, 395
permutation

signature, 36
piecewise smooth

curve, 280
plane, 56
point

interior, 85
polar coordinates, 94
positive definite matrix, 169, 173

determinant test, 182
positively oriented list of vectors, 40
potential, 300

energy of particle, 197
vector, 158, 366

pressure
force, 155

probability
and Schrödinger’s equation, 417
density for electron, 275
density in R3, 275
density in R2, 257
normal distribution, 256

product
cross in R3, 58
dot
in Rn, 25
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in R2, 10
of matrices, 51

product rule for div , ∇, curl, 156
Pythagorean Theorem
in R

n, 31
in R

2, 9

R
regular
set in R3, 348

Riemann sum
two variables, 227

S
saddle point, 172
scalar, 2
Schrödinger equation, 416
second derivative test, 181
sequence converges, 79
set
boundary, 86
bounded, 87
closed, 86
closure, 86
connected, 83, 91, 264
open, 86
regular, 338
regular in R3, 348
simply connected, 361
smoothly bounded
in Rn, 261

smoothly bounded in R
2, 210

shock wave, 382
signature of permutation, 36
simple

x simple set, 238
y simple set, 239

simplex, 44
simply connected, 361
smooth
change of variables, 268
curve, 279
in Rn, 293

parametrization, 279
surface, 310

smoothly bounded set
in R

n, 261
in R

2, 210
sound
wave, 374

space
n-dimensional, 18
two-dimensional, 1

span of vectors, 18

spherical coordinates, 272
standard basis, 28
stereographic projection, 76
Stokes’ Theorem, 356
string

tied at ends, 394
vibration, 387

surface, 310
area, 313
flux across, 321
integral of scalar, 319
integral of vector, 321
orientable, 323
oriented, 323
piecewise smooth, 320
smooth, 310
tangent plane, 115

symmetric, 24
symmetric matrix, 168

determinant test, 182
system

and Implicit Function Theorem, 144
of linear equations, 8

T
tangent

plane to graph, 115
plane to surface, 321
vector to curve, 285

Taylor approximation, 179
first order, 177
second order, 178

Theorem
Chain Rule, 119
in Rn, 120
matrix derivatives, 125

Change of Variables in integral, 246
continuity of
differentiable scalar function, 104
differentiable vector function, 109

Divergence
in R3, 348
in R2, 338

Extreme Value, 89
Fundamental
of Algebra, 100
of Calculus, 333
of Line Integrals, 303

Greatest Lower Bound, v
Green’s, 340
Implicit Function, 140
multivariable, 144

Intermediate Value, 91
Inverse Function
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R
2, 135

in Rn, 140
Least Upper Bound, v
Mean Value, 107
for integrals, 264
multivariable, 127

Monotone Convergence, v
Stokes’, 356
Taylor, 177, 179

triangle inequality, 27
triple integral, 264

U
unit
tangent to curve, 285

unit vector, 9
upper integral, 223

V
vector
n-dimensional, 18
component, 1
deformation of ordered list, 40
linear combination, 18
norm
in Rn, 25
in R2, 9

oriented list, 40
potential, 158, 366
span, 18
sum, 1
sum in Rn, 18
two dimensional, 1

unit, 9
i, j, k, 72
E j, 28
tangent to curve, 285

zero, 2
vector field, 70

conservative, 300
inverse square, 72

velocity
fluid, 369
of particle, 111

vibration
of membrane, 398
of string, 395

volume, 261
in R

n, 261
signed, 45

in R
3, 213

volumetric flow rate, 59

W
wave

electromagnetic, 165
equation
1D, 389
2D, 399

shock, 382
sound, 374
traveling, 401

work
and conservative vector field, 300
fluid pressure, 371
integral on curve, 285
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