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Distributed energy technologies are gaining popularity nowadays; 
however, due to the highly intermittent characteristics of distrib-
uted energy resources, a larger penetration of these resources into 
the distribution grid network becomes of major concern. The main 
issue is to cope with the intermittent nature of the renewable sources 
alongside the requirements for power quality and system stability. 
Unlike traditional power systems, the control and optimization of 
complex energy systems becomes difficult in many aspects, such as 
modelling, integration, operation, coordination and planning etc. 

This edited book serves as a resource for the engineers, sci-
entists, academicians, experienced professionals, and research-
ers working on the energy systems. With eight original chapters, this 
edited volume is an extensive collection of the state-of-the-art stud-
ies intended to integrate current research and innovations for the 
control, optimization and management of electric energy systems. 
Readers will find this book inspiring and very useful when conducting 
their own research in the domain area of energy systems. 
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• An extensive collection of state-of-the-art studies intended to 
integrate current research and innovations for the control, optimi-
zation and management of electric energy systems. 

• Emphasis on the optimization techniques to address problems in 
electrical energy systems.

• Serves as a valuable resource for engineers, scientists, academi-
cians, experienced professionals, and research scholars who are 
working in the area of energy systems.
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Preface

The distributed energy technologies are gaining popularity nowadays. Owing
to the extensive penetration of distributed generation (DG) units, electri-
cal energy systems are facing the challenges of fast transition which has
increased their complexity much more than ever. Due to the highly intermit-
tent characteristics of the distributed energy resources, a larger penetration
of these resources into the distribution grid network becomes of major
concern. The main concern is to cope with the highly intermittent nature
of renewable sources with the requirements for quality power and system
stability. With eight original chapters, this edited volume is an extensive
collection of state-of-the-art studies intended to integrate current research and
innovations for the control, optimization, and management of electric energy
systems. This edited book serves as a resource for the engineers, scientists,
and professionals working on the energy systems.

Chapter 1 of this book proposes an iterative distributed algorithm to
achieve the real-time available transfer capability (ATC) assessment that can
overcome the inaccuracies in the existing distributed algorithms based on
network equivalent techniques. Different IEEE test systems have been used
to conduct numerical simulations to examine the convergence and accuracy
of the proposed iterative distributed ATC assessment.

To solve economic load dispatch (ELD) problems, Chapter 2 proposes
a Modified Harmony Search (MHS) optimization technique that has bet-
ter features in terms of the best solution, convergence time, fitness value
convergence, and computational efficiency.

In Chapter 3, using HOMER Pro software, the performance of different
types of batteries such as lead acid (LA), lithium-ion (LI), Li-ion Nickel-
Manganese-Cobalt Oxide battery (LiNiMnCoO2), Zinc Bromine flow battery
and Nickel Iron battery has been evaluated for hybrid energy system (HRES).

The authors ofChapter 4 propose an efficient and convergent hybrid criss-
cross optimization (HCSO) technique to solve the thermal power dispatch
problem with a single fuel type generation system. The authors stressed that
the solution to the economic load dispatch problem using the proposed HCSO
is competitive and best compared to previous results reported in the literature.

xi



xii Preface

The optimal allocation problem of various reactive compensation devices
(RCDs) in distribution systems is dealt within Chapter 5, in which Bald
Eagle Search (BES) optimization algorithms are used together to achieve
simultaneous objectives such as minimizing power loss, low cost reactive
compensator, better voltage profile, and better system stability.

A novel nature-inspired optimizer based on the pedal scent marking
and sniffing behavior of brown-bears has been introduced by the authors of
Chapter 6 to solve the economic dispatch problem (EDP). The authors con-
firmed that the proposed algorithm outperforms many existing optimization
algorithms in obtaining optimal solutions for the benchmark test functions.

The author of Chapter 7 presents an average pq-SRF reference current
extraction technique for active filtering to mitigate the current harmonics
generated in any power system network due to the tremendous increase of
load that exhibits non-linear behavior.

In addition, an effective approach based on the Harris’ Hawks Opti-
mization Algorithm (HHOA) is used in Chapter 8 to select the appropriate
capacity and position of decentralized renewable energy resources (DRERs)
to reduce the real power loss and voltage variance in electric power networks.
The authors of Chapter 8 found that adding more DRER improves the overall
performance of the system.

The editors hope that readers will find this book inspiring and very useful
when conducting their own research in the domain area of energy systems.

Kirti Pal, Ph.D
Department of Electrical Engineering,
School of Engineering, Gautam Buddha University, Greater Noida, India.

Saurabh Mani Tripathi, Ph.D
Department of Electrical Engineering,
Kamla Nehru Institute of Technology, Sultanpur, India.

Shruti Pandey, Ph.D
Electrical and Electronics Engineering,
Krishna Institute of Engineering and Technology, Ghaziabad, India.
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1
A Distributed Framework of Real-Time

Available Transfer Capability Assessment
in Modern Multi-Area Power Grids
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HsinChu 30013, Taiwan
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Abstract

An iterative distributed algorithm to achieve the real-time Available Transfer
Capability (ATC) assessment is proposed in this chapter. Mathematically,
ATC assessment can be formulated as an optimization problem formed as
a particular Optimal Power Flow (OPF) problem. This task can be per-
formed in the decomposition-based iterative methods linked to constrained
augmented Lagrangian approaches. The proposed work is designed on the
three distributed frameworks, including (i) Alternative Direction Multiplier
Method (ADMM), (ii) Auxiliary Problem Principle Method (APPM), and
(iii) Predictor-Corrector Proximal Multiplier (PCPM) approach for the real-
time ATC estimation. The proposed distributed algorithm is designated under
the partitioned system’s efficient distributed computation architecture, coor-
dinating between boundary and associated non-overlapping subsystems. The
numerical simulations of ATC assessment are conducted in the proposed
iterative distributed algorithm under the three IEEE test systems, and the
accuracies and the effectiveness of the proposed distributed algorithm are
validated.

1



2 ADistributed Framework of Real-Time Available Transfer Capability Assessment

Keywords: Available transfer capability, distributed algorithm, distributed
framework, system partition.

1.1 Introduction

As legal, economic, and environmental concerns are stressed in modern
power systems, power transfers between areas have been increasing consid-
erably faster than the transfer capability. Due to these changes, there might be
some technical difficulties in the power system operation, such as degraded
system security and reliability. Thus, to precisely provide power transfer
information under an interconnected power network, real-time Available
Transfer Capability (ATC) assessment has become a critical issue and widely
studied recently [1–3].

According to the definition of ATC raised by the North American Elec-
tric Reliability Council (NERC), ATC is recognized as the estimation of
transfer capability persisting in the power grid and further utilized for power
transmission [1]. In order to meet the requirement of real-time applications,
continuous ATC information is designed and monitored on an hourly and
daily basis for system operators, which is suggested by the Federal Energy
Regulatory Commission (FERC). Since ATC computation is computationally
demanding, the real-time ATC estimation is computationally demanding,
mainly when some preventive or corrective control actions are conducted
against the outage and uncertainties in power grids [2]. Moreover, in the case
of a multi-area system, ATC computation becomes more challenging, owing
to the reluctance of individual areas to share their operating information [4].

In early advances, ATC estimation was sensitivity-based under a power
flow model, appearing efficient in the computational speed. Nevertheless,
since typical large-scale power grids are physically formulated in non-linear
power flow equations, including practical physical constraints, most lin-
earized models cannot be adopted for accurate ATC estimation. Along with
this idea, several non-linear approaches, such as continuation methods [5–7],
direct methods [8], and non-linear optimization approaches [9, 10], have
been exploited independently to provide precise ATC estimation. However,
these model-based approaches are computationally demanding, such that
their real-time applications are obstructed. In recent advances, distributed
multi-processors have been significantly developed and utilized to promote
the computation capacity in the multi-agent-based distributed framework. In
the multi-agent-based distributed framework, the compensation mechanism
between agents can be achieved when the agent fails. Under this situation, the
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robustness of this class of multi-agent-based algorithms can be guaranteed.
In recent years, numerous power system problems have been studied in this
direction. For instance, (i) Optimal Power Flow (OPF) problems [11–17],
(ii) distributed state estimations [18, 19], (iii) distributed control for dis-
tributed networks [20, 21], (iv) distributed contingency analysis [22], and
(v) voltage stability monitoring problems [23, 24]. Moreover, the approxi-
mate measurement-dependent injection distribution factors were applied to
evaluate real-time ATC with less computation burden [25].

Recently, a probabilistic assessment of Available Transfer Capability
(ATC) was investigated by Optimality Condition Decomposition (OCD) tech-
niques and Latin Hypercube Sampling (LHS) method in power systems with
penetration of wind energy resources [26]. Meanwhile, advanced artificial
intelligence and machine learning methods have drawn much attention in
real-time ATC calculations. For example, the multi-time-series classification
model was utilized to perform the short-term ATC [27]. By incorporating
PMU data, the Artificial Neural Network (ANN) was adopted for training
as a real-time prediction model for ATC estimation [28]. Furthermore, the
comprehensive operation scenarios, including N-1 contingencies, were con-
sidered in training regression machine learning models [29]. Even though
several works have been studied in this direction, these approximate methods
and machine-learning-based approaches are still highly dependent on the
accuracy of data acquisition, and the accuracy of the ATC is restricted.

From the above literature review, it can be concluded that developing the
real-time ATC calculation in a distributed manner is the current trend for
technological developments in smart grid operation. However, this distributed
ATC assessment still suffers technical difficulties to obtain an equivalent
model of the external system for diminishing the computation complexities.
Traditionally, the network decomposition approach is widely considered. The
decomposition of the power grid can obtain a multi-area power network, and
the equivalent model of external areas can be utilized by using an appropriate
distributed and coordinated mechanism. By following this direction, few
works have been proposed. For instance, external areas are modeled by the
Radial Equivalent Independent (REI) equivalence technique for each decom-
posed area [4]. However, during the iteration process, parameters updating of
external areas is not considered in REI equivalents. Some inaccuracies can be
expected in these REI-based methods.

In order to overcome the predicament, the iterative distributed algorithm
is proposed to obtain accurate real-time multi-area ATC estimations. By
extending our previous work [30], this chapter will provide a comprehensive
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survey of existing works and provide an iterative distributed framework
for real-time ATC assessment of multi-area power systems from aspects of
theoretical analysis, distributed algorithms, and practical implementations.
The proposed framework will be proceeded by the following steps. First, the
ATC assessment will be formulated as a distributed multi-area optimal power
flow problem. Equality constraints from power flow equations and physic
inequality constraints, such as reactive generator power and thermal limits,
can be included in this problem formulation. By assuming the load variation
direction at specified buses, the available power transfer can be defined in the
objective function of the proposed optimization problem. Subsequently, sev-
eral distributed computation algorithms are explored. The dual ascent method
and constrained augmented Lagrange are reviewed and represented first.
Three distributed algorithms, including (i) Predict-Corrector Proximal Mul-
tiplier Method (PCPM), (ii) Auxiliary Problem Principle Method (APPM),
and (iii) Alternative Direction Multiplier Method (ADMM), are investigated
and utilized to formulate the first-order approximation of constrained aug-
mented Lagrange. Thirdly, the real-time Voltage Security Assessment (VSA)
is studied in a distributed computation framework. In the proposed system
partition, the entire power grid can be modeled as several interconnected
subsystems whose computation works can be proceeded in distributed pro-
cessors. Those distributed processors can be coordinated concurrently to
complete the significant computation task efficiently. For the system partition,
non-overlapping and boundary subsystems are also studied in detail. Thus, in
the proposed distributed ATC assessment, the preliminary computation work
can be distributed to those subsystems and computed in multiple distributed
processors. These multiple distributed processors can be operated concur-
rently and cooperatively. Finally, the boundary subsystem is responsible for
the coordination between all the distributed subsystems.

The significant contribution and novelty of the proposed work can be
addressed. The proposed distributed algorithm can overcome the inaccuracy
in the existing distributed algorithm based on network equivalent techniques
and ultimately solve ATC estimation numerically. Numerical simulations on
IEEE 14-bus, IEEE 57-bus, and IEEE 118-bus test systems are performed to
verify the accuracy of the proposed approach.

1.2 Problem Formulation

Given a configured power system under physical constraints of inequality
or equality equations regarding to the physical operation limits, such as



1.2 Problem Formulation 5

transmission line thermal limits and generator reactive power limits, the ATC
is defined as the maximal loading factor or the maximum power transfer
capability in the interconnect power grid [3]. Hence, ATC estimation can be
performed by using non-linear programming methods. Considering a power
grid with n buses and a load direction b∈R2n, ATC estimation can be
typically formulated as a non-linear optimization problem, as expressed by

st. g(u) =

⎡
⎢⎢⎣

min
λ∈R

λ

F (x, λ) = f(x) + λ2b
h(x)− z = 0

hlower ≤ z ≤ hupper

⎤
⎥⎥⎦ (1.1)

In (1.1), a scaled parameter λ is utilized to represent the maximal loading
factor along the load direction b with its squared-form λ2 for the ATC
estimation. xT = [θT , V T ] ∈ R2n denotes phase angles and magnitudes
of bus voltage. Power flow equations parametrized by continuation active
and reactive power variations along the load direction b can be expressed by
F T (x, λ) = [P T (x, λ), QT (x, λ)] [7]. The real power formula Pi = (x, λ)
and the reactive power formula Qi(x, λ) of the power flow equations at the
ith bus can be depicted by

Pi(x, λ) =
n∑

j=1

|Vi ‖Vj‖Yij | cos (δij − θi + θj) + λ2bPi

Qi(x, λ) = −
n∑

j=1

|Vi ‖Vj‖Yij | sin (δij − θi + θj) + λ2bQi (1.2)

where the phase angle of the entry Yij in the system admittance is denoted
by δij . Entries of power variation vector b include real and reactive power
variations bPi and bQi. It is worthy mentioning that the formulation in (1.1)
is slightly different from the conventional notion used in [7]. However,
this new formulation facilitates the later development of the distributed
algorithm.

All inequality constraints, addressed in hlower ≤ z ≤ hupper, are trans-
ferred into the equality constraints, described by h(x) − z = 0, through the
surplus variables z ∈ Rm. Thus, the compact form, defined by g(x, y, λ) =
0 ∈ Rl=2n+m, can be utilized to represent all involved constraints. To
simplify the expression, a composite vector is defined by u = [xT , zT , λ]T to
include all state variables.
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1.3 Distributed Algorithms for ATC Estimation

The optimization problem mentioned above can be solved efficiently in
a distributed computation framework. Such distributed framework can be
implemented in a guaranteed decomposition-coordination method. Along this
direction, distributed computational approaches can be categorized into two
methods, including one-level and two-level methods. In the one-level method,
subsystems are not designed to be solved coordinately. The two-level methods
utilize the multipliers to coordinate the solutions between sub-systems.

1.3.1 Overview

The Lagrange Multiplier formula is the typical method to solve the special
OPF problem in (1.1), and accordingly, the dual ascent method can be
performed iteratively. Specifically, (1.1) can be utilized to formulate the
Lagrange, as defined by

L(u, β)
hlower≤z≤hupper

= λ+ βT g(u) (1.3)

where the primal and dual variables can be denoted by u and β. (1.3) can
further define the dual problem in which the dual function is given by

h(β) = inf
u
L(u, β) (1.4)

If the strong duality assumption meets, the duality gap between the primal
and the dual problems can be eliminated such that the corresponding optimal
values become identical. Therefore, the optimizer u∗ in the primal problem
can be recovered from the optimizers β∗ of the dual problem, as mentioned
by [34]

u∗ = argmin
u
L (u, β∗) (1.5)

The dual ascent approach utilizes the gradient ascent to solve the dual
problem, and it can be specified as follows:

• By adopting the constant βk at the previous iteration, the first step is to
find the minimizer u of the following optimization problem shown by

uk+1 = argmin
u
L
(
u, βk

)
(1.6)

• Then, multiplier variables are accordingly updated in the second step, as
expressed by

βk+1 = βk + αkg
(
uk+1

)
(1.7)
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where the step-size is denoted by αk > 0.
Practically, the dual ascent method may suffer convergence problems in

the conventional Lagrangian techniques due to the insufficient strict convexity
of the objective function.

In order to deal with such a predicament, the constrained augmented
Lagrangian of (1.1) is considered by:

LA(u, β)
hlower≤z≤hupper

= λ+ βT g(u) +
γ

2
‖g(u)‖2 (1.8)

where the Lagrangian multipliers are represented by β and an associated
constant is given by γ. Referring to solving (1.1) iteratively by the dual ascent
approach, at the k-th iteration, by using the first order approximation, the
constrained augmented Lagrangian of (1.8) can be approximated as

Lk
A

Δz∈Ω
= λk +Δλ+ βkT

[
g
(
uk
)
+∇ug

kΔu
]
+

γ

2

∥∥∥g (uk)+∇ug
kΔu

∥∥∥2
(1.9)

where Δu = [ΔuT ,ΔzT ,Δλ]T is presented. The inequality con-
straints of surplus variables can be defined in the set of Ω =
Δz|hlower ≤ zk +Δz ≤ hupper. The Jacobian matrix ∇ug

k is defined by
the derivatives of g(uk) with respect to u. In the iterative method, the main
step is to find the minimizers Δu of the approximate constrained augmented
Lagrangian of (1.9). However, some difficulties may be made in the mini-
mization step of (1.9) due to considering the set Ω. In order to relax such
circumstances, a two-phase projection method is utilized [35]:

• In the first phase, by discarding the subset Ω, the approximate con-
strained augmented Lagrangian (1.9) can be reformulated as an uncon-
strained augmented Lagrangian and solved to find the minimizer Δu.

• In the second phase, the inaccurateΔz̃ ofΔu obtained in the first phase
is projected onto the defined subset Ω and corrected as the accurate
surplus variables Δz according to the projection principle:

Δz =

⎧⎨
⎩

hupper − zk if zk +Δz̃ > hupper
hlower − zk if zk +Δz̃ < hlower

Δz otherwise
(1.10)

Afterward, state variables can be updated iteratively, as expressed by:

uk+1 = uk + αuΔu (1.11)
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with the step-size αT
u = [αT

x , α
T
z , αλ]. Since state variables uk may be much

distant from the equality constraints, in order to avoid such circumstances,
Armijo’s rule is designed to be applied along with the penalty of violating
constraints [35].

When the augmented technique is applied, there exists the problem of the
separability destroy among all optimization variables,Δx,Δz, andΔλ, in the
augmented term γ

2 ||g(uk)+∇ug
kΔu||2. Due to the coupling augmented term,

it is recognized as the main difficulties and shortcomings of the augmented
Lagrangian, which has long been found [14].

In order to diminish this obstacle, three distinct strategies have been
proposed to relax such difficulty: (i) Predictor-Corrector Proximal Multiplier
Method (PCPM), (ii) Auxiliary Problem Principle Method (APPM), and (iii)
Alternative Direction Multiplier Method (ADMM).

1.3.2 Predictor-Corrector Proximal Multiplier Method (PCPM)

Predictor-Corrector Proximal Multiplier method (PCPM) is based on its
primal-dual method, which associates an augmented Lagrangian with an
additional quadratic proximal term related to variables u [14, 30]. By apply-
ing PCPM in (1.1), the corresponding constrained augmented Lagrangian can
be formulated as

LPCPM (u, β)
hlower≤z≤hupper

= λ+ βT g(u) +
1

2γ
‖g(u)‖2 + γ

2
‖u− û‖2 (1.12)

where γ is a constant. û represents state variables at the previous iteration.
The first-order approximation of the formula (1.12) for the k-th iteration can
be formulated as

Lk
PCPM
Δz∈Ω

= λk +Δλ+ βkT
[
g
(
uk
)
+∇ug

kΔu
]

+
1

2γ

∥∥∥g (uk)+∇ug
kΔu

∥∥∥2 + γ

2

∥∥∥uk +Δu− uk
∥∥∥2 (1.13)

Two-phase projection theory can also be adopted to relax the difficulty
in minimizing (1.13). By regarding the constrained augmented Lagrangian
(1.13) as an unconstrained augmented Lagrangian, differentiating (1.13) with
respect to Δu leads to obtain Δuk as expressed below:

Δuk = −
[
∇ug

kT
(
βk +Dk/γ

)
−M

]
/γ (1.14)
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where M = [01×l1]
T and Dk ≡ g(uk) + ∇ug

kΔuk. Difficulties with the
above scheme are that the iterates Δuk are coupled by the implicit compu-
tation of the constraint Dk, therefore, they cannot be computed separately.
To remove difficulties, explicit computation of the constraint expression in
(1.14) is suggested by defining the predicted multiplier variables β̃k+1 in the
following iterative scheme

Δuk =
(
−∇ug

kT β̃k+1 −M
)
/γ (1.15)

The predicted multiplier variable β̃k+1, using the estimated uk−1 in the
previous iteration, can be defined by

β̃k+1 = βk +
[
g
(
uk−1

)
+∇ug

k−1Δuk−1
]
/γ = βk +Δβk−1/γ (1.16)

The above scheme can be interpreted as a partial implicit-explicit method:
implicit for objectives and explicit for constraints. Subsequently, the second
phase of the two-phase project theory is conducted to correct the predicted
Δz̃k as Δzk according to the principle stated in (1.10). Also, the predicted
multiplier variables β̃k+1 can be corrected as βk+1, denoted by

βk+1 = βk +
1

γ

[
g
(
uk
)
+∇ug

kΔuk
]
= βk +

1

γ
Δβk (1.17)

Furthermore, the deviation Δuk can be used to update variables uk+1, as
expressed by (1.11). In summary, the pseudo-code of the PCPM can be
outlined in Table 1.1.

1.3.3 Auxiliary Problem Principle Method (APPM)

The optimization problem of (1.3) can be solved to find the minimizers by
using the Auxiliary Problem Principle (APP) in which a sequence of auxiliary
problems is considered [14, 31, 33]. Let a master problem defined by

min
u

T1(u) + T2(u) st. ΘΘ(u) = 0 (1.18)

where T2(u) and Θ(u) are both additives, and T1(u) is differentiable. Along
with the similar ideas of (1.8), the optimizer of the optimization problem
(1.18) can be found by solving the following equivalent master augmented
Lagrangian:

min
u,β

L(u, β) = T1(u) + T2(u) + 〈β + ηΘ(u),Θ(u)〉 (1.19)
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where a constant is defined by η. The operation of the inner product is
denoted by the notation �,�. In APPM, an auxiliary augmented Lagrangian
is defined through substituting T1(u) by G(u) and solving to obtain the
minimizer of (1.19) [34, 35]. The following lemma addresses the issue of
choosing G(u) appropriately.

Theorem (APP) [34]: Given a convex and differential function, G(u) , and
assume a minimizer u∗ in the following auxiliary augmented Lagrangian

min
u,β

G(u) + T2(u) + 〈β + ηΘ(u),Θ(u)〉 (1.20)

In the master augmented Lagrangian of (1.19), the necessary and sufficient
condition for the existence of the minimizer u∗ is addressed by [34]

〈∇uT1(u
∗), u− u∗〉+ T2(u)− T2(u

∗) ≥ 0 (1.21)

If assuming
∇uG(u∗) = ∇uT1(u

∗) (1.22)

the same condition of (1.21) can be found through the defined auxiliary aug-
mented Lagrangian of (1.20) along with the master augmented Lagrangian of
(1.19). Thus, this condition reveals that solving (1.20) is equivalent to solve
(1.19). In order to satisfy (1.22), G(u) can be defined by [34]

Gv(u) = γK(u) + 〈∇uT1(v)− γ∇uK(v), u〉 (1.23)

where a constant and a dummy variable are represented by γ and v. K(u)
is the auxiliary function and can be chosen abstractly. Once G(u) is well-
defined, (1.22) can be verified as follows:

∇uG
v(v) = ∇uT1(v) (1.24)

Here, the auxiliary augmented Lagrangian of (1.20) is designed to be
solved in an iterative algorithm such that the variable v can be approximated
to v∗ iteratively. In this aspect, the auxiliary augmented Lagrangian of (1.20)
is designed to be solved in a two-level algorithm [34]:

• The auxiliary problem is solved by assessing uk+1

min
u

γK(u) + 〈∇uT1(u
k)− γ∇uK(uk), u〉+ 〈βk + ηΘ(uk),Θ(u)〉

(1.25)

• Update βk+1 = βk + ηΘ(uk+1)
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• If |uk − uk+1| is lower than the designed convergency tolerance, the
algorithm stops. Otherwise, continues the algorithm, go to step 1, and
set k = k + 1.

In this position, APPM can be successfully applied to the proposed ATC
estimation problem of (1.1) by setting T1(u) = 0, T2(u) = λ, and Θ(u) =
g(u).

Accordingly, the overall distributed ATC estimation is re-phrased as
follows:

uk+1 = argmin
u
{γK(u) + λ− γ∇K(uk)Tu+ 〈βk + ηg(uk), g(u)〉}

βk+1 = βk + ηg(uk+1) (1.26)

In order to provide the flexibility of the algorithm convergence, the aux-
iliary function K(u) is adopted and conventionally set by K(u) = ||u||2/2
[13, 14]. Thus, (1.26) can be expanded as

uk+1 = argmin
u
{λ+

γ

2
||u− uk||2 + (βk)T g(u) + ηg(uk)

T
g(u)} (1.27)

By examining (1.27), the proposed augmented Lagrangian associated
with the APP algorithm can be simply defined by

LAPPM
hlower≤z≤hupper

(u, β) = λ+ βT g(u) +
γ

2
||u− û||2 + ηg(û)T g(u) (1.28)

where the state calculated at the previous iteration is denoted by û. Fur-
thermore, by using the first-order approximation, the constrained augmented
Lagrangian can be calculated at the kth iteration, as represented by

Lk
APPM
Δz∈Ω

= λk +Δλ+ (βk)T [g(u)k +∇ug
kΔu] +

γ

2
||Δu||2

+ η[g(uk−1) +∇ug
k−1Δuk−1]T × [g(uk) +∇ug

kΔu] (1.29)

Subsequently, through applying the two-phase projection method in the
minimization step, the unconstrained augmented Lagrangian of (1.29) is
proceeded by the derivatives with respect to Δu, and the state Δuk at the
kth iteration can be determined by

Δuk = (−∇ug
kT β̃K+1 −M)/γ (1.30)

where M = [01×l1]
T . These predicted multiplier variables β̃k+1 can be

defined by

β̃k+1 = βk + η[g(uk−1) +∇ug
k−1Δuk−1] = βk + ηΔβk−1 (1.31)
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Table 1.1 Summary of the three distributed algorithms in ATC estimation
Algorithms Algorithm Procedure
PCPM β̃k+1 = βk + 1

γ
Δβk−1

Δuk = argmin

{(
β̃k+1

)T

∇ug
kΔu+ γ

2
‖Δu‖2 +ΔλM

}
Δu

Δzk ← Δz̃kinΔuk

βk+1 = βk + 1
γ
Δβk

uk+1 = uk + αuΔuk

APPM β̃k+1 = βk + ηΔβk−1

Δuk = argmin
Δu

{(
β̃k+1

)T

∇ug
kΔu+ γ

2
‖Δu‖2 +ΔλM

}
Δzk ← Δz̃k inΔuk

βk+1 = βk + ηΔβk

uk+1 = uk + αuΔuk

ADMM β̃k+1 = βk + 1
γ
Δβk−1

Δuk = argmin
Δu

{(
β̃k+1

)T

∇ug
kΔu+ μ

2
‖Δu‖2 +ΔλM

}
Δzk ← Δz̃k inΔuk

βk+1 = βk + 1
γ
Δβk

uk+1 = uk + αuΔuk

The predictionΔz̃k ofΔuk can be further corrected and modified asΔzk

in the second phase. Then, βk+1 and uk+1 can be accordingly updated by

βk+1 = βk + ηΔβkuk+1 = uk + αuΔuk (1.32)

The outline of APPM is summarized in Table 1.1. Note that (1.31) and (1.32)
are similar to (1.16) and (1.17). Thus, PCPM can be treated as a special case
of APPM if the parameter η = 1/γ in APPM is selected.

1.3.4 Alternative Direction Multiplier Method (ADMM)

Consider a basic augmented Lagrangian formulated from the problem of ATC
of (1.1), as expressed by

LADMM
hlower≤z≤hupper

(u, β) = λ+ βT g(u) +
1

2γ
||g(u)||2 (1.33)

At the k-th iterate, the first-order approximation in (1.33) is

Lk
ADMM
Δz∈Ω

= λk +Δλ+ βkT [g(uk) +∇ug
kΔu] +

1

2γ
||g(uk) +∇ug

kΔu||2

(1.34)
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Similar to the previous two methods, the unconstrained formula of (1.34)
is designed to be minimized with respect to Δu through applying the two-
phase projection theory. The relative formula with respect to Δu can be
expressed by

∇ug
kT [βk +

1

γ
Dk] +M = 0 (1.35)

In formula (1.35), each Δuki is coupled with others Δuk such that
extracting each Δuki separately meets some difficulties. In order to relax
the difficulty, Alternative Direction Multiplier Method (ADMM) is adopted.
The principle of ADMM is based on the relaxation approach in order to
minimize the augmented Lagrangian. The strategy of relaxing the augmented
Lagrangian is to minimize each state variable by fixing other state variables
and the multiplier at their last iterates.

Once all state variables have proceeded, the multiplier can be updated
subsequently [14, 25]. Thus, in minimizing each state variable, fixing other
state variables can eliminate the coupling effect from other state variables
such that the difficulty in the minimization step can be relaxed. With the
benefit of ADMM, extracting each Δuki can now be facilitated by fixing
other variables Δuk−1

j,j �=i at their last iterates. Thus, formula (1.35) can be
modified as

∇ug
kT [βk +Dk−1/γ] +M + μΔuk = 0 (1.36)

where Dk−1 ≡ g(uk−1) + ∇ug
k−1Δuk−1. By defining the predicted

multiplier variable as β̃k+1 = βk = βk + 1
γD

k−1, (1.36) can be
rearranged as

Δuk = (−∇ug
kT β̃k+1 −M)/μ (1.37)

Subsequently, two-phase projection theory is used to correct the predict
Δz̃k as Δzk. Finally, updating variables βk+1 and uk+1 can be expressed by

βk+1 = βk +Δβk/γ uk+1 = uk + αuΔuk (1.38)

Table 1.1 denotes the ADMM algorithm. Note that PCPM is also a special
case of ADMM if μ = γ is selected. In addition, ADMM is equivalent to
APPM by properly setting the free parameters. It can be concluded that
PCPM and ADMM are the special cases in APPM, and APPM will be
adopted to develop the proposed iterative distributed framework for the
real-time ATC assessment.
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1.4 Distributed Framework of Real-Time ATC Estimation

Next, the real-time ATC estimation will be implemented in a distributed com-
putation framework based on APPM. The distributed calculation is designed
to separate all state variables in the developed distributed computation frame-
work, including power system state variables x, loading parameter λ2, surplus
variables z, and Lagrangian multipliers β. In this case, using system partition,
the overall computation is separated into several sub-tasks and proceeded
separately and concurrently.

1.4.1 The Framework of the Distribution System

A distributed system represents the physical arrangement for distributed pro-
cessing, which is organized by a computer network. A common problem of
a bulk power grid can be solved by using distributed computers concurrently.
Based on the system partition, several sub-tasks can be constructed by divid-
ing the main task and further distributed to multiple distributed processors
to be dealt with simultaneously. Since these distributed processors can be
coordinated, concurrent computation on the main task can be conducted
efficiently. Generally, the design of a distributed system is based on three
steps: (1) Task Allocation, (2) Synchronization, and (3) Data Communication
[36]. Detailed descriptions of these three steps are illustrated below.

(1) Task Allocation:

Based on the system partition, the partitioning of the main task is the first
mission of developing a distributed system, and these sub-tasks from the par-
tition are further allocated to distributed processors. It is worthy to notice that
the number of sub-tasks cannot exceed the number of available processors.
Another essential concern is the issue of balancing loads of subtasks among
processors. In order to achieve more efficient execution performance between
processors, the load of each processor is designed to be commensurate
according to its performance.

(2) Synchronization:

Synchronization is an important mechanism when several distributed proces-
sors work jointly on the main task. It allows processors to wait at some time
for the completion of other distributed processors’ computations.

In other words, processors complete computations and communication
tasks in synchronous rounds. Particularly, synchronization can ensure the
convergence of computations in a distributed system.
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Figure 1.1 Representations of System Partition. c© [2015] IEEE. Reprinted, with permis-
sion, from IEEE Transactions on Smart Grid [30]

(3) Data Communication:

One efficient data communication mechanism is Message-Passing Interface
(MPI). MPI is a communication protocol for facilitating data transmission
among distributed processors. With MPI, each processor can store its com-
putation data in its local memory and then exchange its data with other
processors. Computation data is transferred as packets of information over
communication links. MPI organizes the cooperation of data transmission
between processors.

1.4.2 System Partition

In the system partition, the primary system will be partitioned into several
subsystems. The associated sub-tasks in these subsystems are further dis-
tributed into distributed processors and proceeded concurrently [35]. In order
to optimize the efficiency of data communication, the partition of the primary
system is based on the physical interconnection of subsystems, and data
exchanging among processors has occurred in variables of boundary buses.
In the network topology, the concerned N subsystems are constructed from N
− 1 interconnected sub-areas. Furthermore, the reconstructed N subsystems
consist of non-overlapping N −1 subsystems, and the N-th subsystem is
named the boundary subsystem and organized by all boundary buses of the
subsystem. Figure 1.1 depicts the diagram of the system partition. Under
this framework, the computation tasks on these subsystems can be proceeded
concurrently. In this case, these distributed processors can be coordinated to
complete the main task’s computation efficiently. Specifically, the computa-
tion algorithm in the proposed distributed framework can be depicted in the
following two steps:
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(1) Gathering Step:

In the gathering step, the state variableΔuk is computed for the k-th iteration.
According to the system partition, the calculations on Δuk are organized in
the matrix form, as shown by [36]

⎡
⎢⎢⎢⎢⎣

Δuk1

Δuk2
...

ΔukN

⎤
⎥⎥⎥⎥⎦=
⎡
⎢⎢⎢⎢⎣
∇ug

k
1,1 0 · · · ∇ug

k
1,N

0 ∇ug
k
2,2 0 ∇ug

k
2,N

0 · · · . . .
...

∇ug
k
N,1 ∇ug

k
N,2 · · · ∇ug

k
N,N

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣
−β̃k+1

1 /γ

−β̃k+1
2 /γ
...

−β̃k+1
N /γ

⎤
⎥⎥⎥⎥⎦−

1

γ
M

(1.39)

Apparently, from (1.39), it can be observed thatΔuk can be computed in
N processors individually and simultaneously. In more specific explanations,

• Under i = 1, . . . , N – 1, the computation of Δuki is conducted in the i-th
processor by the following expression

Δuki =
−1
γ

[
(∇ug

k
i,i)

T β̃k+1
i + (∇ug

k
N,i)

T β̃k+1
N

]
(1.40)

where in subsystem i, the Jacobian matrix∇ug
k
i,i is defined with respect to ui.

Also, the Jacobian matrix∇ug
k
N,i is designed for subsystemN. The prediction

multipliers for the ith and the Nth subsystems are denoted by β̃k+1
i and β̃k+1

N .
At the Nth subsystem, the boundary variables, including ukN and predicted
multipliers β̃k+1

N , can be collected to generate the Jacobian matrix ∇ug
k
N,i

and perform the calculation on Δuki for the processor i.

• By referring to (1.32), the calculation on ΔukN can be proceeded in the
Processor N by the following formula

ΔukN =
−1
γ

[
ΣN−1
i=1 (∇ug

k
i,N )T β̃k+1

i + (∇ug
k
N,N )T β̃k+1

N

]
− 1

γ
M ′ (1.41)

where M ′ = [01×n′1]T with ukN ∈ Rn′ . In sub-system i, the Jacobian
matrix with respect to uN represents∇ug

k
i,N . The Jacobian matrix∇ug

k
N,N in

subsystem N is defined with respect to uN . Furthermore, the Jacobian matrix
∇ug

k
i,N can be assessed by accumulating β̃k+1

N and uki to calculate ΔukN .

In addition, Δz̃ki and Δz̃kN are modified as Δz̃ki and Δz̃kN in the two-phase
projection theory, as shown in (1.10).
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(2) Broadcasting Step:

In the broadcasting step, Δβk is produced in order to perform the update of
uk+1, βk+1, and β̃k+2. The computation efforts onΔβk

i andΔβk
N , addressed

in processors i and N, are linked to the following formula

Δβk
i = gi(u

k
i , u

k
N ) +∇ug

k
i,iΔuki +∇ug

k
i,NΔukN

Δβk
N = gN (uk) +∇ug

k
N,NΔukN +

N−1∑
i=1

∇ug
k
N,iΔuki (1.42)

Specifically,

• By accumulatingΔukN broadcasted from the subsystem N, the computation
on Δβk

i can be accomplished at Processor i, where i = 1,. . . ,N – 1.

• Referring to formulas uk+1
i = uki + αuΔuki , β

k+1
i = βk

i + ηΔβk
i , and

β̃k+2
i = βk+1

i + ηΔβk
i , the variable updates, u

k+1
i , βk+1

i , and β̃k+2
i , can be

accomplished in the processes i.

• Next, the state Δuki at the first N – 1 subsystem can be accumulated to
perform the calculation of Δβk

N in Processor N, and associated variable
updates, uk+1

N = ukN +αuΔukN , βk+1
N = βk

N +ηΔβk
N , and β̃k+2

N = βk+1
N +

ηΔβk
N , can be reached.

1.4.3 Computational Algorithm

In this position, the distributed computational algorithm developed in
Figure 1.2 can be addressed in the following steps:

Step 1: The main power network is partitioned into the N subsystems, con-
sisting of the boundary subsystem, accommodating all boundary
buses, and the N −1 non-overlapping subsystems. These subsystems
are distributed to the N processors.

Step 2: For i = 1, ...,N−1, state variables, xki and xkN , are initiated under the
flat start at the initial iteration k = 0. The convergence tolerance ε is
assigned.

Variables, zki , z
k
N , βk

i , β̃
k+1
i , βk

N , β̃k+1
N and λk, are started from zero

to iterate in processors.
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Figure 1.2 The flowchart of the iterative distributed algorithm. c© [2015] IEEE. Reprinted,
with permission, from IEEE Transactions on Smart Grid [30]

Step 3: In order to calculate the Jacobian matrices ∇ug
k
i,i and ∇ug

k
N,i, the

gathering step is to collect β̃k+1
N and ukN . By referring to (1.40),

Δuki can be determined. In addition, by assessing β̃k+1
i and uki in

the first N −1 distributed processors, the Jacobian matrix, ∇ug
k
i,N
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Figure 1.3 System partition of IEEE 14-bus system c© [2015] IEEE. Reprinted, with
permission, from IEEE Transactions on Smart Grid [30]

and ∇ug
k
N,N , can be calculated. Equation (1.41) can be referred to

generate Δuki . Finally, the principle of (3.8) is utilized to correct
ΔzkN and Δzki .

Step 4: Equation (1.42) can be referred for the broadcasting step. The state
ΔukN , broadcasted from the processor N, is received in processor i
and utilized to calculateΔβk

i . Simultaneously, through accumulating
Δuki broadcasts from these N − 1 processor, the calculation ofΔβk

N
can proceed concurrently. Subsequently, the update of variables in
distributed processors can be accomplished.

Step 5: If the termination criterionminl=1,...,N Δβk
l < ε is checked, the iter-

ation in all distributed processors stops. The final maximum loading
parameter λk+1 is reported as the ATC estimation. Otherwise, setting
k = k +1, the algorithm goes back to Step 3.

Figure 1.3 represents the system partition of the IEEE 14-bus system

1.5 Simulation Results

In this section, several IEEE test systems are utilized to conduct the numerical
simulation to validate the proposed distributed ATC estimation accuracy. In
the proposed ATC estimation, generator reactive power limits are included in
the simulation analysis. The proposed algorithm can achieve the coordination
between processors and perform data exchanging between boundary and
non-overlapping subsystems. Thus, the validation of numerical stability in
the proposed algorithm can be examined in the variables of the boundary
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subsystem. Through examining the convergences for the boundary variables,
the feasibility of the proposed method can be verified. Moreover, the self-
healing mechanism in the proposed distributed framework is also verified.
The robustness can be verified in the proposed distributed framework by
considering line contingencies where the disconnection between subsystems
occurs.

Figure 1.4 Boundary variables (a) xCA and (b) xCB in IEEE 14-bus system. c© [2015] IEEE.
Reprinted, with permission, from IEEE Transactions on Smart Grid [30]



1.5 Simulation Results 21

1.5.1 IEEE 14-Bus Test System

In this section, the numerical simulations are conducted in the IEEE 14-bus
test system. In the system, the variations on generator and load buses are
utilized to form the power variations. The power direction, ΔPi = ΔQi =
0.1, is given at the load bus i. The scheduled variation of the generator real
power is designed by ΔPj = 0.1 at the generator bus j. The four generators,
installed in buses 2, 3, 6, and 8, consider the reactive power limits and link to
the inequality constraints formulated by the surplus variables z1 to z4. The
reactive power limit is set by −1 ≤ z1,...4 ≤ 1. The system partition is
designed in the IEEE 14-bus test system and depicted in Figure 1.3. For the
area 1, the buses 4 and 6 are recognized as the boundary buses while the buses
2, 3, and 5 are collected as the boundary buses for the area 2.

By gathering all boundary buses to form the boundary subsystem C, two
non-overlapping subsystems, A and B, can be constructed accordingly as
depicted in Figure 1.3. Here, the boundary variable variation in the processor
C is used to validate the convergent robustness of the proposed method.
Besides, the case study considers the tripping of the two lines, addressed
between bus 4-bus 7 and bus 4-bus 9, and is utilized to examine the self-
healing mechanism in the proposed algorithm. In the proposed algorithm, the
simulation specification, convergence tolerance ε = 10−3 under the settings
αu = 0.82 and η = 0.05, is assumed. Also, it is assumed that this disconnection
occurs at the iteration number of 4000.

With respect to processors A and B, the variations of the boundary
variables xCA and xCB in processor C on the IEEE-14 bus system during the
iterations of the proposed algorithm are depicted in Figure 1.4. Moreover, to
the processors A and B, the boundary multipliers βCA and βCB in processor
C are illustrated in Figure 1.5. Obviously, significant transient variations after
the assumed disconnection between subsystems can be found in Figures 1.4
and Figure 1.5. It can be clearly observed that the proposed distributed
algorithm has the adaption to the topology change of the distributed system
since the numerical convergence of the boundary variables can attain.

Thus, the self-healing function can work and be guaranteed in the pro-
posed algorithm. Furthermore, the comparison between the ATC estimation
of the proposed algorithm and the one based on the Continuation Power
Flow (CPFLOW) in PSAT [37] is conducted in Figure 1.6. Apparently,
referring to the CPFLOW results, the maximal loading factor λ2 of the pro-
posed algorithm can be successfully changed from the pre-contingency state
(λ2

CPFLOW = 2.6407) to the post-contingency state (λ2
CPFLOW = 2.1376)

during this disconnection.
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Figure 1.5 Multipliers (a) βCA and (b) βCB in IEEE 14-bus system. c© [2015] IEEE.
Reprinted, with permission, from IEEE Transactions on Smart Grid [30]

In addition, the convergence criterion,Δβ∗ = minΔβA,ΔβB,ΔβC ≈ 0,
can also be examined in Figure 1.7 for the proposed algorithm, and the self-
healing mechanism can be ensured evidently. Next, the generator reactive
power limits are also examined in the proposed algorithm. In Figure 1.8, the
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Figure 1.6 Maximal loading parameter λ2 of Processor C in IEEE 14-bus system. c© [2015]
IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30]

surplus variables, z1, z3 and z4, depict that the reactive power limits of the
three generators reach under the limits, −1 ≤ z1,...,4 ≤ 1, during numerical
iterations.

By further analyzing Figure 1.8, the three termination points, ζ1, ζ2,
and ζ3 corresponding to the surplus variables z1, z3, and z4, can be found
and utilized to represent the case of hitting generator reactive power limits.
Thus, the corresponding number of the numerical iterations at these three
termination points can be addressed in Table 1.2. Certainly, the generator

Table 1.2 Iteration numbers at the points hitting the reactive power limits
Test systems Location: Iteration Numbers
IEEE 14 bus ζ1: 1000, ζ2: 400, ζ3: 1200
IEEE 57 bus κ1: 2000, κ2: 3000, κ3: 2500
IEEE 118 bus ξ1: 3.8 × 104 , ξ2: 1.9 × 104, ξ3: 4 × 104, ξ4: 3.1 × 104,

ξ5: 104, ξ6: 1.9 × 104
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Figure 1.7 Minimal multiplier deviation Δβ∗ of all processors in IEEE 14-bus system. c©
[2015] IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30]

Figure 1.8 Surplus variables z1 to z4 under the reactive power limit −1 ≤ z1,...4 ≤ 1 in the
IEEE 14-bus system. c© [2015] IEEE. Reprinted, with permission, from IEEE Transactions
on Smart Grid [30]
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reactive power limits can also be reflected in the proposed algorithm, even
for the circumstance of line outage, as shown in Figure 1.8. In this case, the
surplus variables z1, z3, and z4 finally settle down at a constant as their limits
act. After the line outage, the surplus variable z2 can react to the change.
Therefore, the simulation results indeed reveal that the proposed algorithm
can provide the self-healing mechanism against the system disturbance.

1.5.2 IEEE 57-Bus Test System

In this subsection, IEEE 57-bus is used to perform the numerical simulation
of the proposed algorithm. In this case, the load direction is set byΔPi = 0.1
and ΔQi = 0.2 for the ith load bus while the generator real power variation
is set by ΔPj = 0.1 for the jth generator bus. In the studied test system,
seven generators are considered at buses 3, 6, 8, 9, 12, 28, and 29 under
its reactive power limits. In the proposed algorithm, the seven generators
correspond to the surplus variables, z1 to z7. In particular, the reactive power
limits are assigned by −1.5 ≤ z1,...,4 ≤ 1.5 for the surplus variables z1 to
z4 while the surplus variables, z5 to z7, are constrained by the reactive power
limits −0.5 ≤ z5,...,7 ≤ 0.5 . The studied test system can be partitioned
into two subsystems, as depicted in Figure 1.9. In the partitioned system, by

Figure 1.9 System partition of IEEE 57-bus system. c© [2015] IEEE. Reprinted, with
permission, from IEEE Transactions on Smart Grid [30]
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gathering buses 8, 9, 10, 11, 30, 36, 50, 52, 56 from the second area and
buses 7, 6, 13, 12, 25, 29, 49, 37, and 57 in the first area, the boundary buses

Figure 1.10 Boundary variables (a) xCA and (b) xCB in IEEE 57-bus system. c© [2015]
IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30]
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can be formed. Furthermore, all boundary buses can be used to create the
boundary subsystem C, and accordingly, the two associated non-overlapping
subsystems, A and B, can be obtained, as illustrated in Figure 1.9. By
examining the numerical convergence in boundary variables in the processor
C, the practicality of the proposed distributed approach can be validated. In
the simulation, the convergence tolerance is specified by ε = 10−3 under
the parameter settings, η = 0.03 and αu = 0.82. With the coordination of
processor C with processor’s A and B, the numerical simulation results of
the boundary variables, xCA and xCB , and boundary multipliers, βCA, and
βCB , can be depicted in Figure 1.10 and Figure 1.11. It is noted that the
number in the two figures indicates the numbers of the boundary buses.
Figure 1.10 and Figure 1.11 clearly show the numerical convergence in
the proposed distributed algorithm. Moreover, by examining the maximum
loading parameter λ2 in Figure 1.12, it clearly indicates that the proposed
algorithm is feasible since the simulated maximum loading parameter finally
reaches the actual one (λ2

CPFLOW = 2.1376), as shown in Figure 1.12. On
the other hand, through further examining the numerical convergence of the
multiplier deviation, as shown in Figure 1.13, the numerical convergence of
the proposed distributed algorithm can be guaranteed firmly.

During the numerical iterations, the surplus variables, z3, z5, and z6,
attain the upper reactive power limits, as shown in Figure 1.14. Specifically,
according to the reactive power limit −1.5 ≤ z1,...,4 ≤ 1.5, the surplus
variable z3 reaches its limit, as shown in Figure 1.14(a) while the surplus
variables, z5 and z6, arrive at their limits under the reactive power limit
−0.5 ≤ z5,...,7 ≤ 0.5, as addressed in Figure 1.14(b). Also, the three
termination points, κ1, κ2, and κ3 corresponding to the surplus variables,
z3, z5, and z6, are illustrated in Figure 1.14 to indicate the encountering of the
generator reactive power limits. Table 1.2 addresses the explicit number of
the numerical iterations corresponding to the three termination points. In the
proposed distributed algorithm, the two-phase projection principle is adopted
to constrain the surplus variables under its operation limits when the surplus
variables, z3, z5 and z6, attain their operation limits.

1.5.3 IEEE 118-Bus Test System

In the IEEE 118-bus test system, the load direction b is defined by ΔPi =
ΔQi = 0.1 for load buses and ΔPi = 0.1 for generator buses. In the
simulation, 38 generators are considered under the reactive power limits and
corresponded to the surplus variables z1 to z38. The reactive power limits
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Figure 1.11 Multipliers (a) βCA and (b) βCB in IEEE 57-bus system. c© [2015] IEEE.
Reprinted, with permission, from IEEE Transactions on Smart Grid [30]

−1.5 ≤ z1,...,38 ≤ 1.5 are assigned to the surplus variables, z1 to z38. The
partitioned system in the IEEE 118-bus test system can be illustrated in Figure
1.15. In the first area, the buses 19, 15, 30, and 23 are selected as the boundary
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Figure 1.12 Maximal loading parameter λ2 of Processor C in IEEE 57-bus system. c©
[2015] IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30]

Figure 1.13 Minimal multiplier deviationΔβ∗ of all processors in IEEE 57-bus system. c©
[2015] IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30]
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Figure 1.14 (a) Surplus variables z1 to z4 under the reactive power limit −1.5 ≤ z1,...,4 ≤
1.5 and (b) z5 to z7 under the reactive power limit −0.5 ≤ z5,...,7 ≤ 0.5 in the IEEE 57-bus
system. c© [2015] IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid
[30]

buses while the buses 34, 33, 68, 38, and 69 are designed as the boundary
buses for the second area. In the third area, the boundary buses are identified
as the buses 70, 24, 77, 75, and 81. All boundary buses are gathered as the
boundary subsystem and assigned to the Processor D. Accordingly, the three
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Figure 1.15 System partition of IEEE 118-bus system. c© [2015] IEEE. Reprinted, with
permission, from IEEE Transactions on Smart Grid [30]

non-overlapping subsystems are created and distributed to the Processors A,
B, and C. Regarding the Processors A, B, and C, the boundary variables, xDA,
xDB , and xDC , and the boundary multipliers, βDA, βDB , and βDC , in the
Processor D can be depicted in Figure 1.16 and Figure 1.17. The boundary
buses can be numbered in these two figures. In the simulation, the specifi-
cation of the convergence tolerance is set by ε = 10−3 under the parameter
settings η = 0.008 and αu = 0.7. Obviously, the numerical convergence can
be found in the proposed algorithm by examining the boundary variables.
Besides, the accurate maximum loading parameter λ2 is also reported in
the proposed algorithm by examining the CPFLOW result (λ2

CPFLOW ), as
shown in Figure 1.18. The multiplier deviations, illustrated in Figure 1.19,
are also examined and provide the guarantee of the numerical convergence in
the proposed algorithm.

Next, the generator reactive power limits are also examined. In the sim-
ulation, six generators, corresponding to the surplus variables, z6, z21, z28,
z35, z36, and z37, are located at the buses 49, 12, 77, 65, 85, and 80 and
encounter the generator reactive power limits, as shown in Figure 1.20(a).
Accordingly, it can be observed that the six surplus variables reach the upper
operation limits while other surplus variables are depicted in Figure 1.20(b).
In Figure 1.20(a), there exist six termination points, ξ1 to ξ6, indicating that
the six surplus variables attain their upper operation limits. The number of the
numerical iterations at the six termination points can be detailed in Table 1.2.
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Figure 1.16 Boundary variables (a) xDA, (b) xDB and (c) xDC in IEEE 118-bus system. c©
[2015] IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30]
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Figure 1.17 Multipliers (a) βDA, (b) βDB and (c) βDC in IEEE 118-bus system. c© [2015]
IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30] 
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Figure 1.18 Maximal loading parameter λ2 of Processor D in IEEE 118-bus system. c©
[2015] IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30]

Figure 1.19 Minimal multiplier deviation Δβ∗ of all processors in IEEE 118-bus system.
c© [2015] IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30]
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Figure 1.20 (a) Six surplus variables z6, z21, z28, z35, z36, and z37, and (b) other surplus
variables under the reactive power limit −1.5 ≤ z1,...,38 ≤ 1.5 in the IEEE 118-bus system.
c© [2015] IEEE. Reprinted, with permission, from IEEE Transactions on Smart Grid [30]



36 ADistributed Framework of Real-Time Available Transfer Capability Assessment

1.6 Conclusion

In the proposed algorithm, the ATC estimation is formulated as a particular
non-linear OPF optimization problem. Thus, a distributed iterative algorithm
based on constrained augmented Lagrangian is proposed for the real-time
ATC estimation. Specifically, three technical advances are addressed as
follows:

• Three distributed schemes, including (i) Predictor-Corrector Proximal
Multiplier (PCPM) method, (ii) Auxiliary Problem Principle Method
(APPM), and (iii) Alternative Direction Multiplier Method (ADMM),
have been investigated for distributed ATC estimation.

• By analyzing the three distributed algorithms, it can be concluded
that PCPM or ADMM is a special case of APPM in the iterative
distributed ATC estimation problem. Therefore, APPM is selected to
develop the proposed iterative distributed algorithm for the real-time
ATC estimation.

• The partition of the main system is investigated and leads to a boundary
subsystem and several non-overlapping subsystems.

Three IEEE test systems are utilized to conduct numerical simulations to
verify the efficiency of the proposed iterative distributed ATC assessment. In
the proposed distributed algorithm, the generator reactive power limit can be
included in the real-time ATC estimation.
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Abstract

New optimization methods are an essential tools to analyze the performance
of modern hybrid grids appropriately. Multiple hybridizations are performed
in the basic conventional optimization methods available such as Genetic
Algorithm (GA), Particle SwarmOptimization (PSO), Differential Evolution-
ary (DE), and Harmony Search (HS). Limitations noticed in existing methods,
(i) high complexity and large convergence time in GA, (ii) large convergence
time in case of PSO, (iii) initial population size for DE, and (iv) frequent use
of memory in HS. The Modified Harmony Search (MHS) algorithm reaches a
global optimum solution on harmony memory, and Hybrid Harmony Search
(HHS) is of PSO, DE, and HS. Both methods are applied in the Economical
Load Dispatch requirement (ELD). Initially, proposed methods, PSO, and GA
have been applied for a six-unit system, which includes six thermal units,
forty-six transmission paths, and twenty-six buses. It is observed that the
proposed MHS provides a better loss minimization. Further study has been
performed on fifteen, twenty, and forty-unit systems using the MHS method.
It is observed that in the fifteen-unit system, the proposed MHS method
provides improved performance in terms of both loss and cost minimization

41
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as compared to PSO [1] and GA (RANKSUM method). In twenty and forty-
unit systems, MHS gives a better solution.

Keywords: Differential evolutionary (DE), economic load dispatch (ELD),
genetic algorithm (GA), harmony search (HS), hybrid harmony search
(HHS), modified harmony search (MHS), particle swarm optimization (PSO).

2.1 Introduction

Electricity is an essential requirement in every aspect of our daily life. The
electric supply and interconnected grid are increasing regularly to provide
reliable load demand from the electric supply or grid. As the load demand is
increasing, the reliability, quality, and quantity should be maintained properly.
As a result, the grid voltage and connection become hybrid and complex.
In order to minimize the total generation cost, Economical Load Dispatch
(ELD) of the power system requires an optimization technique and all units
should run within the highest and lowest limits of generation capacities.
Earlier this problem of ELD was solved by numerous techniques such as
the participation factor technique, gradient technique, and Lambda-iteration
technique [2, 3]. These methods essentially require the incremental cost curve
which is dependent on cost coefficient values, so the cost value is not constant
and non-linear throughout the operation. Hence the Genetic Algorithm (GA)
technique is used in optimizing these sets of problems of ELD. Deficiencies
still persist in GA such as complexity and larger execution time. Even though
the problem of larger execution time is solved by interconnected personal
computers using TCP/IP socket [4], still complexity persists. The Particle
Swarm Optimization (PSO) [5] was introduced in 1995 which is faster than
GA. But it also has a drawback in that it takes more time to reach a global
solution. In 2011, the researchers Rocca, P. Olivery, and G. Massa invented
the Differential evolutionary algorithm which is the fastest algorithm till now
[6]. However, it has been seen that for a small number of initial populations,
the Differential Evolutionary optimization [7] technique does not converge
exactly to the best or optimal solution [8] among all feasible solutions. In
the year 2001, harmony search [9] was invented by Zong Woo Geem et al. in
2001 [10]. Nevertheless, this method is more dependent on harmony memory.
The Harmony Search-Opposition Based Learning technique (HS-OBL) [9] is
used effectively so as to protect the solutions not to getting trapped into local
optimum.
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Here a modified Harmony Search technique [11] has been proposed
which is faster than DE in certain aspects (details in section 2.6). This is a
study of two proposed methods, one MHS [12] and Hybrid Harmony Search
technique (HHS). The primary objective is to utilize exact operations using
both methods [6, 13–15] to solve ELD problems.

2.2 Equality and Inequality Constraints

The ELD is a major requirement to estimate the generators’ output (MW)
[16] of a given operating region which will be satisfied to obtain the con-
sumer demand (nearly). Unit Commitment (UC) is defined as a polynomial
or quadratic equation-based optimization-related issue. A set of different
combination units, i.e., kVA loading of the generators is written down period-
ically throughout the operation. Different optimization techniques have been
applied to the recorded data; the optimal and best generation will be uploaded
[17] in the output among all operating unit ranges. Those units are calculated
eventually to satisfy the system load or consumer demand without disturbing
the operating constraints of generating units [1].

2.2.1 Actual Operation Constraints of Generator

The operating cost of input in a power station may be expressed in $/h. The
system may also be a microgrid system [18]. The fuel-price vs. generator
output characteristics can be obtained by fitting a polynomial curve which is
a function of active power and is represented as:

f (Pgi) = μiPgi
2 + θi + δi (2.1)

where
f(Pgi) = fuel cost of ith thermal unit.

Pgi = Real power supplied by of ith generator
μiθiδi are generating units’ constants

m∑
i=1

Pgi = PL + PD (2.2)

where
PL = Total line losses (in MW)

PD = Total consumer demand (in MW)
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2.2.2 Inequality Constraints

Generator constraints

The thermal limit must not exceed under certain kVA loading of the gen-
erators. The highest and lowest, real and reactive powers respectively, are
restricted by the thermal constraint so that the rise in temperature should be
constant within limits.

Pmin ≤ P ≤ Pmax

Qmin ≤ Q ≤ Qmax
(2.3)

where Pmin, and Pmax are real output powers at the lowest and highest limit
operating region of the generation units respectively (in MW).

Qmin, and Qmax are reactive output powers at the lowest and highest level
operating range of the generation units (in MVAR).

Loss constraints

PL =
m∑
i=1

m∑
j=1

PiBijPj +
m∑
i=1

B0iPi +B00 (2.4)

Cost of Operation Equations

FV =

m∑
i=1

fi (Pgi) (2.5)

2.3 Generalized Harmony Search Algorithms

In 2001, Zong Woo Geem, Joong Hoon Kim, and G.V. Loganathan originally
introduced the Harmony Search method inspired by the phenomenon of–
mimicking metaheuristic optimization search. MHS as an optimization [19]
tool provides a search process where, after each functional evaluation, the
new set of values is updated in the harmony memory. The values that are
generated depend on the constant value of the rate of Harmony Memory
Consideration (HMRC) and Pitch Adjusting Rate (PAR). Let X indicates the
initial set of values. HMRC and PAR are two constant values. The ith values
of X are given below:

Xi = [Xi1, Xi2, ..............., Xid] (2.6)

where d is dimension space which also represents total variables, i=1 to 10 (as
the population is ten). Now this X10xd passes through the objective function
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and evaluates the fitness values. The fitness values along with the X variable
create a harmonious memory matrix which contains elements as below:

HMMi = [Xi1, Xi2, ..............., Xid, fi ([Xi1, Xi2, .., Xid])] (2.7)

Based on their fitness values, the values in the harmony memory matrix are
arranged in ascending order f1 < f2 < f3 < f4............. < f10.

The dimension of the Harmony Memory Matrix (HMM) is 10*(d+1).
HMRC and PAR parameters are control loops for generating new (k+1)th

value of X variable as shown below.

Xk+1 =

⎧⎪⎨
⎪⎩
HMM1 (X11, X12, .............X1d)

HMM1 (X11 +ΔX,X12 +ΔX, .........X1d +ΔX)

Random value
(
X11

Max
Min ,X12

Max
Min , ......X1d

Max
Min

) (2.8)

In (2.8) first value is taken from the harmony matrix which is the first row
without fitness value. The second data can be selected from the first values
with some delta amount of shift and in the third case, values are generated
randomly within the maximum and minimum range as given for all the d
dimension variables. The HMM matrix is updated with new values of Xk+1

and corresponding fitness values are as per the condition mentioned:

f(Xk+1) < f1

HMM1 = Xk+1, f(Xk+1)) (2.9)

Eq. (2.9) is applicable only in the case of first value updation and the rest nine
values can be updated by the following condition:

fj < f(Xk+1) ≤ fj+1

HMMj+1 = (Xk+1, f (Xk+1))
(2.10)

where j=1 to 9 and k=1 to the number of functional evaluations or similar
term to the number of iterations (e.g. 10000, Table-2.4).

2.4 Details of Modified Harmony Search Optimization with
Flowchart

FIRST STEP:MHS method also consists of four parameters such as HMM,
HMRC, PAR, and X (variables) as in the normal HS method. In between them
HMRC and PAR are two fixed value parameters having values are 0.9 and
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0.1 respectively. Here the X variable is taken as six values (six units’ system)
and according to that HMM can be created which is denoted as a matrix
known as Harmony Memory Matrix (HMM) similar to the HS technique.
This can be changed as per the generalized d dimension space as explained
previously. X and HMM are the twoMatrices; where X represents as an initial
set of solution for the objective function, HMRC relates as a ratio denoting
whether the new child value or harmony is generated from the HMM Matrix
or randomly in between lower and upper boundary. Pitch Adjusting Rate
(PAR), is defined as the improvement of the solution by finding a nearby
area or global solution such as it never get captured in local optimum region
or solution.

SECOND STEP: For six unit’s system objective function consists of six
variables. So, the initial solution is stored in X (matrix) variables, whose
dimension is X10x6 (to form one to ten ranking data) which is formed initially
by taking random values in between each variable’s lower and upper bound-
ary. Then the Fitness Values (FV) are evaluated for the corresponding initial
solutions. Now inside the HMMmatrix these values are inserted according to
the FV in ascending order.

HMM will become HMM10X7 as shown below:

HMM =

⎡
⎢⎢⎢⎢⎣

X1
1 , X

1
2 , X

1
3 , X

1
4 , X

1
5 , X

1
6 , f

(
X1
)

X2
1 , X

2
2 , X

2
3 , X

2
4 , X

2
5 , X

2
6 , f

(
X2
)

..................................................
...................................................

X10
1 , X10

2 , X10
3 , X10

4 , X10
5 , X10

6 , f
(
X10

)

⎤
⎥⎥⎥⎥⎦ (2.11)

Where f
(
X1
)
< f

(
X2
)
< f

(
X3
)
............. < f

(
X10

)
.

THIRD STEP: Now having the HMM Matrix, the iteration begins with
the help of the next data generation or New Harmony creation as below
condition for MHS;

XK+1 = {
1. New data generation from HMM 1st row value with proportional
10% as (1-HMRC)

2. New data may be generated from HMM matrix 1st row value with
a small increment with sharing of 9% as HMRC*PAR

3. Otherwise New harmony data is generated randomly, each
variable’s lower and upper boundary region consisting of 81%data
as HMRC*(1-PAR)

}
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Now find the fitness value for this new harmony data selected as discussed
above and replace HMM by new harmony data and fitness value in the desired
position maintaining ascending order or ranking.

If in new f(XK+1)<f(X1), or the first fitness value of HMM, then

HMM_1st row=[x11 x12 x13 x14 x15 x16 f(x1)]

will be replaced by=[xTi
1 xTi

2 xTi
3 xTi

4 xTi
5 xTi

6 f(xTi)]

Similarly, if f(XK+1)< f(X2), then second row of the HMM will be
updated.

Figure 2.1 Flowchart of modified harmony searching optimization
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This iteration process will be continuing until 1st and 2nd row’s fitness
value of HMM are the same. When these two are equal, the iteration process
is stopped. The first row of HMM matrix indicates the best solution for the
objective function.

After 10000th iterations HMM matrix is given below:

HMM =

⎡
⎢⎢⎢⎢⎣
XT1

1 , XT1
2 , XT1

3 , XT1
4 , XT1

5 , XT1
6 , f

(
XT1

)
XT2

1 , XT2
2 , XT2

3 , XT2
4 , XT2

5 , XT2
6 , f

(
XT2

)
..................................................
...................................................

XT3
1 , XT3

2 , XT3
3 , XT3

4 , XT3
5 , XT3

6 , f
(
XT3

)

⎤
⎥⎥⎥⎥⎦ (2.12)

From this HMM matrix, it is clear that the data of the first row has been
updated on the T1

th iteration, the second row at T2
th iteration, and so on,

where
1 ≤ T1, T2, T3 ≤ 10000

FOURTH STEP: The main difference between HS and MHS methods is
the data selection procedure. In the normal HS method, the random data

Figure 2.2 Flowchart of MHS optimization in ELD requirement
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Table 2.1 (a) Six unit generating constants [1] and capacities

UNIT Pimin (MW) Pimax (MW) μi ($) θi ($/MW) δi ($/MW2)

1 100 500 240 7 0.0070

2 50 200 200 10 0.0095

3 80 300 220 8.5 0.0090

4 50 150 200 11 0.0090

5 50 200 220 10.5 0.0080

6 50 120 190 12 0.0075

(b) Loss coefficient matrices [1]

Bij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0017 0.0012 0.0007 −0.0001 −0.0005 −0.0002

0.0012 0.0014 0.0009 0.0001 −0.0006 −0.0001

0.0007 0.0009 0.0031 0.0000 −0.0010 −0.0006

−0.0001 0.0001 0.0000 0.0024 −0.0006 −0.0008

−0.0005 −0.0006 −0.0010 −0.0006 0.0129 −0.0002

−0.0002 −0.0001 −0.0006 −0.0008 −0.0002 0.0150

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B0i = 1e−03 ∗
[
−0.3908 −0.1297 0.7047 0.0591 0.2161 0.6635

]
B00 = 0.056

generation i.e. each variable’s lower and upper boundary is only 10%, and
most of the data is selected from the memory matrix i.e. 81% and the rest
of the data is chosen from the incremented or delta-shifted value of HMM
matrix 1st row. In the proposed MHS method, this new harmony generation is
being made as mentioned in the third step such that less memory dependence
occurs.

Profit calculation using MHS is mentioned below:

Profit/hr = 1000 × Tarif × (Pstdloss − Pmhsloss)+

65 × (Tgstd cos t − Tgmhs cos t) (2.13)

Here, the electricity tariff is taken as Rs. 7/kWh. Pstdloss, Pmhsloss

are standard loss and proposed method loss data in MW respectively and
Tgstd cos t, Tgmhs cos t are standard cost and proposed method cost data in USD
respectively (1 USD = Rs. 65). We have set a profit value in stopping criteria
as more than 5 USD. Execution time may change in MHS according to the
condition below:

If sum (kk)>=1276 && loss1<12.293 && f11<=15470.88
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If prof<=0

Display (‘losses are going on so continue to run once’);

Otherwise

Stop iteration & Result displayed

{ for six-unit system }
Economic load dispatch requirement using MHS techniques has been studied
initially for a sixunit system that includes six thermal units, forty-six trans-
mission path, and twenty-six buses. The load or consumer demand PD is 1263
MW. The generating constants and capacities of all thermal or coal units [1]
are mentioned in Table 2.1(a). The loss coefficient matrices Bij , B0i, and B00

with 100-MVA base value capacity are given in Table 2.1(b).

2.5 Hybrid Harmony Search Technique (HHS)

This method is mainly a combination of three methods, namely DE, PSO,
and HS methods. It is similar to the harmony search method, with only a few
changes in the new value updating inside or in the data generating loop. This
method can be implemented by following three loops as mentioned below: In
Loop1, the child generation is selected as per the harmony memory matrix
1st- row values or the rank one data which means the data generation is

Figure 2.3 New child generation in HHS optimization
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Table 2.2 Summary of HHS algorithm

Algorithm name Hybrid Harmony Search (HHS) Technique

1. Set Initial value of HMRC, PAR, X, hms

Child
generation

2. Loop start New data generation from HMM 1st row value
with proportional 10 percentage such as 100_(1-HMRC)

3. 2. child harmony={
a. DE [20] way => 2: hms(1;1) + F _ (hms(2; 1)-hms(3; 1)) if

rand(1; 1) <=0.1
b. PSO [21] way=> 2: else V1

new=rand (1,1)
*v10+C1*(max(hms(:1))-hms(2; 1))+C2(hms(1,1)- hms(2; 1))

data generated with consisting of (10+71)=81percentage such
as 100_HMRC*(1-PAR)

4. Otherwise, New data or child may be generated randomly,
with each variable’s lower and upper boundary region of 9
percentage such as (100-81-10) percentage

5. Stopping criteria
End

performed at 10 percent (1-HMRC) *100 of total loops data in the first loop
as in MHS method.

In Loop2, (1-PAR) *HMRC means 81 percentage data of the total loop,
which again consists of two subloops. In subloop1 where 10 percentage data
are generated as per the DE rule which is also known as loop2.a and another
(81-10) =71 percentage data of subloop2 are generated by using PSO concept
which is also known as loop2.b as mentioned in Table 2.2 and rest of the data
(100-81-10) = 9% of the total loop is being generated in between the search
space randomly. Here the search space means each variable’s upper and lower
boundary value.

2.6 Hybrid Harmony Search and Modified Harmony Search
Optimization Results

Case I: (Example with the six-unit system)

For a six-unit system, the total load demand is 1263 MW; losses are less than
12.98 MW by using the loss coefficient matrices. The Fitness Value or cost
of generation is taken in an iteration as FV≤15470 $/h [1]. The simulation
codes are written in MATLAB R2014a and executed in a core i5 6500T, 8-
GB RAM for both the proposed methods. The simulated results are given in
Table 2.3.
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Table 2.3 Best possible solution of six-unit system

ITEM (MW) HHS MHS HS PSO

P1 446.8189 443.1489 425.22 447.497

P2 173.234 171.6703 167.6 173.3221

P3 253.9324 241.6113 231.45 263.4745

P4 146.0897 163.0114 155.09 139.0594

P5 167.1325 168.643 173.74 165.4761

P6 88.0622 87.3535 122.56 87.128

PL+PD 1275.3 1275.4 1275.7 1276.01

PL 12.34 12.086 12.42 12.9584

FV ($/h) 15444 15458 15476 15450

Proposed HHS provides multi-objective performance in both losses as
well as cost. Though proposed MHS optimization provides more generating
cost value ($) but losses are minimized in a six-unit system. The Profit has
been calculated as mentioned in (2.13). This phenomenon occurs due to the
reduction of line losses. It will save approximately 882.951 (Rs/h). Table 2.3
represents the comparison of simulation data for six-unit system between
the proposed MHS, GA, and PSO. It is observed that total losses in the
transmission lines are minimum as compared to other conventional methods
[1] but generating cost ($/hr) is marginally higher. It also provides a good loss
minimization task though the cost is marginally higher given in Table 2.3,
Table 2.5, and Table 2.6. Figure 2.4 indicates convergence characteristics
of MHS considering 200 trials with same number of functional evaluations.
Average generation cost changes with a number of functional evaluations.

Case II: (Example to compare the execution time)

An example [22] has been considered for a three-unit system for a lossless
line, representing one unit (P3) in terms of fixed load demand and the other
two generating units. The aim is to optimize two units, P1 and P2. The pri-
mary aim of this case study is to compare the execution time of the proposed
MHSmethod with the existing optimization methods like DE and PSO so that
further study on multi-objective optimization can be carried out considering
line losses. The objective function of (P 1, P2) is given in (2.14), and the
boundary region is defined in (2.15). Three optimization techniques have been
applied to the objective function and the results are tabulated in Table 2.4.
It is observed from Table 2.4 that the increase in time of convergence with
an increase in functional evaluation is minimum in the case of MHS. After
getting the optimized values of P1 and P2 one can find P3 = (LD−P1−P2).
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Table 2.4 Time comparison of three methods

MHS P1 179.08 186.44 184.74 183.85

P2 46.74 45.51 44.82 45.67

FV 3483.1 3482.9 3482.9 3482.9

DE P1 183.96 183.96 183.96 183.96

P2 45.47 45.53 45.53 45.53

FV 3482.9 3482.9 3482.9 3482.9

PSO P1 183.96 183.96 183.96 183.96

P2 45.53 45.53 45.53 45.53

FV 3482.9 3482.9 3482.9 3482.9

No of Iterations /Functional
Evaluations

100 1000 10000 100000

MHS Time (seconds) 0.2112 0.2453 0.542 3.5669

DE Time (seconds) 0.3382 0.5911 3.133 28.579

PSO Time (seconds) 0.2694 1.2660 11.18 111.23

i.e. the fixed unit’s value of P3 = 70 MW (LD = 300 MW). Equation
(2.10) indicates that the proposed method is less dependent on Harmony
Memory than random data. Table 2.7 shows the improved performance in
both loss and cost minimization with a normal memory updating algorithm.
MHS has the ability to deal with both discrete as well as continuous types of
problems [23].

Objective function (Rs/hr)

= P1
2 + P2

2 + (300− P1 − P2)
2 + 8.663P1 + 10.04P2

+ 9.760 (300− P1 − P2) + 524.2 (2.14)

50 MW ≤ P1 ≤ 250 MW
5 MW ≤ P2 ≤ 150 MW

(2.15)

Case III:

From Table 2.7, it is clear that the proposed MHS optimization gives better
results to PSO and GA in cost and time as mentioned in [1]. The blue-colored
data indicates that both loss and cost are minimized at the same time by using
the RANKSUM method though the ZDT test has not been performed for
the proposed method. Normal HS method data are mentioned in parentheses.
The CPU time required to reach a global solution with respect to a number of
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Table 2.5 Fifteen unit generating constants and capacities [1] (reference data)

UNIT Pi_min (MW) Pi_max (MW) μi ($) θi ($/MW) δi ($/MW2)

1 150.0 455.0 671.0 10.10 0.0002990
2 150.0 455.0 574.0 10.20 0.0001830
3 20.0 130.0 374.0 8.80 0.0011260
4 20.0 130.0 374.0 8.80 0.0011260
5 150.0 470.0 461.0 10.40 0.0002050
6 135.0 460.0 630.0 10.10 0.0003010
7 135.0 465.0 548.0 9.80 0.0003640
8 60.0 300.0 227.0 11.20 0.0003380
9 25.0 162.0 173.0 11.20 0.0008070
10 25.0 160.0 175.0 10.70 0.0012030
11 20.0 80.0 186.0 10.20 0.0035860
12 20.0 80.0 230.0 9.90 0.0055130
13 25.0 85.0 225.0 13.10 0.0003710
14 15.0 55.0 309.0 12.10 0.0019290
15 15.0 55.0 323.0 12.40 0.0044470

Table 2.6 Optimal solution of 15 unit system

ITEM(MW) MHS PSO GA

P1 411.0747 439.1162 415.3108

P2 424.2158 407.9727 359.7206

P3 125.0798 119.6324 104.4250

P4 86.4588 129.9925 74.9853

P5 347.7906 151.0681 380.2844

P6 450.6439 459.9978 426.7902

P7 438.4679 425.5601 341.3164

P8 92.6657 98.5699 124.7867

P9 44.0810 113.4936 133.1445

P10 65.9600 101.1142 89.2567

P11 20.2027 33.9116 60.0567

P12 63.7005 79.9583 49.9998

P13 38.2062 25.0042 38.7713

P14 19.3462 41.4140 41.9425

P15 35.1166 35.6140 22.6445

PL+PD 2663.01 2662.4 2668.4

PL 32.2758 32.4306 38.2633

FV ($/h) 32836 32858 33113
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Table 2.7 Cost, losses and execution time changes with functional evaluation for different
units
Unit k/iteration (× 103)

ITEM

40 70 90

6 Unit FV ($/h)
PL(MW)
Execution
Time (s)
CPU
Time/iteration (s)

15455 (15507)
11.9812 (12.3)
7.53 (0.578)
0.0056 (0.0004)

15458 (15486)
12.518 (11.54)
5.21 (1.01)
0.0045 (0.0008)

15450 (15465)
11.804 (12.22)
21.168 (0.708)
0.01 (0.0003)

15 Unit FV ($/h)
PL(MW)
Execution
Time(s)
CPU
Time/iteration (s)

32874 (33082)
31.07 (31.99)
22.8 (18.19)
0.0106 (0.008)

32844 (33048)
31.37 (31.54)
6.77 (3.25)
0.0072 (0.0028)

32860 (33018)
32.08 (32.107)
8.006 (2.746)
0.0033 (0.001)

20 Unit FV ($/h)
PL(MW)
Execution
Time (s)
CPU
Time/iteration (s)

71028 (73991)
68.2023 (69.5)
24.05 (3.83)
0.0103 (0.0015)

73869 (73020)
69.8906(68.744)
8.41 (1.12)
0.0144 (0.0048)

73697 (73551)
70.648 (68.45)
10.65 (8.28)
0.0142 (0.011)

40 Unit FV ($/h
Execution
Time (s)
CPU
Time/iteration (s)

123640
(127890)
17.71 (0.558)
0.059 (0.0001)

125100(139110)
19.13 (4.64)
0.0547 (0.013)

125720
(132080)
13.37 (3.79)
0.0594 (0.0002)

functional evaluation (k) in the case of six-unit, fifteen-unit, twenty-unit, and
forty-unit systems are given in Figure 2.5. Figure 2.6 shows the midpoint or
average CPU time needed to reach the global solution with respect to various
unit systems.

Novelty: Proposed MHS is faster than DE and PSO and even less dependent
on Harmony Memory as mentioned in Table 2.3 [24]. The Hybrid Harmony
Search technique (HHS) provides a multi-objective performance in the six-
unit system studied.
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Figure 2.4 Convergence properties using the MHS method for all units (lower to higher as
6 to 40 units)

Figure 2.5 CPU time to reach solutions with a number of functional evaluations in all units

Figure 2.6 CPU time to reach solutions with number of functional evaluations for all units
in ascending order (6,15,20,40 units)
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2.7 Conclusion

In this chapter, MHS optimization technique for getting the global solu-
tion of ELD requirement in a power system analysis along with generator
parameters (both inequality and equality constraints) has been incorporated.
The MHS algorithm has better features in terms of extreme aspect solution,
time to convergence, fitness value convergence, and computational efficiency.
Many functions like thermal unit parameter and loss function are taken into
account for practical generation operation in the proposed MHS method. The
proposed method gives a better solution in respect of high computational
efficiency, convergence property, and best solution. It is observed that in
the fifteen-unit system, the proposed method provides multi-objective perfor-
mance (both loss minimization and cost minimization) in comparison to PSO
and GA algorithms (using the RANKSUM approach). In twenty-unit & forty-
unit systems the proposed method has a better result as compared to PSO and
GA. Hybrid Harmony Search provides a good result in multi-objective. The
HHS method is left open to work in the case of fifteen, twenty- and forty-unit
systems in the future.
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Abstract

The usage of renewable energy to generate electricity is growing day by
day and solar and wind energy is seen as the most viable electrification
options. In comparison to a single renewable source, hybrid electric systems
have recently gained a lot of attention due to their various advantages.
Different types of energy generating systems such as generators, electrical
energy storage systems, and renewable energy sources are combined in hybrid
systems. This technology appears to be the most viable option for off-grid
power generation. Battery energy storage is required for this hybrid system
in order to store excess energy generated by renewable resources and provide
it during times of scarcity. Many battery technologies are developing these
days with superior features to traditional batteries, which may be compared
in terms of reaction time, deep cycle discharge, efficiency, lifetime, and so on.
The goal of this study is to use HOMER Pro software to build and model a
Hybrid Energy System (HES) that includes Photovoltaic (PV), wind energy,
and a diesel generator. Secondly, several battery types such as Lead Acid (LA)
battery, Lithium Ion (LI) battery, Li-ion Nickel-Manganese-Cobalt Oxide bat-
tery (LiNiMnCoO2), Zinc Bromine Flow Battery, and Nickel Iron Battery are
used to design HES. Finally, the Hybrid Renewable Energy System (HRES)
is compared in terms of system size, economy, technical performance, and
environmental stability utilizing various battery technologies.
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Keywords: HOMER software, Hybrid Renewable Energy System (HRES),
lead acid (LA) battery lithium ion (LI) battery, Li-ion Nickel-Manganese-
Cobalt Oxide battery (LiNiMnCoO2), Nickel Iron battery, State of charge,
Zinc Bromine flow battery.

3.1 Introduction

With a total installed capacity of 374.2 GW as of 31 November 2020, India
is the world’s third-biggest producer and user of electricity [1]. In India, the
use of conventional energy sources for power generation is widespread, but
this has resulted in a slew of environmental concerns, necessitating a shift
to renewable energy sources [2, 3]. Renewable energy, which includes major
hydropower facilities, accounts for about 36.17% of India’s total installed
capacity. Solar and wind energy provide the most among all renewable energy
sources. In 2019, wind energy will contribute approximately 37,505 MW,
while solar energy will contribute around 33,712 MW. Madhya Pradesh is
the state with the highest developed renewable energy sources, with a total
installed power generating capacity of 24950.60 MW as of 31 July 2020,
with an installed solar capacity of about 2237.48 MW and an installed wind
capacity of around 2519.890 MW in 2019. As a result, solar energy is mostly
employed to generate power for hybrid system design. However, owing to
the unpredictability of solar energy and the fluctuation of cloud cover, sole
reliance on solar energy is not a viable option. As a result, wind energy is
employed to generate power in addition to solar energy. When both wind and
solar systems are not producing energy, hybrid systems use batteries and/or
a diesel-powered engine generator to generate power [4]. If the batteries
aren’t large enough, the engine generator is utilized to generate power and
recharge the batteries so they may be used again. The usage of a diesel
generator can help to minimize the size of the system’s other components.
Lead Acid (LA), Lithium Ion (LI), Li-ion Nickel-Manganese-Cobalt Oxide
battery (LiNiMnCoO2), nickel-iron, and Zinc Bromine flow battery (FB) are
the most common battery types used in renewable energy systems.

3.2 Battery Energy Storage Systems (BESS)

Battery Energy Storage Systems (BESS) are very essential component of
HRES since they allow storing extra power and using it when needed [5].
BESS consists of a large number of electrochemical cells connected in
series or parallel to produce electricity at a particular capacity and voltage.
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Because the energy held in batteries is in the form of electrochemical
energy, batteries are prone to chemical reactions and necessitating frequent
maintenance. However, with the advent of rechargeable batteries and techno-
logical advancements, the amount of battery care has decreased. This chapter
presents a study of integrating battery storage to a Wind-PV-Diesel off-grid
HRES. Batteries that are used for the analysis are Lithium Ion (LI) bat-
teries, Flow Batteries (FB), Li-ion Nickel-Manganese-Cobalt Oxide battery
(LiNiMnCoO2), Zinc Bromine flow battery, and Nickel Iron Battery. The
most popular energy- storing technique is the Electrochemical Energy Stor-
age System (EcSS), which uses an electrolyte as the active material for gener-
ating and storing DC power [6]. EcSS is available in energy densities ranging
from 10 kW/ kilograms to 13 kW/ kg, with an efficiency of 70-80% [7, 8].

One of the earliest rechargeable batteries with a quick reaction time is
the lead-acid battery. From 1 Ah to 1000 Ah, it provides energy storage with
an excellent cost-performance ratio and a low daily self-discharge rate (0.3
percent) [9]. Because of their safe operation, temperature tolerance, high
cycle efficiency of 60-90 percent, minimal maintenance, and low capital
costs, they are utilized in a variety of applications. But the disadvantage of
lead acid battery is that it has a low energy density of 50-90Wh/L and it is
heavy in weight. In addition to this, it has a low cycle life of around 2000
cycles. It requires periodic water maintenance and it is toxic in nature due to
the presence of lead.

In Lithium-ion Battery, each cell in a Li-ion battery has a voltage of 4
V and is cylindrical in shape [10]. Because of its high energy density (about
6 to 8 times that of flooded (vented) lead-acid batteries in terms of per unit
volume (75-200 Wh/kg), Li-ion batteries are widely employed in a variety
of commercial applications. It has a lightweight, a long life cycle, a steady
cycle, quick charge/discharge, a low self-discharge rate (less than 8% per
month), and a long life cycle. It also features a fast response time, measured
in milliseconds, as well as a high efficiency.

Li-ion Nickel-Manganese-Cobalt Oxide battery (LiNiMnCoO2), lithium
cobalt oxide (LiCoO2), lithium titanate (Li4Ti5O12), lithium manganese
oxide (LiMn2O2), and lithium iron phosphate are the different types of
Li-ion batteries (LiFePO4). Li-ion Nickel-Manganese-Cobalt Oxide battery
(LiNiMnCoO2) is a successful lithium-ion system with a Nickel-Manganese-
Cobalt (NMC) cathode combination. The Li-ion Nickel-Manganese-Cobalt
Oxide battery (LiNiMnCoO2) of TeslaPW2 is considered in this chapter.
It has a capacity of about 2,800mAh and is capable of delivering 4 to 5
amps. Li-ion Nickel-Manganese-Cobalt Oxide battery (LiNiMnCoO2) NMC
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has good performance, the lowest self-heating rate, and good specific energy
(90–120 Wh/Kg) that’s why it is nowadays preferred for the electric vehicles,
medical applications, E-bikes, etc [11].

RedFlow Limited in Australia created the ZCell battery, a zinc-bromine
flow battery that is a form of a hybrid flow battery. It has a 15.7–39 Wh/L
energy density, a charge/discharge efficiency of 75.9%, cycle durability of
over 2,000 cycles, and a nominal cell voltage of 1.8 V. Two tanks are filled
with zinc bromide solution and kept in this battery. The solutions are pumped
through a reactor stack and back into the tanks when the battery is charged
or discharged. The electrolyte for positive electrode reactions is kept in one
tank, while the electrolyte for negative electrode reactions is kept in the other.
On a daily basis, the zinc–bromine battery has a high energy density and a
100 percent depth of discharge capability. But every few days, it is needed to
be fully discharged [12].

In nickel–iron battery, potassium hydroxide is used as an electrolyte. It
has iron on its negative plate and nickel (III) oxide-hydroxide positive plates.
Here for the study Nickel iron battery of Edison of 200Ah is considered. It
is very tolerant to over-discharge, overcharge, and short-circuiting and has a
longer life span as it can last for more than 20 years that’s why it is used
in backup situations. But this battery is replaced by other more advanced
rechargeable battery for various applications due to its poor charge retention,
high cost of manufacture, and low specific energy.

3.3 Introduction to HOMER Pro Software

HOMER is an acronym for Hybrid Optimization Model for Electric Renew-
ables (HOMER). The Midwest Research Institute (MRI) owns the rights to
it, which was produced by the US National Renewable Energy Laboratory
(NREL). HOMER primarily carries out three data functions: simulation,
optimization, and sensitivity analysis.

HOMER can readily simulate a broad range of power system designs,
including solar PV, wind turbines, Diesel Generators (DG), and battery
energy storage systems. It may be used in on-grid and off-grid power systems.
HOMER simulates the computations for the system configuration in question.
In the simulation process, HOMER serves primarily two functions. It first
determines the viability of the proposed system, and then it calculates the
entire cost of installation, maintenance, fuel, and operation during the sys-
tem’s lifespan [13]. Many other applications of HOMER software to analyze
various hybrid systems are described in [14–17].
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The original grid search method and the proprietary derivative-free tech-
nique are utilized in HOMER for optimization. If each sensitivity variable
is defined as an input, the optimization procedure in HOMER is repeated.
To begin, first, choose a specific geographical place by entering its latitude
and longitude. Following the specification of the site, the addition of load is
required (residential, industrial, etc.). Then, after adding various components
that are necessary for system design, run the simulation to obtain the best
results. Figure 3.1 shows the flow chart for optimization in Homer Pro
software.

Figure 3.1 Flow chart for optimization in Homer Pro software



66 Techno-Economic Assessment and Choice of Battery for Hybrid Energy

Figure 3.2 Setting the geographical location

3.4 Procedure

The procedure for the designing the system includes the following steps:

Step 1: Select the geographical location by entering the latitude and longitude
of that area or simply entering the location name in HOMER software [18,
19]. So considering both solar and wind energy resources a location specified
in HOMER is Hukumchand Marg, Itawaria Bazaar, Maharaja Tukoji Rao
Holker Cloth Market, Indore, Madhya Pradesh 452002, India (22◦43.0’N,
75◦50.8’E). Figure 3.2 shows the selected location in the HOMER software.

Step 2: Add specific load: For the design of the system the average energy is
165.59 kWh/day, the average load is 6.9 kW and the peak load is 23.31 kW.
Figure 3.3 shows the daily and annual load profile of the selected location.

Step 3: Add various components for the system such as solar PV, wind
turbine, diesel generator, system convertor, and batteries [19, 20].

3.4.1 Solar Photovoltaic System

A generic flat plate solar PV system is assumed to be 1 kW with a lifespan
of 25 years and an 80 percent derating factor. It has a 17 percent efficiency
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Figure 3.3 Specific load of the selected site

Figure 3.4 Average daily temperature (in degrees Celsius)

rating. Solar PV has a capital cost of 30,000 and an operating cost of
30,000. On 10 December 2020, data are taken from NASA Satellite Surface
Meteorology and Solar Energy department provided average solar energy
potential in the Indore Madhya Pradesh region, which reveals that the annual
average solar radiation is 5.18 kWh/m2/Day. Figure 3.4 shows the average
daily temperature annually at the selected location.

3.4.2 Wind Turbine

A generic 10 kW wind turbine with a 20-year lifespan and a hub height of
24 m is considered with the capital cost of 50,000, the operational cost of
50,000, and a replacement cost of 500. On 10 December 2020 data taken

from NASA Satellite Surface Meteorology and Solar Energy department
provided average data on wind energy potential in the IndoreMadhya Pradesh
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Figure 3.5 Average wind speed (m/s)

area, which indicates an annual average wind speed of 3.07 m/sec. Figure 3.5
shows the average wind speed annually at the selected location.

3.4.3 Battery Energy Storage System

A battery energy storage system is needed to store excess energy generated
by renewable resources and supply it when electricity is needed. Table 3.1
shows the specifications of different batteries used for the designing of HRES
in HOMER Pro software.

3.4.4 Diesel Generator

For the diesel generator, an Autosize Genset is chosen. The Autosize Genset
will automatically set its size to supply the load requirement when needed.

Table 3.1 Specifications of various batteries
Type of battery and
their various
Parameters

Li ion
battery

Lead
acid
battery

Zinc Bromine
Flow battery

LiNiMnCoO2

Battery
Nickel
Iron

Battery
Nominal voltage (V) 6 12 48 220 1.2

Nominal capacity (Ah) 167 83.4 207 60 200
Round Trip
efficiency (%)

90 80 75 89 85

Maximum charge
current (A)

167 16.7 50 31.8 100

Maximum Discharge
current (A)

500 24.3 100 31.8 100
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Table 3.2 Specific diesel properties
Lower Heating Value (MJ/kg) 43.20
Carbon Content (%) 88.00
Density (kg/m3) 820
Sulphur Content (%) 0.4
Fuel price rupees/L 73.56

Table 3.3 Emissions
CO (g/L fuel) 16.5
Unburned HC(g/L fuel) 0.72
Particulates (g/L fuel) 0.1
Nox(g/L fuel) 15.5
Unburned HC (g/L fuel) 0.72

The various specific diesel properties and associated emissions are given in
Table 3.2 and Table 3.3 respectively.

Step 4: Insert the specified site’s average wind speed (m/s) and Global
Horizontal Irradiation (GHI) resource. GHI is used to determine solar PV
output, which is primarily a total of the beam, ground reflected, and diffuses
irradiance.

Step 5: Calculate the optimized results. For the overall analysis, six system
configurations are designed with the same components but with different bat-
teries (lead-acid battery, Lithium Ion (LI) battery, Li-ion Nickel-Manganese-
Cobalt Oxide battery (LiNiMnCoO2), Zinc Bromine flow battery, Nickel Iron
Battery, and then all systems are compared.

Here, the cost summary of the system consisting of different batteries
are considered in which there is the calculation for net present cost, capital
cost, replacement cost, operating cost, cash flow and cost of energy. In order
to know the technical performances of the different batteries, their State
of Charge (SoC), a number of batteries required, string size, autonomy,
losses, energy in, energy out, annual throughput, usable nominal capacity,
and lifetime throughput are calculated. Finally, the emission of the overall
system is also considered to compare different kinds of batteries used for the
system design.

3.5 Modelling of the HRES with Different kinds of Batteries

Figure 3.6 to 3.10 shows the various models designed in HOMER PRO
software using different kinds of batteries such as lead acid battery, Lithium
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Figure 3.6 HRES with Lithium Ion battery

Figure 3.7 HRES with Lead acid battery

Figure 3.8 HRES with LiNiMnCoO2 battery

Ion (LI) battery,Li ion Li-ion Nickel-Manganese-Cobalt Oxide battery
(LiNiMnCoO2), Zinc Bromine flow battery, Nickel Iron Battery.
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Figure 3.9 HRES with Zinc Bromine battery

Figure 3.10 HRES with Nickel Iron battery

3.6 System Metrics

Different sizes of solar PV, wind turbine, diesel generator, system converter,
and batteries are used in each HRES, using the lead acid battery, Lithium
Ion (LI) battery, Zinc Bromine Flow Battery (FB), Li-ion Nickel-Manganese-
Cobalt Oxide battery and Nickel Iron battery. According to the economic
metrics and technical performance metrics, the most suitable configuration is
chosen and proposed for installation.

3.6.1 Economic Metrics

The total cost of a system with different batteries is indicated in Table 3.4
below. This comprises the system’s capital cost, replacement cost, operations
and maintenance cost, fuel cost, salvage value, and overall Net Present Cost
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(NPC). Total NPC, which ranks primarily the planned system configuration
and estimates the total yearly cost of energy also [21, 22], is the most
important economic output in HOMER. Total NPC is the sum of all expenses
associated with the installation and operation of all components during the
project’s lifetime, minus the present value of any revenues earned during that
period. A formula may be used to determine the total NPC, as illustrated
below:

Total NPC =
∑

tT Ccap,t + Co&M,t + Creplace,t + Cfuel,t + P salvage,t

(3.1)
The capital cost is incurred in the first year of the project, or year zero.

The yearly Operating and Maintenance (O&M) and fuel expenses occur at
the end of each year, whereas replacement costs occur every 3.52 years.

Salvage value in HOMER refers to the value left in a component of
the power system at the conclusion of the project’s lifespan. In HOMER,
components depreciation is considered to be linear, which implies that a
component’s salvage value is precisely proportionate to its remaining life.
The salvage value is calculated by the replacement cost rather than the initial
capital cost. HOMER uses the following calculation to compute the salvage
value:

S = Crep. Rrem/Rcomp (3.2)

Rrem = Rcom − (Rproj −Rrep) (3.3)

where

Crep is the cost of replacement ()
Rcomp stands for component lifespan (yr)
Rrem is the component’s remaining life at the end of the project once in a
lifetime (yr)
Rrep denotes the period of the replacement cost.
Rproj denotes the duration of a project (yr)

The total NPC of the HRES with Nickel Iron Battery and Lead Acid
Battery is about � 6, 05,546.5 and � 4, 38,525.0 correspondingly, as shown in
Table 3.4. The HRES with Lithium Ion Battery has the lowest overall cost of
about � 3, 37,081.8, followed by the HRES with LiNiMnCoO2 and Z Cell,
which have total NPCs of around � 3,65,816.1 and � 3,81,816.1 respectively.
In terms of overall NPC, the Lithium Ion battery is the most cost-effective
option for HRES. As a result, in terms of the total cost, the Lithium Ion battery
is favored above the other batteries.
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Table 3.4 Total net present cost (NPC) of HRES with different kinds of the batteries
System with
different
types of
batteries

Capital
cost(�)

Replacement
cost (�)

O&M
cost
(�)

Fuel
cost(�)

Salvage
Value
(�)

Total
NPC(�)

Li ion
battery

2,30,589.9 54,770.7 34,657.0 69,998.7 −16,934 3,37,081.8

Lead acid
battery

1,69,462.5 1,03,9750 41,766.2 1,34,583.2 −11,262 4,38,525.0

Zinc
Bromine
Flow battery

2,48,749.2 63,158.9 25,318.1 65,766.9 −21,294 3,81,698.7

LiNiMnCoO2

battery
1,54,886.1 53,356.9 24,479.6 1,47,097.9 −14,004 3,65,816.1

Nickel Iron
Battery

67,272.80 1,09,991.5 94,410.2 3,44,813.1 −10,941 6,05,546.5

3.6.2 Technical Performance of the Overall System

In order to compare the HRES in terms of technical performance, monthly
average electricity, contributions of solar PV, wind turbine, and diesel gener-
ator are considered shown in further sections. The monthly average electricity
production is given in Table 3.5. The entire electricity produced annually
by solar PV, wind turbines, and diesel generators is taken into account. The
quantity of power generated in excess during the year, given as a proportion
of total electrical output, is referred to as excess electricity. The capacity and
contribution of the diesel generator for the HRES with LiNiMnCoO2 battery
and Nickel Iron Battery is quite high, more than 50%, with very little contri-
bution of renewable energy, owing to the total cost of the system fuel expense
increasing. Furthermore, it will also lead to environmental degradation with
the release of harmful emissions [23, 24].

The renewable fraction is mainly the electricity generated by renewable
resources, which is 0 for the HRES with Nickel Iron Battery, whereas renew-
able fraction is highest for the HRES with Zinc Bromine Flow battery around
76.6% followed by HRES with Li-Ion battery with a renewable fraction of
70.2%.

3.6.3 Contribution of Solar PV

Table 3.6 shows the overall capacity and production by solar PV for HRES
with different batteries. In HOMER, the output of the solar PV is calculated
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Table 3.5 Monthly average electricity production
System with
different
types of
batteries

Li ion
battery

Lead
acid
battery

Zinc
Bromine
Flow
battery

LiNiMnCoO2

battery
Nickel Iron
Battery

Solar PV
(kWh/yr)

53,624
(70.5%)

41,202
(55%)

63,964
(79.9%)

31,491
(43.4%)

1,393
(1.89%)

Diesel
Generator
(kWh/yr)

18,018
(23.7%)

32,446
(43.3%)

14,151
(17.7%)

38,569
(53.2%)

68,031
(92.2)

Wind
Turbine
(kWh/yr)

4,398
(5.78%)

1,264
(1.69%)

1,963
(2.45%)

2,470
(3.41%)

4,398
(5.96%)

Excess
electricity
(kWh/yr)

9,668
(12.7%)

7,872
(10.5%)

10,233
(12.8%)

4,258
(5.87%)

13,016
(17.6)

Maximum
renewable
Penetration

1,403 1,137 1,681 898 351

Table 3.6 Solar PV output
System with
different types of
batteries

Li ion
battery

Lead
acid
battery

Zinc
Bromine
Flow
battery

LiNiMnCoO2

battery
Nickel Iron
Battery

Rated Capacity(kW) 29.2 25.2 37.4 19.8 0.774
Mean Output(kW) 6.12 4.7 7.3 3.59 0.159
Capacity factor (%) 20.9 18.7 19.5 18.2 20.6
Total Production
(kWh/yr)

53,624 41,202 63,964 31,491 1,393

PV penetration (%) 88.7 68.2 106 52.1 2.31
Hours of operation
(hrs. /yr)

4,370 4,404 4,365 4,358 4,403

by the following equation:

PPV = Y PV fPV (Gt/Gt, STC)[1 + αp(T c − T c, STC)] (3.4)

where

• PV’s rated capacity is denoted by YPV (kW)
• The PV derating factor is FPV (%)
• The incident solar radiation on the PV array (kW/m2) is denoted by Gt
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• The incident solar radiation at standard test conditions (1 kW/m2) is
denoted by G t,STC

• The temperature coefficient of power (% /◦C) is denoted by αp

• Tc is the current temperature of the PV cell (in ◦C).
• The temperature of the PV cell under normal test circumstances (25 ◦C)
is Tc,STC

Total solar PV production is highest for the HRES with Zinc Bromine
flow battery and Li-Ion battery at approximately 63,964 kWh/yr and lowest
for the HRES with Nickel Iron Battery at around 53,624 kWh/yr PV penetra-
tion is expressed as a proportion of total peak power generated by PV to peak
load apparent power, given as a percentage.

3.6.4 Contribution of Wind Turbine and Diesel Generator

The capacity and total production of the wind turbine and diesel generator
utilized for HRES with different batteries are presented in Table 3.7 and
Table 3.8. Generators used in system design may be dispatched in HOMER,
which means the system can switch them on and off as needed. When there
is insufficient energy to provide the load, a dispatch strategy is utilized to
control the operation of a generator as well as the storage tank. The wind
turbine has a rated capacity of 10 kW HRES. The wind turbine’s capacity
factor is the ratio of average power production to maximum power capacity.
The output of a wind turbine is determined by air density, which is computed
in HOMER using the following equation:

PWTG = (ρ/ρo) PWTG, STP (3.5)

Table 3.7 Wind turbine output
System with
different types
of batteries

Li ion
battery

Lead
acid
battery

Zinc
Bromine
Flow
battery

LiNiMnCoO2

battery
Nickel Iron
Battery

Rated capacity(kW) 10 10 10 10 10
Mean output(kW) 0.502 0.144 0.224 0.282 0.502
Capacity factor (%) 5.02 1.44 2.24 2.82 5.02
Total production
(kWh/yr)

4,398 1,264 1,963 2,470 4,398

Wind penetration
(%)

7.28 2.09 3.25 4.09 7.28

Hours of operation
(hrs/yr)

5,433 3,403 4,156 4,659 5,433

.
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Table 3.8 Contribution of diesel generator
System with
different types
of batteries

Li ion
battery

Lead
acid
battery

Zinc
Bromine
Flow

battery

LiNiMnCoO2

Battery
Nickel
Iron

Battery

Electrical
Production
(kWh/yr)

18,018 32,446 14,151 38,569 68,031

Mean Electrical
output (kW)

22.4 15.8 10.2 25.2 7.83

Fuel consumption
(L)

5,415 10,411 5,087 11,379 26,673

Mean electrical
Efficiency (%)

33.8 31.7 28.3 34.4 25.9

Hours of operation
(hrs/yr)

806 2,050 1,390 1,533 8,692

Operational life (yr) 18.6 7.32 10.8 9.78 1.73
Capacity factor (%) 7.91 14.2 6.21 16.9 29.9

where

• The power output of a wind turbine is measured in kW and is referred to
as PWTG.

• Wind turbine power output in kW at standard temperature and pressure
is given as PWTG, STP

• ρ is the actual air density in kilograms per cubic meter.
• ρo is the density of air at standard temperature and pressure, i.e.
1.225 kg/m3.

3.6.5 Technical Specification of Different Batteries Used in
HRES

To evaluate different batteries, a variety of parameters must be examined such
as State of Charge (SoC), autonomy, capacity, and so on. Table 3.9 compares
the number of batteries, string size, autonomy, nominal capacity, and use-
able nominal capacity, energy in, energy out, losses, yearly throughput, and
lifetime throughput. The number of batteries linked in series determines the
string size. The capacity of the storage bank divided by the average electri-
cal demand yields autonomy (which is measured in hours) [25]. HOMER
calculates the storage bank autonomy using the following equation:

Abatt = N battV nomQnom(1− qmin/100)(24h/d)/(Lprim(1000Wh/kWh))
(3.6)
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Table 3.9 Technical performances of batteries used in HRES
System with
different types
of batteries

Li ion
battery

Lead
acid
Battery

Zinc
Bromine
Flow

battery

LiNiMnCoO2

battery
Nickel
Iron

Battery

Quantity required 126 88 10 4 10
String size 1 1 1 1 1

Autonomy(hr.) 14.6 7.66 14.4 7.65 0.313
Nominal

capacity(kWh)
126 88.1 99.3 52.8 2.4

Usable nominal
capacity(kWh)

101 52.8 99.3 52.8 2.16

Expected life(yr) 14.8 4.18 16.3 10 8.61
Energy In 26,911 18,833 28,211 28,422 1,385
Energy out 24,284 15,072 21,239 25,304 1,178

Losses (kWh/yr) 2,695 3,767 7,065 3,127 208
Annual

throughput
(kWh/yr)

25,598 16,851 24,525 26,823 1,278

Lifetime
throughput(kWh)

3,78,000 70,400 4,00,000 2,68,226 1,10,000

where

• The number of batteries in the storage bank is denoted by Nbatt.
• V nom is a single storage’s nominal voltage [V]
• Qnom is single storage’s nominal capacity [Ah]
• qmin is the storage bank’s minimum state of charge [%]
• Lprime is the primary load average [kWh/d]

The number of batteries required for HRES with Li-ion battery is around
126, followed by HRES with lead acid battery, as indicated in Table 3.9. A
Nickel Iron battery has a minimum autonomy of 0.313 hours. The autonomy
of the Lithium Ion and Zinc Bromine Flow batteries is nearly identical, at 14.6
hours and 14.4 hours, respectively. The autonomy of the lead acid battery and
the LiNiMnCoO2 battery is similar, at roughly 7.66 hours and 7.65 hours,
respectively.

3.7 State of Charge of Battery

The battery’s minimum state of charge is the lowest level of charge at which
the storage bank cannot be drained. Many rechargeable batteries cannot
be fully drained since this might cause irreversible harm to the battery.
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Figure 3.11 State of Charge of different batteries

To minimize any damage to the storage bank owing to excessive discharge,
the minimum state of charge is generally maintained at 30–50 percent
[26, 27].

The graph in Figure 3.11 shows the State of Charge of different batteries
such as Lead acid (LA) battery, lithium ion (LI) battery, Li-ion Nickel-
Manganese-Cobalt Oxide battery (LiNiMnCoO2), Zinc Bromine flow battery,
Nickel Iron Battery used in HRES for 24 hours.

3.8 Emissions through a Different System with Different
Batteries

The environmental hazards associated with the HRES are emissions from
the diesel generator due to the use of diesel as a fuel and, through the
use and disposal of batteries. Carbon dioxide, carbon monoxide, unburned
hydrocarbons particulate matter, sulphur dioxide, and nitrogen oxides are
some of the contaminants that HOMER calculates emissions for. Table 3.10
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Table 3.10 Emissions through the HRES with different batteries
System with
different
types

of batteries

Li ion
battery

Lead
acid
battery

Zinc
Bromine
Flow

battery

LiNiMnCoO2

battery
Nickel
Iron

Battery

Carbon
Dioxide
(kg/yr)

14,174 27,251 13,317 29,785 69,819

Carbon
Monoxide
(kg/yr)

89.3 172 83.9 188 440

Unburned
Hydrocarbons

(kg/yr)

3.90 7.50 3.66 8.19 19.2

Particulate
Matter
(kg/yr)

0.541 1.04 0.509 1.14 2.67

Sulfur
Dioxide
(kg/yr)

34.7 66.7 32.6 72.9 171

Nitrogen
Oxides
(kg/yr)

83.9 161 78.9 176 413

presents the emission detail through the HRES with different batteries. Diesel
generators are responsible for a huge spike in pollution due to the increased
amount of PM2.5 and PM10 by 30% and they are also constant emitters of
CO2. Similarly, batteries are also harmful to the environment because of their
disposal. Lead acid batteries used for various applications pose a threat due to
the presence of lead, which is dangerous for health. Now about 99% of lead
acid batteries are recyclable. For Li-ion batteries, lithium extraction leads to
air and soil contamination. In the Zinc Bromine Flow battery, very little free
bromine is present but, bromine is dissolved in the aqueous electrolyte, and
liquid or gaseous bromine is hazardous.

HRES with Nickel Iron Battery, and LiNiMnCoO2 requires a large
capacity of diesel generator, thus releasing a large amount of emissions as
compared to other systems. For example, carbon dioxide from the system
consisting of LiNiMnCoO2 is 29,785 Kg/yr and from that consisting Nickel
Iron Battery is 69,819 Kg/yr. The system with a Zinc Bromine Flow battery
releases fewer amounts of emissions as compared to other systems. Emissions
released by the Li-ion battery are also comparable with a Zinc Bromine
battery.
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3.9 Conclusions

The aim of this chapter is to accomplish three major goals, firstly to design
an off-grid HRES using a PV-wind diesel generator with different types
of batteries which are used to supply electricity whenever it is needed
and the system is modeled and simulated with the help of HOMER Pro
software. Secondly, several battery types such as lead acid (LA) battery,
lithium ion (Li-ion) battery, Li-ion Nickel-Manganese-Cobalt Oxide battery
(LiNiMnCoO2), Zinc Bromine flow battery, and Nickel Iron Battery are used
to test the developed model. Finally, the HRES is compared in terms of
system size, economy, technical performance, and environmental stability
utilizing different battery technologies. Amongst all the battery types used
in HRES, the Li-ion battery is highly recommended. Considering the overall
cost of the system, the HRES with this battery offers significantly lesser
costs as compared to other batteries. The total NPC of HRES with a Li-
ion battery is � 3,37,081.85. The HRES with Li-ion battery configuration
offers very compact design as solar PV of 29.2 kW, wind turbine of 10 kW
is used.

On Comparing the State of charge of the different batteries, it is can be
seen that Li-ion battery has SoC of 80-100% of the maximum capacity, for
Lead acid battery it is between 40-90% of the maximum capacity and SoC
of other batteries decreases to 5-10% of the maximum capacity which is not
desirable. It is desirable for any battery to set SoC of 30-50% in order to avoid
damage to the battery. Now, considering the environmental impacts, HRES
with Li-ion battery emits less amount of pollutants mainly carbon dioxide of
14,174 kg/yr. Although emissions through the Zinc Bromine flow battery is
almost equal to the HRES with Li-ion battery, but it cannot be considered
because of its technical performance such as SoC which in the case of Zinc
Bromine flow battery reduces to 0% for a specific period of time which is not
desirable.
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Abstract

This chapter proposes a hybrid crisscross optimization technique to solve
the thermal power dispatch problem with a single fuel type as a nonlinearly
constrained optimization problem considering the operating cost problem
as participating objective. The Crisscross optimization consists of horizon-
tal cross-over and vertical cross-over operations to find a solution. These
crossover operations aids the algorithm in view of diversity of solutions and
hence enhance the chance of hitting the global optimum. The horizontal
cross-over splits search space into hypercubes and reduces the unreachable
region in search space. The vertical cross-over prevents the population from
stucking into local minima due to one of the stagnant dimensions. In the
proposed method, a local search is embedded in crisscross optimization to
help the algorithm in the improvement of the solution obtained by the basic
crisscross algorithm further and find a better solution in the nearby vicinity
of the stagnated solution. The proposed method is validated on 8 benchmark
test functions and small (3,6,13) and medium (40) generator problems. The
suggested modified algorithm is able to obtain the lowest fuel cost of thermal
generators than other methods, as evident from the results tabulated. As
compared to other mentioned optimization approaches in the literature, the
obtained results are feasible and better.

85
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Keywords: Economic load dispatch, Horizontal crossover search, Local
search, Optimization problem, Vertical crossover search.

4.1 Introduction

The electric power grids are massively interconnected systems and have a
major impact on the country’s economy. It requires thorough analysis to
ensure an efficient and determined operation. The analysis of the Economic
Load Dispatch (ELD) problem to operate the thermal system in a coordinated
and cost-effective manner. The ELD is an online mechanism for allocating
generation to reduce total generation cost among available generating units
while also meeting equality and inequality constraints [1–3]. The primary
objective is to schedule the generating units that have been committed
and improvement in generation scheduling leads to cost-saving. Due to the
inclusion of multiple valves in the system, the ELD problem is nonlinear [4].

There are many optimization techniques used for solving the ELD prob-
lem. Researchers have used a variety of traditional and non-conventional opti-
mization approaches to solve ELD problems. Several traditional approaches
are dynamic programming, mixed-integer linear programming [5], quadratic
programming [6], Lagrange relaxation method, and network flow method
used to solve the problem. Traditional approaches are sensitive toward initial
estimates, stuck to the local optimal solution, and failed to solve a non-linear
optimization problem. Researchers proposed modern heuristic optimization
techniques to provide better solution are Evolutionary Programming (EP) [7],
Genetic Algorithm (GA) [8–13], Simulated Annealing (SA) [14, 15], Particle
Swarm Optimization (PSO) [16–21], Grey Wolf Optimization (GWO) [22],
Artificial Intelligence (AI) [23] for better solution. Gaing [16] described a
PSO which is used to deal with Economic Dispatch (ED) issues related to
many non-linear characteristics of generation and prohibits the drawbacks
of premature convergence of GA and provides a better solution quality with
more computational power. Park et al. described a modified PSO [24] which
elaborates a method for fine-tuning the resultant region that combines the
PSO algorithm and the key optimizer with sequential quadratic programming,
such as a local optimizer. Chen Yeh [25] describes the four modified versions
of PSO applied to find the solution to the ELD problem. Vlachogiannis
Lee [26] proposed three new PSO algorithms, compared to the current
state of PSO, such as reactive power and voltage control, for optimal PSO
steady-state efficiency. Selvakumar, Thanushkodi [27] proposes a new PSO to
resolve ED problems. Wang, Singh [28] proposed a new method of fuzzified
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multi-objective PSO to resolve issues that arising from emission pollutant
produced by fossil fuels as well as minimize the total cost of fuel. There
are several available approaches to solve the ELD problem but none of them
assured to global solution proven by the No Free Lunch (NFL) theorem [29].

This chapter proposed a Hybrid Crisscross Search Algorithm (HCSO)
having two interfacing activities particularly horizontal and vertical operation
embedded with the local search method. A local search is implemented in
basic Crisscross Optimization (CSO) in the proposed strategy to facilitate
the algorithm in further improving the solution produced by the basic criss
cross approach and finding a better solution in the surrounding region of the
stagnated solution.

4.2 Problem Formulation

Talaq et al. [31], suggested a judicious formulation of the economic dispatch
problem as a nonlinear and nonconvex in behavior.

4.2.1 Economic Load Dispatch

ELD is a constrained nonlinear optimization problem in the area of power
system operation and planning. The main purpose of ELD is just to schedule
the produced output of determined generating units to satisfy fundamental
demand at the least conceivable cost while meeting all unit and system
operating constraints [32]. Mathematically, the ELD problem of the jth unit
is calculated as

Fj(Pj) = ajP
2
j + bjPj + cj$/h (4.1)

Due to the impact of multiple valves in the system, nonlinearities
and discontinuities are introduced the system. Then, the ELD problem is
calculated as

Fj(Pj) = ajP
2 + bjP + cj +

∣∣ejSin(fj(Pmin
j − Pj))

∣∣ $/h (4.2)

where aj , bj , cj , ej , fj are the cost coefficient of jth generator unit. Pj and
Pmin
j are generating power and minimum power of jth generator.
The objective problem of ELD is to minimize the sum of all individual

costs FT subjected to

FT = F1 + F2 + F3 + F4 + ...........+ FN =
N∑
j=1

Fj(Pj) (4.3)

where N is the total number of thermal units.
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4.2.2 System Constraints

4.2.2.1 Power balance constraints
The sum of power produced by the system is equal to the sum of load demand
PD and total loss PL of the system [33]

N∑
j=1

Pj = PD + PL (4.4)

where PL is the transmission loss determined by using Kron’s formula

PL =

N∑
j=1

N∑
k=1

PjBjkPk +

N∑
j=1

B0jPj +B00 (4.5)

where j,k denotes thermal unit indexes, Bjk, B0j, and B00 are the power loss
coefficients that can be assumed to be constant under standard operating
circumstances.

4.2.2.2 Generator capacity constraints
The operating performance of each jth unit can be bounded by the maximum
and minimum limits of the generator and expressed as follows

Pmin
j ≤ Pj ≤ Pmax

j (4.6)

where, Pmax
j , Pmin

j are maximum and minimum power production limits of
the jth thermal unit respectively.

4.3 Constraint Handling

The constraint handling method is used to bring back the solutions from an
infeasible range to a feasible range and solve constraint violating problems.
There are various types of methods to handle constraints. In this chapter,
the mutated form of the constraint handling method proposed by Singh
and Dhillon [34] is used to check the feasibility of each search agent. The
power generation is fixed within the minimum and maximum boundary of
generation using Equation (4.6) and the power balance constraint is calculated
using Equations (4.4) and (4.5). The difference between power demand and
the sum of generation is calculated as follows

DPD(i) = PD −
Ng∑
j=1

Pj + PL (4.7)
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The DPD is distributed among all generating units, by choosing the jth

generating unit. The control of the ith member of the total population
expressed as

Pij =

{
Pij +DP1(i) DPD(i) > 0

Pij −DP2(i) DPD(i) < 0
(4.8)

where,

DP1(i) = k.r.(Pmax
j − Pij).

∣∣∣∣∣ DPD(i)

Pmax
j − Pmin

j

∣∣∣∣∣ (4.9)

DP2(i) = k.r.(Pij − Pmin
j ).

∣∣∣∣∣ DPD(i)

Pmax
j − Pmin

j

∣∣∣∣∣ (4.10)

and r is the uniform random number in the range [0,1].

Algorithm 1: Constraint handling
• compute DPD (i) using eq. (4.7)
• while max |DPD(i)| > epsilon

• if DPD(i) > 0

• calculate DP1(i) using eq. (4.9)
• compute P (i, j) using eq. (4.8)

• end if
• if DPD(i) < 0

• calculate DP2(i) using eq. (4.10)
• compute P (i, j) using eq. (4.8)

• end if

• check limits P (i, j) using eq. (4.4) & (4.6)

• end while

4.4 Proposed Method

4.4.1 Crisscross Optimization

Crisscross Optimization (CSO) is a stochastic search technique based on the
population that involves iterative Horizontal Cross-over (HC) and Vertical
Cross-over (VC) [30]. CSO generates offspring by conducting both crossover
operations at each generation, those parents who can reproduce their moder-
ate solution can survive otherwise eliminated from the competition.
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The HC splits the multidimensional search space into half population
hypercube succeeded by a competitive operator. This provides exploration
searchability. The drawback of HC is to converge in local minima. The VC
prevents the dimension from loophole of stagnant dimension. In VC, the
arithmetic operation is performed between the different dimensions of all
populations. The VC is also followed by a competitive operator to reproduce
their offspring termed the moderate solution.

The procedure of CSO is explained as follows:
In CSO, the population is randomly created between maximum and

minimum values with NP population and D dimension. Mathematically, it
is given by

Pij = Pmin
j + rij(P

max
j − Pmin

j );

(i = 1, 2, 3, 4, ..........NP ; j = 1, 2, 3, ......., D) (4.11)

The HC is an arithmetic cross-over that is performed between the different
populations of every dimension. The P (i1), P (i2) are two randomly selected
individuals to generate MSHC of dth dimension using Equations (4.12)
and (4.13).

MSHC(i1, d) = r1.P (i1, d) + (1− r1).P (i2, d)

+ C1.(P (i1, d)− P (i2, d)) (4.12)

MSHC(i2, d) = r2.P (i2, d) + (1− r2).P (i1, d)

+ C2.(P (i2, d)− P (i1, d)) (4.13)

Here, r1, r2 are random numbers between [0,1]. C1 and C2 are uniformly
scattered numbers [-1,1]. From the above equation, it is clear that a moderate
solution consisting two terms. Firstly, the offspring describes the random
location of offspring within scope. Secondly, it diminishes blind spots and
enhances global searchability. The HC probability (PHC) is taken as 1 to
search better solution.

The arithmetic cross-over is performed for all populations of two different
selected dimensions called VC. Consider the dimension d1 and d2 are used
to perform VC. Normalize the parent individuals situated in a different
dimension and the generated offspring of VC is formulated as

MSV C(i, d1) = r.P (i, d1) + (1− r1).P (j, d2), d1 and

d2 ∈ (1, D) (4.14)
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Algorithm 2 : Horizontal crossover
• input : DSVC, NP, D
• let P = DSVC
• B = permutate (M)
• normalize the matrix P
• for i =1 : NP/2

• generate random number p ∈ (0, 1).
• if p < P1, THEN Let no1 = B(2 ∗ i− 1) and no2 = B(2 ∗ i).

• for j=1:D
• create a uniformly random number
r1, r2 ∈ (0, 1); c1, c2 ∈ (−1, 1).

• MSHC(no1, j) = r1.P (no1, j) + (1− r1).P (no2, j)
+C1.(P (no1, j)− P (no2, j))

• MSHC(no2, j) = r2.P (no2, j) + (1− r2).P (no1, j)
+C2.(P (no2, j)− P (no1, j))

• end for

• end if

• end for
• reverse normalize the matrix P.
• update DSHC with a competitive operator.

After performing VC, reverse normalization is executed. DSHC and
DSVC are parent-dominated solutions and MSHC and MSVC are moderate
offspring of HC and VC. The VC probability (PV C) is taken as 1 to search
better solution.

A competitive operator gives a chance to the rivalry between the posterity
populace and its parent populace. The competition is executed between
moderate solution and parent solution, then stored in DSHC and DSVC.

Algorithm 3 : Vertical crossover
• input: DShc, M, D
• X← DShc
• normalize the matrix.
• let B = permutate (D).
• for i = 1 to D/2
• generate a uniformly random number p ∈ (0, 1).
• if p < P2, THEN Let no 1 = B(2 ∗ i− 1) and no 2 = B(2 ∗ i).
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• for j = 1 to M
• generate a uniformly random number r ∈ (0, 1).
•MSvc(j, no1) = X(j, no1) + (1− r).X(j, no2).

• end for j
• end if
• end for i

• reverse normalization.
• update DSvc with the competitive operator.

Algorithm 4 : Competitive operator
• for i = 1:NP
• evaluate MS(i)

• if MS(i) is preffered than its parent X(i), Then

• DS(i)←MS(i)
• else DS(i)← X(i)

• end if

• end for

4.4.2 Hybridization of CSO with Local Search Method

In the proposed modified HCSO algorithm, a local search (LS) adds up with
the basic CSO algorithm. When the basic CSO algorithm stops improving
the position of the members further, the LS helps the members to search for
a better solution near the vicinity of the stagnated position.

Local search is a sequential technique of exploration in the vicinity of
the already achieved solution and exploitation of the direction of position
updating in the exploration step. The first kind of move includes exploring
the local objective function and the second kind includes the advantage of
direction. In the process of finding a feasible result nearby search space, the
step function is taken as

stepPj =
Pmax
j

a
(4.15)

The new explored position of a member is found as

Pnew1
ij = Pij + stepPj (4.16)

Pnew2
ij = Pij − stepPj (4.17)
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The comparison between the fuel costs at position values Pnew1
ij , Pnew2

ij
and Pij is made and the new explored position is updated with the lowest fuel
cost. Next, the exploitation step consists of updating the new better position
by exploiting the direction of the position updating in the exploration step.

Algorithm 5: ELD Algorithm

• initialize population.
• if any constraints are violated, fix constraints by adopting constraint
handling using Algorithm 1.

• evaluate fuel cost Fi using eq. (4.1) & eq. (4.2).
• calculate Pij .
• update the best position.
• for iteration=1, max iteration
• evaluate horizontal crossover from eq. (4.12) and (4.13) using
Algorithm 2 .

• compute the solution using the competitive operator discussed in
Algorithm 4.

• evaluate objective function fuel cost Fi, Pij using eqs. (4.1) , (4.2).
• update the best position.
• evaluate vertical crossover from eq. (4.14) using Algorithm 3.
• compute the solution using the competitive operator discussed in
Algorithm 4.

• calculate Pij
• evaluate objective function Fi using eq. (4.1) , (4.2).
• update the best position.
• end for iteration.
• update the best solution by using a local search routine

4.5 Result and Discussion

The performed HCSO algorithm is employed to evaluate standard test func-
tions, ELD problems having 3, 6, 13, 40 unit systems, and comparison
with other methods in the literature. The results are obtained by selecting
a population size of 100. MATLAB 2015a is used to employ the HCSO
technique.
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Table 4.1 Function details

S.No.Function Function description D Range Min
value

I Sphere f1(x) =
D∑

j=1

x2
j 30.0 [ −100, 100 ] 0.0

II Schwefel
2.22

f2(x) =
D∑

j=1

|xj |+
D∏

j=1

|xj | 30.0 [ −100, 100 ] 0.0

III Schwefel
2.23

f3(x) =
D∑

j=1

x10
j 30.0 [−10,10] 0.0

IV Step f4(x) =
D∑

j=1

(�xj + 0.5	)2 30.0 [−100,100] 0.0

V Rastrigin f5(x) =
D∑

j=1

[
x2
j − 10 cos(2 ∗ pi ∗ xj) + 10

] 30.0 [−5.12,5.12] 0.0

VI Powell f6(x) =
D/4∑
j=1

(x4j−3 + 10x4j−2)
2 +

5(x4j−1 − x4j)
2+(x4j−2 − x4j−1)

4 +
10(x4j−3 − x4j)

4

30.0 [−4,5] 0.0

VII Griewank f7 =

D∑
j=1

x2
j

4000
−

D∏
j=1

cos(xj/
√
j) + 1 30.0 [−600,600] 0.0

VIII Alpino f8(x) =
D∑

j=1

|xj sinxj + 0.1xj | 30.0 [−10,10] 0.0

4.5.1 Benchmark Function

To estimate the performance of the proposed HCSO technique, standard test
functions [35] are used. The result obtained by selecting swarm size 100,
dimension (D) for each of the standard benchmark functions are taken as 30
at a fixed number of iteration 500. Details of benchmark functions utilized
in the experiment are summarized in Table 4.1. The results obtained from
different benchmark functions using the projected HCSO algorithm are listed
below in Table 4.2.

To eliminate any uncertainty, the results obtained by all experiments
depended on 30 free runs. The least error of the proposed HCSO technique
is provided in Table 4.2 and the maximum number of function evaluations
(NFE) is set as 3 × 105. The Sphere function, uni-model in nature, has a
minimum error value of 5.50× 10−134. The minimum error obtained by uni-
modal Schwefel 2.22 is 2.67×10−65. The Schwefel 2.23, Step and Rastrigin,
and Griewank functions are obtained all minimum error, average error,
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and the standard deviation is zero which results in faster convergence. The
minimum error, average error, and deviation error of the Powell function
are 0.026034, 0.060982, and 0.012801. The minimum error of the Alpino
function is 6.1862 × 10−133 and its average error and standard deviation are
2.85 × 10−15 and 4.51071 × 10−15.

4.5.2 Economic Load Dispatch Problem

The proposed HCSO algorithm is analyzed on a single objective ELD prob-
lem of small (3,6,13 units) and medium (40 unit) power system problems.
The population length for all the considered cases is taken as 100 and, the
maximum iteration is 1000. The maximum function evaluation number of the
proposed HCSO is taken as 6 × 105. The strength of the proposed technique
is guaranteed by 30 commonly autonomous runs of the proposed technique
for every one of the cases.

4.5.2.1 Problem 1: Three generator problem
Three generator thermal power systems are taken [12] with a power demand
(PD) of 850 MW along with generator constraints. The generation scheduling
data for the problem is taken from reference [12]. The minimum cost of 3
generator problem and their generations are listed in Table 4.3 without losses
after performing 30 independent runs of the ELD problem. The obtained
solution of the proposed HCSO algorithm is 8233.3986. After performing 30
independent runs, the average cost, peak cost, and Standard Deviation (std)
of the proposed algorithm are 8244.9, 8272.30 and 47.8422. Table 4.4 shows
that obtained minimum fuel cost by HCSO is improved than the cost obtained
by previously listed methods Social-Spider Optimization (SSO) [36], novel
improved social-spider optimization (NISSO) [37], Modified Social-Spider
Optimization (MSSO) [38], Opposition-Based Social-Spider Optimization
(OBSSO) [39], Comprehensive Learning Particle SwarmOptimizer (CLPSO)
[40], adaptive differential evolution (JADE) [12], Classical Evolutionary Pro-
gramming (CEP) [12], Mutation in Fast Evolutionary Programming (MFEP)
[12], Fast Evolutionary Programming (FEP) [12], Improved Fast Evolu-
tionary Programming (IFEP) [12] and Improved Social-Spider Optimization
(ISSO) [41]. Figure 4.1 shows the convergence nature of the 3 generator
problem.

4.5.2.2 Problem 2: Six generator problem
A six generator thermal power system is taken under [42] 1263MWPD along
with transmission losses and generator constraints. The generation scheduling
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Table 4.3 Generation output of 3 generator problem
HCSO Output P1 P2 P3

∑
Pi Fuel cost

149.7361 399.7135 300.451 849.9 8233.3985

Table 4.4 Comparison of 3 generator solutions with other methods
Methods Minimum Mean Maximum Std
SSO[36] 8234.070 8240.890 8244.150 –

NISSO[37] 8234.070 8238.440 8242.040 –
MSSO[38] 8234.070 8236.080 8240.570 –
OBSSO[39] 8234.070 8235.960 8241.70 –
CLPSO[40] 8234.070 8234.070 8234.070 –
JADE[12] 8234.070 8234.070 8234.070 –
CEP[12] 8234.070 8235.970 8241.830 –
FEP[12] 8234.070 8234.240 8241.780 –
MFEP[12] 8234.080 8234.710 8241.80 –
IFEP[12] 8234.070 8234.160 8234.540 –
ISSO[41] 8234.070 8234.070 8234.070 –
HCSO 8233.3985 8244.9 8272.30 47.8422

Figure 4.1 Convergence diagram of 3 Generator Problem

data for the problem is taken from [42]. The minimum cost and generated
output of generating units are listed in Table 4.5 of the ELD problem by
the proposed HCSO. Table 4.6 also displays the comparison of the solutions
obtained by the HCSO algorithm with other existing methods PSO [42],
classical PSO (CPSO) [42], Weight Improved PSO (WIPSO) [42], Moderate
Random Search PSO (MRPSO) [42] for solving six generator problem and
found that HCSO provides a better solution than the other available methods.
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Table 4.5 Generation output of 6 generator problem
P(MW) 1 2 3 4 5 6

∑
Pi Fuel cost

HCSOOutput 403.98 199.28 229.70 127.85 199.52 115.75 1276.07 15573.37

Table 4.6 Comparison of 6 generator results with other methods
Unit P (MW) PSO [42] CPSO [42] WIPSO [42] MRPSO [42] Proposed HCSO

1 443.034 467.550 437.82 442.07 403.98
2 169.03 163.05 173.28 167.23 199.28
3 262.02 253.415 271.97 267.09 229.70
4 134.78 115.07 138.7 132.81 127.85
5 147.47 169.45 146.98 155.02 199.52
6 125.35 113.24 103.632 107.023 115.75

Fuel cost 16372.9 16329.2 16327.0 16310.76 15573.37
Losses 18.68 18.70 18.08 18.03 13.07

Figure 4.2 Convergence diagram of 6 Generator Problem

The obtained minimum fuel cost of six generators with valve point loading
(VPL) by using the proposed method is 15573.37. The least cost, mean cost,
maximum cost, standard deviation, and losses of six generators with VPL
are 15573.37, 15628.68, 15669.64, 23.88258, and 13.07 after 30 consecutive
trials. Figure 4.2 displays the convergence of 6 generator problems.

4.5.2.3 Problem 3: Thirteen generator problem
Thirteen generator problems considering VPL with PD of 1800 MW. The
scheduling data is taken from the reference [12]. The least cost, mean
cost, maximum cost, and deviation of the proposed HCSO are 18008.94,
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Figure 4.3 Convergence diagram of 13 Generator Problem

18037.64, 18070.3, and 30.424, respectively as described in Table 4.7 after
completing 30 successive runs. The generation scheduling of 13 generators
is also described in Table 4.7. The execution of the proposed HCSO method
is compared with Neural Network Evolutionary PSO (NN-EPSO) [43] and
Grey Wolf Optimizer (GWO) [43] as shown in Table 4.7 and it is concluded
that convergence of HCSO is better than NN-EPSO [43] and GWO [43].
Figure 4.3 displays the converged nature of HCSO in 13 generator problems.

4.5.2.4 Problem 4: Forty generator problem
A forty generator thermal power system is taken under 10500 MW power
demand along with generator constraints. The data for the generation sched-
ule of the ELD problem is extracted from [30]. The minimum cost of ELD
listed in Table 4.8 is 121438.471 after performing thirty independent runs
with 1000 iterations. The attained cost of the HCSO is preferred over the
methods PSO [30], Quantum-Behaved PSO (QPSO) [30], Improved Genetic
Algorithm with Multiplier Updating (IGA-MU) [30], efficient Evolution-
ary Strategies Optimization (ESO) [30], Modified PSO (MPSO) [30], the
Electromagnetism-Like Mechanism (ELM) [30], CSO [30] and ISSO [41]
as depicted in Table 4.9. Figure 4.4 depicts the converged nature of forty
generator. The proposed method improves the results and provides a better
solution.
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Figure 4.4 Convergence diagram of 40 Generator Problem

4.6 Conclusion

This chapter presents the local search embedded Crisscross optimization
technique to solve single fuel type thermal power dispatch non-convex opti-
mization problems subject to constraints owing to the physical limitations
of the equipment involved. The ELD problem formulation is presented with
valve point loading effect, transmission losses, and generator constraints.
The main parts of the basic criss-cross algorithm are horizontal and vertical
crossover operations. The horizontal cross-over divides the search space into
hypercubes, hence reducing the inaccessible zones of the search space. The
vertical cross-over keeps the population from being trapped in local minima
owing to a static dimension. In the proposed HCSO basic CSO is embedded
with a local search method that upgrades the quality of results. A local
search is incorporated in CSO to aid the algorithm for further improving the
solutions as produced by the basic CSO and finding a better solution in the
near neighborhood area of the stalled solution.

Applicability of HCSO is validated by applying it to solve Bench-
mark optimization functions; and real-world small (3,6,13 unit systems) and
medium (40 unit system) generation scheduling problems. The numerical
solutions of the test functions conclude that this method is efficient in search-
ing for nearly global results. The attained solutions from the proposed hybrid
CSO are competitive and the best compared to previous outcomes recorded
in the literature. The result shows that the proposed HCSO is efficient and
convergent.
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Future plan

The HCSO algorithm can be applied to solve multi-disciplinary thermal
dispatch issues with renewable availability.
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Abstract

The distribution system’s voltage profile and power losses are affected
by actual and imaginary power loading conditions. This problem may be
efficiently handled by optimizing the sizes and locations of Reactive Com-
pensating Devices (RCDs) and controlling the active and reactive power
flow. This methodology provides an efficient scheme to include different
RCD types of Fixed Capacitors (FC), Static Var Compensators (SVC), and
Distribution-Static Synchronous Compensators (DSTATCOM) according to
their size in the analysis and optimization. The Bald Eagle Search (BES)
optimization algorithm efficiently tackles the allocation problem of different
RCDs into distribution systems to achieve simultaneous objectives. These
objectives include lessening the power loss and cost of reactive compensators
and enhancing the voltage profile and system stability. The study optimizes
these objectives in single-and Multiobjective Optimization (MOO) problems.
Four different MOO case studies are investigated to validate the BES algo-
rithm capability and study all possible scenarios in distribution systems. The
proposed method is applied to the IEEE 69-bus radial distribution system.
The obtained results show the effectiveness and superiority of the BES algo-
rithm compared to Archimedes Optimization Algorithm (AOA), Atom Search
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Algorithm (ASO), and Particle Swarm Optimization (PSO) in convergence
speed and fitness values. Moreover, the voltage profile and stability index
enhance, and the power loss and costs decrease with the optimal allocation of
the RCDs.

Keywords: DSTATCOM, fixed capacitors, optimization of distribution sys-
tems, power loss, reactive compensation, SVC.

5.1 Introduction

The integration of renewable energy sources into the electricity network
is becoming a pressing challenge to overcome fossil fuel shortages, with
rising load demand. FACTS products contribute to optimum system opera-
tions by decreasing power losses and enhancing voltage profiles. The power
flow of essential lines can be increased due to the rapid controllability
of the operating margins. Moreover, the capacity for transmission lines
may generally be raised to their thermal values. Hence, FACTS increases
the transient stability level, enhances the dynamic system operation, and
reduces cascading blackouts [1, 2]. FACTS concept is based on power-
electronic controllers, which increase the value of transmission networks by
boosting their capacity utilization [3, 4]. It is being implemented in several
countries.

The primary purposes of shunt Reactive Compensating Devices (RCDs)
are to minimize the feeder loading due to excessive current, especially during
peak demand times, and to compensate for the enormous reactive power
needed by the demand, which is mainly inductive. Once the distribution net-
works are compensated by these RCDs such as Fixed Capacitors (FC), Static
Var Compensators (SVC), and Distribution-Static Compensators (DSTAT-
COM), the required reactive power from the far slack bus is tremendously
reduced. Hence, the quadrature current component is minimized as well as
the total feeder currents. Consequently, the total power generation capacity
and fuel cost are minimized as well.

SVC and DSTATCOM are more efficient than a single FC, although they
are more expensive [5]. The advantages of reactive power compensation rely
heavily on the positioning and size of the fitted compensators. It is unneeded
and economically unfeasible to install shunt controllers in all buses. The
SVC and DSTATCOM are commonly employed on power networks for their
benefits in system improvement performance. They are considered generators
or absorbers with adjustable output to offer voltage support for exchanging
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capacitive and inductive currents. The FC works only as a fixed reactive
power generator.

The allocation of these devices in power systems is optimized with several
approaches. The challenge of placing the RCD is typically handled using
evolutionary programming approaches. The misallocation of these devices
may result in opposite and unwanted objectives. Thus, the RCDs must be
located and sized carefully to achieve the purposes of their installation of
reducing power loss, enhancing voltage stability, or any other objectives. A
Genetic Algorithm (GA) [6] is applied to allocate Distributed Generations
(DGs) and FC into distribution systems to achieve the minimum total cost
of the planning period. A multiobjective evolutionary algorithm based on
decomposition (MOEA/D) [7] is adopted to optimize DG and FC working
with distribution systems to reduce the active and reactive power losses. The
GSA [8] has been applied to optimally allocate FC into distribution systems
to reduce the losses and maximize the net savings. Other authors [9] used a
hybrid local search-GA in a similar study. Considering the uncertainty, the
PSO is adopted in [10] to simultaneously allocate DG units and FC banks
to reduce power loss, improve voltage stability, and balance feeder currents.
The Whale Optimization Algorithm (WOA) [11] is adopted to allocate FC
banks in distribution systems to reduce losses and enhance the stability and
reliability of the system. Ant Colony Optimization (ACO) [12] has been
applied to optimal allocate FC banks to improve the voltage profile and
reduce the losses of distribution systems. The Flower Pollination Algorithm
(FPA) [13] has been applied to place FC banks into distribution systems in
order to reduce losses and costs. The authors in [14] used the Archimedes
Optimization Algorithm (AOA) in a multiobjective optimization to optimally
allocate different renewable energy sources with distribution systems.

The SVC is very famous for reactive power compensation in transmission
and distribution systems for many years. The authors of [15] proposed the
SVC to mitigate the voltage flicker of an arc furnace using closed-loop
control, while those in [16] used the SVC to enhance the power quality of the
systems. The adaptive differential search algorithm [17] has been adopted to
optimally allocate Distributed Generations (DGs) and SVC devices to reduce
power losses. The adaptive and exponential versions of Particle Swarm
Optimization (PSO) have been used [17] in active distribution systems to
optimally allocate different renewable sources. In a recent study, an Improved
Marine Predator Algorithm (IMPA) [18] has been applied to allocate active
and reactive power sources into the distribution systems to minimize the
system losses, total voltage deviations and increase system stability. An SVC
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planning methodology is applied in [19] to increase the photovoltaic hosting
capacity in distribution networks using a stochastic approach. The study
included minimizing the SVC planning cost and maximizing the PV hosting
capacity in a multiobjective problem. The GA optimization [20] is used to
optimally allocate different DGs and SVC devices in distribution networks
in order to minimize the total MVA taken from the mains and the power
losses of the system. The adaptive PSO and modified Gravitational Search
Algorithm (GSA) algorithms are used [21] to integrate DGs into distribution
systems with optimal sizes and locations to achieve different objectives such
as reducing the power loss and TVD and maximizing the stability index of
the system. The study included both single and multiobjective optimization
analysis.

On the other hand, many researchers considered the optimal alloca-
tion of the DSTATCOM in many applications and optimization problems.
Using the voltage Stability Index (SI) and the Bat Algorithm (BA) [22], the
DSTATCOM is optimally located, and sized to minimize the power losses of
distribution systems when considering the load variations. Cuckoo Search-
ing Algorithm (CSA) [23] is used in multiobjective analysis to optimally
allocate DG units and DSTATCOM into distribution systems to achieve
minimum losses, and maximize the voltage profile. Golden Ratio Optimiza-
tion (GRO) [24] optimally allocates FC banks and DSTATCOM devices
into distribution systems with fuzzy logic decision-making to enhance volt-
age profile and reduce losses. Other researchers used optimization algo-
rithms in different environmental applications and water desalination systems
[25–27].

Researchers in this paper suggest the "Bald Eagle Search" algorithm [28],
which is a unique, nature-inspired meta-heuristic optimization algorithm that
replicates the bald eagles’ hunting technique or social intelligence as they
search for fish. In comparison to other sophisticated meta-heuristic algorithms
and traditional techniques, the BES algorithm takes the crown. In this chap-
ter, the BES metaheuristic optimization algorithm is adopted to control the
reactive power flow inside the distribution networks in order to enhance their
performance and optimize the sizes and locations of RCDs. Different RCDs,
including SC, SVC, and DSTATCOM, are explained, optimized, and com-
pared concerning the performance of the distribution networks. Both single
and multiple objective functions are optimized to enhance and control the
reactive power flow inside the distribution networks. Different case studies
are conducted to illustrate the BES algorithm’s capacity to solve multiple
objective problems. As a consequence of the findings and debates, it may be
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concluded that the BES algorithm is the best alternative to AOA [27], ASO
[28], and PSO [29] algorithms.

The main scope of this chapter can be summarized as follows:

• Solving the nonlinear optimization problem of allocating Reactive
Compensating Devices (RCD) into distribution networks.

• The mathematical formulations of the RCD effects on the performance
of the distribution network are derived and demonstrated.

• Different optimization functions in single- and multiobjective opti-
mizations are proposed and solved, such as reducing network losses,
enhancing voltage profile, improving network stability, and reducing
RCD costs.

• The effectiveness and capability ofthe BES algorithm are justified by
comparing the obtained results with other published algorithms.

5.2 Reactive Compensating Devices (RCDs)

The use of shunt compensation can achieve reactive power compensation.
This may be accomplished through the use of traditional shunt capacitors or
the recently released FACTS controllers.

5.2.1 Fixed Capacitor

Fixed Capacitors (FCs) are very simple to install and maintain and have a long
service life. The installation of shunt capacitors in the load region or at the
point where they are required will improve the voltage stability of the system.
On the other hand, FCs have difficulty with voltage control, and after a certain
degree of compensation has been reached, it is impossible to achieve a stable
working point. The reactive power provided by the FC is proportional to the
square of its terminal voltage; as a result, when the terminal voltage is low,
the voltage support of the shunt capacitor lowers, aggravating the situation,
as follows:

QC = ωC|V |2 (5.1)

where, QC is the reactive power of the FC with a capacitance of C; ω is
the radian frequency of the system; V is the bus voltage at which the FC is
connected.

The V-I and V-Q characteristics of an FC are shown in Figure 5.1. The
relationship between the voltage across and current through the FC is linear.
The current is negative, referring to the capacitor injecting currents with a
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Figure 5.1 V-I and V-Q characteristics of FC

leading power factor (capacitive Vars) into the system. Moreover, the V-Q
characteristic is nonlinear, and at low voltages, the reactive power decreases
quickly.

5.2.2 Static Var Compensator

The Static Var Compensator (SVC) is a shunt-connected absorber that
exchanges inductive/capacitive power to regulate specific power system char-
acteristics [5]. It is claimed in [29] that there are more than 800 SVCs
installed in the world with a rating reactive power of 60-600 MVar. The
precision, availability, and quick reaction of SVCs allow such instruments
to achieve outstanding performance regarding the system voltage in steady-
state and transient conditions. SVCs are also utilized to enhance transient
stability, and moist swings and decrease system losses via reactive power
monitoring [30]. The V-I characteristic of the SVC is shown in Figure 5.2.
The designed reactive power of the SVC limits its maximum capacitive
susceptance (BCmax) and inductive susceptance (BLmax) while the voltage
is regulated to the reference value (VO) through a voltage droop control. The
system voltage in terms of the current (IS) and the slope reactances (XS)
operates in reactive power control mode [29]:

V= − IS
BCmax

, B=BCmax (5.2)

V=
IS

BLmax
, B=BLmax (5.3)
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Figure 5.2 V-I characteristic of SVC

The second mode of operation is the voltage control, where the suscep-
tance lies between the extreme values:

V=V O+IS×XS , −BCmax<B<BLmax (5.4)

The SVC is considered the most straightforward FACTS device already
in use in different areas of the world. An SVC can control the voltage range of
a certain bus to improve the voltage profile of the system. The primary job of
an SVC is to maintain a specific bus voltage by a reactive power adjustment
(obtained by varying the firing angle of the thyristors). It can also improve the
damping of power oscillations and the power flow over the line. The required
voltage control determines the characteristic (droop) slope value, the desired
reactive power production sharing across different sources, and other system
requirements. The droop usually amounts to 1% to 5% [20]. When the SVC
operates in reactive power control mode, the system sees it as a capacitor
when B=BCmax, or as an inductor when B=BLmax. In the active control
range (BCmax<B<BLmax), the SVC regulates the voltage according to the
load characteristic or power factor.
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The middle load characteristic (L0) represents the nominal operation of
the system where the voltage is equal to the reference voltage (VO) at point A
where no current is drawn/injected by the SVC. When the load characteristic
moves to L1, the system voltage increases to V1 either by increasing the
source voltage or decreasing the system load. In this case, the SVC controller
senses the voltage increase and guides the SVC to operate in the inductive
mode to absorb some amount of reactive power from the system with an
absorbing current magnitude of IL3. Thus the SVC becomes like an inductive
load which makes the voltage decrease. Consequently, the operating point
moves to point B, where the system voltage decreases to V3. In different
circumstances, the load characteristic becomes L2 due to an increase in load
level, the system voltage decreases to V2. To restore the voltage to a better
value, the SVC injects a capacitive current magnitude IC4 with a suitable
amount of capacitive reactive power. Hence the voltage increases from V2

to V4 by moving the operating point to C on the characteristic. The SVC
regulates the voltage and maintains it in an acceptable range according to the
operating conditions.

5.2.3 DSTATCOM

DSTATCOM is a Voltage-Source Converter (VSC)-based Flexible Ac Trans-
mission System (FACTS) device connected in shunt with the power system.
Most significantly, it can exchange dynamic reactive power with the ac
system. DSTATCOM is used in voltage regulation and voltage stabiliza-
tion, power factor management, voltage flicker correction, and power-quality
enhancement in distribution systems [1]. It is possible to achieve both capac-
itive and inductive compensation using the DSTATCOM, which separately
controls the output current range while maintaining ac system voltage. Even
when the system voltage is low, the DSTATCOM can supply full capacitive-
reactive power, as shown in Figure 5.3. For DSTATCOM, one of its defining
characteristics is that it can provide a nearly complete output of capacitive
production regardless of the system voltage (constant-current output at lower
voltages). In such instances, the DSTATCOM is vital because it stabilizes the
system voltage during and after failures that would otherwise restrict voltage
collapse. The STATCOM rating shows a rise in both the capacitive- and the
inductive-operating areas in transient conditions. When the DSTATCOM is
equipped with a storage device, it can regulate active and reactive powers in
the four-quadrant operations. Since DSTATCOM can keep reactive current
output at its nominal value across a broad range of bus voltages, it is better
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Figure 5.3 V-I characteristic of STATCOM

than SVC [31] for delivering dynamic VARs. While the SVC utilizes bulky
inductors and banks of capacitors to absorb and produce reactive power, the
STATCOM uses small inductors and capacitors to absorb and provide reactive
power [2]. The controller modifies the voltage and current waveforms and
controls the reactive power generation, either leading or lagging. In contrast
to the SVC, which represents a changeable susceptance, the DSTATCOM
behaves as a variable voltage source connected to the system. Although the
STATCOM technology delivers better technical performance, it nevertheless
has a larger price than the SVC technology [1].

The prices of FACTS devices may vary depending on the initial instal-
lation cost, operation, and maintenance costs. Other important factors also
affect the prices, such as device type, power rating, operating system voltage,
and other operational constraints. An estimation of the FACTS prices is listed
in Table 5.1 [32–35]. Moreover, according to the optimal size of the reactive

Table 5.1 Size and cost of different RCDs
Shunt compensator Qmax (kVar) Cost (US $/kVar)

FC Q ≤ 250 8
SVC 250 < Q ≤ 750 40

DSTATCOM Q > 750 50



118 Shunt Reactive Compensations for Distribution Network Optimization

power compensation, the type of the RCD can be determined accordingly. It
is worth mentioning that the listed costs of the RCDs are for the controller
part only and do not include the price of the device itself.

5.3 Mathematical Problem Formulations

This study includes single- and multiobjective optimization problems to
optimally choose the size and site of the RCD in order to achieve optimal
operations for the distribution systems. The BES algorithm optimally deter-
mines the size of RCD units, and hence, the type is determined with the help
of Table 5.1.

5.3.1 Objective Functions

The objective functions and the optimization constraints are discussed as
follows:

A. Power Loss

The power loss inside a distribution system is calculated from the branch
current and the resistance of the branch as follows:

PLoss=

Nb∑
k=1

Rk×|Ik|2 (5.5)

where, PLoss is the total power loss, Rk is the branch resistance, Ik is the
branch current, and Nb is the total branches of the system. The first objective
function is:

f1= min (PLoss) (5.6)

B. Total Voltage Deviation

The Total Voltage Deviation (TVD) is calculated as the sum of voltage
deviations of the system as:

TV D=

Ns∑
k=1

|1− |Vk|| (5.7)

where, Ns is the number of system buses, and Vk is the voltage at any bus k.
The second objective function becomes:

f2= min (TV D) (5.8)
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C. Stability Index

The voltage stability index of any branch k, and connected between two buses
m, n is calculated from:

SIk= 1−
[
2 (PnRk+QnXk)−|Vm|2

]2−4 (P 2
n+Q2

n

) (
R2

k+X2
k

)
(5.9)

where, Pn, Qn are the active and reactive powers at the receiving end of the
branch, Rk, Xk are the branch resistance and reactance, respectively, Vm is
the voltage magnitude at the sending end of the branch.

According to the SI definition, the most strong branch is when SI
approaches zero. The SI is calculated for all branches as:

SI = SINb
, SINb−1, SINb−2, . . . , SI2, SI1 (5.10)

The objective function is to minimize the maximum value of SI as:

f3 = min (SI) (5.11)

D. Cost Minimization

The cost of each RCDs is listed in Table 5.1. The total cost of RCD controllers
is estimated as:

CostRCD =

NRCD∑
k=1

Cost (Qk) (5.12)

where,CostRCD is the total cost of the installed RCD devices, Cost (Qk)
is the kth cost of an individual RCD device, and NRCD is the number of
installed devices.

The objective is to minimize the total cost as possible, and hence the
fourth objective is:

f4 = min (CostRCD) (5.13)

5.3.2 Multi-Objective Optimization

Multiobjective Optimization (MOO) is adopted when two or more objectives
are optimized simultaneously. In this case, compromise solutions are pro-
vided, and the system operator has to choose the optimal solution from them
according to the operating conditions. The MOO problem can be described
for minimization objectives as follows [36]:

Minimize :fobj
Tot = fobj

1 (x) , fobj
2 (x) , . . . , fobj

n (x)
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subject to : gi (x) = 0, i = 1 : m

hi (x)=0, i = 1 : k

Xmin,i ≤ xi ≤ Xmax,i (5.14)

where, fobj
Tot is the total objective function; n represents the number of the

considered objective functions; gi (x) is the inequality constraints and m
is their number; hi (x) is the equality constraints and k is their number;
Xmin,i, Xmax,i represent the boundaries of the element i in the vector x.

There is an approach to deal with the MOO called the aggregated sum.
In the aggregate sum method, the objective functions are normalized and
summed according to certain weighting factors as:

fobj
Tot = ω1f

obj
1 + ω2f

obj
2 + · · ·+ ωnf

obj
n (5.15)

where, the sum of the weighting factors is unity:

1 = ω1 + ω2 + · · ·+ ωn (5.16)

The value of each weighting factor can be determined according to
many factors, such as the importance of individual objective function, system
constraints, and other technical or economic operating conditions.

5.3.3 System Constraints

The proposed optimization of the distribution system does not violate any
of the system or operational constraints. To implement these constraints in
the load flow, the best fitness is equated to infinity whenever a constraint is
violated.

A. Voltage limits: the bus voltage at any iteration of the load flow solution
must lie between the standard limits of the per-unit voltage to maintain power
quality and stability of the system, as:

Vmin ≤ Vk ≤ Vmax (5.17)

where, Vmin, Vmax are the acceptable voltage minimum and maximum limits
of 0.95, and 1.05 pu, respectively, Vk is the voltage of the kth bus.

B. RCD size: the optimized size of any RCD is limited to the values listed in
Table 5.1. While the FC size is up to 250 kVar, the SVC is limited between
250 and 750 kVar. On the other hand, the DSTATCOM size lies between 750
and 1250 kVar.



5.4 Single-Objective Optimization of RCD Units 121

C. RCD capacities: the total injected reactive power of the RCD units is
limited to a total load of a distribution system such as:

QRCD ≤ QL (5.18)

where, QRCD is the RCD reactive power, and QL is the load reactive power.

D. Power flow balance: The power flow balance equations are satisfied at
every iteration of the load flow. The active and reactive power flow balance
equations are:

PS − PLoss − PL = 0 (5.19)

QS ±QRCD −QLoss −QL = 0 (5.20)

where, PS , QS are the substation active and reactive power, respectively (at
slack-bus), PL, QL are the load total active and reactive power, respectively.

It should be noted that both SVC and DSTATCOM inject or absorb
reactive power according to their control outputs and system performance. In
this study, to reduce the objective functions while working in a steady-state,
the RCD units are assumed to work as a reactive power generator. Hence, the
RCD always injects reactive power into the distribution system.

5.3.4 Optimization Algorithm

In this study, the Bald Eagle Search (BES) algorithm [28] is adopted and
used to optimally size and locate the RCD units into distribution systems
to minimize the different objective functions. The BES algorithm is a new
metaheuristic optimization algorithm that mimics the bald eagle during the
hunting process of its prey.

5.3.5 Load Flow Solution

In order to solve the distribution system efficiently, the well-known For-
ward/Backward Sweep Method (FBSM) load flow [37] is adopted for its
simplicity and efficacy.

5.4 Single-Objective Optimization of RCD Units

In this section, the IEEE 69-bus Radial Distribution System (RDS) is solved
using the FBSM load flow and optimized using the BES optimization algo-
rithm. The 69-bus RDS is 12.66 kV with a total load of 3801.89 kW, and
2694.10 kVar with balanced load and branches have no mutual coupling,
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Figure 5.4 The 69-bus radial distribution system

as shown in Figure 5.4. The RCD units are optimally allocated using the BES
algorithm to reduce the previous objective functions.

Three units of RCD are optimally located at the 69-bus RDS, where the
first three objectives are minimized; power loss, TVD, and the SI. The optimal
sizes and sites of the three RCDs are listed in Table 5.2. To minimize the
power loss, three different devices of FC, SVC, and DSTATCOM are located
on buses 21, 11, and 61, respectively, with different sizes. For minimizing the
TVD and SI objectives, the sizes of the RCDs are equal to the maximum size
per phase of 900 kVar. All of the devices are of the DSTATCOM type. For
the TVD objective, the three RCDs are located at buses 21, 25, 64, while for
the SI objective, they are located at buses 61, 62, and 64.

The power losses (PLoss, QLoss), and the total cost of the optimized
RCDs are charted in Figure 5.5, for the three objective functions and
compared to the base case. The corresponding performance parameters of
Vmin, Vmax, TV D, and SI are shown in Figure 5.6. According to the spe-
cific objective function, the different performance parameters are enhanced
compared to the base case. When the power loss is the objective function,
the PLoss, and QLoss are reduced to 145.08 kW and 67.64 kVar compared
to 224.94 kW and 102.14 kVar of the base case. The voltage profile is
enhanced where the minim voltage (Vmin) becomes 0.9314pu compared to
0.9092 pu at the base case. The corresponding cost of the RCDs is about
$80 thousand.
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Table 5.2 Type and size of three RCD units for different objective functions
fobj = PLoss fobj = TV D fobj = SI

type size site type Size site type size site
DSC∗ 1232.4 61 DSC 900 25 DSC 900 62
SVC 412.84 11 DSC 900 21 DSC 900 61
FC 230.45 21 DSC 900 64 DSC 900 64
*DSC=DSTATCOM

Table 5.2  Type and size of three RCD units for different objective functions 
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The BES algorithm optimizes three equal-size DSTATCOM devices to
reduce the TVD to the optimum value as an objective function, as listed
in Table 5.2. We must, of course, pump as much reactive power into the
distribution system as feasible to raise the voltages on various buses close to
unity. The optimal sites are 21, 25, and 64, with an equal size of 900 kVar, and
all of them are of the DSTATCOM type. The TVD is minimized to 1.0799
pu while the corresponding power losses are 258.64 kW, 107.18 kVar, and
the total cost is optimized to $135 thousand. Moreover, the minimum voltage
raises to 0.9322 pu, and the SI reduces to 0.245 pu. Reduction of the SI means
the system becomes more robust or more stable.

The last objective function, the BES algorithm, minimizes the SI of the
system by optimally allocating three DSTATCOM with a size of 900 kVar
at buses 61, 62, and 64. The SI has been reduced to 0.1775 pu, which is the
lowest value among the previous cases. The total cost stills the same as the
previous case of $135 thousand. While the active loss is slightly increased,
the reactive loss is slightly decreased. The TVD is reduced to 1.22 pu, and
the minimum voltage has reached the most significant value of 0.9522 pu.

The maximum voltage for all four case studies is always one pu at the
slack bus (main supply). The voltage profile at each bus of the system is
typically enhanced compared to the original case without RCDs, as shown in
Figure 5.7. The obtained results show the effectiveness of the BES algorithm
in optimizing the RCDs into the 69-bus RDS at different objective func-
tions. Moreover, the more RCDs are assigned, the more system performance
metrics are improved.
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Figure 5.7 The voltage profile for different objective functions with three RCDs
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Table 5.3 Case studies of MOO
Case study ω1 ω2 ω3 ω4

A 0.4 0.3 0.2 0.1
B 0.3 0.2 0.1 0.4
C 0.2 0.1 0.4 0.3
D 0.1 0.4 0.3 0.2

5.5 Multiobjective Optimization of RCDs

In this section, six RCDs are optimized by the BES algorithm to minimize
the objective functions working together or with different combinations.
As there are four objective functions, it is challenging to use POF. Using
the aggregated sum technique is much simpler, and it is adopted here. The
system performance will be recorded for each number of the RCDs and each
case study listed in Table 5.3. The obtained results will be investigated and
compared. As these four objectives are different and have different values,
they are normalized in the total objective function to their values of the base
case without adding any RCDs:

fobj = ω1P
n
Loss + ω2TV Dn + ω3SI

n + ω4Costn (5.21)

where, the superscript n refers to the normalized values for the objectives.
The normalized components are calculated as follows:

Pn
Loss =

PLoss

PBc
Loss

, TV Dn =
TV D

TV DBc
, SIn =

SI

SIBc
, Costn =

Cost

CostMx

(5.22)
where, the superscript Bc refers to the base case value for each function, and
CostMx is the maximum cost of the installed RCDs. It is calculated as all the
installed devices are assumed DSTATCOM.

CostMx = 1250 kV ar × 50×NRCD (5.23)

The 69-bus RDS is simulated under aggregated sum MOO in different
case studies with different RCDs, as listed in Table 5.4. The BES algorithm
effectively determines the optimal sizes and sites of different RCDs. The
corresponding RCD types are also illustrated according to the maximum
size of each type. For case study A with a single RCD, the optimal size is
1585.8 kVar for a DSTATCOM at bus 61. In general, when the number of
RCDs is small, the types are either SVC and/orDSTATCOM. On the contrary,
when the number of RCDs increases, the FC appears with the SVC. The



126 Shunt Reactive Compensations for Distribution Network Optimization

Table 5.4 Optimal size, site, and type with different numbers of RCDs
Case
study

1Q
Size (site)

Type∗ 3Q
Size (site)

Type 5Q
Size (site)

Type 7Q
Size (site)

Type

A 1585.82 (61) 3 530.22 (18)
830.52 (53)
1333.4 (61)

2
3
3

249.25 (66)
249.65 (56)
249.88 (65)
498.58 (18)
1246.5 (61)

1
1
1
2
3

249.94 (21)
249.96 (65)
249.97 (54)
249.99 (56)
249.99 (15)
435.70 (67)
1225.0 (61)

1
1
1
1
1
2
3

B 1558.03(61) 3 490.6 (18)
876.5 (9)
1327.0 (61)

2
3
3

250.0 (65)
250.0 (16)
250.0 (11)
250.0 (21)
751.0 (61)

1
1
1
1
3

13.68 (21)
250.00 (61)
250.00 (9)
250.00 (18)
250.00 (65)
250.00 (11)
701.63 (62)

1
1
1
1
1
1
2

C 1502 (61) 3 444.85 (18)
919.70 (9)
1298.5 (61)

2
3
3

249.97 (65)
249.99 (62)
250.00 (21)
482.33 (64)
749.95 (61)

1
1
1
2
2

58.82 (65)
250.00 (21)
250.00 (12)
250.00 (59)
250.00 (64)
575.55 (63)
597.22 (61)

1
1
1
1
1
2
2

D 2553.3 (61) 3 500.95 (16)
579.29 (23)
1613.9 (61)

2
2
3

250.00 (22)
250.00 (18)
250.00 (25)
588.14 (65)
1356.0 (62)

1
1
1
2
3

249.98 (65)
249.99 (15)
250.00 (12)
604.06 (64)
685.17 (57)
750.00 (21)
1340.1 (61)

1
1
1
2
2
2
3

∗ Type; 1: FC, 2: SVC, 3: DSTATCOM

Table 5.5 Performance parameters with different numbers of RCDs
Parameter 1Q 3Q 5Q 7Q
PLoss (kW) 154.55 151.38 152.38 153.9
QLoss (kVar) 71.27 70.522 70.755 71.69
Vmin (pu) 0.9345 0.9357 0.9386 0.9394
Vmax (pu) 1 1 1 1
TV D (pu) 1.4484 1.2285 1.2268 1.1954
SI (pu) 0.2375 0.2334 0.2235 0.2208

Cost ($1000) 79.29 129.40 88.271 73.248

performance parameters of case study A are listed in Table 5.5 for the variable
number of RCDs. The voltage profile of the system with a different number of
RCD units is shown in Figure 5.8. It can be seen that adding RCD enhances
the voltage profile and increases the minimum voltage of the system.
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Table 5.5: Performance parameters with different numbers of RCDs 
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Figure 5.8 The voltage profile for different RCDs in case study A

The comparisons between A-D case studies are shown in Figure 5.9 to
Figure 5.12 for power loss, TVD, SI, and cost objectives. There are minor
variations of the power loss in cases A-C with the RCD units. The sharing
of the power loss in the objective function is relatively large except for case
study D, where it is the lowest value at 10% only. The power loss values are
more significant in the case of study D relative to other cases A-C due to the
deficient sharing of 10%, and the main sharing is for the TVD with 40% and
SI with 30%. At the same time, the sizes and locations of the RCD units affect
the overall value of the objective function.

The TVD is relatively large for all case studies with one RCD (1Q);
otherwise, its value is varied according to the number of RCD units (see
Figure 5.10). The value of the TVD is almost the same for cases A-C and
smaller for case D with one RCD. The same behavior with three RCDs. With
five RCDs, the maximum value happens with case B and the minimum with
case D, where the TVD sharing is 40% of the objective function. The same
happens with seven RCDs where the minimum value is at case D (highest
sharing of 40%).

Regarding the third objective function of SI, there are slight variations in
its values especially, with a small number of RCDs, see Figure 5.11, for the
first three case studies. In the third and fourth case studies, the SI value is
always less than the other cases where sharing represents 40% and 30% of
the total objective function.

The fourth objective function is the total cost of the RCD components.
The cost depends mainly on the type of RCDs, as listed in Table 5.1. In this
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Figure 5.10 The TVD for different cases and RCD units

case, variations of this objective with the number of RCDs are expected, as
shown in Figure 5.12. In case study A, where the cost represents 10% of the
total fitness function, the lowest price is when the BES algorithm optimally
allocates seven RCDs (7Q). The lowest price comes from the selection of the
FC as much as possible by the BES algorithm. Contrary, when the optimal
device is DSTATCOM or SVC, the expected price is large as they are costly
compared to the price of the FC. With optimizing three RCDs (3Q) the cost
is almost constant for all case studies. The cost is generally small for large
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Figure 5.12 The cost for different cases and RCD units

RCD numbers for case studies B and C as the cost represents the maximum
values of 40% and 30% of the total fitness function.

There is a strong relationship between the TVD and SI values and the bus
voltages. The smaller is the TVD or SI values, the larger are the bus voltages
and hence better minimum voltages. This relationship can be justified from
Figure 5.13. When the sharing percentage of the TVD is a minimum of 10%
in case study C or the SI represents 10% in case study B, the minimum voltage
values for different numbers of RCDs are smaller compared to other case
studies. When the TVD represents the maximum sharing of 40% in case study



130 Shunt Reactive Compensations for Distribution Network Optimization

 

0.9
0.91
0.92
0.93
0.94
0.95
0.96

Case A Case B Case C Case D

V
ol

ta
ge

 (p
u)

Case study

1Q 3Q 5Q 7Q

Figure 5.13 The minimum voltage for different cases and RCD units

D, the voltage profile improves, and the minimum voltages at different RCDs
are higher than in other case studies.

5.6 Comparisons Using Different Algorithms

In this study, the BES algorithm is adopted to solve the optimization prob-
lem of allocating different RCDs into distribution systems. However, many
optimization algorithms can perform this task with different accuracies. A
proficient algorithm should provide adequate solutions quickly and accu-
rately. A four metaheuristic optimization algorithm of Archemedis Optimiza-
tion Algorithm (AOA), Atomic Search Optimization (ASO), Particle Swarm
Optimization (PSO), and BES algorithms solve the same MOO problem of
allocating seven RCDs into the 69-bus RDS with equal percentage sharing
(25%) for all objectives. The convergence of the MOO objective function is
drawn for all algorithms for comparison purposes, as shown in Figure 5.14.
It is clear from the figure that the BES algorithm is the fastest and the most
accurate of all algorithms.

For a fair comparison, all the optimization algorithms solve the same
problem ten times where the average (x), standard deviation (σ), and standard
error (SE) are calculated and listed in Table 5.6. From this comparison, the
BES algorithm achieves the lowest average and consequently the lowest stan-
dard deviation and standard error. The BES algorithm comes in the first rank,
followed by the AOA, PSO, and ASO algorithms in the second, third, and
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Table 5.6 Statistical comparisons of different algorithms
Algorithm x σ SE Rank (x)

AOA 0.54758 4.103E-3 1.298E-3 2
ASO 0.55841 3.720E-3 1.176E-3 4
PSO 0.55295 3.795E-3 1.200E-3 3
BES 0.54492 8.333E-06 2.635E-06 1

fourth ranks. These results emphasize the efficient capability and suitability
of the BES algorithm in solving such nonlinear optimization problems.

5.7 Conclusions

Different reactive compensating devices (RCDs), including fixed capacitor
(FC), SVC, and DSTATCOM, are allocated into the 69-bus distribution
system in order to reduce different objectives using the Bald Eagle Search
(BES) optimization algorithm. The power loss, TVD, SI, and cost of the
RCDs are optimized separately. The BES algorithm optimizes one, three,
five, and seven RCD units for each objective. The four objectives in different
case studies in multiobjective optimization are optimized according to their
percentage sharing in the total fitness function. The effectiveness of the
BES algorithm is outlined and pointed out when compared to other famous
algorithms such as AOA, ASO, and PSO. The BES algorithm achieves the
most accurate results with the fastest convergence. The obtained results show
that increasing the RCD units results in more enhancing in the voltage profile
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and the performance parameters of the system. In contrast, the minimum
voltage of the system enhances with the increase of the percentage sharing
of the TVD or SI objectives, and the power loss increases. The cost of
the RCDs depends mainly on their types. Moreover, the methodology pro-
vides an efficient method to include different RCD types of FC, SVC, and
DSTATCOM according to their size in the analysis and optimization. In the
future, the methodology can be applied to different balanced and unbalanced
distribution systems with uncertainties in demand or renewable sources.
Moreover, the suggested algorithm could be applied to solve other optimiza-
tion problems, including water treatment and reverse osmosis desalination
systems.
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Abstract

For optimal operation of a modern power system, an efficient optimizer is
needed. There are many conventional and intelligent system-based optimiza-
tion tools available. Conventional approaches suffer from many drawbacks
such as the requirement of derivatives of objective function and constraints,
close initial guess, etc. Getting optimal solutions using intelligent system-
based methods is challenging too. Stable and reliable operation of the power
system depends a lot on the efficient solutions to such problems. In this
chapter, a novel optimizer named as Brown-Bear Optimization Algorithm
(BOA) based on the mode of communication between brown-bears featuring
pedal scent marking and sniffing behaviors is introduced to solve the Eco-
nomic Dispatch Problem (EDP) which is an important problem of optimal
operation of power system. Pedal scent marking behavior of bears, which is
a fundamental mode of communication between them, is characterized by
different features such as maintaining a characteristic gait while walking,
careful stepping on the pedal marks and twisting of feet on depressions made
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on ground. Sniffing behavior found in them further strengthens their commu-
nication. The mathematical model featuring the aforementioned behaviors
of bears is developed to form BOA. The algorithm maintains a balance
between exploration and exploitation and is free from algorithm-specific
parameters. To examine the performance of BOA, it is applied to solve several
benchmark tests functions of different complexities. Comparative assessment
is carried out to establish its efficacy. The proposed algorithm is found to be
performing better than many existing optimization algorithms in obtaining
an optimal solutions for benchmark test functions. To identify its statistical
significance, Wilcoxon’s signed rank test is conducted. The test reveals that
BOA produces more significant results in comparison to other state-of-art
algorithms. Further, BOA is utilized to solve EDP while minimizing the total
cost involved subjected to practical constraints. The results obtained from
BOA are found to be minimum when compared to the results of state-of-art
optimization algorithms reported in the literature.

Keywords: Benchmark test function, brown-bear, constrained engineering
design problems, economic dispatch problem, nature-inspired algorithm.

6.1 Introduction

The security and reliability of modern power system is a prime concern
of electric utilities presently. The optimal operation of the system aids in
maintaining required security and reliability. To ensure optimal operation of
the system, an efficient optimization tool is of utmost needed. Basically, these
tools enable the power system to operate in an economical manner while
considering several inherent limitations. Over the years, optimization meth-
ods are considered to be an effective tool to solve constrained optimization
problems which are evidently present in our modern power system.

In general, an optimization algorithm either minimizes or maximizes an
objective function taking into account all associated constraints. Broadly,
optimization algorithms can be classified as classical methods, evolutionary,
nature-inspired and other algorithms. In classical methods, several meth-
ods are available in literature like gradient-based methods [1], direct-search
methods [2], linear programming [3], quadratic programming [4], etc.

Generally, classical methods start finding the optimum solutions with an
initial guess. Consequently, the performance of classical methods is decided
by initial guess and continuity of objective and constraints, and thus, fitness
function may or may not converge to global optima. To overcome this
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limitation, evolutionary optimization algorithms came into existence that do
not require any initial guesses. Evolutionary algorithms are methods mainly
inspired by the evolution process. Genetic Algorithm (GA) is considered
as first developed evolutionary algorithm [5]. It replicates the behavior of
genes. Particle Swarm Optimization (PSO) is developed as an evolutionary
algorithm mimicking the behavior of a swarm of birds/fishes [6]. Differential
Evolution (DE) is another developed evolutionary algorithm [7]. The intro-
duction of Evolutionary Programming (EP) [8] is another addition. These
algorithms are successfully applied to various engineering optimization prob-
lems. They overcame the limitations of classical methods to a great extent but
are prone to get trapped in local minima.

With the success of evolutionary algorithms and to eliminate the prob-
lems of local minima trappings, several other algorithms which are mainly
inspired by the phenomenon of nature are developed. These methods are
categorized as nature-inspired algorithms. Some of the important algorithms
in this category are Simulated Annealing (SA) [9], firefly algorithm (FA) [10],
Bat Algorithm (BA) [11], Ant-Lion Optimization (ALO) [12], Grey-Wolf
Optimizer (GWO) [13], Krill Herd Optimization (KHO) [14], Imperialist
Colony Algorithm (ICA) [15], Wild Goats Optimization (WGO) [16], whale
Optimization Algorithm (WOA) [17], Gravitational Search Algorithm (GSA)
[18], etc. Most of the above evolutionary or nature-inspired algorithms pos-
sess algorithm-specific parameters (like social and cognitive parameters, c1
and c2, and inertia weight wi in PSO) apart from common control parameters
(like size of the population and a maximum number of iterations). It is worthy
to note here that the performance of algorithms having algorithm-specific
parameters depend heavily on these parameters since it is indispensable to
tune algorithm-specific parameters before the application of the concerned
algorithms in order to achieve global optima or near global optima. The
aforementioned step sometimes proves to be cumbersome than the solution
of the problem itself. Hybridization of existing optimization algorithms is
another way suggested improving the performance of parent algorithms.
However, the hybridization of two or more algorithms into one increases
the computation time appreciably. And, if there are some algorithm-specific
parameters in a hybrid algorithm, then it will become a cumbersome task to
tune them. The aforementioned limitations motivated the author to develop
a novel optimizer that is free from algorithm-specific parameters and is
computationally efficient.

Consequently, a novel nature-inspired optimizer based on the pedal
scent marking and sniffing behaviors of brown-bears is introduced to solve
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real-world optimization problems. The developed optimizer is named as
brown-bear Optimization Algorithm (BOA) which is computationally effi-
cient and does not possess any algorithm-specific parameters. The balance
between exploration of search space and exploitation of the best solution
is maintained efficiently thus, converting it into a powerful optimization
algorithm. The performance of the proposed algorithm is examined through a
test on benchmark functions. Statistical significance of the algorithm is estab-
lished by Wilcoxon’s signed rank test. To validate the efficient performance
of a proposed algorithm, a widely reported real-world optimization problem
i.e. Economic Dispatch Problem (EDP) is solved in this work.

6.2 Brown-bear Optimization Algorithm

In this segment, the influencing factors acting as a source of inspiration
for the proposed BOA are discussed at first. Followed by the inspirational
background, the developed mathematical model is presented.

6.2.1 Inspirational Background

It is a well-known fact that the mode of communication based on chemical
signals is adopted in the majority by both terrestrial and aquatic organisms
[19]. In a recent study, the presence of pedal scent communication in brown-
bears is investigated and found to be existing [20]. The study concluded the
existence of such communication in brown-bears based on the observations
confirming the presence of pedal glands, the biochemical compositions of
secretions from the glands and their behavior linked to pedal scent marking.
The detailed study and discussions can be referred to from [20].

The brown-bear (ursus arctos) is a bear of large size and is extensively
distributed among any living ursid. They are dominantly distributed in North
America and the northern part of Eurasia. They are regarded as one of the
largest territorial carnivorans living in this present era and are often described
as nocturnal. The study in [20] shows the pedal scent marking behavior of
these bears which proves that these bears possess some intellectual abilities.
This pedal scent marking behavior is an effective tool for their communi-
cation. Mostly this behavior is observed in male brown-bears. The pedal
marks of these bears are spread over their territory with each group having
distinctive pedal scent marks. Basically, the pedal scent marking behavior of
a group can be characterized in the following manner.

• A characteristic gait while walking
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Figure 6.1 Pedal scent marking and sniffing behaviors of brown-bears. (a) Pedal marks in
an area. (b-d) A brown-bear stretching to its pedal marks.

• Careful stepping characteristic.
• Twisting of the feet on the depressions made in the ground.

These bears repeatedly use the above characteristics for scent marking in
their territory over a long time. Another behavior of sniffing pedal marks is
observed in these bears apart from marking behavior. It is found that male,
female, and other members of respective groups show this behavior. This
behavior strengthens their communication further. Figure 6.1 shows the pedal
scent marking and sniffing behaviors of brown-bears [20].

The pedal scent marking and sniffing behavior found in brown-bears are
their unique features. As a result, these two behaviors of these bears are
mathematically represented to design an optimization algorithm. The detailed
model and discussions are carried out in the following subsection.

6.2.2 Proposed BOA with Mathematical Model

The proposed optimization algorithm is designed to incorporate two major
phases based on pedal scent marking and sniffing behaviors of the brown-
bears. Further, the pedal scent marking behavior is subdivided into three
subcategories according to characteristics stated in the previous section with
equal probability of their occurrences.
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6.2.2.1 Group formation
In this algorithm, the different groups of brown-bears within a territory are
assumed to be analogous to each solution set of a population while the
pedal scent marks formed by each group are analogous to the number of
decision variables present in each solution set. The territory of brown-bears
is analogous to the search space of a problem. Like other population based
optimization techniques, the initialization of the population in this algorithm
is performed. The different groups of brown-bears within a territory are
randomly generated with a fixed number of pedal scent marks. However,
each mark of different groups are of distinctive features and remain within
the territory. Their limits are defined by the boundaries of the decision vari-
ables of the respective problems. The mathematical expression for random
initialization of the groups within a territory is represented below.

Pi, j = Pmin
i, j +λ · (Pmax

i, j −Pmin
i, j ) (6.1)

where Pi, j is the jth pedal mark of ith group of brown-bears. Pmin
i, j and Pmax

i, j
are the minimum and maximum range of pedal marks, respectively. λ is any
random number evenly distributed in the range [0,1]. If the total number of
groups within a territory (i.e. population) are defined by Npop and the total
number of pedal marks (i.e. number of decision variables) in each group is
defined by D then, the solution set P is represented as

P =

⎡
⎢⎢⎢⎣

P1,1 P1,2 · · · P1,D
P2,1 P2,2 · · · P2,D

...
...

. . .
...

PNpop,1 PNpop,2 · · · PNpop,D

⎤
⎥⎥⎥⎦ (6.2)

6.2.2.2 Pedal scent marking behavior
As mentioned earlier that pedal scent marking behavior found in brown-bears
are unique in nature. It is characterized by characteristic gait while walking,
careful stepping, and twisting of feet onto the depressions made in the ground.
These three characteristics are modeled mathematically to represent pedal
scent marking behavior. The occurrences of these characteristics are divided
with equal probability. Considering the total number of iterations in the
algorithm to be Niter, the occurrence of each characteristic stated above is
equal to Niter

3 . The mathematical model of the characteristics is defined below.

• Characteristic gait while walking: In the majority, only male members
show the pedal scent marking behavior. For simplification, the number of
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the male members in each group is considered to be one. Male members
of each group possess distinctive gait while walking. As a result, the
pedal scent marks formed by a male bears of each group are very much
distinctive in nature. It is assumed that pedal scent marks formed on
the basis of characteristic gait while walking is continued till the first
one third of the total number of iterations, Niter. Mathematically this
characteristic is expressed as

Pnew
i, j,k = Pold

i, j,k− (θk ·αi, j,k ·Pold
i, j,k) (6.3)

where Pnew
i, j,k is jth updated pedal mark of ith group of brown-bears during

kth iteration and Pold
i, j,k is the previous jth pedal mark of ith group of

brown-bears during the same iteration. αi, j,k is any random number
evenly distributed in the range [0,1] associated with jth pedal mark
of ith group of bears for kth iteration. θk is the occurrence factor for
kth iteration which increases linearly with an increase in a number of
iterations. It is defined as the ratio of the current iteration number to the
total number of iterations and is represented as

θk =
Citer

Niter
(6.4)

where Citer is the current iteration number.
• Careful stepping characteristic: From the first one-third to second-

third of the total iterations, the pedal marks are updated according to
this characteristic. The characteristic of careful stepping undertaken by
brown-bears primarily exists to make the relevant pedal marks more
recognizable. A brown-bear used to step on the previous pedal marks
repeatedly in order to make them more visible to other members of
the respective group. The mathematical model of this characteristic is
expressed in the following manner.

Pnew
i, j,k = Pold

i, j,k +Fk ·
(
Pbest

j,k −Lk ·Pworst
j,k

)
(6.5)

where Pbest
j,k and Pworst

j,k are the jth best and jth worst pedal scent marks
among the total groups of brown-bears during kth iteration, respec-
tively. Fk is the step factor for kth iteration and its value depends upon
occurrence factor θk in the following manner.

Fk = β1,k ·θk (6.6)
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where β1,k is any random number in the range [0,1] during kth iteration.
Lk is the step length during kth iteration. It is incorporated here to show
how the pedal marks should be modified from the available information
on the best and worst pedal marks of the whole population. The step
length Lk takes a value of 1 or 2. Depending upon the step length Lk,
a male brown-bear of the respective group takes its step carefully in
either forward or backward direction in order to form newer pedal marks.
Mathematically, the step length Lk is expressed as

Lk = round(1+β2,k) (6.7)

where β2,k is any random number uniformly distributed in the range
[0,1].

• Twisting feet characteristic: From the second-third part of the iteration
to the last iteration, the updating of pedal marks is defined by the twisting
feet characteristic. The male brown-bear of each group twists his feet
onto the depressions made in the ground formed in previous stages. This
characteristic of the bears helps in the formation of more firm pedal scent
marks which are used to create the scent maps by other members of
group. The previous pedal marks are chosen on the basis of information
available from the best and worst pedal marks out of the total pedal
marks. The angular velocity with which each male brown-bear of a
group twists its feet is expressed as

ωi,k = 2π ·θk · γi,k (6.8)

where ωi,k is the ith angular velocity of twist during kth iteration. γi,k is
an evenly distributed random number in the range [0,1]. A brown-bear
will only twist its feet onto the previous pedal marks which are closer
to the best pedal marks and far away from the worst pedal marks. This
characteristic is defined through expression in the following manner.

Pnew
i, j,k = Pold

i, j,k +ωi,k ·
(
Pbest

j,k −
∣∣Pold

i, j,k

∣∣)−ωi,k ·
(
Pworst

j,k − ∣∣Pold
i, j,k

∣∣) (6.9)

It is worth mentioning here that after this phase, the selected better group
of bears take part in the next phase.

6.2.2.3 Sniffing behavior
Sniffing behavior is common in every group member of brown-bears. This
behavior helps them to communicate with each other by sniffing the pedal
sent marks and thus, this behavior controls their movement in the territory. In
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order to move, bears start sniffing the pedal marks chosen randomly within
the territory. They move towards the pedal marks which belong to their group
and leave the other pedal marks. This behavior is mathematically modeled by
choosing two random candidate solutions and updating the move of the bear
according to the following model.

Pnew
m, j,k =

⎧⎨
⎩

Pold
m, j,k +λ j,k ·

(
Pold

m, j,k−Pold
n, j,k

)
if f
(
Pold

m,k

)
< f

(
Pold

n,k

)
Pold

m, j,k +λ j,k ·
(
Pold

n, j,k−Pold
m, j,k

)
if f
(
Pold

n,k

)
< f

(
Pold

m,k

) (6.10)

where Pnew
m, j,k is the jth updated pedal marks of mth group of bears during

kth iteration. Pold
m, j,k and Pold

n, j,k are the jth pedal marks of mth and nth group
of bears during kth iteration, respectively and m �= n. f

(
Pold

m,k

)
and f

(
Pold

n,k

)
are the fitness function value was evaluated for mth and nth groups of bears
during kth iteration. λ j,k is an evenly distributed random number in the
range of [0,1] for jth pedal marks during kth iteration. The above stated
phase is applied to all groups of bears in the population. The better group
of bears from the updated population and the old population are retained
and moved to the next iteration. The process of updating and selection
described in the above two behaviors are repeated till any termination criteria
are met.

The performance of any optimization depends upon its exploitation and
exploration capabilities. The local search is the exploitation phase whereas
the global search is the exploration phase. In the proposed algorithm, the
local search is accomplished by the pedal scent marking phase. The algorithm
exploits the surrounding knowledge to update its position until the first one-
third part of the total iterations characterized by sub-phase of characteristic
gait while walking. When the surroundings are exploited, the positions are
updated with the knowledge of best and worst pedal marks in sub-phase of
careful stepping until the second-third part of the iterations. While the last
third part of the iterations describe the exploitation phase by updating the
position vector of pedal marks towards best pedal marks and away from
worst pedal marks. The local search capability of the proposed algorithm
in this manner avoids the local minima trappings. The exploration phase is
undertaken by the sniffing behavior phase in this algorithm. The algorithm
updates the position vector of the pedal marks based on randomly chosen
two vectors of pedal marks in the population. Thus, this phase helps in
maintaining the exploration capability of the algorithm. The pseudo code of
the proposed BOA is presented in Algorithm 1.
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Algorithm 1 Pseudo code of proposed BOA.
Require: Niter, Npop, D and boundaries of variables.
Ensure: Fitness function f (P) is defined.
1: Initialize random group of bears using (6.1).
2: Form population P of group of bears as shown in (6.2).
3: Initialize best fitness f best = inf and k = 1.
4: while (k ≤ Niter) do

5: for (i = 1 : size(P,1)) do

6: Check limit constraints of pedal marks.
7: Evaluate fitness function f (Pi).
8: if ( f best > f (Pi)) then

9: f best = f (Pi);
10: Pbest

k = P(i, :);
11: end if

12: end for

13: \\Pedal scent marking behavior starts... \\
14: Select best and worst group of bears.
15: θk =

k
Niter

;
16: for (i = 1 : size(P,1)) do

17: % Characteristic gait while walking
18: if

(
θk > 0 && θk ≤ Niter

3
)

then

19: Update Pi,k using (6.3).
20: % Careful stepping characteristic
21: else if

(
θk >

Niter
3 && θk ≤ 2Niter

3
)

then

22: Update Pi,k using (6.5).
23: % Twisting feet characteristic
24: else if

(
θk >

2Niter
3 && θk ≤ 1

)
then

25: Update Pi,k using (6.9).
26: end if

27: end for

28: Select better group of bears.
29: \\Pedal scent marking behavior ends... \\
30: \\Sniffing behavior starts... \\
31: for (m = 1 : size(P,1)) do

32: Select one random group of bears Pn,k where m �= n.
33: Update Pm,k using (6.10).
34: end for

35: Select better group of bears.
36: \\Sniffing behavior ends... \\
37: k = k+1;
38: end while

39: print f best and Pbest.
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6.3 Performance Evaluation of BOA on Standard Test
Functions

In this section, the performance of BOA is evaluated on widely used bench-
mark test functions and competition on "Evolutionary Computation" (CEC)
test functions. The performance evaluation is concentrated on finding the
mean and standard deviation values for the test functions, depicting conver-
gence characteristics, and performing statistical tests. The results obtained
from BOA are compared to state-of-art algorithms reported in the literature.

6.3.1 Evaluation on Benchmark Test Functions

The performance of the proposed BOA is evaluated on widely documented
benchmark test functions. A total of 23 functions comprising variable dimen-
sional unimodal and multimodal functions and fixed dimensional multimodal
functions are used to test the effectiveness of proposed optimizer. The details
of the functions are presented in Tables 6.1 and 6.2. The performance of algo-
rithms like PSO, ICA, WGO, WOA, ALO, and GWO reported in literature
along with proposed BOA is evaluated on benchmark functions tabulated

Table 6.1 Details of benchmark test functions

Function Range Dim fmin
f1(p) = ∑D

j=1 p2
i [−100,100] 30 0

f2(p) = ∑D
j=1 |p j|+∏D

j=1 |p j| [−10,10] 30 0

f3(p) = ∑D
j=1
(

∑ j
k=1 pk

)2
[−100,100] 30 0

f4(p) = max j{|p j|,1≤ j ≤ D} [−100,100] 30 0
f5(p) = ∑D−1

j=1
(
100(p j+1− p2

j)
2 +(p j−1)2) [−30,300] 30 0

f6(p) = ∑D
j=1(p j +0.5)2 [−100,100] 30 0

f7(p) = ∑D
j=1 j · p4

j + rand() [−1.28,1.28] 30 0
f8(p) = ∑D

j=1−p j · sin(
√|p j|) [−500,500] 30 0

f9(p) = ∑D
j=1
(

p2
j −10cos(2π p j)+10

)
[−5.12,5.12] 30 0

f10(p) =
−20exp

(−0.2
√

1
D ∑D

j=1 p2
j
)

−exp
( 1

D ∑D
j=1 cos(2π p j)

)
+20+ e

[−32,32] 30 0

f11(p) = 1
4000 ∑D

j=1 p2
j −∏D

j=1 cos
(

p j√
j

)
+1 [−600,600] 30 0

f12(p) =
π
D
(
10sin2(πq1)+∑D−1

j=1 (q j−1)2(1+10sin2(πq j+1)

+(qD−1)2)
)
+∑D

j=1 x(p j,10,100,4)
[−50,50] 30 0

where, q j = 1+ p j+1
4

and x(p j,a,b,c) =

⎧⎪⎨
⎪⎩

b(p j−a)c p j > a
0 −a < p j < a
b(−p j−a)c p j <−a
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Table 6.2 Details of benchmark test functions

Function Range Dim fmin

f13(p) =
0.1
(

sin2(3π p1)+∑D
j=1(p j−1)2(1+ sin2(3π p j +1)

)
+(pD−1)2(1+ sin2(2π pD)

))
+∑D

j=1 x(p j,5,100,4)
[−50,50] 30 0

f14(p) =

[
1

500 +∑25
k=1

1
k+∑2

j=1(p j−a jk)6

]−1

[−65.54,65.54] 2 1

f15(p) = ∑11
j=1

(
a j− p1(b2

j+b j p j)

b2
j+b1 p3+p4

)2
[−5,5] 4 0

f16(p) = 4p2
1−2.1p4

1 +
1
3 p6

1 + p1 p2−4p2
2 +4p4

2 [−5,5] 2 -1.0316

f17(p) =
(

p2− 5.1
4π2 p2

1 +
5
π p1−6

)2
+10

(
1− 1

8π
)

cos(p1)+10
[−5,10]∗
[0,15]

2 0.39789

f18(p) =

(
1+(p1 + p2 +1)2(19−14p1 +3p2

1−14p2
+6p1 p2 +3p2

2)
)× (30+(2p1−3p2)

2

(18−32p1 +12p2
1 +48p2−36p1 p2 +27p2

2)
) [−2,2] 2 3

f19(p) =−∑4
j=1 c j exp

(
∑k = 13a jk(pk− x jk)

2) [0,1] 3 -3.8628
f20(p) =−∑4

j=1 c j exp
(

∑k = 16a jk(pk− x jk)
2) [0,1] 6 -3.322

f21(p) =−∑5
j=1
[
(P−a j)(P−a j)

T + c j
]−1

[0,10] 4 -10.1532

f22(p) =−∑7
j=1
[
(P−a j)(P−a j)

T + c j
]−1

[0,10] 4 -10.4029

f23(p) =−∑10
j=1
[
(P−a j)(P−a j)

T + c j
]−1

[0,10] 4 -10.5364

in Tables 6.1 and 6.2 and the obtained evaluations are listed in Table 6.3.
For all evaluations, 51 number of independent trials, a population size of 30
and a maximum number of iterations of 500 are considered. Table 6.3 lists
the mean fitness function value and Standard Deviation (SD) for considered
trials. From Table 6.3, it can be seen that the proposed BOA algorithm is able
to obtain a minimum value i.e. global optima or near to global optima for 18
functions out of total of 23 functions. The algorithm is found to be capable of
obtaining global optima for 14 functions. From the results, it is evident that
proposed BOA is an effective optimization algorithm and robust in nature.

The function plot of functions f1, f5, f10, f15, and f20 along with the
trajectory of first dimension, the fitness function history and convergence
curve for 100 iterations are shown in Figure 6.2. A closer look at the trajectory
of the first dimension in all sub-figures reveals that initially, the trajectory
is varying but after some iterations, it settles down and stays at a constant
value. This fact signifies that within a few iterations, the dimension reaches
its final value which further suggests that the proposed BOA converges very
fast to global or near to global optima. From the convergence curve, it can be
observed that in all cases, the solution converges to global or near to global
optima in less than 50 iterations.
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Table 6.3 Performance evaluation on benchmark test functions

F Measure
PSO ICA WGO WOA ALO GWO BOA
[16] [16] [16] [17] [12] [13] (proposed)

f1
Mean 3.69e-37 1.58e-58 0 1.41e-30 2.59e-10 6.59e-28 0

SD 2.46e-36 4.63e-58 0 4.91e-30 1.65e-10 6.34e-05 0

f2
Mean 2.92e-24 3.9e-30 0 1.06e-21 1.84241e-06 7.18e-17 0

SD 1.14e-23 4.19e-30 0 2.39e-21 6.58e-07 0.029014 0

f3
Mean 1.2e-03 1.07e+03 7.28e-10 5.39e-07 6.06847e-10 3.29e-06 8.4971e-290
SD 2.11e-03 3.24e+02 1.03e-09 2.93e-06 6.34e-10 79.14958 0

f4
Mean 0.41 1.36 9.12e-276 0.072581 1.36061e-08 5.61e-07 0

SD 2.5e-01 4.01e-01 0 0.39747 1.81e-09 1.315088 0

f5
Mean 3.74e+01 4.67e-04 1.57e-10 27.86558 0.346772393 26.81258 25.3792
SD 3.21e+01 1.48e-03 2.11e-10 0.763626 0.109584 69.90499 1.1176

f6
Mean 0.15 2.33e+03 0 3.116266 2.56183e-10 0.816579 1.1117
SD 0.42 5.05e+03 0 0.532429 1.09e-10 0.000126 1.1262

f7
Mean 9.9e-03 2.58e-04 5.68e-03 0.001425 4.292492e-03 0.002213 5.3156e-07
SD 3.54e-02 7.43e-05 1.98e-03 0.001149 5.089e-03 0.100286 5.1959e-05

f8
Mean -9.67e+03 -1.11e+04 -6.98e+03 -5080.76 -1606.27643 -6123.1 -9934.6447
SD 4.64e+02 7.49e+02 8.76e+02 695.7968 314.4302 -4087.44 1215.6828

f9
Mean 2.08e+01 1.44e+02 9.99 0 7.71411e-06 0.310521 0

SD 5.94 8.67 1.94 0 8.45e-06 47.35612 10.5391

f10
Mean 1.34e-03 1.67e+01 9.41e-02 7.4043 3.73035e-15 1.06e-13 8.8818e-16
SD 4.24e-02 4.97 2.88e-01 9.897572 1.5e-15 0.077835 0

f11
Mean 2.32e-01 1.28e-02 4.83e-21 2.89e-04 0.018604494 0.004485 0

SD 4.43e-01 1.19e-02 3.28e-20 1.586e-03 9.545e-03 0.006659 0

f12
Mean 3.95e-02 1.56e-32 1.57e-32 0.339676 9.74645e-12 0.053438 0.075538
SD 9.14e-02 5.7e-35 0 0214864 9.33e-12 0.020734 0.13115

f13
Mean 5.05e-02 1.10e-26 2.75e-32 1.889015 2.00222e-11 0.654464 1.6851
SD 0.57 0.77e-26 3.42e-32 0.266088 1.13e-11 0.004474 0.40322

f14
Mean 1.02 9.98e-01 3.19 2.111973 0.998∗ 4.042493 0.998

SD 0.15 0 2.47 2.498594 2.4788∗ 4.252799 0.52792

f15
Mean 3.81e-04 5.61e-04 3.075e-04 5.72e-04 6.9604e-04∗ 0.000337 0.00030749

SD 2.51e-04 1.43e-04 0 3.24e-04 0.021693∗ 0.000625 0.0028463

f16
Mean -1.02 -1.0316 -1.0316 -1.03163 -1.0316∗ -1.03163 -1.0316
SD 1.28e-02 0 0 4.2e-07 2.1089e-13∗ -1.03163 7.6506e-09

f17
Mean 0.40 0.3979 0.3979 0.397914 0.39789∗ 0.397889 0.39789

SD 6.88e-02 0 0 2.7e-05 5.2759e-13∗ 0.397887 1.1438e-06

f18
Mean 3.01 3 3 3 3∗ 3.000028 3

SD 1.21e-02 0 0 4.22e-15 7.277e-12∗ 3 0

f19
Mean -3.86 -3.86 -3.86 -3.85616 -3.8628∗ -3.86263 -3.8628
SD 3.21e-03 3.48e-13 0 2.706e-03 0.015159∗ -3.86278 7.1838e-07

f20
Mean -3.18 -3.32 -3.32 -2.98105 -3.322∗ -3.28654 -3.322
SD 6.11e-02 1.23e-15 0 0.376653 0.11375∗ -3.25056 0.062564

f21
Mean -7.54 -9.95 -10.1532 -7.04918 -10.1532∗ -10.1514 -10.1532
SD 3.03 1.00 0 3.629551 2.3553∗ -9.14015 0.92528

f22
Mean -8.36 -1.01e+01 -10.4029 -8.18178 -10.4029∗ -10.4015 -10.4029
SD 2.02 1.39 0 3.829302 3.4692∗ -8.58441 1.6538

f23
Mean -8.94 -1.01e+01 -10.5364 -9.34238 -10.5364∗ -10.5343 -10.5364
SD 1.63 1.47 0 2.414737 3.3619∗ -8.55899 1.9207

* indicates that the results are obtained under same test conditions.
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Figure 6.2 Function plot, trajectory of 1st dimension, fitness history and convergence curve
for different functions. (a) Function f1. (b) Function f5. (c) Function f10. (d) Function f15. (e)
Function f20.
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Further, to depict an illustrative aspect of the performance of BOA
algorithm, the convergence characteristics of all 23 benchmark test functions
obtained from BOA along with GWO, ALO, WOA, and PSO are presented
in Figure 6.3. From the sub-figures, it can be clearly observed that the test
functions converge to global optima or near to global optima at a faster
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Figure 6.3 Convergence characteristics for benchmark test functions. (a) f1. (b) f2. (c) f3.
(d) f4. (e) f5. (f) f5. (g) f7. (h) f8. (i) f9. (j) f10. (k) f11. (l) f12.
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Figure 6.4 Convergence characteristics for benchmark test functions. (m) f13. (n) f14. (o)
f15. (p) f16. (q) f17. (r) f18. (s) f19. (t) f20. (u) f21. (v) f22. (w) f23.

rate with BOA for most of the functions compared to other algorithms.
Aforementioned fact certifies the consistent performance of BOA.

Additionally, a statistical test to determine the significance of the
results obtained from BOA is undertaken for all considered benchmark test
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Table 6.4 Wilcoxon signed rank test on benchmark test functions

Function
BOA vs. GWO BOA vs. ALO BOA vs. WOA BOA vs. PSO

p h p h p h p h
f1 7.5569e-10 1 7.5569e-10 1 7.5569e-10 1 7.55692e-10 1
f2 7.5569e-10 1 7.5569e-10 1 1.7569e-09 1 7.5569e-10 1
f3 7.5569e-10 1 7.5569e-10 1 7.5569e-10 1 7.5569e-10 1
f4 7.5569e-10 1 7.5569e-10 1 7.5569e-10 1 7.5569e-10 1
f5 7.5569e-10 1 5.3659e-09 1 9.6344e-10 1 1.4992e-08 1
f6 7.5569e-10 1 7.5569e-10 1 7.5569e-10 1 7.5569e-10 1
f7 7.5569e-10 1 7.5569e-10 1 1.0872e-09 1 7.5569e-10 1
f8 0.00620580 1 0.16597741 0 7.5569e-10 1 0.00120086 1
f9 6.9956e-10 1 7.5569e-10 1 1 0 7.5569e-10 1
f10 6.9908e-10 1 7.5569e-10 1 1.3922e-08 1 7.5569e-10 1
f11 0.00012207 1 7.5569e-10 1 1 0 7.5569e-10 1
f12 7.5569e-10 1 7.5569e-10 1 8.0311e-10 1 7.5569e-10 1
f13 7.5569e-10 1 7.1594e-09 1 7.5569e-10 1 7.5569e-10 1
f14 2.0113e-07 1 0.00606446 1 0.00191227 1 0.00022162 1
f15 0.00954460 1 1.1303e-08 1 4.1239e-07 1 1.4171e-08 1
f16 0.00204084 1 6.0119e-07 1 0.49615238 0 1.6479e-08 1
f17 3.3821e-05 1 1.0651e-06 1 6.6920e-06 1 3.5681e-08 1
f18 9.6344e-10 1 2.2979e-06 1 3.5699e-09 1 7.5313e-10 1
f19 2.4737e-07 1 3.9194e-07 1 7.5569e-10 1 5.1734e-09 1
f20 0.23319070 0 0.98844710 0 5.1316e-05 1 0.10382687 0
f21 0.79809609 0 4.5325e-05 1 0.12841263 0 0.00024887 1
f22 0.20087613 0 0.00828640 1 3.5411e-07 1 0.83841637 0
f23 0.07976175 0 0.00474899 1 0.00263842 1 0.36272893 0

functions. For a statistical test, Wilcoxon signed-rank test [21] is considered
where p-value denotes the significance level of null-hypothesis and h-value
denotes whether the hypothesis is true or false. A significance level of 5
% (i.e. 0.05) is set for all tests. A p-value less than 0.05 confirms that the
results obtained from BOA are more significant. In above stated case, the h-
value will be 1 (i.e. true). If h-value is 0 then p-value will be more than 0.05
which clearly indicates that the obtained results from BOA are not significant.
The statistical results are tabulated in Table 6.4. From the results, it can be
noted that the results obtained from BOA are more significant than the results
obtained from GWO, ALO, WOA, and PSO for 19, 21, 19, and 20 functions,
respectively. This fact signifies that BOA is more robust in nature than others
considered algorithms.
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Table 6.5 Details of CEC-C06 2019 test functions [22]

Function Name Range Dim Cmin
C1 Storn’s Chebysheb polynomial fitting problem [-8192,8192] 9 1
C2 Inverse Hilbert matrix problem [-16384,16384] 16 1
C3 Lennard-Jones minimum energy cluster [-4,4] 18 1
C4 Rastrigin’s function [-100,100] 10 1
C5 Griewangk’s function [-100,100] 10 1
C6 Weierstrass function [-100,100] 10 1
C7 Modified Schwefel’s function [-100,100] 10 1
C8 Expanded Schaffer’s F6 function [-100,100] 10 1
C9 Happy cat function [-100,100] 10 1
C10 Ackley function [-100,100] 10 1

6.3.2 Evaluation on CEC Test functions

The performance of BOA is validated on CEC-C06 test functions i.e. The
100-digit challenge [22]. There is a total of ten test functions developed as
single optimization problems. The details of test functions are given in Table
6.5. Further details of presented functions are mentioned in [22]. BOA along
with GWO, ALO, WOA, and PSO is applied to these test functions. A total
of 51 independent trials with a population size of 30 and maximum iterations
of 1000 are considered for all test cases. The obtained results are presented
in Table 6.6. From the results, it can be noted that BOA is able to find the
best mean value for seven test functions and performed better a few few
algorithms for rest of the three functions. The convergence characteristics
of the algorithms obtained for considered test functions are illustrated in
Figure 6.5. The convergence characteristics of the algorithms agree with the
listed results in Table 6.6. Further, it is ascertained that BOA converges at
faster rate in most of the cases compared to others.

In addition to the above performance analysis, a statistical test (i.e.
Wilcoxon signed-rank test) is conducted to evaluate the significance of results
obtained from BOA. The results are listed in Table 6.7. From the tabulated
results, it can be clearly seen that for most of the cases BOA produces more
significant results in comparison to other considered algorithms. This fact
establishes the robustness of BOA.

6.4 Application of Proposed Algorithm to Solve EDP

In this section, the proposed BOA is applied to solve EDP that is an important
part of power system operation. EDP is an optimization problem which
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Table 6.6 Performance evaluation on CEC-C06 2019 test functions [22]

Function Measure ALO GWO PSO WOA BOA

C1
Mean 1.3132e+09 2.7545e+06 3.7138e+10 7.4146e+10 3.8288e+04

SD 2.2348e+09 3.4286e+06 5.3267e+10 8.4353e+10 1.0109e+04

C2
Mean 17.3431 17.3430 8.1363e+02 17.3431 17.3430

SD 0.0017 1.5722e-04 3.1846e+03 0.0471 0.2506

C3
Mean 12.7024 12.7024 12.7024 12.7024 12.7024

SD 4.0124e-15 2.4523e-04 3.5887e-15 8.5498e-08 8.1452e-07

C4
Mean 7.9596 13.9799 4.9760 80.3148 21.8977

SD 12.1230 6.6948e+02 3.8964 97.0121 3.2956e+02

C5
Mean 1.0393 1.0733 1.0319 1.1529 1.0251

SD 0.1244 0.2488 0.0527 0.3754 0.3519

C6
Mean 1.8239 5.8952 2.9047 5.0828 4.2203
SD 1.5906 0.9964 2.1445 1.4023 1.3502

C7
Mean -18.7860 -97.6206 -77.3236 -1.8908e+02 -0.0090

SD 2.5767e+02 2.7072e+02 1.0220e+02 3.0685e+02 1.7131e+02

C8
Mean 3.5383 2.8627 3.7150 4.0926 2.7545

SD 0.6962 0.9988 0.5294 0.6596 0.7238

C9
Mean 2.3566 2.9491 2.3407 3.1757 2.5498

SD 0.0408 0.8003 0.0061 0.7348 50.0283

C10
Mean 1.1551 1.2810 4.4409e-15 20.0547 1.0591

SD 3.6518 2.7074 3.9938 0.1104 4.5971

Table 6.7 Wilcoxon signed rank test on CEC 2019 test functions [22]

Function
BOA vs. GWO BOA vs. ALO BOA vs. WOA BOA vs. PSO

p h p h p h p h
C1 1 0 1 0 1 0 1 0
C2 8.0311e-10 1 8.0311e-10 1 1.1548e-09 1 7.5569e-10 1
C3 0.00022216 1 1.1167e-08 1 0.00372199 1 1.1167e-08 1
C4 8.6631e-08 1 7.5569e-10 1 3.8512e-08 1 7.5569e-10 1
C5 3.1082e-05 1 2.5085e-09 1 0.74640381 0 9.0680e-10 1
C6 1.1994e-05 1 9.6344e-10 1 0.13085518 0 0.00019072 1
C7 0.65352005 0 0.80555945 0 0.52091017 0 5.3659e-09 1
C8 0.43143278 0 0.75372493 0 0.00204084 1 0.38232429 0
C9 3.5275e-05 1 7.5569e-10 1 0.00033554 1 7.5569e-10 1
C10 1.7204e-07 1 0.00217731 1 0.51466162 0 0.29049606 0

primarily finds out optimal generation schedule of available generating units
to meet specific power demands keeping the total cost of generation to be
minimum. The minimization of cost is subjected to equality and inequality
constraints.
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Figure 6.5 Convergence characteristics for CEC 2019 test functions [22]. (a) C1. (b) C2. (c)
C3. (d) C4. (e) C5. (f) C5. (g) C7. (h) C8. (i) C9. (j) C10.

In literature, several optimization algorithms are successfully applied
to solve EDP. Some of the important algorithms are GA [23], PSO [24],
Cuckoo Search Algorithm (CSA) [25], DE [26], Artificial Bee Colony (ABC)
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[27], Firefly Algorithm (FA) [28], Bacterial Foraging Optimization (BFO)
[29], Teacher-Leaner Based Optimization (TLBO) [30] etc. However, the
complexity of the existing power system is increasing day-by-day due to the
incorporation of technological advancements and thus, a more efficient opti-
mization tool is required to solve EDP. Consequently, the proposed algorithm
i.e. BOA is applied to solve EDP in this work. The following subsections will
present the EDP formulation and subsequent application of BOA on solving
EDP of standard test systems.

6.4.1 EDP Formulation

In an EDP, the objective function is defined as the minimization of total
fuel cost incurred in generation of power due to available units subjected to
equality and inequality constraints.

6.4.1.1 Objective function
The objective function for EDP is expressed as

Fcost
total =

M

∑
m=1

Fm(Pm) (6.11)

where M is the total number of generating units, Pm, m ∈ (1,2, . . . ,M), is the
output power of mth unit in MW and Fm is the fuel cost of mth unit in $/h. The
cost characteristic of generating units can be either smooth or non-smooth.

• Smooth cost function: The cost characteristic function of a generating
unit in its simplest form is represented as

Fm(Pm) = amP2
m +bmPm + cm (6.12)

where am, bm and cm are the cost coefficients of mth generating unit.
• Non-smooth cost function: The inclusion of valve-point loading points

introduces multiple non-differential points into smooth cost character-
istics, thus converting the function into a non-smooth function. It is
expressed in the following manner.

Fm(Pm) = amP2
m +bmPm + cm + em|sin( fm(Pmin

m −Pm))| (6.13)

where em, and fm are the cost coefficients with valve-point loading
effects and Pmin

m is the minimum power output of mth generating unit.
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6.4.1.2 Constraints
EDP is solved by minimizing total fuel costs subjected to equality and
inequality constraints. These constraints are described as follows.

• Equality constraint: The sum of power generated by each unit must be
in total equal to total load demand Pd . This means that there should
be a power balance in the system. The aforementioned constraints are
represented as

M

∑
m=1

Pm = Pd (6.14)

• Inequality constraint: The generation limits of each unit constitute
inequality constraint. The power output of a unit must remain within
its minimum and maximum output limit. This constraint is expressed as

Pmin
m ≤ Pm ≤ Pmax

m (6.15)

where Pmin
m and Pmin

m are the minimum and maximum output power of
mth generating unit.

6.4.1.3 Constraint handling technique
A penalty function technique is adopted in this work to efficiently handle the
constraint violations [30]. A static penalty function is added to the objective
function expressed in 6.11 and the final modified function which is minimized
in his work is represented below.

F(P) = Fcost
total +

j

∑
i=1

αi×max[0,qi(Pm)]
2 +

l

∑
k=1

βk×max[0,rk(Pm)]
2 (6.16)

where j is the number of inequality constraints (qi(Pm) ≥ 0) and l is the
number of equality constraints (rk(Pm) = 0). αi and βk are static coeffi-
cients of penalty. For formulation, a high value of coefficients is considered.
Thus, for obtaining the solution of EDP, (6.16) is required to be minimized
while considering the cost functions defined in (6.12) or (6.13) subjected to
constraints represented in (6.14) and (6.15).

6.4.2 Numerical Results and Discussion

For solution of EDP with or without valve-point loading effects, two standard
IEEE test systems widely reported in the literature are considered. The data
of generation limits and cost coefficients for all considered cases are taken
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Table 6.8 Simulation results of EDP for six generator system

Description PSO [24] BBO [26] ABC [27] BFO [29] BOA

P1 (MW) 451.97 438.65 400.00 438.21 469.4007

P2 (MW) 173.16 167.90 186.55 172.58 183.5863

P3 (MW) 261.16 262.82 289.00 257.42 267.9583

P4 (MW) 136.85 136.77 150.00 141.09 85.6397

P5 (MW) 166.70 171.76 200.00 179.37 171.8935

P6 (MW) 85.68 97.67 50.00 86.88 84.6259

Pout (MW) 1275.52 1275.57 1275.55 1275.73 1263.10

Ploss (MW) 12.52 12.52 12.55 12.55 0.10

Fcost
total $/h (MW) 15458.00 15445.90 15452.00 15446.00 15324.73

from [31]. A total of 10 independent trials are undertaken with the population
size of 30 and a maximum iteration of 1000. The aforementioned values of
control parameters (i.e. total runs, population size, and maximum iteration)
are maintained for all considered cases in this work. The description of three
different test cases is presented below.

6.4.2.1 Case 1: Six generator system
For this case, EDP is solved for IEEE standard six bus test system with valve-
point loading effects. A total load demand Pd of 1263 MW is considered.
The optimal generation of available generating units with total fuel cost
is presented in Table 6.8. Additionally, the results reported in the litera-
ture are shown in the mentioned table. From the table, it can be noted
that the minimum fuel cost for the considered case is obtained from the
proposed algorithm. This fact certifies the effective performance of BOA
in solving EDP. Further, the convergence characteristic for the considered
case is depicted in Figure 6.6. From the figure, it can be observed that the
convergence rate of the proposed algorithm is fast which further ascertains
the effectiveness of BOA in solving EDP.

6.4.2.2 Case 2: Fifteen generator system
For this case, EDP is solved for the IEEE standard fifteen bus test system
without considering valve-point loading effects. A total load demand Pd of
2630 MW is considered. The power output of available generating units with
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Figure 6.6 Convergence characteristics of BOA for six generator system.

100 101 102 103

Iteration

2

4

6

8

T
ot

al
 fu

el
 c

os
t (

$/
h)

×104

Figure 6.7 Convergence characteristics of BOA for fifteen generator system.

total fuel cost is tabulated in Table 6.9. The results from algorithms available
in the literature for the considered test system are listed in the same table.
From the table, it is seen that the minimum total fuel cost for the system is
obtained from the proposed BOA. Thus, the effective performance of BOA
in solving EDP is established. To further validate the effectiveness of BOA
in solving EDP, the convergence characteristics for the considered case are
shown in Figure 6.7. From the figure, the rate of convergence of BOA is
found to be fast. This signifies that BOA is an effective tool for solving EDP.
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Table 6.9 Simulation results of EDP for fifteen generator system

Description PSO [24] GA [23] FA [28] DE [30] QOSLTLBO [30] BOA

P1 (MW) 439.12 415.31 455.00 434.47 369.66 340.2232

P2 (MW) 407.97 359.72 380.00 268.02 330.67 454.7541

P3 (MW) 119.63 104.42 130.00 114.63 126.45 130.0000

P4 (MW) 129.99 74.98 130.00 125.77 129.74 129.9999

P5 (MW) 151.07 380.28 170.00 226.39 333.79 371.1780

P6 (MW) 459.99 426.79 460.00 441.33 423.40 445.8539

P7 (MW) 425.56 341.32 430.00 441.64 348.16 464.9999

P8 (MW) 98.56 124.79 71.745 128.37 126.93 60.1459

P9 (MW) 113.49 133.14 58.9164 60.44 100.37 30.5618

P10 (MW) 101.11 89.26 160.00 158.84 131.89 25.4385

P11 (MW) 33.91 60.06 80.00 68.65 61.75 79.9410

P12 (MW) 79.96 50.00 80.00 63.06 43.40 41.5129

P13 (MW) 25.00 38.77 25.00 42.37 28.62 25.0114

P14 (MW) 41.41 41.94 15.00 26.96 51.62 15.0608

P15 (MW) 35.61 22.64 15.00 28.56 14.99 15.0022

Pout (MW) 2662.41 2668.44 2662.38 – – 2629.68

Ploss (MW) 32.42 38.28 30.66 – – 0.32

Fcost
total $/h (MW) 32858 33113 32704 32513.41 32340.45 32256.26

6.5 Conclusion

In this work, a novel nature-inspired optimization algorithm named BOA
is proposed to solve EDP. The mathematical model of BOA is based on
the pedal scent marking and sniffing behaviors of brown-bears. The major
conclusions drawn from this chapter are as follows.

• BOA presents a proper balance between exploration of search space
and exploitation of best results and is free from algorithm-specific
parameters.

• BOA is found to be effective in obtaining global or near to global optima
for benchmark and CEC test functions.

• The convergence rate of BOA is found to be faster (in most of cases) than
others and statistical analysis proves that BOA produces more significant
results.

• BOA is successful in finding optimum fuel cost while solving EDP for
different standard test systems.
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The future scope of current work lies in validation of the proposed algo-
rithm for different complex engineering optimization problems. Additionally,
the performance of binary and multi-objective versions of the proposed BOA
will be validated on widely reported optimization problems.
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Abstract

The main source of harmonic generation in any power system network is due
to the tremendous growth of loads which exhibits nonlinear behavior. These
types of loads are the major cause of degrading the power quality and will
create the problems such as unnecessary circuit breaking, excess temperature
rise in neutral line, and increased copper and iron losses in static and rotatory
machinery. Extracting the references of currents in the active filtering is of
utmost importance in mitigating the current harmonics. In this chapter, the
average pq-SRF reference current extraction technique has been proposed
which combines the merits and demerits of conventional p-q and SRF con-
trol by the matrix average correlation between two reference currents. The
proposed technique has been implemented in a shunt active filter and tested
with simulation and digital controller. Simulation and hardware results reveal
that the proposed technique is efficient than existing techniques under various
supply and load conditions.

Keywords: Average pq-SRF control, harmonics, power quality, reference
current extraction
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7.1 Introduction

The poor power quality is the most alarming for utilities and industries [1]. A
good power quality refers to maintaining a pure noise-free sine wave supply
voltage with power frequency. The harmonic producing loads are the major
cause of poor power quality and create the problems such as unnecessary
circuit breaking, excess temperature rise in neutral line, increased copper and
iron loss in static and rotatory machinery [2–4].

The active and passive harmonic filtering enhances the quality of the
power supply by mitigating the current and voltage harmonics. Passive fil-
tering exhibits few demerits such as source impedance dependency, bulky
size, frequent resonance, and fixed compensation but it offers a cost-effective
solution and gives excellent performance in mitigating lower order current
harmonics [5, 6]. The drawbacks of passive filtering will be overcome by
active filtering with a small increment in cost; however, the design is complex
[7–9]. The proposed system adopts the IEEE-519-2014 standard to control
voltage and current harmonic distortion [10–14]. The faster response of time
domain techniques over the frequency domain entails the converting of RYB
phases into a transformation of Clarke and Park.

The p-q theory based shunt active filter provides harmonic and reactive
power compensation [9]. It fails to work under unbalanced and/or distorted
supply voltage conditions; however, it works well under unbalanced loading
[15]. Further, a positive sequence voltage detector circuit design is required
to enable the shunt active filter to perform with unbalanced and/or distorted
supply conditions [16].

The SRF algorithm based shunt active filter requires only sensing the
load currents whereas the p-q control requires sensing both source voltages
and currents [17]. Unlike the p-q theory, the SRF control based shunt active
filter does not work well under unbalanced loading and reactive power com-
pensation is a mystery in it. SRF control uses a Phased-Locked Loop (PLL)
circuit in its design and it involves very complex equations. The PLL circuit
is replaced with a unit vector due to its simple design and enables it to be
implemented in digital controllers [18, 19].

The merits of p-q and SRF techniques can be combined by means
of the proposed averaging pq-SRF (Apq-SRF) reference current extraction
technique. This technique gives the optimized operation under all kinds of
balanced and unbalanced supply and load conditions. The diagram showing
the operation of the proposed Apq-SRF compensation technique is shown in
Figure 7.1. The salient features are as follows:
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• No use of positive sequence voltage detector under unbalanced supply
• Use of simple unit vector in place of PLL.
• Limited sensors
• Multi-functional operation capability of shunt active filter
• Excellent tracking between compensating and reference currents.

The main contribution of this chapter is to prove the excellence of the
proposed Apq-SRF control technique over existing techniques. The efficient
operation of the VSI DC link voltage controller along with the proposed
Apq-SRF control technique plays a major role in shunt active filter. It regu-
lates VSI capacitor voltage along with energy balancing between source and
load. The PI controller acts as a voltage regulator across the VSI capacitor
and it is designed using Ziegler and Nicholas technique [19]. Pulse genera-
tion is extremely vital to produce necessary pulses to the inverter switches.
Hysteresis Current Controller (HCC) is implemented for the purpose of pulse
generation for the active filter [19].

7.2 The Apq-SRF Control Technique

Initially, reference currents derived from p-q and then from SRF techniques
are obtained separately. These two currents will do the similar operations but
the first current is obtained using Clark and the other is obtained from Park
transformation. Achieving the correlation between these two references and
getting merits from the correlation is the major contribution in this chapter.
The correlation is achieved by a simple matrix averaging method as shown in
Figure 7.1 [12].

Figure 7.1 Block diagram of Apq-SRF technique
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7.3 Modelling of the Apq-SRF Technique

The Clarke transformed αβ0 grid voltages and currents are specified by (7.1)
and (7.2). ⎡
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From (7.1) and (7.2), the instantaneous real, reactive and zero sequence
real power are calculated as represented by (7.3).⎡
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The term (p) is the sum of (p̄) and (p̃). The first one is fundamental
and the other is oscillating in nature. The term (p̃) is not useful since it
oscillates between source and load. Similarly, the term (q) is also the sum
of fundamental and oscillating components; however, both these terms are
oscillating in nature. Hence, the terms (p̃ ) and (q) compensation is the
major task of the shunt active filter; hence negative polarity is assigned as
in (7.4). The zero sequential components remain the same irrespective of
transformations. That is the beauty behind these transformations.

The p-q theory based compensating currents in αβ form is given by (7.4).[
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The inverse Clarke transformed currents in abc frame are given by
(7.5). These currents perform their intended function under balanced supply
conditions but not under other conditions.
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Figure 7.2 Phasor relationship between abc− αβ0− dq0 frames

The SRF control will make use of dq0 transformation. Equation (7.6)
gives load currents in dq0 frame. It requires only the load currents to sense for
the system control. Figure 7.2 shows the correlation between abc−αβ0−dq0.

The sine based transformation is utilized in this chapter. With the sine
based relationship, the load currents in dq0 frame are given by (7.6)⎡
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The term (id) refers to the direct component of the current having two
terms (̄id) and (̃id). First one is fundamental and the other is oscillatory in
nature. The term (̃id) must be extracted since it is oscillating. The term (iq)
also has fundamental and oscillating components but both these should be
extracted because these two are reactive in nature. The SRF control reference
currents are obtained by inverse Clarke transformation as given by (7.7).⎡
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Compared to the p-q technique, The SRF technique works well with

biased and/or disturbed supply conditions even but the drawback of SRF
control is that reactive power and load balance is a mystery as revealed
in (7.7).
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Figure 7.3 The Apq-SRF control power flow diagram.

Equations (7.5) and (7.7) are correlated by a simple matrix averaging
method to get the new multi-functional Apq-SRF control technique equation
as given by (7.8).
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The power flow diagram for the Apq-SRF technique is shown in Figure 7.3. It
indicates that the oscillating components from p-q and SRF control have been
extracted together as can be seen in (7.8). This control technique performs
well in all practical conditions with multi-functional capability.

7.4 The Shunt Active Filter Configuration with Apq-SRF
Control

The block diagram of the Apq-SRF control based shunt active filter is shown
in Figure 7.4. Shunt active filter operation requires three main controls,
namely

• Reference current extraction control techniques
• Constant DC link voltage controller across VSI capacitor
• Pulse generation control.

All controls must cooperate with each other to get the desired shunt active
filter operation. Since the main contribution in this chapter is to introduce the
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Figure 7.4 Filter configuration with proposed Apq-SRF control

Figure 7.5 (a) Hysteresis controller (b) Pulse generating pattern

Apq-SRF technique, a simple PI DC link voltage regulator and hysteresis
current controller have been considered in association with the Apq-SRF
technique. Direct control method of the hysteresis current controller and its
switching pattern is shown in Figure 7.5. It triggers the VSI switches so that
the shunt active filter injects the compensating currents through the coupling
inductor into the power distribution network [20–22].

The tuning of PI type VSI capacitor voltage controller utilizes a heuristic
method of Ziegler-Nichols to estimate the proportional and integral gains. In
this method, Ki and Kd gains are initially set to the lowest. Then, the gain Kp

is enhanced gradually till it obtains the maximum gain Ku, at which the loop
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Table 7.1 Ziegler-Nichols approximation method of gain calculations
Control
Type

Kp Ki Kd

P 0.50Ku - -
PI 0.45Ku 1.2Kp/Pu -
PID 0.60Ku 2Kp/Pu KpPu/8

output begins to fluctuate [23–25]. The gain Ku and the fluctuation period Pu

are utilized to estimate the gains as depicted in Table 7.1.

7.5 Simulation Results

The Apq-SRF technique is implemented in simulation and verified in a digital
controller (TMS5700-XL). The following supply and load conditions are
considered in the simulation.

(i) Pure supply conditions

(a) Fixed loading conditions
(b) Sudden load switching conditions

(ii) Impure supply conditions

(a) Fixed loading conditions
(b) Sudden load switching conditions

7.5.1 Pure Supply Conditions

The pure supply conditions are subcategorized into fixed loading and
dynamic loading conditions.

7.5.1.1 Fixed loading conditions
In this case, the supply voltage is pure and clean. The load is constant
in nature throughout the simulations. Figure 7.6 shows the currents of the
grid, load, and filter. When a filter is turned on at 0.1 sec, it is injecting
compensating reference currents as per the Apq-SRF control technique as
shown in Figure 7.6(c). The source current is sinusoidal after connecting the
filter at 0.1 sec at the PCC which is shown in Figure 7.6(b).

The real and reactive power demands are shown in Figure 7.7. It is
observed that the real and reactive power demands are decreased after
connecting the filter at 0.1 sec.
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Figure 7.6 (a) Load current (b) grid current and (c) filter currents under balanced supply and
fixed loading conditions
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Figure 7.7 Real and reactive power demands under pure and clean supply

Figure 7.8 VSI capacitor voltage under pure and clean supply

The VSI capacitor voltage is perfectly maintained constant to its reference
level when the filter is connected at 0.1 sec as shown in Figure 7.8. The source
voltage and currents are in phase after connecting the filter at 0.1 sec as shown
in Figure 7.9, thus the unity power factor operation is obtained.

The THD of the source current when the filter is connected at 0.1 sec. is
shown in Figure 7.10. The THD is decreased well below the IEEE 519-2014
standards. The THD of the load current for uncompensated system is 48.9%.

7.5.1.2 Transient conditions
In this case, a sudden load is switched on at 0.5 sec. Figure 7.11 indicates the
grid, load, and filter currents under sudden load switching conditions. The
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Figure 7.9 Grid voltage and current under pure and clean supply

Figure 7.10 THD of the grid current under pure and clean supply

filter is turned on at 0.1 sec, it is injecting counter currents. It is indicated that
the grid current is ideal after the filter is turned on at 0.1 sec.

From Figure 7.12, it is seen that the real and reactive power demands are
decreased after connecting filter at 0.1 sec.

The grid voltage and load currents are crossing natural zero after con-
necting the filter at 0.1 sec as shown in Figure 7.13, thus the power factor
correction is happening. The VSI capacitor voltage is perfectly maintained
stiff to its reference level when the filter is connected at 0.1 sec as shown in
Figure 7.14.

The THD of the source current for the proposed system with filter is
shown in Figure 7.15. The THD is decreased well below the IEEE standards.
The THD of the load current for an uncompensated system under dynamic
loading conditions is 48.9%.
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Figure 7.11 Grid, load and filter currents under balanced supply and dynamic loading
conditions

Figure 7.12 Real and reactive power and power factor correction under balanced supply and
transient conditions

7.5.2 Unbalanced and Distorted Supply Conditions

In this case, a sudden load is switched on at 0.5 sec. Figure 7.16 indicates the
grid, load, and filter currents under sudden load switching conditions. The
filter is turned on at 0.1 sec, it is injecting counter currents. It is indicated that
the grid current is ideal after the filter is turned on at 0.1 sec.

The supply voltage and currents are in phase after connecting the filter at
0.1 sec as shown in Figure 7.17, thus maintaining the unity power factor.
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Figure 7.13 Grid voltage and current under balanced supply and dynamic loading conditions

Figure 7.14 VSI capacitor voltage under balanced supply and transient conditions

The real and reactive power demands are shown in Figure 7.18. It
is observed that the real and reactive power demands are decreased after
connecting the filter at 0.1 sec.

The THD of the source current for the proposed system with filter is
shown in Figure 7.19. The THD is decreased well below the IEEE standards.
The THD of the load current for the uncompensated system under dynamic
loading conditions is 59.8%. The VSI capacitor voltage is as shown in
Figure 7.20, it is maintained constant even under distorted supply conditions.

The performance comparison of the Apq-SRF technique with various
existing filter control techniques under balanced supply conditions is indi-
cated in Figure 7.21. The Apq-SRF filter control technique is performing
extremely well in steady-state and transient state conditions.
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Figure 7.15 THD of the grid current with balanced supply and transient conditions

Figure 7.16 Grid, load and filter currents with impure supply conditions

The advantage of the proposed Apq-SRF technique is that it performs
well in both balanced and unbalanced supply and load conditions whereas,
other control techniques failed to give satisfactory operation as shown in
Figure 7.22.

7.6 Hardware Results

The block diagram of the proposed shunt active filter hardware is shown
in Figure 7.23. The hardware developed in the laboratory is shown in
Figure 7.24. To realize the effectiveness of the Apq-SRF reference current
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Figure 7.17 Source voltage and current under unbalanced distorted supply conditions

Figure 7.18 The real, reactive and power factor with impure supply conditions

technique in the shunt active filter hardware, the following conditions are
assumed.

(i) Source is perfectly balanced
(ii) Load is balanced and fixed

7.6.1 Before Compensation

The source voltage and load current waveforms before compensation are
shown in Figure 7.25. It is observed that both the voltage and current wave-
forms are distorted from their ideal waveform. The power factor is less than
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Figure 7.19 THD of source current with impure supply conditions (a) fixed loading (b)
transient switching conditions

unity as both the current and voltage wave form are not in phase as shown in
Figure 7.25. The THD of load current at the PCC is as shown in Figure 7.26;
it can be observed that it is far beyond the IEEE harmonic standards.

7.6.2 After Compensation

The source voltage and load current waveforms after the filter compensation
with the Apq-SRF technique are shown in Figure 7.27. It is worth noting
that both the voltage and current waveforms are ideal in nature and free from
harmonics. The power factor correction has been done since both current and
voltage are crossing natural zero instantly as shown in Figure 7.27. The THD
of load current at the PCC with the proposed shunt active filter is shown
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Figure 7.20 VSI capacitor voltage under unbalanced and distorted supply conditions

Figure 7.21 Comparison of Apq-SRF control with existing techniques under balanced
supply conditions

in Figure 7.28; it can be observed that it is well below the IEEE harmonic
standards.

The filter current is shown in Figure 7.29. It is observed that the proposed
filter is able to generate filter currents 180 degrees out of phase with load
current harmonics.

The VSI capacitor voltage with the proposed shunt active filter is shown
in Figure 7.30. It can be observed that the proposed filter is able to maintain
the constant DC voltage across the VSI capacitor.

The comparison of the simulation and the hardware results with the
proposed Apq-SRF control based shunt active filter is shown in Figure 7.31.
The hardware performance in THD reduction is almost the same as the
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Figure 7.22 Comparison of Apq-SRF control with existing techniques under unbalanced
supply conditions

Figure 7.23 Block diagram of the proposed shunt active filter hardware

simulation, thus validating the proposed shunt active filter with the Apq-SRF
control technique.

The parameters of the proposed Apq-SRF technique based filter remain
the same for other existing techniques as shown in Table 7.2.
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Figure 7.24 Hardware developed in the laboratory

Figure 7.25 Source voltage and load current before compensation

Figure 7.26 THD of load current before compensation
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Figure 7.27 Load current after compensation

Figure 7.28 THD of load current after compensation

Figure 7.29 Filter current for phase A
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Figure 7.30 VSI capacitor voltage after compensation

Figure 7.31 Comparison of simulation and hardware results for the proposed shunt active
filter with Apq-SRF control
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Table 7.2 Filter parameters
Supply voltage/frequency 440 volts / 50 Hz
Source impedance (Rs, Ls)
Line impedance (Rline, Lline)

0.1Ω, 0.15 mH
0.4Ω, 3.55mH

Diode rectifier
Load resistor (RL) and
inductor (LL)

6-diode, uncontrolled
390 Ω, 20 mH

Interface inductor (Lc) 15 mH
DC-side capacitance (Cdc) 35 μF
Reference voltage (Vdc, ref) 660 V
Voltage source inverter 6 IGBTS/Diodes
Kp and Ki values for PI
controller

0.2, 1.5

7.7 Conclusions

From the results of both simulation and digital controller, the proposed
Apq-SRF technique is found far better in comparison to the other existing
techniques under all supply and load conditions.
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Abstract

The reconfiguration of power systems as well as the rising electricity demand
has resulted in congestion in power system networks. The use of Decen-
tralized Renewable Energy Resources (DRER) plays an important role in
resolving such issues. DRERs can be connected to electric power system
networks to control the power drift in transmission lines, increase the line
capacity of power transfer, and enhance the overall network performance. In
this chapter, an efficient approach founded on the Harris’ Hawks Optimiza-
tion Algorithm (HHOA) has been used to select the appropriate capacity and
position of the DRERs to minimize the voltage variance and real power loss.
The suggested HHOAwas tested in two scenarios using a complicated bench-
mark function before being implemented in IEEE 33 bus radial distribution
systems. It turns out that adding more DRERs improves the overall system
performance. The simulation results have been compared with the most recent
results, suggesting that the proposed HHOA is able to process complex high-
dimensional benchmark functions and successfully solve power distribution
difficulties.
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Keywords: DRER, HHOA, efficient power flow, optimization, transmission
loss.

8.1 Introduction

In recent years, the installation of Distributed Renewable Energy Resources
(DRER) power supplies in distribution network systems have become a
standard practice to minimize total energy loss and improve energy quality
[1–2]. The optimal size and location of the DRER in the electrical system
network are essential to maximize the advantages of these facilities. Incorrect
configuration and improper selection of DRER in power system networks
can lead to increased voltage flicker, voltage drop, fault current, harmonic
distortion, and power loss. Electrical system losses can be reduced by up to
13% after the installation of DRER units [3, 4]. In electrical system operation,
economic losses and voltage collapse can be avoided by improving voltage
stability and reducing power loss [5]. Therefore, investigating the optimal
location and size of DRER devices in a distribution network is a measure
toward a profitable power supply [6–7]. The primary goal of most techniques
to find out the optimal location and size of a DRER device is to reduce power
loss and improve voltage distribution. To accomplish the above goals in the
distribution network by means of proper allocation and size of DRER units,
various techniques such as Particle Swarm Optimization (PSO), Genetic
Algorithms (GA), ant bee colony (ABC), Taboo Search (TS), fuzzy systems,
evolutionary programming, and dynamic programming, among others, have
been used. GA is commonly used in the literature to estimate the position and
size of the DRER unit in order to enhance voltage distribution and reduce
power loss. Voltage stability and loss reduction will considerably increase if
the DRER unit is properly installed in the distribution system network. To
solve the DRER size and allocation problem, the GA has been utilized as the
most convenient optimization technique [9]. In the radial distribution system,
the multi objective genetic optimization method is employed to identify the
appropriate position and size of the DRER unit depending on renewable
energy [10]. GA-based multi objective optimization is used to reduce real
power loss in the distribution networks with the constant power, current,
and impedance models for site determination based on DRER planning and
performance indicators [11]. Alambaout et al. [12] suggested an improved
genetic algorithm for determining the optimal position and ability for simul-
taneous DRER/SC allocation in a radial system combining the advantages of
GA and local search. The distribution of multiple dispersed power sources in
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the distribution network is optimized using a mix of analytical and genetic
algorithm approaches to reduce system losses [13]. The GA was proposed by
Madhusudhan et al. [14] to find the appropriate position, as well as the size
of the DRER units in the distribution network, to decrease real power loss
and enhance the voltage profile. In Ref. [15] GA has been used to determine
the best renewable energy technology meant for the optimal power system
operation, as well as the best DRER placement and sizing to minimize power
loss in the network. GA is used to improve system stability as well as reduce
system expansion costs [16, 17]. However, a convergence of GA takes a long
time, particularly when dealing with complex problems and can give incorrect
results. After comparing TS and GA techniques, Simulated Annealing (SA)
has been employed in [18, 19] to identify and designate the capacity of the
DRERs while reducing the computation time. The SA technique, on the
other hand, has downsides such as a local minimum termination, a long
processing time, no information on the local minimum’s divergence from the
global minimum, and no upper time-constraint. Ref. [20, 21] used the TS
technique to focus on DRER optimal planning with aim of reducing both loss
and line loading. On the other hand, the TS method has the disadvantage of
necessitating a high number of iterations and parameters to be determined.
The ideal scale as well as distribution of DRER units in the power system, as
well as their benefits, were determined using PSO [22].

The PSO [23–25] is one of the most successful and extensively utilized
optimization algorithms. In Ref. [26] a multi objective PSO technique has
been proposed for identifying the optimal placement and number of DRER
units while accounting for economic and technological aspects. In the DRER
allocation and sizing issues, sophisticated variants of PSO techniques, such
as enhanced PSO, social learning PSO, binary PSO, PSO with constric-
tion factor, and PSO with inertia weight are also used [27–30]. The PSO
approach, on the other hand, has several drawbacks, such as difficulties in
initializing design parameters and inapplicability to scattering issues. The Ant
Colony Optimization (ACO) approach was designed to handle the problem
of placement and size of renewable energy resource-based DRERs in radial
distribution networks, with an aim to minimize overall system loss [31, 32].
According to their findings, ACO is a better option than GA and takes less
time to calculate. Due to the complexity of the issue, ACO takes longer to
converge, yet it is still faster than analytical approaches. The ACO approach
has a significant disadvantage in terms of time to convergence. The Artificial
Bee Colony technique was used in [33] and [34] to compare the outcomes
of the PSO method and found that ABC gives a high quality solution with
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a fast convergence rate. Yuvraj and Ravi [35] employed Cuckoo Search
Algorithm to optimize voltage profiles and minimize power losses in the
biomass and solar-thermal DRER units. A shuffled frog jump algorithm has
been employed in [36] to minimize line losses and optimize the system
voltage profile.

In [37] a plant growth modeling program has been employed with the
goals of reducing losses and improving voltage profiles. The big bang–big
crunch technique is used in [38] to discover the optimal DRER units for
minimizing energy loss in a distribution network system. Sudabattula and
Kausalya [39] proposed a bat algorithm for efficient allocation of solar-
based DRER in distribution networks. Duong et al. [40] devised an effective
biogeography-based optimization for optimal placement and size of solar
photovoltaic distributed generating units to reduce power losses while main-
taining voltage profile. The Teaching Learning Based Optimization (TLBO)
technique has the drawback of providing a near-optimal solution rather than
an optimum one in a limited number of iteration cycles [41]. Sultana et
al. [41] presented a unique Quasi-Oppositional Teaching Learning Based
Optimization (QOTLBO) approach for locating the best distributed gener-
ator placement while concurrently optimizing power loss, voltage stability
index, and voltage deviation in a radial distribution network. To enhance net-
work loss reduction, voltage profile, and yearly energy savings, the teaching
learning-based optimization (CTLBO) approach for the optimal placement of
DRERs in radial distribution systems is used [42]. By combining a strategy
for order of preference by resemblance to an ideal solution and an enhanced
elephant herding optimization approach, Meena et al. [43] proposed a novel
methodology for solving a multi-objective Distributed Energy Resource
(DER) accommodation problem of distribution systems. Ali et al. [44] pre-
sented an Improved Decomposition Based Evolutionary Algorithm (I-DBEA)
for determining the best number, capacity, and location of DRERs in order
to reduce real power losses and voltage variation while also increasing the
voltage stability index. In IEEE 33-node radial distribution system and IEEE
14-node loop distribution system, the authors of [45] developed the clonal
selection theory of the immune system which is integrated with particle
swarm optimization to achieve optimal DG allocation. Harsh et al. [46] use
loss sensitivity methods to determine the ideal position of the DG, and then
apply the Particle Swarm Optimization (PSO) technique to determine the
optimal size of the DG. Appropriate DRER unit deployment can provide a
number of advantages, particularly cost savings through reduced power loss
and increased buying power capacity.
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8.2 Inspiration and Contributions

The main goal of this research is to develop a method for properly allocating
and sizing solar photovoltaic DRERs to decrease power loss and improve
voltage profiles. The generation of power from renewable energy resources
is necessary for the world’s long-term growth. The Government of India
has taken certain steps to promote Renewable Energy (RE) that including
setting state-specific RE targets in the form of Solar Purchase Obligations
(SPOs) and Renewable Purchase Obligations (RPO). Under the requirements
of RPO and SPO, each state aims to meet a major part of its overall energy
demand with RE. The contributions of the work presented in this chapter are
as follows:

• The proposed Harris’ Hawks Optimization Algorithm (HHOA) has been
tested with complex benchmark functions;

• Apply an innovative technique for proper DRER allocation and sizing in
an IEEE 33-bus power system utilizing HHOA to reduce power loss and
enhance the voltage profiles;

• Comparison of simulation results of a suggested method with already
available techniques such as PSO, GA, BA, Teaching-Learning-Based
Optimization (TLBO), Comprehensive Teaching Learning-Based Opti-
mization (CTLBO), Quasi-opposition TLBO (QOTLBO), CTLBO
ε-method, improved multi-objective elephant herding optimization
(IMOEHO) and improved decomposition-based evolutionary algorithm
(I-DBEA) to find out the effectiveness of the proposed algorithm on
exciting ones.

8.3 Formulation of the Problem

The goal of this work is to decongest power lines by determining the optimum
size and position of the DRERs while keeping losses to a minimum. Total
system losses are used to frame the main Objective Function (OF). OF can be
expressed using the equation given below:

OF = Minimize(PLoss) (8.1)

where

PLoss =

n∑
k=1

gk(V
2
i + V 2

j − 2Vi × Vj × cos(δi − δj)) (8.2)
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The suggested optimization problem’s different restrictions are listed in
(8.3)–(8.7).

V min
i ≤ Vi ≤ V max

i (8.3)

Pmin
DRER ≤ PDRER ≤ Pmax

DRER (8.4)

Qmin
DRER ≤ QDRER ≤ Qmax

DRER (8.5)

Qmin
Gi

≤ QGi ≤ Qmax
Gi

(8.6)

Pmin
Gi

≤ PGi ≤ Pmax
Gi

(8.7)

where gk is the branch conductance of k; Vi is the magnitude of the voltages
at sending and Vj is the magnitude of voltages at receiving bus; δi is phase
angle at ith and jth bus, respectively; PDRER and QDRER represent active
power and reactive power generation by DRER;. PGi and QGi represent
active power and reactive power generation at ith bus.

In (8.3)–(8.7), superscripts (max / min) represents upper limit and lower
limit of respective variables. The main goal is to minimize line congestion
and reduce losses.

8.4 The Proposed HHOA

8.4.1 HHOA: Features

The hawks are assumed to belong to the intelligent bird category. Usually
found in Arizona, USA, the Harris’ hawks, is a famous bird of prey that lives
in fairly steady groups. Unlike other raptors, they typically attack to search
and catch a quarry, all alone, while the Harris’ hawks attack together with
the help of other family members belonging to a similar stable group. The
main ploy of Harris’ hawks attack is to capture a prey is "surprise pounce,"
which is also known as the "seven kills" strategy. In this intelligent foraging
strategy, many hawks try to attack from different directions supportively and
concurrently converge on a spotted escaping rabbit outside the shield. Based
on escaping patterns and dynamic circumstances, Harris’ hawks showcase the
range of chasing styles in order to catch prey. The major benefit of these sup-
portive tactics possessed by the Harris’ hawks is that it may pursue the spotted
rabbit to exhaustion which increases its vulnerability [47]. The Harris’ hawks
are a recent population-based gradient-free meta-heuristic that may be used
to solve any optimization model or issue. The following subsections detail
the various stages of Harris’ hawk’s formulation.
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8.4.2 Exploration Phase

In this step, Harris’ hawks look for prey at random sites and use a wait-and-
watch technique to catch it, as described in (8.8) [47].

A (t+ 1) =

{
Arand(t)− r1|Arand(t)− 2r2A(t)| q ≥ 0.5

(Ar(t)−Am(t))− r3(LB + r4(UB − LB)) q < 0.5.

(8.8)
where Ar is the current location of the rabbit and A(t+1) is the current

position of the hawks for the following iteration, A(t) is the present position
of the hawks. LB and UB represent the decision variables’ maximum and
minimum values. Arand (t) is a set of hawks chosen at random from the
present position. The r(1−4) displays a random number in the range [0,1].

Am (t) =
1

N

N∑
i=1

Ai (t) (8.9)

where Am represents the mean of current hawk population and N represents
the overall hawk population.

Assuming the energy of rabbit as

E = 2 Eo

(
1− t

T

)
(8.10)

where E, Eo, and T denote the prey’s escape energy; primary energy; and the
maximum number of repetitions, respectively.

8.4.3 Exploitation Phase

8.4.3.1 Soft besiegement
This behavior can be demonstrated by (8.11) [47].

A (t+ 1) = � A (t)− E |JAr (t)−A (t)| (8.11)

� A (t) = Ar (t)−A (t) (8.12)

where A(t) and J denote the difference between the rabbit’s position vector
and the current place in iteration; and R is the rabbit’s random leap strength,
respectively.

8.4.3.2 Hard besiegement
This behavior can be showcased by (8.13).

A (t+ 1) = Ar (t)− E |� A (t)| (8.13)
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8.4.3.3 Soft besiege along with rapid drives
In this behavior, one can assume that the hawks may choose their next step as
given in the rule (8.14) [47].

B = Ar (t)− E |JAr (t)−A (t)| (8.14)

C = B + S × LF (D) (8.15)

where S, LF, and D, represent a random number of order (1 × D); the levy
flight function; and the problem dimensions, respectively. Besides, u and v
are random values (0 to 1); whereas β is a default constant (assuming as 1.5).

LF (A) = 0.01× U × σ

|?| 1β
, σ =

⎛
⎝ Γ (1 + β) × sin

(
πβ
2

)
Γ
(
1+β
2

)
× β × 2(

β−1
2 )

⎞
⎠

1
β

(8.16)

Soft besiege is updating the position of hawks by

A (t+ 1) =

{
B, if F (B) < F (A (t))

C, if F (C) < F (A (t))
(8.17)

8.4.3.4 Rapid drives and a hard besiegement
Hard besiegement condition given by the following rule

A (t+ 1) =

{
B, if F (B) < F (A (t))

C, if F (C) < F (A (t))
(8.18)

B = Ar (t)− E |JAr (t)−Am(t)| (8.19)

C = B + S × LF (D) (8.20)

The step wise procedure of HHOA is summarized to the pseudo-code,
given in Algorithm 1 [47] and in flow chart shown in Figure 8.1.

8.5 Solution Approach

8.5.1 HHOA for DRER Placement and Location

The main objective is to find the ideal location and size for a large number
of DRERs while minimizing the network’s power losses and improving
voltage profiles. Herein, the inequality constraints are translated into Penalty
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Figure 8.1 Flow chart of HHOA

Functions (PFs), and the PFs are combined with OF to form a fitness function
(FF) as specified in (8.21).

Minimum FF = OF + PF ×
V B∑
j=1

(ΔV j)
2 (8.21)
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In this case, FF must be minimized to obtain the minimum loss value, PF
is the penalty factor and Vb denotes the set of overloaded lines and voltage
violation load buses. The penalty function approach was used to deal with
the violation of inequality restrictions in the form of load bus voltage and line
power flow. The PF was set to 10,000.00 throughout the simulation. Newton-
Raphson load flow method is used.
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8.5.2 HHOA Computational Practice for DRER Values and
Location

Step 1 Read the system’s input data, such as the maximum iterations, the
number of DRER units, and the population size.

Step 2 The same is represented in (8.22). Generate the size of DRER within
the upper (DRERmax) and lower limits (DRERmin). This is shown in
(8.22).

DRERi = DRERmin
i + rand× (DRERmax

i −DRERmin
i

)
(8.22)

Here, DRERi indicates the size of ithDRER unit. Now, form a vector
Aj , consisting of the possible locations (LC) and size of DRERs as
shown in (8.23).

Aj = [DGj,1, DGj,2, . . . . . . . . . ., DGj,n,

LCj,1, LCj,2, . . . . . . . . . , LCj,n] (8.23)

The LOC is generated randomly. Initial solution set Ais then formu-
lated as shown in (8.24).

A = [A1, A2, . . . . . . . . . . . . ., AN ] (8.24)

Step 3 For individual Harris’ hawks, the fitness function is evaluated using
(8.21), and the optimal hawks site is recognized.

Step 4 E is Calculated using (8.10)
Step 5 Location updating of Harris’ hawks using (8.8)
Step 6 Phase of exploitation: Use (8.11), (8.13), (8.17), and (8.20) to update

the location (8.18).
Step 7 Terminate after the number of iterations has reached its maximum

value. Otherwise, return to Step 3.

8.6 Results And Discussions

The computations were done on a MATLAB 9.9 loaded on a PC with a 2.4
GHz Intel i3 CPU and 4 GB of RAM. MATPOWER 7.2, a power modeling
program, was used in this study.

8.6.1 Case I

The proposed HHOA has been examined with selected complex bench-
mark functions available in CEC-2014 in order to establish an algorithm
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(Table 8.1). Table 8.2 contains a summary of the outcomes collected. In
comparison to other contemporary meta-heuristic optimizers, the HHOA
appears to produce extremely competitive results.

Table 8.1 Summary of the considered CEC-2014 benchmark functions
Type ID Functions Fi*=Fi(x*)

Unimodal
F1 Elliptic Rotated High Conditioned 1*102

F2 Bent Cigar:Rotated 2*102

Simple
Multimodal

F3 Shifted & Rotated Rastrigin’s 9*102

F4 Shifted Schwefel’s 10*102

Hybrid
F5 Hybrid Function 3 (N=4) 1.9*102

F6 Hybrid Function 4 (N=4) 20*102

Composition F7 Composition Function 8 (N=3) 30*102

Table 8.2 Result comparison on the benchmark functions
ID PSO TLBO CS GSA SFS HHOA

F1

max 45.6*e7 89.3* e7 55.1* e7 5.31* e7 11.7*e5 3.01*e5

min 24.7* e7 4.39* e7 11.8* e7 4.56*e6 1.54*e5 1.43*e4

median 33.1* e7 34.2* e7 31.0* e7 8.37*e6 6.16*e5 1.52*e5

std 7.92* e7 34.2* e7 10.5* e7 1.32* e7 2.35*e5 1.23*e5

F2

max 36.3*e9 40.6*e3 24.2*e3 16.1* e3 200 200
min 6.00*e7 60.0*e2 3.09*e2 34.7*e2 200 200
median 15.5*e9 15.2*e3 80.8* e2 83.8*e2 200 200
std 14.3*e9 86.5*e2 60.0*e2 29.0*e2 7.89*e−9 0. 00

F3

max 12.4*e2 11.2*e2 13.4*e2 11.0*e2 984 920
min 11.3*e2 10.6*e2 11.5*e2 10.2*e2 935 903
median 11.8*e2 10.9*e2 12.5*e2 10.6*e3 961 919
std 43.3 25 44.1 17.4 11.1 10.17

F4

max 79.0*e2 59.2*e2 32.1*e2 52.5*e2 27.1*e2 10.5*e2

min 62.6*e2 41.4*e2 13.6*e2 34.5*e2 10.2*e2 10.0*e2

median 71.8*e2 50.6*e2 21.7*e2 43.7*e2 14.9*e2 10.1*e2

std 598 789 433 361 362 14.5

F5

max 21.0*e2 19.1*e2 20.4*e2 20.0*e2 19.1*e2 19.2*e2

min 19.1*e2 19.0*e2 19.1*e2 19.1*e2 19.0*e2 19.0*e2

median 19.7*e2 19.1*e2 19.2*e2 20.0*e2 19.1*e2 19.1*e2

std 70.7 1.65 33.0 34.3 1.47 1.46

F6

max 43.7*e2 53.4*e2 60.2*e3 68.2*e3 21.0*e2 27.5*e2

min 25.5*e2 23.0*e2 22.2*e3 23.2*e2 20.2*e2 20.0*e2

median 30.0*e2 27.4*e2 36.8*e3 17.7*e3 20.6*e2 22.6*e2

std 532 700 84.2*e3 13.9*e3 26 206

F7

max 97.0*e4 15.6*e5 50.8*e4 11.4*e4 76.6*e2 56.2*e2

min 69*e3 20.8*e3 62.6*e3 12.2*e3 42.5*e2 35.6*e2

median 33.5*e4 65.6*e4 17.7*e4 14.6*e3 56.3*e2 47.1*e2

std 36.3*e4 56.4*e4 91.1*e3 18.4*e3 738 13.0*e2
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8.6.2 Case II

The suggested HHOA-based technique is used to determine the best position
and capacity for the DRERs in the 33 bus IEEE radial distributed test
system, using network and load data from [45]. Figure 8.2 shows a single-line
diagram of the IEEE 33-bus RDS.

It is presumed that there is a DRER at that bus at any given time to find
candidate buses for placing a DRER making use of this approach for each
individual bus. At this stage, it is assumed that a DRER can generate electric
power of any value within the possible ranges for optimal sizing (e.g., 0-1000
kW). The proposed HHOA is used to reduce overall loss as the problem’s
objective function, as well as to improve the voltage profile. To begin, only
one DRER is used to relieve line congestion, with the results tabulated in
Table 8.3. With the application of the proposed HHOA on the distribution
problems, the losses get reduced to 129.2 kW from 202.67 kW with only one
DRER in the installation of size 950 kW.

Figure 8.2 Single line diagram of 33-bus IEEE RDS

Table 8.3 Loss reduction in power with change in number of allocated DRERs
Test system Buses count Array location Ploss (kW) Loss reduction (%)

33 bus system
1 30 129.20 38.76
2 12, 30 86.90 58.81
3 13, 24, 30 72.10 64.42
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The problem is further improved by putting 2 and 3 nos. of DRERs
in the power network. Table 8.3 summarizes the outcomes collected. The
overall active power losses have decreased to 86.9 kW and 72.10 kW with the
application of two and three DRERs, respectively, using HHOA. Table 8.4

Table 8.4 Comparative results of optimal allocation and sizing of DRERs correspond-
ing to Case II

Optimization
approach

Location
of array

DRER
size
(MW)

Total
DRER size
(MW)

Ploss

(kW)
Loss
reduction
(%)

Base case - - - 202.67 0.00

TLBO [40]
12 1.1826

3.560 124.70 38.4728 1.1913
30 1.1863

GA [41]
11 1.5000

2.994 106.30 47.5529 0.4230
30 1.0710

PSO [41]
8 1.1770

2.989 105.30 48.0413 0.9820
32 0.8300

GA/PSO [41]
11 0.9250

2.998 103.40 48.9816 0.8630
32 1.2000

QOTLBO [40]
13 1.0834

3.470 103.40 48.9826 1.1876
30 1.1992

CTLBO
ε-method [42]

13 1.1926
3.693 96.17 52.5525 0.8706

30 1.6296

IMOEHO [43]
14 1.0570

3.852 95.00 53.1324 1.0540
30 1.7410

I-DBEA [44]
13 1.0980

3.913 94.85 53.2024 1.0970
30 1.7150

CTLBO [42]
13 1.0364

3.721 85.96 57.5924 1.1630
30 1.5217

BA [39]
15 0.81630

2.721 75.05 62.9725 0.95235
30 0.95235

HHOA
[Proposed]

13 0.8311
2.731 72.10 64.4224 0.9500

30 0.9500
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shows the comparative results in terms of the optimal location and size of
DRERs. Figure 8.3 shows the sites indicated by HHOA for installing DRERs
in the IEEE 33 bus.

In comparison to TLBO [40], GA [41], PSO [41], GA/PSO [41],
QOTLBO [40], CTLBO-method [42], IMOEHO [43], I-DBEA [44], CTLBO
[42], and BA [39], the size and position indicated by HHOA (Table 8.4) gives
the maximum decrease in losses. Figure 8.4 also shows the voltage graph of

Figure 8.3 33-bus IEEE system line diagram with DRER at suggested locations by HHOA

Figure 8.4 With and without DRER voltage graph in 33 bus IEEE system.
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Figure 8.5 Fitness function’s convergence characteristics associated with Case II

all the buses acquired following the usage of DRERs. The bus voltages were
determined by analyzing the load flow. Under the use of three DRERs at
their ideal locations, the bus voltage profile improves dramatically. Figure 8.5
shows the variance of the fitness function versus the number of iterations
for the installation with 3 numbers of DRERs using HHOA. The iterative
graph demonstrates that the HHOA converges to the best solution value in a
relatively short number of iterations.

8.7 Conclusions

The suggested HHOA-based technique is efficient in determining the best
locations and sizes for DRERs. The recommended technique’s effectiveness
is assessed using standard IEEE 33 bus test systems. It has been discovered
that using optimally sized DRERs at their ideal placement improves the
voltage profile of load buses and significantly reduces losses. The system’s
performance improves when additional DRERs are deployed. Comparing the
suggested technique against the PSO, GA, BA, TLBO, QOTLBO, CTLBO,
CTLBO-method, IMOEHO, and I-DBEAmethods reveals that it outperforms
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them all. The loss in active power is decreased by approx. 64 percent with the
installation of three DRERs in IEEE 33 utilizing this method. The results
show that the suggested approach decreases the loss of power by a higher
percentage with a smaller DRER size and that it has superior convergence
features to existing techniques.

With the use of DRERs, HHOA has been found as a reliable optimization
approach to address the problem of congestion in power systems. The sug-
gested technique provides a compelling alternative for both energy producers
and system operators to address difficult issues such as large-scale system
losses, voltage instability, and transmission congestion. The implementation
of this optimization approach in desalination systems is a promising future
application [48–50].
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