

Navet/Automotive Embedded Systems Handbook _C Finals Page i -- #

Automotive
 Embedded
 Systems
 Handbook

Navet/Automotive Embedded Systems Handbook _C Finals Page ii -- #

Automotive Embedded Systems Handbook
Edited by Nicolas Navet and Françoise Simonot-Lion

Integration Technologies for Industrial Automated Systems
Edited by Richard Zurawski

Electronic Design Automation for Integrated Circuits Handbook
Edited by Luciano Lavagno, Grant Martin, and Lou Scheffer

Embedded Systems Handbook
Edited by Richard Zurawski

Industrial Communication Technology Handbook
Edited by Richard Zurawski

Ser ies Ed i to r
RICHARD ZURAWSKI

I N D U S T R I A L I N F O R M AT I O N T E C H N O L O G Y S E R I E S

Navet/Automotive Embedded Systems Handbook _C Finals Page iii -- #

Automotive
 Embedded
 Systems
 Handbook

I N D U S T R I A L I N F O R M AT I O N T E C H N O L O G Y S E R I E S

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Navet/Automotive Embedded Systems Handbook _C Finals Page iv -- #

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-0-8493-8026-6 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Automotive embedded systems handbook / edited by Nicolas Navet and
Francoise Simonot-Lion.

p. cm. -- (Industrial information technology ; 5)
Includes bibliographical references and index.
ISBN-13: 978-0-8493-8026-6
ISBN-10: 0-8493-8026-X
1. Automotive computers. 2. Automobiles--Electronic equipment. 3.

Automobiles--Automatic control--Equipment and supplies. 4. Embedded
computer systems. I. Navet, Nicolas. II. Simonot-Lion, Francoise. III. Title. IV.
Series.

TL272.53.A9868 2009
629.2--dc22 2008024406

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Navet/Automotive Embedded Systems Handbook _C Finals Page v -- #

Contents

Preface . vii

Editors . xv

Contributors . xvii

Part I Automotive Architectures

 Vehicle Functional Domains and Their Requirements Françoise
Simonot-Lion and Yvon Trinquet -

 Application of the AUTOSAR Standard Stefan Voget, Michael
Golm, Bernard Sanchez, and Friedhelm Stappert -

 Intelligent Vehicle Technologies Michel Parent and Patrice Bodu -

Part II Embedded Communications

 A Review of Embedded Automotive Protocols Nicolas Navet
and Françoise Simonot-Lion . -

 FlexRay Protocol Bernhard Schätz, Christian Kühnel, and
Michael Gonschorek . -

 Dependable Automotive CAN Networks Juan Pimentel,
Julian Proenza, Luis Almeida, Guillermo Rodriguez-Navas,
Manuel Barranco, and Joaquim Ferreira -

Part III Embedded Software and Development
Processes

 Product Lines in Automotive Electronics Matthias Weber
and Mark-Oliver Reiser . -

 Reuse of Software in Automotive Electronics Andreas Krüger,
Bernd Hardung, andThorsten Kölzow -

v

Navet/Automotive Embedded Systems Handbook _C Finals Page vi -- #

vi Contents

 Automotive Architecture Description Languages Henrik Lönn
and Ulrich Freund . -

 Model-Based Development of Automotive Embedded Systems
Martin Törngren, DeJiu Chen, Diana Malvius
and Jakob Axelsson . -

Part IV Verification, Testing, and Timing
Analysis

 Testing Automotive Control Software Mirko Conrad and Ines Fey -

 Testing and Monitoring of FlexRay-Based Applications Roman
Pallierer andThomas M. Galla -

 Timing Analysis of CAN-Based Automotive Communication
Systems Thomas Nolte, Hans A. Hansson, Mikael Nolin,
and Sasikumar Punnekkat . -

 Scheduling Messages with Offsets on Controller Area Network:
A Major Performance Boost Mathieu Grenier, Lionel Havet,
and Nicolas Navet . -

 Formal Methods in the Automotive Domain: The Case of TTA
Holger Pfeifer . -

Index . I-

Navet/Automotive Embedded Systems Handbook _C Finals Page vii -- #

Preface

The objective of the Automotive Embedded Systems Handbook is to provide a com-
prehensive overview about existing and future automotive electronic systems. The
distinctive features of the automotive world in terms of requirements, technolo-
gies, and business models are highlighted and state-of-the-art methodological and
technical solutions are presented in the following areas:

• In-vehicle architectures
• Multipartner development processes (subsystem integration, product line
management, etc.)

• Software engineering methods
• Embedded communications
• Safety and dependability assessment: validation, verification, and testing

The book is aimed primarily at automotive engineering professionals, as it can serve
as a reference for technical matters outside their field of expertise and at practicing
or studying engineers, in general. On the other hand, it also targets research scien-
tists, PhD students, and MSc students from the academia as it provides them with a
comprehensive introduction to the field and to the main scientific challenges in this
domain.
Over the last  years, there has been an exponential increase in the number

of computer-based functions embedded in vehicles. Development processes, tech-
niques, and tools have changed to accommodate that evolution. A whole range of
electronic functions, such as navigation, adaptive control, traffic information, traction
control, stabilization control, and active safety systems, are implemented in today’s
vehicles. Many of these new functions are not stand-alone in the sense that they
need to exchange information—and sometimeswith stringent time constraints—with
other functions. For example, the vehicle speed estimated by the engine controller
or by wheel rotation sensors needs to be known in order to adapt the steering
effort, to control the suspension, or simply to choose the right wiper speed. The
complexity of the embedded architecture is continually increasing. Today, up to
 signals (i.e., elementary information such as the speed of the vehicle) are
exchanged through up to  electronic control units (ECUs) on five different types
of networks.
One of the main challenges of the automotive industry is to come up with methods

and tools to facilitate the integration of different electronic subsystems coming from
various suppliers into the vehicle’s global electronic architecture. In the last  years,

vii

Navet/Automotive Embedded Systems Handbook _C Finals Page viii -- #

viii Preface

several industry-wide projects have been undertaken in that direction (AEE∗, EAST,
AUTOSAR, OSEK/VDX, etc.) and significant results have already been achieved (e.g.,
standard components such as operating systems, networks and middleware, “good
practices,” etc.). The next step is to build an accepted open software architecture, as
well as the associated development processes and tools, which should allow for easily
integrating the different functions and ECUs provided by carmakers and third-part
suppliers. This is ongoing work in the context of the AUTOSAR project.
As all the functions embedded in cars do not have the same performance or safety

needs, different qualities of service are expected from the different subsystems. Typ-
ically, an in-car embedded system is divided into several functional domains that
correspond to different features and constraints. Two of them are concerned specif-
ically with real-time control and safety in the vehicle’s behavior: the “power train”
(i.e., control of engine and transmission) and the “chassis” (i.e., control of suspension,
steering, and braking) domains. For these safety-critical domains, the technical solu-
tions must ensure that the system is dependable (i.e., able to deliver a service that can
be justifiably trusted) while being cost-effective at the same time.
These technical problems are very challenging, in particular due to the introduction

of X-by-wire functions, which replace the mechanical or hydraulic systems, such
as braking or steering, with electronic systems. Design paradigms (time-triggered,
“safety by construction”), communication networks (FlexRay, TTP/C), and middle-
ware layers (AUTOSAR COM) are currently being actively developed in order to
address these needs for dependability.
The principal players in the automotive industry can be divided into:

• Vehicle manufacturers
• Automotive third-part suppliers
• Tool and embedded software suppliers

The relationships between them are very complex. For instance, suppliers provid-
ing key technologies are sometimes in a very strong position and may impose their
technical approach on carmakers. Since the competition is fierce among carmak-
ers and suppliers, keeping the company’s know-how confidential is crucial. This has
strong implications in the technical field. For instance, the validation of the system
(i.e., verifying that the system meets its constraints) may have to be carried out

∗ Architecture Electronique Embarquée (AEE, –) is a French project supported by the Ministry
of Industry with PSA and Renault, Sagem, Siemens, and Valeo as main industrial partners. Its main
objective was to find solutions for easing the portability of applicative level software. Embedded
Electronic Architecture (EAST-EEA, –, see http://www.east-eea.net/) is an European ITEA
project involving most major European carmakers, automotive third-part suppliers, tools and
middleware suppliers, and research institutes. Automotive Open Architecture (AUTOSAR, –
, see http://www.autosar.org) is an ongoing follow-up to EAST-EAA aimed at establishing open
standards for automotive embedded architecture. Open systems and the corresponding interfaces
for automotive electronics (OSEK, see http://www.osek-vdx.org) is a German automotive industry
project defining standards for software components used for communication, network management,
and operating systems. Some of the outcomes of OSEK (e.g., OSEK/OS) are already widely used in
production cars.

Navet/Automotive Embedded Systems Handbook _C Finals Page ix -- #

Preface ix

with techniques that do not require full knowledge of the design rationales and
implementation details.
Shortening the time to market puts on added pressure because carmakers must be

able to propose their innovations—that usually rely heavily on electronic systems—
within a time frame that allows for these innovations to be really considered as
innovative. The players involved strive to reduce the development time while the sys-
tem’s overall complexity increases, demanding even more time. This explains why,
despite the economic competition, they have agreed to work together to define stan-
dard components and reference architecture that will help cut overall development
time.
This book contains  contributions, written by leading experts from industry

and academia directly involved in the engineering and research activities treated in
this book. Many of the contributions are from industry or industrial research estab-
lishments at the forefront of the automotive domain: Siemens (Germany), ETAS
(Germany), Volvo (Sweden), Elektrobit (Finland), Carmeq (Germany), The Math-
Works Inc. (United States), and Audi (Germany). The contributions from academia
and research organizations are presented by renowned institutions such as Technical
University of Berlin (Germany), LORIA-Nancy University (France), INRIA (France),
IRCCyN Nantes University (France), KTH (Sweden), Mälardalen University (Swe-
den), Kettering University (United States), University of Aveiro (Portugal), and Ulm
University (Germany).

Organization

Automotive Architectures

This part provides a broad introduction to automotive embedded systems, their
design constraints, and AUTOSAR as the emerging de facto standard. Chapter ,
“Vehicle Functional Domains and Their Requirements,” introduces the main func-
tions embedded in a car and how these functions are divided into functional domains
(chassis, power train, body, multimedia, safety, and human–machine interfaces).
Some introductory words describe the specificities of the development process as well
as the requirements in terms of safety, comfort, performance, and cost that need to be
taken into account.
In Chapter , “Application of the AUTOSAR Standard,” the authors tackle the

problem of the standardization of in-vehicle embedded electronic architectures. They
analyze the current status of software in the automotive industry and present the spec-
ifications elaborated within the AUTOSAR consortium in terms of standardization.
Particular attention has to be paid to AUTOSAR because it is becoming a standard
that everyone has to understand and deal with.
Finally, Chapter , “Intelligent Vehicle Technologies,” presents the key technologies

that have been developed to meet today’s, and tomorrow’s, automotive challenges in
terms of safety, better use of energy, and better use of space, especially in cities. These
technologies, such as sophisticated sensors (radar, stereo-vision, etc.), wireless net-
works, or intelligent driving assistance, will facilitate the conception of partially or

Navet/Automotive Embedded Systems Handbook _C Finals Page x -- #

x Preface

fully autonomous vehicles that will reshape the transport landscape and commuters’
travel experience in the twenty-first century.

Embedded Communications

The increasing complexity of electronic architectures embedded in a vehicle, and
locality constraints for sensors and actuators, has led the automotive industry to
adopt a distributed approach for implementing the set of functions. In this context,
networks and protocols are of primary importance. They are the key support for
integrating functions, reducing the cost and complexity of wiring, and furnishing
a means for fault tolerance. Their impact in terms of performance and dependabil-
ity is crucial as a large amount of data is made available to the embedded functions
through the networks. This part includes three chapters dedicated to networks and
protocols.
Chapter , “A Review of Embedded Automotive Protocols,” outlines the main pro-

tocols used in automotive systems; it presents the features and functioning schemes
of CAN, J, FlexRay, TTCAN, and the basic concepts of sensor/actuator networks
(LIN, TTP/A) and multimedia networks (MOST, IDB). The identification of the
communication-related services commonly offered by a middleware layer and an
overview of the AUTOSAR proposals conclude the chapter.
CAN is at present the network that is the most widely implemented in vehicles.

Nevertheless, despite its efficiency and performance, CAN does not possess all the
features that are required for safety-critical applications. The purpose of the chap-
ter, “Dependable Automotive CANs,” is to point out CAN’s limitations, which reduce
dependability, and to present technical solutions to overcome or minimize these lim-
itations. In particular, the authors describe techniques, protocols, and architectures
based onCAN that improve the dependability of the original protocol in some aspects
while still maintaining a high level of flexibility, namely (Re)CANcentrate, CANELy,
FTT-CAN, and FlexCAN.
With the development of technology, there has been an increasing number of func-

tions with strong needs in terms of data bandwidth. In addition, safety requirements
have become more and more stringent. To answer to both of these constraints, in
, the automotive industry began to develop a new protocol—FlexRay. Chapter
 “FlexRay Protocol,” explains the rationale of FlexRay and gives a comprehensive
overview of its features and functioning scheme. Finally, an evaluation of the impact
of FlexRay on the development process concludes the chapter.

Embedded Software and Development Processes

The design process of an electronic-embedded system relies on a tight cooperation
between car manufacturers and suppliers under a specific concurrent engineering
approach. Typically, carmakers provide the specification of the subsystems to suppli-
ers, who are then in charge of the design and realization of these subsystems, including
the software and hardware components, and possibly the mechanical or hydraulic
parts. The results are furnished to the carmakers, who in turn integrate them into
the car and test them. Then comes the “calibration” phase, which consists of tuning

Navet/Automotive Embedded Systems Handbook _C Finals Page xi -- #

Preface xi

control and regulation parameters in order to meet the required performances of the
controlled systems. Any error detected during the integration phase leads to costly
corrections in the specification or design steps. For this reason, in order to improve
the effectiveness of the development process, new design methodologies are emerg-
ing, in particular, the concept of a virtual platform, which is now gaining acceptance
in the area of the electronic automotive systems design.
The virtual platform concept requires modeling techniques that are suited to the

design and validation activities at each step of the development process. In this con-
text, model-based development (MBD) has been extensively studied by both car
manufacturers and suppliers. How to adapt this approach to the automotive indus-
try is discussed in Chapter , “Model-Based Development of Automotive Embedded
Systems.” This chapter identifies the benefits of model-based development, explores
the state of practice, and looks into the major challenges for the automotive industry.
One of the main issues in automotive systems is to reduce the time to market. The

reuse of components, or of subsystems, is one way to achieve this objective. In Chap-
ter , “Reuse of Software in Automotive Electronics,” the authors give an overview of
the challenges faced when reusing software in the automotive industry, the different
viewpoints on the reuse issue of manufacturers and suppliers, and the impact of the
multipartner development approach.
Sharing the same modeling language between the different parties involved in

development is an effective means to ease the cooperative development process. The
main purpose of such a language is, on the one hand, to support the description of
the system at the different steps of its development (requirement specification, func-
tional specification, design, implementation, tuning, etc.) according to the different
points of view and, on the other hand, to ensure a consistency between these different
views. Another important aspect is its ability to reflect the structure of the embed-
ded systems as an architecture of components (hardware components, functional
components, software components). The ideas and principles brought by architec-
ture description languages (ADLs) are well suited to these objectives. What is an
ADL? Why are ADLs needed? What are the main existing ADLs and their associ-
ated tools? What are the main ongoing projects in the automotive context? Answers
to these questions can be found in Chapter  “Automotive Architecture Description
Languages.”
The introduction and management of product lines is of primary importance for

the automotive industry. These product lines are linked to mechanical system vari-
ations, and certain customer-visible variations, offered in a new car. The purpose
of Chapter , “Product Lines in Automotive Electronics” is to present the system-
atic planning and continuous management of variability throughout the development
process.This chapter provides some techniques on how tomodel the variability as well
as traceability guidelines for the different phases of development.

Verification, Testing, and Timing Analysis

Some functions in a car are critical from the safety point of view, such as, for exam-
ple, certain functions in the chassis or the power train domain. Thus, validation and
verification are of primary importance.

Navet/Automotive Embedded Systems Handbook _C Finals Page xii -- #

xii Preface

Testing is probably the most commonly used verification technique in the automo-
tive industry. A general view on testing approaches is given in Chapter  “Testing
Automotive Control Software.” In particular, this chapter describes current prac-
tices and several methods that are involved in the testing activities, such as the
classification-tree method, test scenario selection approaches, and black-box/white-
box testing processes. As already mentioned, communication networks and protocols
are key factors for the dependability and performance of an embedded system. Hence,
certain properties on communication architectures have to be verified. Chapter ,
“Testing and Monitoring of FlexRay-Based Applications,” deals with the application
of testing techniques to the FlexRay protocol. The authors review the constraints in
the validation step in the development process of automotive applications and explain
how fault-injection and monitoring techniques can be used for testing FlexRay.
As CAN is the most popular network embedded in cars, its evaluation has been

the subject of a long line of research. Chapter , “Timing Analysis of CAN-Based
Automotive Communication Systems,” summarizes the main results that have been
obtained over the last  years in the field of timing analysis on CAN. In particular,
it is explained how to calculate bounds on the delays that frames experience before
arriving at the receiver end (i.e., the response times of the frames). Accounting for the
occurrence of transmission errors, for instance due to electromagnetic interferences,
is also covered in this chapter. Due to its medium access control protocol based on
the priorities of the frames, CAN possesses good real-time characteristics. However,
a shortcoming that becomes increasingly problematic is its limited bandwidth. One
solution that is being investigated by car manufacturers is to schedule the messages
with offsets, which leads to a desynchronization of the message streams. As shown in
Chapter , “Scheduling Messages with Offsets on Controller Area Network: AMajor
Performance Boost,” this “traffic shaping” strategy is very beneficial in terms of worst-
case response times.The experimental results suggest that sound offset strategies may
extend the life span of CAN further, and may defer the introduction of FlexRay and
additional CANs.
Chapter  “Formal Methods in the Automotive Domain: The Case of TTA,”

describes the formal verification research done in the context of time-triggered archi-
tecture (TTA), and more specifically the work that concerns time-triggered protocol
(TTP/C), which is the core underlying communication network of the TTA. These
formal verification efforts have focused on crucial algorithms in distributed systems:
clock synchronization, group membership algorithm, or the startup algorithm, and
have led to strong results in terms of dependability guarantees. To the best of our
knowledge, TTA is no longer being considered or implemented in cars. Neverthe-
less, the experience gained over the years with the formal validation of the TTA will
certainly prove to be extremely valuable for other automotive communication proto-
cols such as FlexRay, especially in the perspective that certification procedures will be
enforced for automotive systems, as they are now for avionic systems.
We would like to express our gratitude to all of the authors for the time and energy

they have devoted to presenting their topic. We are also very grateful to Dr. Richard
Zurawski, editor of the Industrial Information Technology Series, for his continuous
support and encouragements. Finally, we would like to thank CRC Press for having
agreed to publish this book and for their assistance during the editorial process.

Navet/Automotive Embedded Systems Handbook _C Finals Page xiii -- #

Preface xiii

We hope that you, the readers of this book, will find it an interesting source of
inspiration for your own research or applications, and that it will serve as a reliable,
complete, and well-documented source of information for automotive-embedded
systems.

Nicolas Navet

Françoise Simonot-Lion

Navet/Automotive Embedded Systems Handbook _C Finals Page xiv -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page xv -- #

Editors

Nicolas Navet has been a researcher at the Grand Est Research Centre at the National
Institute for Research in Computer Science and Control (INRIA), Nancy, France,
since . His research interests include real-time scheduling, the design of com-
munication protocols for real-time and fault-tolerant data transmission, and depend-
ability evaluation when transient faults may occur (e.g., EMI). He has authored more
than  refereed publications and has received the CAN in Automation International
Users and Manufacturers Group research award in  as well as five other distinc-
tions (e.g., best paper awards). Since , he has worked on numerous contracts and
projects with automotive manufacturers and suppliers. He is the founder and chief
scientific officer of RealTime-at-Work, a company dedicated to providing services
and software tools that help optimize the hardware resource utilization and verify
that dependability constraints are met. He holds a BS in computer science from the
University of Berlin, Berlin, Germany and aPhD in computer science from the Institut
National Polytechnique de Lorraine, Nancy, France.

Françoise Simonot-Lion is a professor of computer science at University of Nancy,
Nancy, France. She has been the scientific leader of theReal Time and InterOperability
(TRIO) research team since , which is an INRIA project at the Lorraine Labo-
ratory of Computer Science Research and Applications (LORIA) in Nancy, France.
From  to , she was responsible for CARAMELS, a joint research team with
PSA Peugeot Citroën funded by the French Ministry for Research and Technology.
She has participated in the French Embedded Electronic Architecture project (AEE,
–), and in the European project ITEA EAST-EEA (–).The purpose
of ITEA EAST was to define an industry-wide layered software architecture, includ-
ing a communication middleware, and a common architecture description language
supporting a formal description of in-vehicle embedded systems (EAST-ADL). She is
also an associate editor of IEEE Transactions on Industrial Informatics.

xv

Navet/Automotive Embedded Systems Handbook _C Finals Page xvi -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page xvii -- #

Contributors

Luis Almeida
Department of Electronics
Telecommunication and
Informatics
University of Aveiro
Aveiro, Portugal

Jakob Axelsson
Volvo Car Corporation
Gothenburg, Sweden

and

Department of Computer
Engineering
Mälardalen University
Västeras, Sweden

Manuel Barranco
Department of Mathematics
and Informatics
University of the Balearic
Islands
Palma, Spain

Patrice Bodu
Informatics, Mathematics
and Automation for
La Route Automatisée
National Institute for
Research in Computer
Science and Control
(INRIA)
Rocquencourt, France

DeJiu Chen
Department of Machine
Design
Royal Institute of
Technology
Stockholm, Sweden

Mirko Conrad
TheMathWorks, Inc.
Natick, Massachusetts

Joaquim Ferreira
Department of Information
Technologies Engineering
Polytechnic Institute of
Castelo Branco
Castelo Branco, Portugal

Ines Fey
Safety and Modeling
Consultants
Berlin, Germany

Ulrich Freund
ETAS
Stuttgart, Germany

Thomas M. Galla
Elektrobit Corporation
Vienna, Austria

Michael Golm
Siemens AG
Princeton, New Jersey

Michael Gonschorek
Elektrobit Corporation
Munich, Germany

Mathieu Grenier
Lorraine Laboratory
of Computer Science
Research and Applications
Nancy, France

and

University of Nancy
Nancy, France

Hans A. Hansson
Mälardalen Real-Time
Research Centre
Mälardalen University
Västeras, Sweden

Bernd Hardung
AUDI AG
Ingolstadt, Germany

Lionel Havet
National Institute for
Research in Computer
Science and Control
(INRIA)
Nancy, France

and

RealTime-at-Work
Nancy, France

Thorsten Kölzow
AUDI AG
Ingolstadt, Germany

Andreas Krüger
AUDI AG
Ingolstadt, Germany

Christian Kühnel
Faculty of Informatics
Technical University
of Munich
Garching, Germany

Henrik Lönn
Volvo Technology
Corporation
Gothenburg, Sweden

xvii

Navet/Automotive Embedded Systems Handbook _C Finals Page xviii -- #

xviii Contributors

Diana Malvius
Department of Machine
Design Royal Institute
of Technology
Stockholm, Sweden

Nicolas Navet
National Institute for
Research in Computer
Science and Control
(INRIA)
Nancy, France

and

RealTime-at-Work
Nancy, France

Mikael Nolin
Mälardalen Real-Time
Research Centre
Mälardalen University
Västeras, Sweden

Thomas Nolte
Mälardalen Real-Time
Research Centre
Mälardalen University
Västeras, Sweden

Roman Pallierer
Elektrobit Corporation
Vienna, Austria

Michel Parent
Informatics, Mathematics
and Automation for La
Route Automatisée
National Institute for
Research in Computer
Science and Control
(INRIA)
Rocquencourt, France

Holger Pfeifer
Institute of Artificial
Intelligence
Ulm University
Ulm, Germany

Juan Pimentel
Electrical and Computer
Engineering Department
Kettering University
Flint, Michigan

Julian Proenza
Department of Mathematics
and Informatics
University of the Balearic
Islands
Palma, Spain

Sasikumar
Punnekkat
Mälardalen Real-Time
Research Centre
Mälardalen University
Västeras, Sweden

Mark-Oliver Reiser
Software Engineering Group
Technical University
of Berlin
Berlin, Germany

Guillermo
Rodriguez-Navas
Department of Mathematics
and Informatics
University of the Balearic
Islands
Palma, Spain

Bernard Sanchez
Continental Automotive
GmbH
Toulouse, France

Bernhard Schätz
Faculty of Informatics
Technical University
of Munich
Garching, Germany

Françoise
Simonot-Lion
Lorraine Laboratory
of Computer Science
Research and Applications
Nancy, France

and

University of Nancy
Nancy, France

Friedhelm Stappert
Continental Automotive
GmbH
Regensburg, Germany

Martin Törngren
Department of Machine
Design
Royal Institute
of Technology
Stockholm, Sweden

Yvon Trinquet
Institute of Communications
Research and Cybernetics
of Nantes (IRCCyN)
Nantes, France

and

University of Nantes
Nantes, France

Stefan Voget
Continental Automotive
GmbH
Regensburg, Germany

Matthias Weber
Carmeq GmbH
Berlin, Germany

Navet/Automotive Embedded Systems Handbook _S Finals Page  -- #

I
Automotive
Architectures

 Vehicle Functional Domains andTheir Requirements
Françoise Simonot-Lion and Yvon Trinquet . 1-
General Context ● Functional Domains ● Standardized Components, Mod-
els, and Processes ● Certification Issue of Safety-Critical In-Vehicle Embedded
Systems ● Conclusion

 Application of the AUTOSAR Standard Stefan Voget,
Michael Golm, Bernard Sanchez, and Friedhelm Stappert 2-
Motivation ● Mainstay of AUTOSAR: AUTOSAR Architecture ● Main Areas
of AUTOSAR Standardization: BSW and RTE ● Main Areas of AUTOSAR
Standardization: Methodology and Templates ● AUTOSAR in Practice: Con-
formance Testing ● AUTOSAR in Practice: Migration to AUTOSAR ECU
● AUTOSAR in Practice: Application of OEM–Supplier Collaboration ●

AUTOSAR in Practice: Demonstration of AUTOSAR-Compliant ECUs ●
Business Aspects ● Outlook

 Intelligent Vehicle Technologies Michel Parent
and Patrice Bodu . 3-
Introduction: Road Transport and Its Evolution ● New Technologies ●

Dependability Issues ● Fully Autonomous Car: Dream or Reality? ●Conclusion

I-

Navet/Automotive Embedded Systems Handbook _S Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1
Vehicle Functional Domains

and Their Requirements

Françoise Simonot-Lion
Lorraine Laboratory of Computer
Science Research and Applications

Yvon Trinquet
Institute of Communications Research
and Cybernetics of Nantes

. General Context . -
. Functional Domains -

Power Train Domain ● Chassis
Domain ● Body Domain ●Multimedia,
Telematic, and HMI ● Active/Passive
Safety ● Diagnostic

. Standardized Components, Models,
and Processes . -
In-Vehicle Networks and Protocols ●
Operating Systems ●Middleware ●
Architecture Description Languages
for Automotive Applications

. Certification Issue of Safety-Critical
In-Vehicle Embedded Systems -

. Conclusion . -
References . -

1.1 General Context

The automotive industry is today the sixth largest economy in the world, produc-
ing around  million cars every year and making an important contribution to
government revenues all around the world []. As for other industries, significant
improvements in functionalities, performance, comfort, safety, etc. are provided by
electronic and software technologies. Indeed, since , the sector of embedded elec-
tronics, and more precisely embedded software, has been increasing at an annual rate
of %. In , the cost of an electronic-embedded system represented at least % of
the total cost of a car and more than % for a high-endmodel [].This cost is equally
shared between electronic and software components. These general trends have led to
currently embedding up to MB on more than  microprocessors [] connected
on communication networks. The following are some of the various examples. Figure
. shows an electronic architecture embedded in a Laguna (source: Renault French
carmaker) illustrating several computers interconnected and controlling the engine,

1-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-2 Automotive Embedded Systems Handbook

11

12
10

13
14 17

5

18

6

15
4

162
18

5 1
3

8
97

FIGURE . A part of the embedded electronic architecture of a Renault Laguna. (Courtesy of
Renault Automobile. With permission.)

the wipers, the lights, the doors, and the suspension or providing a support for inter-
action with the driver or the passengers. In , the embedded electronic system of a
Volkswagen Phaeton was composed of more than , electrical devices,  micro-
processors, three controller area networks (CAN) that support the exchanges of 
pieces of data, several subnetworks, and one multimedia bus []. In the Volvo S,
two networks support the communication between the microprocessors controlling
themirrors, those controlling the doors and those controlling the transmission system
and, for example, the position of the mirrors is automatically controlled according to
the sense the vehicle is going and the volume of the radio is adjusted to the vehi-
cle speed, information provided, among others, by the antilock braking system (ABS)
controller. In a recent Cadillac, when an accident causes an airbag to inflate, its micro-
controller emits a signal to the embedded global positioning system (GPS) receiver
that then communicates with the cell phone, making it possible to give the vehicle’s
position to the rescue service.The software code size of the PeugeotCXmodel (source:
PSA Peugeot Citroen French carmarker) was . KB in , and MB for the 
model in . These are just a few examples, but there are many more that could
illustrate this very large growth of embedded electronic systems in modern vehicles.
The automotive industry has evolved rapidly and will evolve even more rapidly

under the influence of several factors such as pressure from state legislation, pressure
from customers, and technological progress (hardware and software aspects). Indeed,
a great surge for the development of electronic control systems came through the
regulation concerning air pollution. But we must also consider the pressure from

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-3

consumers for more performance (at lower fuel consumption), comfort, and safety.
Add to all this the fact that satisfying these needs and obligations is only possible
because of technological progress.
Electronic technology hasmade great strides and nowadays the quality of electronic

components—performance, robustness, and reliability—enables using them even for
critical systems. At the same time, the decreasing cost of electronic technology allows
them to be used to support any function in a car. Furthermore, in the last decade,
several automotive-embedded networks such as local interconnect networks (LIN),
CAN, TTP/C, FlexRay, MOST, and IDB- were developed.This has led to the con-
cept ofmultiplexing, whose principal advantage is a significant reduction in thewiring
cost as well as the flexibility it gives to designers; data (e.g., vehicle speed) sampled by
one microcontroller becomes available to distant functions that need them with no
additional sensors or links.
Another technological reason for the increase of automotive embedded systems is

the fact that these new hardware and software technologies facilitate the introduction
of functions whose development would be costly or not even feasible if using only
mechanical or hydraulic technology. Consequently, they allow to satisfy the end user
requirements in terms of safety, comfort, and even costs. Well-known examples are
electronic engine control, ABS, electronic stability program (ESP), active suspension,
etc. In short, thanks to these technologies, customers can buy a safe, efficient, and
personalized vehicle, while carmakers are able to master the differentiation between
product variations and innovation (analysts have stated that more than % of inno-
vation, and therefore of added value, will be obtained thanks to electronic systems []).
Furthermore, it also has to be noted that some functions can only be achieved through
digital systems. The following are some examples: () the mastering of air pollution
can only be achieved by controlling the engine with complex control laws; () new
engine concepts could not be implemented without an electronic control; () mod-
ern stability control systems (e.g., ESP), which are based on close interaction between
the engine, steering, and braking controllers, can be efficiently implemented using an
embedded network.
Last, multimedia and telematic applications in cars are increasing rapidly due to

consumer pressure; a vehicle currently includes electronic equipment like hand-free
phones, audio/radio devices, and navigation systems. For the passengers, a lot of
entertainment devices, such as video equipment and communication with the out-
side world are also available. These kinds of applications have little to do with the
vehicle’s operation itself; nevertheless they increase significantly as part of the software
included in a car.
In short, it seems that electronic systems enable limitless progress. But are elec-

tronics free from any outside pressure? No. Unfortunately, the greatest pressure on
electronics is cost!
Keeping in mind that the primary function of a car is to provide a safe and efficient

means of transport, we can observe that this continuously evolving “electronic revolu-
tion” has two primary positive consequences. The first is for the customer/consumer,
who requires an increase in performance, comfort, assistance for mobility efficiency
(navigation), and safety on the one hand, while on the other hand, is seeking reduced

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-4 Automotive Embedded Systems Handbook

fuel consumption and cost. The second positive consequence is for the stakehold-
ers, carmakers, and suppliers, because software-based technology reduces marketing
time, development cost, production, and maintenance cost. Additionally, these inno-
vations have a strong impact on our society because reduced fuel consumption and
exhaust emissions improve the protection of our natural resources and the environ-
ment, while the introduction of vision systems, driver assistance, onboard diagnosis,
etc., targets a “zero death” rate, as has been stated in Australia, New Zealand, Sweden,
and the United Kingdom.
However, all these advantages are faced with an engineering challenge; there have

been an increasing number of breakdowns due to failure in electric/electronic sys-
tems. For example, Ref. [] indicates that, for , .% of car breakdowns were
due to such problems in Germany. The quality of a product obviously depends on
the quality of its development, and the increasing complexity of in-vehicle embed-
ded systems raises the problem of mastering their development. The design process
is based on a strong cooperation between different players, in particular Tier  sup-
pliers and carmakers, which involves a specific concurrent engineering approach. For
example, in Europe or Japan, carmakers provide the specification for the subsystems
to suppliers, who, in turn, compete to find a solution for these carmakers. The chosen
suppliers are then in charge of the design and realization of these subsystems, includ-
ing the software and hardware components, and possibly the mechanical or hydraulic
parts as well. The results are furnished to the carmakers, or original equipment man-
ufacturer (OEM), who install them into the car and test them.The last step consists of
calibration activities where the control and regulation parameters are tuned to meet
the required performance of the controlled systems. This activity is closely related to
the testing activities. In the United States, this process is slightly different since the
suppliers cannot really be considered as independent from the carmakers.
Not all electronic systems have to meet the same level of dependability as the pre-

vious examples. While with a multimedia system customers require a certain quality
and performance, with a chassis control system, safety assessment is the predominant
concern. So, the design method for each subsystem depends on different techniques.
Nevertheless, they all have common distributed characteristics and they must all be
at the level of quality fixed by the market, as well as meeting the safety requirements
and the cost requirements. As there has been a significant increase in computer-
based and distributed controllers for the core critical functions of a vehicle (power
train, steering or braking systems, “X-by-wire” systems, etc.) for several years now,
a standardization process is emerging for the safety assessment and certification of
automotive-embedded systems, as has already been done for avionics and the nuclear
industry, among others. Therefore, their development and their production need to
be based on a suitable methodology, including their modeling, a priori evaluation and
validation, and testing. Moreover, due to competition between carmakers or between
suppliers to launch new products under cost, performance, reliability, and safety
constraints, the design process has to cope with a complex optimization problem.
In-vehicle embedded systems are usually classified according to domains

that correspond to different functionalities, constraints, and models [–]. They can
be divided among “vehicle-centric” functional domains, such as power train control,
chassis control, and active or passive safety systems and “passenger centric” functional

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-5

domainswheremultimedia/telematics, body/comfort, and human–machine interface
(HMI) can be identified.

1.2 Functional Domains

Carmakers distinguish several domains for embedded electronics in a car, even
though sometimes the membership of only one domain for a given compartment
is not easy to justify. According to the glossary of the European ITEA EAST-EEA
project [], a domain is defined as “a sphere of knowledge, influence, and activity in
which one ormore systems are to be dealt with (e.g., are to be built).”The termdomain
can be used as a means to group mechanical and electronic systems.
Historically, five domains were identified: power train, chassis, body, HMI, and

telematics. The power train domain is related to the systems that participate in the
longitudinal propulsion of the vehicle, including engine, transmission, and all sub-
sidiary components. The chassis domain refers to the four wheels and their relative
position and movement; in this domain, the systems are mainly steering and braking.
According to the EAST-EEA definition, the body domain includes the entities that do
not belong to the vehicle dynamics, thus being those that support the car’s user, such
as airbag, wiper, lighting, window lifter, air conditioning, seat equipment, etc. The
HMI domain includes the equipment allowing information exchange between elec-
tronic systems and the driver (displays and switches). Finally, the telematic domain
is related to components allowing information exchange between the vehicle and the
outside world (radio, navigation system, Internet access, payment).
From one domain to another, the electronic systems often have very different fea-

tures. For example, the power train and chassis domains both exhibit hard real-time
constraints and a need for high computation power. However, the hardware archi-
tecture in the chassis domain is more widely distributed in the vehicle. The telematic
domain presents requirements for high data throughput. From this standpoint, the
technological solutions used are very different, for example, for the communica-
tion networks, but also for the design techniques and verification of the embedded
software.

1.2.1 Power Train Domain

As mentioned previously, this domain represents the system that controls the engine
according to requests from the driver (e.g., speeding up, slowing down as transmit-
ted by the throttle position sensor or the brake pedal, etc.) and requirements from
other parts of the embedded system such as climate control or ESP; the controller
acts according to natural factors such as air current temperature, oxygen level, etc. on
the one hand, and to environmental annoyances such as exhaust pollution, noise, etc.
on the other. It is designed to optimize certain parameters like driving facilities, driv-
ing comfort, fuel consumption, etc. One parameter that could be controlled by such a
system is the quantity of fuel that has to be injected into each cylinder at each engine
cycle according to the engine’s revolutions per minute (rpm) and the position of the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-6 Automotive Embedded Systems Handbook

gas pedal. Another is the ignition timing, and even the so-called variable valve timing
(VVT) that controls the time in the engine cycle at which the valves open. There are
still others such as the optimal flow of air into the cylinder, the exhaust emission, and
the list goes on.
Some information, such as the current rpm, the vehicle speed, etc., are transmit-

ted by this system to another one whose role is to present them to the driver on a
dashboard; this last component is actually part of the HMI domain.
The main characteristics for the embedded systems of the power train domain are

• From a functional point of view: The power train control takes into
account the different working modes of the motor (slow running, par-
tial load, full load, etc.); this corresponds to various and complex control
laws (multivariables) with different sampling periods. Classical sampling
periods for signals provided by other systems are l, , or ms, while the
sampling of signals on the motor itself is in phase with the motor times
(from . to ms).

• From a hardware point of view: This domain requires sensors whose
specification has to consider the minimization of the cost/resolution cri-
teria. When it is economically possible for the targeted vehicle, there
are also microcontrollers that provide high computation power, thanks
to their multiprocessor architecture and dedicated coprocessors (floating
point computations), and high storage capacity. Furthermore, the elec-
tronic components that are installed into the hardware platform have to
be robust to interferences and heat emitted by the engine itself.

• From an implementation point of view:The specified functions are imple-
mented as several tasks with different activation rules according to the
sampling rules, with stringent time constraints imposed on task schedul-
ing, mastering safe communications with other systems, and with local
sensors/actuators.

Continuous, sampled, and discrete systems are all found in this domain. The con-
trol laws contain many calibration parameters (about ). Their specification and
validation are supported by tools such as Matlab/Simulink []. Their deployment
and their implementation are the source of a lot of technical problems. For exam-
ple, underlying control models are generally based on floating point values. If, for
economical reasons, the implementation has to be done on a microcontroller with-
out a floating point coprocessor, the programmer has to pay attention to the accuracy
of the values in order to be sure to meet the precision required at the specification
level of the control laws [,]. Another major challenge, as mentioned previously, is
to efficiently schedule cyclic activities, because some of them have constant periods,
while others have variable periods, according to the motor cycles. This means that
scheduling them depends on different logical clocks []. Currently, the validation of
the control laws is mainly done by simulation and, for their integration, by emulation
methods and/or testing. Since the power train domain is subject to hard real-time con-
straints, performance evaluation and timing analysis activities have to be performed
on their implementation models first.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-7

1.2.2 Chassis Domain

The chassis domain is composed of systems whose aim is to control the interaction
of the vehicle with the road (wheel, suspension, etc.). Controllers take into account
the requests emitted by the driver (steering, braking, or speed up orders), the road
profile, and the environmental conditions, like wind, for example.They have to ensure
the comfort of the driver and the passengers (suspension) as well as their safety. This
domain includes systems like ABS, ESP, automatic stability control (ASC), and four-
wheel drive (WD).The chassis domain is of the utmost importance for the safety of
the passengers and of the vehicle itself. Therefore, its development has to be of high
quality, as for any critical system.
The characteristics of the chassis domain and the underlying models are similar to

those presented for the power train domain: multivariable control laws, different sam-
pling periods, and stringent time constraints (around ms). As for the power train
domain, the systems controlling the chassis components are fully distributed onto a
networked microcontroller and they communicate with other systems. For example,
an ESP system corrects the trajectory of the vehicle by controlling the braking sys-
tem. Its role is to automatically correct the trajectory of the vehicle as soon as there
is understeering or oversteering. To do this, it has to compare the steering request
of the driver to the vehicle’s response. This is done via several sensors distributed in
the vehicle (lateral acceleration, rotation, individual wheel speeds), taking samples 
times per second. As soon as a correction needs to be applied, it will brake individual
front or rear wheels and/or command a reduction of engine power to the power train
systems. This system cooperates online with various others such as ABS, electronic
damper control (EDC) [], etc., in order to ensure the safety of the vehicle.
Furthermore, X-by-wire technology, currently applied in avionic systems, is emerg-

ing in the automotive industry. X-by-wire is a generic term used when mechanical
and/or hydraulic systems are replaced by electronic ones (intelligent devices, net-
works, computers supporting software components that implement filtering, control,
diagnosis, and functionalities). The purpose of such a technology is to assist the
driver in different situations in a more flexible way and to decrease production and
maintenance cost for braking or steering systems. Nowadays, vehicles equipped with
X-by-wire systems have kept traditional mechanical technologies as a backup in case
the electronic ones fail. The suppression of this backup presents a major challenge
in embedded system design. Conventional mechanical and hydraulic systems have
stood the test of time and have proved themselves to be reliable. Therefore, a pure
X-by-wire system has to reach at least the same level of safety assessment, with redun-
dancy, replica, functional determinism, and fault tolerance being some of the key
underlying words. X-by-wire systems have been used in the avionic industry for some
time and so some lessons can be learned from this experience. Nevertheless, due to
economical reasons as well as space and weight constraints, the solutions used in
an avionics context cannot be compared to that of automotives (in particular, it is
impossible to have the same level of hardware redundancy). So, specific fault-tolerant
solutions need to be developed. Note that this domain will be mainly concerned by
the emerging standard ISO  (committee draft put to the ballot in ) on
the safety of in-vehicle embedded systems and the certification process that will be

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-8 Automotive Embedded Systems Handbook

required (Section .). It should be noted that, for this domain, the time-triggered
software technologies [,] bring well-suited solutions despite their lack of flexibil-
ity. The Flexray network, the OSEKtime operating system (Offene Systeme und deren
schnittstellen für die Elektronik im Kraft-fahrzeug) time operating system and the
associated Fault-Tolerant communication (FTCom), or the basic software of AUTo-
motive Open Standard ARchitecture AUTOSAR (Chapter ) are good candidates for
the implementation of such systems.

1.2.3 Body Domain

The body domain contains functions embedded in a vehicle that are not related to
the control of its dynamics. Nowadays, wipers, lights, doors, windows, seats, and mir-
rors are controlled more and more by software-based systems. In general, they are
not subject to stringent performance constraints and, from a safety standpoint, they
do not represent a critical part of the system. However, there are certain functions,
like an advanced system whose aim is to control access to the vehicle for security,
that have to respect hard real-time constraints. It has to be noted that the body func-
tions often involve many communications between each other and consequently have
a complex distributed architecture. In this domain emerges the notion of subsystem
or subcluster based on low cost sensor–actuator level networks, for example, LIN,
which connects modules constructed as integrated mechatronic systems. For exam-
ple, several functions can be associated to a door: lock/unlock control according to
a signal transmitted by a wireless network, window control according to passenger
or driver request, as well as mirror control and seat position control. One possible
deployment of these functions could be that one main electronic control unit (ECU)
supports the reception of the requests (lock/unlock, window up/down, seat up/down,
etc.) while the controllers for the motors realizing the requested actions on the phys-
ical device (mirror, window, seat) are supported by three other ECUs (Figure .).
These four ECUs are connected on a LIN. As some requests concern several doors
(e.g., the lock/unlock request), the main ECUs of each door are also connected, for
example, on a low-speed CAN. Finally, in order to present the status of the doors to
the driver (doors open/close, windows open/close), the information is transmitted by
the main ECUs to the dashboard ECU via the CAN low-speed network.
On the other hand, the body domain also contains a central subsystem, termed

the central body electronic, whose main functionality is to ensure message trans-
fers between different systems or domains. This system is recognized to be a critical
central entity.The body domain functions are relatedmainly to discrete event applica-
tions and their design and validation rely on state machines such as SDL, statecharts,
UML state transition diagrams, and synchronous models. These models validate a
functional specification, by simulation and, when possible, by model checking. Their
implementation, asmentioned before, implies a distribution of this functional specifi-
cation over hierarchically distributed hardware architecture.High computation power
is needed for the central body electronic entity, and, as with the two previous domains,
fault tolerance and reliability properties are obligatory for body systems. Although
timing constraints are not so stringent as those for the power train and chassis sys-
tems, the end-to-end response time between stimuli and response must be evaluated,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-9

ECU door
front right

ECU
dashboard

ECU door
front left

S

Window
up/down

S

Door
lock/unlock

Door
lock/unlock

Window
actuator

Mirror
actuator

Seat
actuator

ECU door
rear right

ECU door
rear left

CAN (low speed)

LIN

WCC

LIN
communication

controller

CAN
communication

controller

FIGURE . Example of doors control and of its deployment.

taking into account the performances of the hardware platform, the scheduling poli-
cies for each microcontroller, and the network protocol. In fact, the designer has to
prove that these response times are always acceptable and therefore that the responses
of each stimulus are done in a bounded interval. One challenge in this context is, first,
to be able to develop an exhaustive analysis of state transition diagrams and, second,
to ensure that the implementation respects the fault tolerance and safety constraints.
The problem here is to achieve a balance between the time-triggered approach and
flexibility.

1.2.4 Multimedia, Telematic, and HMI

Telematics in vehicles includes systems that support information exchanges between
vehicles or between vehicle and road infrastructures. For example, such systems are
already used for collecting road tolls; in the near future, telematics will make it pos-
sible to optimize road usage through traffic management and congestion avoidance
(Chapter ), to automatically signal road collisions, to provide remote diagnostics
(Section ..), or even to provide access to on-demandnavigation, on-demand audio-
video entertainment, Web surfing, sending or receiving e-mails, voice calls, short
message services (SMSs), etc.
HMI systems support, in a general sense, the interaction between the driver and

the passengers with numerous functions embedded in the car. Their main function-
alities are, on the one hand, presenting information about the status of the car (e.g.,
the vehicle speed, the oil level, the status of a door, the status of lights, etc.), the status

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-10 Automotive Embedded Systems Handbook

of a multimedia device (e.g., current frequency for a radio device, etc.), or the result
of a request (e.g., visualization of a map provided by a navigation system) and, on
the other hand, receiving requests for multimedia equipment (command for radio,
navigation systems, etc.).The next generation of multimedia devices will provide new
sophisticated HMIs related mainly to entertainment activities. A challenge for HMI
system development is thus to take into account, not only the quality, performance,
and comfort of the system, but also the impact of this technology on safety []. In
fact, using HMI must be simple and intuitive, and should not disturb the driver. One
way to control the multimedia systems is to avoid too many buttons. The commands
should be grouped in a way that minimizes the movements of the driver. For exam-
ple, the most common solution is to group them on the steering hand wheel—there
are as many as  buttons on a steering wheel for a high-end model, causing poten-
tial confusion between them. Where and how to present information to the driver is
also a major problem. The information needs to be clear and should not distract the
driver’s attention from the road. For example, in the new Citroën C a head-up dis-
play (HUD) allows key driving information (the vehicle speed, etc.) to be shown on
the windscreen in the driver’s direct line of vision. Thanks to such a system, the driver
can read the information without looking away from the road, as is now done with a
traditional dashboard.
Multimedia and telematic devices will be upgradeable in the future and, for

this domain, a plug-and-play approach is preferable. These applications need to be
portable and the services furnished by the platform (operating system and/or middle-
ware) should offer generic interfaces and downloading facilities. The main challenge
here is to preserve the security of the information from, to, or within the vehicle. Siz-
ing and validation do not rely on the same methods as those for the other domains.
Here, we shift from considering messages, tasks, and deadline constraints toward fluid
data streams, bandwidth sharing, and multimedia quality of service, and from safety
and hard real-time constraints toward security for information and soft real-time con-
straints. Nevertheless, the optimal sizing of these systems can be difficult to determine.
For example, a telematics and multimedia platform integrated into a high-end car
can be composed of two processors on which about  threads running on a Java
Machine or on a multitask operating systems will be scheduled. These threads are in
charge of handling the data stream and their schedule must give the quality of ser-
vice required by the user. This kind of system is recognized as “soft” or “firm” real
time because it is admissible for some instances of threads, depending on the cur-
rent load of the processor, to be rejected without significantly reducing the quality of
service.
According to experts of this domain, communication between a car and its envi-

ronment (vehicle-to-vehicle [VV] or vehicle-to-infrastructure [VI]) will become
more and more important in future years and will bring with it various services with
strong added value. The future technologies in this domain begin with efficient voice
recognition systems, line-of-sight operated switches, virtual keyboards, etc. but will
evolve to include new systems that monitor the status of the vehicle and consequently
manage the workload of the driver by avoiding, for example, the display of useless
information.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-11

1.2.5 Active/Passive Safety

Demands for vehicles ensuring the safety of driver and passengers are increasing, and
are both customer-driven as well as regulatory-based. Asmentioned in Section ., the
challenge to the automotive industry is to design cars whose embedded systems are
able to reach the required safety level at minimal costs. In fact, automotive embedded
safety systems target two objectives: “active safety” and “passive safety,” the former
letting off a warning before a crash and the latter acting after a crash. Seat belts and
airbags are examples of systems that help to reduce the effects of an accident, and so
they contribute to passive safety. Nowadays, the passive safety domain has reached a
good maturity level. An airbag is controlled by a complex algorithm embedded on
an ECU and consumes information provided by other systems. Alerted by signals
coming from various sensors (deceleration, vehicle speed), this algorithm regulates
the right moment to deploy the airbags. The device has to work within a fraction of
a second from the time a crash is detected by the sensor to its activating the airbag.
As far back as , the U.S. government required cars being produced after April ,
 to have airbags on the driver’s side (U.S. Department of Transportation) and in
, dual front airbags also became mandatory. Active safety refers to avoiding or
minimizing an accident and systems such as braking systems, ABS, ESP, lane keep-
ing, etc., have been specified and marketed for this purpose. The most advanced
technological solutions (Chapter ) are adaptive cruise control and collision warn-
ing/avoidance/mitigation systems that contribute to the concept of advanced driver
assistance. In general, active safety systems interpret signals provided by various sen-
sors and other systems to assist the driver in controlling the vehicle and interact
strongly with almost all the systems embedded in the car.

1.2.6 Diagnostic

As shown in the examples presented in the previous sections, nowadays the complex-
ity of electronic architectures embedded in a car infers functions deployed on several
microcontrollers to intensively interact between themselves. Therefore, diagnosis has
become a vital function throughout the lifetime of a vehicle. So, any system that can
help to access and relate information about a car is obviously very important and
should be designed simultaneously with the original design of the car. In particular,
specifying a system that is able to collect information and establish onboard diagnos-
tics (OBD) is advantageous for the vehicle’s owner as well as for a repair technician.
The generic term used for this function is “onboard diagnostics” or OBD. More pre-
cisely, this concept refers to self-diagnosis and reporting facilities, which were made
possible with the introduction of computer-based systems that could memorize large
amounts of information. While the role of early diagnostic functions was limited to a
light switching on as soon as a specific problemwas detected, recent OBD systems are
based on standardized communication means—a standardization of monitored data
and a standardized coding and reporting of a list of specific failures, termed diagnos-
tic trouble codes (DTC). Thanks to this standardization effort, the memorized values
of parameters can be analyzed through a single compliant device. The underlying
intent to this standardization effort was a regulatory constraint on exhaust emission

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-12 Automotive Embedded Systems Handbook

control systems throughout the useful lifetime of a vehicle. The OBD-II specification,
mandatory for all cars sold in the United States as of , precisely defines the diag-
nostic connector, the electrical signaling protocol, themessaging format, as well as the
vehicle parameters that can be monitored. In , the European Emission Standards
Directive //EC [] established the requirement of EOBD, a variant of OBD-II,
for all petrol vehicles sold in the European Union as of January . Several standards
have been successively provided: ISO - concerns a low-speed protocol close to
that of RS- [], ISO  introduced the protocol KWP (Keyword Protocol
) that enables larger messages [], and ISO  proposes a diagnostic, termed
Diag-on-CAN, which uses a CAN []. The next step forecast will enable reporting
emissions violations by the means of a radio transmitter.

1.3 Standardized Components, Models,
and Processes

As pointed out in Section ., the design of new in-vehicle embedded systems is based
on a cooperative development process. Therefore, it must ensure the interoperabil-
ity between components developed by different partners and ease their portability
onto various platforms in order to increase the system’s flexibility. On the one hand, a
means to reach these objectives is furnished by the standardization of services sharing
hardware resources between application processes, in particular, networks and their
protocols and operating systems. On the other hand, portability is achieved through
the specification of a common middleware. Notice that such a middleware also has
to deal with the interoperability properties. Finally, a standardized and common sup-
port for modeling and documenting systems all along their development eases the
design process itself and, more specifically, the exchanges between the different part-
ners at each step of the development cycle. In the following, we introduce some of the
standardized components or models aiming to support this cooperative development
process.

1.3.1 In-Vehicle Networks and Protocols

Specific communication protocol and networks have been developed to fulfill the
needs of automotive-embedded systems. In , the SAE Vehicle Network for Mul-
tiplexing and Data Communications Standards Committee identified three kinds of
communication protocols for in-vehicle embedded systems based on network speed
and functions []; they are called, respectively, “class A,” “class B,” and “class C.” The
same committee also published a requirement list concerning safety critical applica-
tions. In particular, the communication protocol for X-by-wire systems must respect
requirements for “dependability and fault-tolerance” as defined for class C []. Net-
works compliant to class A provide a bit rate below  kbps and are dedicated to sensor
and actuator networks; the LIN bus and TTP/A bus are among the most important
protocols in this class. Class B specifies a medium speed (– kbps) and is thus
convenient for transferring information in vehicle-centric domains and the body’s
electronics systems. CAN-B is a widely used class B protocol. Class C has been defined

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-13

for safety-relevant systems in power train or chassis domains. The data rates here
are lower than Mbps. CAN-C (high-speed CAN), TTP/C, and FlexRay fall into
this category. They have to provide highly reliable and fault tolerant communica-
tion. Obviously, class C networks will be required in future X-by-wire applications for
steering and braking. For further information on automotive-embedded networks,
the reader can refer to Chapter  as well as to Refs. [,].

1.3.2 Operating Systems

OSEK/VDX [] is a multitask operating system that is becoming a standard in the
European automotive industry. This standard is divided in four parts: OSEK/VDX
OS is the specification of the kernel itself; OSEK/VDX COM concerns the commu-
nication between tasks (internal or external to an ECU); OSEK/VDX NM addresses
network management; and finally, OSEK/VDX OIL is the language that supports the
description of all the components of an application. Certain OSEK-targeted applica-
tions are subject to hard real-time constraints, so the application objects supported by
OSEK have to be configured statically.
OSEK/VDX OS provides services on objects like tasks (“basic tasks,” without

blocking point, and “extended tasks,” that can include blocking points), events,
resources, and alarms. It proposes a fixed priority (FP) scheduling policy that is
applied to tasks that can be preemptive or non-preemptive, and combined with a
reduced version of the priority ceiling protocol (PCP) [,] in order to avoid priority
inversion or deadlock due to exclusive resource access. Intertask synchronization is
achieved through private events and alarms. The implementation of an OSEK/VDX
specification has to be compliant to one of the four conformance classes—BCC,
BCC, ECCI, ECC—that are specified according to the supported tasks (basic
only or basic and extended), the number of tasks on each priority level (only one
or possibly several), and the constraints of the reactivation counter (only one or
possibly several). BCC defines a restricted implementation that aims to minimize
the size of the corresponding memory footprint, the size of the data structures, and
the complexity of the management algorithms. ECC specifies the implementation
of all the services. The MODISTARC project (Methods and tools for the validation
of OSEK/VDX based DISTributed ARChitectures) [] provided the relevant test
methods and tools to assess the compliance of OSEK/VDX implementations.
In order to describe an application configuration, the OSEK consortium provided

a specific language, called OSEK/VDX OIL (OSEK Implementation Language). This
language allows, for one ECU, the description of several application configurations,
called application modes. For example, the application configurations can be specified
for a normal operation mode, for a diagnosis mode, and for a download mode.
The dependability purpose and fault tolerance for critical applications is usually

achieved by a time-triggered approach []. So, the time-triggered operating sys-
tem OSEKtime [] was defined. It supports static and time-triggered scheduling,
and offers interrupt handling, dispatching, system time and clock synchronization,
local message handling, and error detection mechanisms. Thanks to these services,
an application running on OSEKtime can be predictable. OSEKtime is compati-
ble to OSEK/VDX and is completed by FTCom layer for communication services.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-14 Automotive Embedded Systems Handbook

It should be noted that the specification of the basic software for AUTOSAR (Chap-
ter ) is based on services from OSEK and OSEKtime. Commercial implementations
of OSEK/VDX standard are available [] and open-source versions as well [,].
Rubus is another operating system tailored for the automotive industry and used by

Volvo Construction Equipment. It was developed by Arcticus systems []. Rubus OS
is composed of three parts: the Red Kernel, which manages the execution of off-line
scheduled time-triggered tasks; the Blue Kernel, which is dedicated to the execution
of event-triggered tasks; and the Green Kernel, which is in charge of external inter-
rupts. As for OSEK/VDXOS, the configuration of the tasks has to be defined statically
off-line.
Formultimedia and telematics applications, the operating systems are generic ones,

such as VxWorks (from WindRiver) or even a Java machine. “Microsoft Windows
Automotive .” extends the classical operating system Windows CE with telematic-
oriented features and was, for example, installed among others in certain Citroën
Xsara and the BMW  series.

1.3.3 Middleware

Flexibility and portability of applicative components require two main features. On
the one hand, an application embedded on a distributed platform is based on the
description of elements, the semantics of the interaction types among the elements,
and, consequently, the semantics of their composition. Note that these interactions
must be specified disregarding the allocation of components on an ECU. On the other
hand, the properties required at the application level, mainly timing and dependabil-
ity properties, must be met when components are allocated onto a technical platform
(operating systems, communication drivers and protocol, input/output [I/O] drivers,
etc.). Traditionally, these features are achieved through the specification of a mid-
dleware. Firstly, the structure of the middleware, that is, the elementary software
components allocated on each ECU and the way they interact, has to be formally
identified and, secondly, the interface services that furnish a way for applicative com-
ponents to use the middleware services independently of their allocation have to
be furnished. During the last decade, several projects focused on this purpose (see,
e.g., the German Titus project [] started by DaimlerChrysler in ). The pur-
pose of this project was to develop an interface-based approach similar to the ROOM
methodology [], but differing considerably in certain details, mainly in making
an “actor-oriented” approach that was suitable for ECU software. The French EEA
project [] identified the classes of software components implemented on an ECU.
Then the European ITEA EAST EEA project refined these classes and proposed a
more advanced architectural view of an ECU [].Themission of the DECOS project,
supported by the sixth EU Framework Program, was to develop an architecture-based
design methodology, to identify and specify the associated components off-the-shelf
(COTS) hardware and software components, and to provide certified development
tools and advanced hybrid control technologies. This project targeted control sys-
tems concerning the dependability of software-intensive systems, in particular, in
avionics (airbus) and automotive industries. After that, the Volcano project concen-
trated on just the communication services and provided a way (both middleware

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-15

components and interface services) for supporting the signal exchanges between dis-
tant applicative components by hiding the underlying protocol. Volcano targeted the
timing properties imposed on signal exchanges [,].
Finally, the AUTOSAR consortium (see Chapter  for more details) standardized a

common software infrastructure for automotive systems []. Once put into practice,
it will bring meaningful progress when designing an embedded electronic architec-
ture because () it will allow the portability of the functions on the architecture and
their reuse, () it will allow the use of hardware COTS, and () on a same ECU it
will be able to integrate functions from different suppliers. During the lifetime of the
car, this standard will facilitate updating the embedded software as this technology
evolves, as well as the maintenance for the computers.

1.3.4 Architecture Description Languages for Automotive
Applications

Sharing the same modeling language between the different partners involved in the
design of these in-vehicle embedded systems is a means to support an efficient col-
laborative development process. In this context, such a language will have to allow for
describing a system at different steps of its development (requirement specification,
functional specification, design, implementation, tuning, etc.) by taking into consid-
eration the different viewpoints of the actors as well as ensuring a consistency between
these different views. It will also need to reflect the structure of the embedded systems
as an architecture of components (hardware components, functional components,
software components). The concept of architecture description languages (ADLs),
developed for large software applications [], is well suited to these objectives. ADLs
are used to describe the structure of a system by means of the components that are
interconnected in a way to form configurations. These descriptions are free of imple-
mentation details, one of the objectives being the mastery of the structure of complex
systems. Thus the composition (associated to hierarchy) used to specify the assembly
of the elements constitutes the fundamental construction. For critical systems, as is
the case in automotive electronics, an ADL must support not only the specification
of the functional aspects of the system, but also those that are extra-functional (tim-
ing properties, dependability properties, safety properties), and other transformation
and verification facilities between design and implementation, while maintaining a
consistency between the different models. In , Honeywell Labs specified an ADL,
MetaH [], that was dedicated to avionics systems. This language was chosen in 
to be the core of an avionics ADL (AADL) standard under the SAE authority [].
For the specific automotive domain, several languages were proposed (Chapter ).
For example, the language EAST-ADL [], which is tightly related to the generic
reference architecture mentioned in the previous section, was specified in the Euro-
pean ITEA EAST-EEA project [] and extended in the ATESST project []. The
purpose of EAST-ADL is to provide support for the nonambiguous description of
in-car embedded electronic systems at each level of their development. It provides a
framework for modeling such systems through five abstraction levels, divided into
seven layers (also called artifacts), as shown in Figure .. Some of these layers are
mainly concerned with software development while others are linked to the execution

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-16 Automotive Embedded Systems Handbook

Vehicle level

Analysis level

Design level

Implementation level

Operational level

Vehicle feature
model

Functional analysis
architecture

Functional design
architecture

Functional instance
model

Platform
model Hardware

architecture
Environment

model

Allocation model

Software
development

Execution
platform

development

Mapping

FIGURE . The abstraction levels and the system views in EAST-ADL.

platform (ECUs, networks, operating systems, I/Odrivers,middleware, etc.). All these
layers are tightly linked, allowing traceability among the different entities that are
implicated in the development process. Besides the structural decomposition, which
is typical for any software development ormodeling approach, the EAST-ADL also has
means formodeling cross-cutting concerns such as requirements, behavioral descrip-
tion and validation, and verification activities. At vehicle level, the vehicle feature
model describes the set of user-visible features. Examples of such features are antilock
braking or windscreen wipers. The functional analysis architecture, at the analysis
level, is an artifact that represents the functions that realize the features, their behav-
ior, and their cooperation. There is an n-to-n mapping between vehicle feature model
and functional analysis architecture entities, that is, one or several functions may real-
ize one or several features. The functional design architecture (design level) models a
decomposition or refinement of the functions described at analysis level in order to
meet constraints regarding allocation, efficiency, reuse, supplier concerns, etc. Again,
there is an n-to-n mapping between the entities for functional design architecture
and the corresponding ones in functional analysis architecture. At the implemen-
tation level, the role of the function instance model is to prepare the allocation of
software components and exchanged signals to OS tasks and frames. It is, in fact, a flat
software structure where the functional design architecture entities have been instan-
tiated. It provides an abstraction of the software components to implement. In order
to model the implementation of a system, EAST-ADL furnishes, on the one hand, a
way to describe the hardware platforms and their available services (operating sys-
tem, protocol, middleware) and, on the other hand, a support for the specification of
how a function instance model is distributed onto a platform. This is done thanks to
three other artifacts. The hardware architecture includes the description of the ECUs
and, more precisely, those for the microcontroller used, the sensors and actuators, the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-17

communication links (serial links, networks), and their connections. The platform
model defines the operating system and/or middleware application programming
interface (API) and, in particular, the services provided (schedulers, frame pack-
ing, memory management, I/O drivers, diagnosis software, download software, etc.).
Finally, the allocation model is used at the operational level. It models the tasks that
are managed by the operating systems and frames, which are in turn managed by the
protocol. This is the result of the function instance model entities being mapped onto
the platform model. Note that the specification of a hardware architecture and a plat-
form model is done simultaneously with function and software specification and can
even be achieved during the definition of an allocation model. At this lowest abstrac-
tion level, all of the implementation details are captured. The EAST-ADL language
provides consistency within and between the artifacts belonging to the different levels
from a syntactic and semantic point of view.Thismakes an EAST-ADL-based model a
strong and nonambiguous support, not only for the realization of software compo-
nents, but also for building, automatically, models that are suited for format validation
and verification activities [,].

1.4 Certification Issue of Safety-Critical In-Vehicle
Embedded Systems

Several domains are recognized as critical, for example, nuclear plants, railways,
avionics.They are subject to strong regulations andmust prove that theymeet rigorous
safety requirements. Therefore, the manner of specification and the management of
the dependability/safety properties represent an important issue, as well as the certi-
fication process.This problem has become of primary importance for the automotive
industry due to the increasing number of computer-based systems such as critical
functions like steering and braking. Consequently, several proposals have been under
study. The existing certification standards [], ARP  [], RTCA/DO-B []
(used in avionics), or EN  [] (applied in the railway industry), provide strin-
gent guidelines for the development of a safety-critical embedded system. However,
these standards are hardly transposable for in-vehicle software-based systems: parti-
tioning of software (critical/noncritical), multiple versions, dissimilar software com-
ponents, use of active redundancy, and hardware redundancy. In the automotive sec-
tor, theMotor Industry SoftwareReliabilityAssociation (MISRA), a consortiumof the
major actors for automotive products in the United Kingdom, proposes a loose model
for the safety-directed development of vehicles with onboard software []. Also, the
generic standard IEC  [], used for electrical/electronic/programmable elec-
tronic systems appears to be a good candidate for supporting a certification process
in the automotive industry. Finally, an upcoming standard is being developed, derived
from that for the IEC, which serves automotive-specific needs.
The ISO international draft standard ISOWD, planned for , is currently

under progress in cooperation with the EU, the United States, and Japan [,]. The
next step will consist in the assessment of its usability by the members of the ISO asso-
ciation. The ISOWD  standard is applied to functional safety, whose purpose is
tominimize the danger that could be caused by a possibly faulty system.The ISO draft

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-18 Automotive Embedded Systems Handbook

specifies that functional safety is ensured when “... a vehicle function does not cause
any intolerable endangering states, which are resulting from specification, implemen-
tation or realization errors, failure during operation period, reasonably foreseeable
operational errors [and/or] reasonably foreseeable misuse.” This definition concerns,
in fact, the entire life cycle of a system. Safety control has to be effective during the
preliminary phase of the system design (in particular, hazard analysis and risk assess-
ment), during development (functional safety requirement allocation for hardware
and software, and system evaluation), and even during operation services and decom-
missioning (verification that assumptions made during safety assessment and hazard
analysis are still present). Once the function of a system has been specified, the safety
process dictates that it goes over an established list of driving situations and their cor-
responding malfunctions and, for each one of them, gives the safety functions that
are specified to avoid such situations as well as how to maintain the vehicle in a safe
mode. Each of these situations is characterized by the frequency of its occurrences, the
severity of the damage, and the controllability of the situation by a driver.The system is
characterized according to these parameters by a so-called automotive safety integrity
level (ASIL). The format definition of the safety properties associated to each ASIL is
not known at the present time. If we refer to the generic standard IEC  [],
each SIL is defined by two kinds of safety properties: functional requirements, that is,
no erroneous signals are produced by an ECU, and safety integrity attributes, that is,
the probability of dangerous failure occurrences per hour has to be less than a given
threshold (e.g., less than −). Throughout the development of the system that real-
izes a function, it must be verified that this system ensures all the properties required
by the SIL assigned to the function. Verification activities are based, for example, on
failuremode and effect analysis (FMEA), fault or event tree analysis, etc. completed by
several techniques that could depend on the development process stage (formalmeth-
ods and model checking, performance evaluation, schedulability and timing analysis,
probability, hardware in the loop, system in the loop, etc.).

1.5 Conclusion

Nowadays, for any activity in our everyday life, we are likely to use products or ser-
vices whose behavior is governed by computer-based systems, also called embedded
systems. This evolution also affects the automotive industry. Several computers are
embedded in today’s vehicles and ensure functions that are vehicle centric, such as
motor control, braking assistance, etc., as well as passenger centric such as entertain-
ment, seat control, etc. This chapter has shown why this evolution is inescapable and
has outlined the main thrusts of this development. First, state regulations, such as
controlling exhaust emissions or mandatory active safety equipments (e.g., airbags),
which impose embedding complex control laws that can only be achieved with
computer-based systems. Second, customers are asking for more comfortable, easy-
to-drive, and safe cars and carmakers are aiming to launch new innovative products;
both are costly. Today’s advancing software technology appears to be a good trade-off
between cost and product development, and therefore facilitates the introduction

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-19

of new services in cars. In order to identify the requirements applied to embed-
ded electronic systems, we presented a classification of these systems according to
well-identified functional domains. The pressure of these requirements affects the
technological solutions in terms of hardware components as well as software develop-
ment. Finally, the economical constraints push for the emergence of standards easing
hardware/software independence, and consequently an efficient collaborative devel-
opment process of embedded electronic architectures (Chapter ) and the reuse of
hardware and software entities (Chapter ). For example, at the present time, the CAN
is predominant in the interconnection of the ECUs. However, due to the increase in
exchanges between ECUs, other solutions are emerging (e.g., the FlexRay network,
the integration of mechatronic systems deployed on hierarchical distributed archi-
tecture, etc.). The growing complexity of the software embedded in a car reflects a
well-mastered development process. Autonomous and automated road vehicles, com-
municating cars, and integrated traffic solutions are keywords for the vehicle of the
future. These trends target controlling motorized traffic, decreasing congestion and
pollution, and increasing safety and quality of lives (Chapter ). In such a scenario,
the development of a vehicle cannot be considered separately, but must be seen as part
of a complex system. Furthermore, the next standard OSI , and those that are
already being applied for road traffic, form another strong argument for solid, struc-
tured design methods. Thanks to international initiatives, such as AUTOSAR, the
concepts of model-based development (MBD), model-driven development (MDD),
and component-based software engineering (CBSE) are penetrating the culture of
automotive system designers. This will be possible as soon as tools supporting these
concepts, and suited to the automotive industry, reach a higher level of maturity.

References

. OICA. International Organization of Motor Vehicle Manufacturers. http://www.
oica.net.

. SAE. International Society of Automotive Engineers. http://automobile. sae.org/.
. P. Hansen. New S-class Mercedes: Pioneering electronics. The Hansen Report on

Automotive Electronics, (), October .
. J. Leohold. Communication requirements for automotive systems. In Slides Pre-

sented at the th IEEE International Workshop on Factory Communication System,
WFCS’, Vienna, Austria, September .

. G. Leen andD.Heffernan. Expanding automotive electronic systems. IEEE Computer,
(), January , pp. –.

. E. Knippel and A. Schulz. Lessons learned from implementing configuration man-
agementwithin electrical/electronic development of an automotive OEM. In Interna-
tional Council on Systems Engineering, INCOSE , Toulouse, France, June .

. S. Fürst. AUTOSAR for safety-related systems: Objectives, approach and status. In
Second IEE Conference on Automotive Electronics, London, United Kingdom, March
.

. A. Sangiovanni-Vincentelli. Automotive electronics: Trends and challenges. In Con-
vergence , Detroit, MI, October .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-20 Automotive Embedded Systems Handbook

. F. Simonot-Lion. In-car embedded electronic architectures: How to ensure their
safety. In Fifth IFAC International Conference on Fieldbus Systems and their Applica-
tions, FeT’, Aveiro, Portugal, July .

. ITEA EAST-EEA project. http://www.east-eea.net.
. The MathWorks. MATLAB/SIMULINK. http://www.mathworks.com.
. T. Hilaire, Ph. Chevrel, and Y. Trinquet. Designing low parametric sensitivity FWL

realizations of LTI controllers/filters within the implicit state-space framework. In
th IEEE Conference on Decision and Control and European Control Conference ECC
, Séville, Spain, December .

. T.Hilaire, Ph. Chevrel, and J.Whidborne.A unifying framework for finite wordlength
realizations. IEEE Transactions on Circuits and Systems-I, Fundamental Theory and
Applications, (): –, .

. C. André, F. Mallet, and M.-A. Peraldi Frati. A multiform time approach to real-time
system modelling. In IEEE Second International Symposium on Industrial Embedded
Systems—SIES’, Lisbon, Portugal, July .

. A. Schedl. Goals and architecture of FlexRay at BMW. In Slides Presented at the Vector
FlexRay Symposium, March .

. TTTech Computertechnik AG. http://www.tttech.com.
. H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applica-

tions, volume  of The Springer International Series in Engineering and Computer
Science. Springer, .

. D. McClure. The HMI challenge—balancing safety with functionality. Technical
Report , SBD, September .

. EOBD. Directive //EC of the European parliament and of the council. Official
Journal of the European Communities, October .

. ISO . Road Vehicles—Diagnostic Systems. International Organization for Stan-
dardization, .

. ISO .Road Vehicles—Diagnostic Systems—Keyword Protocol . International
Organization for Standardization, .

. ISO . Road Vehicles—Diagnostics on Controller Area Networks (CAN). Interna-
tional Organization for Standardization, .

. Society of Automotive Engineers. J/ Class C Applications Requirements Classi-
fications. In SAE Handbook, Vol. , .

. B. Hedenetz and R. Belschner. Brake-by-wire without mechanical backup by using
a TTP-Communication Network. Technical report, SAE—Society of Automotive
Engineers, Detroit, MI, .

. N. Navet, Y.-Q. Song, F. Simonot-Lion, and C. Wilwert. Trends in automotive com-
munication systems, special issue on industrial communications systems. Proceedings
of the IEEE, ():–, .

. Society of Automotive Engineers. J/ Survey of Known Protocols. In SAE Hand-
book, Vol. , .

. OSEK-VDX. http://www.osek-vdx.org.
. J. Liu. Real-Time Systems. Prentice Hall, Englewood Cliffs, NJ, .
. L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to

real-time synchronisation. IEEE Transactions on Computer, ():–, .
. MODISTARC. http://www.osek-vdx.org.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Vehicle Functional Domains and Their Requirements 1-21

. OpenOSEK. http://www.openosek.org/.
. J.L. Bechennec, M. Briday, S. Faucou, and Y. Trinquet. Trampoline: An open source

implementation of the OSEK/VDX RTOS. In th IEEE International Conference on
Emerging Technologies and Factory Automation—ETFA’, Prague, September .

. RUBUS. Arcticus Systems AB. http://www.arcticus.se.
. U. Freund and A. Burst. Model-based design of ECU software: A component-based

approach. In OMER LNI, Lecture Notes of Informatics, GI Series, October .
. B. Selic, G. Gullekson, and P.T. Ward. ROOM: Real-Time Object Oriented Modeling.

John Wiley, New York, .
. F. Simonot-Lion and J.P. Elloy. An architecture description language for in-vehicle

embedded system development. In th TriennialWorld Congress of the International
Federation of Automatic Control—B’, Barcelona, Spain, July .

. A. Rajnak. Volcano—Enabling Correctness by Design. CRC Press, Taylor & Francis,
Boca Raton, FL, .

. A. Rajnak, K. Tindell, and L. Casparsson. Volcano communications concept—
Technical report. Technical report, Volcano Communications Technologies AB, .

. H. Fennel, S. Bunzel, H. Heinecke, J. Bielefeld, S. Fürstand, K.P. Schnelle,
W. Grote, N. Maldenerand, T. Weber, F. Wohlgemuth, J. Ruh, L. Lundh, T. Sandén,
P. Heitkämper, R. Rimkus, J. Leflour, A. Gilberg, U. Virnich, S. Voget, K. Nishikawa,
K. Kajio, K. Lange, T. Scharnhorst, and B. Kunkel. Achievements and exploitation of
the AUTOSAR development partnership. In Convergence , Detroit, MI, October
.

. N. Medvidovic and R. Taylor. A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineering,
():–, .

. S. Vestal. Metah support for real-time multi-processor avionics. In Workshop on
Parallel and Distributed Real-Time Systems, WPDRTS ’, Geneva, Swiss, April .
IEEE Computer Society.

. P.H. Feiler, B. Lewis, and S. Vestal.The SAE avionics architecture description language
(AADL) standard. In th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS , Washington, DC, May .

. U. Freund, O. Gurrieri, J. Küster, H. Lönn, J. Migge, M.O. Reiser, T. Wierczoch, and
M. Weber. An architecture description language for developing automotive ECU-
software. In International Conference on Systems Engineering, INCOSE, Toulouse,
France, June .

. ATESST. Advancing traffic efficiency and safety through software technology. EC IST
FP project, http://www.atesst.org.

. V. Debruyne, F. Simonot Lion, and Y. Trinquet. EAST-ADL—an architecture descrip-
tion language—validation and verification aspects. In P. Dissaux, M. Filali, P. Michel,
and F. Vernadat, editors, Architecture Description Language. Kluwer Academic
Publishers, , pp. –.

. V. Debruyne, F. Simonot-Lion, and Y. Trinquet. EAST ADL, an architecture descrip-
tion language—validation and verification aspects. In IFIP World Computer Congress
—Workshop on Architecture Description Languages, Vol.  of IFIP Book Series,
Toulouse, France, September . Springer, pp. –.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

1-22 Automotive Embedded Systems Handbook

. Y. Papadopoulos and J.A. McDermid. The potential for a generic approach to cer-
tification of safety-critical systems in the transportation sector. Journal of Reliability
Engineering and System Safety, :–, .

. SAE International. Certification Considerations for Highly-Integrated or Complex
Aircraft Systems. International Standard, November .

. RTCA DO-B. Software Considerations in Airbone Systems and Equipment
Certification. International Standard. Radio Technical Commission for Aeronautics,
.

. EN. Railway Applications—Software for Railway Control and Protection Systems.
International Standard, CENELEC, .

. P.H. Jesty, K.M.Hobley, R. Evans, and I. Kendall. Safety Analysis of Vehicle-Based Sys-
tems. In Eighth Safety-Critical Systems Symposium, Southampton, United Kingdom,
. Springer.

. IEC. IEC -, Functional Safety of Electrical/Electronic/ Programmable Safety-
related Systems—Part : General Requirements, IEC/SCA. International Standard,
.

. ISO WD . Automotive Standards Committee of the German Institute for
Standardization: Road Vehicles—Functional Safety. Preparatory Working Draft.

. M. Findeis and I. Pabst. Functional safety in the automotive industry, process
and methods. In VDA Alternative Refrigerant Winter Meeting, Saalfelden, Austria,
February .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2
Application of the

AUTOSAR Standard

Stefan Voget
Continental Automotive GmbH

Michael Golm
Siemens AG

Bernard Sanchez
Continental Automotive GmbH

Friedhelm Stappert
Continental Automotive GmbH

. Motivation . -
Shortcomings in Former Software
Structures ● Setting up AUTOSAR ●Main
Objectives of AUTOSAR ●Working
Methods in AUTOSAR

. Mainstay of AUTOSAR: AUTOSAR
Architecture . -
AUTOSAR Concept ● Layered Software
Architecture

. Main Areas of AUTOSAR
Standardization: BSW and RTE -
BSW ● BSW Conformance Classes ● RTE

. Main Areas of AUTOSAR
Standardization: Methodology
and Templates . -
Objectives of the Methodology ●
Description of the Methodology ●
AUTOSARModels, Templates,
and Exchange Formats ● System
Configuration ● ECU Configuration ●

Implementation to Existing Development
Processes and Tooling

. AUTOSAR in Practice:
Conformance Testing -

. AUTOSAR in Practice: Migration to
AUTOSAR ECU . -

. AUTOSAR in Practice: Application
of OEM–Supplier Collaboration. -

. AUTOSAR in Practice: Demonstration
of AUTOSAR-Compliant ECUs -
Description of the Demonstrator ●
Concepts Shown by the Demonstrator

. Business Aspects . -
. Outlook . -
References . -

2-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-2 Automotive Embedded Systems Handbook

2.1 Motivation

Today, development of electronic control units (ECUs) is characterized by several
driving factors:

• Demands for more services, security, economy, and comfort
• Increasing complexity due to more ECUs and the growth in sharing
software and functionality [–]

• More diversity of ECUhardware and networks (controller area network [CAN],
local interconnect network [LIN], FlexRay, MOST, etc.)

As a result of these driving factors, communication between ECUs is increasing.
Unfortunately, the ECU networks are oriented for a distribution of automotive
functions which, despite the fact that it has been evolving for some time, is still
not structured with respect to the newest technologies. The ECUs are grouped into
several subdomains (Chapter ), for example, power train, body, telematic, chassis,
etc. Before AUTomotive Open System ARchitecture (AUTOSAR), the networks of
ECUs were neither standardized in accordance with their interfaces across these
subdomain borders nor developed with respect to the interrelationships between
the nodes of the network.
Comparable statements can be made for the development processes. The software

development processes for different ECUs evolved according to the individual his-
tory of the subdomains, and were quite divergent for a long time. In the automotive
industry, most of the widespread system development processes assign functional
requirements to software and hardware components on a one-to-one basis.

2.1.1 Shortcomings in Former Software Structures

The increasing total share of software resulted in high complexity and high costs.
This became more critical with nonstandardized development processes and inad-
equate networks. In addition, the incorporation of third-party software made the
collaboration between companies even more complex.
An appropriate level of abstraction in the software architecture modeling and

appropriate integration concepts were still missing. The architectures did not reflect
the effects of quality requirements. As a consequence, these often remained vague and
unexplored. The architectures evolving with a single solution development strategy
did not represent long-term solutions.
To further complicate matters, a lot of the functionalities are distributed over

several ECUs, for example, the software that controls the lights of the indicator func-
tionality is distributed over up to eight ECUs in high-end vehicles. Moreover, some
of the future functionalities are not realizable with a loose side-by-side of the ECUs,
for example, drive-by-wire will need a very close and safe interlocking of ECUs across
different domains []. The traditional split of automotive functions will require more
and more interconnectivity with the new upcoming functionalities.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-3

2.1.2 Setting up AUTOSAR

With respect to this background, the leading automobile companies and their first-tier
suppliers formed a partnership in .This partnership has established an industry-
wide standard for the automobile electronic, AUTOSAR, which is headed by the
following  “core partners”: BMW Group, Bosch, Continental, DaimlerChrysler,
Ford Motor Company, General Motors, PSA Peugeot Citroën, Siemens VDO, Toy-
ota Motor Corporation, and Volkswagen. The first phase of AUTOSAR started in
 and ended in . During this phase,  “premium members,” companies of
the suppliers, and software and semiconductor industries joined the development
of this standard and made major contributions in the consortium. In addition to
these premium members, there are “associate members,” “development members,”
and “attendees,” whose roles in AUTOSAR varied with respect to their contribution
and exploitation (www.autosar.org).
The first phase of AUTOSAR finished at the end of , and the first AUTOSAR

products were made available on the market.
The members of AUTOSAR agree that AUTOSAR makes it possible to control the

complexity of the electrical and electronic components, together with an increase in
quality and profitability. The future of automotive engineering is in these modular and
scalable AUTOSAR software architectures.

2.1.3 Main Objectives of AUTOSAR

Themain principle of AUTOSAR is “cooperate on standards, compete on implemen-
tation.” Thus, the members established a set of main objectives, which also needed to
be standardized because theywere not considered primary factors for competitiveness
[–].

• Consideration of availability and safety requirements
• Redundancy activation
• Scalability to different vehicle and platform variants
• Implementation and standardization of basic functions as an industry-
wide “standard core” solution

• Transferability of functions from one ECU to another within the network
of ECUs

• Integration of functional modules from multiple suppliers
• Maintainability throughout the whole product life cycle
• Increased use of commercial-off-the-shelf (COTS) hardware
• Software updates and upgrades over vehicle lifetime

On all levels of modeling, an object-oriented eXtensible Markup Language (XML)
classmodel, specified inUML., is used. Startingwith the explanation of the descrip-
tion language youhave to go down (via themetamodel-level) to a concrete usermodel,
which can be realized as a concrete XML file.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-4 Automotive Embedded Systems Handbook

BSW
and
RTE

Methodology
and

templates

Application
interfaces

AUTOSAR

FIGURE . The three pillars of AUTOSAR.

The most important consequence of the stringent component-based approach of
AUTOSAR, concerning the development process, is a separation of application devel-
opment from the lower levels of the integration development (basic software [BSW]).
The separator between these two parts is the AUTOSAR runtime environment (RTE),
which concretely realizes the concept of a virtual functional bus (VFB) as an abstract-
ing communication principle. The idea of this concept is that an application does
not need to know the concrete paths from data and signals below RTE when two
applications communicate together.
This simplifies matters for the application developer. He or she, de facto, needs no

further knowledge about concrete architectures, even if a deeper knowledge about the
interfaces, made available to an application on top of the RTE, is still indispensable
(Figure .).

2.1.4 Working Methods in AUTOSAR

AUTOSAR was set up as a partnership to define an industry-wide standard. The
consortium tries to use as many existing solutions as possible, trying not to invent
everything newly. In most cases, standardization means choosing one option over
several alternatives. Of course, as different solutions are already implemented by the
companies, this means agreeing on compromises. If possible, existing standards are
taken as they are, for example, CAN, LIN, OSEK, etc. In other cases, if it is not
possible to agree directly on an existing solution, cooperation with other standard-
ization groups is established, for example, with FlexRay consortium, ASAM-FIBEX,∗
MOST, etc.
To be able to standardize one needs a minimal stability and some common under-

standing of the issue one is dealing with. Therefore, AUTOSAR was not started
without any preparation. Several research projects were carried out in advance, in
particular, the projects ITEA-EAST/EEA† and AEE,‡ which can be mentioned here.

∗ Field bus exchange format from Association for Standardization of Automation and Measuring Systems
and Measuring Systems.

† An European-funded project for embedded electronic architecture (EEA).
‡ A French funding project; a predecessor of ITEA-EST/EEA.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-5

2.2 Mainstay of AUTOSAR: AUTOSAR Architecture

2.2.1 AUTOSAR Concept

To fulfill the requirements discussed in the previous chapter and in Ref. [], the
AUTOSAR consortium defined a new development methodology for automotive
software and software architecture. The development methodology is focused on a
model-driven development style. The software architecture, as well as the ECU hard-
ware and the network topology, are modeled in a formal way, which is defined in
a metamodel that supports the software development process from architecture up
to integration. All available modeling elements are specified by the “AUTOSARmeta-
model” [].Themetamodel is defined according to the rules of theOMGMetaObject
Facility [].
The envisioned development methodology starts by defining the software architec-

ture. An exemplary software architecture can be seen in Figure ..
The boxes represent software “components.” At the perimeter of the boxes the com-

munication “ports” of the software components are shown. A port with an inward
pointing triangle is a “required port.” A port with an outward pointing triangle is a
“provided port.” Required ports are the data receivers in a data flow-oriented commu-
nication, whereas provided ports are the senders. A provided port can be connected
with one or more required ports of other software components. To be able to connect
ports, the interfaces of the two ports must be compatible.
There are two types of interfaces, “sender/receiver interfaces” and “client/server

interfaces.” A sender/receiver interface supports message-based communication,
while a client/server interface supports a remote-procedure-call style of communi-
cation.
A sender/receiver interface consists of a list of “data elements.” Each data element

has a name and a data type.
The client/server interface consists of a list of “operations.” Each operation has a

signature, consisting of a name and a list of “parameters.” Each parameter is described

Sound system
CD player

RadioSource select

Channel split

MP3

Amplifier left

Amplifier right

FIGURE . Example for software components and connectors.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-6 Automotive Embedded Systems Handbook

Engine
management Transmission

Gateway

PT-CAN

C-CAN

ESP

FIGURE . Examplary network topology.

by a name, a type, and a direction, which can be either in, out, or in–out. The details
of all software components related to modeling elements are described in Ref. [].
The software architecture is defined without consideration of the hardware on

which the software components will run on later. This means that two software com-
ponents might run on the same ECU or on different ECUs. The communication
between the components is then either an intra-ECUcommunication or an inter-ECU
communication. To abstract from this difference, AUTOSAR introduces theVFB.The
VFB can be seen as a software bus to which all components are attached. The VFB
software bus is based on ideas similar to common object request broker architecture
(CORBA) [].
The hardware architecture is modeled in parallel to the definition of the software

architecture. AUTOSAR allows formodeling the topology of a vehicle network as well
as the hardware of an ECU. An example of this topology can be seen in Figure ..
The example shows two ECUs connected to a power train CAN (PT-CAN) and

one ECU connected to a chassis CAN (C-CAN). The two CAN busses are connected
through a gateway.
Once the software architecture and the network topology are defined, the software

entities can be mapped to the hardware entities. The software component template
standardizes the format for describing the software entities and is a very impor-
tant part of the AUTOSAR metamodel. It defines how the software architecture is
specified.

2.2.2 Layered Software Architecture

AUTOSAR defines a software architecture for ECUs. This architecture is defined
in a layered style. The lowest layer of the architecture, the microcontroller abstrac-
tion layer (MCAL), is responsible for providing abstractions of typical devices. The
MCAL modules could be considered as device drivers. There are four groups of
MCAL modules: microcontroller drivers, memory drivers, communication drivers,
and input/output (I/O) drivers. The communication drivers include drivers for CAN,
LIN, and FlexRay.The I/Odrivers include drivers for pulsewidthmodulation (PWM),
analog-to-digital converter (ADC), and digital I/O (DIO). Above the MCAL there is

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-7

Hardware

Microcontroller abstraction layer

ECU abstraction layer

Runtime environment

Application software

Service layer Complex
device
driver

Microcontroller
drivers

ASW
Component 1

ASW
Component 3

ASW
Component 4

Memory
drivers

I/O
hardware

abstraction

A
U

TO
SA

R
O

S
BS

W
 sc

he
du

le
r

NVRAM
manager DEM FIM DCM

Memory abstraction
interface

Watchdog interface

NM
PDU

router

ASW
Component 2

Communication
drivers

I/O
drivers

CAN interface

COM

FIGURE . ECU software architecture.

the ECU abstraction layer (ECU-AL). The ECU-AL provides additional services on
top of the device drivers. On top of the ECU-AL, the service layer provides additional
services, such as nonvolatile random access memory (NVRAM) manager and diag-
nostic event manager (DEM). The AUTOSAR operating system (AUTOSAR OS) is
also part of the service layer. The AUTOSAR OS must be able to access the hardware
in order to manage, for example, the timer for the time-sliced scheduling. This is the
reason why the service layer is allowed to access the hardware. This is shown in the
shape of a flipped “L” in Figure .. Besides the layered architecture, there is the so-
called complex device driver, which is also allowed to directly access the hardware.
The purpose of the complex device drivers is to extend the standardized part of the
architecture with new device drivers, which have not yet been standardized.
The strict separation of BSW and application software (ASW) was mentioned in

Section ...This separation is supported by the RTE layer.TheRTE shields the ASW
from the peculiarities of the BSW and allows the ASW to access BSW services, such
as the NVRAM manager, in a clearly defined way. Another important responsibility
of the RTE is the provision of communication services. The RTE can be considered as
a middleware that is a local realization of the concept of the VFB.
More details of the layered software architecture are described in Figure ..

2.3 Main Areas of AUTOSAR Standardization:
BSW and RTE

2.3.1 BSW

The AUTOSAR standard defines a fixed set of BSW modules. As described in the
previous section, these modules are organized in a layered architecture. The set of

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-8 Automotive Embedded Systems Handbook

BSWmodules comprises device drivers, communication and I/O drivers, AUTOSAR
services like the NVRAM manager or DEM, and of course the AUTOSAR OS
(Figure .). In total, AUTOSAR specifies  BSWmodules [].
Each of these BSWmodules has a clearly defined interface, which can be employed

by other modules or by the RTE. Note once more that it is not possible for software
components above the RTE to access any of these interfaces directly. An interface basi-
cally consists of a set of application programming interface (API) functions, a set of
data types, and possible error codes returned by the API functions. Besides the inter-
face, AUTOSAR also defines a set of configuration parameters for a BSW module.
These parameters are divided into precompile, link time, and postbuild parame-
ters, reflecting the exact point in time when the corresponding configuration takes
place.

2.3.2 BSW Conformance Classes

It would be a huge effort to switch from an existing platform to AUTOSAR in one
step, as this would mean implementing all  BSW modules, adapting the existing
interfaces, and adapting the ASW to the AUTOSAR interfaces. Furthermore, during
the migration period, it is expected that in the next-generation automotive systems
there will be a mix of AUTOSAR and non-AUTOSAR software and ECUs.
In order to support and ease this migration, AUTOSAR defines three implemen-

tation conformance classes (ICCs) for the BSW. The basic idea is to cluster the BSW
modules so that only the interfaces between these clusters have to be AUTOSAR-
conform, and it is not necessary to implement each BSWmodule as a unit of its own.
Note that the ICCs only affect the BSW and the RTE. The interfaces of the software
components above the RTE are not affected.Thus, an ASW component can always be
employed without changes to its interface or implementation, regardless of the ICC
of the underlying RTE and BSW.

2.3.2.1 ICC1

ICC is the “lowest” implementation conformance class. Here, the RTE and the entire
BSW are put into one cluster. Only the interface between the RTE and the ASW com-
ponents and the interface to the bus have to be AUTOSAR-conform. The interface
between the RTE and the BSW is not standardized in this case. Therefore, the RTE
implementation is proprietary.
Nevertheless, an ICC implementation of BSW and RTE still has to provide the

functionality and behavior as standardized byAUTOSAR, for example, the scheduling
of the runnable entities (Section ...) of the ASW components or the communica-
tion between ASW components has to be the same as if the BSW modules were not
clustered. Furthermore, ASW components expect certain functionality from the BSW,
especially AUTOSAR services like the NVRAMmanager or DEM.This functionality
has to be provided, although not necessarily, in the form of separate BSW modules.
An ICC implementation would typically be the first step in migrating from an

existing proprietary implementation to AUTOSAR.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-9

2.3.2.2 ICC2

In ICC, logically related modules are bundled into separate clusters, for example, all
communication-related modules form one cluster.The RTE is one cluster on its own.
The interfaces between the clusters, as well as the interfaces to the ASW components
and to the bus have to be AUTOSAR-conform.
ICC allows for integrating BSW clusters from different vendors, for example, one

could use a communication stack from vendor A and an operation system from
vendor B.

2.3.2.3 ICC3

ICC implements the “highest” level of AUTOSAR compatibility. Here, all BSWmod-
ules as defined by AUTOSAR are present with their corresponding interfaces. There
is no clustering of modules.

2.3.3 RTE

2.3.3.1 Features of RTE

As described in Section .., there are basically two separate parts in the AUTOSAR
architecture, the one above the RTE and the one below (Figure .). In the part below

ASW
component

ASW
component

ASW
component

Sensor
software

component
AUTOSAR

interface
AUTOSAR

interface
AUTOSAR

interface

AUTOSAR runtime enviroment (RTE)

Standardized
interface

Standardized
interface

Standardized
interface Standardized

interface

Standardized
interface

Complex
device
drivers

ECU
abstraction

AUTOSAR
interface

AUTOSAR
interface

Standardized
interface

Operating
system

Communication

AUTOSAR
interface

Basic software

ECU-hardware

AUTOSAR
software

.

Runnables Ports

Tasks C-APIs

FIGURE . RTE features.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-10 Automotive Embedded Systems Handbook

the RTE, BSW modules are free to call any API function of other modules or to use,
for example, certainOS services directly. In the part above the RTE, ASWcomponents
communicate with each other via ports.There is no other way of communication (e.g.,
via shared global variables) allowed. An ASW component is also not allowed to use
any BSWmodule directly. Furthermore, the dynamic behavior of an ASWcomponent
is described and implemented by means of “runnable entities.” A runnable entity is a
schedulable unit of an ASW component. Basically, it is a sequence of instructions that
can be started by the RTE, as a result of an event initiated by the RTE. Such an RTE
event is triggered, for example, when new data arrives at a port, when a timer expires,
or when a server call returns. The concept of runnable entities and their activation is
described in Refs. [,].
The task of the RTE is to glue these two parts together. The word “glue” is really

important in this context. It should be made clear that the RTE is not just an
abstraction layer between ASW and BSW. In a non-AUTOSAR application, the ASW
typically employs OS services (like activating a task) directly or it directly sends out
or receives a CAN message. This is not possible in AUTOSAR. An ASW component
simply does not know the concept of an OS task or a CAN message. Also, there is
no one-to-one mapping between these concepts and AUTOSAR. Therefore, it would
not be sufficient to just create a wrapper around an existing proprietary application in
order to make it AUTOSAR-conform. Instead, the entire internal behavior has to be
adapted to the AUTOSAR paradigm.
Thus, the RTE employs the BSW in order to implement the behavior of the ASW

components specified bymeans of ports and runnable entities.This includes twomain
tasks: implementing the communication and implementing the activation of runnable
entities.
For the communication task, the RTEprovides a set of APIs for sending or receiving

data elements and for remote server calls in the case of client/server communication.
Runnable entities are mapped to OS tasks (Section ..). Therefore, in order to acti-
vate a runnable entity (e.g., because data that the runnable entity was for has arrived),
the RTE would typically activate the corresponding OS task that the runnable entity
is mapped to. But it is also possible, in the case of a client/server operation, to call a
runnable entity in the form of a direct function call.
The RTE is furthermore responsible for ensuring the consistency of data during

communication, that is, to ensure that data are not changed while being received or
sent.

2.3.3.2 Generation of RTE

TheRTE is generated in order to ensure that it fits a given ECU and system configura-
tion. This means that an RTE implementation always provides only the functionality
that is needed for a given configuration, and nothing more.The generation process is
divided into two phases (Section ..):

• Contract phase: This phase is ECU-independent. It provides the contract
between a given ASW component and the RTE, that is, the API that the
ASW component can be coded against. The input for this phase is the
description of an ASW component with all its ports and runnable entities.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-11

The result is an ASW component-specific header file that can be included
by the corresponding source code file. In this header file, all RTE API
functions that may be used by the ASW component are declared. It also
declares the necessary data types and structures needed by the ASW com-
ponent.The set of allowedAPI functions depends on the ports of the given
ASW component. For example, if an ASW component has a send-port
p with a data element d, the contract phase will generate the API func-
tion Rte_Send_p_d.The ASW component uses this function to send data
element d via port p.

• Generation phase: In this phase the concrete code generation for a given
ECU is performed. Input for this phase is the ECU configuration descrip-
tion, which includes especially the mapping of runnable entities to OS
tasks or the communication matrix. Together with the ASW component
header files created during the contract phase and all necessary BSW code,
the generated code can then be compiled to an executable file for the
given ECU.

Note that it is also possible to deliver an ASW component only in the form of object
code, for example, in order to protect intellectual property. All necessary informa-
tion is ECU-independent and already available in the contract phase. With the ASW
component-specific header file it is possible to compile the source code of a given
ASW component. The resulting object code together with the header file can then be
delivered as a bundle to the customer.
However, the object code leaves less potential for optimizations, for example, cer-

tain functions cannot be implemented as C-macros, which would be possible if the
source code of the ASW component is available.

2.4 Main Areas of AUTOSAR Standardization:
Methodology and Templates

2.4.1 Objectives of the Methodology

AUTOSAR is pursuing precise technical goals to manage future software architec-
tures. Some of these goals are

• Transferability of functions from one ECU to another ECU within the
network

• Integration of functional modules from multiple suppliers
• Reuse of proven solutions (hardware and software)

In order to reach these goals, AUTOSAR has introduced a standardized architecture
defined by a metamodel. This will be the basis for the interoperability of products
developed using theAUTOSAR standard and amethodology approach for developing
according to and complying with the AUTOSAR standard.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-12 Automotive Embedded Systems Handbook

.XML .XML

.XML .XML .XML

Prepare
input

Configure
system

Extract ECU-specific
information

System
configuration

input

System
configuration

description
Configure

ECU
Generate

executable

ECU extract
of system

configuration

ECU
configuration

description

ECU
executable

Work on system
Work on ECU

FIGURE . Overview of AUTOSARmethodology.

2.4.2 Description of the Methodology

TheAUTOSAR methodology describes the dependencies of activities on work prod-
ucts in software process engineering metamodel (SPEM) notation. It focuses on
workflow rather than specifying a full process or business interactions. It allows for
consistency with a full integration into the AUTOSAR metamodel. The AUTOSAR
metamodel defines how something is described, the AUTOSARmethodology defines
when these descriptions are used in specific activities (Figure .).

2.4.3 AUTOSAR Models, Templates, and Exchange Formats

AUTOSAR is based on models. Everything in an AUTOSAR system needs to be
described in terms of standardized model elements. The models are not fixed. Infor-
mation is added both in consecutive stages performed by different roles as well as
iteratively by the same role.
The models are serialized to a standardized XML format for exchange and persis-

tence using XML standard.
The source code is generated directly based on the model (ASW component API,

RTE middleware, BSW configuration) (Figure .). So, AUTOSAR models are not
merely the documentation of the electronic/electric systems but they also drive the
software development.

2.4.4 System Configuration

First, the system configuration input has to be defined (Figure .). This is made
by selecting ASW components and hardware, and by identifying the overall system
constraints. This requires engineering decisions at the system level, which means in
practice, that the appropriate templates should be filled out.The next step, the activity
configure system,mainlymaps theASWcomponents to the ECUs regarding resources

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-13

Generation.XML
schema

Template metamodel

· Software component template

· ECU resource template

· System template

· ECU configuration template

· Basic software module template

· Generic structure template

Model
persistence

rules for XML

FIGURE . Overview of AUTOSAR information types.

and timing requirements. This is one of the most important decisions made during
the configure system activity. The output of the activity configure system is

• The system configuration description including all system information
(mapping, topology, etc.)

• The allocation of each ASW component into an ECU
• The system communication matrix, which describes precisely the features
of the networks/media used

.XML .XML

.XML .XML

System
configuration

input

System
configuration
description

System
communication-

matrix

Collection of
ASW component-
implementations

Configure system

AUTOSAR
system

configuration
tool

FIGURE . System configuration overview.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-14 Automotive Embedded Systems Handbook

The system configuration generator supports all these operations. Of course, these
different steps are iterative as the system design can evolve and be improved during
the project development (new ASW components, new networks, new ECUs, etc.).

2.4.5 ECU Configuration

The activity “extract ECU-specific information” simply extracts the information
from the system configuration description needed for a specific ECU into an ECU
extract of system configuration file.
The next activity, “configure ECU”, adds all necessary information for implementa-

tion like tasks, scheduling, main BSW modules list, assignments of the runnables to
tasks, and configuration of the BSWmodules. This activity is a nontrivial design step
as it should fix all configuration parameters based on the vendor-specific and generic
parameters, the BSW module description, and the collection of available ASW com-
ponents implemented on the ECU. The result is included in the ECU configuration
description. Due to the high complexity of this step, it has to be supported by different
tool-related editors. To automatically generate parts of the configuration code for the
RTE, OS, and COM, certain generators should be used.
The generate executable activity is mostly done as current executable generation

with compile and link phases from designed code.
The phase “work on ECU” is also iterative depending on new ASW components

that will be integrated into the ECU or new network constraints. There is a strong
link between the system and ECU activities, with numerous exchanges between the
different actors. But the AUTOSAR methodology does not define who is doing what
and when in a software development (Figure .).

2.4.6 Implementation to Existing Development Processes
and Tooling

AUTOSAR defines a set of standard data types, interfaces, component types, and
BSW parameters specified with models. These models will be exchanged and reused
between suppliers and customers during the life cycle of the software development for
implementation. An organization and a sharing of the different roles and tasks will be
identified and contracted between the original equipment manufacturers (OEM) and
their suppliers using interoperable tools to manipulate these models.
In order to benefit from AUTOSAR, the methodology needs to be applied to

the development process. The software architecture needs to be mapped to the
AUTOSAR metamodel. Former “paperwork” specifications are replaced by models,

.XML .XML .XML .exe

System
configuration

description

Extract
ECU-specific
information

ECU extract
of system

configuration

 Configure
ECU

 ECU
configuration

description

Generate
executable

ECU
executable

FIGURE . Work on ECU.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-15

which directly drive software development via code generation. In order to consis-
tently work on the model, the methodology requires a dedicated AUTOSAR tooling.
The conclusion that can be drawn is that the application of AUTOSAR develop-

ment requires mapping and adaptation of the existing development processes to the
AUTOSAR methodology.

2.5 AUTOSAR in Practice: Conformance Testing

If an OEM buys a piece of AUTOSAR software, he or she wants to be sure that it
is implemented in compliance with the specifications defined by the standard. Only
if this is guaranteed can the objectives of AUTOSAR be realized, that is, the pieces
of software from different suppliers run together in the system of ECUs of a specific
vehicle. Furthermore, this has to be enabled in different configurations and versions
before the whole system is integrated (Figure .).
To enable these objectives, AUTOSAR defines conformance tests []. A confor-

mance test is a test of an implementation for conformance against the requirements
of a specification. It is a prerequisite for the interoperability of modules from differ-
ent suppliers. In a conformance test, the tester of a system under test (SUT) is not
the implementer.This prevents incorrectness and increases the quality of the test. The
test results are analyzed by a conformance test agency (CTA), which finally attests the
conformance of the SUT.
To ensure the intellectual property of the implementer, the tester checks the SUT

as a black box. The test only needs the object code. This enables the implementer to
hide details of the implementation.

AUTOSAR standard
specification

Product supplier 1 Product supplier 2

Conform?Conform?

Interoperate

FIGURE . Conformance testing.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-16 Automotive Embedded Systems Handbook

In a first phase, AUTOSAR concentrated on the conformance test for the BSW
modules on different levels of details, the ICCs (Sections ... through ...). Later
on, the principles will be extended to include ASW components. In the following, we
will restrict the considerations for BSW, that is, the SUT is always a BSWmodule or a
cluster of BSW modules.
The objective of the tests is to check the connectability of modules and clusters

in terms of basic functionality and the possibility to configure a module or cluster
according to the specified set of valid parameter values. This does not include an
exhaustive functional test of the correctness. Such tests, as well as integration tests,
have to be operated separately. To stress this once again: the interoperability is the
focus of the conformance test, not the functional correctness.
If the modules and clusters are tested to be conformant, this increases the capability

to integrate themwithin an architecture. Interoperability amongmodules and clusters
is supported as well as the migration from and reuse of existing solutions.
To reach these goals, the AUTOSAR standard has to deliver a consistent set of

specifications for the BSW modules that are related to the SUT. This encloses the
related BSW module requirements document, BSW module software specification,
and conformance test specification. Based on these documents, the following steps
are executed for the execution of a conformance test:

. TheAUTOSAR consortium provides the required documents (see above).
. A CTA or a product supplier provides an executable conformance test

suite.
. Product supplier executes the tests, that is, runs the conformance test suite

against the SUT.
. Finally, a CTA approves the test results.

In all, the procedure for conformance testing enables a great amount of flexibility
for the bilateral relationships between a product supplier and the party that buys
the product—normally the OEM or a first-tier supplier. The supplier and the buyer
can agree on who executes the test and who approves the results of such a test. If a
product supplier sees an advantage for himself or herself, he or she can perform a
self-declaration. In this case he or she can run the complete conformance test process
in-house. On the other hand, a buyer may want to take a specific CTA.
But, this flexibility does not mean that there is a difference in the quality of the

results coming from different paths. The procedure ensures a high quality of the
conformance tests by the accreditation of the CTA as well as the product supplier
who wants to perform the self-declaration. The demands on an AUTOSAR confor-
mance test are compliant with ISO/IEC , which describes general requirements
for accreditation bodies.

2.6 AUTOSAR in Practice: Migration
to AUTOSAR ECU

If a company has products in the field, the implementation of the standard in one
step is not realistic, and also not advisable. A stepwise implementation linked with a

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-17

guided maturity process at all development stages to ensure the quality is necessary.
In fact, it is advisable to approach the AUTOSAR standard gradually to collect the
first experiences at mixed platforms and to set specific, well-defined, and manageable
objectives for the development. It is important to understand not only the simple use
of the AUTOSAR templates and schemes, but also the basically new concepts of the
AUTOSAR development process by using it to get experience.
In most cases, an AUTOSAR-conformant ECU is not developed from scratch.

Existing systems are modified to reach a system that is conformant to the AUTOSAR
standard.
Several kinds of mixed systems are possible:

• Some of the BSWmodules may be replaced by AUTOSAR BSWmodules.
This does not show the applicability of the overall AUTOSAR concept.
The advantage of AUTOSAR is that the whole BSW stack is standardized.
With that, not only the single modules, but also the interaction between
the modules is defined. The overall advantage of the specifications can be
reached only if the whole AUTOSAR BSW is used.

• Clusters of BSW modules may be replaced by AUTOSAR BSW clusters.
This version makes sense for getting specific advantages from the defined
clusters, for example, COM stack. Since it is a usual business model these
days for several vendors to sell specific clusters, such a variant fits well
into the business models that existed before AUTOSAR. As one may say,
it is better than having nothing.

• An RTE implementation may be added above the original, non-
AUTOSAR-compliant BSW and used for some applications, but not all.
This version is a possiblemigration path for the applications used in exper-
imental systems. It is a first step toward reaching the ICC level. It is not
recommended for serial production as it needs additional memory and is
without any functional advantages.

• A system methodology may be used for specifying the system, but may
not be used to design an AUTOSAR architecture and implementation.
Not only does one need migration scenarios for implementing the pro-

cesses, but also for adapting them into the system. As their change is
often related to organizational restructuring, the change of a process takes
longer than that for the architecture and may be established earlier.

In the remaining part of this section, we want to describe the necessary steps in the
migration from an ECU to an AUTOSAR ECU. We present these steps in the form of
a use case with a title, a pre-, a postcondition, and a step-by-step description.

Title of Use Case:
Change an existing non-AUTOSAR ECU such that it encloses AUTOSAR BSW,

RTE, and ASW components.

Precondition:
An ECU with non-AUTOSAR software is available.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-18 Automotive Embedded Systems Handbook

Postcondition:
An ECU with AUTOSAR software is available.

Description:

. Decide on an ICC, ICC, or ICC ECU architecture. The phrase “not
from scratch” encloses that usually well-trained software development
processes exist. It is necessary to analyze the existing software architec-
ture and building process. Examine how the existing BSW may interact
with the RTE. Decide on which way to go. Is the existing BSW able to ful-
fill ICC with slight changes? Or is it more appropriate to develop an ICC
system? Such a decision cannot be taken by a supplier for its own product.
If the OEM intends to run ASW components from other suppliers on this
ECU, the requirements coming from these additional ASW components
have also to be taken into account.

. Describe the ECU type, the connectivity, and resources using the ECU-
resource template. This step can be done directly by the semiconductor
vendor.The templates may be delivered together with the hardware as part
of the documentation.

. Develop architecture for the application layer. Analyze the software appli-
cations that already run on the ECU. Logically divide the applications
into components. Split these components into hardware-independent and
hardware-dependent components. The first group will run as ASW com-
ponents on top of an RTE with the underlying BSW. The second group
may be implemented as a complex device driver.
Transform the hardware-independent components into ASW compo-

nents. Extracting a single component from the legacy application means,
all internal and external communication needs to be analyzed. The data
types and interfaces used by the component are modeled according to
this analysis. The actual component—this may be an atomic-component,
a sensor-component, or an actor-component—is modeled by using these
interfaces.
Apart from its communication, the internal behavior of the component

also needs to be analyzed. Cyclically based and event-based functions in
the legacy code are modeled as runnable entities.

. Go through the system configuration step. The integrator designs map-
ping constraints using the system constraint part of the system template.
All components planned to run on the same ECU are mapped to its
hardware in the system-generation step.
The outcome of the generation step is extracted with the help of an ECU

extractor.The information necessary to implement, configure, and test the
single ECU is separated. Now, one can run the AUTOSAR RTE generator
contract phase. This generates the set of header files needed by the appli-
cation programmer to implement the component. The components are
linked together with the help of ports and connectors.

. Integrate ECU. Configure the BSW, such as thread usage and thread
priorities, bus-system communication parameters (e.g., CAN frame

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-19

priorities), etc. RTE generation phase using the RTE generator. If all the
necessary software for the ECU has been collected, including the BSW
code, the RTE code, and the ASW components code, one can build the
ECU software image. Download the image to the target and test it.

The concrete steps are not defined by AUTOSAR. A lot of developers were disap-
pointed by this fact because they expected to get more concrete process recommen-
dations from the standard. But it is not in responsibility of the standard to publish a
suitable process.This is an arena for competition. Therefore, each company is respon-
sible for the process. Also, the expectation to get even guidelines has to be denied.
This would be interfering with the standard itself. So, the borders of AUTOSAR are
very clear.

2.7 AUTOSAR in Practice: Application
of OEM–Supplier Collaboration

In this section, we want to consider an example for how an OEM and a supplier may
collaborate during the development of a network of ECUs. It is assumed that the sup-
plier develops several ECUs that run within the network of ECUs in a vehicle. The
OEM is the integrator for the whole system. Again, the steps are presented in the
form of a use case description (Figure .).

Title of Use Case:
A subsystem, consisting of several ECUs (integrated hardware and software), is sold

by one supplier to anOEM.TheOEM integrates the subsystem into its vehicle network
of ECUs. The remaining ECUs may come from different suppliers.

OEM Supplier

Functional
architecture

Software
architecture

Hardware
architecture

System config.
description

Config. data
complete system

Subsystem

System

ECU resource
description

ECU hardware

ASW-
components

Config. data
extract for ECU RTE

BSW

ECU with software

ASW comp.
descriptions

FIGURE . Example for an OEM–supplier collaboration.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-20 Automotive Embedded Systems Handbook

Precondition:
A subsystem, consisting of several ECUs equipped with AUTOSAR software, is

developed by the considered supplier.
Postcondition:
A subsystem of ECUs is adapted according to the customer’s specific wishes and is

sold to the customer.

Description:

. The supplier delivers the input information for the system configuration
step.The supplier delivers the ECU resource description for the hardware
used in the subsystem to the OEM.TheOEM adds this description to the
ones used in the whole vehicle such that he or she gets a complete set of
ECU resource descriptions for all hardware used in the dedicated vehicle.
The supplier delivers the ASW component descriptions for the ASW

components of the subsystem to the OEM.The OEM adds these descrip-
tions to his or her software architecture for the whole vehicle.
The supplier delivers the system constraints for the ASW components

used in the subsystem to the OEM. The OEM integrates these system
constraints into the system architecture.

. OEM runs the system configuration. The OEM integrates all three
templates—the ECU resource description, the system template, and the
ASW component template. Now, the OEM runs through the system con-
figuration step. This step is an iterative one. A first mapping of ASW
components to the ECU hardware may lead to the need to adapt the sys-
tem architecture as well as the software architecture.This leads to changes
on the side of the OEM as well as on the supplier’s side. So, a strong
relationship between OEM and the involved suppliers is necessary.
TheOEM extracts the configuration descriptions for the dedicated sub-

system of ECUs that will be implemented by the considered supplier. The
OEM delivers this configuration data to the supplier.

. Supplier implements subsystem.The supplier adapts its subsystem, gener-
ates the RTE, and configures the BSW for each ECU. After the integration
and testing on the ECU as well as on the subsystem level, the supplier
delivers the integrated subsystem to the OEM.

. OEM integrates system.TheOEM integrates the subsystem into the whole
electronic/electric system, including the necessary integration and testing
steps.

The use case shows the intensive interaction between OEM and suppliers. This
is particularly necessary when considering early integration on the vehicle function
bus level. Such a new concept breaks traditional OEM–supplier relationships. As
mentioned for the development processes, the introduction of new OEM–supplier
collaboration processes needs time and is difficult to establish. But the success
of the whole standard depends on the success of the processes demanded by the
standard.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-21

2.8 AUTOSAR in Practice: Demonstration
of AUTOSAR-Compliant ECUs

To put all the previously described concepts into practice, one needs experience.
To acquire and demonstrate this experience, a learning project in the form of a
demonstrator buildup is a suitable method. This section gives a brief overview of a
demonstrator that shows the concepts and application of the specifications. Thedevel-
opment itself helps to teach how the methodology can be applied. The demonstrator
was developed by Siemens in the business field of Siemens VDO automotive. The
demonstrator is a set of ECUs from the different subdomains in the vehicle that were
considered in phase I of AUTOSAR, that is, body, chassis, and power-train.

2.8.1 Description of the Demonstrator

The main functionality that is shown in the demonstrator is cruise control. This is a
function that needs data from several sensors coming from different domains, has a
central (domain independent) responsibility to process the data, and uses several out-
put devices. With that, this function has a lot of aspects that are suitable for showing
several of the main objectives of AUTOSAR. But to show the interaction with other
functionalities, additional applications are realized. These include air conditioning,
wiper washer, and central door locking. In this section, though, we will concentrate
on cruise control.
The driver can activate the cruise control function by pressing a button to set the

speed. The cruise control starts to maintain the speed based on the actual vehicle
speed. To inform the driver about the actual status, a cruise control light symbol is
activated within the instrument cluster. The driver can revert to manual control by
pressing a cancel button or the brake pedal. Once having activated the cruise con-
trol functionality, the speed is memorized. The last active value can be resumed by
pressing a resume button. At any time, the driver can override the actual set speed
by pushing the acceleration pedal. If the driver releases the pedal, the previously set
speed is resumed and maintained again.
For the presentation of the cross-domain concepts of AUTOSAR, this functionality

is in particular suitable because of

• Several sensors: acceleration pedal, brake, buttons
• One domain independent algorithm to process the data
• Several actuators: engine control, instrument cluster

The demonstrator consists of a set of four ECUs with reduced functionality and an
additional PC. They are connected via a high-speed CAN. Three of them are based
on NEC V hardware and one on a TriCore microcontroller (μC). The PC is used
for the central control of the whole functionality, bus-traffic-simulation, and human–
machine interface (HMI) purposes. On the V ECUs, an ICC AUTOSAR BSW
stack is implemented. On the TriCore μC, an ICC implementation of the AUTOSAR
BSW stack is realized. Each ECU takes over a specific role in the network. One takes
over the responsibility of a real-time server, one of an engine control unit, one of a

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-22 Automotive Embedded Systems Handbook

HMI-PC

CAN/LIN

Autosar COM (CAN)

Cruise control
algorithm

Body control unit
µC: V850

BSW: ICC3

Engine control unit
µC: TriCore
BSW: ICC2

Real-time server
µC: V850

BSW: ICC3

Instrument cluster
µC: V850

BSW: ICC3

FIGURE . Cruise control.

body control unit, and one of an instrument cluster control unit. Sensors and actuators
are connected via CAN to one of the ECUs (Figure .).
The whole system is placed in two transportable suitcases, such that it can be used

for demonstrations at the customer’s site. Each of the involved subdomains can now
illustrate how the specific ECU works in the cross-domain network of AUTOSAR
ECUs.

2.8.2 Concepts Shown by the Demonstrator

The result shows the practice of the AUTOSAR development cycle and the ability
of the integration of a cross-domain system functionality using AUTOSAR. Exper-
tise in AUTOSAR development is gained by applying all steps of the AUTOSAR
methodology, beginning with the use of the different templates and the system config-
uration. ASW components are described by means of the ASW component template.
With that, the usability of the ASW component template is shown, and the ASW
components are independent from concrete hardware.
Here the term “usability” has to be understood, and not just in the sense that one

can describe an ASW component with such a template. In addition, it also shows that
an existing control algorithm and actuator control can be applied to the AUTOSAR
concept to describe a system. The results of this step are the AUTOSAR-compliant
ASW component descriptions and the constraint description for the cruise control
algorithm, the engine software, and the remaining necessary ASW components.
The system is specified and simulated on the VFB level. One of the objectives

of AUTOSAR is to enable the simulation of ASW component behavior on a level

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-23

independent of the dedicated hardware.This is achieved by a simulation with a proto-
typical simulation tool. Such a simulation enables an early integration and validation
to be shown on amodel level, for example, all engine and vehicle sensor- and actuator-
I/Os needed to run the engine control unit are simulated. These components were
simulated in a hardware-in-the-loop (HIL) simulation as well as in the VFB sim-
ulation, which simulated the ASW components and the RTE. This enables the two
simulation techniques to be compared directly.
After this virtual integration, the ASW components are mapped to dedicated, real

hardware and integrated together with the AUTOSAR BSW and certain additional
complex device drivers. To show the independence of the cruise control ASW com-
ponent implementation, this ASWcomponent can bemapped to all three of the ECUs
that the ICC BSW system runs on.
The implementation of the BSW is based on the release . (R.) of AUTOSAR.

The software that runs on the engine control unit has specific requirements, which
were not included in R. of the AUTOSAR specification. Therefore, the BSW on
this ECU consists of AUTOSAR as well as non-AUTOSAR BSWmodules. In all, this
construction also shows the applicability of the AUTOSAR concepts for the power-
train domain.
The integration incorporates the configuration of the BSW and the ASW compo-

nents, as well as the generation of an RTE for the concrete target hardware by an RTE
generator tool.
To summarize the additional concepts shown by the implementation: it shows the

usage of the BSW and RTE implementations

• On different hardware platforms
• For mode management, especially on low power mode
• For combining AUTOSAR BSW with complex device drivers

This implementation also enables the connection of sensors and actors between ECUs
to be shifted. This can be realized as a pluggable or as a deployment scenario, that is,
a shift between LIN and direct connections.

2.9 Business Aspects

From a business point of view, AUTOSAR changes the whole market with ECUs and
the software for them. But AUTOSAR is not the cause of these changes. AUTOSAR
only applies and speeds up the trends in modern software development. The main
aspect in these trends is the separation of ASW from the hardware by introducing
layered architectures. With this, AUTOSAR enables a finer granular business. The
customer can choose the parts of the system independently and build up his system
more flexibly. Let us consider each small part individually.

BSW: As the functionality of the BSW is standardized on a detailed level, the BSWwill
be a commodity product. The differentiation between the vendors is no longer given
by the specified functionality. The differentiation is restricted to an optimization of
the implementation with respect to performance and memory usages.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

2-24 Automotive Embedded Systems Handbook

RTE:TheRTE is not amanually developed software, it is generated.TheRTEgenerator
will probably only be a piece of a tool integrated into a bigger system-development
tool. Or it will be given in addition to the BSW if the BSW is delivered as one block
andnot in individualmodules. So, this partwill probably not form a separate business,
but is a necessary part to run the business with BSW and the related tools.
ASW: As the ASW is independent from the underlying hardware, more flexibility is
given for business with this part of the software. The main differentiation in the soft-
ware market is assigned to the ASW. It enables more flexibility for the customer to
choose software that best fits his or her needs. On the other hand, it gives the suppliers
more flexibility in differentiating from their competitors.
In the past, due to the coupling of hardware and software, this flexibility was limited

because of technical restrictions.WithAUTOSAR, the flexibility for new functionality
will be driven more by the software.
Modeling tools: The specification and implementation of tools is not part of
AUTOSAR. AUTOSAR standardizes the exchange formats on a model level. This has
a major influence on the tool market. It enables the use of different tools for both the
customer and the product supplier. This ensures that each party has more flexibility
in their choice of tools. It is no longer necessary for a product supplier to work with
specific tools for each customer. The coupling between tools and BSW, which was a
usual market model in the past, is clearly restricted with AUTOSAR.
System integration: AUTOSAR eases the integration of all components, modules, and
subsystems into an overall vehicle system.The differentiation in the car market will be
driven by building new functions through the integration and cooperation of vehicle-
wide distributed functions.

2.10 Outlook

The core partners agreed to continue with the project partnership from  to .
This second phase will maintain and extend the deliverables of phase I, but will also
bring new features and specifications. The main objectives of phase II are

• Improve and extend the AUTOSAR software architecture and commu-
nication mechanisms (error handling, extension of the VFB capabilities,
debugging facilities on RTE level, support for multimedia requirements,
concept for vehicle mode management, etc.).

• Implement the safety concepts specified in phase I.
• Complete and finalize the work on AUTOSAR BSWmodules (communi-
cation stacks, diagnostic, time supervision).

• Continue to standardize the interface on the application level for body
and comfort, power train, chassis, pedestrian and occupant safety systems,
multimedia, telematics, and HMI.

• Maintain and support the AUTOSAR specifications and enable the
exploitation of AUTOSAR within the consortium.

All new concepts will be, as in phase I, proved by validators and demonstrators.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Application of the AUTOSAR Standard 2-25

Theexploitation of the standard starts in parallel to the second phase.One can see in
the press, at conferences, and fairs, that the number of AUTOSAR-related products is
increasing very quickly. The experiments done during these early developments will
bring further change requests to the standard. The members of the consortium are
working on important exploitation that will bring AUTOSAR to industrial maturity.

References

. ITEA, Technology Roadmap on Software Intensive Systems, ITEA Office Association,
Eindhoven, the Netherlands, March .

. K. Jost, Electronics demand to grow nearly % annually, Automotive Engineering
International, September .

. ATKerney, Software-betriebene Fahrzeugsysteme bestimmen die Zukunft des Auto-
mobils Study, .

. McKinsey & Company, Automotive Software: A Battle for Value Study, .
. D. Sallee and R. Bannatyne, Trends in advanced chassis control, Automotive Engineer-

ing International, September .
. K. Jost, From fly-by-wire to drive-by-wire, Automotive Engineering International,

September .
. H. Fennel, AUTOSAR—a standardized automotive software architecture, OOP Con-

ference Presentation, January .
. AUTOSAR GbR; Achievements and exploitation of the AUTOSAR development

partnership, Convergence Conference Paper, Detroit, October .
. AUTOSAR GbR, AUTOSAR—the standard, its exploitation and further develop-

ment, AAET —Automatisierungs-, Assistenzsysteme und eingebettete Systeme
für Transportmittel, Conference paper, Braunschweig, February .

. S. Voget, AUTOSAR standard, EmbeddedWorld Conference Presentation, Nürnberg,
February .

. AUTOSAR GbR, Main Requirements, V... Available at: www.autosar.org,
December .

. AUTOSAR GbR, AUTOSAR Meta Model, V... Available at: www.autosar.org,
AUTOSAR_MetaModel.zip, December .

. OMG, Meta Object Facility (MOF) . Core Specification. Available at: www.
omg.org.

. AUTOSAR GbR, Software Component Template, V... Available at: www.autosar.
org, December .

. OMG, Common Object Request Broker Architecture (CORBA/IIOP), V... Available
at: www.omg.org.

. AUTOSAR GbR, List of Basic Software Modules, V... Available at: www.
autosar.org, December .

. AUTOSAR GbR, Specification of RTE Software, V... Available at: www.autosar.
org, December .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3
Intelligent Vehicle

Technologies

Michel Parent
National Institute for Research
in Computer Science and Control

Patrice Bodu
National Institute for Research
in Computer Science and Control

. Introduction: Road Transport
and Its Evolution . -
Such a Wonderful Product ● Safety
Problems ● Congestion Problem ● Energy
and Emissions ● Conclusion and
Presentation of the Chapter

. New Technologies . -
Sensor Technologies ● Sensor Fusion ●

Wireless Network Technologies ●
Intelligent Control Applications ● Latest
Driving Assistance

. Dependability Issues -
Introduction ● Fail-Safe Automotive
Transportation Systems ● Intelligent
Autodiagnostic

. Fully Autonomous Car: Dream
or Reality? . -
Automated Road Vehicles ● Automated
Road Network ● Automated Road
Management ● Deployment Paths

. Conclusion . -
References . -

3.1 Introduction: Road Transport and Its Evolution

3.1.1 Such a Wonderful Product

Throughout the twentieth century, the automobile and its infrastructure were devel-
oped in such a way as to become the dominant mode of transport for passengers and
goods in most industrialized countries. In these countries, a level of about one vehi-
cle per person (around  vehicles per  inhabitants) has been reached while
in countries like China and India, the current level is about  vehicles per 
inhabitants but growing all the time [].

3-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-2 Automotive Embedded Systems Handbook

We can therefore say that the automobile has probably been the most successful
and influential product of the twentieth century. It has created an enormous industry
worldwide; it has changed the lives of millions of people and also changed the way
cities are organized.
However, this extreme growth has brought about several problems that we now

have to face. The problems mostly concern the safety, the congestion of infrastruc-
tures, and the energy needed for all these vehicles. As we will see in this chapter, new
electronic technologies are now bringing some solutions to these problems.

3.1.2 Safety Problems

The number of deaths on the roads has reached the astonishing level of more than
 million per year worldwide. This is a problem of much greater magnitude than any
past war, and governments in most industrialized countries have addressed this as a
major challenge. Many countries have set a target of reducing the death rate by %
over the next  years and, in some places such as Sweden, a target of “zero death” has
been set [].
Vehicles and infrastructures have already been greatly improved but now the pro-

portion of accidents due to driver error has increased. Consequently, new control
techniques are being developed in order to take the control away from the driver in
order to minimize his or her errors [].

3.1.3 Congestion Problem

Congestion of infrastructures is a major problem in most conurbations and on major
corridors. It is costing several percentage points of gross national product (GNP) in
many countries in lost time and energy. Furthermore, congestion leads to an increase
in pollution and greenhouse gases (GHGs).
Improvements in vehicle quality have helped to increase capacity, for example,

through reduced safe-stopping distances and improved acceleration, but the automo-
bile is still very inefficient in terms of space usage, in particular in its private form
(where it stands still for most of the time).
In order to meet a continuously growing demand for transport, the solutions for

industrialized countries now lie in better management of the resources (infrastruc-
tures and vehicles), in better use of intermodality (the optimal use of different forms
of transport since mass transport is unavoidable in large conurbations) but also in
new technologies for vehicle control.
Indeed, the basic control techniques for vehicles have not changed much in the

last  years, with the driver having the total responsibility of his vehicle through
mechanical impediments (steering wheel and pedals). These primitive controls lead
to inefficiencies and accidents. New control techniques such as adaptive cruise control
(ACC), if properly designed, could definitely improve the throughput of infrastruc-
tures by reducing the time gap between vehicles and also by introducing a smoother
flow with fewer “shock waves,” which lead to traffic jams [].

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-3

Another type of control needs to be implemented to regulate the demand and
avoid congestion (which leads to reduced capacity). The general tendency here is to
introduce some form of road pricing (or congestion charging) in order to reduce the
demand locally when the traffic approaches congestion levels [].

3.1.4 Energy and Emissions

Individual vehicles are, in fact, quite efficient in terms of energy used per passenger/
kilometer and can be compared to other modes on the average []. Of course, mass
transport can be very efficient when fully loaded but since they sometimes run almost
empty (and completely empty of passengers for return trips to the depot), their effi-
ciency is often not much better than an individual vehicle with its average occupation
of about . passengers.
The main problem of individual vehicles is the type of fuel they use. Most of the

vehicles on the world market use fossil fuels, which lead to various types of emis-
sions. Although great progress has been made by the automobile manufacturers to
reduce the local pollutants, there are still some problems left with NOx and particu-
lates. However, the biggest problem concerns the emissions of CO and their potential
effect on the planet (greenhouse effect).This is becoming amajor issue worldwide and
with the increase of road transport (in particular, for goods but also for passengers in
developing countries), the targets for reducing GHGs are almost impossible to meet
in the short term.
The medium-term solutions seem to lie in the same direction as those for the use

of infrastructures with a better modal split between mass transport and individual
transport, and better control of vehicle use through road pricing schemes. In the
longer term, new fuels such as biogas or hydrogen (produced through carbon neutral
schemes) may provide a comprehensive solution to GHG emissions.

3.1.5 Conclusion and Presentation of the Chapter

In conclusion, we see that the automobile as it evolved through the twentieth century
is about to change radically in order to meet several challenges:

• Better safety
• Better use of energy
• Better efficiency in terms of usage of space

Key technologies to meet these challenges will be presented in this chapter and
will include new developments on sensors, actuators, and control technologies.
However, a key factor for the introduction of these technologies, which tend to
take the control of the vehicle away from the driver, will be their reliability, their
acceptance by the users, and the regulations that will allow or impose them on
the road.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-4 Automotive Embedded Systems Handbook

3.2 New Technologies

3.2.1 Sensor Technologies

Sensors are the essential elements in any control system and this is particularly
true for road vehicles when we want to introduce some form of assistance to the
driver. Here, we will give a brief overview of the existing sensors now in use in the
industry.
As seen in Figure ., sensors operate at different ranges for various applications.

Ultrasound sensors provide the opportunity to assist low-speed maneuvers such as
parking, while cameras and lasers provide sufficient range for city driving assis-
tance, and radars are usually used for detecting vehicles ahead while driving at high
speed.

3.2.1.1 Ultrasound Sensors

These simple and cheap active sensors emit a cone-shaped ultrasonic wave through
the electric actuation of an electrostatic or piezoelectric transducer and receive the
wave’s echo through symmetrical transduction. Measuring the duration between the
emission and reception time gives an estimation of the distance of the nearest obstacle,
with a maximum detection range of a few meters []. Ultrasound sensors can also be
used for angular position estimation, as seen in Ref. [].
Ultrasonic sensors are currently in general use in the automotive industry for a

few applications, the most common being the back maneuvers and parking assist sys-
tems, as well as intrusion detection systems. In Europe, every major car constructor
proposes these options in mid- and top-of-the-range vehicles. However, these sen-
sors just give an audio feedback to the driver and there is no application yet where
they are involved in the control of the vehicle. This may change in the future with
parking assistance where the sensors may be used to detect the exact space available
for a maneuver and in the execution of the maneuver.

Ultrasonic parking lot
measurement (2 m)

Ultrasonic
park assistance (2 m)

(Stereo) Camera
(30–50 m)

(Multilayer) Laser
scanner (20–50 m)

Radar (50–150 m)

FIGURE . Sensor implantation and range overview.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-5

3.2.1.2 Inertial Sensors-Accelerometer-Gyrometers

Full inertialmeasurement unit is comprised of six sensors allowingmeasurement over
the six degrees of freedom (DoF) of a vehicle, namely three orientations (roll, pitch,
and yaw) and three accelerations.
However, since the vehicle operates on a road (as shown in Figure .: the (Ox , Oy)

plan), the DoF estimation needed for localization issues can be reduced to angular
rotation around the vertical axis (yaw) and longitudinal acceleration measurements,
which are sufficient to reconstitute an approximation of the vehicle’s trajectory. Mea-
suring the wheel rotation and steering angle is a cheap alternative if the wheels are not
sliding.

3.2.1.3 Light Detection and Ranging or Laser Detection and Ranging

Light detection and ranging (LIDAR) or laser detection and ranging (LADAR),
which is often the term used in the military field, are active sensors consisting of
a light source, a photon detection system, a timing circuit, and optics for both the
source and the receiver. LIDAR sends an amplitude-modulated continuous signal
and determines the phase shift of its echo [].
With a fixed sinusoidal frequency f and if there is an object at distance d, a phase

shift of Δϕ = π f (d/c) will be observed between the transmitted signal and the
received signal, with c representing light speed. An estimation of the object’s distance
is given by d = Δϕ c/π f .
The maximum distance that can be estimated through phase-shift measurement is

given by computing dmax = (πc/π f)=(c/ f)=(λ/), where λ designates the sig-
nal’s wavelength. Beyond that distance, the number of phase revolutions becomes
indeterminate (Table .)
Since infrared signals have a micrometric wavelength, amplitude modulation

(Figure .) is used to bypass the limitations of phase-shift measurement by using the

x y

z

Yaw

Roll
Pitch

O

FIGURE . DoF of a ground vehicle.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-6 Automotive Embedded Systems Handbook

TABLE . Maximum Distance
Using Phase-Shift Estimation
Signal Frequency Maximum Range
 kHz  km
MHz  m
 GHz  cm

1

0.5

0

−0.5

−1
0 1 2 3 4 5 6

FIGURE . Amplitude modulation.

phase of the envelope while keeping the advantages of the propagation of the infrared
carrier.
Another LADAR technique is to send pulses, receive reflected waves, and mea-

sure the duration of the back-and-forth trip. Pulses are modulated in amplitude
by pseudorandom coding, to facilitate the association of outgoing and incoming
signals.
Using a rotating head (on one or two axes) or using mirrors, several scans are

performed so that the range of obstacles is determined in numerous directions.
A trade-off between resolution, aperture, and sweep rate is chosen so that satis-
factory performance is obtained for the application. In good weather conditions,
allowed laser sources can detect obstacles up to m with a few centimeters’
precision.
The major problem with such scanning devices comes from the cost and reliability

(over the lifetime of a vehicle) of the mechanical components. Micromechanical tech-
nologies may point the way onward. With reduced size comes reduced inertia, which
in turn permits higher performance []. Micromirror arrays could prove to be a very
useful technology for controlling the resolution of LIDAR sensors. Micromirrors can
also act as a distributed scanner, generating a large number of microbeams that can
scan the workspace from different angles and positions.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-7

3.2.1.4 Radio Detection and Ranging

Radio detection and ranging (RADAR) is an active sensor that sends a high frequency
electromagnetic wave and immediately receives its echo in turn, which is processed
so that the range, azimuth, and velocity of the obstacle are determined [].
In pulsed mode, the relative speed (Vr) of the target is measured using the Doppler

effect, where frequency shift Δ f equals Vr f/c. Range measurement is obtained
through an estimation of the reflected signal strength, with a proportional factor
of /d.
Like LIDAR, continuous-wave radars are also employed, but this time using

frequency modulation, so that the ambiguity introduced by the Doppler shift is
counterbalanced by adequate frequency-domain processing. At high frequencies
(ca. GHz), frequency-modulated continuous waves (FMCW) technology tends
to be more economical, since pulsed transmission control requires expensive
components. FMCW also offers very short-range capability since echo is cap-
tured continuously, whereas pulsed chirp applications need recovery time after an
impulsion [].
Automotive radars can range up to m with a ○ search area. They can measure

up to a relative velocity of m/s ( km/h) with � precision.

3.2.1.5 Vision Sensor

Vision sensors offer a D array of up to a million pixels with a wide field of vision, the
angular field of vision depending upon the optics. Complementarymetal–oxide semi-
conductor (CMOS) imagers tend to present more advantages than charge-coupled
device (CCD), since they have a wider (nonlinear) luminance range, lower power
consumption and cost, and individual pixel-processing facilities []. System on chip
(SoC) technologies help to design integrated devices that quickly output preprocessed
primitives, which are then handled by higher level applications [].
Stereo-vision systems analyze two snapshots taken from slightly shifted points

of view. Appropriate algorithms match pixels in both snapshots and calculate the
“disparity map,” which tracks pixel shift between the two images (this shift is hori-
zontal when the cameras have parallel lines of sight). If the stereo cameras have been
calibrated, it is possible to reconstruct the spatial distribution of objects from the
disparity map.
The gauge between the cameras’ optical centers—the baseline—determines the

effectiveness of the distance estimation. A close implantation of the cameras will pro-
vide precise short-range estimation but small maximum range, while a large line base
will provide better maximum range, at the expense of short-range precision.
Automotive applications using cameras started to appear on the market at the

end of the s. One of the first commercial applications was lane departure
warning in Mercedes trucks in , and in Cs and Cs from Citroën in ,
where the warning is performed by a “haptic device” (vibrating seat). Night-vision
modules hit the market in , with the Mercedes S-class. However, most of the
applications, here again, focus on information brought to the user and no real
control.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-8 Automotive Embedded Systems Handbook

Stereo-vision obstacle detection systems are being studied by original equipment
manufacturer (OEM) suppliers, constructors, and researchers, as seen in someof PRe-
VENT’s subprojects, such as APALACI, that aims at detecting vulnerable road users
and pedestrian safety and risk mitigation [].

3.2.1.6 Global Navigation Satellite System

The global positioning system (GPS) is a system launched in  by the Depart-
ment of Defence of the United States. It provides information on time, position, and
velocity at any location on the planet. A constellation of  satellites has been evenly
spaced at , km altitude, in circular  h orbits, and inclined ○ to the equa-
torial plane, to provide at a reasonable cost an Earth-wide coverage. Satellites use
atomic clocks to keep consistent timelines. They are able to transmit two microwave
carriers, with . and .MHz frequencies, respectively. The Russian Feder-
ation has launched a similar position system in  called Glonass, while Europe
is testing the Galileo system since the end of , and planning to release it in
. Galileo is a joint initiative of the European Commission and the European
Space Agency (ESA), aiming at civilian applications, and is financed by these insti-
tutions and two private consortiums: Eurely (EADS/Thales/Inmarsat) and iNavSat
(Alcatel/Finmeccanica/AENA/Hispasat). Galileo’s  satellites will diffuse a public
localization service, up to a precision of m, a commercial localization service up
to a precision of m, and some services for critical civilian applications.
The basic principle of global navigation satellite system (GNSS) is triangulation.

If the receptor can estimate the distances between itself and several satellites whose
location is well known, it must be somewhere inside the volume, defined as the
intersection of the spheres centered on each satellite with a radius equal to the corre-
sponding estimated distance. The latter is given through estimation of traveling time
between an emitting satellite and the receptor.The emitted message contains a times-
tamp that is compared to an absolute reception time, the receptor being synchronized
with the constellation. This timing has to be very precise, since, at light speed, a  μs
error leads to m shift.
In Figure ., the localization of the GPS receptor is computed by using a priori

information: the positions p, p, p that are transmitted by the satellites, and the esti-
mated pseudoranges r, r, r, obtained from the signals’ traveling time. The receptor
is located at the intersection of the spheres, centered respectively on p , p, and p,
with radiuses respectively equal to r, r, and r.
In order to get the precise position of the spheres’ center position, the satellites

transmit their real-time orbits so that the deviation from nominal orbits is not passed
on to the receptor’s position estimation. Moreover, in order to get the precise estima-
tion of the spheres’ radius, receptor and satellite clocksmust be synchronized through
complex distributed algorithms that reduce the receptor’s clock drift.
Local base stations can provide additional information to correct errors with var-

ious fine-tuning factors, such as the ionospheric (–km altitude) refraction,
which slightly deforms the light’s trajectory and introduces shifts between the elec-
tromagnetic wave’s actual path and the simplified straightforward path. Ionospheric

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-9

p1

p2

p3r1

r2

r3

FIGURE . GPS triangulation.

corrections have to be continuously broadcasted, since the geometry of the prob-
lem is in permanent, though slow, evolution. GPS localization systems receiving such
correction from a station are known as differential GPS (DGPS).
Another common source of errors is occultation/reflection of electromagnetic

waves, since, if direct rays are stopped by an obstacle while reflected ones still reach
the receptor, the length of the indirect path will be used for the computation, which
can lead to hops of the estimated position. Low-pass filters are usually used to
minimize any sudden evolution of position estimation.
Common automotive GNSS sensors provide m precision position measure-

ments. Using local corrections transmitted to the receiver (DGPS), a precision of m
is easily obtained, while high-end receptors such as real-time kinematic (RTK) GPS
provide centimetric estimations.

3.2.2 Sensor Fusion

3.2.2.1 Introduction

Sensor fusion is the process that uses multiple sensors to provide an estimation of the
vehicle’s state and its surroundings. The main difficulty in data fusion is aggregating
data that often have asynchronous timelines, and provide partial and noisy sensor
data. If the data fusion algorithmwas to synchronize all data before iterating one cycle,
it could introduce high latency, at the expense of system controllability or reaction
delay.

3.2.2.2 Sensor Fusion for Improved Localization

The localization problem is a good example of heterogeneous sensor data fusion. The
sensors used to localize the system’s position can be absolute or relative. Absolute
position sensors such as GNSS or artificial landmarks provide bounded incertitude,
but usually have insufficient precision or refresh rates for automotive control applica-
tions. Relative position sensors such as radar, LIDAR, cameras, incremental counters

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-10 Automotive Embedded Systems Handbook

(measuring wheel rotation to perform an “odometric” measurement), and ultrasound
transceivers are usually precise.
Nevertheless, the exclusive use of relative sensors, even though the initial position

is known with certitude, always leads to unbounded incertitude. This is known as the
“dead-reckoning drifting problem.”
Fusing absolute and relative sensors is a means of getting absolute and precise

location. The Kalman filter (KF) theory gives excellent results, since this estimator
is optimal []. For each step, an a priori prediction of the mobile’s position distri-
bution, called belief function, is computed from past measurements and beliefs, and
actuator commands and inner self-representations (systemmodel and sensor model).
When a new set of sensor data is collected, the prediction is corrected into a poste-
rior belief function for the next cycle. This explains why KFs are often categorized as
predictor–corrector state estimator filters.
In common modern navigation applications, when m precision GPS and odom-

etry are fused, they can provide estimations that are close to m precision and are
thus suitable for advisory navigation systems. Use of expensive sensors or correction
services (which imply some form of communication) can boost the precision up to 
cm and are thus are suitable for vehicle control systems [].

3.2.3 Wireless Network Technologies

Wireless communication technologies applied to the automotive world bring forth
new applications such as navigation, fleet management, billing facilities, and road
security. All the applications currently brought to the market rely on vehicle-to-
infrastructure (VI) data exchange with private networks or protocols. Standards for
vehicle-to-vehicle (VV) are now being studied. Given that vehicles count by mil-
lions and have a life expectancy of  years or more, and also that technologies are
in constant evolution, the communication system and its associated protocols have
to match important reliability, scalability, and flexibility requirements. Thus, seven-
layer open system interconnection (OSI) compliance will be an important issue for
the interoperability of future VV communication technologies.
IPv routing (third OSI layer) may play an important role, since this protocol

addresses both wireless networks such as Wifi (IEEE .), Wimax (IEEE .),
and cellular networks (global system for mobile [GSM] communications, general
packet radio service [GPRS], universal mobile telecommunications system [UMTS]),
and simplifies the routing of data through heterogeneous nodes, while reducing over-
head, since this protocol is “physical layer agnostic.” It also provides routing protocols
compatible with network mobility, as seen in the works of International Engineer-
ing Task Force for Network Mobility (IETF NEMO), and compatible with ad-hoc
networks, as seen in the works of IETF Mobile Ad-hoc Networking (MANET) [].
Quality of service will be an important issue in vehicular communications, since vehi-
cle density peaks, such as those met during traffic congestions, can lead to digital
network traffic congestions. Appropriate strategies are needed so that priorities are
handled properly and essential information is still diffused.
Integration of these communication technologies is now dealt with more inten-

sively throughprojects such asCVIS [] and SafeSpot [], aiming at improving traffic

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-11

efficiency and safety while reducing pollution as well as designing more efficient fleet
management systems.

3.2.4 Intelligent Control Applications

Traditional actuators carry out the driver’s commands in a direct manner, whereas
electronic control units (ECUs) can enhance them beyond human reach. The human
actuation bandwidth, for which Hz can be considered as an upper bound, is eas-
ily outdone by electromechanical devices. The next example shows how “intelligent
control” can greatly enhance the output of braking systems.

3.2.4.1 Antilock Braking System

Antilock braking system (ABS) for automotive applications was introduced by Teldix
in the s, before Bosch bought the patent and enhanced it through successive gen-
erations of ABSs. The system can activate and release each brake up to  times/s.
This fine control enables each tire to get optimal longitudinal and satisfactory lat-
eral frictions, so that braking distance is minimized while maneuverability stays
acceptable.
Nearly optimal emergency braking is obtained by staying close to the maximum

friction force possible, without going beyond it since that means entering an unsta-
ble region that leads to a blocked wheel state. ABS control algorithms guarantee that
the functioning point stays between boundaries A and B shown in Figure .. When
brakes are actuated, vehicle dynamics and friction law quickly slide the operating

Skidding ratio

ABS operating range

100%50%

Braking effort coefficient/cornering force coefficient

Cornering force

A
B

Braking effort

S

O

20%

40%

60%

80%

FIGURE . Efficiency of braking.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-12 Automotive Embedded Systems Handbook

point frompointO to S, leading to a final %braking effort coefficient and % skid-
ding ratio (the wheel is blocked). If the brakes are released, skidding is progressively
reduced to zero again. If sufficient actuation reversion rate is available, the braking
effort can be maintained at a high rate.
An alternative to the ABS is to control the pressure on the brake pedal with

continuous laws instead of bang–bang actuation, as brake-by-wire systems do.

3.2.4.2 Electronic Stability Program

As an extension of ABS, electronic stability program (ESP) systems put optimal yaw
(spin) control at stake, introducing a correlation between the steering angle, individ-
ual wheel speed, and engine power to optimize trajectory control in bends, avoid-
ing understeering (plowing) and oversteering (fishtailing) by fine-tuning individual
wheel rotation speed.The increase in vehicle controllability overwhelms human capa-
bility, and it can only be done with numerical technologies, such as internal state
representation and estimation.

3.2.4.3 X-by-Wire Technologies

X-by-wire technologies is a generic termdesignating electronic architectures that sup-
press traditional mechanical and hydraulic actuators and intermediate components
and replace them with electronic and electric components, which are linked together
only by wires, used as informational and power vectors. X-by-wire technologies open
the possibility for enhanced comfort, as well as enhanced control applications and
even push vehicle performance forward, since they introduce all-electronic actua-
tor control, at the possible expense of dependability. The X-by-wire consortium has
been in charge of defining standard architectures, and promoting the benefits of these
technologies since the mid-s [,].
The SPARC X-by-wire prototypes, developed during the SPARC project [,],

extend and merge classical ABS and ESP functions, in a global vehicle controller,
that coordinates brake and steering actuation for increased system commandability.
Dependability issues are addressed through the systematic use of dual components
(quadrupled in the case of ECUs), as well as FlexRay deterministic and fault-tolerant
multiplexed bus.

3.2.5 Latest Driving Assistance

Through the use of sensors and with the help of actuators that can be controlled by
ECUs, numerous forms of assistance are now coming into the vehicle. The very first
driver’s assistance that arrived in the automobile was the antiblocking system for the
wheels (often called ABS, which is a brand owned by Bosch). Although numerous
mechanical and hydraulic systems were tested, it was the arrival of electronic sensors
and control units that solved the problem in the early s.
From then until the late s, a few new functions have been introduced to control

the vehicle to improve the safety and the comfort.However, recently, new systems have
appeared for controlling the speed and/or the steering in various situations.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-13

Oneof the first to appearwaswhat is now calledACC.This is an improvement of the
standard cruise control, which is a regulation of the vehicle speed to a set value. The
ACC also tries to maintain the set speed but in the case of a slower vehicle in the same
lane, the regulation is then set on the distance in relation to this vehicle. Through the
use of a distance and/or relative speed sensor (either LIDAR or radar), a control unit
regulates the speed through actions on the engine power or on the brakes. This tech-
niquewas first developed and demonstrated in the EuropeanPrometheus project [].
The first systems that appeared on the market (in Japan) in the late s operated
poorly in bad weather (due to the use of LIDAR) and in turn because the target vehicle
was lost by the sensor. New systems, based on radar and using rotation information
or vision to take into account the turning radius of the road have much better per-
formance and even feature a “stop-and-go” function that is an essential application
in crowded environments. The latest function using similar technology is advanced
obstacle detection and precrash detection thanks to a fusion of information between
radar and a stereo camera [].
New functions now concern the lateral guidance of the vehicle with electric steering

actuators and an electronic controller. One of the first applications to hit the market
is lane-keeping, where information about the vehicle position in the lane is obtained
through image processing. Using this position, an error is calculated and torque is
applied on the steering column in order to bring the vehicle to the center of the lane.
For the moment, this is only to assist the driver, who is responsible for steering the
vehicle, but he or she feels secure that the car automatically wants to stay in the middle
of the lane [].
Using the same electric steering actuators and vision sensors that can reconstruct

the D space around the vehicle, a more spectacular application is now being intro-
duced in the most advanced vehicles: parking assistance. Using the D information
obtained from one or several cameras inside the vehicle, complemented by ultrasonic
sensors, a computer generates the optimal trajectory to perform a parallel parking
maneuver with the steering. The driver has just to control the speed of his or her
vehicle [].

3.3 Dependability Issues

3.3.1 Introduction

Dependability is a generic term associated with functional and dysfunctional proper-
ties of a system or subsystem. Dependability attributes are most frequently referred to
by their acronym—RAMS: “reliability,” which designates the continuity of a system’s
service and is often measured by its mean time between failures (mtbf); “availability,”
which designates a system’s readiness for service; “maintainability,” which designates
a system’s ability to recover from a failure and is often measured by its mean time to
repair (mtbr); and “safety,” which designates the risk of catastrophic (lethal) failure,
a combination of probability and gravity. “Security” may also be mentioned, being a
system’s ability to authorize known users to operate it and resist malicious attacks.
Certification and homologation procedures will guarantee that intelligent vehicles

operating on public roads have attributes within acceptable boundaries. Those norms

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-14 Automotive Embedded Systems Handbook

are under permanent evolution, integrating more and more mandatory requirements
such as safety belts (), electronic immobilizers (), and ABS (), as far as
European standards are concerned.
Manufacturers and suppliers have carried out intensive studies on hardware and

software architecture standards, as seen in the emergence ofMISRA, automotive open
system architecture (AUTOSAR), X-by-wire consortiums [,,], which define
guidelines and standards for high quality safety-related system design. In the case
of drive-by-wire technology, those guidelines may become new certification stan-
dards when sufficient proof of safety in the absence of mechanical intrinsic security is
accepted by authorities.
However, most of the time, existing certification standards are tolerant toward

automotive innovations. Obstacles for innovation can be found in the liability issue,
consumer acceptance, and sometimes in mismatched homologation-related require-
ments. The liability issue puts manufacturer/supplier/customer potential struggles
at stake. Driver liability is usually engaged unless functional safety problems—
system malfunctions—are met and proved. Data-logging devices are an effective
way of solving upcoming liability discussions and have already been used since the
introduction of air bag systems [,].

3.3.2 Fail-Safe Automotive Transportation Systems

Efficient transportation systems imply important kinetic energy, and potential catas-
trophic (lethal) accidents. The root cause of an accident can be extrinsic or intrinsic to
the transportation system and its users. Overall safety level is achieved through risk
reduction analyses that are performed at different levels to prevent disastrous events
from occurring:

. Improve intrinsic system reliability (harden hardware and software com-
ponents)

. Exclude potential threats from the system’s operational infrastructure
. Define appropriate operating procedures for preventing users’ misuse of

the system

Among these levels, automotive applications usually have fewer solutions than rail or
air transportation systems, since

. Cost and space constraints restrict the use of redundancy
. Road infrastructure is fully open
. Most drivers are not “professionals”

A transportation system is called “fail-safe” when the occurrence of a failure leads
to a safe state, where restricted transportation service is allowed. In the case of a rail
transportation system, a safe state is reached by stopping the train. Global system
design prevents other trains from entering the bloc (which is greater than themaximal
stopping distance behind a stopped vehicle).

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-15

In the case of air transport, failures are handled through redundancy. Any critical
component is tripled or quadrupled and a failed component is taken out of the control
loop by a voting mechanism.
In the case of automotive transportation systems, experiencing a breakdown is

more complicated. Nevertheless, from the other cars’ points of view, a disabled or
stopped car is an obstacle. In other words, appropriate fault handling at the vehicle
level is not always sufficient to eradicate the problem, and the latter can have echoes
at a fleet level.
Several advanced driver assistance systems (ADAS) are being studied and brought

to the market in order to detect obstacles and assist collision avoidance maneuvers in
the case of disabled vehicles on the road. When, despite warnings, the vehicle enters
the inevitable collision state (ICS) [], and before collision occurs, suitable actions
can help and mitigate damage before “passive security” takes the last stand. Inevitable
collision detection, automatic braking, seatbelt pretension, anticipated air bag firing
are some of the challenges facing intelligent vehicle applications today. Entering ICS
can result from an obstacle “moving” into the vehicle’s danger zone, such as a tree
falling on the road or another car behavingwildly. A vehicle can also enter ICS because
it has an insufficient perception of the actual time–space configuration, maybe due to
sensor failure or because the obstacle is hidden behind a curve.
VV and VI communication technologies bring forth new applications, enhanc-

ing security and providing solutions to prevent other vehicles from entering ICS:

. A stopped car can broadcast—or “roadcast”—a warning signal to all
vehicles within range.

. The accident can be uploaded to appropriate traffic monitoring central
systems, and downloaded again toward vehicles entering the vicinity.

. By extension, if sufficient bandwidth is available, every vehicle should
roadcast their trajectories to offer redundant environmental perception.

These applications have strong potential in terms of security improvement since they
are working ahead of ICS occurrence andworking on root causes rather than trying to
mitigate effects, with “perceptive” ranges that can go far beyond the range of natural or
technological sensors. In that sense, communication technologies bend new corners
in automotive safety issues. Moreover, they provide a global approach. The “fail-safe
automotive transportation system” being designed is now about to reach fleet scale.
Its overall safety level will depend on sensor technologies, the dependability of con-
trollers and actuators, as well as the efficiency of information propagation throughout
the whole fleet, as seen in the CityMobil research project [].

3.3.3 Intelligent Autodiagnostic

Fault-detection aptitude is essential for the survivability of a transportation system
and its users. The first traditional application of fault detection is the implantation
of an adequate sensor to monitor physical parameters that give an overview of the
system’s and the subsystem’s health. Tire pressure or motor temperature sensors are
good examples of straightforward monitoring and diagnostic applications.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-16 Automotive Embedded Systems Handbook

Common fault-detection and diagnostic applications are case-based: simple rules
are designed to decide whether a fault occurred or not, using threshold, D domains,
etc. Once a fault is detected, the fault is logged inside the ECU, and according to its
gravity, an alert may be immediately displayed to the driver.
As a response to the increase in software preponderant automotive systems, one

also has to detect execution faults triggered by external factors (weather, electromag-
netic interaction, and wire rupture). In order to ensure that the commands of an
ECU are emitted and received the way they are meant to be, it is possible to intro-
duce redundancy, which can be informational or hardware, so that inconsistency is
detected and appropriate fallback behaviors are triggered. In most of the cases, the
cost, space, and time to market constraints make full-ECU redundancy inaccessible
in most automotive applications. Thus, redundancy is usually achieved inside a single
ECU. When inputs are concerned, the receiving ECU can check the consistency of
redundant signals and activate appropriate procedures when they do not match (e.g.,
log the default, alert the driver, stop the activity of the (sub)system). When outputs
are concerned, a feedback mechanism is redirected toward microprocessor inputs.
Inconsistency between commanded output and measured output means either out-
put or feedback loop failure. Whatever the cause, which could only be determined
through the introduction of additional (and failure-prone) observation points, the
overall output device is considered as defective.
More complex diagnostic applications are experimented in the field, such as rupture

detection, which uses identification techniques to estimate and monitor parameters
that are not directly observable, such as suspension damping and stiffness coef-
ficients, in order to detect imminent mechanical breakdowns with model-based
fault-detection algorithms [].
Some research is conducted in the field of wired network diagnosis, such as in

the Smart Embedded Electronic Diagnosis System (SEEDS) project, where embedded
reflectometry chips are used to monitor the condition of an embedded harness. The
latter can represent up to  km of wires and is a major source of system failures [].
Since embedded functions are usually distributed over several ECUs, it can be dif-

ficult to determine which ECU is the cause of a function failure. On the other hand,
ECUs usually participate in several functions, and a faulty ECU can imply more than
one function-level failure. Introducing the correlation between different defaults can
be an effective means of improving diagnostic, switching from a local to a system
point of view; fuzzy logic and neural networks may help to develop such system-level
diagnostics [].

3.4 Fully Autonomous Car: Dream or Reality?

In order to meet the challenges of the twenty-first century in terms of mobility (for
people and goods), a new form of transport needs to be developed. We believe that
the new transport technologies will be mostly based on automated road transport
using existing and new road infrastructures. The key points will be a hierarchical
network with very high capacity links, optimization, and demand control. The objec-
tives are to provide door-to-door transport to anyone (or anything), at any time but

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-17

at different costs depending on the modes used. These technologies are now being
developed through several European programs such as CyberCars and CityMobil
(see www.cybercars.org and www.citymobil-project.eu). Several systems are now at
the implementation level following European level recommendations [,]. This
section tries to explore the long-term future of these systems.

3.4.1 Automated Road Vehicles

Automated road transport will include various types of vehicles, as is the case with
today’s manual vehicles on the existing road infrastructure. The goal is to opti-
mize the efficiency of the system. Therefore, depending on the demand on a par-
ticular road link, the users will be encouraged (possibly through pricing) to take
a high-capacity vehicle. This will probably mean a change in vehicle since high-
capacity vehicles will not do door-to-door but will run on specific routes. These
high-capacity vehicles will be like buses (– passengers), but these buses will
have the capacity to form closely linked platoons with a very high combined capac-
ity (similar to a suburban train capacity with properly designed platforms). The top
speed of these high-capacity vehicles should be on the order of  km/h in city
environments. For intercity travel, very high speed vehicles could be considered
( km/h). Early models of such vehicles are already in operation (Phileas, CVIS,
IMTS, etc., see Figure .) and are derived from the bus rapid transit (BRT) con-
cept with advanced technologies for lateral and sometimes longitudinal guidance
to improve their operation. It must be pointed out that BRT has been suggested in
a recent study to be the “best option” for reducing GHG in developing cities [].

FIGURE . IMTS from Toyota.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-18 Automotive Embedded Systems Handbook

FIGURE . CyCabs from Robosoft.

For goods transport we should have vehicles of similar size, designed for the transport
of standard containers.
The second type of vehicles will be individual ones, varying in size from  to 

passengers and they can be private or public (although the need for a private vehi-
cle will be very limited since the service in a public one should be very similar and
much cheaper). These cybercars (Figure .), as they are now called, will operate on
demand (including the selection of vehicle type) for passengers going from one loca-
tion to their destination or to a high capacity or high speed link (such as a train
station or an airport) with no intermediate stop. Similar-sized vehicles will be used
for delivering goods door-to-door, and could possibly even collect the garbage, using
specific containers of various standard sizes. The handling of these containers would
be automatic. This trend follows from the development of car-sharing schemes []
and electric vehicle goods distribution in cities [].

3.4.2 Automated Road Network

The automated road network (ARN) vehicles will use a combination of roads of
different types as is the case today with traditional vehicles. The objective is to have
a network with different capacities and speeds as required to optimize trip time and
capacity at a given cost.
The capillaries of the network will be today’s existing streets, which might be

redesigned slightly to improve the urban esthetics and pedestrian space. Some space
will bemade available for temporary parking for loading and unloading passengers or
goods. The individual automated road vehicles will use these capillaries at low speed

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-19

FIGURE . ULTra track.

(less than  km/h) since the space might be shared with pedestrians and cyclists and
a few manually driven vehicles.
The next level of roads will be today’s arteries and they will be designed for high

capacity. They will be used by high-capacity vehicles as well as individual ones,
althoughhigh-capacity vehicleswill be given a priority at peak time (throughpricing).
These arteries will be redesigned to ensure the best possible speed at the lowest risk,
as done today for light rail or BRT. In some cases, they might be completely separated
from pedestrians (Figure .). Stations (and exits for individual automated vehicles)
should be fairly widely spaced to ensure high speed, since local, individual vehicles
should be available for the last (or first) leg of the trip. At the stations, the passengers
would move very conveniently from a collective vehicle to an individual one and vice
versa.
The last level of theARNwill consist of a new infrastructure built specifically for the

automated vehicles. It would be a light infrastructure, completely segregated but with
entry and exit points to the other two levels of the ARN.This infrastructure would be
mostly above ground as is constructed today for personal rapid transit (PRT). Today’s
freeways would be converted totally (or partially, preserving a single lane, if man-
ual vehicles are still allowed) into ARNs, with the stations located at some of today’s
exchanges.

3.4.3 Automated Road Management

For the proper operation of automated road transport, it is essential that all the ele-
ments of the system be properly managed in order to obtain the best efficiency and
service to the user.The general principle is to satisfy most of the demand while mini-
mizing cost. Since transport demand can exceed the capacity at particular times, some

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-20 Automotive Embedded Systems Handbook

form of demand management must be applied. In a liberal society, it is likely that this
control will be done through some form of trip pricing.
Since it will be more efficient to move individuals (or goods) in large quantities

simultaneously, mass transport will be encouraged as long as the demand can justify
the use of large vehicles. If this is not the case, only individual vehicles will be offered.
The automated roadmanagement will therefore have tomanage the pricing structure,
possibly through companies that will provide the services and the individual billing
of the customers (several companies might run their automated vehicles through the
same network).
Themanagement center will also manage the navigation of each automated vehicle

so that the best route is used for a particular trip. The best route is not necessarily the
fastest one but the one that optimizes the entire system. The management center has
also to manage other resources such as loading/unloading zones, standby locations
(parking), energy, and vehicle maintenance facilities [].Therefore, the management
will seek to reach an optimum with respect to certain criteria that will have to be
decided by the operators in conjunction with the political level.
Finally, the management will have to manage the maintenance and the evolution

of the system as well as the unavoidable emergencies (disabled vehicles, broken
infrastructure, objects on the roads, etc.).

3.4.4 Deployment Paths

Obviously the deployment of the automated road transport will not happen every-
where at the same time. There are three trends emerging toward this future scenario.
One is driving assistance that has been spreading quite rapidly since the late s.
As we saw previously, numerous techniques have appeared in recent high-end private
vehicles, such as longitudinal control using radar and lateral control using vision tech-
niques [].The first vehicles incorporating these technologies are now on themarket
and it is possible that in , %of the vehicles manufactured will incorporate them
(while low-cost “manual” vehicles will be mostly reserved for developing countries).
Such techniques are now also appearing on buses and can lead the way to the

first generation of large automated road vehicles with the concept of automated BRT
(ABRT) as a cheaper alternative to automated metros. Several manufacturers are
already addressing this market.
The second trend is the arrival of people-movers based on automated guided vehi-

cles in specific locations and on dedicated tracks (protected or not). These systems
are now starting to be deployed, the biggest hurdle being the lack of proper legisla-
tion that prevents the operation of totally automated vehicles on public roads at the
moment. This problem is now being addressed at the European level.
The third trend is the rapid development (mostly in large cities) of car-sharing

schemes, addressing the needs of urbanites who seek a complement to public trans-
port and punctual needs for a private transport. Several cities and states are now
encouraging this trend which can lead to reduced needs for parking space as well as
cleaner, safer vehicles. In , a French law was passed to facilitate the deployment
of these services (Ries law).

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-21

It can be forecast that in the next  years, these last two trends will merge with
individual vehicles with dual-mode capabilities: manual (assisted) driving on regular
roads and fully automatic driving in dedicated zones where no (or few) manual vehi-
cles will be allowed, therefore ensuring smooth and safe operation of the automated
vehicles.

3.5 Conclusion

Aswehave seen, control technologies based on sophisticated sensors and control units
running advanced algorithms are now quickly arriving in standard road vehicles, that
is, passenger cars, buses, trucks, and vans. These technologies are being developed for
the moment as comfort features but are now increasingly impacting the safety and
efficiency of the vehicles.
These techniques, associated with communications and global control of the road

network, will evolve toward a completely new form of transport, which will rely less
and less on the human driver. Perhaps in  years, manually driven vehicles will be
left for a few enthusiasts as is the horse nowadays.

References

. ACEA. European Automobile Manufacturers Association Web Site (www.acea.be).
. SwedishNational Road Administration,Vision Zero—FromConcept to Action. SNRA,

Borlange, .
. PReVENTWebsite: http://www.prevent-ip.org.
. Evaluation of Scenarios to Deployment of ADAS/AVG Systems in Urban Contexts

Deliverable D, Stardust Project (www.trg.soton.ac.uk/stardust/index.htm).
. Ieromonachou, P., Potter, S., andWarren, J.,ComparingUrbanRoadPricing Implemen-

tation and Management Strategies from the UK and Norway. Faculty of Technology,
Open University, .

. Lowson, M., Energy use and sustainability of transport systems. Advanced
Transport Group, University of Bristol, UK, Deliverable of CyberCars Contract.
(www.cybercars.org).

. Fox, D. et al., Position estimation for mobile robots in dynamic environments, in
Proceedings of the th National Conference on Artificial Intelligence, Madison, WI,
.

. Shoval, S. and Borenstein, J., Measurement of angular position of a mobile robot
using ultrasonic sensors, in Proceedings of the ANS Conference on Robotics and Remote
Systems, Pittsburgh, PA, April .

. Thomas, K., Laserscanner for automotive applications, in Workshop on Intelligent
Transportation, Germany, .

. Evans, D., Performance Analysis of Next-Generation LADAR for Manufacturing,
NISTIR , Building and Fire Research Laboratory National Institute of Standards
and Technology, Gaithersburg, MD, May .

. Honma, S. and Uehara, N., Millimeter-wave radar technology for automotive appli-
cation, Technical Reports, Mitsubishi Electric ADVANCE, June .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

3-22 Automotive Embedded Systems Handbook

. Hoess, A. et al., Design and realization of a novel, synchronized  GHz radar net-
work for automotive use, in IMS Workshop on Circuit and Antenna Technologies for
Automotive Radars, Seattle, June , .

. Schauerte, J. et al., A × pixel CMOS imager chip optimized for automotive
vision applications Frank, Delphi Research Labs, SAE technical paper --.

. Muramatsu, S. et al., Automotive vision platform equipped with dedicated image
processor for multiple applications, SAE technical paper --.

. Welch, G. and Bishop, G., An introduction to the Kalman filter, Technical report,
University of North Carolina, Chapel Hill, NC, .

. El Najjar, M.E. and Bonnifait, Ph., A roadmap matching method for precise vehi-
cle localization using belief theory and Kalman filtering, in Proceedings of the th
International Conference on Advanced Robotics, IEEE, Portugal, June .

. Ernst, T. and De La Fortelle, A., Car-to-car and car-to-infrastructure communica-
tion based on Nemo and Manet in IPv, in Proceedings of the th World Congress on
Intelligent Transport Systems and Services, London, October .

. CVIS Website: http://www.cvisproject.org.
. SafeSpot Website: http://www.safespot-eu.org.
. Safety Related Fault Tolerant Systems—X-by-Wire consortium final report, .
. Whitfield, K., Solve for X: X-by-wire technologies, Automotive Design & Production,

December .
. SPARC Website: http://www.sparc-eu.net/.
. EurekaPrometheusProject.http://en.wikipedia.org/wiki/EUREKA_Prometheus_Project.
. Lexus Web Site: http://www.lexus-europe.com/about/pursuit-of-perfection/index.

aspx (see LS’s advanced obstacle detection, lane-keeping assist and intelligent
parking assist).

. MISRAWeb site: http://www.misra.org.uk/.
. AUTOSAR, Automotive Open System Architecture (http://www. autosar.org).
. Blum, J.J. and Eskandarian, A., Managing effectiveness and acceptability in intelligent

speed adaptation systems, in Proceedings of the IEEE ITSC , Toronto, Canada,
September –, .

. van Wees, K., Liability aspects of ISA, in thWorld Congress on ITS, San Francisco,
November –, .

. Fraichard, T. and Asama, H., Inevitable collision states. A step towards safer robots?
Advanced Robotics, ():–, .

. CityMobil Website: http://www.citymobil-project.eu/.
. Börner, M., Zele, M., and Isermann, R., Comparison of different fault detection

algorithms for active body control components: Automotive suspension systems, in
Proceedings of the American Control Conference, Arlington, VA, June .

. Auzanneau, F., Olivas, M., and Ravot, N., A simple and accurate model for wire diag-
nosis using reflectometry, in Progress in Electromagnetics Research Symposium ,
Prague, Czech Republic, August –, .

. Gusikhi, O., Rychtyckyj, N., and Filev, D., Intelligent systems in the automotive
industry: Applications and trends, Knowledge and Information Systems, (), July
.

. EPC Task Force on Transport,  Prescriptions for a European sustainable mobility
policy, EPC Working Paper No. , The EPC Task Force on Transport, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Intelligent Vehicle Technologies 3-23

. Towards a thematic strategy on the urban environment, Communication from the EC
to the Parliament, .

. Vincent, W. and Jerram, L.C., The potential for bus rapid transit to reduce
transportation-related CO emissions, Journal of Public Transportation,  (BRT
Special Edition).

. ParentMichel andTexier Pierre-Yves, Apublic transport systembased on light electric
cars, in Fourth International Conference on Automated People Movers, Irving, March
.

. ELCIDIS, Electric Vehicle City Distribution, Elcidis Final Report TR /, Euro-
pean Commission, .

. Awasthi, A., Benabid, S., Talamona, A., and Parent, M., Centralized fleet management
for cybernetic transportation system, in Proceedings of ITS , Madrid, October
.

. Parent Michel and Blosseville Jean-Marc., Automated vehicles in cities: A first step
towards the automatedhighway, in SAE Future Transportation Technology Conference,
Costa Mesa, CA, August –, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _S Finals Page  -- #

II
Embedded
Communications

 A Review of Embedded Automotive Protocols Nicolas Navet
and Françoise Simonot-Lion . 4-
Automotive Communication Systems: Characteristics and Constraints ● In-
Car Embedded Networks ● Middleware Layer ● Open Issues for Automotive
Communication Systems

 FlexRay Protocol Bernhard Schätz, Christian Kühnel, and
Michael Gonschorek . 5-
Introduction ● FlexRay Communication ● FlexRay Protocol ● FlexRay Applica-
tion ● Conclusion

 Dependable Automotive CANNetworks Juan Pimentel,
Julian Proenza, Luis Almeida, Guillermo Rodriguez-Navas,
Manuel Barranco, and Joaquim Ferreira . 6-
Introduction ● Data Consistency Issues ● CANcentrate and ReCANcentrate:
Star Topologies for CAN ● CANELy ● FTT-CAN: Flexible Time-Triggered
Communication on CAN ● FlexCAN: A Deterministic, Flexible, and Depend-
able Architecture for Automotive Networks ● Other Approaches to Depend-
ability in CAN ● Conclusion

II-

Navet/Automotive Embedded Systems Handbook _S Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4
A Review of Embedded
Automotive Protocols

Nicolas Navet
National Institute for Research
in Computer Science and Control
RealTime-at-Work

Françoise Simonot-Lion
Lorraine Laboratory of Computer
Science Research and Applications

. Automotive Communication Systems:
Characteristics and Constraints -
From Point-to-Point to Multiplexed
Communications ● Car Domains andTheir
Evolution ● Different Networks for
Different Requirements ● Event-Triggered
versus Time-Triggered

. In-Car Embedded Networks -
Priority Buses ● TT Networks ● Low-Cost
Automotive Networks ●Multimedia
Networks

. Middleware Layer . -
Rationale for a Middleware ● Automotive
MWs Prior to AUTOSAR ● AUTOSAR

. Open Issues for Automotive
Communication Systems -
Optimized Networking Architectures ●
System Engineering

References . -

4.1 Automotive Communication Systems:
Characteristics and Constraints

4.1.1 From Point-to-Point to Multiplexed Communications

Since the s, there has been an exponential increase in the number of electronic
systems that have gradually replaced those that are purely mechanical or hydraulic.
The growing performance and reliability of hardware components and the possibili-
ties brought about by software technologies enabled implementing complex functions
that improve the comfort of the vehicle’s occupants as well as their safety. In particu-
lar, one of the main purposes of electronic systems is to assist the driver to control the
vehicle through functions related to the steering, traction (i.e., control of the driving
torque), or braking such as the antilock braking system (ABS), electronic stability

4-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-2 Automotive Embedded Systems Handbook

program (ESP), electric power steering (EPS), active suspensions, or engine con-
trol. Another reason for using electronic systems is to control devices in the body
of a vehicle such as lights, wipers, doors, windows, and, recently, entertainment and
communication equipments (e.g., radio, DVD, hands-free phones, and navigation
systems).
In the early days of automotive electronics, each new function was implemented

as a stand-alone electronic control unit (ECU), which is a subsystem composed of a
microcontroller and a set of sensors and actuators. This approach quickly proved to
be insufficient with the need for functions to be distributed over several ECUs and the
need for information exchanges among functions. For example, the vehicle speed esti-
mated by the engine controller or by wheel rotation sensors has to be known in order
to adapt the steering effort, to control the suspension, or simply to choose the right
wiping speed. In today’s luxury cars, up to  signals (i.e., elementary information
such as the speed of the vehicle) are exchanged by up to  ECUs []. Until the begin-
ning of the s, data were exchanged through point-to-point links between ECUs.
However this strategy, which required an amount of communication channels of the
order of n where n is the number of ECUs (i.e., if each node is interconnected with all
the others, the number of links grows in the square of n), was unable to cope with the
increasing use of ECUs due to the problems of weight, cost, complexity, and reliability
induced by the wires and the connectors. These issues motivated the use of networks
where the communications are multiplexed over a shared medium, which conse-
quently required defining rules—protocols—for managing communications and, in
particular, for granting bus access. It was mentioned in a  press release (quoted in
Ref. []) that the replacement of a “wiring harness with local area networks (LANs)
in the four doors of a BMW reduced the weight by  kilograms.” In the mid-s,
the third part supplier Bosch developed controller area network (CAN), which was
first integrated in Mercedes production cars in the early s. Today, it has become
the most widely used network in automotive systems and it is estimated [] that the
number of CAN nodes sold per year is currently around  million (all application
fields). Other communication networks, providing different services, are now being
integrated in automotive applications. A description of the major networks is given in
Section ..

4.1.2 Car Domains and Their Evolution

As all the functions embedded in cars do not have the same performance or safety
needs, different quality of services (QoS) (e.g., response time, jitter, bandwidth, redun-
dant communication channels for tolerating transmission errors, efficiency of the
error detection mechanisms, etc.) are expected from the communication systems.
Typically, an in-car embedded system is divided into several functional domains
that correspond to different features and constraints (Chapter ). Two of them
are concerned specifically with real-time control and safety of the vehicle’s behav-
ior: the “power train” (i.e., control of engine and transmission) and the “chassis”
(i.e., control of suspension, steering, and braking) domains. The third, the “body,”
mostly implements comfort functions. The “telematics” (i.e., integration of wireless
communications, vehicle monitoring systems, and location devices), “multimedia,”

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-3

and “human–machine interface” (HMI) domains take advantage of the continuous
progress in the field of multimedia and mobile communications. Finally, an emerging
domain is concerned with the safety of the occupant.
Themain function of the power train domain is controlling the engine. It is realized

through several complex control laws with sampling periods of a magnitude of some
milliseconds (due to the rotation speed of the engine) and implemented in micro-
controllers with high computing power. In order to cope with the diversity of critical
tasks to be treated,multitasking is required and stringent time constraints are imposed
on the scheduling of the tasks. Furthermore, frequent data exchanges with other car
domains, such as the chassis (e.g., ESP, ABS) and the body (e.g., dashboard, climate
control), are required.
The chassis domain gathers functions such as ABS, ESP, automatic stability control

(ASC), four-wheel drive (WD), which control the chassis components according
to steering/braking solicitations and driving conditions (ground surface, wind,
etc.). Communication requirements for this domain are quite similar to those for
the power train but, because they have a stronger impact on the vehicle’s stability,
agility, and dynamics, the chassis functions are more critical from a safety standpoint.
Furthermore, the “X-by-Wire” technology, currently used for avionic systems, is now
slowly being introduced to execute steering or braking functions. X-by-Wire is a
generic term referring to the replacement of mechanical or hydraulic systems by
fully electrical/electronic ones, which led and still leads to new design methods
for developing them safely [] and, in particular, for mastering the interferences
between functions []. Chassis and power train functions operate mainly as closed-
loop control systems and their implementation is moving toward a time-triggered
approach [–], which facilitates composability (i.e., ability to integrate individually
developed components) and deterministic real-time behavior of the system.
Dashboards, wipers, lights, doors, windows, seats, mirrors, climate control are

increasingly controlled by software-based systems that make up the body domain.
This domain is characterized by numerous functions that necessitate many exchanges
of small pieces of information among themselves. Not all nodes require a large band-
width, such as the one offered by CAN; this leads to the design of low-cost networks
such as local interconnect network (LIN) and time-triggered protocol (TTP/A, Sec-
tion .). On these networks, only one node, termed themaster, possesses an accurate
clock and drives the communication by polling the other nodes, the slaves, periodi-
cally. The mixture of different communication needs inside the body domain leads to
a hierarchical network architecture where integrated mechatronic subsystems based
on low-cost networks are interconnected through a CAN backbone. The activation
of body functions is mainly triggered by the driver and passengers’ solicitations (e.g.,
opening a window, locking doors, etc.).
Telematics functions such as hand-free phones, car radio, CD, DVD, in-car naviga-

tion systems, rear seat entertainment, remote vehicle diagnostic, etc., are becoming
more and more numerous. These functions require a lot of data to be exchanged
within the vehicle but also with the external world through the use of wireless tech-
nology (see, for instance, Ref. []). Here, the emphasis shifts from messages and
tasks subject to stringent deadline constraints to multimedia data streams, band-
width sharing, and multimedia QoS where preserving the integrity (i.e., ensuring

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-4 Automotive Embedded Systems Handbook

that information will not be accidentally or maliciously altered) and confidentiality
of information is crucial. HMI aims to provide interfaces that are easy to use and that
limit the risk of driver inattention [].
Electronic-based systems for ensuring the safety of the occupants are increasingly

embedded in vehicles. Examples of such systems are impact and roll-over sensors,
deployment of air bags and belt pretensioners, tyre pressuremonitoring, and adaptive
cruise control (ACC)—the car’s speed is adjusted to maintain a safe distance with the
car ahead. These functions form an emerging domain usually referred to as “active
and passive safety.”

4.1.3 Different Networks for Different Requirements

The steadily increasing need for bandwidth∗ and the diversification of performance,
costs, and dependability† requirements lead to a diversification of the networks used
throughout the car. In , the Society for Automotive Engineers (SAE) defined a
classification for automotive communication protocols [–] based on data trans-
mission speed and functions that are distributed over the network. Class A networks
have a data rate lower than  kbps and are used to transmit simple control data
with low-cost technology. They are mainly integrated in the body domain (seat
control, door lock, lighting, trunk release, rain sensor, etc.). Examples of class A net-
works are LIN [,] and TTP/A []. Class B networks are dedicated to supporting
data exchanges between ECUs in order to reduce the number of sensors by sharing
information.They operate from  to  kbps.The J [] and low-speedCAN []
are the main representations of this class. Applications that need high-speed real-
time communications require class C networks (speed of  kbps–Mbps) or class D
networks‡ (speed over Mbps). Class C networks, such as high-speed CAN [],
are used for the power train and currently for the chassis domains, while class D
networks are devoted to multimedia data (e.g., media-oriented system transport,
MOST []) and safety critical applications that need predictability and fault-
tolerance (e.g., TTP/C [] or FlexRay [] networks) or serve as gateways between
subsystems [].
It is common, in today’s vehicles, that the electronic architecture include four dif-

ferent types of networks interconnected by gateways. For example, the Volvo XC []
embeds up to  ECUs interconnected by a LIN bus, a MOST bus, a low-speed CAN,
and a high-speed CAN. In the near future, it is possible that a bus dedicated to occu-
pant safety systems (e.g., air bag deployment, crash sensing), such as the “Safe-by-Wire
plus” [], will be added.

∗ For instance, in Ref. [], the average bandwidth needed for the engine and the chassis control is estimated
to reach  kbps in  while it was  kbps in  and  kbps in .

† Dependability is usually defined as the ability to deliver a service that can justifiably be trusted, see
Ref. [] for more details.

‡ Class D is not formally defined but it is generally considered that networks over Mbps belong to class D.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-5

4.1.4 Event-Triggered versus Time-Triggered

One of the main objectives of the design step of an in-vehicle embedded system is to
ensure a proper execution of the vehicle functions, with a predefined level of safety,
in the normal functioning mode but also when some components fail (e.g., reboot of
an ECU) or when the environment of the vehicle creates perturbations (e.g., elec-
tromagnatic interference [EMI] causing frames to be corrupted). Networks play a
central role in maintaining the embedded systems in a “safe” state since most critical
functions are now distributed and need to communicate. Thus, the different com-
munication systems have to be analyzed with regard to this objective; in particular,
messages transmitted on the bus must meet their real-time constraints, whichmainly
consist of bounded response times and bounded jitters.
There are two main paradigms for communications in automotive systems: event-

triggered and time-triggered. Event-triggered means that messages are transmitted
to signal the occurrence of significant events (e.g., a door has been closed). In this
case, the system possesses the ability to take into account, as quickly as possible, any
asynchronous events such as an alarm. The communication protocol must define a
policy to grant access to the bus in order to avoid collisions; for instance, the strat-
egy used in CAN (Section ...) is to assign a priority to each frame and to give
the bus access to the highest priority frame. Event-triggered communication is very
efficient in terms of bandwidth usage since only necessary messages are transmit-
ted. Furthermore, the evolution of the system without redesigning existing nodes is
generally possible, which is important in the automotive industry where incremental
design is the usual practice. However, verifying that temporal constraints are met is
not obvious and the detection of node failures is problematic.
When communications are time-triggered (TT), frames are transmitted at pre-

determined points in time, which is well-suited for the periodic transmission of
messages as it is required in distributed control loops. Each frame is scheduled for
transmission at one predefined interval of time, usually termed a slot, and the schedule
repeats itself indefinitely. This medium access strategy is referred to as time division
multiple access (TDMA). As the frame scheduling is statically defined, the temporal
behavior is fully predictable; thus, it is easy to check whether the timing constraints
expressed on data exchanges are met. Another interesting property of TTPs is that
missing messages are immediately identified; this can serve to detect, in a short and
bounded amount of time, nodes that are presumably no longer operational. The first
negative aspect is the inefficiency in terms of network utilization and response times
with regard to the transmission of aperiodic messages (i.e., messages that are not
transmitted in a periodicmanner). A second drawback of TTPs is the lack of flexibility
even if different schedules (corresponding to different functioningmodes of the appli-
cation) can be defined and switching fromonemode to another is possible at runtime.
Finally, the unplanned addition of a new transmitting node on the network induces
changes in the message schedule and, thus, necessitates the update of all other nodes.
TTP/C [] is a purely TT network but there are networks, such as time-triggered
CAN (TTCAN) [], flexible time-triggered CAN (FTT-CAN) [], and FlexRay, that
can support a combination of both time-triggered and event-triggered transmissions.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-6 Automotive Embedded Systems Handbook

This capability to convey both types of traffic fits in well with the automotive context
since data for control loops as well as alarms and events have to be transmitted.
Several comparisons have been made between event-triggered and time-triggered

approaches; the reader can refer to Refs. [,,] for good starting points.

4.2 In-Car Embedded Networks

The different performance requirements throughout a vehicle, as well as competition
among companies of the automotive industry, have led to the design of a large number
of communicationnetworks.The aimof this section is to give a description of themost
representative networks for each main domain of utilization.

4.2.1 Priority Buses

To ensure at runtime the “freshness”∗ of the exchanged data and the timely delivery of
commands to actuators, it is crucial that themedium access control (MAC) protocol is
able to ensure bounded response times of frames. An efficient and conceptually sim-
ple MAC scheme that possesses this capability is the granting of bus access according
to the priority of the messages (the reader can refer to Refs. [,] and Chapter  for
how to compute bound on response times for priority buses). To this end, each mes-
sage is assigned an identifier, unique to the whole system. This serves two purposes:
giving priority for transmission (the lower the numerical value, the greater the prior-
ity) and allowing message filtering upon reception. The two main representatives of
such “priority buses” are CAN and J.

4.2.1.1 CAN

CAN is without a doubt the most widely used in-vehicle network. It was designed by
Bosch in the mid-s for multiplexing communication between ECUs in vehicles
and thus for decreasing the overall wire harness: length of wires and number of ded-
icated wires (e.g., the number of wires has been reduced by %, from  to ,
in the Peugeot  that embeds two CAN buses with regard to the non-multiplexed
Peugeot  []). Furthermore, it allows to share sensors among ECUs.
CAN on a twisted pair of copper wires became an ISO standard in  [,] and

is now a de facto standard in Europe for data transmission in automotive applications,
due to its low cost, robustness, and bounded communication delays []. In today’s car,
CAN is used as an SAE class C network for real-time control in the power train and
chassis domains (at  or  kbps), but it also serves as an SAE class B network for
the electronics in the body domain, usually at a data rate of  kbps.
On CAN, data, possibly segmented in several frames, may be transmitted peri-

odically, aperiodically, or on-demand (i.e., client/server paradigm). A CAN frame is

∗ The freshness property is verified if data have been produced recently enough to be safely consumed: the
difference between the time when data is used and the last production time must always be smaller than
a specified value.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-7

labeled by an identifier, transmitted within the frame, whose numerical value deter-
mines the framepriority. CANuses non-return-to-zero (NRZ) bit representationwith
a bit stuffing of length . In order not to lose the bit time (i.e., the time between the
emission of two successive bits of the same frame), stations need to resynchronize
periodically and this procedure requires edges on the signal. Bit stuffing is an encod-
ing method that enables resynchronization when using NRZ bit representation where
the signal level on the bus can remain constant over a longer period of time (e.g., trans-
mission of “..”). Edges are generated into the outgoing bit stream in such a way
as to avoid the transmission of more than a maximum number of consecutive equal-
level bits (five for CAN).The receiver will apply the inverse procedure and de-stuff the
frame. The standard CAN data frame (CAN .A) can contain up to  bytes of data
for an overall size of, at most,  bits, including all the protocol overheads such as the
stuff bits. The reader interested in the details of the frame format and the bus access
procedure should refer to Chapter . CAN bus access arbitration procedure relies
on the fact that a sending node monitors the bus while transmitting. The signal must
be able to propagate to the most remote node and return back before the bit value
is decided. This requires the bit time to be at least twice as long as the propagation
delay that limits the data rate; for instance, Mbps is feasible on a m bus at maxi-
mum while  kbps can be achieved over m. To alleviate the data rate limit, and
extend the life span of CAN further, car manufacturers are beginning to optimize the
bandwidth usage by implementing “traffic shaping” strategies that are very beneficial
in terms of response times; this is the subject of Chapter .
CAN has several mechanisms for error detection. For instance, it is checked that

the cyclic redundancy check (CRC) transmitted in the frame is identical to the CRC
computed at the receiver end, that the structure of the frame is valid and that no
bit-stuffing error occurred. Each station that detects an error sends an “error flag,”
which is a particular type of frame composed of six consecutive dominant bits that
allows all the stations on the bus to be aware of the transmission error. The corrupted
frame automatically reenters into the next arbitration phase, which might lead it to
miss its deadline due to the additional delay. The error recovery time, defined as
the time from detecting an error until the possible start of a new frame, is – bit
times. CAN possesses some fault-confinement mechanisms aimed at identifying per-
manent failures due to hardware dysfunctioning at the level of the microcontroller,
communication controller, or physical layer. The scheme is based on error counters
that are increased and decreased according to particular events (e.g., successful recep-
tion of a frame, reception of a corrupted frame, etc.). The relevance of the algorithms
involved is questionable [] but the main drawback is that a node has to diagnose
itself, which can lead to the nondetection of some critical errors. For instance, a faulty
oscillator can cause a node to transmit continuously a dominant bit, which is one
manifestation of the “babbling idiot” fault (Chapter ). Furthermore, other faults such
as the partitioning of the network into several subnetworks may prevent all nodes
from communicating due to bad signal reflection at the extremities. Without addi-
tional fault-tolerance facilities, CAN is not suited for safety-critical applications such
as future X-by-Wire systems. For instance, a single node can perturb the functioning
of the whole network by sending messages outside their specification (i.e., length and

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-8 Automotive Embedded Systems Handbook

period of the frames). Many mechanisms were proposed for increasing the depend-
ability of CAN-based networks (Chapter ), but, if each proposal solves a particular
problem, they have not necessarily been conceived to be combined. Furthermore, the
fault-hypotheses used in the design of these mechanisms are not necessarily the same
and the interactions between them remain to be studied in a formal way.
The CAN standard only defines the physical layer and data link layer (DLL). Sev-

eral higher level protocols have been proposed, for instance, for standardizing startup
procedures, implementing data segmentation, or sending periodic messages (see
AUTOSAR and OSEK/VDX in Section .). Other higher-level protocols standardize
the content of messages in order to ease the interoperability between ECUs. This is
the case for J, which is used, for instance, in Scania’s trucks and buses [].

4.2.1.2 VAN

Vehicle area network (VAN) [] is very similar to CAN (e.g., frame format, data rate)
but possesses some additional or different features that are advantageous from a tech-
nical point of view (e.g., no need for bit-stuffing, in-frame response: a node being
asked for data answers in the same frame that contained the request). VAN was used
for years in production cars by the French carmaker PSA Peugeot-Citroën in the body
domain (e.g., for the  model) but, as it was not adopted by the market, it was
abandoned in favor of CAN.

4.2.1.3 J1850 Network

The J [] is an SAE class B priority bus that was adopted in the United States
for communications with nonstringent real-time requirements, such as the control
of body electronics or diagnostics. Two variants of the J are defined: a . kbps
single-wire version and a . kbps two-wire version. The trend in new designs
seems to be the replacement of J by CAN or a low-cost network such as LIN
(Section ...).

4.2.2 TT Networks

As discussed before, there are two types of communication networks: TT networks
where activities are driven by the progress of time and event-triggered networks
where activities are driven by the occurrence of events. Both types of networks have
advantages but the TT bus is generally considered to be more dependable (refer, for
instance, to Ref. [] for a discussion on this topic). This explains that, currently, only
TT communication systems are being considered for use in X-by-Wire applications.
In this category, multiaccess protocols based on TDMA are particularly well suited;
they provide deterministic access to the medium (the order of the transmissions is
defined statically at the design time), and thus bounded response times. Moreover,
their regular message transmissions can be used as “heartbeats” for detecting sta-
tion failures. The three TDMA-based networks that could serve as gateways or for
supporting safety critical applications are TTP/C [], FlexRay (Section ...), and
TTCAN (Section ...). FlexRay, which is backed by the world’s automotive indus-
try, is becoming the standard in the industry and is already used in the BMW X

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-9

model since  []. In the following, we choose not to discuss further TTP/C,
which, to the best of our knowledge, is no more considered for vehicles but is now
used in aircraft electronic systems. However, the important experience gained over
the years with TTP/C, in particular regarding fault-tolerance features [] and their
formal validation (Chapter ), will certainly be beneficial to FlexRay.

4.2.2.1 FlexRay Protocol

A consortium of major companies from the automotive field is currently developing
the FlexRay protocol. The core members are BMW, Bosch, Daimler, General Motors,
NXP Semiconductors, Freescale Semiconductor, and Volkswagen. The first publicly
available specification of the FlexRay protocol has been released in , the current
version of the specification [] is available at http://www.flexray.com.
The FlexRay network is very flexible with regard to topology and transmission sup-

port redundancy. It can be configured as a bus, a star, or amultistar. It is notmandatory
that each station possesses replicated channels nor a bus guardian, even though this
should be the case for critical functions such as the Steer-by-Wire. At the MAC level,
FlexRay defines a communication cycle as the concatenation of a TT (or static) win-
dow and an event-triggered (or dynamic) window. In each communication window,
size of which is set statically at design time, two distinct protocols are applied. The
communication cycles are executed periodically. The TTwindow uses a TDMAMAC
protocol; the main difference with TTP/C is that a station in FlexRay might possess
several slots in the TT window, but the size of all the slots is identical (Figure .). In
the event-triggered part of the communication cycle, the protocol is flexible TDMA
(FTDMA): the time is divided into so-called minislots, each station possesses a given
number of minislots (not necessarily consecutive) and it can start the transmission
of a frame inside each of its own minislots. A minislot remains idle if the station has
nothing to transmit, which actually induces a loss of bandwidth (see Ref. [] for a
discussion on this topic). An example of a dynamic window is shown in Figure .:
on channel B, frames have been transmitted in minislots n and n +  while minislot
n+ has not been used. It is noteworthy that frame n+ is not received simultaneously
on channels A and B since, in the dynamic window, transmissions are independent in
both channels.
The FlexRayMACprotocol is more flexible than the TTP/CMAC since in the static

window nodes are assigned as many slots as necessary (up to  overall) and since
in the dynamic part of the communication cycle frames are only transmitted if nec-
essary. In a similar way as with TTP/C, the structure of the communication cycle is

...
Node B
static
slot

Node D
static
slot

Node A
static
slot

Node C
static
slot

Node A
static
slot

Node A
static
slot

TDMA
static window

Node B
static
slot

Node A
static
slot

FTDMA
dynamic window

Minislots

FIGURE . Example of a FlexRay communication cycle with four nodes A, B, C, and D.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-10 Automotive Embedded Systems Handbook

Channel A

Channel B

n n + 2
n + 2

Frame ID n + 1

n

Frame ID n

n +1

Frame ID n + 2

n + 3

Minislot

n + 4

Frame ID n + 4

n + 3

Frame ID n + 4

n + 5
n + 4

n + 6

Slot counter

n + 7n + 1

FIGURE . Example of message scheduling in the dynamic segment of the FlexRay communi-
cation cycle.

statically stored in the nodes; however, unlike TTP/C, mode changes with a different
communication schedule for each mode are not possible.
The FlexRay frame consists of three parts: the header, the payload segment contain-

ing up to  bytes of data, and the CRC of  bits. The header of  bytes includes the
identifier of the frame and the length of the data payload.The use of identifiers allows
tomove a software component, which sends a frameX, fromone ECU to another ECU
without changing anything in the nodes that consume frame X. It has to be noted that
this is no more possible when signals produced by distinct components are packed
into the same frame for the purpose of saving bandwidth (i.e., which is referred to
as frame-packing or protocol data unit [PDU]-multiplexing—see Ref. [] for this
problem addressed on CAN).
From the dependability point of view, the FlexRay standard specifies solely the bus

guardian and the clock synchronization algorithms. Other features, such as mode
management facilities or a membership service, will have to be implemented in
software or hardware layers on top of FlexRay (see, for instance, Ref. [] for a
membership service protocol that could be used along with FlexRay). This will allow
to conceive and implement exactly the services that are needed with the drawback
that correct and efficient implementations might be more difficult to achieve in a
layer above the communication controller.
In the FlexRay specification, it is argued that the protocol provides scalable depend-

ability, that is, the “ability to operate in configurations that provide various degrees
of fault tolerance.” Indeed, the protocol allows for mixing links with single and
dual transmission supports on the same network, subnetworks of nodes without
bus-guardians, or with different fault-tolerance capability with regards to clock syn-
chronization, etc. In the automotive context where critical and noncritical functions
will increasingly coexist and interoperate, this flexibility can prove to be efficient in
terms of cost and reuse of existing components if missing fault-tolerance features are
provided in a middleware (MW) layer, for instance such as the one currently under
development within the automotive industry project AUTOSAR (Section ..). The
reader interested in more information about FlexRay can refer to Chapter , and to
Refs. [,] for how to configure the communication cycle.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-11

4.2.2.2 TTCAN Protocol

TTCAN [] is a communication protocol developed by Robert Bosch GmbH on
top of the CAN physical and DLL. TTCAN uses the CAN standard but, in addition,
requires that the controllers have the possibility to disable automatic retransmission
of frames upon transmission errors and to provide the upper layers with the point
in time at which the first bit of a frame was sent or received []. The bus topology
of the network, the characteristics of the transmission support, the frame format, as
well as the maximum data rate, Mbps, are imposed by the CAN protocol. Channel
redundancy is possible (see Ref. [] for a proposal), but not standardized and no bus
guardian is implemented in the node. The key idea is to propose, as with FlexRay, a
flexible TT/event-triggered protocol. As illustrated in Figure ., TTCAN defines a
basic cycle (the equivalent of the FlexRay communication cycle) as the concatenation
of one or several TT (or exclusive) windows and one event-triggered (or arbitrating)
window. Exclusive windows are devoted to TT transmissions (i.e., periodic messages)
while the arbitrating window is ruled by the standard CAN protocol: transmissions
are dynamic and bus access is granted according to the priority of the frames. Several
basic cycles that differ by their organization in exclusive and arbitrating windows and
by the messages sent inside exclusive windows can be defined. The list of successive
basic cycles is called the system matrix, which is executed in loops. Interestingly, the
protocol enables the master node (i.e., the node that initiates the basic cycle through
the transmission of the “referencemessage”) to stop functioning in TTCANmode and
to resume in standard CANmode. Later, the master node can switch back to TTCAN
mode by sending a reference message.
TTCAN is built on a well-mastered and low-cost technology, CAN, but, as defined

by the standard, does not provide important dependability services such as the bus
guardian, membership service, and reliable acknowledgment. It is, of course, possible
to implement some of these mechanisms at the application or MW level but with
reduced efficiency. A few years back, it was thought that carmakers could be interested
in using TTCAN during a transition period until FlexRay technology matured fully

Exclusive
window

Time windows for
messages

...Exclusive
window

Exclusive
window

Arbitration
window

Reference
message

Exclusive
window

Reference
message

Master node
transmission

TDMA CAN standard
arbitration

Free
window

Basic cycle

FIGURE . Example of a TTCAN basic cycle.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-12 Automotive Embedded Systems Handbook

but this was not really the case and it seems that the future of TTCAN in production
cars is rather unsure.

4.2.3 Low-Cost Automotive Networks

Several fieldbus networks have been developed to fulfill the need for low-speed/low-
cost communication insidemechatronic-based subsystems generally made of an ECU
and its set of sensors and actuators. Two representatives of such networks are LIN
and TTP/A. The low-cost objective is achieved not only because of the simplicity of
the communication controllers but also because the requirements set on the micro-
controllers driving the communication are reduced (i.e., low computational power,
small amount of memory, low-cost oscillator). Typical applications involving these
networks include controlling doors (e.g., door locks, opening/closing windows) or
controlling seats (e.g., seat position motors, occupancy control). Besides cost consid-
erations, a hierarchical communication architecture, including a backbone such as
CAN and several subnetworks such as LIN, enables reducing the total traffic load on
the backbone.
Both LIN and TTP/A are master/slave networks where a single master node, the

only node that has to possess a precise and stable time base, coordinates the commu-
nication on the bus: a slave is only allowed to send a message when it is polled. More
precisely, the dialog begins with the transmission by themaster of a “command frame”
that contains the identifier of the message whose transmission is requested. The com-
mand frame is then followed by a “data frame” that contains the requested message
sent by one of the slaves or by the master itself (i.e., the message can be produced by
the master).

4.2.3.1 LIN

LIN [,] is a low-cost serial communication system used as SAE class A network,
where the needs in terms of communication do not require the implementation of
higher-bandwidth multiplexing networks such as CAN. LIN is developed by a set of
major companies from the automotive industry (e.g., DaimlerChrysler, Volkswagen,
BMW, and Volvo) and is already widely used in production cars.
The LIN specification package (LIN version . []) includes not only the specifi-

cation of the transmission protocol (physical and DLL) for master–slave communica-
tions but also the specification of a diagnostic protocol on top of the DLL. A language
for describing the capability of a node (e.g., bit-rates that can be used, characteristics
of the frames published and subscribed by the node, etc.) and for describing the whole
network is provided (e.g., nodes on the network, table of the transmissions’ schedule,
etc.). This description language facilitates the automatic generation of the network
configuration by software tools.
A LIN cluster consists of one “master” node and several “slave” nodes connected to

a common bus. For achieving a low-cost implementation, the physical layer is defined
as a single wire with a data rate limited to  kbps due to EMI limitations. The master
node decides when and which frame shall be transmitted according to the schedule
table. The schedule table is a key element in LIN; it contains the list of frames that are

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-13

Break

Interframe
space

Sync Protected
identifier

Header
Response

space

Data 1 Data 2

...

Data N Checksum

Response

Frame
Frame slot

FIGURE . Format of the LIN frame. A frame is transmitted during its “frame slot,” which
corresponds to an entry of the schedule table.

to be sent and their associated frame-slots thus ensuring determinism in the transmis-
sion order. At the moment a frame is scheduled for transmission, the master sends a
header (a kind of transmission request or command frame) inviting a slave node to
send its data in response. Any node interested can read a data frame transmitted on
the bus. As in CAN, each message has to be identified:  distinct message identifiers
are available. Figure . depicts the LIN frame format and the time period, termed a
“frame slot,” during which a frame is transmitted.
The header of the frame that contains an identifier is broadcast by the master node

and the slave node that possesses this identifier inserts the data in the response field.
The “break” symbol is used to signal the beginning of a frame. It contains at least 
dominant bits (logical value ) followed by one recessive bit (logical value ) as a break
delimiter.The rest of the frame ismade of byte fields delimited by one start bit (value )
and one stop bit (value ), thus resulting in a -bit stream per byte. The “sync” byte
has a fixed value (which corresponds to a bit stream of alternatively  and ); it allows
slave nodes to detect the beginning of a new frame and be synchronized at the start
of the identifier field. The so-called protected identifier is composed of two subfields:
the first  bits are used to encode the identifier and the last  bits, the identifier parity.
The data field can contain up to  bytes of data. A checksum is calculated over the
protected identifier and the data field. Parity bits and checksum enable the receiver of
a frame to detect bits that have been inverted during transmission.
LIN defines five different frame types: unconditional, event-triggered, sporadic,

diagnostic, and user-defined. Frames of the latter type are assigned a specific identifier
value and are intended to be used in an application-specific way that is not described
in the specification. The first three types of frames are used to convey signals. Uncon-
ditional frames are the usual type of frames used in the master–slave dialog and are
always sent in their frame-slots. Sporadic frames are frames sent by the master, only if
at least one signal composing the frame has been updated. Usually, multiple sporadic
frames are assigned to the same frame-slot and the higher priority frame that has an
updated signal is transmitted. An event-triggered frame is used by the master willing
to obtain a list of several signals from different nodes. A slave will only answer the
master if the signals it produces have been updated, thus resulting in bandwidth sav-
ings if updates do not take place very often. If more than one slave answers, a collision
will occur. The master resolves the collision by requesting all signals in the list one
by one. A typical example of the use of the event-triggered transfer given in Ref. []

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-14 Automotive Embedded Systems Handbook

is the doors’ knob monitoring in a central locking system. As it is rare that multi-
ple passengers simultaneously press a knob, instead of polling each of the four doors,
a single event-triggered frame can be used. Of course, in the rare event when more
than one slave responds, a collision will occur. The master will then resolve the colli-
sion by sending one by one the individual identifiers of the list during the successive
frame slots reserved for polling the list. Finally, diagnostic frames have a fixed size of
 bytes, fixed value identifiers for both the master’s request and the slave’s answers,
and always contain diagnostic or configuration data whose interpretation is defined
in the specification.
It is also worth noting that LIN offers services to send nodes into a sleep mode

(through a special diagnostic frame termed “go-to-sleep-command”) and to wake
them up, which is convenient since optimizing energy consumption, especially when
the engine is not running, is a real matter of concern in the automotive context.

4.2.3.2 TTP/A Network

AswithTTP/C, TTP/A []was initially invented at theViennaUniversity of Technol-
ogy. TTP/A pursues the same aims and shares the main design principles as LIN and
it offers, at the communication controller level, some similar functionalities, in partic-
ular, in the areas of plug-and-play capabilities and online diagnostics services. TTP/A
implements the classic master–slave dialog, termed “master–slave round,” where the
slave answers themaster’s request with a data frame having a fixed length data payload
of  bytes. The “multipartner” rounds enable several slaves to send up to an overall
amount of  bytes of data after a single command frame. A “broadcast round” is a
special master–slave round in which the slaves do not send data; it is, for instance,
used to implement sleep/wake-up services. The data rate on a single wire transmis-
sion support is, as for LIN, equal to  kbps, but other transmission supports enabling
higher data rates are possible. To the best of our knowledge, TTP/A is not currently
in use in production cars.

4.2.4 Multimedia Networks

Many protocols have been adapted or specifically conceived for transmitting the large
amount of data needed by emerging multimedia applications in automotive systems.
Two prominent protocols in this category are MOST and IDB-.

4.2.4.1 MOST Network

MOST [] is a multimedia network development which was initiated in  by the
MOST Cooperation (a consortium of carmakers and component suppliers). MOST
provides point-to-point audio and video data transfer with different possible data
rates.This supports end-user applications like radios, global positioning system (GPS)
navigation, video displays, and entertainment systems. MOST’s physical layer is a
plastic optical fiber (POF) transmission support that provides amuch better resilience
to EMI and higher transmission rates than classical copper wires. Current production
cars from BMW and DaimlerChrysler employ aMOST network, andMOST has now
become the de facto standard for transporting audio and videowithin vehicles [,].

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-15

At the time of writing, the third revision ofMOST has been announced with, as a new
feature, the support of a channel that can transport standard Ethernet frames.

4.2.4.2 IDB-1394 Network

IDB- is an automotive version of IEEE- for in-vehicle multimedia and telem-
atic applications jointly developed by the IDB Forum (see http://www.idbforum.org)
and the  Trade Association (see http://www.ta.org). The system architecture
of IDB- permits existing IEEE- consumer electronics devices to interoperate
with embedded automotive grade devices. IDB- supports a data rate of Mbps
over twisted pair or POF, with amaximum number of embedded devices that are lim-
ited to  nodes. From the point of view of transmission rate and interoperability with
existing IEEE- consumer electronic devices, IDB-was at one time considered
a serious competitor for MOST technology but, despite a few early implementations
at Renault and Nissan, did not receive wide acceptance on the market.

4.3 Middleware Layer

4.3.1 Rationale for a Middleware

The design of automotive electronic systems has to take into account several con-
straints. First, the performance, quality, and safety of a vehicle depend on functions
that are mainly implemented in software and moreover depend on a tight coopera-
tion between these functions (Chapter ). Second, in-vehicle embedded systems are
produced through a complex cooperative multipartner development process shared
between original equipment manufactures (OEMs) and suppliers. In order to increase
the efficiency of the production of components and their integration, two impor-
tant problems have to be solved: () the portability of components from one ECU
to another enabling some flexibility in the architecture design, and () the reuse
of components between platforms, which is a key point especially for ECU suppli-
ers. So the cooperative development process raises the problem of interoperability of
components. A classic approach for easing the integration of software components
is to implement a Middleware layer that provides application programs with com-
mon services and a common interface. In particular, the common interface allows
the design of an application disregarding the hardware platform and the distribution,
and therefore enables the designer focusing on the development and the validation of
the software components and the software architecture that realize a function.
Among the set of common services usually provided by aMW, those that related to

the communication between several application components are crucial. They have
to meet several objectives:

• Hide the distribution through the availability of services and interfaces
that are the same for intra-ECU, inter-ECU, interdomain communications
whatever the underlying protocols.

• Hide the heterogeneity of the platform (i.e., microcontrollers, protocols,
operating systems, etc.) by providing an interface independent of the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-16 Automotive Embedded Systems Handbook

underlying protocols and of the CPU architecture (e.g., // bits,
endianness).

• Provide high-level services in order to shorten the development time and
increase quality through the reuse of validated services (e.g., working
modemanagement, redundancy management, membership service, etc.).
A good example of such a function is the “frame-packing” (sometimes
also called “signal multiplexing”) that enables application components to
exchange “signals” (e.g., the number of revolutions per minute, the speed
of the vehicle, the state of a light, etc.) while, at runtime, “frames” are
transmitted over the network; so, the frame-packing service of a MW
consists in packing the signals into frames and sending the frames at the
right points in time for ensuring the deadline constraint on each signal it
contains.

• Ensure QoS properties required by the application; in particular, it can be
necessary to improve the QoS provided by the lower-level protocols as,
for example, by furnishing an additional CRC, transparent to the appli-
cation, if the Hamming distance of the CRC specified by the network
protocol is not sufficientwith regard to the dependability objectives.Other
examples are the correction of “bugs” in lower level protocols such as the
“inconsistent message duplicate” of CAN (see Chapter  and Ref. []),
the provision of a reliable acknowledgment service on CAN, the status
information on the data consumed by the application components (e.g.,
data were refreshed since last reading, its freshness constraint was not
respected, etc.), or filtering mechanisms (e.g., notify the application for
each k reception or when the data value has changed in a significant way).

Note that a more advanced feature would be to come up with adaptive communica-
tion services, thanks to algorithms that would modify at runtime the parameters of
the communication protocols (e.g., priorities, transmission frequencies, etc.) accord-
ing to the current requirements of the application (e.g., inner-city driving or highway
driving) or changing environmental conditions (e.g., EMI level). For the time being,
to the best of our knowledge, no such feature exists in automotive-embedded systems.
In fact, this point requires a coordinated approach for the design of function (as the
definition of control law parameters, the identification of the parameters acting on the
robustness of the function, etc.) and the deployment of the software architecture that
implements the function (specifically the communication parameters). By increasing
the efficiency and the robustness of the application, such an adaptive strategy would
certainly ease the reusability.

4.3.2 Automotive MWs Prior to AUTOSAR

Some carmakers possess a proprietary MW that helps to integrate ECUs and software
modules developed by their third-party suppliers. For instance, the TITUS/DBKOM
communication stack is a proprietary MW of Daimler that standardizes the cooper-
ation between components according to a client/server model. Volcano [–] is

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-17

a commercial product of Mentor Graphics initially developed in partnership with
Volvo. The Volcano target package (VTP) consists of a communication layer and a
set of off-line configuration tools for application distributed on CAN and/or LIN. It is
aimed to provide the mapping of signals into frames under network bandwidth opti-
mization and ensure a predictable and deterministic real-time communication system
thanks to schedulability analysis techniques [,]. To the best of our knowledge, no
publicly available technically precise description of TITUS and Volcano exists.
The objective of the OSEK/VDX consortium (offene Systeme und deren

schnittstellen für die Elektronik im Kraftfahrzeug, see http://www.osek-vdx.org) is
to build a standard architecture for in-vehicle control units. Among the results of
this group, two specifications are of particular interest in the context of this chap-
ter: the OSEK/VDX communication layer [] and the fault-tolerant communica-
tion layer []. The OSEK/VDX consortium (http://www.osek-vdx.org) specifies a
communication layer [] that defines common software interfaces and common
behavior for internal and external communications between application compo-
nents. At the application layer, these components exchange signals, termed “messages”
in OSEK/VDX terminology, while communicating OSEK/VDX entities exchange
so-called interaction layer PDUs (I-PDUs) that are collections of messages. Each con-
sumer of a message can specify it as queued or unqueued (i.e., a new value overwrites
the old one) and associate it with a filtering mechanism. The emission of an I-PDU
onto the network can be specified as triggered by the sending of a message that it
contains or not. In the latter case, the emission of the I-PDU is asynchronous with
the sending of the message. How signals are packed into a frame is statically defined
off-line and the OSEK/VDX communication layer automatically realizes the pack-
ing/unpacking at runtime. The characteristic of I-PDU and messages are specified
through the OSEK/VDX implementation language [].
OSEK/VDX communication runs on top of a transport layer [] that takes care

mainly of the I-PDU segmentation and it can operate on any OS compliant with
OSEK/VDX OS services for tasks, events, and interrupt management []. Some
questions deserve to be raised. In particular, communications between application
processes that are internal to one ECU or located in two distant ECUs do not obey
exactly the same rules (see Ref. [] for more details); thus, the designer has to take
into account the distribution of the functions that is a hindrance to portability. Finally,
OSEK/VDX communication does not follow a TT approach and is not intended to
be used on top of a TT network, as for example TTP/C or FlexRay. These networks
implement some features that were specified in OSEK/VDX communication, as the
TT sending of I-PDU, while some that are offered by this MW are not compatible
with the TT paradigm, as the direct transmission of an I-PDU as soon as a mes-
sage that it contains is sent by the application. However, higher-level services are
still needed on top of FlexRay or TTP/C for facilitating the development of fault-
tolerant applications. OSEK/VDX FTCom (fault-tolerant communication) [] is a
proposal whose objective is to complete OSEK/VDX for TT distributed architectures.
One of its main functions is to manage the redundancy of data needed for achiev-
ing fault-tolerance (i.e., the same information can be produced by a set of replicated
nodes) by presenting only one copy of data to the receiver application according to
the agreement strategy specified by the designer. Two other important services of

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-18 Automotive Embedded Systems Handbook

the FTCom, that are also provided by OSEK communication are () to manage the
packing/unpacking of messages [], which is needed if the network bandwidth has
to be optimized (Section ..), and () to provide message filtering mechanisms for
passing only “significant” data to the application. OSEK/VDX FTCom was developed
to run on top of a TT operating system (OS) such as OSEK time []. In this OS, the
scheduling of tasks is specified in a timetable called the dispatcher table that is gener-
ated off-line. OSEK/VDX FTCom allows the OS to synchronize the start of the task
schedule defined in the dispatcher table to a particular point in time in the I-PDU
schedule (i.e., the TDMA round). As this point is shared by all the ECUs connected
on the same network, this service can be used to synchronize distant applications.
Between  and , a European cooperative project aimed at the specifica-

tion of an automotive MW within the automotive industry was undertaken (ITEA
EAST-EEA project, see http://www.east-eea.net). To the best of our knowledge, the
ITEA EAST-EEA project was the first important initiative targeting the specification
of both the services to be ensured by the MW and the architecture of the MW itself
in terms of components and architecture of components. Similar objectives guide the
work done in the AUTOSAR consortium, see Chapter  and Refs. [,], that gath-
ers most of the key players in the automotive industry.The specifications produced by
the consortium become quickly de facto standards for the cooperative development
of in-vehicle embedded systems (see, for instance, themigration toAUTOSAR at PSA
Peugeot-Citröen []).

4.3.3 AUTOSAR

AUTOSAR (AUTomotive Open Standard ARchitecture) specifies the software archi-
tecture embedded in an ECU. More precisely, it provides a reference model that is
comprised of three main parts:

• Application layer
• Basic software (MW software components)
• Runtime environment (RTE) that provides standardized software inter-
faces to the application software

One of AUTOSAR’s main objectives is to improve the quality and the reliability
of embedded systems. By using a well-suited abstraction, the reference model sup-
ports the separation between software and hardware and eases the mastering of the
complexity. It also allows the portability of application software components and
therefore the flexibility for product modification, upgrade, and update, as well as
the scalability of solutions within and across product lines. The AUTOSAR reference
architecture is schematically illustrated in Figure .. An application software com-
ponent is compliant with AUTOSAR if its code only calls entry points defined by the
RTE. Furthermore, a basic software component used within the MW has to be of one
of the types defined inAUTOSAR; it isAUTOSAR compliant if it provides the services
and the interface formally defined in the specification of its type. The generation of
an AUTOSAR MW is done from the basic software components, generally provided

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-19

Application
software

component

Application
software

component

AUTOSAR runtime environment

Services ECU
abst.

mctlr
abst.

OS

ECU hardware

Standardized interfaces

Specific
drivers

Basic softw
are

Comm.

Application
software

component
A

pplication

softw
are

FIGURE . AUTOSAR reference architecture.

by suppliers, and the specification of the application itself (description of applicative-
level tasks, signals sent or received, events, alarms, etc.).Therefore, its deployment can
be optimized for each ECU.
One of themain objectives of the AUTOSARMWis to hide the characteristic of the

hardware platform as well as the distribution of the application software components.
Thus the inter- or intra-ECU communication services are of major importance and
are thoroughly described in the documents provided by the AUTOSAR consortium
(see Figure . for an overview of the different modules). The role of these services
is crucial for the behavioral and temporal properties of an embedded and distributed
application. Thus their design and configuration have to be precisely mastered and
the verification of timing properties becomes an important activity. The problem is
complex because the objects (e.g., signals, frames, I-PDU, etc.) that are handled by
services at one level are not the same objects that are handled by services at another
level. Nevertheless, each object is strongly dependent on one or several objects han-
dled by services belonging to neighboring levels. The AUTOSAR standard proposes
two communication models:

• “Sender/receiver” used for passing information between two application
software components (belonging to the same task, to two distinct tasks,
on the same ECU or to two remote tasks).

• “Client/server” that supports function invocation.

Two communication modes are supported for the sender/receiver communication
model:

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-20 Automotive Embedded Systems Handbook

Application
software

component

A
llo

ca
tio

n
in

de
pe

nd
en

t
N

et
w

or
k

in
de

pe
nd

en
t

A
llo

ca
tio

n
de

pe
nd

en
t

N
et

w
or

k
in

de
pe

nd
en

t
A

llo
ca

tio
n

de
pe

nd
en

t
N

et
w

or
k

de
pe

nd
en

t

Signal

Signal
Runtime environment (RTE)

AUTOSAR
COM

I-PDU

I-PDU

I-PDU I-PDU I-PDU

I-PDU

I-PDU
multiplexer

N-PDU N-PDU

I-PDU

Diagnostic com
manager and network

management

PDU router

CAN TP

CAN interface

Communication drivers and ECU hardware and communication controller

LIN
interface

FlexRay
interface

FlexRay
TP

FIGURE . Communication software components and architecture.

• The “explicit” mode is specified by a component that makes explicit calls
to the AUTOSAR MW for sending or receiving data.

• The “implicit” modemeans that the reading (resp. writing) of data is auto-
matically done by the MW before the invocation (resp. after the end of
execution) of a component consuming (resp. producing) the data without
any explicit call to AUTOSAR services.

AUTOSAR identifies three main objects regarding the communication: signal
exchanged between software components at application level, I-PDU that consists of
a group of one or several signals, and the N-PDU (DLL PDU) that will actually be
transmitted on the network. Precisely AUTOSAR defines

• Signals at application level that are specified by a length and a type. Con-
ceptually a signal is exchanged between application software components
through ports disregarding the distribution of this component. The appli-
cation needs to precise a transfer property parameter that will impact the
behavior of the transmission:
– The value “triggered” for this parameter indicates that each time the

signal is provided to theMWby the application, it has to be transmitted
on the network (as we will see later, this means that the sending of the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-21

frame containing this signal is directly done after the emission of the
signal by the application component).

– On the contrary, the value “pending” for a signal indicates that its actual
transmission on the network depends only on the emission rule of the
frame that contains the signal.

Furthermore, when specifying a signal, the designer has to indicate if it is
a “data” or an “event.” In the former case, incoming data are not queued
on the receiver side: when a new value arrives, it erases the previous value
of the same signal. The latter case specifies that signals are queued on the
receiver side and therefore it ensures that for each transmission of the sig-
nal a new value will be made available to the application. The handling of
buffers or queues is done by the RTE.

• I-PDU are built by the AUTOSAR COMcomponent. Each I-PDU ismade
of one or several signals and is passed via the PDU router to the com-
munication interfaces. The maximum length of an I-PDU depends on
the maximum length of the L-PDU (i.e., DLL PDU) of the underlying
communication interface: for CAN and LIN the maximum L-PDU length
is  bytes while for FlexRay the maximum L-PDU length is  bytes.
AUTOSAR COM ensures a local transmission when both components
are located on the same ECU, or by building suited objects and trigger-
ing the appropriate services of the lower layers when the components are
remote.This scheme enables the portability of components and hides their
distribution. The transformation from signals to I-PDU and from I-PDU
to signals is done according to an off-line generated configuration. Each
I-PDU is characterized by a behavioral parameter, termed transmission
mode with different possible values:
– “Direct” indicates that the sending of the I-PDU is done as soon as a

“triggered” signal contained in this I-PDU is sent at application layer.
– “Periodic” means that the sending of the I-PDU is done only periodi-

cally; it imposes that the I-PDU does not contain triggered signals.
– “Mixed” means that the rules imposed by the triggered signals con-

tained in the I-PDU are taken into account, and additionally the I-PDU
is sent periodically if it contains at least one “pending” signal.

– “None” characterizes I-PDUs whose emission rules depend on the
underlying network protocol (e.g., FlexRay) and no transmission is
initiated by AUTOSAR COM in this mode.

• An N-PDU is built by the basic components CAN TP (Transport Proto-
col) or FlexRay TP. It consists of the data payload of the frame that will be
transmitted on the network and protocol control information. Note that
the use of a transport layer is not mandatory and I-PDUs can be trans-
mitted directly to the lower layers (Figure .). When a transport layer is
used, an N-PDU is obtained by:
– Splitting the I-PDU so as to obtain several N-PDUs that are compliant

with the frame data payload length
– Assembling several I-PDUs into one N-PDU

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-22 Automotive Embedded Systems Handbook

TheRTE implements theAUTOSARMWinterface and the corresponding services.
In particular, the RTE handles the “implicit/explicit” communication modes and the
fact that the communication involves events (queued) or data (unqueued). Figure .
illustrates how the transmission of a signal S between two remote application compo-
nents (ASC-S on the sender side and ASC-R on the receiver side) is handled by the
RTE and the COM components. Signal S is assumed to be a data; therefore it is not
queued, and it is received explicitly (explicit mode). On each ECU, the RTE is gener-
ated according to the specification of the signal exchanges between applicative-level
components. Thus, in particular, on the receiver side, a buffer is defined in the RTE
for each data that is received by this ECU. At the initialization of the system, the value
of signal S at the receiver end is set to a statically defined value (in the example of
Figure ., the initial value is ). The buffer contains a value  between t and t, and
a value  from time t on. The value returned by a read call done by the application
software component ASC-R on the receiver side is  thus at time t and  at time t.

Sender ECU

ASC-S RTE
sender

COM
sender

COM
receiver

RTE
receiver

Receiver ECU

ASC-R
t0

t1

t2

ASC-R requests
signal S (data)

RTE copies 0
into the ASC-

R data

ASC-R reads
signal S (data)

RTE copies
20 into the
ASC-R data

Lo
w

er
 la

ye
r c

om
m

un
ic

at
io

n
se

rv
ic

es

t4

t3

Notification of
the arrival of

signal S

Acknowledges

Transmits
signal S (data)

Send signal
S (data); the
value is, for
example 20

An initial value,
for example 0,
is stored in the
RTE for signal

S (data)

Initialization
phase of the
embedded

middleware

RTE reads
the value of

signal S

FIGURE . Sender/receiver communication model for a data signal according to the explicit
communication mode.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-23

Sender ECU

ASC-S RTE
sender

COM
sender

COM
receiver

The queue for
the signal S is

flushed

Initialization
phase of the
embedded

middleware
ASC-R reads the
signal S (event)

RTE returns
« queue is
empty »

t0

t1

t2

t3

t4

t5RTE returns
« queue is
empty »

ASC-R reads the
signal S (event)

RTE returns 20
(queue becomes

empty)

ASC-R reads the
signal S (event)

RTE queues
value 20 in S

Notification of
signal S arrival

Acknowledges

Transmits the
signal S (event)

Sends the
signal S

(event); the
value is, for
example, 20

RTE
receiver ASC-R

Receiver ECU

FIGURE . Sender/receiver communication model for an event signal according to the explicit
communication mode.

In Figure ., a similar example is given but this time signal S is an “event” and thus
it is queued by the RTE on the receiving ECU. At time t, the queue for S is initialized
(queue is empty). Value  is queued at time t, at t a read call done by the receiver
application component returns  and the queue becomes empty. At times t and t
such a read call returns a code indicating that the queue is empty.
TheAUTOSARCOMcomponent is responsible for several functions: on the sender

side, it ensures the transmission and notifies the application about its outcome (suc-
cess or error). In particular, AUTOSAR COM can inform the application if the
transmission of an I-PDU did not take place before a specified deadline (i.e., dead-
line monitoring). On the receiver side, it also notifies the application (success or error

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-24 Automotive Embedded Systems Handbook

of a reception) and supports the filtering mechanism for signals (dispatching each sig-
nal of a received I-PDU to the application or to a gateway). Both at the sending and
receiving end, the endianness conversion is taken in charge. An important role of the
COM component is to pack/unpack signals into/from I-PDUs. Note that as the max-
imal length of an I-PDU depends on the underlying networks, the design of a COM
component has to take into account the networks and therefore it is not fully inde-
pendent of the hardware architecture.TheCOMcomponent has also to determine the
points in time when to send the I-PDUs. This is based on the attributes transmission
mode of an I-PDU and on the attribute transfer property of each signal that it con-
tains. Figure . summarizes the combinations that are possible. Note that the “none”
transmission mode is not indicated in this table, in that case the transmission is driven
by the underlying network layers.
As can be seen in Figure ., the actual sending of an I-PDU and therefore of

the signals that it contains is relevant to several rules. Figure . illustrates how a
direct I-PDU containing two signals S and S triggered is transmitted. At times t,
t, t, t, the sending of signal S or of signal S to the COM component triggers
the emission of the I-PDU to the lower layer. In Figure ., we consider an I-PDU
in which are packed signal S (triggered) and signal S (pending). The transmission
mode of the I-PDU is set to mixed with period dt. Each time a new value of S is
provided to the RTE, the I-PDU is passed to the lower layer (times t and t). In
addition, the I-PDU is also transmitted every dt (times t and t). Note that, in this
configuration, some values of S may not be transmitted, as for example the value
of S provided at time t.

Transfer property
of the signals

Transmission
mode of the I-PDU

Direct

Periodic

Mixed

The transmission of
the I-PDU is done

each time a signal is
sent and at each

period

The transmission of
the I-PDU is done

each time a triggered
signal is sent and

at each period

The transmission of
the I-PDU is done

 periodically

The transmission of
the I-PDU is done

 periodically

The transmission of
the I-PDU is done

 periodically

The transmission of
the I-PDU is done

 periodically

This configuaration
could be dangerous:

if no emission of
 triggered signals

occurs, the pending
 signals will

 never be transmitted

The transmission of
the I-PDU is done
 each time a signal

is sent

All the signals in
the I-PDU are

triggered

All the signals in
the I-PDU are

pending

At least one signal is
triggered and one is

pending in the I-PDU

FIGURE . Transmission mode of an I-PDU versus transfer property of its signals.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-25

Send S1
(value 5)

Send S2
(value -34)

Send S2
(value 0)

t3 t4

Emission of
the I-PDU

Emission of
the I-PDU

Emission of
the I-PDU

Emission of
the I-PDU

5 ? 5 −34 5
S1 S2 S1 S2 S1 S2 S1 S2

0 100 0

tt2t1

Send S1
(value 100)

FIGURE . Transmission of an I-PDU in direct mode with two triggered signals.

dt dt t

Emission of
the I-PDU

5 5 0 1005 0 0?

Emission of
the I-PDU

Emission of
the I-PDU

Emission of
the I-PDU

Send S1
(value 5)

Send S1
(value 100)

Send S2
(value -34)

Send S2
(value 0)

t0 t1 t2 t3 t4 t5 t6

S1 S2 S1 S2 S1 S2 S1 S2

FIGURE . Transmission of an I-PDU in mixed mode that contains a triggered signal (S) and
a pending signal (S).

The COM component is generated off-line on the basis of the knowledge of the
signals, the I-PDUs, and the allocation of application software components on the
ECUs. The AUTOSAR PDU router (Figure .), according to the configuration, dis-
patches each I-PDU to the right network communication stack.This basic component
is statically generated off-line as soon as the allocation of software components and
the operational architecture is known. Other basic software components of the com-
munication stack are responsible for the segmenting/reassembling of I-PDU(s) when
needed (FlexRay TP, CAN TP) or for providing an interface to the communication
drivers (FlexRay interface, CAN interface, LIN interface).

4.4 Open Issues for Automotive Communication
Systems

4.4.1 Optimized Networking Architectures

The traditional partitioning of the automotive application into several distinct func-
tional domains with their own characteristics and requirements is useful in mastering

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-26 Automotive Embedded Systems Handbook

the complexity, but this leads to the development of several independent subsystems
with their specific architectures, networks, and software technologies.
Some difficulties arise from this partitioning since more and more cross-domain

data exchanges are needed.This requires implementing gatewayswhose performances
in terms of CPU load and impact on data freshness have to be carefully assessed (see,
for instance, Ref. []). For instance, an ECU belonging, from a functional point of
view, to a particular domain can be connected, for wiring reasons, onto a network
of another domain. For example, the diesel particulate filter (DPF) is connected onto
the body network in some vehicles even though it belongs, from a functional stand-
point, to the power train. This can raise performance problems since the DPF needs
a stream of data with strong temporal constraints coming from the engine controller
located on the power train network. Numerous other examples of cross-domain data
exchanges can be cited such as the engine controller (power train) that takes input
from the climate control (body) or information from the power train displayed on
the dashboard (body). There are also some functions that one can consider as being
cross-domains such as the immobilizer, which belongs both to the body and power
train domains. Upcoming X-by-Wire functions will also need very tight cooperation
between the ECUs of the chassis, the power train, and the body.
A current practice is to transfer data between different domains through a gate-

way usually called the “central body electronic,” belonging to the body domain. This
subsystem is recognized as being critical in the vehicle: it constitutes a single point
of failure, its design is overly complex, and performance problems arise due to an
increasing workload.
An initial foreseeable domain of improvement is to further develop the tech-

nologies needed for the interoperability between applications located on different
subnetworks. With the AUTOSAR project, significant progresses in the area of MW
have been achieved over the last years and we are coming closer to the desirable
characteristics listed in Section ...
Future work should also be devoted to optimizing networking architectures. This

implies rethinking the current practice that consists of implementing networks on a
per-domain basis. The use of technologies that could fulfill several communication
requirements (e.g., high-speed, event-triggered, and TT communication, all possi-
ble with FlexRay) with scalable performances is certainly one possible direction for
facilitating the design. Certainly, software tools, such as our tool NETCAR-Analyzer
(see http://www.realtimeatwork.com), will be helpful to master the complexity and
come up with cost and dependability-optimized solutions. The use of software along
the development cycle will be facilitated by the advent of the ASAM FIBEX stan-
dard [], in the process of being adopted by AUTOSAR, which enables to fully
describe the networks embedded in a vehicle (CAN, LIN, FlexRay, MOST, and
TTCAN protocols), the frames that are exchanged between ECUs, and the gatewaying
strategies.

4.4.2 System Engineering

The verification of the performances of a communication system is twofold. On the
one hand, some properties of the communication system services can be proved

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-27

independently of the application. For instance, the correctness of the synchroniza-
tion and the membership and clique avoidance services of TTP/C have been studied
using formal methods in Refs. [,,].
There are other constraints whose fulfillment cannot be determined without a pre-

cise model of the system. This is typically the case for real-time constraints on tasks
and signals where the patterns of activations and transmissions have to be identified.
Much work has already been done in this field during the last  years: schedulabil-
ity analysis on priority buses [], joint schedulability analysis of tasks and messages
[,], probabilistic assessment of the reliability of communications under EMI
[,,,], etc. What is now needed is to extend these analyses to take into account
the peculiarities of the platforms in use (e.g., overheads due to the OS and the stack of
communication layers) and to integrate them in the development process of the sys-
tem. The problem is complicated by the development process being shared between
several partners (the carmaker and various third-part suppliers). Methods have to be
devised to facilitate the integration of components developed independently and to
ensure their interoperability.
In terms of the criticality of the involved functions, future automotive X-by-Wire

systems can reasonably be compared with Flight-by-Wire systems in the avionic field.
According to Ref. [], the probability of encountering a critical safety failure in vehi-
cles must not exceed ×−/h and per system, but other studies consider −. It will
be a real challenge to reach such dependability, in particular, because of the cost con-
straints. It is certain that the know-how gathered over the years in the avionic industry
can be of great help but design methodologies adapted to the automotive constraints
have to be developed.
The first step is to develop technologies able to integrate different subsystems

inside a domain (Section ..) but the real challenge is to shift the development
process from subsystem integration to a complete integrated design process. The
increasing amount of networked control functions inside in-car embedded systems
leads to developing specific design processes based, among others, on formal analy-
sis and verification techniques of both dependability properties of the networks and
dependability requirements of the embedded application.

References

. A. Albert. Comparison of event-triggered and time-triggered concepts with regards
to distributed control systems. In Proceedings of Embedded World , Nuremberg,
Germany, February .

. G. Leen andD.Heffernan. Expanding automotive electronic systems. IEEE Computer,
(), January .

. K. Johansson, M. Törngren, and L. Nielsen. Applications of controller area network.
In Handbook of Networked and Embedded Control Systems, D. Hristu-Varsakelis and
W.S. Levine (Eds.), Birkhuser, Boston, MA, .

. C. Wilwert, N. Navet, Y.-Q. Song, and F. Simonot-Lion. Design of automotive X-by-
wire systems. In The Industrial Communication Technology Handbook, R. Zurawski
(Ed.), CRC Press, Boca Raton, FL, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-28 Automotive Embedded Systems Handbook

. M. Ayoubi, T. Demmeler, H. Leffler, and P. Köhn. X-by-Wire functionality, perfor-
mance and infrastructure. In Proceedings of Convergence , Detroit, MI, .

. M. Krug and A.V. Schedl. New demands for in-vehicle networks. In Proceedings of the
rd EUROMICRO Conference’, Budapest, Hungary, July .

. M. Peteratzinger, F. Steiner, and R. Schuermans. Use of XCP on FlexRay at BMW.
Translated reprint from HANSER Automotive /, available at url https://www.
vector-worldwide.com/vi_downloadcenter_en, .html?product=xcp, .

. S. Poledna, W. Ettlmayr, and M. Novak. Communication bus for automotive appli-
cations. In Proceedings of the th European Solid-State Circuits Conference, Villach,
Austria, September .

. J. Rushby. A comparison of bus architecture for safety-critical embedded systems.
Technical report, NASA/CR, March .

. K. Ramaswamy and J. Cooper. Delivering multimedia content to automobiles using
wireless networks. In Proceedings of Convergence , Detroit, MI, .

. FordMotor Company. Ford to study in-vehicle electronic devices with advanced sim-
ulators. Available at url http://media.ford.com/article_display. cfm?article_id=,
.

. A. Avizienis, J. Laprie, and B. Randell. Fundamental concepts of dependability.
In Proceedings of the rd Information Survivability Workshop, Boston, MA, ,
pp. –.

. Intel Corporation. Introduction to in-vehicle networking. Available at http://sup-
port.intel.com/design/auto/autolxbk.htm, .

. Society of Automotive Engineers. J/ class C application requirements classifica-
tions. In SAE Handbook, .

. Society of Automotive Engineers. J/ survey of known protocols. In SAE Hand-
book, Vol. , .

. LIN Consortium. LIN Specification Package, revision ., November . Available at
http://www.lin-subbus.org/.

. A. Rajnàk.The LIN standard. InThe Industrial Communication TechnologyHandbook,
R. Zurawski (Ed.), CRC Press, Boca Raton, FL, .

. H. Kopetz et al. Specification of the TTP/A Protocol. University of Technology, Vienna,
Austria, September .

. Society of Automotive Engineers. Class B data communications network interface—
SAE J standard—rev. Nov. , .

. International Standard Organization. ISO -, Road Vehicles—Low Speed Serial
Data Communication—Part : Low Speed Controller Area Network. ISO, .

. International Standard Organization. ISO -, Road Vehicles—Low Speed Serial
Data Communication—Part : Vehicle Area Network (VAN). ISO, .

. MOST Cooperation. MOST Specification Revision ., August . Available at
http://www.mostnet.de.

. TTTech Computertechnik GmbH. Time-Triggered Protocol TTP/C, High-Level
Specification Document, Protocol Version ., November . Available at
http://www.tttech.com.

. FlexRay Consortium. FlexRay communications system—protocol specification—
version .. Available at http://www.flexray.com, December .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-29

. A. Schedl. Goals and architecture of FlexRay at BMW. In Slides Presented at the Vector
FlexRay Symposium, March .

. P. Bühring. Safe-by-Wire Plus: Bus communication for the occupant safety system. In
Proceedings of Convergence , Detroit, MI, .

. International Standard Organization. -, Road Vehicles—Controller Area Net-
work (CAN)—Part : Time-Triggered Communication. ISO, .

. J. Ferreira, P. Pedreiras, L. Almeida, and J.A. Fonseca. The FTT-CAN protocol for
flexibility in safety-critical systems. IEEE Micro Special Issue on Critical Embedded
Automotive Networks, ():–, July–August .

. P. Koopman. Critical embedded automotive networks. IEEE Micro Special Issue on
Critical Embedded Automotive Networks, ():–, July–August .

. N. Navet and Y.-Q. Song. Validation of real-time in-vehicle applications. Computers
in Industry, ():–, November .

. K. Tindell, A. Burns, and A.J. Wellings. Calculating controller area network (CAN)
message response times. Control Engineering Practice, ():–, .

. Y. Martin. L’avenir de l’automobile tient à un fil. L’argus de l’automobile, :–,
March .

. International Standard Organization. ISO , Road Vehicles—Interchange of Digital
Information—Controller Area Network for High-speed Communication. ISO, .

. B. Gaujal and N. Navet. Fault confinement mechanisms on CAN: Analysis and
improvements. IEEE Transactions on VehicularTechnology, ():–,May .

. M. Waern. Evaluation of protocols for automotive systems. Master’s thesis, KTH
Machine Design, Stockholm, Sweden, .

. B. Gaujal and N. Navet.Maximizing the robustness of TDMA networks with applica-
tions to TTP/C. Real-Time Systems, (–):–, December .

. G. Cena and A. Valenzano. Performance analysis of Byteflight networks. In Proceed-
ings of the  IEEE Workshop of Factory Communication Systems (WFCS ),
Vienna, Austria, September , pp. –.

. R. Saket andN. Navet. Frame packing algorithms for automotive applications. Journal
of Embedded Computing, :–, .

. R. Barbosa and J. Karlsson. Formal specification and verification of a protocol
for consistent diagnosis in real-time embedded systems. In Third IEEE Interna-
tional Symposium on Industrial Embedded Systems (SIES’), Montpellier, France,
June .

. M. Grenier, L. Havet, and N. Navet. Configuring the communication on FlexRay:The
case of the static segment. In ERTS Embedded Real Time Software , Toulouse,
France .

. T. Pop, P. Pop, P. Eles, and Z. Peng. Bus access optimisation for FlexRay-based dis-
tributed embedded systems. In Proceedings of the conference on Design, Automation
and Test in Europe (DATE ’), San Jose, CA, , pp. –. EDA Consortium.

. Robert Bosch GmbH. Time triggered communication on CAN: TTCAN. Available at
http://www.semiconductors.bosch.de/en//ttcan/index.asp, .

. B. Müller, T. Führer, F. Hartwich, R. Hugel, and H.Weiler. Fault tolerant TTCAN net-
works. In Proceedings of the th International CAN Conference (iCC), Las Vegas, NV,
.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

4-30 Automotive Embedded Systems Handbook

. LIN Consortium. LIN Specification Package, version ., December . Available at
http://www.lin-subbus.org/.

. H. Muyshondt. Consumer and automotive electronics converge: Part —Ethernet,
USB, andMOST.Available at http://www.automotive-designline.com/, February .

. H. Muyshondt. Consumer and automotive electronics converge: Part —a MOST
implementation. Available at http://www.automotivedesignline.com/, March .

. L.M. Pinho and F. Vasques. Reliable real-time communication in can networks. IEEE
Transactions on Computers, ():–, .

. L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano—a revolution in on-
board communications. Technical report, Volvo, .

. A. Rajnàk. Volcano—enabling correctness by design. InThe Embedded SystemsHand-
book, R. Zurawski (Ed.), CRC Press, Boca Raton, FL, .

. A. Rajnàk and M. Ramnefors. The Volcano communication concept. In Proceedings
of Convergence , Detroit, MI, .

. OSEKConsortium.OSEK/VDX Communication, Version .., July . Available at
http://www.osek-vdx.org/.

. OSEKConsortium.OSEK/VDX Fault-TolerantCommunication, Version ., July .
Available at http://www.osek-vdx.org/.

. OSEKConsortium.OSEK/VDX SystemGeneration—OIL: OSEK Implementation Lan-
guage, Version ., July . Available at http://www.osek-vdx.org/.

. International Standard Organization. -, Road Vehicles—Diagnostics on CAN—
Part : Network Layer Services. ISO, .

. OSEK Consortium. OSEK/VDX Operating System, Version .., July . Available
at http://www.osek-vdx.org/.

. P. Feiler. Real-time application development with OSEK—a review of OSEK stan-
dards, . Technical Note CMU/SEI -TN-.

. OSEK Consortium. OSEKtime OS, Version ., July . Available at http://
www.osek-vdx.org/.

. H. Fennel, S. Bunzel, H. Heinecke, J. Bielefeld, S. Fürstand, K.P. Schnelle, W. Grote,
N. Maldenerand, T. Weber, F. Wohlgemuth, J. Ruh, L. Lundh, T. Sandén, P. Heitkäm-
per, R. Rimkus, J. Leflour, A. Gilberg, U. Virnich, S. Voget, K. Nishikawa, K. Kajio,
K. Lange, T. Scharnhorst, and B. Kunkel. Achievements and exploitation of the
AUTOSAR development partnership. In Convergence , Detroit, MI, October
.

. S. Fürst. AUTOSAR for safety-related systems: Objectives, approach and status. In
Second IEE Conference on Automotive Electronics, London, United Kingdom, March
.

. P.H.Dezaux.Migration strategy of in-house automotive real-time applicative software
in AUTOSAR standard. In Proceedings of the th European Congress Embedded Real
Time Software (ERTS ), Toulouse, France, .

. J. Sommer and R. Blind. Optimized resource dimensioning in an embedded CAN-
CAN gateway. In IEEE Second International Symposium on Industrial Embedded
Systems (SIES’), Lisbon, Portugal, July , pp. –.

. ASAM. FIBEX—field bus exchange format, Version .. January . Available at
http://http://www.asam.net/.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

A Review of Embedded Automotive Protocols 4-31

. G. Bauer and M. Paulitsch. An investigation of membership and clique avoidance in
TTP/C. In Proceedings of the th IEEE Symposium on Reliable Distributed Systems,
Nuremberg, Germany, .

. H. Pfeifer and F.W. vonHenke. Formal analysis for dependability properties: the time-
triggered architecture example. InProceedings of the th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA ), Antibes, France,
October , pp. –.

. R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level per-
formance analysis—the SymTA/S approach. IEE Proceedings Computers and Digital
Techniques, ():–, March .

. K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard real-time
systems.Microprocessors and Microprogramming, :–, .

. N. Navet, Y. Song, and F. Simonot. Worst-case deadline failure probability in real-
time applications distributed over CAN (controller area network). Journal of Systems
Architecture, ():–, .

. F. Simonot, F. Simonot-Lion, and Y.-Q. Song. Dependability evaluation of real-time
applications distributed on TDMA-based networks. In Proceedings of the th IFAC
International Conference (FET’), Puebla, Mexico, November .

. X-by-Wire Project, Brite-EuRam  Program. X-By-Wire—Safety related fault toler-
ant systems in vehicles, final report, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5
FlexRay Protocol

Bernhard Schätz
Technical University of Munich

Christian Kühnel
Technical University of Munich

Michael Gonschorek
Elektrobit Corporation

. Introduction . -
Event-Driven versus Time-Driven
Communication ● Objectives of FlexRay ●
History of FlexRay

. FlexRay Communication -
Frame Format ● Communication
Cycle ● Static Segment ● Dynamic Segment

. FlexRay Protocol . -
Protocol Architecture ● ProtocolWakeup
and Startup ●Wakeup ● Clock
Synchronization ● Fault-Tolerance
Mechanisms

. FlexRay Application -
FlexRay Implementation ● FlexRay Tool
Support

. Conclusion . -
Impact on Development ● Verification
of FlexRay

References . -

5.1 Introduction

The introduction of electronic control units (ECUs) combined with embedded soft-
ware in the automotive domain enables the implementation of complex functionali-
ties like electronicmotormanagement or electronic stability program, thus enhancing
economics, security, and comfort of modern cars. To implement an advanced func-
tionality like the stability program, it must interact with various other functionalities
of the vehicle, like brake, engine, or gearbox control.Thus these functionalities require
a suitable infrastructure for the distributed implementation of embedded control
applications, using a network of communicating control units to exchange messages
between them.
Due to their safety-critical character, the embedded automotive systems imple-

menting these functionalities generally require guarantees about the properties of
the communication infrastructure. Typical requirements are a guaranteed latency of

5-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-2 Automotive Embedded Systems Handbook

transmission of (high-priority) messages and operational robustness of communica-
tion. Additionally, the economic constraints of the automotive domain require high
efficiency, configuration flexibility, and low cost per communication node.
To combine operational and economic constraints, the ECUs are arranged in a

network using a shared communication medium combined with a synchronization
scheme to ensure reliable message exchange.

5.1.1 Event-Driven versus Time-Driven Communication

To provide a suitable infrastructure for ECUs, two different protocol paradigms have
been provided:

• Event-driven communication, as, for example, implemented in the control
area network protocol (CAN, see Chapters  and )

• Time-driven communication, as, for example, implemented in time-
triggered protocol (TTP, see Chapters  and )

These paradigms differ fundamentally concerning the way in which access to the
shared communication medium is coordinated between the communicating control
units.
In the case of “event-driven communication,” an ad hoc synchronization scheme

is used. It is based on a dynamic arbitration policy avoiding access conflicts using a
scheme based onmessage priority.This scheme does not require a priori coordination
between the communication events of the processes; processes may send messages
arbitrarily. Send access to the communication medium is granted on a per event basis:
if the medium is not currently occupied, each process may try to access it to send a
message. In case of a conflict between two or more senders, the sending of messages
with lower priority is delayed in favor of the message with the highest priority. As a
result, the protocol only deals with the treatment of communication events, requiring
no further functionalities.
In contrast, in case of “time-driven communication,” a predefined synchroniza-

tion scheme is applied. It uses a static arbitration policy based on time slotting to
avoid access conflicts. By a priori assigning a unique communication slot to each
message, no ad hoc avoidance of conflicts is necessary. Access to the communication
medium is granted based on a time-dependent strategy; a process may only send a
message within the assigned time slot. However, conflict avoidance critically depends
on the overall agreement of the start and duration of each time slot.Therefore, besides
the actual communication, the protocol also has to include functionalities for the
synchronization of the slots between all processes.
Due to the nature of their arbitration schemes, these two different paradigms offer

rather complementary properties concerning the distributed development process
and especially during the design and the integration phase. Event-driven commu-
nication uses a lightweight communication protocol. Thanks to its ad hoc conflict
avoidance, no a priori reservation of time slots is necessary when designing the inter-
face specification. Its synchronization strategy ideally allows optimal use of bandwidth
even in case of sporadic messages. Depending on the nature of the communication

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-3

load and the average—in practice lower than maximum—bandwidth, a maximum
latency can be ensured for at least high-priority messages. Integration of compo-
nents in the event-driven approach is achieved simply by composition; due to its
synchronization strategy incompatibilities in the form of conflicts are resolved ad
hoc. However, since latencies of messages depend on available bandwidth and com-
munication load, latency guarantees established for a subset of components may not
necessarily hold for the complete network of combined components.
In contrast, time-driven communication requires an additional clock-

synchronization mechanism. Due to its arbitration strategy, time slots have to be
reserved for all communication when designing the interface specification, possibly
leading to unused slots and therefore loss of bandwidth especially in the case of
rather sporadic messages. Using this a priori reservation scheme, time-driven com-
munication ensures a maximum latency for all messages by construction through the
explicit allocation of messages to time slots. Integration of components additionally
requires ensuring the compatibility of the allocations to their time slots. However,
latency guarantees established for components in isolation immediately hold for the
composed system.
Thus, in total, the flexibility of event-driven communication concerning the

integration and the accommodation of sporadic messages comes at the price of
the composability of dependable systems. To amalgam both advantages, FlexRay
combines both approaches.

5.1.2 Objectives of FlexRay

FlexRay was introduced to provide a communication system targeting specifically the
needs of the high-speed control applications in the vehicle domain. Typical applica-
tions of this domain like advanced power train systems, chassis electronics, or by-wire
functionality have rather different communication requirements, especially concern-
ing the allowable latency ofmessages or their periodic/sporadic nature. Here, FlexRay
is designed to support these different classes of applications by providing architectural
flexibility through scalable functional communication alternatives.
To that end, FlexRay aims at providing a “best-of-both-worlds” approach by

• Integrating the event-driven and time-driven paradigm into a common
protocol, to simultaneously offer both communication schemes

• Supporting the scalability of the ratio between the time-driven and event-
driven parts of the communication

In the extreme case, FlexRay can be basically used as either a purely time-driven or
a purely event-driven communication scheme; in practice, a mixture of both com-
munication mechanisms is used. Additionally, FlexRay offers support to increase the
reliability of communication by fail-safe mechanisms.

5.1.3 History of FlexRay

The FlexRay Protocol Specification V. [FPS] was defined in  by the FlexRay
consortium.TheFlexRay consortiumwas formed out of a cooperation between BMW
and DaimlerChrysler, looking for a successor to the current automotive standard

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-4 Automotive Embedded Systems Handbook

CAN and as an alternative to the communication standard TTP for future applica-
tions with high requirements concerning determinism, reliability, synchronization,
and bandwidth, as needed for instance by X-by-wire functions.
The consortium was established in  as an alliance of automotive, semicon-

ductor, and electronic systems manufacturers. Its originating members in  were
BMW, DaimlerChrysler, Philips, and Motorola. Currently, the FlexRay consortium
includes Bosch, General Motors, and Ford among others. While FlexRay kits became
available in , FlexRay was first introduced into regular production in  by
BMW in the suspension system of the X series.

5.2 FlexRay Communication

The exchange of information between nodes in a FlexRay cluster is based on a time-
division multiple access (TDMA) scheme and organized in communication cycles,
which are periodically executed from the startup of the network until its shutdown.
One communication cycle is subdivided into time slots, in which the information
transfer from one sender to one or more receivers takes place. The schedule of a
FlexRay cluster determines in which time slots the FlexRay nodes are allowed to send
their so-called frames. Sections .. through .. deal with the FlexRay frame for-
mat, the communication cycle-based media access strategy, as well as the static and
the dynamic parts of a communication cycle.

5.2.1 Frame Format

As illustrated in Figure ., a FlexRay frame consists of three segments: the header, the
payload, and the trailer.

Header CRC
covered area

St
ar

tu
p

fra
m

e i
nd

ic
at

or
Sy

nc
 fr

am
e i

nd
ic

at
or

N
ul

l f
ra

m
e i

nd
ic

at
or

Pa
yl

oa
d

pr
ea

m
bl

e i
nd

ic
at

or
Re

se
rv

ed
 b

it

Frame ID Payload
length

Header
CRC Data 0 Data 1Data 2 Data n CRCCRC CRC

24 bits

Trailer segmentPayload segment
FlexRay frame 5 + (0 … 254) + 3 bytes

Header segment

0 … 254 bytes6 bits11 bits7 bits11 bits

11111

Cycle
count

FIGURE . FlexRay frame format [FPS]. (Copyright of Freescale Semiconductor, Inc. ,
. With permission.)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-5

Theheader segment comprises the frame identifier, which the communication con-
trollers use to detect errors, the payload length, the communication cycle counter, as
well as the following protocol bits:

• The payload preamble indicator signals whether the optional vector for
network management or extended message ID purposes lies in the first
bytes of the payload segment or not.

• The null frame indicator determines if the frame contains usable data.
• The sync frame indicator marks whether the frame is used by the commu-
nication controllers for the global clock synchronization.

• The startup frame indicator signals if the frame is involved in the FlexRay
startup procedure.

The payload segment contains the effective information that is to be exchanged. The
amount of payload data contained in a single FlexRay frame ranges from  to 
bytes.
The complete frame is protected by the trailer segment, which consists of a  bit

frame cyclic redundancy check (CRC). Parts of the header segment are additionally
covered by an  bit header CRC with a Hamming distance of .

5.2.2 Communication Cycle

The FlexRay communication takes place in communication cycles that have a pre-
defined length. As can be seen in Figure ., a FlexRay communication cycle is
comprised of a compulsory static and an optional dynamic segment as well as one
or two protocol segments, namely the mandatory network idle time (NIT) and the
optional symbolwindow.The static segment consists of a certain number of static slots
with the same fixed duration. The dynamic segment consists of so-called minislots,
which can be used by the host for transmitting frames with a variable payload length,
sporadic frames, or frameswith a period higher than the communication cycle length.
The slots of the two segments are consecutively numbered, starting at onewith the first
static slot.

Communication
cycle

Communication
segments

Arbitration grid Static slot Static slot Static slot Mini-
slot

Mini-
slot

Optional

Dynamic segment Symbol window

NITNetwork communication time

Static segment

Optional

Mini-
slot

Mini-
slot

Mini-
slot

Mini-
slot

FIGURE . FlexRay communication cycle. (Copyright by DECOMSYS, Member of Elektrobit.
With permission.)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-6 Automotive Embedded Systems Handbook

Thesymbol window is used for networkmanagement purposes only. It is a time slot
in which the media access test symbol (MTS) can be transmitted over the network.
In the NIT the bus is free of communication; the NIT is used by the communication

controllers to perform the clock-synchronization algorithm.The length of theNIThas
to be configured at system design time. It is crucial that the NIT be long enough for
all involved communication controllers to be able to handle their calculations.
A minimal configuration of a FlexRay communication cycle must contain a static

segment and the NIT. A FlexRay cluster has to consist of at least two nodes and
consequently a minimum of two static slots are required for synchronization.
The FlexRay protocol supports a differentiation of  communication cycles by

using a global  bit cycle counter.The cycle counter value is transmitted in each frame
header. This differentiation allows a node of a cluster to transmit different frames in
the same slot in different communication cycles (cycle filtering). Besides, the so-called
slot or cycle multiplexing is possible in the dynamic segment, that is, different nodes
can send frames in the same slot but in different cycles. In addition to the global
FlexRay time base, the host software can use the cycle counter for synchronizing
software routines with specific time slots in order to minimize signal latencies.

5.2.3 Static Segment

In the static segment of a communication cycle, all slots have the same fixed duration.
FlexRay supports up to two FlexRay channels, and each slot is exclusively owned by
one communication controller per channel for transmission of a frame. If two chan-
nels are provided in a cluster topology, a controller can use a slot either for a redundant
transmission of one frame or for a transmission of two different frames. A third
possibility is that twodifferent communication controllers use the slot for frame trans-
mission, one on each channel. Figure .a illustrates a FlexRay cluster topology and
Figure .b gives an example of communication in the static segment during one com-
munication cycle. Nodes A and C use slots  and  on both channels for a redundant
transmission of a frame whereas node B is only connected to channel b and transmits
its frames in slots  and . Node D also uses slot  for the transmission of a frame, but
on channel a. Nodes C and E share slot  for the transmission of their frames. In slot
, node A transmits two different frames; slots , , , and  are not used.
Not every time slot has to be allocated to a frame; under certain conditions, itmakes

sense to reserve a certain bandwidth for nodes that will be integrated into the cluster at
a later point in time. If a static slot is not allocated to a frame in a communication cycle,
it remains empty and its bandwidth is wasted. In contrast, a frame that is assigned to
a time slot will always be sent by the corresponding communication controller.
This fixed reservation of time slots that are dedicated to communication con-

trollers brings the advantage of strong guarantee of the message latency. It is exactly
known when a specific frame will be transmitted on a channel, and because the
communication is collision-free, the worst-case transmission time can be calculated.
FlexRay requires a specification of the communication schedule at the design stage.

The schedule holds information that is essential for the communication controllers,
for example, in which slots they will send or receive their frames. With respect to
frame transmission in the static segment, important parameters for the configuration

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-7

Node A

Channel a
Channel b

Node B Node C Node D Node E Node F

(a)

Static segment
1Slot

a A1

A1 B2 C3 B4

D4 A5a

A5b C7

E7
M
T
S

M
T
S

t

C3

b

(b)

Ch
an

ne
l

2 3 4 5 6 7 8 9 10 0 0 1
Swin NIT

FIGURE. Example of communication in the static segment. (a) Sample cluster. (b) Frame trans-
missions in several static slots. (Copyright by DECOMSYS,Member of Elektrobit.With permission.)

of the communication controller for frame transmission in the static segment include
the identifier of the time slot (Slot ID), the channel, and the cycle filter information.
The FlexRay low-level parameters, which describe the significant FlexRay proto-

col properties, have to be specified at system design time as well. Examples of these
parameters are the quantity and the duration of the static slots, the length of the com-
munication cycle, and the action point offset, that is, the delay of a frame transmission
relating to the start of the time slot. The parameters are part of the network configura-
tion and have to be identical in all communication controllers that participate in the
communication of a particular FlexRay cluster. For each communication controller
more than  parameters have to be configured by the user at system design time. To
simplify this complex task, tool support is highly recommended.
Besides the full deterministic communication timing, an important feature of the

static segment is its composability. This property plays an important role in the
series productions of carmanufacturers (original equipmentmanufacturers [OEMs]).
When the subsystems of OEMs and their suppliers are integrated into the complete
system, the behavior of the subsystems is not influenced because the fixed time-
dependent behavior in the static segment prevents the communication properties
of the subsystems from changing. Figure . exemplifies FlexRay composability. The
integration of the subsystems of supplier , supplier , and the OEM does not change
the communication timing, that is, the position of the static time slots.

5.2.4 Dynamic Segment

In the dynamic segment of a communication cycle, a more flexible media access con-
trol method is used: the so-called flexible TDMA (FTDMA) scheme. This scheme,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-8 Automotive Embedded Systems Handbook

Supplier 2

3 5 t

t

t

t

Supplier 1

1 2

1Complete system
communication 2 3 4

4

5 6

6

System integrator (OEM)

8 9

8 9

7

7

FIGURE . Example of FlexRay composability. (Copyright by DECOMSYS, Member of Elektro-
bit. With permission.)

which is based on the byteflight protocol [BFL] developed by BMW, is priority and
demand driven. The dynamic part is subdivided into minislots, which have only a
short duration. Similar to the static slots, these minislots can be assigned to frames,
but the transmission of a frame will only be started if the controller has data to send.
Hence, the decision whether a frame is transmitted in the dynamic segment is made
by the host software during runtime. If not a single dynamic frame is transmitted, the
dynamic part of the communication cycle is fully unused (Figure .a).
The duration of the minislots is not long enough to accommodate a total frame

transmission. In case aminislot is not used for communication, only a small amount of
bandwidth will be wasted. If a communication controller decides to transmit a frame
in a minislot, however, the minislot is expanded to the size of an adequate time slot
(e.g., slot  on channel a in Figure .b).The payload length of dynamic frames is not
predetermined and can be changed by the host software during runtime. It is only
limited by the buffer size of the communication controllers. With the expansion of a
minislot, the number of the available minislots in the dynamic segment is reduced.
The more frames are sent in the early stages of the dynamic part, the smaller is the
chance of a frame transmission at a late point in the dynamic segment.Thus, the trans-
mission of frames in the dynamic segment is priority driven; a frame in aminislot with
a lower identifier has a higher priority. A frame that was requested for transmission
but could not be sent in a communication cycle will be sent by the controller in the
same slot at the next opportunity.
The deferral of the minislots in the cycle time, which depends on the number and

the length of transmissions in previous dynamic time slots, leads to a logical subdi-
vision of the dynamic segment into two parts. In the guaranteed dynamic segment,
all scheduled frames will be transmitted independently of the bus load. In the rest of
the dynamic segment, a transmission of a frame in the actual communication cycle
is not assured. Here the communication controller will only start the transmission if

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-9

Static segment

A1

A1 B2 C3

C3

Dynamic segment Swin

0 0 11Slot
a

b

(a)

Ch
an

ne
l

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

NIT

Latest dynamic
Transmission start

Dynamic segment Swin NITStatic segment

A1 C3

C3 B5 A6

A7 E8

C22

t

FD4

B2A1

a

b

(b)

Ch
an

ne
l

Slot 1 2 3 4 5 6 7 8 9 10111213141516171819 0
M
T
S

M
T
S

0 1

FIGURE . Example of communication in the dynamic segment. (a) No frame transmissions in
the dynamic slots. (b) Several frame transmissions in the dynamic slots. (Copyright by DECOMSYS,
Member of Elektrobit. With permission.)

the latest dynamic transmission start point, a protocol parameter that has to be pre-
defined by the user, has not been passed. In the example shown in Figure .b, the
frame F, which should be transmitted on channel a in slot , will not be transmitted
in the current cycle because of toomuch bus load in previous time slots of the current
dynamic segment.

5.3 FlexRay Protocol

5.3.1 Protocol Architecture

In FlexRay a “cluster” is a set of “nodes” connected by one or two “channels.” All
nodes of a cluster have a common global clock. A node consists of a host and a
FlexRay controller. The controller is responsible for the communication between the
nodes, whereas the host runs the operating system and application software.Thephys-
ical interconnection of a cluster may be a bus or star topology or even a mixture
thereof. The architecture of a FlexRay node is illustrated in Figure .. In the con-
text of FlexRay, the applications, OS/middleware, and the microcontroller (indicated
in gray) are called “host”, the FlexRay controller (indicated in black) is simply called
“controller” and the combination of host, controller, and the optional bus guardians
(labeled BG, see Section ..) is called “node.”

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-10 Automotive Embedded Systems Handbook

Microcontroller FlexRay
controller

A
pp

lic
at

io
n

1

...

Node

A
pp

lic
at

io
n

2

A
pp

lic
at

io
n

m

FlexRay channels

OS/Middleware

BG A
BG B

FIGURE . Architecture of a FlexRay node.

A

B

C

D

E

F

A

B

C

D

E

F

FIGURE . Bus topology (left) and active star topology (right).

There are two basic topologies available for FlexRay as illustrated in Figure .: bus
and active star. In the “bus topology” all nodes are connected to the same physical
cable(s), whereas in the “active star topology,” every node is connected directly to
the star couplers. In both cases a node may be connected to either one of the chan-
nels or both. A cluster may also employ a mixture of bus and star topologies. In both
topologies, the ends of the cable have to be terminated by a resistor.

5.3.2 Protocol Wakeup and Startup

Before a cluster can commence with its communication as described in Section ., it
has to be initialized. In FlexRay, the initialization of a cluster consists of two phases:
“wakeup” and “startup.” In the wakeup phase the nodes of the cluster are powered
up and the hosts boot their operating system. After synchronizing their clocks in the
startup phase the nodes enter normal operation. The startup and wakeup phases will
be described in more detail in the following.
Duringwakeup and startup some nodes take a special role: wakeup nodes and cold-

start nodes. A “wakeup node” is a node that may wake a sleeping cluster by sending
a wakeup pattern. A “coldstart node” is a node sending startup frames during the
startup phase. A wakeup node is not required to be a coldstart node or vice versa.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-11

In the following only the nonerror case is discussed, for information about the
behavior in presence of error consult the specification [FPS].

5.3.3 Wakeup

The wakeup of a cluster is depicted in Figure .. When the cluster is asleep and the
first node of the cluster is woken by an external event, it boots its OS and configures
the FlexRay controller. Only one channel is woken at a time to prevent a faulty host
from disturbing the communication of an already running cluster on both channels.
So the host has to select the channel to be woken. The host notifies the controller to
send the “wakeup pattern” on this channel. Once the other controllers have received
this wakeup pattern they wake their hosts. One of this newly waken nodes may then
wake the second channel, which works just the same way as with the first channel. As
at least two nodes are necessary to start up the cluster, the first node waits a predefined
amount of time, in which at least one other node is assumed to be ready for startup.
Then the waken nodes enter the startup phase.

5.3.3.1 Startup

In the startup phase, as illustrated in Figure ., there are three different types of nodes:
exactly one leading coldstart node, at least one following coldstart node, and any num-
ber of non-coldstart nodes. A coldstart node becomes the “leading coldstart node,” if
it is in startup mode and does not receive any communication. If it does receive com-
munication it becomes a “following coldstart node” as it assumes that there already is
a leading coldstart node.
The leading coldstart node is the first to send a collision avoidance symbol (CAS)

and after that starts with the first communication cycle by transmitting its “startup
frame.” The CAS is used to detect if more than one coldstart node are attempting a
startup. Each coldstart node has exactly one startup frame, a frame with the startup
and sync bits set in the header segment (Section ..). After four cycles the lead-
ing coldstart node receives the startup frames of the following coldstart nodes. If the
clock synchronization with the other coldstart nodes is successful it enters normal
operation.

Local
wakeup event

Power
off/reset

Power off/reset

Power off/reset

Config.

Config.

Ready Wakeup
listen

Wakeup
send Ready

ReadyReady

Config. Ready

Integration listen

Integration
listen

Wake channel B

Wakeup
send

Wakeup
listen

Wakeup
pattern

Wakeup
pattern

Coldstart listen

Coldstart listen

Node A
Wakeup/coldstart
node channel A, B

Node B
Wakeup/coldstart
node channel A, B

Node C
Non coldstart node

channel B

Channel A

 B

Wake
channel A POC state Leave coldstart

inhibit mode

FIGURE . Cluster wakeup [FPS]. (Copyright by NXP. With permission.)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-12 Automotive Embedded Systems Handbook

Ea
rli

es
t p

oi
nt

 in
 ti

m
e f

or
 al

l
no

de
s t

o
le

av
e s

ta
rt

up

N
or

m
al

 ac
tiv

e
Co

ld
st

ar
t

co
ns

ist
en

cy
 ch

ec
k

Co
ld

st
ar

t c
ol

lis
io

n
re

so
lu

tio
n

Co
ld

st
ar

t
lis

te
n Co

ld
st

ar
t

lis
te

n

Re
ad

y

Re
ad

y

Re
ad

y

CA
S

S A

CA
S

In
te

gr
at

io
n

lis
te

n
In

iti
al

iz
e

sc
he

du
le

In
iti

al
iz

e
sc

he
du

le

In
te

gr
at

io
n

co
ns

ist
en

cy
 ch

ec
k

In
te

gr
at

io
n

co
ld

st
ar

t
 ch

ec
k

Co
ld

st
ar

t j
oi

n
N

or
m

al
 ac

tiv
e

N
or

m
al

ac
tiv

e

S A
A

A
A

A
B

A
B

A
B

A
B

A
B

C
S

S
S

S
S

S
S

S
S

S
S

S
S

B
: S

ta
rt

up
 fr

am
e o

f n
od

e A
: S

ta
rt

up
 fr

am
e o

f n
od

e B
: F

ra
m

e o
f n

od
e C

S

C
: C

A
S

sy
m

bo
l

N
od

e A
Co

ld
st

ar
t n

od
e

N
od

e B
Co

ld
st

ar
t n

od
e

N
od

e C

Ch
an

ne
l

Le
ge

nd

PO
C

st
at

e

PO
C

st
at

e

PO
C

st
at

e

Cy
cl

e
sc

he
du

le
N

o
sc

he
du

le
Cy

cl
e 0

Cy
cl

e 1
Cy

cl
e 2

Cy
cl

e 3
Cy

cl
e 4

Cy
cl

e 5
Cy

cl
e 6

Cy
cl

e 7
Cy

cl
e 8

FI
G
U
R
E
.


C
lu
st
er

st
ar
tu
p
[F
PS


].
(C

op
yr
ig
ht

by
N
X
P.
W
ith

pe
rm

iss
io
n.
)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-13

A following coldstart node waits until it receives two consecutive frames from the
leading coldstart node.These two frames are required to construct an initial schedule.
If successful, it collects all sync frames from the next two cycles and performs the clock
synchronization. After a successful initialization of the clock synchronization it starts
to send its startup frame. If there are no errors for three more cycles, the following
coldstart node enters normal operation.
A “non-coldstart node” waits until it receives two consecutive frames from the

leading coldstart node. It performs the clock synchronization on those two frames
for an initial schedule. For the following four cycles it collects all sync frame and
performs the clock synchronization. If successful, it enters normal operation. The
main difference between non-coldstart nodes and following coldstart nodes is that
the non-coldstart node does not send any frames during startup.
Following this schema, all nodes leave startup at the end of cycle  if no error occurs.

The startup of a node is identical to the “reintegration” of a node into a running cluster.

5.3.4 Clock Synchronization

In a TDMA network such as FlexRay, all nodes of a cluster need a common global
clock so that every node will only send in its time slot(s). At the startup of the sys-
tem all local clocks of the nodes have to be synchronized to provide this global time.
Each node has a local clock generator, usually based on the resonance frequency of a
quartz crystal. As two crystals rarely have exactly the same resonance frequency, the
local clock start drifting apart during operation. A typical quartz crystal has a preci-
sion in the magnitude of  ppm. The frequency of a crystal cannot be determined
statically, since it is also influenced by external factors such as temperature and vibra-
tion [WG]. So the local clocks have to be synchronized regularly during operation
of the system.
As perfect synchrony is impossible to achieve in a distributed system, the global

clock is not the same on all nodes, but the difference between the local clocks
has an upper bound. This bound is assumed to be low enough for the application
domain, so a common global time can be assumed on some level of abstraction. In
the following, the timing mechanisms of FlexRay are introduced, followed by the
clock-synchronization algorithm.

5.3.4.1 Timing in FlexRay

Time in FlexRay is defined by a triple consisting of cycle, macrotick, and microtick
counters, where a cycle consists of several macroticks and a macrotick of several
microticks as depicted in Figure ..The number of macroticks per cycle is constant
for the entire cluster, as the macroticks are synchronous on all nodes. The microticks
are generated by the local clock generator, thus the current value of microticks is only
valid within one node. The number of microticks per macrotick depends on the fre-
quency of the local clock and is also individual for each node.This number is adjusted
during runtime to synchronize the clocks of the different nodes.
The clock-synchronization algorithm of FlexRay is an extension of the Welch–

Lynch algorithm [WL]. The local clock of the host may be synchronized with

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-14 Automotive Embedded Systems Handbook

Communication
cycle level

Macrotick level

Microtick level 0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5
t

62 63

n-1 n

pdMicrotick

gdMacrotick

gMacroPerCycle-1

cCycleCountMax

vMicrotick

vMacrotick

vCycleCounter

gdCycle

FIGURE . Timing hierarchy [FPS]. (Copyright of Freescale Semiconductor, Inc. , .
With permission.)

the global time of FlexRay so that applications running on the host also have a
cluster-wide synchronous notion of time (Section ..). The global clock may also
be synchronized between two clusters or based on an external time source.
The measurement of the timing is performed only during the static segment and

the computation of the correction values during the dynamic segment and/or NIT
(Section ..).

5.3.4.2 Measurement of Clock Drift

Anode can compute the timing error between its local clock and the individual clocks
of the other nodes by observing the arrival times of the frames of the other nodes.This
way no additional communication is needed.
Whenever a node receives a sync frame from another node, a timestamp is stored

along with the frame. A sync frame is a frame with a set sync bit (Section ..);
nonsync frames are not considered for the clock synchronization. The deviations are
stored for all sync frames separately of even and odd cycle numbers. The clock cor-
rection values are computed based on these measurements. An example of the results
of the measurement is presented in Table ..

TABLE . Example of Measurements with Difference
Even Cycle Odd Cycle Offset Rate

Frame Sync Bit Expected Measurement Measurement Difference Difference
 +     
 +    − −
 −   
 −   
 +     −

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-15

5.3.4.3 Calculation of Correction Values

FlexRay uses a combination of two different correction values: offset correction and
rate correction.Offset correction is used to reduce the current deviations of the clocks,
while rate correction is used to anticipate the drift rate of the clocks, as depicted in
an example in Figure . with four local clocks. The gray vertical lines indicate the
application of the clock correction.
To compute the correction values the “fault-tolerant midpoint algorithm” [FPS]

is used. The algorithm takes a list of numbers as input and delivers the midpoint as
output. An example of this algorithm is depicted in Table .. From the initial sorted
list (), the k largest and k smallest numbers are removed () thereby excluding k
possibly faulty nodes from influencing the clock synchronization. The parameter k is
chosen, depending on the number of input values: for  or  input values k = , for  to
 input values k = , and for more than  input values k = . After the elimination, the
algorithm takes the largest and smallest elements of the remaining list () and returns
the average of those two ().
In every odd communication cycle the “offset correction” value is calculated. For

each sync frame received during this cycle, the difference between expected arrival
time and actual arrival time is computed. The fault-tolerant midpoint algorithm is
applied to this list and delivers the offset correction value. If the correction is within
certain bounds it will be applied at the end of the cycle. In the example in Table . the

FIGURE . Illustration of the clock-synchronization algorithm offset correction (left), rate
correction (center), combined rate and offset correction (right).

TABLE . Example of Fault-Tolerant Midpoint Algorithm
. Remove k= . Take Smallest

. Input Values Smallest and Largest and Largest . Build Average
−
−
− − −
− −
  (− + ) ∶  = −
 
  



Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-16 Automotive Embedded Systems Handbook

column “offset difference” is the difference between the columns “expected” and “odd
cycle measurement.” The resulting offset correction value in this example would be .
The “rate correction” value is computed in every odd communication cycle based

on the measurements of the current and the previous even cycle. For each measured
sync frame the difference between the deviation values of this cycle and the last cycle
is computed. This delivers a drift rate for each of the other nodes. The fault-tolerant
midpoint algorithm is applied to these drift rates and delivers the rate correction value
for this node. Again if the correction value is within certain bounds, it will be applied
at the end of this cycle. In the example in Table . the column offset difference is
computed as the difference between the columns “even cycle measurement” and “odd
cycle measurement.” The rate correction value for that example is −.

5.3.4.4 Application of Correction Values

The current correction values are applied during the NIT of the current cycle.The off-
set correction is performed every odd cycle, the rate correction during the following
even cycle.
The offset correction value is simply added to the NIT and thereby shortens or

extends the overall length the communication cycle once as depicted in Figure ..
The rate correction value is added to the number of microticks per cycle. As the

number of macroticks per cycle is static, the number of microticks per macrotick is
computed based on the new number of microticks per cycle.The rate correction value
thereby influences the length of the next two cycles, where it is newly evaluated.

5.3.5 Fault-Tolerance Mechanisms

FlexRay offers several other mechanisms for fault-tolerance, apart from the one
implemented in the clock-synchronization algorithm, to compensate for other com-
munication faults.

Media access schedule (MAC)

Clock sync correction schedule (MTG)

Static Dyn.Sym.

Rate correction Rate correction Rate correction Rate correction
OffsetOffset

Correction values

Rate correction
value calculation

Measurement
valuesMeasurement

phase
Offset correction
value calculation

NIT Static Dyn.Sym. NIT Static Dyn.Sym. NIT Static Dyn.Sym. NIT

Clock sync calculation schedule (CSP)

Cycle 2n Cycle 2n + 1 Cycle 2n + 2 Cycle 2n + 3

FIGURE . Application of correction values [FPS]. (Copyright of Freescale Semiconductor,
Inc. , . With permission.)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-17

One strategy is redundancy. A cluster may use two separate communication chan-
nels for communication. By using a different physical topology for both channels a
physical fault is less likely to disturb the whole cluster. When using two channels, a
message may be sent separately on both channels in different slots. So a transient error
will only lead to a belated rather than a lost message.
As most communication protocols, FlexRay uses a CRC to cope with bit errors

on the bus, in this case a  bit CRC is used. The probability of undetected network
errors in this case is less than ×−. At ,messages per second and an estimated
rate of − for uncorrelated bit errors, this means approximately × − undetected
erroneous frames per hour [PMH]. This in turn means that only % of all vehicles
will ever experience an undetected erroneous frame during an average life span of
 h of operation [KS].
FlexRay uses fault containment in several areas to ensure that a local fault of a node

does not disrupt the communication of the remaining cluster. One prominent fault
containmentmethod is the bus guardian. It observes one ormore controllers, depend-
ing on topology, and only allows a controller to transmit on the bus during one of its
assigned time slots. Outside of its slots, the bus guardian will filter all transmissions of
the controller. This ensures that a “babbling idiot” will not disrupt the communication
of the intact nodes. In FlexRay, there are two possibilities of placing the bus guardians:
“node local” bus guardians are located on each node, as depicted in Figure . whereas
“central” bus guardians are integrated into the star couplers as shown in Figure ..
For safety-critical application further mechanisms might be required, such as mes-

sage acknowledgment and amembership vector. As these are not part of FlexRay they
have to be implemented in a higher protocol layer.

5.4 FlexRay Application

This section focuses on software components and implementation strategies that are
necessary and useful for running a FlexRay application. In addition, it provides a short
overview of possible supporting tools for software developers and test engineers.

5.4.1 FlexRay Implementation

FlexRay drivers and related communication layers offer the application developer an
easy-to-use frame or signal-based interface to the FlexRay communication system.
These software modules are typically configured by network design tools. Currently
there are several FlexRay drivers and configuration tool solutions on the market,
differing in performance, usability, functional range, and price. In the future, how-
ever, the AUTomotive Open System Architecture (AUTOSAR; see Chapter ) [AUT]
standard will become increasingly relevant in projects of car manufacturers. Among
others, a FlexRay driver and a FlexRay interface module are specified in AUTOSAR
and will become available for a growing number of hardware platforms.
The development of a FlexRay application requires several elementary decisions

concerning the system architecture. Three scenarios regarding the synchronization
between the FlexRay global time and the application are possible:

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-18 Automotive Embedded Systems Handbook

• The application and the FlexRay communication are executed asyn-
chronously

• The application is synchronized to the FlexRay global time
• Parts of the application are running synchronously to the FlexRay global
time

The best results with respect to signal latencies can be achieved if the application runs
synchronized to the FlexRay global time. In this case, the application of a transmit-
ting node can send up-to-date data to the communication controller shortly before
the time slot in which the accordant frame transmission starts. The application of
a receiving node can read the data from its communication controller immediately
after the frame has been received, provided that it is also synchronized to the FlexRay
global time. An example of this can be seen in Figure ..This short, fixed, and guar-
anteed latency of the data from the sending task in one ECU to the receiving task in
another ECU allows the creation of high-level distributed control systems. Because of
this determinism, FlexRay is particularly convenient for reliable safety subsystems or
driving dynamics systems. Together with the option of communication redundancy
on two channels, FlexRay is furthermore appropriate to the creation of fault-tolerant
X-by-wire systems.
The synchronization between the application and the FlexRay communication can

be achieved either by using interrupts from the communication controller or by
means of a real-time operating system that supports external time synchronization
mechanisms (e.g., OSEKtime).
For various reasons, there are cases in which synchronization between the appli-

cation and the FlexRay communication is not possible or not required. In a motor
control unit, for example, the software has to run synchronously to the motor rotation
speed and cannot be adapted to another time base. In cases like this, only communi-
cation controllers that support this asynchronous operation should be used. But even
then it is not possible to exercise control on the behavior of the system regarding
exact signal latencies. If, for instance, an application task writes data to a communi-
cation controller shortly after the accordant time slot has passed, the communication

Controller
task

Controller
ECU

Actuator
ECU

FlexRay communication

Slot n Slot n + 1 Slot n + 2 Slot n + 3
t

Actuator
task

FlexRay
frame

FIGURE . Exemplary control system with FlexRay. (Copyright by DECOMSYS, Member of
Elektrobit. With permission.)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-19

controller has to “wait” for the next time slot that is assigned to the frame. In which
communication cycle the data will finally be sent cannot be predicted; “only a value
for the worst-case latency can be determined.” If a signal group is spread over more
than one frame, it is not possible to guarantee consistency among the signals. Hence,
an application that is completely running asynchronously is not recommendable.
If the application has to run asynchronously to the FlexRay communication,

another option is to synchronize only FlexRay-related communication layers to
the FlexRay global time. Particularly the FlexRay communication tasks, which are
responsible for the data transfer between the application and the communication con-
troller, will be synchronized in such cases and will thereafter perform the temporal
decoupling.

5.4.2 FlexRay Tool Support

The manual configuration of the nodes in a FlexRay cluster without tool support is
time consuming and error prone. A faulty schedule or node configuration in a FlexRay
cluster generally necessitates a complex and expensive error analysis. For this reason,
tool support is indispensable in the majority of cases.
In general, FlexRay network design tools allow the specification of the hardware

architecture of the nodes, the planning of the communication schedule, and the soft-
ware task schedule as well as the generation of the node configuration. In addition to
this, some of the tools support the OEM/supplier development process. The OEMs
develop distributed applications and plan a network of ECUs, functions, a communi-
cation schedule, and the global FlexRay parameters. Afterward they provide the ECU
suppliers with all the information that is relevant to their particular ECU. The ECU
suppliers import this information into a configuration tool, extend this configuration
by ECU specific information, and generate the source code configuration files for the
ECU, all with very little effort. For data exchange, extensible markup language (XML)
files are typically used.
FlexRaymonitoring and analysis tools are also very important for distributed appli-

cation development. These tools are typically used for monitoring and logging the
network startup and ongoing communication. In the case of a fault, the analysis tool
provides detailed status and communication information to the FlexRay user and pos-
sibly even a trigger output for further measurement devices (e.g., an oscilloscope,
which is used to capture a destroyed FlexRay frame for an advanced analysis). With
the objective of finding logical faults in distributed systems, the tools are used to
simultaneously monitor different communication systems and hardware interfaces,
such as CAN, FlexRay, digital, and analog signals.
For the development and the testing of an ECU, it is not always possible to pro-

vide all other ECUs of the cluster as communication partners. Even for the FlexRay
network startup, the existence of at least one startup partner is required. Besides, it is
often necessary to stimulate the ECU with applicable data to prevent it from entering
an error state. For this purpose, various cluster simulation solutions are already avail-
able, ranging from a simple “startup buddy” to hardware-in-the-loop test benches for
FlexRay.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-20 Automotive Embedded Systems Handbook

5.5 Conclusion

FlexRay is intended to provide an advanced communication technology for automo-
tive high-speed control applications in power train, chassis, and body control, with
availability, reliability, and bandwidth as key features of the system, to increase safety,
reliability, and comfort of vehicles. This requires the “provision” and “application”
of the guaranteed availability, reliability, and bandwidth. Thus, the introduction of
FlexRay as communication technology also raises questions concerning its impact on
the development process as well as the verification of the intended properties, besides
the technical features of the protocol discussed in the previous sections.

5.5.1 Impact on Development

FlexRay—due to its hybrid character—combines aspects from the time-driven and
the event-driven interaction paradigm, the former adopting a viewpoint of (pre-
defined) periodic interaction, the latter a (undefined) sporadic one. Like in other
domains of embedded systems, both the event-driven and the time-driven points
of view have their points in the construction of automotive systems, due to the
conflicting goals of efficiency of resources usage (e.g., unused statically reserved pro-
cessing/communication slots) and reliability of functionality (undefined latency of
process execution/message transmission).
When describing the functionality of the control processes, there are tasks that

are naturally described as either time- or event-driven. For instance, ignition control
in motor management has subtasks of each domain. Controlling the timing of the
ignition depends on the position of the engine, defined by an (sporadic) event char-
acterizing the zero-position of the flywheel; computing the amount of fuel injected
depends on the amount currently requested by the position of the accelerator pedal,
defined by a maximum (periodic) time characterizing the validity of the request.
Similarly, when considering communication, messages addressing the configura-

tion, maintenance, and diagnosis of a system are of a sporadic, event-driven nature,
while messages addressing the control of continuous physical processes are of a
periodic, time-driven nature.
In contrast to the scheduling of processing tasks, due to the available bandwidth of

communication networks including different modes of operations and the allowable
latency and period of globally distributed signals, the efficiency of bus usage in many
cases becomes less important than the reliability of transmission when scheduling
communication tasks.
Two other conflicting development goals affected by the choice between a time-

driven and an event-driven approach to system development are “flexibility” and
“safety” of system design. To ensure safety aspects of a system, guarantees about
properties of the system have to be established (e.g., maximum latency between the
activation of a crash sensor and the firing of an air bag). The predictability of the
overall system is greatly facilitated by strong (i.e., deterministic and static) guarantees
provided by its components (e.g., deterministic and static processing and commu-
nication latencies). Domains like avionics favoring safety over flexibility explicitly
recommend static deterministic scheduling of processes and interactions. On the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

FlexRay Protocol 5-21

other hand, to enable flexibility of a system architecture, local changes in a system
must be possible (e.g., using variants of a component with different interaction pat-
terns). The changeability of the overall system is greatly facilitated by liberal (i.e.,
nondeterministic and flexible) assumptions made by its components (e.g., timing of
message exchange).
However, experiences show that safety properties not ensured by construction

through a restrictive design often cannot be established by verification, especially
when considering the typically large of variants of control units in the automotive
domain. To support a “modular” development process of “reliable” systems, a pre-
cise description of the component interfaces is indispensable. Architecture-oriented
approaches (e.g., AUTOSAR) therefore explicitly address the importance of interface
descriptions capturing the (temporal) characteristics of the exchanged signals.
The assignment of signals to segments (i.e., static/dynamic) depends on the func-

tional character of the signals. Signals related to controlled process generally have a
maximum validity, suggesting a static schedule: the frequency of the signal depends
on the characteristics of its change (e.g., the engine speed needs a higher frequency of
update than the status of door lock). Signals not related to controlled processes (e.g.,
read-out of diagnostic information, change of configuration parameters) are typical
candidates for the dynamic segment.
Due to its hybrid character, FlexRay offers a range of different configuration

options, with a CAN-like configuration using only the dynamic part, as well as a TTP-
like configuration using only the static part, as well as all variations in between. Thus
naturally, it can be used, for example, as a mere substitute for a CAN-based com-
munication. Most importantly, due to its flexibility, it can also be used for a smooth
migration process from an event-driven to a time-driven system architecture.
Besides FlexRay, there also exist other combinations of event-driven and time-

driven communication paradigms (e.g., TTP with CAN emulation, or TTCAN),
providing similar characteristics but differing concerning the emphasis on the time-
or event-triggered paradigm.

5.5.2 Verification of FlexRay

As FlexRay is a relatively new technology, developed by an industrial consortium,
the amount of published verification efforts is very limited. The interaction between
a FlexRay controller and an OSEK FT-COM communication layer in analyzed in
Ref. [KS]. A verification of a reduced version of FlexRay is planned in the Verisoft
project [VER]. A schedulability analysis for the static and dynamic segments is pre-
sented in Ref. [TPP]. The startup behavior was model checked in Ref. [SK] and
some issues were found there. A plan to verify the clock-synchronization protocol was
announced in Ref. [BPT], but results have not been published yet. Rushby [RUS]
presents an overview of the verification of the time-triggered architecture (TTA).
Although the TTA is a similar approach (Chapter ), designed against a similar set
of requirements, the differences in the realization are quite fundamental so the results
cannot be transferred to FlexRay directly, but the verification approaches of TTA
might be reused for FlexRay.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

5-22 Automotive Embedded Systems Handbook

References

[AUT] AUTOSAR Development Partnership, www.autosar.org
[BFL] Byteflight protocol, www.byteflight.com.
[BPT] D. Barsotti, L. Prensa Nieto, and A. Tiu. Verification of clock synchronization algo-

rithms: experiments on a combination of deductive tools. In: Proceedings of the Fifth
International Workshop on Automated Verification of Critical Systems, Coventry,
UK, .

[FPS] FlexRayConsortium. FlexRayCommunications SystemProtocol SpecificationVer-
sion ., .

[KS] C. Kühnel and M. Spichkova. Upcoming automotive standards for fault-tolerant
communication: FlexRay and OSEKtime FTCOM. In: Proceedings of International
Workshop on Engineering of Fault Tolerant Systems (EFTS ), Luxembourg June
–, .

[PMH] M. Paulitsch, J.Morris, B. Hall, K. Driscoll, E. Latronico, and P. Koopman. Coverage
and the use of cyclic redundancy codes in ultra-dependable systems. In: Proceedings
of International Conference on Dependable Systems andNetworks, Yokohama, Japan,
.

[RUS] J. Rushby. An overview of formal verification for the time-triggered architecture. In:
Proceedings of Seventh International Symposium on Formal Techniques in Real-Time
and Fault Tolerant Systems (FTRTFT ), Oldenburg, Germany, .

[SK] W. Steiner andH.Kopetz.The startupproblem in fault-tolerant time-triggered com-
munication. In: Proceedings of the International Conference on Dependable Systems
and Networks (DSN), Philadelphia, PA, . http://www.dsn.org.

[TPP] T. Popp, P. Popp, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the FlexRay
communication protocol. In: Proceedings of the th Euromicro Conference on Real-
Time Systems (ECRTS ), Dresden, Germany, .

[VER] Verisoft Project. www.verisoft.de.
[WG] F.L. Walls and J.-J. Gagnepain. Environmental sensitivities of quartz oscillators.

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,  (),
–, .

[WL] J. Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization.
Information and Computation,  (), –, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6
Dependable Automotive

CAN Networks

Juan Pimentel
Kettering University

Julian Proenza
University of the Balearic Islands

Luis Almeida
University of Aveiro

Guillermo Rodriguez-Navas
University of the Balearic Islands

Manuel Barranco
University of the Balearic Islands

Joaquim Ferreira
Polytechnic Institute of Castelo Branco

. Introduction . -
Main Requirements of Automotive
Networking ●Networking Technologies ●
CAN Features and Limitations

. Data Consistency Issues -
Management of Transient Channel Faults
in CAN ● Impairments to Data Consistency ●
On the Probability of the Data Inconsistency
Scenarios ● Solutions to Really Achieve Data
Consistency over CAN

. CANcentrate and ReCANcentrate:
Star Topologies for CAN -
Rationale ● CANcentrate and ReCANcentrate
Basics ● Other Considerations

. CANELy . -
Clock Synchronization ● Data Consistency ●
Error Containment ● Support for Fault
Tolerance ● CANELy Limitations

. FTT-CAN: Flexible Time-Triggered
Communication on CAN -
FTT System Architecture ● Dual-Phase
Elementary Cycle ● SRDB ●Main Temporal
Parameters within the EC ● Fault-Tolerance
Features ● Accessing the Communication
Services

. FlexCAN: A Deterministic, Flexible,
and Dependable Architecture
for Automotive Networks -
Control System Transactions ● FlexCAN
Architecture ●How FlexCAN Addresses CAN
Limitations ● FlexCAN Applications and
Summary

. Other Approaches to Dependability
in CAN . -
TTCAN ● Fault-Tolerant Time-Triggered
Communication Using CAN ● TCAN ●

ServerCAN ● Fault-Tolerant Clock
Synchronization Over CAN

. Conclusion . -
References . -

6-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-2 Automotive Embedded Systems Handbook

6.1 Introduction

Car manufacturers, for example, GM, DaimlerChrysler, commonly referred to
as original equipment manufacturers (OEMs), are currently adopting flexible car
architectures in their strategies to meet stiff competition by achieving higher lev-
els of innovation in their products. A flexible car architecture allows, for example,
decoupling functionality from underlying control, computing, and communication
architectures thus simplifying the overall vehicle design [SAE].
Developing a successful flexible car architecture is challenging due to the com-

plexity of the subcomponents and also to the stringent requirements faced by the
automotive manufacturers, for example, emissions, standards (e.g., CAFE), safety,
comfort, etc. The challenge is particularly acute for the electronics, communica-
tions, and software subsystems and some techniques are being used to deal with this
challenge such as model-based development (see Chapter ) and the use of open
standards (see Chapter ). OEMs currently face stiff competition and they have to
contend with the development of extremely complex electromechanical systems (e.g.,
a hybrid-electric vehicle [HEV]) in a relatively short development interval. The num-
ber of electronic control units (ECUs) and networks in modern vehicles continues to
increase and there is a trend to use a backbonemainnetworkwith several subnetworks
as depicted in Figure .. The subnetworks typically support each of the major auto-
motive subsystems such as chassis, power train (engine and transmission), X-by-wire,
body, and infotainmentwhile the backbone network is used to support the entire vehi-
cle communications. The requirements of the backbone and each of the subnetworks
are not the same as detailed below.

6.1.1 Main Requirements of Automotive Networking

In general, from a technical standpoint, there are four main requirements for hierar-
chical networks such as those shown in Figure . for in-vehicle systems:

Node
Network backbone

Gateway

Subnetwork

FIGURE . Network architecture of modern automobiles.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-3

. Deterministic behavior
. High speed
. Flexibility
. Dependability

Flexibility is perhaps the most important requirement to be met by all networks, and
indeed for all electromechanical vehicle components. The flexibility requirement is
needed to achieve flexible car architectures. With the exception of flexibility, not all
remaining requirements (i.e., determinism, high speed, and dependability) have the
same level of importance or criticality depending on the type of network and the
applications supported. For a backbone network, high speed is paramount whereas
for a subnetwork that supports an X-by-wire subsystem, dependability is paramount.
A brief explanation of these requirements follows.

6.1.1.1 Deterministic Behavior

A system exhibits a deterministic behavior when the performance measures of its
services are predictable under a number of conditions and characterized by specific
nonrandom equations. For in-vehicle networks, perhaps the most important perfor-
mancemeasure ismessage latencydefined as the time interval fromwhen a transmitter
node enqueues a message for transmission (i.e., a transmission request) until such
message is successfully read (i.e., a reception) by a receiver node.

6.1.1.2 High Speed

This is mainly to supportmultimedia and Internet-related applications (e.g., infotain-
ment) and inter subnetwork communications. High speed is relative, in the future up
to Mbpsmight be required for the backbone, to support global system integration
including transfers of large amounts of information, and  Mbps for subnetworks, with
millisecond range, few bytes long, monitoring and control transactions.

6.1.1.3 Flexibility

Flexibility is a requirement that has not been given the importance it deserves inmost
networking research and development endeavors. Its importance is only becoming
apparent recently due to the high fierce competition among vehicle makers, the goal
of achieving highly flexible car architectures, and the complexity of the underlying
technologies. Flexibility is also difficult to define and characterize precisely due to its
many contexts, meanings, and interpretations. One context is at the communication
architecture level, another at the communication protocol level, and a third one at
the communication system implementation level. Still another context is at the main-
tenance, repair, and service level. All contexts are important and when we discuss
flexibility at the protocol level, we need to relate flexibility to all levels including at
the architecture, implementation, and service levels. Thus, we need to take a holistic
approach when dealing with flexibility.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-4 Automotive Embedded Systems Handbook

6.1.1.4 Flexibility Attributes

Flexibility has a number of important attributes discussed below:

• Design flexibility—This is the flexibility of the communication architecture
that enables making design choices in a simple fashion.

• Configuration flexibility—At the protocol level it means to put many
choices and options in an easy way. At the system level it means using
the network to configure the overall software including communication
options.

• Network load (traffic) flexibility—Sometimes the offered network traf-
fic changes, thus the communication architecture must be flexible in
accommodating a wide variety of traffic patterns.

• Reconfiguration flexibility (involving change)—Redo a configuration to a
vehicle after the vehicle has been in operation for a while.

• Diagnostic flexibility—When there is a problem with a vehicle, the com-
munication capability supports diagnostics to figure out what is wrong
with a vehicle’s subcomponent.

• Parameter flexibility—The capability to monitor a wide set of system
parameters.

• Test flexibility—The capability of performing a wide variety of tests in a
simple and automated fashion.

• Integration flexibility—The capability of the communication architecture
to easily support a wide variety of configurations at the system integra-
tion phase.

• Hierarchical network flexibility—The capability of the communication
architecture to function in a hierarchical fashion as shown in Figure ..

• Functional flexibility—The capability offered by the architecture to sup-
port a wide variety of vehicle functions.

• Just-on-time flexibility—Thecapability of the communication architecture
to support any change, configuration, or reconfiguration in a very short
time thus meeting tight deadlines on time.

6.1.1.5 Dependability

Dependability involves reliability, availability, maintainability, safety, integrity, and
confidentiality [LAPR]. Until now, only the first four attributes of dependabil-
ity have been relevant for in-vehicle systems. However, integrity and confidentiality
are now becoming more important since vehicles are becoming more and more
networked with the external world, for example, car-to-car or car-to-road communi-
cations, Internet connection and integration in the car architecture or wireless vehicle
access control and remote/wireless vehicle diagnostics. This openness of the vehi-
cle architecture will require the use of security techniques and technologies, from
firewalls to cryptography and identity certification, which have not been typically con-
sidered in the automotive domain but which are necessary to prevent unauthorized

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-5

control over vehicle functions or unauthorized access to private data, for example,
operational parameters from cars subsystems or even routes and usage logging. These
security issues are, however, beyond the scope of this chapter.
With respect to the other attributes, in spite of the obvious importance of reliabil-

ity and availability, the safety attribute is paramount. From a dependability point of
view, applications can be safety-critical or non-safety-critical. The former are appli-
cations where a failure of a component or the entire system may lead to a loss of
equipment, human injury, or loss of life. In current vehicles, the growing replace-
ment of mechanical links by distributed electronic architectures, commonly referred
to as X-by-wire systems, makes these architectures safety-critical. To prevent possible
faults from disrupting steering, braking, accelerating, or causing engine failure, a cor-
rect fault hypothesis must be formulated and adequate fault-tolerance mechanisms
must be considered and integrated in the architecture since design time. Suchmecha-
nisms can take advantage of a priori knowledge to distinguish correct from incorrect
system states and this has been a strong motivation for the adoption of static designs
that maximize the a priori knowledge available. Flexibility, on the other hand, tends to
reduce such knowledge, thus leading to a conflict between flexibility and safety. Cur-
rent vehicle requirements demand new ways to reconcile these aspects and improve
flexibility without jeopardizing safety.
Finally, flexibility can also play in favor of dependability. For example, reconfigura-

tion upon hazards with relocation of functionality from damaged nodes to operating
ones is a consequence of flexibility and increases the system dependability by means
of graceful degradation and survivability.

6.1.2 Networking Technologies

Small area fieldbus networks are well established in many application domains rang-
ing from process control, manufacturing, medical, automotive, etc. [THOM].
There are many established fieldbus communication protocols, but the most com-
mon include Profibus [TOVA], Controller Area Network (CAN) [ETSC], and
the actuator sensor interface ASi network [MIRO].There are also specialized field-
bus protocols for highly dependable avionics and automotive applications such as
TTP/C [TTPC], FlexRay [FLEX], and SAFEBus [HOYM]. Unlike other well-
known network architectures such as the Internet, the common denominator of these
so-called fieldbus networks is that they have a protocol stack consisting of just two or
three layers as depicted in Figure .. The CAN protocol is a two-layer fieldbus pro-
tocol originally developed by the Bosch Corporation in the early s and intended
for control applications [CAN]. Currently, CAN enjoys widespread use in many
application fields such as vehicles, home automation, railways, aerospace, marine,
embedded machine control, robotics, factory automation, process automation, med-
ical equipment, building automation, laboratory equipment, etc. [CAN].
But is the best automotive networking solution already available or in progress? By

best we mean networking technologies that meet the aforementioned requirements
in a simple, effective, and low-cost fashion. Although it is too early to identify the
best automotive networking solution at the backbone level, we believe that CAN is

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-6 Automotive Embedded Systems Handbook

Physical

OSI
layer

7

2

1

Data link

Application

Application

FIGURE . Communication architecture of a fieldbus device.

currently the best networking technology at the subnetwork level. CAN is not consid-
ered a high-speed protocolwhen compared to other alternatives, for example, FlexRay
(see Chapter ) and TTP/C (see Chapter ). Nevertheless, CAN provides enough
speed for in-vehicle monitoring, diagnostics, configuration, and control applications
(see requirements above).
This chapter summarizes several proposals for CAN-based architectures suitable

for in-vehicle subnetworks. All proposals aim at improving the network dependability
in someway, while providing different levels of flexibility and determinism, exploiting
to some degree the native CAN protocol. A truly flexible communication architecture
will support flexible car architectures by simplifying product development, converting
it to an integration task of chassis, power train, X-by-wire, body, and infotainment
components.

6.1.3 CAN Features and Limitations

The CAN protocol has been around for about  years and has become important
for many small area applications mainly due to its error control features, low latency,
network-wide bus access priority, and instant bit monitoring [TIND]. In addition
to the aforementioned important features, CAN offers other excellent control features
to recover from frame errors (including stuff bit errors, and CRC errors), which are
not reviewed here as the reader is referred to the specification [CAN].
Many important applications in automotive, robotics, process control, manufactur-

ing, etc. are content with these features and this is evident from the large number of
CAN-based applications worldwide. This is not to say there is no room for improve-
ment. Application designers would be much happier if CAN could be made faster,
cover longer distances, be more deterministic and more dependable [PROE]. In
fact, because of its limited dependability features, there is an ongoing debate on
whether the CAN protocol, with proper enhancements, can support safety-critical
applications [PIMEb,KOPE].
The aim of this chapter is twofold: first, to characterize CAN limitations namely

large and variable jitter, lack of clock synchronization, limited speed–distance prod-
uct, flexibility limitations, data consistency issues, limited error containment, and

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-7

limited support for fault tolerance; and second to discuss recent development
and research being carried out to overcome these limitations [BARRa,RUFI,
FERRa,FERR,PIMEb,FUHR,BROSa,RODR].

6.1.3.1 Large and Variable Jitter

One of the most interesting features of CAN is its bandwidth-efficient arbitration
mechanism, based on network-wide fixed priorities, which allows each node to try
to transmit at any instant according to a carrier-sense multiple access (CSMA) pro-
tocol. However, this feature also has the negative side effect of causing a substantial
network delay jitter because, without synchronization of the transmission instants,
any node will encounter all possible interference patterns from higher priority traf-
fic when trying to transmit. This jitter can be controlled, and sometimes eliminated,
using global synchronization and relative offset adjustments.

6.1.3.2 Lack of a Clock Synchronization Service

As indicated above, the availability of a global synchronization can help to control
the jitter. This synchronization and other important features of distributed embedded
systems can rely on a clock synchronization service. Unfortunately, the CAN stan-
dard does not include such a service. Due to this, whenever a CAN-based distributed
system requires a synchronized clock, it has to be provided at the application level.
This is usually achieved by means of a software-implemented clock synchronization
algorithm, although hardware implementations have also been proposed.

6.1.3.3 Limited Speed–Distance Product

This limitation is typical in shared serial data networks but it is particularly severe
in CAN because of its dependency on instant bit monitoring while transmitting, a
feature sometimes referred to as in-bit response. In CAN, the electrical signals must
propagate over the whole network within a fraction of the bit time. Thus, the longer
the network, the longer the bit time must be. Typical values are about m network
length at Mbps and  km length for a transmission rate of  kbps. Overcoming this
limitation while maintaining compatibility with the standard can be achieved, for
example, with different topologies (e.g., star [BARR]) or, possibly, with segmen-
tation (e.g., using switches).

6.1.3.4 Flexibility Limitations

CAN is normally considered a highly flexible protocol in virtually all dimensions of
flexibility referred above. However, the arbitration mechanism is based on the mes-
sage identifiers that establish the message priority and must be unique across the
system.The assignment of IDs tomessages has, thus, a strong impact on the timeliness
of the communications and forces a system-wide fixed priority message scheduling
approach. If higher fairness is desired than achieved with fixed priorities schedul-
ing, or to facilitate the assignment of IDs without strong consequences on the traffic
timeliness, other mechanisms must be added to CAN, for example, dynamic update
of IDs or external message scheduling by means of transmission control. Moreover,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-8 Automotive Embedded Systems Handbook

all kinds of flexibility that imply dynamic changes in the message set conflict with
timeliness. Combining such flexibility with timeliness requires the addition of an
admission control unit that verifies all submitted changes and rejects all those that
would compromise timeliness.

6.1.3.5 Data Consistency Issues

Inconsistent communication scenarios are one of the strongest impairments to
achieve high dependability over CAN. These scenarios occur due to specific pro-
tocol characteristics and they may reveal themselves both as inconsistent message
omissions (IMOs), that is, some nodes receive a given message while others do not,
and as inconsistent message duplicates (IMDs), that is, some nodes receive the same
message several times while others receive only once. Inconsistent communication
scenariosmake distributed consensus in its different forms, for example,membership,
clock synchronization, consistent commitment of configuration changes, or simply
the consistent perception of asynchronous events, more difficult to attain.

6.1.3.6 Limited Error Containment

Despite its built-in error-containment mechanisms, based on error counters that can
lead the network controller to bus-off state, CAN still presents several limitations
in this matter. One of the limitations is that the built-in mechanisms are relatively
slow to act, depending on the frequency and type of errors. Other limitation arises
from the bus topology, as specified in the standard, since errors occurring in the
node interfaces, bus lines, or its connections, spread freely through the network caus-
ing interference with correct traffic. This may also happen with replicated buses via
common-mode failures. A possible solution to this limitation consists in segmenting
the network, at the physical level, for example, using a star topology and point-
to-point links. Finally, another limitation concerns the transmission of erroneous
messages, in value or timing, despite correct framing. CAN includes no protection to
contain the propagation of such errors. A typical fault of this kind in the time domain
is the babbling-idiot fault in which a node remains transmitting amessage more often
than desired, strongly interfering with the rest of the traffic. Protection against this
kind of faultsmay include specific hardware support, such as a bus-guardians, that is, a
device attached to a node that verifies the respective transmissions, blocking untimely
ones, as well as high-layer protocols that restrict the transmission instants of nodes.

6.1.3.7 Limited Support for Fault Tolerance

Safety-critical applications require very high levels of dependability (typically relia-
bility). In order to reach these levels, fault-tolerance techniques must be used. Wide
support for fault-tolerance functions is not a common feature in most fieldbus net-
works. CAN already provides advanced mechanisms that prevent some faults from
causing a general system failure and even some specific CAN transceivers imple-
ment several mechanisms capable of tolerating specific permanent faults in the
communication links. However, these mechanisms are not enough for safety-critical

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-9

applications. Additional mechanisms are required in order to tolerate node failures
and a permanent failure of the bus (i.e., to support node and bus replication).
The remainder of the chapter is organized as follows: In Section . we revisit in

detail the specific topic of data consistency in CAN, given its importance and impact
on dependability. Then, in Section ., we present a set of techniques and proto-
cols developed to provide improved dependability without jeopardizing flexibility,
namely (Re)CANcentrate, CAN-Enhanced Layer (CANELy), flexible time-triggered
CAN (FTT-CAN), and FlexCAN.These techniques/protocols cover the various layers
of typical fieldbus networks, with (Re)CANcentrate operating mainly at the physical
and datalink layers, CANELy focusing on datalink issues and partially on higher layer
and FTT-CAN and FlexCAN being two higher layer protocols that may operate over
commercial off-the-shelf (COTS) CAN controllers. Finally, the chapter includes a ref-
erence to a few other protocols that are somehow related to the topic of dependability
and flexibility and then a conclusion is presented.

6.2 Data Consistency Issues

The specification of CAN [ISO] claims that this protocol exhibits data consistency
in the presence of transient channel faults (i.e., transient faults occurring at the trans-
mission medium or at the transceivers). This means that within a CAN network it is
theoretically guaranteed that a frame is either simultaneously accepted by all nodes or
by none. Such property roughly corresponds to the Atomic Broadcast definition, and
has led many authors to assume that CAN provides this service, which is of capital
importance in many fault-tolerant and real-time distributed systems.
Nevertheless, it is well known that CAN does not always accomplish the pretended

data consistency [RUFI,PROE,RODRa]. In this section, after introducing the
mechanisms that CAN incorporates to supposedly guarantee data consistency, we
present some situations in which those mechanisms fail to provide this property, and
discuss the likeliness of those situations. It is shown that even though some of the situ-
ations of data inconsistency are quite probable, some others only occur upon rare fault
scenarios. This section also discusses some of the ways that have been proposed to
overcome the inconsistency problems. Fortunately, the most common causes of data
inconsistency can be easily avoided with a proper system design, which would ful-
fill the relatively low dependability requirements of most current CAN applications.
However, some authors claim that if CAN is to be adopted in more critical applica-
tions then some extra mechanisms are required to guarantee data consistency even in
those rare fault scenarios. Some of these mechanisms are introduced at the end of this
section.

6.2.1 Management of Transient Channel Faults in CAN

In the presence of transient channel faults, CAN is often considered as providing
the five properties listed below, which would correspond to the definition of Atomic
Broadcast [RUFI]:

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-10 Automotive Embedded Systems Handbook

• AB—Validity: if a correct node broadcasts a message then the message is
eventually delivered to a correct node.

• AB—Agreement: if a message is delivered to a correct node, then the
message is eventually delivered to all correct nodes.

• AB—At-most-once delivery: any message delivered to a correct node is
delivered at most once.

• AB—Nontriviality: any message delivered to a correct node was broad-
cast by a node.

• AB—Total order: any two messages delivered to any two correct nodes
are delivered in the same order to both nodes.

In order to achieve data consistency, the CAN protocol defines some specific mecha-
nisms for error detection and error signaling [ISO].Thesemechanisms strongly rely
on a basic characteristic of CAN: the quasisimultaneous view of the bits throughout
the network.
In a CAN network the length of the bit time is long enough so that all nodes are

quasisimultaneously sampling the value of the same bit. At each instant, the bit trans-
mitted through a CAN bus can take one of two values: dominant or recessive. In most
implementations of CAN, the dominant value is represented by the logical “” and the
recessive value is represented by the logical “.” Only if all the nodes simultaneously
transmit a recessive value, the resulting bus value will be recessive. In contrast, if any
of the nodes transmits a dominant value, the bus value will be dominant.
As indicated above, the claimed data consistency in the CAN protocol is achieved

thanks to its special error-detection and error-signaling mechanisms. CAN presents
five error detection mechanisms that lead to five different kinds of errors, namely bit
error, stuff error, CRC error, acknowledgment error, and form error. Furthermore,
every CAN node keeps two error counters, called the transmission error counter
(TEC) and the reception error counter (REC), which account for the number of errors
the node has detected in the last transmissions and receptions, respectively.
Depending on the value of the TEC and the REC, the internal state of a CAN node

may change.The initial state of any CANnode is called error-active. If one of the error
counters reaches a given threshold then the node steps into the error-passive state,
which means that many local channel errors have been detected but that the node
can still participate in the communication in a degraded mode. However, if the error
counters keep increasing and the TEC finally exceeds a second (and higher) threshold
then the CAN node enters the bus-off state, in which it is not allowed to participate in
the communication in any way.
Whenever a node in the error-active state detects an error thanks to the previously

mentioned mechanisms, it signals this situation to the rest of nodes by sending what
is called an active error flag. An active error flag consists of six consecutive dominant
bits, and starts at least one bit after the error was detected. This flag will eventually
violate a CAN protocol rule, for example, it can destroy the bit fields requiring fixed
form and thus cause a form error. As a consequence, all the other nodes detect an error
condition too and start transmission of an active error flag as well. After transmitting
an active error flag, each node sends recessive bits andmonitors the bus until it detects

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-11

a recessive bit. Afterward, it starts transmitting seven more recessive bits. The eight
recessive bit chain resulting on the bus is called error delimiter. This error delimiter
together with the superposition of error flags from different nodes constitutes what is
called an error frame. After the error frame transmission, the frame that was being sent
is automatically rejected by all receivers and retransmitted by the original transmitter.
This simple mechanism allows the globalization of local errors and provides tolerance
to the transient fault causing the error. In this way, data consistency is supposedly
achieved. Nevertheless, it is not always the case that local errors can be globalized.

6.2.2 Impairments to Data Consistency

Despite the special mechanisms that CAN incorporates for error detection and sig-
naling, two impairments to data consistency have been reported.The first impairment
is the presence of the error-passive state. According to the standard, a CAN node
enters this state whenever either the TEC or the REC exceeds a given threshold. A
CAN node being in the error-passive state would not use active error flags to signal
channel errors. Instead, it would use an error flag made up of recessive bits (the
so-called passive error flag), which in fact cannot always force the other nodes to see
the error. Due to this, if this node is the only receiver observing the error then an
inconsistency appears in the network because it will be the only receiver rejecting
the frame.
The second impairment to data consistency appears in the error-active state, and is

related to the special behavior upon error in the very last bit of the end of frame (EOF)
field. Whenever the transmitter of the frame detects an error in this bit, it handles the
situation as already explained: it starts the transmission of an active error flag in the
next bit, it considers the frame transmission as being erroneous, and it retransmits
the frame afterward. In contrast, if a receiver of the frame detects an error in the last
bit of the EOF then it just accepts the frame as correct [RUFI].
This special behavior implies that whenever an error in the last but one bit of the

EOF is only detected by a subset of the nodes, the nodes belonging to this subset reject
the frame and generate an error flag in the next bit, which is in fact the last bit of the
EOF. Therefore, this error flag will not make the other nodes reject the frame. This
would violate the property of data consistency, as there would be receivers rejecting
the frame (those that detected the error in the last but one bit of the EOF) as well
as receivers accepting the frame (those that detected the error flag generated by the
former nodes) [RUFI].
This inconsistency scenario would lead to one of two potential failures. If the trans-

mitter detects the channel error and is able to retransmit the corrupted frame then
those receivers that accepted the first frame will receive the same message twice. This
failure is called an IMD. Conversely, if the transmitter does not detect the error or is
not able to retransmit the corrupted frame then some of the nodes will never receive
the message. This failure is called an IMO.
The error scenarios that may lead to IMD and IMO are thoroughly discussed in

Refs. [RUFI,PROE,RODRa]. From these papers it can be summarized that, in
the error-active state, IMO failures are always caused by one of the following reasons:

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-12 Automotive Embedded Systems Handbook

. A second channel error that makes it impossible for the transmitter to
detect the error frame issued by the receivers that have detected the
first error.

. A failure (crash) of the transmitter that makes retransmission impossible.
. Adeliberate reduction of the time available for retransmission due to some

system requirement. This is common in real-time variations of CAN that
adopt techniques to enforce error containment in the time domain, such
as TTCAN, TCAN, or FTT-CAN.

6.2.3 On the Probability of the Data Inconsistency Scenarios

Once it has been accepted that situations of data inconsistency exist in CAN, it is
important to assess the likeliness of those situations, since the adoption of a costly
fault-tolerance technique should be justified by the likeliness of the fault. This is
particularly important for those fault scenarios leading to an IMO failure in the error-
active state, because the solutions to tolerate them have higher cost in terms of both
computation and communication overhead.
Regarding the inconsistency in the error-passive state, it is important to remark

that having CAN nodes in the error-passive state is not a strange situation (yet it is
not so frequent either). For instance, a nodemay enter this state because it has a faulty
transceiver, which issues wrong values to the transmission medium, or because of an
error burst caused by a strong electromagnetic interference. Therefore, this source
of inconsistencies is a potential threat for dependable applications over CAN. In fact,
some authors have calculated that the time spent by the nodes in the error-passive state
may be very important for high values of the bit error rate, such as − [GAUJ].
According to the same authors even the bus-off state can be reached too easily for high
values of the bit error rate (e.g., in  s for a bit error rate of −) [GAUJ].
Concerning the data inconsistency scenarios in the error-active state, there is lit-

tle discussion about the likeliness of having IMD failures in CAN. For instance, in
[ETSC] system designers are recommended to bear in mind this possibility when
designing a CAN system. In contrast, the probability of suffering IMO failures is
still a controversial issue. There are four papers that have studied the probability of
the error scenarios leading to IMO failures in CAN [RUFI,PROE,RODRb,
FERR].
The paper by Rufino et al. [RUFI] was the first one to report the scenarios of IMO

failures.They also presented an analyticalmodel that allows calculation of the number
of inconsistent duplicates and inconsistent omissions per hour, although their analysis
is incomplete as it only evaluated the probability of occurrence of IMO failures caused
by a crash of the transmitter. They obtained results under the following conditions: a
network of Mbps, made up of  nodes, with an overall load of %, a frame length
of  bits, assuming that the time required for the transmission of one frame from
each node in the network is Δt = ms, and that nodes may fail with a failure rate of
λ = − failures/h. Results were obtained under diverse bit error rate assumptions.
For instance, assuming a bit error rate of −, they obtained values in the order of
− IMO/h. Those values are larger than the reference value of − incidents/h, the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-13

safety number of the aerospace industry [POWE], which is being adopted by the
automotive industry as well [KOPE,HAMM].
The paper by Proenza and Miró-Julià [PROE] reported new scenarios of data

inconsistency. In particular, they reported the possibility of IMO failures caused by a
second channel error affecting the transmitter. They also provided an analyticalmodel
to calculate the probability of these new inconsistency scenarios. Under the same con-
ditions used for the evaluation in Ref. [RUFI], they obtained values in the order of
− IMO/h.Therefore, they showed that the new scenarios have probabilities not only
greater than the reference value (− incidents/h), but also greater than the previously
reported scenarios.
The paper by Rodríguez-Navas and Proenza [RODRa] reported the third cause

of IMO and analyzed it in the context of TTCAN. In particular, they showed that a
limitation of the available time for retransmission (in TTCAN frame retransmissions
are always disabled) may significantly increase the probability of IMO failures. Taking
the same network conditions of the two previous papers, they obtained values for
TTCAN in the order of  IMO/h, which are too high so as to be neglected.

In contrast to these papers, some authors claim that the scenarios ofmessage incon-
sistencies are actually very unlikely and do not represent a threat for the adoption of
CAN in critical applications. In particular, recent research in the experimental assess-
ment of the CAN bit error rate [FERR,FERR] has provided measures in different
environments for the bit error rate that seem to show that the bit error rates used in
Refs. [RUFI,PROE,RODRa] were quite pessimistic. They claim that, accord-
ing to their results, the number of IMOs per hour may be below the − reference
number for a CAN network. However, despite being very useful as a first published
attempt to measure the bit error rate in a real environment, the results of the experi-
ments are not conclusive, and thus additional sources of experimental data should be
made available.

6.2.4 Solutions to Really Achieve Data Consistency over CAN

The existence of the error-passive state is the first potential cause of data inconsis-
tency in CAN. Many authors have proposed to avoid this state in order to improve
the dependability of CAN-based systems [FERR,HILM,RUFI]. This is easily
achieved using a signal provided in many modern CAN circuits, called error warning
notification. This signal is generated when any error counter reaches a certain value
that is considered as an indication of a heavily disturbed bus (for instance, the value
 in the Ref. [PHIL]). This is a good point to switch off the node before it goes into
the error-passive state, thus ensuring that every node is either helping to achieve data
consistency or disconnected.
Concerning inconsistencies in the error-active state, it is important to remark that

IMD failures can be easily tolerated so they do not require adoption of any specific
mechanism. As indicated in the CAN literature [ETSC], duplicates can be toler-
ated with proper application design. For instance, messages that toggle a value should
never be sent in a CAN network.
In contrast, solutions to tolerate IMOs in the error-active state are significantly

more complex. There is one proposal [PROE], which eliminates the possibility of

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-14 Automotive Embedded Systems Handbook

an inconsistent frame validation at the lowest possible level of the system architecture:
the CAN controller. Nevertheless, this consistency is achieved by slightly modify-
ing the behavior of the error detection and error-signaling mechanisms at the end
of the frame, and therefore this solution is not really compatible with standard CAN
networks.
Apart from this nonstandard solution, there are various proposals intended to

provide data consistency that are fully compatible with standard CAN networks.
These solutions are mainly distributed protocols that rely on message exchanges.
They however differ in the fault model addressed, and some of them in fact do
not cover all of the potential causes of inconsistent omissions that have been men-
tioned above.
For instance, the solution proposed in Ref. [RUFI] is based on a distributed

agreement protocol, and only addresses the IMO caused by a crash of the transmit-
ter. Specifically, they introduce three protocols: EDCAN, RELCAN, and TOTCAN. In
EDCAN all the receivers retransmit the message after reception to overcome trans-
mitter failures.This protocol satisfies all the Atomic Broadcast properties except Total
Order, thus providing Reliable Broadcast [HADZ]. In RELCAN the same proper-
ties are satisfied taking a more efficient approach. The transmitter sends a CONFIRM
message after the successful transmission of themainmessage. Only in case the CON-
FIRMdoes not reach the receivers in a specified timeout they start the retransmission
of the main message. Finally, TOTCAN satisfies all the Atomic Broadcast properties,
including Total Order. Each time a receiver gets a duplicate of a message, it puts it
at the tail of a queue. The transmitter sends an ACCEPT message after the success-
ful transmission of the main message. When the receivers get the ACCEPT message,
they fix the position of the message in the queue. In case the ACCEPT message
does not reach the receivers in a specified timeout, they remove the corresponding
message from the queue. A detailed description of these protocols can be found in
Ref. [RUFI].
In Ref. [LIVA] a solution is proposed that relies on a specifically designed

hardware circuit. This circuit is a dedicated circuit, called SHAdow Retransmitter
(SHARE), which is intended to detect bit error patterns that may mean an incon-
sistent frame validation. Upon detection of these patterns, the SHARE circuit would
retransmit the potentially corrupted frame, thus guaranteeing its reception evenwhen
the original transmitter is faulty. Afterward, Total Order is accomplished by means of
an ordering scheme that the nodes implement. However, this solution only addresses
IMO caused by a transmitter crash.
The solution suggested inRef. [PINH] also addresses only IMOcaused by a trans-

mitter crash, although it could be apparently extended to deal with IMO caused by a
second channel error. This solution relies on the transmission of two additional mes-
sages, the CONFIRMATION and the ABORT messages, which helps the nodes to
agree whether the transmission of a frame was consistent or not. This solution does
not guarantee Reliable Broadcast if the transmitter crashes, only Agreement.
The protocol presented in Ref. [LIMA] is a consensus protocol that allows the

nodes of a CAN network to agree on a certain value despite the existence of inconsis-
tent omissions. This solution tolerates IMO caused by either a transmitter crash or a
second channel error.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-15

It is important to highlight that it is not always clear how the mentioned solutions
can be integrated with other protocols over CAN [RODRb]. Much research has
been already conducted in order to improve both the dependability and the real-time
properties of CAN, so the current research focus is more on the integration of those
solutions than on the provision of new ones. Some of the architectures described later
on in this chapter are good examples of this integrated approach.

6.3 CANcentrate and ReCANcentrate: Star
Topologies for CAN

Theuse of field buses in distributed control systemshas beenwidely spreadmainly due
to their electrical robustness and low cost. One of the key causes of their low cost is the
bus topology they rely on.However, the use of bus topologies implies some limitations
regarding dependability. In a bus topology, components are attached to each other
with scarce error-containment mechanisms. Thus, one single fault in any component
(e.g., communication controller, transceiver, connector, wire, etc.) of a network that
relies on a bus may generate errors that can propagate throughout the communica-
tion subsystem leading, in some cases, to a generalized failure of communication.
Therefore, a bus topology presents multiple single points of failure.
In the particular case of CAN, some solutions have been proposed in the litera-

ture to increase error-containment capabilities: replicated buses [RUFI,RUSH],
bus guardians [TINDa,FERRa], and the reconfigurable bus called RedCAN
[FRED]. However, due to the characteristics that are inherent to the bus topology,
the former two techniques, even if they are used together, cannot prevent the existence
of amultiplicity of single points of failure. For example, replicated transmission media
may suffer from common-mode spatial proximity failures [STOE] and nodes can
still send incorrect information to all media, and a bus-guardian is useless for contain-
ing errors generated by a faulty medium andmay also exhibit common-mode failures
with the node it supervises. On the other hand, RedCAN [FRED] does have the
advantage of tolerating one fault in one bus segment and also has the potential to
detect and isolate several kinds of node failures. However, it is still sensitive to net-
work partitions upon a second fault and the diagnosis, location, and isolation of a
faulty component, be it segment or node, require the execution of an algorithm in
which all nodes must participate, thus increasing the complexity of the solution and
the error detection and isolation latency. Finally, the multiple single points of failure
that occur in a bus can only be prevented by RedCAN if each network adapter also
performs detection of corrupted bit streams (bit-flipping errors). To achieve all these
properties, RedCAN network adapters that must be installed in every node become
substantially complex increasing nodes’ probability of failure.
In contrast, star topologies may represent an effective solution to prevent the exis-

tence of multiple single points of failure. In a simplex star topology, each node is
connected to a central element, the hub, by its own link. One advantage of a sim-
plex star topology is that links only come into spatial proximity at the center of the
star and, thus, the probability that different links suffer from common-mode failures

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-16 Automotive Embedded Systems Handbook

is significantly reduced. In fact, the only chance for such kind of failure is a fault in
the proximity of the hub. Also, network partitions are impossible with a star topology.
But the most important advantage is that the center of the star, that is, the hub, can be
designed to have a privileged view of the system, knowing the contribution from each
node, bit by bit, through its corresponding link. In aCANnetwork this privileged view
allows a hub to reach a capacity of error detection that cannot be achieved using a bus
because in a CAN bus all nodes’ contributions are irreversibly mixed. Hence, an ade-
quate hub could enforce confinement of faulty transmission media and faulty nodes,
by disconnecting the adequate hub ports. Furthermore, fault independence would be
ensured between a guardian placed within the hub and the nodes this guardian would
supervise.
Notice that the hub represents the unique single point of failure of a network relying

on a simplex star topology. Thus, a simplex star can boost error containment when
compared with a bus, which includes multiple single points of failure. Nevertheless,
the existence of a single point of failure may represent an important drawback for
safety-critical applications, which require a degree of reliability as high as possible.
In order to eliminate such single point of failure a replicated star topology can be
adopted. In a replicated star topology, more than one hub is used so that if a subset of
hubs fail the nodes can still communicate through the remaining nonfaulty hubs.
Some of the potential advantages of simplex and replicated star topologies have

been exploited by communication protocols such as TTP/C [BAUE] and FlexRay
[FLEX]. TTP/C proposes a network with two star couplers that are provided with
fault-treatment (fault diagnosis and fault passivation) mechanisms. These mecha-
nisms deal with a fault model that mainly includes babbling-idiot, masquerading,
and slightly-out-of-specification faults [KOPE]. Similarly, FlexRay allows building
multiple star topologies with or without redundant channels and, in addition, offers
the possibility of combining star and bus topologies. FlexRay also enables the possi-
bility of including within the star coupler a centralized guardian [FLEXa] whose
fault-treatment mechanisms are similar to those included in a TTP/C hub.
Some star topologies have also been proposed for CAN [CIA,RUCK,IXXA,

CENA,SAHA,BARRa,BARRa]. Some of them are passive stars in the sense
that the hub acts as a concentrator where all the incoming signals are coupled [CIA].
These stars present important disadvantages [BARRa] concerning coupling losses,
strong limitations on the star radius or in the bit rate, electrical problems, etc.
Other types of stars are known as active stars [RUCK,IXXA,CENA,SAHA,
BARRa], which overcome some of the technical problems of passive stars. The
active stars of Refs. [RUCK,IXXA,CENA] rely on an active star coupler, which
receives the incoming signals from the nodes bit by bit, implements a logical AND,
and retransmits the result to all nodes. An alternative active hub proposed in Ref.
[SAHA] allows connecting either a node or a whole CAN bus to each of its ports.
This hub includes a set of state machines that detect each dominant pulse received
through a hub port and conveniently echo it to the other ports.
Unfortunately, these passive and active stars either do not address fault confine-

ment, or only deal with a small set of possible faults. Moreover, some of them are not
even compatible with the CAN protocol. A deeper discussion on the drawbacks of
existing passive and active stars can be found in Ref. [BARRa].

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-17

In contrast, two star topologies, called CANcentrate and ReCANcentrate (we will
use the term (Re)CANcentrate when referring to both topologies at the same time),
which have been proposed in Refs. [BARRa,BARRa], are specifically devised for
error containment and fault tolerance. These two stars, which will be described in
this section provide, for CAN features regarding dependability and flexibility that
are similar to the ones offered by protocols such as TTP/C and FlexRay. Moreover,
both stars are fully compatible with COTS CAN components, with CAN applications
and CAN-based protocols, for example, CANopen, DeviceNet, FTT-CAN, or Flex-
CAN.This compatibility also allows CANcentrate and ReCANcentrate to keep all the
good dependability properties already provided by CAN [ISO], for example, in-bit
response, error-signaling mechanisms, etc.

6.3.1 Rationale

Themain objective of both CANcentrate and ReCANcentrate is to boost reliability in
CAN networks bymeans of fault treatment (fault diagnosis and fault passivation) and
fault tolerance.
To better understand the objective of these stars in terms of fault treatment, the

following concepts were introduced [BARRa]: severe failure of communication, that
is, when more than one node cannot communicate; and point of severe failure, that
is, a point whose failure is severe, which comprises the common concept of single
point of failure. When analyzing CAN buses, the following faults may lead to severe
failures:

• Stuck-at-dominant and stuck-at-recessive faults, either in the nodes or
medium, arising from, for example, short circuits to ground or battery,
or malfunctioning or isolated controllers.

• Medium partition faults that occur whenever the network is physically
broken into several subnetworks called network partitions.

• Bit-flipping faults that occur whenever a network component, either
node or medium, exhibits a fail uncontrolled behavior, sending random
erroneous bits with no restrictions in value or time domains.

• Babbling-idiot faults that occur whenever a node sends syntactically cor-
rect frames that are erroneous in the time domain, causing undesired
interference.

CANcentrate and ReCANcentrate deal with faults that are related to the physical
layer and that are independent of the application. Thus, they are able to confine the
first three types of faults outlined above. No assumptions are made concerning the
location, frequency, and duration of errors that may occur as a consequence of such
faults. Additionally, a guardian could be included in the hubs of both stars to confine
babbling-idiot faults. However, even if such a guardian is not included in the hub,
notice that CANcentrate and ReCANcentrate are able to detect a babbling-idiot node
if, from the communication subsystem point of view, the node manifests as being bit
flipping. This may happen if a babbling node starts transmitting a CAN frame while
another CAN frame is already being sent by a nonfaulty node, thereby corrupting it.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-18 Automotive Embedded Systems Handbook

Thehub of CANcentrate isolates any faulty network component, for example, cable,
transceiver, etc., at the corresponding hub port, thereby preventing error propaga-
tion and thus the occurrence of a severe failure. Therefore, CANcentrate improves
fault treatment in CAN by reducing the multiple points of severe failure exhibited by
any other network based on a CAN bus to a unique single point of failure, that is,
the hub. This has the relevant effect of decreasing the probability of severe failures
in the communication system. This probability can be further decreased by reducing
the probability of hub failure [BARR].
In some applications, the degree of dependability achieved by CANcentrate could

be not enough and the presence of a single point of failure unacceptable. In these cases,
spatial redundancy at the hub level is required so as to tolerate permanent faults of the
hub. ReCANcentrate provides this redundancy by using a replicated star topology that
includes two or more hubs. Besides providing the same capacity of error containment
as CANcentrate, ReCANcentrate further tolerates hub and link faults.

6.3.2 CANcentrate and ReCANcentrate Basics

In CANcentrate, each node is connected to the hub by means of a dedicated link that
contains an uplink and a downlink (Figure .). The hub receives each node contri-
bution through the corresponding uplink, couples all the nonfaulty contributions and
broadcasts the resulting coupled signal through the downlinks.
Figure . shows the internal hub hardware architecture [BARRa]. It is con-

stituted by three modules: the Coupler Module, the Input/Output Module, and the
Fault-Treatment Module.TheCoupler Module takes into account each port contribu-
tion (B,... ,n) that is nonfaulty; calculates the resultant coupled signal, B, bymeans of
a logical AND; and broadcasts it to the nodes.The Input/OutputModule is constituted
by a set of transceivers. Each transceiver that is connected to an uplink translates the
physical signal from that uplink into a logical form that can be understood by the other
modules of the hub. Additionally, each transceiver connected to a downlink translates
B into a physical signal that is sent to the corresponding node through that downlink.
Finally, the Fault-Treatment Module is constituted by a set of enabling/disabling units.

Node k

Hub

Uplink
Downlink Link

Node i

Node l Node j

FIGURE . Connection schema of CANcentrate.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-19

...

Fault-Treatment
Module

Input/Output
Module

Coupler Module

Tr
“1”

B0

B1
BnB2

C

Ena/Dis
ED2 ED1EDn

...

Tr

Uplink/downlinks from/to the nodes

Tr
“1”

TrTr
“1”

Tr

Ena/Dis Ena/Dis

p

Rx_CAN

ANDC

FIGURE . Internal structure of the CANcentrate hub.

Each one of these units monitors a given port contribution in order to detect errors.
When a given port has accumulated too many errors, the coupled module isolates its
contribution by driving a logical “” through the corresponding enabling/disabling
unit (ED,... ,n) into an appropriate OR gate.
The use of an uplink and a downlink for each node allows separating the contri-

bution of each node from the coupled signal, so that the enabling/disabling units
can monitor each node contribution separately and detect faulty transmissions. This
feature allows the hub to diagnose the location of faults with more precision than
the typical error counters of CAN [ISO]. Permanently faulty contributions are dis-
abled, thus not propagated to the coupled signal, or in other words, confined to the
port of origin. Additionally, for the sake of survivability, the enabling/disabling units
implement a specific reintegration policy to reenable any port contribution after an
error-free predefined time interval.
Moreover, since the hub carries out the coupling within a fraction of the bit time,

its operation is transparent for the nodes. This makes CANcentrate fully compliant
with CAN as referred before. However, a minor adaptation is still needed when con-
necting an ordinary CAN node to a CANcentrate port because of the separation
betweenuplink and downlink.UsingCOTS transceivers, this connection requires two
of them [BARRa].
Although CANcentrate provides CAN with error-containment features that can-

not be achieved by means of bus topologies, it is not tolerant to hub and link faults.
However, ReCANcentrate [BARRa] can provide such increased reliability by using
a replicated star topology. Although ReCANcentrate does not limit the number of
hubs, for the sake of simplicity, we consider only two hubs in the remainder of this
section. The connection strategy is very similar to the one used in CANcentrate, with
each node connected to each hub via an uplink and a downlink (Figure .). The
replication strategy is such that nodes transmit and receive the same data through
all the stars in parallel and this is enforced transparently by a special coupling of the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-20 Automotive Embedded Systems Handbook

Node
B

Uplink

InterlinkNode
A

Hub 2
Node

C

Hub 1 Downlink

Two
sublinks

FIGURE . Connection schema of ReCANcentrate.

hubs using two or more dedicated links called interlinks, each containing two inde-
pendent sublinks, one for each direction (Figure .). Note that the use of more than
one interlink allows tolerating interlink faults.
Internally, ReCANcentrate hubs are very similar to the ones of CANcentrate, but

with somemodifications mainly at the Coupler Module, using an AND coupling with
two stages. In a first stage, each hub couples the contributions from its own nodes
(i.e., the nodes that are directly connected to it), obtaining B, which now is called the
contribution of that hub. The hub generates replicas of this contribution (B and B
in Figure .) and sends them to the other hub via one sublink of each interlink. In a

Hub
Ena/Dis1

B0

Ena/Dis

B1

ED1

... ED�00

ED�01

B�01
B�00

B01 B00

BT

ANDT

ANDC

Uplinks/
downlinks

from/to nodes

Input/Output Module

Coupler
Module

Fault-Treatment
Module

Sublinks
to other

hub

Hub
Ena/Dis0

Sublinks
from other

hub

FIGURE . Two-stage AND inside ReCANcentrate.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-21

second stage, each hub couples the replicas of the contribution of the other hub (B′
and B′) with its own contribution, B, and then broadcasts the resulting signal, BT,
to the nodes that are directly attached to it.
This coupling scheme is necessary to allow each hub to monitor the other hub and

isolate it in case of detecting errors. Such monitoring and isolation is carried out by
specialized units, equivalent to those used for each port, called hub enabling/disabling
units. In addition, when a hub fails it is also isolated by the nodes directly connected
to it, for example, using an error count threshold with the error detectionmechanisms
included in CAN controllers.
The final coupled signal, which is broadcast to the nodes by all hubs, is unique and

contains the contributions of all nodes in the system with at least one nonfaulty con-
nection to one hub, no matter which. This enforces a consistent view of the network,
that is, all connected nodes reach each other, even when some of them are connected
to one hub, only. The possibility of connecting less critical nodes to only one hub
allows reducing the cabling cost.
Beyond these advantages, ReCANcentrate is also fully compliant with CAN. The

connection of a CAN node to ReCANcentrate still requires two COTS transceivers
per link (per hub), as in CANcentrate. Moreover, a major advantage arises from the
bit-level synchronization enforced by ReCANcentrate, which allows overcoming the
difficult problem of replicated channel synchronization.
In case all interlinks fail, the above advantages of ReCANcentrate related to the

bit-level hubs coupling are lost, but nodes can still communicate. For instance, all
nodes could agree to use a unique hub for communicating. In this way, ReCAN-
centrate exhibits graceful degradation. Finally, ReCANcentrate also implements a
reintegration policy similar to CANcentrate for long but nonpermanent node failures.

6.3.3 Other Considerations

Regarding the cabling, star topologies generally lead to longer cabling and higher costs
than corresponding bus topologies, but not necessarily [BARR]. In fact, the gains or
losses in cabling length are highly dependent on the network’s physical layout. More-
over, since star topologies yield substantial benefits of dependability when compared
with bus topologies, star topologies should be the choice when dependability is an
issue. Alternatively, (Re)CANcentrate allows combining both, bus and star topologies
(Figure .), connecting a set of nodes with lower fault-tolerance requirements to one
hub port, sharing the same uplink and downlink. In such a way (Re)CANcentrate can
provide hierarchical network flexibility.
Another aspect that deserves a reference is the product network length times bit

rate, which is severely limited in CAN because of the in-bit response feature. How-
ever, this constraint is relaxed whenmoving from a bus to a star because in the former
it applies to the total bus length while in the latter it applies to the star diameter, only,
that is, themaximum summed length of any two links, which tends to be shorter. Nev-
ertheless, the maximum diameter of a star is negatively influenced by the delays in the
transceivers. Notice that in a bus, any communication must traverse two transceivers,
four in CANcentrate, and six in ReCANcentrate. The design of specific high-speed
transceivers for use within the hubs could reduce this problem.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-22 Automotive Embedded Systems Handbook

Node
B

Uplink

InterlinkNode
A

Node
C

Hub 1 Downlink

Node
1

Node
n

Uplink

Downlink

.

.

.

Hub 2

FIGURE . A replicated star topology with some nodes sharing an uplink and a downlink.

Finally, working prototypes of both CANcentrate and ReCANcentrate were devel-
oped using Field-Programmable Gate Array (FPGA) technology programmed with
VHSIC Hardware Description Language plus the necessary interface components.
The maximum star diameter achieved with CANcentrate at  kbps was of m
[BARR], whereas for ReCANcentrate at  kbps it was of m [BARR]. This
relation between the bit rate and the star diameter does not depend on the number
of ports the hubs are provided with. In fact, the most influencing factor was the delay
provoked by the commercial CAN transceivers located at the hubs.
With regard to the isolation and reintegration delays, at  kbps, the isolation delay

of faults injected at hub link ports was  μs for stuck-at-dominant faults and ranged
between  and  μs for bit-flipping faults.The isolation delay for the same types of
faults at interlink ports was  μs and ranged between  and  μs, respectively.
Finally, the average time for two independently operating ReCANcentrate hubs, that
is, without interlinks, to resynchronize upon interlinks connection and establish a
single bitwise broadcast domain was of .ms [BARR]. Notice that these latencies
are quite shortmaking (Re)CANcentrate adequate to demanding application domains
such as in-vehicle networks, where transmission rates are typically below  kHz, that
is, most of the referred faults can be detected and isolated in between two consecutive
transmissions.

6.4 CANELy

The CANELy architecture was, to our best knowledge, the first attempt to overcome
the dependability limitations of native CAN. More specifically, CANELy addresses
the following limitations: lack of a clock synchronization service, data consistency
problems, limited error containment, and limited support for fault tolerance.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-23

CANELy
interface

CAN standard
interface

Media redundant CAN communication channel

ChRxChTx

CAN standard layer

AND-based
media selection

Software-implemented protocols and services

FIGURE . Basic structure of the CANELy architecture.

Figure . shows the architecture of CANELy. Note that the central component
of the architecture is the standard CAN layer, which is implemented by one COTS
CAN controller complemented/enhanced with some low-level protocols and simple
machinery including a transparent medium redundancy scheme. In this way, the ser-
vices of CANELy aremainly provided off-the-shelf, withoutmodifications to theCAN
standard or to available CAN controllers.
In the remainder of this section we briefly discuss how CANELy addresses the

dependability limitations mentioned above. For a more detailed discussion, inter-
ested readers are referred to the literature inRefs. [RUFI,RODR,RUFI,RUFI,
RUFI].

6.4.1 Clock Synchronization

The CANELy architecture provides a fault-tolerant clock synchronization service
[RODR], which is also referred later in Section .. This service is implemented in
software, and achieves fault tolerance by means of an agreement protocol, which the
nodes periodically execute in order to decide the right time reference in the system.
This protocol may require an excessive number of messages for certain applications,
but it tolerates a wide range of faults; including IMOs and Byzantine node failures,
among others. The precision achieved is in the order of  μs.

6.4.2 Data Consistency

The problem of data consistency has received special attention in the CANELy archi-
tecture. In order to overcome this limitation, the solution proposed in CANELy is
a suite of protocols (namely EDCAN, RELCAN, and TOTCAN), which guarantee
different kinds of broadcast services [RUFI]. The characteristics of these proto-
cols were described previously, when discussing the data consistency problem in
Section ..

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-24 Automotive Embedded Systems Handbook

6.4.3 Error Containment

CANELy exhibits better error-containment properties than natural CAN, though it
is a side effect of the media redundancy scheme of CANELy rather than an original
goal of the architecture. In particular, CANELy includes some low-level mechanisms
that may help detection of a faulty transmission medium or transceiver [RUFI].
Nevertheless, the error-containment capabilities of CANELy still suffer the limitations
inherent to the bus topology as pointed out in Section ..

6.4.4 Support for Fault Tolerance

In contrast to standard CAN, CANELy provides a number of features that help the
design of fault-tolerant applications. In particular, CANELy includes mechanisms to
provide medium-fault tolerance and to support node replication.
Concerning medium-fault tolerance, the CANELy architecture uses a highly effec-

tive media redundancy scheme (the AND-based media selection block in Figure .)
for handling CAN physical partitions [RUFI].The received signals of each medium
are combined in a conventional AND gate before interfacing the media access con-
trol layer. This secures resilience to medium partitions and stuck-at-recessive failures
in the network cabling. Other cabling failures such as stuck-at-dominant can be
also detected and treated with a short latency ( μs). Beyond medium replica-
tion, CANELy incorporates another mechanism (the so-called inaccessibility control)
to measure the network access delays as seen by one node and thus determine
whether the network inaccessibility periods exceed certain prespecified tolerable
limits [RUFI].
Concerning node replication, CANELy includes two useful services: a service

for reliable node failure detection and a group membership service [RUFI]. The
membership service is intended to provide consistent information about the state of
a collection of participants, and can therefore be used to support upper layer services
such as redundancy management, group communication, clock synchronization, etc.
Both services are organized in a failure detection/membership protocol suite, which
is built as a software layer on top of a CAN controller interface. In this way, upper
layer protocol entities may request the local node to join/leave the set of active
nodes or obtain the current node membership view. A notification of a change in the
composition of the set of currently active nodes is due whenever a node joins/leaves
the service or upon the detection of a node crash failure by the failure detection
mechanisms.
Both the node failure detection and the membership services are based on sig-

naling the node activity through the broadcast of a life-sign message similar to a
heartbeat. In some cases, these life-sign messages can be piggybacked on periodic
messages of the system, thus reducing the bandwidth required by the protocol. Due to
space limitations, it is not possible to describe the mechanisms that CANELy specifies
in order to consistently manage the life-sign messages as well as the join/leave mes-
sages [RUFI].These mechanisms are inspired on the CANELy broadcast protocols
[RUFI], which were reviewed in Section ..

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-25

6.4.5 CANELy Limitations

CANELy addresses many of the limitations of CAN while maintaining, in general
terms, the flexibility of original protocol. However, one common criticism is that
some of the proposed services entail a substantial overhead in terms of message
exchange, for example, the fault-tolerant clock synchronization. Therefore, the use
of CANELy services requires a careful weighting of its suitability for each specific
application. Error-containment impairments inherent to the bus topology, as referred
above, are another source of limitations that subsists in CANELy. Moreover, the avail-
able literature has not provided indications on how to build a complete fault-tolerant
system based on CANELy services. In fact, every mechanism has been proposed and
described independently from the others. Nevertheless, CANELy can be seen as a set
of useful mechanisms or techniques based on CAN COTS components that system
designers may consider when designing a fault-tolerant CAN system.

6.5 FTT-CAN: Flexible Time-Triggered
Communication on CAN

The growing importance of flexibility in the design of distributed embedded systems,
and particularly automotive systems, has already been discussed in Section .. Sev-
eral of its dimensions refer to flexibility with respect to run-time operational aspects.
We will thus refer to all such dimensions, generally, as operational flexibility. The
quest for this type of flexibility has been motivated by a desire to support dynamic
configuration changes such as those arising from hazardous events, evolving require-
ments, environmental changes, and online quality-of-service (QoS) management
[BOUY,LU,SCHM,BUTT]. Generally, higher operational flexibility allows
increasing the system survivability [SCHM,SHEL], for example, by supporting
flexible modes and graceful degradation, as well as increasing efficiency in the use
of system resources [BUTT], particularly CPU and network bandwidth, carrying
along an inherent potential to reduce system costs and improve its dependability.
For example, in order to provide fault tolerance, functional backup replicas must

be available in different nodes. However, in many nonactive replication schemes they
will be seldomused and thus, keeping their required resources permanently allocated,
namely CPU and network bandwidth, will be inefficient. On the other hand, it would
be more efficient releasing these resources for other active functions during normal
operation, which thus could provide a better QoS, and requesting them back only
when necessary, readjusting accordingly the resources allocated to the other func-
tions, which would then revert to a lower QoS but still sufficient for safe operation.
Even with active replication, upon failure, the number of replicas is reduced causing a
redundancy attrition [BOND].This could be compensated for, activating dormant
replicas in nodes that were used so far for other less critical operations. This flexi-
ble approach to fault tolerance may lead to substantial cost reductions with respect
to static replication. However, this kind of flexibility is not compatible with static
schedules, as acknowledged in Refs. [LU,PRAS], and it must be achieved under
adequate control in order to keep the system in a safe state, even during adaptations.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-26 Automotive Embedded Systems Handbook

The level of flexibility and safety referred above requires an adequate support from
the computational and communications infrastructure so that relevant parameters of
tasks and messages can be dynamically adjusted within specified bounds [ALME].
However, performing this adjustment promptly in a distributed system is challeng-
ing because of the network-induced delays, the need to achieve a consensus among
the nodes involved in the adjustment, and the need to enforce the adjustment syn-
chronously in all nodes. Basically, the system architecture should meet the following
requirements:

. Bounded communication delays
. Online changes to the processing/communication requirements with low

and bounded latency, which requires dynamic task/traffic scheduling
. Online admission control (to filter out change requests that would jeop-

ardize system timeliness based on appropriate schedulability analysis)
complemented with bandwidth management, with low and bounded
latency

. Sufficient resources for a predefined degraded but safe operating mode of
all subsystems

. Change attributes that define which online changes are permitted for each
task/stream

The first requirement calls for an appropriate network access protocol that is deter-
ministic and analyzable. The second and third requirements correspond to a dynamic
planning-based traffic scheduling paradigm. The fourth and fifth requirements are
ways of constraining flexibility to a set of permitted changes that always result in safe
operational scenarios.
Meeting the above requirements motivated the development of the FTT commu-

nication paradigm, in which a global traffic scheduler and system synchronizer are
placed in a central locus that also includes a database with all communication require-
ments and other system characteristics [ALME,PEDR,ALME].The fact that all
communication and synchronization-related data are centralized in one node allows
its prompt and efficient management. This node is called master and the scheduling
of the system activities (tasks and messages) is periodically broadcast to the other
nodes in a master/slave fashion using specific control messages. This architecture
still follows the time-triggered model [KOPE], according to which system trans-
actions are triggered by time and not by external asynchronous events, being the
required global notion of time enforced by the master, but allows complex online sys-
tem updates with low latency as desired [ALME]. To the best of our knowledge,
the FTT paradigm has been the first attempt to introduce a high level of operational
flexibility in the time-triggered communication model to support emerging appli-
cations that adapt to current environment operating conditions or that adjust the
QoS dynamically. This paradigm has been applied to several networking technologies,
leading to the protocols FTT-CAN [ALME], FTT-Ethernet [PEDR], and more
recently FTT-SE [MARAa], which are based on CAN, Ethernet, and microseg-
mented switched Ethernet, respectively. Practical applications of these protocols are
reported in the literature concerning the control of mobile autonomous robots with

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-27

FTT-CAN [SILV] and video surveillance with FTT-Ethernet [PEDR]. This sec-
tion focuses on FTT-CAN, covering the system architecture and its main components
as well as the main efforts to provide fault-tolerant operation. FTT-CAN addresses
CAN limitations by providing higher flexibility with respect to traffic scheduling and
management in general, guaranteed timeliness with operational flexibility and online
reconfiguration capabilities for resource-efficient fault tolerance.

6.5.1 FTT System Architecture

The core of the FTT system architecture is the system requirements database (SRDB)
that contains the current communication requirements plus other relevant system
operational information (Figure .). This component is located in a particular node
called FTT master, together with the functional elements that operate over it, namely
the system scheduler (SS), which builds the schedules that will be disseminated to the
remaining nodes, and the bandwidthmanager/admission controller, thatmanages the
changes performed online in the SRDB and SS.

6.5.2 Dual-Phase Elementary Cycle

A key concept in the FTT protocols is the elementary cycle (EC), which is a fixed
duration time slot used to allocate traffic on the bus.This concept is also used in other
protocols such as Ethernet Powerlink and WorldFIP. The bus time is organized as an
infinite succession of ECs.Within each EC there are two windows, each one dedicated
to a different type of traffic, namely synchronous and asynchronous, which have time-
and event-triggered characteristics, respectively. The order of these windows is proto-
col dependent and in FTT-CAN the asynchronous window precedes the synchronous
one (Figure .). The protocol enforces a strict temporal isolation between the two
windowsmeaning that a transmission is only started if it finishes within the respective
window.
Themaster node starts each EC by broadcasting a trigger message (TM).This con-

trol message synchronizes the network and conveys in its data field the identification

FTT master FTT master

SRDB SS

Network

System nodes transmit/execute
according to specific triggers

Transmits periodic
trigger messages with
adequate schedules

SRDB SS

BM/
AC

Network
interface

Operator
interface

BM/AC—Bandwidth manager/admission control,
redistributes bandwidth according to some policy
enforces timeliness using schedulability analysis
SS—System scheduler,
constantly scans SRDB, building adequate schedules

FIGURE . System architecture of the FTT protocols.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-28 Automotive Embedded Systems Handbook

Elementary cycle (EC)

Asynchronous window

TM AM1

EC trigger
message

Trigger message data field (EC-schedule)

0 0 0 0 0 0 0 0 01 0

Bit 4Bit 13

...

Bit 2 Bit 1

0 1 0 1 1 00

AM3 AM5 SM1 SM2 SM4 SM13 TM

Synchronous window

FIGURE . EC and EC-schedule encoding in FTT-CAN.

of the synchronous messages that must be transmitted by the slave nodes within the
respective EC as well as specific trigger flags for task synchronization. This is referred
to as EC schedule. All the nodes on the network decode the TM and transmit the
scheduled messages in the synchronous window of that EC, with the collisions being
sorted out by the native CAN arbitration mechanism. This kind of transmission con-
trol with just one control message issued per cycle is called master–multislave and
saves substantial overhead with respect to common master–slave protocols because
of both the reduction in control messages and the overlapping of turnaround times in
all slaves.
The asynchronous traffic in FTT-CAN is also efficiently handled using the native

arbitration of CAN. The protocol is designed in a way that the sequence of asyn-
chronous windows behaves like a CAN bus operating at a lower bandwidth but
still preserving its real-time properties. Asynchronous transmission requests issued
outside those windows are transparently queued, possibly removed from the trans-
mission buffers, and resubmitted in the following windows respecting the native
arbitration process.

6.5.3 SRDB

The SRDB contains four components: the synchronous requirements table (SRT), the
asynchronous requirements table (ART), the non-real-time table (NRT), and sys-
tem configuration and status record (SCSR). The SRT includes the description of the
current synchronous message streams:

SRT ≡ {SMi(Ci Phi Pi DiPri∗X fi), i = , . . . ,NS}

For each message stream, C is the respective maximum transmission time (includ-
ing all overheads), Ph the relative phasing (i.e., the initial offset), P the period, D the
deadline, and Pr a fixed priority defined by the application. Ph, P, and D are expressed
as integer multiples of the EC duration. NS is the number of elements in the SRT. ∗Xfi
is a pointer to a custom structure that can be defined to support specific parame-
ters of a given QoS management policy, for example, admissible period values, elastic

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-29

coefficient, value to the application, etc. It is also possible to define virtual messages,
called triggers, which have C =  and are used to synchronize tasks executing in the
nodes. These triggers are included in the EC schedule but do not cause any message
transmission.
The asynchronous requirements component is formed by the reunion of two tables,

the ART and the NRT. The ART contains the description of time constrained event-
triggered message streams, for example, alarms or urgent reconfiguration requests:

ART ≡ {AMi(Ci miti Di Pri), i = , . . . ,NA}

This table is similar to the SRT except for the use of the miti , minimum interarrival
time, instead of the period, and the absence of an initial phase parameter, since there
is no phase control between different asynchronous messages.
The NRT contains the information required to guarantee that non-real-time mes-

sage transmissions fit within the asynchronous window, as required to enforce
temporal isolation:

NRT ≡ {NMi(SIDi , MAX_Ci , Pri), i = , . . . ,NN}

SID is the node identifier, MAX_C is the transmission time of the longest non-real-
time message transmitted by that node, including all overheads, and Pr is the node
non-real-time priority, used to allow an asymmetrical distribution of the bus band-
width among nodes. NN is the number of stations producing non-real-time messages.
Themaster only needs to keep track of the length of the longest non-real-timemessage
that is transmitted by each node.
The last component of the SRDB is the SCSR, which contains all system config-

uration data plus current traffic figures. This information is made available at the
application layer so that it can be used either for profiling purposes or at run-time
to support adaptive strategies, raise alarms, etc. It may occur that some of the SRDB
components are not necessary in some simpler systems and in that case they are not
implemented.

6.5.4 Main Temporal Parameters within the EC

One fundamental temporal parameter in the FTT protocols is the EC duration, which
we consider to be E time units. This parameter establishes the temporal resolution of
the system since all periods, deadlines, and relative phases of the synchronous mes-
sages are integer multiples of this interval. In other words, it sets the timescale of the
synchronous traffic scheduler:

∀i=,... ,NsPhi = k ∗ E, Pi = l ∗ E, Di = m ∗ E,
with k , l , m being positive integers

Then, within the EC we can identify three intervals, the first of which is the time
required to transmit the TM, which we consider constant and equal to LTM time
units. It corresponds to an overhead that must be taken into account when scheduling.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-30 Automotive Embedded Systems Handbook

ltm

TM

EC trigger
message

TMSMa

Synchronous
window

Asynchronous
window

AMa AMb AMc

law(n)

SMb SMc

lsw(n)

nth EC

E

FIGURE . Main temporal parameters within the EC (FTT-CAN).

The following two intervals within the EC are the asynchronous and synchronous
windows (Figure .). The duration of this latter window in the nth EC, lsw(n), is
set according to the synchronous traffic scheduled for it. This value is encoded in the
respective TM, together with the EC schedule. The value of lsw(n) then determines
the duration of the asynchronous window, law(n), and its end in the case of FTT-
CAN. Basically, law(n) equals the remaining time between the TM and the syn-
chronous window. The protocol allows establishing a maximum duration for the
synchronous windows (LSW) and correspondingly a maximum bandwidth for that
type of traffic. Hence, aminimum bandwidth can be guaranteed for the asynchronous
traffic, too:

∀n=, ... ,∞  ≤ lsw(n) ≤ LSW and
E − LTM − LSW ≤ (law(n) = E − LTM − lsw(n))

Finally, the strict temporal isolation between both types of traffic is enforced by pre-
venting the start of any transmission that would not finish within the respective
window. In the synchronous phase this is enforced by the traffic scheduler so that
all the messages specified in the EC-schedule always fit within the maximum width,
LSW. In the asynchronous window of FTT-CAN this isolation is enforced by setting a
timer to expire before the end of the window by an interval of time corresponding to
the maximum transmission time. Requests that are pending when the timer expires
may not be served up to completion within that interval and thus are removed from
the network controller transmission buffer. This mechanism may lead to the inser-
tion of a short amount of idle-time at the end of the asynchronous window (α in
Figure .), which must be considered when analyzing this traffic. Another amount
of idle-time could have been inserted by the synchronous scheduler in a given EC to
guarantee that the synchronous traffic does not extend beyond the end of the syn-
chronous window. However, that amount of time is not considered in the value of
lsw(n), just the effective transmissions, thus being implicitly reclaimed for the asyn-
chronous traffic. In any case, it must be equally considered when analyzing the traffic
timeliness.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-31

6.5.5 Fault-Tolerance Features

There are two single points of failure in the FTT architecture, that is, the master and
the bus channel. In fact, if the master node fails, no more TMs with EC schedules are
transmitted and thus communication is disrupted. Network partitions also disrupt
communication and thus must also be tolerated. This is prevented using replication,
with one or more similar nodes acting as backup masters and two or more bus chan-
nels. Moreover, the nodes are assumed to be fail-silence, which is enforced in the slave
nodes, in the time domain, with bus guardians and in the masters, in the time and
value domains, with a particular network interface that supports internal node repli-
cation [FERR]. Fail-silence in the value domain for the slave nodes is left for the
application, if necessary, given its high cost. The reference fault-tolerant architecture
is shown in Figure ..
The master replicas have a further requirement of being synchronized so that they

can replace the active one without any discontinuity of the traffic schedule. This
requirement is particularly difficult with online system adaptation, because the com-
munication requirements can evolve over time. Therefore, several mechanisms were
developed to handle the master replication, namely

. Master replacement scheme
. Policing mechanism to detect loss of synchronization in backup masters
. Protocol to synchronize starting or restarting backup masters consisting

on transferring the current SRT
. Protocol that ensures consistent SRT updates upon change requests

All the mechanisms related with master replication and fail-silence enforcement are
described in Ref. [FERR] and, in more detail, in Ref. [FERR]. The former ones
were further evaluated experimentally in Ref. [MARA].

Same value?
Same timing?

Slave 1 Slave 2

BG BG BGBG

Slave 3

BGBG

Slave N

BGBG

Same value?
Same timing?

Active master Master replica

SRDB SRDB SRDB SRDB

CPU
1

CPU
2

CPU
1

CPU
2

FIGURE . Fault-tolerant FTT-CAN reference architecture.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-32 Automotive Embedded Systems Handbook

Finally, bus replication in FTT-CAN has been recently addressed in Ref. [SILV]
being proposed for duplicated transmission of critical messages as well as for trans-
mission of different noncritical messages in each media, thus increasing the through-
put with respect to a simplex bus. Another possibility is using a transparent bus
replication mechanism such as the one proposed in Ref. [RUFI]. An alternative
to bus redundancy would be the use of a replicated star such as ReCANcentrate, also
described in this chapter.

6.5.6 Accessing the Communication Services

The access to the communication services in the FTT protocols is carried out by
means of two subsystems, the synchronous communication system (SMS) and the
asynchronous communication services (AMS). The former follows the producer–
consumer model [THOM] to handle the synchronous traffic with autonomous
control, that is, the network determines the transmission instants. The data are passed
between application and network by means of shared buffers. The SMS_produce ser-
vice allows writing a message in the appropriate buffer in the network interface;
and the SMS_consume service allows reading from a message buffer in the net-
work interface. For both services there is an option to synchronize with the network
traffic, which allows triggering application tasks synchronously with the global sched-
ule produced by the master. Three additional services allow managing the SRT, that
is, SRT_add, SRT_remove, and SRT_change, which automatically invoke an online
admission control to assure continued timeliness.
The AMS provides event-triggered communication services that, in the case of

FTT-CAN, map directly onto the underlying CAN protocol. These services are
AMS_send for nonblocking immediate transmission, and AMS_receive for blocking
reception. More complex and reliable exchanges, for example, requiring acknowledge
or requesting data, must be implemented at the application level, using the two basic
services referred above. The AMS use queues whose length must be properly set at
configuration time.

6.6 FlexCAN: A Deterministic, Flexible,
and Dependable Architecture
for Automotive Networks

In this section we summarize FlexCAN, one of the various architectures that has been
proposed to overcome CAN limitations with respect to determinism and depend-
ability. As explained below, FlexCAN incorporates several mechanisms similar to
TTCAN, FTT-CAN, and FlexRay.

6.6.1 Control System Transactions

Nearly all embedded systems involve control systems of one kind or another. Basi-
cally, a control system takes input (I) measurements from a physical process (P),
performs a control function (C), and produces outputs (O) to effect changes on the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-33

physical process. From a software perspective, the fundamental software functions
or tasks found within control systems constitute a control system transaction (CST)
[PIMEa]. A CST simply consists in performing a series of software tasks involving
task (I) for collecting inputs from a process, task (C) to implement a control function,
and task (O) to send controller outputs back to the physical process. These software
tasks have to be performed in the following precise order:

P→ I→ C→ O→ P

which is known as the CST precedence constraint. Together, the CST precedence con-
straint and the timing requirements of a specific application constitute theCST timing.
The CST precedence constraint has two important properties:

Causal property (CP): The arrow implies a cause–effect relationship (e.g., P effects I).
Timing property (TP): The arrow implies a timing relationship (e.g., P → I happens
before I→ C).

Distributed functions
In a distributed embedded system the various sensors, actuators, and software pro-

cesses I, C, and O are implemented in different ECUs. To convert a centralized CST
(involving just a single ECU) into a distributed CST (involving more than one ECU)
the system must be partitioned.
The partitioning points are depicted in the following more detailed signal flow:

P→ S→ I→ /p → C→ /p → O → /p → A→ P

where the symbol /p means a partition point. Thus, there are three partition points of
interest, a partition point between the input and control software processes (pIC),
between the control and output processes, (pCO), and between the output and
actuator software processes (pOA).∗
Every time there is a partition point, a communication system is involved and from

a software perspective, two additional software tasks are introduced to handle com-
munications, a transmitter task, Tx, and a receiver task, Rx. Thus, the most general
signal flow is

P → S→ I→ Tx→ Rx→ C→ Tx→ Rx→ O→ Tx→ Rx→ A→ P

It is the job of a communication system to provide a communication hardware and
software architecture and make available Tx and Rx to end applications. FlexCAN
is a communication architecture that provides such Tx and Rx synchronized to a
time-triggered communication cycle enabling the enforcement of CST precedence
constraints. There are also additional deterministic, flexible, and dependable features
as explained next.

∗ It is not possible to have partition points between P and S and between A and P because these interfaces
are hardware. Although it is possible to have a partition point between S and I, it is outside the scope of
FlexCAN.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-34 Automotive Embedded Systems Handbook

6.6.2 FlexCAN Architecture

The goal of the FlexCAN architecture is to provide additional deterministic and
dependable capabilities to the CAN protocol without compromising its flexibility.
This is accomplished by incorporating an additional layer on top of CAN. The
main features of the FlexCAN architecture are replicated components, support for
time–domain composability, replica synchronization, replication management, and
enforcement of fail-silent behavior.
As depicted in Figure ., the FlexCAN architecture can incorporate several repli-

cated channels and several replicated nodes (in addition to normally nonreplicated
ones) in a flexible fashion [PIMEb]. A node and all of its replicas are called
fault-tolerant units (FTUs), but not all nodes in a network need to be replicated.
Time–domain composability has been a major liability of CAN-based networks
for safety-critical applications. There have been several proposals to overcome this
limitation such as TTCAN [FUHR] (Section ..) and FTT-CAN [ALME]
(Section .), which basically adopt a time-triggered transmission scheme at a high
level and still use CAN at the lower level. FlexCAN also adopts the time-triggered
paradigm by using reference messages. The interval between reference messages is
called the communication cycle, and this interval is further divided into a number
of subcycles as shown in Figure .. Whereas TTCAN uses a clock synchronization
mechanism to implement the time-triggered scheme, FTT-CANuses amaster node to
generate the referencemessages. In FlexCAN, node-replication not only handles node
failures but also supports dependable reference messages on a distributed basis with-
out the need of synchronized clocks or master–slave schemes. The communication
cycles, together with their subcycles, not only help with time–domain composability
but also help to synchronize replicated nodes and channels, and to enforce fail-silent
behavior, particularly using bus guardians. Furthermore, communication cycles are

Saeware
Safeware

Standard
application

Controller
FTU

Safeware
actuator

Safety
layer

Replicated CAN channels

Standard
application

2 2 2

Network
manager

2

111

2 2 2

111 1

2

1

FIGURE . The FlexCAN architecture.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-35

Communication cycle (Tc)

m1, m2 m6, m7, m8 m4, m5 m3, m9

Subcycle (Tsc)
RCRBRA RD

FIGURE . Time-triggered structure of the FlexCAN architecture.

useful to synchronize applications. FlexCAN is flexible in that it supports both peri-
odic and aperiodic traffic. Multirate periodic messages (i.e., periodic messages with
different periods) are also handled through appropriate message scheduling.
Providing message synchronization on replicated channels in FlexCAN is sim-

ple, as each node simply sends the same message on all replicated channels in an
atomic fashion (i.e., without interruption). However providing message synchroniza-
tion on replicated nodes is not trivial, and thus a special protocol known as SafeCAN
is provided to handle node replication management [PIMEa,PIME].There are a
number of fault-tolerant features in SafeCAN. The replacement of the primary node
(called the next primary node) is always ready (provided the hardware is available).
In terms of the type of redundancy algorithm used, FlexCAN uses a combination of
static and dynamic redundancy. The SafeCAN protocol assumes that nodes are fail
silent. To enforce such a fault model, FlexCAN uses a similar technique proposed in
the FTT-CAN protocol to remove the message from its transmit buffer after a certain
interval called the transmission attempt window (TAW) and also by using a special
purpose bus guardian [BUJA,BUJA].
In the following, additional details of the time-triggered feature are given.The basic

cycle Tc is divided into Q subcycles each of equal length Tsc . Regardless of their node
location there can be up to P messages allocated per subcycle. Thus the maximum
number of messages in the network is P × Q. The goal is to have all messages in a
subcycle transmitted before the next subcycle. This is based on a principle of time
independence. Clearly, if this is enforced there will be no message queuing from one
subcycle to the next and therefore fromcycle to cycle.This peculiarmessage allocation
scheme is the one adopted by FlexCAN. All message allocations are done in an off-
line fashion, just like TTCAN. Unlike TTCAN, this scheme does not require clock
synchronization across all nodes, but simply requires management of timers with a
minimum resolution of about .ms.
Just like TTCAN, to implement the time-triggered scheme, FlexCAN requires a

synchronization message to explicitly mark the beginning of each cycle. But unlike
TTCAN, there is no need for node clocks to be synchronized. Instead, FlexCAN relies
on timers to divide the entire cycle into Q (e.g., four) subcycles. TTCAN requires
clocks to be synchronized because the exclusive windows are allocated to a single
message. On the other hand, in FlexCAN the subcycles are allocated to a group of

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-36 Automotive Embedded Systems Handbook

messages, thus requiring less precision in the definition of the beginning and end of
the time windows.
Time synchronization between a TT global message schedule and end applications

is crucial for most control systems. FlexCAN enables the synchronization of any CST
event (E through E in Figure .) to the communication cycle. Figure . depicts
the synchronization of message m with the beginning of the communication cycle
while other messages are synchronized with the beginning of subcycles (e.g.,m , m,
or m).
The main advantage of FlexCAN over TTCAN in terms of time-triggered and

dependable features is that TTCAN has disallowed frame retransmissions, a notable
feature of CAN for dependable operation, whereas FlexCAN lets CAN retransmit a
frame in error but up to a certain time limit. Leaving enough time in each subcy-
cle for error retransmission is important for dependable applications. Thus FlexCAN
uses CAN fault-tolerant properties and enforces strict message deadlines. FlexCAN
tolerates the following kinds of faults: transient arbitrary faults, permanent hardware
faults, and permanent software babbling-idiot faults [BUJA,BUJA]. The seman-
tics of these faults are as follows. Transient arbitrary faults are the kind of faults that
are detected by the native CAN protocol and result in error and/or overload frames.
Permanent hardware faults are permanent faults in the communication controller,
transceiver, or bus, and they are masked by redundant nodes or channels. Permanent

E6E5E4E3

Sensing

Computation

Actuation

Bus
E1 E8E8 E2 E1 E2

Sn Sn

Un

An

WSn

WAn

WUn

CSn
CUn

Sampling period Ts

HW

P

S1

S2

T1

T2

FR

C(P)

Angle, speed
commands

Traction speed
and status

Steering speed,
status and force

fdk

Angle, speed
references,

gateway

Communication cycle

RA
RDRB RC

m1, m2

Network
nodes

C(S)

Subcycle

m6, m7, m8 m4, m5 m3, m9

FIGURE . FlexCAN global message schedule synchronized to a CST functional unit.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-37

software babbling-idiot faults are caused by software errors in a host controller that
uses the bus with wrong values and at wrong times.

6.6.3 How FlexCAN Addresses CAN Limitations

In the following we detail how FlexCAN addresses the CAN limitations identified at
the beginning of this chapter.

6.6.3.1 Deterministic Behavior

It is easy to design and verify message deterministic properties on a system based on
a TDMA system such as FlexRay because messages occupy specific slots in the com-
munication cycle. It is also possible to design and verify deterministic properties on
a CAN-based system although the process is more complex because of the following
difficulties:

. Lack of a time reference in the CAN protocol
. Widely different message transmission rates (or periods) that are possible

One difficulty with CAN latency calculations stems from the usage of CAN in early
applications where a CAN network was the only network in the system and thus had
to support all messages with widely varying message transmission periods. In fact,
the application used in Ref. [BROS] has six messages with the smallest and largest
period of  and ms, respectively, a factor of .With such widely differing factors
in the transmission periods, the number of times a higher priority message is sent
in an interval of duration t (i.e., the interference from higher priority messages) is
not known ahead of time and must be calculated. This leads to a convoluted set of
recurrent equations that must be solved recursively [TIND]. Current and future
systems have several communication networks each supporting an application type
(e.g., entertainment, dashboard, power train, steer-by-wire, etc.). These networks are
typically configured as a backbone network and several subnetworks each dedicated
to one or few functional units of a vehicle. Messages in the subnetworks do not have
widely varying message transmission periods, in fact, factors of – are sufficient.
Another difficulty stems from the event-triggered nature of the CAN protocol that
does not use the notion of global time. Because of this, there is uncertainty in the
assumptions of values for the queuing jitter and the interference due to lower priority
messages.
FlexCAN overcomes these previous two limitations by defining a subnetwork for

messages with closely related transmission periods and also by defining a time-
triggered time reference made of communication cycles divided into a number of
subcycles. Just as is the case with other TT architectures, FlexCAN requires an off-
line global message schedule to be configured. Furthermore, all messages scheduled
in a subcycle are submitted for transmission at exactly the same time (at the begin-
ning of the subcycle). For example, Table . shows a communication cycle with four
subcycles where the rates (reciprocal of communication period) of message m and
m are four and two times, respectively, the rate of the remaining messages.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-38 Automotive Embedded Systems Handbook

TABLE . Example of FlexCANMessage Scheduling
Supporting Multirates Using Four Subcycles

Subcycle I II III IV
Messages m , m , m m , m , m m , m m , m , m

The above described features greatly simplify the equations for calculating mes-
sage latencies in the FlexCANarchitecture [PIMEa]. To beginwith,message latency
calculations are done on a subcycle basis for all subcycles. For each subcycle, the mes-
sages are relabeled as m , m, etc. with m the highest priority message, m the next
highest priority message, and so on. Because all messages in each subcycle are submit-
ted for transmission at exactly the same time, the jitter is zero and there is no blocking
from lower prioritymessages, resulting in simplifications in the calculation ofmessage
latencies.
Calculating message response times in FlexCAN has the following advantages

when compared to that in CAN:

. The calculations are more accurate since they are done on a subcycle basis
relative to a time-triggered communication cycle with each subcycle being
independent from the next (i.e., all messages are sent in their respective
subcycles).

. The calculations are easy to evaluate as the equations do not involve a
recurrent relation.

. The calculations assume that the jitter is zero, which is enforced by the
FlexCAN message schedule.

. The formulae are accurate because there is no need to consider the
blocking time due to lower priority messages.

. The multirate case is taken into account ahead of time by the FlexCAN
message global schedule.

6.6.3.2 High Speed

Since many automotive applications at the subnetwork level do not need high speed,
this inherent CAN limitation is not addressed by FlexCAN. The high-speed require-
ment is most prevalent for in-vehicle backbone networks.

6.6.3.3 Flexibility

As noted, FlexCAN relies on a static schedule for periodic traffic with enough band-
width reserved for aperiodic traffic.Thus all flexibility attributes of FlexCAN assumes
this context.The FlexCAN architecture is highly flexible providing the following types
of flexibility.

.... Design Flexibility
This includes the support of subnetworks with different data rates and the support of
flexible car architectures.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-39

.... Configuration Flexibility
All deterministic and dependable features of FlexCANare optional. AFlexCANarchi-
tecturewithout any additional features is simplyCAN.As one ormore of the following
additional features are used, one candesign a highly deterministic system (incorporat-
ing features  and ) or a highly dependable system (incorporating all of the features)
or anywhere between these two extremes.

. TT-synchronization
. Fail-silence enforcement
. Channel replication
. Node replication
. Bus guardians

.... Network Load (Traffic) Flexibility
Support of periodic and aperiodic traffic, flexiblemessage scheduling, support ofmul-
tirate messages. Aperiodic traffic is supported by leaving enough bandwidth in each
subcycle for this type of traffic.
Inaddition,FlexCANdoesnotcompromisetheflexibility inherent inCANinvolving

the following CAN flexibility features: reconfiguration flexibility (involving change),
diagnostic flexibility, parameter flexibility, test flexibility, integration flexibility, hierar-
chical network flexibility, functional flexibility, and just-on-time flexibility. However,
it must be noted that the aforementioned features are off-line rather than online.

6.6.3.4 Dependability

As noted, FlexCAN includes a number of optional features to support safety-critical
applications. The features are fail-silence enforcement, channel replication, node
replication, and bus guardians [BUJA,BUJA]. All of these features have beenpub-
lished in several papers [PIMEa,PIMEa,PIME,BUJA,BUJA] and these
features have been extensively tested [PIME,BERT]. Because of space limitations,
how FlexCAN implements these features is not detailed and the reader is referred to
the above references.
An important task in the design of a safety-critical system consists in evaluating the

safety integrity of an application. Amethod to evaluate the safety integrity of automo-
tive applications in terms of functional units against random external disturbances
has been developed [PIMEa]. The method is a three-step process that requires the
evaluation of the probability ofmessage delivery failure of the communication system,
the probability of communication cycle failure, and finally the probability of failure
of a functional unit. The method has been used to evaluate the safety integrity of a
steer-by-wire functional unit implemented using FlexCAN yielding excellent results
[PIMEa].

6.6.4 FlexCAN Applications and Summary

The FlexCAN architecture has been used to design and implement a steer-by-wire
functional unit for a golf car at Kettering University [PIME]. The design of a

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-40 Automotive Embedded Systems Handbook

drive-by-wire functional unit for a lift truck at the University of Padova has been
completed [BERT] and its implementation is under way. Other implementations
involving the power train functional unit of a HEV are being planned.
In this section, we have provided a brief overview of the FlexCAN architecture

including its deterministic, flexible, and dependable features. FlexCAN improves
CAN’s deterministic behavior by incorporating a time-triggered structured in aman-
ner similar to FlexRay but without resorting to TDMA bus access schemes and
without clock synchronization. Unlike TTCAN, FlexCAN retains most of the flex-
ibility and dependability of the CAN protocol. A set of optional features such as
fail-silence enforcement, channel replication, node replication, and bus guardians
increasingly improves FlexCAN’s dependability thus making it suitable for safety-
critical applications if so desired. The FlexCAN architecture and its protocols have
been extensively simulated, and implemented in several applications.

6.7 Other Approaches to Dependability in CAN

This section encompasses a few other recent efforts to add services to CAN that,
in some way, also give a contribution to improve the communication dependability.
Namely, we include time-triggered CAN (TTCAN), the fault-tolerant time-triggered
scheme of communication proposed in Ref. [SHOR], Timely CAN (TCAN),
ServerCAN, and fault-tolerant clock synchronization services.

6.7.1 TTCAN

TTCAN is an ISO standard [ISO] that was developed to provide additional time-
triggered transmission control to the original CANprotocol, based on ahigh precision
network-wide time base. This reduces the jitter limitation of CAN, makes transmis-
sion instants deterministic and provides a means to carry out prompt detection of
omissions at the receivers, enabling fast responses to such situations.
There are two possible levels in TTCAN, level  using local time (cycle time), only,

and level  using hardware supported external clock synchronization that performs a
continuous drift correction among the CAN controllers. The clock synchronization is
enforced by a time master that sends specific time reference messages.
TTCAN adopts a TDMA medium access protocol. Network nodes are assigned

different slots to access the bus. The sequence of time slots allocated to nodes is
described in basic cycles and these, in turn, are grouped in amatrix cycle (Figure .).
All basic cycles in the matrix have the same duration but can differ in their slot
structure.Thematrix is scanned sequentially ina cycle that repeats endlessly, defininga
periodicmessage transmission schedule. Each basic cycle starts with the transmission
of the reference message.
Since TTCAN builds on top of CAN, it inherits most of its properties, including the

maximum bit rate of Mbps, the good bandwidth efficiency with short payloads, and
the distributed arbitration mechanism. This mechanism is used for several purposes,
namely to support shared slots, called arbitration windows, in which event messages
can be transmitted if ready at the start of the slot, and also to tolerate deviations in

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-41

Transmission
columns

Basic
cycle 0

Basic
cycle 1

Basic
cycle 2

Basic
cycle 3

Reference
message

Reference
message

Reference
message

Reference
message

Message
A

Message
U

Message
R

Message
R

Message
T

Message
D

Message
D

Message
C

Message
C

Message
C

Message
C

Message
M

Message
M

Message
M

Message
M

Arbitration
window

Free
window

Free
window

Arbitration
window

Arbitration
window

Message
C

Message
A

Message
A

Message
A

FIGURE . TTCAN systemmatrix with four basic cycles. (Adapted from Führer, T., Müller, B.,
Dieterle, W., Hartwich, F., Hugel, R., Walther, M., and GmbH, R.B., Time triggered communi-
cation on CAN. In: Proceedings of the Seventh International CAN Conference, Amsterdam, the
Netherlands, .)

the timing domain, which do not cause a direct loss of data but delayed transmis-
sions instead. This latter aspect is, after all, shared by virtually all timed higher layer
CAN protocols, increasing their robustness. Generally, nodes transmit using single-
shot mode, meaning that they either succeed in starting transmission immediately or
they will not transmit. This also implies that the automatic retransmission upon error
is disabled.
TTCAN may operate in four modes: configuration, CAN communication, time-

triggered communication, and event-synchronized time-triggered communication.
Changing between modes implies returning to configuration mode. For safety rea-
sons, this mode is also the only one in which it is possible to write onto the system
matrix, thus implying a static periodic schedule at run-time.
TTCAN uses an error-containment strategy similar to that of CAN (ISO -),

that is, based on error passive and bus-off states, but adds detection of scheduling
errors, for example, absence of a message or collision in an exclusive slot. This infor-
mation can be used at higher layers to implement other active fault confinement
mechanisms. The error-passive and bus-off mechanisms are relatively slow to act,
depending on the frequency and type of errors detected, but they eventually provide
fail silence, according to the TTCAN specification. Similarly to CAN, bus guardians
are not considered in the standard (Section .).
One particular aspect that has created some controversy is the use of the single-shot

transmission mode. In this case, the reaction to inconsistent scenarios discussed ear-
lier in Section . is substantially different with respect to CAN. In fact, the absence of
automatic retransmission will avoid inconsistent duplicates but will generate a much
higher probability of IMOs. For this reason some authors claim that TTCAN is less
suited to safety-critical applications than CAN [RODRa].
Finally, TTCAN also provides a mechanism for time masters replication and

replacement to assure a continued transmission of the reference message.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-42 Automotive Embedded Systems Handbook

6.7.2 Fault-Tolerant Time-Triggered Communication
Using CAN

Short andPont [SHOR] recently demonstrated an interesting alternative to improve
reliable CAN communications by exploiting channel redundancy. Their scheme uses
TDMA on each channel based on synchronized clocks and requires that retransmis-
sion of CAN messages due to channel errors is disabled (single-shot transmission
mode). As discussed in Section .. for the case of TTCAN, it is well known that
single-shot transmission eliminates IMDsbut increases the probability of IMOs. Short
and Pont have demonstrated a channel redundancy management scheme where the
probability of IMOs is reduced to acceptable levels.
An interesting characteristic of this solution is its strong dependency on clock syn-

chronization. In Ref. [SHOR] the effect that clock precision has on the bandwidth
utilization is studied for their channel redundancy scheme. It is concluded that as
the CAN bit rate is increased, the requirements on clock precision increase as well.
For instance, it is shown that at the maximum bit rate (Mbps), an improvement of
the precision from  to  μs yields an increment of the bandwidth utilization close
to %.
It is also important to remark that this solution does not address some of the

dependability limitations of CAN. Aspects such as error containment and support
for fault tolerance are left open and should be solved with additional techniques and
protocols. Nevertheless, operational flexibility as discussed in Section . seems to
be incompatible with this scheme, as it relies on a static TDMA scheme in order to
manage channel redundancy.

6.7.3 TCAN

The timely-CAN (TCAN) [BROS] protocol, previously called latest-send time
CAN, was developed to confine the interference caused by the automatic retrans-
mission of CAN upon errors. It is thus a form of error containment in the temporal
domain. TCAN is based on the observation that if the message transmitter knows that
its message will arrive to the receivers after the deadline then it is better to drop it,
saving bandwidth and reducing interference over the remaining traffic (Figure .).
According to this scheme, all incoming messages arrive in time or do not arrive at all.

Retransmission window

Error Error

Latest send time

Deadline

Message N Higher priority message Message N

Transmission
aborted

FIGURE . Typical TCANmessage transmission scenario.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-43

The bandwidth released by not transmitting messages that would arrive late can be
used to facilitate timely delivery of other frames.
Each TCAN frame is associated with a transmission threshold time, termed the lat-

est send time (LST), which is known a priori by all nodes related to that message, that
is, transmitter and receivers, based on themessage absolute deadline minus the frame
transmission time. This requires a global time base to synchronize transmitters and
receivers, implying that the absolute transmission instants are defined a priori, too.
Thus, this is also a time-triggered scheme. However, the protocol copes with delays
caused by possible retransmissions and interference so that the effective frame trans-
mission may start later but always before the LST, that is, within a retransmission
window starting at the specified transmission instant and ending at the LST.The pre-
cision of the global clock must be considered when defining the LST, deducing it at
transmitters and adding it at receivers, to cope with clock skews. The TCAN protocol
lies somewhere between CAN and TTCAN, compromising between a certain level of
message retransmission capability and transmissionwithin predictable timewindows.
A response time analysis considering the bounded impact of retransmissions

according to an error model has been developed. As usual in real-time analysis, when
such response time is shorter than the message deadline the traffic timeliness can be
guaranteed under the considered assumptions. This analysis is too costly for online
use, thus requiring the message set to remain static at run-time.
Finally, several bus-guardians have been proposed for TCAN [BROSa], which

attempt to enforce aminimum intertransmission time for eachmessage, thus improv-
ing the error-containment features of this protocol. However, some of the proposed
bus guardians are inherently limited, presenting a compromise between easiness of
implementation, since they use COTS components, and fault coverage, for example,
in terms of confining babbling-idiot type of errors [FERRa].

6.7.4 ServerCAN

ServerCAN [NOLT] is another higher layer CAN protocol that was proposed to
improve the robustness of communication in the presence of timing failures, for
example, babbling idiots, or aperiodic sources that give no guarantees of minimum
interarrival time. It is thus an improvement of error containment with respect to
timing failures, reducing the interference among message streams. In this protocol
each stream is handled by one server following the server scheduling paradigm in
task systems, for example, periodic server, sporadic server, total bandwidth server,
etc. [BUTT]. In this paradigm, a certain transmission capacity is assigned to each
message, together with adequate capacity replenishment rules. This allows limit-
ing the bandwidth effectively used by the transmission of each message, granting
prompt transmission if there is still enough capacity, or holding the transmission if
the capacity is exhausted.
In order to implement the required transmission control and servers management,

the protocol uses an efficient master–slave mechanism (Figure .), based on that of
FTT-CAN (Section .), that is, organized in ECs triggered by a single master mes-
sage, the TM, which encodes the identification of several polled messages. Themaster
executes all servers to determine the current capacities and polls the messages whose

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-44 Automotive Embedded Systems Handbook

Elementary cycle (EC) [i]
Elementary cycle (EC) [i+1]

Slack

Bit 8-missBit 3Bit 1Bit 6Bit 7Bit 9
M9TM M7 M6 M1 M3 S TM M1

1 1 1 1 1 100101111100 00 0 0 0 00

M2 M0 M7 M10 M11 S

FIGURE . EC and master polling in ServerCAN. (Adapted from Nolte, T., Nolin, M., and
Hansson, H., IEEE Trans. Ind. Inf., (), , .)

servers still have enough capacity left. The slave nodes manage the queues of locally
generated messages and transmit those that are polled by the master, only. The ECs
can finish before their nominal duration if the polled messages are not ready (omis-
sions). Notice, however, that these omissions are not errors, since they are part of the
adopted traffic model, that is, aperiodic.

6.7.5 Fault-Tolerant Clock Synchronization Over CAN

It is well known that dependable distributed embedded systems may greatly bene-
fit from a clock synchronization service, for example, to simplify mechanisms such as
failure detection and redundancy management or generally to carry out synchronized
actions. Some of the protocols referred in this chapter, such as CANELy, TTCAN, and
TCAN, do rely on a clock synchronization service. Because of the advantages that
this service brings along, its absence in the CAN standard [ISO] has been pointed
out as a CAN limitation, as referred to in Section .. Therefore, clock synchroniza-
tion, when required or desired in a CAN network, has to be enforced by means of
an external mechanism. Moreover, whenever high-layer mechanisms are built upon
the assumption of a synchronized clock, it is very important to guarantee that the
clock synchronization service is reliable enough, by providing it with adequate fault-
tolerance techniques. In this section, we briefly discuss some solutions that have been
proposed in the literature to implement fault-tolerant clock synchronization over
CAN, namely those described in Refs. [RODR,LEE,RODR]. Fault-tolerant
clock synchronization is also addressed in Ref. [FUHR] but specific of TTCAN.
The solution proposed in Ref. [RODR] constitutes one important element of the

CANELy architecture, presented in Section ., though it can be applied to any CAN
architecture. This solution follows a classical approach in dependable distributed sys-
tems: the nodes periodically execute an agreement protocol in order to decide which
one is the right clock reference and then they synchronize to this reference. This
agreement protocol is performed in various rounds of message exchanges. This solu-
tion considers a wide fault model ranging from processor crash to Byzantine failures
and presents the advantage of being a purely software solution. The disadvantages
of this solution are that it only achieves limited clock precision (∼ μs) and that
it may cause bursts of messages, which should be carefully taken into account when
performing the message scheduling.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-45

The solution presented in Ref. [LEE] is similar to the previous one. It is also
implemented in software but it reduces the number of messages required in every
synchronization round.The authors claim that a precision of a few microseconds can
be achieved. Themain weakness of this solution is its limited fault model, which does
not include inconsistent message transmissions (Section .).
The specification of TTCAN level  [FUHR] includes a hardware-implemented

clock synchronization service, which is incorporated into the TTCAN controller. This
service is based on a master–slave scheme and uses master replication. The precision
achieved is in the order of one bit length. Unfortunately, the clock synchronization
service of TTCAN cannot be adopted by standard CAN networks. First, because it
requires a TTCAN controller (instead of a standard CAN controller) and second,
because it relies on the reference message of TTCAN and thus requires the commu-
nication to be organized like the systemmatrix discussed in Section ... Moreover, it
only considers a limited faultmodel, which does not include, for instance, inconsistent
messages transmissions.
The fault-tolerant clock synchronization service presented in Ref. [RODR] was

inspired by TTCAN level , but it is intended to overcome the drawbacks of the
previouslymentioned solutions. It also requires the use of a specifically designed hard-
ware element: the so-called clock unit, but it is compatible with any CAN controller.
The clock unit significantly improves the achievable precision (∼ μs) and reduces
the number of necessary messages per round. This solution follows a master–slave
scheme, which seems to be the preferred paradigm for clock synchronization in low-
cost distributed embedded systems [IEEE], and also relies on master replication
in order to avoid the single point of failure. Additionally, this solution introduces a
number of fault-tolerance mechanisms that enforce the desired clock precision even
in the presence of a wide range of channel and node faults, including inconsistent
omissions and duplicates. The correctness of these mechanisms has been formally
verified by means of model checking.

6.8 Conclusion

The quest for higher levels of innovation by car manufacturers, together with strin-
gent requirements, is generating a growing interest on flexible car architectures
that separate functionality from underlying control, computing, and communica-
tion architectures thus simplifying the overall vehicle design. However, this imposes
a strong integration effort that has implications in all the supply chain, requiring, for
example, the development and use of open standards (e.g., AUTomotive Open Sys-
tem ARchitecture [AUTOSAR]) and other modular approaches to software design
(e.g., component-based design).
At the network level, the current trend is to use a hierarchical approach with a

backbone interconnecting several subnetworks, each dedicated to one major auto-
motive subsystem namely chassis, power train, X-by-wire, body, and infotainment.
This allows achieving a high isolation between subsystems, thus reducing mutual
interference, and also allows using different networking technologies, with a cost-
performance ratio adapted to each case. In fact, those subsystems exhibit different

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-46 Automotive Embedded Systems Handbook

requirements in terms of throughput, determinism, and dependability. Therefore, the
challenge at the network level is to provide the required level of flexibility, together
with the right techniques and technologies that enforce the necessary properties to
satisfy the requirements with minimum cost.
CAN is a mature technology that is well known and widely used, supporting a high

level of flexibility with relatively low cost, determinism, and throughput, which seems
adequate for the subnetworks level referred above. However, it still presents some
limitations, particularly concerning dependability, which have raised doubts on CAN
adequacy to support, for example, safety-critical applications.
In this chapter, we have addressed such CAN limitations, including the so-called

inconsistent communication scenarios that are typically pointed out as impairments
to dependability, as well as the techniques recently developed to overcome or min-
imize such limitations. We also presented several techniques, protocols, and archi-
tectures based on CAN that improve the dependability of the original protocol in
some aspect but still maintaining a high level of flexibility, namely (Re)CANcentrate,
CANELy, FTT-CAN, and FlexCAN. While (Re)CANcentrate operates mainly at the
physical and datalink layers, CANELy focuses on datalink issues and partially on
higher layer, and FTT-CAN and FlexCAN are two higher layer protocols that may
operate over COTS CAN controllers. Finally, we have also included a reference to a
few other protocols/services that are somehow related to the topic of dependability
and flexibility. Among them, TTCAN, TCAN, ServerCAN, and fault-tolerant clock
synchronization focus on faults in the time domain, whereas the fault-tolerant time-
triggered scheme of communication proposed in Ref. [SHOR] improves reliable
CAN communications by exploiting channel redundancy.
This collection of techniques provides networking solutions with variable levels of

dependability while still maintaining the flexibility of the native CAN protocol to a
large extent, thus responding adequately to the current quest for flexible car architec-
tures. Moreover, we believe that CAN, complemented with adequate techniques such
as those discussed in this chapter, is also adequate to support the most demanding
subsystems, such as chassis, power train, passive safety, and even X-by-wire, and at a
cost substantially lower than that of other alternatives, such as TTP/C and FlexRay.

References

[ALME] L. Almeida, P. Pedreiras, and J.A. Fonseca.The FTT-CANprotocol:Why and how.
IEEE Transactions on Industrial Electronics,  (), December .

[ALME] L. Almeida. Aword for operational flexibility in distributed safety-critical systems,
WORDS . In: IEEEWorkshop on Object-Oriented, Real-Time and Dependable
Systems, Guadalajara, Mexico, January .

[BARR] M. Barranco, G. Rodríguez-Navas, J. Proenza, and L. Almeida. CANcentrate: An
active star topology for CAN networks, WFCS’. In: IEEE Workshop on Factory
Communication Systems, Vienna, Austria, .

[BARR] M. Barranco, J. Proenza, G. Rodríguez-Navas, and L. Almeida. A CAN hub with
improved error detection and isolation. In: th International CAN Conference,
Italy, March .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-47

[BARRa] M. Barranco, L. Almeida, and J. Proenza. ReCANcentrate: A replicated star
topology for CAN networks. In: Proceedings of the th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA ), Catania,
Italy, .

[BARR] M. Barranco, L. Almeida, and J. Proenza. Experimental assessment of ReCANcen-
trate, a replicated star topology for CAN. In: SAE  World Congress, Detroit,
MI, .

[BARRa] M. Barranco, J. Proenza, G. Rodríguez-Navas, and L. Almeida. An active star
topology for improving fault confinement in CAN networks. IEEE Transactions
on Industrial Informatics,  (), May .

[BAUE] G. Bauer, H. Kopetz, and W. Steiner. The central guardian approach to enforce
fault isolation in the time-triggered architecture. In: Proceedings of the Sixth
International Symposium on Autonomous Decentralized Systems, Pisa, Italy, .

[BERT] M. Bertoluzzo, G. Buja, and J. Pimentel. Design of a safety-critical drive-by-
wire system using FlexCAN, SAE Congress, Paper No. --, April ,
Detroit, MI.

[BOND] A. Bondavalli, F. Di Giandomenico, F. Grandoni, D. Powell, and C. Rabejac.
State restoration in a COTS-based N-modular architecture. In: Proceedings of the
First IEEE Symposium on Object-Oriented Real-TimeDistributed Computing, IEEE
Computer Society, Washington, DC, .

[BOUY] B. Bouyssounouse and J. Sifakis (Eds.). Embedded Systems Design, the ARTIST
Roadmap for Research and Development (Lecture Notes in Computer Science),
Vol. , Springer, New York, .

[BROS] I. Broster. Flexibility in dependable communication. PhD thesis, Department of
Computer Science, University of York, York, United Kingdom, August .

[BROSa] I. Broster and A. Burns. An analyzable bus-guardian for event-triggered com-
munication. In: Proceedings of IEEE Real-Time Systems Symposium, RTSS ,
Cancun, Mexico, December .

[BROS] I. Broster, A. Burns, and G. Rodriguez-Navas. Comparing real-time communi-
cation under electromagnetic interference. In: Proceedings of the th Euromicro
Conference on Real-Time Systems (ECRTS’), Catania, Italy, , pp. –.

[BUJA] G. Buja, J.R. Pimentel, and A. Zuccollo. Overcoming babbling-idiot failures in the
FlexCAN architecture: A simple bus guardian. In: Proceedings of th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation, Catania,
Italy, , pp. –.

[BUJA] G. Buja, A. Zucollo, and J.R. Pimentel. Overcoming babbling-idiot failures in
CAN: A simple and effective bus guardian solution for the FlexCAN architecture.
IEEE Transactions on Industrial Informatics,  (), August .

[BUTT] G. Buttazo, G. Lipari, M. Caccamo, and L. Abeni. Elastic scheduling for
flexible workload management. IEEE Transactions on Computers, :–,
March .

[BUTT] G. Buttazo.HardReal-Time Computing Systems: Predictable Scheduling Algorithms
and Applications, nd edn., Springer, New York, .

[CAN] CAN Specifications Version ., Robert Bosch GmbH, . Available at:
http://www.can.bosch.com/docu/canspec.pdf.

[CAN] CAN Newsletter, CAN in Automation GmbH, December , Erlangen,
Germany, Vol. , p. .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-48 Automotive Embedded Systems Handbook

[CENA] G. Cena, L. Durante, and A. Valenzano. A new CAN-like field network based on
a star topology. Computer Standards and Interfaces,  ():–, July .

[CIA] CANphysical layer, CAN inAutomation (CiA), AmWeichselgarten , Tech. Rep.
[Online]. Available at: headquarters@can-cia.de

[ETSC] K. Etschberger.Controller Area Network, Basics, Protocols, Chips and Applications.
IXXAT Press, Germany, .

[FERR] P. Ferriol, F. Navio, J.J. Navio, J. Pons, J. Proenza, and J. Miro-Julia. A double
CAN architecture for fault-tolerant control systems. In: Fifth International CAN
Conference, San Jose, CA, .

[FERR] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca. An experiment to assess bit
error rate inCAN. In:Proceedings of theThird InternationalWorkshop onReal-time
Networks, Catania, Italy, .

[FERR] J. Ferreira. Fault-tolerance in flexible real-time communication systems. PhD
thesis, University of Aveiro, Aveiro, Portugal, .

[FERRa] J. Ferreira, L. Almeida, and J.A. Fonseca. Bus guardians for CAN:A taxonomy and
a comparative study. In: Proceedings of the WDAS , Workshop on Dependable
Automation Systems, Salvador, Brazil, October .

[FERR] J. Ferreira, L. Almeida, J.A. Fonseca, P. Pedreiras, E. Martins, G. Rodriguez-Navas,
J. Rigo, and J. Proenza. Combining operational flexibility and dependability in
FTT-CAN. IEEE Transactions on Industrial Informatics,  ():–, May .

[FLEX] FlexRayŹ. FlexRay Communications System Protocol Specification Version .
Revision A, . Available at: http://www.flexray.com/

[FLEXa] FlexRayŹ. FlexRay Communications System Preliminary Central Bus Guardian
Specification Version .., . Available at: http://www.flexray.com/

[FRED] L.-B. Fredriksson. CAN for critical embedded automotive networks. IEEE
Micro Special Issue on Critical Embedded Automotive Networks,  ():–,
July–August .

[FUHR] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, M. Walther, and R.B.
GmbH. Time triggered communication on CAN. In: Proceedings of the Seventh
International CAN Conference, Amsterdam, the Netherlands, .

[GAUJ] B. Gaujal and N. Navet. Fault confinement mechanisms on CAN: Analysis
and improvements. IEEE Transactions on Vehicular Technology,  ():–,
May .

[HADZ] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In:
S.J. Mullender (Ed.), Distributed Systems, nd edn., ACM-Press, Addison-Wesley,
Reading, MA, , Chap. , pp. –.

[HAMM] R.C.Hammett andP.S. Babcock. Achieving − dependabilitywith drive-by-wire
systems. Society of Automotive Engineers (SAE) Technical Paper Series, Paper
--, .

[HILM] H. Hilmer, H.-D. Kochs, and E. Dittmar. A fault-tolerant communication archi-
tecture for real-time control systems. In: Proceedings of the IEEE International
Workshop on Factory Communication Systems, Barcelona, Spain, .

[HOYM] K. Hoyme and K. Driscoll. SAFEBus, IEEE/AIAA. In: Proceedings of the th
Digital Avionics Systems Conference, Seattle, Washington, DC, .

[IEEE] IEEE-. Standard for a precision clock synchronization protocol for networked
measurement and control systems. IEEE Instrumentation and Measurement
Society, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-49

[ISO] ISO, ISO. Road vehicles—interchange of digital information—Controller
Area Network (CAN) for high-speed communication, .

[ISO] ISO. Road vehicles—Controller Area Network (CAN)—part : Time triggered
communication, .

[IXXA] Innovative products for industrial and automotive communication systems,
IXXAT . [Online]. Available: http://www.ixxat.de/index.php

[KOPE] H. Kopetz. Fault containment and error detection in the time-triggered archi-
tecture. In: Proceedings of the Sixth International Symposium on Autonomous
Decentralized Systems, ISADS, Pisa, Italy, .

[KOPE] H. Kopetz. Automotive electronics—present state and future prospects. In: Digest
of Papers of the IEEE th International Symposium on Fault-Tolerant Computing—
Special Issue, Pasadena, CA, .

[KOPE] H. Kopetz. Real-Time Systems Design Principles for Distributed Embedded Appli-
cations. Kluwer Academic Publishers, Boston, MA, .

[KOPE] H. Kopetz. A comparison on CAN and TTP. Available at: http://www.tttech.com/
technology/docs/protocol_comparisons/HK_– Comparison-TTP.pdf.

[LAPR] J.-C. Laprie, A. Avizienis, and B. Randell. Fundamental concepts of dependability.
Technical Report , School of Computing Science, University ofNewcastle upon
Tyne, .

[LEE] D. Lee and G. Allan. Fault-tolerant clock synchronisation with microsecond-
precision for CAN networked systems. In: Proceedings of the Ninth International
CAN Conference, Munich, Germany, .

[LIMA] G. Lima and A. Burns. A consensus protocol for CAN-based systems. In: Proceed-
ings of the th IEEE Real Time Systems Symposium, Cancun,Mexico, .

[LIVA] M.A. Livani. SHARE: A transparent approach to fault-tolerant broadcast in CAN.
In: Proceedings of the Sixth International CAN Conference, Torino, Italy, .

[LU] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback control real-time scheduling:
Framework, modeling and algorithms. Special Issue of Real-Time Systems Jour-
nal on Control-Theoretic Approaches to Real-Time Computing,  (–):–,
July/September, .

[MARA] R. Marau, L. Almeida, J.A. Fonseca, J. Ferreira, and V.F. Silva. Assessment of
FTT-CANmaster replication mechanisms for safety-critical applications. In: SAE
World Congress , Detroit, MI, April .

[MARAa] R. Marau, L. Almeida, and P. Pedreiras. Enhancing real-time communication
over COTS Ethernet switches. In: Proceedings of the Sixth IEEE International
Workshop on Factory Communication, Torino, Italy, June .

[MIRO] S. Miroslav and Y. Radimir. Actuator–sensor interface interconnectivity. Control
Engineering Practice,  ():–, January .

[NOLT] T. Nolte, M. Nolin, and H. Hansson. Real-time server-based communication for
CAN. IEEE Transactions on Industrial Informatics,  ():–, .

[PEDR] P. Pedreiras, L. Almeida, and P. Gai. The FTT-Ethernet protocol: Merging flex-
ibility, timeliness and efficiency, ECRTS’. In: EUROMICRO Conference on
Real-Time Systems, Vienna, Austria, June .

[PEDR] P. Pedreiras andL. Almeida.Theflexible time-triggered paradigm:An approach to
QoS management in distributed real-time systems. In: Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS), Nice, France, April –, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

6-50 Automotive Embedded Systems Handbook

[PEDR] P. Pedreiras, P. Gai, L. Almeida, and G. Buttazzo. FTT-Ethernet: A flexible
real-time communication protocol that supports dynamic QoS management
on Ethernet-based systems. IEEE Transactions on Industrial Informatics,  (),
August .

[PHIL] Philips. CAN bus specification .. Parts A and B.
[PIME] J.R. Pimentel. An architecture for a safety-critical steer-by-wire system. In: Pro-

ceedings of the SAEWorld Congress, Detroit, MI, .
[PIMEa] J.R. Pimentel and J. Kaniarz. A CAN-based application level error-detection

and fault-containment protocol. In: Proceedings of the th IFAC Symposium on
Information Control Problems in Manufacturing (INCOM), Salvador, Brazil, .

[PIMEb] J.R. Pimentel and J.A. Fonseca. FlexCAN: A flexible architecture for highly
dependable embedded applications, RTN . In:Third International Workshop
on Real-TimeNetworks, Held in Conjunction with the th Euromicro International
Conference on Real-Time Systems, Catania, Italy, June .

[PIME] J.R. Pimentel. Testing, verification, and validation of a steer-by-wire system using
DO-B, SAE Congress, Paper No. --, April , Detroit, MI.

[PIMEa] J.R. Pimentel. Problem C: Calculation of Pmerr for FlexCAN. INRIA research
report no. , December .

[PINH] L.M. Pinho and F. Vasques. Reliable real-time communication in CAN networks.
IEEE Transactions on Computers,  ():–, .

[POWE] D. Powell. Failure mode assumptions and assumption coverage. In: Digest of
Papers of the IEEE th International Symposium on Fault-Tolerant Computing,
Boston, MA, .

[PRAS] D. Prasad, A. Burns, and M. Atkins. The valid use of utility in adaptive real-time
systems. Real-Time Systems, :–, .

[PROE] J. Proenza and J. Miró-Julià. MajorCAN: A modification to the Controller Area
Network protocol to achieve atomic broadcast. ICDCS Workshop on Group Com-
munications and Computations, C–C, .

[RODR] L. Rodrígues, M. Guimarães, and J. Rufino. Fault-tolerant clock synchronization
in CAN. In: Proceedings of the th IEEE Real-Time Systems Symposium, Madrid,
Spain, .

[RODRa] G. Rodríguez-Navas and J. Proenza, Analyzing atomic broadcast in TTCAN net-
works. In: Proceedings of the Fifth IFAC International Conference on Fieldbus
Systems and their Application (FET ), Aveiro, Portugal, , pp. –.

[RODRb] G. Rodríguez-Navas, J. Proenza, and M. Barranco. Harmonizing dependabil-
ity and real time in CAN networks. In: Proceedings of the Second International
Workshop on Real-Time LANs in the Internet Age, Porto, Portugal, .

[RODR] G. Rodríguez-Navas, J. Proenza, and H. Hansson. An UPPAAL model for for-
mal verification of master/slave clock synchronization over the Controller Area
Network. In: Proceedings of the Sixth IEEE International Workshop on Factory
Communication Systems, Torino, Italy, .

[RUCK] M. Rucks. Optical layer for CAN. In: First International CAN Conference, Mainz,
Germany, November .

[RUFI] J. Rufino, P. Veríssimo, G. Arroz, C. Almeida, and L. Rodrígues. Fault-tolerant
broadcasts in CAN. In: Proceedings of the th IEEE International Symposium on
Fault-Tolerant Computing, Munich, Germany, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Dependable Automotive CAN Networks 6-51

[RUFI] J. Rufino, P. Veríssimo, and G. Arroz. A Columbus’ egg idea for CAN media
redundancy FTCS-. In: The th International Symposium on Fault-Tolerant
Computing, Madison, WI, June .

[RUFI] J. Rufino, P. Verissimo, and G. Arroz. Node failure detection and membership
in CANELy. In: Proceedings of the  International Conference on Dependable
Systems and Networks, San Francisco, CA, June , pp. –.

[RUFI] J. Rufino, P. Verissimo, G. Arroz, and C. Almeida. Control of inaccessibility in
CANELy. In: Proceedings of the Sixth IEEE International Workshop on Factory
Communication Systems, Torino, Italy, June .

[RUSH] J. Rushby.AComparison of Bus Architectures for Safety-Critical EmbeddedSystems.
SRI International, Menlo Park, CA, Contractor Report, .

[SAE] SAE Automotive Engineering International, May .
[SAHA] H. Saha. Active high-speed CAN HUB. In: Proceedings of the th International

CAN Conference (iCC ), Stockholm, Sweden, .
[SCHM] D. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, and L. Di Palma.

Towards adaptive and reflective middleware for network-centric combat systems.
CrossTalk, November .

[SHEL] C.P. Shelton and P. Koopman. Improving system dependability with functional
alternatives. In: Proceedings of the  International Conference on Dependable
Systems and Networks (DSN’), IEEE Computer Society, , pp. –.

[SHOR] M. Short andM.J. Pont. Fault-tolerant time-triggered communication usingCAN.
IEEE Transactions on Industrial Informatics,  (), May .

[SILV] V. Silva, R. Marau, L. Almeida, J. Ferreira, M. Calha, P. Pedreiras, and J. Fonseca.
Implementing a distributed sensing and actuation system:TheCAMBADArobots
case study. In: ETFA , T Intelligent Robots and Systems Transaction, Catania,
Italy, .

[SILV] V. Silva and J.A. Fonseca. Using FTT-CAN to combine redundancywith increased
bandwidth. In: Proceedings of the  IEEE International Workshop on Factory
Communications Systems, Torino, Italy, , pp. –.

[STOE] G. Stoeger, A. Mueller, S. Kindleysides, and L. Gagea. Improving availability of
time-triggered networks: The TTA StarCoupler. In: SAE  World Congress,
Detroit, MI, .

[THOM] J.P. Thomesse. A review of fieldbuses. Annual Reviews in Control, :–, .
[THOM] J.-P. Thomesse and M.L. Chavez. Main paradigms as a basis for current field-

bus concepts. In: Proceedings of the FeT’ (International Conference on Fieldbus
Technology), Magdeburg, Germany, September .

[TIND] K. Tindell, A. Burns, and A.J. Wellings. Calculating Controller Area Network
(CAN)message response time.Control Engineering Practice,  ():–, .

[TINDa] K. Tindell and H. Hansson. Babbling idiots, the dual-priority protocol, and smart
CAN controllers. In: Proceedings of the Second International CAN Conference,
, pp. .–..

[TOVA] E. Tovar and F. Vasques. Cycle time properties of the PROFIBUS timed token
protocol. Computer Communications,  ():–, August .

[TTPC] Time-Triggered Protocol TTP/C, High-Level Specification, Document Protocol
Version .. Available at: http://www.ttagroup.org/technology/specification.htm

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _S Finals Page  -- #

III
Embedded Software
and Development
Processes

 Product Lines in Automotive Electronics Matthias Weber
and Mark-Oliver Reiser . 7-
Introduction ● Characteristics of Automotive Product Lines ● Basic Terminol-
ogy ● Global Coordination of Automotive Product-Line Variability ● Artifact-
Level Variability

 Reuse of Software in Automotive Electronics Andreas Krüger,
Bernd Hardung, andThorsten Kölzow . 8-
Reuse of Software: A Challenge for Automotive OEMs ● Requirements for
the Reuse of Software in the Automotive Domain ● Supporting the Reuse of
Application Software Components in Cars ●Application Example ●Conclusion

 Automotive Architecture Description Languages
Henrik Lönn and Ulrich Freund . 9-
Introduction ● Engineering Information Challenges ● State of Practice ● ADL
as a Solution ● Existing ADL Approaches ● Conclusion

 Model-Based Development of Automotive Embedded Systems
Martin Törngren, DeJiu Chen, Diana Malvius, and Jakob Axelsson 10-
Introduction and Chapter Overview ● Motivating MBD for Automotive
Embedded Systems ● Context, Concerns, and Requirements ● MBD
Technology ● State of the Art and Practice ● Guidelines for Adopting MBD in
Industry ● Conclusions

III-

Navet/Automotive Embedded Systems Handbook _S Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7
Product Lines in Automotive

Electronics

Matthias Weber
Carmeq GmbH

Mark-Oliver Reiser
Technical University of Berlin

. Introduction . -
. Characteristics of Automotive

Product Lines . -
Basic Concepts of Software Product
Lines ● Characteristics and Needs of
Automotive Electronics with Respect
to Product-Line Engineering

. Basic Terminology -
Software Product Lines ● Variability ●
Feature Modeling as a Form of
Variability Modeling ● Discussion:
Feature Modeling for the Automotive
Domain

. Global Coordination of Automotive
Product-Line Variability -
Coordination of Small- to
Medium-Sized Product Lines ●
Coordination of Highly Complex
Product Lines

. Artifact-Level Variability -
Basic Approach ● Difficulties Related
to Artifact-Local Variability ●
Representing Variability in ECU
Requirements Specifications ●
Evaluation of Representations ●
Mapping Representations
to a Common Basis

References . -

7.1 Introduction

Thenecessity to introduce andmanage product lines is not at all new to the automotive
industry. The complexity of the initial automotive product lines was predominantly
driven bymechanical variation, that is, tomaximize the reuse of commonmechanical
parts across the entire product range. Any reduction in the number of mechanical

7-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-2 Automotive Embedded Systems Handbook

variants would not only reduce development and production cost, but also the cost
of the after-sales phase of the automotive life cycle, by reducing the amount of spare
part types, and by simplifying diagnosis and repair.
Classically, customer-visible variation was relatively limited in the industry, and

mostly concerned with nontechnical customer-visible mechanical parts, for example,
color and texture of material. Technical variations related to automotive electronics
were offered in form of relatively few choices, for example, automatic versus manual
transmission, different motor types.
For the last  years and for at least another  years to come, the automotive industry

willundergoaradicalchangeduetotheadventofsoftwareincars.Automotiveelectronics
has become themajor source of innovation.Theuseof softwarehas led to an enormous
increase in the number and complexity of different functions. In addition, software is
driving fundamental changes in all phases of the automotive life cycle. For example,
it has become commonplace that repair workshops simply exchange software on one
or several electrical control units (ECUs) in order to remove some problem.
The downturn of this development is that the flexibility and ubiquity of software

have led to an explosion in the number of variable artifacts.This does not only concern
the customer-visible variability, but also all the little technical variations. In principle,
every change in any part of the software of some sensor, actor or ECU introduces a new
variant part with a different behavior at the interface. And it is not only the component
that is changed, but the function itself is also changed, as well as any artifacts related
to the function, for example, for testing and diagnosis.
Help in this situation must come from several sources, a major one is growing

standardization (as described in several other chapters in this book); however, the
central improvement must come from an overall product-line methodology that
allows to optimize the number of variable technical artifacts while allowing to adapt
customer-visible variability as needed by the current market situation.
Currently, no such methodology is available; however, in the areas of software

product lines there are several emerging techniques that could form part of such a
technology. In this chapter, we present a basic methodological framework that we
think is suitable for product lines in automotive electronics, and in the context of this
framework we characterize, present, and discuss selected techniques.

7.2 Characteristics of Automotive Product Lines

The methodological framework we are presenting here is itself based on common
terminology and concepts of software product-line engineering. In order to make
this chapter more self-contained, we begin by briefly introducing these concepts
(Section ..). We then go on to discuss the characteristics of automotive electronics
(Section ..).

7.2.1 Basic Concepts of Software Product Lines

Whenever a company is developing several products that share many common
characteristics but also show certain substantial differences, product-line oriented

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-3

development of these products can be considered [CN,PBvdL].When following
such an approach, the individual products are no longer developed independently
from one another but instead, only a single, but variable product is developed (also
called product-line infrastructure). From this variable product, the actual products
(also called product instances) can be derived by configuration. This means that all
development artifacts (e.g., requirements documents, component diagrams, Matlab
(ML)/Simulink (SL)models, test-case descriptions) can be defined in a variable form,
if their content varies from product to product. This is usually achieved by adding
variation points to them and defining several variants for each of them.

The notion of software product lines and product-line oriented development will
be introduced in detail in Section ...

7.2.2 Characteristics and Needs of Automotive Electronics
with Respect to Product-Line Engineering

Now, we will discuss characteristics and needs of the automotive domain (see also
Ref. [Gri]) which are relevant with respect to product-line engineering aspects.
These characteristics can be grouped into the areas of variability, product configu-
ration, and process-relevant characteristics.

7.2.2.1 Variability

.... Sources of Variation
There are several sources for a high degree of variation in products and product
development artifacts in automotive electronics:

• Different customer needs, including functionality and pricing, within the
main markets (e.g., EU, United States, or Japan) and beyond.

• Differences in required functionality and application constraints between
body variants (e.g., limousine, station wagon) and drive-train variants.

• Differences in regulations and legal constraints between different coun-
tries or markets. These regulations and constraints are increasingly influ-
encing functionality.

• New customer expectations and new technical standards originating from
industrial areas that are at best partially controlled by the automotive
industry. The main example here is telematics and entertainment.

For these reasons, a development project of a luxury vehicle today is based on a
function kit that includes several thousand technical functions. Based on the above
criteria, each of these functions needs to be selected or deselected.
This variability is further increased on the level of detailed specifications, design

models, implementations, and testing artifacts. This variability partially results from
functional variability and partially from different realization variants, for example,
due to sensor and actuator variants.
This situation immediately implies the need for a tool that supports projects with

highly complex variability models. Furthermore, concepts need to be supported

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-4 Automotive Embedded Systems Handbook

to group and transparently manage the large number of decisions during product
configuration [KKL+].

.... Complex Dependencies between Artifacts
In the automotive domain, it is very important to support dependencies between
variants such as “needs” and “excludes” relations. There are various sources for these
dependencies: they can originate from management decisions, they can be based on
logical facts (e.g., a delivery vehicle without a rear window has no need for a rear
wiper), or they may result from dependencies on the design and implementation
level (e.g., different display variants have far-reaching consequences on the function-
ality offered and the human machine interface of operating the functionality). Some
dependencies need to be defined explicitly, for example, in a feature model, while oth-
ers can be derived frommore detailed specifications or designmodels, for example, by
appropriately defined rules. The difficulty here is to decide which dependencies need
to be derived in order to make the correct decisions during product configuration.
It is necessary tomanage all dependencies (defined ones and derived ones) in a cen-

tral place without having to manually redefine derived dependencies. Rather, derived
dependencies should optionally be made visible together with a references to their
explicit or implicit definition. Two kinds of analyses need to be supported on such
dependencies: analysis of logical consistency, which, if absent would preclude valid
product configurations, and analysis of the objects which, based on the dependencies,
needs to be added to a variant in order to reach a valid product configuration.

.... Cooperation of Heterogeneous Variability Mechanisms
We have indicated sources of variability during product development. In the auto-
motive area, variation needs to be controlled during the entire life cycle: in the
development tool chains, in the production databases, in the marketing systems, and
in after-sales systems such as diagnosis and software update systems.
There exist now well-established tools for specific process aspects, for example,

requirements management or function modeling. Such tools sometimes offer prag-
matically grown mechanisms to support variability. This means that a comprehensive
approach needs to support projects in which different variability mechanisms are
used in different process steps. In order to avoid a combinatorial explosion when
interfacing these mechanisms, an interface has to be defined between the variability
information within a specific process step and the central variability model.

.... Different Views on Variability
A product-line oriented development methodology needs to support variability con-
cepts relevant not only for engineering, but also for management, marketing, pro-
duction, acquisition and sales, and the customer. However, the different actors and
activities involved lead to different needs and expectations. Development engineers,
for example, need to work with a much more fine-grained feature model than, say,
management. Furthermore, changes in variability on the level of realization deci-
sions should normally not be made visible to marketing and salespeople. Another
example is the packaging of variability in order to reduce the amount of customer

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-5

decisions during the configuration, or to emphasize to the customer certain combi-
nations of functionality. It is quite clear therefore, that product-line tools need to offer
and manage a broad range of views on the properties and the variability of a product
line.

7.2.2.2 Product Configuration

.... Complex Configurations
Product configuration does not only occur for the final product, but also for many
intermediate prototypes that are needed for concept evaluations and for system
integration and testing. Frequently, the first prototype is a vehicle with a base con-
figuration, during development, however, this base configuration is typically subject
to change. For such decisions, it is crucial that tool support for product lines is able
to check for all dependencies between variation points. In the automotive area, these
dependencies have become too complex for manual checking.

.... Complex Resolution of Variability over Time
In the domain of automotive software development, variabilities are bound at different
times of the product life cycle, for example, basic features are selected during develop-
ment time, country codes are bound during production, and additional preinstalled
software-features may be activated by the after-sales process. Tools need to support
these different binding times for variation points.

7.2.2.3 Process-Related Characteristics and Needs

.... No Clean Separation of Domain and Product Engineering Processes
In contrary to common practice in traditional software engineering domains, devel-
opment projects in the automotive domain need to keep their deadlines at almost all
cost, because otherwise cost will rise dramatically due to development, production,
sales, and marketing infrastructure of automotive original equipment manufacturers
(OEMs). As a consequence, development projects are sometimes forced to reduce or
even withdraw planned functionalities very late or to implement specific stop-gap
solutions for a single model line, in order to cope with technical difficulties or to
guarantee a high level of quality.
This situation is further complicated by the fact that these model-specific solutions

are—in contrary to initial plans—sometimes used in future generations of this model
or even in other models and can thus become new standard solutions. In most cases,
it is not possible to predict in advance if this will occur. Instead, the specific stop-gap
solution is for some time in competition with the originally intended solution.
Even though rigid reuse across all development projects is desirable, it is therefore

impossible in practice to organize them as instances of a single product line in a strict
sense. Instead, there is the need to be able to formulate a common strategy for the
entire product line, which allows individual departments responsible for a part of the
product range—such as the electronic platform of the Mercedes Benz C-Class—to
deviate from it to some extent. Product-line methods and tools for the automotive

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-6 Automotive Embedded Systems Handbook

domain must provide support for such local deviations while at the same time foster-
ing the main goal of product-line oriented development, namely the maximization of
rigid reuse of technical artifacts.

.... Synchronization with Supplier Strategies
An automotive OEM is faced with the necessity to integrate the confidential product-
line strategies of a multitude of suppliers into his or her own product-line strategy.
Usually the suppliers’ product lines are evolved completely orthogonally from the
manufacturer’s product line, because a supplier is in contact with several manufac-
turers with often diverse strategies. When this challenge is ignored, product quality
and cost are negatively influenced to a considerable degree. It is therefore essential that
product-line engineeringmethods and tools providemeans to integrate amultitude of
independently developed subordinate product lines—that is, those of the suppliers—
into a single higher-level product line—that of the manufacturer—without the need
of disclosing all confidential details.

.... Synchronization with Change Management Processes
Present change management processes must be adjusted to a product-line oriented
development. Automotive product-line methods and tools must provide support for
complex change management. In particular, it must be possible to reveal the impact
of changes to the product-line strategy on cost and schedule and to forward these
changes into the affected development artifacts and to modify them accordingly.

.... Very Difficult Incremental Introduction
A step-by-step introduction of product-line methods, processes, and tools is neces-
sary in many domains. But this is particularly true for the automotive domain and
the prerequisites for a stepwise introduction are especially intricate here. Already the
longevity of automotive systems gives cause to this problem: the life cycle of a cer-
tain generation of an upper-class model usually comprises  years of development,
 years of production and sales, and  years of operation, maintenance, and cus-
tomer service. Even subsystems of a certain model cannot be integrated in a single
step in a product-line infrastructure because compatibility with legacy systems must
be observed. Instead, a bottom-up approach is more realistic: at first, small and local-
ized product lines are set up for selected subsystems (e.g., wiper or climate control)
or even for individual development artifacts (e.g., requirement modules or a set of
test cases); in a next step, these will be integrated in a larger, higher-level product
line for a subdomain like telematics, body electronics, or motor control. Then, these
will be further integrated into a comprehensive product line for a complete vehicle
model.Methods and toolsmust allow for such a stepwise introduction of product-line
techniques in a bottom-up manner.

7.3 Basic Terminology

Before discussing the overall structure of an automotive product line in the coming
section and describing how variability is defined within various types of development

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-7

artifacts later in Section ., we first introduce basic terms and concepts of software
product lines in this section.We begin this introduction with a discussion of the terms
software product line and variability (Sections .. and ..), followed by an overview
of feature modeling as a special form of variability modeling and conclude it with an
overview of key characteristics of software product-line methods and processes.

7.3.1 Software Product Lines

Even though there does not exist a single, generally accepted definition of the term
software product line, research and practice acquired a fairly consolidated, common
understanding of its meaning over the past decade. Hereby, an interesting shift in
focus of software product-line research can be observed compared to an earlier under-
standing of the term. To illustrate this briefly, we introduce the two most influential
definitions here.
In , David L. Parnas [Par ] first coined the term software product line and

defined it as follows:

A set of programs constitutes a product line whenever it is worthwhile
to study programs from the set by first studying the common properties
of the set and then determining the special properties of the individual
members.

Notably, only such software products form a software product line, that have a cer-
tain degree of commonality while at the same time showing substantial differences.
This combination of commonality and variability is one of the key characteristics of
a software product line. And the question of what degree of commonality is neces-
sary in order to be able to apply product-line oriented development methods is one of
the most important—and difficult—questions of the field. In case the products differ
too much from one another, the overhead of describing them as members of a single
product line is too high in order to gain substantial benefit from this approach.
Parnas proposed to manage a product line by composing its individual products

from reusable modules or components with clearly defined interfaces, thus setting
the direction of research for the coming decades. From today’s point of view, this early
approach to product-line development could be called a “classical” or “conventional”
reuse approach.The above-mentioned shift in focus occurred in the early s, which
is reflected in the following definition of Clements and Northrop [CN]:

A software product line is a set of software products [...] that are devel-
oped from a common set of core assets in a prescribed way.

Now, the individual products are no longer each developed in parallel by compos-
ing reusable parts. Instead, the products are derived from a single, common product
definition—the product-line infrastructure—in a prescribed way. Instead of describing
each product separately, there is only a single description of the product line together
with a definition of how individual products differ from this prototype. To achieve
this, all development artifacts that are part of the product-line infrastructure (e.g.,
requirements documents, component diagrams, ML/SL models, test-case descrip-
tions) are defined in variable form if their content varies from product to product.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-8 Automotive Embedded Systems Handbook

The individual products derived from the infrastructure are then referred to as product
instances or simply products of the product line.
The difference between a product-line approach and conventional reuse is illus-

trated in Figure .. In the case of conventional reuse there is still a complete system
description for each product, even if these descriptions are made up of reusable parts
(cf. Figure .b). How the reused assets are combined is defined for each product sep-
arately. This is not the case with product-line oriented development: there, only one,
variable system description is defined (Figure .c).
In summary, we can thus define a software product line as follows:

A software product line is a set of software products that share a certain
degree of commonality while also showing substantial differences and
that are derived from a single, variable product definition—the product-
line infrastructure—in a well-defined, prescribed way.

Sometimes the term software family is used as a synonym for software product line.
We prefer to rather think of a software family as a very complex software product line,
possiblymade up of several smaller software product lines. For example, theMercedes
Benz C-Class C would be a typical product line while all Mercedes Benz vehicles,
passenger cars, as well as commercial vehicles, together form a product family. Some-
times also the term product population is proposed to refer to such complex product
lines [vO].
Up to this point, we only considered software product lines to adhere closely

to conventional product-line terminology as applied in the software engineering
community. In the automotive domain, however, we usually do not encounter pure

Independent development of the products

Product A

Product B

Product C

Product D

Product A

Product B

Product C

Product D

Development with conventional reuse

Product-line oriented development

Variable definition
of all products

Product X

Configuration
for product X

Reusable assets

(a)

(b)

(c)

FIGURE . Product-line oriented development in comparison.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-9

software products but instead deal with software/hardware systems in which software
is embedded within a hardware context, which is also subject to the overall devel-
opment activity. To reflect this, we simply replace the term “software” in the above
definitions by “software-intensive system” or simply “system” and thus speak of prod-
uct lines/families of software-intensive systems or system product lines/system families
for short.

7.3.2 Variability

Variability basically refers to the differences that occur when comparing the product
instances of the product line to one another. In other words, whenever the product
instances differ from one another in a certain aspect of their hardware or software (or
both), we view this as a variabilitywithin the product line, whereas those hardware or
software aspects that are identical for all product instances are viewed as commonality.
To illustrate this, let us consider the following example:∗

Example

A product line of mobile phones consists of three models, S (for simple), M (for
medium), and A (for advanced). S has a black-and-white display, while the others
have color displays. Only A has support for T (an advanced text input mode). All
models have the same  mega pixel camera supplied by supplier X. All three models
are triband devices, that is, they can establish a communication over global system for
mobile communications (GSM) bands , , and  MHz.

The camera and its resolution are clearly an example of commonality. The two
forms of displays and the T support only provided by model A evidently consti-
tute variability within our product line. In case of the display, the variability affects
the hardware and probably also the software, while in the other case only software is
affected, because T is a pure software feature (we do not consider the labeling of the
phone’s buttons here).
Another important notion related to variability is binding time. Variability may be

resolved—or bound—at various points in time during development, production, and
post production. For example, the display variability will be bound before production,
because it must be clear whether a black-and-white or color display must be built in.
The variability of T supportmay be bound just after production, by parameterization
of the phones software. This way, the same software can be used for phones with and
without T support; the differentiation is achieved by post production configuration.
The binding time can be different for each variation within the product line.
As a special case, variability may also be bound at runtime. Such variability is then

called runtime variability. The triband functionality is an example for this: all three
models are shipped with this functionality, which means they are all equipped with

∗ Since we will concentrate on the automotive domain in the more detailed examples below, we chose an
example from a different domain here.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-10 Automotive Embedded Systems Handbook

hardware capable of using the three GSM bands mentioned above and with soft-
ware that can select the appropriate band or switch from one to another if necessary.
Therefore, according to the above definition of variability, we ought to view this as
commonality, because the hardware and software realizing triband functionality are
identical in all three models. However, there actually is some form of variability,
because theGSMbandused for communication changes. Runtime variability does not
result in a difference in the product instance’s hardware or software, but instead con-
stitutes a functionality of the products, a common functionality in fact. Product-line
engineering approaches differ in whether they view runtime variability as a vari-
ability of the product line or not. The rationale for treating runtime variability just
like ordinary variability is that the only conceptual difference is the binding time.
During the early phases of commonality/variability analysis it may not be clear
whether some variability will be bound prior to runtime or at runtime. Also, what
may be runtime variability for some models can be ordinary variability for other
models. To put it simply, the binding time determines whether some variability is
realized through a variation of the product instances’ hardware or software (binding
prior to runtime) or if it has to be realized through a special, common functionality
of the product instances (runtime binding).

7.3.3 Feature Modeling as a Form of Variability Modeling

In general, variability modeling is aimed at presenting an overview of a product
line’s commonality and variability. Depending on the form of variability modeling,
commonality may either be addressed only indirectly, that is, everything that is not
explicitly defined to be variable is implicitly defined to be common, or directly, that
is, certain aspects are explicitly defined to be common in order to highlight them and
to document the decision to make them common. In order to stress the fact that vari-
ability modeling at least indirectly addresses also commonality, sometimes the term
commonality/variability modeling is preferred.
As is the case for all modeling activity, variability modeling tries to achieve its goals

by way of abstraction. This means that some aspects of the entire information related
to a product line’s variability are deliberately left out of consideration in order to
reduce the amount of information to a level that is manageable and that puts emphasis
on the important aspects while hiding unnecessary detail.
The information captured in a variability model then serves as a basis for defining

variability within the artifacts that make up the product-line infrastructure as well
as for configuring individual product instances and deriving them from the infras-
tructure. For example, consider a ML/SL model in which a certain block B1 has to be
replaced by some other block B2 depending on the selected product instance. It is the
responsibility of the product-line’s variability model to provide a basis for configuring
individual product instances (i.e., to select and define them) and defining when B1 is
to be usedwithout replacement and underwhat circumstances B1 needs to be replaced
by B2. How this is done in detail highly depends on the variability modeling technique
being applied. We will describe this in detail for feature models in Section ..
Roughly, three forms of variabilitymodeling can be distinguished: featuremodeling,

decision tables, and decision trees/graphs. Figure . shows an excerpt of a decision

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-11

ID Description
—

3 Does the phone
have T9 support ?

T9 Yes

No

Step 6 of use case send message is obligatory;
extension 6a of use case ‘send message’ is
obligatory
Step 6 of use case ‘send message’ is removed

—

Subject Resolution Effect

FIGURE . Excerpt of a sample decision table. (From Muthig, D., John, I., Anastasopoulos, M.,
Fonster, T., Dörr, J., and Schmid, K., Gophone—a software product line in themobile phone domain.
IESE_Report ./E, Fraunhofer IESE, March .).

table as presented in Ref. [MJA+], a case study of the PuLSE approach devised at
Fraunhofer IESE, Kaiserslautern, Germany. A decision table usually refers to one or
more variable development artifacts, in the example this is a use case diagram for
the use case “send message” (not shown). Each line in a decision table represents a
decision to be taken in order to configure the corresponding variable artifact(s) of the
table. Each such decision has

• An ID (a plain number in the example)
• A question that formulates the decision to be taken
• A subject used to group several semantically related decisions
• A list of possible resolutions, that is, possible answers to the question
• One effect per resolution that describes how the corresponding variable
artifacts have to be changed in order to configure them in alignment to
the decision taken

The number and precise meaning of each column in a decision table varies from
one approach to another, but the example shown here illustrates the basic idea of
decision tables. Constraints are an example for such other important properties of
decisions. With constraints it is possible to define interdependencies between deci-
sions to restrict the available resolutions depending on decisions taken earlier or to
hide decisions when they are no longer valid because of some other decision taken
earlier. For example, if the decision “Does the phone have a camera?” was answered
with “no,” the decision “What is the camera’s resolution?” is no longer valid and can
be hidden during configuration. Likewise, decisions in decision tables can sometimes
be organized hierarchically.
Similarly, decision trees define decisions to be taken in order to configure one or

more variable artifacts. However, the decisions are represented and arranged graphi-
cally. Figure . shows a small example of such a decision tree. The advantage is that
some selected dependencies between the decisions can easily be defined in that way.
For example, the fact that decision “What is the camera’s resolution?” is invalid in
case the camera is dismissed altogether is clearly visible in the tree. Also the number
of possible product configurations is easily detectable because each leaf in the deci-
sion tree corresponds to exactly one product configuration. However, this also points
at an important problem of decision trees. They tend to become extremely large in

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-12 Automotive Embedded Systems Handbook

Does the phone have a camera?

Yes

Yes Yes

1 Mega pixel 2 Mega pixels Yes

No

NoNo

No

Does the phone
have T9 support ?

What is the cameras resolution?

Does the phone
have T9 support ?

Does the phone
have T9 support ?

FIGURE . Example of a decision tree.

complex cases. This can be avoided by using directed acyclic graphs instead of trees
(i.e., a “tree” in which a node may have more than one parent).
In the remainder of the overview of automotive product lines given in this chapter

we do not consider decision tables and decision trees in more detail. Instead, we will
concentrate on feature modeling, arguably being the most popular form of variability
modeling.

7.3.3.1 What Is a Feature?

Before presenting feature modeling in detail, we first give a short discussion of the
term feature, being the basis of all feature modeling techniques. When speaking to
engineers and practitioners during the early phases of adopting feature modeling and
product-line techniques, we often recognize a considerable uncertainty and discon-
tent with the notion of features and feature modeling. The main criticism is that
the term feature has a very fuzzy, unclear meaning or that there are many differ-
ent forms of understanding the term feature within the automotive industry or even
within a single company alone.This often leads to attempts to provide the term feature
with a more concrete, specific meaning, for example, “a component,” “a function,” or
“a customer-visible functional requirement.” While such specializations or clarifica-
tions can be of value in certain circumstances, we believe that they are very prob-
lematic on a general, company-wide level (or even beyond) and lead to a misuse of
feature modeling, because the broad meaning of the term feature is closely related to
the strength of the approach.
Just as variability modeling in general, feature modeling is also aimed at pre-

senting an overview of the commonality and variability between the products of a
product line and at supporting product configuration. But in contrast to decision
tables and decision trees/graphs, feature modeling does not focus on the decisions
to be taken during configuration and the resulting effects on the variable artifacts.
Instead, the focus of feature modeling directly lies on the differences and simi-
larities of the product-line’s individual products. More concretely, feature models
list all important characteristics of the individual products and state whether these

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-13

characteristics are common to all products—that is, each and every product shows the
given characteristic—or are variable fromone product to another—that is, someprod-
ucts show this characteristic while others do not. Since the characteristics in which the
products can differ from one another can be of very diverse nature, we need a sub-
stantially abstract term to refer to these characteristics, namely the term feature. And
this is the reason why it is a good thing that it has such a broad meaning.
Therefore, the term feature can be defined as follows: A feature is a characteristic or

trait in the broadest sense that an individual product instance of a product line may
or may not have.
Several conclusions can be stated:

• A feature is either present in a product instance or is not; thismeans during
product configuration it can be selected or deselected.

• A feature does not necessarily correspond to a subsystem or component
(features may correspond to a subsystem, for example, “climate control”
or “antiblocking system,” but this need not be the case, for example, for a
feature such as “low energy consumption”).

• A feature need not be customer visible.
• A feature is not necessarily a functional requirement.

In summary, the extreme broadness of the term feature is due to the high level of
abstraction at which feature modeling takes place.This is the strength of feature mod-
eling and otherwise—if the term feature would have amore precisemeaning—feature
modeling would not be able to serve its purpose.

7.3.3.2 Basic Feature Models

The purpose of feature models is to show the common and variable features of the
product-line’s product instances in a graphical presentation. Basic feature models in
the form of feature trees were introduced by Kang et al. [KCH+]. Figure . shows
an example of the same small feature tree in two common notations.

Car

WiperCruise control

Simple Adaptive Accelerator
actuator

Radar

Rain
sensor Simple Adaptive

Radar

Accelerator
actuator

Cruise control Wiper

Car

Rain
sensor

FIGURE . Example of a basic feature model in two alternative notations.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-14 Automotive Embedded Systems Handbook

The features are represented as the tree’s nodes, for example, CruiseControl or
Wiper. Sometimes, the root node is seen as a special entity and referred to as the
concept. But recently this became unpopular because it introduces a special case
without true need.
Features are hierarchically structured: a parent feature may have one or more child

features, which are connected with lines fromparent to child. On a semantic level, this
means that a child feature may only be present if the parent feature is. Therefore, the
parent–child relations and the feature tree’s hierarchy induced by them can be seen as
a special notation for some—not all—dependencies between features.
Child features that need to be present in all product instances that contain their

parent are called mandatory features and are denoted with a solid line to their par-
ent or a filled circle (e.g., Wiper). It is very important to notice that mandatory
features are not in all cases obligatory in the sense that they are present in all prod-
uct instances of the product line. For example, Wiper is present in all product
instances while AcceleratorActuator is only present in such products that have a
CruiseControl(but in all of these). As a general rule, amandatory feature represents
a commonality, that is, it is present in all product instances, if and only if all its ances-
tors are mandatory. Conversely, optional features are features that are present only in
some product instances that contain their parent and thus need to be directly selected
or deselected during configuration.They are denotedwith a dashed line to their parent
or an empty circle (e.g., CruiseControl, Radar, RainSensor). Optional features
never represent commonality. In addition, two or more children of the same parent
that mutually exclude each other are called alternative features. Their parent–child
relations are connected with an arc (e.g., Simple and Adaptive as two alternative
forms of the Wiper). Precisely speaking, of two or more alternative features exactly
one must be present in a product instance if and only if their parent is present. There-
fore, during configuration, when the parent is selected, one of the alternative children
must be chosen.
Consequently, the two semantically identical feature models shown in Figure .

are to be interpreted in the following way: A car always has a wiper and may option-
ally have a cruise control. The wiper may come with a rain sensor. The cruise control
always needs an electrical actuator in order to be able to influence acceleration. There
are two alternative forms of cruise control: a simple one that simply keeps accelera-
tion on a constant level and an adaptive one that keeps vehicle speed at a constant
level (e.g., by increasing acceleration when the car drives up a slope). In addition, the
car may be equipped with a radar. In that case, vehicle speed will be reduced when
the distance to the car in advance falls below a certain threshold. Note that not all
information given here is captured in the feature model; for example, the meaning of
the advanced cruise control is not obvious. Such information will be provided in a
feature’s textual description (not shown in the figure).
Finally, additional dependencies between features may be defined in a feature tree

in the form of feature links. These usually serve to further constrain the set of valid
configurations. For example, if the radar and the rain sensor used the same instal-
lation space in the vehicle’s body, this could be defined with a feature link denoted
by a bidirectional arrow between RainSensor and Radar labeled with “excludes.”
Feature modeling techniques differ a lot in what types of dependency links they
provide and some simply leave this open. Typical types of dependencies are “excludes”

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-15

(bidirectional) and “needs” (unidirectional). If feature A excludes B then A may not
be present if B is present and vice versa. If feature A needs feature B then A may
not be present if B is missing but B may be present without A. Other feature links
may give an advice to the user during configuration, for example, if feature A
“suggests” B this means you can select Awithout B, but you should have a good reason
to do so.
Despite the common tree form, feature trees are very different from decision trees.

First, the nodes represent characteristics in which the product instances differ from
one another instead of questions to be answered during configuration. While features
may be interpreted as questions (e.g., the feature CruiseControlmay be interpreted
as the question “Does the car have a cruise control?”), this is only true for optional
features. Second, a configuration of a feature tree is given by stating for each feature
whether it is selected or not, whereas a configuration of a decision tree is given by
selecting exactly one leaf node (or a full path from the root to a leaf). Third, deci-
sion trees define an order in which decisions are to be taken and thus prioritize the
decisions, which has a significant impact on the actual effects of constraints.
In the remainder of this section, several advanced feature modeling concepts will

be described. These can be seen as an optional add-on to basic feature modeling.

7.3.3.3 Cardinality-Based Feature Modeling

Animportantextension tobasic featuremodeling is cardinality-based featuremodeling.
According to this approach, each feature is assigned a cardinality similar to the
cardinalities in unified modeling language (UML) class diagrams (e.g., [0..1], [1],
[0..∗], [0..4, 8..12]). A cardinality of [0..1] means the corresponding feature is
optional (e.g., CruiseControl and Radar in Figure .), [1] means the feature is
mandatory and a maximum cardinality above  means the feature may appear more
than once in a single product instance. Several child features of the same parent may
be grouped in a feature group. These feature groups also have a cardinality, stating
how many features of the corresponding group must/can be selected for a single
product instance. For example, a group cardinality of [1] means that exactly one
of the group’s features needs to be selected whenever their parent is selected (e.g.,
Simple and Adaptive in Figure .).This corresponds to alternative features in basic
feature models.

Car

[1..2]

[0..1]

Car

Front wiper Rear wiper

Rain
sensor

Rain
sensor

Needs

...

[1]

[0..1]
Radar:Int

[1]

Simple Adaptive Accelerator
actuator

Rain
sensor

WiperCruise control
[0..1]

FIGURE . Example of a feature model with advanced concepts.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-16 Automotive Embedded Systems Handbook

Apart from basing the concepts mandatory, optional, and alternative on the single,
common concept of cardinalities, the main contribution of cardinality-based feature
modeling is to be seen in features with a maximum cardinality greater than , which
are called cloned features. During configuration, such features may be selected more
than once. In that case, the cloned feature’s descendants may be configured separately
for each selection of the cloned feature. For example, feature Wiper in Figure . must
be selected at least once (the front wiper) but may also be selected twice (a front
and a rear wiper). In the latter case, the decision whether to equip the wiper with
a rain sensor can be taken separately for the front and rear wiper. In the box on the
right side of Figure ., this is illustrated with the means of basic feature modeling.
However, notice the subtle differences between the two presentations: the cardinality-
based notation does not include the information that the two wiper features represent
the front and the rear wiper and that themandatory one is the front wiper. In addition,
dependencies between the twowiper configurations—for example, the rearwipermay
only be equipped with a rain sensor if the front wiper also has one, as defined by the
“needs” link in the figure—cannot be expressed easily with cardinality-based feature
modeling.
For maximum cardinalities of two or three and sometimes maybe four, the concept

of cloned features can easily be exchanged with basic feature modeling concepts. For
greater top cardinalities this is also possible in principle, but the feature models grow
very large and highly redundant in these cases. For a top cardinality of * (infinite, i.e.,
the feature may be selected any number of times) this is no longer possible, of course.
Therefore, cloned features are primarily intended for other things than a front and a
rear wiper. A typical example where cloned features become particularly useful is the
configuration of several ECUs in a controller area network (CAN) together with their
operating systems, installed drivers, and software tasks on application layer.

7.3.3.4 Features with Several Parents

An advanced feature modeling concept with similar objectives and consequences as
cloned features are features with more than one parent. With this concept, feature
trees are turned into directed acyclic graphs. The child feature can be optional with
respect to one parent while at the same time being mandatory with respect to another
parent. A feature f with n parents that is mandatory with respect to nman of these
parents (nman ≤ n) can be interpreted as a feature with a cardinality of [nman . . . n].
For example, Wiper in Figure . is a child of both Windscreen and RearWindow.
Thewindscreen always has a wiper, whereas the wiper for the rear window is optional.
Just as is the case with cloned features, the feature Wiper, when selected more than
once, will be configured separately each time it is selected. This means that in the
example the wiper of the windscreen may have a rain sensor while the one at the rear
window may not have one and vice versa.
Most problems of cloned features described above also apply to features with mul-

tiple parents. An important difference is that multiparent features are provided with
more semantic meaning, because they are anchored below different parents, as can be
seen in Figure ..

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-17

Car

Windscreen

Wiper

Rain
sensor

... Rear window

FIGURE . Example of a feature with more than one parent.

7.3.3.5 Parameterized Features

Furthermore, a feature may have a single attribute of a certain type and is then called
an attributed feature. This attribute is of an entirely different nature than a feature’s
basic attributes like name and description: while the values of the latter are spec-
ified during the definition of the feature tree, the value of an attributed feature is
specified during the process of feature selection and is thus becoming a constituent
of the product configuration, not the feature model definition. Consequently, an
attributed feature not only has the states “selected" or “not selected" during product
configuration—meaning that it will be built into the product or not—but also a value
that is set if and only if the feature is selected and may be a string, integer, or float.
Other types are also conceivable.
Unfortunately, this common terminology makes it easy to confuse the different

kinds of attributes, namely basic attributes (such as name and description) and non-
basic feature attributes. Therefore, we favor referring to the nonbasic attributes as
parameters and to features having such parameters as parameterized features.
An example of a parameterized feature is given in Figure .. Feature Radar is sup-

pliedwith a type declaration of Int (for integer).Whenduring configuration the radar
feature is selected, an integer value has to be provided to specify the minimum dis-
tance allowed. Again, the fact that the parameter’s value has this meaning is captured
in the feature’s documentation only.
Usually, feature parameterization is defined such that a single feature may only have

a single parameter (not several), which frequently is a source of criticism of automo-
tive engineers. The rationale for this restriction is that when a feature needs more
than one parameter, it is preferable to add a child feature for each parameter instead
of directly attaching the parameters to a single feature. Otherwise, information cap-
tured in the separation of the individual parameters would be “hidden” in the list of
parameters even though this is usually information suitable to be captured in the fea-
ture model itself. According to our experience, this is true in most cases; but there are
situations where the additional child features become very artificial. Therefore, from

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-18 Automotive Embedded Systems Handbook

our point of view, there are good reasons for both solutions and thus it is mainly a
matter of taste.

7.3.3.6 Configuration Decisions

The classical application domains for product-line engineering are standard desktop
application programming, operating system development, and similar domains. In
these domains, feature models are usually configured interactively when a particu-
lar product instance is needed, either directly by the customer or by an engineer in
close cooperationwith the customer. In the automotive domain, and arguably inmany
other embedded systems domains, this is not feasible. Feature models of automotive
manufacturers can easily comprise several hundred or thousand features, which are
partly purely technical and not visible to the end customer. Instead of configuring
such feature models manually, it is necessary to define in advance for each feature in
what context and under what circumstances it will be selected.
In simple cases, this can be done with a logical expression attached to each feature.

These expressions are called selection criteria. A feature will then be selected if and
only if its selection criterion evaluates to true. While being completely sufficient for
simple cases, the selection criteria become extremely difficult tomaintain for complex
featuremodels.The reason for this is that individual considerations that drive the con-
figuration definition are often spread across many different features’ selection criteria
and that several such considerations that affect a single feature’s selection criterion are
compiled into a single logical expression and can then no longer be distinguished. For
complex industrial product lines this approach is therefore infeasible.
A more advanced concept for feature model configuration is configuration deci-

sions. They allow to define the configuration of one feature model in terms of the
configuration of another feature model in a highly scalable form. Such a link between
a configuring and a configured feature model is called a configuration link.
An example of such a configuration link is illustrated in Figure .. Let us assume

that there are three considerations that influence the configuration of the cruise
control feature model:

. All North American carsmust have a cruise control, because this feature is
expected by customers in this market as standard equipment (marketing
decision).

. AllNorthAmerican carsmust be equippedwith an adaptive cruise control
because our main competitor has it as standard equipment (marketing
decision).

. Canadian cars must include adaptive cruise control. National legislation
requires this (management decision).

This situation is modeled as three configuration decisions as shown in the table in
Figure .. Each configuration decision has an inclusion criterion stating for what
product instances the decision is valid. Such an inclusion criterion defines a set of
product instances, called a product set. Next, for each decision several features of
the configured feature model are listed that are included or excluded (not shown in
example) in all product instances that are in the decision’s product set. Finally, each

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-19

FM being configured:

Configuration link

Configuration decisions
#
1
2
3

United states or Canada
United states or Canada

Canada Adaptive Pete from management National legislation
Competitors have it

Customer expectation
Dave from marketing
Al from marketing

Responsible Rational

Adaptive
Cruise control

Included featuresInclusion criterion

— — — ——

Configuring FM: Cruise control
Country

United
states Canada Europe

Japan

Simple Adaptive Accelerator
actuator

Radar

FIGURE . Defining feature configurations with configuration decisions.

decision is supplied with a person in charge and a rationale. When a certain config-
uration of the configuring feature model is provided, then the configuration of the
configured feature model can be derived by combining the configuration decisions
that are valid for the product instance that corresponds to the configuration feature
model’s configuration.
The benefit of documenting the individual configuration decisions separately

becomes obvious when considering the redundancy of the considerations in the
example. When using one selection criteria per feature, the three considerations
would all be compiled into a single rule: North American cars are equipped with
adaptive cruise control. However, when one of the considerations changes or ceases to
apply, the clear separation of concerns is of great importance in order to establish the
effect of this change on the configuration in general. For example, when the competi-
tor changes his product range and no longer offers adaptive cruise control as standard
equipment, then configuration decision no.  becomes invalid. In this case it is very
important to know that there were other reasons to ship North American cars with
adaptive cruise control. Similarly, when new considerations come up, it is possible to
detect conflicts with existing ones; then the rationale of the conflicting configuration
decision can be consulted or the person in charge can be contacted in order to resolve
the conflict.
Many additional properties of configuration decisions are possible, for example,

prioritization or limitation of validity in time.

7.3.3.7 Other Advanced Feature Modeling Concepts

Many other concepts for feature modeling have been proposed in the literature. For
example, the edges of the feature tree—that is, the parent–child relations—may be
typed in order to specify whether the child is a specialization (Simple and Advanced
in the above examples) or a part of the parent (CruiseControl and Wiper). Also,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-20 Automotive Embedded Systems Handbook

features may be organized in several layers of refinement [KKL+]. Further details
of advanced feature modeling concepts are beyond the scope of this chapter.

7.3.4 Discussion: Feature Modeling for the Automotive Domain

The various feature modeling concepts described above are of very different use-
fulness in the automotive domain. As a rough guidance in general, we recommend
to confine oneself to basic feature modeling whenever possible. The only exception
is feature parameterization, which is probably useful or even indispensable in most
use cases of automotive feature modeling and does not introduce too much addi-
tional modeling complexity. Cloned features are very useful in some situations (e.g.,
ECU network configuration, as described above), but should be used sparingly and
only at those points in a large feature model, where they are truly necessary, due
to the great complexity of this concept. Configuration decision modeling is of use
whenever a complex feature model cannot be configured interactively each time a
variant needs to be generated but instead the configuration has to be defined in
advance.
Unfortunately, support for cloned features and configuration decisions is presently

very limited in commercial tools for variability management.

7.4 Global Coordination of Automotive
Product-Line Variability

Since a product-line’s infrastructure usually consists of a multitude of variable arti-
facts, there is the need for a centralized coordination of variability across all these
artifacts on a global level. This is particularly true for the automotive domain with its
highly complex product lines and families. There are two schemes that can be applied
for such a global variability coordination. They will be described in this section.
As a basis for this discussion, consider the following situation. All information of

relevance during the development process is captured in a multitude of development
artifacts (e.g., requirements documents, component diagrams, ML/SL models, test-
case descriptions). In Figures . and ., these artifacts are depicted with document
symbols on the gray V, which symbolizes the development process. Each of these arti-
facts can be defined in a variable form if its content varies from one product instance
to another.This is exemplarily shown in Figures . and . for the enlarged artifact on
the right by the empty rectangle representing a variation point (i.e., a point at which
variability occurs within an artifact; a “place-holder” for variability) and three vari-
ants that may be inserted at this point. How precisely variability is defined within
an artifact is highly dependant on the type of artifact and the approach being used;
this will be discussed in more detail in Section .. Here, we concentrate on how to
organize and manage the complex variability across the numerous artifacts of the
product line.
In short terms, this means that two different levels of variability management need

to be distinguished:

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-21

Artifact-local
feature model

Selected features

Artifact
configuration

Artifact representationArtifact representation

 Common artifact parts
 Instantiated variabilities

Remaining variabilities

 Common artifact parts
Variable artifact parts
Selection conditions

(logical combinations of features)

FIGURE . Product-line coordination with a core feature model.

Core feature model

Development
artifacts

Contribution
of supplier

Vehicle

Engine Wiper Climate
control

Rain
sensor

Wiper

Advanced Rain
controlled

Speed controlled

Basic

Comfort
Configuration

link
Feature model
of artifact line

Artifact
line

 Artifact with
variability

Standard

FIGURE . Product-line coordination with a core feature model and artifact lines.

. Variability on artifact level, that is, defining that and how an artifact’s
content varies from one product instance to another (Section .)

. Variability on product-line level, that is, the variability of all product
instances from a global perspective (remainder of this section)

7.4.1 Coordination of Small- to Medium-Sized Product Lines

One way of achieving the global perspective is to introduce a single core variabil-
ity model for all artifacts (Figure .). Feature models are especially suited for this
purpose due to their high level of abstraction. This core variability model is then
used as a basis to define the binding of variability in all artifacts, which is shown in

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-22 Automotive Embedded Systems Handbook

Figure . in form of the arrows from the core feature model to the variable artifacts.
Thismeans that for each variation point within an artifact, the specification of when to
use which variant is formulated in terms of configurations of the core feature model.
For example, consider the fictitious ML/SL model mentioned above, in which a block
B1 needs to be replaced by a variant B2 for some product instances. In such a case, it
would be defined that B2 is used if, for example, the feature RainSensor is selected
and that otherwise B1 remains unchanged. This way, the entire variability within the
product-line’s artifacts is related to a single configuration space represented by the
core feature model. And when a complete configuration of the core model is given,
that is, a certain product instance is chosen, the configuration of all artifacts can be
derived from that.
This organizational pattern iswell suited for small- andmedium-sized systemprod-

uct lines that are developed by only a small number of teams or departments within
a single company and that comprise only a moderate number of artifacts of low or
medium complexity. Product lines of automotive suppliers offering clearly delimited
subsystems often fall into this category. For example, a supplier offering a product line
of rain sensors or of climate controls can probably employ this scheme of product-line
coordination.

7.4.2 Coordination of Highly Complex Product Lines

For several reasons, the organizational pattern described in the previous section can-
not be used for highly complex product lines, such as an automotive manufacturer’s
product range:

. The artifacts that make up the product line are not developed by a sin-
gle company. Instead, subsystems are developed and supplied by other
companies and need to be integrated into the overall product line.

. Even within the same company, many different departments are responsi-
ble for the various artifacts, due to the overall complexity of the complete
system.

. Due to this complexity of the organizational context in which develop-
ment takes place (i.e., departments within the company plus external sup-
pliers), a multitude of different methods, tools and processes are involved
in the development.

. Both artifacts and subsystems have diverging life cycles and scope. A sub-
system like a wiper or a brake-by-wire system is usually not only built into
several vehicle models produced in parallel but also into several consecu-
tive generations of these models; and often, during the production of one
generation of a vehicle model, such a subsystem may even be replaced by
another, that is, the introduction of a new subsystem does not necessarily
coincide with the introduction of a new vehicle model. For example, the
wiper control may be used in models A and B while the antiblocking sys-
tem is employed in models B, C, and D. Similarly, the antiblocking system
may be replaced by a new type during the lifetime of one generation of
vehicle model B.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-23

Feature modeling has great potential especially in such intricate development con-
texts: features may serve as a link between management, marketing, and development
in a single company and as a link between companies to facilitate communication,
thus becoming the core of all variability and evolution management.
However, for the above reasons it is not possible to directly relate all variable arti-

facts to a single, global feature model. Instead, each development artifact is organized
as its own small product line. Similarly, several artifacts may be combined and may
be managed together as a single, small-sized product line. Of course, the instances
of these subordinate product lines are different in nature from the instances of the
overall product line: in the first case we have an initialized, nonvariable development
artifact, such as a test-case description or a requirements specification, while in the
latter case we actually have a product, that is, an automobile. To emphasize this fact,
these small-sized “product lines" of development artifacts are referred to as artifact
lines.
The main property distinguishing an artifact line from a simple variable is that

the artifact line is provided with its own local feature model (Figure .). This fea-
ture model is used to publish an appropriate view of the artifact’s variability to the
actors interested in instances of this artifact. This makes the one or more artifacts
in the artifact line independent from the global core feature model of the overall
product line.
The link between the artifact line and the overall product line is achieved by

defining the configuration of the artifact line’s feature model as a function of the
configuration of the core feature model of the overall product line, as illustrated by
the solid arrow in Figure .. On a conceptual level, these links can be realized with
configuration links as introduced above. Then, whenever a configuration of the core
feature model is given, the configuration of all artifact lines can be deduced from it.
In most cases, these links are directed in the sense that configuration can be propa-
gated from the core feature model to those of the artifact lines, and not the other way
round.
Artifact lines may, in turn, be composed of other, lower-level artifact lines. To

achieve this, the feature models of the lower-level lines are linked to the top-level
line’s feature model in exactly the same way as described before for an artifact line’s
feature model and that of the overall product line. In this way, variability exposed by
the lower-level artifact lines may be partly hidden, diversely packaged, or presented
in a different form.
Consequently, two sorts of variability information are hidden by the artifact line’s

feature model: first, the details of how variability is technically defined within the
specific artifact (e.g., with explicitly defined variation points together with variants
for them or with aspects that may optionally be woven into the artifact), and sec-
ond, in the case of composite artifact lines, the details of how variability is exposed
by the lower-level artifact lines. Both cases of concealment are referred to as config-
uration hiding. This configuration hiding is key to supporting the diverging life cycle
of individual development artifacts as well as the complex network of manufacturer–
supplier relationships described above. In addition, such a hierarchical management
of variability is an effective instrument to reduce the combinatoric complexity of
product-line engineering, because the artifact local feature models can reduce the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-24 Automotive Embedded Systems Handbook

complexity of variability within the artifact to a level that is appropriate for its use
within the overall product line.
Instead of having a single core feature model, it is also conceivable to hierarchically

decompose this core model into several feature models linked by way of the concept
used to link the artifact lines’ feature models to the core. For example, two core fea-
ture models could be used to distinguish a customer viewpoint and an engineering
viewpoint on variability, as explained in Ref. [RW].
Another approach for coping with highly complex product lines, called subscop-

ing, follows a different idea. Instead of hierarchically decomposing the infrastructure
of a complex product line, the line is replaced by several subordinate product lines,
called sublines, each having a reduced scope with respect to the overall line, thus sub-
stantially reducing the complexity of the variability within each such subline. These
sublines can then be developed relatively independently from one another but at the
same time dedicated technical concepts allow for a strategic management of the over-
all product line on a global level. More details on this approach are beyond the scope
of this introductory chapter and can be found, for example, in [ReiWeb].
Finally, it should be noted that many details of the coordination of highly com-

plex product lines as well as of the related approaches and techniques are still not
completely solved and remain a challenging subject of further research.

7.5 Artifact-Level Variability

In the previous section, we have presented concepts for managing variability on a
global coordination level. In this section, we discuss managing variability on artifact-
local level and the relation between artifact-local level and global coordination level.

7.5.1 Basic Approach

When configuring an artifact, for example, a requirements specification, an analysis
model, or a set of test cases for a specific product (or product set), a mechanism must
be provided to select a variation point based on the decisions leading to this product
(or product set).
As discussed in Section .., there are many approaches that can be used as a basis

for configuration. Here we consider a feature-based configuration of artifacts, as pre-
sented in Figure .. In this approach a condition must be attached to each variable
artifact part to describe the combination of feature selections under which the vari-
able artifact part is selected. In the most simple case, there is a mapping from each
variable part to a single feature. In general, however, more complex conditions may
be necessary.

7.5.2 Difficulties Related to Artifact-Local Variability

Unfortunately, in the world of individual development artifacts, some difficulties have
to be faced when trying to introduce mechanisms for representing variability:

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-25

Core feature model
Vehicle

Climate
control

WiperEngine

Standard
Comfort

Development
artifacts

 Artifact with
variability

Rain sensor

FIGURE . Feature-based configuration of artifacts.

• Due to the heterogeneity of different artifacts, for example, due to the
variety of modeling and specification languages used in the automo-
tive domain, it seems almost impossible to find a common variability
mechanism that works well in all possible cases.

• However, even if artifact-specific mechanisms are used, still some con-
nection has to be defined to the modeling of variability in the global
coordination model.

• Moreover, in many areas, particular tools with proprietary modeling
solutions and limited adaptation mechanisms have a dominant position
in practice. Up to now, these tools do not provide comprehensive support
for variability and product configuration, hence pragmatic solutions are
developed in development projects. Unfortunately, this leads to a variety
of different mechanisms to handle variability even when considering a
single artifact and a single tool only.

As an example, consider the areas of ECU specification and of model-based analysis
and development of ECU software. In these areas, very different artifacts have to be
supported, that is, textual specifications and software models, and there are widely
used tools with proprietary mechanisms, that is, DOORS and ML/SL/Stateflow (SF).
Since support for variability is traditionally limited or not present at all in these legacy
tools, a variety of solutions or workarounds have emerged in development projects.
For example, because ML/SL/SF does not support explicit representation of variation
points in its block models, two workarounds are commonly used in practice:

• One approach is to build a single model containing all variations in par-
allel and to configure individual variants by switching individual blocks
on or off. The disadvantage is that such a model does not represent a

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-26 Automotive Embedded Systems Handbook

meaningful system in itself and is thus not easy to comprehend and
maintain.

• Another approach is to (ab)use an existing tool concept, for example, the
concept of configurable subsystems in ML/SL/SF, to represent variability
in a limited way.

A similar situation exists with respect to ECU specifications: widely used tools, such
as DOORS do not offer concepts for explicit modeling of variation points and hence
a variety of pragmatic solutions and workarounds are being used.
As a consequence of these considerations, we argue to handle artifact-local vari-

ability as follows:

• Since each artifact has its own characteristics and (pragmatic) constraints,
different variability mechanisms must be supported for different artifacts.

• In order to connect these artifact-local variability mechanisms to the
global coordination model, a common interface mechanism must be pro-
vided.The local featuremodels of artifact lines as described in Section ..
can serve as such an interface.

• In order to solve the problem of multiple representations of variabil-
ity for a single artifact, a single intermediate (standard) representation
is defined for each artifact on which all particular approaches can be
mapped. This intermediate representation is then used as basis for con-
necting the artifact-local variability modeling to the global coordination
model.

Due to the diversity of artifacts in the automotive domain, we cannot discuss and
illustrate this approach for all types of artifacts here. Instead, in the remainder of
this section, we will concentrate on a discussion of variability in ECU specifications.
Using this as an example, we will demonstrate basic styles of representing artifact-
level variability and illustrate important considerations to be taken into account when
designing or selecting a certain form of representation, which are applicable to most
other types of artifacts in a similar way.

7.5.3 Representing Variability in ECU Requirements
Specifications

In order to represent ECU requirements specifications, practically all requirements
management tools use a few common structures (Figure .):

• Specification objects are hierarchically organized.
• On each hierarchical-level specification objects are sequentially ordered.
• Specification objects have predefined attributes, for example, the main
specification text, as well as project-specific attributes such as the object’s
status.

• Specification objects are connected among itself and to other artifacts via
traceability links.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-27

The car shall have a light control system based on
Status=mature,

rationale = “compatibility to system ...”

<Light control system specification object 1>

<Light control system specification object 2>

<Light control system specification object 2.1>

<Light control system specification object 2.2>

<Light control system specification object 3>

Traceability
links

<Light control system specification object 3.1>

Main specification text Additional attributes

FIGURE . Common structure of ECU requirements specifications.

Therefore, these structures are not tool-specific. In addition, they conform to the
common requirements interchange format “RIF” [Her], currently introduced by
the German automotive manufacturers, and supported by several tool vendors.
Based on our experiences in different development projects, it turns out there are

basically four approaches to represent variability in such specification structures.

. Usingtheobjecthierarchytorepresentvariability:Inthisapproach,avariation
point is represented by a single new specification object. The child objects
of this variation point then represent the specification parts belonging to
this variation point. In the most simple case, the variation point models an
optional specification part. This part is then directly placed hierarchically
below the variation point. In more complex cases, the variation point has
several child elements, that is, variants, and an additional hierarchical level
is used to separate between these alternatives.

. Using the sequential ordering of specification objects to represent variability:
In this approach, a variation point is represented by two new specifica-
tion objects (on the same hierarchy level), marking the beginning and the
ending of the specification parts belonging to this variation point. As dis-
cussed above, additional intermediate objects may be used to distinguish
between the variants of more complex variation points.

. Using traceability links between specification objects to represent variability:
In this case, a variability point is represented by a single object and all the
specification elements belonging to this variation point are connected to
this object via traceability links. Specific types of links or additional objects
are used to represent more complex variation points.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-28 Automotive Embedded Systems Handbook

. Using attributes of specification objects to represent variability: In this case,
no additional object is introduced to represent variation points, but a new
attribute is introduced that specifies for each specification object to which
variation point and to which variant thereof it belongs.

In Section .., we briefly compare and evaluate these approaches.

7.5.4 Evaluation of Representations

We evaluate these approaches based on a few criteria that we consider relevant from
practical experience in the field.

Clarity: The approach should not obscure the variability information within specifi-
cations.
Definition/maintenance effort: The approach should not lead to excessive definition or
maintenance efforts.
Robustness with respect to hierarchy violations: When working on specifications, engi-
neers often unintentionally violate the intended specification hierarchy, for example,
when dragging and dropping objects during a reorganization of the specification. The
approach should be robust with respect to such mistakes.
Robustness with respect to reordering: Similarly, engineers typically change the sequen-
tial order of specification objects, for example, when cleaning up specifications or
simply to improve readability and understandability. The approach should be robust
with respect to such changes too.

Table . summarizes a brief evaluation of the four approaches with respect to these
criteria.
This evaluation shows that none of the mechanisms matches all needs: those

approaches that are more robust with respect to specification reorganization tend to
increase the effort and the obscurity, and vice versa. The decision for one of these
approaches therefore needs to be taken on the level of individual projects while
considering the project’s specific characteristics and needs.

7.5.5 Mapping Representations to a Common Basis

The previous section has shown that none of the four representations is matching all
needs. Hence it is likely that different mechanisms will continue to be used in indus-
trial settings. In order to cope with this situation, a common representation may be
used as a basis, to which all approaches can be mapped (Figure .). The idea of this

TABLE . Evaluation of Various Form of Variability Representation
in ECU Requirements Specifications

() Use Object () Use Object () Use () Use
Hierarchy Sequence Links Attributes

Clarity + + – –
Definition/ + + – –
maintenance effort

Robustness with respect – – + +
to hierarchy violations

Robustness with respect – – + +
to reordering

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Product Lines in Automotive Electronics 7-29

M
ai

n
sp

ec
ifi

ca
tio

n
te

xt

Th
e c

ar
 sh

al
l h

av
e a

 li
gh

t
co

nt
ro

l s
ys

te
m

 b
as

ed
 o

n
....

<L
igh

t c
on

tro
l s

ys
te

m
 sp

ec
ifi

ca
tio

n
ob

jec
t 1

>

<L
igh

t c
on

tro
l s

ys
te

m
 sp

ec
ifi

ca
tio

n
ob

jec
t 2

>

<L
igh

t c
on

tro
l s

ys
te

m
 sp

ec
ifi

ca
tio

n
ob

jec
t 2

.1>

<L
igh

t c
on

tro
l s

ys
te

m
 sp

ec
ifi

ca
tio

n
ob

jec
t 2

.2>

<L
igh

t c
on

tro
l s

ys
te

m
 sp

ec
ifi

ca
tio

n
ob

jec
t 3

>

<L
igh

t c
on

tro
l s

ys
te

m
 sp

ec
ifi

ca
tio

n
ob

jec
t 3

.1>
Se

le
ct

io
n

co
nd

iti
on

 o
bj

ec
t 3

.1

Se
le

ct
io

n
co

nd
iti

on
 o

bj
ec

t 3

Se
le

ct
io

n
co

nd
iti

on
 o

bj
ec

t 2
.2

Se
le

ct
io

n
co

nd
iti

on
 o

bj
ec

t 2
.1

Se
le

ct
io

n
co

nd
iti

on
 o

bj
ec

t 2

Se
le

ct
io

n
co

nd
iti

on
 o

bj
ec

t 1

EC
E

A
N

D
(S

ta
nd

ar
d-

lig
ht

-s
ys

te
m

 O
R

...)
St

at
us

=
m

at
ur

e,
ra

tio
na

le
=

“c
om

pa
tib

ili
ty

 to
 sy

st
em

...”

A
dd

iti
on

al
 at

tr
ib

ut
es

Se
le

ct
io

n
co

nd
iti

on

FI
G
U
R
E
.


Re
pr
es
en
ta
tio

n
of

ar
tif
ac
t-
le
ve
lv
ar
ia
bi
lit
y
w
ith

se
le
ct
io
n
co
nd

iti
on

s.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

7-30 Automotive Embedded Systems Handbook

intermediate representation is to implicitly consider all objects of the specification as
variation points and to attach selection criteria to each object describing under which
combination of feature selections this object is applicable.
Note that this approach can also be seen as an additional approach to represent

variability, sharing the advantages and disadvantages of the attribute-based approach
. It is relatively straightforward to transform any of the approaches – into this
representation:

• In a first step, approaches – are transformed into the representation in
approach .

• In a second step, the variation points used in the attributes are replaced by
their selection conditions. Similarly, for individual variants of variation
points.

References

[CN] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA, .

[Gri] K. Grimm. Software technology in an automotive company—Major chal-
lenges. In: Proceedings of the th International Conference on Software
Engineering (ICSE ), Portland, OR. Association for Computing and
Machinery & IEEE Computer Society,  pp. –.

[Her] Herstellerinitiative Software (HIS). Requirements Interchange Format
(RIF)—Specification, May . Version .a.

[KCH+] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA)—Feasibility study. Technical
Report CMU/SEI--TR-, Software Engineering Institute (SEI), Carnegie
Mellon University, Pittsburgh, PA .

[KKL+] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. Form: A feature-
oriented reuse method with domain-specific reference architectures. Annals
of Software Engineering, :–, .

[MJA+] D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. Dörr, and K. Schmid.
Gophone—Asoftware product line in themobile phone domain. IESE-Report
./E, Fraunhofer IESE, March .

[Par] D. L. Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering, SE-():–, March .

[PBvdL] K. Pohl, G. Böckle, and van der F. Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg, .

[RW] M.-O. Reiser and M. Weber. Using product sets to define complex product
decisions. In: Proceedings of the th International Software Product Line
Conference (SPLC ), Renner, France .

[vO] Rob van Ommering. Beyond product families: Building a product pop-
ulation? In: Proceedings of the Third International Workshop on Software
Architectures for Product Families (SAPF-), Las Palmar de Gran Canaria,
Spain LNCS , , pp. –.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8
Reuse of Software in

Automotive Electronics

Andreas Krüger
AUDI AG

Bernd Hardung∗
AUDI AG

Thorsten Kölzow
AUDI AG

. Reuse of Software: A Challenge
for Automotive OEMs -

. Requirements for the Reuse
of Software in the Automotive
Domain . -

. Supporting the Reuse of Application
Software Components in Cars -
Processes ● Development of Modularized
Automotive Software Components ●
Function Repository ● Development of an
In-Vehicle Embedded System

. Application Example -
. Conclusion . -
References . -

8.1 Reuse of Software: A Challenge
for Automotive OEMs

At the start of the third millennium, the automotive industry is facing a new chal-
lenge. Ninety percent of all innovations are related to electronics, % of these are
related to software. This means a big change for the development of electronics. More
and more highly connected functions must be developed to series-production readi-
ness, while at the same time development cycles become shorter and shorter. The
importance of software in the automotive industry is shown very impressively in a
study ofMercerManagement Consulting andHypovereinsbank []. According to this
study, in the year , % of the production costs of a vehicle will go in software
(Figure .).
With respect to these findings, the development process including software devel-

opment methods for the automotive domain must be improved. Intensive work has

∗ Bernd Hardung is now with Elektrobit Automotive GmbH in Erlangen.

8-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8-2 Automotive Embedded Systems Handbook

Value percentage of
hardware and

software in the car

35%

22%

13%

4%

Hardware
62%

Hardware
80%

Software
20%

Application software
28%

Operating system 8%
Basic software 2%

FIGURE . Rise of importance of software in the car. (From Mercer Management Consulting
and Hypovereinsbank. Studie, Automobiltechnologie . München, August .)

been done in some parts of this field. Requirements engineering, software quality,
or model-based software development are the most prominent examples. The goals
are always to reduce software development time and to increase software quality.
Another promising but nevertheless challenging way to reach these goals is the reuse
of software. The main prerequisite for reusing software in the automotive domain
is to separate the hardware of an electronic control unit (ECU) from the embedded
software that runs on it.
Until recently, the automotive manufacturers’ perception of ECUswas that of single

units. They specified and ordered black boxes from their suppliers. After the delivery
of samples, they also tested them as black boxes. For the automotive manufacturer,
this procedure has the disadvantage that the software has to be newly developed for
each new project, if the supplier is changed. This not only causes expenses, but also
increases development time.
An automotive electronics supplier can usually concentrate his development efforts

on his or her single part of the system. This is in contrast to the view of the auto-
motive manufacturer, who is responsible for integrating the single parts to an entire
electronics system. Networked units with distributed functions require the automo-
tive manufacturers to have development processes and methods that allow to reuse
software on the system level. Moreover, methods for the reuse of software enable man-
ufacturers to develop their own competitively differentiating software, thus securing
their intellectual property.
Following this introduction, recent work in this field is described introducing the

electronic systems in a modern vehicle (Section .). Then a framework that enables
automotive manufacturers to reuse software is presented (Section .). In Section .
an example is given in which this framework is applied to a realistic automotive
scenario. The chapter concludes with Section ..

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Reuse of Software in Automotive Electronics 8-3

8.2 Requirements for the Reuse of Software
in the Automotive Domain

To get an idea of the software reuse issue from the view of an automotive manufac-
turer, an introduction to the electronic systems in a modern car is given here. As
mentioned before, innovation in the automotive domain is mainly driven by elec-
tronics. Improvements in fuel economy and engine power in the last years, but also
driver assistance systems like “Audi Side Assist” (blind spot warning) and “Audi Lane
Assist” (lane departure warning) are not imaginable without electronics.
In order to fulfill the increased communication needs of these electronic systems,

the ECUs communicate via different bus systems. The most widely used automo-
tive bus systems are controller area network (CAN) [], local interconnect network
(LIN) [], and media-oriented system transport (MOST) []. FlexRay [] is currently
introduced in the first series cars. An example for the complexity of such a system is
the network topology of the Audi A coupé, shown in Figure ..
It was already pointed out in the introduction that car manufacturers increasingly

begintoseesoftwareasaseparateelectronicscomponent, independent fromtheunder-
lying hardware.This view is a prerequisite to be able to reuse software, which, however,
has a variety of further aspects and unresolved problems. In Ref. [] requirements for
the reuse of software within the automotive range are presented as follows:

• Reusable application software components must be “hardware indepen-
dent.”

• Interfaces of the software components must be able to exchange data both
locally on an ECU and/or via a data bus.

Gateway

High-speed-CAN
500 kBaud

Low-speed-CAN
100 kBaud

Most-bus
21 MBaud

Audi, basics equipment
Audi, extra equipment

FIGURE . Electronic system of the AUDI A coupé.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8-4 Automotive Embedded Systems Handbook

• Developing reusable software, future requirements to each function must
be considered.

• “Code size” and “execution time” of the software components must be
minimized also when developing reusable software. Both resources are
expensive due to mass production of parts in the automotive industry.

Additional aspects must be considered. Individual software modules must have an
optimal “modularity.” This means that one function (e.g., central door looking sys-
tem or exterior light) might consist of different individual subcomponents. Building
subcomponents improves the reusability, since a functional change can imply only
changing a single subcomponent.
The partitioning of functionality into subcomponents however can cause repeti-

tions of code. For example, multiple variable declarations lead to a higher memory
consumption of all submodules together in comparison to a module developed as
single unit. Moreover, execution time might worsen.
The interface definition of the software modules must be specified once, that means

statically. It should not change during the reuse in a new car model or on a new
microcontroller. The interfaces must be maintained in a database over all model
ranges.
A further requirement is the existence of a database inwhich the individual reusable

software components and/or subcomponents are stored. A “uniform data format” is
required to exchange data between different software development teams at the car
manufacturers and their tier  and software suppliers. In order to fill and use the infor-
mation and the reusable software components from the database, “processes” must
be defined that enable a standard development process. In particular, these processes
must describe the integration process for software from different sources and a role
model including both manufacturer and suppliers.
To support these processes, we need a seamless “tool chain,” that is, a suite of tools

cooperating closely via tightly matching interfaces. An important aspect thereby is the
use of “uniformmodeling guidelines.” Likewise, standards should be defined between
suppliers and manufacturers to effectively facilitate the exchangeability of software
modules. From the view of a car manufacturer, there exist “different kinds of reuse.”
According to the kind of reuse of a software component—on the same model or over
different model ranges—different aspects must be considered.
Of course, the safety aspect must be taken into consideration. In Ref. [] require-

ments for the development of safety critical functions are stated. Simonot-Lion gives
an overview on several aspects, for example, verification process, time-triggered
architectures, and software architecture models.

8.3 Supporting the Reuse of Application Software
Components in Cars

The Software Engineering Institute of the Carnegie Mellon University in Pittsburgh
developed a process model named “product line practice” (PLP) []. We propose

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Reuse of Software in Automotive Electronics 8-5

Core asset
development Core asset

Function
repository

Development
of an ECU with the

SSC

Product
development

Development
of modularized

software
components

Process Database

Tools

Process adapatation for automotive manufacturers

Product line practice process

FIGURE . Framework components of the automotive PLP application.

a framework based on this approach for the reuse of application software in the
automotive domain.
The term “product line” (Chapter ) is thereby defined as follows []:
“A software product line is a set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed
way.”
The terms and the processing model of the PLP are applied on software reuse by

car manufacturers. Figure . shows the components of the presented framework.
The top part of the figure shows the generic PLP method, whereas the bottom part
depicts the instantiation of the PLP method for automotive manufacturers, including
the necessary tools.
The section first explains the general processes of the PLP (Section ..). This

is followed by a discussion how to modularize what are called the core assets
(Section ..).Thereby the core assets are stored in a database called “function repos-
itory” (Section ..). Further, we describe how to develop products with the content
of the function repository as building blocks and using a standard software core
(SSC) (Section ..). The tools required to support the process are described in
Section ....

8.3.1 Processes

According to Ref. [] the process in a product line is divided into three different areas:

• Core asset development: When developing core assets, first a list of the
products that are desirable from today’s point of view is created. This list
is defined as the “product scope.”Thus, it contains also products that may

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8-6 Automotive Embedded Systems Handbook

be realized in the future and that are not a goal of the current develop-
ment.The list of products represents a boundary, which should be thought
over very carefully: If the scope of production is too wide, many of the
core assets can be used only once. In this case, no advantage compared to
conventional development is achieved. If the scope of production is too
narrow, the future variety of the product is limited unnecessarily.

• Product development: In addition to the product scope and the core
assets, there are also product-specific requirements. With the core assets,
the development of a new product within the product scope is equal
to combining some of the core assets. The description of the process
of combination is called the “production plan.” The production plan is
a general description and the product development should fulfill the
product-specific requirements. Depending on the accuracy of the produc-
tion plan the productmust be developed under consideration of “variation
points.” In Figure . [], core assets are shown as rectangles and the cor-
respondent processes as triangles. Put together these processes result in
the production plan, from which the product can be developed.

• Management: The management is divided into a technical and an orga-
nizational part. The organizational management must provide the right
form of organization and the needed resources (this includes also the
training of the employees). The technical management is responsible for
realizing the core asset development and the product development.

The engineering tasks of the processes within the presented framework on the one
hand contain producing and archiving reusable software components into a database.
On the other hand, these software componentsmust be used to develop new products.

Requirements
product line scope

Production plan

Product
development

Management Products

+ +

Core assets

FIGURE . Product development in the PLP. (From Carnegie Mellon Software Engineering
Institute. With permission.)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Reuse of Software in Automotive Electronics 8-7

In Ref. [], a practical application example of the automotive domain is discussed
and a method is described that allows controlling the variability of a product within
the product development process.
As in-vehicle embedded applications are largely distributed and networked, we

present an approach that explicitly considers these properties and furthermore
focuses on modularization of the functional software and the relation to an SSC.

8.3.2 Development of Modularized Automotive
Software Components

Figure . shows the process for developing the complete electronics system of a new
model, and the circular dependency between its stages. With “functional architecture”
we denote the definition and allocation of functional (software) modules to ECUs.
This allocation results in communication relationships that define the signals and
messages exchanged via the in-car bus systems (definition of the communication).
The “hardware system” consists of ECUs with their central microcontrollers, which
need to have adequate computing power, on-chip peripherals (e.g., communication
controllers, interfaces to sensors and actuators), and further electronic components.
Thereby, the three main process steps must be conducted in an iterative way, since

each step depends on the other. Therefore, the allocation of software modules to
ECUs must take place after defining the hardware system. However, this allocation
depends on the memory and processing power of the ECUs. Of equal importance is
the question whether the bandwidth limitations of the bus system allow to transfer all
necessary signals between the individual software modules.
This process requires modularized software components to separate hardware-

dependent and hardware-independent parts. The modularization of software com-
ponents according to definitions of movability and reusability also enables reuse in
this particular process. To support the classification of software according to their
movability and reusability, the following terms shall be introduced: “firmware,” “basic
software,” “adaptation software,” and “function software.”

Definition of the
functional architecture

Definition of the
communication

Definition of the
hardware system

FIGURE . Product development process for an automotive electronics system.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8-8 Automotive Embedded Systems Handbook

• Firmware is the hardware-dependent part of the ECU software. Examples
are the communication drivers, drivers for analog–digital converters, or
drivers for pulse width modulators.

• Basic software is the software that is independent from application
and hardware. Examples are communication interaction layers between
application software modules and communication drivers. They are not
dependent on the hardware since they use the application programming
interface (API) of the communication drivers (see also Section ..).

The two categories basic software and firmware are reused already today. They are
called “standard software,” although the partitioning of the components is not only
made with respect to the reusability (Section ..). Another reason for decomposing
the standard software is the possibility to fulfill the needs of different classes of ECUs
by removing standard software components that are not needed.
We define the two remaining categories of software as follows:

• Adaptation software is the application-specific part of the software that
adapts the function software to the car model and builds the connection
from the function software to the firmware and the basic software.

• Function software is the function-specific part of the software that is
independent from the car model it is used in.

With these new terms, the types of components can be separated according to the
type of movability and reuse. Considering this abstract model three types of reuse can
be defined:

• Reuse over different ECUs
• Reuse over different microcontroller platforms
• Reuse over different model ranges

The classification of the types of software and the corresponding types of reuse are
shown in Table ..This classification gives guidance as to how themodularization can
be performed in order to get the maximummovability and reuse effect. For example, a
communication driver (firmware) can be reused over different ECUs and over differ-
entmodel ranges (provided that they usemicrocontrollers of the same family), but not
over different microcontroller platforms, since the communication controllers usu-
ally are quite dissimilar on different microcontrollers. On the other hand, function
software that is based on the proposed software layers can be reused across ECUs,
microcontrollers, and model ranges.

TABLE . Types of Software with Respect to Reuse
Reuse over Different ECUs μC-Platforms Model Ranges
Firmware Yes No Yes
Basic software Yes Yes Yes
Adaptation software No Yes No
Function software Yes Yes Yes

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Reuse of Software in Automotive Electronics 8-9

8.3.3 Function Repository

The function repository contains the core assets (Figure .). The question what the
core assets are is essential for the reuse of software. Reference [] discusses in general
what items build the core assets. In the following, the set of core assets for a function
repository of an automotive manufacturer is introduced, thereby considering the spe-
cial requirements as described in Section .. The function repository must not only
contain descriptions of the reusable software. Hardware and bus system descriptions
are also an essential part.

• Software components: An important content of the function repository
are the reusable software components. Here, a distinction can be made
according to different categories of software and different programming
languages they are implemented with.
Categories of software are firmware, basic software, adaptation soft-

ware, and function software as described in Section ... Additionally,
the characteristics of the software components must be stored in the func-
tion repository. For example, code size and worst-case execution time of
the individual software components and subsystems are important infor-
mation for a proper real-time integration into an operating system. The
worst-case execution times must be determined for each supported hard-
ware platform of the software component.Thismust be done, for example,
with model-based automatic approaches like in Ref. []. Another possi-
bility is to obtain this information during the integration process. This
procedure has the advantage that the environment can be taken into
account. For example, in a certain car model some function is never used,
the code is optimized and the worst-case execution time is reduced. This
approach in general will derive worst-case execution times, which are
tighter to the real execution time.
In order to further improve the software reuse specifications, test plans

(what to test when with which test equipment) and test cases (description
of how to test individual properties of the device under test) should be
stored as well (see also Chapter ).

• Interfaces: The interfaces between the software components must also
be part of the function repository. In an automotive system, communi-
cation between software components can be realized via a data bus or
internally on the ECU. Interfaces between software components must
be defined globally. New software components must use already avail-
able interface definitions. This ensures interface compatibility for different
software components.
The number of interfaces that must be described is enormous in amod-

ern vehicle. To be able to manage the complexity it is necessary to specify
interface types, of which interface instances can be derived.
Thedescriptionof interface typesmust notmerely contain thenameand

bit size of the signals exchanged through the interface. Further essential
information thatmust bedefined is the supported communication type(s),

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8-10 Automotive Embedded Systems Handbook

which allow the system designer to correctly map the signals on com-
munication busses. Once the interface instances are mapped to software
components, timing requirements must be specified, which also influence
the decision whether a certain communication bus system is suitable.
The semantics of the interface types is another important item. For

example, once a user presses the remote key, the signal described by
the type “remote key” is ON as long as the key is pressed, but at least
 ms. The description of these semantics requires a formal method in
order to verify the properties of interoperability between components
(type interoperability, timing interoperability, etc.).

• Functional network: The functional network combines the software com-
ponents to an overall software system that performs the car’s functions.
Here, the function repository ideally supports hierarchical decomposition
in order to reduce the complexity that must be managed.
An add-on for the interface definition of software components is a

so-called error matrix. This error matrix can help when tracing errors in
the automotive system after production in the field.The error matrix con-
tains information as to which output of a software component depends on
which input. With that, it is easier for the service to find software errors.
A more detailed description can be found in Ref. [].

• Hardware platform and bus system description: The entire software con-
tained in the function repository is not independent of the hardware that
it should run on. The execution of software depends on the type of pro-
cessor, the amount of memory, the clock cycle or even the compiler that is
used. Therefore, a “hardware platform description” must be stored in the
function repository.
Asmentioned before, parts of the communication between the software

components in functional networks use bus systems. These bus systems
can be distinguished in different ways, for example, speed of data transfer,
used protocol, and so on. Thus for the development of a new car model it
is also necessary to store the relevant data in the “bus system description”
of a function repository.

• Implementation: For the implementation (or “behavior description”) of
the software components, model-based methods and tools can be used.
From these models, usually C code is derived. Generated code, however,
might show performance disadvantages when compared to handwrit-
ten C code. The advantage of the model-based software components,
on the other hand, is that they can be adapted easily to different hard-
ware platforms. Therefore, it might seem useful to store both variants—
handwritten and generated code—in the function repository depending
on the kind of software.

8.3.3.1 Standards for the Storage of Data

All the mentioned data for the function repository must be stored in a database. We
suggest to use a standardized data model for this purpose.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Reuse of Software in Automotive Electronics 8-11

Within the EAST-EEA project [] (www.east-eea.net, see also Chapter ) an archi-
tecture description language (ADL) [] was developed in order to be able to specify
functions without considering the hardware. An ADL allows the description of the
structure (but not necessarily the behavior) of software in a functional approach as
described in this section.
A further example for such a data model isMSRMEDOC [,]. It defines how the

data has to be stored in the data model. The data model is specified in an eXtensible
Markup Language data type definition (XML DTD).
Another important project is automotive open system architecture (AUTOSAR)

[].This project defined a modular software architecture. Here, the important aspect
of integrating software components from different software suppliers is considered
as well.

8.3.4 Development of an In-Vehicle Embedded System

8.3.4.1 Automotive Standard Software Core

For product development based on the modularized software components and the
other stored assets, an automotive SSC is used. Standard software comprises all tasks
that can be standardized, that is, that are to some extent independent from a specific
application. These tasks are, for example, controlling the hardware drivers, recog-
nizing and storing errors, and controlling the network connection. These functions
are implemented as separate, reusable modules. The sum of all standard software
components is the SSC.
The SSC is the part of the ECU software, where reuse is already performed today—

even if the ECU supplier changes. The degree of reusability of a software component
depends on the software category as defined in Section ...
Figure . shows the structure of the SSC of the Volkswagen group. First of

all, it consists of an operating system conforming to the OSEK standard [].

OSEK OS

Application

Diagnostic
event handler

(DEH) I/O
filter

library

I/O library
(driver

manager)

EEPROM
library

Standard
diagnostic

servicesOSEK
COM

Dispatcher
(KWP)

Network layer (TP)

CAN/LIN driver

CAN/LIN... hardware

Bootloader

I/O hardware

I/O driver

Theft protection

OSEK
NMBAPCaption

Basic

OS

Diagn.

I/O
Commu-
nication
Physical

layer

FIGURE . Example of an SSC: the Volkswagen group SSC.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8-12 Automotive Embedded Systems Handbook

Communication drivers (CAN and LIN) are the basis for higher-level protocol mod-
ules: network management (NM), control and display protocol (BAP, German for
Bedien- und Anzeigeprotokoll), transport protocol (TP) or the signal-filtering layer
OSEKCOM[].Diagnosis functions are supported by themodules “diagnostic event
handler” and “standard diagnostic services.” Basic hardware abstraction is imple-
mented by the input/output (I/O) driver and library modules, which handle access to
EEPROM, digital–analog converters, analog–digital converters, pulse-widthmodula-
tors, external ports, etc. Finally, a separate bootloader software allows to program each
ECUwith flash memory via the car’s diagnosis interface. A more detailed explanation
can be found in Ref. [].
The SSC not only supports a hardware-independent interface, but also the entire

infrastructure services on the microcontroller that are used by the actual applica-
tion. This facilitates an application development that is independent from the used
microcontroller platform.
The interface between SSC and the function software is typically realized through

APIs. A good example of an API is the OSEK COM [] specification. The func-
tion repository as described contains all necessary information to configure the APIs
of standard software modules. Thus, the combination of standard software modules
represents the basis for an efficient reuse of the application as already explained in
Section ...
Since the architecture of the SSC is not only designed with respect to reuse aspects,

the reuse effect can still be improved. Nevertheless, standard software plays an impor-
tant role for reusing function software. For this reason, an industry cooperation called
AUTOSAR was initiated in  with the objective to further develop and standard-
ize already existing standard software architectures [].TheAUTOSAR specifications
focus on the description of interfaces between software components and of functions
performed by these components. They do not specify particular implementations,
since this is left to the software suppliers providing AUTOSAR-compatible standard
software.
Figure . gives an overview of the AUTOSAR software components and interfaces.

The central element is the AUTOSAR runtime environment (RTE), which provides a
communication abstraction (both inter- and intra-ECU) to the application software.
In our terminology, the RTE is a typical piece of adaptation software. Beneath the RTE
the figure shows a vertical distinction into system services (e.g., timers and counters),
memory services (e.g., access to EEPROM), communication services (e.g., packing
an application signal into a CANmessage and managing the transmission in a timely
manner), I/O access (e.g., handling analog–digital conversion), and so-called complex
device drivers (e.g., handling application-specific peripherals that need direct support
by the ECU hardware and cannot be standardized). Another, horizontal distinction is
made between services, abstraction layers, and drivers.
Further information on AUTOSAR (Chapter ) can be found in Ref. [] and on

the AUTOSAR Web site [].

8.3.4.2 Tools Required for the Development Process

Obviously, tool support is required for all processes described so far. In a typical
development environment, the goal of tool users is to obtain a seamless tool chain by

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Reuse of Software in Automotive Electronics 8-13

Application layer

AUTOSAR runtime environment (RTE)

System
services

Memory
services

Memory
hardware

abstraction

Memory
drivers

Micro-
controller

drivers

Onboard
device

abstraction

Commu-
nication
services

Communi-
cation

hardware
abstraction
Commu-
nication
drivers

I/O
hardware

abstraction

I/O
drivers

Complex
drivers

Microcontroller
abstraction

ECU abstraction and
complex driversServices

Microcontroller

FIGURE . AUTOSAR software architecture.

developing conversion filters between the tools. This approach does not work when
introducing a function repository. For every pair of tools used in a company or depart-
ment such a filter would have to be developed, which translates the data from the
database to the tool and vice versa. Since the language coverage is different for every
tool, there is also some loss of information with every conversion. That is no issue as
long as going along the V model [] in one direction only. As soon as the develop-
ment takes place in different locations of the Vmodel at the same time (simultaneous
engineering), the data cannot be kept consistent automatically anymore.
The solution for this problem is a standard data model as required in Section ...

The tools are then the editors for the data in the function repository. With this under-
standing a tool chain is a set of tools working on a common database, without manual
user interaction.

.... Core Asset Development
The tools needed for core asset development must support different levels of system
descriptions:

• Requirements are the textual description of what the user expects from
the vehicle. In order to manage the requirements it makes sense to use
tools likeDOORS [], which provide features like automatic requirement
key generation, an extended search engine, and document generation
possibilities.

• Interfaces are all points within an application or module where infor-
mation flows into or out of the respective module. A tool is needed to
manage these external interfaces. Also internal data might be interesting
for debugging purposes. With the Data Dictionary [], it is possible to
manage external interfaces and internal data in one tool.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8-14 Automotive Embedded Systems Handbook

• System architecture is the functional network, the hardware architec-
ture, and the mapping between hardware components and functional
network. The system architecture can be described for example, with uni-
fied modeling language (UML) tools or automotive-specific tools like
DaVinci [].

• The behavior description can be either C code or models in various model-
ing languages like UML. Another option very common for the automotive
industry is the use of Matlab/Simulink/Stateflow []. A tool like Tar-
getlink [] could be used for generating C code out of the model even
if the target platform does not support floating point code.

.... Tools Required for Product Development
Most of the standard software components like network drivers for the CAN bus []
or the OSEK operating system [] must be adapted to the specific network node and
hardware platform. This is not possible without adequate tool support.
A tool supporting such a component configuration needs information about the

communication between the several control units. Each component requires specific
data that are important for the function of the component. The variety of today’s
configuration tools is due to different data formats that the tools are based on. For
the system integrator as the only one who knows about the overall communication
between the control units, this means a great effort in handling the several data for-
mats and a potential risk of introducing errors. Therefore, a single database for the
communication information, like in Section .. must be created.
This adaptation is done by configuration tools with integrated code generators.

Here a weakness of today’s SSCs can be seen. There is no unique configuration inter-
face for the whole SSC, but many component there are specific configuration tools. As
a result, it is only possible to optimize the software components, but there is no tool
support for optimizing the overall system. This optimization depends on the expe-
rience and the knowledge of the system developer. Nevertheless, there are already
ongoing efforts to integrate the several tools in an open framework with one unified
user interface.

8.4 Application Example

In this section, an example is given as to how software modularization facilitates the
reuse of software components. Some highlights of the process of modeling the func-
tion architecture and implementing it on hardware shall be demonstrated using the
function exterior light. This function was chosen because it is quite challenging to
reuse this function over different car models without changing the interfaces.
The requirements of this function are derived from existing specifications. Appar-

ently, there are differences in the partitioning of the rear light of cars.This is even true
for different car models of a single car manufacturer. Figure . shows the expected
behavior of the rear lights when combining the on/off states with the brake light on/off
states.We further assume that one carmodel has one bulbwhile another has two bulbs

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Reuse of Software in Automotive Electronics 8-15

Car 1 Car 2

Lights off

Driving lights only

Braking lights only

Both lights on

rear_light_right_outer

rear_light_right_inner

rear_light_left_inner

rear_light_left

rear_light_right

rear_light_left_outer

FIGURE . Example for different arrangements of rear lights.

per side. Further, there is a different level of brightness when the driving light is on
and when braking.
The application exterior light controls the bulbs via interfaces of the SSC. For the

car with two bulbs per side these are “rear_light_left_outer,” “rear_light_left_inner,”
“rear_light_right_inner,” and “rear_light_ right_outer.” For the car with one bulb per
side the interfaces are “rear_light_left” and “rear_light_right.” In addition, the third
brake light must be handled. The underlying layers also support the input interfaces.
Some of them are network interfaces to other ECUs, while some are internal inter-
faces within the ECU where the exterior light function is located. In Figure ., two
nonreusable software components can be seen. Both are implemented as monolithic
modules, so that reuse is prohibited. The hardware is directly reflected in the output
signals of the module controlling the rear lights, so that the modules cannot be reused
when using the same input signals for other rear light arrangements.
In Figure ., the software component implementing the light control logic is

extracted (exterior light common). Adaptation software components, which are dif-
ferent for each car model, are used as interfaces. Two separate signals, brake_light
and driving_light are introduced. These signals are output signals of the new generic

Exterior light car 2Exterior light car 1
ignition rear_light_left_outerrear_light_left

rear_light_right
third_brake_light

rear_light_left_inner
rear_light_right_inner
rear_light_right_outer

third_brake_light

flasher_left_cmd
flasher_right_cmd
postition_light_cmd
low_beam_light_cmd
fog_light_cmd
brake_active

ignition
flasher_left_cmd
flasher_right_cmd
positition_light_cmd
low_beam_light_cmd
fog_light_cmd
brake_active

FIGURE . Not reusable software components.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8-16 Automotive Embedded Systems Handbook

Exterior light common

Exterior light common

Adaptation car 1

Adaptation car 2

ignition brake_light
driving_light

brake_light
driving_light

rear_light_left
rear_light_right

third_brake_light

brake_light
driving_light

rear_light_left_outer
rear_light_left_inner

rear_light_right_inner
rear_light_right_outer

third_brake_light

flasher_left_cmd
flasher_right_cmd
position_light_cmd
low_beam_light_cmd
fog_light_cmd
brake_active

ignition brake_light
driving_lightflasher_left_cmd

flasher_right_cmd
position_light_cmd
low_beam_light_cmd
fog_light_cmd
brake_active

FIGURE . Reusable application software component.

module “exterior light common,” and input signals for the adaptationmodules needed
for each exterior light arrangement.
The underlying hardware must also be considered. Figure . shows that the hard-

ware candiffer significantly in different scenarios. In scenario  shownon the left-hand

Body computer module car 1 Body computer module car 2

Exterior
light

common

Adaptation
car 1

Exterior
light

common
Adaptation

car 2

Digital IO Digital IOLIN

Smart
actuator

Smart
actuator

FIGURE . Different hardware scenarios.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Reuse of Software in Automotive Electronics 8-17

side, the bulbs are actuated directly by digital input and output ports. In scenario  on
the right-hand side of the figure, the third brake light is still handled by a discrete
wire. The rear lights are so-called smart actuators. The main unit controls the smart
actuators via a LIN bus in order to reduce the wiring harness.
Admittedly, this example is a very simple one. Nevertheless, we believe that it at

least shows the principle and that the method is definitely applicable to more complex
applications.
To get an impression of the real complexity of the systems handled in the automo-

tive industry another real-life example, namely controlling the backup light, shall be
explained shortly. In Figure ., one can see that nine ECUs are involved to deter-
mine whether the backup lights should be switched on and which other actions must
be performed when the driver selects the reverse gear.
First, the gearbox transmits the information that the driver has selected the reverse

gear. In all Audi cars, this information must be routed through the central gateway.
One of the body control modules (body control ECU front) hosts the entire exte-
rior light control. It decides that the backup lights must be switched on and transmits
this information to another body control ECU (rear), which actually switches on the
backup lights. The same information is used by the door control modules, which
dip the mirror on the passenger side if the driver has enabled this feature via the
control panel in the driver’s door. At the same time, the roof module must undip
the automatic rearview mirror. Finally, if the car has a trailer, the backup lights of
the trailer must be switched on via the trailer ECU, and the Audi parking system
must switch off the rear sensors, in order not to confuse the driver with a permanent
warning tone.

Body control
ECU rear

Backup lights
vehicle

Mirror switch
in dipping
position?

Dip passenger
Door mirror

Undip auto

Backup lights
Trailer

Rear parking
sensors off

Audi parking
system ECU

Trailer ECU

Roof module

Door control
passenger

Body control
ECU front

Reverse gear

Reverse gear

Gateway
ECU

Gearbox
ECU

Trailer
detected?

Mirror dipping
enabled?

Reverse gear
switch on

Door control
driver

Rearview
mirror

FIGURE . Example reverse gear.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

8-18 Automotive Embedded Systems Handbook

8.5 Conclusion

This chapter gave an overview on the challenge of reusing software in the automotive
domain from the perspective of an automotive manufacturer.
We explained the challenge of reuse in the automotive environment and pointed

out the different notions of reuse at a tier  supplier and at a car manufacturer. The
PLP process model was used to derive the requirements for reusing function soft-
ware. Moreover, a method to classify software according to its potential categories of
reuse was introduced. It was argued that this is a prerequisite to transform the current
process of ordering black box control units into a process where software components
can be reused even after exchanging suppliers. In conclusion, an application example
was shown applying some parts of the presented framework.

References

. Mercer Management Consulting and Hypovereinsbank. Studie, Automobiltechnolo-
gie . München, August .

. CAN in Automation. Controller Area Network (CAN)—an overview. http:// www.can
cia.de/can/, March .

. LIN Consortium. LIN Specification Package Revision .. http://www.lin
subbus.org, September .

. MOST Cooperation. MOST Specification Rev., .. http://www.mostnet.de/down
loads/Specifications/, November .

. H. Heinecke, A. Schedl, J. Berwanger, M. Peller, V. Nieten, R. Belschner, B. Hedenetz,
P. Lohrmann, andC. Bracklo. FlexRay—einKommunikationssystem für dasAutomo-
bil der Zukunft. Elektronik Automotive, September , pp. –.

. B. Hardung, M. Wernicke, A. Krüger, G. Wagner, and F. Wohlgemuth. Development
Process forNetworkedElectronic Systems.VDI-Berichte , VDICongress Electronic
Systems for Vehicles, Baden-Baden, Germany, September , pp. –.

. F. Simonot-Lion. In car embedded electronic architectures: How to ensure their safety.
Fifth IFAC International Conference on Fieldbus Systems and Their Applications—
FeT’, Aveiro, Portugal, July , pp. –.

. Carnegie Mellon Software Engineering Institute. Software Product Lines.
http://www.sei.cmu.edu/plp/product_line_overview.html, February .

. P. Clemens and L. Northop. Software Product Lines—Practices and Patterns. Addison-
Wesley, Boston, MA, .

. S. Thiel and A. Hein. Modeling and using product line variability in automotive
systems. IEEE Software, July , pp. –.

. R. Kirner, R. Lang, G. Freiberger, and P. Puschner. Fully automatic worst-case execu-
tion time analysis for Matlab/Simulink Models. Proceedings th Euromicro Interna-
tional Conference on Real-Time Systems, Vienna, Austria, June , pp. –.

. J. Schuller and M. Haneberg. Funktionale Analyse—Eine Methode für den Entwurf
hochvernetzter Systeme. Vortrag, VDI-Mechatronik-Konferenz, Fulda, May .

. EAST-EEA. Embedded Electronic Architecture. http://www.east-eea.net, April .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Reuse of Software in Automotive Electronics 8-19

. T.Thurner, J. Eisenmann,U. Freund, R. Geiger,M.Haneberg,U. Virnich, and S. Voget.
The EAST-EEA project—a middleware based software architecture for networked
electronic control units in vehicles. VDI-Berichte , VDI Congress Electronic Sys-
tems for Vehicles, Baden-Baden, Germany, September , pp. –.

. J. Hartmann, S. Huang, and S. Tilley. Documenting software systems with views II:
An integrated approach based on XML. Proceedings of the th Annual Interna-
tional Conference on Computer Documentation, Santa Fe, NewMexico, October ,
pp. –.

. MSR. Development of Methods, Definition of Standards, Subsequent Implementa-
tion. http://www.msr-wg.de, April .

. AUTOSAR. Automotive Open System Architecture. http://www.autosar.org, January
.

. OSEK/VDX. Operating System Version ... http://www.osek-vdx.org/mirror/
os.pdf, .

. OSEK/VDX. Communication Version ... http://www.osek-vdx.org/mirror/
com.pdf, .

. A. Krüger, G. Wagner, N. Ehmke, and S. Prokop. Economic considerations and busi-
ness models for automotive standard software components. VDI-Berichte , VDI
Congress Electronic Systems for Vehicles, Baden-Baden, Germany, September ,
pp. –.

. H. Fennel, S. Bunzel, H. Heinecke, J. Bielefeld, S. Fürst, K.-P. Schnelle, W. Grote,
N. Maldener, T. Weber, F. Wohlgemuth, J. Ruh, L. Lundh, T. Sandén, P. Heitkämper,
R. Rimkus, J. Leflour, A. Gilberg, U. Virnich, S. Voget, K. Nishikawa, K. Kajio,
K. Lange, T. Scharnhorst, and B. Kunkel. Achievements and exploitation of the
AUTOSAR development partnership. SAE Convergence Conference, Detroit, MI,
Paper No. --, October .

. Bundesministerium des Inneren. Entwicklungsstandard für IT-Systeme des Bundes.
Vorgehensmodell. Kurzbeschreibung, Bonn, .

. Telelogic. Telelogic Doors Overview. http://www.telelogic.com/products/doorsers/
doors/, April .

. C. Raith, F. Gesele, W. Dick, and M. Miegler. Audi Dynamic steering as an example
of distributed joint development.VDI-Berichte , VDI Congress Electronic Systems
for Vehicles, Baden-Baden, Germany, September , pp. –.

. MathWorks. MATLAB and Simulink for Technical Computing. http://www.math
works.com, April .

. DSpace. TargetLink—Automatic Production Code Generation for Target Implemen-
tation. http://www.dspace.deU/ww/en/pub/products/targetimp.htm, April .

. HIS—Hersteller Initiative Software, Volkswagen AG. HIS/Vector CAN-Driver Speci-
fication V.. http://www.automotive-his.de, August .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9
Automotive Architecture

Description Languages

Henrik Lönn
Volvo Technology Corporation

Ulrich Freund
ETAS

. Introduction . -
. Engineering Information

Challenges . -
Reducing Cost and Lead Time ●
Development Organization and
Information Exchange ● Product
Complexity ● Quality and Safety ●
Concurrent Engineering ● Reuse and
Product Line Architectures ● Analysis
and Synthesis ● Prototyping

. State of Practice . -
Model-Based Design ● Tools ● Problems
beyondModel-Based Design

. ADL as a Solution . -
General Aspects on an Automotive ADL ●

What Needs to Be Modeled
. Existing ADL Approaches -

Forsoft Automotive ● SysML ● Architecture
and Analysis Description Language ●
Modeling and Analysis of Real-Time
and Embedded Systems ● AUTOSAR
Modeling ● EAST-ADL

. Conclusion . -
References . -

9.1 Introduction

Developing automotive electronics is an increasingly challenging task, due to the
increased complexity and expectations of the vehicle systems, the electronics and soft-
ware architectures, and the development processes. This chapter addresses architec-
ture description languages (ADLs) as ameans tomanage the engineering information
related to automotive electronics.
For several reasons, the electronics and software content of the vehicle has grown

rapidly over the years. Pollution legislation initiated the trend by its requirement on

9-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-2 Automotive Embedded Systems Handbook

refined engine control, which could only be accomplished by computer control. This
was an example of a stand-alone computerized system that was replacing an existing
system in a way that was transparent to the driver. Since then vehicle electronics has
evolved toward providing added value by new features, and vehicle control systems
interact to optimize performance and functionality. Along the way, a vast majority
of the vehicle’s functionality and character has become affected by the electronic sys-
tems. As a result, the complexity and criticality of vehicle electronics is now highly
challenging.
The bottleneck is no longer the technology, but the engineering capability. In

particular, managing the engineering information is critical.
The chapter starts with a characterization of the needs regarding engineering infor-

mation management, followed by a description of current states of practice. It then
presents the potential of using an ADL and discusses different alternative approaches.
The chapter closes with a conclusions section.

9.2 Engineering Information Challenges

AnADL for automotive electronics needs tomeet the needs for information exchange
and capture engineering information of various kinds. Belowwediscuss the needs and
challenges that apply.

9.2.1 Reducing Cost and Lead Time

Cost reduction and efficiency in development are of course the root challenge, from
which most of the other aspects are derived. Product development cycles are under
high pressure. For example, Volvo cars has introduced around  new models in the
last  years, compared to half of that in the previous decade. Other manufacturers
may have an even larger increase. Maintaining high quality under these constraints
requires advanced methodology and information management.

9.2.2 Development Organization and Information Exchange

A vehicle is developed in a complex organizational setting, where the engineering
information needs to cross several interfaces. First, the vehicle manufacturer has a
multitude of departments. The prime stakeholders are the engineering departments,
but theseneed to interactwith, for example,marketing and after sales.The engineering
departments are organized according to geographical locations, product lines, vehicle
domains,andworkcontent,andthusrepresentacomplexgridof informationexchange.
Second, the vehicle original equipment manufacturers (OEMs) rely on their first-

tier suppliers for the design, implementation, andmanufacturing of components.This
means that large amounts of product documentation needs to be exchanged between
the supplier and the OEM.The supplier has a large internal organization with similar
information exchange processes as the OEM.
Third, first-tier suppliers have additional suppliers where engineering informa-

tion have to be exchanged in the same way, although the domain-specific content is
reduced for second- and third-tier suppliers.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-3

9.2.3 Product Complexity

The increased complexity of the product stems from the complexity of the individual
functions, and the increased interaction between functions. The increased interaction
is true formost functions, although the active safety domain is a particularly large con-
tributor. Several chassis, telematics, and human–machine interface (HMI) functions
are integrated to provide warnings, assistance, and mitigation.
The advances in system and software architecture, where several applications are

integrated in the same control unit is another trend that adds to the complexity. On
the one hand, componentization, which is an important part of the trend,makes inter-
faces and resource requirements more well defined. On the other hand, issues like
integrity and safety require new mechanisms that add to the complexity.

9.2.4 Quality and Safety

The large influence that electronics and software have on the vehicle’s character
means that errors must be avoided. This is necessary to maintain confidence in a
brand and its electronics functions and to avoid recall costs and expensive reengi-
neering. As safety-related functions are increasingly dependent on software, avoiding
errors is also a safety issue. Specification and configuration faults are common and
cause severe failures, even compared to implementation faults and random compo-
nent faults. Means to improve the development methodology in a way that can reduce
these errors are thus important.

9.2.5 Concurrent Engineering

The reduction of development lead times means that a traditional waterfall devel-
opment is not possible. Instead, people are concurrently and iteratively working on
development aspects that belong to different phases of the ideal product development
cycle. This mode of work requires consistent and up-to-date information.

9.2.6 Reuse and Product Line Architectures

Reuse of functions and subsystems is necessary to capitalize on the development
cost and scale economy that can be achieved. To understand what an existing
function does, to know its interface and resource consumption, requires effective
means of specifying functions. It is also important to be able to distinguish between
implementation-specific parts, and the generic parts that can be reused.
Component-based design is an important approach, which is widely used. Full

use of component-based design requires adequate specifications of the components,
interfaces, and the required infrastructure.

9.2.7 Analysis and Synthesis

Reducing lead time with sustained quality can only be achieved by using state-of-
the-art analysis and synthesis techniques. The engineering information related to

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-4 Automotive Embedded Systems Handbook

embedded system development must therefore include the input data required for the
various analysis and synthesis methods that apply, as well as the output data provided
by these methods.

9.2.8 Prototyping

Early assessment of systems and products under development is important to validate
that the right system is being developed. Virtual prototyping, rapid control proto-
typing, hardware-in-the-loop (HiL), and software-in-the-loop are all state-of-the-art
techniques that make it possible to find and eliminate misunderstandings and mis-
takes in specifications as well as errors during implementations. These techniques rely
on precise (although evolving) information about the systems and their interfaces.
These were some key features of the engineering information challenges that apply,

in particular, in a future scenario with advanced methodology and tools. The next
section will discuss current approaches.

9.3 State of Practice

The last decade in embedded automotive software development was characterized
by the introduction of a standardized operating system as a first step to create
an electronic control unit (ECU) software architecture, the introduction of the
V-cycle development approach as well as the introduction of model-based design in
conjunction with rapid prototyping. This section will explain how this is presently
done.

9.3.1 Model-Based Design

The development of embedded automotive control software is characterized by sev-
eral development steps that can be summarized by using the V-model []. One starts
with the analysis and design of the logical system architecture, that is, defines the
control functions, proceeds with defining the technical architecture, which is a set
of networked ECUs, and then proceeds with software implementation on an ECU.
The software modules will be integrated and tested, then the ECU is integrated in the
vehicle network and last but not least, the system running the implemented functions
is fine-tuned by means of calibration. However, this is not a top-down process, but
requires early feedback by means of simulation and rapid prototyping.

9.3.1.1 Control Algorithm Development

At first, control algorithms are developed. This is mainly a control-engineering task.
It starts by the dynamic analysis of the system to be controlled, that is, the plant.
A plant model is a model of the vehicle (including the sensors and actuators), its
environment (e.g., the road conditions), and the driver. Typically, only subsystems
of the vehicle are considered in special scenarios like the engine with the power
train and the driver, or the chassis with the road conditions. These models can be

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-5

either analytical, such as an analytically solved differential equation, or a simulation
model, that is, a differential equation to be solved numerically. In practice, a model
is often a mixture of both.
Then, according to some quality criteria, the control law is applied. Control laws

compensate the dynamics of a plant. There are many rules to find good control laws.
Automotive control algorithms very often combine closed-loop control laws with
open-loop control strategies. The latter are often automaton or switching constructs.
This means that control algorithms are hybrid systems from a system-theory point of
view. Typically, the control law consists of set-point-generating function with control-
ling and monitoring functions, all realized by the software.The first step is to design a
control algorithm for a vehicle subsystem, which is represented as a simulation model.
Both the control algorithm and the plant model are running on a computer.The plant
is typically realized as a quasicontinuous time model while the control algorithm is
modeled in discrete time. The value range of both models is continuous, that is, the
state variables and parameters of the control algorithm and the plant are realized as
floating point variables in the simulation code. This model is depicted in the upper
part of Figure .. The logical system architecture represents the control algorithm
and the model of driver, vehicle, and environment of the plant. The arrow labeled 
represents the control algorithm design step.

9.3.1.2 Rapid Prototyping

Unfortunately, the employed plant models are typically not detailed enough to serve
as a unique reference throughout the design process.Therefore, the control algorithm
has to be checked in a real vehicle. This is the first time the control algorithm will run
in real time. Therefore, the executable parts of the time-discrete simulation model
have to be chosen carefully. The executable parts have to be mapped to operating sys-
tem tasks while dedicated software modules for hardware access have to be attached
to the control algorithm.
This step is shown in Figure . in linking the logical system architecture to the real

vehicle, which is driven by a driver in a real environment, represented by the arrow
labeled . There are many ways to realize this step. First of all, one can use a dedi-
cated rapid prototyping system with dedicated input/output (I/O) boards to interface
with the vehicle. The rapid development systems (RP-system) consist of a powerful
processor board and I/O boards as depicted. The boards are connected via an inter-
nal bus system. Compared to a series-production ECU, these processor boards are
generally more powerful, have floating point arithmetic units, and provide more read
only memory (ROM) and random access memory (RAM). Interfacing with sensors
and actuators via bus-connected boards provides flexibility in different use-cases. In
brief, priority is on rapid prototyping of control algorithms and not on production
cost of ECUs.
The interfacing needs of the rapid development systems often result in dedicated

electrics on the boards.This limits flexibility, and an alternative is therefore to interface
to sensors and actuators using a conventional ECU with its microcontroller periph-
erals and ECU electronics. A positive side effect is that the software components
of the I/O-hardware abstraction layer can be reused for series production later on.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-6 Automotive Embedded Systems Handbook

Model of software functions Model of driver, vehicle, and environment

1

5

2

4
3

Logical
system

architecture
Technical

system
architecture

f2

f4

SG 2

SG 3

Implementation of software functions Driver, vehicle, and environment

1. Modeling and simulation of software functions as well as of the vehicle, the driver, and the
 environment.
2. Rapid prototyping of software functions in the real vehicle.
3. Design and implementation of software functions.
4. Integration and test of software functions with lab vehicles and test benches.
5. Test and calibration of software functions in the vehicle.

SG 1

Bus

f1

f3

Methods of a model-based development of software functions

FIGURE . Model-based development of a software function.

Figure . shows that the control and monitoring functions run on a bypass system,
which is connected via sensors and actuators to the vehicle.
For rapid prototyping in bypass configuration as shown in Figure ., the ECUs

μC-peripherals are used to drive the sensors and actuators. This means, the control
algorithm still runs in the rapid development hardware whereas the I/O drivers are
running on the series production ECU. The signals W , R, and U are digital values
representing the set point, the sampled reaction of the plant, and the digital actua-
tor signal. The actuator signal is transformed to an electrical or mechanical signal Y
driving the vehicle in the state prescribed by the driver’s wish W∗. W is the sampled
digital signal.The actual state of the vehicle in terms ofmechanical or electrical signals
X is sampled and fed to the control algorithm as digital signal R. Furthermore, there
are noise signals Z like the road conditions that are not directly taken into account
by the control algorithm as measured input signal, but also influence the behavior of

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-7

Driver

Set point
generator

Vehicle

Controller/
monitor

Actuators Controlled
system

Electronic
control unit

Experimental
system

Sensors

Environment

W*

W

W

R

R

U Y X R

U

Z

FIGURE . A typical rapid prototyping system.

the vehicle. Provided no other vehicle signals are used directly, the RP-system uses
only a dedicated communication board in addition to the processor board. The sen-
sor values R, the set point values W , and actuator values U are transmitted over the
high-speed link. Inmost cases, the ECUhardware ismodified with dedicated facilities
to accommodate the high-speed communication link.

9.3.1.3 Implementation and ECU Integration of Control Algorithms

After the rapid prototyping step, the control algorithm is proven valid for use in the
vehicle. The code that was generated for rapid prototyping systems relied on the spe-
cial features of the processing board, such as RAM resources and the floating point
unit. To make the control algorithm executable under limited memory and compu-
tational resources, the model of the control algorithm has to be reengineered. For
example, computation formulas are transformed from floating point to fixed point
control algorithms, and efficiency scalability, modularity, and other concerns are
addressed. The adapted design can be automatically transformed to production code
in a code-generation step.

9.3.1.4 Testing the Technical System Architecture in the Laboratory

The result of the implementation and integration phase is the technical system
architecture, that is, networked ECUs. These ECUs are tested against plant models
in real time. The plant models themselves are augmented by models of the sensors
and actuators and dedicated boards being able to simulate the electrical signals
as they are expected by the ECU electronics. These kinds of systems are called
hardware-in-the-loop systems and consist of processing and I/O boards. The plant

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-8 Automotive Embedded Systems Handbook

model is initialized with a lot of different values simulating typical driving maneu-
vers. Then, the driving maneuver is simulated on the HiL as providing ECU sensor
data as output and accepting ECU actuator data as input. This way it can be checked
whether the ECU integration was successful. HiL testing is represented by the arrow
labeled  in Figure ..

9.3.1.5 Testing and Honing of the Technical System Architecture
in the Vehicle

As written above, there are many use-cases where plant models are not detailed
enough to represent the vehicle’s dynamics. Though a lot of calibration activities can
nowadays be done by means of HiL systems, final honing of a vehicle’s control algo-
rithm still needs to be done with the production software in a production ECU in a
real vehicle. This requires that the technical system architecture be built into a vehi-
cle and tests be done on proving ground. This kind of fine-tuning only concerns the
parameter settings of the control algorithm, not its structure.

9.3.2 Tools

To illustrate tools used for automotive software development, ASCET [] will be
described. ASCET uses an object-based real-time paradigm to construct embedded
automotive control software. The main building blocks are classes for the functional
design and modules for the real-time design. To constitute an ECU, modules are
aggregated in projects. A class aggregates methods having arguments and return val-
ues. Classes provide an internal state bymeans of variables and can aggregate instances
of other classes. Inheritance is not supported.There are two flavors of classes, “simple”
classes and “finite state machine” classes. For embedded real-time modeling, there are
modules that provide messages as means to transfer data between modules. Modules
use instances of classes. Modules provide so-called processes that read and write mes-
sages and call methods of a class.The processes are realized in C-Code as subroutines
having no formal arguments. This allows efficient implementation of the interprocess
communication but restricts the number of module instances per ECU to one.
Figure . shows a brake-slip-control algorithm as ASCET module. It employs for

each wheel an instance of the class-slip-control. The wheel speeds as well as the vehi-
cle speed are provided as receive message of a module. The control pressure for each
wheel is provided as send message. Messages realize a thread-safe communication
mechanism, which means that every message will be guarded by embedded real-time
interprocess communication means. Projects collect all modules that run on an ECU.
The throttle-control algorithm shown in Figure . shows eight modules.Thesemod-
ules provide  processes. Some of these processes are only used for initialization. The
execution scheme of all modules on that ECU is provided by allocating the processes
to tasks as shown on the left-hand side of Figure ..Themessages of the modules are
connected by name-matching on the ECU global project level.The resulting data flow
is shown in the connections of Figure . and listed as a table on the right-hand side
in Figure ..

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-9

ReferenceSpeed_Determination_ReferenceSpeed

calc

calc

1/process

/5/process

/6/process

/7/process

Brake_Slip_Control_PressureRequest_RL

Brake_Slip_Control_PressureRequest_FR

Brake_Slip_Control_PressureRequest_FL

Brake_Slip_Control_PressureRequest_RR

/8/process

2/process

controlPressure
SlipControl

controlPressure
SlipControl

referenceSpeed
wheelSpeed

referenceSpeed

referenceSpeed

wheelSpeed

controlPressure
SlipControl

wheelSpeed

referenceSpeed
controlPressure

SlipControl

wheelSpeed

FL_SlipCtr

FR_SlipCtr

RL_SlipCtr

RR_SlipCtr

calc

calc

3/process

4/process

VehicleData_WheelSpeed_FL

VehicleData_WheelSpeed_FR

VehicleData_WheelSpeed_RL

VehicleData_WheelSpeed_RR

FIGURE . Brake-slip-control algorithm in ASCET.

The execution paradigm of ASCET project is: A task calls a process. The process
reads from receive messages and calls the methods of the class instances by passing
message data to arguments. Then, the processes call other methods of the instances
receiving return values that will then be written to send messages. Then the next pro-
cess in the task is called. Data integrity is ensured by copying mechanisms of ASCET
messages.
ASCET models are transferred to executable code by applying code generation to

projects that will generate the code for the modules and classes. For production code
generation, fixed point arithmetic is applied as shown in Figure .. For example, the
wheelslip determination of a very simple antilock braking system (ABS)∗ control algo-
rithmas shown inFigure .where thewheelslip is given by the difference of thewheel
velocity and the vehicle velocity (represented by the reference speed) and normalized
by the limited vehicle velocity (represented by the reference value).
The resulting code is generated in a straightforward manner:

self−> WheelSlip−> val = (referenceSpeed− wheelSpeed)/self−>
ReferenceValue−> val;

This changes completely when the floating point arithmetic is abandoned and the
fixed-point arithmetic is introduced.Thismeans not only to use integer values instead

∗ If a wheel locks under braking, the brake opens for some microseconds to let the wheel regain velocity
with respect to the vehicle’s actual speed.Only runningwheels can carry lateral forces that allows vechicles
to steer and, for example, to avoid obstacles on the road.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-10 Automotive Embedded Systems Handbook

Pl
at

tfo
rm

 so
ftw

ar
e

fo
r A

D
 u

ni
t f

or
 E

CU A
dI

n0
A

dI
n1

A
dI

n2
A

dI
n3

A
dI

n4
A

dI
n5

A
dI

n6
A

dI
n7

A
dI

n8
A

dI
n9

Si
gn

al
co

nv
er

sio
n

of
 in

pu
t s

ig
na

l

In
pu

t_
A

na
lo

g

St
im

ul
i_

bz
m

St
im

ul
at

io
n

Co
nt

ro
lle

r
G

en
er

at
io

n
of

 P
W

M
sig

na
l f

ro
m

co
nt

ro
lle

r o
ut

pu
t

ou
t

ou
t

no
rm

al

ta
rg

et
_p

os

ou
t

ac
tu

al
_v

al

ta
rg

et
_p

os
A

dI
n0do
St

im
ul

i

A
dI

n1
0

A
dI

n1
1

A
dI

n1
2

A
dI

n1
3

A
dI

n1
4

A
dI

n1
5

In
itA

na
lo

gI
n1

6

ac
tu

al
_v

al

co
nv

_a
d2

va
l

PI
D

T1
_M

od
ul

e

O
ut

pu
t_

PW
M

co
nv

_o
ut

2p
w

m
pw

m
_d

ut
yc

yc
le

_1
_S

G

Si
gn

al
co

nv
er

sio
n

of
 o

ut
pu

t

co
nv

er
t

Co
nv

er
te

r

Pw
m

O
ut

7_
7

Pw
m

O
ut

7_
2

Pw
m

O
ut

7_
2

Pw
m

O
ut

7_
7

In
itP

w
m

O
ut

7_
2

In
itP

w
m

O
ut

7_
7

pw
m

_d
ut

yc
yc

le
_1

pw
m

_d
ut

yc
yc

le
_2

pw
n_

du
ty

cy
cl

e_
1

pw
n_

du
ty

cy
cl

e_
2_

SG
pw

n_
du

ty
cy

cl
e_

1_
SG

pw
n_

du
ty

cy
cl

e_
2

Pl
at

fo
rm

 so
ftw

ar
e

fo
r P

W
M

 u
ni

t o
f E

CU

pw
m

_d
ut

yc
yc

le
_2

_S
G

A
dI

n3
A

dI
n1

A
dI

nt
er

ru
pt

A
na

lo
gI

n1
6

A
na

lo
gI

n1
6

FI
G
U
R
E
.


Si
m
pl
em

od
el
of

a
th
ro
ttl
e
co
nt
ro
lle
ri
n
A
SC

ET
.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-11

Tasks
1 - Init (active)

2 - Task_1ms (active)
AnalogIn16::AnalogIn16
conv_ad2val::Input_Analog
doStimuli::Stimuli
normal::PIDT1_Module
out::PIDT1_Module
conv_out2pwm::Output_PWM
convert::Converter
PwmOut7_2::PwmOut7_2
PwmOut7_7::PwmOut7_7
measurement_a::Distab12

measurement_b::Distab12

measurement_c::Distab12

3 - HW_Task (active)

4 - Task_10ms (active)

5 - Task_100ms (active)

AdInterrupt::AnalogIn16

InitAnalogIn16::AnalogIn16

pwm_dutycycle_1_SG::mesg[cont] Output_PWM Converter

Converter

Converter

Converter

Output_PWMpwm_dutycycle_2_SG::mesg[cont]

pwm_dutycycle_1::mesg[cont]

pwm_dutycycle_2::mesg[cont]

AdIn0::mesg[cont]

AnalogIn16

AnalogIn16

PIDT1_Module

PIDT1_Module

PIDT1_Module

Output_PWM

Input_Analog

Input_Analog

Input_Analog
out::mesg[cont]

actual_val::mesg[cont]
target_pos::mesg[cont]

AdIn1::mesg[cont]

AdIn3::mesg[cont]

AnalogIn16 Stimuli

Stimuli

PwmOut7_7

PwmOut7_2

InitPwmOut7_2::PwmOut7_2
InitPwmOut7_7::PwmOut7_7

FIGURE . Task process schedule (left) and message flow in the throttle controller (right).

Name
referenceSpeed/calc
ReferenceValue
WheelSlip
wheelSpeed/calc cont

cont
cont
cont 0 0

0
0
00

−32,768 32,767
32,767
65,535

65,535 Auto Yes
Yes
Yes
Yes

No
No

0.0

0.0

−128.0
255.99609

255.99609

127.99609

127.99609−128.0No
No

Auto
Auto
Autospeed16bit

speed16bit
RelSlip16bit
RelSlip16bit−32,768

int16
int16
uint16

uint16

Type Impl.
Type

Impl.
Min

Impl.
Max Formula Zero

not incl. Min MaxLimit
Assignment

Limit to ma
bit lengthQ

FIGURE . Annotation for  bit implementation.

referenceSpeed/calc

wheelSpeed/calc

ReferenceValue

WheelSlip

/2/calc
÷−

FIGURE . Model extract for wheelslip determination.

Supplier
A

Supplier
B

Supplier
C

Integration
stage 1

Distributed
development

Integration
stage 2

Integration
stage 3

Modification
stage 1

Modification
stage 2

Supplier
B

Supplier
C

Supplier
A

FIGURE . Integration problems in ECU networks.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-12 Automotive Embedded Systems Handbook

of floats, but also to imply a physical meaning. For example, the reference speed
ranges from  to  km/h and is represented by bit patterns from  to ,, which
associates to / km/h per bit. Of course, this quantization has to be reflected by the
generated C-Code, where additional operations are introduced.

_WheelSlip = (sint16)((referenceSpeed− wheelSpeed << 8)/
(sint32)_ReferenceValue);

ASCET can be used as a behavioral modeling tool in AUTomotive Open System
ARchitecture (AUTOSAR) [] (Chapter ) or other ADLs. From the integration point
of view, clustering plays an important role. In AUTOSAR systems, for example, pro-
cesses are grouped to runnable entities while several modules establish the internal
behavior of atomic software components. The feasibility of this approach has been
shown on integrating a cruise-control function on an AUTOSAR ECU [], thus
leveraging the advantages of model-based design and ADLs.

9.3.3 Problems beyond Model-Based Design

In the past, model-based design wasmainly used for the design of single ECUs and led
to significant quality and productivity improvements. However, the interoperability
description of all functions is still based on a communication matrix of all controller
area network (CAN) messages, which is given in parts to the appropriate supplier.
Then, every supplier involved will start their own development cycle according to
the V-model. This situation is depicted on the left-hand side of Figure .. The first
integration attempt (Integration Stage ) with the final ECUs at the vehicle manufac-
turer’s premises usually leads to a failure. As a rule, some suppliers have to redesign
their system only to see it failing again at the next integration (Integration Stage ),
for example, due to problems with another ECU.
Analyzing the reasons for failure in the integration phase exhibits the follow-

ing problems: timing problems, interface problems, and communication problems
between the ECUs. All problems are interrelated and need to be solved at the appro-
priate level of abstraction. The introduction of a configurable middleware layer in the
ECU software architecture as well as an ADL to provide the configuration informa-
tion is currently seen as the solution to the integration problems []. Furthermore, the
ADL has to integrate the model-based design approach to leverage design advantages
already existing in the current ECU-centric design approach.

9.4 ADL as a Solution

To progress from current best practices into a situation where the engineering
information is managed in a more effective way, an ADL is useful. Architecture is
defined by the IEEE as “The fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the prin-
ciples guiding its design and evolution.” An ADL is in its widest sense an approach to
documenting the architecture in a semantically precise way. For the domain of
automotive electronics and software, an ADL should address the challenges of

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-13

engineering information management identified above. We will continue by
discussing how this can be done.

9.4.1 General Aspects on an Automotive ADL

AnADL that constitutes an agreed approach to documenting automotive software and
electronic architectures serves several purposes. The language provides an ontology
that helps reasoning about the systems among the stakeholders. A supplier and OEM,
or engineers in different departments will thereby be able to understand each other’s
specifications immediately. The learning curve of new approaches and notations will
thereby be less steep.
With semantically and syntactically precise description alongwith agreed exchange

formats, it will be possible to exchange descriptions between different tools. To reach
this goal, standardization is important, irrespective of whether it is a de facto standard
or a formal standard.
To capture the different aspects of an automotive component, system, or entire

vehicle, several aspects need to be modeled. This can be achieved by including many
aspects in the same model, or by providing separate models depending on concerns.
Examples of concerns are hardware versus software, system versus environment, and
abstract versus concrete descriptions. In the former case, where an integrated model
is used, the complexity of those models makes it necessary to organize them in a
way that provides separation of concerns. If different models are used, the definition
of views and viewpoint as defined in IEEE  [] and systems modeling language
(SysML) [] is useful. The draw-back in using separate models is that the traceability
between aspects is lost. If possible, the ADL should therefore address several aspects
in one integrated model.
We will continue with a discussion of the modeling support expected of an

automotive ADL.

9.4.2 What Needs to Be Modeled

The engineering information that an automotive ADL should cover include structure,
behavior, requirements, and variability as well as support for verification and valida-
tion and synthesis. These categories of information are ideally covered entirely by an
ADL, to allow for information integration and traceability between parts of the infor-
mation. Alternatively, a well-defined set of description means can be defined where,
for example, the ADL covers structure and behavior and other aspects are handled by
external tools and notations. Below, we will describe each of these areas.

9.4.2.1 Structure

By structure we mean the logical or physical organization of the modeled system.The
structure is thus different depending on the aspect of the system that is considered.
It may be the functional decomposition with functions, ports, and connections or
the software architecture with its software components and interfaces. For hardware
it means the physical components and connectors. In each case, the structure is
the backbone of the system description, and modeling entities for other system

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-14 Automotive Embedded Systems Handbook

information should relate to the structural entities. For example, behavioral mod-
els, requirements, and validation/verification models can be linked to the relevant
functional, software, or hardware component.

9.4.2.2 Behavior

Modeling behavior is in one sense evenmore important than structure, since it defines
what the component or entire system should do. Behavioral models also have the role
to capture the external environment in order to allow validation and verification in a
realistic context.
The nature of behavioral models differ depending on these two purposes. Envi-

ronment models should describe the external world, or plant, within the vehicle and
outside the vehicle. The detail level should be sufficient to support the analysis at
hand, while maintaining sufficient simulation or analysis performance. Parts of the
environment model may therefore occur in several variants to match different needs.
Behavioral models for the software-based electric/electronic system are of at least

three different kinds: () abstract descriptions of behavior for early or implementation-
independent simulation and analysis; () concrete descriptions of behavior for
implementation-oriented simulation, analysis, and code generation; and () actual
code for simulation, analysis, and compilation to target system.
The decomposition of the behavioral definitions should ideally match the decom-

position of the structure, that is, each structural component should have a correspond-
ing behavioral definition. In case this is not possible, it should be possible to identify
which set of structural components correspond to which behavioral definition(s).
It is also highly important that behavioral definitions of different components be

composed to a behavioral model that corresponds to the complete system or a subset
of it.

9.4.2.3 Requirements

System requirements represent an important category of engineering information,
and should thus be supported by the ADL. In addition, requirements are related to
other requirements and to the system entities they constrain. Including requirements
in an ADL makes it possible to capture the traceability between requirements and
between components and their requirements. With this modeling support, it is possi-
ble to identifywhich requirementswere the underlying reasons for a particular refined
requirement, or to see what requirements constrain a particular component.
Requirements may be textual or model based, informal or formal. By model based

we mean that the requirement is expressed using modeling entities in the ADL, such
as expressing a timing requirement by referring to events on ports, or expressing an
allocation requirement by referring to the target hardware and the allocated software.

9.4.2.4 Variability

Variability is a highly important aspect on automotive software and systems develop-
ment. Variability needs to be taken into account from the beginning of development

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-15

to allow reuse, define appropriate product lines, and ensure correctness of con-
figurations. Another role of variability is to define different configurations during
development, for example, for a particular review or analysis.
System models need to capture the needs and requirements that motivate differ-

entiation between products. It is also necessary to define the traceability between
variability in components and the variability that is visible externally. Finally, manag-
ing the component variability is important, that is, defining the variants and defining
the rules for when the respective variant is chosen. With a clear representation of
variability, the implementation in terms of parameterization, hardware, and software
component inclusion can be managed appropriately. Variability is covered in more
depth in Chapter .

9.4.2.5 Verification and Validation

Verification and validation of vehicle systems are done in several development phases
and involve different parts of the vehicle. The purpose is to validate for the marketing
department whether the vehicle’s functions are satisfactory or to verify whether the
system requirements have been satisfied in specifications and implementations. The
techniques that may be used involve inspection, simulation, prototyping, testing, and
numerical and formal analyses.
Important simulation techniques includeHiL (complete vehicle system is validated

with an interface to remaining vehicle), software-in-the-loop (software of vehicle
system is validated with an interface to remaining vehicle including hardware and
platform software of local control unit), and rapid control prototyping (functional
representation of vehicle system with interface to sensors and actuators of the actual
vehicle, allowing validation in real vehicle).
Many of these techniques require models of the system under development as

well as its surrounding systems and the vehicle’s mechanical parts. Other engineering
information that can be supported by an ADL includes definitions of the verifica-
tion/validation setup, input stimuli, and representation of verification outcome and
verdict. A particularly useful aspect of ADL support is that the verification setup,
inputs, and outputs can be rigorously documented.
Examples of analyses that benefit from a model-based representation of the system

are safety analyses such as fault tree analysis and failure modes and effects analysis;
timing analysis such as bus schedulability analysis and CPU response time analy-
sis; and formal verification for verifying formally expressed properties and system
behavior.

9.4.2.6 Synthesis

The development process from user needs over requirements specifications to final
implementations can be seen as a continuous refinement of engineering informa-
tion. In some of these steps, automatic synthesis is possible, most notably code
generation out of more abstract behavioral definitions. Other examples of synthe-
sis include automatic software-to-hardware allocation or automatic generation of
tests. These synthesis steps require adequate representation of the input information.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-16 Automotive Embedded Systems Handbook

For code generation it means behavioral representations that are ideally part of the
ADL, or means to identify behavioral representations in external notations. Allo-
cation requires representation of the software and its safety requirements, resource
requirements for computation, memory and communication, various requirements
that constrain allocation, end-to-end response time analysis, etc. For hardware the
same characterization is needed in terms of what it provides. Test generation as a
final example, requires representation of the requirements and properties the test shall
verify and representation of the behavior and interfaces of the system under test. In
each of these cases, the level of detail in the representation affects the accuracy of the
results. For example, a preliminary and abstract signal-to-link allocation may have to
be changed when the final frame set and bus capacity are compared.

9.5 Existing ADL Approaches

This section describes five approaches that are relevant for modeling of automotive
electronic systems.

9.5.1 Forsoft Automotive

The Forsoft Automotive project [] integrates requirements management, software-
component design, and behavioral modeling by means of the automotive modeling
language (AML). The AML is a metamodel and supports five abstraction levels:

. Signals
. Functions
. Logical architecture
. Technical architecture
. Implementation

Signals represent interfaces that are referenced by functions. The composition of
functions represent the logical architecture realizing the control algorithm while the
technical architecture comprises the whole physical network of ECUs in addition to
the basic software modules running on that ECU.
AML representations of the first three abstraction levels are given by the unified

modeling language (UML) modeling tool, UML suite, and the graphical modeling
and code-generation tool, ASCET. The AML description is based on interconnected
functions. A function is composed of ports that are typed by interfaces. Interfaces
carry signals. Functions can be grouped hierarchically. Functions can have variants.
A variant of a function implements only subsets of the function with respect to ports.
Interfaces can also have variants where the variants are always subsets. This concept
is shown in more detail in Figure .. At the top, there is the function window lifting
with its signal interfaces interrupt, window–control, and comfort control. The driver
door function provides interfaces for window and comfort control whereas the vari-
ants codriver door and passenger door just employ the window–control interface. All
variants employ the interrupt interfaces.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-17

Driver door

Window_Lifting

Codriver door

Passenger door

«variant»

«variant»

«variant»

Window control Comfort control

Interrupt

Window controlWindow control

Interrupt

Window control

Comfort control

FIGURE . Variant concept based on subsets.

The logical architecture is represented by a variant of the hierarchical function.
The technical architecture is given by networked ECUs including all basic software
modules for communication in addition to the leaf functions of the logical architec-
ture.Of course, all delegation and propagation connectors are resolved in themapping
step. Implementation means code generation of the leaf functions as well as manual
coding or configuration of basic software modules realizing the interface between the
ECU hardware and the leaf functions of the control algorithm.

9.5.2 SysML

SysML [] is the Object Management Group (OMG) systems modeling language
(Figure .). It was initiated in  as a response to the OMG Systems Engineering

SysML
Diagram

Behavior
diagram

Structure
diagram

Requirement
diagram

Internal block
diagram

Block
definition
diagram

Package
 diagram

Parametric
diagram

Use case
diagram

State machine
diagram

Sequence
diagram

Activity
diagram

Same as UML 2

Modified from UML 2

New diagram type

FIGURE . The SysML diagram taxonomy. (From Object Management Group, Systems Mod-
eling Language (SysML) Specification, ptc/--, . With permission.)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-18 Automotive Embedded Systems Handbook

Request for Proposal, with early participation from tool vendors, defense, aerospace,
and agriculture industry. It is a UML profile extending UML version ., and also
complies to data interchange according to STEP (ISO -).
SysML extends UML with new modeling concepts and diagrams for systems

engineering. It also identifies the parts ofUML that are relevant for systems engineer-
ing modeling. The new concepts concerns requirements, structural modeling, and
behavioral constructs. New diagrams include requirement diagram and parametric
diagram, and adjustments of activity, class, and composite structure diagrams. Tab-
ular representations of requirements or allocations, for example, are also included as
an alternative notation.
SysML is a generic approach, which can and should be specialized for the respective

domain where it is used.This is possible, since the language is a UML profile that can
be further extended.

9.5.3 Architecture and Analysis Description Language

AADL is the SAE architecture and analysis description language []. It is based on the
MetaH, a language for the definition of software and hardware components and their
allocation. The origin ofMetaH and the AADL is defense and aerospace domains, but
the target is currently embedded systems in general. It is an SAE standard since .
The focus of AADL is on task structure and interaction topology, although gen-

eralization to more abstract entities is possible. It supports the definition of mode
handling, error handling, interprocess communication, etc. As such, it acts as a spec-
ification of the embedded software, which can be used for autogeneration of an
application framework where the actual code can be integrated smoothly. The lan-
guage contains various analysis support, for example, for safety and timing. Further,
a behavioral annex is proposed, to allow a common behavioral semantics for AADL
descriptions.
Currently, the AADL is the subject of several research efforts where tools and anal-

ysis extensions are investigated, for example, the TOPCASED project in France []
or work at the SEI in the United States [].

9.5.4 Modeling and Analysis of Real-Time and Embedded
Systems

The UML profile for modeling and analysis of real-time and embedded systems
(MARTE) [,], is an approach to modeling real-time and embedded systems in
UML, and to support analysis of relevant properties (Figure .). Both hardware
and software aspects are supported. MARTE is currently an OMG request for pro-
posal, with a major submission from the proMarte consortium []. It is meant to
replace the current profile for schedulability, performance, and time [].
The Marte profile is organized in three major packages: time and concurrent

resource, runtime environment (RTE) modeling, and RTE analysis. Time and
concurrent resource is a kind of infrastructure for MARTE modeling and analysis.
RTE modeling extends UML with constructs for modeling-embedded software,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-19

MARTE

Time and concurrent resource modeling (TCRM)

Generic quantitative analysis modeling (GQAM)

Schedulability analysis modeling Performance analysis modeling WCET analysis modeling

Real time and embedded modeling (RTEM)

«merge»

«import» «import»
«import»

«merge»

FIGURE . Modeling and analysis of real-time and embedded systems, profile architecture.

hardware, and allocation. The RTE analysis extends UML with concepts for schedu-
lability and performance analysis.
The Marte profile is not an ADL, but together with the UML constructs, much of

the modeling needs of an ADL is covered.

9.5.5 AUTOSAR Modeling

As written above, ECU software-architectures employing a middleware and using an
ADL for configuration are seen as means to overcome integration problems in net-
worked systems. AUTOSAR proposes an RTE as middleware and a virtual functional
bus (VFB) as ADL. On the VFB, all control algorithm-related interface problems are
resolved.TheVFB is organized in hierarchically interconnected software components.
In a mapping and configuration step, the VFB is transformed to networked ECUs
running parts of the control algorithm.
The main concepts of AUTOSAR are

• VFB view of interconnected application software components
• Software component description of interfaces, internal behavior, and
runnables

• ECU network description
• System constraint description with premapped signals
• Mapping description of software-components to ECUs, connectors to
frames, and runnables (the concurrency elements of software compo-
nents) to tasks

• Layered ECU software architecture with configurable basic software
modules

• Configuration description of the basic software modules

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-20 Automotive Embedded Systems Handbook

ECU I

Virtual functional bus

A
U

TO
SA

R
SW

-C
1

A
U

TO
SA

R
SW

-C
2

A
U

TO
SA

R
SW

-C
3

A
U

TO
SA

R
SW

-C
n

...

ECU II

A
U

TO
SA

R
SW

-C
1

A
U

TO
SA

R
SW

-C
2

A
U

TO
SA

R
SW

-C
3

ECU m

A
U

TO
SA

R
SW

-C
n

RTE

Basic software

RTE

Basic software

RTE

Basic software

...

VFB view

Mapping

System contraint
descriptionECU

descriptions
Tool supporting deployment

of SW components

Gateway

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

SW-C
Descriptions

FIGURE . TheAUTOSAR approach.

The interaction of these concepts is shown in Figure .. At the top, there are the
application software components with their ports. The ports are typed by interfaces
and can be either of sender/receiver type (arrow shape) or of client/server type (UML
lollipop notation). Additionally, there are so-called service ports that interface to stan-
dardized ECU services like nonvolatile RAM (NVRAM)management or diagnostics.
Ports of the application software components are connected by connectors. These
connected application software components establish the VFB representation of the
system and contain the control algorithms. It is virtual because no assumptions are
made on the underlying E/E-architecture. It can be designed completely indepen-
dently and allows a relocation of software-components from one ECU to another
in different vehicle types. The E/E-architecture is reflected by the ECU resource

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-21

description and the system-constraint description. Both are used to describe the type
and characteristics of the employed ECUs, networks, and gateways. It is shown in
the middle of Figure .. The system constraint description might also contain a
mapping description of system signals to frames. It therefore constitutes a partial com-
munication matrix. According to a chosen mapping criterion, application software
components are mapped to ECUs. All connectors, connecting software components
mapped to different ECUs, are subject to signal mapping.Thismeans that the data ele-
ments of the port’s interface are allocated to frames on the bus system.After all of these
“remote” connectors have beenmapped, the communicationmatrix is established and
the communication stack of all ECUs can be configured. All connectors connecting
software components allocated to the same ECU will be realized by the RTE. The
RTE is configured according to the software component andmapping description and
provides real-time embedded interprocess-communication means. These means are
hidden by macros so that a runnable of a software component can read data from the
RTE or write data to the RTE. To provide an optimal implementation of the RTE, it is
configured taking into account the software-to-task allocation and the task sched-
ule. In highly preemptive systems the resource consumption of an RTE might be
higher than in a cooperative system.The resulting system is shown in the lower part of
Figure .. Here all software components have been mapped to ECUs, the RTE, the
COM stack, and all other basic software modules are configured.

9.5.6 EAST-ADL

The EAST-ADL was developed in the ITEA project EAST-EEA []. The EAST-
EEA project was about reducing the hardware dependency of automotive software,
allowingmore flexibility regarding the allocation of software. It was recognized that an
ADL was needed in order to manage the specifications of software and hardware. The
EAST-ADL has subsequently been applied in e.g., the EASIs project [] and refined
in the ATESST project [] to EAST-ADL.
The scope of the EAST-ADL is the engineering information required for developing

automotive software: the functions and software itself, requirements, hardware, and
environment. Figure . shows the abstraction levels that are used to organize the
system information in the EAST-ADL.

9.5.6.1 System Model Organization

Vehicle Level
This abstraction level represents the user’s perception of the vehicle. The model con-
tains vehicles and the features that it offers. Requirements, expressed on an abstract,
implementation-independent form may be assigned. It is possible to configure the
vehicle, that is, define which features are included in a particular vehicle.

Analysis Level
This level contains models with an abstract description of the functionality of the
EE architecture. Focus is on what the systems should do, rather than how, although
some choices aremade. For example, a preliminary functional decomposition ismade

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-22 Automotive Embedded Systems Handbook

East-ADL2 model

Design architecture

Vehicle level

Analysis level

Design level

Implementation level

EE architecture

Vehicle feature model

Functional design
architecture

AUTOSAR model
(AUTOSAR system)

Hardware design
architecture

Analysis architecture Environm
ent m

odel

Functional analysis architecture

 Environment

FIGURE. TheEAST-ADL abstraction layers used to organize the systemmodel for electronic
and electrical architecture and environment.

including implementation-independent interface definitions, abstract behavior can
be included and requirements are distributed. These models are used for analysis and
early assessment prior to developing the actual solutions, that is, the design. It is also
a means to investigate the principal properties of systems throughout the life cycle,
without having to go to the detailed design.

Design Level
The design level contains the detailed specification of the functions and hardware of
the EE architecture. Functional interfaces are specified in detail, redundancy is added,
and adaptations for efficiency, specific hardware, and middleware, etc. are included.
The design level specification of software is equivalent to the final implementation,
although it is still a functional descriptionwith a certain degree of freedomversus cod-
ing, componentization, task allocation, etc. Application software and middleware are
separated, but both are represented on the design level, with this degree of detail. The
hardware representation contains ECUs, busses, sensors, actuators, etc., as necessary
for the specification, analysis, and configuration of functional behavior.

Implementation Level
The implementation level models for software represent the final implementation in
terms of code, task allocation, communication/data exchange implementation, mid-
dleware configuration, etc. The hardware representation has the same granularity as
on design level. More detailed hardware specifications, such as circuit diagrams and
VHDL descriptions are not in the scope of EAST-ADL, and generally not necessary
for function/software development.
The EAST-ADL relies on AUTOSAR modeling concepts to capture the system

on implementation level. “Realization” relations between the AUTOSAR constructs
and entities on higher abstraction levels are used to link from implementation to the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Automotive Architecture Description Languages 9-23

more abstract entities. This provides the necessary traceability from one or several
AUTOSAR entities to one or several EAST-ADL entities.

9.5.6.2 Environment Modeling

The environment to the EE architecture, often called plant model, is represented
on each abstraction level. The purpose is to capture the assumptions regarding the
environment, and to allow analysis and simulation of vehicle functions in their
context.
The detail level for the EE architecture increase for lower abstraction layers. The

character of the environmentmodel is independent of abstraction level, and is decided
by the analysis needs. For example, a simulation for safety analysis may have a very
simple engine model, while analysis of a gear selection strategy needs to be more
detailed.Thus a set of different environment models can be included to cover different
needs.

9.5.6.3 Traceability

TheEAST-ADL supports an integratedmodel containing several parts or (sub)models
representing each of the abstraction levels described above. There are links between
entities on different abstraction levels and in different parts of themodel. For example,
“realization” links from components on analysis and design level identify the feature
that they realize.

9.6 Conclusion

The complexity and criticality of automotive software and electronics is at a level
where adequate support for the management of engineering information is neces-
sary.There are several advantages with introducing an automotive ADL.Most of them
relate to the fact that a large share of the engineering information can be contained in
the same structure.
At the same time there are challenges with introducing an ADL. One issue is the

choice of approach, given the different alternatives described in this chapter. Another
is the choice of scope, that is, restricting to only software architecture of individual
control units or capturing the requirements, variability, functions, software, and hard-
ware of an entire vehicle. Amajor difficulty, and also an issue that cannot be solved by
mere technical solutions, is the alignment with company internal processes and prac-
tices. Linked to this is the user acceptance. This requires education and a thorough
understanding of the role of the new approach and tools.

References

. Schäuffele, J. and Zurawka, T. Automotive Software Engineering. Vieweg Verlag,
Wiesbaden, .

. ETAS GmbH. ASCET User Guide V ., Stuttgart, . Available at: www.etas.de.
. www.autosar.org

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

9-24 Automotive Embedded Systems Handbook

. Freund,U. andMöstel,A.Model-basedOEMSoftware Branding of AUTOSAR ECUs.
In: Fifth AUTOSAR Premium-Member Conference, Brussels, .

. Thurner, T. et al. The EAST-EEA project—A middleware based software architecture
for networked electronic control units in vehicles. In: Electronic Systems for Vehicles
(VDI Berichte ). VDI-Verlag, Düsseldorf, , p.  ff.

. IEEE. Recommended Practice for Architectural Description of Software-Intensive
System. IEEE standard .

. Object Management Group. Systems Modeling Language (SysML) Specification,
ptc/--, .

. Braun, P. and Rappl, M. A model-based approach for automotive software devel-
opment, in OMER—Object-Oriented Modeling of Embedded Real-Time Systems,
Lecture Notes in Informatics (LNI), Volume P, GI .

. Software Engineering Institute. Available at: http://www.sei.cmu.eduSAE Interna-
tional, Architecture Analysis & Design Language (AADL). SAE standard AS,
SAE November .

. The TOPCASED project. Available at: www.topcased.org
. Gérard, S. and Espinoza, H. Rationale of the UML profile for MARTE. In: FromMDD

Concepts to Experiments and Illustrations, Gérard, S., Babeau, J.-P., and Champeau, J.
(Ed.), ISBN: ---, ISTE, September , pp. –.

. Object Management Group. UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) RFP, realtime/--, .

. ProMarte consortium. Joint UML Profile for MARTE Initial Submission,
realtime/--, November . Available at: http://www.omg.org/cgi-bin/doc?
realtime/--.

. Object Management Group. UML Profile for Schedulability, Performance, and Time,
Version ., formal/--, .

. EAST-EEA, Electronic Architecture and Software Technologies—Embedded
Electronic Architecture. ITEA Project . Available at: www.east-eea.net

. EASIS. Electronic Architecture and SystemEngineering for IntegratedSafety Systems.
Available at: http://www.easis.org

. Advancing Traffic Efficiency and Safety through Software Technology, ATESST. EC
IST FP project. Available at: http://www.atesst.org.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10
Model-Based Development
of Automotive Embedded

Systems

Martin Törngren
Royal Institute of Technology

DeJiu Chen
Royal Institute of Technology

Diana Malvius
Royal Institute of Technology

Jakob Axelsson
Volvo Car Corporation

. Introduction and Chapter
Overview. -
What Is MBD? ● Chapter Overview

. Motivating MBD for Automotive
Embedded Systems -
Role of MBD in Automotive
Embedded Systems Development ●
MBDMeans ● Driving Factors for
MBD ● Potential Benefits of MBD
Approaches

. Context, Concerns, and
Requirements . -
Contextual Requirements on MBD ●

Product Concerns Addressed
by MBD Efforts

. MBD Technology -
Modeling Languages: Abstractions,
Relations, and Behavior ● Analysis
Techniques ● Synthesis Techniques ●
Tools

. State of the Art and Practice -
Automotive State of Practices ● Research
and Related Standardization Efforts

. Guidelines for Adopting MBD
in Industry . -
Strategic Issues ● Adopting MBD:
Process and Organizational
Considerations ● Desired Properties
of MBD Technologies ● Common
Arguments against MBD and Pitfalls

. Conclusions . -
Acknowledgments . -
References . -
Internet References—October  -

10-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-2 Automotive Embedded Systems Handbook

10.1 Introduction and Chapter Overview

Vehicles are being transformed into autonomous machines that assist drivers when
accidents are about to occur, inform about traffic conditions, diagnose and upgrade
themselves as required, while providing comfort and entertainment functionali-
ties. The evolution of embedded systems technology has provided an important
enabler for such new functionalities and improved qualities. In this context it can
be noted that an estimated % of the innovations over the last  years are related to
information and communication technologies []. Cars are becoming computers on
wheels.
The impact of introducing embedded system technology into vehicles has had,

and is having, a radical effect on vehicle development, production, and mainte-
nance. Automotive embedded systems have over the past decades evolved from single
stand-alone computer systems, simple enough to be designed and maintained with
a minimum of engineering, to distributed computer systems including several net-
works, and large numbers of sensors, electrical motors, and points of interactions
with humans. These distributed systems are tightly integrated into the vehicle. They
provide flexible information transfer and computational capabilities, allowing coordi-
nation among actuators, sensors, and human–machine interfaces (HMIs), removal of
mechanical parts, and also completely new mechanical designs. Automotive embed-
ded systems is an interesting area where the mechanical and control systems worlds
meet with the general IT world represented by entertainment/telematics function-
alities and increasing connections to the vehicle external infrastructure and IT sys-
tems. The opportunities are thus enormous, but the new technology also requires
new competencies, methodologies, processes, and tools that can handle the flip
side of the coin; the resulting increase and change in product and development
complexity.
Competition, customer demands, legislation, and new technologies are driving

the introduction of new functionalities in the automotive industry. Many new func-
tions in vehicles span traditional domains and organizations. An example of this
is active safety systems that assist the driver by receiving environmental informa-
tion, interpreting the driver intentions, controlling the vehicle dynamics, and, in case
an accident is about to occur, informing an emergency center. The increasing sys-
tem complexity and related increase in costs for the embedded systems development
and maintenance create strong needs for systematic and cost-effective development
approaches.
Current methods of automotive embedded system development lead to [,,]

• Long turnaround time, since the complete behavior can only be tested in
the integration phase.

• Lack of continuity between requirements definition, system design, and
distributed system implementation; typically involving different people
and with little formalized communication.

• Suboptimal solutions. The organizational structures still mirror the
mechanical architecture, and because of a current lack of a systems-level
engineering approach for embedded systems design.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-3

Thenet effect is that systems integration today is a key problem in automotive embed-
ded systems development. To improve this, model-based development (MBD) is
strongly pushed in both industry and research.

10.1.1 What Is MBD?

Based on experiences in more mature engineering domains it is well known that the
use of models is one essential ingredient in order to achieve cost-effective devel-
opment of complex systems, see for example Refs. [,,]. Models have always
been used in engineering. Models are used implicitly in the mindset of the engineer,
in terms of physical models/prototypes and in terms of symbolic/numerical models
for the purposes of illustrating and evaluating particular aspects of a system, such
as geometry, motion, or heat transfer. The advent of computer-aided engineering
(CAE) tools have opened the way for entirely new design approaches where virtual
products are created, used for evaluation, for communicating designs with the stake-
holders, and as a basis for system realization. Such techniques are already established
in mechanical engineering where D vehicle models are used to support design, anal-
ysis, and visualization (referred to as digital/virtual prototyping or digital mockups),
see Refs. [,,].
The use of different types of symbolic and numerical models in a CAE setting,

allows properties and alternative designs to be evaluated prior to the development
of physical prototypes. Such efforts aim to enable early design iterations at a low
cost, thus explicitly supporting early design stages and reducing the project risks. The
ability to develop early executable models means that the model behavior can be vali-
dated against system stakeholders. This has the important implication that the system
context, assumptions, and requirements have a better chance of being captured prop-
erly, and that inherent requirement trade-offs can be made more explicit early in the
development process. Related to this, the concepts of virtual products and rapid proto-
typing often enable concurrent engineering in the development, for example, allowing
concept evaluation prior to the availability of physical hardware.
It is well known from systems engineering that modeling and simulation are not the

end purposes themselves, they should add tractable value. Modeling and simulation
are in systems engineering often referred to as a risk-reduction technique indicat-
ing their use in supporting engineering decisions. Lessons learned from systems and
mechanical engineering also show that all types of models, including mental, physi-
cal, as well as symbolic models, have their role and place, but also that computerized
models are slowly displacing physical prototypes [,].
The discussion in this chapter is focused on computer-aided modeling for embed-

ded systems. In this area there are several disciplines/domains in which MBD is pro-
moted. Examples include “model-based control design”—where control systems are
designed based on models of the controlled environment; “model-driven design”—
emphasizing graphical descriptions of software and the concept of model transfor-
mations; “model-based information management”—where models are used to relate
and structure information entities; and “model-based testing”—where models of a
design or the environment are used in tests such as in hardware in the loop testing, or

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-4 Automotive Embedded Systems Handbook

to derive test cases. Other related terms include model-based systems engineering,
formal methods, and model-driven engineering. These and other interpretations
of MBD reflect the consideration of MBD for the purposes of “domain/discipline
engineering,” such as control or software design, “systems engineering,” relating to
the overall embedded systems design, or to the “management processes” such as
information management.
Several classifications ofmodels,modeling languages,methods, andmethodologies

have been made that reflect different purposes of MBD approaches [,,,,,,
]. Examples include distinctions of

• Modeling purposes such as analysis, descriptions, or design based on
models

• Levels of formality and types of formalisms
• Different modeling scope and levels of abstraction, for example, refer-
ring to the modeling of the system context versus the system structure
or behavior, or modeling specifications versus actual behavior

“Formal models,” whichmight also be called mathematical or analytical models, have
been shown to be very important tools for clarifying and solving engineering prob-
lems. Formal models emphasize behavior and structure for the purpose of predicting
system properties. Examples of formal models include geometrical descriptions in
computer-aided design (CAD), transfer functions used to describe input–output
(I/O) behavior of dynamic systems, and discrete mathematics describing partial
orders and finite state machines.
“Conceptual models,” most often in graphical form, have proven valuable for

communicating and documenting complex software and systems. Examples of such
conceptual models include architecture description languages (ADLs) and the Uni-
fied Modeling Language (UML) []. The formality of conceptual models can vary;
for example, enabling syntax and consistency checks but not allowing formal analysis
of the correctness of the software logic.
“Constructive models” focus on system operational behavior and form a direct

basis for the design itself, proceeding from specifications to detailed solutions. The
increase in software and electronics complexity has over the years led to an evolu-
tion in the abstraction level at which systems design is carried out. Examples of this
include the evolution of programming languages, from assembler to high-level lan-
guages, programming platforms, including libraries andmiddleware, and in hardware
design from gate over register–transfer to system level.The result is that system design
is specified by constructive behavior models where a central idea is to automate the
steps from high-level models to implementation.
All these types of models are strongly related to each other, and are sometimes

partly overlapping. Deeply reflected in these types of interpretations and classifica-
tions is that of different goals, purposes, and scopes of modeling efforts, and the
fact that one single modeling language cannot handle all the aspects of an embed-
ded system. The development of automotive embedded systems requires multiple
specialists, each focusing on different concerns, for example, software, electronics,
mechanical integration, vehicle dynamics, electromagnetic interference, and safety.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-5

Each community is providing dedicated solutions including tools to solve problems
in their area. Architecture and integration then become key problems.
For automotive embedded systems, all these categories of models play an impor-

tant role. In this chapter we attempt to provide a comprehensive framework for MBD.
The framework allows formal models, design models, as well as conceptual models as
long as they constitute explicit system descriptions with a documented syntax and
semantics, where the models’ syntax and semantics must be sufficiently formal to
allow computerized manipulation and some level of automated analysis.
Models can be seen as cognitive tools that assist developers in the reasoning and

decision-making required in the design process. In particular, the use of models can
help to reduce the system complexity as perceived by developers by raising the level
of abstraction and providing dedicated views with which systems are described. MBD
also supports reuse of earlier efforts, automation of certain design steps, and pre-
diction of system properties. To be efficient, a model thus constitutes an abstract
representation of a real or imagined system. To be effective, the models need to retain
and bring out the essential nature of this system with respect to one or more explicit
purposes.
As with other terms, there are many proposed definitions of MBD. Apart from dis-

tinguishing between the level of formality of a model, and whether it is applied for
analysis, design, or for communication purposes,models can also be applied to differ-
ent parts of a system, at different levels of abstraction, addressing different properties
and design parameters.These dimensions and different interpretations are elaborated
in the following sections.
We interpret MBD as follows: In model-based development, computerized models

are used to support communication, documentation, analysis, and synthesis, as part
of the system development. In such an approach, the models thus form the basis for
the interactions between the teams of the organization, information flow within and
between development phases, and for the design decisions made.
A few definitions or interpretations of MBD interestingly include the keyword

“driven.” Is, can, or should the development be driven bymodels—and in what sense?
One tentative answer is provided from the fields of product data management (PDM)
and mechanical engineering. The term model-driven in these fields relates to the use
of different types ofmodels including technical productmodels (to represent different
aspects of the product during design such as vehicle geometry and dynamics), prod-
uct information models (to describe product configurations, parts, and metadata),
and development processmodels (describing development stages, actions, events, and
roles of persons involved). When amodel of the development process is designed and
implemented within a PDM system it can actually drive design, for example, notify-
ing a tester as soon as a design is finished, or causing the software to be automatically
rebuilt once a valid configuration can be established. This notion of model-driven
engineering thus encompasses several types of productmodels aswell as processmod-
els. For the purposes of this chapter we have chosen the term MBD which we find
more adequate considering the current maturity of the area.
An MBD approach entails the appropriate use of certain technologies within an

organization. Introducing MBD fundamentally requires the presence of motivated
people skilled in MBD within the organization and an understanding of the context

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-6 Automotive Embedded Systems Handbook

for adoption including goals, drivers, requirements, and scope. An MBD approach
may require changes to the existing processes and to the organization. Equally impor-
tant is the availability or development of a methodology that provides guidelines on
how technology and related underlying theories for MBD should be used. A proper
adoption of MBD can help to increase the functional content and product quality,
and also assist in making the development more time and resource efficient. (These
goals are in conflict. The right choice of MBD approach will enable emphasizing one
or more of these goals.)

10.1.2 Chapter Overview

Writing a chapter on MBD of automotive embedded systems is indeed a stimulat-
ing and challenging task. Given existing interpretations, practices and a multitude of
research efforts, the situation easily becomes confusing.WhereasMBD is firmly estab-
lished in, for example, automotive mechanical engineering practices, through mature
use of tools such as CAD, computer-aided manufacturing (CAM), and PDM, the use
of MBD in embedded systems development is still in its infancy. The approaches are
fragmented and practices vary across and within application domains. Some of the
reasons for this lie in the mechanical engineering heritage and in the evolving nature
of applications and technologies for embedded systems. It takes time to change tradi-
tions. A comprehensive adoption of models, tools, and methodologies for embedded
systems is still far from straightforward. Embedded systems are also multidisciplinary
and heterogeneous. Methodologies and supporting tools have had difficulties keep-
ing up with the increasing complexity. This is especially true for software, systems
architecting, and integration [,,,]. The traditions, and sometimes immature
methodologies and tools, constitute barriers making the use of MBD approaches.
However, MBD approaches at the same time provide means to manage some of the
challenges caused by the increasing product, process, and organizational complexity.
One overall goal of the chapter is therefore to provide an increased overall under-

standing of what MBD is about. The chapter is structured according to the guiding
questions, why, what, and how. The framework provided by the chapter is shown
in Table ., illustrating the “goals” of MBD, “drivers”—the factors that make MBD
worth investing in, and the “means” provided byMBD in order tomanage complexity,
risk, and reuse, thus improving the chances of reaching the goals. MBD through its
means enhances communication, documentation, analysis, and synthesis capabilities,
contributing to efficient and effective development processes. AnMBDeffortwill have
a particular “scope” in terms of the organizational, process and product “context,” and
the “concerns” targeted by the MBD approach. The particular context and concerns
will determine the “requirements” and constraints, enabling a proper choice of MBD
technology to be made.
The chapter complements these viewpoints by providing snapshots from academic

state-of-the-art and industrial practices. While the emphasis is on system develop-
ment, implications on the other life cycle stages are touched upon throughout the
chapter. The chapter concludes by synthesizing guidelines for industries that con-
sider to adopt or extend their usage of MBD. From a research point of view, the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-7

TABLE . Key Considerations in Understanding MBD
Why What How

Scope: Context,
Overall Concerns, and Keys for
Goals Drivers Means Requirements Technology Adoption

Functions
Qualities
Time
Resources
Innovation

Complexity
Criticality
Standardi-
zation/
maturity

Abstraction
Formalization and
structuring

Visualization
Refinement
Prediction
Automation
Methodology

Technology/
product

Processes
Organization
Business

Languages
Models
Synthesis
Analysis
Tools
Formats

Defined “why”
and scope

User and
management
involvement

Strategies/
adoption plan

Process and
organizational
considerations

chapter provides insight into industrial needs, and fits the multitude of efforts into
a comprehensive picture.

10.2 Motivating MBD for Automotive
Embedded Systems

MBD can be approached from many viewpoints. In this section, we first describe
the role played by an MBD approach in terms of the basic development activities
it supports and the principal means by which this is achieved. We then turn to the
main goals and drivers of MBD, justifying the introduction of an MBD approach.
The discussion of the MBD means provides a generalized reasoning about poten-
tial capabilities of MBD to improve communication, documentation, analysis, and
synthesis. The actual achievement of these capabilities will depend on a number of
factors that are discussed in the sequel to this chapter. An important point is that the
expected benefits of an MBD approach are only potential and depend on the scope,
choice of technology, and how the MBD approach is adopted and integrated into an
organization.

10.2.1 Role of MBD in Automotive Embedded
Systems Development

During the design of an embedded system, models can assist designers in many ways.
As the system complexity grows, an MBD approach eventually becomes necessary to
support the system design. A central motivation for using MBD is thus as a remedy
to manage the system complexity.
The development of automotive embedded systems has to deal with (at least) three

aspects of complexity: process complexity, product complexity, and organization com-
plexity. The development process faces several challenging, conflicting, and changing
requirements. An example of this could, for instance, be the development of an active
safety system providing braking assistance to the driver. The development has to con-
sider requirements on driver comfort, safety, reliability, and performance along with

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-8 Automotive Embedded Systems Handbook

a tight hardware cost budget and constraints imposed by existing functions, com-
ponents/platforms, technologies, and mechanical design. The different requirements
are typically linked to several stakeholders, requiring the establishment of a mutual
understanding and trade-offs.The development further involves the coordination and
use of several technologies, tools, and activities from multiple domains. Integration
among these is essential but challenged by different development speeds (hardware
vs. software), tools that do not easily interoperate, distributed information, and tasks
that are distributed over different organizational entities. The technical heterogeneity
of automotive embedded systems also brings along complexity. The system behaviors
are generally nontrivial to predict because of the many types of entities and inter-
actions, and the resulting large state space of the system. The organization aspect is
concerned with the integration of resources (humans, tools, information, etc.) from
different engineering teams and organizations.
To manage this complexity, MBD approaches can provide designers with support

for four main development activities: communication, documentation, analysis, and
synthesis of designs. An MBD approach, through its underlying technologies and
theories, provides several means to support these activities including abstraction, for-
malization, prediction, and automation. Based on the support for these activities,
it can be concluded that their iterations and combinations, for example for change
management activities, are also supported.

10.2.1.1 Communicating Ideas and Designs

Pictorial descriptions of software and systems have been used formany decades given
the need to communicate using simplified system descriptions—“a picture can say
more than a thousand words, or lines of code.” Given the increasing system complex-
ity, the role of pictorial descriptions has become increasingly important [,,,].
Providing one or more shared system views in terms of models is an important way
for communicating the central concepts of a design to other stakeholders. Establish-
ing agreed system models can also improve communication among developers by
providing a language and standardized terminology. If the models include an exe-
cutable behavior description, this enables visualization and thus communication of
how a system behaves.This property is known to be very important to support behav-
ior validation with the various system stakeholders—“Is this a desirable behavior of
the product?” Executable models can be used for communicating both the desired or
expected behavior of a design, and thus also be the basis for analysis and decisions
by humans. It should be noted that diagrams or pictures do not always provide the
most adequate representations. Many other notations have been proposed including
design structure matrices and tabular representations [,].

10.2.1.2 Documenting and Managing Design Information

Documentation is of paramount importance for products such as automotive-
embedded systems, considering that their life cycle includes development, produc-
tion, maintenance, and retirement. Proper documentation is essential to support
maintenance, system changes, and reuse of already developed system designs/
components. As the product complexity grows it will no longer be sufficient to use

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-9

text-based documentations. In particular, it becomes very cumbersome to manage
changes in documents and the releases of a huge document may delay other parts
of the development. It also becomes difficult to handle overlaps and dependencies
with respect to other design artifacts—such as, for example, between requirements
documents and design specifications (a change in the requirements will necessitate
updates or at least checking of the affected parts of the design). Further complex-
ity is given by versions of design entities, and variants of product configurations.∗
The number of possible combinations of components makes it difficult to have a
generic documentation set valid for a complete product line. Concurrent engineering
in automotive systems development poses even more challenges since the consis-
tency of information needs to be guaranteed when multiple accesses and changes to
the same information occurs [,]. Model-based information management, using
information models that describe involved information entities and how they are
related, can facilitate reuse and maintenance. A model-based approach to infor-
mation management can further improve reuse and maintenance capabilities by
documenting rationales, design assumptions, and the status of design entities. This is
possible by attaching constraints, references, and properties to design entities, includ-
ing “metadata” describing, for example, who is responsible for the design.On the other
hand, additional work is required to supply metadata, and a disciplined development
process that supports the MBD approach.

10.2.1.3 Supporting Analysis of the System to Be Designed

Analysis can be performed for the purposes of design space exploration, to ver-
ify that a system meets stipulated requirements or for the purpose of validation,
ensuring that the requirements and expected behaviors are indeed those expected
by the system stakeholders. Analysis is particularly important for embedded sys-
tems because of their heterogeneity (many entities and types of interactions) and
dependability requirements. Examples of properties that are difficult, costly, or impos-
sible to examine by hand include the logical correctness of a system (even smaller
embedded systems can have a prohibitively large state space), the timing behavior
of a system—especially for distributed systems, and the error behavior of a system
(with many sources for errors, and ways by which errors may propagate). In addi-
tion, an embedded system is interacting intensively with its environment, requiring
that the embedded system is modeled and analyzed together with its environment.
MBD can be a very important complement to traditional verification techniques,
including reviews and testing, by enabling simulation, rapid prototyping, model-
based automated testing, and formal verification. Many of the qualities or aspects of
an automotive embedded system are dependent on each other. A change in the system
structuremay, for example, improve the systemflexibility but reduce the performance.

∗ Variants are here seen as possible combinations of customer choices resulting in a given product con-
figuration at a given point in time, and versions are changes to design entities in stages over time.
Configuration management has the role to keep track of versions and variants in system development.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-10 Automotive Embedded Systems Handbook

Given a formal systemmodel allows the dependencies between system design param-
eters and qualities to be explored in a more systematic way, improving the quality
of design trade-offs. To support all these types of analyses, system descriptions that
capture relevant facets of the system to be analyzed are required, such as required
behaviors, function and implementation designs, and the environment behavior.

10.2.1.4 Synthesizing Solutions and Supporting Artifacts

We use the term synthesis to reflect the creation (or composition) of designs and sup-
porting artifacts such as documentation. This creation can bemanual or, more or less,
automated. A first step of the synthesis is to capture designer ideas (mental models) or
other information, such as constraints, in terms of computerized models. Given the
formalized model, design can proceed by using the model for communication and
analysis, or adding information such that it is documented for later (re)use. Manual
creation andmanipulation of designs, where new and existing elements are composed
so as to form a whole, are supported bymodeling languages (with textual or graphical
representations) and by tools providing model editors. Automated synthesis is pos-
sible when rules have been defined for how models can be created. Several instances
of automated synthesis are possible. One example is that of system solution genera-
tion, where computer tools are used to search for or derive system solutions—such
as a feasible scheduling or an optimal allocation of tasks in a distributed embed-
ded system (see Ref. []). Another example is that of code generation from models.
Behavioral designs are often developed in graphical modeling languages/tools like
Matlab/Simulink []. These models can be used to analyze the behavior of func-
tions and later be used as specifications for the corresponding implementation. In
many cases, this implementation is carried out by other teams, leaving room for mis-
understandings of the specifications. This may lead to discrepancies between design
and implementation, and possible faults in the implementation; such problems can be
alleviated by use of code generation. Code generation can be used for several purposes
and can be applied to the application logic, glue code, or functions part of the plat-
form. Reverse engineering, wheremodels are created to better understand an existing
system, for example, from observed behavior to a task behavior model, is another
instance of synthesis, albeit still constituting a research area for embedded systems.
Other examples of synthesis include generation of documentation, test information,
and analysis models.

10.2.2 MBD Means

AnMBDapproach thus directly supports and has the aim to improve the communica-
tion, documentation, analysis, and synthesis in the systemdevelopment.Theprincipal
means with which this is achieved include the following:

• Abstraction: Modeling provides the means to define entities and aspects
that are useful for design, such as classes of functions (information gener-
alization), failure modes (quality- or aspect-specific abstractions), virtual
structures (part–whole structural composition), transfer functions and

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-11

state machines (abstract behavioral entities), and dependencies (alloca-
tion, refinement) although these concepts may or may not have a direct
correspondence in reality.Thedefinition of such abstract concepts helps in
defining simplified, or rather more adequate, descriptions of the complex
real-world in which nonuseful details are eliminated and where important
aspects are highlighted.

• Formalization, parameterization, and structuring: In order for a model
to have a well-defined meaning, and be amenable to analysis and com-
puter manipulation, it must be described using a well-defined syntax and
semantics, determining whichmodels are valid in the context of the mod-
eling language, their representation, and meaning. The mappings and
relations between several adopted modeling formalisms also need to be
formalized. A suitable model structuring is very important in order to
achieve readable models and to achieve separation of concerns. Structur-
ing is in turn enabled by the abstraction and formalization. The concept
of parameterization facilitates reuse and enables instantiation of already
existing models, where different concrete numerical values are assigned
to model variables in order to adapt the model for a particular purpose.

• Prediction: Through various model analysis techniques it is possible to
determine properties of models. These properties may be directly com-
putable based on the model properties (e.g., moment of inertia and logic
invariants) or also depend on the model context such as model inputs
or assumptions of the platform and other components (e.g., end-to-end
response times and the relation between faults and hazards). An overview
of analysis techniques is given in Section ..

• Visualization: Modeling, through abstraction and formalization, provides
means to visualize the system structure. Bymeans of prediction, for exam-
ple, through simulation, the system behavior can also be visualized (ani-
mated), improving the understanding of what the system is (structure),
and what it does (behavior).

• Refinement: The usage of successive models, that are related through
added detail and by including more aspects, is supported through the
earlier means including abstraction, formalization, structuring, and pre-
diction.

• Traceability: Abstraction, formalization, and structuring provide the
means to support traceability of design information. Togetherwith predic-
tion, this also enables investigation of implications of changes, supporting
change management.

• Automation: The possibilities for automation follow from the other means
combined with computer support, enabling automation of all the pre-
viously mentioned development activities. Examples include automated
initiation of communication to a certain designer/stakeholder upon com-
pletion of a development (sub)activity, updates of dependentmodelswhen
changes have been made in a related model for managing consistency, 
h/day model-based testing using test scripts, math-based model analysis,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-12 Automotive Embedded Systems Handbook

and automated refinement. It can be seen that automation for some of
the activities requires models not only of the product, but also of the
process—the development activities.

We believe that methodology should be part of the means, as indicated by Table ..
However, there is not yet an established methodology for embedded systems engi-
neering, although several pieces are in place. Methodologies for MBD are further
described in Section ...

10.2.3 Driving Factors for MBD

What are the driving factors for adopting an MBD approach? It is clear that the needs
for an MBD approach increase as the products become more complex. An MBD
approach provides improved ways of communicating, documenting, analyzing, and
synthesizing embedded systems. This is achieved through abstraction, formalization,
and structuring of information; prediction of properties; and automation. For simple
systems, the tasks of communication, documentation, analysis, and synthesis become
easier and so introducing MBD may not be worthwhile. The implementation of an
MBD approach is costly and time-consuming since models have to be created, vali-
dated, and managed, and the same goes for the acquisition and maintenance of tools,
and the required training of personnel.
The ability to reusemodeling and tooling effortsmakes the developmentmore cost-

efficient. Reuse includes the possibility to reuse efforts invested in modeling, analysis,
synthesis, and in setting up tools. The opportunities for reuse increase the more
mature and standardized the involved products and technologies become [,].
Model reuse, however, requires care to ensure that the assumptions underlying the
original model are also valid in the reuse scenario, (see Ref. []). MBD supports
reuse through formalization and structuring, prediction for understanding system
behavior, and parameterization of existing models.
The relevance for MBD is also affected by the “criticality” of the products to be pro-

duced, where criticality can refer to cost or dependability in the sense of a mission
critical system. While complexity increases the probability of failure, criticality cap-
tures the other dimension usually part of risk measures. An MBD approach provides
means to support risk management through formalization, prediction, and automa-
tion, making analysis of unknown behaviors possible. This is a relevant driver for
automotive systems considering criticality at least in the senses of cost, availability, and
safety. Model-based analysis and testing allow the system behavior and extreme con-
ditions to be assessed in a cost-efficient way. Such conditions and assessments could
for real systems be highly costly, difficult, and hazardous to carry out. A model-based
approach moreover provides the benefits of well-defined and repeatable tests.
We consequently identify three main drivers for adopting an MBD approach:

• Complexitymanagement is enhanced by providing support for communi-
cating designs through dedicated models of the system, by managing the
documentation and product structures (entities, properties, and intricate
dependencies)—providing information integration, and by supporting
analysis of product phenomena that would otherwise be difficult or

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-13

impossible to handle during design. Throughmodels, designers can focus
on relevant aspects, and can investigate them more freely, for achieving
repeatability and possibilities to manipulate all variables. A model-based
approach to information management provides additional support for the
reuse and maintenance of different design entities. It should be noted
that an MBD approach to some extent increases the development pro-
cess complexity by adding tools and creating more explicit information.
While the prediction and automation means in MBD are beneficial and
allow a larger design space to be explored and verified, they also create
more information, thus increasing the needs for structured information
management.

• Technologies and products that are mature and standardized provide
opportunities to apply standardized and formalized description tech-
niques, increasing the possibilities to reuse development efforts.

• Cost or money critical systems benefit from MBD by means to predict
and prove system properties prior to their deployment, thereby providing
means for risk assessment and management.

We believe that each of the drivers, in isolation, canmotivate the introduction ofMBD
but a combination of them provides even stronger drivers.There are also other factors
that affect the introduction of an MBD approach. A summary of these factors is given
in Section .. A certain level of maturity with respect to the product technology,
tools, competences, and methodology has to be established before MBD approaches
can successfully be adopted.
For automotive embedded systems, we find that the drivers in general are strong

although they can vary among the automotive embedded systems domains. Given
this situation, MBD approaches can provide more efficient processes that can be used
to reduce the development time and/or the cost of development. MBD approaches
can also be used to target the development efforts to a larger extent toward validation
and optimization, yielding products with improved qualities and the “right” features.
These potential benefits are further elaborated in the following section.

10.2.4 Potential Benefits of MBD Approaches

We here assume a situation where a careful introduction of an MBD approach has
been made by an organization. We consequently assume that the drivers for intro-
ducing the MBD approach are strong. If the drivers are weak, or if the adoption
of the MBD technology is not carried out in the right way, these benefits cannot
be expected. Mismatches between the drivers and the availability of mature MBD
tools or established methodologies can explain some of the problems in introduc-
ing MBD []. Given these preconditions, MBD can provide the following benefits
[,,,,,,,,,,,]:

• Time-to-market. Increased productivity can be achieved in both direct
and indirect ways, where a key ingredient is the provision of more effi-
cient decision making. A direct effect is achieved by allowing concurrent

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-14 Automotive Embedded Systems Handbook

engineering and evaluation of design concepts (e.g., for control, soft-
ware, or hardware) prior to the availability of a complete product. A
direct effect is also achieved by automating development steps, espe-
cially those that are tedious, error-prone, and consume lots of efforts,
typified by testing, analysis, and model manipulation/transformation
activities. Indirect effects are achieved by improved documentation and
communication among developers/stakeholders—implying that the work
itself can become both more efficient (e.g., faster retrieval of consistent
information) and effective (e.g., increased understanding among the
stakeholders involved). Another improvement is achieved through early
error detection and quality feedbacks, in particular supported through
model analysis and early model-based integration efforts. Such efforts
minimize the number of iterations in development as well as problems
in and after production. A mature MBD approach can thus be expected
to reduce the development time compared to non-MBD approaches.
On the other hand, faster iterations imply that the gained time could
instead be used, for example, to improve the system qualities or include
more features.

• Reduction of various cost categories. Through computer-aided optimiza-
tion,MBD can assist in reducing production cost by enabling the selection
of more cost-effective solutions. MBD can also increase the quality of the
products, thereby reducing maintenance costs. The development costs for
automotive embedded systems are currently increasing. The use of proper
tools can help developers to better manage the increasing complexity,
thereby making the development more cost efficient.

• Quality assurance and quality enhancements. As mentioned above,
automation can reduce the introduction of faults. The use of models can
also have indirect effects by improving the understanding of the system
under design—thus allowing the quality assurance efforts to be more
efficient. The work of formalizing a system in terms of models can also
provide benefits simply by improving the understanding of the system
under design, and acting as a kind of review of the system. Enhanced
verification is then further made possible through model-based system
analysis and testing, helping to ensure the desired system qualities, and in
making trade-offs between conflicting qualities. Amodel-based approach
may be mandatory in certain safety critical systems, providing a good
ground for a safety case. The system qualities can also be optimized using
a model-based approach. Several surveys point to the fact that a main
problem in complex systems design is that of requirements engineering.
Here MBD can assist in making requirements more easily manageable,
communicated, and analyzed.

• Increase in functional content. Providing more functions corresponds to
an increase in complexity, typically involving more stakeholders, concerns
and thus information, analysis, and trade-offs. Such problems are precisely
what MBD aims to solve, thus providing support for this.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-15

• Innovativeness. There are empirical indications that MBD approaches can
also support the innovativeness of enterprises in terms of their abil-
ity to produce novel products, functions, and/or solutions [,]. It is
known from earlier experiences with CAD systems that proper CAE
tools can support the creativity of developers, facilitating their explo-
ration and assessment of concepts and solutions. MBD tools can also
for embedded systems support rapid verification and validation (V&V),
for example, through simulation and rapid prototyping. Empirical find-
ings also support that a proper use of MBD can assist in facilitating
communication in multidisciplinary teams [,]. Ideally, a system-level
information/knowledge management system should support the storing,
retrieval, and matching of ideas and solutions, thus improving innovation
capabilities.

Modeling requires extra efforts initially to create models unless they have already
been created and can be reused, but thereafter makes time- and cost-saving secondary
effects possible in relation to the entire development process. Resources and time
have to be allocated for these purposes. For enterprises that have not adopted MBD
before, an improvement in process efficiency (development time and/or cost) may
occur but cannot be expected in the first projects.
To assess the benefits ofMBD it is also useful to compare with alternatives common

in engineering [,,], including “social design” and “design utilizing paper docu-
mentation.”WhileMBD adopts explicit and computerizedmodels, social design relies
on tacit knowledge, social networks, skilled and permanent personnel, and the use of
physical prototypes and testing. A document-based approach comes somewhere in
between social design and MBD. It may also adopt models, but not in a form that
is amenable for computer manipulation. The information granularity can be con-
sidered to be coarse-grained in that documents provide the granularity with which
information is provided. MBD emphasizes the use of formal and computerized mod-
els as the carrier of central information. The information granularity can be coarse-
or fine-grained, where the fine-grained entities correspond to design artifacts such as
individual requirements or software entities. The improved documentation reduces
the dependencies on individuals [].
In a typical and traditional embedded systems development scenario where text

documents are used, C-code is written and compiled to a microcontroller. Although
such an approach may be adequate for a simple system, the limitations are also rather
obvious as the complexity grows. Thus, for this approach to work, the complexity has
to be handled another way, for example, by use of a constraining architecture that
hampers the introduction of too complex functionalities. AnMBD approach handles
this complexity in the documentation provided by the models, with tools supporting
analysis and integration, and maintaining the whole picture by hiding the detailed
analysis in abstractions.
Suitable product architectures constitute an essential ingredient, regardless of

approach. The existing automotive architectures have been based on hardware-level
modularization, with interfaces at the network level. Such a scheme has proven
satisfactory for a long while but cannot appropriately deal with the increasing

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-16 Automotive Embedded Systems Handbook

cross-electronic control unit (ECU)∗ dependencies, nor provide a basis for prod-
uct lines encompassing software and hardware. Currently, software architectures are
emphasized within the AUTomotive Open System ARchitecture (AUTOSAR) ini-
tiative, where a software architecture as well as means to describe and configure
software/hardware components are provided [,].This component-based software
approach is a step forward but is still not sufficient since functions, nonfunctional
qualities, and the system context are not in the scope of themodeling efforts [,,].
An organization thus has the possibility to make a choice between these three

approaches. In case a decision is made to go for an MBD approach, there is a need
for strategies on how to migrate to MBD from the existing, currently dominat-
ing, approaches. In practice, there is also a need for a strategy on how to make
the approaches coexist. The mentioned MBD benefits do not come by easily—
they do require efforts, strategic choices, and an understanding of the contextual
requirements; these contextual requirements are the topic of the following section.

10.3 Context, Concerns, and Requirements

The above sections outlined principal advantages of MBD, drivers for MBD, and how
MBD can support development activities. The discussion pointed to the needs to
provide a broader contextual perspective to MBD. The usability and efficiency of a
particular MBD approach (including the adopted methodologies and technologies)
will depend on the particular context in which the approach is utilized, the purposes
and concerns the MBD approach is introduced to deal with, and the corresponding
requirements imposed by the products, organization, and processes. These are dealt
with in this section.

10.3.1 Contextual Requirements on MBD

As an approach to the engineering of complex embedded systems, MBDneeds to take
the various basic aspects of engineering into consideration. Figure . highlights the
dependencies that MBD technology can have in respect to the business, organization,
technology, and process aspects of engineering.
The harmonization among these aspects of engineering versus the MBD technol-

ogy and methodology is important, and strongly impacts the usability of an MBD
approach. MBD technology and methodology can be focused on one or more par-
ticular contexts or be flexible enough to be adapted to suit a particular engineering
condition. An MBD approach can be directed toward products, processes, or orga-
nizational aspects, for example, as an enterprise model with a representation of the
structure, activities, resources, people, goals, and constraints of an enterprise. Each
area is traditionally dealt with by specialized tools, such as enterprise resource plan-
ning and product data management. While the focus of this chapter is on the MBD of
automotive embedded systems, employing MBD for the other parts is a natural and

∗ ECU, automotive term for embedded computer system device.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-17

Technology context
 - Standards, domain knowledge
 - Products characteristics (e.g., requirements,
 properties, behaviors, structure, environment,
 and use conditions)
 - Design and V&V technologies
 - Realization technologies
 - IT support and infrastructure

MBD
technology and
methodology

Technical process
 - Requirement engineering
 - Design and implementation
 - Analysis and V&V

Management process
 - Work planning and resource assignment
 - Information management and
 documentation
 - Traceability, change, and version control

Business context
 - Business strategy, market
 condition, competition, and
 trend
 - Domain-specific normative
 and regulations
 - Customer and end-user needs

Organization context
 - OEM, suppliers,
 engineering teams
 - Organizational strategy
 and policy structure
 - Traditions, needs, and roles
 - Competence

FIGURE . Dependencies betweenMBD and the engineering context.The arrows from/toMBD
indicate requirements on, or constraints imposed by, an MBD approach with respect to its context.
The dashed line indicates the interdependencies among the contextual issues themselves.

important complement, enabling parts of the process to be automated—thus coming
closer to the concept of development driven by models, and integrated with other
parts of the product life cycle.
The requirements indicated in Figure . are now briefly elaborated, with contin-

ued discussions in Sections .. and ..

10.3.1.1 Requirements Imposed by the Technology

Technology-related requirements include those imposed by technology used in the
product as well as technology used in tools. Each product is characterized by spe-
cific properties and phenomena that need to be represented by the models and tools
used in MBD. Vice versa, the MBD technology will impose constraints on what can
be modeled and analyzed. The diverse functionalities and technologies of the auto-
motive domains pose special requirements on the types of behaviors, properties, and
structures to be represented. For example, considering functions for vehicle dynamics
control, some form of hybrid systems formalism is required. The concepts of prod-
uct configurations and product families need explicit support in order to describe
parts/functions (their versions), unique product configurations (variants), and rules
for establishing valid configurations.

10.3.1.2 Requirements from the Viewpoint of the Technical Process

A technical process consists of activities that make decisions about the intended
functionality and qualities, the selection of platforms, the mapping of functions to
solutions, detailed design, and V&V. MBD of embedded systems needs to support

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-18 Automotive Embedded Systems Handbook

analysis for the purposes of V&V, for design space exploration, and trade-off anal-
ysis, where trade-offs in the design are due to conflicting quality attributes that
share common design parameters. A technical process largely stipulates the required
modeling, analysis, and V&V support, including requirements on documentation,
management, and communication of information. It is clearly beneficial if the doc-
umentation, analysis, and synthesis efforts can be reused. In general, each developer
or stakeholder will require specific information about the product to be developed—
represented as one ormore specific models or views.The differences in characteristics
of software and hardware are of concern. Software development is characterized by
rapid releases and iterations whereas the time constants for development of elec-
tronics and mechanical parts are longer. This makes system integration a special
challenge where releases from different development teams have to be coordinated.
As mentioned earlier, the use of an MBD approach has the potential in improving
the situation by enabling early and frequent technical integration through system
models.

10.3.1.3 Requirements from the Viewpoint of the Management Process

One common way to control the complexity of products is through the support for
information management, implementing the principles of abstraction and separation
of concerns. This in turn requires appropriate structuring of the information to relate
various engineering concerns like functions, implementations, and their relations.
The information management process can and should act as an enabling process for
the technical process to be carried out. Model-based information management allows
support for communication, documentation, analysis, and synthesis of the product
during development. Assume, for example, that a system designer wants to add a
new function to an embedded system. To assess where and how this function can
be deployed (which ECU, new ECU, sensor usage, etc.), a lot of detailed information
is needed. It is the role of the management process to provide this information, con-
sistently and at the right time, to the multiple users in the organization. Information
management for automotive embedded systems often has to support geographically
distributed and concurrent development. It then becomes important that an over-
all system definition is available for the purposes of work planning, change, and
version control. The reuse and sharing of models requires tool compatibility informa-
tion, standardized exchange formats, and support for intellectual property (IP) when
models are exchanged among organizations. One central issue is how to ensure the
consistency of redundant information and tomanage the dependency and traceability
of information across models.

10.3.1.4 Requirements from the Organizational Viewpoint

Users and organizations have established traditions with respect to terminology, work
procedures, and ways of modeling systems. Expectations, traditional roles, and work
procedures have to be considered when introducing an MBD approach.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-19

10.3.1.5 Requirements from the Business Context

The business context relates to customer needs, competition, legislation, and market
trends. A competitive situation, for example, corresponds to a secondary driver for
MBD with needs for more efficient and effective development processes.

10.3.2 Product Concerns Addressed by MBD Efforts

The development of automotive embedded systems involves a multitude of con-
cerns from requirements to implementation, different functions, aspects/qualities,
and (sub)systems. The fact that so many modeling languages and tools have been
developed reflect the situation that embedded systems design requires many special-
ists, each having a different viewpoint and requiring specific information to solve their
tasks.
Since a model can never be a complete replication of a real system, it is important

to have a clear understanding of the product concerns at hand, to determine which
information should be detailed and what can be left abstract. Different models will be
related to different concerns and thereby have different focus, which leads to different
modeling approaches being selected. A particular MBD approach and technology will
typically be developed with a particular product scope and concerns in mind, aiming
at the following:

• Targets. The target delimits what often corresponds to the primary focus
in modeling, for example, a subset of the product or integration of prod-
uct parts or aspects. Integration here refers primarily to model and tool
integration with the purpose to support (early) product integration.

• Design stages.Thedesign stage is closely related to the concept ofmodeling
at different levels of abstraction.Modeling an early architectural concept, a
subsystem, or a detailed component design puts different requirements on
the modeling. If a V-process is used for development, this axis is roughly
equivalent to the time dimension, but a particular element of the time
dimension is thatmodeling in the early phasesmust copewithmuch larger
uncertainties than in the later phases. The continued design process is
characterized by moving from abstract to concrete system descriptions,
in which the precision increases, and the uncertainty and flexibility for
larger changes is reduced.

• Qualities or attributes. Different system qualities may be in focus such
as safety or performance. These qualities need to be defined as require-
ments or constraints to guide feasible solutions. The qualities are also
decomposed into refined requirements. Nonfunctional requirements are
commonly refined into functional requirements; one example is safety
requirements that often translate into requirements on functions for error
detection and error handling. Many attributes represent cross-cutting
concerns that go across both functions and modules, including cost,
weight, temperature, and electromagnetic radiation. There is thus a need
to handle trade-offs between conflicting qualities.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-20 Automotive Embedded Systems Handbook

• Design parameters. Design parameters refer to the parameters that a
designer uses to shape the design. The parameters are related to the “sys-
tem structuring,” for example, determining the number and type of enti-
ties and their connections, “system behavior,” adopting different models
of computation and communications (MoCs), or the “mapping between
behavior and structure.” For embedded systems, key design parameters
include the strategies for mapping of behaviors to the solution structure,
execution (triggering, synchronization, and scheduling), communication,
and error handling (see Refs. [,]).

When adopting an MBD approach, it is essential to define which concerns are to be
addressed by MBD.The different concerns provide a multidimensional space closely
connected to different scientific/engineering disciplines and stakeholders. Examples
of stakeholders and their product concerns are given in Table .. Stakeholder con-
cerns can be characterized using the terms of viewpoints and views. According to
Ref. [], a view constitutes a representation of a whole system from the perspec-
tive of a related set of concerns. A view may consist of one or more (architectural)
models and amodel may participate inmore than one view.Many proposals for view-
modeling frameworks have been presented (see Refs. [,]). The described views
have to be understood in the context of the goals for the respective framework. Since
the development contexts differ, it can be deduced that one important property for
MBD technology is to find a solution that provides the required views or even more
preferably, allows the desired views to be defined given a more flexible MBD environ-
ment. Developers need to work efficiently with different concerns, but there is also a
need to integrate the various models and tools used since they are used to describe

TABLE . Illustration of Stakeholders, Their Roles, Concerns, and Model Usages
Model

Stakeholder/Role Concerns Analysis/Synthesis Characteristics
Electrical engi-
neer/hardware archi-
tecture

ECU interfaces
and EMC

Electrical load
and tests

Logic, continuous,
and FEM

Software engineer
(body area)

Logics of
functionality

Simulation of
behavior

Discrete-event

Quality engineer Reliability Life-time prediction
and FMEA

Stochastic and logic
(e.g., failure analysis)

Mechanical engineer ECU packaging,
geometry, and
fitting

Cable length and
geometry alignment

D and D mechanical

Cost controller Product cost Profitability and
sensitivity analysis

Economical and
uncertainty explicit

Integration engineer Verification com-
munications
and distributed
functions

Testing! Automation of
tests and generation of
test documentation

Discrete-event (test cases)
and logical structures
(e.g., configurations)

Safety engineer System safety FTA and FMEA Logic, discrete-event,
and stochastic

Control system
engineer

Performance
and robustness,
and disturbances

Behavior simulation,
robustness analysis,
and controller
synthesis

Continuous-time,
discrete-time, and
discrete-event

Thermoanalyst Temperature Heat transfer FEM, etc.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-21

aspects of one and the same system. An information overlap and other dependen-
cies between the models are hence inevitable. Addressing this type of integration and
information management is becoming more important as MBD approaches spread
within the developing organizations [,,,,,].
The different concerns also provide a way to characterize or profile different

modeling approaches [] and explain why different solutions are found for the
classical automotive domains, since each domain is characterized by different qual-
ities/attributes of interest, for example, safety and real time for active safety systems
versus logical functionality for body electronics. In some domains, the behavior is
predominantly discrete and in others continuous, leading to an emphasis on different
types of behavior descriptions.

10.4 MBD Technology

This section provides an overview of MBD technologies including

• Modeling technologies, including languages, models, and relations
between models, and between languages

• Analysis techniques, for example, for model simulation and static analysis
• Synthesis techniques, including generation of models and other support-
ing information

• Tooling technologies, which implement specific modeling, analysis, and
synthesis technologies, together with support for design, for example,
model editing, simulation and result visualization, model management,
design automation, and tools/model interoperability

Figure . provides an illustration of central parts of MBD technology.
Modeling, analysis, and synthesis technologies are manifested in terms of tools that

implement them.The development activities (e.g., analysis) and the concerns of inter-
est (e.g., reliability) impose requirements on the modeling technologies (languages
and existing models for reuse) and analysis/synthesis techniques. For example, to
support early model-based architectural design, models that can describe the system
functionalities, expected behaviors, and solutions at a high level of abstraction are
needed. Similarly, analysis at this stage may focus on coarse estimations of cost, sys-
tem performance, cable lengths, and other relevant metrics. In later design stages, the
detailed structure of the software and detailed analysis of effects such as those caused
by quantization and end-to-end delays may be of interest. The requirements on the
synthesis capabilitieswill also vary. In rapid control prototyping, for example, the code
is typically not required to be optimized, whereas for production code generation,
optimization of memory, speed, and accuracy can be an important issue.The analysis
techniques in addition impose requirements on models in terms of their information
content. An MBD approach typically requires a number of tools to handle different
aspects, consequently imposing requirements on the interoperability between these
tools.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-22 Automotive Embedded Systems Handbook

Development
activities

Analysis and synthesis
technologies

Modeling
technologies

Implement

Define required
abstractions,
relations, and

granularity

Required

Implement

Define types
of attributes
and accuracy

Tools

Available
Information

GUI Views

Tool
interactions and

interfaces

FIGURE . MBD where support for documentation, communication, analysis, and synthesis is
provided by modeling, analysis, synthesis, and tooling technologies. The figure illustrates how the
involved technologies impose mutual constraints and affect each other.

10.4.1 Modeling Languages: Abstractions, Relations,
and Behavior

The purpose in the following discussion is to provide an overview of characteris-
tics of modeling languages, including typical abstractions provided, relations between
abstractions and between models, and behavioral models. For surveys and details on
different modeling languages the reader is referred to Refs. [,,,]. Reflecting
the broad variety of embedded systems and as illustrated in Figure ., today we
find amultitude of programming andmodeling languages used in embedded systems
development.
Programming languages constitute a particular kind of modeling languages that

are focused on providing support for detailed systems design in terms of construct-
ing programs. A program written in C or Java, for example, represents a model since
the program is an abstraction of the actual behavior.The actual execution will yield its
timing behavior and accuracy of computations depending on the hardware platform

ADL’s

AADL

UML2
Simulink/Stateflow

SDL

Modelica

Modeling
languages

Sysml
Ptolemy

Java
C++

C

Ada

Ass

Lustre

Programming
languages

IEC1131

System CVHDL

Verilog

Electronics
design automation

Aspect-specific
models

Fault
trees

Reliability
diagrams

UML
profiles

ASCET/SD

Autosar Metropolis
BIP

Giotto

FIGURE . Illustration of modeling languages available to developers.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-23

(and also depend on the compiler and linked libraries). Programming languages, how-
ever, provide limited abstractions when it comes to expressing several of the qualities
and attributes of interest for embedded systems [].
Modeling and programming languages are defined using the concepts of syntax

and semantics, and in more detail in terms of an abstract syntax, a concrete syntax,
and its interpretation []. The abstract syntax defines the concepts, relationships,
integrity constraints, andmodel composition principles available in the language, thus
determining all the syntactically correct models that can be built. The concrete syn-
tax defines the form of visualization; graphical, textual, or both. The interpretation
defines the meaning of the entities of the language and the resulting models, that
is, its semantics. The definition of a language’s abstract and concrete syntax is some-
times called its metamodel. A meta–meta model is a modeling language that can be
used to define different metamodels. This terminology is used by the Object Manage-
ment Group (OMG), see Ref. [], and is exemplified by the definition of meta-object
facility (MOF) (the OMG []), upon which the definition of the UML is based.
From an external point of view, modeling languages can be characterized in terms

of the concerns and development activities that they are intended to support. These
different purposes should be reflected in the abstractions, properties, and interab-
straction relations provided by amodeling language.The abstractions, properties, and
relations together define the structural and behavioral concepts that can be captured
in a language. In the following, common types found in embedded systems modeling
languages are described.

10.4.1.1 Abstraction Types

A number of abstractions can be found in embedded systems modeling languages
[,]. Typical abstractions include “functions”—representing high-level specifica-
tion aspects of a system’s functionality or logic independent of any implementation
technology; “software platforms”—representing hardware units as well as middle-
ware and operating system solutions; “data”—representing information units (signals,
tokens, events); “communication”—representing the mechanisms, as well as physi-
cal media, for the exchange of information between other abstractions; “system”—
representing the complete system, together with its configuration properties; and
“generic abstractions” that can be considered as any of the other types of abstractions
once specialized or depending on their usage context.

10.4.1.2 Abstraction Properties

These can be divided into structural interface, behavior semantics, and constraints.
Structural interface properties deal with an abstraction’s organization (what an
abstraction is) relating to issues such as size, form, and I/O. Such properties relate
to an abstraction’s interaction interface with other abstractions. Properties related to
behavior define what an abstraction does and how it does it. This includes defining
issues such as triggering (event- vs. time-triggered, autonomy), persistence (creation/
destruction), timing (e.g., duration), transformations/logic, and storage.The behavior
may also be governed by constraints. Another aspect is that of the nondesired behav-
iors of an abstraction. Any language that supports a general behavior description can

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-24 Automotive Embedded Systems Handbook

use this same technique to describe error behavior. In some cases, explicit constructs
are provided for error descriptions.
The viewpoint of time, data, and space provided by a modeling language is man-

ifested in terms of abstraction properties and yield different types of models such as
continuous- or discrete-time models. Similar to the treatment of time, data may have
continuous value range (or approximated to have this through floating point values)
or be discretized. One relevant example of discretization in embedded systems is that
of quantized variables, for example, due to limited resolution of sensors, I/O devices,
computation, or communication. The combination of time and data can be used to
create static or dynamic models.∗Thespace dimension deals with properties that vary
in space such as mechanical tension, temperature, or electromagnetic fields. The cor-
responding properties are described using partial differential equations. In so-called
lumpedmodels, the physically distributed property is approximated by being lumped
together and is represented by a single variable, for example, a point mass.
A third kind of abstraction property is constraints, which applies to both structural

and behavioral properties. Constraints refer to explicit definitions of boundary values,
the allowed/disallowed set of values a certain property can take without specifying
exactly which value the property will actually take.

10.4.1.3 Behavior Descriptions

Different MoCs are achieved by connecting abstractions with communication and
synchronization relationships. The behavior properties of the abstractions, the rela-
tionships, together with their semantics, define the behavior of the model. Common
embedded systems MoCs include

• Discrete-time models (difference equations), often derived through dis-
cretization for the implementation/simulation of controllers or signal
processing algorithms in embedded systems.

• Continuous-time models (differential equations). This type of models
targets the dynamics of physical systems in the embedded systems envi-
ronment.

• Discrete-event models (logic and implementation behaviors in computer
software and hardware).

• Multitasking models, characterized by platform abstractions which trig-
ger, synchronize, and schedule activities. Preemptions and durations of
activities are important characteristics of this MoC.

Many variants of these basic MoCs have been developed over the years []. Embed-
ded systems involve several types of MoCs that need to be evaluated jointly, for
example, through simulation. Many languages and tools support the definition of
several MoCs within the language, for example, Simulink and Modelica [].

∗ A static model can be defined without involving time and is thus time-independent in the sense that the
output remains the same regardless of the time at which it is studied, given that the input does not change.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-25

10.4.1.4 Interabstraction Relations

Several types of relationships between abstractions are summarized in the following.
The relations are in principle valid regardless whether the abstractions are described
within the same model/language, or by several models/languages. Many of them
define or infer dependencies among models. A special kind of dependency is the
case where the same parts of a system are represented using two different modeling
languages/tools. As for properties, constraints can typically be defined for the rela-
tions, restricting the way in which they are applied. An example of such a constraint
could be that applications of different criticality levelmust not be allocated to the same
processor (or task).

• Decomposition, referring to the allowed ways of composing abstractions
forming a whole, defining part–whole/hierachical relationships between
an abstraction and its contained abstractions. Part–whole relationships
can be applied to both behavior- and structural-oriented abstractions.
In any case, ways are provided for externally accessing the parts of a
whole that are not otherwise accessible through the abstraction’s interface.
This mechanism strongly relates to information hiding andmodularity. In
behavioral decomposition, the implications on behavior when composing
parts into a whole, such as persistence control, ordering and triggering,
also have to be defined.

• Communication, referring to the allowed ways of connecting different
abstractions for the information exchange or physical interaction. Behav-
ior semantics have to be defined for such connections, including protocols
and timing. This relation is strongly related to the following one.

• Synchronization, referring to the ordering and timing relations between
abstractions. Synchronization between abstractions is often realized
through communication but other techniques are also possible including
the use of pre-runtime scheduling to ensure synchrony between software
tasks.

• Commonality, referring to the common features between abstractions.
Commonality can be achieved through () typing where abstract types
can be defined fromwhichmultiple instances are created, inheriting com-
mon properties; () common configuration where patterns are repeated
across a collection of abstractions; and () specialization/generalization
where an abstraction type is based on another type, together with some
modifications, hence sharing properties that have not been modified.

• Refinement, referring to the relationship between different abstractions
of the same real system entity. For example, a function refines another
by adding implementation details that did not exist in the original func-
tion. The term refinement is used in different ways, sometimes referring
to refinement that is possible to express within one (and the same) lan-
guage, and sometimes also to encompass refinements that involve solution
decisions and more detailed abstractions, such that refined models may
need to be expressed in different languages (referred to as means–ends

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-26 Automotive Embedded Systems Handbook

refinement). Refinements are closely associated with the design process
where implementation details are added successively.

• Allocation, referring to the mapping of functions or software abstrac-
tions to platform/hardware abstractions. It is a kind of spatial relationship
between abstractions and their hardware abstractions, such as software to
hardware. The allocation relation involves a decision tomap a behavior to
one or more hardware components. Once the mapping has been decided,
the corresponding function/software can be refined, taking the mapping
decision into account (this is the difference between refinement and allo-
cation). A special case of allocation is that of replication, for example, the
case where one software task is allocated to several processors causing a
redundant solution.

Other dependencies refer to the relationship between abstractions where one abstrac-
tion affects the other in terms of a property of one depending on the properties
of another, or the existence of an abstraction depending on that of the other, or
assumptions taken by an abstraction concerning the other abstraction. An example of
one such dependency is a controller whose parameters depend on a particular plant
model.

10.4.2 Analysis Techniques

System analysis with MBD relies on tool support to investigate static and dynamic
properties of a model, or a set of models. Examples of static analysis include the
checking of the compatibility/correctness of interfaces/connections in a model and
checking the completeness of a model. Examples of analysis of dynamic properties
include simulation of the system behavior and computing the response time of a set of
tasks (this property is normally dynamic since the analysis will depend on the timing
relations among tasks). Givenworst-case assumptions, static analyses are also possible
in certain cases.
Analysis of the behavior of dynamic systems can be carried out by simulation or

by obtaining analytic solutions. A well-known advantage of simulation is that it has
few limitations. At the same time, a simulation approach can only cover a limited
number of test cases; deciding on which test cases to run thus becomes an important
decision. From this point of view, analytic techniques that provide explicit solutions
are preferable. Such solutions are however only rarely available for complex embed-
ded systems behaviors. As an alternative approach, simulation can be combined with
partial analytical solutions and search techniques. Examples of the application of
search techniques combined with partial analytical solutions can be found in work
on allocation and scheduling (see Refs. [,]).
Behavior analysis by means of simulation is of great value in achieving a better

understanding and in order to investigate alternatives. The possibilities for incremen-
tal refinements can be combined with subsequent analysis at each design step. This
approach is supported by several MBD tools and is well illustrated by capabilities
of embedded control systems design tools that support functional simulation, soft-
ware in the loop simulation (where all or some functions have been translated into

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-27

code), rapid prototyping (where models are executed in real time against physical
devices to validate models or to test controllers against the real environment), and
hardware in the loop simulation (where a real physical controller is tested against
a real-time simulation of [parts of] a vehicle), see Ref. []. The integration between
several MoCs in simulation deserves special attention. There are several approaches to
this, for example, by using one of the MoCs to which other MoCs can be reduced and
represented []. It is, for example, common in simulation to reduce continuous-time
models into discrete-time models through numerical integration. A complementary
approach is to translate some high-level MoCs into imperative programs (e.g., C) that
are easier to integrate and execute in a simulator. In some cases, it may be required to
carry out simulation across several tools (cosimulation), each one realizing a part of
the system model using different MoCs.
Analysis for embedded systems spans a range of attributes and properties of interest

and can be carried out at different levels of abstractions. Different analysis techniques
require different model content for capturing the concerns. Simulation and analyti-
cal techniques are available for many types of behaviors. Some examples of analysis
techniques are listed here.

• Analysis of control functionality provides information about the system
input–output as well as internal behavior, and enables to assess perfor-
mance and stability. The analysis is performed with models capturing the
controller as well as the controlled systems’ dynamics through differential
or difference equations.This kind of analysis is normally performed as one
part of function design. Assumptions about controller implementation
effects can be incorporated into the analysis, for example, by including
time-varying delays, quantized signals, and transient errors [].

• Analysis of logic and discrete-event behaviors can be used to assess
the properties of software and hardware behaviors. Applications include
simulation, formal verification, for example, to check that a certain
behavior will never occur, and equivalence checking, used to determine
if two circuits or programs are functionally equivalent. Formal proofs and
model-checking are examples where behavioral properties are (semi-)
automatically evaluated on the basis of discrete-event behavior models
[,].

• Analysis of timeliness and performance provides information about the
use of computer system resources and timing behavior, such as end-to-end
response times.The analysis requiresmodels that capture application- and
platform-level properties, for example, task triggering, durations, com-
munication buffering, scheduling, and synchronization schemes, as well
as the timing parameters of system activities and computer resources (e.g.,
clock period, dispatch time, etc.).

• Reliability analysis provides information about system failures. It uses
error models to capture errors in logic, time and hardware. Such models
are normally derived from models describing nominal system structures
and behaviors [].

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-28 Automotive Embedded Systems Handbook

• Safety analysis provides information about the consequences of com-
ponent/system failures. The aims are to identify hazards, to assess
risks, and to support hazard control and risk mitigation. The analysis
requires error models capturing the failure semantics and environmental
conditions. Classical techniques like failure mode and effects analysis
(FMEA), and fault-tree analysis (FTA), in general, require a description
of the logical structure of systems due to their focus on the causal
relationships of failure events. The analysis can also adopt discrete-event
behavior models and corresponding analysis techniques such as model
checking. It is common to first capture the nominal behaviors in a
formal description and then to augment the description with failure
behaviors (i.e., injecting failures in the model) for the analysis (see
Refs. [,,]).

10.4.3 Synthesis Techniques

MBD tools provide a range of synthesis techniques depending on the scope of the
particular tool. Examples of synthesis support today include generation of mod-
els (e.g., code generation from a functional model to code), system definitions or
parameters (e.g., the synthesis of priorities of tasks), and supporting artifacts such
as documentations related to models. These synthesis examples may include opti-
mization and many involve model transformations, where a model is translated into
another model, where the latter may be expressed in a different modeling language.
Another case is where documentation is generated from a model—a transformation
which is referred to as model to text. The techniques involved in transformations can
be classified as declarative and rule based, imperative, or a combination thereof (see
Ref. []).
One purpose for model transformations is to transform the models of one tool

into models that are understandable by other tools, providing information exchange
between the tool. An example of this is the transfer of design model information to an
analysis tool. In such exchange, standardized formats—treated in the next section—
play an important role.
Model transformations in general require more than a simple mapping from one

entity to another since the languages may be quite different and since changes to the
original model semantics may be required. For example, in the transformation of a
design model to an analysis model for verification purposes, it may be required to
simplify and change the design model since it may be too complicated for the anal-
ysis technique to handle. Another example is that of code generation for automotive
embedded systems with resource constraints such as limited performance and mem-
ory.The practical implications of these constraints are that the behavior of the original
model will be different from that of the generated code executing on a target pro-
cessor. The model transformation will include making a number of decisions and
handling trade-offs, for example between performance and code size []. Transfor-
mations can therefore be automatic, or partly automatic when human interventions
defining trade-offs are required.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-29

10.4.4 Tools

The MBD technologies described previously are incorporated into tools that target
specific concerns and activities. Central requirements on MBD tools are summa-
rized in the final section of this chapter. We here discuss tool support for model
management, tool interoperation and automation, and standardized formats.

10.4.4.1 Model Management

Tools often come with their own repositories for storing files/models. For infor-
mation management, there are specialized tools with two main traditions. Software
development employs software configuration management (SCM), whereas hardware
(mechanical/electrical) engineering uses PDM tools. While most of the general sup-
port provided by these solutions overlap, there are variations in the details. A major
difference is that the PDM tools to a larger extent emphasize the complete life cycle.
SCM has traditionally focused on supporting the management of the large number
of source files produced during the implementation phase of software development.
While SCM tools support version management based on text files, PDM tools man-
age versions and variants, and support the definition of information models which
allow fine-grained representations of hierarchically structured data. SCM tools, on
the other hand, provide facilities for merging software versions in concurrent devel-
opment [,,].There are also domain-specific information management tools, for
example, for requirements engineering, typically providing someof the features found
in PDM and SCM tools.

10.4.4.2 Tool Interoperation and Automation

MBD for automotive embedded systems normally requires a variety of tools, pro-
viding different functionalities. Solutions to this may employ direct information
exchange between the tools and/or be based on common model management solu-
tions. Model transformations and exchange formats are important to support this.
Tool interoperation is supported by tool interfaces and platform infrastructures, such
as component object model (COM), and common object request broker architec-
ture (CORBA) [,], making (parts of) the tool application programming inter-
faces (APIs) open to other tools. The APIs can also be used together with scripting
features to support automation of design tasks. One trend in supporting tool inter-
actions and modularity is the support for modular tools (exemplified by the Eclipse
environment []).

10.4.4.3 Exchange Formats and Specification of Data for Exchange

Defining standards for tool interchange is difficult, and there have beenmany attempts
and efforts devoted to trying to define such suitable formats. Today there exist a large
number of exchange formats from different organizations such as OMG, WC [],
ISO [], and ASAM [], devoted to different purposes. In general, these standards
define a transfer format that allows tools with different internal storage solutions and
formats to exchange information. An exchange takes place via a file where internal
tool information is translated to and from the file’s transfer format. For information

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-30 Automotive Embedded Systems Handbook

transfer, there is a need to define the exchange format and the contents of the file. In
many cases, the API is also defined in the standard.
Examples of languages for defining information content include ISO -

EXPRESS, a part of the STEP standard [] and document type definitions (DTDs)
and eXtensiblemarkup language (XML)∗ schemas, both standardized byWC. Exam-
ples of exchange formats include various ISO standards as part of STEP and the XML.
The XMLmetadata interchange (XMI) [], is an OMG standard based on XML. It is
used to exchange any metadata whose metamodel is compatible with MOF.Themost
common use of XMI is as an interchange format for UML models, although it can
also be used for serialization of models of other languages. For UML diagrams, the
diagram interchange standard is intended to support the exchange of graphical infor-
mation. Unfortunately, contemporary tools rarely implement this standard, meaning
that the support for exchange of UML models between tools—while retaining the
graphical information—is currently inadequate.
Many specific standards are based on the above-mentioned ones. For example, the

ASAM FIBEX format, a standard for the representation of network data for automo-
tive systems, uses XML andXML schemas.This is also the case for the new automotive
software/hardware component description language developed in AUTOSAR, and
the recent requirements interchange format (RIF) [], a format for the standardized
exchange of requirement information intended to replace text documents.

10.5 State of the Art and Practice

This section provides snapshots from industrial practices of MBD. The presentation
is exemplifying but is intended to be representative in that it includes examples from
several domains, from original equipment manufacturers (OEMs) as well as subsys-
tem suppliers, where MBD is used for different purposes. MBD of embedded systems
is a hot research area. Following the snapshots from state of practice, we give a brief
overview of some of the active areas concerning MBD-related research. The inter-
ested reader is referred to the following references for further reading on these topics
[–,,,,,].

10.5.1 Automotive State of Practices

In general, development practices vary to a great extent over different companies,
and across the automotive domains. This is not surprising because of the hetero-
geneity of the automotive embedded systems. While some domains are characterized
by model-based approaches that support several steps and aspects of the develop-
ment, other domains still mainly rely on written documents for specifications and
handwritten C-code for software development. In general, there is a limited use
of system-level MBD tools, for integration/networking, systems architecting, and

∗ XML, standardized by WC.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-31

information management. A complete development chain involves several tools and
pieces of information that are loosely integrated. Examples of problems in this area
include efforts trying to combine function specification tools with tools for soft-
ware design and with specific engineering analysis models/tools (e.g., for safety and
reliability).

10.5.1.1 Model-Based Cross-Enterprise Communication and Integration

A typical automotive OEMs development process for embedded systems includes
writing specifications for subsystem suppliers, and then testing and integrating the
resulting ECUs. In other cases, the OEMs may write parts of the software for the
ECU, where integration can be performed by the OEM or the subsystem supplier.
For a few ECUs, the OEMwill develop the complete application software, often along
with a proprietary software platform. The specification and integration of separately
developed subsystems requires that the partners agree at least on the component inter-
faces, nonfunctional properties (e.g., weight), and the procedures for fault reporting
and diagnosis. In current practices, a widely used method for interface specification
and matching is through the use of standardized networks, mainly controller area
network, providing a shared communication format and protocol among partners.
The communication between partners is then based on text-based documentation,
complemented with direct communication for consensus and conformity checks. As
such an approach is restricted to the network level, no direct support is provided
for early analysis as well as for the interface matching of fine-grained components,
such as when external functions and software components need to be directly inte-
grated in a product or its subsystem. Several efforts and newer tools attempt to support
system-level design (see Refs. [,,,]). Some OEMs and suppliers have tried
to solve the problem by using Simulink or other models to improve information
exchange. One limitation is that in most cases the approach is delimited to the func-
tional aspects. Issues that often remain open include, for example, the traceability of
technical decisions and hypotheses, and the interface semantics with regard to timing,
synchronization, safety, and variability. Moreover, the concerns of IP can also cause
problems in conformance checks and behavior composition.

10.5.1.2 Model-Based Information Management

Theproblems today when introducing structured information management in indus-
try are largely of organizational nature. There are strong needs to support the transi-
tion from text-based to model-based information management. Various approaches
to information management are practiced by different domains and disciplines, based
on PDM, SCM, or tools with similar features. This is also an area where several new
tool vendors are appearing. In practice, however, model-based information manage-
ment in the automotive industry of today is still a vision, not only at the systems level,
but also for many domains and disciplines. The majority of the developers in studied
companies are still defining their functional requirements in text-edited documents.
The need to go through thousands of documents tracing changes is a tiresome but
everyday reality for many designers. Although the ambition to transfer into a model-
based paradigm is prioritized in many organizations, many others do not recognize

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-32 Automotive Embedded Systems Handbook

this effort. The problems are common and of the same nature: overflow of infor-
mation, problems with version management, outdated information and late testing,
though they are tackled differently. Instead of focusing on a model-based approach,
some organizations choose to find a mutual definition of how to write requirements
as one measure to integrate the information. The information overflow that follows
from complex product development is especially challenging for electrical/electronics
and software engineers. Here the need to integrate and balance requirements from
different engineering disciplines is a prerequisite for quality product development.

10.5.1.3 Model-Based Vehicle Motion Control Engineering

For control systems development in the automotive industry, MBD is in many areas
already a standard design approach although the extent varies between different com-
panies and subsystems. Characteristic for mature adoption is that a model-based
control engineering approach is used, where models of the vehicle and the control
algorithms are used. Typical application areas include chassis systems, power train,
and climate control. One alternative to the model-based approach is through tuning,
in which the control behaviors are primarily determined by tuning. For example, the
design of engine control is an automotive domain with little tradition of model-based
control, relying heavily on lookup tables and calibration.
MBD supported by CAE tools (see Refs. [,,]) facilitates the design of

advanced control functionality by allowing incremental development with early V&V
before the mechanical and electronics hardware are available. A typical design starts
with a behavioral model that is used in, and refined through, simulation, rapid-
prototyping, software-in-the-loop simulation of application software, production of
target code, and finally with hardware in the loop simulation, where the set of ECUs
are tested against a real-time simulation of the vehicle and nonavailable ECUs. In some
companies and domains, the control systems development is not connected to the
embedded systems implementation. In this case, the control systemmodel will be part
of the specification for the implementing team.The tool support for the model-based
approach is today mainly limited to a per ECU basis. The integration of application
software to the system software in one ECU can be done manually or using tools that
are more oriented toward software development, such as UML-based tools. In this
case, the control system code is integrated with the system software, just like any piece
of hand-written code.

10.5.1.4 Model-Based Generic Functionality and Software Design

In a vehicle, both the body and infotainment domains consist of functions that
are mainly discrete in their nature. Such functions normally have complex logic
interactions and can be sensitive to synchronization, performance (e.g., bandwidth
and throughput), and usage conditions. To enable early verification, different state-
based modeling and analysis techniques as in generic software systems have been
used in current practices. For example, the creation of early models of vehicle HMI,
either as desktop simulations, in driving simulators, or mounted in an old vehicle, is
an important practice to validate such interface functions with regard to performance,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-33

usability, and user-friendliness. With respect to software modeling, the use of UML
has been increasing. However, the use of UML is not widely spread for automotive
embedded systems. Subsets of UML are used for a number of purposes including
communication and documentation. There are also cases where the use of UML tools
includes code generation.

10.5.1.5 Model-Based Testing

Model-based testing is becoming increasingly utilized where several modes of testing
are provided by the use of models and tools, from pure model-based simulation, over
software simulation, to hardware in the loop simulation. A challenge for model-based
testing is the need for system configuration management and for defining relevant test
cases—calling for a more systematic approach to embedded systems development.

10.5.1.6 Model-Based Safety Engineering

The overall aim of safety engineering is to identify hazards, to assess risks, and
to carry out hazard control minimizing the risks. The analysis normally requires
an understanding of possible component errors (i.e., in terms of failure modes) as
well as their propagations within a system and their consequences. For automotive
systems, a set of classical safety analysis techniques like FMEA and FTA are used
in engineering practices. These techniques rely on analytical models capturing the
error logics of a system (i.e., possible errors and error propagations). One challenge
is that the error models as well as the analysis outcomes are often kept separately
and may diverge from the actual design [].

10.5.2 Research and Related Standardization Efforts

The heterogeneity of automotive embedded systems, in terms of different domains,
characteristics, and properties, have given rise to a very large number of modeling
formalisms, techniques, and tools to support MBD. Individually, each of these tech-
nologies only covers delimited system concerns. The fact that these technologies are
not always integrated combined with a lack of a common terminology and under-
standing, can cause severe problems. There is a large number of research topics in
the area of MBD, including modeling languages, model integration and manage-
ment approaches, methodologies, specific techniques for analysis, system refinement,
generation of test cases from system specifications, optimization and synthesis tech-
niques, reverse model engineering where models of existing software/hardware can
be created in a systematic way, modeling reconfigurable systems, HMI for represent-
ing complex systems, component models, and platforms. Several of the topics are
also interrelated. A challenge in following this evolving field is due to its multidis-
ciplinarity; the topics are treated in a number of fields including systems engineering,
embedded software, electronics design automation, reliability and safety engineering,
control engineering, mechatronics, automotive engineering, and more—and thus at
corresponding conferences and journals. In the following, we focus on the first three
above-mentioned topics, emphasizing efforts in the direction of embedded systems
engineering.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-34 Automotive Embedded Systems Handbook

10.5.2.1 Modeling Languages for Embedded Systems

As illustrated in Figure ., a large number of languages already exist, or are in
development for embedded systems. Here we focus on two categories of such lan-
guages, namely ADLs and behavior modeling languages. To support design and
systems integration, there is a strong need for standardized descriptions of embedded
systems—this has spurred the development of ADLs. A typical case is for a systems
integrator who should specify and integrate a large number of components (func-
tions, software, electronics, sensors, and actuators). A systems description language
can enable communication, documentation, and coordination of such integrated sys-
tems, as well as formal analysis and automatic system synthesis. A typical case for
synthesis is that glue code/logic is generated, for example, to support the interactions
between software components. The emphasis for ADLs is on systems structure, pos-
sibly at different levels of abstraction. However, some behavioral aspects are usually
also provided to enable systems-levels analysis. There are several examples of rele-
vant ADL efforts including AADL, AUTOSAR, CAR-DL, EAST-ADL, and related
OMG languages and efforts [,,,,,,,]. We do not explore these efforts
much further in this chapter, since there is a separate chapter devoted to the topic of
ADLs—to which we instead refer the interested reader.
Behavioral modeling languages share the desire to provide high-level behavior

abstractions, above software/hardware implementation level. Further commonalities
include the desire to capture many different types of behaviors (models of computa-
tion) and properties of embedded systems, and the development of transformations or
refinements, whereby the abstract models can be translated into software or descrip-
tions from which hardware can be synthesized. Languages in this category typically
support behavior simulation, analysis, and synthesis. A research challenge is to sup-
port multiple MoCs within the same framework while providing a basis for sound
analysis and synthesis. A related research challenge is to support the refinement
of behavior models to distributed embedded computer systems. There exist several
commercially used languages in this category including Simulink, Modelica, and
SystemC [,,]. Examples of research approaches include Ptolemy, Forsyde,
Milan, Metropolis, and other codesign efforts [,,,,]. We describe below
Metropolis as an illustrative example of research efforts in this category. The connec-
tions and/or integration of ADLs with behavioral modeling languages constitute one
interesting research challenge.
While UML and UML lack many properties required for modeling embedded

systems, there are several OMG developments that try to address such issues, comple-
menting the UML norm. One way to deal with such extensions is to define a UML
profile using the available extension mechanisms of the UML. The EAST-ADL effort
is one example where the UML language is being tailored to a particular domain
and more formalized, by the use of UML extension mechanisms. A current OMG
request for proposal, MARTE, is addressing this, in order to define a newUML profile
for real-time embedded systems, adding properties for specifying timing require-
ments and component behavior, for example []. Another OMG effort is that of the
recent SysML standard—a visual modeling language for systems engineering appli-
cations []. SysML supports the specification, analysis, design, and V&V of a broad

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-35

range of systems and systems-of-systems. It is implemented as a UML profile, adding
some diagrams and constructs to UML (mainly regarding requirements and para-
metric associations). SysML provides an interesting framework that still needs to be
proven for the area of embedded systems.
Metropolis is an environment for the development of embedded systems from

specification to implementation with a “platform-based” methodology and succes-
sive refinement [,]. The approach stems from the area of electronics design
automation and the idea is to investigate if proven concepts for hardware syn-
thesis can be extended to embedded systems. The aim is to meet the increasing
needs on complexity control and verification, and to provide well-defined seman-
tic links between specification and implementation. The focus is on analysis and
synthesis through formal methods as well as on the integration of heterogeneous
models. Metropolis provides a metamodel of computation that forms the basis for
expressing commonly used MoCs. System modeling in Metropolis includes abstract
behavior specifications, architecture, the mapping of the behavior onto the archi-
tectural elements, and the expression of constraints over quantities such as time or
energy. In the architectural model, computational and communication components
are characterized by services and costs, such as energy. Mapping corresponds to
refinement of behavior that provides emerging properties. The approach explored in
Metropolis is to support design optimization combined with analysis and verification
tools.

10.5.2.2 Model Integration and Management for Embedded Systems

As described earlier in this chapter there are many possible relations among the
different types of tools that are used in embedded systems development.These depen-
dencies and development processes can be used to identify different integration
patterns [,,]. A typical example where integration is required is the need to
support several types of analyses. Since the tools and analysis techniques are frag-
mented there is a need to develop support for extracting and mapping information
of heterogonous types. The integration can be achieved through common formats or
metamodels together with support for tool interfaces and interoperability.
One approach to handle the information is to adopt a PDM approach where

the information is stored either centrally or in the domain tools. Regardless of the
approach taken, it is important to realize that models have components and structures
that need to be versioned, configured, and documented. A challenge in doing this
is the handling and integration of the disparate sources of information. A resulting
challenge is to provide management tools that support the full range of embed-
ded systems development and that allow fine-grained information management.
Product information models are important as a basis for management. Today there
are standardized models in mechanical engineering but not for embedded systems.
Advances in embedded systems modeling languages may provide the foundations for
establishing standards.
Examples of related research efforts are given in the following (see Ref. [] for

more).

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-36 Automotive Embedded Systems Handbook

• GeneralStore is a platform enabling a development process running from
models to executable code, in which heterogenous CASE tools (e.g., Mat-
lab/Simunk and ARTiSAN RT Studio []) and their associated code
generation facilities are integrated. UML models are used for overall sys-
tem design, and subsystem models can be described in the discrete- and
time-continuous domain. This is achieved by providing metalevel def-
initions of CASE data in UML, and then integrating the metamodels
in a MOF object repository. The data interchange between CASE tools
is supported by XML. GeneralStore provides support for configuration
management [].

• ToolNet is an integration platform, managing the integration of domain
tools targeting specific design phases or aspects of embedded software
systems, such as DOORS [] andMatlab/Simulink. This approach leaves
the domain data at their respective tools. Data integration is achieved by
specifying a virtual object space in terms of relationships and consistency
constraints of domain tool data, which is then stored and managed in
a relation repository. Standardized APIs are used to support tool access
and XML-based export of tool data. ToolNet provides a graphical user
interface for navigation [].

• Model integrated computing. In research at Vanderbilt University, meth-
ods and a prototypical tool-suite for MBD including model integration
andmanagement has been developed.The approach emphasizes the use of
domain-specific modeling languages and model transformations for inte-
gration with different engineering tools. The transformations are imple-
mented through a mapping of the metamodels of individual models. To
support exchange of tool data, different tools are connected on the basis of
CORBA/COM technologies. While each tool has an interface adapter that
provides the data access (e.g., through a data file or COM interface) and
syntax manipulation, the system provides a central semantic translation
service for preserving the semantics of tool data being exchanged [].

10.5.2.3 Methodology Support for MBD

Methodologies that support embedded systems MBD are required. As part of the
methodology there is a need to define how models should be used in the develop-
ment process and how different types ofmodels andmodeling languages are related to
each other. A methodology should provide guidelines on how and when to deal with
different product phenomena. A key challenge is the development of methodologies
that support cost-efficient and systematic design and verification supported bymodels
and analysis technologies. Integration with the automotive mechanical engineering
faces several challenges on the path toward systems and mechatronics engineering.
Today, software and electronics are often seen as being late in the product develop-
ment process, though their lead times are perceived as shorter. While the subsystems
and components are optimized, this is not the case for the complete system.
Research and development of methodologies is an interesting area which should

draw from experiences in systems engineering, concurrent engineering, and related

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-37

disciplines [,,,,,,,]. A common assumption in these approaches is that
aproperlymanagedprocess leads tosatisfactoryproductsandefficiencies.Ontheother
hand, while emphasizing management aspects of engineering, all these approaches
assume that the products as well as necessary domains knowledge (e.g., automotive
engineering) is described and provided []. Properly capturing such information
is particularly important in order to manage various concerns, to assure product
qualities, to obtain a consensus among stakeholders, to improve the processes and
plan resources in organizations. For example, to allow concurrent engineering, it is
necessary that the product information and expertise traditionally associated with
a specific development stage are made transparent and available at every stage of
development. These approaches also need adaptation to take software and embedded
systems properties into account. Similarly, methodology development should draw
from existing software engineering processes [,], where, however, adaptation and
considerations of embedded systems characteristics require further work. There are
several pieces and contributions towardmethodology for embedded systemsMBD in
the literature (see Refs. [,,,,]). One example is that of platform-based design,
amethodologyderived fromelectronicsdesign,where theconceptual idea is toprovide
reusableplatformsatdifferent levelsof abstractions.Theplatformsconstrain thedesign
and at the same time constitute a kind of product line at each level of abstraction. A
challenge remains how to support formal refinement between different abstraction
levels and in integrating models that describe different system aspects [].

10.6 Guidelines for Adopting MBD in Industry

The introduction or extended usage of tool chains supporting MBD is not unprob-
lematic. Introducing tool chains causes a reliance and dependence on particular tool
vendors and requires training of personnel. An understanding of the scope (pro-
viding adequate requirements for technology selection), the presence of motivated
people skilled in MBD within the organization, and the consideration of strategic
issues belong to the prerequisites for the successful usage of MBD.
This chapter has described several issues that are of central importance to MBD.

This section attempts to summarize and elaborate these issues with the aim to pro-
vide guidelines or at least checklists for considerations that are central for a successful
adoption (recall Table .).
Relevant questions when considering the use of MBD include the following:

• What are the goals and drivers for MBD in our setting?
• What is a suitable scope for MBD in our organization with respect to
processes, stages, activities, product concerns, and business context?

• What are the implications (opportunities and challenges) with respect to
existing formal processes, informal work practices, and which organiza-
tional units will be affected?

• What are the resulting concrete requirements on MBD technologies,
which MBD technologies are relevant and what are their limitations?

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-38 Automotive Embedded Systems Handbook

• How can model/information management and integration be solved and
what should the corresponding IT architecture look like, taking into
consideration future evolution?

• How to deal with legacy information, models, and tools?
• Considering the above, what steps need to be taken to appropriately
introduce and maintain the new development approach?

The involved efforts depend on the scale and scope.MBD approaches that cross disci-
pline/development stage/domain/enterprise borders are likely to require more effort.
Considering current practices that are dominated by localized MBD efforts, many
new efforts concern systems-level MBD, aiming to integrate MBD efforts. Systems-
level efforts constitute drastic changes that require several strategic considerations
that will be discussed in the following. The primary concern of this section is that
of systems-level MBD efforts, but we believe that many of the issues raised are also
valid for smaller scale MBD efforts.
In the following we discuss strategic issues, processes, and organizational consid-

erations when adopting an MBD approach; desired properties of MBD technolo-
gies/tools; and additional hints on arguments and pitfalls. Some of the strategic issues
are further discussed in later sections.

10.6.1 Strategic Issues

Just as any other investment, the introduction of MBD has to be motivated. However,
there is no common method to evaluate the effects of such an investment. We believe
that the framework provided in this chapter (Table .) provides a first step in order to
make a strategic choice of when and how to adopt MBD. A further baseline is formed
by developing the fundaments of theMBD effort, after assessing the goals, drivers, and
scope.Thefundamentsincludethedefinitionofaproductontologythatdefinesproduct
parts, relations, and properties, and a related reference process with stages, activities,
flow of information, and events. It is important for the process model to clarify the
stakeholders and views associated with different roles and concerns—compare with
Table ..We recommend that these fundaments be described as models themselves.
The models can be compared with the current processes and organization in order
to better assess the potential changes required. The ontology, or information model,
should focus on what is considered the most relevant parts for the MBD effort, while
exploring the interfaces toother parts (processes, product, information, organization).
Further strategic issues related to the consideration of a larger scale MBD effort

include

• Planning for the MBD adoption and long turn evolution. A plan for adopt-
ing the new or modified MBD approach needs to be established. A new
development approach such as MBD requires raising motivation among
users and managers, and establishing competence and a new culture in
the organization. Education and the development of pilots, making the
case forMBD, are important for this. A given organization will most likely
already have MBD approaches in place for some domains/disciplines.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-39

Other domains/disciplines and the overall embedded systems engineer-
ing, in particular model management and integration, are however not
likely to be based onmodels. In the planning for anMBDapproach,model
integration, management, and the handling of legacy information and
artifacts becomes central.

• Developing a suitable information and tool architecture. This issue, in par-
ticular, requires that dependencies between development activities and
models be investigated. Given this information it is easier to address dif-
ferent solutions for model management and model/tool integration, and
also makes it easier to address parts of the first strategic issue.

• Technology/tools selection. An important starting point is to define the
organizations’ needs for functionality in MBD tools. Once this is done,
a mapping of the needs to the capabilities of existing modeling tools can
be made. Normally, there is a large resemblance between the tools but in
complex development it is hard to find standardized tools that match the
company’s needs exactly. In the area of MBD for embedded systems there
are also some areas that are as yet uncovered by commercial tools. The
choice and trade-offs between standard, tailored, or proprietary tools, thus
becomes an issue.

• MBD culture. One major challenge is to adapt people’s mindset from
written text documents to MBD. In order to achieve MBD, a new way
of thinking that oozes through the organization needs to be obtained.
For MBD to actually be acknowledged in a development setting, peo-
ple should feel the need to read, retrieve, and store information through
the use of models. Since information is used differently by engineers
from different design contexts, it is important to understand what other
designers from external engineering disciplines need to take part in the
domain-specific information.

• Adapting tools/processes to user needs or the users to new processes/tools.
This issue will depend on organizational traditions and to what extent the
current processes and established work practices conform to the desired
MBD processes.

10.6.2 Adopting MBD: Process and Organizational
Considerations

In the adoption of MBD, it is essential not to neglect organizational aspects [,,].
In the following, we discuss issues related toMBDdevelopment processes versuswork
procedures, and the pace and approach for introduction. Formore reading in this area,
see Refs. [,,,].

10.6.2.1 MBD Development Processes versus Work Procedures

It is known that developers establish their own informal work procedures and adapt
the formal product development processes to fit their everyday work situation. When

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-40 Automotive Embedded Systems Handbook

introducing MBD tools for technical or information management activities, the ques-
tion that arises is whether standardized product development processes should be
used for MBD or whether the processes should be adapted to the informal work pro-
cedures used in the organization. Thus, another organizational prerequisite that ought
to be taken into consideration is to what extent the need for standardized tool solu-
tions out-levels the need to avoid forced adaptations made to the work procedures. If
the user-perceived needs are not fulfilled by the adopted MBD tools, developers are
forced into unwanted work procedures.
If the integration need is strong, possible technical as well as terminological inter-

face problems have to be overcome. One challenge when introducing MBD into
automotive organizations might be the lack of a coherent terminology. A possible out-
come of an adaptation to MBD is the need for changed or new organizational roles
due to new work tasks, for example. It is also possible that the organizational termi-
nology differs between different engineering disciplines. In the case of introducing
information management systems that manage information from different models,
the use of a (coherent) terminology needs to be defined.This can be seen as an advan-
tage of systems-level MBD approaches, since they require organizations to focus on
these fundamental aspects. However, the importance of defining how the information
should be structured must not be underestimated. Often a formalization of require-
ments specifications is necessary when MBD is introduced. Even though tools for
MBD are available, the tools themselves do not inform what the proper abstraction
level for the information should be. Amethodology, adapted toMBDand taking work
procedures into account, should define howmodels are to be used in the development
process and how different types of models are related to each other. As a comple-
ment to methodologies, there is also a need for concrete guidelines that assist users of
MBD technology.There are, however, very few publicly available guidelines. A related
effort is that of the MISRA guidelines for C programming []. As a consequence,
many companies who have adopted some form of MBD have developed their own
proprietary guidelines.

10.6.2.2 Pace and Approach for Introduction

Another aspect that needs to be considered is at what pace an introduction can be
made. A step-by-step introduction process or a full rollout can be applied []. The
importance is to find incentives for presumptive users of modeling tools, to motivate
and educate them []. Individuals in an organization have different levels of recep-
tiveness to change. When introducing MBD it has to be decided whether to take a
top-down approach or, in cases where it is possible, to allow a bottom-up approach.
The latter evolves from the designers’ needs and highly motivates use of new tools
among designers. A bottom-up approach thus involves designers from the beginning
and focuses on the individual’s needs and adaptation to current work practice. How-
ever, when such bottom-up approaches are not anchored or actively supported by top
management the tooling solutions tend to spread to separated “user islands,” where
system adaptations are made along the organic growth []. A top-down approach
concludes what information needs to be stored and shared from a more global point

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-41

of view. For domainMBD tools, a global approach also considers interactions between
domains (models, tools, and people) and how the system requirements, functions, and
overall V&V are performed.

10.6.3 Desired Properties of MBD Technologies

It is obvious, but not always the case in practice, that the technology requirements
should be based on tool functionalities that are needed by the organization, not on
what functionalities are available on the market, as delivered by different tool suppli-
ers.The requirements onMBD technologies asmanifested by tools will be determined
by the particular context where MBD is adopted; the properties of the system that
MBD will be applied to determining the technical scope, the goal—for example, to
improve the product quality or time to market—and the MBD means and activities
that are relevant to achieve the goals. Other requirements follow from process and
organizational constraints such as concurrent engineering.
Here, we divide the desired properties into three kinds of requirements: general

requirements, technical process and product requirements, and management process
requirements focusing on how to handle several users and lots of information.
The general requirements include:

• CAE tool interoperability. An MBD approach will involve a set of interre-
lated tools that in turn will interact with several users, other already exist-
ing tools, and information/models. Well defined tool interfaces (external
as well as internal) are thus important. The direction should be to strive
for as few tools as possible, where the solution will have to be a trade-off
between the capabilities provided for different concerns and the efforts
on model/tool integration. The larger the scope of an MBD effort, the
larger the implications ofmodelmanagement and integration will be. One
specific aspect is that of dealing with overlapping/duplicated services and
information between the tools.

• Computer–user interaction. Suitable computer–user interaction tech-
niques need to be provided between the tool and the users. In particular,
the usage should be intuitive and provide feedback such as consistency and
correctness checks. Single/multiple users as well as the support of different
usage conditions (lab, in-car, etc.) have to be considered.

• Adaptability. A given technology and set of tools will require some
adaptation to a given context, and to account for changing require-
ments/contexts. It is therefore important that the services are configurable
to some extent. This also provides means for later adaptations such as
the incorporation of new tools or changed work procedures. A common
requirement is that the tool services have an open API including access to
models inside the tools. For information management systems it is impor-
tant that the information model be customized. It is preferable if the tools
support standardized exchange formats for both inputs and outputs.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-42 Automotive Embedded Systems Handbook

• Cost issues. The cost efficiency associated with MBD technology is impor-
tant including issues such as licensing models, and the availability of
adequate support and training.

• Performance and scalability. To further support efficient development, the
models and tools used need to provide the required performance. Model
assembly time and execution time have to be reasonable. Here, the trade-
off between accuracy of results and speed of results has to be dealt with.
The tools must be able to handle systems of the required size for the
intended MBD tasks.

• Dependability. With MBD, the system design will rely on various tech-
nologies implemented in terms of tools. It then becomes important for
these tools and technologies to be dependable themselves. There are sev-
eral aspects of dependability, including the availability of several users,
user references, guidelines, and methodologies associated with the tools.
A related aspect of dependability is the trust and reliance with respect
to the company that provides the tool. The need for verification of the
involved tools and their modelmanipulations increases for dependability-
critical applications. For these purposes, it is beneficial if the tools
provide both analytical, simulation and real-world testing capabilities,
allowing model behavior to be compared between different environments,
and also supporting model validation. For verification of code genera-
tion the ability to trace from the model to the code and vice versa is
important.

The technical process requirements include:

• Modeling languages. The desired properties are determined by the extent
the scope of modeling. It must be possible to represent the desirable
properties, structures, and behaviors of the targeted product/subsystem
in a useful way. The usefulness relates to the expectations and experi-
ences of the organization. For example, the need to support related design
activities, such as analysis, creates additional requirements on the lan-
guage formality and information content. Additionally, libraries of model
components supporting design should be supported. Given increasingly
complex systems, the system models also become large. Structuring sup-
port for models is thus very important.

• Communication. Support for visualization of execution runs and results
are central. The provision of different views, showing different aspects of
the models, facilitates communication among multidisciplinary experts.

• Analysis. For a given scope, an MBD technology needs to support the
required types of analysis (e.g., fault propagation or power consumption),
preferably both through simulation and analytically. Since the analysis is
done at the level of the model, model-level analysis (static and dynamic)
capabilities should be provided by the tools. Analysis including real-
time simulation poses special requirements on the code generation, the
simulation platform, and its interfacing capabilities.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-43

• Synthesis. The provisioning of synthesis in terms of generation of code
and documentation can be highly useful in reducing manual translations
and possible manual mistakes. The requirements for synthesis include
tailorability, transparency, and verification (see dependability). Tailorabil-
ity involves issues such as optimization (e.g., memory, performance, or
accuracy in code generation), the style and naming conventions of the
generated code. Transparency means that the rules of the synthesis should
be well documented. Adaptation of the involved transformations could be
achieved indirectly, through tuning directives or by granting users direct
access to the underlying model transformation rules.

• Automation. The requirements to support automation of analysis or other
tooling facilities include, for example, the provisioning of an openAPI and
scripting facilities whereby the automation activities can be described. For
advanced automation, the scripting can become difficult, and may itself
need model-based support for communication, documentation, analysis,
and synthesis.

The management process requirements include:

• Multiple views and model integration. The provision of dedicated system
views promotes complexity management. The requirement to support
multiple views is linked with the requirement tomanage the integration of
the views. Depending on the particular context, this may result in needs
to transfer models among developers and tools, including changing their
representations and content, as well as more tight integration of the tools,
for example, by accessing one tool from another.

• Model management. Proper information management is vital for com-
plex systems, providing services to support versioning, definitions of
product variants, handling dependencies between models, consistency
management, and traceability among all relevant design entities.

• Product structure definition. Closely related to the above point there is a
need for information management purposes to define what the product
is (e.g., functions, components of different technologies) and how this is
related to supporting information such as documentation, workflow, and
users. The resulting definition is often called an information model. It is
highly desirable that the view models have well-defined connections to
the information model.

• Support for concurrent and distributed engineering. This type of support
includes abilities of simultaneous access and sharing of the provided ser-
vices across organizations. This imposes derived requirements on the
information management and IT-tool infrastructure.

• Workflowmanagement. Related to the previous points, it may be desirable
to implement and automate some of the workflow among developers, for
example, by providing notification of events, such as when the status of a
design entity has changed.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-44 Automotive Embedded Systems Handbook

10.6.4 Common Arguments against MBD and Pitfalls

Additional arguments that can be useful in the reasoning about MBD adoption
include the following:

• Tools are costly! This is why the goals, drivers, and the context of MBD
have to be considered to determine the suitability of the tools for the given
purposes, such that MBD can be introduced when it pays off.

• Models are difficult to develop, understand, and are not amenable to analysis
and synthesis! This can be true. However, this probably reflects amismatch
in the choice of the MBD technology.Themismatch could be with respect
to the context of MBD usage including possibly inadequate training of
users, or simply because the chosen MBD technology is immature.

• Users say “I don’t have time to model or to document, I need to work.”
This statement can be related to the above mismatches, and/or also illus-
trate the need of supporting an MBD with a suitable process aligned to
work practices. For an MBD approach to be worthwhile it should be pos-
sible to develop rational arguments about the needs for modeling and
documentation.

• A model can never capture reality so why bother? It is well proven from
experience that models can be developed for many purposes to capture
reality sufficiently well. However, developing models is costly, so the mod-
eling efforts have to be focused and the target and technologies have to be
matched.

• MBD is just about code generation. There are many other facets to MBDs.
For OEMs, transitioning from specification of embedded systems to
actually implementing them is a large step and has many implications
including maintenance of in-vehicle software and probably larger respon-
sibilities. On the other hand, it gives the OEMs better control of vital
vehicle functionality.

• Can code generators be trusted? Code generation from models has faced
resistance, just like the transition from assembly to high-level program-
ming languages did decades ago. The basic idea is the same—that of
providing designers with more powerful tools, thus relieving them of
unnecessary detail. Concerns were previously raised whether the compil-
ers would be able to produce efficient and reliable codes. The same con-
cerns are now sometimes still being raised with regard to code generation
from models. The gap to implementation should not be underestimated,
but this does not mean that compilers and code generators will not do
their job. The required qualities including performance of the generated
code are also relative to the domain where the code generation is applied.
Generated code is already being used in cars and even in aircraft.

• Overtrust in models and tools. This is a common pitfall and lesson from
reality, and should be taken as a general advice in usingMBD.The analysis
can only be as good as themodel—“the garbage in/garbage out syndrome.”
Model validation and designer experience are very important aspects

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-45

of MBD. It is sound to maintain a certain critical attitude and ongoing
checking of plausibility of the models and analysis results.

• Too detailed models. This is also an important lesson from reality, and
should be taken as a general advice in using MBD. Experience is required
to judge the level of detail required—again the efforts have to be focused.
In efforts during the s and s in information modeling, the scopes
were inmany cases set too broad. Modeling everything in toomuch detail
leads to extremely complex models without a clear idea for the concrete
usage of the models to support the development.

• Telecom went into the UML trap  years ago—is the automotive industry
now heading the same way? Hopefully no but the answer is not obvious!
Many efforts are devoted towards tailoring UML and thus improving its
limitations, for example, improving the semantics and integrating it with
other models required for automotive embedded systems. However, UML
remains a very complex construction and the use of profiles creates a
plethora of dialects that may counter the role of UML as a standard. UML
also still needs to be proven outside its traditional domains.

10.7 Conclusions

Automotive embedded systems are becoming more and more complex, have high
expectations on quality and functionalities, and are safety and cost critical. The
involved technologies are also becoming more mature and standardized. There are
therefore strong drivers for introducing MBD for automotive embedded systems to
increase the development efficiency and effectiveness.
This chapter has provided a framework to facilitate the reasoning and understand-

ing of MBD. While MBD is certainly not a silver bullet, it can assist designers in
many ways by providing support for communication, documentation, analysis, and
synthesis of designs.
A multitude of technologies for MBD of embedded systems are available to devel-

opers. Examples of these technologies include modeling languages, frameworks,
model transformations, exchange formats, analysis and synthesis techniques, and
tools. Introducing MBD means to introduce rather complex tools in order to han-
dle increasingly complex products. MBD can be adopted for specific design tasks in a
limited part of the organization or in a more holistic manner, addressing both techni-
cal andmanagement processes. A successful adoption requires a careful consideration
of the contextual requirements and MBD technology limitations. A special concern
is that of integration and information management, supporting the use of the many
types of models and information that are required in developing automotive embed-
ded systems. Moreover, the usage of these tools needs to be supported by suitable
processes and guidelines that describe how the technologies should be used.
A challenge is that of connecting the embedded systems world properly with the

automotive mechanical engineering. While this, to a large extent, is an organizational
and cultural issue, the supporting tools and technologies today are either focused on

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-46 Automotive Embedded Systems Handbook

MBD for mechanical engineering or on some aspect of embedded systems engineer-
ing, creating a need for research on methodology and systems modeling to fill the
gaps. Embedded systems are tightly intertwined with their environment, which con-
sequently also needs to be modeled, and analyzed in conjunction with the embedded
system. This environment contains other embedded systems, continuous-time sys-
tems, as well as humans. Incorporating abstractions of human behaviors is clearly a
challenge. The area of HMI needs further attention to support the creativity of devel-
opers and in visualizing complex systems; there is a need to involve HMI experts in
tool development and research efforts.
The usage of MBD has to go hand-in-hand with the evolution of processes, organi-

zations, and product architectures along the path to improve the capabilities of the
automotive industries to deal with embedded systems. The analogy with MBD in
mechanical engineering is tempting. With the advent of the CAD, coined already in
the early s,mechanical and hardware engineering are ahead of embedded systems
tools and methodology. However, MBD in mechanical engineering is still evolving
and there seems to be common trends and interests including the desire to cap-
ture design rationale, adopt functional abstractions, streamline/improve information
management, and improve systems analysis.
The current limitations in MBD technology and methodology are receiving strong

attention. Continued and improved interactions between academia and industry,
and between academic communities will be required for addressing systems-level
MBD challenges. MBD technology will play an increasingly important role for the
development of automotive embedded systems.

Acknowledgments

This work has been supported by the Swedish Strategic Research foundation through
the SAVEproject, byVINNOVA, through theModComp project and by the European
Commission through the ARTIST and ATESST projects. We acknowledge inputs to
this chapter from the following project colleagues: Niklas Adamsson, Jad El-khoury,
Bengt Eriksson,Ola Larses,OlaRedell, Anders Sandberg, Jianlin Shi, andUlf Sellgren.

References

Internet references to tools, companies, and organizations are listed separately in
the end.

. Architecture and Analysis Description Language (AADL). SAE standard AS,
issued November .

. Adamsson, N. Interdisciplinary integration in complex product development—
managerial implications of embedding software in manufactured goods. PhD the-
sis, TRITA—MMK :. Department of Machine Design, Royal Institute of
Technology, Stockholm, Sweden.

. ARTEMIS Strategic Research Agenda, st edn., March , prepared by
the members of the ARTEMIS Strategic Research Agenda Working Group.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-47

http://www.artemis-office.org/DotNetNuke/Backgrounddocuments/tabid//Default.
aspx (accessed October ).

. Bouyssounouse, B. and Sifakis, J. (Eds.). ARTIST Roadmap for Research and Devel-
opment (Lecture Notes in Computer Science), st edn., Springer, New York, May,
.

. ATESST project DeliverableD..—Elicitation of Overall Needs and Requirements on
the ADL—Part II. M. Törngren (Ed.). By the ATESST consortium. EU IST project
no. -. Available from www.atesst.org.

. Axelsson, J. Analysis and synthesis of heterogeneous real-time systems. PhD thesis
No. . Linköping University, Sweden, .

. Backlund, G.The effects of modeling requirements in early phases of buyer–supplier
relations. Licentiate thesis, Linköping Studies in Science and Technology, Thesis No.
, Department of Mechanical Engineering, Linköping University, Sweden, .

. Bahill, A.T. and Gissing, B. Re-evaluating systems engineering concepts using sys-
tems thinking. IEEE Transactions on Systems, Man, Cybernetics, Part C, ():–
, November .

. Broy, M. The grand challenge in informatics: Engineering software-intensive sys-
tems. IEEE Computer, ():–, October .

. Calvez, J.P. Embedded Real-Time Systems. A Specification and Design Methodology.
John Wiley & Sons, Chichester, England, .

. Chen, D., Törngren, M., Shi, J., Lönn, H., Gerard, S., Strömberg,M., andÅrzén, K.-E.
Model-based integration in the developmentof embedded control systems, a charac-
terization of current research efforts. In:Proceedings of IEEE Computer AidedControl
Systems Design Symposium, Munich, Germany, October .

. Clausing, D.P. Total Quality Development. ASME Press, New York, .
. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., and

Stafford, J.,Documenting Software Architectures: Views and Beyond.AddisonWesley,
Reading, MA, .

. Cooling, J. Software Engineering for Real-Time Systems. Pearson Education Limited,
Harlow, England, .

. Courtois, P.J. and Parnas, D.L. Documentation for safety critical software. In: Pro-
ceedings of the th IEEE International Conference on Software Engineering, Baltimore,
MD, May , pp. –.

. Crnkovic, I., Asklund, U., and Persson, D.A. Implementing and Integrating Product
Data Management and Software Configuration Management.Artech House Publish-
ers, Norwood, MA, .

. Cuenot, P., Chen, D., Gérard, S., Lönn, H., Reiser, M.-O., Servat, D., Tavakoli
Kolagari, R., Törngren, M., and Weber, M. Improving dependability by using an
architecture description language. In: Lemos, R., Gacek, C., and Romanovsky, A.
(Eds.), Architecting Dependable Systems IV. Springer series: Lecture Notes in Com-
puter Science, Vol. , Berlin, Germany, .

. Czarnecki, K. and Helsen, S. Classification of model transformation approaches. In:
Proceedings of the OOPSLA’ Workshop on Generative Techniques in the Context of
Model-Driven Architecture, Anaheim, CA, .

. Damm, W. and Metzner, A. A design methodology for distributed real-time auto-
motive applications. In: Next Generation Design and Verification Methodologies

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-48 Automotive Embedded Systems Handbook

for Distributed Embedded Control Systems, Springer LNCS, Berlin, Germany, ,
pp. –.

. Daniels, J. Modeling with a sense of purpose. IEEE Software, ():–, January/
February .

. El-khoury, J., Chen, D., and Törngren, M. . A survey of modeling approaches
for embedded computer control systems, Technical Report, Royal Institute of Tech-
nology, Stockholm. TRITA-MMK :, Sweden, .

. El-khoury, J. Amodelmanagement and integration platform formechatronics prod-
uct development, PhD thesis, Department of Machine Design, KTH, :, May
.

. El-khoury, J., Redell, O., and Törngren, M. A model and tool integration platform
for multidisciplinary development. In: Proceedings of the st Euromicro Conference
on Software Engineering and Advanced Applications, Porto, Portugal, .

. Engelhardt, F. Improving systems by combining axiomatic design, quality control
tools and designed experiments. Research in Engineering Design, :–, .

. Freude, R. and Königs, A. Tool integration with consistency relations and their
visualization. In: Ninth European Software Engineering Conference and th ACM
SIGSOFT Symposium on Foundations of Software Engineering, Helsinki, Finland,
.

. Garetti, M. and Terzi, S. Organisational change and knowledgemanagement in PLM
implementation. International Journal of Product Lifecycle Management, :–,
.

. Gero, J.S. . Design prototypes: A knowledge representation scheme for design.
AI Magazine, ():–, .

. Gomaa,H. SoftwareDesignMethods for Concurrent and Real-time Systems, Addison-
Wesley, Boston, MA, .

. Goševa-Popstojanova, K. and Trivedi, K.S. Architecture-based approach to reliability
assessmentof software systems. Performance Evaluation, (–):–, July .

. Hansen, M., Nohria, N., and Tierney, T. . What’s your strategy for managing
knowledge?Harvard Business Review, ():–, .

. Heinecke, H., Schnelle, K.-P., Fennel, H., Bortolazzi, J., Lundh, L., Leflour, J., Mat/e,
J.-L., Nishikawa, K., and Scharnhorst, T. Automotive open system architecture
an industry-wide initiative to manage the complexity of emerging automotive
e/e-architectures. In: Proceedings of Convergence , Detroit, MI, October .

. ANSI/IEEE Standard -, Recommended practice for architectural
description of software-intensive systems, September .

. Jezequel, J.M. and Meyer, B. Design by contract: The lessons of Ariane. Computer,
():–, January .

. Karsai, G., Lang, A., and Neema, S. Design patterns for open tool integration.
Software and Systems Modeling, ():–, May .

. Karsai, G., Sztipanovits, J., Ledeczi, A., and Bapty, T. Model integrated development
of embedded software. Proceedings of the IEEE, ():–, January .

. Kleppe, A.,Warmer, J., and Bast,W.MDA Explained.TheModel Driven Architecture:
Practice and Promises. Addison-Wesley, Boston, MA.

. Kopetz, H. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Boston, MA, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-49

. Knippel, E. and Schulz, A. Lessons learned from implementing configuration
management within electrical/electronic development of an automotive OEM. In:
Proceedings of the th International Symposium of the International Council on
Systems Engineering, Toulouse, France, June –, .

. Kruchten, P. Casting software design in the function-behavior-structure framework.
IEEE Software, ():–, .

. Larses, O., Sjöstedt, C.-J., Törngren, M., and Redell, O. Experiences from model
supported configuration management and production of automotive embedded
software. In: Proceedings of the SAE World Congress, In-Vehicle Software Session,
Detroit, MI, .

. Larses, O. and Adamsson, N. Drivers for model based development. In: Proceedings
of the Eighth International Design Conference on Design, Dubrovnik, Croatia, .

. Larses, O. Architecting and modeling automotive embedded systems. PhD the-
sis, Department of Machine Design, Royal Institute of Technology, Stockholm.
TRITA-MMK :, November .

. Lee, E.A. and Sangiovanni-Vincentelli, A. A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, ():–, December .

. Leveson, N.G. Safeware: System Safety and Computers. Addison-Wesley Publishing
Company, Reading, MA, .

. Lindahl, M. Engineering designers’ requirements on design for environment meth-
ods and tools. Doctoral thesis in machine design, Royal Institute of Technology,
Stockholm, Sweden, .

. Lohmar, W. The virtual development process—A reality at SEAT. In: Proceedings of
the FISITA  th World Automotive Congress, Reference FF, Barcelona,
Spain, May –, .

. Lowe, A., Mcmahon, C., and Culley, S. Characterising the requirements of engi-
neering information systems. International Journal of Information Management,
:–, .

. Maier, M. and Rechtin, E. The Art of Systems Architecting. CRC Press, Boca Raton,
FL, .

. Malvius, D. Information management for complex product development. Licentiate
thesis, TRITA-MMK :, Department of Machine Design, KTH, August .

. Malvius, D., Redell, O., and Ritzén, S. Introducing structured information handling
in automotive EE development. In: Proceedings of the th International Symposium
of the International Council on Systems Engineering INCOSE, Orlando, FL, July .

. McDermid, J.A. Assurance in high integrity software. In: High Integrity Software,
Sennet, C.T. (Ed.). Pitman, London, United Kingdom, .

. MDAGuide Version ... Document Number: omg/--. Date:  June .
. Medvidovic, N. and Taylor Richard, N. A classification and comparison framework

for software architecture description languages. IEEE Transactions on Software
Engineering, ():–, January .

. Hailpern, B. and Tarr, P. Model-driven development: The good, the bad and the
ugly. Special issue on model-driven software development. IBM Systems Journal,
():–, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-50 Automotive Embedded Systems Handbook

. Nambisan, S. and Wilemon, D. Software development and new product devel-
opment: Potentials for cross-domain knowledge sharing. IEEE Transactions on
Engineering Management, ():–, .

. Nonaka, I. and Takeuchi, H. . The Knowledge-Creating Company. Oxford
University Press, New York, .

. Norell, M. Stödmetoder och samverkan i produktutveckling (Swedish). Doctoral
thesis (report TRITA-MAE-:), Department of Machine Elements, Royal
Institute of Technology, Stockholm, Sweden, .

. Oliver, D.W., Kelliher, T.P., and Keegan, Jr., J.G., Engineering Complex Systems with
Models and Objects.McGraw-Hill, New York .

. Ottersten, I. and Balic, M., Effektstyrning av IT, Liber AB, .
. Papadopoulos, Y., McDermid, J., Sasse, R., and Heiner, G. Analysis and synthesis of

the behaviour of complex programmable electronic systems in conditions of failure.
Reliability Engineering& System Safety :–, .

. Pahl, G. and Beitz,W., Engineering Design—A Systematic Approach. Springer-Verlag,
New York, .

. Prasad, B. Concurrent Engineering Fundamentals, Volume I: Integrated Product and
Process Organization. PTR Prentice Hall, New Jersey, .

. Ranville, S. Case study of commercially available tools that apply formal methods to
a Matlab/Simulink/Stateflowmodel. SAE World Congress, Detroit, MI, March –,
.

. Redell, O., El-khoury, J., and Törngren, M. The AIDA toolset for design and
implementation analysis of distributed real-time control systems. Microprocessors
and Microsystems, ():–, May .

. Reichmann, C., Kuhl, M., Graf, P., and Muller-Glaser, K.D. GeneralStore—A
CASE-tool integration platform enabling model level coupling of heterogeneous
designs for embedded electronic systems. In: th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems—ECBS , Brno, Czech
Republic, May –, .

. Rushby, J. Formal methods and their role in the certification of critical systems.
Technical Report CSL--. Computer Science Laboratory, SRI International,Menlo
Park, CA, March .

. SAE ARP-: Aerospace Recommended Practice: Guidelines and Methods for
Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment,
th edn., SAE,  Commonwealth Drive Warrendale, PA, .

. Sander, I. and Jantsch, A. Systemmodeling and transformational design refinement
in Forsyde. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, ():–, January .

. Sangiovanni-Vincentelli, A. and Quo, V. SLD? Reasoning about the trends and chal-
lenges of system level design. Proceedings of the IEEE, ():–, March .

. Sangiovanni-Vincentelli, A. Automotive electronics: Trends and challenges. In:
Convergence , Detroit, MI, October .

. Schaetz, B., Pretschner, A., Huber, F., and Philipps, J. Model-based development.
Technical report—TUM-I. Institut fur Informatik, Technical University of
Munich, TUM-INFO--I–/.-FI, May .

. Schmidt,D.C.Model-drivenengineering.IEEEComputer,():–,February.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Model-Based Development of Automotive Embedded Systems 10-51

. Selic, B., Gullekson, G., and Ward, P. Real-Time Object-Oriented Modeling. John
Wiley & Sons, New York, .

. Sellgren, U. Simulations in product realization—A methodology state of the art
report. Technical report, Department of Machine Design, Royal Inst. of Technology,
.

. Sharman, D.M. and Yassine, A.A. Characterizing complex product architectures.
Journal of Systems Engineering, ():–, March .

. Shi, J., Törngren, M., Servat, D., Sjöstedt, C.-J., Chen, D., and Lönn, H. Combined
usage ofUMLand Simulink in the design of embedded systems: investigating scenar-
ios and structural and behavioral mapping. In: Proceedings of the OMERWorkshop:
Object-OrientedModeling of EmbeddedReal-Time Systems, Paderborn, October .

. Siegers, R.TheABCs of AFs: understanding architecture frameworks. In:Proceedings
of INCOSE International Symposium , Rochester, NY, July –, .

. Stevens, R., Brook, P., Jackson, K., and Arnold, S. Systems Engineering—Coping with
Complexity. Pearson Education, Harlow, England, .

. Sztipanovitz, J. and Karsai, G. Embedded software: Challenges and opportunities.
In: Proceedings of EMSOFT , LNCS , Springer-Verlag, Berlin Heidelberg,
Germany, , pp. –.

. Törngren, M. Fundamentals of implementing real-time control applications in
distributed computer systems. Journal of Real-Time Systems, :–, .

. Törngren, M., Chen, D., and Crnkovic, I. Component based vs. model-based
development: A comparison in the context of vehicular embedded systems. In:
Proceedings of st EUROMICRO Conference on Software Engineering and Advanced
Applications, Porto, Portugal,  August– September .

. Törngren, M. and Larses, O. Maturity of model driven engineering for embedded
control systems from a mechatronic perspective. In: Model Driven Engineering for
Distributed Real-Time Embedded Systems, Gérard, S., Babau, J.-P., and Champeau, J.
(Eds.), ISTE, London, September .

. Törngren, M., Henriksson, D., Redell, O., Kirsch, C., El-Khoury, J., Simon, D.,
Sorel, Y., Zdenek, H., and Årzén K.-E. Co-design of control systems and their real-
time implementation—A tool survey. Technical Report, Department of Machine
Design, KTH, August . TRITA-MMK :.

. Westfechtel, B. and Conradi, R. Software configuration management and engineer-
ing data management: Differences and similarities. In: Proceedings of the Eighth
International Workshop on System Configuration Management, Springer-Verlag,
, pp. –.

. VDI, Design Methodology for Mechatronic Systems. VDI –Verein Deutscher
Ingenieure. Beuth Verlag Fmbh,  Berlin, Germany, .

. Vesely, W.E. Fault Tree Handbook. U.S. Nuclear Regulatory Committee Report
NUREG-, US NRC, Washington DC, .

. Wild, D., Fleischmann, A., Hartmann, J., Pfaller, C., Rappl, M., and Rittmann, S. An
architecture-centric approach towards the construction of dependable automotive
software. In: SAE  World Congress, Detroit, MI, April , Session: Systems
Engineering. SAE paper no. --.

. Zeigler, B.P., Praehofer, H., and Kim, T.G. Theory of Modeling and Simulation, nd
edn., Academic Press, New York, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

10-52 Automotive Embedded Systems Handbook

Internet References—October 2007

. AADL, www.aadl.info
. ARTISAN studio, http://www.artisansw.com/products/
. ASCET, http://www.etas.com/en/products/ascet_software_products.php
. ASAM, http://www.asam.net/
. ATESST, Advancing traffic efficiency and safety through software technology:

www.atesst.org
. Autosar, http://www.autosar.org/
. COM, Component Object Model Technologies: http://www.microsoft.com/

com/default.mspx
. CORBA, Object Management Group. Catalog of OMG Specifications: http://www.

omg.org/technology/documents/spec_catalog.htm
. DOORS, http://www.telelogic.com/corp/Products/doors/doors/index.cfm
. dSPACE,www.dspace.de and SystemDesk: http://www.dspace.com/ww/en/pub/home/

products/sw/system_architecture_software/systemdesk.cfm?nv=lb
. Eclipse, The Eclipse Project, http://www.eclipse.org/
. ISO, http://www.iso.org/iso/home.htm
. MARTE, ProMarte consortium. Joint UML Profile for MARTE Initial Sub-

mission, realtime/––, November , available at: http://www.omg.org/
cgi-bin/doc?realtime/--.

. Matlab and Simulink, Mathworks: http://www.mathworks.com/
. Metropolis, http://embedded.eecs.berkeley.edu/metropolis/forum/.html
. Milan, Model-based integrated simulation: http://milan.usc.edu/
. Misra guidelines, http://www.misra.org.uk/
. Modelica and the Modelica Association, http://www.modelica.org/
. MOF, http://www.omg.org/mof
. Ptolemy, http://ptolemy.eecs.berkeley.edu/
. RIF, The Requirements Interchange Format: http://www.automotive-his.de/rif/
. STEP, Overview of STEP (ISO ) Product Data Representation and Exchange:

http://www.tc-sc.org/SC_Open/SC%Legacy%Products%(–)/
STEP_()/

. SysML, http://www.sysml.org/
. SystemC, http://www.systemc.org
. TT-tech, http://www.ttautomotive.com/
. The Unified Modeling Language, http://www.uml.org/
. Vector, http://www.vector-cantech.com/va_davinci_us,,.html
. Volcano, http://www.mentor.com/solutions/automotive/automotive_networking.cfm
. WC, http://www.w.org/
. XMI specification, http://www.omg.org/technology/documents/formal/xmi.htm

Navet/Automotive Embedded Systems Handbook _S Finals Page  -- #

IV
Verification,
Testing,
and Timing
Analysis

 Testing Automotive Control Software Mirko Conrad and
Ines Fey . 11-
Introduction ● Test Activities and Testing Techniques ● Testing in the Develop-
ment Process ● Test Planning ● Summary

 Testing and Monitoring of FlexRay-Based Applications
Roman Pallierer andThomas M. Galla . 12-
Introduction to FlexRay-Based Applications ●Objectives for Testing and Mon-
itoring ● Monitoring and Testing Approaches ● Discussion of Approaches ●
Conclusion

 Timing Analysis of CAN-Based Automotive Communication
Systems Thomas Nolte, Hans A. Hansson, Mikael Nolin, and
Sasikumar Punnekkat . 13-
Introduction ● CAN ● CAN Schedulers ● Scheduling Model ● Response Time
Analysis ● Timing Analysis Incorporating Error Impacts ● Holistic Analysis ●
Middlewares and Frame Packing ● Summary

 Scheduling Messages with Offsets on Controller Area Network:
A Major Performance Boost Mathieu Grenier, Lionel Havet,
and Nicolas Navet . 14-
Introduction ●Offset Assignment Algorithm ●Experimental Setup ● Benefits of
Using Offsets on WCRTs ● Offsets Allow Higher Network Loads ● Conclusion

 Formal Methods in the Automotive Domain: The Case of TTA
Holger Pfeifer . 15-
Introduction ● Topics of Interest ●Modeling Aspects ● Verification Techniques
● Perspectives

IV-

Navet/Automotive Embedded Systems Handbook _S Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11
Testing Automotive

Control Software

Mirko Conrad
The MathWorks, Inc.

Ines Fey
Safety and Modeling Consultants

. Introduction . -
Dynamic Testing ● Current Practice ●
Structuring the Testing Process ●Model-
versus Code-Based Testing

. Test Activities and Testing
Techniques . -
Test Activities ● Exemplary Test Design
Techniques for Automotive Control
Software ● Exemplary Test Execution
Techniques for Automotive Control
Software ● Exemplary Test Evaluation
Techniques for Automotive Control
Software

. Testing in the Development
Process . -
Testing in a Code-Based Development
Process ● Testing in a Model-Based
Development Process ● Interface
and Interaction between OEM
and Supplier

. Test Planning. -
Creating a Test Plan ● Selection of Test
Levels ● Selection of Test Objects ●
Integration Strategies ● Test
Environments

. Summary . -
References . -

11.1 Introduction

11.1.1 Dynamic Testing

“Dynamic testing” (in short, testing) is one of the most significant analytical qual-
ity assurance techniques for software, as it is the most elementary and certainly the
most frequently used form of quality assurance [Lig]. In practice, it is also the

11-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-2 Automotive Embedded Systems Handbook

only method that allows to take the actual development and operating environment
of a software system (e.g., code generator, compiler, linker, operating system, target
hardware) adequately into consideration. Furthermore, the dynamic properties of the
system (e.g., run-time behavior, computational accuracy of the target system) can be
checked [Gri]. Dynamic testing is the most important and common method used
to assure the quality of automotive controls and is an essential part of both software
and system development. The artifacts to be tested are usually named “test objects”∗
or “test items.” Based on Refs. [Gri,ISO ,IEEE .,TAV], dynamic test-
ing can be defined as the execution of a “test object” on a computer with selected
(sequences of) test inputs in a defined environment for the purpose of checking
whether the test object in such cases behaves as expected.
As opposed to other analytical quality assurance techniques, dynamic testing,

according to Liggesmeyer [Lig], is characterized as follows:

• Test object is dynamically executed with (sequences of) test inputs.
• Test object is being tested in its real environment and/or a simulation of
such an environment.

• Testing is a sampling procedure, the correctness of the test object with
regard to expected behavior cannot be verified in the mathematical sense.

Due to the constraints and characteristics of embedded systems, testing of such sys-
tems and their embedded software differs significantly from testing administrative
or scientific–technical software. Practicable test approaches should therefore be tai-
lored to the specifics of embedded systems and need to address time and sequencing
and, in particular, allow for the design of time-dependent test scenarios. Existing test
approaches from other domains are only of limited use in this domain.

11.1.2 Current Practice

A core element of quality assurance in automotive-embedded systems [SZ] is “in-
vehicle testing” or “road testing.” Road testing, which actually serves to calibrate
control parameters and to validate the entire vehicle, is, however, often misused to
find software-related specification, design and implementation errors [Sim]. Road
tests swallow up a considerable amount of time and effort. It is not unusual for the
testing of an individual control unit to require distances of several million kilome-
ters to be traveled. Furthermore, road tests often occur at a critical stage (in terms
of time) of controls development, as they normally take place at the end of the sys-
tems development. At that time, the average costs for error correction are already very
high. Due to the considerable time and cost pressure, usually a compromise is made
between early market introduction and the achieved testing depth. As a result, devel-
opment and implementation errors in embedded software are discovered too late in
the development process or even by the customers themselves [Sim].

∗ We use the term test object rather than “system under test” (SUT) to emphasize the variety of possible
test objects that includes systems as well as parts of a system, and precursory stages (models) of a system.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-3

Compared to road testing, the application of methods and procedures for “system-
atic testing of software” during its development enables earlier and more efficient
detection of software-related errors. However, this requires a practically oriented
adaptation of the general testing techniques and approaches to the specifics of the
application domain. To ensure high effectiveness, the tests should be carried out
during the development process rather than just at the end of the development.
However, it can often be observed that testing of today’s automotive control

software follows a “gut-feel approach,” leading to test gaps and test redundancies.
Since exhaustive testing is impossible in practice, dynamic testing is always a sam-

pling procedure. A subset of test scenarios, which is as small as possible and which is
able to reveal asmany errors in the test object as possible, needs to be selected from the
(infinite) set of all possible test scenarios. The selection of adequate sample elements
(test scenarios) decides on the extent and quality of the entire test (Figure .).
In Figure ., the input domain of the test object is depicted as a black-framed

rectangle, the areas marked gray (e.g., ①, ②) illustrate erroneous subdomains. Those
parts of the input domain that are covered by test scenarios are presented as circles. If
a test scenario lies within a gray area (e.g., ③) this means that it is an error-revealing
test scenario, otherwise (e.g., ④) it is nonerror revealing.
Because of the exceptional significance of the selection process, there is a need for

“systematic test design” techniques which support the tester when designing adequate
test scenarios.The application of these test techniques systematizes the selection of test
scenarios and makes it both comprehensible and reproducible [Sim].
When testing automotive control software, an “ad hoc selection of test scenarios”

is typical, that is, the test scenarios are determined without (explicitly) defined pro-
cedures. The actual selection depends on the experience and expertise of the tester
and can only be reproduced with difficulty, if at all. An ad hoc selection of test scenar-
ios leads, on the one hand, to test scenarios that are more or less redundant (upper
right area in Figure .) and, on the other hand, to test gaps (lower left area in
Figure .). Moreover, “one-factor-at-a-time testing” is typical, that is, only variations
in single influencing variables take place (test scenarios arranged like beads on a string

3

... Erroneous subdomains

... Test scenarios

2
4

1

FIGURE . Input domain, errors, and test scenarios.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-4 Automotive Embedded Systems Handbook

in Figure .). As a rule, it is impossible to make statements about the quality or com-
pleteness of the ad hoc test scenarios. With regard to the number of test scenarios,
their level of error detection is often inadequate.
Those software test design techniques that are methodically well-founded and that

exist in the area of general software engineering are often tailored toward admin-
istrative or scientific software. They are not sufficiently adapted to the specifics of
embedded automotive control systems and can therefore not be transferred just like
that. The temporal aspects of the test scenarios, in particular, are not suitably taken
into account.

11.1.3 Structuring the Testing Process

Testing large embedded automotive systems is a complex endeavor, involving many
specialists carrying out different test levels and test activities at various stages of the
project.
In order to structure the test process and to facilitate the test complex systems, dif-

ferent “test phases” have been established in test theory that normally resemble the
chosen integration strategy. In theory, test phases include unit testing, integration
testing, and system testing. In practice, the situation is more complex: Throughout
the project numerous artifacts are tested in different environments by various testers
and test teams at various points of time in the project. Such organizational aspects are
the reason for introducing the notion of “test levels.” A test level is a distinct group of
activities that is planned and managed as an entity [BN]. So, the test levels occur-
ring in a particular project are not only defined by test theory, but also by software
engineering practice.The test levels to be applied may also differ between code-based
(Section ...) and model-based development (Section ...).
Usually, each test level can be carried out separately but following a specified

sequence of “test activities” such as “test scenario design,” test execution, and test
evaluation (Section ..). This means the whole bunch of test activities has to be
performed on a per test level basis. In order to facilitate efficient testing it is recom-
mended to define distinctive objectives for each test level and to reuse artifacts and
data across test levels as far as feasible.

11.1.4 Model- versus Code-Based Testing

In order to facilitate an efficient testing process it is absolutely essential to adapt the
testing process to the needs of the overall development process. Hereby, the “software
development paradigm” applied during the control software development substan-
tially influences the testing process. For the remainder of the chapter we distinguish
the following two popular development paradigms:
“Code-based development” is used here to denote the classic software development

paradigm in which a clear demarcation of the constructive development phases is
recognizable from specification to design to implementation, and inwhich the applied
procedures, particularly for coding, are manual or text based and not model based.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-5

By contrast, “model-based development” (Chapter ) focuses on amodel central to
all development phases, which is executable and typically graphic. This model is usu-
ally created at an early stage of the development process and includes three parts that
can be simulated in combination: the controller model (or functional model), amodel
of the controlled system (vehicle model), and the model of the system’s environment
(environmental model). The model of the controlled system and the environmental
model are gradually replaced by the real system and its real environment as the devel-
opment process continues. The functional model evolves over time and finally serves
as the basis for implementing the embedded software on the electronic control unit
through manual or automatic coding. Vehicle models and environmental models are
referred to as plant models in control engineering. Modeling notations commonly
employed are block diagrams and extended state machines provided by commercial
modeling and simulation packages as the Simulink product family [SL,SF].
A substantial difference between these development paradigms, with respect to

testing, arises from the different test objects that must be taken into consideration
in the testing process. In code-based development, typical artifacts that can be tested
are the control software on a host platform, the control software on a target platform,
and the integrated embedded system. In model-based development different types of
models (e.g., design model, implementation model) can be tested additionally.
Testing within a code-based development process is referred to as “code-based

testing,” whereas testing within model-based development is termed “model-based
testing.”
The following sections intend to give an overview of best practices in testing embed-

ded automotive systems. Since application development takes a prominent place in
automotive systems development we focus here on testing the application part of the
system [SZ] (see Chapter ). Other aspects like network features are of great interest
as well, but they are not detailed in this chapter (see Chapter ). Section . discusses
core test activities and testing techniques to support these. Section . shows how
testing can be integrated into model- and code-based control software development
processes. Section . covers test planning.

11.2 Test Activities and Testing Techniques

11.2.1 Test Activities

The term “testing” not only describes the activity of testing itself, but also the design
and evaluation of tests [TAV]. Subdividing testing into individual “test activities”
forms the basis for a systematic test and promotes a structured procedure. A better
documentation and traceability entail [Weg]. The subdivisions given in the lit-
erature vary (see Refs. [Gri,BN]), but it is often possible to distinguish “core
activities” and “supporting activities.” For carrying out the different test activities in a
methodological way, numerous “testing techniques” have been developed.
This section will start off by presenting the test activities test scenario design, test

execution, and test evaluation. It will then introduce exemplary testing techniques for
these three test activities. The test activities and testing techniques presented are, for
the time being, independent of a specific test level.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-6 Automotive Embedded Systems Handbook

11.2.1.1 Test Scenario Design

Among the test activities, the design of suitable, that is, error-sensitive, test scenarios
(test scenario design) is the most crucial activity for a trustworthy test of automotive
control software.
A “test scenario” (Figure .) is a finite structure of test inputs and expectedoutputs:

a pair of input and output in the case of deterministic transformative systems, a
sequence of inputs and outputs in the case of deterministic reactive systems, and
a tree or a graph in the case of nondeterministic reactive systems. A “test suite” is
a finite set of test scenarios [UPL]. If test scenarios comprise a notion of time,
then they are termed “timed test scenarios”; if they do not comprise a notion of time
they are termed “untimed test scenarios.”
Since an exhaustive test is practically impossible even for smaller systems due to

combinatorial reasons, it is necessary to choose a subset as small as possible from the
set of potential test scenarios, which ensures that the test object is tested as compre-
hensively as possible [Mye]. This selection process causes the sampling character
of dynamic testing [Lig]. The selection of suitable samples (i.e., test scenarios)
determines the extent and quality of the test.
Due to the outstanding significance of the design of test scenarios, numerous tech-

niques have been developed in the past that support the tester in the selection of
suitable test scenarios [Weg]. The application of these test design techniques sys-
temizes the selection of test scenarios and makes them traceable and reproducible
[Sim].
In the following, “test design technique” stands for a standardized, but not neces-

sarily formal technique of selecting and/or designing test scenarios based on a certain
source of information, termed “test basis.” Thereby, a test design technique includes a
suitable notation for the description of the selected test scenarios. Possible test bases
could, among other things, be the requirements specification, a design model, or the
program code created from it.
The multitude of imaginable criteria for the selection of test scenarios is also

responsible for the high number of existing test design techniques. For the classifi-
cation of test design techniques it is possible to draw on different criteria [Mye,
Lig,Gri,Bal,Bel,Con]. Typically however, test design techniques are
distinguished by whether or not the structure of the test object is taken into account

Test scenario

Test input Expected output

…

Test suite

FIGURE . Elements of a test scenario.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-7

during the selection of the test scenarios. A finer distinction is possible if, in addition,
there is a classification according to the test basis.
Techniques, inwhich the internal structure of the object to be tested is irrelevant for

the determination of test scenarios, are called “functional” or “black-box test design
techniques,” otherwise “structural” or “white-box test design techniques.” Procedures
in which partial knowledge of the internal structure is required are called “gray-box
techniques.”
The objective of the functional techniques is to test the specified function of the

test object as comprehensively as possible. The objective of the structural techniques
is to cover certain structural elements of the object to be tested as exhaustively as
possible. Structural elements to be covered can be defined by the control flow (control
flow-related test design) or the data flow (data flow-related test design) of the test
object.
However, the distinction into functional and structural techniques—in particular

in the case of black-box techniques—does not provide any statements about the source
fromwhich the test scenarios are derived. The only requirement is that the derivation
of the test scenarios in the black-box test does not result from the program structure.
The test basis offers a further classification criterion for the test design techniques.
If the test scenarios are derived from the usually textual, functional specification

(from the test object, only the interfaces might be taken into account), this is called
“specification-oriented test design.” If a model of the test object serves as the basis,
this is called “model-oriented test design.” Finally, if the source code is used as the test
basis, this is called “code-oriented test design.”
Description of different general test design techniques can be found, among others,

in Refs. [Mye,Lig,Bal,BN]. Due to the characteristics of embedded auto-
motive systems, applicable test design techniques for control software differ from
techniques developed for administrative or scientific–technical software. Practical test
design techniques should therefore be tailored to these specifics and need to address
time and sequencing. In particular, they must allow for the description of timed test
scenarios. Existing test approaches fromother domains are only of limited use for this.
As the use of a single test design technique is usually not sufficient for a thorough

test of automotive control software, techniques that complement each othermust suit-
ably be combined. Thus, in order to determine test scenarios, it is typical to consult
different sources of information (textual specifications, design models, if necessary
earlier models or separate test models) and to combine functional and structural tech-
niques. Combinations of different test design techniques are termed “test approaches.”
Usually, they include not only test design techniques, but also techniques for other test
activities, for example, test evaluation.

11.2.1.2 Test Execution

Within the scope of “test execution” a test object is stimulated with the test inputs
established in the test scenario. The system reaction resulting from this is recorded.
Since the industrial development of automotive software does not take place on

an ad hoc basis but in different phases, it is not only the end product that is tested

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-8 Automotive Embedded Systems Handbook

in a test process accompanying the development, but also its different precursory
stages (model evolution stages). In the context of a model-based development process
emerges, for example, at first a model of the automotive control software (possibly in
varying abstract forms of representation: design model, implementation model).This
will later be translated into program code (possibly in several stages: floating/fixed
point code), which is then loaded onto a corresponding target hardware (possibly
also in several stages: prototype hardware, production electronic control unit [ECU]).
Each of these development artifacts (representation forms) can be tested. The test of
the executable model of the software is called “model test” or “model level test.” The
test of the thus generated software on the development computer shall be termed “soft-
ware test” (in the strict sense) or “software level test,” while the test of the software on
a target system is called the “test of the embedded system” or “system level test.” In the
scope of traditional, code-based development the model tests do not apply.
If more than one representation form of a test object is being tested, the results of

earlier tests can be used as a “test reference,” that is, as expected output for the test
of another form of representation. Such a “comparing test” is called “back-to-back
test.” Another variant of comparing tests is “regression tests,” in which two different
versions of one and the same representation form of the test object are tested against
each other.
For test execution we usually need a “test environment,” which ensures the feed-in

of the test object with the test inputs and the recording of the system reaction. The
latter has to be saved persistently, at least until the test evaluation. Depending on the
type of the test object and the execution environment used it is possible for the test
environment to take on different forms; “stubs” and “drivers” in the case of code-based
software level tests, “test harnesses” in the form of models with model level tests.
Depending on whether or not the plant or a plant model is included in the test

execution, one speaks of “closed-loop” or “open-loop tests.” In the case of a closed-loop
test execution the relevant parts of the plant or the plant model have to be integrated
into the test environment. In the case of closed-loop control components it is possible
to thus feed back, for example, actual values.
In order to measure the structural test coverage during the test execution, it is

necessary to “instrument the test object” (model or source code).
Testing techniques that support test execution are designated as “test execution

techniques.”

11.2.1.3 Test Evaluation

In the scope of the test evaluation the system reaction is compared to the expected
behavior by taking into consideration defined “acceptance criteria.” The comparison
result is then together with information about the test execution condensed into a
“test verdict” (Figure .).
If a “test oracle” by means of a model for the behavior of the test object exists, one

can also evaluate the actual system reaction with the help of the oracle model. In this
case, test evaluation is possible without explicit a priori determination of the expected
outputs during test design.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-9

Test scenario

Test input Expected output

Test object System reaction

Test verdict≈

FIGURE . Test execution and evaluation.

The comparison between system reaction and expected behavior can take place
in different ways: The easiest form of the test evaluation is the “manual visual eval-
uation” (evaluation by “careful watching”). For this, the recorded system reactions
are processed in a suitable form (e.g., through plots of the system reaction) and then
are submitted to the tester for the visual inspection. A special case of the manual
visual test evaluation is to use a photo realistic or schematic “animated system reac-
tion” [CH,RCK+]. For this, variables or states of the test object are coupled with
graphic and numeric elements of a vehicle animation or elements of a visualization
panel. This way, it is possible to graphically depict, for example, vehicle variables such
as velocity, angle of rotation, etc. In addition, vectorial variables can be visualized by
means of fading-in the respective vector arrows.
“Manual, nonvisual evaluations” are applied whenever we test directly in the vehicle

and if the nonvisual sensory perceptions of human beings are needed for evaluating
the system reaction qualitatively. This type of test evaluation is used, in particular,
during the evaluation of comfort aspects, for example, during the evaluation of the
acceleration behavior of an adaptive cruise control system. In colloquial speech, the
manual nonvisual evaluation is also called ass-o-meter testing.

Manual evaluations are applied whenever neither automatically usable expected
outputs nor reference outputs are available or the complexity of the system reaction
to be analyzed makes an automated evaluation impossible. The disadvantages are the
error-proneness and the high time effort for the evaluation, whichmakes a significant
difference in particular with large test suites.
If the correctness of the system reaction can be determined by calculating Boolean

predicates and if these are checked by “watchdogs,” which are integrated into the test
execution environment, test evaluation can be reduced to calculating logical predi-
cates that use the output signals of the watchdogs. This means, that an automated test
evaluation takes place via the evaluation of the watchdog outputs.This way, it is possi-
ble to monitor, for example, controller characteristics or dynamic signal boundaries.
Examples can be found in Refs. [CH,Rau].
While the comparison of system reaction and expected behavior in the case of

untimed test scenarios is relatively simple, we will have to, in the case of timed test
scenarios, compare system reactions in the form of output time series with expected
behavior or reference values in the form of reference time series. The problem of the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-10 Automotive Embedded Systems Handbook

test evaluation can then be reduced to a robust signal comparison between the signals
(time series) of the system reaction and the corresponding signals of the reference
data or the expected output data.
Furthermore, in the context of the test evaluation it is necessary to decide whether

the behavior of the test object can be accepted as correct or has to be declined as incor-
rect. In this, the comparison results are assigned to one of the three classes “pass,” “fail,”
or “inconclusive” (traffic light assessment). Combined with information about the sta-
tus of the test execution (classes “error,” “undefined”) the test verdict arises. Depending
on the type of the test execution and evaluation it is possible to execute the formation
of verdicts either manually or automatically. In practice, there is often a combination
of automated pre-evaluation with manual approval so that the responsibility for the
(non)release of a test remains with a human being.
In addition, it is necessary to check during test evaluation, whether the established

test objectives and test criteria are fulfilled to the desired degree by the test. In the case
of functional tests, it is possible to determine and analyze, for example, the reached
“requirements coverage” or “data range coverage,” or, in the case of structural tests,
the reached “structural model or code coverage.” If the reached degree of coverage is
insufficient, it is necessary to analyze the reasons and, usually, to complement further
test scenarios.
Testing techniques that support test evaluation are called “test evaluation tech-

niques” in the following.

11.2.2 Exemplary Test Design Techniques for Automotive
Control Software

In the following, one functional and one structural test design technique tailored to
the particularities of the object context will be presented.

11.2.2.1 Functional Test Design: The Classification-Tree Method
for Embedded Systems CTMEMB

The classification-tree method for embedded systems (CTMEMB) (formerly known as
CTM/ES) [CDF+,Cona,Conb,CK], an extension of the classification-tree
method [GG], provides a functional test design technique that allows systematic
test design for automotive control software based on a functional specification and an
interface description of the test object aswell as a comprehensive graphical description
of timed test scenarios bymeans of abstracted time series that are defined stepwise for
each input.
Based on an interface description of the test object, the input domain of the test

object is split up according to different aspects usually matching the various inputs.
The different partitions, called “classifications,” are subdivided into (test input data)
equivalence classes. Finally, different combinations of input data classes are selected
and arranged into “test sequences.”
For illustration purposes a simplified feature which analyzes the pedal positions

in a car is used. This functionality can be employed as a preprocessing component

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-11

TABLE . Software Requirements Specification of PedInt (Excerpt)
ID Description
SR-PI- Recognition of pedal activation

If the accelerator or brake pedal is depressed more than a certain
threshold value, this is indicated with a pedal-specific binary signal

SR-PI-. Recognition of brake pedal activation
If the brake pedal is depressed more than a threshold value ped_min,
the BrakePedal flag should be set to the value , otherwise to 

SR-PI-. Hysteretic behavior of brake pedal activation
No hysteresis is to be expected during brake pedal activation recognition

SR-PI-. Recognition of accelerator pedal activation
If the accelerator pedal is depressed more than a threshold value
ped_min, the AccPedal flag should be set to the value , otherwise to 

SR-PI-. Hysteretic behavior of accelerator pedal activation
No hysteresis is to be expected during accelerator pedal acti-
vation recognition

SR-PI- Interpretation of pedal positions
Normalized pedal positions for the accelerator and brake pedal should
be interpreted as desired torques. This should take both comfort and
consumption aspects into account

SR-PI-. Interpretation of brake pedal position [. . .]
SR-PI-. Interpretation of accelerator pedal position [. . .]

for various chassis control systems. The pedal interpretation (PedInt) component
interprets the current, normalized positions of accelerator and brake pedal (phi_Acc,
phi_Brake) by using the actual vehicle speed (v_act) as desired torques for drivetrain
and brake (T_des_Drive, T_des_Brake) (see Ref. [Höt] for details). Furthermore,
two pedal position flags (AccPedal, BrakePedal) are calculated that indicate whether
or not the pedals are considered to be depressed.
Table . summarizes the software requirements for the PedInt component. For

the following considerations, those subfunctions of PedInt should be tested that are
responsible for the calculation of the two flags, that is, all requirements with ID’s
SR-PI-.x.
As a first step, the interface that is relevant for the test has to be determined.
Given a test object with n inputs and m outputs. Then, the input interface I of the

test object is represented via the input variables ii(i = , . . . , n), the output interface
O via the output variables o j(j= , . . . ,m). In order to test the test object, each input
variable of the effective test interface has to be stimulated with a timed signal, that is,
a time series of data. The output variables have to be recorded. Thus, the test interface
I∪O determines the “signature of the test scenarios” belonging to the given test object
Figure . shows a Simulink [SL] model of the PedInt component that serves as a

test object in the following example; Table . describes its test interface I ∪ O.
Thus, the signature for the component test of PedInt is as follows:

I ∶ phi_Acc∗ , phi_Brake∗∶ Time→ R ∣
[,]

ν_act∗∶ Time→ R ∣
[−,]

O ∶ T_des_Drive∗ , T_des_Brake∗∶ Time→ R
AccPedal∗ , BrakePedal∗∶ Time→ {, }

The input domain of the test object, which can be regarded as a (n-dimensional)
hypercube formed by the admissible ranges of its (n) different input signals, is dis-
jointedly and completely partitioned into input equivalence classes that are suitable

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-12 Automotive Embedded Systems Handbook

A
ut

ho
r:

M
. C

on
ra

d
La

st
 C

ha
ng

e:
 2

5-
N

ov
-2

00
7

10
:5

7:
23

T_
de

s_
D

riv
e

Sw
itc

h

+ +

1/
30

70

T_
A

b_
10

0(
v)

T_
A

b_
70

(v
)

70
>=

>= >

�

�

1/
70

M
_B

r_
m

ax
1/

10
0

T_
de

s_
Br

ak
e

<T
_d

es
_D

riv
e,T

_d
es

_B
ra

ke
>

<A
cc

pe
da

l,
Br

ak
eP

ed
al

>
Pe

da
lF

la
gs

21

A
cc

Pe
da

l

Br
ak

eP
ed

al
bo

ol
ea

n
pe

d_
m

in
<p

hi
_B

ra
ke

>

<p
hi

_A
cc

>

<p
hi

_A
cc

,p
hi

_B
ra

ke
>

<p
hi

_B
ra

ke
>

<p
hi

_A
cc

>

<p
hi

_A
cc

>

v_
ac

t

v_
ac

t [
m

/s
]

v_
ac

t

Pe
da

lP
os

iti
on

s

2

bo
ol

ea
n

D
es

ire
dT

or
qu

es

D
es

ire
d

To
rq

ue
s:

T_
de

s_
D

riv
er

 [N
m

]
T_

D
es

_B
ra

ke
 [N

m
]

+ − + −

Pe
da

lP
os

iti
on

s:
ph

i_
A

cc
 [%

]
ph

iB
ra

ke
 [%

]
Pe

da
lF

la
gs

:
A

cc
Pe

da
l [

--
]

Br
ak

eP
ed

al
 [-

-]

1

FI
G
U
R
E

.

M
od

el
of

th
eP

ed
In
tc
om

po
ne
nt
.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-13

TABLE . Interface Description of PedInt
Variable ↔ Unit Range Data Type
v_act ⋅ m/s [−, ] Real
phi_Brake ⋅ % [, ] Real
phi_Acc ⋅ % [, ] Real
T_des_Drive ⋅ Nm Real
T_des_Brake ⋅ Nm Real
AccPedal ⋅ — {, } Bool
BrakePedal ⋅ — {, } Bool

abstractions of individual inputs for testing purposes. The partitioning, which is
graphically represented bymeans of a “classification tree,” aims to achieve a definition
of the individual “equivalence classes” in such a way that they behave homogeneously
with respect to the detection of potential errors. That is, the test object behaves either
correctly or erroneously for all the values of one class (“uniformity hypothesis”).
A heuristic procedure has proved successful in approaching this ideal partitioning

asmuch as possible in practice.The inputs’ data types and ranges provide the first valu-
able clues to partitioning: where real-valued data typeswith establishedminimumand
maximum values are concerned, it is possible, for example, to create a standard par-
titioning with a class each for the boundary values, for the value of zero and for those
intervals in between. Similar “standard classifications” that are data-type-specific can
also be utilized for other data types [CDS+,Cona,Conb].
In general, the data-type-specific standard classifications are not detailed enough

for a systematic test. They have to be refined or modified manually in order to
approach partitioning according to the uniformity hypothesis. The quality of the
specification and the tester’s experience are crucial in this respect.
According to the standard partitioning, the pedal positions that can take values

from the range of %–%would be partitioned into three classes ,], [, and .
For the vehicle speed the five partitions −,]−,[, ,],[, and  are obtained.
As v_act is only of minor importance for testing these subfunctions of PedInt that

both flags calculate, the standard classification has not been modified there. On the
other hand, the evaluation of the pedal positions recognizes a pedal as depressed only
if it is activated above a certain threshold value ped_min. Therefore, the pedal values
above and below the threshold should be considered separately because behavior is
expected to differ. A class has also been added for the exact threshold value. In order to
keep the classification-tree flexible, parameter names were partly used as class bound-
aries rather than fixed values. The result is a final partitioning of the pedal positions
into the classes ,], ped_min[, ped_min,]ped_min, [, and .
The partitioning into classes is visualized by means of a classification tree (Fig-

ure ., middle part). The lower part of Figure . shows how the equivalence classes
for the individual input variables partition the input domain of the entire test object.
The actual test scenarios are designed on the basis of the test input partitioning.

The test scenarios describe the course of these inputs over time in a comprehensive,
abstract manner. Therefore, the leaves of the classification tree are used to define the
columns of a “combination table.” In order to represent test scenarios in an abstract
way, they are decomposed into individual test steps. These compose the rows of the
combination table according to their temporal order (Figure ., upper and middle
parts).

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-14 Automotive Embedded Systems Handbook

PedInt

phi_Brake

0

100

v_actphi_Acc

0

100

−10

70

0

]0,70[
]−10,0[

]ped_min, 100[
ped_min

]0, ped_min[

]ped_min, 100[
ped_min

]0, ped_min[

phi_Brake
phi_Acc
v_act PedInt

phi_Brake ∈]0, ped_min [
phi_Acc ∈]ped_min,100[
v_act = −10

Test object

FIGURE . From test interfaces to classification trees.

The test inputs for each test step are defined by combining classes of different clas-
sifications from the classification tree. This is done by marking the appropriate tree
elements in the main column of the combination table. This leads to a sequence of
test input situations. The duration of each input situation can be defined by the anno-
tation of a “time tag” in the rightmost column of the combination table (Figure .,
middle part).
Timed inputs, that is, changing the values of an input over time in successive test

steps, can be represented bymarking different classes of the classification correspond-
ing to that input. The test input in the respective test step is thus restricted to the
part-interval or single value of the marked class. The combination of the marked
input classes of a test step determines the input of the test object at the respective
time (Figure ., middle part).

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-15

:

PedInt

phi_Brake

0
]0,ped_min[

100

]ped_min, 100[

v_actphi_Acc

0

100
]ped_min, 100[

...

Time [s]1
1.1 0
1.2 0.2
1.3 0.5
... ...

100

ped_min
0

phi_Brake [%]

Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.60 0.1 0.2 0.3 0.4 0.5 0.6

100

ped_min
0

phi_Acc [%]

Time [s]

Combination table

Classification tree

Test input

ped minped min
]0,ped_min[

FIGURE . Defining test sequences.

TABLE . Assignment
of Signal Shapes for Line Types
Signal Shape Transition Type
Step
Ramp —————
Sine/spline - - - - - - - - -

The intermediate values of the individual stimuli signals are defined by transitions
betweenmarkings of consecutive test steps. Different transition types represent differ-
ent signal shapes (e.g., ramp, step function, sine; Table .). In this way, stimuli signals
can be described in an abstract manner with the help of parameterized, stepwise
defined functions (Figure ., middle and lower parts).
Further test sequences can be described underneath the classification tree by

repeating the procedure outlined above.
For the PedInt example in the first test scenario (Figure ., test scenario #), the

aim is to investigate the recognition of pedal activation with specific values, each of
which is kept constant for a certain period of time.
A second test scenario (Figure ., test scenario #) checks the hysteresis properties

of the test object. In order to do this, the pedal positions are varied, in the form of a
ramp, over the entire value area, each going upward and downward once. In doing so,
classes are selected arbitrarily for v_act.
A third test scenario (Figure ., test scenario #) linearly ramps up the entire

nonnegative speed interval in  s rhythm for different but constant pedal positions.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-16 Automotive Embedded Systems Handbook

0
]0,ped_min[

ped_min
]ped_min,100[

100

0
]0,ped_min[

ped_min
]ped_min,100[

100

-10
]-10,0[

0]0,70[
70

10-delta_t3.10:
83.9:

8-delta_t3.8:
63.7:

6-delta_t3.6:
43.5:

4-delta_t3.4:
23.3:

2-delta_t3.2:
03.1:

Time [s]3: Pedal interpretation
22.3:
12.2:
02.1:

Time [s]2: Pedal activation (2)–Hysteresis
0.51.6:
0.41.5:
0.31.4:
0.21.3:
0.11.2:

01.1:
Time [s]1: Pedal activation (1)–Specific values

PedInt

phi_Brake v_act
phi_Acc

Author: M.Conrad
LastChange: 25-Nov-2007 14:12:12

FIGURE . Classification tree with test scenarios for PedInt.

The definition of test scenarios on the basis of this input data portioning is a combi-
natorial task: Different combinations of input data classes are selected and sequenced
over time.
After the design of test scenarios has been completed, it is necessary to check if they

ensure sufficient test coverage. At the test design stage, CTMEMB already allows the
determination of different abstract coverage criteria on the basis of the classification
tree and the test scenarios.
A “requirements coverage analysis” can verify whether all specified requirements

that concern the test object are covered sufficiently by the test scenarios designed so
far. In the course of the analysis, it is necessary to prove that every requirement is being
checked by at least one test scenario and that the existing test scenarios are adequate
to test the respective requirements.
Table . presents the coverage of requirements by means of those test scenarios

that have been determined up to this point. The necessary requirements coverage
has thus been fulfilled for the requirements SR-PI-. to SR-PI-..The higher-level
requirement SR-PI- does not have to be tested separately, as it has already been
tested implicitly by all of the derived requirements being tested.

TABLE . Traceability Matrix PedInt
SR-PI- SR-PI-. SR-PI-. SR-PI-. SR-PI-.

Test scenario # (✓) ✓ ✓

Test scenario # (✓) ✓ ✓

Test scenario #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-17

... Erroneous subdomains

... Test scenarios

CTCMIN

FIGURE . Minimum criterion, CTCMIN.

Furthermore, the CTMEMB supports a “range coverage analysis.” This analysis
checks the sufficient consideration of all equivalence classes defined in the classifica-
tion tree in the test scenarios. This check can be executed, according to the respective
application case, by using different, so-called “classification-tree coverage criteria”
(CTC) [GG,LBE+].
The “minimum criterion,” CTCMIN (Figure .), requires every single class in

the tree to be selected in at least one test step. The minimum criterion is nor-
mally accomplishable with a few test sequences. The error detection rate, however, is
rather low.
The “maximumcriterion,”CTCMAX (Figure .), requires every possible class com-

bination to be selected in at least one test step. The fulfillment of the maximum
criterion should result in a high error detection rate. However, the problem with this
criterion is a possible combinatorial explosion. This makes it impracticable when a
large number of classes are involved.
The “n-wise combination criterion,” CTCn , presents a compromise. Here, it is nec-

essary to ensure that every possible combination of n classes is selected in at least

... Erroneous subdomains

... Test scenarios

CTCMAX

FIGURE . Maximum criterion, CTCMAX.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-18 Automotive Embedded Systems Handbook

... Erroneous subdomains

... Test scenarios

CTC2

FIGURE . Pair-wise combination criterion, CTC.

one test step. For example, a pair-wise combination of classes, CTC (Figure .), is
practicable.
The selection of appropriate criteria has to take place in a problem-specificway dur-

ing test design. If the criteria defined beforehand have not been sufficiently fulfilled,
additional test scenarios need to be added until the required criteria are reached.
In terms of data range coverage, the three determined test scenarios (Figure .)

fulfill the minimum criterion, CTCMIN, but they do not fulfill any higher criteria,
such as CTC or even CTCMAX. In practice, this means that further test scenarios
would have to be added until the attainable classification-tree coverage criterion is
also fulfilled.
The test scenarios gained so far contain abstracted stimulus information because

only equivalent classes, but no specific data have been used. Thus, in a further step,
they need to be instantiated by the use of specific numbers.
The test scenarios defined in the combination table represent “signal corridors” for

the individual input signals, within which the actual courses of input time series must
be located. The boundary values of the equivalence classes constrain the input ranges
at the respective test steps. This step is illustrated in the lower part of Figure ..
On the basis of the uniformity hypothesis, any value within the marked interval

can be selected when determining the values at the base points. Within the scope of
this example the principle of mean value testing is being used, that is, in each case the
mean values of the equivalence classes selected are used as test data (ped_min = %,
Figure .).
What has been presented so far is how to systematically determine and com-

pactly describe test scenarios for the black-box test of automotive control software
with the help of CTMEMB. Requirements coverage and input data range coverage
(classification-tree coverage) allow for the quality assessment of the determined test
scenarios.
CTMEMB can be deployed as a black-box test design technique, independently of

an actual development process. The only prerequisites are the description of the test
object’s behavior and interface.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-19

100
ph

i_
Br

ak
e (

%)
ph

i_
A

cc
 (%

)
v_

ac
t (

km
/h

)
Br

ak
eP

ed
 (−

)
A

cc
Pe

d
[−

]
50

0

100

70

0
−10

1

0.5

0

1

0.5

0

50

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Test input

Expected output

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

FIGURE . Test data time series for PedInt (test scenario #).

11.2.2.2 Structural Test Design: Decision Coverage Testing

In structural test design, the test cases are derived from the structure information on
the test object. In the control flow-oriented test design, these result from the control
flow of the test object. In the context of the model-based development, it is possible to
both use the control flow of the model and that of the source code as a basis for this.
The test design’s target in the control flow-oriented structure test is the coverage of

certain items of the control flow graph. If the test object is a Simulink/Stateflow [SL,SF]
model, it is possible to draw on themodel coverage criterion “decision coverage” (DC)
for the determination of the test objectives. DC examines items that represent decision
points in a model, such as the switch blocks and Stateflow states. For each item, the
different simulation paths through that item are to be covered [BCS+].
Figure . shows, as an example, the different pathways through a switch block

and lists the test objectives that have to be fulfilled in order to achieve full coverage.
The only block in the PedInt model that is relevant for DC is the switch block in

the upper, right part. It passes through the upper input, if phi_Acc is greater than or
equal to , otherwise it passes through the lower input. In order to achieve full DC,
phi_Acc must be less than  for some time and greater than or equal to  for some
other time. Test scenario # satisfies this condition; there is no need for additional
structural test scenarios in order to achieve DC on model level.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-20 Automotive Embedded Systems Handbook

Path A

Path B

Pass through In 1 when
Control ≥ threshold;
otherwise, pass through In 2

Switch

Control

In 1

In 2

Test objective
1 (Path A)
2 (Path B)

Test input specification
Control ≥ threshold
Control < threshold

FIGURE . DC on model level—pathways through a switch block and test objectives.

Out = In 1; Out = In 2;

Path A Path B

Test objective
1 (Path A)
2 (Path B)

Test input specification

If (Control −> threshold){
 Out = In 1;
} else {
 Out = In 2;
}

Control −> threshold
Control < threshold

FIGURE . Branch coverage on code level—control flow graph and test objectives.

A related criterion on code level is “branch coverage” (C). The objective of
C-based test design is to execute each program branch of the source code at least
once. Here, a program branch is roughly defined as a possible route from the pro-
gram start, or from a branching of the control structure, to the next control structure
or program end [BCS+].
Figure . shows, as an example, the different branches emerging from an

If-statement and lists the test objectives that have to be satisfied in order to achieve
full C coverage.

11.2.3 Exemplary Test Execution Techniques for Automotive
Control Software

11.2.3.1 Back-to-Back Tests

Traditional, code-based software development usually produces only one “executable
artifact;” the software itself. Due to the model evolution, model-based design, on the
other hand, usually produces several executable artifacts (e.g., design model, imple-
mentation model, and generated code) for one and the same functionality. Moreover,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-21

most of these diverse artifacts can be tested in their entirety (aka system test) and/or
partially (aka module test). In combining these “potential test objects” with differ-
ent “execution platforms” (e.g., host PC, evaluation board) and “environments” (e.g.,
open-loop, closed-loop with simulated environment model, closed-loop with real
environment), a multitude of so-called “test possibilities” arises [BN,GS]. For
efficiency reasons, it is not advisable to make use of all existing test possibilities for
a thorough model-based test. Rather a well-considered subset should be chosen.
Within the range of these test possibilities, a test suite is typically applied to different

artifacts. This enables test approaches to be implemented, where the system reaction
of one artifact can be used as a test oracle for the determination of the expected outputs
of a different artifact. In particular, it is often possible to verify the correct transition
from one model evolution stage to the next by “back-to-back tests between different
artifacts” (equivalence testing).
If a test scenario is applied to different artifacts, it might be necessary to adapt it to

the particular test object. As an example, the next section discusses how test scenarios
are applied to model level tests.

11.2.3.2 Test Harness Generation for Model Tests

In order to stimulate a test object in the form of a Simulink/Stateflow model with the
defined test scenarios, an infrastructure is required, which feeds the test inputs into
the test object and captures the system reaction. This infrastructure can, for example,
consist of a “model test harness,” which itself again is a Simulink/Stateflow model.
When creating the test harness, a copy of the test object in a separate model is com-

plemented by stimulation and signal logging blocks, so that an extended “executable
model for the test execution,” called test harness model emerges (Figure .). The
stimuli signals defined in the course of the test design are converted by the test har-
ness into a representation suitable for the model test and stimulate the inputs of the
test object. At the same time, on the side of the output, the logging of the relevant
output signals of the test object and a reconversion into a Simulink-independent rep-
resentation are carried out. If a closed-loop test execution is desired, it is necessary to
integrate corresponding model components (parts of plant and environment model)
to model the feedback loop and to add the related signal flows.
In the case of “indirect stimulation” model parts for the transformation of the sig-

nals contained in the stimulation blocks into the input parameters of the test object
have to be inserted [Cona,Conb].
Thus, it is possible, for example, to add up the test data for the actual value of a

signal and the difference between the set-point value and the actual value of the signal
by using a sum block in order to calculate the set-point value of this signal, if this is
needed as the input for the test object. Other applications of an indirect stimulation
include range conversions (e.g., m/s to mph) or the transformation of pedal travel
values into corresponding torque requests via look-up tables.
Analogously to the indirect stimulation, it maymake sense “to capture derived sig-

nals” instead of outputs of test object or in addition to them. Examples for this are
again range conversions or the logging of filtered signals.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-22 Automotive Embedded Systems Handbook

Sy
st

em
 re

ac
tio

n
Te

st
 o

bj
ec

t

O
ut

pu
t B

us

Pe
da

lF
la

gs

Pe
da

lln
te

rp
re

ta
tio

n
In

pu
t B

us
Si

gn
al

 B
ui

ld
er

Si
gn

al
 L

og
ge

r

T_
de

s_
D

riv
e

T_
de

s_
Br

ak
e

A
cc

Pe
da

l

Br
ak

eP
ed

al

ph
i_

Br
ak

e

ph
i_

A
cc

v_
ac

t

D
es

ire
dT

or
qu

es
v_

ac
t

Pe
da

lP
os

iti
on

s

Te
st

 in
pu

t

A
ut

ho
r:

M
. C

on
ra

d
La

st
 C

ha
ng

e:
 2

5-
N

ov
-2

00
7

10
:5

7:
23

T_
de

s_
D

riv
e

Sw
itc

h

+ +

X
1/

30
70

T_
A

b_
10

0(
v)

T_
A

b_
70

(v
)

70
>=

>= >

X
1/

70

M
_B

r_
m

ax
1/

10
0

T_
de

s_
br

ak
e

<T
_d

es
_D

riv
e,T

_d
es

_B
ra

ke
>

<A
cc

Pe
da

l,
Br

ak
eP

ed
al

> Pe
da

lF
la

gs
21

A
cc

Pe
da

l

Br
ak

eP
ed

al
bo

ol
ea

n
pe

d_
m

in
<p

hi
_b

ra
ke

>

<p
hi

_A
cc

>

<p
hi

_A
cc

,p
hi

_b
ra

ke
>

<p
hi

_B
ra

ke
>

<p
hi

_A
cc

>

<p
hi

_A
cc

>

v_
ac

t

v_
ac

t [
m

/s
] v_

ac
t

Pe
da

lP
os

iti
on

s
2

bo
ol

ea
n

D
es

ire
dT

or
qu

es
D

es
ire

d
To

rq
ue

s:
T_

de
s_

D
riv

er
 [N

m
]

T_
D

es
_B

ra
ke

 [N
m

]

+ − + −

Pe
da

lP
os

iti
on

s:
ph

i_
A

cc
 [%

]
ph

iB
ra

ke
 [%

]
Pe

da
lF

la
gs

:
A

cc
Pe

da
l [

--
]

Br
ak

eP
ed

al
 [-

-]

1

FI
G
U
R
E

.

M
od

el
te
st
ha
rn
es
sf
or

Pe
dI
nt
.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-23

Another use case for capturing derived signals is the logging of “watchdog” out-
puts. Watchdogs are model parts used to monitor model signals and check properties
between them. The Boolean output of a watchdog that asserts when the signals to
be monitored violate a specified property, is a derived signal that can be logged for
further analysis.
Test infrastructures for other representation forms of the test object, that is, for soft-

ware testing or embedded system testing, are also created via the principles described
above. However, specifics of the respective execution platforms and environments
have to be taken into account.

11.2.4 Exemplary Test Evaluation Techniques for Automotive
Control Software

11.2.4.1 Signal Comparison for Regression and Back-to-Back Tests

In the case of timed test scenarios, that is, test execution results in timed test out-
puts, the system reaction is available in the form of timed signals. Consequently,
timed system reactions (output time series) have to be compared with timed refer-
ence behavior (reference time series, golden references, or baselines) in the course
of test evaluation. Accordingly the essence of the test evaluation in this case is to
carry out “signal comparisons” between output time series o∗′(t) and reference time
series o∗(t). Since exact equality in practice can only be expected in special cases,
it is necessary to use suitable “robust signal comparison techniques,” which are able
to tolerate deviations in the time and value domain between the time series to be
compared.
“Manual signal comparison” can be carried out by means of a visual assessment

of the output time series and reference time series plotted into one and the same
diagram. Such a check will not necessarily focus on absolute equality but rather on
a certain similarity: signals are considered to be similar if the signal plots are suffi-
ciently close together. This kind of visual check is, however, not only highly subjective
but also, depending on the number and size of the signals to be compared, highly
prone to error and, at the least, very time consuming. It also requires experienced
testers.
“Automated signal comparison” aims to automatically assess whether or not the test

object produces a system reaction sufficiently similar to a former approved baseline.
Accordingly, the test evaluation judges whether o∗′(t) and o∗(t) are similar. If no
similarity between the time series is automatically recognizable, deviations that have
occurred need to be detected and localized as far as possible. In this case, suitable
information to facilitate further manual assessment should be made available to the
human tester.
Popular methods for automated signal comparison include absolute, relative, and

slope-dependent differences.

. “Absolute difference:”

absDiff j(ti) = ∣o∗j (ti) − o
∗′

j (ti)∣

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-24 Automotive Embedded Systems Handbook

. “Relative difference:”

relDiff j(ti) =
∣o∗j (ti) − o

∗′

j (ti)∣
√
∣o∗j (ti)∣

√
∣o∗′j (ti)∣

. “Slope-dependent difference:”

slopeDiff j(ti) =
∣o∗j (ti) − o

∗′

j (ti)∣
√

∣ 
Δt (o

∗

j (ti−) − o
∗

j (ti+))∣
√

∣ 
Δt (o

∗′

j (ti−) − o
∗′

j (ti+))∣

Given a test object with an output variable o j under consideration, in the above for-
mulas o∗′j (t) denotes the time series of expected/reference outputs (defined during test
design) and o∗j (t) the time series of actual outputs (captured during test execution),
respectively.
These “difference criteria” are suitable for the detection of simple deviations in the

value domain, but they donot tolerate (partial) deviations in the timedomain between
the signals to be compared.
In the case of large amplitudes or slopes, relative and slope-dependent differences

overweight segments with small amplitudes or slopes, in order to tolerate deviations.
In segments with zero crossings even very small amplitude deviations will cause unac-
ceptably high differences. To address this issue, the standard methods for relative and
slope-dependent differences can be modified as proposed in Ref. [CSW]:

. “Modified relative difference:”

modRelDiff j(ti) = min(relDiff j(t i), absDiff j(ti))

=
∣o∗j (ti) − o

∗′

j (ti)∣

max (
√
∣o∗j (ti)∣∣o

∗′

j (ti)∣, )

. “Modified slope-dependent difference:”

mod SlopeDiff j(ti) = min(slopeDiff j(ti), absDiff j(ti))

=
∣o∗j (ti) − o

∗′

j (ti)∣

max (
√

∣ 
Δt (o

∗

j (ti−) − o
∗

j (ti+))∣
√

∣ 
Δt (o

∗′

j (ti−) − o
∗′

j (ti+))∣, )

The modifications represented by these formulas lend weight to deviations at large
amplitudes or slopes without overestimating the parts of small amplitude values or
slopes.
The selected difference criteria is calculated for all time steps ti of the given time

series. To produce the test verdict, the maximum difference obtained this way is then
compared with an “acceptance threshold” (max. tolerated deviation).
In order to evaluate test scenario # for the PedInt component (Section ...),

the system reaction regarding the two pedal flags has to be compared with the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-25

Test input

System reaction
versus

expected output

100

50

0

100

50

0

1

0.5

0

1

0.5

0

0
ph

i_
Br

ak
e (

%)
ph

i_
A

cc
 (%

)
Br

ak
eP

ed
 (−

)
A

cc
Pe

d
(−

)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25
t (s)

0.3 0.35 0.4 0.45 0.5

FIGURE . Test evaluation PedInt (test scenario #).

expected outputs. Since the AccPedal and BrakePedal are Boolean values, absDiff with
a tolerated deviation of  was chosen.
The top plot in Figure . shows the brake-pedal travel over time. Segments in

which it is greater than the threshold value ped_min are colorized. The subjacent plot
shows the expected (solid line) and the actual (dotted line) values of the brake-pedal
flag. As they are not identical in the area between . and ., the brake-pedal recog-
nition is not in accordance with the specification. In analogy, the two lower plots are
concerned with the accelerator pedal activation recognition. Here, it is functioning
correctly. Actual and expected signal responses are in agreement.
A reason for this erroneous behavior could be that the implemented comparison

algorithm (Figure .), which compares the brake pedal travel phi_Brake with the
respective threshold value ped_min, incorrectly checks for > = instead of >.
More powerful procedures for robust signal comparison are a current research topic

[DSS+,HT,RWS+,SWM,WGP,CS].
A certain prevalence in the application field has a combination of the “difference

matrix procedure” and downstream difference calculation, which is described in Refs.
[WCF+,CFP,CSW].
This two-staged signal comparison technique first preprocesses the two time series

by using the difference matrix algorithm in order to access temporal deviations. Sec-
ond, the preprocessed timed signals are compared according to the above-mentioned
elementary difference criteria to evaluate the differences in the value domain. This
way, temporal shifts and deviations in amplitude are identified and judged separately.
When using the difference matrix procedure for preprocessing, the system reaction

is adjusted to the expected output by stretching or compressing it temporally. The
extent to which the signal has to be stretched or compressed indicates the temporal
displacement.The core idea is as follows: Suppose we have to investigate the similarity
between two signals that had been shifted in timewith respect to each other.Wewould

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-26 Automotive Embedded Systems Handbook

shift one of the signals toward the other and would examine the remaining deviation.
Mathematically speaking, moving one of the signals toward the other corresponds
to a special “reparameterization” (temporal reordering) of the signal. The difference
matrix procedure looks for a general reparameterization, such that one signal matches
the other as much as possible. Thus, possible local shifts and compressions are taken
into account.
Therefore the algorithmcalculates a suitable reparameterization (temporal reorder-

ing) γ ∶ [, tmax] → [, tmax] of the system reaction o∗j (t) such that it approximates the
reference signal o∗′j (t) aswell as possible, that is, bestmatch, so that o∗j (γ(t)) ≈ o

∗′

j (t)
is valid. When doing this, the temporal order of the sample points in the time series
must be respected.
If the time deviations discovered by the difference matrix procedure do not

exceed a given threshold, an assessment is then made as to the similarity among the
reparameterized signals using the difference criteria discussed above.
There are also numerous test evaluation procedures for test objects that fulfill spe-

cific prerequisites. Watkins [Wat], for example, describes a procedure for control
software, which calculates sufficiently continuous functions, in which future system
outputs can be estimated and monitored on the basis of previous outputs. In prac-
tice, it is necessary to assemble evaluation procedures that are suitable for the specific
problem.

11.3 Testing in the Development Process

As outlined in the introduction it is essential to adapt the overall testing process
according to the software development paradigm used. Therefore, in the following
testing processes for model- and code-based development are outlined. Substantial
differences between these development paradigms, with respect to testing, arise from
the different potential test objects taken into consideration as well as from the typical
test levels. Figure . gives an overview on test objects and test levels for model- and

Embebbed
system

Embedded system
testing/

Hardware-in-the-
loop testing

Software on
target platform

Software testing/
processor-in-the-loop

testing

Software on
host platform

Software testing/
software-in-the-loop

testing

Implementation
model

Model testing/
model-in-the-loop

testing #2

Design
model

Model testing/
model-in-the-loop

testing #1

Code-based software development

Model-based software development

Vehicle

In-vehicle testing/
road testing

FIGURE . Test objects and test levels formodel- and code-based control software development
(overview).

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-27

code-based software development, respectively. Sections .. and .. will detail
this overview.
Specific challenges for testing in the automotive context arise out of the distributed

development with the car manufacturer (original equipment manufacturer [OEM])
on the one hand and the supplier on the other hand, regardless of whether the devel-
opment follows the code-based or the model-based paradigm. Section .. discusses
the relationship between the OEM and its suppliers within the testing process.

11.3.1 Testing in a Code-Based Development Process

11.3.1.1 Test Levels for Code-Based Testing

Testing in a code-based development process is fairly consistent with the typical test
phases described in several textbooks on test theory [Mye,Lig].
The individual software components (modules) are the first executable and thus

dynamically testable artifacts that are produced. During “software component test-
ing,” each module is tested individually and the component interfaces are checked
for consistency with the design specifications. Although software component testing
is generally considered as the responsibility of the software developer, the results are
part of the whole project and thus test management should be aware of them.
After the individualmodules have been tested, the software system is assembled and

tested according to the integration strategy defined (Section ..). So during “soft-
ware integration testing,” a number of software components representing subsystems
are to be tested before the entire software is completely integrated and ready for test-
ing as a whole.The number of integration levels and the sequence of incorporation of
the individual modules or subsystems are defined in the integration strategy. Software
integration testing aims, for example, at revealing errors resulting from incorrect com-
ponent interface implementation, incorrect error handling, improper control, and
sequencing of components.
In theory, both software component testing and software integration testing can

be executed on a host as well as on a target platform. In practice, however, both are
typically executed on the host computer since the intercomponent interfaces can be
stimulated more easily here (Figure .).
“Software system testing” aims at testing the integrated software as a whole. Soft-

ware system testing can be performed on the host (software-in-the-loop testing [SIL])
aswell as on a target processor (processor-in-the-loop testing [PIL]). If a target proces-
sor is available within this phase it is recommended to run specific tests with respect
to timing aspects on this processor.
After the software has been tested thoroughly, the next integration step has to be

applied, that means the integration of the software into the embedded system, that is,
the target ECU. This integration step is followed by a “system component testing” or
“ECU testing.”
According to the progress of the hardware development in the actual project, the

system test is executed by using the currently available sample of the control unit
(A, B, C samples).

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-28 Automotive Embedded Systems Handbook

Embedded
system

Embedded system
testing/hardware-in-

the-loop testing

Software on
target platform

Software testing/
processor-in-the-loop

testing

Software on
host platform

Software testing/
software-in-the-loop

testing

Code-based software development

Vehicle

In-vehicle testing/
road testing

Software component
testing

Software integration
testing

Software system
testing

Software system
testing

System component
testing

System
testing

FIGURE . Test levels for code-based development (detailed view).

Finally, the embedded system is integrated into the car and tested by means of
“in-vehicle-tests”.

11.3.1.2 Test Strategy for Code-Based Testing

Applying a single testing technique usually fails in reaching satisfactory test coverage.
In practice, a number of complementary test techniques are carefully combined to
form a “test strategy.” Powerful test strategies comprise combinations of functional
and structural test design techniques.The term “effective test strategy” was introduced
by Grimm [Gri] to describe this approach.

11.3.2 Testing in a Model-Based Development Process

11.3.2.1 Test Levels for Model-Based Testing

Testing in a model-based development process extends the scope known from the
original testing theories. Utilization of the model as a test object permits a distinctly
earlier start of test execution compared to code-based development. The functional

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-29

model to be tested usually appears in different evolution stages. The two variations
that can be found in almost every model-based project are the “behavioral” or “design
model” and the “implementation model.” Whereas the design model focuses on
depicting the intended behavior, the implementation model contains all realization
aspects that are the prerequisite for the coding activities.
Because of the early presence of executable controller models, it is already possi-

ble for the function developer to begin proving and testing with different techniques
in the modeling phase. Errors can thus be detected early and removed at low cost.
The spectrum of usable techniques ranges from interactive ad hoc simulations to
systematic testing of the model.
The test levels for code-based development (Section ...) also apply for model-

based development. Software component testing, and software integration testing can
be carried out a bit more flexibly in respect of the execution platform, since automatic
code generators typically support both, a host as well as a target platform. For practical
reasons, integration typically takes place onmodel level, so that on software level com-
monly only individual components and/or the entire application software is tested, but
not the different integration steps (Figure .). The main advantage of model-based
testing here is the existence of additional test levels on model level that can be used to
test the application and to increase its maturity early in the development, before any
code has been produced.
In analogy to the software test levels built upon each other, “model component

testing,” “model integration testing,” and “model system testing” can be addressed.

Embedded
system

Embedded system
testing/

hardware-in-the-
loop testing

Software on
target platform

Software testing/
processor-in-the-loop

testing

Software on
host platform

Software testing/
software-in-the-loop

testing

Implementation
model

Model testing/
model-in-the-loop

testing #2

Design
model

Model testing/
model-in-the-loop

testing #1

Model-based software development

Vehicle

In-vehicle testing/
road testing

Software
component

testing

Software
component

testing

Software system
testing

Software system
testing

System component
testing

System
testing

Model component
testing

Model integration
testing

Model system
testing

Model component
testing

Model integration
testing

Model system
testing

FIGURE . Test levels for model-based development (detailed view).

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-30 Automotive Embedded Systems Handbook

For model level tests, both the design as well as the implementation model can be
utilized.
If a plant model is included in the test, for example, testing is performed in a

closed-loop manner, this is referred to as “model-in-the-loop test” (MIL). A similar
terminology applies to the software level tests. Closed-loop tests on a host platform
are termed “software-in-the loop tests” (SIL), closed-loop tests on a target platform
are named “processor-in-the loop tests” (PIL).
The test procedure described here serves to test the controller to be developed and

therefore focuses on the controllermodel. Irrespective of this, the quality of the vehicle
and environmental models also obviously need to be safeguarded.

11.3.2.2 Test Strategy for Model-Based Testing

Test techniques for model-based testing [Con,BN] are, as a rule, adapta-
tions of conventional software testing techniques or domain-specific analysis/
testing techniques.
But applying test design techniques that employ the model as a test basis may result

in different test scenarios, due to the special kind of representation and structuring as
well as the different abstraction level. Furthermore, the model-based development
approach allows a number of test techniques to be employed at an earlier stage.
Again, as the use of a single test technique is usually not sufficient for a thorough

test, techniques that complement each other must be combined suitably. It is the aim
of an effective test strategy to provide an appropriate combination of different testing
procedures guaranteeing a high error detection probability. An effective test strategy
for model-based testing has to take the specifics of model-based development into
account and appropriately consider the existence of an executable model and thus
exceed a general test strategy in two points. It should consider:

• Test design techniques in which the executable model of the software acts
as a test basis

• Different representations (evolution stages) of the test object that typically
appear in the context of model-based development

A combination of functional and structural test design techniques on model level
with the subsequent reuse of the test scenarios thus determined has proven successful
(Figure .).
The emphasis of such a test strategy is on the systematic design of test scenarios

based on the functional specification, the interfaces, and the executable model of the
embedded software. In addition, an appropriate structural test criterion is defined
on model level with which the quality of the tests that was determined in this way
can be assessed. If necessary, additional test scenarios need to be defined until the
selected structural test criterion has been fulfilled. Once sufficient test coverage on
the model level has thus been ensured, the functional and structural test scenarios
can be reused in the context of back-to-back tests for testing the software and the
embedded system to prove the functional equivalence between the executable model
and the representational forms deducted from this.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-31

Test basis Test design Test object
1

Model

Software

Embedded system

Specification ?

Test input System
reaction

Model

Test evaluation

3

2

4

FIGURE . Effective test strategy for model-based testing.

In detail, the procedure is as follows:

. Systematic functional testing on model level: Initially, functionally oriented
test scenarios are systematically derived from the functional specifica-
tion, the interfaces, and the executable model at an early stage of the
development process (Sections ... and ...).
The determination of test scenarios is to be continued until sufficient

requirements and value range coverage have been achieved. The detected
test scenarios are then to be executed in the context of a model test. The
model reaction to the test scenarios has to be recorded.

. Monitoring of model coverage: It is useful to measure structural coverage
on model level since this coverage can be determined before the actual
software exists. This way, early statements about the structural coverage
of the test object can be provided.
The model coverage that was achieved with the test scenarios that were

identified in step  (and in step , if applicable) has to be measured. We
can proceed to step  once sufficient structural model coverage has been
achieved. Otherwise we need to proceed with step .

. Structural testing on model level: Should a sufficient model coverage not
yet have been achieved, the model elements that have not been covered
have to be identified and test scenarios have to be specifically created for
the coverage of these model parts and have to be added to the existing
test suite (Sections ... and ...). Step  will subsequently have to
be executed again. This procedure needs to be continued until sufficient
model coverage has been achieved.
The identified test scenarios are used to test the design and/or imple-

mentation model within the model test. The system reaction of the
model resulting from stimulation with these test scenarios will have to
be recorded.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-32 Automotive Embedded Systems Handbook

. Execution of back-to-back tests: with the software and the embedded sys-
tem: If the software or the embedded system is available in the further
development process, the test scenarios (that emerged in steps  and ) are
to be repeated on the software and/or the embedded system. The system
reaction again is to be recorded and compared with the model reaction
(Section ...). In case of sufficient similarity of the system reactions
(functional equivalence), we can assume that the transformation of the
model in C code and its embedding into the control unit has occurred
error-free.

The effective test strategy resulting from steps  to  for model-based testing is
depicted schematically in Figure .. Selection of the test design techniques in steps
 and , the structural test criterion in step , as well as the comparative procedures in
step  is to be adapted project-specifically if necessary.
The systematic design of test scenarios based on functional as well as structural

aspects makes an effective exposure of a variety of software-related errors possible. A
sufficient test coverage is guaranteed in the context of the effective test strategy by a
combination of different (e.g., requirement-oriented, data area-oriented, and [model]
structure-oriented) coverage criteria.
The combination of functional and structural test design techniques onmodel level

defined by the effective test strategy for model-based testing with a subsequent reuse
of the detected test scenarios for testing of the software and the embedded system
clearly brings out one of the main advantages of the model-based approach: being
able to already systematically test the precursory stages of the embedded application
software. Test activities can thus be shifted to earlier development phases and there-
fore decrease the error correction costs for those errors that are found early by model
testing.

11.3.3 Interface and Interaction between OEM and Supplier

Acharacteristic feature of automotive controls development [SZ] is the need to con-
sider the relation between the OEM and its various suppliers. It influences the testing
process such that the way of work share on the testing side obviously depends on the
general model of cooperation.
A variety of cooperation models can be found in practice (Figure .): On one

side there is the traditional approach (type A), that is, the manufacturer specifies the
system or component and the entire development is carried out by the supplier. On
the other side, the contrary approach (type C), which becomes increasingly popular,
is characterized by the fact that the complete application software development is car-
ried out by the manufacturer and the supplier only provides the ECU hardware and
some basic software. Many intermediate variants (type B), which are characterized
by cooperative software development also exist. This kind of a more flexible inter-
face between OEM and supplier enables the manufacturer to design new competitive
functionality and keep the responsibility as well as the intellectual properties over the
whole development cycle.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-33

Functional softwareFunctional software Functional software

... Development portion OEM ... Development portion supplier

Basis softwareBasis software Basis software

Hardware Hardware Hardware

Application software
development by the supplier

Cooperative application
software development

Application software
development by the OEM

Type A Type B Type C

FIGURE . Types of cooperation within functional software development.

As far as testing is concerned, the OEM–supplier relationship causes that some test
levels (Figure .) are carried out on the OEM side and others on the supplier’s side.
In case of type A development, the majority of the test levels is performed by the sup-
plier and the first time the OEM is involved is embedded system testing/HIL testing
(Figure .).
In case of types B or C development on the contrary, both development partners

contribute to the testing process from the beginning up to the embedded system
testing/HIL testing level. Figure . shows this relation for the example of a model-
based software development and under the premise that all possible test levels are
applied.
Furthermore, the interaction between development partners requires an additional

test level on the manufacturer’s side, the so-called “acceptance testing.” Regardless
whether the interface between the cooperation partners is defined one way or the
other, the manufacturer has to apply an acceptance test suite on the development
artifact that is provided by the supplier.

11.4 Test Planning

To ensure systematic and efficient testing, the different test levels and activities
need to be coordinated and planned carefully. The aim of “test planning” is to
determine the scope, procedure, resources, and schedule of the intended test lev-
els and activities. The results of the test planning process are recorded in a test plan
document.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-34 Automotive Embedded Systems Handbook

... Testing portion OEM ... Testing portion supplier

Embedded
system

Embedded system
testing/

hardware-in-the-
loop testing

Software on
target platform

Software testing/
processor-in-the-

loop testing

Software on
host platform

Software testing/
software-in-the-

loop testing

Implementation
model

Model testing/
model-in-the-
loop testing #2

Design
model

Model testing/
model-in-the-
loop testing #1

Vehicle

In-vehicle testing/
road testing

Software
component

testing

Software system
testing

Software
component

testing

Software system
testing

System
component

testing System
testing

Model component
testing

Model integration
testing

Model system
testing

Model component
testing

Model integration
testing

Model system
testing

FIGURE . Interfaces in testing responsibilities for type A development.

Embedded
system

Embedded system
testing/

hardware-in-the-
loop testing

Software on
target platform

Software testing/
processor-in-the-loop

testing

Software on
host platform

Software testing/
software-in-the-loop

testing

Implementation
model

Model testing/
model-in-the-loop

testing #2

Design
model

Model testing/
model-in-the-loop

testing #1

Vehicle

In-vehicle testing/
road testing

Software
component

testing

Software system
testing

Software
component

testing

Software system
testing

System
component

testing System
testing

Model component
testing

Model integration
testing

Model system
testing

Model component
testing

Model integration
testing

Model system
testing

... Testing portion OEM ... Testing portion supplier

FIGURE . Interfaces in testing responsibilities for type B development.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-35

11.4.1 Creating a Test Plan

The test plan determines at least

• Selection and combination of individual testing techniques (e.g., CTMEMB
and DC testing)

• Order in which they are applied to subcomponents within the overall
system (e.g., top down or bottom up)

• Interaction between the different test levels (e.g., MIL, SIL)

In order to avoid both, test gaps and redundant tests in the multitude of test levels,
and to enable a reuse of test scenarios that is as extensive as feasible, the tests in the
individual levels need to be harmonized with respect to objectives, testing techniques,
and tools to be used. In particular, it needs to be clearly documented what types of
errors are addressed in the individual test levels and up to what depth the tests are to
be carried out (test criteria).
The results of these considerations are to be documented in a “two-stage test plan”

(Figure .). Aspects spanning multiple test levels are pooled together in a “master
test plan” that forms the basis for detailed test plans for the individual test levels. The
master test plan establishes the coherence between individual test levels [BN].
Detailed planning takes place separately for each test level and is recorded in

“detailed test plans” for the individual levels. A test plan should contain information
such as testing activities, test objects, test design technique(s), test environments, test
criteria, required resources, etc. (Figure .). Creating test plans can be facilitated by
the use of test plan templates.
The test object(s) section of a detailed test plan identifies all test objects to be

worked on in that test level as well as the corresponding test objectives. Based on the
detailed test plan the tester conducts the different test activities for each of the listed
test objects.

Embedded system
testing/hardware-
in-the-loop testing

Software testing/
processor-in-the-

loop testing

Software testing/
software-in-the-

loop testing

Model testing/
model-in-the-loop

testing #2

Model testing/
model-in-the-loop

testing #1

In-vehicle testing/
road testing

Master test plan

Detailed test plan
Model testing/Model-in-the-loop testing #2

Test activities: (a) Functional test design
(b) Test harness generation
(c) Test execution
(d) Model coverage monitoring
(e) Test evaluation
Design model (overall model plus all 1st level subsystems)
Thourough functional model component testing
Thourough functional model system testing
Closed-loop model test harness w/ simulated vehicle model for overall model
Open-loop model test harness for 1st level subsystems
Classification-Tree Method for embedded systems(CTMEMB)
CTCMIN
≥90% decision coverage on model level
Simulink verification and validation, classification-tree editor

Test object(s):
Test objective:

Test environment(s):

Test design technqiue(s):
Test criteria:

Test tool(s):

FIGURE . Test planning by two-stage test plans.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-36 Automotive Embedded Systems Handbook

In order to trace the progress of the test, the results of the test activities should
be recorded within an overall “test documentation.” Thereby, the test documentation
should reflect the structure of the test plan.
Some common activities to be carried out during test planning and topics to be

considered are discussed in Sections .. through ...

11.4.2 Selection of Test Levels

The potential test levels depend on the project’s development paradigm and life cycle.
Typical test levels for model- and code-based development have been discussed in
Sections ... and ..., respectively.
Part of master test planning is, among other things, the determination of test levels

applicable to the specific development context. The availability of evaluation boards
is, for example, a precondition for PIL testing. On the other hand, it is not efficient to
utilize all potential test levels. As an example, if design and implementation models
are to be tested, one could consider carrying outmodel system testing for bothmodels
but cutting out unit tests for the designmodel.The integration strategy (Section ..)
also influences the relevant test levels. In case of a big bang integration of models, for
example, model integration testing is no longer useful.
The test strategy to be achieved (Sections ... and ...) by the selected

test levels should be documented within the master test plan. For each test level
that is applicable for the particular project, a detailed test plan needs to be created
(Section ..).
The selection of test levels typically is a trade-off between test depth and test effi-

ciency. A risk-based approach can be chosen to balance both aspects. In order to
facilitate efficient testing, it is recommended to reuse artifacts and data from previous
levels and to clearly define the objective for each test level.

11.4.3 Selection of Test Objects

Test levels could be divided into two categories:

• Test levels, such as embedded system testing, focusing on one particular
test object (e.g., the embedded system).

• Test levels, such as model testing and software testing, covering a num-
ber of components as potential test objects (e.g., all components of the
model/software).

For the latter, a choice ofmodel or software components to be tested at this level is usu-
ally necessary due to the limitation of development resources and time.As an example,
not all subsystems of a Simulink model might be subjected to a model component
test. Selecting model or software components (in the following named artifacts) to be
tested can be based on one or more of the following selection criteria:

• In function-oriented selection, artifacts that realize a distinguished func-
tion are selected as test objects. Note that the chosen artifacts must be
separable from the overall system and thus also be testable. Those arti-
facts that are directly addressed by a particular requirement should also

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-37

be selected as test objects to be able to check the fulfillment of that
requirement. Artifacts containing complex algorithms should be tested
separately, if the complexity of the calculation cannot be sufficiently taken
into account by other tests. Here, an independent test should be carried
out on the lowest possible integration level.

• In structure-based selection, the selection of test objects can be based on the
structure or complexity of artifacts and/or on their intended deployment.
To guide the selection, different size or complexity metrics can be applied
to the possible artifacts. Metrics could include information on interface
size, lines of code, nesting depth, etc. Furthermore, the test object selection
may be based on the future hardware allocation or on the task structure.

• In personnel-oriented selection, the selection of test objects resembles the
division of work between the individuals involved in the development
of the artifacts. In addition, the developer’s expertise can also provide
information on how detailed such tests need to be.

• In risk-based selection, the artifacts to be tested are identified on the basis
of a risk assessment (risk-based testing).The amount of test resources cor-
responds to the criticality of the artifact. Risk-based test selection can be
also applied to determine a suitable order of test objects in case of limited
test resources.

• In resource-oriented selection, the selection and intensity of the tests cor-
respond to the resources available for the test. While this criterion is
by all means relevant from the project management’s point of view, it
should not be the primary decision-making basis for test planning. Possi-
ble delays in development could lead to entire tests being discontinued or
disproportionately reduced for reasons of time and cost reduction.

• In phase or maturity-level-oriented selection, the test object selection is
related to the current development phase or the maturity level of indi-
vidual development artifacts, respectively. This ensures that only those
artifacts are thoroughly tested that have reached amore or less stable state
of development and are relevant in the current development phase (e.g.,
for the development of a B-sample control unit). However, since this cri-
terion only takes into consideration a present view of the development
phase, the global selection of test objects must be done independently of
this estimation. Otherwise, test gaps may result.

11.4.4 Integration Strategies

In accordance with the selection of individual test objects, a proper “integration strat-
egy” should be established for all applicable integration test levels. The integration
strategy outlines how the single subcomponents are to be integrated step by step into
the overall system and how they are to be tested during integration testing. Integra-
tion testing (Sections ... and ...) typically resembles the integration strategy
and order.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-38 Automotive Embedded Systems Handbook

All first level
subsystems

All first and second level subsystems

Ad-hoc

FIGURE . Common integration test strategies.

Not having a well-defined integration strategy regularly comes along with an “ad
hoc selection of test objects” (Figure ., upper part) resulting in test gaps and/or
redundancies.
Testing literature proposes various integration strategies, such as “bottom-up, top-

down, middle-out, or big-bang integration” [Mye]. However, the development
paradigm chosen restricts the number of applicable integration strategies.
Small and medium size model-based development projects, for example, com-

monly use a big-bang approach. If aggregated components can only be tested in a
closed-loop manner, then big-bang integration is also a good choice. Other integra-
tion strategies would produce a partly integrated model or software that does not
match the interfaces of the plant model. Creating stubs for the missing components
is probably not worth the effort.
In the scope of model-based development a big-bang integration of all first (upper)

level model components (subsystems) in combination with subjecting all first level or
all first and second level components to open-loop model testing (Figure . lower
part) has been proven successful. Following the integration an open- or closed-loop
model testing of the integrated model (i.e., model system testing) should be executed.
Beside a complete integration sequence, which is most advantageous from the test-

ing perspective, there are normally other constraints such as the sequence of the
completion and delivery of artifacts that have to be taken into account. The defined
integration strategy should also consider these constraints.
The integration strategy should be documented as part of the detailed test plans for

those test levels that comprise the integration of components, for example, MIL #,
#, SIL, and PIL.

11.4.5 Test Environments

Apart from the various test objects, different test “execution platforms” are particularly
important in the development of automotive systems. Relevant execution platforms

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-39

in this context include the modeling and simulation environment used (if applicable),
the host computer or the target processor, and the complete ECU. Depending on the
development paradigm and the type of the application some of these platforms might
not be available. In some cases, it makes more sense to choose just one of these plat-
forms as execution environment. Target-hardware-independent execution platforms
particularly play an important role in the early stages of developing new systems, as
the target hardware often is not available for tests at this time.
The test environment includes the definition of necessary real or simulated environ-

ment elements, in addition to the platform on which the test object is to be executed.
The required effort to provide particular environment elements depends on the type
of the application to be developed. In the development of vehicle dynamics applica-
tions, for example, effects of road conditions, the vehicle system’s hardware, and the
behavior of the driver often play a decisive role in testing. Proper test planning in
this context includes to ensure the availability of appropriate parts of the plant and
environment models and real hardware components.
Considerations related to the test environments should be documented in the

detailed test plans.

11.5 Summary

In automotive software engineering, dynamic testing forms the core element of
analytical quality assurance. Prerequisites for a thorough and systematic test are a
careful test planning and a structured testing process covering test levels and testing
activities. For testing embedded automotive software, a variety of testing techniques
has emerged that has significant differences to comparable general-purpose testing
techniques developed for nonembedded software.
Among the core test activities, test design, that is, the selection of suitable test

scenarios, is the most important one since it determines the extent and the quality
of the test. To achieve the given test objectives, a single test design technique is
not sufficient. Rather a number of complementing test design techniques need to
be blended systematically into an overall test strategy. Test strategies for embedded
automotive software typically differ depending on the development paradigm used.
Since the different executable models could be exploited as additional, comprehensive
sources of information for testing, new possibilities for the test arise in the context
of model-based development. The broader spectrum of test possibilities allows
to establish more flexible test approaches. In particular, inexpensive model tests
can be carried out first. Then, comparative back-to-back tests between consecutive
executable artifacts can be performed to verify the transition from one artifact to
its successor.
The test strategy needs to be determined upfront and to be laid in amaster test plan

that forms the basis for the detailed test plans of the individual test levels.
Beside the exceptional significance of dynamic testing for the quality assurance

of in-vehicle software it is indispensable to integrate testing with other verification
and validation techniques. A combination of dynamic testing with automated static
analyses and manual reviews has proven successful in practice.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-40 Automotive Embedded Systems Handbook

References

[Bal] H. Balzert. Lehrbuch der Software-Technik. Band , Spektrum Akademischer
Verlag, .

[BCS+] A. Baresel, M. Conrad, S. Sadeghipour, and J. Wegener. The interplay between
model coverage and code coverage. In: Proceedings of the th European Inter-
national Conference on Software Testing, Analysis and Review (EuroSTAR ),
Amsterdam, the Netherlands, .

[Bel] F. Belli: Methoden und Hilfsmittel für die systematische Prüfung komplexer
Software. Informatik-Spektrum , S. –, .

[BN] E. Broekman and E. Notenboom. Testing Embedded Software. Addison-Wesley,
London, .

[CDF+] M. Conrad, H. Dörr, I. Fey, and A. Yap. Model based generation and structured
representation of test scenarios. In: Proceedings of the Workshop on Software-
Embedded Systems Testing (WSEST ’), Gaithersburg, MD, .

[CDS+] M. Conrad, H. Dörr, I. Stürmer, and A. Schürr. Graph transformations for
model-based testing. Lecture Notes in Informatics, LNI, P-:–, .

[CFP] M. Conrad, I. Fey, and H. Pohlheim. Automatisierung der Testauswertung für
Steuergerätesoftware.VDI-Berichte, :–, .

[CH] M. Conrad and D. Hötzer. Selective integration of formal methods in the devel-
opment of electronic control units. In: Proceedings of the Second International
Conference on Formal Engineering Methods (ICFEM ’), Brisbane, Australia,
pp. –, .

[CK] M. Conrad and A. Krupp. An extension of the classification-tree method for
embedded systems for the description of events. In: Proceedings of the Second
ETAPSWorkshop onModel Based Testing (MBT ), Vienna, Austria, pp. –,
.

[Con] M. Conrad. Beschreibung von Testszenarien für Steuergerätesoftware–
Vergleichskriterien und deren Anwendung. VDI-Berichte, :–, .

[Cona] M. Conrad. Modell-basierter Test eingebetteter Software im Automobil—
Auswahl und Beschreibung von Testszenarien. Deutscher Universitätsverlag,
.

[Conb] M. Conrad. A systematic approach to testing automotive control software. In:
Proceedings of the th International Congress on Transportation Electronics
(Convergence ’), Detroit, MI, pp. –, .

[CS] M. Conrad and E. Sax. Mixed signals. In: Testing Embedded Software. Addison-
Wesley, London, pp. –, .

[CSW] M. Conrad, S. Sadeghipour, and H.-W. Wiesbrock. Automatic evaluation of
ECU software tests. In Proc. SAE World Congress , Journal of Passenger
Cars—Mechanical Systems, SAE International, Detroit, MI, March .

[DSS+] M. Dornseiff, M. Stahl, M. Sieger, and E. Sax. Durchgängige Testmethoden
für komplexe Steuerungssysteme—Optimierung der Prüftiefe durch effiziente
Testprozesse. VDI-Berichte, :–, .

[GG] M. Grochtmann and K. Grimm. Classification trees for partition testing. Soft-
ware Testing, Verification and Reliability, :–, .

[Gri] K. Grimm. Methdoden und Verfahren zum systematischen Testen von Soft-
ware. Automatisierungstechnische Praxis atp, ():–, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing Automotive Control Software 11-41

[Gri] K. Grimm. Systematisches Testen von Software—Eine neue Methode und eine
effektive Teststrategie. Dissertation, GMD-Bericht Nr. , Oldenbourg, .

[GS] M. Grochtmann and L. Schmuhl. Systemverhaltensmodelle zur Spezifikation
bei der modellbasierten Entwicklung von eingebetteter Software im Auto-
mobil. In: Proceedings of the Modellbasierte Entwicklung eingebetteter Systeme
(MBEES’), Dagstuhl, Germany, , pp. –.

[Höt] D. Hötzer. Schaltstrategieentwurf mit Statemate unter Einbindung kontinuier-
licher Modelle zur Softwareverifikation. In: Proceedings of the Fifth Statemate
Anwenderforum, München, Germany, .

[HT] R. Helldörfer and U. Teubert. Automated software verification at TEMIC.
dSPACE News /.

[IEEE .] IEEE Std. .-. IEEE Standard Glossary of Software Engineering Ter-
minology. Institute of Electrical and Electronics Engineers, Inc., New York,
.

[ISO ] ISO/TR :. Road Vehicles—Development Guidelines for Vehicle Based
Software. International Organization for Standardization, Geneva, Switzerland,
.

[LBE+] K. Lamberg, M. Beine, M. Eschmann, R. Otterbach, M. Conard, and I. Fey.
Model-based testing of embedded automotive software using MTest. In: Proc.
SAE World Congress , Detroit, MI, March .

[Lig] P. Liggesmeyer. Modultest undModulverifikation: State of the Art. Angewandte
Informatik Band Vol. , BI-Wissenschaftsverlag, Mannheim, Wien, Zürich,
.

[Lig] P. Liggesmeyer. Testen, Analysieren undVerifizieren von Software—eine klassi-
fizierende Übersicht der Verfahren. In: P. Liggesmeyer et al. (HrsgEds.): Testen,
Analysieren und Verifizieren von Software. Reihe Informatik aktuell, S. –,
Springer, Berlin, .

[Mye] G. J. Myers.The Art of Software Testing. John Wiley & Sons, New York, .
[Rau] A. Rau. Verwendung von Zusicherungen in einem modellbasierten Entwick-

lungsprozess. Informationstechnik und Technische Informatik it + ti, ():–
, .

[RCK+] A. Rau, M. Conrad, H. Keller, I. Fey, and C. Dziobek. Integrated model-based
software development and testing with CSD and MTest. In: Proceedings of the
International Automotive Conference (IAC), Stuttgart, Germany, .

[RWS+] C. Ritter, J. Willibald, E. Sax, and K. D. Müller-Glaser. Entwurfsbegleitender
Test für die modellbasierte Entwicklung eingebetteter Systeme. . In:Workshop
Testmethods and Reliability of Circuits and Systems, Miesbach, Germany, .

[Sim] D. Simmes. Entwicklungsbegleitender Systemtest für elektronische Fahrzeugs-
teuergeräte. Herbert Utz VerlagWissenschaft, .

[SL] The MathWorks, Inc.: Simulink R©—Simulation and Model-Based Design.
www.mathworks.com/products/simulink (//).

[SF] The MathWorks, Inc.: Stateflow R©—Design and simulate state machines and
control logic. www.mathworks.com/products/stateflow (//).

[SWM] E. Sax, J. Willibald, and K. D. Müller-Glaser. Seamless testing of embedded
control systems. In: Third IEEE Latin-American Test Workshop, Montevideo,
Uruguay, .

[SZ] J. Schäuffele and T. Zurawka. Automotive Software Engineering—Principles,
Processes, Methods, and Tools. SAE International, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

11-42 Automotive Embedded Systems Handbook

[TAV] Fachgruppe .. Test, Analyse und Verifikation von Software (TAV) der
Gesellschaft für Informatik (GI): Begriffsdefinitionen im Testbereich.Working
Draft, .

[UPL] M. Utting, A. Pretschner, and F. Legeard. A taxonomy of model-based testing.
Technical report /, Department of Computer Science, The Universiy of
Waikato, New Zealand, .

[Wat] M. L. Watkins. A technique for testing command and control software. Com-
munications of the ACM, ():–, .

[WCF+] H.-W. Wiesbrock, M. Conrad, I. Fey, and H. Pohlheim. Neue automa-
tisierte Auswerteverfahren für Regressions- und Back-to-back-Tests eingebet-
teter Regelsysteme. Softwaretechnik-Trends, ():–, .

[Weg] J.Wegener. Evolutionärer Test des Zeitverhaltens vonRealzeit-Systemen. Shaker
Verlag, .

[WGP] S. Weber, A. Graf, and D. Peters. Automated integration testing of powertrain
software with LabCar ST. In: Proceedings of the ETAS Competence Exchange
Symposium , Stuttgart, Germany, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12
Testing and Monitoring of

FlexRay-Based Applications

Roman Pallierer
Elektrobit Corporation

Thomas M. Galla
Elektrobit Corporation

. Introduction to FlexRay-Based
Applications . -
System Architecture ● FlexRay Protocol

. Objectives for Testing
and Monitoring . -
Criteria to Test andMonitor ●Operational
Scenarios for Testing and Monitoring

. Monitoring and Testing
Approaches . -
Software-Based Validation ●

Hardware-Based Validation
. Discussion of Approaches -

Software-Based Approaches ●
Hardware-Based Approaches

. Conclusion . -
References . -

12.1 Introduction to FlexRay-Based Applications

FlexRay has been developed for future in-car control applications demanding high
data rates, deterministic behavior, and able to support fault tolerance. Application
domains of FlexRay-based systems include power train, chassis, and body control.
Furthermore, FlexRay is considered as a backbone network interconnecting sev-
eral main electronic control units (ECUs). This chapter focuses on the testing and
monitoring concepts for such applications interconnected via FlexRay.

12.1.1 System Architecture

When describing the system architecture, a distinction between the hardware and the
software aspects of the system architecture must be made. The hardware architecture
shown in this chapter reflects the state of the art in today’s automotive systems. The
software architecture presented in this chapter conforms to the AUTomotive Open

12-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-2 Automotive Embedded Systems Handbook

System ARchitecture (AUTOSAR) standard [] (see Chapter ). However, some sim-
plifications are made for the sake of brevity, clarity, and simplicity (i.e., unnecessary
details are sometimes omitted).

12.1.1.1 Hardware Architecture

The hardware architecture of automotive systems can be viewed at different levels of
abstraction.
The “system level” is at the highest level of abstraction. An automotive system con-

sists of a number of networks interconnected via gateways (Figure .). In general,
these networks correspond to the different functional domains that can be found in
today’s cars (i.e., chassis domain, power train domain, body domain).
The networks themselves comprise a number of ECUs that are interconnected via

a communication media (see zoom-in on network A and D in Figure .). The phys-
ical topology used for the interconnection is basically arbitrary; however, bus, star,
and ring topologies are the most common in today’s cars. This level, named “network
level,” represents the medium level of abstraction.
Note that, conceptually speaking, a gateway is a special ECU that is actually a

member of all networks that are interconnected by this gateway.
At the lowest level of abstraction there is the “ECU level” (Figure .). Here, the

major parts of an ECU are of interest. An ECU is comprised of one or more micro-
controller units (MCUs) as well as one or more communication controllers (CCs). In
most cases, only one MCU and one CC are used to build up an ECU.
In order to be able to control the physical processes in a car (e.g., control the injec-

tion pump of an engine) the ECU’s MCU is connected to actuators via the MCU

Network A

Gateway

Network B

Gateway

Network D

Network C

ECU 4
ECU 3

ECU 0

ECU 2

ECU 5

ECU 6

ECU 1ECU 7

Network DECU 3 ECU 4

ECU 0 ECU 1 ECU 2

Network A

FIGURE . Hardware architecture—system and network level.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-3

MCU

CC CC

Sensor SensorActuator
Environmental

interface

Network
interface

FIGURE . Hardware architecture—ECU level.

analog or digital “output” ports. To provide means to obtain environmental informa-
tion, sensors are connected to the MCU analog or digital “input” ports. We call this
interface the ECU’s environmental interface.
The CC(s) facilitate(s) the physical connectivity of the ECU to the respective net-

work(s).We call this interface the ECU’s network interface.Thenumber of CCs hosted
by gateway ECUs thus usually equals the number of networks interconnected by the
respective gateway.

12.1.1.2 Software Architecture

TheAUTOSAR software architecture makes a rather strict distinction between appli-
cation software and basic or system software. While the basic (or system) software
provides functionality like communication protocol stacks for automotive commu-
nication protocols (e.g., FlexRay), an operating system and diagnostic modules, the
application software is comprised of all application-specific software items (i.e., con-
trol loops, interaction with sensors and actuators, etc.). This way, the basic or system
software provides the foundation upon which the application software is built.

.... Application Software
Application software in AUTOSAR consists of application software components,
which are ECU and location independent and sensor–actuator components that are
dependent on ECUhardware and therefore location dependent. Whereas instances of
application software components can easily be deployed to and relocated among dif-
ferent ECUs, instances of sensor–actuator components must be deployed to a specific
ECU for performance/efficiency reasons. Deploying multiple instances of the same
component to a single ECU is supported by the AUTOSAR component standard. A
simple example for the deployment of multiple instances of the same component is
an ECU with two redundant sensors. In that scenario, two instances of the respective

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-4 Automotive Embedded Systems Handbook

sensor component would be deployed to the ECU, each instance servicing exactly one
of the two sensors.
Application software components as well as sensor–actuator components are inter-

connected via so-called connectors. These connectors represent the exchange of data,
usually called “signals” in automotive domain, among the connected components.
The characterics, requirements, and the constraints on such a signal exchange are
specified as attributes of the respective connector. Hence, the following classes of
characteristics, requirements, and constraints have to be considered.

..... Timing Characteristics and Requirements This class defines the temporal
properties of the signal exchange, namely the properties occurrence, period, latency,
and jitter. As far as the “occurrence” of a signal exchange is concerned, a distinction
between periodic exchange, sporadic exchange, and aperiodic exchange can be made.
While for periodic and sporadic exchanges, constraints on the temporal distance
between two consecutive signal exchanges can be specified, no such constraints can
be given for aperiodic exchanges. The “period” of the signal exchange is hereby the
temporal distance between two consecutive signal exchanges in the case of periodic
signals (P in Figure .). In the case of sporadic signals, the period defines the min-
imum temporal distance between any two consecutive signal exchanges (sometimes
also called minimum interarrival time). For aperiodic signals, the period property
is not used. The “latency” (Li in Figure .) of a signal exchange is defined as the
temporal distance between the initiation of the signal transmission at the sender
(i.e., the point in time the sending application software component calls the sending
application programming interface [API] service) and the signal reception at the
receiver (i.e., the point in time the received signal is available at the receiving appli-
cation software component). Given the characteristics of periodic/sporadic signals
exchanged through a given network, it is possible to evaluate a priori the worst
latency for each signal; for example, in Ref. [] the authors have shown how to
evaluate this worst case for a FlexRay network, while in Chapter  in this book,
the evaluation method of the same characteristic for a CAN is presented. Properties
can be required on the latency of signals such as the “maximum allowable latency”
(e.g., Li has to be always lower than Lmax in Figure .) or an imposed mean
value M (e.g., (∑i Li/i) has to be equal to M in Figure .). The deviation of the

P P P

Li Li Li

Transmission of signal
P Transmission period
Li Latency of the signal in the ith period

Signal transmission event at the sender side
Signal reception event at the receiver side

t

FIGURE . Characteristics for a periodic signal exchange.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-5

actual observed latency of the exchange of a specific signal from the mean latency
is termed “jitter.” Since minimizing the jitter is of utmost importance to ensure
high quality distributed control loops, the “maximum allowable jitter” is another
important attribute of the connector (e.g., abs(Li −M) has to be less than a given
value Jmax in Figure .). Note that the transmission guarantee requirements (e.g.,
guaranteed vs. best effort transmission) can easily be expressed by means of the
mean latency and the maximum allowable jitter parameter. In particular, setting the
required mean latency of a connector, for example to a value different from infinity
and requiring that the maximum jitter is smaller than a defined value, formulate a
requirement for a guaranteed transmission with bounded jitter. Setting the required
mean latency to infinity, however, and requiring a maximum jitter that is smaller
than a defined value, formulate a requirement for a nonguaranteed transmission,
which, in the case where the transmission takes place, has a bounded jitter.

.... Fault-Tolerance Requirements
This class defines the fault-tolerance properties of the signal exchange, namely the
properties’ redundancy type, redundancy degree, and additional parameters for a cer-
tain redundancy type. As far as the “redundancy type” is concerned, a distinction
between spatial redundancy (i.e., signal exchange via multiple physical communi-
cation channels) and temporal redundancy (i.e., performing the signal exchange
multiple times with the same signal value within a given interval) can be made.
The number of different physical communication channels or the number of time-
redundant signal exchanges within a specific interval is defined by the property
“redundancy degree.” Since both types of redundancy (namely spatial and temporal)
can be combined for a single signal exchange, a separate instance of the redundancy
property is required for spatial and temporal redundancy. For temporal redundancy,
an additional attribute is required to specify the minimum temporal distance between
two consecutive replicas of a signal exchange.The rationale behind this attribute is the
requirement that, for example, disturbance bursts with amaximum duration of ε have
to be tolerated. In this case, the minimum temporal distance between two consecutive
replicas of the signal exchange has to be larger than the maximum disturbance burst
duration ε in order for this kind of burst to be tolerated. For further information on
how to determine the distribution of the replica for a time division multiple access
(TDMA)-based protocol, you can refer to Ref. []. Explicitly specifying the redun-
dancy type is not required, since this information is implicitly defined via the spatial
and the temporal redundancy degree.

.... Basic or System Software
In addition to the application software components, AUTOSAR also defines a layered
architecture of basic (or system) software modules, which provide a basic platform for
the execution of the application software components.
The AUTOSAR basic software is horizontally subdivided into different types of

services, namely:

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-6 Automotive Embedded Systems Handbook

– Input/output (I/O) services, which provide standardized access to sensors,
actuators, and ECU onboard peripherals

– Memory services, which facilitate the access to internal and external
(mainly nonvolatile) memory

– System services, which contain modules like operating system, ECU state
management, etc.

– Last, but not least, communication services, which provide a commu-
nication stack used for access to the different vehicle networks (i.e.,
local interconnect network [LIN], controller area network [CAN], and
FlexRay)

..... Communication Services Communication services are a group of mod-
ules for vehicle communication (CAN, LIN, and FlexRay). The communication
stack built up by the modules of the communication services is depicted in
Figure .. The grey boxes indicate communication protocol-specific modules. The
“XXX” is a placeholder for the respective communication protocol (i.e., CAN, LIN,
and FlexRay).Thus, the AUTOSAR communication services contain communication

PDU router
XXX network
management

XXX interface

Generic network
management

XXX transport
protocol

Diagnostic
comm. managerAUTOSAR COM

XXX driver

CC

AUTOSAR runtime environment

Application

MCU

FIGURE . AUTOSAR communication services.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-7

protocol-specific instances of the transport protocol (TP) and network management
(NM).

XXX TP: In AUTOSAR, the TP is used to perform segmentation and reassembly of
large protocol data units (PDUs) (called messages) transmitted and received by the
diagnostic communication manager (DCM). A dedicated TP is used for each com-
munication protocol (CAN, LIN, and FlexRay). These protocols are rather similar
or even compatible (in certain configuration settings) with the ISO TP for CAN []
specified in ISO/DIS -..
PDU router: The PDU router module provides twomajor services. On the one hand, it
dispatches PDUs received via the underlying interfaces (e.g., FlexRay interface) to the
different higher layers (COM, DCM). On the other hand, the PDU router performs
gateway functionalities between different communication networks by forwarding
PDUs from one interface to another of either the same (e.g., FlexRay → FlexRay)
or of a different type (e.g., CAN → FlexRay).
COM: The COM module provides signal-based communication to the higher layers
runtime environment (RTE). The signal-based communication service of COM can
be used for intra-ECU communication as well as for inter-ECU communication. In
the former case, COM mainly uses shared memory for this intra-ECU communica-
tion, whereas for the latter case, COMpacks multiple signals into a PDU at the sender
side and forwards this PDU to the PDU router in order to issue the PDU’s transmis-
sion via the respective interface. On the receiver side, COM obtains a PDU from the
PDU router, extracts the signals contained in the PDU, and forwards the extracted
signals to the higher software layers.
DCM: The DCM provides services that allow a tester device to control diagnostic
functions in an ECU via the communication network (i.e., CAN, LIN, and FlexRay).
The DCM supports KWP [], standardized in ISO/DIS -, and the unified
diagnostic services (UDS) protocol [], standardized in ISO/DIS -.
NM: NM provides means for the coordinated transition of the ECUs in a network
into and out of a low-power (or even power down) sleep mode. AUTOSAR NM is
divided into two modules: a communication-protocol-independent module (generic
NM) and a communication-protocol-dependent module (CAN NM, LIN NM, and
FlexRay NM).
XXX interface: The interface module is protocol specific, meaning that dedicated
interfaces for the different communication protocols (i.e., FlexRay, CAN, and LIN)
do exist. Based on the frame-based services provided by the respective drivers (see
below), the interface modules facilitate the sending and receiving of PDUs, where
multiple PDUs can be packed into a single frame at the sending ECU and have to
be extracted again at the receiving ECU. In FlexRay, the point in time when this
packing and extracting of PDU takes place, as well as the point in time when the
frames containing the packed PDUs are handed over to the respective driver for trans-
mission or retrieved from the driver upon reception, are governed by the temporal
scheduling of so-called communication jobs of the FlexRay Interface.Thus, each com-
munication job can consist of one or more “communication operations,” each of these

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-8 Automotive Embedded Systems Handbook

communication operations handling exactly one communication frame (including
the PDUs contained in this frame).
XXX driver: Just like the interface module, the driver module is protocol specific as
well. The driver module provides the basis for the interface module by facilitating the
transmission and the reception of frames via the respective CC.
RTE: The AUTOSAR RTE provides the interface between application software com-
ponents and the basic software modules as well as the infrastructure services that
enable communication to occur between application software components.
Application layer: Actually, this layer is not part of the AUTOSAR basic software mod-
ules’ layered architecture, since this layer contains theAUTOSAR application software
components described in Section ..

When looking at FlexRay driver, FlexRay interface, FlexRay transport protocol,
and COM, communication at different levels of abstraction and granularity is facili-
tated, namely frame level, PDU level, message level, and signal level. Note that all of
the previously listed requirements can be applied to any of these different levels of
abstraction.

12.1.2 FlexRay Protocol

In , BMW, DaimlerChrysler, Philips, and Freescale (Motorola) founded the
FlexRay consortium [,] with the objective to develop a new communication proto-
col for high-speed control applications in vehicles for increasing safety, reliability, and
comfort. Since then, the consortium has grown to more than  members, includ-
ing some of the automotive industry’s largest and most influential players, such as
General Motors, Ford, and Bosch among others. In , the BMW Group imple-
mented the first FlexRay-based series application in the X family [], demonstrating
the performance of this new communication technology on the road.
The FlexRay protocol provides fast, deterministic, and fault-tolerant communi-

cation to overcome the performance limits of previously established protocols in
the automotive domain, for example, CAN. Therefore, FlexRay supports two com-
munication channels, each operating at a data rate of up to  Mbps. The FlexRay
communication scheme includes a static segment and a dynamic segment. Data trans-
mission in the static segment is fully deterministic with guaranteed frame latency
and jitter, while the dynamic segment provides a flexible bandwidth allocation for
asynchronous data transmission. For the deployment of the FlexRay protocol, all
parameters of the communication scheme, such as the length and properties of the
static and dynamic segment, have to be configured statically.These parameters depend
highly on the requirements of the application.
Testing andmonitoring approacheshave to take into consideration thedetailed con-

figuration parameters of FlexRay. Furthermore, the deterministic timing of the static
and dynamic segments can be used to establish an efficient simulation environment.
For a detailed description of the static and dynamic segments, and the timing in

FlexRay please refer to Chapter .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-9

12.2 Objectives for Testing and Monitoring

Automotive systems often have to meet dependability requirements due to the inher-
ent safety-critical nature of these kinds of systems (especially as far as the chassis
domain is concerned). According to Laprie et al. [], testing is one means to estab-
lish the desired amount of dependability. Through testing, the following goals can be
achieved:

Fault removal: In the development phase of a system, design faults can be detected
by means of testing and can be removed from the system, thus resulting in a higher
dependability of the system.
Fault forecasting: When exposed to realistic load scenarios and when supplied with
input that is close to real life, the frequency and the severity of faults can be assessed
prior to system deployment (i.e., prior to starting car production). Based on this data,
forecasts can be made regarding faults occurring in the field.

Basically, a distinction between static testing and dynamic testing can be made.
Static testing comprises practices to verify the system without actual execution.
Practices like static analysis (e.g., inspections, walk-throughs, data flow analysis, com-
plexity analysis, static source code checks by compilers or dedicated source code
checkers) or proving theorems bymeans of prover engines fall into this category. Since
static testing of FlexRay-based systems is not fundamentally different from static test-
ing of non-FlexRay-based system, we will not address the practices of static testing
any further.
In dynamic testing, the system is exercised with a defined set of stimuli (the

so-called test vectors) in order to judge—based on the responses of the system
to these test stimuli—whether the system behaves according to its specification or
whether the systems’ responses deviate from this specification. Such a deviation
from the system’s specification is termed a failure of the system.
When conducting dynamic tests on a system, however, it is important to have

proper means to monitor and record the response of the device under test (DUT)
to the test stimuli. In networked systems, the test stimuli can, to a large degree, be
provided via the communication media. Similarly, the responses of the DUT are to a
large degree visible on the communication media as well. Therefore, to properly test
(parts of) networked systems, some kind of monitoring device to record the network
traffic as well as some device capable of providing the proper stimuli via the network
are required.

12.2.1 Criteria to Test and Monitor

When testing a system (or a part of a system), the main interest lies in finding out
whether the system behaves according to its specification or whether the observed
behavior of the system deviates from the system’s specification. Such a deviation can
take place either in the time domain, value domain, or code domain.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-10 Automotive Embedded Systems Handbook

12.2.1.1 Deviations in the Time Domain

When looking for deviations in the temporal domain, all timing-related requirements
listed in Section .... have to be taken into consideration and have to be applied
at the different levels of granularity (i.e., frame level, PDU level, message level, and
signal level).
As far as the period requirement of a connector is concerned, tests have to be con-

ducted to validate that, for periodic or sporadic information exchanges, the observed
period matches the required period. In FlexRay, for frames scheduled in the static
segment, this period is guaranteed by the FlexRay protocol in fault-free scenarios. For
frames scheduled in the guaranteed part of the dynamic segment, the observed period
may deviate by amaximum of almost the length of the dynamic segment (Figure .).
The upper part of Figure . illustrates the case, where no other frames are sent

into the minislots prior to frame D (for which the period is observed), resulting in
a period of a whole FlexRay communication cycle. In the lower part of Figure . a
scenario is depicted where the minislots preceding the minislot for the transmission
of frame D are occupied (and thus stretched) causing the transmission of frame D
to be shifted to the end of the communication cycle, resulting in an observed period
of one FlexRay communication cycle plus (in a worst-case scenario with long frames
and short minislots) almost the length of the dynamic segment.
For the best effort part of the dynamic segment, no such upper bound on the possi-

ble deviation can be given since indefinite postponement of the transmission of frames
scheduled in the best effort part of the dynamic segment might take place. For data
entities different from frames (which require the involvement of higher software lay-
ers) like PDUs, messages, or signals, the period is governed by the temporal schedule
of the FlexRay interface’s communication operations aswell. Figure . illustrates this

t

Dynamic segment
cycle i

Dynamic segment
cycle i + 1

Average observed
period

t

Dynamic segment
cycle i

Dynamic segment
cycle i + 1

Maximum observed
period

Transmission of frame
Frame reception event at the receiver side

B

D

DCAD

D

FIGURE . Observed period in guaranteed part of dynamic segment.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-11

Latency for higher SW layers

FlexRay interface
TX comm job

FlexRay CC
buffer

FlexRay CC buffer

FlexRay interface
RX comm job

t

Transmission of frame
Frame transmission event at sender side
Frame reception event at the receiver side

D

FIGURE . Impact of FlexRay interface communication operations.

impact of the temporal schedule of the FlexRay interface’s communication jobs on
the actual latency between the send request (issued by the layer on top of the FlexRay
interface) and the actual send event on the communication media (and vice versa on
the recipient side).
For the mean latency requirement, the values of the latencies observed by the

receiver have to be measured and the mean value has to be computed. Again, for
frames transmitted in the static segment of FlexRay, the FlexRay protocol itself ensures
a constant latency of one TDMA slot due to the static schedule. In the guaranteed
part of the static segment, the mean latency will be in the granularity of the length
of the dynamic segment (Figure .), whereas in the best effort part of the dynamic
segment, the mean latency can even be unbounded if the network load is high.
For data entities different from frames (which require the involvement of higher

software layers) like PDUs, messages, or signals, similar to the observed period,
the mean latency is governed by the temporal schedule of the FlexRay interface’s
communication jobs as well.
As far as the maximum latency jitter requirement is concerned, the FlexRay proto-

col causes frames scheduled in the static part to show a maximum jitter in the granu-
larity of a single macrotick. Frames scheduled in the guaranteed part of the dynamic
segment might exhibit a latency jitter of up to the length of the dynamic segment (i.e.,
the difference between Ldynmax and Ldynmin in Figure .), whereas frames scheduled in

tt

Lmax
dynLmin

dyn

Transmission of frame
Frame copied into CC buffer at sender side
Frame available in CC buffer at receiver side

D DCBA

FIGURE . Latency and latency jitter in dynamic segment.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-12 Automotive Embedded Systems Handbook

the best effort part of the dynamic segment may be postponed indefinitely, causing an
infinite jitter.
Again, for data entities different from frames (which require the involvement of

higher software layers) like PDUs, messages, or signals, the maximum latency jit-
ter is governed by the temporal schedule of the FlexRay interface’s communication
operations as well.
For testing the temporal redundancy degree requirement, the number of observed

temporal replicas of a information exchange has to be counted and compared against
the required temporal redundancy degree. Since neither the FlexRay protocol nor the
AUTOSAR basic software provides any inherent support for temporal redundancy,
the proper handling of temporal redundancy is a matter for the application software.
Meeting the minimum temporal distance requirement between two consecutive

replicas of the information exchange is partly supported by the FlexRay protocol. By
scheduling the replicas in proper TDMA slots (with a sufficient temporal distance
between the slots), the temporal distance requirement is enforced by the FlexRay
protocol when using the static segment. For the dynamic segment a worst-case cal-
culation can be made (assuming that all minislots between the minislots of the
consecutive replicas are unoccupied) in order to have the FlexRay protocol ensure this
requirement. Since this approach, however, is based on a rather pessimistic assump-
tion, the observed temporal distance will mostly be way larger than the minimum
temporal distance.

12.2.1.2 Deviations in the Value Domain

Twomain kinds of deviations in the value domain can be observed. First, the informa-
tion content is invalid, since a protecting checksum (for FlexRay frames, e.g., a frame
cyclic redundancy check [CRC]) indicates that the information has been mutilated.
Secondly, information content that differs from a known content leads to the con-

clusion that there is a deviation in the value domain. Nevertheless, in order to come
to this conclusion, knowledge about the correct information content is required. For
information entities of limited range (e.g., enumeration values), exact knowledge
about the correct information is often available (e.g., because the tester knows the
exact position of the ignition key). For information entities of a rather large range
(e.g., for signal values of  bits), however, in most cases only a validity interval is
available. In that case, the observed information content can only be validated against
this validity interval.

12.2.1.3 Deviations in the Code Domain

When looking at deviations in the code domain, the following deviations have to be
considered.

• The bit encoding on the physical layer differs from the specification. This
deviation is mostly caused by faulty transceivers and/or encoding units in
the FlexRay controller.

• The observed frame format on the data link layer differs from the frame
format defined in the FlexRay specification. Such a deviation can be

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-13

caused by a faulty transmitter unit of the FlexRay CC or a faulty star
coupler.

• And lastly, the observed signal packing (i.e., the ways signals are packed
into frames) differs from the specified signal layout in the frame. Such
deviations are most probably caused by incorrect configurations of the
AUTOSAR COM layer.

12.2.1.4 Other Deviations

For testing the spatial redundancy degree requirement, the number of observed spa-
tial replicas of an information exchange have to be counted and compared against
the required spatial redundancy degree. To achieve this, the available channels of the
communication system have to be monitored to see if replicas of the information
exchange have occurred.

12.2.2 Operational Scenarios for Testing and Monitoring

As far as operational scenarios are concerned, FlexRay-based systems (like any other
system) have to be tested in a fault-free case to ensure the system’s proper operation
when executed in the absence of faults.
As already mentioned in Section .., however, FlexRay was developed for deploy-

ment in safety-related application areas. Since systems intended for safety-related
purposes need to remain functional even in the presence of faults,∗ the system inher-
ently has to be able to tolerate these faults. Therefore, the testing of safety-related
systems has to take place under fault conditions as well, since the previously addressed
fault-tolerance requirements on the system mandate that faulty conditions are part of
the system’s “normal” operational scenario.
In order to be able to test the fault-tolerance properties of the system, the faulty

conditions have to be induced intentionally as part of the respective test case. The
induction of these faulty conditions is termed fault injection. Depending on whether
the faults are injected by means of hardware (e.g., by electromagnetic interference
bursts) or by software (e.g., by intentionally flipping single bits in memory) we speak
of hardware- or software-implemented fault injection, respectively (Section ...).

12.3 Monitoring and Testing Approaches

In order to achieve the test objectives introduced in the previous section, different
monitoring and test approaches are possible. In the following, a basic distinction
between software- and hardware-based approaches is made. Software-based valida-
tion uses a simulation model of the system to analyze the behavior of the application.

∗ As long as the number, the frequency of occurrence, the duration, and the nature of these faults is covered
by the system’s fault hypothesis.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-14 Automotive Embedded Systems Handbook

Hardware-based validation includes a hardware setup of the system for the investi-
gation. Both approaches can be used either for the analysis of the total system or for
the analysis of parts of the system, that is, one or a number of ECUs. In this chapter,
the focus is still on the effects of the software running on the MCU, and therefore, on
the application layer and the basic software layers.

12.3.1 Software-Based Validation

Software-based validation provides a powerful means to analyze the application
behavior at an early stage of the development.

12.3.1.1 FlexRay Abstraction Levels

Computation effort is a big issue for each simulation. Modeling a complete FlexRay
networkmight become quite complex: distributed ECUs, each including FlexRay con-
trollers andMCUs with basic software layers and the application layers. Furthermore,
these networks can be connected with others via gateways (Figure .).
To minimize the complexity of such simulations, only the application is modeled

in full detail. The model of the FlexRay controller and network has been significantly
simplified, utilizing the deterministic timing behavior of the FlexRay protocol.There-
fore, we will introduce so-called abstraction levels on the architecture and timing
level.

.... Architecture Level
As described in Section ..., the architecture of a FlexRay network consists of ECUs
interconnected by a shared communication media. Each ECU includes one or more
FlexRay controllers and MCUs. The application layer and the basic software layers
run on the MCU. The application layer contains a number of software components
that implement the actual application functionality (e.g., anti-blocking system [ABS]
calculation routines).Thebasic software layers providemeans and services to transmit
and receive data via the FlexRay controllers. The application software components use
the services of the basic software layers to communicate with software components
running on other ECUs.
Figure . illustrates this ECU architecture where two interfaces are introduced.

First, there is a so-called application interface (AI) between the application layer
and the basic software layers, and second, there is a controller–host interface (CHI)
between the basic software layers on the MCU and the FlexRay communication
controller. These interfaces can be used to facilitate the simulation.

..... Application Interface At this level, the simulation model contains the full
functionality of the software components of the application. The functionality of
the basic software layers and the FlexRay controller hardware is emulated providing
an AI.
The AI is a signal-based interface that delivers updates of the signals according

to the timing of the basic software layers and FlexRay controllers. Emulating this
interface in simulation allows considerable simplifications of the simulation model.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-15

Application layer

FlexRay controller hardware

Basic software layers (e.g.,
AUTOSAR BSW)

Controller host interface (CHI)

Application interface (AI)
Application layer

FlexRay controller hardware

Basic software layers (e.g.,
AUTOSAR BSW)

Controller host interface (CHI)

Application interface (AI)

Physical layer interface (PLI) Physical layer interface (PLI)

FIGURE . Abstraction level on architecture.

Only the timing aspects of the signal updates have to be considered. Issues like
signal-to-frame packing and the details of the FlexRay timing do not need to be
modeled.

..... Controller–Host Interface The full functionality of the software compo-
nents of the application and the basic software layers is simulated at this level while the
functionality of the FlexRay communication controller is emulated, thus providing a
CHI abstraction.
The CHI can be modeled as a buffer-based interface that delivers updates of the

FlexRay frames according to the FlexRay timing. Emulating this interface in simula-
tion also allows considerable simplifications of the simulation model. Only the timing
aspects of the frame updates have to be considered. The FlexRay controller func-
tionality, like clock synchronization and startup etc., does not need to be modeled
in detail.

..... Physical Layer Interface A final interface can also be shown: the physical
layer interface (PLI) between the functionality of FlexRay communication controllers
and the network physical layer. Simulation at this level basically does not make much
sense, since the computational effort required to simulate the correct bit timing
(which is required at this level of abstraction) is rather huge. Note that, for hardware-
based validation, however (Section ..), the PLI is an important interface that is
subject to faults and thus has to be considered in the validation process.

.... Timing Level
Simulation can also be significantly facilitated by choosing an adequate time resolu-
tion. Due to the time-driven nature of the FlexRay protocol, the transmission of data

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-16 Automotive Embedded Systems Handbook

Communication
cycle

Communication
cycle

ith Emmission of data C
(i−1)th Reception of data C

(i+1)th Emmission of data C
ith Reception of data C

(i+2)th Emmission of data C
(i+1)th Reception of data C

C is the whole data exchanged in
each communication cycle

FIGURE . Timing level —communication cycle.

is triggered by predefined points in time.This timing hierarchy (Section ..) can be
used to introduce abstraction levels at the timing level.

..... Timing Level : Communication Cycle At this timing level, the updates of
frames and the contained signals are performed in the granularity of communication
cycles. As shown in Figure ., at the beginning and at the end of each commu-
nication cycle, the contents of all signals and frames are updated. The data to be
transmitted are written at the beginning of each communication cycle, the data to
be received are read at the end of each communication cycle.
This timing level can be optimally combined with the AI level to provide a fast

and quite abstract view of the communication timing of signals. It is assumed that
transmission latencies introduced by the basic software layers are small enough so
that an update of the signal is available at the end of each communication cycle. In
combination with the CHI, however, this timing level does not provide the necessary
accuracy to analyze the detailed effects of the transmission latency introduced by the
basic software layers.

..... Timing Level : Static Slots and Simple Dynamic Segment Arbitration This
is a more accurate level where the updates of frames and their contained signals are
performed in a more detailed manner. In the static segment, the timing of the static
slots is emulated. The data to be transmitted are read at the beginning of each slot,
the data received within the slot are provided at the end of the static slot. Figure .
shows the update times for slot  of the static segment. The other slots of the static
segment are updated in the same way.
For the dynamic segment, only the beginning and the end of the segment are emu-

lated. Data to be transmitted are read at the beginning, data that have been received
are provided at the end of the dynamic segment (Figure .).
This timing level can be optimally combined with the CHI level to analyze the

effects of the transmission latency introduced by the basic software layers. For exam-
ple, the AUTOSAR FlexRay interface layer contains communication operations that
are scheduled synchronously with the FlexRay communication to read and write to
the FlexRay buffers. The configuration of the timing of these communication opera-
tions determines the earliest and latest points in time an update of the transmitted

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-17

Communication
cycle

Communication
cycle

Dynamic
segment

Dynamic
segment

Slot 1Slot 1

S1 is the data exchanged in
slot 1 of each communication

cycle

Static segmentStatic segment

ith Emmission
of data S1

ith Reception
of data S1

(i+1)th Reception
of data S1

(i+1)th Emmission
of data S1

(i+2)th Emmission
of data S1

FIGURE . Timing level —static slot arbitration.

Communication cycle

Dynamic
segment

Communication cycle

Static segmentStatic segment Dynamic
segment

D is the data exchanged
in the whole dynamic segment
of each communication cycle

(i−1)th Reception
of data D

ith Emission
of data D

ith Reception
of data D

(i+1)th Emission
of data D

(i+1)th Reception
of data D

FIGURE . Timing level —dynamic segment arbitration.

data is available. These effects can be analyzed in combination with the software
components of the application layer.
In combination with the AI level, this timing level provides a very accurate update

of the frames without taking into consideration any of the latencies introduced by the
basic software layers. This may lead to erroneous assumptions about the earliest and
latest points in time transmitted data are available.

..... Timing Level : Static Slots andAdvancedDynamic SegmentArbitration This
timing level is a refinement of the timing level .The sampling points are chosen in the
same way as in level ; however, the behavior of the minislotting media access scheme
is emulated in more detail. This priority-based algorithm postpones the transmission
of frames scheduled in the best-effort part of the dynamic segment in case of peak
load (Section ..).

..... More Detailed Approaches Additional simulation approaches include
emulating the timing for the dynamic segment in a more detailed way.

12.3.1.2 Fault Injection

Fault injection in the simulation model enables the designer to analyze the depend-
ability characteristics of the system at an early stage of development. The main

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-18 Automotive Embedded Systems Handbook

objectives are () fault removal—testing the correct behavior of fault-tolerance mech-
anisms and () fault forecasting—investigating the robustness of the application in
fault scenarios.
A simulation model provides a good means to fully control the location and point

in time a fault has to be injected. In our simplifiedmodel of the FlexRay controller and
FlexRay network, we focus on the effects of failures that can be seen on the previously
described architectural and timing abstraction levels.
In the simulationmodel, theAI aswell as theCHI, are emulated as sharedmemories

at the architectural level. So, in accordance with the chosen timing abstraction level,
the contents of the shared memories can be accessed for fault injection.

.... Application Interface
Fault injection on the AI directly provides for influencing and investigating the
behavior of the application model. The AI gives access to the services of the basic
software layers. In the simulation model, these services are modeled in a very sim-
plified manner, providing signal updates and status information of services such
as NM.
Signal updates can be easily influenced in the time and value domains. The time

domain depends on the chosen timing abstraction level that corresponds to the
update periods of the FlexRay protocol. In contrast to CAN, where the periods of low
priority data may significantly jitter even in a fault-free case, FlexRay provides deter-
ministic transmission periods for the static segment and the guaranteed part of the
dynamic segment as specified during design time. Even in the instance of an applica-
tion failing (assuming the basic software layers and the FlexRay controller are working
correctly), the update periods of the signals stay constant; however, the signal values
may be incorrect or obsolete. This protocol property significantly facilitates the sim-
ulation of application faults in the time domain: either a correct signal is available or
is not available at the AI within the specified transmission period. Within the best-
effort part of the dynamic segment, signal updates may also be lost or postponed in
peak-load scenarios, that is, with no specific failures. This behavior can also be easily
emulated by mutilating the value of the signal at the AI.
Deviations in the value domain can also be achieved by mutilating the contents of

the correct signals provided by the AI. This kind of fault simulation analyzes how the
application model reacts if there is wrong input data. Focusing on communication
network failures, this method investigates the robustness of the total system when
there are inconsistent data transmissions. Due to failures, it might happen that only
one subset of ECUs receives signals correctly, while others receive no signal updates.
Other services of the basic software layer, such as NM, can also be influenced by

fault injection. The status of the service can be changed at one ECU or at one subset
of ECUs to achieve erroneous states and analyze how the application model reacts in
those cases.
Timing level  is the adequate granularity for these kinds of fault simulation scenar-

ios at the AI. Investigations at finer granularity level (i.e., using a higher timing level)
only provide realistic data, when the latency introduced by the basic software layer is
also considered. Therefore, the CHI level described below is necessary.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-19

.... Controller–Host Interface
Fault injection on the CHI is aimed at analyzing the effects of the basic software layer
and the application model.TheCHI provides access to the controller status and buffer
contents of the FlexRay CC. In the simulation model, the data transmission is emu-
lated by updating the CHIs of all controllers within the specified timing abstraction
level. The basic software layers and the application model make use of these values
after the update.
At this interface, all failures that might occur in the FlexRay controller or on

the communication network can be simulated. These failures include invalid frame
receptions, CRC errors, incoming or outgoing link failures, communication channel
failures, and more.
The FlexRay specification does not specify the register nor the buffer layout of the

CHI of a FlexRay controller. Rather, the services and the contents of the information
provided are described. The most important services for the fault simulation are the
following.

..... Clock Synchronization The FlexRay protocol requires that all controllers
share a common time base with each other in order to execute, receive, and transmit
operations in a time-drivenmanner. To establish this common time base, a distributed
fault-tolerant clock synchronization algorithm [] is used. Upon power-up, each con-
troller performs a specific startup procedure to establish the common time base.
During operation, each controller performs a synchronization algorithm to maintain
synchronization with the other controllers. If a controller is not synchronized, it may
not fully participate in the data transmission.
The reasons why a controller is not synchronized can be manifold. Examples

include no other controllers have powered-up, the FlexRay communication channels
are broken, the frequency of the FlexRay controller clock is out of specification, etc.
To analyze the behavior of a FlexRay-based application, we will model only a very

abstract view of the clock synchronization algorithm. This abstract view includes two
modes: a synchronized and anon-synchronizedmode of the FlexRay controller. In the
synchronized mode, the controller may correctly receive and transmit frames; in the
non-synchronizedmode, the controller does not receive correct frames. Furthermore,
it is assumed that the controller does not transmit any frames when residing in the
non-synchronized mode.

..... FrameReception For each frame that is received, a “receive” status is pro-
vided in the CHI. This receive status indicates whether the frame has been received
correctly or whether any problems have occurred during reception. In our simplified
model of the FlexRay controller, the status of the frame reception is mutilated on the
CHI so that various failure cases can be emulated. These cases include invalid CRC or
check sums, coding violations, clock synchronization problems, etc. These cases can
affect one or a certain subset of frames, for example:

• All frames received from a specific node
• All frames received on a specific channel

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-20 Automotive Embedded Systems Handbook

• All frames received within a specific time period
• Other subsets of frames

Thismethod of selecting certain subsets of affected frames allows for efficiently inject-
ing different kinds of faults. In the simulationmodel, the behavior of the basic software
layers and the application can then be analyzed, for example, whether the failure of
one node or communication channel has been correctly detected.

..... Frame Transmission The success or the failure of a frame transmission
results in the value of the receive status in the CHI of all receiving controllers. Thus,
mutilating the CHI of all receiving controllers will emulate various frame transmis-
sion problems in the simulation model. Furthermore, the CHI of the transmitting
controller must be mutilating if it indicates a failed transmit confirmation to the
sender.

..... Choice of Timing Abstraction Levels Fault injection at the CHI helps to
analyze the behavior of the basic software layers and the application model.While the
reaction of the application model can be investigated at the AI, the behavior of the
basic software layer is of specific interest for this type of fault injection. Timing level 
is not sufficient for these investigations since it does not provide the earliest point in
time where frames are available on the CHI. Timing levels  and , and more detailed
approaches, are adequate for these fault simulations at the CHI.

12.3.2 Hardware-Based Validation

In hardware-based validation, the DUT is not simulated in software. In this case, the
whole ECU (or even a combination of multiple ECUs) and thus a combination of
hardware and its embedded software are put to use in the course of the validation. In
order to be able to conduct such a hardware-based validation, the test-bed itself must
be hardware-based and the interface between the test-bed and the DUT is a hardware
interface. In networked systems, this interface is, on the one hand, the communication
media and on the other hand, the I/O interface to the environment (i.e., sensors and
actuators).
Based on whether the response of the DUT is or is not fed back into the test vector

generation, we can determine either “open-loop” or “closed-loop” approaches.

12.3.2.1 Open-Loop Approach

In open-loop approaches, the responses of theDUT to test stimuli are not fed back into
the test stimuli generation to produce new test stimuli. Therefore, the test-bed itself
is divided into three main parts, namely a test stimuli generation part, a monitoring
part, and a controlling part. While the first is responsible for providing test stimuli
to the DUT, the responsibility of the second lies in monitoring the responses to these
test stimuli. For coordinating the provisioning of test stimuli and the recording of test
responses, the test-bed is comprised of a controlling part as well, which contains a
database for retrieving test stimuli and storing test responses for later evaluation.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-21

DUT

FlexRay

Network
monitoring

device

Environmental
monitoring

device

Network
stimulus
provider

Environmental
stimulus
provider

Test controller

Ethernet

Controlling part

Monitoring part

Stimuli generation
part

FIGURE . Test setup for open-loop approach.

In this way, the provided test input as well as the recorded output is gener-
ated/obtained at the network interface (network stimulus provider and network
monitoring device) and at the environmental interface (environmental stimulus
provider and environmental monitoring device) of the DUT. Figure . illustrates
this test setup.
As far as the environmental interface is concerned, FlexRay-based systems are not

really different fromnon-FlexRay-based systems.Thus, we do not further address this
interface in the following sections.

.... Test and Monitoring Levels
Testing and monitoring in FlexRay-based systems take place in the interfaces intro-
duced in Section ....

..... Physical Layer Interface Testing in fault-free scenarios at the PLI is basi-
cally testing the correct operation of the FlexRay CC and the proper setup of the
communication media (e.g., proper termination of a bus topology). Given a correctly
operating FlexRay CC (including line driver), properly setup communication media,
and the absence of faults on the communication media (e.g., no electromagnetic
interference [EMI] burst, etc.), no other causes for faults are possible.
With these units of failure in mind, the following faults must be considered during

testing (from the monitoring device’s perspective):

Faults in the value domain: At the PLI, faults in the value domain mean a deviation
of the observed voltage level from the level specified in the FlexRay physical layer
specification. This deviation can be caused by improper termination of the commu-
nication media, by short-circuiting one or both lines of a FlexRay channel to ground
or to supply voltage, or by faults in the star coupler device in star topologies.
Faults in the time domain: One fault in the time domain can be a deviation of the
observed bit timing from the specified bit timing, meaning that, for example, the

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-22 Automotive Embedded Systems Handbook

duration of a bit cell is too short or too long. There could also be a deviation of the bit
timing in the first derivative; in this case, it means that the edge steepness is either too
high or too low. Possible causes for these kinds of faults can be a faulty oscillator in the
FlexRay CC, a faulty encoder unit, or an improper configuration of the FlexRay CC.
Faults in the code domain: Deviations from the specified coding are termed coding
failures. On the bit level, FlexRay uses not-return-to-zero (NRZ) coding. In order to
facilitate bit level synchronization between the transmitter with the receiver(s), each
byte is additionally framed with a dedicated start and stop bit (each exhibiting a dif-
ferent logical level), thus enforcing at least one edge per byte. Causes for coding faults
are faulty transceivers and/or faulty encoder units in the FlexRay CC.

..... Controller–Host Interface Faults in the value domain: Faults in the value
domain at the CHI mean a deviation of frame content from the specified frame con-
tent. Subsequently, a distinction has to be established between a frame with incorrect
CRC, on the one hand, and a frame with correct CRC and invalid payload, on the
other hand. The former case can be caused by a faulty transmitter or a faulty CRC
unit of the sending FlexRay CC, or by a faulty MCU, a defect in the application pro-
gram, or by an improper configuration of the FlexRay CC. In addition to the previous
cases, the latter case might be induced by a faulty CHI. Both cases can be generated
by faulty communication media as well.

Faults in the time domain: At the CHI, the following faults in the time domain are
possible: early frames (i.e., frames are transmitted prior to the specified point in
time) and late frames (i.e., frames are transmitted after the specified point in time).
Special cases of late frames are the cases where frames are not transmitted at all (omis-
sion failure). Possible causes for timing failures are a faulty oscillator in the FlexRay
CC, an improper configuration of the FlexRay CC, a faulty star coupler, a faulty
communication media, or a faulty MCU or application program.
Faults in the code domain: As far as coding at the CHI is concerned, FlexRay uses a
defined frame format consisting of a frame start sequence, a frame header, the frame
payload, and a frame trailer containing the frame’s CRC. Each of these frame parts
has a defined length. Any deviation from this frame format is considered as a coding
fault at the CHI. The cause for such a fault is a faulty transmitter unit of the sending
FlexRay CC or a faulty star coupler (inducing an oversized truncation of the frame
start sequence).

..... Application Interface Faults in the value domain: Faults in the value
domain in the AImean a deviation of signal content from the specified signal content.
Hence, a distinction between a signal tagged as invalid and a signal that is tagged as
valid but exhibits an incorrect value can be made. Both cases might be caused by a
value domain fault on the data link layer, a faulty MCU or application program, or a
faulty configuration of the AUTOSAR COM layer.

Faults in the time domain: In the AI, faults in the time domain are either caused by
faults in the time domain at the CHI or by late or early activation of communica-
tion tasks that are responsible for packing signal to be transmitted into the respective

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-23

FlexRay frames. These faults create a deviation in the signal’s temporal requirements
(Section ....).
Faults in the code domain: If we consider coding in the AI, multiple signals are packed
into a single frame according to a specified signal layout for each frame. Any deviation
from this specified signal layout is interpreted as a coding fault in the AI. Causes for
such a coding fault are mostly an improper configuration of the AUTOSAR COM
layer or faults in the MCU.

.... Testing under Fault Conditions
As stated before, in order to perform a test under fault conditions, fault injection is
usually required. In open-loop hardware test setups, the DUT in general cannot be
modified.Thus, the DUTmust be considered as a black box leaving only the network
interface and environmental interface as targets for fault injection. In the following,
we focus on the network interface.
With proper hardwaremodifications, the network stimulus provider (under control

of the test controller) can inject all faults described in the previous section into the
physical line interface, into the CHI and into the AI as well.
Coding faults at the physical line interface, for example, can be injected by imple-

menting a special encoding unit that provides controlled means to intentionally
violate the bit encoding scheme defined in the FlexRay specification. Faults in the
value domain in the CHI, for example, can be injected by deliberately producing an
incorrect CRC at the network stimulus provider. Value faults at the AI, for example,
can be injected by intentionally sending incorrect signal values or by tagging signals
intentionally as invalid, while leaving the frame’s CRC intact.

12.3.2.2 Closed-Loop Approach

In contrast to open-loop approaches, with closed loop, the responses of the DUT are
fed back into the stimuli generation to produce new test stimuli. Thus, the environ-
mental stimuli provider and environmental monitoring device as well as the network
stimuli provider and network monitoring device of Figure . are tightly connected
with each other or implemented as one component (Figure .).
Thismethod is often also called “residual bus simulation” (in the German language,

“Restbussimulation”) or the “hardware in the loop” (HIL) system.HIL systems include
a complete model of the other ECUs and a detailed model of the controlled environ-
ment, for example, a braking system including the behavior of brakes, the car, and the
road. Residual simulation usually includes a simplified model of the other ECUs and
no, or only a basic, model of the controlled environment.
The test andmonitoring levels for FlexRay-based applications are the same as those

presented for open-loop approaches.

12.4 Discussion of Approaches

Having identified several possible testing approaches in the previous section, the
question remains: which of these techniques is best suited for the development of

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-24 Automotive Embedded Systems Handbook

DUT
FlexRay

Network
monitoring

part

Environmental
monitoring

device

Network
stimulus
provider

Environmental
stimulus
provider

Test controller

HIL device

I/O

FIGURE . Test setup for closed-loop approach.

FlexRay-based applications and systems? In this section we compare the presented
approaches by evaluating them in terms of cost, accuracy, and ease for the testing
process.

12.4.1 Software-Based Approaches

Purely software-based approaches, where no target hardware is involved, are flexible
and adaptable to the testing purpose, and therefore it is easy to control the execu-
tion of tests, to monitor the test responses, and to inject faults. This results in better
reproducibility of tests and fault injections.
Thepossibility to conduct a test before the target hardware has been built is a further

benefit of this approach. It makes testing possible very early in the development life
cycle and supports the detection of development faults in the first step of the develop-
ment cycle. This is a strong factor in dramatically reducing the cost induced by these
faults [].
On the other hand, the major drawback of this approach is the accuracy of the

software model and, in particular, the compliance between this model and the actual
hardware platform in terms of timing behavior. From a functional point of view, the
purely software-based approaches can perfectly mimic the behavior achieved in the
actual system. As far as the temporal aspects (e.g., the latencies, the achieved accu-
racy, etc.) are concerned, however, the purely software-based approaches reach their
limit as soon as the desired accuracy of the tests and of the corresponding monitor-
ing reaches the lower (finer grained) timing levels (see Section ....). Therefore,
another important aspect is the cost of software-based testing approaches in terms of
complexity of the model and computational resources for analyzing it. In any case,
the accuracy of the software model has to be compliant with the granularity of the
timing requirements of the application software, otherwise the results obtained by
the performed test might not provide a sufficiently strong guarantee. While testing

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-25

and monitoring on large scale timing levels (e.g., using a granularity of a single com-
munication cycle) the computational resources required for the simulation are rather
moderate when moving to lower (finer grained) timing levels; however, the compu-
tational resources may increase dramatically in terms of memory and CPU usage.
Therefore, when applying purely software-based approaches, a trade-off has to be
made between duration and the accuracy of a test run.

12.4.2 Hardware-Based Approaches

In hardware-based approaches, the cost factor related to the accuracy of a model, and
therefore of its ability to fit to a given temporal granularity, is no longer a problem.
In fact, there are no additional computational costs for a fine-grained level of timing
requirement compared to a coarse-grained level.
However, hardware-based approaches are at a disadvantage in that they are less

flexible and, in particular, the means of control over executing the test, monitoring,
and fault injection is rather limited or comes at a great cost (e.g., expensive special
purpose devices for reproducible deterministic fault injection []).
A further drawback with hardware-based approaches is the fact that usually the

availability of the final target hardware is rather late in the development life cycle; this
either requires the test to be conducted on early prototype samples (which exhibit
flaws of their own) or to postpone the test until the final hardware is available. Both
choices cause increased cost, either due to testing on immature hardware or due to
late detection of development errors and thus increased cost for correcting and fixing
these errors.
Asmentioned previously, twomethods can be used for hardware-based tests: open-

loop tests and closed-loop tests. An example of functionality where a closed-loop
based test is needed is complex communication services like TPs, NM, and diagnostic
communication management. Each of these services implements a more or less com-
plex communication protocol, requiring state machines at sender and receiver ends,
where the state transitions are triggered by the messages received and/or transmitted.
Without the possibility of reacting to the test responses of the DUT, the implementa-
tion of this kind of complex communication protocol in the test-bed is not possible.
Another example is the testing of distributed control loops where the DUT is one
of the ECUs participating in the control loop. Similar to the complex protocols, dis-
tributed control loops necessitate that the test-bed is capable of responding to the
test responses of the DUT, which renders an open-loop approach inadequate in these
situations.
In general, closed-loop approaches are more expensive (due to need formore com-

putational resources and the fact that the tester itself has to be carefully designed and
developed) than open-looped approaches. Therefore, in practice, a combination of
both setups is used. Testing with closed-loop testing setups only takes place when
previous tests conducted in cheaper (i.e., open loop) setups have successfully been
completed.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

12-26 Automotive Embedded Systems Handbook

12.5 Conclusion

Testing FlexRay-based systems has to take place at the interfaces of the different levels
of abstraction of the hardware and software architecture, namely the PLI, the CHI, and
the AI. Due to the nature of the FlexRay communication protocol, the responses of
the DUT have to be monitored and examined, not only for deviations in the value
domain, but also for deviations in the time domain and the code domain.
These tests have to be conducted in fault-free scenarios as well as under fault condi-

tions, which must be caused by means of fault injection. The application of both pure
software-based tests and hardware-based tests in open- and closed-loop test scenarios
makes perfect sense, since each approach has its ownmerits and drawbacks. Each one
has its own niche, where it provides the most benefits.
We therefore recommend using a combination of all these approaches with respect

to the different development stages of thewhole system.Wepropose startingwith pure
software-based approaches as long as no hardware is available. In the pure software-
based approach, general functional tests can be conducted at rather large-scale timing
levels. Once these tests have been completed successfully, additional tests at a smaller
timing scale can be conducted.
Once hardware is available, open-loop tests can be conducted to verify the correct

timing and functionality of the simple application parts of the DUT. Once these tests
have been successfully completed as well, closed-loop testing approaches can be used
to verify the complex protocols and the distributed control loop functionality.

References

. T. Scharnhost, H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi,
L. Lundh, P. Heitkämper, J. Leflour, J.-L. Maté, and K. Nishikawa, AUTo-
motive Open System ARchitecture—an industry-wide initiative to manage the
complexity of emerging automotive E/E-architectures, in Convergence ,
International Congress on Transportation Electronics, Detroit, MI, .

. T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, Timing analysis of the FlexRay
communication protocol, in Proceedings of the th Euromicro Conference on Real-
Time Systems (ECRTS), IEEE Computer Society, Washington, DC, July –, ,
pp. – (DOI=http://dx.doi.org/ ./ECRTS..).

. B. Gaujal and N. Navet, Maximizing the robustness of TDMA networks with
applications to TTP/C, Real-Time Systems, (–), –, December  (DOI =
http://dx.doi.org/./s---).

. ISO (International Organization for Standardization), Road Vehicles—Diagnostics on
Controller Area Networks (CAN)—Part : Network Layer Services, ISO/DIS -.,
, rue de Varembe, Case postale , CH- Geneva , Switzerland, June .

. ISO (International Organization for Standardization), Road Vehicles—Diagnostic
Systems—Keyword Protocol —Part : Application Layer, ISO/DIS -, , rue
de Varembe, Case postale , CH- Geneva , Switzerland, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Testing and Monitoring of FlexRay-Based Applications 12-27

. ISO (International Organization for Standardization), Road Vehicles—Unified Diag-
nostic Services (UDS)—Part : Specification and Requirements, ISO/DIS -, , rue
de Varembe, Case postale , CH- Geneva , Switzerland, .

. R. Mores, G. Hay, R. Belschner, J. Berwanger, S. Fluhrer, E. Fuchs,
B. Hedenitz, W. Kuffner, A. Krüger, P. Lohrmann, D. Millinger, M. Peller, J. Ruh,
A. Schedl, and M. Sprachmann, FlexRay—the communication system for advanced
automotive control systems, in Proceedings of SAE, Paper --.

. FlexRay Consortium Web Page, http://www.flexray.com.
. J. Berwanger and A. Schedl, BMWGroup, and Ch. Temple, Freescale semiconductor,

in FlexRay Hits the Road, Automotive DesignLine, November , . Available at:
http://www.automotivedesignline.com

. J.-C. Laprie, B. Randell, A. Avizienis, and C. Landwehr, Basic concepts and taxonomy
of dependable and secure computing, IEEE Transactions on Dependable and Secure
Computing, (), –, .

. J.L. Welch and N.A. Lynch, A new fault-tolerant algorithm for clock synchronization,
Information and Computation, (), –, April .

. G. Tassey, The economic impacts of inadequate infrastructure for software testing,
NIST Report -; National Institute of Standards and Technology, Acquisition and
Assistance Division, Building , RoomA, Gaithersburg, MD -, USA;
May . Available at: http://www.nist.gov/director/prog-ofc/report-.pdf.

. J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G.H. Leber, Comparison
of physical and software-implemented fault injection techniques, IEEE Transactions
on Computers, (), –, September .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13
Timing Analysis of

CAN-Based Automotive
Communication Systems

Thomas Nolte
Mälardalen University

Hans A. Hansson
Mälardalen University

Mikael Nolin
Mälardalen University

Sasikumar Punnekkat
Mälardalen University

. Introduction . -
History ● Applications ● Chapter
Organization

. CAN . -
Topology ● Frames ● Frame Arbitration ●

Error Detection ● Bit-Stuffing ● Frame
Transmission Time

. CAN Schedulers . -
. Scheduling Model -
. Response Time Analysis -

Sufficient Response-Time Test ● Exact
Response-Time Test ● Example

. Timing Analysis Incorporating
Error Impacts . -
Simple Error Model ●Modified
Response-Time Analysis ● Generalized
Deterministic Error Model ● Probabilistic
Error Models

. Holistic Analysis . -
Attribute Inheritance ●Holistic
Scheduling Problem ● Example

. Middlewares and Frame Packing -
. Summary . -
References . -

13-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-2 Automotive Embedded Systems Handbook

13.1 Introduction

The controller area network (CAN)∗ is one of the major fieldbus technologies, used
in many application domains requiring embedded communications. CAN is partic-
ularly important in the automotive domain since it provides predictable temporal
(real-time) behavior on message frame transmissions. This chapter goes into detail,
presenting CAN, its history, and its properties. The chapter also describes timing
analysis of CAN frames.

13.1.1 History

In the beginning of the s, Robert Bosch GmbH evaluated existing serial bus sys-
tems (network technologies) in terms of usability in the automotive domain. None
of the existing technologies were suitable. As a consequence, in  Bosch proposed
the CAN.This new network technology was primarily intended to support adding of
new functionality in automotive systems. Moreover, replacing dedicated cables with
a shared network also reduces the cabling, an issue of growing importance in vehi-
cles. In February , Bosch presented “Automotive Serial Controller Area Network"
at the SAE congress in Detroit, and CAN was officially born. The following year, the
first CAN communication adapter chips were released by Intel and Philips. However,
it was not until the beginning of the s that Bosch submitted the CAN specifica-
tion for international standardization. At the end of , CAN was standardized by
ISO as ISO standard  []. At the same time, a low-speed fault-tolerant physical
layer version of CAN was standardized as ISO - []. Two years later, ISO 
was extended with an addendum to also include an extended version of CAN.
Looking at CAN today, there is a wide variety of CAN standards adapted to the

demands of different domains: ISO  is the most commonly used fieldbus in the
European automotive industry. In the United States, however, different CAN-based
standards such as the SAE J [] are more common, although it is now being
replaced [] by SAE J []. Also, for trucks and trailers, the SAE J [] is used
since the late s.TheSAE Jwas published by SAE in , as a result of thework
initiated in the early s by the SAE truck and bus control and communications sub-
committee. J specifies how message frames are defined for engine, transmission,
and brake systems in truck and trailer applications. Nowadays, SAE J is widely
used in truck and trailer applications, and standardized as ISO . Finally, looking
at other application domains, for tractors and machinery for agriculture and forestry,
an SAE J-based ISO standard is used: ISO  [,] and NMEA  [] define
an SAE J/ISO -based protocol for marine usage.
In the remainder of this chapter, all above-mentioned CAN standards are referred

to as CAN for simplicity, as their differences mainly are in speed and usage of frame
identifiers.

∗ Robert Bosch GmbH, BOSCH’s controller area network, http://www.can.bosch.com/.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-3

13.1.2 Applications

A typical CAN application is any type of distributed embedded system with real-time
requirements and cycle times of ms or more. However, CAN is used for many non-
real-time applications aswell. CANwas first used in the automotive industry byBMW,
in their  CSI model of . Mercedes-Benz introduced fieldbuses in their SL 
model of , and in  CAN was also used in their bigger S series. Typically,
initially one CAN bus was used for engine control, but as a second step, a gateway
was introduced connecting the engine control network with another CAN control-
ling body and comfort electronics. For a good overview of applications where CAN is
used interested readers are referred to the CAN in Automation (CiA) Web site.∗

13.1.3 Chapter Organization

Section . presents CAN, including basic properties such as network topologies,
frame types, arbitrationmechanism, error detection and bit-stuffingmechanisms, and
frame transmission time. The standard CAN message frame scheduler is presented
along with other CAN schedulers in Section .. Section . presents the scheduling
model used in this chapter, followed by methods for calculating worst-case message
frame response times in Section .. Error models and modified response-time anal-
ysis are introduced in Section .. Section . presents holistic analysis, allowing for
analysing end-to-end temporal behavior of CAN-based systems. Section . presents
middlewares and frame packing, commonly used in the automotive domain. Finally,
the chapter is summarized in Section ..

13.2 CAN

CAN is a broadcast bus, which uses deterministic collision resolution (CR) to control
access to the bus (so-called carrier sense multiple access [CSMA]/CR).
In general, CSMA protocols check the status of the medium before transmitting a

frame [], to see if the medium is idle or busy (this process is called carrier sensing).
By only initiating frame transmissions when the medium is idle, CSMA protocols
allow for ongoing frame transmissions to be completed without disturbance. If the
medium is busy, CSMA protocols wait for some time before a transmission is tried
again. Specifically, CAN waits until the medium becomes idle, and the frame arbitra-
tion mechanism (detailed below) resolves potential collisions when multiple frames
are arbitrated in parallel.
CAN transmits “messages” using “frames” containing – bytes of “payload data”

and a number of “control bits.” These frames can be transmitted at speeds of  kbps
up to Mbps. Depending on the CAN format, standard or extended, the number of
control bits is either  or . Specifically, the number of identifier bits is either 
(CAN standard format) or  bits (CAN extended format). The various parts of the
standard format CAN frame are shown in Figure ..

∗ CAN in Automation (CiA), http://www.can-cia.org/.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-4 Automotive Embedded Systems Handbook

Arbitration field

S
O
F

11-bit identifier R
T
R

DLC 4-
bit

Control field Data field

0–8 bytes 15 bit CRCr
0

CRC field

I
D
E

Ack End of frame Int
CRC delimiter bit

FIGURE . CAN frame layout (CAN standard format data frame).

13.2.1 Topology

The CAN protocol operates on a broadcast bus. There is no built-in support for
other topologies. However, third-party solutions with gateways or switches for star
topologies exist [–], see also Chapter .
In advanced applications, such as an automotive system, several CAN busses are

interconnected using one or more gateways. A gateway is provided with software
that knows which data should be forwarded between the different busses it is con-
nected to. Using gateways, arbitrary large and complex CAN-based networks can be
constructed. However, the gateways have to be manually programmed to provide the
gateway functions.
As one example, a typical automotive CAN-based network architecture is depicted

in Figure ..The figure shows the gatewayed network infrastructure of a VWPassat,
reproduced and based upon material presented in Ref. []. Note here that several
CAN nodes are acting as gateways to low-cost (local interconnect network) LIN [,
] as well.
From a real-time perspective it should be noted that each gateway will add delays

to the transmission of the frame, potentially causing the frame to miss its deadline.
Also, when using a gateway all nodes may not receive a specific frame at the same
time (since the frame can experience different delays on different segments), making
it more difficult to implement tightly coordinated behavior in a distributed system.

CA
N

CA
N

 (d
ia

gn
os

tic
s)

CAN

CA
N

CAN

CAN

CAN

CAN

LIN LIN

LIN

G
at

ew
ay

FIGURE . Network infrastructure of VW Passat.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-5

More information and further pointers on issues related to CAN gateways are found
in Ref. [].

13.2.2 Frames

The CAN protocol operates using four kinds of frames:

. Data frames
. Remote transmit request (RTR) frames
. Overload frames
. Error frames

In this chapter, focus is given to data frames, for which real-time analysis tech-
niques are presented in Section .. This analysis is extended in Section . to also
include the effects of errors.However, overload frames are not included in this chapter.
Although outside the scope and purpose of this chapter, the presented response-time
analysis can easily be extended to include RTR frames using the approach outlined in
Ref. [].

13.2.3 Frame Arbitration

CAN implements CR by frame arbitration, the process of selecting the frame with the
highest priority (which is equivalent to the frame with the lowest identifier) among
a set of frames that are simultaneously sent by a set of nodes. Besides selecting the
highest priority frame, the arbitration guarantees that the CAN bus is collision free. In
order to give this guarantee, the CANprotocol requires that two simultaneously active
data frames originating from different source nodes must have different identifiers. In
summary, the identifier serves the following purposes:

. Identifying the frame
. Assigning a priority to the frame
. Enabling receivers to filter frames

The physical layer of CANmakes sure that () an idle CAN bus has the logical value
of , and () if any node is sending a  it will result in a bus value . Thus, if two (or
more) nodes simultaneously try to send bits, the bus will only have the value  if all
nodes send . Figure . illustrates this principlewhen twonodes simultaneously send
bit streams on the bus.
Using this property, the frame arbitration is implemented by each node simultane-

ously listening to the bus while sending its identifier. If the bus value is different from
the identifier bit that is just being written, then the node knows that there is a higher
priority frame trying to access the bus and thus it stops transmitting.
Figure . shows the scenario when four nodes simultaneously try to send a frame.

Initially, the bus is idle. Each node knows this since the bus value is . Next, each node
starts transmission with the start of frame (SOF) bit (see Figure .). Since each node
writes  and also reads , no node can know that other nodes try to access the bus
at the same time. Now, each node starts transmitting the bits of their identifiers. For

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-6 Automotive Embedded Systems Handbook

0

0 1

1

0

1

0 11 0

1

Time

Node A

Node B

Bus value

1

FIGURE . Bus value with multiple communication adapter transmissions.

1 0 0 1 0 0 0 1 0 0 0 0 0

Identifiers:

Bus value

1 0 0 1 0 0 10 � 240 = 010 0100 0000

1 0 0 1 0 0 10 � 250 = 010 0101 0000

1 0 0 1 0 0 0 1 0 0 0 0 00 � 220 = 010 0010 0000

1 0 0 1 10 � 330 = 011 0011 0000

Bus value
≠

Identifier bit
→

Stop sending

Idle
bus

Start bit
(SOF)

Identifier
bits

Arbitration
complete

Time

FIGURE . Arbitration among four simultaneous frames.

the two first bits, again, each node reads the same value as it transmits and thus they
all continue to send identifier bits. However, at the third identifier bit the node with
frame-id  ×  writes a  but reads a . At this time that node knows it is not send-
ing the highest priority frame and thus it stops sending (still monitoring the bus and
waiting for it to become idle after the transmission of the current frame). For the other

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-7

three nodes the arbitration continues until the fifth identifier bit, when the two nodes
with frame identifiers  ×  and  ×  realize that none of them have the high-
est priority frame. The node with frame identifier  × , however, can continue to
send its complete frame identifier. When the complete identifier has been transmitted
one single node knows that it is sending the highest priority frame, and that all other
nodes have stopped transmitting. Thus, it can now continue sending the rest of frame,
knowing that there will be no collision on the bus.
Relying on the CAN arbitration mechanism, CAN implements CSMA/CR, behav-

ing like a global priority-based queue. It is worth noting that, any time, regardless
of the number of nodes that enter arbitration, the arbitration time is constant. Thus,
CAN is a highly effective implementation of a distributed priority queue. Hence, CAN
behaves like a fixed priority non-preemptive system, that is, once a node has won
arbitration it will always fully transmit its frame, and any higher priority frames that
may arrive during transmission must wait until the next arbitration round starts after
transmission completes.

13.2.4 Error Detection

In CAN, errors may occur due to electromagnetic interference (EMI) from the oper-
ational environment, different sampling points or switching thresholds in different
nodes, or due to signal dispersion during propagation. To handle these scenarios, the
CAN protocol provides elaborate error detection and self-checking mechanisms [],
specified in the data link layer of ISO  []. The error detection is achieved by
means of transmitter-based monitoring, bit-stuffing, cyclic redundancy check (CRC),
and frame check.
To make sure that all nodes have a consistent view, errors detected in one node

must be globalized. This is achieved by letting the detecting node transmit an error
flag containing  bits of same polarity. Upon reception of an error frame, each node
will discard the erroneous frame, which then will be automatically retransmitted by
the sender. Note that, the retransmitted frame could be subjected to arbitration dur-
ing retransmission. This implies that if any higher priority frame gets queued during
the transmission and error signaling of the current frame, then those frames will be
transmitted before the erroneous frame is retransmitted.
Specification documents of CAN [] claim that the error detection mechanisms

can detect and globalize all transmitter errors. Bursts are guaranteed to be detected
on the receiver side up to a length of  (which is equal to the degree of f (x) in CRC
sequence). Most longer error bursts are also detected. The probability for undetected
errors is negligibly small, as per the CAN technical information [], which states
that “with an operating time of eight hours per day on  days per year and an error
rate of . s, one undetected error occurs every thousand years (statistical average).”
Of late, there have been studies indicative of the limitations of CAN for applica-
tions with ultrahigh dependability requirements, especially on its vulnerabilities due
to undetected multibit errors [] as well as on the validity of underlying assump-
tions of CRCs [] (see also Chapter ). Even though there is a positive probability for

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-8 Automotive Embedded Systems Handbook

Incomplete frame 6 bits 0.6 bits
Superposed

error flag
Error

delimiter
Error flag

8 bits 3 bits
Interframe

space

Retransmit

Error

FIGURE . Error frame format in CAN.

undetected errors, for simplifying the presentation, we shall assume that all errors are
detected.
Figure . shows formats of the CAN error frames (details are given in Ref. []).

It can be seen that error signaling and recovery time are typically between  and 
bit times. Since we are interested in the worst-case behavior, we shall use  bit times
as the error signaling and recovery time in our model.

13.2.5 Bit-Stuffing

As described above, six consecutive bits of the same polarity ( or )
are used for error signaling. To avoid these special bit patterns in the contents of
transmitted frames, a bit of opposite polarity is inserted after each occurrence of
five consecutive bits of the same polarity. By reversing the procedure, these bits are
removed at the receiver side.This technique depicted in Figure .a through d,which
is called “bit-stuffing,” implies that the actual number of transmitted bitsmay be larger
than the size of the original frame, corresponding to an additional transmission delay
that needs to be considered in the analysis.
Looking at a CAN frame, the number of bits, beside the data part in the frame, that

are exposed to the bit-stuffing mechanism is defined as v ∈{, }, depending on the

0000010101111101000011110011111…

000001101011111001000011111000111110…

000001101011111001000011111000111110…

0000010101111101000011110011111…

(a) Original frame, before bit-stuffing

(b) Frame to be transmitted, after bit-stuffing (stuffed bits boldface)

(c) Bit-stuffing is reversed at the receiver side, removing stuffed bits

(d) Transmitted frame, same as original

FIGURE . Bit-stuffing example; from sender to receiver.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-9

Arbitration field

S
O
F

0

11-bit identifier R
T
R

DLC 4-
bit

Control field Data field

0–8 bytes 15 bit CRC

0 0 0

r
0

CRC field

I
D
E

Ack End of frame Int

1 0 1 1 1 1 1 1 1 1 1 1 1

Bits exposed to bit-stuffing (34 control bits and 0–8 bytes of data -> 34–98 bits)

CRC delimiter bit
Known bit-values (standard format data frame)

FIGURE . Bits subject to bit-stuffing (CAN standard format data frame).

1111100001111000011110000111100001111…

111110000011111000001111100000111110000011111…

(a) Original frame, before bit-stuffing

(b) Frame to be transmitted, after bit-stuffing (stuffedbits boldface)

FIGURE . Theworst-case scenario when stuffing bits.

CAN format used: either  (CAN standard format) or  (CAN extended format)
bits. Note that  bits in the CAN frame (including the  bit interframe space) are not
exposed to the bit-stuffing mechanism (Figure .).
The worst-case number of stuffed bits in an arbitrary stream of bits is given by

ns(n) = ⌊
n − 


⌋ (.)

where n is the number of bits in the stream of bits. ⌊a/b⌋ is notation for the floor
function, which returns the largest integer less than or equal to a/b. Intuitively, Equa-
tion . captures the worst-case bit-stuffing of a stream of bits depicted in Figure ..
Note that, in the example, as soon as a bit is stuffed, it gives rise to a new five consecu-
tive bits (a sequence of bits not present in the original stream of bits), hence producing
yet another stuffed bit, after which the scenario is repeated again, etc.

13.2.6 Frame Transmission Time

Thenumber of bytes of “payload data” in a CAN frame i is defined as si ∈ [, ]. Recall
that a CAN frame can contain between  and  bytes of payload data. Hence, looking
at Section .. and Figure ., let ci give the total number of bits in a CAN frame
before bit-stuffing as

ci = v +  + si (.)

where v and  are the number of bits in the CAN frame control bits exposed and not
exposed, respectively, to the bit-stuffing mechanism, and si is the number of payload
data bits.
Let τbit be the time taken to transmit one bit on the bus—the so-called “bit-time.”

Now, considering that only v + si bits in the CAN frame are subject to bit-stuffing,
the worst-case time Ci taken to transmit a given frame i is given by

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-10 Automotive Embedded Systems Handbook

Ci = (v +  + si + ⌊
v + si − 


⌋) τbit (.)

For CAN standard format frames (-bit identifiers), Equation . simplifies [] to

Ci = ( + si)τbit (.)

and for CAN extended format frames (-bit identifiers), Equation . can be
simplified to

Ci = ( + si)τbit (.)

13.3 CAN Schedulers

On top of the CAN frame arbitration mechanism, a number of frame schedulers have
been proposed for CAN. In general, these schedulers can be divided into three groups:
time-driven, priority-driven, and share-driven schedulers.
CAN provides physical signaling, medium access control (MAC), and addressing

(via identifiers). These are the two lowest layers of the open systems interconnection
(OSI)-layered model for communication protocols [,]. Since the services pro-
vided by CAN are rather basic, and only provide one type of frame scheduling (i.e.,
fixed priority scheduling [FPS], as discussed in Section ..), several protocols have
been developed on top of CAN, both in the academia as well as in the commercial
domain.
By introducing a higher layer protocol running on top of CAN, it is possible

to achieve a number of different schedulers. Original (native) CAN is suitable for
handling periodic real-time traffic according to the FPS approach. Limiting CAN
to a periodic traffic model, timing analysis can easily be applied and schedulability
checked. However, due to the limitations inherent in FPS scheduling, adaptations to
allow other scheduling policies have been developed. As an alternative to the fixed-
priority mechanisms offered by native CAN, some higher layer protocols have been
developed to implement priority-driven dynamic priority scheduling (DPS) sched-
ulers (such as earliest deadline first [EDF]), time-driven schedulers, and share-driven
schedulers.
Several options for time-driven scheduling of CAN exist. These protocols typically

implement a master/slave mechanism, having a central master node controlling the
network in a time-driven fashion. An example of a time-driven scheduler for CAN is
TT-CAN []. Also, FTT-CAN [,] provides time-driven scheduling as well as the
option to combine time-driven and priority-driven scheduling. More information on
these schedulers can be found in Chapter .
Bymanipulating theCAN frame identifier online, and therefore changing the frame

priority dynamically, several approaches to mimic EDF type of scheduling have been
presented [–]. However, by manipulating the identifier of the CAN frames, all
these solutions reduce the number of possible identifiers to be used by the system

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-11

designers. This could be problematic, since it interferes with other design activities,
and is even sometimes in conflict with adopted standards and recommendations
[,].
Acommonway to sendnon-real-time framesonCANis toallocate frame identifiers

with lower priority than all real-time frames. In this way, it can be made sure that
a non-real-time frame can block a real-time frame at most for the duration of the
transmission of one frame. However, unwise frame identifier assignment to non-
real-time frames could cause some of them to suffer from starvation. To provide
quality of service (QoS) for non-real-time frames several approaches have been
presented [,]. These approaches dynamically change frame identifiers in a way
preventing systematic penalization of some specific frames.
By providing the option of share-driven scheduling of CAN, designers are given

more freedom in designing a distributed real-time system where the nodes are
interconnected with a CAN. As time-driven schedulers, share-driven schedulers are
implemented using a master/slave mechanism running on top of CAN, scheduling
the network according to share-driven scheduling policies. Server-CAN [–] is a
share-driven scheduler for CAN. See Chapter  for more details on Server-CAN.
Looking at the context of this chapter, focus is given to response-time calcula-

tions of automotive CAN-based systems. Hence, most schedulers outlined above
should merely be considered as related work in the domain of CAN schedulers,
rather than the type of schedulers used in automotive systems. In the remainder of
the chapter, attention is given to priority-driven scheduling, which is the most natu-
ral scheduling method since FPS is the policy implemented by the CAN arbitration
mechanism. Analyses have been presented to determine the schedulability of CAN
frames [].∗ This analysis is based on the standard FPS response-time analysis for
CPU scheduling [].

13.4 Scheduling Model

Most CAN-based systems have hard real-time requirements and CAN is used as
the communication network due to its inherent properties of providing real-time
guarantees of frame transmissions. In order to reason about the temporal behavior
of individual frame transmissions, a predictable model is used. In Section ., it is
shown how to use frame response-times in order to determine the schedulability of a
CAN-based system.Themodel used in this chapter is based on frame priorities, frame
periods, frame deadlines, and frame response times.
Using the CAN frame identifier, the CAN frame arbitration mechanism provides

collision-free transmission of frames. Here, the priority of a frame is determined by
the frame identifier, and a numerically lower value frame identifier reflects a higher
frame priority. The identifier of a CAN frame is fixed, so is the frame priority. Hence,
i denotes both priority and identifier of a frame.

∗ Originally presented in Refs. [,,] but revised in Ref. [].

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-12 Automotive Embedded Systems Handbook

Frame transmission on the CAN bus is non-preemptive. When the CAN bus is
transmitting a frame the bus is busy, transmitting the frame until completion, and
when it is not transmitting a frame the bus is idle. As soon as the bus is idle, the
transmission of a CAN framemay initiate. The CAN arbitration mechanism enforces
transmission of the highest priority available frame as soon as the bus becomes idle.
For the analysis presented in this chapter, frames are assumed to be generated in

a periodic manner, that is, with a fixed amount of time between any instances of the
same frame. Hence, each frame is associated with a frame period denoted Ti , that is,
the time between the generation of two instances of the same frame. This temporal
representation also models sporadic frame arrivals, that is, frames that are not gener-
ated periodically but have a known minimum interarrival time between instances of
the same frame.The sporadic frames are simply represented by their worst-case arrival
pattern, corresponding to periodic frames with periods (Ti) equal to the minimum
interarrival time of the corresponding sporadic frame.
As frames are generated by software running on the nodes in the system, an addi-

tional time needs to be taken into account to cater for queuing and interrupt latencies.
In fact, the time between the creation of the frame in the software at the node, and
the time when the frame is available in the CAN communication adapter, is called the
“queuing jitter.” This time is assumed to be bounded by Ji .

Each frame i has an associated frame relative deadline, denotedDi . A frame relative
deadline is the time which it must have completed transmission before, relative to the
start of the frame period Ti .
Finally, the frame worst-case response time Ri , is the longest time needed for any

instance of frame i to finish frame transmission, relative to the start of the period Ti .
The system is said to be schedulable if Ri ≤ Di∀i.

13.5 Response Time Analysis

Calculating the worst-case response-times requires a bounded worst-case queuing
pattern of frames. The standard way of expressing this is to assume a set of traffic
streams, each generating frames with a fixed priority. Theworst-case behavior of each
stream, in terms of network load, is to send as many frames as they are allowed, that is,
to periodically queue frames in their corresponding communication adapter. Similar
to CPU scheduling, amodel with a setS of streams (corresponding to frame transmit-
ting CPU tasks) is used. Each Si ∈ S is a tuple <Pi , Ti , Ji ,Ci>, where Pi is the priority
(defined by the frame identifier), Ti is the period, Ji is the queuing jitter, and Ci is the
worst-case transmission time of frame i.
In this section, two approaches for the calculation of the worst-case response-time

Ri of a CAN frame i sent on stream Si are presented. The first is a simple, “sufficient”
response-time test. The second one, which is slightly more complex than the first one,
is a “sufficient and necessary” worst-case response-time test.
A response-time calculation test is sufficient when all frames that are calculated to

be schedulable are in fact schedulable. If a response-time calculation test is sufficient,
but “not necessary,” this means that a frame deemed not schedulable might in fact be
schedulable. Hence, using a sufficient and necessary worst-case response-time test,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-13

more frames are likely to be classified as schedulable, although at a cost of using a
more complex worst-case response-time calculation. Below, we denote the sufficient
and necessary worst-case response-time test for CAN as an “exact response-time test.”
The concept of a busy period [] in the context of frame communication is defined

in Ref. [] as an interval starting at some time ts when a frame with priority i or
higher is queued for transmission, and there are no frames of priority i or higher
waiting to be transmitted that were queued strictly before time ts.The interval is con-
tiguous, preventing transmission of any frame with priority lower than i, ending at
time te, when there are no frames of priority i or higher waiting to be transmitted
that were queued strictly before time te.
A key characteristic of the busy period is that any frame, queued strictly before the

end of the busy period te, with priority higher than or equal to i, is sent during the
level-i busy period. The end of a busy period may correspond to the start of another
busy period.

13.5.1 Sufficient Response-Time Test

The worst-case response-time of a frame is found in the busy period beginning with
a critical instant [], where all frames of priority i and higher are simultaneously
queued at their corresponding communication adapters. Following this, as outlined
in Ref. [], the worst-case response-time for frame i is given by

Ri = Ji + wi + Ci (.)

where Ji is the queuing jitter of frame i, that is, the maximum variation in queuing-
time relative to the start of the frame period Ti , inherited from the sender task
that queues the frame, Ci is the worst-case transmission time of frame i (given by
Equation .), and wi is the queuing delay given by solving the equation

wn+
i = BMAX + ∑

∀ j∈hp(i)
⌈
wn

i + J j + τbit
Tj

⌉Cj (.)

where

BMAX corresponds to the transmission time of the longest possible CAN frame
(i.e., the worst-case transmission time of a CAN frame with  bytes of
payload data)

hp(i) is the set of frames with priority higher than that of frame i

Note that Equation . is a recurrence relation with an initial value that can be chosen
equal to Ci , that is, w

i =Ci , and a terminating condition of either wn+
i =wn

i and/or
Ji +wn+

i + Ci > Di . Only if the latter condition is false, the frame is schedulable.

13.5.2 Exact Response-Time Test

For many applications, it is sufficient using the slightly pessimistic response-time cal-
culation given by Ri in Equation .. However, in search of the exact worst-case

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-14 Automotive Embedded Systems Handbook

response-time Ri of a CAN frame i sent on stream Si , it is found within what is
called the level-i busy period. Specifically, the individual frame response-time has
to be calculated for each instance of frame i within its busy period []. The worst-
case response-time Ri is experienced by one or more of the instances of a specific
frame within its corresponding busy period. Hence, in order to derive the exact
worst-case response-time, the response-time has to be calculated for all these frame
instances.
As a first step, the length ti of the level-i busy period is given by solving the follow-

ing recurrence relation, starting with an initial value of ti = Ci , and finishing when
tn+i = tni

tn+i = Bi + ∑
∀k∈hep(i)

⌈
tni + Jk
Tk

⌉Ck (.)

where
Bi is the maximum blocking time due to lower priority frames in the process of

frame transmission
hep(i) is the set of frames with priority higher than or equal to that of frame i
Jk is the queuing jitter of frame k, that is, the maximum variation in queuing-

time relative to the start of the frame period Tk , inherited from the sender
task that queues the frame

Ck is the frame transmission time for frame k derived from Equation .

Now, looking at a specific frame i, the number of instances Qi of frame i that become
ready for frame transmission before the end of the busy period is given by

Qi = ⌈
ti + Ji
Ti

⌉ (.)

For each instance (, . . . ,Qi − ) of frame i, the corresponding worst-case frame
response-time must be derived. Letting q being the index of a frame instance, the
worst-case response-time Ri(q) of frame instance number q is given by

Ri(q) = Ji +wi(q) − qTi + Ci (.)

where wi(q) represents the effective queuing time, given by the recurrence rela-
tion in Equation ., starting with an initial value of w

i (q) = , and finishing
when wn+

i (q) = wn
i (q) or when Ji + wn+

i (q) − qTi + Ci > Di (i.e., either when a
worst-case response-time is found, or when the frame is found not schedulable). In
Equation ., τbit is the bit-time.

wn+
i (q) = Bi + qCi + ∑

∀ j∈hp(i)
⌈
wn

i (q) + J j + τbit
Tj

⌉Cj (.)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-15

Once all Qi worst-case response-times are calculated, the worst-case response time
Ri for frame i is found as the maximum response-time among these Qi instances’
response-times as follows:

Ri = max
q=,... ,Qi−

[Ri(q)] (.)

Note that this exact analysis is also valid for frames with deadlines greater than
their period, which is not the case for the sufficient response-time test outlined in
Section ...

13.5.3 Example

Here, an example of the above analyses is given in order to illustrate their differences.
More precisely, a set S containing three frames will be deemed not schedulable using
the sufficient response-time test presented in Section .., and schedulable using the
exact response-time test presented in Section ...
Consider the frame set outlined in Table .. The basic assumptions on the

system is that the bus speed is Mbps, that is, τbit =  μs, and there is no jitter, that
is, J =  for all frames. All frames have  bytes of payload data, hence, according
to Equation ., C = . The bus utilization is rather high, %. The reason for
having such a high bus utilization is to force a delicate scenario not suitable for the
sufficient analysis, but captured by the exact analysis.

13.5.3.1 Sufficient Response-Time Test

Starting with the sufficient response-time test, using Equation . to calculate wi
together with Equation . to calculate Ri for each frame i gives the following (recall
that Equation . is a recurrence equation terminating when wn+

i = wn
i):

w
 = , w

 = , w
 = 

R = 

w
 = , w

 = , w
 = 

R = 

w
 = , w

 = , w
 = , w

 = , w
 = , w

 = 
R = 

The above results say that frames  and  are schedulable, that is, R ≤ D and
R ≤ D. However, R > D indicates that a deadline is missed. Hence, the frame set
S is deemed not schedulable.

TABLE . Frame Set under Analysis
Frame i Pi Ti Di Ci

  . . 
  . . 
  . . 

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-16 Automotive Embedded Systems Handbook

13.5.3.2 Exact Response-Time Test

Instead, by using the exact analysis of Section .. the above frame set S is in fact
schedulable. To show this, Equations . through . are used to calculate the frame
response-times for all three frames.
As a fist step, using Equation ., the level-i busy period has to be calculated for

each frame to see, using Equation ., if multiple instances of that frame are present
within the busy period. If that is the case, the response-time has to be calculated for
all these frame instances using Equations . and ., and the maximum response-
time among all instances is to be selected using Equation ..
Starting with frame , using Equation ., the level- busy period is calculated to

be t = , t = , t = . Now, Q =  according to Equation .. Hence, there
is only one instance of frame  within the level- busy period. For this instance, the
response-time is calculated using Equations . and .:

w
 () = , w

() = , w
 () = 

R() = 

For frame , the same procedure is repeated using Equation . giving t = ,
t = , t = , t = , t = , t = ; hence Q =  according to Equa-
tion ., that is, there are two instances of frame  in the level- busy period. Here,
the response-time is calculated for both these instances using Equations . and
., and the maximum is selected using Equation .:

w
() = , w

() = , w
() = 

R() = 

w
() = , w

() = , w
() = , w

() = 

R() = .

R = 

Finally, for frame  there are two instances within the level- busy period as t = ,
t = , t = , t = , t = , t =  and Q = . Following the same
reasoning as for frame , the response-time is calculated:

w
() = , w

() = , w
() = 

R() = 

w
() = , w

() = , w
() = , w

() = ,

w
() = , w

() = 

R() = .

R = .

To summarize, using the exact analysis rather than the sufficient one, the whole
frame set is schedulable as R ≤ D, R ≤ D, and R ≤ D. The sufficient test is much

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-17

faster as it requires fewer calculations to be performed. Inmost cases, the sufficient test
yields the same frame sets schedulable, compared with the exact analysis. However,
there are cases, as shown in the example above, when only the exact analysis will
show that a set of frames is in fact schedulable.

13.6 Timing Analysis Incorporating Error Impacts

The model underlying the basic CAN response-time analysis presented above
assumes an error-free communication bus, that is, all frames sent are assumed to be
correctly received, which in reality is not always true. For instance, in applications
such as automobiles, the systems are often subjected to high degrees of EMI from
the operational environment which may cause transmission errors on the CAN bus.
The common causes for such interference include cellular phones and other radio
equipments inside the vehicle and electrical devices like switches and relays as well as
radars, radio transmissions from external sources, and lightning. It has not been pos-
sible to completely eliminate the effects of EMI since exact characterization of all such
interferences defies comprehension. Though usage of an all-optical network could
greatly eliminate EMI problems, it is not favored by the cost-conscious automotive
industry.
These interferences cause errors in the transmitted data, which could indirectly

lead to catastrophic results. To reduce the risk for such results, CAN designers have
provided elaborate error checking and confinement features in the protocol. Basic
philosophy of these features is to identify an error as fast as possible and then
retransmit the affected frame. However, the effect will be increased frame latencies,
which may lead to missed deadlines, especially if the interference coincides with the
worst-case frame transmission scenario considered when performing schedulability
analysis. This can be problematic in systems without spatial redundancy of communi-
cation medium/controllers, and the fault-tolerance mechanism employed is only time
redundancy, where increased latencies of frame sets potentially could lead to violation
of timing requirements.
Thus, the worst-case response-time calculations presented in Section . must be

extended to handle the effect of various errors occurring in the channel. Over the
years, a number of error models along with modified response-time analysis have
been developed. The first error model was presented by Tindell et al. [], however,
only modeling strictly periodic interference.

13.6.1 Simple Error Model

Assuming a simple error model, relying on a function F(t) representing the maxi-
mum number of errors that can be present during a time interval t, the response-time
calculations above can be extended to handle faults. Recall that the worst-case impli-
cation of an error is the transmission of a -bit error frame (see Section ..).
Following the error frame, the frame subjected to the error will also be retransmit-
ted by the CAN communication adapter. Hence, looking at a specific frame i, the
maximum delay caused by an error, during a time interval of t, is given by

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-18 Automotive Embedded Systems Handbook

Ei(t) = [τbit + max
k∈hep(i)

(Ck)] F(t) (.)

where hep(i) is the set of frames with priority higher than or equal to that of frame i.

13.6.2 Modified Response-Time Analysis

Assuming the error model given by Equation ., a simple adjustment can be made
to Equations . and . in order to also cover for faults, as follows

wn+
i = Ei(wn

i + Ci) + BMAX + ∑
∀ j∈hp(i)

⌈
wn

i + J j + τbit
Tj

⌉Cj (.)

and

wn+
i (q) = Ei(wn

i + Ci) + Bi + qCi + ∑
∀ j∈hp(i)

⌈
wn

i (q) + J j + τbit
Tj

⌉Cj (.)

Again, looking at these recurrence equations, initial values are set to w
i = Ci and

w
i (q)=Ci , respectively. They have the same termination condition as Equations .

and ., and they are guaranteed to converge provided that the network utilization
including error recovery overhead is less than % [].

13.6.3 Generalized Deterministic Error Model

The error model presented above is very simple and thus not really appropriate to
describe real faults. When verifying a system with respect to EMI, multiple sources
of errors have to be considered. Handling of each source separately is not sufficient;
instead they have to be composed into aworst-case interferencewith respect to latency
on the bus. Also, each source can typically be characterized by a signaling pattern of
shorter or longer bursts, during which the bus is unavailable, that is, no signaling will
be possible on the bus.
A generalized deterministic model was presented by Punnekkat et al. [], which

has the following features:

. It models intervals of interference as periods during which the bus is not
available.

. It allows more general patterns of interferences to be specified, compared
with Tindell’s model.

. It allows the combined effects of multiple sources of interference to be
modeled.

Thedefinition of Ei(t) according to the generalized deterministic errormodel is based
on the following:

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-19

• There are k sources of interference, with each source l contributing an
error term El

i (t). Their combined effect is Ei(t) = E
i(t)∣E

i (t)∣⋯∣Ek
i (t),

where ∣ denotes composition of error terms. In this chapter addition (+)
is pessimistically used to compose error terms.

• Each source l interferes by inducing an undefined bus value during a char-
acteristic time period I l . Each such interference will lead to a transmission
error. If I l is larger than τbit, then the error recovery will be delayed
accordingly.

• Patterns of interferences for each source l can independently be speci-
fied as
– An initial bl groups of bursts with period Tl

f , where each group consists
of nl interferences of length I l and with period t lf .

– A residual error rate of single interferences of length I lr per rlf time units
after the initial group of bursts, that is, after bl ∗ Tl

f .

Figure . illustrates the interference pattern from a single source with bl =  and
nl = .
Now Ei(t) is defined for the case of k sources of interference:

Ei(t) = E
i(t)∣E


i (t)∣⋯∣E

k
i (t) (.)

where

El
i (t) = Bul(t) ∗ [Ob

i +max(, I l − τbit)]
+Rel (t) ∗ [Or

i +max(, I lr − τbit)] (.)

where

Bul(t) = min
⎛

⎝
nl ∗ bl , ⌊

t
Tf
⌋ ∗ nl +min

⎛

⎝
nl ,

⎡
⎢
⎢
⎢
⎢
⎢

t mod Tl
f

t lf

⎤
⎥
⎥
⎥
⎥
⎥

⎞

⎠

⎞

⎠
(.)

0 Tf
l 2Tf

l 3Tf
l 4Tf

l

tf
l 2tf

lI l0

nl = 3

bl = 4
rf

l

Ir
l

FIGURE . Interference pattern from a single source with bl =  bursts each containing nl
= 

interferences, followed by a residual error of single interferences every rlf time units.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-20 Automotive Embedded Systems Handbook

and

Rel (t) = max
⎛

⎝
,
⎡
⎢
⎢
⎢
⎢
⎢

t − Tl
f ∗ b

l

rlf

⎤
⎥
⎥
⎥
⎥
⎥

⎞

⎠
(.)

Some explanations are given below:

. max(, I l − τbit) defines the length of I l exceeding τbit.
. nl ∗ bl is the maximum number of interferences in the initial bursty

period.
. ⌊t/Tf ⌋ is the number of full bursts until t.

. ⌈
t mod T l

f

t lf
⌉ is the number of t lf periods that fit in the last (not completed)

burst period in t.

This model uses separate overheads for bursts (Ob
i) and single errors (Or

i) in the
above equation for El

i (t). The advantage of giving separate overhead factors is that
it will allow more accurate modeling if these factors are known. This could reduce
pessimism especially in burst cases with Ob

i > t lf , since in such cases we can combine
several burst errors into one error plus the burst width (Os

i + nl ∗ t lf). However, for
many practical applications and during system design, onemay assume the overheads
for burst error and single error to be the same, denoted by Oi and given by

Oi =  ∗ τbit + max
k∈hp(i)∪{i}

(Ck) (.)

It can easily be seen that, Tindell’s model is a special case of this generalized model,
with one source (k = ), one initial burst (bl = ) with nerror number of burst errors
(Bu(t) = nerror), rf = Terror, and the interferences I l = I lr = τbit. However, there are
no provisions for specifying durations of interference (I l) or parameters for groups of
bursts (bl and Tl

f) in Tindell’s model.

13.6.4 Probabilistic Error Models

Both the models, presented by Tindell et al. and Punnekkat et al., are based on an
assumption of minimum interarrival time, that is, bounded number of errors in a
specified interval. However, several sources of interference, for example, EMI, can
be more accurately described as a random pulse train following specific probability
distributions []. Trying to represent this using minimum interarrival times is not
easy. Rather, a probabilistic approach would be more suitable.
Navet et al. [] present a probabilistic error model for CAN, where the errors are

described as stochastic processes. These stochastic processes consider both the fre-
quency of the errors and their gravity. Both single-bit errors and bursts of errors can
be represented.
However, as the approach presented by Navet et al. [] is pessimistic, Broster

et al. [] present a more accurate probabilistic approach, though they do not con-
sider burst errors. Using the approach by Broster et al., distributions of worst-case

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-21

response-times can be obtained when there are probabilistic events in the system, for
example, faults caused by EMI [].
Hansson et al. [,] present a completely different approach. Here the schedu-

lability of the system is determined using simulation. Using simulation even more
complex sources of interference can be used, achieving a more realistic result com-
pared to the analytic approaches described above. However, the weakness of using
simulation is that it is hard to determine whether or not the coverage of the simulation
is good enough for the considered application.

13.7 Holistic Analysis

In this section it is shown how to apply the CAN analysis of Section . in a dis-
tributed system comprising of “end-to-end” timing requirements. It is assumed that
a distributed system consists of a number of nodes that are interconnected with a
CAN bus. On the nodes, a number of tasks are executed, scheduled by a preemptive
fixed-priority real-time scheduler. Timing requirements can be both on a task level,
where task response-times have to be less than task deadlines, as well as end-to-end
requirements where response-times are measured from the initiation of a task on one
node, to the completion of a task on another node. Here, the task on the first node
sends a frame, triggering the start of the task on the second node. In the following,
the determination of the fulfillment of such requirements using holistic analysis is
shown [].

13.7.1 Attribute Inheritance

One of the main features of holistic analysis comes from the idea of attribute inheri-
tance: a task is invoked by some event, and will after some or its entire execution time
queue a frame. The frame could be queued soon after the event (e.g., if there were
no higher priority tasks, and the execution time to queue the frame was small). The
frame could be queued late after the event: when the worst-case scheduling scenario,
from the sending task’s point of view, occurs.This difference between the shortest and
longest queuing times is the queuing jitter. For simplicity, we can use zero as the short-
est queuing time.The longest time is upper bounded by the worst-case response-time
of the queuing task. Hence, the queuing jitter of a frame i is given by

Ji = Rsend(i) (.)

where send(i) is the task that sends frame i.
Suppose that a task is released when a frame arrives. Then, this task inherits release

jitter from the frame in just the same way as a frame inherits queuing jitter from the
sending task. The earliest time that a frame i can reach the destination processor is
 bit times (the smallest frame is  bits long). The latest a frame i can reach the
destination processor is Ri . Hence, the destination task, dest(i), inherits a release
jitter of

Jdest(i) = Ri − τbit (.)

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-22 Automotive Embedded Systems Handbook

Theworst-case response-time of task dest(i), Rdest(i), is measured fromτbit after
the event invoking task send(i). So, the time τbit+Rdest(i) gives the end-to-end time
from the event invoking task send(i) to the completion of the task dest(i).

13.7.2 Holistic Scheduling Problem

The equations giving worst-case response-times for tasks depend on the timing
attributes of frames arriving at the processor (e.g., the release jitter of a task kicked off
by a frame arrival is inherited from the worst-case response-time of the frame; also
overheads from “frame arrived” interrupts are dependent on the worst-case response
times of incoming frames). Hence, processor scheduling analysis cannot be applied
before the bus scheduling analysis. However, equations giving worst-case response-
times for frames depend on the timing attributes of tasks queuing the frames (e.g., the
queuing jitter of a frame queued by a task is inherited from the worst-case response-
time of the frame). Hence, bus scheduling analysis cannot be applied before the
processor scheduling analysis.
In conclusion, processor scheduling analysis cannot be applied before the bus

scheduling analysis, and vice versa.The problem is similar to the recurrence equations
in Section ., where Ri appears on both sides of several equations.
Thefirst step is to assume that all the calculated timing attributes (Ri and Ji) are zero.

Then, both sets of analysis can be applied (for processors and for the bus) to obtain
new values. Following this, the analysis can be repeated using the newly obtained
values. The iteration carries on until the calculated values do not change anymore.

13.7.3 Example

Consider a simple distributed real-time system consisting of two nodes (nodes A and
B) interconnected with a CAN.Three tasks TA, TA, and TA are executing on node
A and three tasks TB, TB, and TB are executing on node B.The task TA on node
A is activated by the arrival of a CAN frame (MBA), which is queued by the task
TB on node B. Symmetrically, the task TB on node B is activated by the arrival of a
CAN frame (MAB), which is queued by the task TA on node A.The latter frame has

Node B

TA1

TA2

TA3

TB1

TB2

TB3

Node A

MB1A2

MA1B2

CAN

FIGURE . Example system.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-23

TABLE . Example System Parameters
Period Deadline Jitter Computation Time

Task T D J C
TA  —  
TA —  — 
TA    
TB  —  
TB —  — 
TB    

higher priority than the former, but both have higher priority than the low priority
CAN frames that are also sent on the bus. The example is outlined in Figure .. In
Table ., the deadline of tasks TA and TB are given relative to the release of TB
and TA, respectively.
In order to calculate end-to-end response times, three sets of coupled equations are

used: one for the CAN bus and one for each of the nodes. The basic equation for the
nodes is

Ri = Ji +wi (.)

where wi is given by

wi = Ci + Bi + ∑
∀ j∈hp(i)

⌈
wi + J j
Tj

⌉Cj (.)

The equation for the CAN bus is

Ri = Ji + wi + Ci (.)

where wi is given by

wi = Bi + ∑
∀ j∈hp(i)

⌈
wi + J j + τbit

Tj
⌉Cj (.)

Following the example system in Table ., these two equations are instantiated.
The first thing to decide are the priority orderings among the tasks running on the two
nodes, and in this example Deadline Monotonic [] priority assignment algorithm is
used (an optimal algorithm can be found in Ref. []). However, all deadlines are not
known yet, as they rely on the temporal behavior of parts of the system. Hence, ini-
tially uninstantiated variables have to be used in some cases. Looking at the unknown
deadline DTA , TA terminates by sending a CAN frameMAB to node B.This frame
will invoke task TB which has a deadline of  relative to the invocation of TA.
Consequently, DTA can be defined as follows:

DTA =  − RTB − RMAB

where RMAB
is the worst-case response-time for the CAN frame sent from TA to

TB.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-24 Automotive Embedded Systems Handbook

Similarly

DTB =  − RTA − RMBA

where RMBA
is the worst-case response-time for the CAN frame MBA sent from

TB to TA.
The unknown task jitter JTA is dependent on variations in the arrival of MBA

frames, that is,
JTA = RMBA

− τbit
where τbit is the minimum and RMBA

the maximum frame response-time (relative
to the release of TB).
Similarly

JTB = RMAB
− τbit

The only remaining unknowns in Table . are the periods for tasks TA and TB.
As they are both kicked off by tasks (TB and TA) with known periods, they will
inherit the periods of these tasks, that is, TTA =  and TTB = .
Using the above defined parameters, the schedulability equations are defined as

follows, starting with node A:

RTA =  + wTA

wTA =  + BTA + ∑
∀ j∈hp(i)

⌈
wi + J j
Tj

⌉Cj

BTAn = 
JTA = RMBA

− τbit
RTA = JTA + wTA

wTA =  + BTA + ∑
∀ j∈hp(i)

⌈
wi + J j
Tj

⌉Cj

RTA =  + wTA

wTA =  + BTA + ∑
∀ j∈hp(i)

⌈
wi + J j
Tj

⌉Cj

The equations for the tasks on node B are symmetrical:

RTB =  +wTB

wTB =  + BTB + ∑
∀ j∈hp(i)

⌈
wi + J j
Tj

⌉Cj

BTBn = 
JTB = RMAB

− τbit
RTB = JTB + wTB

wTB =  + BTB + ∑
∀ j∈hp(i)

⌈
wi + J j
Tj

⌉Cj

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-25

RTB =  + wTB

wTB =  + BTB + ∑
∀ j∈hp(i)

⌈
wi + J j
Tj

⌉Cj

Remains to formulate the equations for the CAN-bus:

RMAB
= RTA +wMAB

+ τbit
wMAB

= τbit
RMBA

= RTB +wMBA
+ τbit

wMBA
= τbit + ⌈

wMBA
+ RTA


⌉ τbit

The above are a set of mutually dependent equations that can be solved using iter-
ation, that is, by initially setting all variables (RTA , RTA , RTA , RTB , RTB , RTB ,
RMAB

, and RMBA
) to zero and then iteratively use these values in the equation to

obtain new variable values. The iteration stops either when all new values are equal
to the previous values (which means that the system is found schedulable), or if any
of the deadlines are violated (which would mean that the system is not schedulable).
Note that priorities are updated according to Deadline Monotonic [] and hence,
hp(i)might change during the iterations. More information on the holistic scheduling
problem and solutions can be found in Refs. [–].

13.8 Middlewares and Frame Packing

The holistic analysis introduced in Section . typically requires its implementa-
tion in tools in order to calculate the schedulability of the CAN bus. However, one
weak point of the “holistic system design” is that tasks trigger transmission of frames,
which (once transmitted) in turn triggers task, which in turn can trigger frames, etc.
Although suitable for some applications, depending on the complexity of these inter
dependencies between task executions and frame transmissions, the calculations can
sometimes be problematic. For this reason, it is not uncommon to use a middleware
technology for removing the task-frame interdependencies.
When building distributed automotive applications, the applications send and

receive elementary pieces of information, called signals. When an application is read-
ing a signal, it might be produced at a remote location, reachable over the network.
Using a middleware, this can be made transparent to the signal’s reader. Typically,
the signals have a limited lifetime in the sense that its value becomes useless some
time after it has been produced, that is, the signal has requirements on data fresh-
ness. It is not uncommon that signals have a very small size, for example, one bit
value. Hence, due to stringent requirements on low resource usage, multiple signals
are packed into oneCAN frame.Then, frame-packing algorithms are used in conjunc-
tion with the response-time analysis presented in Section . in order to find proper
periods and priorities of these frames, satisfying the data freshness requirements of the
signals. These algorithms are implemented in tools that in conjunction with a proper
middleware technology provide automotive applications with fresh signal data and

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-26 Automotive Embedded Systems Handbook

minimized bandwidth consumption. An example of such a tool andmiddleware, used
by, for example, Volvo, is theVolcano concept∗ [–].More detailed information on
how frame packing is done can be found inRefs. [,]. Amiddleware expected to be
used in large scale is under development in the AUTOSAR project† (see Chapter ),
and by the usage of a proper configurations tool, real-time guarantees are supposed
to be possible. Other middlewares, that do not provide real-time guarantees, include
J [] and CANopen [].

13.9 Summary

This chapter has presented the CAN, which is the predominant communication stan-
dard within the automotive sector. CAN is a collision-free broadcast-priority-based
fieldbus, allowing for cheap and robust implementations of small-scale networks in
control applications. CAN allows for the implementation of such applications using a
network with a physical length of up to some m, data-rates of up to Mbps, and
small data frames of maximum  bytes of payload.
The chapter has described the CAN protocol with frame identifiers that also act

as priorities. Other characteristics of CAN presented include the frame arbitration
mechanism, the error handling mechanism, and the bit-stuffing mechanism. These
mechanisms, together, give a predictable, reliable, and efficient protocol suitable for a
wide range of embedded systems.
In addition to describing the basic CAN protocol, we have described alternative

ways to schedule frames on the CAN bus. This is typically done by software proto-
col implementations on top of the CAN protocol. These alternatives can be used to
give CAN new sets of properties such as timing determinism and fair allocation of
bandwidth among applications.
We have also shown how to calculate bounds on the delays a framemay experience

before it arrives at the destination (i.e., how to calculate the worst-case response-
time of a frame). The calculation methods are different for the different scheduling
methods, as are the resulting response-times. Hence, in order to adapt CAN to the
application at hand, it is important to select the most suitable scheduler.
We have outlined a method to calculate end-to-end response-times for chains of

processing on nodes intermixed with frames sent on the bus (for instance the pro-
cess of reading a sensor, sending the sensor value on the bus, and finally writing an
output to an actuator). This method, called holistic analysis, can be used to calculate
response-time over a whole distributed system, thus making sure that deadlines are
met for distributed applications.
Finally, we have introduced how frame packing together with middleware tech-

nologies can be used to implement distributed automotive applications over CAN.

∗ The Volcano concept is developed by Volcano Communications Technologies AB, which was acquired
by Mentor Graphics in May .

† Automotive Open System Architecture (AUTOSAR), http://www.autosar.org/.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-27

References

. ISO . Road vehicles—Interchange of digital information—Controller Area Net-
work (CAN) for high-speed communication. International Standards Organisation
(ISO), ISO Standard-, November .

. ISO -. Road vehicles—Low-speed serial data communication—Part : Low-
speed Controller Area Network (CAN). International Standards Organisation (ISO),
ISO Standard--, .

. SAE J Standard—The Society of Automotive Engineers (SAE) Vehicle Network
for Multiplexing and Data Communications Standards Committee. Class B Data
Communications Network Interface, May , SAE.

. C. A. Lupini. Multiplex bus progression . SAE Technical Paper Series, --
, .

. SAE J Standard. High Speed CAN (HSC) for Vehicle Applications at  kbps.
SAE Standards, , SAE.

. SAE J Standard—The Society of Automotive Engineers (SAE) Truck and Bus
Control and Communications Subcommittee. SAE J Standards Collection, ,
SAE.

. ISO -. Tractors and machinery for agriculture and forestry—Serial control and
communications data network—Part : General standard for mobile data communi-
cation. International Standards Organisation (ISO), ISO Standard--, .

. ISO -. Tractors and machinery for agriculture and forestry—Serial control
and communications data network—Part : Physical layer. International Standards
Organisation (ISO), ISO Standard--, .

. NMEA ő Standard. The National Marine Electronics Association. http://www.
nmea.org.

. L. Kleinrock and F. A. Tobagi. Packet switching in radio channels. Part I. Carrier sense
multiple access models and their throughput-delay characteristic. IEEE Transactions
on Communications, ():–, December .

. M. Barranco, L. Almeida, and J. Proenza. ReCANcentrate: A replicated star topology
for CAN networks. In Proceedings of the th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA’), Vol. , Catania, Italy, September
, pp. –.

. M. Barranco,G. Rodríguez-Navas, J. Proenza, andL.Almeida. CANcentrate: An active
star topology forCANnetworks. InProceedings of the th IEEE InternationalWorkshop
on Factory Communication Systems (WFCS’), Vienna, Austria, September ,
pp. –.

. J. Sommer and R. Blind. Optimized resource dimensioning in an embedded CAN–
CAN gateway. In International Symposium on Industrial Embedded Systems (SIES’),
Lisbon, Portugal, July , pp. –.

. J. Leohold. Automotive system architecture. In Proceedings of the Summer School
“Architectural Paradigms for Dependable Embedded Systems,” Vienna University of
Technology, Vienna, Austria, September . pp. –.

. LIN Consortium. LIN Protocol Specification, Revision ., December .
http://www.lin-subbus.org/.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-28 Automotive Embedded Systems Handbook

. LIN Consortium. LIN Protocol Specification, Revision ., September .
http://www.lin-subbus.org/.

. K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area Network
(CAN) message response times. Control Engineering Practice, ():–, August
.

. J. Charzinski. Performance of the error detectionmechanisms in CAN. In Proceedings
of the st International CAN Conference, Mainz, Germany, , pp. –.

. CAN Specification ., Part-A and Part-B. CAN in Automation (CiA), Am
Weichselgarten , D- Erlangen. http://www.can-cia.de/, .

. E. Tran. Multi-bit error vulnerabilities in the Controller Area Network protocol.
Master’s thesis, Carnegie Mellon University, Pittsburgh, PA, .

. M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E. Latronico, and P. Koopman. Coverage
and the use of cyclic redundancy codes in ultra-dependable systems. In Proceedings
of the  International Conference on Dependable Systems and Networks (DSN’),
June , pp. –.

. R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems,
():–, April .

. J. D. Day and H. Zimmermann. The OSI reference model. Proceedings of the IEEE,
():–, December .

. H. Zimmermann. OSI reference model: The ISO model of architecture for open
system interconnection. IEEE Transactions on Communications, ():–, April
.

. ISO -. Road vehicles—Controller Area Network (CAN)—Part : Time-
triggered communication. International Standards Organisation (ISO), ISO
Standard--, December .

. L. Almeida, J. A. Fonseca, and P. Fonseca. A flexible time-triggered communication
system based on the Controller Area Network: Experimental results. In D. Dietrich,
P. Neumann, and H. Schweinzer, editors, Fieldbus Technology—Systems Integration,
Networking, and Engineering—Proceedings of the Fieldbus Conference FeT’, Magde-
burg, Federal Republic of Germany, September –, , Springer-Verlag, ,
pp. –.

. L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-CAN protocol: Why and how.
IEEE Transaction on Industrial Electronics, ():–, December .

. M. Di Natale. Scheduling the CAN bus with earliest deadline techniques. In Proceed-
ings of the st IEEE International Real-Time Systems Symposium (RTSS’), Orlando,
FL, November , pp. –.

. M. A. Livani and J. Kaiser. EDF consensus on CAN bus access for dynamic real-time
applications. In J. Rolim, editor, Proceedings of the IPPS/SPDP Workshops, volume
Lecture Notes in Computer Science (LNCS-), Orlando, FL, Springer-Verlag,
March , pp. –.

. M. A. Livani, J. Kaiser, and W. J. Jia. Scheduling hard and soft real-time communica-
tion in the Controller Area Network (CAN). In L.-C. Zhang, A. H. Frigeri, and W. A.
Halang, editors, Real Time Programming —Proceedings of the rd IFAC/IFIP
Workshop on Real-Time Programming, volume IFAC Proceedings Volumes, Shantou,
ROC, June .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Timing Analysis of CAN-Based Automotive Communication Systems 13-29

. K. M. Zuberi and K. G. Shin. Non-preemptive scheduling of messages on Controller
Area Network for real-time control applications. In Proceedings of the st IEEE
Real-Time Technology and Applications Symposium (RTAS’), Chicago, IL, May ,
pp. –.

. CiA. CANopen communication profile for industrial systems, based on CAL. CiA
Draft Standard , rev ., October, . http://www.canopen.org.

. SAE J Standard. Design/Process Checklist for Vehicle Electronic Systems. SAE
Standards, May , SAE.

. G. Cena and A. Valenzano. An improved CAN fieldbus for industrial applications.
IEEE Transaction on Industrial Electronics, ():–, August .

. L. Lo Bello and O. Mirabella. Randomization-based approaches for dynamic priority
scheduling of aperiodic messages on a CAN network. In LCTES ’: Proceedings of the
ACM SIGPLANWorkshop on Languages, Compilers, and Tools for Embedded Systems,
London, United Kingdom, , pp. –.

. T. Nolte. Share-driven scheduling of embedded networks. PhD thesis, Department of
Computer and Science and Electronics, Mälardalen University, Sweden, May .

. T. Nolte and K.-J. Lin. Distributed real-time system design using CBS-based end-to-
end scheduling. In Proceedings of the th IEEE International Conference on Parallel
and Distributed Systems (ICPADS’), Taipei, Taiwan, ROC, December , pages
–.

. T. Nolte, M. Nolin, and H. Hansson. Real-time server-based communication for
CAN. IEEE Transactions on Industrial Informatics, ():–, August .

. N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal, ():–, September .

. K. W. Tindell and A. Burns. Guaranteed message latencies for distributed safety-
critical hard real-time control networks. Technical Report YCS , Department of
Computer Science, University of York, York, England, June .

. K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing real-time communications:
Controller Area Network (CAN). In Proceedings of th IEEE International Real-Time
Systems Symposium (RTSS’), San Juan, Puerto Rico, December , pp. –.

. J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines.
In Proceedings of the th IEEE International Real-Time Systems Symposium (RTSS’),
Lake Buena Vista, FL, December , pp. –.

. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, ():–, January .

. S. Punnekkat, H. Hansson, and C. Norström. Response time analysis under errors
for CAN. In Proceedings of the th IEEE Real-Time Technology and Applications
Symposium (RTAS’), Washington DC, May–June , pp. –.

. M. J. Buckingham. Noise in Electronic Devices and Systems. Ellis Horwood Series in
Electrical and Electronic Engineering, Ellis Horwood Ltd, London, United Kingdom,
December .

. N. Navet, Y.-Q. Song, and F. Simonot. Worst-case deadline failure probability in
real-time applications distributed over Controller Area Network. Journal of Systems
Architecture, ():–, April .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

13-30 Automotive Embedded Systems Handbook

. I. Broster, A. Burns, and G. Rodríguez-Navas. Probabilistic analysis of CAN with
faults. In Proceedings of the rd IEEE International Real-Time Systems Symposium
(RTSS’), Austin, TX, December , pp. –.

. I. Broster, A. Burns, and G. Rodríguez-Navas. Timing analysis of real-time commu-
nication under electromagnetic interference. Real-Time Systems, (–):–, May
.

. H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Integrating reliability and
timing analysis of CAN-based systems. IEEE Transaction on Industrial Electronics,
():–, December .

. H. Hansson, C. Norström, and S. Punnekkat. Integrating reliability and timing anal-
ysis of CAN-based systems. In Proceedings of the rd IEEE International Workshop
on Factory Communication Systems (WFCS’), Porto, Portugal, September ,
pp. –.

. K. W. Tindell and J. Clark. Holistic schedulability analysis for distributed real-time
systems. Microprocessing and Microprogramming—Euromicro Journal (Special Issue
on Parallel Embedded Real-Time Systems), :–, .

. J.-T. Leung and J. Whitehead. On the complexity of fixed priority scheduling of
periodic real-time tasks. Performance Evaluation, ():–, December .

. I. Bate and A. Burns. Investigation of the pessimism in distributed systems timing
analysis. In Proceedings of the th Euromicro Conference on Real-Time Systems
(ECRTS’), Berlin, Germany, June , pp. –.

. W. Henderson, D. Kendall, and A. Robson. Improving the accuracy of scheduling
analysis applied todistributed systems computing minimal responsetimes and
reducing jitter. Real-Time Systems, ():–, .

. J. C. Palencia and M. González Harbour. Exploiting precedence relations in the
schedulability analysis ofdistributed real-time systems. In Proceedings of the th
IEEE International Real-Time Systems Symposium (RTSS’), Phoenix, AZ, December
, pp. –.

. J. Axelsson, J. Fröberg,H. Hansson, C. Norström, K. Sandström, and B. Villing. Corre-
lating bussines needs and network architectures in automotive applications—A com-
parative case study. In Proceedings of the th IFAC International Conference on Fieldbus
Systems andTheir Applications (FET’), Aveiro, Portugal, July , pp. –.

. L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano—A revolution in
on-board communication. Volvo Technology Report --, .

. A. Rajnák. The LIN standard. In R. Zurawski, editor, The Industrial Communication
Technology Handbook, CRC Press, Taylor & Francis Group, Boca Raton, FL, ,
pp. -–-.

. A. Rajnák. Volcano: Enabling correctness by design. In R. Zurawski, editor, The
Industrial Communication Technology Handbook, CRC Press, Taylor & Francis Group,
Boca Raton, FL, , pp. -–-.

. R. Saket andN. Navet. Frame packing algorithms for automotive applications. Journal
of Embedded Computing (JEC), :–, .

. K. Sandström, C. Norström, and M. Ahlmark. Frame packing in real-time commu-
nication. In The th International Workshop on Real-Time Computing Systems and
Applications (RTCSA’), Cheju Island, South Korea, December .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

14
Scheduling Messages

with Offsets on Controller
Area Network: A Major

Performance Boost

Mathieu Grenier
Lorraine Laboratory of Computer
Science Research and Applications

Lionel Havet
National Institute for Research
in Computer Science and Control

Nicolas Navet
National Institute for Research
in Computer Science and Control

. Introduction . -
. Offset Assignment Algorithm -

Design Hypotheses and Notations ●
Notations ● Tool Support for WCRT
Analysis ● Description of the Algorithm

. Experimental Setup -
. Benefits of Using Offsets

on WCRTs . -
WCRT Comparison with and without
Offsets ● Explanation of the Gain: The
Network Load Is Better Distributed ●

Partial Offset Usage
. Offsets Allow Higher Network

Loads . -
. Conclusion . -
References . -

14.1 Introduction

Controller area network (CAN) has been and will most likely remain a prominent
network in passenger cars for at least twomore car generations.One of the issues CAN
will have to face is the growth of traffic with the increasing amount of data exchanged
between electronic control units (ECUs). A car manufacturer has to make sure that
the set of frames will be schedulable, that is, the response time of the frames is kept
small enough to ensure that the freshness of the data is still acceptable when used at
the receiver end. Clearly here, for most messages, even periodic ones, we are in the
realm of soft real-time constraints: a deadline constraint can be occasionally missed

14-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

14-2 Automotive Embedded Systems Handbook

without major consequences. However, the issue on CAN is that worst-case response
times (WCRT) increase drastically with the load, which may explain why currently
the bus utilization is typically kept at low levels (up to % or %) and why FlexRay
is considered as a must for next generation architectures.
Scheduling theory (see, for instance, Ref. []) tells us that the WCRT for a frame

corresponds to the scenario where all higher priority CANmessages are released syn-
chronously. Avoiding this situation, and thus reducing WCRT, can be achieved by
scheduling a stream of messages with offsets. Precisely, the first instance of a stream
of periodic frames is released with a delay, called the offset, with regard to a refer-
ence point which is the first time at which the station is ready to transmit. Subsequent
frames of the streams are then sent periodically, with the first transmission as time
origin. The choice made for the offset values has an influence on the WCRT, and the
challenge is to set the offsets in such a way as to minimize the WCRT, which involves
spreading the workload over time as much as possible.
Assigning offsets is a problem that has been addressed in Refs. [,] concerning the

preemptive scheduling of tasks. It turns out that these solutions are not efficient when
applied to the scheduling of messages because automotive message sets have certain
specific characteristics (small number of different periods, etc.). We propose here an
algorithm tailored for automotive CANs, which proved to be efficient in experiments
conducted on realistic message sets generated with NETCARBENCH []. Then, we
study the extent to which offsets can be beneficial in terms of schedulability and how
they can help to better cope with higher network loads. In addition, the chapter pro-
vides some insight into the fundamental reasons why offsets are so efficient, which
may lead to further improvements.
Section . discusses the algorithm we propose to assign offsets. Section .

describes the experimental setup. The improvements brought by offsets in terms of
response times are studied in Section .. Finally, Section . studies the extent to
which offsets enable dealing with higher network loads.

14.2 Offset Assignment Algorithm

The problem of best choosing the offsets has been shown in Ref. [] to have a com-
plexity that grows exponentially with the periods of the tasks and there is no known
optimal solution that can be used in practical cases. However, there are heuristics with
a low complexity, see Refs. [,]. In our experiments, if these algorithms are effective
for task scheduling, they are not well suited to message scheduling in the automotive
context, which motivates the design of a new offset assignment algorithm.
With no additional protocol, there is no global synchronization among the sta-

tions in a CAN, which means that each station possesses its own local time and that
the desynchronizations between the streams of frames are local to each station. This
implies that there is always the possibility that frames of any two streams coming
from distinct stations are released at the same time, inducing delays for some frames.
If one wants to implement a global synchronization among the ECUs, in addition
to the complexity and the overhead of the clock synchronization algorithm (see, for
instance, Ref. []), the cases of ECU reboots and local clocks that are drifting apart
should be dealt with in order to obtain a robust mechanism. This certainly could be

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Scheduling Messages with Offsets on Controller Area Network 14-3

done, for instance, by building on the experience gathered with TTCAN, but at the
expense of some additional complexity in the communication layers.
In this study, the offset assignment algorithm is executed on each station indepen-

dently.The underlying idea of the algorithm is to distribute the workload as uniformly
as possible over time, in order to avoid synchronous releases leading to traffic peaks
and thus to large frame response times. More precisely, we will try to schedule the
transmissions as far apart as possible.

14.2.1 Design Hypotheses and Notations

The algorithm makes the following hypotheses, which are in our experience most
often met in the automotive context:

. There are only a few distinct values for the periods (e.g., –). The algo-
rithm proposed in this study has been conceived to take advantage of
this property and its efficiency relies on it. The cases with many differ-
ent period values can be treated efficiently with the algorithms proposed
in Refs. [,].

. The time is discrete with a certain granularity: the offsets of the streams,
and their periods, are multiples of g, the period of the communication
task in charge of issuing the transmission requests to the communication
controller. Typically, g is smaller than  ms.

DEFINITION . A time instant that is a multiple of g is called a possible release
time. By definition, the ith possible release time, with i ∈ N

+, occurs at time (i − ) ⋅ g.

14.2.2 Notations

On station i, the kth stream of frames, denoted by f ik , is characterized by the tuple
(Ci

k ,D
i
k , T

i
k ,O

i
k ,): each frame produced by the stream has a worst-case transmission

time equal to Ci
k , a relative deadline D

i
k (i.e., the frame must be received ms after

its release), and Ti
k is the transmission period for stream f ik . The number of streams

on station i is denoted by ni . For the sake of clarity, it is assumed that there are no
jitters on the release times of the frames but they could be taken into account in the
analysis. The first release time of f ik on station i occurs at Oi

k , which is the offset of
f ik . Said differently, Oi

k is the duration between the first instant at which the station is
operational and the transmission of the first frame of stream f ik . In the following, to
keep the notations as simple as possible, the index of the station will not be indicated
because the algorithm is executed on each station independently without considering
the streams of the other stations.

14.2.3 Tool Support for WCRT Analysis

At the time of writing, to the best of our knowledge, there is no result available in
the scientific literature that allows to compute response times with offsets on large
sets of messages (i.e., more than  messages) in reasonable time. However, some

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

14-4 Automotive Embedded Systems Handbook

FIGURE . Screenshot of NETCAR-Analyzer during an optimization run.The left-hand graphic
shows the response times (by decreasing priority) for different offset configurations. The spread-
sheet in the background contains the set of frames, the different offset configurations tested, the
corresponding WCRT, and certain characteristics of the ECUs, such as the queuing policy at the
microcontroller level (e.g., FIFO or prioritized).

commercial products offer this feature, which is actually needed by carmanufacturers.
In this study, the WCRT of the frames are computed with the software NETCAR-
Analyzer, first developed at INRIA, then taken over by the company RealTime-at-
Work, which implements exact and very fast WCRT on CAN with offsets. This soft-
ware also includes a set of proprietary offset assignment algorithms, fine-tuned with
the experience gained in industrial use, that significantly outperform the algorithm
proposed here, but they cannot be disclosed because of confidentiality. However, as it
will be demonstrated, the algorithm shown here is efficient, and it constitutes a sound
basis that can be improved and extended according to the user’s need. For instance, as
permitted by NETCAR-Analyzer, the user may want to optimize the WCRT for only
a particular subset of messages, possibly according to a user-defined cost function.
Figure . shows a screenshot of NETCAR-Analyzer.

14.2.4 Description of the Algorithm

Without loss of generality, the choice of the offset for stream fk is made in the interval
[, Tk[. Indeed, because of the periodic nature of the scheduling (see Ref. [] for more

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Scheduling Messages with Offsets on Controller Area Network 14-5

details), an offset Ok ≥ Tk is equivalent to OkTk . Once the initial offset Ok has been
decided, all subsequent release times of stream fk are set: they occur at times Ok+ i ⋅Tk
with i ∈ N .
To spread the traffic over time, the offset of each stream fk is chosen such that the

release of its first frame, fk , , is “as far as possible” from other frames already sched-
uled.This is achieved by () identifying the longest interval with the smallest workload
and () setting the offset for fk in the middle of this interval.

14.2.4.1 Data Structure

Since for each stream fk , the offset is chosen in the interval [, Tk[, we choose to
assign the offsets based on an analysis performed over time interval [, Tmax[, where
Tmax = max≤k≤n{Tk}.
The release times of the frames in the interval [, Tmax[are stored in an array R

having Tmax/g elements where the ith element R[i] is the set of frames released at
possible release time i (i.e., at time (i − ) ⋅ g). Table . presents the release array
R for the frames corresponding to the set of traffic streams T = { f , f , f}, where
f = (T = ,O = ), f = (, ), and f = (, ) (Tmax = ) with a granularity
g = .
For a given stream fk , an interval is a set of adjacent possible release times.

DEFINITION . For a stream fk and a time granularity g, the possible release times
i and i

′

are adjacent iff:

∣(imod
Tk

g
) − (i

′

mod
Tk

g
)∣ =  .

In the above formula, the modulo operators translate the fact that setting the offset
of a stream fk at possible release i is the same as choosing the possible release time
i + u ⋅ Tk/g with u ∈ N. Table . illustrates this definition with a stream f having a
period T =  where the time granularity g is .
This leads to the definition of an interval.

DEFINITION . For a stream fk, an interval is an ordered set of possible release
times where the ith and (i + )th elements are adjacent. The length of this interval is the
number of elements in the ordered set.

TABLE . Release Array R of the Frames Corresponding to the Set
of Traffic Streams T = { f , f , f}Where f = (T = ,O = ), f = (, ),
and f = (, ) on the Interval [, [
Time          
Possible release time i          
R[i] (set of frames released) f, f, f, f,
The granularity g is equal to . The ith element R[i] is the set of frames released at possible
release time i . For instance, R[] = { f,}.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

14-6 Automotive Embedded Systems Handbook

TABLE . Possible Release TimesThat Are Adjacent, in the Case
of Stream f Having a Period Equal to 
Time     
Possible release time i     
Possible release times adjacent to i {,} {,} {,} {,} {,}

For example, possible release times  and  are adjacent to .

For instance, for the stream f (see Table .), the set {, , , } is an interval of
adjacent possible release times. In the algorithm presented here, we consider only
the intervals made of possible release times with the same load.

DEFINITION . The load of possible release time i is the number of releases
scheduled for transmission at i, i.e., at clock time (i − ) ⋅ g.

For instance, in the example of Table ., the load of possible release time  is . We
denote by lk the smallest load in the interval [, Tk[, the least loaded intervals only
comprise possible release times having a load equal to lk . For example, in Table .,
l is equal to  and interval {, } belongs to the set of the least loaded intervals in
[, [.

14.2.4.2 Description of the Algorithm

We assume that the streams are sorted by increasing the value of their period, i.e.,
k < h implies Tk ≤Th . The algorithm sets iteratively the offsets of streams, from f
to fn . Let us consider that the stream under analysis is fk .

. Set offset for fk such as to maximize the distance between its first release
fk , , and the release right before and right after fk , . Concretely:
(a) Look for lk in the interval [, Tk[.
(b) Look for one of the longest least loaded intervals in [, Tk[, where ties

are broken arbitrarily. The first (resp. last) possible release time of the
interval is noted by Bk (resp. Ek).

(c) Set the offsetOk in themiddle of the selected interval, the correspond-
ing possible release time is rk .

(d) Update the release array R to store the frames of fk released in the
interval [, Tmax[:

∀i ∈ N and rk + i ⋅
Tk

g
≤
Tmax

g

do R [rk + i ⋅
Tk

g
] = R [rk + i ⋅

Tk

g
] ∪ fk , i+

A straightforward implementation of the algorithm runs in
O(n ⋅ maxk{Tk}/g), which, in practice, does not raise any problem
even with large sets of messages.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Scheduling Messages with Offsets on Controller Area Network 14-7

14.2.4.3 Application of the Algorithm

We consider our example where T = { f , f , f} with f = (T = ,O = ),
f = (, ), f = (, ) and a time granularity equal to . First the algorithmdecides
the offset for f: l =  (step .(a)), B =  and E =  (step .(b)), thus r =  (step .(c)),
which means that the offset of the stream is . Then array R is updated: R[] = { f,}
and R[] = { f,} (step .(d)). For stream f, l = , the selected interval is {, , , }
thus B = , E = , and r =  with R[] = { f,}. For stream f, l = , the selected
interval is {, , , } thus B = , E = , and r =  with R[] = { f,}. The results
of applying the algorithm are shown in Table ..

14.3 Experimental Setup

In order to get a precise idea of the real benefits of using offsets, we tried to per-
form experiments on realistic CANs. However, because of confidentiality reasons,
very little has been published concerning benchmarks. To the best of our knowledge,
the only two publicly available benchmarks are the SAE [] and the PSA bench-
marks []. They have both been used several times in the literature but they are
clearly no more realistic with regard to current in-vehicle networks (see, for instance,
Ref. []).
To overcome the confidentiality issue that prevent us from publishing real sets of

messages, we developed NETCARBENCH [], a software that generates automotive
sets of messages according to parameters defined by the user (network load, number
of ECUs, distribution of the periods of the frames, etc.). NETCARBENCH is aimed
at improving the assessment, the understanding, and the comparability of algorithms
and tools used in the design of in-vehicle communication networks. To facilitate its
diffusion, NETCARBENCH is released under the GPL license and is downloadable
at: http://www.netcarbench.org.
Wemostly find three types of CANs in a car today: power train, body, and chassis. In

the following, we will consider body and chassis networks that exhibit rather distinct
characteristics. In the experiments, except when explicitly stated, the randomly gen-
erated networks have an average load equal to % (with an interval of variation of %
around themean) and the characteristics shown in Table ..The size of data payload
in the frames is uniformly distributed between  and  bytes. There will be two types
of experiments: somewill focus on a particular network, while others will involve col-
lecting statistics on a large number of networks (i.e.,  in the following). For the

TABLE . Configuration of the Networks Considered
in the Experiments
Network #ECUs #Messages (stddev) Bandwidth (kbps) Frame Periods
Body –  (.)   ms to  s
Chassis – . (.)   ms to  s

For both body and chassis networks, the average load is % and the size of the
data payload is drawn at random (uniform law) between  and . The periods are
uniformly chosen in the set {, , , , , } for body networks, and
in the set {, , , , , } for chassis networks.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

14-8 Automotive Embedded Systems Handbook

former type of experiments, the same body network and the same chassis network
have been used throughout all the experiments.
In practice, it is often the case that a single station generates a large part of the

global network load. For instance, in the body network, there is usually a station that
serves as gateway to other networks, and which is responsible for a large fraction of
the total load.Wemodel that with a single station that generates about %of the total
load. In the following, it will be mentioned explicitly when this “load concentration”
configuration is used.

14.4 Benefits of Using Offsets on WCRTs

We first evaluate the performance gain with offsets in Section ..; then, in Sec-
tion .., we provide elements to explain the effectiveness of using offsets.

14.4.1 WCRT Comparison with and without Offsets

The main benefit of offsets is the reduction of the WCRT for low priority messages.
Figure . shows the WCRT of the frames of a typical CAN body with and without
offsets. Two offset strategies are tested: the algorithm presented in Section . and a
purely randomallocation. For this latter strategy, the results in Figure . are the aver-
age values over  random allocations. Also shown in Figure . is a lower bound on
the WCRT that is provided by NETCAR-Analyzer; this bound cannot necessarily be
reached in practice but is informative anyway about how good the offset allocation is.
As can be seen, the WCRT is improved for all frames for which a gain is possible. The
improvements become more and more pronounced as the priority decreases. For the
lowest priority frame of this example, the WCRT with offsets is decreased by . ms
(from . to .ms), which represents a reduction of a factor , compared to results
without offsets. The gain is thus very large.
In the next experiments, we evaluate the performance of offset assignments over

 random sets of messages. The performance metric is the ratio of WCRT reduc-
tionwhen using offsets with the algorithmof Section ..We consider body networks
and chassis networks, with and without load concentration, that is, one station that is
more loaded than the others—here this loaded station generates about %of the total
network load. Figure . shows the distribution of the WCRT reduction ratio for the
lowest priority frame without load concentration, while Figure . presents the case
with load concentration.
Whatever the experimental condition, the gain is very significant, except for a few

outliers out of the  sets of messages that have been considered. This suggests that
in practice offsets will most often be very beneficial. It can be observed that the gain
is more important for chassis networks. The explanation lies probably in the fact that
chassis networks comprise fewer stations than body networks, and thus the desyn-
chronization between streams, which is purely local to the stations, is more efficient.
When a single ECU generates a large fraction of the load (i.e., load concentration),
the results are very similar to the case where the load is uniformly distributed over
the stations, while intuitively they should be better. As suggested by Figure ., at

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Scheduling Messages with Offsets on Controller Area Network 14-9

 0

 10

 20

 30

 40

 50

 60

70

0 10 20 30 40 50 60

W
CR

T
(m

s)

CAN frames sorted by decreasing priority order

WCRT without offset
WCRT with random offsets (average value)
WCRT with offsets (algorithm of Section 14.2)
WCRT lower bound

FIGURE . WCRT of the CAN frames with and without offsets for a typical  kbps body net-
work with a network load of .% and  messages. The upper curve is the WCRT without offsets,
the immediate lower curve is the average value over  random offset allocations, the next curve
is the WCRT with the algorithm of Section .. Finally, the lowest curve is a lower bound on the
WCRT. The steep increase of the WCRT without offsets at the end can be explained because some
high priority frames have a period equal to , and two instances of these frames are delaying the
lowest priority frames with a WCRT larger than ms.

this level of load, the performance of the shaping algorithm is close to the optimal,
which may explain why no difference is observed.

14.4.2 Explanation of the Gain: The Network Load Is Better
Distributed

The evolution of total workload awaiting transmission (or backlog) is measured dur-
ing  s (half of the l cm value here) with and without offsets. More precisely, when
there are offsets, we consider the scenario leading to the WCRT for the lowest pri-
ority frame. Without offsets, the workload measured is the one corresponding to the
synchronous case, that is, the worst-case for all frames in that context. Both workloads
are plotted in Figure . for a typical body network. It can be immediately noticed
that the “peaks” of the workload aremuch smaller with offsets, which provides a clear-
cut explanation about the gains observed in Section ... Indeed, the load awaiting
transmission directly translates into response times for the lowest priority frames.
The fact that the workload with offsets in Figure . is more evenly distributed

could lead us to think that there is less workload with offsets, which is actually not

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

14-10 Automotive Embedded Systems Handbook

 0

 5

 10

 15

 20

 25

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

%
of

 th
e t

as
ks

 se
ts

WCRT reduction ratio for the
lowest priority message

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

%
of

 th
e t

as
ks

 se
ts

WCRT reduction ratio for the
lowest priority message

(b) Chassis network—no load concentration(a) Body network—no load concentration

FIGURE . Reduction ratio of the WCRT for the lowest priority frames when offsets are used.
The distribution is computed over the results obtained on a sample of  random body networks
(left-hand graphic) and chassis networks (right-hand graphic). The network load is uniformly dis-
tributed over the ECUs (i.e., no concentration).The x-axis is theWCRT reduction ratio (bins of size:
.) and the y-axis is the percentage of networks having that level of gain.

0

5

10

15

20

25

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

%
of

 th
e t

as
ks

 se
ts

WCRT reduction ratio
for the lowest priority message

(a) Body network—with load concentration

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

%
of

 th
e t

as
ks

 se
ts

WCRT reduction ratio
for the lowest priority message

(b) Chassis network—with load concentration

FIGURE . Reduction ratio of the WCRT for the lowest priority frames when offsets are used.
Same settings as Figure . except that one station alone generates, on average, % of the total
network load (i.e., load concentration). The x-axis is the WCRT reduction ratio (bins of size: .)
and the y-axis is the percentage of networks having that level of gain.

the case. Figure . corrects this feeling and shows the evolution of the cumulative
work arrival function over time with and without offsets for the same network as in
Figure .. The shape of the work arrival function with offsets is much smoother
and linear than without offsets, where the “stairs” of the function are larger. This
figure suggests that the algorithm of Section . performs well, and also provides
us with some insight into the improvements that remain achievable, knowing that
the best in terms of load distribution—but not always feasible because of the stream
characteristics—would be a straight line.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Scheduling Messages with Offsets on Controller Area Network 14-11

0

 10

 20

 30

 40

 50

 60

0 200 400 600 800 1000

W
or

k
aw

ai
tin

g
tr

an
sm

iss
io

n
(m

s)

Time (ms)

Without offset
With offsets

FIGURE . Amount of work awaiting transmission with and without offsets—comparison
over  s.

0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0 200 400 600 800 1000

Cu
m

ul
at

iv
e n

et
w

or
k

lo
ad

 (m
s)

Time (ms)

Without offset
With offsets

FIGURE . Cumulative network load (expressed in transmission time) with and without
offsets—comparison over  s.

It is worth mentioning that the better distribution of the load with offsets is also
very interesting for reducing peaks of CPU load since ECUs will not have to build,
transmit or receive bursts of frames. In practice, this is a major reason why offsets are
sometimes already implemented in production vehicles.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

14-12 Automotive Embedded Systems Handbook

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

W
CR

T
(m

s)

CAN frames sorted by decreasing priority order

WCRT without offset
WCRT with offsets on the most loaded station
WCRT with offsets on the four more loaded stations
WCRT with offsets on all stations

FIGURE . Comparison of the WCRT on a body network with load concentration: () without
offsets (upper curve), () with offsets only on the loaded station (immediate lower curve), () with
offsets on the four more loaded stations (third curve from the top), and () with offsets on all stations
(lower curve).

14.4.3 Partial Offset Usage

So far, we have assumed that offset strategies would be applied to all stations. In prac-
tice, the load on a CAN is generally not evenly distributed between the stations, and
it is common to have networks where a single station, or a couple of stations, induce a
large fraction of the total load. In this situation, a significant improvement can already
be achieved when offsets are used only on the station, or the few stations, that create
most of the bus load. This also involves fewer changes for the car manufacturer.
To obtain some understanding of what to expect from offsets in this case, we gen-

erated networks where % of the load is concentrated on a single station (i.e., load
concentration situation). Figure . shows that applying offsets on a few stations is
already very advantageous in terms ofWCRTof the lowest priority frame.With regard
to what would be achieved without offsets, the lowest priority frame has its WCRT
reduced by .% with offsets on one station, and by % on four stations.

14.5 Offsets Allow Higher Network Loads

Up to this point, the experiments have been done on networks with a load corre-
sponding to what is commonly found in today’s automotive CANs. Now we propose
to evaluate the benefits of offsets in the near future situation where network loads will
increase. We model the load increase in two directions: either by distributing new

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Scheduling Messages with Offsets on Controller Area Network 14-13

messages onto existing stations or by assigning them onto new stations. We proceed
as follows:

• Define a randomnetwork net with a given load load . In this experiment,
the body network drawn at random has a load equal to ..

• Define a new load level load (e.g., %). Define a random set of frames
that corresponds to the load difference between load and load. This
newly created set of frames is denoted by Snew.

• Two methods are employed to allocate the frames of Snew:
– Dispatch Snew on the existing stations of net , this new network is called

netframes


– Dispatch the set of frames Snew on new stations (with a limit of five
frames per station) and add them to net. The resulting network is
called netstations

• Determine offsets using algorithm of Section . and computeWCRT for
netframes

 and netstations .

Following this procedure enables us to compare the increase ofWCRT for the two sce-
narios identified. Figure . shows the evolution of the WCRT of the lowest priority
frame for a network load ranging from % to %.

0

 20

 40

 60

 80

 100

 120

 140

 160

40 45 50 55 60

W
CR

T
(m

s)

CAN network load (%)

WCRT without offset—both cases of load increase
WCRT with offsets—load increase on new stations
WCRT with offsets—load increase on existing stations

FIGURE . WCRT of the lowest priority frame for a load ranging from % to %: () without
offsets (white), () with offsets and the additional load assigned to new stations (gray), and () with
offsets and the additional load assigned to existing stations (black).The additional load is the network
load added to a randomly chosen network with an initial load equal to .%. The results presented
here are obtained on a single typical body network.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

14-14 Automotive Embedded Systems Handbook

What can be observed is that the gain with offsets remains very significant even
when the load increases. For instance, at a load of % the gain with offsets is equal
to a factor . if the additional load is distributed on existing stations, or a factor .
if the additional load is allocated to new stations.
Second, the experiments show that the WCRT of the lowest priority frame with

offsets at % is roughly similar to the WCRT at % of load without offsets. In other
words, the performance at % with offsets are equivalent to the performance at %
without offsets. Although this is not shown in Figure ., this remark holds true for
all frames, whatever their priority level (except at the highest priority levels where
there is less gain).
Finally, it is worth noting that there is a difference whether the new load is spread

over existing stations or assigned to new stations. In the latter case, offsets are less
efficient in general, which is logical because the lack of global time reference implies
that the offsets are local to each station.

14.6 Conclusion

This study provides two contributions. First, we propose a low-complexity algorithm
for deciding offsets, which have good performances for typical automotive networks,
be they body or chassis networks.This algorithm, the first of its kind in the literature to
the best of our knowledge, should constitute a sound basis for further improvements
and optimizations. For instance, specific constraints of a particular design process, or
even vehicle project, can be taken into account.
Second, we show that the use of offsets enable very significant performance

improvements on a wide range of network configurations. We believe using offsets
is a robust technique that might actually provide a solution in the short term to deal
with the increasing network load, and thus might allow the use of CAN as the princi-
pal network in the next car generations, at least when no safety critical functions are
involved.
Offsets, which impose constraints on the frame release dates, can be seen as a trade-

off between event-triggered communications and time-triggered communications.
Experiments show that it is possible to achieve further gains with synchronization
mechanisms between stations, which imposes additional constraints on communica-
tion and could constitute a lightweight time-triggered solution on CAN. The extent
to which it can be implemented in a robust way (i.e., resilience to ECU reboots, local
clocks that are drifting apart, etc.) is the subject of our ongoing work.

References

. R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller AreaNetwork (CAN) schedu-
lability analysis: Refuted, revisited and revised.Real-Time Systems, ():–, April
.

. J. Goossens. Scheduling of offset free systems.Real-Time Systems, ():–,March
.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Scheduling Messages with Offsets on Controller Area Network 14-15

. M. Grenier, J. Goossens, andN. Navet.Near-optimal fixed priority preemptive schedul-
ing of offset free systems. In Proceedings of the th International Conference on Network
and Systems (RTNS’), Poitiers, France, May –, .

. C. Braun, L. Havet, and N. Navet. NETCARBENCH: A benchmark for techniques and
tools used in the design of automotive communication systems. InProceedings of the th
IFAC International Conference on Fieldbuses and Networks in Industrial and Embedded
Systems (FeT’), Toulouse, France, November . Software and manual available
at http://www.netcarbench.org.

. L. Rodrigues, M. Guimaraes, and J. Rufino. Fault-tolerant clock synchronization in
CAN. In Proceedings of the th Real-Time Systems Symposium, Madrid, Spain, ,
pp. –.

. K. Tindell and A. Burns. Guaranteed message latencies for distributed safety-critical
hard real-time control networks. In First International CAN Conference Proceedings,
Germany, September .

. N. Navet, Y. Song, and F. Simonot. Worst-case deadline failure probability in real-
time applications distributed over CAN (Controller Area Network). Journal of Systems
Architecture, ():–, .

. N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert. Trends in automotive communi-
cation systems. Proceedings of the IEEE, ():–, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15
Formal Methods

in the Automotive
Domain: The Case of TTA

Holger Pfeifer
Ulm University

. Introduction . -
. Topics of Interest . -

Fault-Masking Functions of Central
Guardians ● Group Membership
and Clique Avoidance ● Clock
Synchronization ● Startup
and Reintegration

. Modeling Aspects -
Modeling Computation ●Modeling
Time ●Modeling Faults

. Verification Techniques -
Theorem Proving ●Model Checking

. Perspectives . -
References . -

15.1 Introduction

The Time-Triggered Architecture (TTA) [–] is a distributed computer architecture
for the implementation of highly dependable real-time systems. In particular, it
targets embedded control applications, such as by-wire systems in the automotive
or aerospace industry. For these safety-critical systems fault tolerance is of utmost
importance. The Time-Triggered Protocol (TTP/C) constitutes the core of the com-
munication level of the TTA. It furnishes a number of important services, such as
atomic broadcast, consistent membership, and protection against faulty nodes that
facilitate the development of these kinds of fault-tolerant real-time applications.
Formal analysis can provide an additional source of confidence in correct behav-

ior of a system, which is particularly important in the context of safety-critical
systems. Complementing the validation of applications built on top of a TTA, the

15-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-2 Automotive Embedded Systems Handbook

fault tolerance properties of TTA itself, and its underlying communication proto-
col are of particular interest. Several aspects of TTP/C have therefore been for-
mally modeled and analyzed, including clock synchronization [], diagnostic ser-
vices [,], the startup procedure [–], and the fault-tolerance properties of the
central guardians [], applying both deductive approaches based on interactive
theorem proving and different kinds of model checking. The algorithms imple-
mented in TTP/C provide challenging problems for formal analysis. This chapter
describes the centralmechanisms of TTP/C and their intended fault tolerance proper-
ties, and highlights the important questions that need to be addressed, and approaches
to their solution, regarding both modeling and verification.

15.2 Topics of Interest

In a TTA system, a set of “nodes” are interconnected by a real-time communication
system. A node consists of the host computer, which runs the application software,
and the communication controller, which accomplishes the time-triggered com-
munication between different nodes. The nodes communicate via replicated shared
media, the communication “channels.” There are two common physical intercon-
nection topologies for TTA. Originally, the channels were connected to replicated
passive buses, while in the more recent star topology the nodes are connected to
replicated central star couplers, one for each of the two communication channels.
However, the actual network topology is transparent and appears as a (logical) bus
to the nodes.
The distinguishing characteristic of time-triggered systems is that all system activ-

ities are initiated by the passage of time []. The autonomous TTA communication
system periodically executes a time-division multiple access (TDMA) schedule.Thus,
access to the communicationmedium is divided into a series of intervals, called “slots.”
Every node exclusively owns certain slots in which it is allowed to send messages via
the communication network. The times of the periodic message sending actions are
determined a priori, that is, at design time of the system.The send and receive instants
are contained in a message schedule, the so-called message descriptor list (MEDL).
This scheduling table is static and stored at each communication controller. It thus
provides common knowledge about message timing to all nodes.
The central aspects of the underlying communication protocol, viz. its fault-

tolerant synchronization, diagnosis, and fault-masking algorithms and components,
are described in more detail in this section.

15.2.1 Fault-Masking Functions of Central Guardians

TTA systems are designed for safety-critical applications andmust therefore provide a
sufficient degree of fault tolerance.The provision of fault tolerance is based on a given
“fault hypothesis,” that is, a set of assumptions about the types, number, and frequency
of faults. The central algorithms implemented in TTP/C such as group membership
and clock synchronization are able to tolerate only faults that manifest themselves as
either a reception fault or a consistent send fault of some node [], and they rely

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-3

on transmission faults being consistent. That is, messages must be received correctly
by either all nonfaulty nodes or none. In particular, the following three correctness
properties of the TTP/C communication are required:

• Validity: If a correct node transmits a correct message, then all correct
receivers accept the message.

• Agreement: If any correct node accepts amessage, then all correct receivers
do.

• Authenticity: A correct node accepts a message only if it has been sent by
the scheduled sending node of the given slot.

In order to satisfy the validity property, for example, even faulty nodes must not
send messages outside their assigned slots. In order to protect against such timing
faults, special hardware components, the so-called guardians, were introduced [].
A guardian is an autonomous unit that protects the shared communication network
against faulty behavior of nodes by supervising their output. The original bus topol-
ogy of the communication network employed local bus guardians, which were placed
between the nodes and the bus. However, fault injection experiments showed that
more sophisticated guardians are necessary to achieve the more demanding require-
ments for fault tolerance in the aerospace and automotive industries. In the more
recent star topology, central guardians are used in the hub of each star.
By employing knowledge about the parameters of its attached nodes, guardians

can judge whether a message sent by a node is valid and can be relayed to the other
nodes on their channel, or whether it has to be blocked. For instance, the guardians
monitor the temporal behavior of the nodes. As the time interval duringwhich a given
node is allowed to access the communication channels is statically determined, the
guardians can control the correct timing of message transmissions and bar a faulty
node from sending a message outside its designated slots. Thus, timing failures of
nodes are effectively transformed into send faults.
Moreover, guardians can protect against a particular class of Byzantine faults, the

so-called slightly-off-specification (SOS) faults. A component is called SOS-faulty if it
exhibits only marginally faulty behavior that appears correct to some components,
but faulty to others, thus violating the agreement property above. A slightly-off-
specification timing fault could occur if the transmission of a node terminates very
close to the end of its scheduled transmission interval; thus, some receivers might
accept the message while others might consider it mistimed and close the reception
window before the message is completely transmitted. Because the duration of a par-
ticular transmission is known beforehand, the guardian can prevent such a cut-off
scenario. A nodemust begin its transmission during a predefined period of time after
the start of its slot, otherwise the guardian would terminate the right to access the
communicationnetwork.Thus, the guardian can effectively prevent cut-off SOS faults,
provided that the transmission interval is chosen long enough to ensure that a trans-
mission fits the interval whenever it is started in time. Specifically, TTP/C guardians
protect against SOS faults in the line encoding of messages at the physical layer, SOS
timing faults, transmission of data outside the designated sending slots, transmis-
sion of nonagreed critical state information, and against faulty nodes masquerading

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-4 Automotive Embedded Systems Handbook

as other nodes, which violates the “authenticity” property above. These node failures
are effectively transformed into either send or receive faults, which can be tolerated
by the protocol algorithms.

15.2.2 Group Membership and Clique Avoidance

Group membership is one of the central mechanisms of the TTP/C. It provides a
consistent view to all nonfaulty nodes about which nodes are operational and which
are not.
The TDMA communication strategy enables a direct way to detect failures: since

nodes have designated slots to sendmessages, the lack of a transmission is interpreted
as an indication of failure. More precisely, if a node receives a correct message in a
given slot it considers the respective sender operational. In the case of message omis-
sions, a node takes an egocentric viewpoint and considers the sending node faulty
rather than immediately assuming a fault of itself. Consequently, using messages only
as life-signs of the sender is obviously not sufficient to cope with faulty behavior of
nodes. In order to allow for nodes to diagnose faults, the messages also carry informa-
tion about the sender’s local perception of the currentmembership, which is appended
to the ordinary data in each message.
Besides determining whether or not some other node is faulty, it is also neces-

sary for a node to be able to self-diagnose a fault of its own. Nodes can inform
a sender of a message of a fault by means of an acknowledgment mechanism. In
TTP/C, acknowledgment is accomplished implicitly. Instead of sending a separate
reply message to the original sender p, the next broadcaster q sends the acknowl-
edgment information as part of its ordinary message, by keeping or removing p in
its local membership. The previous broadcaster analyses this information to decide
whether or not its original broadcast was successful. If p finds q not acknowledging
the original message, either p failed to broadcast or q is receive-faulty. To resolve this
ambiguity, the broadcaster following qwill draw the final decision, as it will agree with
either p or q.
A similar mechanism could be used for diagnosing receive faults: if a node does not

receive an expected message it could check whether the next broadcaster maintained
the original sender in its membership set, in which case the receiver must realise that
it has suffered from a receive fault. However, TTP/C employs a slightly differentmech-
anism that is also used to avoid the formation of disjoint cliques at the same time. A
clique is a group of nodes where agreement on the current state is reached only within
the group.A receiving nodewill always exclude the current broadcaster from itsmem-
bership set if it does not agree with the membership view of the broadcaster or if no
message is received at all. In addition, each node maintains two counters that keep
track of how many messages the node has “accepted,” that is, successfully received,
and “rejected,” respectively. A node will increment its counter of rejected messages if
it does not agree with the broadcaster’s view on the membership, while the counter
of accepted messages is incremented each time the membership sets match. In its
next broadcast slot the node checks whether it has accepted more messages in the last
round than it has rejected. If so, the node resets the counters and broadcasts.The other

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-5

case indicates that the node is in disagreement with the majority of nodes and hence
will not broadcast, thus informing the other nodes about its failure.
For the group membership algorithm, one is interested in the following three

correctness properties holding true:

• Validity: At all times, nonfaulty nodes should have all and only the non-
faulty nodes in their membership sets, while faulty nodes should have
removed themselves from their sets.

• Agreement: At all times all nonfaulty nodes should have the same mem-
bership sets.

• Self-diagnosis: A node that becomes faulty should eventually diagnose its
fault and remove itself from its own membership set.

15.2.3 Clock Synchronization

Distributed dependable real-time systems crucially depend on fault-tolerant clock
synchronization. This is particularly true for the TTA, in which the nodes perform
their actions according to a predetermined, static schedule, that is, triggered by the
passage of time. Obviously, it is essential that the clocks of all nodes be kept sufficiently
close together and that the synchronization be able to tolerate faults to a certain extent.
For fault tolerance reasons every node is equipped with its own local clock, the

“physical clock,” which is typically implemented by a discrete counter. The counter
is incremented periodically, triggered by a crystal oscillator. As these oscillators do
not resonate with a perfectly constant frequency, the clocks drift with respect to some
external reference time and similarly with respect to each other. Therefore, the clocks
of the nodes must periodically be resynchronized by adjusting a node’s physical clock
in order to keep it in agreement with the other nodes’ clocks. To this end, nodes must
gain information about the readings of other nodes’ clocks.
By repeatedly adjusting a node’s physical clock, a clock synchronization protocol

implements a so-called “logical clock” for each node.The task of the synchronization
algorithm is to bound the skew, that is, the absolute difference between the readings
of the logical clocks of any two nonfaulty nodes by a small value.

Agreement: At any time, the value of the logical clocks of all nonfaulty nodes
should be approximately equal.

To exclude trivial solutions to this problem one usually requires that the adjust-
ments made to the physical clock readings are also bounded by some small value.

Accuracy:There is a small bound on the value by which a nonfaulty node’s clock
is changed during each synchronization interval.

The problem of clock synchronization is well understood, and quite a number of
different algorithms have been introduced to provide synchronized clocks, with dif-
ferent requirements or assumptions about the hardware architecture, failure model,
quality of the synchronized clocks, or the additional message overload.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-6 Automotive Embedded Systems Handbook

The clock synchronization algorithm of TTP/C belongs to the so-called
convergence-averaging algorithms, which are characterized by using averaging func-
tions to calculate a new clock value from the collected readings of the other clocks.
Typical averaging algorithms discard a defined number of largest and smallest clock
readings to compensate for possible faulty readings and adjust the node’s clock accord-
ing to the mean or the midpoint of (some of) the remaining values. However, the
algorithm implemented in TTP/C shows several special characteristics. First, it is
completely integrated into the ordinarymessage exchange of the nodes.This is accom-
plished by exploiting common knowledge about the temporal behavior of the system:
due to the TDMA-driven communication mechanism every node knows exactly at
which time to expect a message by a given sending node. This knowledge, more pre-
cisely the deviation between the time a message is expected to arrive and the actual
arrival time, is used to calculate estimates of the reading of the sending node’s clock.
The nodes, however, only keep the measured time-difference values of the four most
recently received messages. At resynchronization, a node discards the largest and the
smallest of these four clock readings and uses the average of the remaining two values
to adjust its local clock. This procedure is known as the fault-tolerant average algo-
rithm []. Moreover, the four clock readings that a node keeps for synchronization
are further constrained.The arrival time is only measured if the message is considered
correct by the receiving node. In particular, this means that sender and receiver agree
on the current protocol state, which includes the current membership. As a conse-
quence, time-difference values are only kept if the sending node belongs to the same
group as the receiver. Hence, for the correct functioning of clock synchronization it
is crucial that the agreement protocol of the membership service holds, that is, that
all nonfaulty nodes belong to the same group. This exemplifies the deep intertwining
and interesting interactions of different algorithms in TTP/C.
Apart from its peculiarities, the TTP/C algorithm is closely related to well-known

synchronization algorithms, in fact it can be seen as being a variant of both the fault-
tolerant midpoint algorithm of Lundelius-Welch and Lynch [] and the interactive
convergence algorithm of Lamport and Melliar-Smith [].

15.2.4 Startup and Reintegration

The startup problem is closely related to that of clock synchronization. While syn-
chronization has to adjust the local clocks of nodes so that they remain synchronized
despite the drift of their hardware clocks, a startup algorithm is necessary to establish
consistent values for the local clocks as the nodes first power up so that they quickly
become synchronized. A variant of startup is restart, when synchronization needs to
be reestablished after transient faults have afflicted one or more (or all) nodes.
A basic solution to the startup problem is for nodes that see no traffic for some time

to send a “wake-up” message that carries their own identity. This message provides
a common event that all nodes can use as a baseline for their local clocks, and the
identity of the sender indicates the position in the TDMA schedule to which this time
corresponds.
Of course, two nodes may decide to send wake-up messages at approximately the

same time, and these messages will “collide” on the channel. In a bus-based TTA,

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-7

the signals from colliding messages physically overlay on the medium, but prop-
agation delays cause different nodes to see the signals at different times so that
collision detection can be unreliable. In a star topology, the central guardians arbi-
trate collisions and select just one message from any that arrive at approximately the
same time to forward to the other nodes. However, each central guardian arbitrates
independently, so nodes can receive different messages on the two channels at approx-
imately the same time; resolving these “logical collisions” is the task of the startup
algorithm.
The startup algorithm executed in the nodes is based on two kinds of timeout

parameters, the listen timeout τlistenp and the coldstart timeout τcoldstartp .These timeouts
are unique to eachnode p, and the values of each listen timeout are larger than all cold-
start timeouts. Two cases are distinguished: either a starting node can (re)integrate to
an already running and synchronized set of nodes, or it must initiate or wait for a
coldstart to be executed. To determine whether there already is a synchronous set of
nodes to integrate, a node first listens to the channels for integration messages, which
are transmitted periodically during synchronous operation and that carry the current
agreed protocol state, including position in the TDMA round. If the node receives
such a message, it adjusts its state to the message contents and is thus synchronized to
the synchronous set. If the node’s listen timeout expires before an integration message
is received, a coldstart is executed.
During coldstart, a node first waits to receive a special coldstart message, which

is similar to ordinary messages but carries a protocol state suggested by the sending
node. If no coldstart message is received before the node’s coldstart timeout expires,
the node sends a coldstart message by itself. If a node receives such amessage, it resets
its clock and waits another τcoldstartp time units for the next message (either coldstart
or normal) to arrive, which will be used for synchronization. The reason why nodes
synchronize only to the second (coldstart) message they receive—amechanism called
the big bang—is the possibility that two nodes send out simultaneous or overlapping
coldstart messages. The receiving nodes will see this as a logical collision. The subse-
quent message, however, is deterministic, as no further collision can occur due to the
unique timeouts of the nodes: the node whose coldstart timeout expires first will send
first. Furthermore, as the listen timeouts are all larger than any coldstart timeout, no
newly starting node may cause another collision.
In addition to collisions, the startup algorithm must deal with faulty nodes that

may send “wake-up” messages at inappropriate times, masquerade as other nodes,
and generally fail to follow the algorithm. The central guardians can detect and mask
these faults, but increase the complexity of the algorithm since they must themselves
synchronize with the nodes during startup.
Because the communication system is replicated and there are two central

guardians, it is particularly crucial that a faulty node must not be able to initiate or
infiltrate a startup sequence to cause the two central guardians to start at different
positions in the TDMA schedule. And, of course, one of the guardians could itself
be faulty. Fault-tolerant startup of a TTA system clearly constitutes a rather intricate
problem as discussed in detail in Ref. [], and hence provides a challenging subject
for formal analysis.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-8 Automotive Embedded Systems Handbook

15.3 Modeling Aspects

Formal analysis of distributed fault-tolerant algorithms is an inherently difficult task,
which is due to the immense complexity of the behavior of such algorithms caused
by the effects of faults and failed components. Since such analyses are generally not
feasible at the implementation level of the algorithms, adequate formal models need
to be developed carefully, and a major question to be solved is which details should
be part of the model, and which should not. On the one hand, any formal model
should reflect the real world as closely as possible. On the other hand, the amount of
detail included in a formal specification greatly influences the feasibility of a mechan-
ical proof. This is true for both model checking and approaches based on theorem
proving. Regarding the first, using abstractions to limit the state space that has to be
explored in a model checking analysis is a prime issue, as the run time for an experi-
ment quickly increases as the model grows and soon becomes infeasible. Likewise, it
is advantageous for theorem proving to sharpen the specification by abstracting from
unnecessary or irrelevant details that would otherwise impede focusing on the main
aspects of a proof.

15.3.1 Modeling Computation

Many distributed algorithms, including the central algorithms of TTP/C, proceed in a
series of rounds and can easily be described as recursive functions. Correctness proofs
then typically involve more or less simple forms of induction. Rushby [] shows how
such round-based descriptions can be related to models that more closely reflect the
time-triggered execution of the algorithm. The approach proceeds in two steps, and
involves expressing the execution of an algorithm by a set of distributed nodes at
two levels of abstraction. As a first step, round-based descriptions are translated into
the untimed synchronous system model [], which can be done systematically. In this
model, all nodes are assumed to be perfectly synchronized and operate in locked steps.
The notion of time is abstractly captured by numbering the steps the nodes take. In
terms of TTP/C, these steps roughly correspond to the slots defined by the protocol
schedule.This is an abstraction from a clock synchronization mechanism.The second
step consists of refining the synchronous model into a timed synchronized model and
can be accomplished in a generic way independent from any given algorithm.
A standard way of specifying distributed algorithms are state-transition systems. To

describe a given algorithm executed by a node in a distributed system one defines the
set of states the node starts in, which messages it generates given its current internal
state, and how it moves from one state to the next at the reception of a message. More
formally, one needs to provide interpretations of three functions:

• initstate(p), which assigns an initial state to every node p
• msg(p, s), which is the message generation function and denotes the
message node p sends in state s

• trans(p, s,m), which is the state transition function and describes the new
state node pmoves to when receiving message m in state s

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-9

A snapshot of an execution of the algorithm in a distributed system at time t is
then given by the set St of internal states of all nodes, the set Ms

t of messages gener-
ated by the nodes, and the setMr

t ofmessages received by the nodes.The granularity at
which one describes how these sets evolve over time characterizes the system model.
In the untimed synchronous model, time is modeled at slot granularity and the exe-
cution of an algorithm can be described using the following three functions, where
Slot represents slot numbers and Node denotes the type of node identifiers.

• statess ∶ Slot ×Node→ State, where statess(t, p) yields the internal state of
node p at the beginning of slot t.

• sent∶ Slot ×Node→Message, where sent(t, p) represents the message
node p sends during slot t.

• rcvd∶ Slot ×Node→Message, where rcvd(t, p) denotes the message that
node p receives during slot t.

The behavior of a node in the synchronous system model is captured by relat-
ing these entities with the message generation function msg and the state transition
function trans, which constitute the given distributed algorithm. However, one has to
distinguish between nonfaulty and faulty behavior of a node. For nonfaulty nodes, one
would assume that they start in their initial states and then synchronously perform
the following steps []:

. Apply the message generation function to the current state to determine
themessage to be sent to the other nodes. Put this message in the outgoing
channels.

sent(t, p) = msg(p, statess(t, p))

. Apply the state-transition function to the current state and the messages
received through the incoming channels to obtain the new state. Remove
all messages from the channels.

statess(t, p) = { initstate(p) if t = 
trans(p, statess(t − , p), rcvd(t − , p)) if t > 

For TDMA-based communication patterns as in TTP/C, the message generation
function would yield some special value null, denoting no message, for all nodes that
are not the scheduled sending node in slot t.
The behavior of faulty nodes and the relationship of the functions that describe the

sending and the reception of messages, that is, sent and rcvd, are subject to the fault
model that is adopted for the analysis of the algorithm under study. For example, if
one needs to consider arbitrary, or Byzantine, node failures, the functions state and
sent could be assumed to yield any state or message, respectively, without necessarily
obeying the message-generation function or state-transition function. A fail-silence
behavior of a node could, for instance, be modeled by defining sent(t, p) to yield null
from some slot t onwards.
As the untimed synchronous system model abstracts from the timing aspect, algo-

rithms that specifically involve time, such as clock synchronization, are not expressible

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-10 Automotive Embedded Systems Handbook

at this level. Hence, one also needs a more detailed description to model the timing
behavior of nodes. In comparison to the model for the untimed synchronous level
the “timed synchronized model” additionally introduces entities that formalize the
local clocks of the nodes, and the state updates and generation of messages are now
described in a more fine-grained way on the level of the ticks of these clocks, rather
than in terms of slots.
The number of functions used to describe a time-triggered system is doubled

compared to the synchronous system model. In addition to the function state that
describes the internal state of a node, a function message is introduced that denotes
the message that is available to a node at a particular moment. This function extends
the notion of message reception known from the synchronous systemmodel. Still, the
function rcvd denotes the message that arrives at a node during a slot; however, in
the time-triggered model one has to take into account whether the message arrives
in time. If it does, message will correspond to rcvd, otherwise it will yield the empty
message. Moreover, functions send_time and arr_time are introduced to denote the
(realtime) instant at which a node sends and receives a message, respectively.
More formally, a time-triggered system executing a distributed algorithm is

described through the following functions:

• statett ∶ ClockTime×Node→ State, where statett(T , p) yields the internal
state of node p when its local clock reads the clock time value T.

• message∶ ClockTime×Node→Message, where message(T , p) yields the
message that is available to p when its logical clock reads the clock time
value T.

• sent∶ Slot ×Node→Message, where sent(sl, p) represents the message
node p sends during slot sl.

• rcvd∶ Slot ×Node→Message, where rcvd(sl, p) denotes the message that
node p receives during slot sl.

• send_time∶ Slot ×Node→ realtime, where send_time(sl, p) denotes the
realtime instant at which the sender p of slot sl sends its message.

• arr_time∶ Slot ×Node→ realtime, where arr_time(sl, p)denotes the arrival
time of the message p receives in slot sl.

The entities above involve two notions of time that have to be distinguished: real-
time and clocktime []. Realtime is an abstract notion and not directly observable in
the system, while clocktime is the local notion of time available to a node by way of
its clock. The (logical) clock LCp of a node p, maps real-time instants t to clocktime
values T, such that LCp(t) denotes the reading of p’s clock at realtime t.
As in the synchronous system model, the entities above need to be related to those

that actually model the distributed algorithm under study. In contrast to synchronous
world, one does not only have to formalize how a node proceeds, but also when it is to
take its steps. To this end, a function schedule(sl) is introduced that yields for every slot
sl the clock time instant at which a node is to start that slot. Slots can conceptually be
divided into a “communication phase,” where nodes send and receive messages, and
a “computational phase,” in which the nodes update their internal states []. These

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-11

concepts are reflected using a function cmp_start(sl), which denotes an offset into slot
sl at which a node ends its communication phase and begins its computation phase.
Using these functions, the internal state of a nonfaulty node can be modeled as

follows:

• At the start time of the first slot, p is in its initial state:

statett(schedule(), p) = initstate(p)

• During the communication phase of a slot, the state of a node remains
unchanged:

statett(T , p) = statett(schedule(sl), p)
if schedule(sl) ≤ T ≤ schedule(sl) + cmp_start(sl)

• At some point during its computation phase, p updates its internal state
according to its state-transition function, which is applied to the state of
p at the end of its communication phase, and the message that is available
to p at that time:

statett(schedule(sl + ), p) = trans(p, statett(T , p),m)
where T = schedule(sl) + cmp_start(sl)
and m = message(T , p)

To characterize the value ofmessage(T , p) one needs to take into account whether
node p received amessage during its latest communication phase; if so, it corresponds
to rcvd(sl, p), otherwise the message is null.

message(T , p) = rcvd(sl, p)
if schedule(sl) ≤ arr_time(sl, p) < schedule(sl) + cmp_start(sl)

15.3.2 Modeling Time

TheTTAstartup algorithmhas been subject to several formal analyses, all of which are
based on model-checking techniques. A common aspect of model checking analyses
is that a large part of the effort is devoted to keeping the size of the model in a range
that is computationally feasible, while at the same time aiming for realistic formal
models that do not employ oversimplifying abstractions.
For the startup problem, a central aspect is how to adequately capture the notion of

time in the formal model. Timed automata are a successful formalism for the ver-
ification of real-time systems and treat time in the most realistic formal way as a
continuous variable. Still, model checking timed automata are decidable, and there
are specialized model checking tools such as Kronos and UPPAAL. Lönn [] con-
siders startup algorithms for TDMA systems similar to TTA and verifies one of them
using UPPAAL.
Asmodel checking timed automata are computationally complex, other formalisms

and abstraction might be needed when emphasis is shifted from timing aspects to
analysing elaborate fault behaviors or a large number of different fault scenarios. In

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-12 Automotive Embedded Systems Handbook

their analysis of TTA startup, Steiner et al. [] use an abstraction employing discrete
time that treats slots as indivisible units. Similar to the synchronous model described
in the previous section, the model abstracts from the concrete duration of the slots
and from how much the slots at different nodes are offset. The nodes measure time
by counting off slots in the TDMA schedule and the collective behavior of a cluster of
nodes is modeled as the synchronous composition of discrete systems.
Dutertre and Sorea describe an approach that preserves time as a continuous

variable, but makes timed systems amenable to analysis also by model checkers for
discrete transition systems []. However, as the state space becomes infinite, satisfi-
ability modulo theories-based (SMT-based) bounded model checkers are necessary.
They apply their approach to verifying the TTA startup algorithm using k-induction.
Central to their approach is the concept of event calendars, which is well known

from the area of discrete-event simulation. An event calendar stores the times atwhich
certain events, such as the reception of a message by some node, will occur in the
future. Two types of transitions of such calendar automata are distinguished: time
progress transitions, which advance time, and discrete transitions, which update state
variables. At every step, only one type of transition is enabled: either time is advanced
to the instant when the next event is scheduled to occur—as controlled by the event
calendar—or one of the discrete transitions of those events that occur at the current
time is taken. Additional constraints ensure that time is always maximally advanced
and that there are no infinite sequences of discrete transitions without time progress.
The advantage of this approach is that all variables, including time, evolve in discrete
steps, and thus there is no need to approximate continuous dynamics by allowing
arbitrarily small time steps. In effect, this reduces the number of possible transitions
and thus the size of the system model.
Using calendar automata, the models of components of a system, such as the nodes

in TTA, are asynchronously composed, and synchronous communication is modeled
by the sequential application of discrete transitions. Pike observes [] that through
using a synchronous composition, multiple transitions may be applied simultane-
ously. Building upon Dutertre and Sorea, he introduces the synchronizing timeout
automata model. In this model, subsets of state variables are distinguished, which
represent portions of the state of the system that are updated synchronously. As in cal-
endar automata models, additional rules ensure progress of the system. Furthermore,
the clock in a synchronizing timeout automata model can be conservatively removed,
as the amount by which it is updated, and thus its current value can be obtained from
other components of the model. This optimization reduces both the state space and
the number of transitions of the system, and thus larger models can be analyzed. Pike
applies his approach to a reintegration protocol implemented in a related distributed
fault-tolerant architecture called Spider [].

15.3.3 Modeling Faults

Modeling fault-tolerant systems includes careful consideration of the fault hypothesis
relative towhich the systemsprovide their fault tolerance properties.The fault hypoth-
esis comprises the assumptions about the kinds of faults that can occur, the frequency
of such occurrences, and the total number of faults that can be tolerated.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-13

Hybrid fault models [,] distinguish various kinds of faults with different levels
of severity. For example, faults that can consistently be detected by nonfaulty nodes
are less severe, and are called benign, ormanifest faults. Symmetric faults can generally
not be detected immediately, but every nonfaulty node observes the same behavior.
Themost severe fault type are asymmetric faults, whichmay exhibit different behavior
to different nonfaulty nodes.
The primary fault hypothesis for TTA is the single fault hypothesis, that is, the archi-

tecture can tolerate arbitrary failures of one of its components. Recently a new, broader
fault hypothesis that addresses transient failures ofmultiple components has been dis-
cussed []. It relies on a stronger clique resolving algorithm that allows the system
to reconfigure after a transient upset by excluding faulty nodes.
There are further design choices with respect to the components to which faults

are attributed. For example, fault models can include link faults to describe failures
of the communication channels. Alternatively, channels can be seen as belonging to
either the sender or the receiver, and channel faults are abstracted by attributing them
to particular nodes. The analysis of TTA group membership algorithm, for instance,
only considers faulty nodes, which can be either send-faulty or receive-faulty. Pike
et al. [] abstract node faults as being ones only affecting a node’s ability to send,
such that a failure of a node to receive a message eventually manifests itself as a send
fault of that node.
Deductive analyses based on theorem proving can be carried out relative to rather

general fault models. Pike et al. [] propose various kinds of abstractions to facili-
tate modeling and analyzing fault-tolerant systems, including abstractions to describe
faults and their effects on the correctness of the individual messages sent and received
by nodes. In their model, there are two types of abstract messages: accepted messages
carry an associated valuem, the message data, which can be extracted by the receiving
node, while all detectably incorrect messages are abstracted as a single benign mes-
sage. Faults are abstractly modeled by a function send, which describes the abstract
message that nodes r receive from a sender s, depending on its fault status:

send(m, status, s, r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

accepted(m) if status(s) = good
benign if status(s) = benign faulty
sym(m, s) if status(s) = symmetric faulty
asym(m, s, r) if status(s) = asymmetric faulty

The functions sym and asym are uninterpreted in the sense that no further prop-
erties are assumed as to which particular messages are received. However, in case of
sym, it can be deduced that all nodes receive the same, albeit unknown, message,
while for two receivers r and r′ the message denoted by asym(m, s, r) is generally not
equal to asym(m, s, r′). Thus, the fault behavior of asymmetrically faulty nodes can
be left completely unspecified.
In contrast to this declarative approach to fault modeling, the effects of faults must

bemodeled explicitly in amodel checking context. For example, tomodel asymmetric
send faults, one needs to allow for a node to send differentmessages to different nodes.
Specification languages for model checkers usually support to express the nondeter-
ministic choice of an element froma given base set, and asymmetric send-faulty nodes

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-14 Automotive Embedded Systems Handbook

can thus be modeled by nondeterministically choosing a message for each receiving
node. Note, however, that can significantly increase the state space of the model, as
the model checker has to analyze every possible combination of messages.

15.4 Verification Techniques

Fault tolerance properties of the TTA and its underlying communication protocol
TTP/C have been formally analyzed with various techniques. This section highlights
approaches taken in both theorem proving and model checking analyses.

15.4.1 Theorem Proving

In addition to carefully developed models, an appropriate organization of proofs
is indispensable to cope with the complexity of deductive verification of fault-
tolerant systems. The techniques described in the sequel include approaches that
aim to decompose proofs into manageable steps and application of specialized proof
techniques.

15.4.1.1 Refinement

In order to facilitate the deduction, the formal proofs are generally decomposed into
a series of smaller steps. An instance of this approach is refinement-style deduction,
where one starts by specifying the desired property in an abstract form; a correctness
proof for that property is then based on a number of assumptions about entities of the
abstract model. Subsequently, more detail is added to this initial abstract model, for
instance by providing concrete interpretations for certain abstract entities. A proof
that the desired property also holds for the refined model can then be inherited
from the abstract model by demonstrating that the concrete interpretations satisfy
the assumptions on which the abstract proof relies.
The analysis of the fault tolerance properties of the central guardians in a star-

based TTA system follows this general scheme []. In order to prove that the central
guardians extend the class of faults that can be tolerated by the system, a series of
formal models is developed, which are organized in a hierarchical fashion.
Each of the models contributes a small step toward proving the desired correct-

ness properties. The steps themselves are each based on a set of assumptions, or
preconditions, and in each model layer i one establishes a theorem of the form

assumptionsi ⇒ propertiesi

The idea is to design the different models in such a way that the properties on one
level establish the assumptions on the next. Ultimately, the models are integrated and
the reasoning is combined, yielding a chain of implications of roughly the following
kind:

assumptions ⇒ properties ⇒ assumptions ⇒ properties
⇒⋯⇒ properties f

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-15

The final properties, properties f , correspond to the desired main correctness prop-
erties of the TTP/C communication, while the initial assumptions, assumptions,
describe what constitutes the basic fault hypothesis.
The most abstract model describes the reception of messages by the nodes. Here,

the various actions that nodes take in order to judge the correctness of the received
message are formalized. This amounts to considering the transmission time and the
signal encoding of the message, and the outcomes of several consistency checks. The
main correctness properties of communication are then expressed in terms of these
notions. The assumptions of this model layer concern requirements about the func-
tionality of the communication channels. In particular, they describe properties of
the messages that a channel transmits, such as signal encoding or delivery times, and
reflect the hypothesis about possible faults of the communication network. In essence,
this model establishes a proposition that informally reads as follows:

general_channel_properties⇒ Validity ∧ Agreement ∧Authenticity

The next level models the transmission of messages through channels that are not
equipped with guardians. The goal is then to derive the assumptions of the basic
model, as covered by the expression general_channel_properties. However, in order
to do so, a strong hypothesis on the types of possible faults of nodes is necessary. This
strong fault hypothesis requires, for instance, that even a faulty node does not send
data outside its sending slot, and nodes never send correct messages when they are
not scheduled to do so.

strong_fault_hypothesis⇒ general_channel_properties

Guardians are employed to transform arbitrary node faults into faults that are cov-
ered by the strong fault model. Thus, the strong fault hypothesis can be replaced with
weaker assumptions about the correct behavior of the guardians. The functionality
and the properties of the guardians are formally specified in the third model of the
hierarchy, where the following fact is established:

weaker_fault_hyp. ∧ generic_guardian⇒ general_channel_properties

Themodel of the guardians is generic, as it does not, for instance, stipulate the type
of guardian to be used in the communication network.The final level of the hierarchy
models each of the two typical topologies of a TTP/C network: the bus topology and
the star topology. In the former, each node of the network is equipped with its own
local bus guardian, one for each channel, while in the latter the guardians are placed
into the central star-coupling device of the channels. In this model layer it is shown
that the properties of the guardians are independent from the choice of a particular
topology, given that both the local bus guardians and the central guardians implement
the same algorithms. Hence, the following facts are established:

local_bus_guardian ⇒ generic_guardian
central_star_guardian ⇒ generic_guardian

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-16 Automotive Embedded Systems Handbook

15.4.1.2 Generic Verification

A verification strategy similar to refinement is that of “generic verification.” As in the
refinement approach, an abstract formulation of the problem is developed and a proof
of correctness is based on certain abstract assumptions. The difference is, however,
that this abstractmodel is intended to cover awhole class of similar problem instances.
In this sense, the verification is generic, as it is valid for various implementations,
provided that these satisfy the abstract assumptions.
The clock synchronization algorithm of TTP/C has been analyzed using this

approach [] and follows similar developments for other algorithms in the long his-
tory of verification for clock synchronization. It was observed by Schneider [] that
the correctness arguments of averaging algorithms are quite similar.This class of algo-
rithms can be captured in an abstract way by introducing the concept of a convergence
function Cfn to describe the way the adjustments to a node’s physical clock are com-
puted. To carry out the re-synchronization, a node p has to obtain estimates of the
readings of the other nodes’ clocks in one way or the other, and the values are stored
in an array Θp . The value Θp(q) then represents p’s estimate of q’s clock reading at
the time of re-synchronization. The convergence function is applied to this array of
clock readings, such that Cfn(p, Θp) is the new, corrected reading for p’s clock. The
difference between this value and the current reading of p’s clock yields the amount
by which p has to adjust its clock.
Schneider stated several rather general assumptions on the convergence function

and showed that they are sufficient to prove the correctness of several averaging
algorithms. Subsequently, Shankar used the Ehdm system to mechanically verify
Schneider’s proof [], and Miner [] has further improved the constraints and the
organization of the proof itself.
The agreement property for clock synchronization states that at all times the differ-

ence of the clock readings of any two nonfaulty nodes p and q is bounded by a fixed
value Δ:

∣LCp(t) − LCq(t)∣ ≤ Δ

Theproof of the agreement property is generally accomplished throughmathemati-
cal induction on the number of resynchronization intervals. The induction hypothesis
states that at the beginning of each interval, the skew between any two clocks is
bounded by some value Δ < Δ.Then it is shown that during the next interval, during
which the clock readings may drift apart from each other, the skew does not exceed
Δ. Finally one has to prove that the application of the convergence function brings the
clocks closer together again, so that the next interval can start with the clocks being
within Δ of one another. The latter step is the harder one; the former simply imposes
certain constraints on the maximum precision that can be achieved given concrete
values for the drift rate of the clocks and the length of a synchronization interval.
Schneider’s assumptions essentially express in a generic way the properties that are

necessary to accomplish the inductive step in the proof of agreement. Some of them
concern the interrelationships among the various quantities involved in the synchro-
nization algorithm, such as the assumed bounds on the drift rate of the clocks, or

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-17

the maximum error made when estimating a remote node’s clock. The more impor-
tant of the assumptions are concerned with the behavior of the convergence function
that a clock synchronization algorithm exploits. The usefulness of these conditions is
for the most part due to their isolation of purely mathematical properties from other
concepts such as, for example, faulty components.
One of the central assumptions is called precision enhancement and is used to bound

the skew between the two applications of the convergence function. The actual bound
depends on the skews between the values in the array of estimated clock readings.
Given two such arrays θ and γ used by two nodes p and q, respectively, precision
enhancement states that the absolute values of the convergence function applied by
p and q do not differ by more than a quantity Π(X ,Y), provided that corresponding
entries in θ and γ differ by no more than X and the values in θ and γ, respectively, fall
within a range Y . Furthermore, it is required that Π(X ,Y) < Y for the precision to
be truly enhanced.

Precision Enhancement: Given a subset C of the n nodes such that ∣C∣ ≥
n − f , where f is the number of faults to be tolerated, there is a bound
Π(X ,Y) such that

if ∀l ∈ C ∶ ∣γ(l) − θ(l)∣ ≤ X and
∀l ,m ∈ C ∶ ∣γ(l) − γ(m)∣ ≤ Y and ∣θ(l) − θ(m)∣ ≤ Y

then ∣Cfn(p, θ) − Cfn(q, γ)∣ ≤ Π(X ,Y)

ThePrecision Enhancement condition involves a subsetC of the n nodes fromwhich
readings are stored in the arrays θ and γ. The elements of C must satisfy the precon-
ditions of Precision Enhancement, and it is required that C contains at least n − f
elements. For the algorithm to tolerate f arbitrary (Byzantine) faults it is crucial that
n is at least  f +  (cf. Ref. []). This ensures that the sets of readings used in the
convergence function by two nodes overlap.
The intuitive interpretation of C is the set of readings from non-faulty clocks. How-

ever, the properties as stated do not directly enforce this interpretation ofC; in fact, no
distinction ismade between faulty and nonfaulty clocks. In thisway Schneider’smodel
is also applicable to synchronization protocols that may use readings from faulty
clocks, or possibly disregard readings from nonfaulty ones—as the TTP/C algorithm
does—but ensure that the readings actually used do satisfy certain mathematical
constraints.
The application of Schneider’s general results for the clock synchronization algo-

rithm of TTP/C, proceeds in three steps. First, a ground model of the algorithm
is developed that follows closely the definitions in the informal protocol specifica-
tion []. In an intermediate step this groundmodel is transformed into an equivalent,
butmore abstract version that describes the clock synchronization algorithm in terms
of Schneider’s generic concepts. Finally, the synchronization algorithm as stated in
the abstract model is proved to indeed satisfy the various conditions of Schneider’s
generic proof.
One of the crucial steps in the formal analysis of the TTP/C algorithm is defin-

ing an appropriate interpretation of the set Cmentioned in the definition of Precision
Enhancement. Traditionally, the set C is interpreted as the set of nonfaulty nodes.This

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-18 Automotive Embedded Systems Handbook

interpretation is feasible under a fault hypothesis that at all times at most f nodes are
faulty. The rationale behind this definition is the implicit assumption that nodes can
obtain the clock readings of a non-faulty nodes with only small errors, and that two
nodes obtain approximately the same results when reading the clock from the same
nonfaulty node. The important aspect about the clock readings, which the precon-
ditions in the definition of Precision Enhancement emphasize, is their quality rather
than their origin. As a node in the TTP/C algorithm only keeps the readings of the last
four nodes fromwhich it has received a message, n cannot be taken to be the number
of nodes of the system and let C denote the set of nonfaulty nodes.This is because one
would not be able to establish suitable bounds X and Y such that the preconditions of
Precision Enhancement are satisfied also for those nonfaulty nodes from which there
are no clock readings stored in a node’s queue.
For the TTP/C instance, C is therefore defined as the intersection of the sets of

those nodes fromwhich clock readings are available in any node’s queue. To establish
the proof of Precision Enhancement for TTP/C it must then be demonstrated that C
contains at least three elements, that is, any two nonfaulty nodes p and q must have
clock readings from at least three common nodes in their respective arrays [].

15.4.1.3 Disjunctive Invariants

The agreement property of group membership, that is, that the algorithm maintains
a consistent view among the nodes about which other nodes are operating correctly,
is an invariant, also called a safety property, which holds for all reachable states of the
system. Traditionally, such invariant properties are verified by some formof induction
proof: one demonstrates that the property holds in the initial state(s) and that all state
transitions preserve the property. However, the desired properties are rarely inductive
and hence, in order to establish the proof of the induction step, have to undergo a
process of strengthening by conjoining additional properties. In turn, these additional
properties, too, have to be invariants. Usually, this process has to be repeated several
times before the induction proof can be accomplished.
Rushby proposed a method of proving invariant properties based on a symbolic

forward reachability analysis of the possible states of the algorithm [].This method
facilitates the construction of inductive invariant properties by using disjunctive
invariants, and it was applied in the verification of the group membership algorithm
of TTP/C [].
Starting from an initial state, the state updates carried out by the nodes when exe-

cuting one step of the algorithm are examined repeatedly. At every step, the states
of all nodes are described in a uniform way to form a certain configuration of the
algorithm. The execution of one step of the algorithm then corresponds to a transi-
tion from one configuration to another. The set of configurations and transitions can
naturally be illustrated through a diagrammatical representation, the configuration
diagram.
The configurations of the system form the nodes of this diagram, and arrows denote

transitions from one configuration to another and are labelled with so-called tran-
sition conditions. The diagram can be seen as a graphical representation of a large

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-19

part of the proof of the correctness properties, since each transition corresponds to
a lemma, which embodies the assertion that one step in the execution of the algo-
rithm leads the system to move from one configuration to another. Configurations
are parameterized by the time t and describe the global state the system is in. Con-
figurations can have additional parameters, such as nodes whose internal states are
different from those of other nodes in the system, or additional entities necessary to
describe the system state. The labels of transitions express the preconditions for the
system to move from one configuration to another. The transition conditions leading
from one configuration need not necessarily be disjoint, but one has to show that they
are complete in the sense that their disjunction is true.
A diagram for an algorithm such as TTP/C group membership can be developed

systematically by repeatedly applying the following steps:

. Start with defining some initial configuration that typically contains all
the initial states.

. Choose one of the configurations and invent some transition conditions
for it. To this end, one must analyze the algorithm to deduce the possible
branches the algorithm can take. In order to ensure coverage of all cases
one must prove that the disjunction of all transition conditions is true.

. Then, for each new transition condition, symbolically simulate one step of
the algorithm in the given configuration.

. Now decide whether the result of the simulation becomes a new configu-
ration or whether it is a variant or generalization of an already existing
one. In either case, the validity of a transition, that is, that the algo-
rithm indeed takes a step from one configuration to another, must be
proved.

. Steps – must be repeated for each configuration and each transition
condition until the diagram is closed.

The definitions of the configurations must be chosen such that the correctness
properties of the algorithm can be proved. This requires that the description of each
configuration implies the desired safety properties and that the disjunction of the tran-
sition conditions leading from any one configuration evaluates to true; this ensures
that there is no other configuration the system can possibly get into.
There are several benefits to this approach: the configuration diagram can serve

as a comprehensible explanation of the algorithm, provides further insight in its
functioning, and allows for straightforward what-if analyses. In such analyses, the
consequences or effects of small changes, for instance to the algorithm itself or to
the fault model, are examined. The graphical representation of the structure of the
membership algorithm lets one trace the impact of the change through the diagram
in order to identify the situations where the algorithm might fail. Last, but not least,
the analysis does not depend on the size of the system, that is, the number of nodes
involved. In fact, since the problem size is an uninterpreted parameter of the model,
that is, represents a fixed but arbitrary value, the analysis is valid for any number of
nodes.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-20 Automotive Embedded Systems Handbook

15.4.1.4 Assume–Guarantee Reasoning

As a consequence of the tight integration of services in the TTP/C protocol suite,
clock synchronization and group membership both rely on the correct operation of
the other. Obviously, for group membership to work the nodes must be synchronized
in order to be able to send and receive messages. Likewise, clock synchronization also
depends on group membership, because when collecting estimates of remote clocks,
the nodes use only messages from senders that belong to the same group. Therefore,
the question arises whether any correctness statement is meaningful if the formal
analysis of a particular service is carried out in isolation and is based on assump-
tions about the correctness of others, as this kind of circular reasoning usually is
unsound.
There is an escape for TTP/C, however, because the circular dependency can be

broken by dividing the reasoning according to the synchronization intervals of the
protocol execution. In fact, for group membership to work properly in the ith inter-
val, the ith resynchronization must have been correct, which in turn relies on group
membership having worked correctly in interval i − , and so forth. Rushby [] con-
jectures that a proof rule introduced by McMillan [] can be applied to accomplish
an integrated proof of correctness for group membership and clock synchronization
in an assume–guarantee style. McMillan’s rule states that if a component X guaran-
tees that a property P is true at time t provided that another property P is always true
upto time t − , and conversely a component X guarantees that P is true at time t
provided that P is always true upto time t−, then the composition of X and X guar-
antees that the conjunction of P and P is always true. The rule furthermore allows
both the premises and the conclusion to be relative to the validity of some “helper
property” H. It is easy to see how this rule could, in principle, be instantiated to the
membership and clock synchronization problem.
The approach to an integrated analysis described in Ref. [] indeed resembles this

style of reasoning, although a formal correspondence has not been shown. The goal
is to prove, by way of induction, that in all synchronization intervals i both clock
synchronization and group membership work correctly, denoted cs(i)∧mem(i). The
verification of groupmembership described in Ref. [] provides a proof for the second
conjunct.The first, however, is a bit more involved, as the induction step for clock syn-
chronization requires that the nodes base their calculation of clock adjustments on a
sufficiently large set of commonmessages, which relies on the availability of the group
membership service. This requirement can be captured by some predicate cs_req(i),
such that the induction step for clock synchronization actually reads

cs_req(i) ∧ cs(i) ⇒ cs(i + )

The property cs_req(i) must therefore be proved from the correctness of mem-
bership in the ith interval, mem(i). However, these facts are expressed on different
levels of abstraction: the latter is proved in the untimed synchronous system model
(in order to abstract from clock synchronization), while the former uses the timed
synchronized model. Rushby [] showed that the untimed synchronous model is
a sound abstraction of the timed model, but the proof relies on the clocks of the
nodes being synchronized. Hence, in order to prove cs_req(i) from the correctness

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-21

of membership, one additionally needs the clock synchronization property in the ith
interval:

mem(i) ∧ cs(i) ⇒ cs_req(i)

Provided that the clocks are initially synchronized, the overall induction proof can be
accomplished using this additional lemma [].

15.4.2 Model Checking

Model checking is an attractive technique as the verification process is essentially
automatic. However, methods based on exhaustive state exploration require that the
state space of the system being analyzed is finite. Bounded model checkers encode
the system model into logical formulae and search for counterexamples of a given
property using a satisfiability solver. Tools such as BarceLogic [], CVC Lite [],
MathSAT [], Yices [], or Z [] integrate satisfiability solving with decision pro-
cedures for a combination of theories, including, for instance, linear arithmetic over
reals and integers, and thus provide satisfiability modulo theories. These SMT-solvers
can be used to handle infinite systems in bounded model checking. Bounded model
checking is a technique primarily used for refutation rather than verification. It can
be extended, however, to prove safety properties by a method known as k-induction.

15.4.2.1 State Space Exploration

As model checking is an automatic technique that can provide counterexamples to a
property for failed verification attempts, it can be used beneficially in the design of
fault-tolerant algorithms. During the design phase variations of an algorithm or its
parameters are explored against several execution scenarios or different fault cases.
The challenge is to get quick feedback of model checking experiments on a usefully
large number of such scenarios to allow an interactive exploration of the design space.
To this end, attention has to be paid to keeping the state space of the models at a
feasible size. As a design becomes consolidated, attention shifts from exploration to
verification and the challenge for model checking becomes one of covering a truly
exhaustive set of scenarios for a realistically accurate model in reasonable time.
Steiner et al. [] describe an approach to control the size of the state space in an

analysis of a new startup algorithm for TTA, so that a single model can be used both
for exploring various alternatives of the algorithm and for verifying the robustness of
the final design. Faults vastly increase the state space that must be explored in model
checking. Faults introduce genuinely different behaviors, but can also produce states
that differ in irrelevant ways in the sense that they are distinguished by the model
checker, but do not have different effects on the system behavior. For example, the
concrete state of a faulty node might be irrelevant once the correct components have
excluded this node from further consideration. A valuable trick in modeling fault-
tolerant algorithms is to set the states of faulty components to fixed values once they
can no longer affect the behavior of the system. In the analysis of the startup algo-
rithm, thismechanismproved essential to reduce the state space for very largemodels,
although it had only little effect on small or medium-sized models.

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-22 Automotive Embedded Systems Handbook

To control the various ways a faulty node can influence the system, the model is
parameterized by a special variable that selects the fault modes that a faulty node
may exhibit. A faulty node is simulated as one that can send arbitrary messages in
each slot and the possible outputs of such a faulty node are classified into six dif-
ferent fault degrees. For example, a fault degree of  allows a faulty node only to fail
silently, while the highest fault degree of  allows a node to send an arbitrary combina-
tion of coldstart messages and normal messages with correct or incorrect semantics,
noise, or nothing on each of the two channels. Using smaller values for the fault degree
and the number of nodes considered allows trading execution time required against
thoroughness of the exploration performed by the model checker.
However, for verification one is interested in “exhaustive” simulation of faults.

Exhaustive fault simulation means that all hypothesized fault modes are modeled and
all their possible scenarios are examined. For startup, this means model checking the
algorithm with the fault degree set to  for a reasonable-sized cluster. Steiner et al.
were successful verifying the correctness of TTA startup, viz., that within a bounded
time all correct nodes will become active and have a consistent view on the current
position in the schedule, for upto five nodes [].

15.4.2.2 Infinite-State Bounded Model Checking

Bounded model checking [] is basically a technique to check whether a state-
transition system contains an execution that reaches a state in k steps that violates
a given property P. This problem can be translated into one determining the satisfi-
ability of the formula F = I(s) ∧ T(s , s) ∧ ⋯ ∧ T(sk− , sk) ∧ ¬P(sk), where I is
a predicate defining the initial states of the system, and T is the transition relation.
For finite systems, I and T are encoded as Boolean formulae and satisfiability solvers
are used to check the formula. Infinite-state bounded model checkers rely on deci-
sion procedures that solve quantifier-free first-order formulae over a combination of
decidable theories. As these SMT-solvers have become ever more efficient, bounded
model checking has gained increasing attention as a method for analyzing systems.
If the property to check is a safety property of the form ◻P—meaning P should be

true in all reachable states of the system—and a sequence of states satisfying the for-
mula F exists, then one can conclude that ◻P is not true. However, the converse does
not hold, that is, if F is not satisfiable, one cannot conclude that ◻P is true, because
there might be no execution traces of length k at all, or the property might be true
for xk but violated in some earlier state. One can account for these cases by iteratively
increasing the depth k and checking for every step whether P is violated in any of the
states s , . . . , sk ; however, neither method can be used to prove ◻P, since the failure to
find counterexamples for some length does not preclude that there some longer ones.
Note that bounded model checking is not limited to safety properties; this example is
used to facilitate the illustration.
To actually prove a safety property P bounded model checking is extended to

k-induction. For a fixed depth k, one needs to show in the base case that all states of a
sequence of length k starting from an initial state satisfy P.The induction step consists
of proving for any sequence of states of length k + , that if the first k states satisfy P,
then so does the last one. In most cases, the invariant P needs to be strengthened to

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-23

make it inductive. An easy way to do so is to increase the depth parameter k. How-
ever, the effort to solve the corresponding formulae increases exponentially with k,
and the problem will eventually become infeasible. Alternatively, one can strengthen
the invariant with an additional property Q and prove both the base case and the
induction step under the additional assumption that all states of the sequence of states
considered also satisfy Q. To be sound, Q itself must be a safety property, and thus
plays the role of a lemma in the proof of P.
Dutertre and Sorea have used the SAL system [] to apply infinite-state bounded

model checking with k-induction to the TTA startup algorithm []. Their study
demonstrated that sophisticated effort is necessary to cope with the complexity of the
proof. For example, even for a simplified model of the algorithm with only two nodes
that are also assumed to be reliable, which allows to use guardians of only very lim-
ited functionality, the proof for the safety property fails for values of k upto . Using
three simple lemmas, the proof succeeds for two nodes, but already becomes compu-
tationally infeasible when the number of nodes is increased to three. To accomplish
the proof for higher numbers of nodes, strengthen the property using an abstraction
of the algorithm. To obtain an appropriate abstraction, they apply the technique of
disjunctive invariants, which has also been used in the deductive verification of the
TTA groupmembership algorithm. By examining how the startup algorithm works, a
number of abstract configurations and corresponding abstract transitions are defined.
To prove the abstraction correct, a monitor module is built, which checks that there is
a transition in the abstract model for every transition that the concrete algorithm can
take. The abstraction approach turned out to be feasible to prove the desired safety
property for a fault-tolerant version of startup with one reliable guardian and at most
one faulty node for systems of upto  nodes.

15.5 Perspectives

The safety-critical nature of the range of applications envisaged for the TTA demands
a high level of confidence in the correctness of the underlying principles. Several of
TTA’s key aspects have therefore been subjected to formal analyses in order to con-
tribute to achieving the required degree of reliability. Fault-tolerant algorithms are,
however, inherently difficult to analyze because of the possibly unrestricted behav-
ior of faulty components, which immensely increases the complexity of the analyses.
Hence, formal verification has focused on the most crucial algorithms of the TTA
that warrant the effort. To reduce complexity, some aspects have been analyzed only
under restricted fault models, like the group membership algorithm, on a higher
level of abstraction, or in a simplified form, such as the startup algorithm. The chal-
lenge remains to provide comprehensive analyses of TTA’s fault tolerance properties,
including the interactions and interdependencies of the individual algorithms.
In addition to formally verifying the central protocol services, future research will

also have to address the higher-level properties of TTA, such as, for instance, par-
titioning, that are not provided by a particular algorithm, but rather emerge from
the interplay of the various protocol services and the architectural properties of the
TTA. To this end, suitable formalmodels are necessary that satisfactorily capture these

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-24 Automotive Embedded Systems Handbook

emergent properties, and adequate compositional verification techniques need to be
developed to enable formal proofs of the correctness claims.
Furthermore, future formal analyses will need to widen the scope from the veri-

fication of key components of the TTA on rather abstract levels of formal models to
providing a complete chain of correctness arguments from the level of applications
built on top of a TTA to the silicon implementation of its protocol services. There
are efforts in these directions for systems similar to TTA. For example, the SPIDER
architecture is being developed at NASA Langley by a team of both electronics engi-
neers and formal methods researchers who apply theorem proving in a rigorous
design verification of the underlying communication system to ensure a tight connec-
tion between the verified formal models and the hardware implementation [,]. In
the context of FlexRay, the VeriSoft project aims at a pervasive verification of the full
range of an automotive system, including models at the application layer, the com-
munication layer and the device drivers for the bus interfaces of a real-time operating
system, and the gate-level implementation of FlexRay bus interfaces [].
Ultimately, a major research challenge consists in extending the formal modeling

and verification techniques toward a state where formal analyses can eventually be
used as a basis in the certification of time-triggered systems.

References

. H. Kopetz. The time-triggered approach to real-time system design. In B. Randell,
J.-C. Laprie, H. Kopetz, and B. Littlewood, Editors, Predictably Dependable Computing
Systems. Springer-Verlag, New York, .

. H. Kopetz. The time-triggered architecture. In Proceedings of the First International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC), Kyoto,
Japan, April , pp. –.

. H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
(): – , January .

. H. Pfeifer, D. Schwier, and F. von Henke. Formal verification for time-triggered
clock synchronization. In C. Weinstock and J. Rushby, Editors, Dependable Com-
puting for Critical Applications (DCCA-), San Jose, CA, Dependable Computing and
Fault-Tolerant Systems, :–, January .

. A. Bouajjani and A. Merceron. Parametric verification of a group membership algo-
rithm. In W. Damm and E.-R. Olderog, editors, Proceedings of the Seventh Inter-
national Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT), Oldenburg, Germany, Lecture Notes in Computer Science, :–,
.

. H. Pfeifer. Formal verification of the TTP group membership algorithm. In T. Bolog-
nesi and D. Latella, editors, Formal Methods for Distributed System Development—
Proceedings of FORTE XIII/PSTV XX, Pisa, Italy, October , pp. –.

. B. Dutertre and M. Sorea. Modeling and verification of a fault-tolerant real-time
startup protocol using calendar automata. In Y. Lakhnech and S. Yovine, Editors, For-
mal Techniques,Modelling andAnalysis of Timed and Fault-Tolerant Systems, Grenoble,
France, Lecture Notes in Computer Science, :–, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-25

. A. Merceron, M. Müllerburg, and G. Pinna. Verifying a time-triggered protocol in
a multi-language environment. In W. Ehrenberger, Editor, Proceedings of the th
International Conference on Computer Safety, Security and Reliability (SAFECOMP),
Heidelberg, Germany, Lecture Notes in Computer Science, :–, .

. W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. Model checking a fault-tolerant startup
algorithm: From design exploration to exhaustive fault simulation. In Proceedings
of the International Conference on Dependable Systems and Networks (DSN). IEEE
Computer Society, June .

. H. Pfeifer and F. von Henke. Modular formal analysis of the central guardian in
the time-triggered architecture. In M. Heisel, P. Liggesmeyer, and S. Wittmann, edi-
tors, Proceedings of the rd International Conference on Computer Safety, Reliability,
and Security (SAFECOMP), Potsdam, Germany, Lecture Notes in Computer Science,
:–, September .

. H. Kopetz. The time-triggered (TT) model of computation. In Proceedings of the th
IEEE Real-Time Systems Symposium, Madrid, Spain, , pp. –.

. G. Bauer, H. Kopetz, and W. Steiner. Byzantine fault containment in TTP/C. In Pro-
ceedings of the First International Workshop on Real-Time LANs in the Internet Age
(RTLIA), Vienna, Austria, June , pp. –.

. G. Bauer,H.Kopetz, andW. Steiner.The central guardian approach to enforce fault iso-
lation in the time-triggered architecture. InProceedings Sixth International Symposium
on Autonomous Decentralized Systems (ISADS), April , Pisa, Italy, pp. –.

. H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed real-time sys-
tems. IEEE Transactions on Computers, ():–, .

. J. Lundelius-Welch and N. Lynch. A new fault-tolerant algorithm for clock synchro-
nization. Information and Computation, ():–, April .

. L. Lamport and P. Melliar-Smith. Synchronizing clocks in the presence of faults.
Journal of the ACM, ():–, January .

. W. Steiner. Startup and recovery of fault-tolerant time-triggered communication. PhD
thesis, Technische Universität Wien, Institut für Technische Informatik, .

. J. Rushby. Systematic formal verification for fault-tolerant time-triggered algorithms.
IEEE Transactions on Software Engineering, ():–, September .

. F. Cristian. Reaching agreement on processor-group membership in synchronous
distributed systems.Distributed Computing, ():–, .

. N. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, San Francisco, CA,
.

. H. Lönn. Initial synchronization of TDMA communication in distributed real-time
systems. In The th International Conference on Distributed Computing Systems
(ICDCS ’), Austin, TX, May , pp. –.

. L. Pike. Formal verification of time-triggered systems. PhD thesis, Indiana University,
Bloomington, IN, .

. W. Torres-Pomales,M.Malekpour, and P.Miner. ROBUS-: A fault-tolerant broadcast
communication system. NASA Technical Momerandum NASA/TM--,
NASA Langley Research Center, March .

. M. H. Azadmanesh and R. M. Kieckhafer. Exploiting omissive faults in synchronous
approximate agreement. IEEE Transactions on Computers, ():–, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

15-26 Automotive Embedded Systems Handbook

. P.M.Thambidurai andY.-K. Park. Interactive consistencywithmultiple failuremodes.
In Seventh Symposium on Reliable Distributed Systems, Colombus, OH, , pp. –
.

. W. Steiner, M. Paulitsch, and H. Kopetz. The TTA’s approach to resilience after
transient upsets. Real-Time Systems, ():–, .

. L. Pike, J.Maddalon, P.Miner, and A. Geser. Abstractions for fault-tolerant distributed
system verification. In K. Slind, A. Bunker, and G. Gopalakrishnan, editors,Theorem
Proving inHigher Order Logics (TPHOLs), Park City, Utah, Lecture Notes in Computer
Science, :–, .

. H. Pfeifer and F. von Henke. Modular formal analysis of the central guardian in the
time-triggered architecture. Reliability Engineering & System Safety, ():–,
.

. H. Pfeifer. Formal analysis of fault-tolerant algorithms in the time-triggered architec-
ture. PhD thesis, Ulm University, Germany, .

. F. Schneider. Understanding protocols for Byzantine clock synchronization. Technical
Report -, Cornell University, Ithaca, NY, August .

. N. Shankar. Mechanical verification of a generalized protocol for Byzantine fault-
tolerant clock synchronization. In J. Vytopil, editor, Formal Techniques in Real-Time
and Fault-Tolerant Systems, Nijmegen, the Netherlands, Lecture Notes in Computer
Science, :–, January .

. P.Miner.Verification of fault-tolerant clock synchronization systems.NASATechnical
Paper , NASA Langley Research Center, January .

. D. Dolev, J. Halpern, and H. Strong. On the possibility and impossibility of achieving
clock synchronization. Journal of Computer and System Sciences, ():–, April
.

. TTTech. Time-triggered protocol TTP/C High-Level specification document, Proto-
col Version .. http://www.tttech.com/technology/specification.htm, .

. J. Rushby. Verification diagrams revisited: disjunctive invariants for easy verifica-
tion. In E. Emerson and A. Sistla, Editors, Computer-Aided Verification (CAV ),
Chicago, IL, Lecture Notes in Computer Science, :–, July .

. J. Rushby. An overview of formal verification for the time-triggered architecture. In
W. Damm and E.-R. Olderog, Editors, Proceedings of the Seventh International Sym-
posium on Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT),
Oldenburg, Germany. Lecture Notes in Computer Science, :–, September
.

. K. L. McMillan. Circular compositional reasoning about liveness. In L. Pierre and
T. Kropf, Editors, Correct Hardware Design and Verification Methods, Bad Herrenalb,
Germany, Lecture Notes in Computer Science, :–, .

. R. Nieuwenhuis and A. Oliveras. Decision procedures for SAT, SAT modulo theo-
ries and beyond.The Barcelogictools. (invited paper). In G. Sutcliffe and A. Voronkov,
Editors, h International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, LPAR’, Montego Bay, Jamaica, Lecture Notes in Computer Science,
:–, .

. C. W. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In R. Alur and D. Peled, Editors, Computer Aided Verification: th

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Formal Methods in the Automotive Domain: The Case of TTA 15-27

International Conference, Vol.  of Lecture Notes in Computer Science, Springer,
, pp. –.

. M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, P. van Rossum, S. Schulz, and
R. Sebastiani. The MathSAT  system. In Robert Nieuwenhuis, editor, CADE, Lecture
Notes in Computer Science, :–, .

. B. Dutertre and L. deMoura. A fast linear-arithmetic solver forDPLL(T). In T. Ball and
R. B. Jones, Editors, Seattle, WA, CAV, Lecture Notes in Computer Science, :–,
.

. L. de Moura and N. Bjørner. Efficient E-matching for SMT solvers. In Frank Pfen-
ning, editor, Proceedings of the st International Conference on Automated Deduction
(CADE), Bremen, Germany, Lecture Notes in Computer Science, : .

. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.
In M. Zelkowitz, editor, Advances in Computers, Vol. , Chapter . Academic Press,
New York, .

. L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari. SAL
. In R. Alur and D. Peled, editors, Computer-Aided Verification, CAV , Boston,
MA, Lecture Notes in Computer Science, :–, July .

. W. Torres-Pomales, M. R. Malekpour, and P. S. Miner. Design of the protocol pro-
cessor for the ROBUS- communication system. NASA Technical Momerandum
NASA/TM--, NASA Langley Research Center, November .

. T. In der Rieden, D. Leinenbach, andW. J. Paul. Towards the pervasive verification of
automotive systems. In D. Borrione and W. J. Paul, Editors, CHARME, Saarbrücken,
Germany, Lecture Notes in Computer Science, :–, .

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Index

A

Abstractions, -–-; see alsoModel-
based development (MBD)

Adaptive cruise control (ACC), -, -
Advanced driver assistance systems

(ADAS), -
Amplitude modulation and phase-shift

measurement, -–-
Analog-to-digital converter (ADC), -
Analysis techniques, -–-
Anti-blocking system, -
Antilock braking system (ABS), -, -, -,

-, -, -, -
efficiency of, -

Application interface (AI), -–-, -,
-–-, -

Application programming interface (API),
-, -, -

service, -
Application software (ASW), -–-, -,

-–-, -–-
Architecture and Analysis Description

Language (AADL), -
Architecture description languages

(ADLs), -
approaches in, -–-
automotive

behavior modeling, -
structure, -–-
synthesis, -–-
system requirements, -
variability, -–-
verification and validation, -

engineering information challenges
analysis and synthesis techniques,

-–-
concurrent engineering, -
cost reduction and lead

time, -
development organization and

information exchange, -

product complexity, -
prototyping, -
quality and safety, -
reuse and product line

architectures, -
practice state

 bit implementation, -
brake-slip-control algorithm,

-
control algorithm development,

-–-
control algorithms, implementation

and ECU integration of, -
model-based design, -–-
rapid prototyping, -–-
software function, model-based

development, -
technical system architecture testing

and honing, -–-
throttle controller, task process

schedule and message
flow, -

tools, -–-
wheelslip determination, -

Artifacts, feature-based configuration, -
ASAM FIBEX format, -
ASCET tools, automotive industry

brake-slip-control algorithm
in, -

throttle controller, simple model, -
Automatic stability control (ASC), -, -
Automation, -; see alsoModel-based

development (MBD)
Automotive applications

abstraction levels and system views in, -
architecture description languages for, -

Automotive communication systems
automotive communication

protocols, -
car domains, -–-
event-triggered vs. time-triggered, -

networks, role of, -

I-1

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

I-2 Index

multiplexed communications,
-–-

networks and requirements
classification, -

optimized networking architectures, -
cross-domain data, -

system engineering, -
schedulability analysis, -

Automotive electronics, product lines, -
artifact-level variability

artifact-local variability and difficulties,
-–-

configuration of, -
evaluation, representations of, -
representations mapping, -–-
variability and ECU requirements

specifications, -–-
characteristics

and product-line engineering,
-–-

software product lines, concepts,
-–-

global coordination, variability of,
-–-

highly complex product lines,
-–-

small- to medium-sized product lines,
-–-

terminology, basics, -–-
automotive domain, feature

modeling, -
feature modeling and variability

modeling, -–-
software product lines, -–-
variability, -–-

Automotive embedded system, -
Automotive modeling language (AML)

abstraction levels, -
functions and, -

AUTomotive Open System ARchitecture
(AUTOSAR), -, -–-,
-, -, -–-

application level signals, -–-
approach, -
architecture, -–-
business aspects, -–-
COM component and, -–-
communication

models and modes, -–-
services, -

compliant ECUs, demonstration of
concepts shown, -–-
cruise control, -
demonstrator description, -–-

concept
network topology, -
ports and interfaces, -
software and hardware

architecture, -
software components and

connectors, -
conformance testing, -

execution steps, -
data signaling, -
development processes and

tooling, -–-
event signaling, -
goals of, -
information types, -
I-PDU and, -–-

direct and mixed mode
transmission, -

transmission mode and signal transfer
property, -

layered software architecture, -–-
methodology

description of, -
objectives of, -

migration and AUTOSAR ECU, -
mixed systems, -
necessary steps, -–-

modeling
concepts of, -

models, templates, and exchange
formats, -

N-PDU and, -–-
objectives of, -–-
OEM–supplier collaboration,

-–-
parts, -
phase II objectives, -–-
pillars of, -
reference architecture, -
service types, -–-
setting up, partners and members of, -
software

architecture, -, -
components and architecture, -
components application,

-–-

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Index I-3

standardization areas
BSW, -–-
ICC, -
ICC and ICC, -
RTE, -–-

system configuration, -–-
transmission mode, -
working methods, -

Automotive safety integrity level
(ASIL), -

B

Basic software (BSW)
conformance classes, -
modules and, -–-

Behavioral modeling languages, -
Boolean formulae, bounded model

checking technique, -
Bus

communication adapter
transmissions, -

scheduling analysis, -
Bus rapid transit (BRT), -

automated BRT (ABRT), -
Byzantine faults, -

C

Car domains
active and passive safety, -
divisions, -–-
power train and chassis, -
telematics functions, -–-

Carrier sense multiple access (CSMA)
protocols, -, -

CASE tools, -
CityMobil research project, -, -
Clock-synchronization algorithm, -

communication controllers in, -
offset and rate correction in, -

Closed-loop approach, FlexRay-based
monitoring and testing, -

test setup for, -
Cluster, startup and wakeup phases in,

-–-
Coldstart timeout (τcoldstartp) parameter,

-
Collision avoidance symbol (CAS), -

Collision resolution (CR), -
Commercial-off-the-shelf (COTS)

hardware, -
Common object request broker architecture

(CORBA), -, -
Communication controllers (CCs),

-–-
Complementary metal–oxide semiconductor

(CMOS) imagers, -
Component-based software engineering

(CBSE), -
Component object model (COM),

-
Components off-the-shelf (COTS)

hardware and software
components in, -

Computer-aided engineering (CAE)
tools, -

interoperability, -
Computer–user interaction techniques, -
Conceptual models, -
Conformance test agency (CTA),

-–-
Constructive models, -
Controller area network (CAN), -, -,

-–-, -–-, -, -, -–-,
-, -, -–-, -, -,
-, -–-

automotive communication systems
communication adapter chips

for, -
properties and timing analysis in, -
real-time requirements and

applications, -
automotive networks, flexible, and

dependable architecture
control systems of, -–-
FlexCAN addresses CAN

limitations identification,
-–-

FlexCAN applications, -–-
FlexCAN architecture, -–-

bit-stuffing
mechanisms for, -–-

bit stuffing method, -
CANcentrate and ReCANcentrate, star

topologies, -–-
cabling of, -–-
hub by means of, -–-
objective of, -–-

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

I-4 Index

CANELy architecture, -–-
clock synchronization service, -
data consistency, problem, -
error-containment properties, -
fault tolerance, support, -
limitations of, -

CAN in automation (CiA), -
communication driver, -,

-–-, -
data consistency issues

in error-passive state, -–-
impairments, -–-
potential cause of, -–-
transient channel faults, management,

-–-
designers

error checking and confinement
features, -

error detection, -
and self-checking mechanisms in, -
signaling and recovery time in, -

exact response-time test
busy period and priority frames,

-–-
frame set analysis for, -

fault-tolerant
clock synchronization,

-–-
time-triggered communication, -

features and limitations, -–-
flexible time-triggered communication in,

-–-
communication services, access, -
dual-phase elementary cycle,

-–-
fault-tolerance features of,

-–-
SRDB components, -–-
system architecture, -
temporal parameter in,

-–-
frame arbitration

global priority-based queue in, -
identifiers for, -
physical layer of, -
start of frame (SOF) bit, -

frame transmission time,
-–-

holistic analysis

attribute inheritance in,
-–-

bus scheduling analysis in, -
event invoking task for, -
mutually dependent equations for,

-
worst-case scheduling in, -

incorporating error impacts,
timing analysis

deterministic error model for,
-–-

error-free communication bus in, -
modified response-time analysis for,

-
probabilistic error models for,

-–-
simple error model for,

-–-
middlewares and frame packing

tools implementations, algorithms in,
-

modern automobiles network
architecture of, -

dependability in, -–-
deterministic behavior and

high speed, -
flexibility and attributes,

-–-
networking technologies, -–-
nodes and, -–-
response time analysis

tests and calculations in,
-–-

worst-case queuing pattern for, -
schedulers

master/slave mechanisms,
-–-

quality of service (QoS), -
time-driven and priority-driven in,

-
scheduling models

frame arbitration mechanism in, -
frame transmissions in,

-–-
interarrival time in, -

ServerCAN protocol, -–-
sufficient response-time test

communication adapters in, -
timely-CAN (TCAN) protocol,

-–-

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Index I-5

time-triggered CAN (TTCAN),
-–-

topology
buses and protocols in, -–-
network architecture and

infrastructure for, -
wire harness, -

Controller area network (CAN) in scheduling
messages

experimental setup
body and chassis networks for,

-–-
PSA benchmarks and in-vehicle

networks in, -
higher network loads

existing stations in, -
expriments in, -–-

periodic frames for, -
real-time constraints in, -

Controller–host interface (CHI), -–-,
-–-, -

CORBA/COM technologies, -
CPU scheduling and tasks, -–-
CyberCars, -
Cyclic redundancy check (CRC), -,

-, -, -–-, -,
-, -–-, -

D

Data link layer (DLL), -, -–-,
-–-

Deadline Monotonic priority assignment
algorithm, -

Degrees of freedom (DoF)
and ground vehicle, -

Device under test (DUT), -, -–-,
-–-

Diagnostic communication manager
(DCM), -

Diagnostic event manager (DEM), -–-
Diagnostic trouble codes (DTC), -
Diesel particulate filter (DPF), -
Document type definitions (DTDs), -
DOORS

core asset development tool, -
embedded software systems, -

Dynamic priority scheduling (DPS)
schedulers, -

E

EAST-ADL
abstraction layers, -
abstraction levels and system views in, -
based models, -
effort, -
languages in, -, -
system model organization

design level, -
environment modeling, -
implementation level,

-–-
traceability, -
vehicle and analysis level,

-–-
Electric power steering (EPS), -
Electromagnetic interference (EMI), -

problems in, -
Electronic and software components,

-, -
Electronic control unit (ECU), -, -,

-, -, -–-, -,
-, -, -, -–-,
-, -, -, -–-,
-–-, -, -, -–-,
-, -–-, -–-,
-–-, -–-, -,
-–-, -–-, -

configuration, -
information exchanges, -
integration problems in, -
requirements specifications

and representing variability,
-–-

structure of, -
variability representation,

evaluation, -
software architecture, -
software of, -
specifications of, -
subdomains, -
work on, -–-

Electronic stability program (ESP), -, -, -,
-, -–-

systems, -
Embedded electronic architecture

and systems
in Renault Laguna, -–-
in Volkswagen Phaeton, -

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

I-6 Index

Embedded systems
automotive industry, -
safety-critical in-vehicle certification

issue in, -
safety properties in, -
technology

analysis, -
automated synthesis, -
designs and supporting

artifacts, -
modeling languages for,

-–-
model integration and management,

-–-
vehicles, -

Error detection mechanisms, -–-
Error flag and CAN, -
Error matrix and function repository,

-
European Space Agency (ESA), -
Event calendars and message reception, -
eXtensible Markup Language (XML),

-, -–-
schemas, -

eXtensible Markup Language data type
definition (XML DTD), -

F

Failure mode and effects analysis (FMEA),
-, -

Fault-tolerance mechanism, -
Fault-tolerant midpoint algorithm, -

offset correction and correction
values for, -

Fault-tree analysis (FTA), -
Feature modeling and variability

modeling, -, -
and automotive domain, -
basic feature models, -–-

excludes and needs dependencies,
-–-

feature trees, -
mandatory, optionala and

optimal features, -
cardinality-based feature modeling,

-–-
cloned features, -, -
configuration decisions

feature configurations and, -
selection criteria and configuration link,

-
decision table excerpt, -
decision trees, -–-
feature, -–-
features with several parents,

-–-
other advanced concepts of,

-–-
parameterized features, -–-

Fixed priority (FP) scheduling policy,
-

Flexible TDMA (FTDMA)
minislots, -
scheme, -

Flexible time-triggeredCAN
(FTT-CAN), -

FlexRay-based applications
abstraction levels, -–-

application and controller–host
interface, -–-

architecture level, -–-
communication cycle, -
static slots and advanced dynamic

segment arbitration, -
static slots and simple dynamic

segment arbitration, -–-
timing level, -–-

approaches in
software and hardware based,

-–-
communication cycle, -
connectors in, -
fault injection

abstraction levels, timing choice, -
application and controller–host

interface, -–-
clock synchronization, -
frame reception, -–-
frame transmission, -

hardware architecture
abstraction levels, -
ECU level, -
system and network level, -

hardware-based validation
open and closed loop approaches,

-–-
protocol

static and dynamic segment, -

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Index I-7

software architecture
application software components,

-–-
basic or system software,

-–-
communication services,

-–-
fault-tolerance requirements, -
jitter and, -
latency and, -
periodic signal exchange,

characteristics, -
redundancy property, -
timing characteristics and

requirements, -–-
XXX interface, -–-

software-based validation,
-–-

system architecture, -–-
testing and monitoring

code domain deviations,
-–-

communication operations, impact of,
-

dynamic segment, observed period,
-

latency and latency jitter, -
operational scenarios, -
static and dynamic testing, -
temporal redundancy, -
time domain deviations,

-–-
value domain deviations, -

FlexRay network
clock synchronization

algorithms for, -–-
clock drift, measurement of,

-
clock generator and quartz

crystal in, -
correction values, applications of,

-–-
timing hierarchy in, -

cluster wakeup FPS and startup FPS,
-–-

communication cycle, -, -–-
cluster and nodes in, -
dynamic segment in, -–-
frame format for, -–-
static segment of, -–-

controller, -–-, -
with embedded software in automotive

domain, -
event-driven vs. time-driven

communications
arbitration policies for, -
protocols in, -
synchronization schemes

for, -
exemplary control system in, -
fault-tolerance mechanisms

bus guardians in, -
communication channels and

faults in, -–-
transient error, -

FlexRay Protocol Specification
V., -

frame parts in, -
impact on development

scheduling communication tasks in,
-

implementations
communication tasks in, -
drivers and communication

layers, -
high-level distributed control

systems in, -
interface modules in, -–-

message scheduling in, -
minislots, -
objectives and consortium

communication requirements for, -
high-speed control applications, -
kits for, -
X-by-wire functions in, -

protocol architecture
bus and active star topology,

-
operating system and application

software in, -
tool supports

monitoring and analysis, -
network design for, -

TTCAN protocol and, -–-
verifications

OSEK FT-COM communication layer
in, -

Formalization, -; see alsoModel-based
development (MBD)

Formal models, -

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

I-8 Index

Forsoft automotive, ADL approaches
variant concept, -

Four-wheel drive (WD), -, -
Frame-packing, automotive embedded

systems, -
Frequency-modulated continuous waves

(FMCW) technology, -
Function repository, reusable software

components
data storage, standards, -–-
functional network, -
hardware platform and bus system

description, -
implementation, -
interfaces, -–-
software components, -

G

Garbage in/garbage out syndrome,
-–-

General packet radio service (GPRS),
-

GeneralStore platform, -
Global navigation satellite system

(GNSS), -
Global positioning system (GPS),

-, -
differential GPS (DGPS), -
receptor localization, computation,

-–-
Global system for mobile (GSM),

-–-
communications, -

Greenhouse gases (GHGs), -–-
Gross national product (GNP), -

H

Hardware-in-the-loop (HiL), -, -
system, -–-

Highly complex product lines coordination,
-

artifact lines, -
configuration hiding, -–-
subscoping, -

Human–machine interface (HMI),
-–-, -, -, -

I

IDB- network, Multimedia
networks, -

Implementation conformance classes (ICCs),
-, -

In-car embedded networks
low-cost automotive networks

command and data frame, -
local interconnect network (LIN) and,

-–-
multimedia networks

IDB- network, -
MOST network, -–-

priority buses
controller area network (CAN),

-–-
message priority, -
vehicle area network (VAN), -

TTCAN protocol, -–-
TT networks

FlexRay protocol, -–-
Inevitable collision state (ICS), -
Input–output (I/O) behavior of dynamic

systems, -
Intelligent vehicle technologies

autonomous car, -–-
automated road management,

-–-
automated road network (ARN),

-–-
automated road transport, deployment

paths of, -–-
automated road vehicles, -–-

dependability
definition and, -–-
fail-safe automotive transportation

systems, -–-
intelligent autodiagnostic, -–-

new technologies
driving assistance, -–-
intelligent control applications,

-–-
sensor, -–-
wireless network, -–-

road transport and evolution
automobile and its infrastructure,

-–-
congestion problem, -–-
safety problems, -

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Index I-9

International Engineering Task Force
for Network Mobility
(IETF NEMO), -

In-vehicle embedded system
automotive standard software core

software components and interfaces,
-–-

development process, tools required, -
core asset, -–-
product, -

ISO - EXPRESS, -

J

J Network and controller area
network (CAN), -

variants of, -

K

Kalman filter (KF) theory, -
Kronos, model checking tool, -

L

Light detection and ranging (LIDAR) sensor,
-–-, -

micromirror arrays and, -
Listen timeout (τlistenp) parameter, -
Local area networks (LANs), -
Local interconnect network (LIN), -, -,

-, -–-, -, -–-,
-–-, -–-

collision and, -–-
frame slot and types, -
master and slave nodes, -
schedule table, -–-

Logical clock, clock synchronization, -

M

Master/slave mechanisms, -–-
Media access test symbol (MTS), -
Media-oriented system transport (MOST),

-, -, -
audio and video data transfer,

-–-

Medium access control (MAC), -,
-, -

Message descriptor list (MEDL), -
Meta-object facility (MOF), -
Metropolis, -; see alsoModel-based

development (MBD)
Microcontroller abstraction layer (MCAL)

module groups, -
Micromechanical technologies, -
Middleware layer, embedded automotive

protocols
automotive

communication layers and,
-–-

OSEK/VDX communication,
-–-

AUTOSAR (AUTomotive Open
Standard ARchitecture),
-–-

rationale for
objectives, -–-

MISRA guidelines for C programming, -
Mobile Ad-hoc Networking (MANET), -
Model

based cross-enterprise communication
and integration, -

based testing, -
generic functionality and software design,

-–-
information management, -–-
integration andmanagement for embedded

systems, -–-
safety engineering, -
vehicle motion control engineering, -

Model-based development (MBD),
-–-

automotive embedded systems and, -
automotive state of practices,

-–-
benefits of, -–-
complexity management,

-–-
contextual requirements,

-–-
documentation, -–-
driving factors for, -–-
guidelines for adopting in industry, -

and pitfalls, -–-
process and organizational

considerations, -–-

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

I-10 Index

properties of, -–-
strategic issues, -–-

methodology support for,
-–-

model-based
cross-enterprise communication and

integration, -
generic functionality and software design,

-–-
information management,

-–-
safety engineering, -
testing, -
vehicle motion control

engineering, -
modeling languages, -–-

for developers, -
product concerns, -–-
research and related standardization

efforts, -
technologies, -–-
tools

exchange formats and specification of
data for exchange, -–-

interoperation and automation, -
model management, -

Model-based information
management, -

Modeling and Analysis of Real-Time
and Embedded systems
(MARTE), -

profile architecture, -
Motor Industry Software Reliability

Association (MISRA), -

N

Network idle time (NIT), -–-, -
Non-return-to-zero (NRZ), -
Nonvolatile random access memory

(NVRAM), -–-, -

O

Object Management Group (OMG),
-–-, -

Offset assignment algorithm
applications of, -
description and data structure

frames time intervals in, -
least loaded intervals in, -

design hypotheses and notations
possible release time in, -

synchronization and desynchronizations
in, -

WCRT analysis, tools supports
NETCAR-Analyzer in, -, -

Onboard diagnostics (OBD), -
Open-loop approach, FlexRay-based

monitoring and testing approaches
application interface

domain faults, -–-
controller–host interface

domain faults, -
fault conditions and testing, -
physical layer interface

domain faults, -–-
test-bed, divisions, -
test set up for, -

Open systems interconnection (OSI)
layers and communication

protocols in, -
Original equipment manufacturers

(OEMs), -, -–-, -–-,
-, -, -

and confidential productline
strategies, -

suppliers, information exchange, -
OSEK/VDX operating systems

and implementations, -

P

Parameterization, -; see alsoModel-based
development (MBD)

Physical Layer Interface (PLI), -,
-, -

Plant model, vehicle model,
-–-, -

Plastic optical fiber (POF) transmission,
-–-

Prediction, -; see alsoModel-based
development (MBD)

Priority ceiling protocol (PCP), -
Product data management

(PDM), -
Production plan and product line

practice (PLP), -

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Index I-11

Product-line engineering
characteristics and needs, process related,

-–-
domain and product engineering

processes, -–-
supplier strategies and change

management processes, -
product configuration, -–-

complex configuration and variability
resolution, -

variability
artifacts, complex dependencies, -
heterogeneous variability mechanisms

cooperation, -
sources variation, -–-
views on, -–-

Product line practice (PLP), -, -
framework components of, -
processes of, -–-
product development, -

Protocol data units (PDUs)
router, -

Pulse width modulation (PWM), -

Q

Quality of services (QoS), -–-, -

R

Rail transportation system, -
Random access memory (RAM), -,

-, -
Read only memory (ROM), -
Refinement, -; see alsoModel-based

development (MBD)
Relative position sensors, -–-
Reliability analysis, -
Remote transmit request (RTR) frames, -
Requirements interchange format

(RIF), -
Response-time test

worst-case transmission, -
Risk-reduction technique, -
Road transport and evolution

energy and emissions, -
Robosoft, CyCabs, -
Runtime environment (RTE),

-–-, -–-

features of, -–-
generation phases of, -–-
runnable entity and, -

S

Safety analysis, -
Safety property and verification

techniques in TTA, -
Satisfiability modulo theories (SMT)

solvers, -
Sensor technologies, -

global navigation satellite system, -–-
implantation and range overview, -
for improved localization, -–-
inertial sensors-accelerometer-

gyrometers, -
light detection and ranging/laser

detection and ranging, -–-
radio detection and ranging

(RADAR), -
ultrasound sensors, -
vision sensors, -–-

stereo-vision obstacle detection
systems, -

Slightly-off-specification (SOS) faults,
-–-

Smart embedded electronic diagnosis
system (SEEDS), -

Society for Automotive Engineers (SAE),
-, -, -, -

Software configuration management
(SCM) tools, -

Software family, see Software product lines
Software process engineering metamodel

(SPEM), -
Software product lines

approach and conventional reuse
comparison, -

definition of, -
Software reuse, automotive electronics

automotive domain requirements
AUDI A coupe, electronic

system, -
automotive range, -–-
software modules, -

automotive OEMs and
automotive manufacturers, -
software in car, rise of, -

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

I-12 Index

car components, -, -–-
hardware dependent and

independent parts, -
in-vehicle embedded system,

-–-
modularized automotive software

components, -–-
product development process, -
product line, -
repository function, -–-

software classification, -–-
software modularization, -

hardware scenarios, -
nonreusable software components, -
rear lights arrangement, -
reusable application software

component, -
reverse gear, -

Standard software
reuse types, -

Standard software core (SSC), -
Volkswagen group, -

STEP standard, -
Synthesis techniques, -
SysML standard, -–-
System matrix, TTCAN protocol, -
System on chip (SoC) technologies, -
Systems modeling language

(SysML), -
diagram taxonomy, -

System under test (SUT), -–-

T

Time-division multiple access (TDMA),
-, -–-, -, -

based protocol, -, -–-
schedule, -, -, -–-,

-, -–-
scheme

communication cycles in, -
networks for, -

Time-Triggered Architecture (TTA),
automotive domain, -–-

clique avoidance and group
membership

failure detection, -
clock synchronization

agreement property for, -

convergence-averaging algorithms,
-

fault-tolerant average algorithm, -
physical clock, -

computation modeling
message generation and state-transition

function, -
nonfaulty node, internal state, -
slot granularity, -
state-transition systems, -
time-triggered system, -
untimed and timed

synchronized model, -
faults modeling, -

abstract message types, -
benign, -
fault hypothesis, -–-

group membership algorithm, -
model checking technique

infinite-state bounded,
-–-

state space exploration,
-–-

nodes
communication in, -

slots in, -
startup and reintegration

timeout parameters, -
wake-up messages, -

theorem proving, verification
technique

assume–guarantee reasoning,
-–-

configuration diagrams,
-–-

convergence function (Cfn),
-

disjunctive invariants,
-–-

generic verification, -–-
nonfaulty nodes and, -
precision enhancement, -
refinement-style deduction,

-–-
time modeling

calendar automata models, -
startup algorithm, -

TTP/C
communication, correctness

properties, -

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

Index I-13

Time-triggered CAN (TTCAN), -, -,
-, -

basic cycle, -
Time-triggered protocol (TTP), -

drawback of, -
missing messages and, -

ToolNet, integration platform, -
Toyota, IMTS, -
Traceability, -; see alsoModel-based

development (MBD)
TT networks, -

message transmissions, -
TTP/A network

master–slave round, -

U

ULTra track, -
UML models, -
Unified diagnostic services

(UDS), -
Unified modeling language (UML),

-, -, -

V

Variability
and binding time, -
core variability model, -–-
product-line coordination

with core feature model, -
core feature model and artifact

lines, -
runtime variability, -–-

V-Cycle development approach,
automotive software
development, -

Vehicle area network (VAN), -
Vehicle functional domains

active/passive safety
seat belts and airbags

for, -
architecture description languages (ADLs),

-–-
body

distributed hardware
architecture for, -

doors control and deployment in, -
software-based systems in, -

chassis
OSEKtime operating system in, -
X-by-wire technology and

systems in, -
complex control laws in, -, -–-
components, models, and processes

architecture description languages,
automotive applications for,
-–-

automotive-embedded systems in, -
message handling and error

detection mechanisms, -
middleware, hybrid control

technologies in, -
speed and functions of, -

diagnostic emission control
systems in, -–-

fuel consumption and exhaust
emissions in, -

multimedia, telematic, and HMI
applications in, -
head-up display (HUD) for, -
multitask operating systems

in, -
traffic management and congestion

avoidance for, -
power train

embedded systems characteristics
for, -

variable valve timing (VVT), -
Vehicle-to-infrastructure VI

communication technology,
-, -

Vehicle-to-vehicle (VV) communication
technology, -, -

Virtual functional bus (VFB), -, -–-,
-–-, -

Visualization, -; see alsoModel-based
development (MBD)

Volcano target package (VTP), -
Volvo XC networks, -

W

Welch–Lynch algorithm, -
Worst-case response times (WCRT)

network load
workload awaiting transmission,

-–-

Navet/Automotive Embedded Systems Handbook _C Finals Page  -- #

I-14 Index

offsets benefits
CAN frames and shaping

algorithm in, -
load concentration, -

partial offset usage, -
reduction ratio and lowest priority frame,

-–-
scheduling theory and tasks in, -

X

X-by-wire technologies, -, -–-,
-–-, -–-,
-–-, -

avionic systems, -

	Front cover
	Contents
	Preface
	Editors
	Contributors
	Part I: Automotive Architectures
	Chapter 1. Vehicle Functional Domains and Their Requirements
	Chapter 2. Application of the AUTOSAR Standard
	Chapter 3. Intelligent Vehicle Technologies
	Part II: Embedded Communications
	Chapter 4. A Review of Embedded Automotive Protocols
	Chapter 5. FlexRay Protocol
	Chapter 6. Dependable Automotive CAN Networks
	Part III: Embedded Software and Development Processes
	Chapter 7. Product Lines in Automotive Electronics
	Chapter 8. Reuse of Software in Automotive Electronics
	Chapter 9. Automotive Architecture Description Languages
	Chapter 10. Model-Based Development of Automotive Embedded Systems
	Part IV: Verification, Testing, and Timing Analysis
	Chapter 11. Testing Automotive Control Software
	Chapter 12. Testing and Monitoring of FlexRay-Based Applications
	Chapter 13. Timing Analysis of CAN-Based Automotive Communication Systems
	Chapter 14. Scheduling Messages with Offsets on Controller Area Network: A Major Performance Boost
	Chapter 15. Formal Methods in the Automotive Domain: The Case of TTA
	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF005400260046002000730065007400740069006e0067007300200066006f007200200062006c00610063006b00200061006e0064002000770068006900740065002000660069006e0061006c0020005000720069006e00740065007200200050004400460073>
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

