

Introduction to
Game AI

Neil Kirby

Course Technology PTR
A part of Cengage Learning

Australia . Brazil . Japan . Korea . Mexico . Singapore . Spain . United Kingdom . United States

Introduction to Game AI
Neil Kirby

Publisher and General Manager,
Course Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Jordan Castellani

Acquisitions Editor: Heather Hurley

Project Editor: Kate Shoup

Technical Reviewer: Kevin Dill

Copy Editor: Kate Shoup

Interior Layout Tech: MPS Limited, A Macmillan
Company

Cover Designer: Mike Tanamachi

Cover Photograph: Henry Kempker

CD-ROM Producer: Brandon Penticuff

Indexer: Larry Sweazy

Proofreader: Gene Redding

© 2011 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of the
publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

All trademarks are the property of their respective owners.

All images �C Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2009942392

ISBN-13: 978-1-59863-998-8

ISBN-10: 1-59863-998-6

Course Technology, a part of Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 12 11 10

eISBN-10: 1-43545-597-5

www.cengage.com/permissions

This book is dedicated to my spouse Theresa Kempker and our son Henry.

Thanks to you both for giving me the time to do this.

This book would not exist without the support of the game AI crowd that gathers

every year at the Game Developers Conference. The late Eric Dybsand inspired

many of us by example. I would also like to thank every person who has ever

dined with me at one of the AI Programmers Dinners. Thanks go to Steve

Woodcock and Steve Rabin for helping me moderate the AI Roundtables at

GDC. Dave Mark and Laurie Reynolds proved that you can write a book and stay

happily married, something I needed to know before setting off on this adven-

ture. Thanks also go to the AI Game Programmers Guild, a group of experts who

were only an e-mail away if I got into trouble. Kevin Dill deserves special

attention in that regard. Jenifer Niles and Heather Hurley have supportedme and

the rest of the game AI community over the years. Many of us would not be in

print without them.

Acknowledgments

Neil Kirby is a Member of Technical Staff at Bell Laboratories, the R&D arm of

Alcatel-Lucent. He currently develops solutions used to support CMMI certifi-

cation. He also provides software architecture consulting services and teaches the

course ‘‘Avoiding the Software Performance Crisis.’’ His previous assignments

have included building speech-recognition software and teaching at the uni-

versity level. He has been a judge of the Ohio State University Fundamentals of

Engineering Honors robot competition for many years on behalf of Alcatel-

Lucent. Neil holds a master’s degree in computer science from Ohio State

University.

Neil started writing multiplayer tactical combat computer games in 1987. These

included a computer version of ADB’s Star Fleet Battles board game and games of

his own design, most notably the futuristic armored ground combat game Bots.

These were publicly played at the Ohio State University CACON conventions

from 1987 until 1992 but never published. The methodology used to develop

the AI in Bots led to his 1991 Computer Game Developers Conference talk,

‘‘Artificial IntelligenceWithout AI: A Darwinistic Approach.’’ He was under NDA

as a consultant to Quicksilver, Software, Inc., during the early phases of devel-

opment of Star Fleet Command. Neil moderates the AI Roundtables and hosts the

AI Programmers Dinners at GDC. He has contributed articles to AI Game Pro-

gramming Wisdom volumes 1, 2, and 4 and is a member of the AI Game Pro-

gramming Guild. Neil also serves on the board of the IGDA Foundation and was a

driving force behind its creation.

About the Author

Introduction . xii

Chapter 1 What Is Game AI? . 1

An Introduction to Visual Basic . 3

Getting Visual Basic . 3

The Hit Point Calculator Project . 5

Chapter Summary . 17

Chapter Review . 17

References . 18

Chapter 2 Simple Hard-Coded AI . 19

The Good, the Bad, and the Ugly . 19

The Good . 19

The Bad . 20

The Ugly . 21

Projects . 22

A Simple Thermostat . 23

Analysis . 29

A More Sophisticated Implementation 32

State of the Art . 39

Chapter Summary . 40

Chapter Review . 41

Exercises . 41

Contents

vi

Chapter 3 Finite State Machines (FSMs) . 43

What Are FSMs? . 43

Design and Analysis . 44

Single-Transition Review . 45

Multiple-Transition Review . 47

Complexity . 49

Failure Modes . 50

Projects . 52

A Brief Foray into Object-Oriented Programming 52

FSM Objects . 53

Creating the MonsterAI Project . 55

Chapter Summary . 73

Chapter Review . 74

Exercises . 74

References . 74

Chapter 4 Rule-Based Systems . 75

What Is a Rule-Based AI? . 75

Design and Analysis . 77

Advantages . 78

Disadvantages . 78

The Minesweeper Project . 79

Implementing the Basic Game . 79

Implementing the AI . 99

Chapter Summary . 122

Chapter Review . 122

Exercises . 122

References . 123

Chapter 5 Random and Probabilistic Systems 125

Can That Be AI? . 125

Computing the Odds . 126

Monte Carlo Methods . 126

Precomputing . 127

Faking It . 128

Using the Odds: Factors to Consider . 129

Design and Analysis . 130

Advantages . 130

Disadvantages . 130

Contents vii

The Day in the Life Project . 131

The Simulation . 132

Occupations . 132

The Simulated People . 134

Complexity . 135

Implementing the Basic Game . 136

Implementing the AI . 141

Finishing the Code . 143

Results . 147

Chapter Summary . 148

Chapter Review . 148

Exercises . 148

References . 149

Chapter 6 Look-Ahead: The First Step of Planning 151

Evaluation Functions . 152

Pruning . 153

Heuristics . 154

Complexity Without Heuristics . 157

Complexity with the Line Heuristics . 159

Complexity with Depth-Limit Heuristics 160

Drawbacks to Heuristics . 160

Discrete Moves . 161

Knowledge Representation . 162

Advantages to Look-Ahead . 162

Disadvantages . 163

Applicability . 163

The Fox and Hounds Project . 163

Moves and Neighbors . 164

What Is Needed for Game State? . 166

Evolution of the Evaluation Function 167

Game Board User Interface . 174

Implementing Moves and Neighbors 175

Graphical Squares . 179

Implementing Game State . 180

Board Code . 188

Enabling the Player’s User Interface . 189

Adding the AI . 197

Chapter Summary . 214

viii Contents

Chapter Review . 215

Exercises . 215

References . 215

Chapter 7 Book of Moves . 217

This Seems Familiar . 218

Killer Moves . 219

Hybrid AI . 221

Chess . 221

Twixt . 222

Minesweeper . 228

Advantages . 232

Disadvantages . 232

Projects . 232

Fox and Hounds . 233

Minesweeper . 234

Chapter Summary . 240

Chapter Review . 240

Exercises . 240

References . 240

Chapter 8 Emergent Behavior . 241

Give My Creature ALife! . 242

Proven Recipes . 243

Interaction . 244

Simple Behaviors . 245

Between Order and Chaos . 246

Feedback and Control . 247

Reinforcement . 247

Timing . 248

Beyond Steering . 253

Advantages . 255

Disadvantages . 255

The Cars and Trucks Project . 255

The Road and the Vehicles . 258

Movement and Animation . 264

Chapter Summary . 280

Chapter Review . 280

Exercises . 280

References . 281

Contents ix

Chapter 9 Evoking Emotions on the Cheap 283

What Emotions Do Popular Games Invoke? 286

Music . 287

Mood . 288

Clothing . 288

Lighting . 289

Texturing . 290

Plot . 291

Camera . 292

A Wide Skill Set . 297

Modeling Emotional States . 297

Advantages . 301

Disadvantages . 301

Projects . 302

Using Action States for Emotion States 302

Using a Separate FSM for Emotions . 303

Modeling Needs and Relationships . 307

Chapter Summary . 326

Chapter Review . 326

Exercises . 326

References . 327

Chapter 10 Topics to Pursue from Here . 329

A* Path Finding . 329

An A* Example . 332

Details in the Lists . 334

Caveats . 338

Machine Learning . 339

Training . 341

Why Don’t These Methods Get Used in Games? 342

Neural Networks . 343

Genetic Algorithms . 347

Behavior Trees . 349

Top-Down Evaluation . 351

Bottom-Up Evaluation . 352

Advantages . 354

Planning . 356

STRIPS . 358

GOAP . 360

HTN . 363

x Contents

Contents xi

Resources . 366

Chapter Summary . 367

Chapter Review . 367

Exercises . 368

References . 368

Appendix Answers to Chapter Review Questions 371

Chapter 1: What Is Game AI? . 371

Chapter 2: Simple Hard-Coded AI . 371

Chapter 3: Finite State Machines (FSMs) 372

Chapter 4: Rule-Based Systems . 373

Chapter 5: Random and Probabilistic Systems 374

Chapter 6: Look-Ahead: The First Step of Planning 374

Chapter 7: Book of Moves . 374

Chapter 8: Emergent Behavior . 375

Chapter 9: Evoking Emotions on the Cheap 375

Chapter 10: Topics to Pursue from Here 375

Index . 377

xii

The goal of this book is to get readers who are new to game AI to the point where

they can usefully consume ‘‘regular’’ books on game AI. It is aimed at those who

do not have a hard-core programming background, particularly those coming

from other areas of game development. The book achieves this through a series of

projects based on small and understandable games. Because AI is about decision

making, the projects and topics selected for the book are measured against the

question, ‘‘Can a beginner understand the decision-making process?’’ The pro-

jects may present some challenges, but with the help of this book, beginners

should always be able to say, ‘‘I might have trouble getting the AI to act, but I

have no trouble getting the AI to decide.’’

The very basics of game AI are covered in the first three chapters of the book.

Chapter 1, ‘‘What Is Game AI?’’ introduces game AI and Visual Studio. Chapter 2,

‘‘Simple Hard-Coded AI,’’ covers the simplest AI method of all. Chapter 3, ‘‘Finite

StateMachines (FSMs),’’ is about one of the simplest formal structures for AI, finite

state machines. These chapters provide grounding in the most basic of AI techni-

ques, but they should not be overlooked as these techniques are very widely used in

game AI.

More-sophisticated techniques begin with Chapter 4, ‘‘Rule-Based Systems.’’

Chapter 5, ‘‘Random and Probabilistic Systems,’’ covers computing odds on the

fly and random-selection decision making. Planning is introduced in Chapter 6,

‘‘Look-Ahead: The First Step of Planning.’’ The next step in planning, pre-planning,

is covered in Chapter 7, ‘‘Book of Moves.’’ A relatively new topic for game AI is

Introduction

covered in Chapter 8, ‘‘Emergent Behavior.’’ Chapter 9, ‘‘Evoking Emotions on the

Cheap,’’ opens the topic of emotions, keeping the material at an introductory but

still useful level. Finally, Chapter 10, ‘‘Topics to Pursue fromHere,’’ wraps things up

with a look ahead at more sophisticated AI techniques that are beyond the scope of

this book.

The projects use the Microsoft Visual Basic programming language. The Express

Edition of VB is a free download from Microsoft. While most professional AI

code is written in C++, VB is less threatening to people who do not have a hard-

core programming background. Students, artists, animators, managers, and even

producers who need to take their first steps in game AI should find the language

easy to work with. All the code is included on the CD, which can save you a great

deal of typing. If your typed-in code is not working, just consult the code on the

CD. All the code for the projects is also included in the text of this book; if you

lose the CD, you can still do all the projects.

CD-ROM Downloads
If you purchased an ebook version of this book, and the book had a companion

CD-ROM, we will mail you a copy of the disc. Please send ptrsupple-

ments@cengage.com the title of the book, the ISBN, your name, address, and

phone number. Thank you.

Introduction xiii

This page intentionally left blank

What Is Game AI?

Our working definition for AI is the ability to act intelligently in the face of

changing conditions. Embedding such capability in a gamemakes it game AI. We

will return to this definition throughout the book to make sure that we can

identify how any given AI meets the definition. We will also take care to examine

what is not game AI. While this definition seems simple enough, all three parts of

it—the ability to act, the requirement that the action be intelligent, and the

requirement that the action be in response to changing conditions—are worth

separate inspection.

First, as mentioned, the AI should have the ability to act in some fashion. AI that

has no output is wasted computation. In a game context, this means that the

actions of the AI must have the possibility of being noticed by the player. Games

that are noted for good AI often have an AI that is no better than other games,

aside from the fact that the game gives the player the ability to see the AI acting

intelligently. For example, if, in a game, the player sees a room with an AI-

controlled character working at a computer, the player may conclude there is

nothing special about the AI. Even if the AI character happens to be playing a

world-class game of chess in real time, it is all wasted unless the player gets a

chance to notice this amazing ability of the AI. The player does not necessarily

have to see the intelligent behavior at the time a decision is being made, but

evidence of the intelligence should be made available to the player in time for the

player to enjoy it.

1

chapter 1

The second part of our definition requires that the AI decisions be intelligent

ones. Making the AI decisions appear intelligent is a recurring challenge. The

hardest part is not always making the AI look smart; often, it is preventing the AI

from looking dumb. At an AI roundtable many years ago, I dubbed this

‘‘avoiding artificial stupidity.’’ Even purely random decision making may fit this

criterion. Pundits describe insanity as ‘‘doing the exact same thing and expecting

different results.’’ In this light, random decision making gives the appearance of

an AI that is learning from past mistakes or one that is changing how it plays to

keep the player from countering the AI’s past successes. If players cannot detect

the purely random nature, they often interpret it as highly intelligent. The final

judge of ‘‘intelligence’’ is the player.

No t e

It may seem unfair that AI will be judged by how stupid it is in its low points instead of how smart
it is in its high points, but other aspects of games are judged in a similar way. For example, Id
Software spent well over a year perfecting the graphics engine for one of the very first full 3D
games, Quake. The hard part was not hitting 30 frames per second at the top end, but keeping the
frame rate above 10 frames per second at all times [Abrash96].

The third part of our definition requires the game AI to react to changing con-

ditions. It is generally accepted that a core part of what makes computer games fun

is a high degree of interactivity. Quality interactivity requires that the players’

decisions matter—that they change the state of the game. Players are free to make

whatever choices they find agreeable and to change the game state in such ways as

they can. This is the changing world in which game AI must exist. This changing

world places great pressure on the ability of the AI to appear intelligent. If the AI

cannot act differently in different situations, it will be only slightly more interesting

than watching a stick fall to the ground when you let go of it.

Those three parts give us a working view of AI, but this book is about game AI. As

an entertainment product, everything must further the player’s enjoyment. Our

AI must make the game more fun. A harder challenge appeals to only one of the

four basic ways people have fun [Lazzaro04]. Even worse, a harder challenge

lacks fixed definition—one player’s ‘‘harder’’ is another player’s ‘‘frustrating.’’ A

game AI programmer must never lose sight of fun as the primary goal. Making

the AI smarter and more sophisticated often makes the game more fun, but not

always. An online game that programmed the monster AI to target healers and

mages preferentially proved to be far more effective at defeating the players but

far less fun for the players.

2 Chapter 1 n What Is Game AI?

Having a reasonable definition of what game AI is, it is worth considering what

game AI is not. AI is not physics. The code that decides whether a virtual rock on

the edge of a cliff should stay on the cliff or fall off the cliff is not AI. The rock has

no free choice in the matter and no options to pick from, no matter how smart it

is. Forces of a certain magnitude always push the rock off the cliff, and forces

below that level cannot. The rock is not free to make a sub-optimal choice in

the short term that better suits its long-term goals. The code may resemble AI—

the rock evaluated changing conditions and the decision was made to fall off the

cliff—but it had no choice in the matter.

AI need not always be complex. While there is a need for complex AI methods, a

large amount can be accomplished with simple methods. These simple methods

are still AI, despite a feeling in academia and industry that, ‘‘stuff we know how to

do isn’t really AI and stuff we can’t do yet is real AI.’’ This book has many basic

techniques for game AI. All of them, even the simplest, are in widespread use by

professional game developers.

An Introduction to Visual Basic
The rest of this chapter deals with where to find Visual Basic and using Visual Basic

to create your first project. If you have experience programming with Visual Basic

.NET, you may be able to skip ahead to Chapter 2, ‘‘Simple Hard-Coded AI.’’ If

you are an experienced programmer who is new to Visual Basic, you should be able

to fly through the rest of this chapter. The projects and material in the rest of the

book will be far less elementary than this introductory project.

Getting Visual Basic

The projects in this book were written in Visual Basic .NET using Microsoft

Visual Basic 2008. VB.NET, like VB before it, is easy to learn and write, and yet

quite powerful. With the advent of VB.NET in 2001, VB no longer carries an

inherent performance penalty compared to other languages. You will need to

install VB to use the software on the CD that is included with this book. Once you

have installed it, you’ll bring up the development environment and proceed

through the walk-through example in this chapter.

No t e

There is extensive support for VB on the Internet. Many questions can be answered with a few
careful Internet searches; you will usually need to include VB and .NET as keywords. The Microsoft
Developer Network (MSDN) library is another valuable resource for Windows developers. It can be

An Introduction to Visual Basic 3

viewed online at http://msdn.microsoft.com/en-us/library/default.aspx; you can download it or the
Express Library from http://www.microsoft.com/express/download/msdn/Default.aspx.

Visual Basic 2008 requires a Microsoft Windows XP or later operating system.

Older versions can run onWindows 2000. The Visual Basic 2008 Express edition

is free for non-commercial use. Further details and the software itself are

available at http://www.microsoft.com/Express/default.aspx. In addition to the

software, the Express Web site offers tutorials and other information that may be

valuable to first-time Visual Basic users.

VB is included in the retail versions of the Visual Studio development envir-

onment. The screens will be similar, but will carry more options. If you have

Visual Studio, you can safely substitute ‘‘Visual Studio’’ wherever you read

‘‘Visual Basic’’ in this book with few problems. Note that the dialog boxes will

not match exactly; Visual Studio is more sophisticated than the Express versions

of the languages it supports.

If you are an experienced C programmer, you may prefer to use C# or C++.

Download Visual C# 2008 Express Edition or Visual C++ 2008 Express Edition

instead of Visual Basic. The C# and VB languages both utilize the .Net Frame-

work Common Language Runtime, making them utterly interchangeable. C++

requires modest translations that should not prove taxing for an experienced

programmer who happens to be new to AI.

For those new to Windows programming, a few brief words of description are in

order. A Windows application starts with forms (the windows in Windows are

forms). On the forms are controls such as buttons and text boxes. When the user

interacts with a control, an event is fired and the application software handles

that event. When the application software is done handling the event, it gives

control back to the operating system. There is no ‘‘main,’’ familiar to C pro-

grammers, only a startup form that is shown to the user when the application

launches. Giving control back to the operating system after handling an event

does not mean that the application finishes execution and exits, only that it is

done handling the last event and is ready to handle another. This is called event-

driven programming.

The game projects in this book will be Windows forms applications written in

VB. The forms will display the game and take user input. We will separate the AI

for the game from the user interface. Not only is this an industry-accepted good

practice, but it will also help provide focus and clarity on the AI portion of the

4 Chapter 1 n What Is Game AI?

http://msdn.microsoft.com/en-us/library/default.aspx
http://www.microsoft.com/express/download/msdn/Default.aspx
http://www.microsoft.com/Express/default.aspx

code. Separating the AI from the rest of the code will make interfaces between the

two explicit. One of the more important jobs of a game AI programmer is to

make sure that the rest of the game will provide the AI with the information it

needs to work effectively. In addition, the game AI programmer must insist that

the rest of the game provide ways for the AI to manipulate the world and the

interactive experience.

The Hit Point Calculator Project

Our first project will be a hit point calculator. The user will input a character class

and level, and the software will compute the maximum number of hit points for

the character. The values match those used in numerous familiar fantasy role-

playing games.

This project will familiarize you with creating a project, adding forms to it,

adding controls to the forms, and writing code to handle events. Start by

launching Visual Studio. From the File menu, select New Project. Visual Basic

will show a dialog box similar to the one in Figure 1.1.

On the left side of Figure 1.1, Windows Forms Application is selected. Instead of

using the default name, WindowsApplication1, change the name of this appli-

cation to HitPoints and click OK. Your screen should resemble the one shown in

Figure 1.2.

An Introduction to Visual Basic 5

Figure 1.1
This New Project dialog box is for creating a new project.

No t e

If you happen to have version control software such as Visual Source Safe, Subversion, or Git, it is
always a good idea to use it. Version control enables you to go back to any of the ideas you have
tried out without losing any work. In general, programmer time is more expensive than disk space,
so professionals keep everything they produce under version control. Another good argument for
version control is the fact that predicting the best idea out of many cannot be done without trying
all of them out.

The large area contains a windowmarked Form1. This is the editing pane. To the

right is the Solution Explorer, showing all the files in the project. (A solution in

Visual Basic can have more than one project, but we will not use this capability.)

Below the Solution Explorer is the Properties window.

The Properties window lists the properties of whatever object was most recently

in focus. Buttons near the top of the Properties window control what you see and

how it is organized. Starting from the left, the first two buttons control how the

window is organized. Click the first button (marked with two plus signs) to

organize the properties by category; click the second button (marked with an A

and Z and an arrow) to arrange the properties alphabetically.

6 Chapter 1 n What Is Game AI?

Figure 1.2
Visual Studio, showing a new project.

If the focus is on a form, you will see five buttons. The third and fourth buttons

control what is displayed. The Properties window usually shows properties,

which you select with the third button. Clicking the fourth button, marked with a

tiny lightning bolt, shows events and event handlers. These two buttons are not

visible in Figure 1.2 because the focus is on the file Form1.vb in the Solution

Explorer. The form has one set of properties, and the file the form is stored in has

a different set. These buttons will show up shortly when we change the properties

of the form itself.

No t e

The last button in the row is always the Property Pages button. We will not need to use it.

Figure 1.2 shows all the files with room for more but only part of the Properties

window. You can adjust the height of the Properties window by clicking and

dragging the area between the Solution Explorer and the Properties window. This

is just one way in which Visual Basic is extremely adjustable; another is the way

you can choose to hide or display various window elements. For example, note

the pushpin icons. The Solution Explorer and Properties window are pinned in

Figure 1.2, so you can see their contents. To the left of the editing pane is the

Toolbox; click it, and it slides open. Clicking the Toolbox’s pushpin will pin it

open. Clicking outside the Toolbox when it is unpinned slides it back out of the

way.

Visual Basic created a default form and named it Form1. This is typical of Visual

Basic, so one of the first tasks when creating a new form or adding a control to a

form is to give the new object a more useful name than the default. Visual Basic

also gives default values to other properties, some of which we will also change.

1. Click anywhere on Form1 in the editing pane.

2. Look for the Properties window on the right side. Here you will find the

names of all the properties of the current object and their values. Note that

the row of buttons went from three buttons to five.

3. Change the Text property from Form1 to Hit Points Calculator; this text

will be displayed in the title bar of the form. The value Form1 is bold and

easy to find; values that have been changed from the default are marked

in bold, as are Text and Name properties. Simply click where it says

Form1 and type over it. If you are having trouble finding the property, it

An Introduction to Visual Basic 7

is in the Appearance category near the top. If you alphabetize the proper-

ties instead of grouping them by category, it will be near the bottom.

4. Scroll down to the Design category and change the Name property to

GameForm. This name is used in code and should be selected for enhanced

clarity.

5. Change the name of the form in the Solution Explorer from Form1.vb to

GameForm.vb. Do this by clicking the letters of the name and then typing

the new name or by right-clicking and selecting Rename from the context

menu that appears and then typing the new name. If you click the form in

the editing pane, your project should resemble Figure 1.3.

Our next task is to place controls on the form and operate them.

1. Click the Toolbox to slide it open. If your monitor has enough room, pin it

open. The Toolbox has many categories of controls. The controls we will use

are in the Common Controls category. Click the minus signs by the names

of all of the other categories to close them, simplifying what you see. In

8 Chapter 1 n What Is Game AI?

Figure 1.3
The project, after renaming and property changes.

general, all controls appear twice; once in a particular category and again in

the All Windows Forms category at the top.

2. Scroll down the Common Controls to find the Label control. Then drag a

Label control onto the form and place it near the upper left corner of the

form. Little helper lines appear and disappear while the control is moving to

aid in the placement of the control.

3. Visual Basic names the Label control Label1 and makes its Text property

Label1 as well. Change the Text property of the label to Character Level.

4. Find the NumericUpDown control in the Toolbox and drag one to the

form. The helper lines make it easy to line up beneath the label we just

added.

5. Change the Name property from NumericUpDown1 to Level.

6. Find the Data group in the Properties window and change the Maximum

property from 100 to 12.

7. Change the Minimum property from 0 to 1.

8. Drag another Label control from the Toolbox and place it below the Level

control.

9. Change the Text property of this Label control to Class.

10. Drag four RadioButton controls from the Toolbox one at a time and

put them below the Class label. Your project should look something like

Figure 1.4.

11. At this point, we have invested some effort into the project, so it’s a good

idea to save it. Click the File menu, select Save All, navigate to an appropriate

location, and save the files. There will be two HitPoints folders in the file

system. The parent folder is for the solution and contains the HitPoints.sln

file. The child folder is for the project and contains HitPoints.vbproj. Recall

that a solution can have more than one project; each project in a solution

has its own folder.

12. Click the RadioButton1 control and change its Text property to Mage.

13. Change the Text property of RadioButton2 to Thief.

An Introduction to Visual Basic 9

14. Change the Text property of RadioButton3 to Cleric.

15. Change the Text property of RadioButton4 to Fighter.

16. In a similar manner, change the Name property of the controls to

MageRadio, ThiefRadio, ClericRadio, and FighterRadio, respectively.

17. Drag another Label control from the Toolbox and place it to the right of the

Character Level label.

18. Change the Text property of this new label to Maximum Hit Points.

19. The end of the label may go past the edge of the form. To fix this, click the

form’s title bar. Small white boxes appear on the edges and corner of the

form; drag the little white box on the right edge of the form to the right to

make the form bigger.

20. Drag another Label control from the Toolbox and place it below the

Maximum Hit Points label.

21. Change the Text property of this Label control to 888.

10 Chapter 1 n What Is Game AI?

Figure 1.4
The project, after adding character class radio buttons.

22. Change the Name property of this new label to HitPointsLabel. (You cannot

have any spaces in a control name, so mixed case is used. We want this label

to stand out.)

23. Type over the BackColor property to change it to White.

24. Use the drop-down list to change the BorderStyle property to FixedSingle.

This finishes the user interface part of the project. Your application should

resemble Figure 1.5.

Note that we did not change the name of Label1 or any of the other labels, but we

did change the name of this last label. We did so because code that we will write

later will need to refer to the label, so it needs a clear name. Label1 will never be

referenced by code we will write, so since life is short, we did not bother to

rename it. We added the word Label at the end of the name so that the name will

tell us what kind of control this particular one is. Complex projects employ many

controls. Often, they will have similar names; by adding the control type on the

end of the name, we can distinguish them easily.

An Introduction to Visual Basic 11

Figure 1.5
The project, with a completed user interface.

You may have noticed that there are many properties that can be set. One of the

advantages to VB is that you can generally get away with setting the ones you

need and safely ignoring the rest. The Toolbox offers more controls than we need,

and we can safely ignore the extras as well. Curious students will want to learn

more about them by using the help system and the MSDN library. By now, it

should be getting obvious how this project will work.

It is time to write code. Our application needs code to handle three things: events

associated with the NumericUpDown control, events associated with the

RadioButton controls, and gracefully starting up. The easiest way of getting from

a form or a control on a form to the code that handles the events for the form or

the control is to double-click the form or the control. We start with handling the

events related to startup.

Double-click the GameForm form background, taking care not to double-click

one of the controls. Visual Basic brings up a tab labeled GameForm.vb. The code

for the form and all its controls live here. Visual Basic added the skeleton of

the event handler for the form’s Load event. The Load event is the most typical

place to put startup code for a form. When the application launches, the form

will be created, and the form’s Load event will fire. Let us look carefully at the

code for the form.

All of the code lives between the Class and End Class lines. If you are unfamiliar

with classes, we will expand on them in Chapter 3, ‘‘Finite State Machines

(FSMs).’’ For now, all the code for the form goes inside the class. We are more

interested in the event handler.

Private Sub GameForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Going from left to right:

n The first keyword is Private. Private conceals this routine, making it visible

only inside the class. You can safely ignore it for now; we will not change it.

n Sub implies that the code does not return a value. If we need to return a

value, we would use the Function keyword instead.

n VB needed a name for this routine, so it used the name of the form and the

name of the event being handled to come up with GameForm_Load. We could

change this name if we wanted to, but the name the system picked is clear

enough.

12 Chapter 1 n What Is Game AI?

n Next, you will find a comma-separated list of parameters inside a pair of

parentheses. Each parameter is declared the same way as all variables in VB

are declared. There is a modifier (ByVal), the name of the parameter

(sender), the keyword As, and finally the parameter’s type (System.Object).

Our code will ignore both parameters. (Note that these are preceded by an

underscore character; this is the line-continuation character in VB, used

when a single line of code spans multiple lines in text.)

n The Handles keyword tells the system that this routine is an event handler,

and the event it handles is what comes after the Handles keyword. The name

suggests to the programmer that this is the Load event handler, but the

Handles keyword is authoritative.

We will add our initialization code between the Sub and End Sub lines shortly. We

can ignore the complexities safely as long as we remember that the code we add

here will run when the form is loaded, which for us means once, at startup.

Our application will want to compute the correct value of maximum hit points

and show it as the text in the HitPointsLabel field instead of 888. To do this, the

code needs to compute the product of the level of the character times the size of

the character’s hit dice. It would be nice if the radio buttons would directly tell us

the size of the character’s hit dice, but they do not. The Level control will give us a

numeric value for level, but we need an integer variable to hold the die size. Just

like on a car radio, we have to program the number we want to associate with

each button. To make life easier, we will store that number away whenever a

button gets clicked.

Below the Public Class GameForm and above the handler for Load, type the

following and press Enter:

Dim dieSize as integer

Visual Basic will reformat and color the text as you go.

No t e

As you type, Intellisense will offer various options that you can select. Pressing Ctrlþspacebar
brings up Intellisense if it is not already there, and pressing Esc makes Intellisense go away. When
Intellisense offers an option list, you can scroll to the one you want and press Tab to select it. The
help system and Wikipedia can tell you more.

We want our software to ‘‘wake up sane.’’ That means the value shown for

maximum hit points should be based on the level and class selected on the user

An Introduction to Visual Basic 13

14 Chapter 1 n What Is Game AI?

interface. We could have set the Maximum Hit Points label Text property to 4

instead of 888 and selected Mage as the character class, knowing that we set the

Level control to start with a value of 1. Doing so would force us into keeping all

three controls synchronized whenever we reprogram any of them. It also means

that the formula to compute maximum hit points would exist in two places:

invisibly implied by the value we use in the Maximum Hit Points label Text

property and explicitly stated somewhere in our code. If we change the formula,

we would also have to remember to change the label.

There is a better way to ensure that our software wakes up sane. We are going to

write code that changes the Maximum Hit Points label Text property whenever the

user changes the level or class. Our Load event handler will act like a user and set the

user interface to sane values. Then, all the code we have to write anyway will work on

our behalf to wake up sane. We will be able to see at a glance that our code works.

We want the formula to exist in only one place. Add the following code between

the end of the form Load event handler and the end of the class:

Sub ComputeHitPoints()
HitPointsLabel.Text = CStr(dieSize * Level.Value)

End Sub

Adding this code sets the label text to the product of the character level (from the

Level control) and their die size (the variable) all converted to a string, since the Text

property is of type string and not of type integer. We need to call this code any

time the user interface changes the level or class settings. How will our code know

the user interface changed?

Whenever the controls are changed by the user, VB will fire events for the

controls. We have an event handler for the form’s Load event; now we need

handlers for the Level and Class controls.

1. Click the GameForm.vb [Design] tab.

2. Double-click the NumericUpDown control.

3. Visual Basic creates a handler for the ValueChanged event. This is the exact

event we need to handle. Add a line to the handler to compute the new

maximum hit points:

Call ComputeHitPoints()

4. The Call keyword is not required, but it does help beginning programmers

understand that the code is invoking a subroutine. Click theDesign tab again.

5. Double-click the Mage radio button. Visual Basic again takes us to the code,

and this time it creates a handler for the radio button’s CheckedChanged

event. This event fires when the checked status changes, which includes

when the button goes from checked to unchecked. We only want to act if the

button was checked. Add the following code for the event handler:

If MageRadio.Checked Then

dieSize = 4
Call ComputeHitPoints()

End If

6. Add similar code for each of the other radio buttons. When finished, your

new code should look like the following:

Private Sub Level_ValueChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Level.ValueChanged

Call ComputeHitPoints()
End Sub

Private Sub MageRadio_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MageRadio.CheckedChanged

If MageRadio.Checked Then
dieSize = 4
Call ComputeHitPoints()

End If
End Sub

Private Sub ThiefRadio_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ThiefRadio.CheckedChanged

If ThiefRadio.Checked Then
dieSize = 6
Call ComputeHitPoints()

End If
End Sub

Private Sub ClericRadio_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ClericRadio.CheckedChanged

If ClericRadio.Checked Then
dieSize = 8
Call ComputeHitPoints()

End If
End Sub

An Introduction to Visual Basic 15

Private Sub FighterRadio_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FighterRadio.CheckedChanged

If FighterRadio.Checked Then
dieSize = 10
Call ComputeHitPoints()

End If
End Sub

That code takes care of all of the user interface events our code will need to

handle. Let us see how well it works.

From the Visual Basic main menu, select Debug?Start Debugging or press F5.

You should see something like Figure 1.6. Note that the application changed

the value of 888 to 4 as expected. You can stop debugging by clicking the Close

button (the red button with an � inside) in the upper-right corner of the

application window or by selecting Stop Debugging from the Visual Basic Debug

menu.

We can tell at a glance that our code does not wake up sane. It shows no class

selection, and 888 is probably not the right number of hits points for a first level

character of any class. At least the Level control is sane. Click one of the radio

16 Chapter 1 n What Is Game AI?

Figure 1.6
The project, running for the first time.

buttons to select a class and see the number of hit points change to the correct

value. Change the Level and Class settings and verify that the code properly

handles user input. Stop debugging so that you can edit the code.

We need our code to wake up with a class selected. The Level control wakes up

sane, but the Class settings do not. We could set the Checked property to true for

one of the radio buttons using the Properties window, but there is a better way.

Add the following line to the empty GameForm_Load routine:

MageRadio.Checked = True

Now when our code wakes up, it will check the MageRadio radio button. This

means that the radio buttons will appear to the user to wake up sane. One button

will be selected. Run the application again. Notice that the maximum number of

hit points is shown as 4 and not as 888. We did not directly change the label text,

so why did it change? When our code selected the radio button, the system did as

we asked and selected the button. The system also did as it always does and fired

the CheckedChanged event for the control. The event handler we added for that

event of that control ran, setting the die size to 4 and calling ComputeHitPoints.

ComputeHitPoints set the label for us, using the formula. Not only will user

interaction cause events to be fired, but actions by our code cause them as well.

We exploited the capability of our code to raise events in order to let it use

the regular code for operation to also work for initialization. This cut down

on the coding and the complexity. We eliminated a hidden dependency between

the formula and the initialization code. Getting rid of special initialization code

gets rid of potential bugs; there are no bugs in code that is not there.

Chapter Summary
In this chapter, we established a working definition for game AI. Game AI must

act intelligently in the face of changing conditions. Unlike physics, game AI has

choices when making its decisions. This chapter also gave us our first project,

providing a grounding in Visual Basic that we will build upon in future chapters.

Chapter Review
Answers are in the appendix.

1. What are the three parts to our definition of game AI?

2. Why is game physics not game AI?

Chapter Review 17

References
[Abrash96] Abrash, Michael, ‘‘The Quake Graphics Engine.’’ In lecture,

Computer Game Developers Conference, Santa Clara, California, April 2, 1996.

[Lazzaro04] Lazzaro, Nicole, ‘‘Why We Play Games: Four Keys to More

Emotion Without Story.’’ XEODesign, Inc., 2004. Available online at http://

www.xeodesign.com/xeodesign_whyweplaygames.pdf. See also http://www

.xeodesign.com/whyweplaygames.html.

18 Chapter 1 n What Is Game AI?

http://www.xeodesign.com/xeodesign_whyweplaygames.pdf
http://www.xeodesign.com/xeodesign_whyweplaygames.pdf
http://www.xeodesign.com/whyweplaygames.html
http://www.xeodesign.com/whyweplaygames.html

Simple Hard-Coded AI

If the answer to the question, ‘‘How will I do the AI?’’ is ‘‘Just write the code,’’

chances are you will write hard-coded AI. Also known as scripted AI, this method

has good and bad points. The most serious challenge with hard-coded AI is

knowing when to use it and when not to use it. Because hard-coded AI is the

most straightforward of all AI techniques, most of this chapter is devoted to

facing that challenge, covering the advantages and disadvantages of using hard-

coded AI rather than the methods for hard coding.

The Good, the Bad, and the Ugly
When the code fits the situation well, hard-coded AI is often the fastest and most

intelligent AI code possible. When the code is not appropriate, the decisions that

result from hard-coded AI are often so bad that they disrupt the player’s sus-

pension of disbelief. Hard-coded AI gets complex very quickly, can be difficult to

debug, and scales extremely poorly. Its brittle nature can quickly lead pro-

grammers to think there has to be a better way. These are software-engineering

issues in addition to being AI issues, but the demands placed on game AI bring

the issues out quickly.

The Good

It is very hard to improve on simple, straightforward code for implementing an

algorithm. Properly designed and implemented, this kind of code benefits from

19

chapter 2

minimal overhead and fast execution. Simplicity brings many other benefits.

Programmers writing this kind of code find it easy to write and debug. Indeed,

this is exactly the kind of coding method that is taught to beginners and perfected

by the time they become professionals. As long as the code keeps a reasonable

level of simplicity and straightforwardness, this kind of code represents the first

and best way of getting the job done.

Sophistication is not always a virtue. Imagine a nail-driving tool that is more

sophisticated than a hammer but less sophisticated than a power nail gun. Such a

tool would fail in the marketplace because it would fail to displace either

hammers or power nail guns. AI code is similar. Any methodology more

sophisticated than simple hard-coded AI must be sophisticated enough to bring

benefits that outweigh its costs. There is no place for methods that fall in between

‘‘simple’’ and ‘‘sophisticated enough.’’

To extend the nail-gun analogy, consider the fact that hardware stores still sell a

wide variety of hammers. Nail guns have not destroyed hammer sales. Carpenters

and even roofers still carry and employ hammers. In games, sophisticated AI

methods have not wiped out simple AI methods. Professional AI programmers

employ both. Beginning AI programmers start with simple methods and move

on as they learn more sophisticated ones. That being said, after learning to use

sophisticated methods to implement AI, beginning AI programmers should not

ignore the simple methods they first learned. It is a beginner’s mistake to forget to

check if the simplest way to implement AI is also the best way. Many times it will

not be, but surprisingly often, the simple methods are the best.

The Bad

Perhaps the most critical issue for hard-coded AI is that it must determine when

its behaviors are appropriate. For tiny behaviors, the determination is so obvious

and easy to compute conclusively that the programmer can forget to deal

explicitly with the issue when the AI grows more complex. The code, no matter

how good, must fit the situation.

Consider the AI for a simulated opera singer—a tenor. We will name him

Horatio and refer to him in future chapters. The AI for Horatio evaluates his

current situation. He is dressed in a dark formal suit. He is standing before a

seated, mostly quiet group of formally dressed people. The lights over the

audience are low. Quiet, formally dressed ushers direct people to their seats.

Music begins to play. So of course his AI directs Horatio to break into the

20 Chapter 2 n Simple Hard-Coded AI

opening song of the latest opera. Unfortunately, the scene described is a funeral

home, not a small theater. No matter how good the AI is at making Horatio sing

and portray emotion and move on stage, it is behaving inappropriately. As

mentioned in Chapter 1, ‘‘Introduction,’’ one of the overriding goals of any AI

programmer is to avoid artificial stupidity.

No matter how good the AI is at the things it does well, players will recoil when

the AI is stupid. Inappropriate behavior destroys suspension of disbelief. Simple,

hard-coded AI carries with it the risk of selecting an inappropriate behavior. If

the AI for Horatio could reason, it might be thinking, ‘‘You mean I am not

supposed to be singing right now?’’ Hard-coded AI also tends to exhibit poor

default behaviors: ‘‘This is what I do when I don’t know what to do.’’ A simple AI

can be hamstrung by having a set of behaviors that is too limited: ‘‘These few

things are all that I know how to do.’’ While hard-coded AI lacks formal

structures that lead the programmer to deal with any of these issues, action

selection is the most noticeable.

Thus, the first challenge when writing hard-coded AI is to make sure that the AI

reasons correctly that the action it is about to take is the right one. It should not

decide to sing opera at funerals. The second challenge for hard-coded AI is to

fake it gracefully when it does not know what it should be doing. The third

challenge for the AI programmer when creating hard-coded AI is to give it a

sufficiently broad set of behaviors. Answering this third challenge helps mitigate

the second one if the additional behaviors have different situations where they

are appropriate.

The Ugly

The major enemies of hard-coded AI are size and complexity. Code organization

is ad hoc unless the programmer actively takes steps to regularize it. Changes to

the code often entail a full rewrite or major refactoring of the code—and failing

to refactor the code carries the risk that the new code will never work properly.

This kind of code is said to be ‘‘brittle.’’ It has certain strengths, but beyond a

certain point, the method fails catastrophically. Ad-hoc organization provides no

clear guidance for the programmer with respect to where more code should be

added as new capabilities are required. This method fails to scale up.

Reconsider hard-coded AI when size and size-related complexity threaten to

become overwhelming. Hard-coded AI is a good place for small, complex

algorithms, but it is not well suited when the complexity is mostly due to large

The Good, the Bad, and the Ugly 21

size. ‘‘Overwhelming’’ will mean different things to different programmers, and

it will change for the same programmer in different parts of his or her career. An

evaluation of what is too complex should be made in real time by the people who

have to deal with the code. Hard and fast rules in this area are suspect, but in

general you should take pains to organize your code and be wiling to refactor it

readily.

No t e

Refactoring means that you improve the internal structure of the code without changing its
external function. It’s saying ‘‘knowing what I know now, and knowing what I have to change in this
code today, I should have written it differently,’’ and then taking the time to rewrite it accordingly.

Refactoring might not get rid of complexity, but it should make it more

manageable. The ability to visualize complex software is a very saleable skill.

Companies seek and attempt to retain programmers who can keep a clear picture

of a large and complex program in their heads and reason about it, but all people

have limits.

Projects
The projects for this chapter are based on the AI for a series of household

thermostats. While the simplest of thermostats hardly requires a computer, the

most sophisticated thermostats certainly depend on the tiny computers inside

them.

No t e

If you are new to using Visual Studio, you may want to review the projects in Chapter 1 before
proceeding.

At first blush, a thermostat may seem to be far removed from game AI. But

although it may not seem like it does, a thermostat does meet our definition of an

AI insofar as it reacts intelligently to changing conditions. Yes, game AI tends to

bring to mind images of the clever, hard-to-overcome bosses found on the last

level of a 40-hour game. It is worth noting, however, that such games do not start

with the boss level—and for good reason. So it is with learning to program AI.

AI game programmers are responsible for turning what would otherwise be a

museum walkthrough into an entertainment experience. Their tasks include

programming many small, less obvious decision-making capabilities, such as

camera AI.

22 Chapter 2 n Simple Hard-Coded AI

Consider camera AI. Some aspects of camera AI are readily handled by simple,

short, hard-coded scripts. A small chunk of AI allows game designers to create a

compelling dramatic experience by taking temporary control of the camera.

Imagine a first-person-perspective game. The camera shows what the player’s

character in the game sees. The character deals with the last enemy in a stairwell,

opens the door to the roof, and steps out, hoping that the promised helicopter will

come and pick him up. At this point, the game freezes and the camera pulls back,

showing the character standing there, up high and alone. It then pans a full circle,

allowing the player to see the burning city below. Then the cameramoves forward

and jumps back to the character’s perspective. The player walks that character

around the roof and gets a bad feeling about the helicopter before giving up and

heading back down the stairwell. Halfway down, however, he decides that one last

look for the helicopter is in order. The player’s character opens the door to the

roof and steps out—but this time the AI does not take control of the camera.

The hard-coded script for that bit of camera AI is an if-then statement with two

conditions. If the character is walking out the door and is doing so for the first

time, then the camera AI should take control and run the pan script. The core

decision-making logic is well within the capabilities of a beginning programmer.

It is not a great teaching example, however, because it demands that a complex

game program—complete with compelling art assets and good interfaces for the

AI programmer—already exist.

Thermostat AI places low demands on the programmer in terms of the amount

of effort needed to handle the software that is not the decision-making part of the

thermostat. While few games use thermostat code, many games use code of

similar complexity, as seen in the camera example. For example, level designs

often involve traps and triggers, and they use AI comparable to our thermostat

examples.

A Simple Thermostat

Consider the AI of a very simple thermostat. A mechanical switch in the ther-

mostat decides whether the heating system should run or not run. We will create

this type of a thermostat AI as part of a new project.

1. Using Visual Studio, create a new Windows Forms Application and call it

Thermostat.

2. Double-click My Project in the Solution Explorer.

Projects 23

3. VB will bring up a window with a column of tabs such as Application and

Compile on the left side of the window. Click the Compile tab if it is not

already selected.

4. One of the Compile options is Option Strict. Click the drop-down and set it

to On.

5. Right-click Form1.vb in the Solution Explorer and rename it House.vb.

6. Click the form in the designer and change the Text property from Form1 to

House Simulator, as shown in Figure 2.1.

Next, we will place the controls that make up the house simulation. This will

correspond to the ‘‘game’’ in which our AI will operate. As the projects get more

complex, we will rely more on the code on the CD, but doing them step-by-step

here ensures familiarity with Windows applications written in VB.

We need a reasonably rich world for our AI to operate. The split between what is

part of the AI and what is part of the rest of the game is a game-design issue. We

will consider all decision making as part of the AI, but will minimize the amount

Figure 2.1
The Thermostat project, before the placement of controls.

24 Chapter 2 n Simple Hard-Coded AI

of AI code devoted to carrying out the decisions of the AI. Once the decisions are

made, implementation of the actions is deemed to be something the game world

provides. For now, we will also minimize the amount of AI code devoted to

sensing the world. Reasoning about the world is the purview of the AI, but the

raw state data about the world is something the world should provide to the AI.

Professional AI programmers have to be vigilant to ensure that the world will

indeed provide the AI with critical data it needs. ‘‘Vigilant’’ in this usage often

means that professional game AI programmers wind up writing a large portion of

the sensing and action code needed by their reasoning code.

The rich world for the thermostat AI begins with the room temperature. The

room temperature will provide the changing conditions that prompt the AI to

react intelligently. The AI also needs a furnace to control in order for it to react.

The AI itself will do the intelligent part, but that code will be separated out and

not part of the simulation.

Note that our AI keeps no memory of the past. Our AI deals only in the current

temperature. If the AI needed knowledge about prior temperatures to help it

reason, it would have to remember them itself. The world simulation should not

keep this data because it exists solely to help the AI. More sophisticated AI will

retain memories of the past or suppositions about the future.

Small amounts of data are well served by ad hoc organization, but larger amounts

need formal organization. This is known as knowledge representation (KR).

Our thermostat AI cannot directly change the world temperature; it can only

turn on the furnace. If our AI needed to reason about a world that was warmer, it

would need to simulate or partly simulate that world and reason using the

simulation. As the programmer, we would need to design the simulation, and

that design would be the KR for it. (We will cover KR more explicitly in future

chapters.)

1. Drag a Label control to the top-left part of the form and change the Text

property to Ambient.

2. Drag another Label control to the right of the first label and change its Text

property to Set Point.

3. Drag a third Label control to the right of the others and change its Text

property to Status.

4. Drag a NumericUpDown control below the Ambient label.

Projects 25

5. Drag the tiny box on the right side to the left to make the control small

enough to fit under the label.

6. Change the Name property of NumericUpDown to AmbientUpDown.

7. The default value of 0 for the Minimum property and 100 for the Maximum

property do not need to be changed for a thermostat using the Fahrenheit

scale. If you use Centigrade, change the Minimum property to �15 and the

Maximum property to 45.

8. Similarly drag a NumericUpDown control below the Set Point label and

rename it SetPointUpDown.

9. Resize SetPointUpDown and optionally change the Minimum and Max-

imum properties.

10. Drag a Label control below the Status label.

11. Change the Label control’s Name property to StatusLabel and its Text

property to Undefined.

12. Change its BackColor property to White and the BorderStyle property to

FixedSingle. Note that when you go to change the color, there will be three

tabs showing: System, Web, and Custom. The default tab is System, and

White is not listed as an option in the drop-down for that tab. Instead,

White is listed in the Web tab, along with many common color names. You

can pick it from the drop-down for the Web tab or you can simply type over

the existing color with the name of the color that you want. Your project

should resemble Figure 2.2.

13. We are ready to add the code. We will put the AI code in a separate file to

help differentiate between the world simulation and the AI. Right-click the

Thermostat project in the Solution Explorer, choose Add, and choose

Module.

T i p

You could also add the module by opening the Project menu and choosing Add Module.

14. The Add New Item dialog box opens with the filename highlighted at the

bottom. Change the name to AI.vb and click Add.

26 Chapter 2 n Simple Hard-Coded AI

15. We will start with the core AI routine. Designing it first will show us

what inputs the AI needs from the world and what outputs it will want to

implement. Add the following code to the AI.vb file between the Module AI

and End Module lines:

’This function evaluates world conditions and gives back a
’ response for the furnace as a string
Private Function CoreAI(ByVal currentTemp As Integer, _

ByVal desiredTemp As Integer) As String
If currentTemp < desiredTemp Then

Return ("Heat")
Else

Return ("Off")
End If

End Function

This is only the core code. We need additional code to extract the inputs

from the world and to implement the output. The function is marked

private because we expect it to be called by other AI code that will provide

the translations. Note that comment lines in VB start with a single quote

Figure 2.2
Thermostat project, ready for code.

Projects 27

character. As mentioned, the underscore character is the line continuation

character in VB. Since the language does not use a termination character,

like the semi-colon in C, it has a continuation character for when a single

line of code should span multiple lines for readability.

16. Now add the following wrapper function to AI.vb:

’This is the public wrapper. It knows about the world.
Public Sub RunAI(ByVal World As House)

World.StatusLabel.Text = CoreAI(CInt(World.AmbientUpDown.Value), _
CInt(World.SetPointUpDown.Value))

End Sub

The wrapper isolates the AI implementation from the world implementa-

tion. If how the world is implemented changes, then only the wrapper

needs to change, not the core AI routine. CInt converts the UpDown values

from decimal to integer.

17. All that remains is to connect the world to the AI. When does the AI need to

run? It needs to run upon startup and whenever either of the two tem-

peratures changes.

18. Right-click House.vb in the Solution Explorer and select View Code.

19. We need to get to the form load event. Above the code-editing pane (the big

center area) are two drop-down lists. Change the selected entry in the

drop-down list on the left from House to (House Events).

20. Change the selected entry in the drop-down list on the right from

Declarations to Load. Visual Studio takes you to the event handler or creates

the skeleton for it if it does not exist. (This procedure is useful for creating

event handlers other than the default event handler and to navigate to a

particular event handler.)

21. Change the selected entry in the left drop-down list to AmbientUpDown.

22. Change the selected entry in the right drop-down list to ValueChanged.

Visual Studio will create the skeleton for the event handler.

23. Change the selected entry in the left drop-down list to SetPointUpDown.

24. Again change the selected entry in the right drop-down list to Value-

Changed. Visual Studio will create the skeleton for this event handler.

28 Chapter 2 n Simple Hard-Coded AI

25. Add the following line of code to all three event handlers:

Call AI.RunAI(Me)

26. The Me in this case refers to the running instance of the form. Observant

readers will have noticed that the Sub that handles the form load event is

marked as Handles Me.Load in the code. Add a comment, and your code

should look like the following:

’We check the furnace at startup and whenever conditions change.

Private Sub House_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Call AI.RunAI(Me)
End Sub

Private Sub Ambient_ValueChanged(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles AmbientUpDown.ValueChanged

Call AI.RunAI(Me)
End Sub

Private Sub SetPointUpDown_ValueChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles SetPointUpDown.ValueChanged

Call AI.RunAI(Me)
End Sub

27. Run the application in the debugger. Note that the status label has the value

Off even though the label starts with the value Undefined. This means that

the form load event triggered. Manipulate both temperature controls and

watch the status change back and forth between Off and Heat. If we had

forgotten either event handler, our furnace would ignore changing condi-

tions of interest to it.

Analysis

The AI code, especially the core AI code, is fast, simple, and reasonably bullet-

proof. But suppose the thermostat were also asked to control the windows,

closing them whenever the furnace is running. The window AI knows exactly the

right thing to do and can execute that action so well that it is a given. (We are not

considering how easy or hard opening or closing the windows might be.) At first

blush, this makes good sense. The windows should be closed when the furnace is

running. But the thermostat will also leave the windows open all summer, even

Projects 29

when it rains, and it may open the windows when it is cold outside if the room is

comfortably warm. Piggybacking the window AI onto the furnace AI results in a

poor window AI. The AI response does not fit the conditions.

Making sure that the AI response fits the conditions makes or breaks hard-coded

AI. It is rather easy to forget to guard against all the situations where the AI acts

inappropriately; indeed, it can be impossible to be completely effective in all

cases. Beginning AI programmers must learn to always do the analysis. Hard-

coded AI is simply too fast and effective to be discarded out of hand, but knowing

when not to use it takes practice.

Complexity is the enemy of hard-coded AI. As the number of decisions that

govern a particular behavior rises, complexity explodes. Complexity also

increases as the number of actions needed to implement a behavior increases and

with the number of inputs and the amount of state data that must be examined to

make the decisions. At a certain point, the complexity overwhelms the ability of

the programmer to write, debug, or modify the code. Usually, the ability to

modify the code is the first to succumb, followed by the ability to debug the code.

The thermostat we just coded has one decision to make: whether to call for heat.

It can implement that decision with a single action. It has one item of state data:

the desired temperature. It has one input from the outside world: the current

temperature in the room. So the answer to each of the ‘‘how many’’ questions is

1, the lowest possible number that can still expect an intelligent decision to be

made. Is it too low for it to meet our definition of AI?

To react intelligently to changing conditions, the AI must be able to act. This

thermostat has one output action. For it to detect changing conditions, it must be

influenced by at least one outside piece of data: the current temperature. For it to

act intelligently, it needs guidance on the decisions—and that guidance is the set

point of the thermostat. This AI is almost the simplest possible AI; it is no

surprise that hard-coded design is more than adequate to the task. A more

complex design would be overkill. It would be harder to write and debug. The

overhead of a more complex method would certainly make it slower to run. It is

hard to beat simple methods!

Consider, though, a very simple set-back thermostat with a day setting and a

night setting. It still has only one decision to make: whether to call for heat. The

internal state data has gone up, however, because there are two set points to track.

And the set points themselves have become more complex: Instead of a simple

30 Chapter 2 n Simple Hard-Coded AI

number for the temperature, each set point also has a start time. One number has

become four numbers. Also, this thermostat has two inputs from the outside

world: the current temperature and the current time.

Real thermostats usually rely on their own clock instead of asking the outside

world what time it is. That said, real thermostats, depending on their imple-

mentation details, often fail to stay synchronized with the correct time. Power

failures, daylight saving time, and even changes in which weekend daylight

savings time changes conspire to make real thermostats make bad decisions. To

avoid this form of artificial stupidity, our thermostat will lack a time-of-day clock

and will ask the outside world what time it is whenever it wants to know.

At first glance, our original thermostat had three things to deal with: one action,

one piece of state data, and one piece of world data. This new thermostat has

more. It has one action, four pieces of state data, and two pieces of world data. If

the different categories do not interact, overall complexity relates to the sum of

the different elements. In that case, our complexity has gone up seven-fold. Life

for an AI programmer is rarely so kind, however. If the different categories do

interact, we multiply to get a gauge of complexity. In that case, our complexity

has gone up eight-fold. Not surprisingly, this new thermostat is hard to find on

the market. While it saves money compared to the first one, it is not intelligent

enough to compete with more complex offerings.

Implementing this thermostat is left as an exercise for the reader. Note that the

core AI function call does not need to be changed, only the wrapper. Readers

taking the slow and steady approach will want to take the time and help cement

their skills with Visual Studio and VB. More advanced readers will hold off until

we get to a more realistic example.

Our first two thermostats deal with only heat. Adding air conditioning means

adding another output and another piece of state data. Our complexity count is

then two actions, five pieces of state data, and two pieces of world data. These

interact at least partially, giving us a potential comparative complexity product of

20. The code can no longer be written without thought or debugged at a glance.

And like the heat-only version of this thermostat, this thermostat is not intelli-

gent enough to compete in the marketplace. Implementation is again left to the

reader.

Our fourth thermostat has four set points instead of two. This level of complexity

is suitable for many households, and such thermostats are widely available. The

Projects 31

set points are matched to getting up in the morning, being away all day, being

home in the evening, and being asleep at night. The amount of state data has gone

from five items to nine. There are four set points, each with a time and tem-

perature. There is also the mode switch, which decides between heating and

cooling. This sums to nine pieces of state data. So two actions, nine pieces of

state data, and two pieces of world data multiply to 36. Care must be taken in

the coding and design to minimize the number of interactions between all of the

data.

A More Sophisticated Implementation

We could implement a fully generalized user interface for this thermostat, but

that would go beyond what is needed to illustrate the point. Our implementation

will have the expected four set points, but we will not create a user interface for

setting them. At this point, it is worth asking, ‘‘Where does the state data live? Is it

part of the world or is it part of the AI?’’ The ambient temperature and the time

are clearly world data. Our set points could be in either place. If the thermostat

needed to remember what it was doing the last time it ran, that data would be

part of the AI. It would be part of the AI’s knowledge representation of how the

world used to be—a piece of data it is remembering to help it think about how it

wants to act now.

1. Go to the code for House.vb and delete the three lines that make up the

SetPointUpDown ValueChanged event handler. We will keep the four set

points in the world data.

2. Add the following three lines to House.vb:

’Here are the thermostat programmed values.
Public ReadOnly SetTemps() As Integer = {70, 64, 68, 60}
Public ReadOnly SetTimes() As Integer = {6, 9, 17, 21}

The () by the names denote that the variables are arrays. The arrays are

public so that they can be accessed by the AI code in a different file. They

are read-only because we do not expect to change them, and any attempt to

do so is a bug we want to catch. The arrays are initialized with the values

shown in {}. The temperature values are in Fahrenheit degrees. The times

are in hours, using a 24-hour clock familiar to people who have experience

with the military or a European train schedule. Our thermostat will not

bother with minutes, only the hour. The sequence of values corresponds to

morning, day, evening, and night.

32 Chapter 2 n Simple Hard-Coded AI

3. Click the House.vb[Design] tab.

4. Click the SetPointUpDown control.

5. Right-click it and delete it.

No t e

At some point, the error list will show an error because the AI wrapper function as currently
written references the deleted control. For now, we will ignore the errors, work on the user
interface elements, and update the AI last.

6. Drag a Label control to where the deleted control used to be.

7. Change the label’s Name property to SetPointLabel and the Text property to

Not Set.

8. Change the BackColor property to White and the BorderStyle property to

FixedSingle.

9. Drag a Label control just below the Temperature controls.

10. Change the Text property to Time.

11. Drag a NumericUpDown control just below the new label and make it

smaller.

12. Change the Name property to TimeUpDown and the Maximum property

to 23.

13. Drag another new Label control just below the Time controls.

14. Change the Text property to Mode.

15. Drag two RadioButton controls onto the form and stack them below the

Mode label.

16. Change the Text property of the first RadioButton control to Air and the

Name property to AirRadio.

17. Change the Text property of the second RadioButton control to Heat and

the Name property to HeatRadio.

18. Change the Checked property of the Heat radio button to True. The form

should resemble Figure 2.3.

Projects 33

19. With the new controls, our application needs to handle new events. Double-

click the TimeUpDown, AirRadio, and HeatRadio controls. Before each

double-click, you will have to switch to the Design view of House.vb. Visual

Studio will create the skeletons of the three event handlers we are interested

in. Double-clicking the control in the Design view is an alternative to using

the drop-down lists at the top of the Code view. Double-clicking takes

you to the most commonly used event; to get to other events, you will have

to use the drop-down menus.

20. Add the following familiar line of code to all three event handlers:

Call AI.RunAI(Me)

The code for House.vb should now look like the following:

’Here are the thermostat programmed values.
Public ReadOnly SetTemps() As Integer = {70, 64, 68, 60}
Public ReadOnly SetTimes() As Integer = {6, 9, 17, 21}

’We check the furnace at startup and whenever conditions change.
Private Sub House_Load(ByVal sender As Object, _

Figure 2.3
The complete user interface for the set-back thermostat.

34 Chapter 2 n Simple Hard-Coded AI

ByVal e As System.EventArgs) Handles Me.Load
Call AI.RunAI(Me)

End Sub

Private Sub Ambient_ValueChanged(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles AmbientUpDown.ValueChanged

Call AI.RunAI(Me)
End Sub

Private Sub TimeUpDown_ValueChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TimeUpDown.ValueChanged

Call AI.RunAI(Me)
End Sub

Private Sub AirRadio_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles AirRadio.CheckedChanged

Call AI.RunAI(Me)
End Sub

Private Sub HeatRadio_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles HeatRadio.CheckedChanged

Call AI.RunAI(Me)
End Sub

21. Now we move to AI.vb to create our more sophisticated AI. We will work

from the wrapper toward the core AI. The core AI will need to know what

operating mode to use, so the wrapper will need to get that from the

world. Likewise, the core AI will need to know the right set-point tem-

perature. The wrapper will need to know what time it is to get the right

temperature value, but once that value is available, the core AI does not

care what time it is. Change the wrapper to match the following code

(every line changed):

’This is the public wrapper. It knows about the world.
Public Sub RunAI(ByVal World As House)

Dim mode As CurrentMode
Dim desired As Integer

’interrogate the world about our settings
desired = DesiredTemp(World)
mode = FurnaceMode(World)

Projects 35

’and let the core AI figure out what to do.
World.StatusLabel.Text = CoreAI(CInt(World.AmbientUpDown.Value), _

desired, mode)
End Sub

22. We have not yet written the code that gets the mode and desired tem-

perature, so Visual Studio will quietly complain about the names not being

declared. We have not yet defined what CurrentMode means either. It will

also complain about the fact that we added an argument to the wrapper

function’s call to the core but we have not yet changed the core AI. These

complaints appear in the Error List tab at the bottom. They are also marked

in the code the same wayMicrosoft Wordmarks spelling errors. First we will

interrogate the world. Add the following code to get the mode of operation:

’These modes should match up with radio buttons
Private Enum CurrentMode

Heat
Cool
’Off would go here
Unknown

End Enum
Private Function FurnaceMode(ByVal World As House) As CurrentMode

’we put all of the modes into parallel arrays
’They MUST have the same number of entries

Dim ModeRadios() As RadioButton = {World.AirRadio, World.HeatRadio}
Dim ModeValues() As CurrentMode = {CurrentMode.Cool, CurrentMode.Heat}

’we need a variable to iterate the arrays
Dim i As Integer

’Go through the array. Find the one that is checked
’This code automatically adjusts to adding
For i = 0 To ModeRadios.GetUpperBound(0)

If ModeRadios(i).Checked Then
Return ModeValues(i)

End If
Next

’In case we forgot to check one of them
Return CurrentMode.Unknown

End Function

36 Chapter 2 n Simple Hard-Coded AI

The GetUpperBound function returns the highest valid subscript for the

array. Writing the code this way means fewer things to keep synchronized.

The loop always goes from the beginning of the array to the end. As long as

the two arrays have the same number of items, the same subscript can be

used for both.

No t e

The function knows about the radio buttons we added to the form and puts them in an array. If
we wanted to add a third mode, such as an explicit off mode, we would add another radio button
to the form and add the name of that radio button to the array. We would also add a corre-
sponding entry into the Enum and put that entry in the ModeValues array. On the form, VB
groups all radio buttons that have the same container, such as a form, so that checking one
unchecks all of the others.

No t e

It is worth noting that explicit knowledge of the world implementation is creeping into the AI
code. We will be successful at keeping it out of the core AI, but the wrapper and the world are
two different files that have to be kept in sync.

23. We still need to interrogate the world about the desired temperature. Add

the following code to AI.vb:

Private Function DesiredTemp(ByVal World As House) As Integer
’We need some subscript variables
Dim ss As Integer

’the hours after midnight but before morning count as night
’02:00 is after 21:00 but before 06:00, use the 21:00 value
Dim foundss As Integer = 3

’exploit the fact that we know that there are exactly 4 points
’and that they are in time-sorted order
For ss = 0 To 3

’if it is at or past this set time, use this set time.
If World.TimeUpDown.Value >= World.SetTimes(ss) Then

foundss = ss
End If

Next

’The times and temps are parallel arrays. A subscript for one
’can be used on the other

Projects 37

’Side effect: show what temp we are using
World.SetPointLabel.Text = CStr(World.SetTemps(foundss))

’pass that same value back to the AI.
Return World.SetTemps(foundss)

End Function

This code also knows more than is healthy about how the world imple-

mented the set points, but since that data is directly related to the AI code,

it is not as likely to cause problems. The side effect of setting the text of

the label is intentional. In this project, it helps debugging by showing that

the right set point was selected. In a much broader sense, this is an imp-

ortant part of game AI. As pointed out in Chapter 1, the intelligence must

be made noticeable to the player. In addition to finding ways to make the

AI smarter or less stupid, the AI programmer must always be looking for

ways to make the AI visible to the player.

24. Having gathered data from the world, it is time to upgrade the core AI to

make use of it. We will change the signature to include the mode and then

make the rest of the code mode aware. Here is the new core code:

’This function evaluates input temperatures and mode and gives back a
’response for the furnace as a string
Private Function CoreAI(ByVal currentTemp As Integer, _

ByVal desiredTemp As Integer, _
ByVal mode As CurrentMode) As String

Select Case mode
Case CurrentMode.Heat

’the same exact code as before
If currentTemp < desiredTemp Then

Return ("Heat")
Else

Return ("Ready")
End If

Case CurrentMode.Cool
’note that we flipped the comparison
If currentTemp > desiredTemp Then

Return ("Cool")
Else

Return ("Ready")
End If

38 Chapter 2 n Simple Hard-Coded AI

Case Else
’this helps debug in case we forget to add
’ a new mode here as well as everywhere else.
Return "Bad Mode"

End Select

’this helps debug because we should never get here
Return "Broken"

End Function

25. Run the application in the debugger and change the settings. Does the

operation seem reasonable?

The heat side is perfectly reasonable, especially for a drafty old house that loses

heat quickly and is expensive to heat. The air-conditioning settings seem posi-

tively frigid, especially the night setting. A more realistic implementation would

have different temperatures for each mode, even if they kept the same times.

Doing so adds four more numbers—easily done as another parallel array, but

now the numbers interact with the mode. The DesiredTemp function now has to

be mode aware. This means that the wrapper has to be changed to get the mode

first before it gets the temperature, when before it did not matter. The existing

code, which currently works, would have to be changed and the order of the calls

fixed. When the two pieces of data were independent, there was less complexity.

If we make them interact, the complexity increases. The increased complexity

does not show up as increased length of code the way it did in the core AI, but in a

nearly hidden way pertaining to statement order. The statements are currently

close together, and the interaction would be obvious, but as the code grows, this

might now always be the case.

State of the Art

Our last thermostat is modeled after those found in the author’s home. It has up

to four set points per day, with each day having independent set points, giving 28

set points for heating and 28 more for cooling. It controls a geothermal heat

pump that has two stages of cooling and three stages of heating. It also has a fan-

only setting. The set points in this thermostat are treated differently. This ther-

mostat anticipates the set points and attempts to have the temperature of the

house at the set-point temperature by the set-point time. If the set point is for 68

degrees F at 06:00, this thermostat tries to have the room hit 68 degrees F at 06:00.

Projects 39

The other thermostats we have analyzed so far used their set points as start times,

not end times. These latest thermostats determine the stage of heating or cooling

required based on the number of degrees between the set point and the current

temperature, the amount of time the current staging level has been running, and

the current stage of operation.

Recall the discussion from Chapter 1 that AI is not physics. With our latest

thermostat, we now have two different methods of operation. Old-style ther-

mostats start heating at the set point time, and newer thermostats attempt to

finish heating at the set point time. The fact that both methods of operation are

valid can be seen as evidence that our thermostat example is more like AI than

like physics. Rocks on cliffs do not get to choose the method of their falling.

The addition of more set points does not raise the level of complexity in the

operation of the thermostat very much. The prior thermostat isolated the set

points reasonably well, so the number of them will influence the speed of the

code but not the complexity. This decoupling allows the code to scale up without

increasing in complexity.

The increase in the level of complexity in this example comes from the imple-

mentation of anticipation and the staged output. The thermostat knows that

large swings require a second stage. The first stage can almost always hold the

house at a given temperature, but changes larger than five degrees are best

satisfied with a second stage. The thermostat also calls for the next stage if the

temperature does not climb rapidly enough. To make this calculation, the

thermostat must track run time at the current stage and well as temperature gain

at that stage. The stage called for also depends on the current output, because the

unit will not revert to a lower stage if the set point has not yet been met. This

algorithm calls for new data and many interactions. The thermostat is thinking

about the process, so once again, knowledge representation creeps into the

picture.

Implementation is left to the student.

Chapter Summary
The projects in this chapter lead the programmer from simple and effective if-

then statements to a more data-driven approach. Hard-coded methods start out

simple, fast, and effective, but can wind up brittle and hard to manage. Hard-

coded AI can be both the smartest possible AI and the stupidest.

40 Chapter 2 n Simple Hard-Coded AI

Chapter Review
Answers are in the appendix.

1. What are the common drawbacks to hard-coded AI?

2. What are the advantages to hard-coded AI?

3. Complexity can be as low as the sum of the parts and as high as the product

of the parts. What is the relationship between the parts when complexity is

the sum? What is it when complexity is the product?

4. What is the design of the data called when the data is information the AI uses

to help it think about (or even imagine about) the world?

5. Critique the expediencies in the code that interrogates the world in the

four-set-point thermostat. Comment on the dangers versus the additional

complexity needed to mitigate the risks.

6. Why is the side effect in the code that gets the set-point temperature in the

four-set-point thermostat important?

Exercises
1. Add an explicit Off mode to the thermostat. You will need a additional radio

button on the form, an Off entry in the Enum, and an entry in each of the two

arrays that are used to turn a checked radio button into a mode value, and

you will need to deal with the new mode in the core AI.

2. Implement as many of the features of the last thermostat described as you

can. If the specifications seem incomplete, search the Internet or document

your reasonable assumptions.

Exercises 41

This page intentionally left blank

Finite State Machines
(FSMs)

Finite state machines are our first formal structure for game AI. The regularity of

the structure helps us to manage program complexity, a major problem of hard-

coded scripts. Using FSMs, we break down the AI into a fixed—hopefully

small—number of states and the transitions between those states. If you have

studied formal FSMs in classes, our usage may differ. ‘‘It’s important to

understand that when game developers speak of state machines or finite state

machines, they are only loosely referring to the traditional Computer Science

definition.’’ [Rabin02]

This chapter looks at what FSMs are and considers their design and analysis. The

analysis includes single-transition review and multiple-transition review.

(Multiple-transition review unearths the problems of ambiguous transitions and

race conditions.) We will touch briefly on complexity and examine three failure

modes. At the end of the chapter are projects to implement an FSM for a game-

related AI.

What Are FSMs?
Finite state machines have a finite number of states and a set of transitions

between those states. So what do we mean by states? The easiest way to think of

states is to think of different ways to finish the statement that begins, ‘‘I am. . . .’’
We could create a list of verbs: flying, walking, running, or sitting. Another way

to model uses adjectives: tired, happy, or angry. The set of states might represent

43

chapter 3

nouns: egg, worm, dragon. All of these lists are different ways of doing or being or

existing in some way. We build the states in an FSM to model these ways. For

game AI, the key idea is that different states imply different behaviors. We expect

dragons to behave differently from dragon eggs.

That leaves the transitions. The transitions answer the question, ‘‘What would

make the AI change from one state to a different state?’’ Since we are using the

states in the FSM to map to behaviors, the question translates to, ‘‘What would

make the AI change from this set of behaviors to that set of behaviors?’’

So can we make our FSMs meet our basic definition of game AI from Chapter 1,

‘‘What Is Game AI?’’ Can they act intelligently in the face of changing conditions?

The actions are handled in the states. The transitions provide the mechanism to

handle changing conditions. The intelligent part depends on the quality of the fit

between the simulated world and the selected states and transitions. Horatio, the

simulated opera singer from Chapter 2, ‘‘Simple Hard-Coded AI,’’ would still

inappropriately break into song if his AI did not correctly differentiate between

an opera house and a funeral home. In short, the intelligence is in states and

transitions.

Design and Analysis
Besides being a programming method to implement AI, FSMs are an effective

AI analysis tool. Before using an FSM, the programmer must ask, ‘‘Can I break

the AI into concise, independent states?’’ In order to answer that question, the AI

programmer must first solidify his or her idea of what the AI must do. It is

imperative to know what the AI must do before an implementation can be

selected. The act of determining whether an FSM is appropriate forces the AI

programmer to first define the AI.

Look back at the three lists we used to finish the ‘‘I am . . .’’ statement. The

answers were concise; it is hard to beat single-word answers for brevity. The

answers were also independent; that is to say, each one was not like any of

the others. More importantly, it would not make sense for the AI to be any two at

the same time. Traffic lights and thermostats have concise, independent states

and clear transitions. Simulated monsters or very simple simulated people might

easily break into a few states, but more complex simulated people do not. A

simple monster might be content only to hide, attack, or flee, but a simulated

person in the game The Sims has to be able to be hungry, lonely, and bored all at

44 Chapter 3 n Finite State Machines (FSMs)

the same time. [Forbus02] If the problem does not easily resolve into indepen-

dent states, an FSM is not the best solution.

Another question to ask is, ‘‘What do the states represent?’’ For a traffic light,

the states might be the color that is currently illuminated. In this case, each state

corresponds to an output. This is the most intuitive way of implementing a finite

state machine.

FSM machines lend themselves to pictures. One of the better ways to design an

FSM is to lay out the states and transitions as a drawing. Figure 3.1 corresponds

to our monster AI. It appears quite simple, but it is probably more interesting to

analyze than yet another thermostat.

The states are the circles, and the transitions are the arrows. The double circle for

the Hiding state means that it is the starting state for our monster. Each tran-

sition is an arrow with text showing what causes the transition. There are many

drawing programs that make it easy to draw FSM diagrams. This diagram was

drawn using Microsoft Visio. In this diagram, the transitions depend on whether

the monster can see players or the value of the monster’s health. How intelligent

is this model? We start reviewing by looking at each single transition by itself.

Single-Transition Review

This model is intelligent, but not intelligent enough. The monster starts out

hiding and then attacks when it sees the player. A powerful monster pitted

Figure 3.1
First try at a simple monster AI using a finite state machine.

Design and Analysis 45

against a weak or inept player will result in quick victory for the monster, which

will go back to hiding. If the combat goes against the monster and the monster’s

health gets too low, it will flee. If the monster is not healed by some means and it

successfully evades the players, it will hide. So far, so good. What if the player now

wanders into themonster’s sight? Themonster still has low health. It will attack the

player on sight and then immediately flee when it realizes that it has low health.

The monster would have been better off if it had remained hidden. So we change

the transition from the Hiding state to the Attack state as shown in Figure 3.2.

The change we made between Figures 3.1 and 3.2 improved a single transition to

make it better. This change avoids artificial stupidity, and we only had to look at

each transition by itself. There is only one transition out of the Hiding state in

our FSM. Looking at each transition by itself is the easiest way to review an FSM

for potential problems. At first, the original transition looked perfect. The change

came after the system left the starting state and ran for a while. The original

transition assumed that a monster that was hiding had high health. This is true at

the beginning, causing the original transition to seem reasonable, but it was not

required to be true. It makes sense for a monster with low health to hide, so we do

not want to prevent a low-health monster from hiding. We have already pro-

grammedmonsters with low health to break away from combat, so it makes sense

for us to program monsters with low health to avoid combat.

You should review each single transition of your FSM designs to see that it is

always reasonable. It will probably be reasonable during the initial phases of

Figure 3.2
AI for a more self-aware monster.

46 Chapter 3 n Finite State Machines (FSMs)

operation, but it may present problems after the data upon which it depends

works through the range of possible values. The questions to ask are ‘‘Is this

transition reasonable from this state in the first place?’’ and ‘‘Is this transition still

reasonable when the machine returns to this state from other states?’’

Multiple-Transition Review

The second thing to review is multiple transitions. When there is more than one

transition out of a state, we face two related issues: disambiguation and race

conditions. If two transitions from a single state can be valid at the same time,

they are ambiguous. One way that transitions can become ambiguous is if more

than one thing in the game world can change before the AI runs again. This gives

rise to race conditions. If only one thing can change at a time, Figure 3.2 is

perfectly fine. A monster that is in the Attack state can run low on health or it

can run out of players, but as long as they do not happen at the same time, the

monster AI always does the right thing. If both of those events can happen at

the same time, however, the monster AI FSM has two valid transitions to pick

from. Transitioning to the Hiding state makes sense, but going to the Flee state

does not. The Flee state would transition to the Hiding state as soon as it got a

chance.

The problem is that our monster is fleeing from enemies who are not there. A

similar condition exists when a monster in the Flee state is healed (perhaps by a

more powerful allied monster) at the same time that the players stop pursuit and

make themselves scarce (perhaps in order to avoid having to deal with two

monsters at the same time). In this case, the FSM in Figure 3.2 will have our

monster attack players who are not there. Race conditions like these tend to be

subtle and hard to detect at first glance.

In real game development, the AI programmer cannot require that the system

change only one thing at a time in order to prevent race conditions in the AI; the

AI programmer is forced to deal with race conditions as a fact of life. There are

three ways to handle race conditions and ambiguities. You can ignore them, you

can fully specify all transitions, and you can prioritize the transitions.

The easiest way to handle ambiguities is to simply not care. In the FSM shown in

Figure 3.2, it could be argued that no player will ever see the monster being

stupid. The ambiguities all happen when there are no players and some other

condition also changes at the same time. We have already noted that if the player

never sees great AI, that AI is wasted. Conversely, and to our benefit, if the

Design and Analysis 47

player never sees artificial stupidity, then for all practical purposes that stupidity

did not happen.

This powerful tool fails if the game ever offers the player a chance to see things the

player could never see while playing the game. For example, the any-angle

instant-replay capability popular in sports games kills this method of handling

ambiguities. In our example, we might claim that no player will see our monster

being stupid because it only happens when there are no players present. The idea

of ‘‘no players present’’ needs closer examination, however. Is the player sup-

posed to be able to hide from the monster? If so, then the player will expect the

monster to not detect the hidden player when the player is actually present. If the

monster acts like it knows that the player is present when the player is hidden,

then the AI is cheating and—more importantly—it is visibly cheating. Players

hate visible cheats worse than they hate artificial stupidity. If players can hide and

the monster properly ignores them when they do, then the race conditions in the

FSM of Figure 3.2 must be dealt with. A player who was hidden from both the

monster and the other players will indeed be able to see the monster attack or flee

from the other players who are no longer there.

The next simplest way to handle ambiguities is to fully specify every transition in

terms of every one of the conditions on which any transition depends. This can

be characterized as ‘‘Look at all the data every time.’’ ‘‘Simple’’ in this usage does

not mean easy or effective, however; it merely means that it is not hard to

understand the concept. Full specification adds complexity to the transitions and

quickly becomes a nightmare to maintain.

The third and most common way to handle ambiguities is by prioritizing the

transitions. If the No Players transitions from the Attack and Flee states are

checked before the health-related transitions out of those states, the monster AI

will never attempt to attack or flee from players who are not there. The impli-

cation here is that the first valid transition found will be the transition taken. This

capability is very easy for the programmer to provide by making the code that

checks the transitions for validity go through them in a fixed order set by the

programmer. The programmer will probably write the code to check the tran-

sitions in a fixed order anyway. All that is required is that the programmer thinks

about the order and forces it to be optimal. This simple approach often meets a

‘‘good enough’’ criterion.

When there are numerous transitions and states, a fixed order may not always

yield the best AI, however. If need be, the programmer can employ a more

48 Chapter 3 n Finite State Machines (FSMs)

sophisticated approach and implement dynamic prioritization. With dynamic

prioritization, the valid transitions indicate how well they fit the state of the

world.

Consider a more sophisticated monster AI. The transition that handles ‘‘Flee

combat if health is low’’ might be modified. The modified transition might factor

in how fast the player can move compared to the monster when computing

priority. A fast player would be able to run down the fleeingmonster, so turning to

run would be suicidal. It might factor in if the player hasmissile weapons and there

is no cover. So in adverse conditions, the transition from Attack to Flee might still

be valid, but with a low priority. Why do this? Our more sophisticated monster AI

might have a Berserk state suitable for when all-out attacks are the only hope. Such

a behavior has a high entertainment potential for the player. Chances are that the

monster will become very scary and dangerous, but only for a very short time. The

transitions to the Berserk state have modest priority. The observed behavior is,

‘‘When all the normally good ideas look like bad ideas, this normally bad idea is

actually the best idea.’’ For a more in-depth coverage of useful techniques for

dynamic priorities, see Behavioral Mathematics for Game AI [Mark09].

This level of sophistication is not required in all cases, and might not be

observable. If it is not observable and the player cannot recognize it, it is wasted

effort. Games are an entertainment product first and foremost; everything in

them should be there for the player’s benefit.

Complexity

Note that not all of the transitions in Figure 3.2 needed to evaluate all of the

conditional data. In a good FSM implementation, the transitions do not take into

account every possible event or condition in the world, only those needed to

cause a particular transition and those needed to disambiguate similar transi-

tions. This simplifies life for the programmer. Note that there is no transition

from the Hiding state to the Flee state. It commonly happens that there will be

many fewer transitions than are possible, especially when there are many states.

This also simplifies life for the programmer. The maximum number of transi-

tions possible is N*(N�1) where N is the number of states. The only hard rule

about transitions is that there should only be one transition out of a state for any

unique set of conditions.

In actual implementation, programmers encounter complexity that is hidden by

the state diagram. For each state, there can be an entry function, an exit function,

Design and Analysis 49

and an update function that runs when there is no transition to be made. The

entry function runs when the state is entered from another state. It provides any

setup capability the state needs in order to run properly. The entry function for

the Hiding state might be tasked with picking the hiding spot. The exit function

runs when the FSM is leaving the current state and provides clean-up

functionality. Upon leaving the Attack state, the monster might want to put

away any weapon it is carrying in order to run away faster or to more easily

climb into a hiding spot. The update function runs each time the AI gets to

think while in the state. In the Flee state, our monster needs to go quickly in a

direction that is away from the players, and the update function for the Flee

state handles all of that.

Failure Modes

FSMs have some common failure modes. We will touch on three of them:

concurrent states, state explosion, and transition explosion. The latter two may

be dealt with through careful design practice, but the concurrent states are

usually a clear indicator that you should not use an FSM implementation.

Concurrent States

When reduced to an FSM, the AI might need to be in more than one state at once.

For example, simulated people may need to be hungry, lonely, and bored all at

the same time. The original states are clear and concise, but they are not exclusive

from each other. Do not attempt to use FSM machines for this kind of AI

problem, because it is better solved by other methods, such as the various agent

technologies.

State Explosion

The term ‘‘state explosion’’ describes when the finite number of states becomes

too large, especially when the number of states starts multiplying. State explosion

is often the result when the original states selected blur into each other and more

states are added to better differentiate them. Note that our original states were

concise, one-word responses to ‘‘I am. . . .’’ The programmer should be con-

cerned when those answers become full sentences. Plain FSMs are not appro-

priate when those responses become paragraphs.

One method of controlling state explosion is to use hierarchical state machines.

Typically, this involves two levels. Each high-level state runs a low-level state as

50 Chapter 3 n Finite State Machines (FSMs)

part of the high-level state’s update function. Subtleties within the high-level

state are handled by the low-level state machine. If our monster is a fire-breathing

dragon, the Attack high-level state might have a few low-level states, such as a

Close state in which the dragon charges and breathes fire on far-away targets.

When the dragon gets near, it would switch to a Combat state, where it wants to

avoid breathing on itself and instead employs claws and teeth. Likewise, the high-

level Flee state might involve two low-level states: Running and then Flying. With

hierarchical FSMs, the low-level machines from one state have no outside

interaction with any of the other low-level FSMs.

Transition Explosion

Transitions can grow in number and complexity. If an FSM design suffers from

state explosion, a far worse transition explosion almost always follows. One

characteristic of a good FSM is that the states have mostly local, rather than

global, transitions. Hierarchical FSM machines enforce this good trait, but reg-

ular FSMs benefit from it as well. Any given state has transitions to a small subset

of all of the states. In pictorial form, the FSM resembles a flat mesh with few lines

crossing. Without this locality, state growth may be manageable, but the tran-

sition growth may not. Ask yourself, ‘‘If I add this state, how many existing states

will have to connect to it?’’ If the answer is all (or nearly all) of them, it indicates

potential problems. If the answer is a few of them, it is a good sign. Recall from

the complexity discussion that the number of possible transitions grows much

more quickly than the number of states.

Another characteristic of a good FSM is that the transitions are simple. ‘‘Simple’’

here means that of all the data that gets evaluated by all the transitions, a given

transition only depends on a few of those items. Disambiguation methods deal

with the problem of multiple valid transitions. If the disambiguation methods are

inadequate, the complexity of the transitions grows with the number of data

items touched by all transitions. When adding a new transition or changing an

existing one, ask, ‘‘How many transitions need to be updated to consider this

new data item?’’ If the answer is only a few, your disambiguation is solid. If the

answer is all (or nearly all) of them, your machine is not effectively exploiting

what are called ‘‘don’t care’’ conditions. (The ‘‘don’t care’’ conditions are all the

things that can safely be ignored when evaluating a particular transition. Clever

disambiguation simplifies important factors of an evaluation into don’t care

conditions. For example, in our monster AI, the High Health transition from the

Flee state to the Attack state cares about health, but the No Players transition

Design and Analysis 51

from the Flee state to the Hiding state does not, because the No Players transition

is evaluated prior to the High Health transition. If High Health evaluates at all,

then players are known to be present; the transition does not need to check for

them again.)

Projects
Games are written in many languages, and few of them include out-of-the-box

support for FSMs. We will write the structure ourselves. We could write all

AI code ad hoc, but the amount of work to build a structure is less than

the amount of work needed to debug ad hoc methods. We will write the

structure in such a way as to minimize the number of errors we can make in

the code.

The project itself will be to implement the simple monster AI in code. Our AI will

do more than think; it will think ‘‘out loud’’ for our benefit. That is, our monster

will emit text messages for us to read, enabling us to see clearly what it is thinking.

Note that as an added benefit, doing so improves our ability to debug the code.

More importantly, doing so reinforces the good habit of making the AI pro-

grammer look for ways to show the player what the AI is thinking. Games that

show the player what the game is thinking are perceived to be smarter than games

that do not.

A Brief Foray into Object-Oriented Programming

If you are familiar with object-oriented programming, you can safely skip this

section. If not, the ‘‘Fundamental Concepts’’ section of the Wikipedia entry on

the subject is quite good as a place to start [Wikipedia09].

In object-oriented programming, behavior and internal data are combined as an

object. An object is one of something. The kind, or type, of an object is its class.

An object named Bob might be of type Human. The Human class does not by

itself do anything; objects of that class certainly do, however. The actions a

programmer can ask an object to do are called the methods of that object. From

this description, you may have realized that we have been dealing with objects all

along. For example, in Chapter 2, we passed a World object of type House to the

RunAI subroutine.

For our purposes, we will exploit the fact that objects have control over their

internal data. Instead of manipulating the data directly, code outside the object

52 Chapter 3 n Finite State Machines (FSMs)

uses the methods the object provides. Using a real-world metaphor, an instance

of a Painter object might have a method called PaintTheTrim(somecolor). The

Painter object internally decides whether it needs to use masking tape or to paint

freehand. The Painter object picks which paintbrush to use. A well-implemented

object does not allow direct manipulation of the details, and the programmer

using the object does not want to micromanage those details. In short, if the

programmer gets the class right, he or she can quit worrying about the internals

and use the objects at a much higher level of abstraction.

In our code, the Public and Private keywords are how a class marks methods

that can be called outside of an object. You can make some of the internal data of

an object visible outside of the object by marking it public, but this should be

done sparingly. Consider the complexity discussions of Chapter 2. Object-

oriented programming helps keep the internal complexity of our AI additive as it

grows instead of multiplicative.

Another common feature of object-oriented programming is inheritance. A

class, say of type Dragon, can inherit from another class, say of type Monster. In

that case, all object of the class Dragon have all the methods of the Monster class

plus the methods specific to the Dragon class. So all objects of the Monster class

might have a method to indicate their health, but the ability to breathe fire

would be implemented only by objects of the Dragon class. We will use

inheritance very sparingly. We will use it to get different kinds of objects that

inherit from a common class to act the same way. You should never be able to

create an object of certain classes. For example, we might not want there to ever

be an instance of a generic monster. In VB, we would mark the Monster class

MustInherit to enforce this. We can create objects of classes that inherit from

Monster, such as Dragon or Orc, but we cannot create an object of type Monster

directly.

FSM Objects

So what objects do we need for our FSM AI? We need states, the states need

transitions, and the states need some machine that runs them. In addition, that

machine needs some changing environment to live in; that environment will

be our monster. If the FSM needs data, it asks the monster. The monster will

either have that data or get it from the rest of the world. We will not consider

the outside world; all the world data needed by the FSM will reside in the

monster.

Projects 53

State Objects

Our state objects need four methods for normal operation:

n An entry method. The entry method will be called once by the machine

when it transitions into a new state.

n An update method. The update method will be called when the machine

elects to stay in the current state.

n An exit method. The exit method will be called to clean up when the

machine leaves the current state.

n A transition-check method. This method determines if the machine should

transition out of the current state. Our states will check their transitions

in the order they were loaded and use the first valid transition. This will

provide a mechanism for dealing with ambiguous transitions.

Our state objects will also need to initialize themselves. When the state is created,

it will load a list of transitions out of the state. In our implementation, transitions

are stored in the state that the transition comes from.

Transition Objects

Our transitions will be very simple. They have a method that indicates if they are

valid when checked against the current world conditions. That method indicates

the state to which the machine should transition.

The Machine Object

The Machine object will present a RunAI method to the world. This is how the

world asks the AI to do some thinking. In addition, it needs a way to load the

states and transitions. We will do this by loading the Machine object with states.

The first state loaded into the Machine object will be the Start state.

The Monster Object

The Monster object will actually be a Windows form, which is also a type of

object. It will provide the user interface. The user will be able to adjust whether

the monster sees players or not as well as adjust the monster’s health between low

and high. The Monster object will make both of those adjustments available to

the AI. The Monster object will also have an output window to show what it is

54 Chapter 3 n Finite State Machines (FSMs)

thinking. Of course, the Monster object will have a button the user can click to

make it think.

Creating the MonsterAI Project

The Monster object will be our only Windows form. We will add numerous

classes to implement the states and transitions. If we were going to make more

than one kind of monster, we would create a class for general monsters first. Each

different kind of monster would inherit from the general class. We would reuse

the bulk of the software that way. Using inheritance this way is straightforward

and easy to understand. Commercial games tend to use a more complex, highly

data-driven approach. Since we are only going to do one kind of monster,

however, we will not bother generalizing it for reuse. Writing for reuse rarely

works unless there are two or better yet three different uses implemented when

the software is first written.

1. Launch Visual Basic.

2. Create a new Windows Forms Application project and name it MonsterAI.

3. In the Solution Explorer window, rename Form1.vb to Monster.vb.

4. Click the form in the editing pane and change the Text property to Monster.

5. Resize the form to make it much wider.

6. Open the File menu and click Save All. At this point your project should

resemble Figure 3.3. We are going to put the user inputs on the left side of

the Monster form and the output of what the monster is thinking on the

right side of the form.

7. We can make short work of the user interface from here. By studying the

transitions, we see that the monster needs to be able to know if it can detect

players and if it has high or low health. We also need to give the monster a

place to show us what it is thinking. After we add the controls that make up

the visual elements, we will add the code that makes them work. First,

drag a CheckBox control from the Toolbox to the top-left corner of the

Monster form.

8. Change the Text property of the CheckBox control to Sees Players.

9. Change the Name to SeesPlayersCheckBox.

Projects 55

10. Drag a Label control from the Toolbox and place it below the Sees-

PlayersCheckBox control.

11. Change the Text property of the Label control to Health.

12. Drag a NumericUpDown control from the Toolbox and place it below the

Health label.

13. Change the Name property of the control to CurrentHealth.

14. Change the Maximum property to 10 and the Value property to 10.

15. Drag another Label control from the Toolbox to the top middle of the form

and change its Text property to Thoughts.

16. Drag a TextBox control to the form just below the Thoughts label. Change

its Name property to ThoughtsTextBox.

17. Change the Multiline property to True. This will allow us to resize the

control.

Figure 3.3
Initial FSM project.

56 Chapter 3 n Finite State Machines (FSMs)

18. Drag the lower-right corner of the control to the lower-right corner of the

form, using nearly all of the available space.

19. Set the ReadOnly property to True. This keeps the user from editing the text

in the control.

20. Set the ScrollBars property to Vertical. Our monster will do a lot of thinking,

and we want to see it all.

21. Finally, drag a Button control to the bottom-left corner of the form.

22. Change the Text property to Think and the Name property to ThinkButton.

This completes the visible portion of the user interface. Your project should

look like Figure 3.4.

Our next task is to provide some code that interprets the meaning of the user

interface. Our FSM could look at the controls on the form directly, but we will

create a simpler, better-defined interface between the AI and the monster.

Why add this apparent complexity? It will turn out that adding this tiny bit of

complexity will make the AI code simpler and easier to maintain. One of the

Figure 3.4
Monster user interface.

Projects 57

questions the AI will ask is, ‘‘Is the monster’s health low?’’ The evaluation should

be made by the monster, not the AI. If the AI looks directly at the controls, it can

only ask the question, ‘‘What is the value of the CurrentHealth control?’’ These

questions are not the same. If we use the same AI for two different monsters—

one that has a maximum health of 10 and another with a maximum health of

100—a value of 10 returned for one monster will probably have the opposite

interpretation if it is returned for the other monster. If we change the imple-

mentation of our simple monster and use a checkbox for high health/low health,

we should not have to change the AI.

Even something as simple as the checkbox for seeing players will go through an

interface. A blind monster might hear players and at times be close enough to

touch them. The real question the AI wants answered is, ‘‘Do I detect players well

enough to attack them or flee from them?’’ Our monster is visually oriented, but

our AI interface will be in terms of detection.

We will add a three-part public interface to the monster. The AI will use this

interface to ask questions and to supply thoughts. If we do a good job with the

interface, we could use it for all kinds of monsters and many kinds of AI to drive

them. To begin, right-click Monster.vb in the Solution Explorer window and

select View Code. Just below the Public Class Monster line, type the following

and press Enter:

#Region "Public Interfaces For the AI"

Visual Basic will create an End Region line for you. Regions have no effect on the

program, but they do help you group like pieces of code together. Note the minus

sign to the left; you can collapse a region to hide the code inside while you work

on other parts of your code. You can also do this to the individual Sub and

Function blocks.

Inside the region, we will add the three parts of the interface. We will start with

the easiest one first. Add the following lines of code to the region:

Public Function DetectsPlayers() As Boolean
’If we had more than one way of detecting a player,
’we would OR them all together.
Return (SeesPlayersCheckBox.Checked)

End Function

We marked the function with the Public keyword because we want outside code

to be able to ask the monster if it detects players. Because we return a value, this

58 Chapter 3 n Finite State Machines (FSMs)

code is a function instead of a sub. Since it returns a value, we have to specify the

type of value returned—in this case a Boolean. Dealing with the monster’s health

requires similar code:

’We will assume that health is either good or bad
Public Function GoodHealth() As Boolean

’We will use thirty percent as our threshold
If CurrentHealth.Value >= 0.3 * CurrentHealth.Maximum Then

Return True
Else

Return False
End If

End Function

The core of this function could be compressed to a single line at a modest cost in

readability. What remains is to give our monster a place to speak its mind. We

will do this by creating a routine to write to the ThoughtsTextBox control:

’The output side of the interface:
Public Sub Say(ByVal someThought As String)

’Everything we thought before, a new thought, and a newline
ThoughtsTextBox.AppendText(someThought & vbCrLf)

End Sub

The & character is used for character string concatenation. Our code takes

everything that was already in the text box and adds another line to it.

This completes everything in the user interface except the Think button. Before

we can make the Think button do anything, we will have to implement our FSM.

We start with the states.

Our states need common parts shared by all states and unique parts for each

specific state. We will use classes and inheritance to accomplish this. We will

create a class called BasicState to hold all the commonalities. The three classes

we will actually use in our FSM will inherit from BasicState. We will never

attempt to put a BasicState object into our FSM; our monster only understands

Hiding, Attack, and Flee. It does not understand BasicState.

Right-click MonsterAI in the Solution Explorer window and select

Add?Class. The Add New Item dialog box appears; name the new class

BasicState.vb and click Add. VB will create the file and display it in the Editing

pane. The first thing we will do to our new class is make sure that we cannot

Projects 59

accidentally try to create an object of this type. Add the MustInherit keyword

to the very first line:

Public MustInherit Class BasicState

The three classes we create will inherit from BasicState, and we will be able to

create objects of those types. The analogy here is that it is correct to create dogs

and cats and impossible to create generic mammals. So what are the things that

each child class will need to do in its own unique way? Add the following lines

below the class statement.

’Some state functionality must come from the various child states
Public MustOverride Sub Entry(ByVal World As Monster)
Public MustOverride Sub Update(ByVal World As Monster)
Public MustOverride Sub ExitFunction(ByVal World As Monster)

Note that there is no End Sub after each Sub. The MustOverride keyword tells

VB that child classes are required to have a member that has this signature. It

also means that the parent will not supply any common code for those

members. We expect the Update function of the class for the Attack state to be

very different from the Update function of the class for the Flee state. But

we require all of the classes that inherit from BasicState to implement an

Update function.

Not shown in BasicState is the unique initialization that each child class

requires. That initialization will be where we load the transitions out of each state

into the particular states. All states will keep their list of transitions the same way.

Add the following code to the class:

’All kinds of states keep an ordered list of transitions.
Protected MyTransitions As New Collection

The Collection object is very handy in VB. We will exploit many of its cap-

abilities. Since it is an object, we need to ensure that the variable MyTransitions

points to an actual object. The New keyword initializes the variable for us so that

it always starts pointing to an object. We will store all of the transitions for a

state in this collection. What remains is the code that walks through the col-

lection checking the transitions. Before we can do that, we have to implement

transitions.

Our approach for transitions will be similar to the one we use for states. We will

create a parent class that describes all Transition objects. We will then create child

classes that inherit from the parent class and implement the unique needs of the

60 Chapter 3 n Finite State Machines (FSMs)

individual transitions. This will work fine for our simple FSM. Be aware that

coding this way can easily lead to an explosion of classes, however.

No t e

There is a different way to implement transitions and states that does not involve a child class for
every unique transition or state. Experienced programmers should look up the Delegate keyword
and the AddressOf function. Armed with these two powerful tools, we could store functions the
way we store data. Then we could use a single class for all transitions and a single class for all
states. This yields less code at the cost of more complicated concepts.

Right-click MonsterAI in the Solution Explorer window and add another class.

Name this class BasicTransition.vb and add it. Then add the MustInherit key-

word to the very first line.

Public MustInherit Class BasicTransition

There will be only two parts to our transitions. One part is code that will evaluate

the current world conditions and decide whether or not to take the transition.

That code is unique for every transition, so BasicTransition will force child

objects to implement it. Add the following code to the class:

’If a transition is valid, return the name of the next state as a string
PublicMustOverrideFunctionShouldTransition(ByValWorldAsMonster)AsString

The other part of a transition is the state to transition to. We are going to store the

name of the next state in a string. It needs be accessible by child classes derived

from BasicTransition, so we mark it Protected. The Transition object will give

that string to the state that called it. The state machine will use that string to find

the next state in its collection of states. Add the following code to the class:

’Store the name of the state to transition to.
Protected NextState As String

So how are the states to be named? We could write code that maps each state,

which is an object, to a string. Instead, there is a way to do this automatically,

which means less code to maintain if we add a new state.

We will exploit the fact that each state in the FSM is an object of a different class

than any other state. The FSM will only keep a single copy of the Flee state. The

class that implements the Flee state will be a different class than the classes that

implements the Hiding and Attack states. So instead of dealing with the hard

question, ‘‘Who are you?,’’ we will deal with the easier question, ‘‘What are you?’’

in regard to naming the states.

Projects 61

In the .NET languages such as VB, code can ask any object what type of object it

is. Every different class of object has a unique type name. Since our FSM will only

store one of any given type of state, asking a state what type it is will provide us

with a unique string identifier for that state. Our code will be asking the states,

but it will be telling the answer to the transitions. So the transitions needed to

know what type of data to store.

Since all transitions will need to store something in the NextState string variable,

we will take care of it in the parent class. Add the following code to the class:

’All child objects should initialize their next state
Public Sub Initialize(ByVal someStateName As String)

NextState = someStateName
End Sub

All code that creates transitions will also need to initialize them. We will do this

in the states. While we have not created any specific transitions, we have com-

pleted the parent class for all transitions. When we create a Transition object, we

care a great deal which transition class we are using. Other than that we rely on

the fact that all of them can be treated as a BasicTransition. We have defined

transitions sufficiently well that we can finish off the BasicState class.

Now would be a good time to go to the File menu and choose Save All. Double-

click BasicState.vb in the Solution Explorer or click the tab for it in the Editing

pane. Since all states will use the same method for checking their transitions, we

will put it in the parent class. Add the following code to the class:

’All states use the same method for checking transitions
Public Function TransitionCheck(ByVal World As Monster) As String

’We can hold any transition in a BasicTransition
Dim Txn As BasicTransition
’We need to store the name of any state returned
Dim nextState As String
’Loop through the collection in regular order
For Each Txn In MyTransitions

’Store off the state name if any
nextState = Txn.ShouldTransition(World)
If nextState <> "" Then

’The first valid transition is the one
Return nextState

End If
Next

62 Chapter 3 n Finite State Machines (FSMs)

’No transition was valid, no state to change to
Return ""

End Function

BasicState is now complete.

Just as finishing the base class used for transitions allowed us to finish the base

class for states, finishing the base class for states will allow us to write the state

machine object. We only have one kind of state machine, so it does not need

inheritance. Open the File menu and choose Save All, and then add a new class to

the project. Name it FSM.vb and add the following lines to the class:

’We need a place to store the states
Dim States As New Collection
’We need to remember what state is the current one
Dim currentStateName As String

You may have noticed that some variables are declared with New, and others are

not. Visual Basic treats certain types of variables differently than others. Basic data

types include integers and strings. In VB, there is always storage created for them,

and they are initialized automatically. Strings start with the empty string "", and

integers start with 0. Collections are not a basic data type; they are objects. The New

keyword tells Visual Basic to actually create the object. Variables that deal in objects

start with the special value of Nothing until they are assigned to an actual object.

Our monster will want to load its FSMwith states. We let the monster control the

loading so that different monsters can use the same FSM class but load it with

monster-specific states. Add the following code to the class:

Public Sub LoadState(ByVal state As BasicState)
Dim stateName As String
’Get the short name of this state’s class
stateName = state.GetType.Name
’The first state we get is the start state
If States.Count = 0 Then

currentStateName = stateName
End If
’Never add the same state twice
If Not States.Contains(stateName) Then

’Add the state, keyed by its name
States.Add(state, stateName)

End If
End Sub

Projects 63

No t e

All .NET objects implement the GetType method, which returns a Type object. The Type object
has a Name method that we will use to get the short name of a type. The class name Type is
necessarily confusing; it is hard to clearly name an object that holds the type information of other
objects. Besides being a method of every object, GetType can be called with a class name as a
parameter to get a Type object for the class without having to create an object of that class. We
will use that capability later to get the name of a state’s type without having to create a State
object.

This code takes a State object and gets the name of the type of the object. The

state was passed in as an object of type BasicState. So why won’t all objects have

the same stateName, BasicState? The GetType method of an object ignores

the type of the variable and instead uses the type of the underlying object. In any

case, the object passed in can never have been created as type BasicState because

we marked BasicState as MustInherit. Put another way, there are no generic

mammals, even though dogs and cats are mammals. The object passed in will

have been created with a type of FleeState, HidingState, or AttackState, all of

which we will create very soon.

Our design called for the first state to be loaded to be the Start state. So we

checked the count of items in the States collection to see if there were any states

already loaded. If the count is zero, we are loading the first state, so wemake it the

current state.

Our states are different from each other—one of the hallmarks of a good FSM

implementation. Before we add a state to the States collection, we check to make

sure it is not already there. If not, we add the state to the collection, keyed by the

stateName. If we add an object to a collection and also specify a key string, we can

later access the object using that key. Keys must be unique in a collection. What

the code actually does is check to see if the key is present in the collection; it does

not check the actual objects. Keys are hashed, which means that finding an object

in a collection of many objects happens reasonably quickly.

The FSM needs one more member: a way to make the machine run. Add the

following code to the class:

Public Sub RunAI(ByVal World As Monster)
If States.Contains(currentStateName) Then

’Get the object using the name
Dim stateObj As BasicState
stateObj = States(currentStateName)

64 Chapter 3 n Finite State Machines (FSMs)

’Check for transitions
Dim nextStateName As String
nextStateName = stateObj.TransitionCheck(World)
’Did we get one?
If nextStateName <> "" Then

’Make a transition
If States.Contains(nextStateName) Then

’Leave this state
stateObj.ExitFunction(World)
’Switch states
stateObj = States(nextStateName)
currentStateName = nextStateName
’Enter and run the new state
stateObj.Entry(World)
stateObj.Update(World)

Else
World.Say("ERROR: State " & stateObj.GetType.Name & _

" wants to transition to " & nextStateName & _
" but that state is not in the machine!")

End If
Else

’Just run the update of the current state
stateObj.Update(World)

End If
Else

World.Say("ERROR: Current state " & currentStateName & _
" is not found in machine!")

End If
End Sub

This code has two error checks. The first makes sure the current state can be

found by name in the collection of states in the machine. This error protects

against any programming errors involving the name of the current state. This

error is unlikely, but by checking first we keep the code from crashing. We use

the monster’s Say function to complain about the problem. Real game code

would have a real error log. The second error check makes sure that any state

called for by a transition is present in the machine. This type of error is far more

likely; forgetting to load a state into the machine is a data error and not an

algorithm or coding error. It will not show up unless a particular transition to

the missing state executes. All the FSM code can be correct, but it needs to be

correctly initialized.

Projects 65

No t e

This type of error checking speeds development. It is faster to read an error message than it is to
rerun code in a debugger. We could even ensure that the second kind of error never happens by
having the FSM self-check for consistent data. That exercise is left for the student.

We have assembled all the basic parts. We are getting closer to the time, as

Dr. Frankenstein puts it, to ‘‘give my creature life!’’ We need to implement a

child class for each of the unique states and implement the transitions that will go

into our monster. Open the File menu and choose Save All; then add a new class

to the project. Name it HidingState.vb and type the following line of code inside

the class without pressing the Enter key.

Inherits BasicState

Now press Enter. VB adds the three routines called for by BasicState. If you look

back at BasicState, you see three MustOverride routines. One of the advantages

to the Common Language Runtime languages in Visual Studio such as Visual

Basic and C# is that the development environment has a deep understanding of

classes. IntelliSense exploits this same technology. The whole package is aimed at

speeding up development and reducing errors.

Because Visual Basic was kind enough to create the skeletons of our three rou-

tines, we should fill them in. In the Entry routine, add the following:

World.Say("This looks like a good hiding spot!")

In the ExitFunction routine, add the following:

World.Say("I can’t stay hiding here.")

And in the Update function, add the following:

World.Say("Shhh! I’m hiding.")

At this point, wemight want to do the transitions out of the class, but we have not

yet defined the classes at the other end of the transitions. We will start on those

other states now. Add another class and call it AttackState.vb. Make it inherit

from BasicState the same way you did for HidingState. In the Entry routine, add

the following:

World.Say("Grab weapon and shield!")

In the ExitFunction routine, add the following:

World.Say("I better put my weapon and shield away.")

66 Chapter 3 n Finite State Machines (FSMs)

And in the Update function, add the following:

World.Say("Attack!")

We have one state left. Add another class and call it FleeState.vb. Make it inherit

from BasicState the same way you did for the prior two states. In the Entry

routine, add the following:

World.Say("Feet, don’t fail me now!")

In the ExitFunction routine, add the following:

World.Say("I better slow down.")

And in the Update function, add the following:

World.Say("Run away! Run away!")

This would be a really good time to go to the File menu and choose Save All.

All three states are defined, but they are not complete. There are no transitions

defined, and this makes it impossible for the states to load their transitions. We

will store our transitions in the same file that holds the state the transition is

from. We start with HidingState. Go to the End Class statement. Hit the End key

on your keyboard or click at the end of the line and then press Enter twice. Now

type the following line and press Enter:

Public Class SeePlayerHighHealthTxn

VB nicely adds the End Class statement for you. Exactly as HidingState inherits

from BasicState, this transition needs to inherit from BasicTransition. Add the

following line inside the class and press Enter:

Inherits BasicTransition

VB again provides the required skeleton.

Note the squiggly line under the End Function statement. This indicates a

problem. Hover your mouse over that line, and Visual Basic will tell you what

the problem is. You can easily miss the marking, however; fortunately, Visual

Basic provides an easier way to see every issue it has with the code. To display

it, open the View menu and select Error List. The Error List window docks at

the bottom of the environment, listing errors, warnings, and informative

messages. It warns us that we should make sure that this function always

Projects 67

sets a value to return. We will do that now. Add the following code to

ShouldTransition:

If World.DetectsPlayers And World.GoodHealth Then
Return NextState

Else
Return ""

End If

The NextState variable is declared in the parent class, BasicTransition, and is

made available to this child class because we marked it Protected in the parent.

Note that this transition class does not know explicitly what state it transitions to.

Not only can any state that wants to use this transition do so, it can point it at any

other state. The state that creates the transition will tell the transition what the

next state should be. Coding this way makes the transition reusable.

Our code for ShouldTransition has access to the world, but it makes no calls to

the Say function. Right now, our monster speaks only when it is doing some-

thing. It does not talk about the thinking process itself. But since each transition

has full access to the world, it could also speak. If your code does not work right

the first time you run it, one of the ways to see what the monster is thinking is to

have all the transitions say that they are running and whether they are valid.

Now that the transition is defined, the states that use it can load it into their

transition collections. This should happen only one time: when the state is

created. The place to do this is in the state’s New() function. Scroll to the top of

HidingState.vb and click the word HidingState. VB changes the contents of the

drop-down lists at the top of the Editing pane based on where you clicked. The

left drop-down list now says HidingState, and the right one says (Declarations).

Click (Declarations). All the routines in the class are in this list, plus New and

Finalize (whether they have been added or not). Select New from the list. VB adds

the skeleton for you.

New() runs once, when an object is created, and it is the perfect place for our State

objects to load their transitions. Add code to the New() routine as follows:

Public Sub New()
Dim Txn As BasicTransition
’Create a specific transition
Txn = New SeePlayerHighHealthTxn()
’Set the next state name of that transition
Txn.Initialize(GetType(AttackState).Name)

68 Chapter 3 n Finite State Machines (FSMs)

’Add it to our list of transitions
MyTransitions.Add(Txn)

End Sub

We see in Figure 3.2 that the Hiding state has only one outgoing transition. At

this point, we have completed the Hiding state. If we add this state to the FSM, we

could test it to see if it works. We have written a great deal of code at this point

and tested none of it, so perhaps some testing is in order. We should expect

problems because we have not completed everything, but what we have should

run. Before we can do any serious testing, however, we need to give the monster

an FSM, and we need to load our single completed state into it.

Navigate to the code for Monster.vb. You can do this via a right-click on

Monster.vb in the Solution Explorer window or by clicking the tab above the

Editing pane if it is present. If a skeleton for the Load event handler is not present,

click the top-left drop-down and select (Monster Events). Then click Load in the

right drop-down to create the skeleton. Then add the following two lines above

the Load event handler:

’We need an FSM
Dim Brains As New FSM

To the Load event handler itself, add the following lines:

’The first state loaded is the start state
Brains.LoadState(New HidingState)

Working from in the parentheses out, this asks VB to create a new HidingState

object and pass it to the LoadState method of the FSM object we call Brains. All

that remains is the ability to ask the FSM to think. Switch to the Design view of

Monster.vb and double-click the Think button. VB will switch back to the Code

view and create the Click event handler for ThinkButton. Add the following line

to that handler:

Brains.RunAI(Me)

The Me keyword is how the monster form can refer to itself. Brains is an FSM

object, and its RunAImember expects to be passed an object of type Monster. We

have not loaded every state into the Brains FSM object, but one state is enough

for testing. From the Debug menu, select Start Debugging. VB saves all the files

and compiles them before running the program. Click the Think button and

manipulate the user interface. When finished, close the form or select Stop

Debugging from the Debug menu. You should see something like Figure 3.5.

Projects 69

Our lobotomized monster complains about missing two-thirds of its brain, but

other than that, it performs reasonably well. The second error check we added to

RunAI in the FSM has proven its worth. If your monster is having trouble thinking

even that much, add Debug.Writeline statements anywhere in the code. The

output appears in the Immediate window at the bottom of the development

environment. (You can see this window in Figure 3.5, although it has nothing

written in it.) Now that our monster thinks, we should enhance it with more

brain power by finishing the other two states and their transitions.

According to Figure 3.2, the Attack state needs two transitions. Go to Attack

State.vb and add the following two classes after the End Class line. VB will help

you by supplying End Class lines as well as the skeletons for the ShouldTransition

members. There are no new concepts in any of this code; it asks the same

questions of the world we saw in SeePlayerHighHealthTxn. With good classes,

once the hard part of creating the structure is complete, bolting in the rest is

simple and straightforward.

Public Class NoPlayersTxn
Inherits BasicTransition

Figure 3.5
An incomplete monster attempts to think.

70 Chapter 3 n Finite State Machines (FSMs)

Public Overrides Function ShouldTransition(ByVal World As Monster) As String
If Not World.DetectsPlayers Then

’No one to attack or flee from
Return NextState

Else
Return ""

End If
End Function

End Class

Public Class LowHealthTxn
Inherits BasicTransition
Public Overrides Function ShouldTransition(ByVal World As Monster) As String

If Not World.GoodHealth Then
’Stop attacking
Return NextState

Else
Return ""

End If
End Function

End Class

We need to put these transitions into the AttackState class’s New() routine. Be

sure you add the code to the state class and not to either of the transition classes!

When complete the New() function of the AttackState class, it will look as

follows:

Public Sub New()
Dim Txn As BasicTransition

’Order is important - react to players first
’If no players, hide
Txn = New NoPlayersTxn()
’Set the next state name of that transition
Txn.Initialize(GetType(HidingState).Name)
’Add it to our list of transitions
MyTransitions.Add(Txn)

’Then react to health - if low, flee
Txn = New LowHealthTxn()
’Set the next state name of that transition
Txn.Initialize(GetType(FleeState).Name)
’Add it to our list of transitions

Projects 71

MyTransitions.Add(Txn)
End Sub

Recall that we disambiguate transitions by taking the first valid transition and

controlling the order in which they are evaluated. They are evaluated in the order

loaded, so reacting to players should be loaded first. We do not want our monster

to flee from players who are not there. This completes the Attack state. We will

add the Attack state to the FSM after we complete the Flee state.

Switch to FleeState.vb so that we can add the two transitions that leave the Flee

state as seen in Figure 3.2. Before we add them, note that the No Players tran-

sition in the Flee state has the same decision criteria as the No Players transition

in the Attack state. We can reuse the NoPlayersTxn class we created in Attack

State.vb as it is. We still have to create the High Health transition and load

both transitions into the state. Add the following class to the bottom of the

FleeState.vb file below the End Class statement:

Public Class HighHealthTxn
Inherits BasicTransition
Public Overrides Function ShouldTransition(ByVal World As Monster) As String

If World.GoodHealth Then
’Stop flight
Return NextState

Else
Return ""

End If
End Function

End Class

The only differences between this and LowHealthTxn are the names, the word Not

in the comparison, and the comment text. You can save yourself some typing via

copy and paste as long as you remember to edit what is pasted.

Now we will add the two transitions to the New() routine for the state. When

finished it will look like the following:

Public Sub New()
Dim Txn As BasicTransition

’Order is important - react to players first
’If no players, hide
Txn = New NoPlayersTxn()
’Set the next state name of that transition

72 Chapter 3 n Finite State Machines (FSMs)

Txn.Initialize (GetType(HidingState).Name)
’Add it to our list of transitions
MyTransitions.Add(Txn)

’Then react to health - if high, attack
Txn = New HighHealthTxn()
’Set the next state name of that transition
Txn.Initialize(GetType(AttackState).Name)
’Add it to our list of transitions
MyTransitions.Add(Txn)

End Sub

This is very similar to the New() code for AttackState. The first transition is

identical; it has the same criteria and the same next state. The second transition

uses a different transition, and it goes to a different state, so of course the

comment is changed as well. The final step remaining is to get these states into the

machine.

Switch to the Code view of Monsters.vb and go to the Load event handler. Below

the existing call that loads the Hiding state, add these lines:

Brains.LoadState(New AttackState)
Brains.LoadState(New FleeState)

Recall that the first state loaded is the Start state, so make sure these lines come

after the line that loads the Hiding state. Now select Start Debugging from the

Debug menu. Change the settings on the user interface and click Think to watch

the monster react. This monster AI is pretty simple, but with a few more states it

would be as smart as the monsters in the original version of Doom.

Chapter Summary
This chapter shows that a collection of a few simple states and transitions is

enough for many simple game AI tasks. Once the framework is created and

understood, new behavior states can be added quickly and easily without

upsetting existing work. There is an up-front cost, but it pays off quickly with

every new capability added. Using this technique, game AI programmers can

quickly turn a design diagram into changing behaviors in a game. While

experienced programmers often use FSM, they also know when not to use

them and how to modify them to control complexity and ensure intelligent

behavior.

Chapter Summary 73

Chapter Review
Answers are in the appendix.

1. Define a finite state machine and tell what each part does.

2. What are the advantages of a finite state machine compared to hard-coded

AI?

3. What are some indicators that a finite state machine is inappropriate to use?

4. What do we mean by ambiguous transitions?

5. What do we call it when ambiguous transitions exist? What are three ways of

dealing with them?

Exercises
1. Change the order of the transitions in the Attack state to make the monster

flee from players who are not there.

2. Change the monster user interface to have a very low setting for health and

implement the Berserk state.

References
[Forbus02] Forbus, Ken; Wright, Will. ‘‘Simulation and Modeling: Under the

Hood of The Sims,’’ CS 395 Game Design, Northwestern University, 2002,
online at http://www.cs.northwestern.edu/*forbus/c95-gd/lectures/
The_Sims_Under_the_Hood_files/frame.htm.

[Mark09] Mark, Dave. Behavioral Mathematics for Game AI, Course
Technology PTR, 2009.

[Rabin02] Rabin, Steve. ‘‘Implementing a State Machine Language,’’ AI Game
Programming Wisdom, Charles River Media, 2002.

[Tozour02] Tozour, Paul. ‘‘First-Person Shooter AI Architecture,’’ AI Game
Programming Wisdom, Charles River Media, 2002.

[Wikipedia09] Various. ‘‘Object-Oriented Programming,’’ wikipedia.org,

Wikimedia Foundation, 2009, online at http://en.wikipedia.org/wiki/Object-

oriented_programming.

74 Chapter 3 n Finite State Machines (FSMs)

http://www.cs.northwestern.edu/~forbus/c95-gd/lectures/The_Sims_Under_the_Hood_files/frame.htm
http://www.cs.northwestern.edu/~forbus/c95-gd/lectures/The_Sims_Under_the_Hood_files/frame.htm
http://en.wikipedia.org/wiki/Objectoriented_programming
http://en.wikipedia.org/wiki/Objectoriented_programming

Rule-Based Systems

Rule-based systems attempt to use the best qualities of hard-coded AI without

their disadvantages—and without constraining the designer to partition the

problem into the independent states of an FSM. Rule-based systems provide a

formal way to store expert knowledge and use it appropriately. (As in the case of

FSM, game AI programmers may use terminology less exactly than researchers.)

Regardless of how they are coded, rules can yield a very entertaining game AI; for

example, the chase mode AI for the ghosts in Pac-Man can be written as four

simple rules [Pittman09].

This chapter looks at what rule-based systems are and considers their advantages

and disadvantages. To illustrate them, this chapter features a project that

implements a rule-based system that plays Minesweeper. This project should be

the most enjoyable project so far. Not only will it provide you with a playable

game including AI assistance, but the presentation is in a ‘‘build a little, test a

little’’ style that has more frequent rewards along the way.

What Is a Rule-Based AI?
The basic idea behind a rule-based AI is very similar to a method school teachers

use with young children. The teacher presents the students with a question.

Some of the children raise their hand. Each student is asked to present his or her

idea as to the answer, and the teacher picks the best of them. The teacher can pick

one or many of the ideas, or possibly have the children work on all the ideas in

75

chapter 4

parallel—or at least all of them that do not place conflicting demands on

classroom resources.

Rule-based systems consist of a collection of rules and the framework to apply

them. When the AI is asked to think, the current state of the world is presented to

the rules. Each rule determines if it matches the current situation. From among

the matching rules, the framework activates one or more of them.

Besides being familiar from classroom experience, you may recognize that the

transition checking done by the states in the FSM project of Chapter 3, ‘‘Finite

State Machines (FSMs),’’ fits the definition of a rule-based system. The transi-

tions out of a state are checked for a match; the system picks one of the matching

transitions and changes the FSM state. Just as in an FSM, where multiple tran-

sitions may be valid, there may be multiple rules that match in a rule-based

system. Unlike an FSM, however, a rule-based system need not be limited to

activating only a single rule. Activating multiple rules forces the programmer to

deal with the issues of conflict and efficiency. The activated rules must not

conflict with each other; ‘‘go left’’ and ‘‘go right’’ may both be valid responses,

but one precludes the other. Evaluating all the rules ensures that the best response

can be used, but it has a direct impact on efficiency. Conflict resolution and

efficiency concerns suggest that the rules be prioritized in some way, the simplest

method being that the first rule to match is the only rule to be activated.

Let us examine what rules are. Done properly, rules are a collection of really good

ideas about what to do, combined with the knowledge about when to use them.

This means that there are two parts to each rule: the matching part and the

execution part. For game AI, intelligence comes from sufficient rules with good

execution, and stupidity comes from bad matching or too few rules.

Rules have to determine whether they match the current situation. Recall our

simulated opera singer who confused a funeral gathering with a small theater and

broke into song. His problem is not in the execution part; we made no comment

on his singing skills, and no one at the funeral really cared. His problem is in the

matching part. The AI could be missing a rule specifically for funerals; the near

match of the funeral situation with a theater situation meant that it was the best-

matching rule in the AI, so it was the rule used. Alternatively, if the AI had a rule

for funerals, and somehow the rule for theater was selected instead, then the

matching part of the funeral rule might be miscoded or poorly prioritized. That

is, the framework might not have disambiguated the matched rules properly, or

the design of the matching system might not be adequate.

76 Chapter 4 n Rule-Based Systems

In general, highly specialized rules need to match very strongly or not at all. More

general rules need to match often, but not as strongly. Conversationally, this is

the difference between asking a person about his or her new baby compared to

commenting on the weather. People who actually have a new baby tend to react

quite positively when asked about it. People who do not have a new baby tend to

react equally poorly when asked about one. Commenting on the weather is a

generally safe, if uninspired, conversational gambit.

The execution side of the rules is where the expertise in expert systems really

shines. A sports AI that properly recognizes a zone defense needs an effective

counter tactic; what’s more, it needs to be able to execute that counter tactic. As

another example, there are many people who can correctly distinguish between

heartburn and heart attack; among those people, a trained cardiologist is more

likely to have superior execution in the case of heart attack.

Any existing algorithms make the game AI programmer’s job easier when

developing the execution part of a rule. The AI is free to exhibit machine-like

precision using optimal algorithms if they exist. More abstract games tend to

have such algorithms, while more real-world simulations force the AI pro-

grammer to do the best that he or she can with other methods. When the AI is

very effective, the AI programmer is required to mediate the conflict between an

AI that is stupid and boring and one that is too smart and frustrating.

The rules execute in a framework. One of the design decisions that AI pro-

grammers need to consider is whether the framework will allow more than one

rule to execute at a time. For many systems, executing one rule at a time is

sufficient (or perhaps required). However, concurrent rule execution is a neat

trick that enhances the richness of the AI. Systems that allow concurrent rule

execution need to provide a mechanism to ensure that the demands of all the

rules selected for execution can be met. There are many ways to do this. One

algorithm repeatedly adds the rule with the best match to the rules selected to

run, provided that the rule to be added does not conflict with any of the rules

already selected. However it operates, the framework in a rule-based system

selects a rule or rules, including breaking ties and conflicts among them.

Design and Analysis
Besides being a programming method to implement AI, rule-based systems

require the programmer to think about the AI in a particular way. As with FSMs,

this forces programmers to crystallize what they expect the AI to actually do.

Design and Analysis 77

Rule-based systems lend themselves to a somewhat Darwinian approach to

coding the AI. Game AI programmers add their best rules to the system and test

it. Rules that never fire are considered suspect. They address inadequacies in the

AI by adding new rules or improving existing ones. Then they balance the rules in

the framework with careful tuning.

How many rules are required? This will depend on the game and the desired

quality. To play Sudoku, two rules will solve any board that has a difficulty level

below ‘‘evil.’’ To play Minesweeper, three rules suffice to play every move of a

beginner- or intermediate-level board and nearly every move of an expert-level

board [Kirby08]. Yet at one point in time, the SOAR Quakebot had more than

300 rules [Laird].

How complicated will the framework need to be? Simpler games do not allow

concurrent rule execution; the AI is expected to pick a single move or do one

thing during its turn. Concurrent rule execution is too complex for most

beginning game AI programmers doing their first rule-based AI. But without

concurrent rule execution, the framework still needs a method to select a rule

when more than one rule matches. The rules need a method to report how well

they match, and the framework needs a method to select among them. This can

be as simple as comparing integers using a fixed algorithm, or it can be very

complex. A glance back at the section ‘‘Multiple-Transition Review’’ in Chapter 3

might be in order. Do not make your methods complex until tuning demands it.

Advantages
There are many advantages to rule-based game AI. The rule structure helps

contain complexity without the straightjacket of a state-based approach. When

the rules are based on human play, the AI plays like a human. When the rules

loaded into a rule-based system come from a high degree of expertise, the system

usually exhibits that same level of expertise. Simple rule-based systems are within

the reach of a beginning AI programmer. The execution part of a rule can be as

complex as required to do the job. There are no constraints to get in the way.

Disadvantages
Rule-based systems also have disadvantages. It is very hard to have a good rule for

every situation. The method places strong demands on some general rules to

cover default behaviors. Writing rules takes human expertise at the task at hand.

This is true of most beginning AI techniques. There is no inherent structure to

78 Chapter 4 n Rule-Based Systems

the execution part of a rule. This is the flip side of an advantage; great freedom

includes the freedom to create a nightmare. The temptation to drown the system

with a rich set of rules must be balanced against the additional cost required to

evaluate each new rule.

The Minesweeper Project
Our project is based on the ubiquitous Minesweeper game. We will implement

both the game and the AI to help play it. The game requires more code than the

AI, but the game code is generally less complex than the AI code. Not surpris-

ingly, the basic game code will need additions to accommodate the AI. The AI

will make moves through the same code pipeline that implements player moves.

The added code allows the AI to sense the world. The AI commonly asks the

world what squares neighbor a given square. The AI is also interested in the

number of mines that need to be placed around a square and the number of

unmarked squares surrounding a given square.

In our project, each rule will report the number of moves it can make. This

customizes the general idea of each rule, reporting how well it fits the situation.

The emphasis here is on how much gain each rule proposes to deliver. The rule

with the highest number of proposed moves will be executed. Our project will

also order the rules by cost. The costs are fixed and roughly based on the com-

plexity of the rule’s matching algorithm. The framework breaks ties by using the

lowest-cost rule with the highest proposed gain. Since the lowest-cost rules are

checked first, the first rule with the best score can be the rule used.

Implementing the Basic Game

The game itself will have three main components: squares, a playing field to hold

them, and a control panel. In addition, we will need an AI to help play it. The AI

will assist the human player, helping to spot moves and making them when

requested. A fully automatic AI is left as an exercise. We will again use a spiral

model of development. We start with the basics of the parts and add sophisti-

cation each time we go around rather than writing each part completely before

going on to the next part.

The Playing Field

The most basic part of the game is the playing field. The minefield of an expert

level game spans 30 columns and 16 rows. Our tiles will be 30-pixel squares, so we

The Minesweeper Project 79

will need the minefield to be more than 900 pixels wide and 480 pixels tall.

We will put the control panel below the mines, so the form will have to be even

taller.

Launch Visual Basic and create a project called Mines.

1. Change the name of Form1 to PlayingField.vb and its Text property to

Mines.

2. Resize the form to around 920 by at least 650 pixels. Final sizing will depend

on your Windows settings and can be adjusted later. If you have room to

make it taller, it is a good idea to do that now.

3. Drag a Panel control to the form from the Toolbox. This will be our control

panel. Change its Location property to 0,490 so that it will be below the

minefield on the form.

4. Resize the panel so that it takes up all of the bottom of the form.

5. Change the BackColor property to White.

6. Open the File menu and choose Save All and choose an appropriate location

on your system.

Your screen should resemble Figure 4.1. The actual proportions will vary

according to the resolution of your monitor.

This gives us rudimentary versions of two of our three main components of the

game.

Squares

We will base our squares on the Button control. We will create a class called

Square, and it can inherit from theWindows Button control. PlayingMinesweeper

involves a lot of clicking and right-clicking, Button controls have all the events we

would need to handle the user input and display the results. Our Square class will

extend the Button class and add the custom data and code we need.

So far, we have dragged all the controls that we have placed on the forms from

the Toolbox, but that’s not the only way to get them there. Here we will create

Square objects and place them on the form using code. We will write the Square

class and add just enough code to test that we can get Square objects onto

the form.

80 Chapter 4 n Rule-Based Systems

Click the File menu and add a class to the project. Name it Square.vb. We need to

make the Square class inherit from Button and we need to control what a Square

object looks like when it is created. We also need to have themmake sure that they

are ready to act like buttons.Our Squareobjects need to knowwhat rowandcolumn

they are at so that they can identify themselves. Add the following code to the class:

Inherits System.Windows.Forms.Button
Dim Row, Col As Integer
Public Sub New(ByVal R As Integer, ByVal C As Integer)

MyBase.New()
’Get a different font and color for the button
Me.Font = New System.Drawing.Font("Arial", 9, FontStyle.Bold)
Me.BackColor = Color.White

Row = R
Col = C
Height = 30
Width = 30
Text = ""
FlatStyle = Windows.Forms.FlatStyle.Standard

End Sub

Figure 4.1
Basic layout of the playing field.

The Minesweeper Project 81

Our Square class inherits from Button. The MyBase keyword is how our class

refers to the class from which it inherits. To make sure that our class acts like a

button, we want the initialization code that buttons use to run when our control

initializes—hence the call to MyBase.New().

After doing something new, it is a good idea to test it. We will need a few more

controls on the form to do that.

1. Switch to the Design view of PlayingField:

2. Drag a Button control from the Toolbox onto the top left of the white panel.

The panel is a container, and we want the control to go inside it. That way,

we can move it by moving the container if we need to resize the underlying

form. If you drop the Button control onto the form, the form will be its

container.

3. Change the Button control’s Text property to Expert and the Name property

to ExpertButton.

4. After you change its properties, double-click the Button control to view the

Click event handler. Add the following line of code:

Call NewGame(16, 30, 99)

Adding Squares to the Playing Field

The NewGame code does not exist yet, so you will see the name flagged in the code

and an error in the error list. If you have played a lot of Minesweeper, you know

that an expert level board has 16 rows and 30 columns and conceals 99 mines. We

want to be able to walk through the tiles and find their neighbors easily, so we will

do more than just put the controls on the form; we will hold them in an array as

well. Add the following code to PlayingField.vb:

Public Field(,) As Square

Dim NumRows As Integer
Dim NumCols As Integer
Dim NumMines As Integer

Private Sub NewGame(ByVal nRows As Integer, ByVal nCols As Integer, _
ByVal nMines As Integer)

Dim Sq As Square
’Put up an hourglass
Me.Cursor = Cursors.WaitCursor

82 Chapter 4 n Rule-Based Systems

’If we have an existing game, get rid of it
’Do we have a field?
If Field IsNot Nothing Then

For Each Sq In Field
’If it exists, take it off the form
If Sq IsNot Nothing Then

Sq.Parent = Nothing
End If

Next
End If

’Copy the passed-in parameters to the globals
NumRows = nRows
NumCols = nCols
’Do some error checking
Dim sqcnt As Integer = NumRows * NumCols
If nMines > sqcnt Then

nMines = sqcnt - 1
End If
’Then do the last assignment
NumMines = nMines

’Create the tiles for the new game
’VB uses zero-based arrays
ReDim Field(NumRows - 1, NumCols - 1)
Dim row, col As Integer
For col = 0 To NumCols - 1

For row = 0 To NumRows - 1
’Create an actual object
Sq = New Square(row, col)
’Set the location
Sq.Top = row * Sq.Height
Sq.Left = col * Sq.Width
’Put it on the form
Sq.Parent = Me
’Store it in the array as well for easy access later
Field(row, col) = Sq

Next
Next
’Back to regular cursor
Me.Cursor = Cursors.Default

End Sub

The Minesweeper Project 83

Open the File menu and choose Save All. Then start the project in the debugger

and click the Expert button. After a bit of thinking, the form will paint all the

Button controls. If you click Expert again, the form will remove them and paint

new ones. Remember that you have to stop debugging before you can edit the

code. Your application should resemble Figure 4.2.

Note that locations are in terms of top and left, and the values grow as you

progress down the form and to the right. Programmers not used to the way

Windows does things will need to remember that the Y axis is inverted.

Turning Plain Squares into Mines

At present, these are just clickable buttons, not a minefield. One of the benefits of

object-oriented programming is that objects can conceal their inner data. We will

design the Square class so that the only way to find out if a tile is truly a mine is to

click it. This will ensure that our AI does not cheat. We will, of course, need a way

to tell the tile if it is a mine or a safe square. We also need a way for safe squares to

know howmanymines are adjacent to them. Our code will not let the safe squares

ask their neighbors if they aremines or not, however, so themine squares will need

to tell their neighbors to increment their count of nearby mines anonymously.

Figure 4.2
A field of blank tiles.

84 Chapter 4 n Rule-Based Systems

Before we load the Square objects with their ominous data, we have to wait for the

user to click the first tile. In Minesweeper, the first click is always safe. We placed

error checking in the NewGame code to make sure that at least one square was open

for this very reason. This means that our Square objects have three possible states:

They can be mines, they can be safe, or they can be waiting for the first click. They

have to exist on the form in order for the user tomake the first click, but they cannot

have mines loaded until after that first click.

So what we will do next is modify the squares to have three possible states and to

start in the uninitialized state. They will have to detect the first click and ask the

playing field to tell them all what they contain. The squares will need to tell their

neighbors to increment their mine counts. We will use the concept of neighbors a

great deal, so the playing field needs some helper functions to create lists of

neighbors. Finally, we should test that all of this code works. To test, we will add

code that we will later turn into comments.

We start with the Square objects. Under the Inherits line in the Square class, add

the following code:

Public Enum HiddenValue
Uninitialized
Safe
Mine

End Enum
’Hold the definitions of the button text in one place
Public Const ShowMine As String = "@"
Public Const ShowFlag As String = "F"
Public Const ShowBrokenFlag As String = "X"

’What does this Square object actually hold?
Private contents As HiddenValue
’How many mines are near us?
Private actualNearMines As Integer

The contents variable holds the secret value of the square. An Enum is a way of

creating an enumerated list of independent values. We do not really care what the

values are, we just need for all of them to be different, and we need to be able to tell

them apart. A variable of an enumerated type is restricted to hold only values from

the enumeration. We want our Square objects to be created with their contents

equal to Uninitialized, so we add the following line to the New() routine.

contents = HiddenValue.Uninitialized

The Minesweeper Project 85

VB initializes integer values to zero, so we do not have to explicitly set actual-

NearMines to zero.

While we are working with the Square object, we should create the routine that

lets the playing field initialize it. This routine will store the hidden value and tell

the neighbors to increment their count of themines near them. Add the following

code to the Square class:

’Load the square with its hidden value
Public Sub Init(ByVal HV As HiddenValue, ByVal Neighbors As Collection)

contents = HV

’If that was a mine, the surrounding counts need to go up
If contents = HiddenValue.Mine Then

’Let the neighbors know
Dim Sq As Square
For Each Sq In Neighbors

Call Sq.IncrementMineCount()
Next

End If

’Debugging code to comment out later
If contents = HiddenValue.Mine Then

’Use @ to mark a mine
Me.Text = ShowMine

End If
’End debugging code

End Sub

We are calling IncrementMineCount, but we have not written it yet, so it will be

marked as an error for now. We have included debugging code so that as soon as

possible, we can fire up the application and make sure that what we have so far

works. As soon as it does, we will comment out the code because it gives away

secret data, but we will leave it in case we need it later. We need to add the

IncrementMineCount routine to the class:

’Some unknown neighbor is telling us that they have a mine
Public Sub IncrementMineCount()

’Add one to the existing count
actualNearMines += 1

’Debugging code to comment out later
’If I am not a mine, show my count

86 Chapter 4 n Rule-Based Systems

If contents <> HiddenValue.Mine Then
Me.Text = actualNearMines.ToString

End If
’End debugging code

End Sub

There is an easy way to comment out a block of lines: Highlight the lines you

want to make into comments and then hover your mouse over the buttons in the

toolbar below the Data and Tools main menu. You are looking for the ones with

horizontal black lines and blue lines. The tooltip will indicate which button

comments out the lines and which button uncomments the lines. Try them out

and watch what they do to your code. Commenting a comment line adds another

leading ’ character to any that are already there. That way, when you uncomment

a block that includes comment lines, the comment lines stay comments.

Our Square objects are ready to be initialized by the form, but they do not yet ask

the form to do so. Click the left drop-down list at the top of the Editing pane.

This one probably has a current value of Square in bold text. Select (Square

Events), which is marked with a lightning bolt. From the right drop-down list,

select the Click event; VB will give you the skeleton of the event handler. Add

code to the event handler so that it looks like the following:

Private Sub Square_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Click

’We should be part of a playing field
Dim theField As PlayingField = Me.Parent

’If not, we can’t ask it anything
If theField Is Nothing Then Exit Sub

’If this square is uninitialized, all of them are
If contents = HiddenValue.Uninitialized Then

’Have the playing field object init all the squares
Call theField.InitializeSquares(Row, Col)

End If

’Make the button look pressed
FlatStyle = Windows.Forms.FlatStyle.Flat
Me.BackColor = Color.LightGray

’Below here is where the player finds out if it is safe or not

End Sub

The Minesweeper Project 87

This block of code introduces a few notational shortcuts. The first is that you can

assign a value to a variable on the same line that you declare the variable. The next

shortcut is for when you have a single line as the object of an If statement; you

can just put the line after the Then keyword. When you do this, there is no need

for an End If. (If you are new to VB, use this construct sparingly. It is not

advisable to use it inside a nested If statement. The compiler could care less, but

the programmer might get confused.) One of the very nice features of VB is that

it takes care of indenting nested constructs for you. If you think that you have

messed up the indentation, highlight the entire routine (or even the entire file)

and press the Tab key. VB will line everything up based on where the compiler

places the levels.

At this point there is one error. We have called upon the form to initialize the

squares, but that code does not yet exist. The code for this has to walk the field

and randomly place mines. Squares that get a mine need to know who their

neighbors are. Do not let the length of the code fool you into thinking that it is

complicated. Add this routine to the PlayingField class:

’After the first click, place the mines
Public Sub InitializeSquares(ByVal ClickedRow As Integer, ByVal ClickedCol

As Integer)
’There is a lot of code that goes here.
’We will add it in stages.

’We have to track how many mines are yet to be placed
Dim minesLeft As Integer = NumMines
’We track the number of squares to go (one has been clicked)
Dim squaresleft As Integer = (NumRows * NumCols) - 1
’Percent and random numbers are floating point
Dim perCent, roll As Single

’Reseed the random number generator
Call Randomize()

’Our working variables
Dim Row, Col As Integer
Dim Neighbors As Collection

’Walk the grid
For Row = 0 To NumRows - 1

For Col = 0 To NumCols - 1

88 Chapter 4 n Rule-Based Systems

If Row <> ClickedRow Or Col <> ClickedCol Then
’What percent of the squares need mines?
’Has to be converted to a single precision float
perCent = CSng(minesLeft / squaresleft)
’Roll the dice, get a number from 0 to almost 1
roll = Rnd()
’If we roll less than the percent, we place a mine
’Also, we ensure that we place them all
If (roll < perCent) Or (minesLeft >= squaresleft) Then

’It has a mine!
’Call init on the square - we need the neighbors
Neighbors = NearNeighbors(Row, Col)
Field(Row, Col).Init(Square.HiddenValue.Mine, _

Neighbors)
’We placed a mine, so dec the count remaining
minesLeft -= 1

Else
’It is safe - don’t bother the neighbors
Neighbors = New Collection
Field(Row, Col).Init(Square.HiddenValue.Safe, _

Neighbors)
End If
’We either place a mine or not, but we have one less
’Square in the computations
squaresleft -= 1

Else
’It is the initial tile, therefore safe
Neighbors = New Collection
Field(Row, Col).Init(Square.HiddenValue.Safe, Neighbors)

End If
Next Col

Next Row

’Error checking: All mines should be placed by now
If minesLeft > 0 Then

MsgBox(minesLeft.ToString & " Mines leftover!", _
MsgBoxStyle.OkOnly)

End If
End Sub

The new and interesting parts of the code include our first brush with the random

number generator and the underscore (_) continuation character. Random

number generators are not really random. The call to Randomize uses the system

The Minesweeper Project 89

clock to ‘‘seed’’ the random number generator with a reasonably unpredictable

value. This means that each game should look different. The Rnd calls return a

floating-point number that is greater than or equal to zero and less than one.

The error check at the end should never trip; the code does its best to force all the

mines into the field. This type of coding is a good idea, even when it detects errors

that are not fatal to the current routine but might be fatal to later routines. The

call to MsgBox presents the user with a small dialog box. The underscore is used to

break a long line over many lines. If you use the underscore, it should have a

space before it and nothing after it. It is most commonly used following a

comma, and it cannot be inside an open set of quotes.

Neighbors

We need to code the NearNeighbors function so that the squares can tell their

neighbors about mines. The AI will rely heavily upon it as well. The AI will also

want a function for neighbors that are two squares away. We will code the

NearNeighbors function with this need in mind.

One of the questions the AI will need to ask is if a square is in a collection of

squares. To make this question easier to answer, we will combine the row and

column numbers for a square into a unique key string to use as an identifier.

Add the following line to the PlayingField class and press Enter:

#Region "Neighbor Code"

VB will add the End Region for you. All the code we are about to add will go in this

region to help organize it. We will do the easy things first. Start with the code to

create a unique string key from the row and column values:

’Turn two items into a single unique key name for each square
Public Function KeyFromRC(ByVal row As Integer, ByVal col As Integer) _

As String
Return "R" & row.ToString & "C" & col.ToString

End Function

The next thing we will do is create a list of offsets to compute the neighbors of a

square. We will use one set of offsets to compute near neighbors and a different

set to compute neighbors two away. Add the following code to the region:

’We use this list to compute the row and col of adjacent squares
’Point objects make it easy to store X,Y pairs

90 Chapter 4 n Rule-Based Systems

Private NearNeighborOffsets() As Point = { _
New Point(-1, -1), New Point(-1, 0), New Point(-1, 1), _
New Point(0, -1), New Point(0, 1), _
New Point(1, -1), New Point(1, 0), New Point(1, 1)}

If you add the X,Y values stored in the Point objects to the row and column

numbers of a square, you will get the row and column numbers of the eight

surrounding squares. Squares on the border will have fewer than eight neighbors,

so our code will have to catch proposed neighbors that are off the board.

’We have the idea of near neighbors and far neighbors
Public Function NearNeighbors(ByVal Row As Integer, ByVal Col As Integer) _

As Collection
Return GeneralNeighbors(Row, Col, NearNeighborOffsets)

End Function

’Both neighbors’ functions use same method on different offsets
PrivateFunctionGeneralNeighbors(ByValRowAsInteger, ByValCol As Integer, _

ByVal Offsets() As Point) As Collection
’Put the neighboring Square objects into a collection
Dim Neighbors As New Collection

’No neighbors if no field
If Field IsNot Nothing Then

Dim Pt As Point
Dim NeighborRow, NeighborCol As Integer
For Each Pt In Offsets

’Add the values in the point to get neighbor
NeighborCol = Col + Pt.X
NeighborRow = Row + Pt.Y
’It has to be on the board
If (NeighborRow >= 0) And _

(NeighborRow < NumRows) And _
(NeighborCol >= 0) And _
(NeighborCol < NumCols) Then
’It is on the board, add it in with key
Neighbors.Add(Field(NeighborRow, NeighborCol), _

KeyFromRC(NeighborRow, NeighborCol))
End If

Next
End If
’We always return a collection, even if it is empty
Return Neighbors

End Function

The Minesweeper Project 91

If you have not been doing so regularly, now is a very good time to open the

File menu and choose Save All. Note that starting the debugger saves the files

as well as providing you a chance to see if this works. Start your application

in the debugger. Click the Expert button and, once the field paints all of the

tiles, click one of them. The results you see should resemble Figure 4.3. The

hard work is paying off—this looks like a Minesweeper minefield!

Take the time to carefully evaluate each square of your own running game.

Are all 99 of the mines there? Noting that blanks imply zero, does every square

that does not have a mine have the right number? If these numbers are not

correct, both human and AI players will have a very frustrating time with your

game.

Making It Playable

Our next step is to turn what we have into a playable game. First, wemust turn off

the debug code that sets the text of the Square objects. That was in two places in

the Square class. Comment out the debugging sections in Init and Increment.

Run the game and click a tile to make sure.

Figure 4.3
A correctly initialized minefield after the first click.

92 Chapter 4 n Rule-Based Systems

The player needs more than a field to play; the player also needs to know how

many mines remain. Switch to the Design view of PlayingField. We will drag

four labels to the control panel to help the user:

1. Drag a Label control from the Toolbox and drop it to the right of the Expert

button.

2. Change the Text property to 888 and the Name property toMovesLeftLabel.

3. Change the BorderStyle property to FixedSingle and the TextAlign property

to MiddleCenter.

4. Drag a Label control from the Toolbox and drop it to the right of the

MovesLeftLabel.

5. Change the new label’s Text property to Moves Left.

6. Drag a Label control from the Toolbox and drop it below the

MovesLeftLabel.

7. Change the Text property to 999 and the Name property to MinesLeftLabel.

8. Change the BorderStyle property to FixedSingle and the TextAlign property

to MiddleCenter.

9. Drag a Label control from the Toolbox and drop it to the right of the

MinesLeftLabel.

10. Change the Text property to Mines Remaining.

After you open the File menu and choose Save All, your screen should resemble

Figure 4.4.

Now we need to provide the code to update those numbers. Add the following

code to the end of the NewGame routine, just above the code that changes the

cursor back.

’Init the counters
MinesLeftLabel.Text = NumMines.ToString
MovesLeftLabel.Text = sqcnt.ToString

As people manipulate the squares, the squares will need to change the numbers as

well. When a player clicks a square to reveal it, the number of moves remaining

goes down. When the player flags a square, it reduces both the number of moves

The Minesweeper Project 93

and the number of mines. Removing a flag increases both. Add the following

code to PlayingField.vb to handle those changes:

’Code to change the counters - convert the text to int,
’add or subtract one, change back to text. 2 for moves,
’and 2 for mines
Public Sub DecrementMovesLeft()

MovesLeftLabel.Text = (CInt(MovesLeftLabel.Text) - 1).ToString
End Sub

’If you undo a flag, the resulting blank is a valid move
Public Sub IncrementMovesLeft()

MovesLeftLabel.Text = (CInt(MovesLeftLabel.Text) + 1).ToString
End Sub

’Usually by placing a flag
Public Sub DecrementMinesLeft()

MinesLeftLabel.Text = (CInt(MinesLeftLabel.Text) - 1).ToString
End Sub

Figure 4.4
Some vital numbers on the user interface.

94 Chapter 4 n Rule-Based Systems

’Removing a flag
Public Sub IncrementMinesLeft()

MinesLeftLabel.Text = (CInt(MinesLeftLabel.Text) + 1).ToString
End Sub

Another demand that the squares will place on PlayingField is to end the game if

the player clicks on a mine. The field will do this by telling each square that the

game is over and letting the squares act appropriately. Add the following code to

the PlayingField class:

’Something bad happened and a square is calling for the game to end
Public Sub EndGame()

Dim Sq As Square
’Tell them all
For Each Sq In Field

Sq.Endgame()
Next

End Sub

That dealt with PlayingField. Now onto the squares. A square needs to be able to

determine whether its contents have been revealed. It will not want to tell the AI

howmany mines are near it if it has not been revealed, and it will treat the mouse

differently as well. Add the following code to the Square class just below the

declarations for contents and actualNearMines:

’Have I been clicked or not?
Private Revealed As Boolean

Boolean variables initialize to False. The AI will also want to ask the square if it is

revealed, so we should support that capability as well while we are at it. Add the

following code to the Square class:

’The outside world will want to ask us
Public ReadOnly Property IsRevealed() As Boolean

Get
Return Revealed

End Get
End Property

We needed to control how the Square object exposes the private variable

Revealed to the outside world. Properties allow us to have code between internal

data and the outside world. Unlike functions, properties can be either or both

directions (read or write) using the same name.

The Minesweeper Project 95

We need to do some work on the Click event handler for the Square class.

Refactor the code that makes the button look pressed as follows. This code uses

the existing comment and property changes, but integrates them into a more

sophisticated block.

If Not Revealed Then
’Below here is where the player finds out if it is safe or not
If contents = HiddenValue.Safe Then

’This square is done
Revealed = True
’Make the button look pressed [reused code from before]
FlatStyle = Windows.Forms.FlatStyle.Flat
Me.BackColor = Color.LightGray
’Tell the user how many are near (if any)
If actualNearMines > 0 Then

Me.Text = actualNearMines.ToString
Else

’Implement free moves here
End If
’One fewer move left to make
theField.DecrementMovesLeft()

Else
’Make bad things happen here
Me.Text = ShowMine
theField.Endgame()

End If
End If

If the user or the AI does click a mine, the Square object asks PlayingField to tell

all the squares that the game is over. We will now add code to the Square class so

that it can take end-of-game actions. Add the following code to the class:

’It no longer matters
Public Sub Endgame()

’If it is the end of the game,
’I cannot be clicked (stops cheats)
Me.Enabled = False
If Not Revealed Then

If contents = HiddenValue.Mine Then
’If they did not flag me, show the mine
If Me.Text <> ShowFlag Then

Me.Text = ShowMine
End If

96 Chapter 4 n Rule-Based Systems

Else
’I am a safe square
If Me.Text <> "" Then

’If they marked it, they were wrong
Me.Text = ShowBrokenFlag

End If
End If

End If
End Sub

At this point, the code should be playable—aside from the fact that it does not

allow the user to mark mines. Run the game in the debugger and see if it plays.

Intense concentration and some luck may be required to play for very long.

Check that the number of moves decrements and that making mistakes in play

not only is fatal, but stops the game. Your game might resemble Figure 4.5 after

you make a mistake in play.

There were still deterministic moves available in the game shown in Figure 4.5

when the mistake was made. An AI player would not have missed the moves or

Figure 4.5
After 343 moves and only 38 safe moves to go, one mistake ends the game.

The Minesweeper Project 97

made the mistake. After we add the ability to markmines with flags, the game will

be complete and ready for the AI.

Making It Fun: Adding Flags and a Safety Feature

To flag a blank square, the player right-clicks it. The player right-clicks a second

time to remove the flag. It makes no sense to do this to a revealed square.

Examine the events available to the Square class. Note that the Click event is in

bold to indicate an event handler is present for it. Scan the list carefully. There is

no right-click event. How will we detect a right-click? The list does have the

MouseUp event and many other mouse-related events. A control will get a MouseUp

event each time the user releases a mouse button, provided the user pressed the

button while the mouse was over that control. The MouseUp event always fires for

the control that got the MouseDown event. The behavior here is different from a

Click event. The Click event will not fire if you move the mouse off the control

between button press and button release.

Select the MouseUp event to get a code skeleton. Then add code to complete that

skeleton as shown here:

Private Sub Square_MouseUp(ByVal sender As Object, ByVal e As System.Windows.
Forms.MouseEventArgs) Handles Me.MouseUp

’This is where we catch right-click - but we have to
’check which button came up
If e.Button = Windows.Forms.MouseButtons.Right Then

’We should be part of a playing field
Dim theField As PlayingField = Me.Parent

’If not, we can’t tell it anything
If theField Is Nothing Then Exit Sub

If Not Revealed Then
’We change the marking on the tile
’What is on the tile now?
Select Case Me.Text

Case ""
’Blanks get a flag
Me.Text = ShowFlag
theField.DecrementMinesLeft()
theField.DecrementMovesLeft()

98 Chapter 4 n Rule-Based Systems

Case ShowFlag
’Flags get a blank
Me.Text = ""
theField.IncrementMinesLeft()
theField.IncrementMovesLeft()

End Select
Else

’Placeholder for AI
End If

End If
End Sub

Run the game and right-click some revealed and concealed squares. Mark a

square that you know is safe with a flag. Watch the counters to see the number of

moves and mines remaining decrease. Next, mark a square that you know holds a

mine with a flag. Then click the flagged square that holds a mine. Two interesting

things happen, one good, one bad. The good thing is the flag on the safe square

turns into an X to show that it was incorrectly flagged. We have now tested a bit

of code we wrote earlier. The bad thing is that even though we marked the square

with a flag, the square let us click it in the first place, ending the game.

We can guard against a click on a flagged square. In the Click event, find the

following line of code:

If Not Revealed Then

Then add the following code:

If Not Revealed Then
’Safety code: if marked, ignore the click!
If Me.Text = ShowFlag Then Exit Sub

Test this code by marking a square with a flag and then clicking it. The square

does not reveal itself. If you right-click the square to remove the flag, anything

could happen the next time you click it.

Implementing the AI

We now have a complete Minesweeper game! When the thrill of playing it wears

off, you may wish to review the discussion of a rule-based AI earlier in this

chapter. We need to design the classes that we will use for the rules and for the

framework and extend the game so that the AI can ‘‘see’’ what the player sees. We

The Minesweeper Project 99

also need to extend the game so that we can listen to the AI think. The AI will not

do anything if we fail to add code that runs the AI.

The AI Needs to Think Out Loud

We start by giving the AI a place to tell us what it is thinking. The extra space on

the right side of the control panel makes a perfect place for messages. Bring up

the Design view of PlayingField; then follow these steps:

1. Drag a TextBox control from the Toolbox and drop it to the right of the

controls already there.

2. Change its Name property to ThoughtsTextBox.

3. Set the Multiline property to True and resize the control to fill the available

space.

4. Set the ReadOnly property to True.

Later on, you may wish to add a vertical scrollbar to the control by setting the

ScrollBars property to Vertical. We will create two routines that manipulate this

control. Both will add text, but one of them will clear out the old text first. Switch

to Code view and create a new region for the AI. Do not put this region inside any

other regions. Add code to it to get the following:

#Region "AI Related"
’Let it speak - clear old stuff
Public Sub FirstThought(ByVal someThought As String)

ThoughtsTextBox.Clear()
MoreThoughts(someThought)

End Sub

’Say what it is thinking
Public Sub MoreThoughts(ByVal someThought As String)

ThoughtsTextBox.AppendText(someThought & vbCrLf)
End Sub

#End Region

Our AI now has a place to say things. We should clear what it is thinking when we

start a new game. Add the following line of code to the NewGame routine just above

where the cursor is returned to normal:

’Remove thoughts from last game
ThoughtsTextBox.Clear()

100 Chapter 4 n Rule-Based Systems

Rules

It is time to design the rules and the framework to make use of them. We start

with the rules. All the different rules have common elements. For example, every

rule proposes a set of moves as part of the matching phase. In addition, every rule

needs to execute its proposal when selected for execution by the framework. Add

a class to the project and name it BasicRule.vb. Mark it MustInherit and add code

to get the following:

Public MustInherit Class BasicRule

’Child classes and outside helpers need this
Public Enum PossibleActions

BlanksToFlags
ClickBlanks

End Enum

’We need to remember what move we propose
Protected SimonSays As PossibleActions
’And the targets of that action
Protected SquaresList As New Collection

’All rules must have tell how well they match
PublicMustOverrideFunctionMatches(ByValRevealedSquareAsSquare)AsInteger

’The match routine stores our proposal for possible execution
Public Sub Execute()

Dim Sq As Square
For Each Sq In SquaresList

’We only ever do unknown blanks
If (Not Sq.IsRevealed) And (Sq.Text = "") Then

’What did we propose to do?
Select Case SimonSays

Case PossibleActions.ClickBlanks
Call Sq.LeftClick()

Case PossibleActions.BlanksToFlags
Call Sq.RightClick()

End Select

End If
Next

End Sub
End Class

The Minesweeper Project 101

You can try to see if you can get the Sq variable to divulge the hidden contents

variable, but VB respects the private marking in the Square.vb file. Hidden in

this design is the idea that a rule will do only one kind of move. It turns out not to

be a limitation; all the rules we will write will boil down to either ‘‘Flag a bunch of

squares’’ or ‘‘Click a bunch of squares’’ but never both. This code asks the squares

to click and right-click themselves; that code does not exist. We will add that

capability to the Square class. Switch to the Square class and add the following

code:

’Let code work our UI:
’A regular click of the square
Public Sub LeftClick()

Call Square_Click(Nothing, Nothing)
End Sub

’Let them mark a square with right-click
Public Sub RightClick()

’Create the arguments for a right-click
’All we care about is the button
Dim e As New System.Windows.Forms.MouseEventArgs(Windows.Forms.

MouseButtons.Right, 0, 0, 0, 0)
Call Square_MouseUp(Nothing, e)

End Sub

The Click event handler ignores its arguments, so we can safely pass it Nothing

for both of them. The MouseUp handler looks to see what button was pressed, so

we created a new mouse event arguments object with the correct button and

zeroes for all the numbers. We do not care about those numbers, and zero is a

safe value for them.

There are two types of cheating for game AI: The AI can know things that it

should not, or the AI can do things the player cannot. For this reason, there is a

very important design decision made here: The AI uses the same user interface as

the player, and is restricted to the same actions as the player. The AI has shims

between it and the player code, but those shims are very thin and know nothing

about the intent of what they transmit. In most commercial games, the shim is

usually between the player and the game because the AI can natively speak the

command language of the game. Besides preventing cheating, using common

code simplifies the evolution of the game by having only one command path

instead of two that must be kept synchronized.

102 Chapter 4 n Rule-Based Systems

A Rule for Single-Square Evaluation

Let us create our first rule. The first rule will ask the question, ‘‘Can I tell what

goes in the blanks surrounding a revealed square using the revealed count and the

number of flags and blanks surrounding the revealed square?’’ This boils down to

two statements: If the number of flags around the revealed number equals the

revealed numbers, then any surrounding blanks must be safe. And if the number

revealed minus the number of flags is equal to the number of blanks, then any

surrounding blanks are all mines. More simply, ‘‘These are safe because I know

all of the mines already,’’ or ‘‘Mines are all that are left.’’

This rule will require that our AI find out a number of basic statistics. Howmany

flags surround the revealed square? How many blanks? The revealed square itself

gives the number of nearby mines. In addition to statistics, the rule will want to

know what squares around the revealed square are blanks because the action of

the rule, if it executes, will be to click them all or flag them all. It turns out that

three of our rules will need this data. It will be a lot easier to get this data if we can

get the Square objects to tell us their row and column data so that we can get their

neighbors and their key value. Add the following to the Square class:

’Let the outside world ask but not set our row
Public ReadOnly Property R() As Integer

Get
Return Row

End Get
End Property

’Let the world ask our column, too
Public ReadOnly Property C() As Integer

Get
Return Col

End Get
End Property

Since many rules will need the basic data, we should place the code for it in a

separate file where all rules can get to it. Add a module to the project (similar to

adding a class) and name it AI.vb. Then add the following code:

’Note the three ByRef parameters - we write to them
Public Function BasicStatsAndBlanks(ByVal RevealedSquare As Square, _

ByVal Neighbors As Collection, _
ByRef sees As Integer, ByRef flags As Integer, _

The Minesweeper Project 103

ByRef blanks As Integer) As Collection
’Look at line above and see the integers are all ByRef!

Dim BlankSquares As New Collection
’Text of revealed squares are blank = 0 or a number
If RevealedSquare.Text <> "" Then

sees = CInt(RevealedSquare.Text)
End If

’Get the counts of what they show
Dim Sq As Square
For Each Sq In Neighbors

’We want hidden squares only
If Not Sq.IsRevealed Then

’Count the flags and blanks
Select Case Sq.Text

Case ""
blanks += 1
BlankSquares.Add(Sq,PlayingField.KeyFromRC(Sq.R,Sq.C))

Case Square.ShowFlag
flags += 1

End Select
End If

Next
’The caller often needs the blank squares as a group
Return BlankSquares

End Function

This routine collects the stats and writes them back onto the passed-in para-

meters. VB defaults to call by value, so we have to make sure that we use the ByRef

keyword. This function returns a collection holding any blank squares. Armed

with this helper routine, our first rule is easy to write. Create a class and name it

RuleOne. Mark it to inherit from BasicRule. The only code we have to add is the

Matches routine.

Public Class RuleOne
Inherits BasicRule

Public Overrides Function Matches(ByVal RevealedSquare As Square) As Integer
’Clear out anything from before
Me.SquaresList.Clear()
’Do not run on a hidden square!

104 Chapter 4 n Rule-Based Systems

If RevealedSquare.IsRevealed Then
’We should be part of a playing field
Dim theField As PlayingField = RevealedSquare.Parent

’Who is around me?
Dim Neighbors As Collection = theField.NearNeighbors

(RevealedSquare.R, RevealedSquare.C)

’We keep a bunch of numbers:
’How many mines do we see?
Dim sees As Integer = 0
’And how many flags are around us?
Dim flags As Integer = 0
’And how many blanks are around us?
Dim blanks As Integer = 0
Dim BlankSquares As Collection
’Now fill in all of those. Note that the variables
’for the three numbers are passed by reference.
BlankSquares=BasicStatsAndBlanks(RevealedSquare,Neighbors,sees,_

flags, blanks)

’No blanks, no work possible
If blanks > 0 Then

’Decision time! No worries, it can’t be both

If sees = flags Then
theField.MoreThoughts(Me.GetType.Name & " sees " & _

blanks.ToString & " safe squares to click.")
’Store the result for later execution
SimonSays = PossibleActions.ClickBlanks
SquaresList = BlankSquares

End If

If blanks + flags = sees Then
theField.MoreThoughts(Me.GetType.Name & " sees " & _

blanks.ToString & " mine squares to flag.")
’Store the results for later execution
SimonSays = PossibleActions.BlanksToFlags
SquaresList = BlankSquares

End If
End If

End If

The Minesweeper Project 105

’This is how many moves we can make
Return Me.SquaresList.Count

End Function
End Class

The routine declares the numbers it needs and sets them to zero. It gets the

neighboring squares from the playing field. Armed with all that, it gets the basic

statistics and the collection of nearby blank squares. The decision will be to flag

all the blanks as mines, click all of them because they are safe, or do nothing.

Since this is the only rule, we can test it without writing the framework.

Switch to Square.vb. Find the MouseUp event handler. Look for the comment about

a placeholder for AI. When the user right-clicks a revealed square, that user is

asking the AI to run. Replace the placeholder comment with the following code:

’Placeholder for AI
theField.FirstThought("Thinking about Square at Row=" & _
Row.ToString & ", Col=" & Col.ToString)
Dim R1 As New RuleOne
If R1.Matches(Me) > 0 Then

R1.Execute()
End If
’End placeholder

This is sufficient to test the rule. Run the game and right-click every revealed

square. If the AI makes a move, you may want to click again on revealed squares

previously clicked to see if the AI now has enough information to make another

move. Armed with this single simple rule, after you get a game started, the AI can

make around 90 percent of the moves needed to solve the game. You will have to

help it now and then by using the information of more than one square. This rule

proves thatMinesweeper is less about thinking hard than it is about never making

a mistake.

This rule executes perfectly, giving it an advantage over human players. Does it

make the game more or less fun? If the fun part of the game is making the hard

moves and the thrill of making a non-fatal guess, then the rule takes away the

boring, repetitive part of play. If the fun part of the game is the challenge of

holding to discipline and demonstrating the perfection of your play, then this

rule trashes the fun right out of the game. Recall in the earlier discussion that the

programmer must mediate between an AI that is stupid and thus boring versus

one that is too smart and thus frustrating. With only one rule in place, we can

clearly see this need.

106 Chapter 4 n Rule-Based Systems

The Framework

The first rule was a great start. It is time to add the framework so that we can add

another rule. Add a new class to the project and name it FrameWork.vb. The

framework is very easy to code; it depends on the rules being loaded in order of

increasing complexity and needs a place to store the rules. It also needs a routine

to match and then execute the best rule, as well as a routine for loading rules. Add

the following code to the class:

Private Rules As New Collection

Public Sub AddRule(ByVal goodIdea As BasicRule)
’Add it if it is not there
If Not Rules.Contains(goodIdea.GetType.Name) Then

’Use its type name as string
Rules.Add(goodIdea, goodIdea.GetType.Name)

End If
End Sub

Now we need the match and execute routine. It is far less complex than the rules

it invokes. Add the following routine to the FrameWork class:

Public Sub RunAI(ByVal RevealedSquare As Square)
’Keep the best rule and its score
Dim bestRule As BasicRule = Nothing
Dim bestScore As Integer = 0

’We want the playfield so that we can talk
Dim theField As PlayingField = RevealedSquare.Parent

Dim someRule As BasicRule
Dim currentScore As Integer
’Go through the rules we have loaded in order
For Each someRule In Rules

currentScore = someRule.Matches(RevealedSquare)
If currentScore > bestScore Then

’Best idea so far, at lowest cost
bestRule = someRule
bestScore = currentScore

End If
Next

’Did we get a good idea? If so, use it

The Minesweeper Project 107

If bestRule IsNot Nothing Then
theField.MoreThoughts(" Executing " & bestRule.GetType.Name)
bestRule.Execute()

Else
theField.MoreThoughts(" No good ideas found.")

End If
End Sub

Adding the Framework to the Game

The right place to create and hold a FrameWork object is in PlayingField. We

only need one copy of it, and we only need to initialize it once. We will need to

make it available to the squares so they can ask to run the AI when they get user

input. Switch to the Code view of PlayingField and add the following code to the

class just below the declarations for Field and the three Num variables. (We are

keeping this kind of data together to make it easier to find.)

’This is the AI.
Public Brains As New FrameWork

Have VB create the skeleton of the Load event handler for PlayingField. Add

code to it so that it resembles the following:

Private Sub PlayingField_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load

’All we have to do is load the rules IN ORDER
Brains.AddRule(New RuleOne)

End Sub

The framework is available and loaded; next, we need to call it. Return to the

MouseUp event handler in Square.vb, locate the placeholder AI code, and replace

the placeholder code, including the begin and end comments, with the following:

’Run the real AI
theField.FirstThought("Thinking about Square at Row=" & _

Row.ToString & ", Col=" & Col.ToString)
theField.Brains.RunAI(Me)

Now run the game and right-click on the revealed squares. The game plays as

expected; we are ready for another rule.

Rules for Two-Square Evaluation

The next two rules are very similar: They use the information from two revealed

squares to look for moves. These rules could be combined into a single rule, but

108 Chapter 4 n Rule-Based Systems

we will leave them separate so that we can control how smart our AI appears. We

also leave them separate because one version is easier for humans to see than the

other. Both of these points are game-design issues. We want our AI to play like a

human and we want to easily control how well it plays.

So how will the rule work? It takes a revealed square and attempts to use a nearby

square as a helper. In the simpler version of the rule, the nearby helper is adjacent

to the original revealed square. The two squares need to share some blank

squares, and the original square also needs to be adjacent to some blank squares

that are not shared. The helper square computes the minimum number of mines

and the minimum number of clear squares that are in the shared squares. These

numbers can be zero but not negative. If either number is greater than zero, the

helper has provided the original square with potentially new information. The

original square already has information about all of its squares, but the helper

gives information about a subset of them. If the minimum number of mines in

the shared squares is equal to the number of mines the original square has not yet

placed, the original square can safely click all the squares that are not shared

because it knows that all of its mines are somewhere in the shared squares. If the

minimum number of clear squares in the shared squares is equal to the number

of unknown clear squares around the original square, then all the non-shared blank

squares around the original square must be mines. This rule does not act on the

shared squares; it acts on the original square’s private squares. If your brain is in

danger of exploding, perhaps a picture will make the situation clear (see Figure 4.6).

The upper 1, with the dark border, is the helper square. The lower 1 is the original

square. The rule will not work the other way around because the upper 1 has no

private blanks. The lower 1, the original square, has three private blanks, in

addition to four shared blanks. The helper can compute that at least one mine

must be in the shared squares; it sees one mine, and the only thing around it is

shared squares. The original square needs to place one mine, and the helper just

told it that at least one mine is in the shared squares. That was all the mines

the original square had left to place, so the private squares must all be clear. If

there are any flags nearby, they adjust the various numbers, but the method is the

same. Note that the move is in the original square’s private blank squares. The

two squares do not yield enough information to safely determine anything about

the shared squares. Note that the move consumes all the private blank squares.

The same method also places mines. If the original square had been a 4 and

the helper square remained a 1, the helper would report that there are at least

The Minesweeper Project 109

three safe shared blank squares. The original square has seven blanks and four

mines to place, leaving three safe blank squares to account for. The original

square hears from the helper that all three of the original square’s safe squares

are among the four shared squares. This means that there are no safe private

blank squares around the original square, so those private blank squares are all

mines (see Figure 4.7). This is a powerful rule, and together with the single

square rule it plays very effectively. Turning the rule into code will be somewhat

complex.

A Two-Square Evaluation Rule Using Near Neighbors

Add a class to the project, name it RuleTwoNear.vb, and make it inherit from

BasicRule.

Inherits BasicRule

VB will provide the skeleton for the Matches function. Add code to the Matches

function so that it resembles the following:

Public Overrides Function Matches(ByVal RevealedSquare As Square) As Integer
’We use a helper function with near neighbors

Figure 4.6
Can you spot the three safe moves?

110 Chapter 4 n Rule-Based Systems

’We should be part of a playing field
Dim theField As PlayingField = RevealedSquare.Parent

’Who is around me that might help?
Dim CloseNeighbors As Collection = theField.NearNeighbors(_

RevealedSquare.R, RevealedSquare.C)

’Do the work
Call AI.TwoSquareMatcher(RevealedSquare, CloseNeighbors, _

SimonSays, SquaresList)

’How many moves were found?
If SquaresList.Count > 0 Then

’Tell the world what we think
If SimonSays = PossibleActions.BlanksToFlags Then

theField.MoreThoughts(Me.GetType.Name & " sees " & _
SquaresList.Count.ToString & " mines to flag.")

Figure 4.7
The AI places three mines using the second rule.

The Minesweeper Project 111

Else
theField.MoreThoughts(Me.GetType.Name & " sees " & _

SquaresList.Count.ToString & " safe squares to click.")
End If

End If

’Tell the framework how many moves
Return SquaresList.Count

End Function

This code will depend on a routine in AI.vb that we have not written yet. The

important point here is that the rule asks the squares directly adjacent to the

revealed square for help. For most squares, that will be eight surrounding

squares, and the NearNeighbor function finds them. We store them in the

CloseNeighbors collection. Everything else in this routine is generic. Nowwe turn

to AI.vb to implement the matcher. Add the following code to AI.vb:

’This function does the work for two rules
’This code tries to use a helper to help find moves
’Two byRef parameters
Public Sub TwoSquareMatcher(ByVal RevealedSquare As Square, _

ByVal Helpers As Collection, _
ByRef SimonSays As BasicRule.PossibleActions, _
ByRef SquaresList As Collection)

’Clear the list of proposed moves in case we do not find any
SquaresList.Clear()

’We should be part of a playing field
Dim theField As PlayingField = RevealedSquare.Parent

’Get the basic data of the revealed square
’Who is around me?
Dim Neighbors As Collection = theField.NearNeighbors(RevealedSquare.R, _

RevealedSquare.C)

’We keep a bunch of numbers:
’How many mines do we see?
Dim sees As Integer = 0
’And how many flags are around us?
Dim flags As Integer = 0
’And how many blanks are around us?

112 Chapter 4 n Rule-Based Systems

Dim blanks As Integer = 0
Dim BlankSquares As Collection
’Now fill in all of those - note that the
’three numbers are call by reference
BlankSquares = BasicStatsAndBlanks(RevealedSquare, Neighbors, sees, _

flags, blanks)

’If no blanks, we have nothing to do.
If blanks = 0 Then Return

’Can one of the helpers aid us?
Dim Helper As Square
For Each Helper In Helpers

’If at any point in the loop we know no help is
’possible, we continue For to get the next helper

’To help me, they must be revealed
If Not Helper.IsRevealed Then Continue For

’We need the helper’s basic data

Dim TheirNeighbors As Collection = _
theField.NearNeighbors(Helper.R, Helper.C)

’How many mines do they see?
Dim theySee As Integer = 0
’And how many flags are around them?
Dim theirFlags As Integer = 0
’And how many blanks are around them?
Dim theirBlanks As Integer = 0
Dim TheirBlankSquares As Collection
’Now fill in all of those - note that the variables
’for the three numbers are passed by reference
TheirBlankSquares = BasicStatsAndBlanks(Helper, TheirNeighbors, _

theySee, theirFlags, theirBlanks)

’If they lack blanks, they can’t help us
If theirBlanks = 0 Then Continue For

’My blanks that they can’t see are where my moves will go
Dim PrivateBlanks As New Collection
’Shared blanks are how they will help us
Dim commonBlankCount As Integer = 0

The Minesweeper Project 113

’Compute and collect those blanks
Dim Sq As Square
’Go through my blanks looking in theirs
For Each Sq In BlankSquares

’Need the key to search
Dim sqKey As String = theField.KeyFromRC(Sq.R, Sq.C)
If TheirBlankSquares.Contains(sqKey) Then

’It’s mine and it’s theirs
commonBlankCount += 1

Else
’It’s mine alone and a possible move
PrivateBlanks.Add(Sq, sqKey)

End If
Next
’Do we have anything to say?
If commonBlankCount = 0 Then Continue For
’Do I have possible moves?
If PrivateBlanks.Count = 0 Then Continue For

’So what do those common blanks tell us?

’We can compute how many private blanks they have
Dim theirPrivateBlankCount As Integer = theirBlanks - _

commonBlankCount
’From that we can take a crack at their view of the smallest possible
’number of mines in the common blanks
Dim minCommonMines As Integer = theySee - theirPrivateBlankCount - _

theirFlags
’But it can’t be negative
If minCommonMines < 0 Then minCommonMines = 0

’We can run similar numbers for clear squares
Dim minCommonClear As Integer = theirBlanks - _

(theySee - theirFlags) - theirPrivateBlankCount
’That can’t be negative either
If minCommonClear < 0 Then minCommonClear = 0

’If those are both zero, they are no help to us
If minCommonClear = 0 And minCommonMines = 0 Then Continue For

’This is a good point for error checks

’We have useful information - is it useful enough?
’Do the mines help us?

114 Chapter 4 n Rule-Based Systems

If minCommonMines > 0 Then
If minCommonMines = sees - flags Then

’The common mines are all of my mines!
’Since both variables were ByRef, we can change them
SimonSays = BasicRule.PossibleActions.ClickBlanks
SquaresList = PrivateBlanks
’Finding one set of moves is good enough
Return

End If
End If

’Do the clear squares help us?
If minCommonClear > 0 Then

If blanks - minCommonClear = sees - flags Then
’The common squares include all of my clear
’Therefore, my private blanks must all be mines
’Since both variables were ByRef, we can change them
SimonSays = BasicRule.PossibleActions.BlanksToFlags
SquaresList = PrivateBlanks
’Finding one set of moves is good enough
Return

End If
End If

Next Helper
End Sub

The first part of the routine reads just like single-square matching. We get the

basic statistics for the original square and check for blanks. There is nothing to do

if there are no blank squares to act on. At that point, the original square looks for

help from the helpers that were passed in.

If the helper is not revealed, the helper square lacks the required numerical

information. The Continue For directive tells VB that we are done with this

iteration of the loop and to go on with the next iteration. We will make

numerous qualifying tests on the helpers as we go. This could be coded with

nested If statements, but the nesting level would be extreme.

At this point, we know that the helper has basic data, so we get it the same way we

get it for any other square. If the helper has no blanks, it cannot help. If it has

blanks, we need to know if any of them are common blanks. We need the count

of the common squares but not the squares themselves. We do need the original

The Minesweeper Project 115

square’s private blanks, however, because those squares are where we will make

our moves if we find any.

We loop through the original square’s blanks, checking them against the helper’s

blanks. We count the common blanks and store the private blanks. When we are

done, we look at the numbers. Without common blanks, the helper cannot feed

the original square any new information. Without private blanks, the original

square has no moves to make. If there are common blanks but no private blanks,

the original square might be a good candidate to help the helper square, but we do

not pursue that. The user told the AI to look for moves for the original square.

We are finally ready to compute the numbers. We compute the minimum com-

mon mines and clear (safe) squares among the common blank squares as seen by

the helper. We start with the number of mines they see and decrement that count

by any flags they see since they may know where some of their mines are. We then

decrement by the number of private blanks that could hide mines to determine

their view of the minimum number of mines in the shared blank squares. Then we

make similar computations for the minimum number of clear squares, starting

with the blanks they see and decrementing that by the number ofmines they do not

know about, which is the number they see less any flags they have placed. Then we

decrement again by their private blanks that could be safe, and we are left with their

view of theminimumnumber of safe squares among the common blank squares. It

takes a ton of code to get to this point. Adding some Debug.Writeline statements

might be a good idea here. The output will show in the Immediate window when

you run the game in the debugger. Some error checks might be good here as well.

Theminimum commonmines should not be greater than the number ofmines the

original square needs to place. The minimum common clear squares should not be

greater than the number of safe squares that have to be around the original square.

If you don’t think your code is working correctly, add those error checks. If you are

unsure about your code, use Debug.Writeline to display all the computed numbers

so that you can compare them to the board.

All that remains is to evaluate the quality of the numbers. The numbers could

indicate that the private squares are mines or that the private squares are safe. The

code sets the two variables passed in by reference to the correct move and to a

collection holding the proper squares.

No t e

VB does automatic garbage collection, so we do not worry about what happens to an object when
no variables point to it.

116 Chapter 4 n Rule-Based Systems

There is a design decision in the code that the comments point out. We take the

first helper who can help and go with it. It is possible that a different helper could

come up with more moves for the original square. Rather than evaluate them all,

we go with the first one that qualifies. The match portion of a rule needs to be

computationally efficient because the framework will run it often.

That completes the rule. The rule will never run if we fail to put it into the

framework. Find the PlayingField Load event handler and add the following line

after the first one:

Brains.AddRule(New RuleTwoNear)

Run the code. After you get a game started, you can chase the perimeter by madly

right-clicking revealed squares. Slow down and watch carefully, and you will see

the two-square rule fire and leave a single-square move that another right-click

will pick up. If the game ever steps on a mine, you have a bug or the player has

manually flagged a safe square. Look at the thoughts output to make sure that the

first rule with the most squares is the one that executes. That way, we know that

the framework is working properly.

Play a number of games using the AI as much as possible. How much fun is

Minesweeper now? Is the AI too smart or not smart enough?

Two-Square Evaluation Using Non-Adjacent Squares

The AI can still use more help. If you think about it, you may realize that the

helper square does not have to come from the directly adjacent squares (usually

eight of them). The helper could be from one of the squares surrounding the

directly adjacent squares. There are usually 16 such surrounding squares. The

original square and the helper will have common squares directly between them.

If one or more of these are blank, and the original square has other private blanks,

the same method works from farther away.

All we need is access to the next outer ring of neighbors. Switch to the Code view

of PlayingField.vb and find the NearNeighbors code. We need a different set of

offsets for the new neighbors. Add the following to the class file:

Private FarNeighborOffsets() As Point = { _
New Point(-2, -2), New Point(-2, -1), New Point(-2, 0), _
New Point(-2, 1), New Point(-2, 2), _
New Point(-1, -2), New Point(-1, 2), _
New Point(0, -2), New Point(0, 2), _

The Minesweeper Project 117

New Point(1, -2), New Point(1, 2), _
New Point(2, -2), New Point(2, -1), New Point(2, 0), _
New Point(2, 1), New Point(2, 2)}

We also need a public routine to return a collection of Square objects.

GeneralNeighbors will do it for us if we pass in the new offsets. Add the following

code to the class:

Public Function FarNeighbors(ByVal Row As Integer, ByVal Col As Integer) As
Collection

Return GeneralNeighbors(Row, Col, FarNeighborOffsets)
End Function

This capability makes writing the rule refreshingly easy. Add another class to the

project and name it RuleTwoFar.vb. Copy everything inside the RuleTwoNear class

and paste it inside the RuleTwoFar class. Start with Inherits and be sure to get the

End Function line. We need to change the code that deals in getting the list of

potential helpers.

Change this line:

Dim CloseNeighbors As Collection = theField.NearNeighbors
(RevealedSquare.R, RevealedSquare.C)

Into this:

Dim OuterNeighbors As Collection = theField.FarNeighbors
(RevealedSquare.R, RevealedSquare.C)

Since we changed the variable name for clarity, we have to change it everywhere.

Just below the declaration is the following line:

Call AI.TwoSquareMatcher(RevealedSquare, CloseNeighbors, SimonSays,
SquaresList)

That line should be changed to read as follows:

Call AI.TwoSquareMatcher(RevealedSquare, OuterNeighbors, SimonSays,
SquaresList)

That completes the rule. Remember to put a copy of the rule into the framework.

Find the PlayingField Load event handler and add the following line after the

first two:

Brains.AddRule(New RuleTwoFar)

118 Chapter 4 n Rule-Based Systems

Now run the game. It may be hard to find places where the new rule has moves.

Figure 4.8 shows a game example where it can fire.

The lone revealed 1 square can get help from the revealed 1 square two columns

to the left. The common blank squares hold all the mines the lone square needs to

place, making the three private squares safe moves. The thinking output is from a

prior move and can be ignored. After right-clicking the lone square in Figure 4.8,

we get Figure 4.9.

In Figure 4.9, the thinking output is current, and we see that our new rule fired.

The first two rules we implemented demolish most of aMinesweeper game. This

third rule keeps the AI from getting stuck. I risked clicking the tile with the lone 1

in Figure 4.8 precisely to take advantage of the power of the new rule. This rule

gives the ability to make guesses productive. The rule did not change the risk of

clicking a random blank tile, but it clearly improves the reward of clicking tiles

just past the perimeter.

Do We Need More Rules?

As shown in Figure 4.10, the AI still gets stuck sometimes when there are

deterministic moves. Find the pair of 1 squares at the bottom of the group of four

Figure 4.8
Our new rule has three safe moves.

The Minesweeper Project 119

revealed squares at the left edge of all the cleared squares. One of them has a

darker outline. There is a 2 and a 3 above those 1 squares. Above that are two

unknown squares. By looking at the four revealed squares above those unknown

squares, we can determine that there is one mine in the two unknown squares.

The 2 and the 3 squares then tell us that there is one unknown mine in the pair of

squares to the left of the 2 and one unknown mine to the right of the 3, in

addition to the flag already there. The 1 under the 2 sees the same mine that the 2

sees, making all squares below it safe. The outlined 1 under the 3 sees the same

additional mine the 3 sees, making all squares below the 1 safe. This gives us four

safe moves that the AI does not see.

Experienced players sometime use three or more tiles to find a move. We could

implement rules that use three or even more tiles, but it begs a question: What’s

the point? The AI now can play most games either to completion or to the point

where all that remains is a handful of purely random guesses. A lucky few games

require the player to use some serious brain power or to make the risky guess that

will end the game or unleash the AI anew.

If we added the more sophisticated rules, we would want to create a setting for

the AI so that we could control how deep into the rule base it could go. This

Figure 4.9
Our new rule takes the three safe moves.

120 Chapter 4 n Rule-Based Systems

implementation of a rule-based AI is inherently adjustable. One of the advan-

tages to a rule-based system is that it gives an intuitive way for the AI pro-

grammer to adjust the degree of difficulty.

There are a few simple rules that could be added to finish the game. If the number

of mines left hits zero, then the AI should click all remaining squares. If the

number of moves equals the number of mines, the AI should flag every

remaining square. The need for these rules did not make an appearance until the

AI was well on its way to finishing off most games. We watched it play and

noticed an area for improvement.

This illustrates one of the advantages of the method: Working with the rules

makes it easier to add new rules. We can evolve the AI by seeing a need and then

adding a new rule to cover it. We do not have to implement every good idea we

come up with at the very start because we can test as soon as we have one rule. If

the AI proves sufficient with a few simple rules, the programmer does not need to

risk investing time in more complex ones.

Figure 4.10
There are four safe moves that the AI does not see.

The Minesweeper Project 121

Chapter Summary
This chapter shows that a few rules and a framework to run them go a long way.

Once the framework is created andunderstood, new rules can be addedquickly and

easilywithout upsetting existingwork. There is anup-front cost to the system, but it

pays off quicklywith every new capability added. Rule-based systems are inherently

tunable and allow for almost Darwinian evolution to cover any deficits. As shown

by the project, when the rules fit the game well, they are powerfully effective.

Chapter Review
Answers are in the appendix.

1. What are the two parts of a rule in a rule-based system?

2. What does the framework do in a rule-based system?

3. Why is it that a rule-based system can play like both a human and a machine

at the same time?

4. What makes a rule-based AI appear intelligent? What makes it appear stupid?

Exercises
The code for some of these exercises is on the CD.

1. Add buttons below the Expert button for Intermediate (16 row, 16 columns,

and 40 mines) and Beginner (9 rows, 9 columns, and 10 mines) games.

2. Add code to track the number of moves made by the player and by each rule.

For a more in-depth analysis, keep statistics over many games that include

per-move data for all 480 possible moves. When is the game the most

dangerous?

3. Modify the framework so that RunAI runs the match-execute cycle repeatedly

until it finds no moves around the revealed square. You will need to add a

scrollbar to the ThoughtsTextBox control. Youmight want tomake it taller as

well. This code is on the CD.

4. Add code to take free moves when a zero is revealed. Recall that the playing

field can tell a square who its neighbors are. The following fragment of code

may come in handy:

Sq.Square_Click(Nothing, Nothing)

122 Chapter 4 n Rule-Based Systems

Our Click event handler ignores the parameters that Windows passes in,
so we pass in Nothing when we call the event handler.

5. Add the two end-of-game rules mentioned earlier. Like our other rules, they

need some support from the game. In terms of cost, where do they go in our

ordered list of rules?

6. Add code that has the AI search for moves and make all the moves that it

can. It may be helpful to keep a work list that holds revealed tiles that have

one or more unknown adjacent tiles. It will be far faster to search the work

list than to search the entire playing field. This addition will really show how

powerful the AI can be, although keeping the work list correct may be a

challenge. This code is on the CD.

7. Write a Sudoku game and a rule-based AI for it. Think of the rules you use

to find moves when you play Sudoku. Put those rules into a rule-based AI

and see how well it plays.

References
[Kirby08] Kirby, Neil. ‘‘AI as a Gameplay Analysis Tool,’’ AI Game
Programming Wisdom 4, Charles River Media, 2008: pp. 39–48.

[Laird99] Laird, John; van Lent, Michael. ‘‘Developing an Artificial Intelligence

Engine,’’ Proceedings of the 1999 Game Developers Conference, San Jose, CA,
Miller Freeman.

[Laird] Laird, John. ‘‘Part VI: Building Large Soar Programs: Soar Quakebot,’’

date unknown, available online at http://ai.eecs.umich.edu/soar/sitemaker/

docs/tutorial/TutorialPart6.pdf.

[Pittman09] Pittman, Jamey. ‘‘The Pac-Man Dossier,’’ February 23, 2009,
available online at http://home.comcast.net/*jpittman2/pacman/pacman-
dossier.html.

References 123

http://ai.eecs.umich.edu/soar/sitemaker/docs/tutorial/TutorialPart6.pdf
http://ai.eecs.umich.edu/soar/sitemaker/docs/tutorial/TutorialPart6.pdf
http://home.comcast.net/~jpittman2/pacman/pacmandossier.html
http://home.comcast.net/~jpittman2/pacman/pacmandossier.html

This page intentionally left blank

Random and Probabilistic
Systems

Random systems are easy to understand. Consider the coin toss that starts

American football games, the winner of which gets to choose to kick off or to

receive the kickoff. The coin toss is not influenced by any consideration that one

particular outcome might be ‘‘better’’ or ‘‘more entertaining’’ or ‘‘preferred.’’

Probabilistic systems, on the other hand, consider the odds. In the card game

Blackjack, the dealer for a casino hits on 16 or less and stands on 17 or more. This

simple rule is based on a known long-term outcome that can be mathematically

proven.

Can That Be AI?
Both types of systems appear to conflict with our working definition of AI. What

is the intelligent part of random? How does a fixed rule deal with changing

conditions? Random decisions can simulate human behavior. Humans get

bored and distracted and are subject to the urge to try something different. So an

AI that is predictable will seem less intelligent than an AI that is not predictable.

At the same time, an AI that randomly picks from equally good choices is just as

good in the long term as an AI that picks the first of equally good choices it

evaluates. Our Minesweeper AI from Chapter 4, ‘‘Rule-Based Systems,’’ had a

very reliable figure of merit for the available choices, but it could just as easily

have picked among the best choices by random selection. A similar argument can

125

chapter 5

be made for FSM: Random selection is a good way to disambiguate equally good

choices.

Choices are not always equally good, however. When the AI needs to avoid being

predictable, it must sometimes select a sub-optimal choice. A real-life Blackjack

dealer is required to be predictable; the prediction that must be true is that in the

long run, the house always wins. But game AI must balance the flaw of pre-

dictability against the flaw of making sub-optimal choices. The game AI needs to

consider the odds in order to strike that balance.

Computing the Odds
Odds are situational. The odds for many games of pure chance can easily be

precomputed. The methods for doing so are presented in most probability and

statistics books. More advanced treatments are available in books on combina-

torics, which, while fascinating in its own right, might not be for the faint of

heart. We will look at three ways of computing the odds: Monte Carlo methods,

precomputing, and faking it. Each method has unique strengths and costs.

Monte Carlo Methods

How can one know the odds in cases where the situation cannot be known in

advance? One way is to simulate some or all of the potential game outcomes and

compute the odds from the simulated results. This is known as a Monte Carlo

method, and it can be directly applied to game AI. If one view of intelligence is

that current actions increase future gains, then game AI could surely benefit from

the ability to look into the future before making a decision.

The quality of a Monte Carlo simulation depends on how accurately the AI’s

Monte Carlo simulation models the actual game situation. An AI programmer

wishing to use Monte Carlo methods needs to ensure that the simulation is close

enough to the situation and make sure the simulation is computationally cheap

enough to be worthwhile. Also, the simulation may involve simplifications and

assumptions; the programmer must ensure that they are ‘‘good enough’’ and that

the results are better than other alternatives. Even if Monte Carlo methods are

not employed, probabilistic AI needs to get the odds, also thought of as weights,

to apply to the alternatives.

The accuracy of a Monte Carlo prediction depends not only on the quality of the

simulation but also on how many times the simulation is run. The simulation

126 Chapter 5 n Random and Probabilistic Systems

may involve multiple points where random events, decisions, or assumptions are

employed. In the case of Blackjack, a simulation may pick the next cards to be

dealt using random selection from the set of cards not yet dealt. The simulation

may involve deterministic decisions with random outcomes. Artillery simula-

tions deal in the real-world concept of ‘‘circular error probable,’’ which means

‘‘Half the shells land inside this circle.’’ The more often these random points are

simulated, the more likely the simulation will converge to an accurate estimation

of the actual probability.

Monte Carlo methods are conceptually simple and elegant, but the development

time to implement them and the computational cost to run them make them

unsuitable for most game AI applications. Their narrow niche is occasional use in

NPCs. An NPC that runs a simulation a few times, or only once, is impulsive or

short sighted. An NPC that runs the simulation many times, however, has a very

good idea of what the future holds.

Precomputing

Given sufficient memory, looking up the odds in a table is so much faster than

any other method that it should be employed whenever possible. (‘‘Sufficient’’

memory is relative; the Wii is particularly constrained for memory compared to

PCs used for gaming). In many situations, the odds can be exactly precomputed.

In many other situations, the odds can be approximately precomputed. There are

two tricks to this. First, the approximation has to match closely enough to be

useful. (Think: ‘‘This is like X, and the odds for X are. . . .’’)

The second trick is to validate the odds before the game ships. The only place to

get actual numbers is from the game itself. Be warned that during development,

the numbers will be change—possibly drastically—as the game evolves. Each

time the game is played, it could be logging events and crunching numbers on

behalf of the AI programmer. The AI programmer uses these numbers to validate

the odds in the table. It is up to the AI programmer to decide if the guidance

provided by any particular set of numbers should be followed. This works only if

the game has the instrumentation built in early enough to generate the required

amounts of data, however. There are many other benefits to building in the

instrumentation as early as possible that we will not cover. Real armies need to

know the circular error probable of their artillery long before they go to war; AI

programmers should heed that lesson.

Computing the Odds 127

Known-good numbers are a great thing, but because games are an entertainment

product, accurate numbers are not actually required. If the AI plays well with a

warped view of its world, there is no inherent problem. The effort required to

validate the actual numbers is likely to be substantial and in the long run may not

be worthwhile. This brings us to our third method of getting the numbers, which

is to simply fake it.

Faking It

Somewhere between random selection and a good set of precomputed odds is the

age-old method of faking it. The fact that experience helps is no comfort to the

beginning AI programmer, but the beginner should also take heart in the fact that

even experts sometimes fake it. All numbers are subject to tuning, so the sooner

tuning begins, the better. Faking it means having numbers ‘‘as soon as the dart

hits the dartboard,’’ which can happen well before the first line of instru-

mentation code is ever written. Usually, the first set of numbers is thought to be

reasonable in some sense by the person making them up. Fewer people turn to a

life of daily crime than go to a day job. What is ‘‘fewer’’ in actual numbers: 1 in

10? 1 in 1,000? 1 in 100,000? The numbers from current real life in a first-world

country may not match the number from The Sims, and that number is probably

different from Grand Theft Auto. Games are an entertainment product, so the

numbers only have to be right for your game. Faking it starts by being within one

or two zeroes of the final number.

For a beginner, the most serious drawback to faking it and tuning as you go is

that tuning can take forever. Hard numbers (or anything close to hard numbers)

place bounds on the tuning problem and guide the effort. A hybrid approach is to

start by faking it as best you can. Instrumentation is designed into the game, and

tuning is guided by the hard numbers as soon as they are available.

For the experienced AI programmer, faking it is actually quite liberating. Tables

of numbers can be easier to tune than files of code. The AI does not have to be

perfectly rational; it can think that the game world works differently than it

actually does. In fact, the AI programmer can negotiate with the game designer

how the game world should actually work, because that reality is just as mutable

as the AI. Not only is the AI being tuned for maximum entertainment value, but

so is the rest of the game world. The equations and mathematics used by

experienced AI programmers to get their numbers is a book in its own right

[Mark09] and will not be covered here.

128 Chapter 5 n Random and Probabilistic Systems

Using the Odds: Factors to Consider
With precomputed odds or a sufficient number of runs of a good simulation, the

AI can accurately determine the odds of future events. The most common way

such odds are used is to create weights to influence an otherwise purely random

selection. The weights can take in more than the probability of success; they can

also factor in potential gains, potential losses, and the cost of taking an action

regardless of success or failure.

People weigh decisions this way in real life. Going to a day job each day typically

has a very high probability of success, good but not great gain, almost zero

potential loss, and modest costs. Buying one lottery ticket with the leftover

change from a purchase has an extremely low probability of success, incredible

potential gain, no potential loss, and low cost. Cutting in and out of traffic has far

lower odds of success than normal driving, small potential gains in saved time,

substantial potential losses from accidents and tickets, and modest additional

costs in gas and wear on the car.

Impulsive behavior is easy to model with these methods. To get this with aMonte

Carlo simulation, run the simulation just one time. With precomputed odds, this

happens when a random selection falls outside the most probable outcomes.

Much of the time, the system will select a typical response, but occasionally it will

select a low-probability outcome. The normally reasonable AI is thinking,

‘‘Today is my lucky day.’’

You can model compulsive behaviors by using different weights on the factors.

The compulsive gambler ignores the probability of success and bases decisions on

potential gains to the near exclusion of other factors. The gambler says, ‘‘I use all

of my leftover money on lottery tickets.’’ A miser focuses on minimizing costs.

‘‘If you order a cup of hot water, you can use the free ketchup on the table to

make tomato soup.’’ A timid person is obsessed with avoiding potential loss. ‘‘I

won’t put money in the stock market or bonds, and I can barely tolerate having it

in banks. Those companies could all go bankrupt!’’

Slow and steady behavior weighs an accurate probability of success against

potential gains, avoids unnecessary risks, and indulges lightly in cheap long-shot

activities. In the real world, such people seek steady employment at a good wage,

maximize their retirement contributions, carry insurance, and avoid risky

behaviors, but are not above entering the occasional sweepstakes. These beha-

viors may lack entertainment value, but the game AI programmer benefits by

knowing how to program ‘‘boring and normal.’’

Using the Odds: Factors to Consider 129

All the behaviors listed here can be simulated using a set of weights on the various

categories. Subtle changes in the weights create richness within a category; there

are a lot of different ways to be slow and steady. Gross changes in the weights

yield the compulsive or near-compulsive behaviors. Games are entertainment

products, so the AI programmer will need to use tools like these weights to create

an interesting player experience.

Design and Analysis
If the AI problem at hand does not lend itself to numbers, probabilistic methods

are of little help. Like all the other tools we have covered so far, the method forces

the AI programmer to try to think of the problem in terms of this kind of

solution. Some problems will have an elegant fit, and the AI programmer can

orchestrate a rich variety of behaviors by changes to some numbers.

The hardest question to answer is, ‘‘Can I get the numbers?’’ We have covered

three basic ways of getting the numbers. Sometimes a number may not tune well;

it may need to be lower or higher at different times. In such cases, you replace the

number with some code that computes a value based on the situation and

include more numbers that will need to be tuned. The idea is to use the simplest

methods that do the job and apply sophistication only as needed. (Note that this

idea applies to all aspects of game AI, not just methods based on numbers.)

Advantages
Probabilistic methods put a floor under artificial stupidity by coming up with

reasonable actions. Random selection among best moves provides interest and

removes predictability. The methods enable the AI programmer to provide a

range of behaviors, including interesting or possibly baffling moves. Even good

moves can be nuanced—possibly too subtly for the player to notice, but far more

than we saw with FSMs. In addition, adding such nuances has a lower impact on

complexity than we would see with FSMs.

Disadvantages
There are disadvantages to these methods. The greatest is that they literally live

and die on good numbers. If you cannot get those numbers, the method will fail

130 Chapter 5 n Random and Probabilistic Systems

or underperform. Not all AI programmers are comfortable with these methods,

and tuning the numbers is a learned skill.

Monte Carlo methods generally are computationally expensive. If the simulation

does not converge rapidly—or at all—the program will use too much CPU while

delivering unreliable numbers. The simulation itself may be difficult or impos-

sible to write. The skills and knowledge needed to write an accurate simulation

can be very similar to those needed to write a regular AI in the first place. With

luck, the simulation safely ignores or simplifies factors that a regular AI would be

forced to deal with, but that luck is never a given.

AI systems based on numbers can drown the inexperienced AI programmer in

too many numbers. If only one programmer can tune the AI, then the project is

in severe difficulty if anything happens to that programmer. Extra effort is

required to document what the numbers mean and how the values were derived.

Games that allow user-provided content, such as mods, need to expose these

numbers to a wide audience of varying skills. If those numbers are not well

organized and well documented, they can be hard to deal with. This disadvantage

is easily countered by experience. People who play online games are notorious for

rapidly reverse-engineering the numbers and equations used in those games.

The Day in the Life Project

The Day in the Life Project

Our project is a simulation showing how different people evaluate different

possible occupations and the results they get at those occupations. There are

three main parts to the project: the simulation, the simulated people, and the

occupations available to them. We will use four simple variables to get a wide

variety of tunable behaviors. Note that while this looks like a simulation, it is only

a game. It ignores all manner of social issues present in real life. Note also that the

monetary system is intentionally skewed; not only does $1 mean ‘‘one day’s

wages,’’ but some of the rest of the values are off even by that standard.

The think cycle for the AI revolves around answering the basic question, ‘‘What

will this character do today?’’ There are many factors that will go into the answer.

Because the simulation deals in money, the first important factor is how much

cash the character has. The character will evaluate the available occupations

based on four numbers that will have different values for each occupation. The

characters do that evaluation based on their own personal equation that handles

the four numbers and the amount of cash they possess in a way that fits their

The Day in the Life Project 131

personalities. This equation is known variously as a fitness function or an eva-

luation function, and we will see it again in future chapters. Here the function can

be thought of as a measure of how well each occupation fits the likes of each

character.

The Simulation

The simulation starts a person with 10 days worth of wages in cash and runs for

1,000 work days. Each day, the simulation asks the person to pick an occupation

from the seven available. This decision will be influenced by the amount of

available cash and the person’s particular way of evaluating choices. The simu-

lation will not allow the person to pick an occupation unless he or she has at least

twice the cost of the particular occupation in cash. If the person picks a different

job than the day before, the simulation outputs the results from the prior

occupation. Then the simulation takes the selected job and randomly determines

success or failure according to the odds. It deducts costs and applies gains or

losses to the person’s cash. At the end of the day, the simulation deducts living

expenses based on the person’s cash. The simulation brackets people as rich,

doing okay, poor, and almost broke with commensurate expense levels. People

who have negative cash are declared bankrupt, and their cash is mercifully reset

to zero.

Occupations

There are seven occupations available to our simulated people. An occupation

carries a name and four items of numerical data:

n The probability that the simulated person will succeed at the job on any

given day, denoted as P. The probability value is given as a percent, such

as 99.0 percent, but is stored as a decimal, as in 0.99.

n The fixed cost of each attempt at participating in the occupation, denoted

as C. This cost is spent every time the simulated person attempts the

occupation, whether he or she succeeds or not.

n The financial gain that the simulated player receives when he or she

succeeds at an occupation. Gain is denoted as G.

n The financial loss the player incurs when he or she fails an attempted

occupation. The potential loss is denoted as L.

132 Chapter 5 n Random and Probabilistic Systems

Different evaluations of these data allow the different simulated people to select

occupations to their liking. These occupations include the following:

n Day Job. The Day Job occupation is used as the balance point for all the

others. It carries a 99 percent chance of success. The 1 percent failure rate

corresponds to about 2.6 unpaid days per year. It can be thought of as, ‘‘I

tried to go to work, but when I got there, work was closed.’’ This occupation

has a gain of 1.0, which is used as the yardstick for one day’s wages. It costs

0.01 day’s wages to try to go to the day job. This attempts to factor in the cost

of transportation, clothing, and other expenses that directly relate to

holding down a job. There is no additional loss for failing to succeed at this

occupation; the employer does not fine employees for days they do not

work, it simply does not pay them.

n Street. The Street occupation models begging or busking on the street and

freeloading off friends. This occupation has a 75 percent chance of earning a

simulated person 0.2 days’ wages, which could be thought of as 1.6 hours of

pay. It has no financial downsides; the occupation is free to engage in, and

there is no fee for failure.

n Stunt Show. The Stunt Show occupation is hard. It has only a 70 percent

chance of success. It pays handsomely at 2.5 days’ wages; the downside is

that a failure costs 1.0 day’s wages. (Think of the medical bills!) Even good

days have 10 times the cost of a regular job at 0.1 day’s wages, due to wear

and tear on equipment.

n Lotto. The Lotto occupation is not terribly promising. It has a very low

chance of success, at 0.01 percent. The payoff of 10,000.0 days’ wages cer-

tainly exhibits a powerful lure, however. Playing the game costs the same

amount as going to a regular job—0.01 day’s wages—and there is no ad-

ditional cost for losing.

n Crime. The Crime occupation succeeds 30 percent of the time and, when

successful, pays an eye-opening 100 days’ wages. It is twice as expensive to

do as going to a day job—a mere 0.02 day’s wages. The downside is that

failure costs 200 days’ wages.

n Rock Band. The Rock Band occupation has an alluring payoff of 1,000 days’

wages. It is not the same as hitting the lottery, but the 0.5 percent chance of

success puts it in the reach of the dedicated artist. The lifestyle is nearly as

The Day in the Life Project 133

expensive as Stunt Show at 0.05 day’s wages in direct costs. Alas, as in real

life, bands that fail cannot be fined merely for being bad. No matter how

much we would like it to be otherwise, there is no additional loss for failure.

n Financier. The Financier occupation really pays, averaging 70 days’

wages, net, per day over the long run. It is not smooth sailing, however.

Any given day has only a 66 percent chance of success, and every day has the

fixed cost of 100 days’ wages. Successful days pay 220 days’ wages, and

failing days cost 100 days’ wages in additional losses. A bad run of luck

can be catastrophic in the short term. This attempts to model an options

trader, who can lose far more than the base price of a stock. It also attempts

to model the enormous profits and unlimited liability befalling a ‘‘Name’’

backing Lloyd’s of London throughout most of Lloyd’s history, many of

whom went bankrupt in the 1990s [Wikipedia09].

The Simulated People

The simulated people differ in exactly one regard: their method for prioritizing

the occupations. In the simulation, each person provides a single equation

involving the four variables that pertain to each occupation. While each person is

defined in terms of a function F() of our four variables, F(P, C, G, L), we will also

attempt to describe their expected behaviors in more human terms. Eddy, or

‘‘Steady Eddy,’’ strongly prefers a sure thing. He modulates his choices against

loss but is willing to take some risks if the adjusted rewards are still high. Note the

P � P terms in his equations to strongly prefer reliable gains. He ignores costs, but

that does not prove to be a defect in the current implementation. As you might

expect, Eddy gravitates toward the Day Job. Eddy uses the following equation to

evaluate occupations:

FðÞ ¼ P � P � G� ð1� PÞ � L

Gary is a gambler. All he is after is the payoff, no matter how remote. Gary is a

Lotto addict. His equation is quite simple:

FðÞ ¼ G

Mike is a miser. The only thing he cares about is avoiding costs. He thinks the

best way to hoard money is to live on the street. His equation is also quite simple:

FðÞ ¼ �C

134 Chapter 5 n Random and Probabilistic Systems

Carl is designed for a life of crime. He wants the easy big score. He does not care

about potential losses or costs. His equation is as follows:

FðÞ ¼ P � G

Larry wants the long shot. He shoots for the big time and accepts the hardships

along the way, but he has his standards about what he will and will not do. At first

blush, it appears that Larry is taking the most balanced approach of all. It is

interesting that he spends as much time as he can in the Rock Band occupation.

This is Larry’s equation:

FðÞ ¼ P � G� ð1� PÞ � L

Barry is bolder than Eddy, but he wants surer things than what Larry will attempt.

He has the same P � P terms that Eddy has to prefer reliable gains. The hard

knocks of the Stunt Show occupation do not deter him from the higher pay. Note

the (1� P) � (1� P) terms that Barry uses to deemphasize potential losses; Barry

thinks losses are less likely to happen to him than other people. As you might

expect, his equation is very close to Eddy’s:

FðÞ ¼ P � P � G� ð1� PÞ � ð1� PÞ � L

Complexity

The complexity level of this project appears to be stunningly low. An occupation

has four numerical data items. Changing the values of one occupation does not

affect the values of another. Adding an occupation takes exactly one short line of

code. The simulated people use just one equation of those four variables,

although the simulation considers cash on hand as well. Each simulated person is

completely independent of any of the others. Adding or removing a person does

not change the behavior of any of the others. It appears that there are almost no

interactions, making the complexity growth with new additions as small as

theoretically possible!

The real complexity is in the selection of those numbers and equations as a

system. This system must be tuned to give pleasing results. Every added occu-

pation could unbalance the system. You may have noticed that the simulation

requires that a simulated person have twice the cost of an occupation in cash

before it lets him or her select that occupation. Why twice instead of once? In

testing, the Financier occupation kept wiping out people who tried it without

The Day in the Life Project 135

sufficient reserves. The simulation is more pleasing with the times-two setting.

The 2.5 value for Gain in Stunt Show has a very narrow band of values between

spoiling Day Job and never being selected by anyone. The caution here is that

tuning is required, even in a relatively simple system like this one. The good news

is that the system can be tuned without heroic effort.

The people and occupations in this simulation were developed together, with

each occupation aimed toward at least one particular person. When the simu-

lation runs, the people sometimes opt for other occupations that were not

explicitly tuned for their selections. These behaviors show up, or emerge, from

the simulation. Emergent behaviors are a blessing and a curse. They are a blessing

because they are free complex outcomes from simpler parts. They are a curse

because there are no direct controls on the behaviors, and the system must be

extensively tested to ensure that all such behaviors are pleasing.

Implementing the Basic Game

The basic game is straightforward. We need to create jobs and a simulation to use

them. That code will be employed by the AI we implement later so that it can act

on the decisions it makes. We start with the project itself.

1. Launch Visual Basic.

2. Create a new Windows Forms Application and name it DayInTheLife.

3. Double-click My Project in the Solution Explorer, click the Compile tab,

and set Option Strict to On. This option forces the programmer to make all

type conversions explicit.

4. Rename Form1.vb to MainForm.vb.

5. Right-click DayInTheLife in the Solution Explorer, select Add? Class, and

name the class Job.vb.

6. Add another class, named Person.vb.

7. Click the File menu and choose Save All.

We have all the files we need. We will hold off on the user interface until we have

more of the underlying code completed.

136 Chapter 5 n Random and Probabilistic Systems

The occupations are the easiest part of the code. The job class stores the five data

items used to create it without letting outside code change them. Add the fol-

lowing lines of code to the class to provide storage for the data:

’Other than the New call, this is mostly a read-only store of data.
Private myName As String
Private myPSuccess As Double
Private myCost As Double
Private myGain As Double
Private myLoss As Double

That takes care of storage. We want the class to be created with the five values it

will store. To do that, we add a New routine to the class. It will take the five values,

validate them, and store them. Add the following code to the class:

’New: store away my values
Public Sub New(ByVal Name As String, _

ByVal PSuccessAsPerCentage As Double, _
ByVal Cost As Double, ByVal Gain As Double, ByVal Loss As Double)

myName = Name
If PSuccessAsPerCentage > 100.0 Or PSuccessAsPerCentage < 0 Then

MsgBox("Bad PSuccess value fed to Job.New")
End If
’convert from percent to decimal
myPSuccess = PSuccessAsPerCentage / 100.0
myCost = Cost
myGain = Gain
myLoss = Loss

End Sub

Having stored the five values, we need to make them available to outside code.

Simple functions will do the trick. Add the following five access functions to the class:

’Accessors to allow outside code to read our data.
’We could have exposed them
’as public, but we do not want them changed.

Public Function Name() As String
Return myName

End Function

’As a decimal; 99% means we return 0.99
Public Function PSuccess() As Double

Return myPSuccess
End Function

The Day in the Life Project 137

Public Function Cost() As Double
Return myCost

End Function

Public Function Gain() As Double
Return myGain

End Function

Public Function Loss() As Double
Return myLoss

End Function

There is only one thing left to do with the Job class. To make things easier, we

want to be able to ask it to use a random number to compute a day’s wages or

losses. To do this, we will provide the following function:

’Return either the gain or loss
’based on the probability.
Public Function Wages() As Double

If Rnd()< myPSuccess Then
Return myGain

Else
Return -myLoss

End If
End Function

That completes the Job class. Click Save All on the File menu, and we can proceed

to the user interface. Go to the Design view of MainForm.vb:

1. Change the Text property to Day In The Life.

2. Resize the form to make it larger. A size of 930 by 450 should suffice.

3. Drag a button to the top-left corner of the form. Change the Name property

to EddyButton and the Text property to Eddy.

4. Drag a text box to the form. Change the Name property to Thoughts-

TextBox.

5. Set the Multiline property to True.

6. Resize and position the text box to take up all of the form to the right of the

Eddy button.

138 Chapter 5 n Random and Probabilistic Systems

7. Set the ReadOnly property to True and the ScrollBars property to

Vertical.

8. Set the BackColor property to White. White is available on the Web Colors

tab when you click the drop-down for BackColor.

9. Save all.

This completes the basics of the user interface. Your screen should resemble

Figure 5.1.

The name ThoughtsTextBox may be familiar from Chapter 3, ‘‘Finite State

Machines.’’ We will reuse some of the same code in this chapter. Switch to the

code for MainForm and add the following:

’The Output side of the interface:
Public Sub Say(ByVal someThought As String)

’Everything we thought before, a new thought, and a newline.

Figure 5.1
Project with a complete basic user interface.

The Day in the Life Project 139

ThoughtsTextBox.AppendText(someThought & vbCrLf)
End Sub

The MainForm will hold our occupations for the simulated people to pick from.

Add the following line to the class:

Dim Occupations As New Collection

Now that we have a place to store them, we need to create our occupations.

We will be intentional about which one we load first. We want the Street

occupation to be the first one checked because it has a zero cost. Complete

MainForm_Load:

Private Sub MainForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

’Load the options - zero cost option must be first!
’Format is: Occupations.Add(New Job(Name, success as %, Cost, Gain, Loss))

’Busking/begging is free to do usually gets you almost two hours’ pay
Occupations.Add(New Job("Street", 75.0, 0.0, 0.2, 0.0))
’Load the rest in any order.
’Very steady way to get a full day of pay.
Occupations.Add(New Job("Day Job", 99.0, 0.01, 1.0, 0.0))
’This pays better but bad days hurt.
Occupations.Add(New Job("Stuntshow", 70.0, 0.1, 2.5, 1.0))
’Cheap with high payoff.
Occupations.Add(New Job("Lotto", 0.01, 0.01, 10000.0, 0.0))
’Might pay big in the short run, costs in the long run.
Occupations.Add(New Job("Crime", 30.0, 0.02, 100.0, 200.0))
’You play and play and one day hit it big.
Occupations.Add(New Job("Rock band", 0.5, 0.05, 1000.0, 0.0))
’If you can afford the costs and risks, it pays best over time.
Occupations.Add(New Job("Financier", 66.0, 100.0, 220.0, 70.0))

’Reseed the rnd function.
Randomize()

End Sub

That loads all our occupations. It also makes sure that we get different random

numbers each time we run the application. Before we can go on, we need some

people.

140 Chapter 5 n Random and Probabilistic Systems

Implementing the AI

Switch to Person.vb. We will sub-class the parent class for each different person.

This will make the code easy to understand. We start by working on the parent

class. Add the MustInherit keyword to the class definition:

Public MustInherit Class Person

That forces us to make child classes that inherit from this parent class. The parent

class will carry code that is common to all the child classes. Add the following to

the class:

’Everybody picks the same way; do it here in the parent class
Public Function Pick(ByVal Cash As Double, _

ByVal Occupations As Collection) As Job
’Prime the loop
Dim bestJob As Job = CType(Occupations(1), Job)
Dim bestValue As Double = Me.Evaluate(bestJob, Cash)
’Loop values:
Dim otherJob As Job
Dim otherValue As Double
For Each otherJob In Occupations

’Can I afford 2 days of this job?
If 2.0 * otherJob.Cost <= Cash Then

’How much do I like it?
otherValue = Me.Evaluate(otherJob, Cash)
’More than what I have?
If otherValue > bestValue Then

bestJob = otherJob
bestValue = otherValue

End If
End If

Next
Return bestJob

End Function

’Everybody evaluates jobs their own way.
Public MustOverride Function Evaluate(ByVal Task As Job, _

ByVal Cash As Double) As Double

The last line tells any child classes to provide a way to evaluate a given job. This is

the member that will use the equations we developed for each person that gives a

The Day in the Life Project 141

number describing how much the person likes a given job. Now we need specific

people. After the End Class line, add the following code:

’Real games would not subclass these, but it makes it simpler to understand

Public Class Eddy
Inherits Person
’Eddy values a sure thing and balances loss against doubly adjusted gain.
Public Overrides Function Evaluate(ByVal Task As Job, _

ByVal Cash As Double) As Double
Return Task.PSuccess * Task.PSuccess * Task.Gain - _

(1 - Task.PSuccess) * Task.Loss
End Function

End Class

Public Class Gary
Inherits Person
’Gary is all about the upside potential
Public Overrides Function Evaluate(ByVal Task As Job, _

ByVal Cash As Double) As Double
Return Task.Gain

End Function
End Class

Public Class Mike
Inherits Person
’Mike is a miser
Public Overrides Function Evaluate(ByVal Task As Job, _

ByVal Cash As Double) As Double
Return -Task.Cost

End Function
End Class

Public Class Carl
Inherits Person
’Carl wants easy money and doesn’t care about risks
Public Overrides Function Evaluate(ByVal Task As Job, _

ByVal Cash As Double) As Double
Return Task.PSuccess * Task.Gain

End Function
End Class

142 Chapter 5 n Random and Probabilistic Systems

Public Class Larry
Inherits Person
’Larry is shooting for the big time but can’t afford to lose
Public Overrides Function Evaluate(ByVal Task As Job, _

ByVal Cash As Double) As Double
Return Task.PSuccess * Task.Gain - (1 - Task.PSuccess) * Task.Loss

End Function
End Class

Public Class Barry
Inherits Person
’Barry is bolder than Eddy but needs surer things than Larry
Public Overrides Function Evaluate(ByVal Task As Job, _

ByVal Cash As Double) As Double
Return Task.PSuccess * Task.PSuccess * Task.Gain - (1 - Task.PSuccess) *

(1 - Task.PSuccess) * Task.Loss
End Function

End Class

It may be amazing that we can model people in just one equation of four

variables. We are nearly ready to see how they respond. To do that, we must

finish the simulation.

Finishing the Code

Return to the code for MainForm. We are going to add the simulation code here.

The simulation will start out a person with 10 days’ wages. It will then loop through

1,000 days. Each day it will see if the person wants to change jobs. If he or she does,

it will give the output from the prior job. Once a job is known, it will be evaluated

for success or failure, and living expenses will be deducted. At the very end, it will

show us the result of the last job held. Add the following code to the class:

Private Sub RunSim(ByVal name As String, ByVal Dude As Person)
ThoughtsTextBox.Clear()

’Start with 10 days’ wages.
Dim cash As Double = 10.0
’Fake out the curJob to get started.
Dim curJobName As String = "Just starting out"
Dim curJob As Job = Nothing
’Working variables:
Dim wages As Double
Dim expense As Double

The Day in the Life Project 143

’A bunch of totals to track:
Dim daysInJob As Integer = 0
Dim wins As Double = 0.0
Dim losses As Double = 0.0
Dim costs As Double = 0.0
Dim living As Double = 0.0

Dim i As Integer
For i = 1 To 1000

curJob = Dude.Pick(cash, Occupations)
If curJob.Name < > curJobName Then

’Print results of last job.
Say(name & " spent " & daysInJob.ToString & " with job " & _
curJobName & " ending with $" & Format(cash, "#,##0.00") & _

" from $" & Format(wins, "#,##0.00") & " gains less (" & _
Format(losses, "#,##0.00") & " + " & _
Format(costs, "#,##0.00") & " + " & _
Format(living, "#,##0.00") & _
") in losses+costs+expenses.")

curJobName = curJob.Name
daysInJob = 0
wins = 0.0
losses = 0.0
costs = 0.0
living = 0.0

End If

’Go to work.
daysInJob += 1

’Account the costs.
cash -= curJob.Cost
costs += curJob.Cost

’And take the wages.
wages = curJob.Wages
cash += wages
If wages > 0 Then wins += wages
If wages < 0 Then losses -= wages

144 Chapter 5 n Random and Probabilistic Systems

’Do bankruptcy here.
If cash < 0 Then

Debug.WriteLine("Bankruptcy")
cash = 0

End If

’Pay living expenses (free if you are broke or almost broke).
expense = 0.0
If cash > 500 Then

’Rich people spend 2.5 days’ wages a day on expenses.
expense = 2.5

Else
If cash >= 1 Then

’Regular people spend 25% of a day’s wage to live.
expense = 0.25

Else
If cash >= 0.1 Then

’Poor people have expenses too.
expense = 0.025

End If
End If

End If
living += expense
cash -= expense

Next

’Print results of last job.
Say(name & " spent " & daysInJob.ToString & " with job " & _

curJobName & " ending with $" & _
Format(cash, "#,##0.00") & " from $" & _
Format(wins, "#,##0.00") & " gains less (" & _
Format(losses, "#,##0.00") & " + " & _
Format(costs, "#,##0.00") & _
" + " & Format(living, "#,##0.00") & _
") in losses+costs+expenses.")

End Sub

All we need now is the code to tie the user interface to the simulation. Get to the

EddyButton’s Click event handler and add the following line of code:

RunSim("Eddy", New Eddy)

We are ready to debug! Run the code and click the Eddy button a few times to see

how he does. He should work steadily toward becoming a Financier, though it

The Day in the Life Project 145

may take him a few tries at it. Once the code is working correctly, adding the rest

of the gang is very easy:

1. Add a button to the form below Eddy for Larry. Larry’s event handler needs

just one line of code:

RunSim("Larry", New Larry)

2. Add a button to the form for Gary. Gary’s event handler needs this line of

code:

RunSim("Gary", New Gary)

3. Add a button to the form for Carl. Carl’s event handler needs this line of

code:

RunSim("Carl", New Carl)

4. Add a button to the form for Mike. Mike’s event handler needs this line of

code:

RunSim("Mike", New Mike)

5. Add a button to the form for Barry. Barry’s event handler needs this line of

code:

RunSim("Barry", New Barry)

Run them all and see how they do. The final running project looks like Figure 5.2.

Figure 5.2
Barry has an excellent run.

146 Chapter 5 n Random and Probabilistic Systems

Results

It is no surprise that Eddy works steadily at Day Job until he has saved up enough

money to give Financier a try. The first few days of his new job are critical; Eddy

changes jobs with only a minimal cushion against losses. Very often, he winds up

back at his Day Job, possibly many times, before he takes off. It would be easy to

make an interesting story of Eddy, the steady guy with a fatal flaw of reaching too

soon.

Barry, less shy of losses and enamored of higher pay, follows a similar path to

Larry, only faster. His Stunt Show days take him to Financier faster, but with an

equally small cushion. His setbacks are shorter, and over many runs he appears to

do better than Eddy. He tells a similar story.

Gary is pathetic. He gambles his money away until his habit forces him out on the

street. There, he scrapes enough money to keep feeding his gambling habit until

he is back on the street again. Once in a great while, he wins and retires to Lotto

heaven, where the cheap cost of tickets means his winnings last him to the end.

Mike is just as pathetic. Living on the street, he saves money slowly. Alas, when he

has saved a small amount, his expenses rise beyond what a street beggar can

afford. Let’s face it: Even misers are averse to being hungry and cold. Our miser is

not immune to spending beyond his means when he has some money saved up.

Larry just might be the most interesting character of the whole lot. He slaves away,

pouring his money into his band to no avail. The costs get to him, and he can no

longer keep up the lifestyle. Dejected, he spends his last few days of cash in vain on

lottery tickets. This is an unexpected emergent behavior. This puts him back to

playing on the street, where he saves enough to play again for a while. The cycle

repeats until he hits the big-time payoff. Faced with a wad of cash, he changes

careers. Unlike Eddy or Barry, Larry has enough cash to survive some initial losses

as at Financier. In fact, Larry has the potential to have the highest earnings of all. No

one else can get to Financier as fast as he can, and no one else does so with as big a

financial cushion. Sometimes, even Larry can get wiped out in the market and go

back to playing in the band. A few times, he hits it big a second time.

Carl usually spends his time failing at crime and winding up bankrupt on the

street until he can scrape up enough money to try crime again. Oddly enough,

sometimes he hits three successful jobs in a row. When this happens, he gives up

his life of crime and takes up high-stakes finance. That often succeeds, but if it

doesn’t, he can always fall back on his evil ways.

The Day in the Life Project 147

We get a great deal of mileage out of single equations of only a few variables. The

code and the numbers are simple. We even get sensible unexpected behaviors out

of the system.

There are clear ways to extend the simulation. Because each person is imple-

mented as a class, we can replace the single equation with as much code as

required as long as the evaluate function eventually returns sensible numbers.

There could be more than one equation; there could even be a small finite state

machine in there. A simpler extension would be to use the cash value directly,

the number of days in job, and the day number of the simulation. The days in job

number could feed wanderlust or a feeling of comfortable familiarity. The day

number of the simulation could be used as a proxy for age, perhaps to adjust

tolerance for risk as the person gets older.

Chapter Summary
With just a few carefully selected numbers and some finely crafted equations, you

can use probability to create surprisingly realistic behaviors for game AI. Getting

the numbers and equations appears deceptively easy. Tuning them is far harder.

Chapter Review
Answers are in the appendix.

1. What are three ways to get odds for a game?

2. What are the drawbacks to these methods?

Exercises

1. Add more occupations and people. Try to fit the new people to the new jobs

without changing how existing people act.

2. Change the equations to include the turn number. Make some of the people

tolerate less risk as time goes by.

3. Change the Jobs class so that the Gain and Lossmember functions take cash

as a parameter. Create a retirement subclass and override those member

functions. Treat the myGain and myLoss values as a percentage to apply to

cash to give the values for Gain and Loss.

148 Chapter 5 n Random and Probabilistic Systems

References
[Mark09] Mark, Dave. Behavioral Mathematics for Game AI. Course Technology

PTR, 2009.

[Wikipedia09] Various authors. ‘‘Lloyd’s of London,’’ available online at http://

en.wikipedia.org/wiki/Lloyd’s_of_London, last edited September, 2009.

References 149

http://en.wikipedia.org/wiki/Lloyd%E2%80%99s_of_London
http://en.wikipedia.org/wiki/Lloyd%E2%80%99s_of_London

This page intentionally left blank

Look-Ahead: The First
Step of Planning

If you have not memorized all the possible moves in Tic-Tac-Toe, you probably

play by thinking something like, ‘‘If I move here, he could move there, there, or

there. . . .’’ This is the heart of look-ahead. Another way of thinking about it

would be to ask the simple question, ‘‘If I move here, and then each of us takes

our best moves in turn, will I win in the end?’’ We will revisit the implications of

each part of this reasonably simple question throughout the chapter.

The method seems simple on the surface, but even simple games such as Tic-Tac-

Toe reveal some hidden complexities. Every part of our seemingly simple

question is an iceberg hiding many complexities, including evaluation functions,

pruning, heuristics, discrete moves, and knowledge representation. By the end of

this chapter, it will be clear that look-ahead lives and dies on how well the

implementation manages computational complexity. We mentioned combina-

torics in passing in Chapter 5, ‘‘Random and Probabilistic Systems.’’ We will

lightly brush up against it here as well, mostly hidden as determining the product

of a bunch of numbers multiplied together. Computational complexity will be a

running theme throughout the discussion of other complexities.

After examining look-ahead and its complexities, we will summarize the meth-

od’s advantages and disadvantages. This will make it easy to discuss the kinds of

games for which look-ahead is well suited. This chapter then ends with the Fox

and Hounds project, which illustrates in depth many of the challenges to using

look-ahead.

151

chapter 6

Evaluation Functions
Evaluation functions are how we turn ‘‘ . . . best moves . . . ’’ in our reasonably

simple question given in the first paragraph into code. The simplest evaluation

function for Tic-Tac-Toe would look at any game and return one of four values:

n Victory: Three in a row for our side.

n Loss: Three in a row for their side.

n Tie: All moves have been taken without a victor.

n Unknown: The game is still in play.

While this method always gives a correct answer, we should consider its draw-

backs. An AI using this evaluation of the board will always get back unknown

until the fifth move. It will not always know with certainty in some games

without looking ahead to the ninth move. Looking ahead to the ninth move

means looking at all possible games.

How many moves have to be evaluated to get to the end of every possible game?

Tic-Tac-Toe has nine different beginningmoves, eight different secondmoves, and

so on until it has one final move. To get the total number of outcomes, wemultiply

those numbers together to get 362,880, also know as 9 factorial, which is written as

9!. A 1MHz computer of 25 years ago could do this after a very long pause; modern

hardware running a thousand times faster makes it seem nearly effortless. How-

ever, any function that has factorial cost must be kept to small numbers. Factorial

functions start out slow but grow more rapidly than linear functions, faster than

polynomial functions, even faster than exponential functions. Think of a factorial

function as a grenade; after a short while, it explodes. When this happens in a

game, the player’s computer becomes an expensive space heater, appearing to do

nothing but blow warm air for very long periods of time.

A more useful evaluation function would attempt to foretell the outcome of an

indeterminate game—one not yet played to completion. Our reasonably simple

question asked ‘‘. . . will I win in the end?’’ It would be nice if we could predict

the end without playing to the end. We ignore the fact that we can state from the

outset that if both sides play to win, Tic-Tac-Toe always ends in a tie. But if

one side makes a mistake, we would like our evaluation function to be able to

indicate victory while using the smallest amount of looking ahead. We want our

evaluation function to generate good advice from indeterminate games. Tic-Tac-

Toe does not provide meaningful insight into this kind of evaluation function.

152 Chapter 6 n Look-Ahead: The First Step of Planning

Fox and Hounds, the game we will use for our project, does provide insights into

more complex evaluation functions. We will return in depth to evaluation

functions when we take up the project.

Pruning
Our reasonably simple question started out, ‘‘If I move here.’’ Think of Tic-Tac-

Toe as a tree. From the root of the tree, there are nine branches, one for each

possible first move. Each of those branches has eight sub-branches, corre-

sponding to the possible second moves that could follow a first move. This is the

top of the search space that our AI will look through in search of victory.

If we count the number of possible game boards in the first three levels, there is one

empty game board, nine game boards with one move, and 72 boards with two

moves on them. As it turns out, while there are nine squares available for a first

move, there are only three different kinds of first moves: the center, any corner,

and themiddle of an outer row or column. You canmake your favorite corner into

any other corner simply by viewing the game from another angle—you do not

need tomove anymarks! From those three first moves, there are 12 kinds of second

move. This is shown in Figure 6.1, from Wikimedia Commons [Wikimedia04].

From the figure, we see that there are 12 kinds of boards after two moves, while

our naı̈ve method of look-ahead calls for 72 boards. We can get rid of �̇̈ of the

expected workload if our code is smart enough to realize that most opening

moves are the same as some other opening moves, and only the unique ones need

to be evaluated. This is called pruning, and the numbers show how effective it can

be at fighting computational complexity. The idea with pruning is that the

numbers that we multiply together to measure complexity are all smaller

numbers than before. Our computational ‘‘grenade’’ either takes longer to

explode or becomes a less problematic firecracker.

In the Tic-Tac-Toe example, there was no loss of information after pruning.

There are other kinds of pruning that may cause loss of information, however.

One of the most common kinds of pruning is to limit the depth of the look-

ahead. Tic-Tac-Toe has barely any middle ground where setting a depth limit

makes sense. It takes five moves of look-ahead at the opening move to see the first

possible victory. After four or more moves have been made, there are five or

fewer moves left in the game. In other games, the AI programmer sets the look-

ahead ‘‘high enough to stay out of trouble, low enough to run quickly.’’ If that

limit is too low, the player will observe something like, ‘‘Now he sees it coming,

Pruning 153

but it’s too late for him to do anything about it.’’ In terms of gameplay, the AI

programmer can be tempted to use a variable depth limit to change the skill level

of the AI in what seems to be a realistic manner. Be warned that small changes in

look-ahead depth can cause major changes in the effectiveness of the AI. In the

case of Fox and Hounds, we will see that five moves of look-ahead are all the fox

ever needs; more depth does not help. With four or fewer moves, the fox may

wander too far from the vicinity of effective moves to ever see them. Tuning the

AI via look-ahead depth is effective only in games where incrementally more

look-ahead produces incrementally better AI.

Heuristics
Heuristics give guidance in ambiguous situations. Think of heuristics as general

rules, often based on experience. Heuristics are very helpful in game AI, and

evaluation functions need all the help that they can get. At some point, the AI will

hit the look-ahead depth limit, and the evaluation function will have to pass

Figure 6.1
First two moves of Tic-Tac-Toe.

154 Chapter 6 n Look-Ahead: The First Step of Planning

judgment on an indeterminate game. Heuristics provide guidance to the eva-

luation function in otherwise ambiguous circumstances. Pruning methods often

need help as well. What moves can safely be ignored? What moves are the most

promising? Heuristics provide guidance to pruning as well as to evaluation. Note

that risky, high-payoff moves illustrate differences between the needs of eva-

luation and the needs of pruning. Risky moves evaluate poorly because of the

risk. If we prune them, we will not exploit the ones with a high payoff that

follows. In short, heuristics are very important to game AI. Tic-Tac-Toe is too

small for good heuristics, but Fox and Hounds is not. A brief description of Fox

and Hounds is in order.

Fox and Hounds is played on the dark squares of a standard checkerboard. The

fox moves like a king in checkers. The hounds move like regular checkers; they

cannot move backward. There is no jumping and no capturing. Once a hound

reaches the far end of the board, it can no longer move. The goal of the hounds is

to pin the fox so that it cannot move. The goal of the fox is to get past the hounds.

The fox moves first. The game starts with four hounds at one end of the board

and the fox at the other, as shown in Figure 6.2.

Figure 6.2
Opening board for Fox and Hounds.

Heuristics 155

While perfect play always results in a win for the hounds, the game is a pleasant

step up in richness compared to Tic-Tac-Toe.

There are many heuristics. The hounds start as an unbroken line. If they can

keep the fox behind their unbroken line, they cannot lose. If the fox does not

interfere, there is always a safe move for the hounds that keeps the line

unbroken. Early on, when the line is straight or nearly straight, the hound that

has only one possible move is the hound with the safe move. That hound is

found against an edge when all the hounds are on the same row. When the

hounds are in the middle of moving from one row to the next, the hound that

has one of its two moves blocked by the hound that moved last is the hound

with the safe move. In Figure 6.2, the right-most hound has the safe move. In

Figure 6.3, the fox is blocking a safe move from the left-most hound.

One heuristic for the fox is that any time it is behind an unbroken line, any move

that forces the hounds to break the line is better than any move that does not.

This is shown in Figure 6.3. It is clear that the fox must break the line to win,

and experience shows that there is nothing to be gained by waiting to break the

line later.

Figure 6.3
The fox forces the hounds to break their line on their next move.

156 Chapter 6 n Look-Ahead: The First Step of Planning

When the hounds are forced to break their line, they use the simple heuristic of

picking themove that results in the longest path to freedom for the fox. This gives

the hounds the time they need to reform their line and close the hole before the

fox escapes. It is clear that having more time to correct a worrisome situation is

better than having less time.

Once the line is broken, good hounds’ moves are ones that force the fox behind a

newly reformed line. They must do this in order to win. As we will see later, the

sooner they reform the line the better.

A reasonable heuristic for the fox is to head directly for the nearest hole in the line

when the line is broken. We will see later that this heuristic is imperfect. It is clear

that the fox must eventually head for freedom in order to win, but in certain

circumstances the fox should wait and not head directly for the nearest gap.

Collectively, we can call these the line heuristics. A related heuristic is that when

the hounds have more than one move that keeps their line unbroken, the move

that hems the fox in the most is the best. A less obvious heuristic is that if the fox

ever makes it to any square that no hound can make it to, the fox has gotten past

the hounds and wins. A final pair of heuristics is that we can safely limit the look-

ahead depth to five fox moves or six hounds’ moves. The project will use all of

these heuristics. We will examine the impact they have on complexity.

Heuristics greatly help the evaluation function. Figure 6.3 shows the fox forcing

the hounds to break their line. That move is not sufficient to win, but it is better

than any other possible move the fox can make that does not break the line. The

heuristics can also help prune the search space. The hounds have at most eight

moves to pick from. If any of those moves keeps the fox behind an intact wall,

then there is no need for the hounds to do any look-ahead. They still might need

to decide between two such moves, but no look-ahead is called for.

Complexity Without Heuristics

In the very first paragraph of this chapter we posed the simple question, ‘‘If I

move here, and then each of us takes our best moves in turn, will I win in the

end?’’ Now we look at the complexity of ‘‘ . . . takes our best moves in turn.’’ The

hounds cannot take more than 28 total moves because each of the four hounds

can only move seven times each before it hits the back wall. That yields 28 moves

by the hounds. Since the fox moves first, such a game would require a matching

28 more moves from the fox. A fox in the middle of the board with nothing

Heuristics 157

around it has four possible moves. It can have fewer when near hounds or an

edge, but it can never have more. Each of the four hounds, when nothing is in

front of it and it is not next to an edge of the board, has two possible moves.

Setting up the math, we get four possible fox moves times eight possible hounds

moves for 32 combinations. We do this 28 times, yielding 3228. This is the

same as 2140. Very roughly speaking, this is 1042 combinations to evaluate. If

somehow our 1GHz computer could do a billion of these per second, it would

take 1033 seconds, which compares poorly to the age of the Earth, which is

around 1017 seconds, and to the estimated time until the heat decay death of the

universe at 1019 seconds. The polite word for this kind of problem is ‘‘intract-

able,’’ although it might not be the first thing AI programmers say when they run

the numbers. It should be very clear that heuristics are required to keep the

computational complexity of the game manageable. A brute-force look-ahead

approach will simply take too long.

It is worth noting that Fox and Hounds has only 32 possible combinations for a

single move and the following countermove. A move and countermove pair is

called a ‘‘ply.’’ Chess starts out with 32 pieces, and most of them have two or more

possible moves to consider each turn. If the pieces were limited to just two possible

moves each (a number that is far too small), a single move for one side would

involve one of 16 pieces, times two possible moves, for 32 combinations. Not all of

the 16 pieces can always move, but half of the pieces have far more than the two

moves we limited them to, with eight being a more typical number. If 32 com-

binations is a reasonable estimate, then there are 32 possibilities for the white times

the 32 possibilities for black as a countermove for a product of 1,024 combinations

in each ply. This number might seem too large, but Chess starts out with exactly

20 possible opening moves followed by 20 opening response for 400 combinations

in the first ply. This is called the branching factor, and in games such as Chess (or

worse yet, Go), the branching factor is so high that simple look-ahead is quickly

overwhelmed. Heuristics and othermeasures have helped a great deal in the case of

Chess, but they have achieved far more modest success with Go.

There are noteworthy comparisons to be made between the complexity of Fox

and Hounds and Tic-Tac-Toe. Tic-Tac-Toe is small enough that its factorial

growth never goes on long enough to overwhelm the situation. For small

numbers, factorial growth is well behaved. Fox and Hounds is more complex,

but unlike Tic-Tac-Toe, the complexity of the individual turns is fixed. If you

increased the number of turns for both games, by playing on a larger board, for

example, eventually Tic-Tac-Toe would show higher complexity as ever higher

158 Chapter 6 n Look-Ahead: The First Step of Planning

numbers are multiplied together. Both show unacceptable growth rates; in

Tic-Tac-Toe, it is managed by keeping the game small, where in Fox and Hounds

we will manage it with heuristics.

Complexity with the Line Heuristics

Our project will prove just how much heuristics help. For example, when the

hounds have the fox behind an unbroken line and they have moves that keep the

line unbroken, the hounds have no need for look-ahead. In the aforementioned

calculations, each time this happens, the eight hounds’ moves to explore in depth

become just one. In terms of a tree, only one of the eight branches will need to be

followed. Our heuristic allows us to prune away ��̊ of the work at each level in the
tree that the heuristic can be applied. After the first move, when the fox is looking

to break the wall but is too far away to make contact with the hounds, the

complexity computation of three moves of naı̈ve look-ahead without this

heuristic gives a sequence resembling the following:

. . . (4 � 8) � (4 � 8) � (4 � 8) . . .
The naı̈vemethod requires 32,768 combinations to be searched.With the heuristic,

the hounds know right away that their best move is the one that keeps the wall

intact. The three-move sequence becomes this:

. . . (4 � 1) � (4 � 1) � (4 � 1) . . .
With the heuristic applied, there are 64 combinations to be searched.

Careful examination of the board shows that in this part of the game, the hounds

have only seven moves available instead of eight. One hound in the line is either

against an edge or has another hound in front of it blocking one of its two moves.

Using seven instead of eight yields 21,952 combinations to be searched. This is

lower than 32,768, but pales when compared to the 64 combinations that the

heuristic yields. Good heuristics like this one can be applied at multiple levels in

the tree. There are other heuristics that can be applied to the game.

We can do something similar when the line is broken. The heuristic is that the fox

takes the shortest path to freedom. This reduces the number of moves evaluated

by the fox from four to just one. This allows us to eliminate �̄̆ of the work at every
level of the tree while the hounds are looking ahead to reform their line. We

started with our naı̈ve look-ahead sequence:

. . . (4 � 8) � (4 � 8) � (4 � 8) . . .

Heuristics 159

With the heuristic for the fox it becomes:

. . . (1 � 8) � (1 � 8) � (1 � 8) . . .

Instead of needing 32,768 combinations to search three turns, we now only need

to search 512.

Complexity with Depth-Limit Heuristics

We will allow the fox to look ahead at most five turns and the hounds to look

ahead at most six. These numbers come from experience tuning the AI; the fox

can always find a way to break the line in five fox moves or fewer if one exists.

Six hounds’ moves are enough for them to reform their line if it is possible. These

make the complexity computations completely different. When the fox is looking

ahead, it is trying to break the line. This implies that the line is there, so the

hounds know their best move. So we get four fox moves times one hound’s move

per turn, for five turns.

(4 � 1) � (4 � 1) � (4 � 1) � (4 � 1) � (4 � 1) = 1024

This is 1,024 moves, and it can be evaluated in a few seconds even with the

debugging output scrolling by. The hounds’ computation is similar: eight moves

for six turns.

(1 � 8) � (1 � 8) � (1 � 8) � (1 � 8) � (1 � 8) � (1 � 8) = 262,144

A quarter million moves might seem troubling, but without the heuristic, the

number would be 4,096 times larger—at just over a billion. Heuristics make

otherwise impossible look-ahead tasks possible.

Drawbacks to Heuristics

The danger with heuristics is when they fail. ‘‘Usually right’’ is not the same as

‘‘always right.’’ One of the heuristics that we will use in Fox and Hounds was not

always correct for all the given evaluation functions tested. That heuristic is that

the best move for the fox when the line is broken is to take the shortest path

toward freedom. We use that heuristic to prevent the fox from looking ahead

when the hounds are looking ahead; this improves performance considerably.

The hounds look ahead when the line is broken, as they look to pin the fox

behind a reformed line. The hounds, in their look-ahead, predict the fox’s move

using the heuristic. The hounds are predicting their opponent’s move, but the

prediction might not come true. As long as any move the fox might take puts

160 Chapter 6 n Look-Ahead: The First Step of Planning

the fox in a worse position, the hounds are fine. As we shall see, this was not

always the case; the hounds pruned potential fox moves that the hounds needed

to know about.

As it turned out, fixing the problem had an impact on the style of play shown by

the hounds. The hounds like it when the fox has fewer moves available to it. So

when reforming their line, their look-ahead could see a sequence of moves that

reformed the line quickly and a different sequence of moves that reformed the line

a few moves later. The first option left the fox more room than the second option.

Early versions of the evaluation function preferred the second option because it

hemmed in the fox better, which is closer to the winning condition of hemming in

the fox completely. As long as the fox took the shortest path, the hounds would

‘‘toy’’ with the fox and slam the door at the last possible moment. It worked fine

when the fox behaved as predicted, but could be made to fail if the fox took a

different path than expected. The fix meant that the hounds prefer moves that

reform their line as soon as possible, with ties broken by how hemmed in the move

leaves the fox. The fix makes for more effective but less flashy play by the hounds.

There are two heuristics involved here. One says, ‘‘Reforming the line is good’’;

the other says, ‘‘Hemming in the fox is good.’’ A few chapters earlier, we solved

the issue of ambiguous transitions in FSM by prioritizing them. Here, we have a

similar issue with competing heuristics that also require proper prioritization.

Both heuristics apply; neither is broken, but we have to be intentional about

which takes precedence.

Discrete Moves
Both Tic-Tac-Toe and Fox and Hounds benefit from having discrete moves.

While this is true of many computer games, it is not true for an even larger

number. American football is played in discrete turns, but soccer and hockey

feature nearly continuous play. When we have to deal with continuous games, we

transform the complex possibilities into as few discrete buckets as we can get

away with because we know that the number of buckets is going to get multiplied

many times. Terrain is often treated this way. Continuous terrain gets imple-

mented as a set of discrete tiles. All the different possible movements to different

points on a given tile can be reduced to a single move, ‘‘Move to this tile.’’ The

tiles provide our buckets. Sometimes the tiles are even grouped into regions to

keep the number of buckets manageable. A small number of buckets is in conflict

with the richness of the possibilities; too few, and the AI appears dumb. But too

Discrete Moves 161

many, and it will run too slowly. Alas for the beginning AI programmer,

experience is the best guide. Other AI techniques can be employed, including

faking it, to give the look-ahead system a fighting chance.

Knowledge Representation
When the AI looks ahead, it has to think using views of the world that do not exist

outside of the AI’s thought process. The AI programmer has to make sure that

those views are rich enough to allow the AI to answer any questions it is allowed to

ask of the current state of the world plus any questions it wishes to pose to its

predictions of the future. The AI programmer needs to carefully consider how the

AI will deal with knowledge. Besides being rich enough to be useful, the view has to

be small enough that it can be passed around, copied, modified, and restored as

needed. If the AI is not going to cheat, the view also needs to be properly restricted

to keep the AI from having access to information that should be unavailable to it.

One method for dealing with these views of the world is to have just one copy.

The AI can edit the world view as needed while it is deciding what to do, but it

needs to restore the view to its original state when it is done. If the view takes up a

large amount of storage, and no piece of the AI code changes very much of it, this

method makes sense. This method dies if the restoration code has any imper-

fections at all. One part of the AI will consider doing something, and later AI code

will treat the earlier consideration as having happened. The computational cost

of setting the view back also needs to be considered against the very low cost of

discarding a copy.

Another method is to give each part of the AI its own private copy of the view to

play with as it sees fit. The act of copying by itself has only modest cost. It is no

surprise that computers can copy from memory to memory with good speed.

Doing so begs the question, ‘‘How many copies exist at one time?’’ Look-ahead

methods are often recursive. How deep is the AI allowed to look? Heuristics that

control depth not only save us from computation, they also can save us from

excessive memory usage.

Advantages to Look-Ahead
Look-ahead provides a minimum level of competence for the AI even when other

methods are used for longer-term planning. With a few moves of look-ahead, the

AI will not willingly step into instant disaster. It may not be all that smart, but it’s

162 Chapter 6 n Look-Ahead: The First Step of Planning

not that dumb either. Controlling the search depth also provides the AI pro-

grammer with a good tool for controlling difficulty.

Look-ahead methods are conceptually easy for the AI programmer to under-

stand. Letting the AI search relieves the AI programmer of the burden of crafting

an AI that makes good moves for the future by looking only at the current

situation. Look-ahead provides a goal-oriented approach; the programmer

programs the ability to recognize a goal state or to recognize states that will lead

to the goal state, and then the AI searches ahead for them. Dealing with the goals

may be easier for the programmer than dealing with alternative methods for

getting to them.

Disadvantages
Look-ahead dies when the number of combinations to evaluate grows too high.

Complexity can sometime be controlled by pruning, but imperfect pruning

methods risk pruning moves that looked poor when pruned but would have led

to superior results if followed. Even exact pruning can remove richness of play.

Look-ahead gives strange and bizarre results if the player does not play in the

manner that the AI is using to model player behavior. The AI ‘‘over thinks’’ the

situation and comes up with what would be elegant moves if it were playing

against someone else (our implementation can be made to show this trait).

Applicability
Game AI look-ahead can be applied easily to games that have discrete moves and

no hidden information. Look-ahead works particularly well for end-game

situations for games that would not otherwise use it. A limited look-ahead AI can

advise other AI methods, particularly when the other methods are occasionally

prone to blunders. Look-ahead by itself is difficult to apply to games with a high

branching factor, such as Go or Chess, without assistance from other methods.

The Fox and Hounds Project
The complete code for this project is also on the CD. In addition, there are

multiple versions of some of the files reflecting the evolution of the AI code. If

you use the code on the CD instead of typing it in, be sure to read the com-

mentary that goes with the code so that you will understand the context in which

the AI will operate. Like many of the games we have implemented so far, we will

The Fox and Hounds Project 163

start with a fully playable game and then add AI to it. As we go, we will add code

to make the game easier for the AI to play and easier for the programmer to

understand. We will start with some design discussions before we get to the game

board that contains the squares.

Moves and Neighbors

A checkerboard is more than 64 graphical squares. People have no trouble seeing

that the squares of the same color are connected diagonally, but we will need to

program that knowledge for the benefit of the AI and the user interface code. Our

game only uses squares of one color, so if we do it right, we ignore squares of the

other color. As we look at connectivity, we see that the neighbors of any square

are also the set of moves that a fox can take from that square if there are no

hounds in the way. Continuing that thought leads us to the idea that the half of

the neighbors that are ‘‘down’’ as we see the board are potential moves for

hounds. The AI will be using this knowledge all of the time, so it is best if we

precompute it. While we are at it, moves up are handy to know as well (more on

that later). All of this makes us ask, ‘‘How do we tell one square apart from

another?’’

As shown in Figure 6.4, we will tell squares apart by numbering them (ignore the

buttons at the bottom for now). For us, the upper-left square is square 0.

Our board has four squares in each row, since we are ignoring the off-color

squares. The lower-right square will then be square 31. If you have a cheap

folding checkerboard, it may have similar numbers that differ by one. Num-

bering from 0 to 31 makes our code easier, even if we humans have a pesky habit

of starting out at 1.

The kind of design we are doing now is the first concrete step toward dealing with

knowledge representation. We know that the AI will need to make numerous

copies of the boards it considers, so we need to be aware of the performance

impact of those copies. There are three standard factors to consider: memory

space, computational speed, and programmer time.

The space consideration is worth at least a quick examination. Earlier, we saw

complexity numbers such as 1,024 combinations for the fox and 262,144 for the

hounds. While we might examine that many boards, we will never store them all

at the same time. The number of boards we have in memory at the same time is

related to how deep we are looking ahead. The most we look ahead is six moves

when the hounds are looking ahead. Since there is a fox move between each

164 Chapter 6 n Look-Ahead: The First Step of Planning

hound’s move, we get six more boards for a total of 12. In our case, 12 is small

enough that we can ignore it, but the back-of-the-envelope check is always a

good idea.

The speed consideration can be dealt with by a time-honored method: ignoring

it unless it proves to be a problem. Unlike the space consideration, where the

numbers are trivial, our AI will take the time needed to create over a quarter-

million boards. The time required to make determinations about those boards is

the concern, not the time spent copying them; modern hardware copies memory

extremely rapidly. Ignoring potential speed issues is easy, and the use of the

profiling tools needed to find problem areas is beyond the scope of this book.

Programmer time must be mentioned as a third vital resource. Time and care

spent along the way that prevent the program from wasting resources are an

investment. Time spent trying on early optimizations is wasted. Wasted time has

direct costs in terms of money and opportunity costs in terms of features that

cannot be added and deadlines that cannot be met. ‘‘Premature optimization is

the root of all evil.’’ [Knuth74]

Figure 6.4
Squares showing their numbering.

The Fox and Hounds Project 165

What Is Needed for Game State?

The minimum amount of state data we need is five integers. These correspond to

four hound subscripts plus one more for the fox. The locations of the checkers

are the only way we can tell one game apart from another. We will actually keep

far more state data. This data will make the game more pleasant for the player

and will make things easier on the AI. We will display some of this data gra-

phically. While the player merely enjoys knowing what the AI is thinking, the AI

programmer has a burning need to know exactly what the AI is thinking. Our

game will show some of the game state data. What other data would be useful in

the game state?

One very important bit of data would be the output of the evaluation function,

which we will call the rank, for this board. We will compute it once and store it,

trading space to gain speed. It would also be useful to know what the turn

number is for the board. As the AI generates multiple boards to represent pos-

sible future states of the game, if it sees two different ways to win, it can take the

one that comes sooner.

The AI and the display system also benefit from storing some per-square data.

We will store what the square holds, which is the fox, a hound, or nothing. We

will store what color we are going to paint the square. This color helps more

than the display; it will help the AI by providing a fast way to exploit heuristics.

We use three colors for our squares: white, black, and green. We color the

squares that the hounds cannot get to with green. As the hounds move, they

leave behind them a growing area of green, since the hounds do not move

backward. If the fox makes it to a green square, the fox wins. We internally

mark the squares that the hounds occupy as black, which we show graphically

using gray so that we can read the black ‘‘Hnd’’ labels on the buttons. The rest

of the squares we color black or white, depending on how the square relates to

the hounds and to the green squares. Any square that is not already green or

black and has a path that avoids the hounds and leads to a green we color white.

Any square that has no unblocked path to a green square is colored black.

Figure 6.3 is not in color, but there are green squares behind the hounds and

black squares in front of them. If the fox is hemmed in, the squares it can get to

are black, which we indicate by using a dark red for the fox as suggested in

Figure 6.3. If the fox has a path to freedom, those squares are white, and we use

a light red for the fox, as seen in Figure 6.5. Finally, we will store a number that

holds the number of steps each white square is away from a green square, also

seen in Figure 6.5 As you might expect, coloring and numbering are also used

166 Chapter 6 n Look-Ahead: The First Step of Planning

by the AI to implement heuristics. The coloring and the numbering will let us

see at a glance if the AI is working as we expect.

Evolution of the Evaluation Function

Our evaluation function will be part of the class we use to store the state data

instead of being part of the AI. Our evaluation function describes the fox’s

situation. We use the concept of ‘‘big numbers for big decisions’’ [Dill08] in our

evaluation function. Any game board in Fox and Hounds can be categorized as

either good for the hounds or good for the fox. If the fox is hemmed in, it is good

for the hounds; if the fox has a path to freedom, it is good for the fox. There are

variations within each category, but there is no confusing middle ground. By

making the most important categories numerically far apart, we have sufficient

latitude for the variations. Our numbers will reflect this separation of the two

categories. A value of 0 means that the fox has won. A value of 127 means that the

fox is trapped and has lost. We need in-between numbers as well. Getting those

numbers is an evolutionary process.

Figure 6.5
Longest possible path to freedom.

The Fox and Hounds Project 167

The first step in the evolution of the evaluation function is quite simple. If the fox

can move but not reach freedom, the evaluation function gives a value of 64,

which is coded using a constant named UNREACHABLE. If the fox has a path to

freedom, the evaluation function returns the length of that path. With only

32 squares on the board, the path can never be long enough to conflict with the

value 64 used to mark UNREACHABLE. The highest rank that still allows the fox to

reach freedom appears to be 10, as shown in Figure 6.5, where the fox is 10 steps

from reaching a square that no hound can get to. The dark solid squares shown

with no numbers are green squares, which are winning squares for the fox if it can

get to them.

The simple evaluation function is not good enough for the hounds. Some moves

that restore or keep the line intact are better than others. These come late in the

game, when the hounds are closing in on the fox. One wrong move will let the fox

out.

Figure 6.6 shows a sequence of moves illustrating this problem. The sequence

starts after the fox takes the 41st move, backing away from the encroaching

hounds as it is forced into the lower-left corner. Disaster for the hounds comes

on move 42, when they have to pick from two possible moves that keep the fox

behind their line. Since the hounds have the fox behind an intact line, they do not

use look-ahead to pick between the two moves that keep the fox behind the line.

The better move closely presses the fox. But since the simple evaluation function

treats all UNREACHABLE moves as equal, the hounds pick the move shown on the

Figure 6.6
All UNREACHABLE moves are not equal.

168 Chapter 6 n Look-Ahead: The First Step of Planning

middle board. Moving the end hound, which is not part of the line, does not

improve their position at all. The fox steps forward on move 43, leaving the

hounds no choice but to let it out on their next move.

The evaluation function needs a way to judge which UNREACHABLE move is better.

One way to describe the better move for the hounds is that the better move keeps

pressing the fox. In Figure 6.6, the hounds threw away a chance to close in on the

fox in favor of wasting time with a ‘‘free’’ move. We need a way to turn words like

‘‘close in’’ and ‘‘pressing’’ into something our AI can compute. One of the finer

arts of AI programming is the ability to turn these concepts into code.

The next step in the evolution is to come up with a number to indicate ‘‘better’’

UNREACHABLEmoves, with ‘‘better’’ meaning ‘‘fewer black squares.’’ Recall that the

black squares have no path to freedom and that the hounds try to keep the fox

restricted to black squares. The idea is that the smaller the number of squares left

to the fox, the closer the fox is to being pinned by the hounds. There is a subtle

difference between ‘‘fewer black squares’’ and ‘‘fewer squares available to the

fox,’’ however, as we shall soon see.

It is easy to simply count the number of black squares. This gives an evaluation

function that generates board rank as follows: If the fox can move but not reach

freedom, the value for rank is 127 (the value when the fox is pinned) reduced by

the number of black squares. Note that the number of black squares in this

situation is at least six; the four squares the hounds sit upon are always black, the

fox is on a black square, and since the fox is not pinned, there is one or more

black square, to which it can move. The opening board shown in Figure 6.2 has

32 black squares, for a board rank of 95. This is as low as the rank can go and still

have the fox behind an unbroken wall. The value of 95 is well above the value of

64 used to mark UNREACHABLE, so all such boards would have a rank that is greater

than or equal to UNREACHABLE, making the code changes easy to implement.

This new evaluation makes judgments between different UNREACHABLE boards.

Any ties are broken using the idea that good things should happen sooner and

bad things should happen later. A rank of 102 is always better than a rank of 104.

A rank of 102 on turn 36 is better than a rank of 102 on turn 38.

This step in the evolution fixes the problem illustrated in Figure 6.6. This eva-

luation function proved to be the most interesting, even though it has flaws.

The interesting part is that the hounds appeared to ‘‘toy’’ with the fox after the

fox had broken the line. The hounds would see one move that reformed their line

The Fox and Hounds Project 169

early and another move that would reform their line later. The early move would

have more black squares, thus a lower board rank, so the hounds would pursue

the later move. ‘‘Instead of slamming the door in your face now, I’ll lead you on

and just do it to you later.’’

No t e

The AI.V5.vb file on the CD has the code for this method. The routines of interest are the better
move routines in the ‘‘Internal Stuff’’ region. Use it with the naı̈ve method for counting black
squares (mentioned later in this chapter) to get the behaviors shown in Figures 6.7 through 6.9.

The hounds can do this if the fox moves the way the hounds expect the fox to

move. In games where the fox AI is pitted against the hounds AI, this is always

true. Recall that when the hounds are looking ahead, it is to fix their broken line.

This is the time that the fox is not looking ahead, but instead taking the shortest

path to freedom. The fox is not required to play the way the hounds want it to. A

few moves of human intervention helps the fox by ignoring a path to freedom

that the hounds will close before the fox escapes. Instead, the fox blocks the

hounds from making critical moves on which their plan depends.

This is illustrated in the next few figures. The boards shown are after the hounds

make a move, hence the even move numbers. The action starts in Figure 6.7 with

Figure 6.7
The hounds break their line and plan for a glorious future.

170 Chapter 6 n Look-Ahead: The First Step of Planning

move 30. The fox has just forced the hounds to break their line. Move 30 might

seem strange, but recall that when the hounds first break their line, they do not

look ahead. Instead, they pick the move that puts the fox farthest from the hole.

The alternative of moving the left-most hound would have created a shorter path

to freedom for the fox.

While move 30 might appear to be strange, move 32 at first glance appears

completely insane. Before they made move 32, the hounds looked ahead,

expecting the fox to always take the shortest path to freedom. They saw that they

could put their line back together at move 34, yielding a board with an evaluation

score of 116. They also saw that they could put their line together on move

36 with a score of 117. What they liked best was putting their line together on

move 42 with a score of 119. With this evaluation function, the hounds appear to

have mastered the concept of delayed gratification.

If the fox moves as the hounds predict on move 33, heading downward for

freedom, then the hounds will toy with it. They will open a second hole to tempt

the fox, as shown with move 34 in Figure 6.8. If the fox takes this new bait, the

hounds close the new hole on move 36, setting up the inevitable enclosure shown

a few moves later in move 42. If the fox ignores the new hole opened on move

34 and heads along its original path downward toward freedom, the hounds will

be able to block both holes before it escapes (not shown).

The critical move for the fox was move 33, visible in board 34. Is there a better

alternative for the fox after the hounds make move 32, as shown in Figure 6.7?

Figure 6.8
The hounds toy with the fox before crushing it.

The Fox and Hounds Project 171

There is indeed. The fox can pin three hounds if it stays close to them, as shown

in move 34 (see Figure 6.9). The hounds will not open a hole with the fox right

there to exploit it. The fox AI will not move this way, but the game allows the user

to make moves. Instead of moving down toward freedom, the player moves the

fox back into the pocket to hold the three hounds fixed. The left-most hound is

too far to the left to help, proving that move 32 was an error. The hounds can

stall, as shown inmove 36, but as long as the fox keeps the pressure on the pocket,

that only leads to move 38. With no free moves left, the hounds have to break

open the pocket holding the fox. Our fox does not see this because our fox does

not look ahead when it has a path to freedom.

The hounds’ delayed gratification strategy is flashy but flawed. When writing

game AI, avoiding AS—that is, artificial stupidity—is a higher priority than

increased brilliance of play. There is also a lesson here about making plans that

survive contact with the enemy. The hounds’ AI needs to evolve.

The hounds look ahead to reform their line. Rather than change the evaluation

function, the hounds’ method for comparing different boards needs to change.

The best move for the hounds, when the line is broken, is the earliest move that

reforms the line. This equates to ‘‘slamming the door now to make the win

inevitable.’’ The hounds stop ‘‘over thinking’’ the situation and quit toying with

the fox. If the line is intact, they take the board with the highest rank, which means

the board with the fewest black squares. Things look promising for the hounds, but

they still could lose. The subtle difference between the simple-to-compute ‘‘fewer

Figure 6.9
Delayed gratification by the fox shatters the hounds’ plan.

172 Chapter 6 n Look-Ahead: The First Step of Planning

black squares’’ and the more complex ‘‘fewer moves for the fox’’ bites them, so we

will fix it.

This last evolutionary step is to change how the black squares were counted. If the

fox cannot get to an open black square, that square should not count in

the computation. Otherwise, the hounds could be distracted into making a move

that reduces the number of black squares but does not reduce the moves available

for the fox. Late in the game, most moves for the hounds reduce the total number

of black squares by one. All such moves are equally good, and if the line is intact,

the hounds do not look ahead. Look back at the sequence of boards shown in

Figure 6.6. After the fox has taken move 41, there are two moves for the hounds

that do not break their line. The first is to move the hound near the center of the

board down and to the left, directly toward the fox. The second is the one shown

as move 42 in Figure 6.6: The right-most hound moves down and to the right,

placing it on the last row. Using the naı̈ve method of counting black squares, each

of these hounds’ moves reduces the number of black squares by one, giving them

identical evaluation scores. The hounds do not have any moves that reduce the

number of black squares more than one; in fact all of their other moves break the

line. The two moves we are considering do not give identical results! The first

move we considered will bring victory to the hounds on their next move when

the fox retreats to one of three squares, each of which allows the hounds to trap it.

The second move, shown as move 42 in Figure 6.6, leads the fox to make move

43 as shown, which dooms the hounds.

A more sophisticated way of counting black squares prevents this from hap-

pening. We count a black square in the board evaluation score only if it has a

hound on it or if the fox can get to it. In Figure 6.6, there is a black square after

move 41 in the bottom row that becomes a white square with the number 2 after

move 42. In the naı̈ve counting method, this square counted as a black square for

the evaluation score. It is the square that lead the hounds to make the ill-fated

move shown. Under the better method for counting black squares, this black

square does not count in the evaluation score because the fox cannot get to it.

The coloring algorithm colors it black after move 41, but it no longer counts in

the score. The two moves that do not break the line no longer have identical

scores; the hounds will now prefer the winning move of pushing the center

hound directly at the fox.

We will implement both ways of counting the number of black squares. The code

for this will be described in the next section when we deal with game state. The

ColorMe routine will call either NaiveBlackCount or BetterBlackCount to get

The Fox and Hounds Project 173

the number of black squares. You will be able to switch between the two by

commenting out the one you do not want to be used.

As we have seen, the AI lives and dies on the quality of the evaluation function.

The good news is that simple methods go a long way, and they suggest the areas

to improve when they fail. The bad news is that careful testing is required tomake

sure that the evaluations always behave. The code in the project will have signs of

this evolution; presenting the final code in a fully optimized form would reduce

the impact of the lesson. We will start with the game board user interface and

proceed through to the AI.

Game Board User Interface

We need to start with a new project. That will give us the form that we will use for

the board. Use Figure 6.2 or Figure 6.3 as a guide.

1. Launch Visual Basic.

2. Create a new Windows Forms Application and name it Fox And Hounds.

3. Double-click My Project in the Solution Explorer, click the Compile tab,

and set Option Strict to On. This forces us to make all potentially risky

type conversions explicit. It is not mandatory, but it is a good habit for

programmers to be intentional about conversions between numbers with

differing precision or objects of differing types.

4. Rename Form1.vb to Board.vb.

5. Change the Text property to Fox And Hounds.

6. Change the size to 450 by 530.

7. Change the BackColor property to Old Lace, which is located in theWeb tab

of colors.

8. Click the File menu and choose Save All. (Do this regularly as you proceed.)

9. Drag a button from the Toolbox to the lower-left corner of the form.

Change its Name property to ResetButton and its Text property to RESET.

10. Drag a button from the Toolbox and place it to the right of the ResetButton.

Change the Name property of this new button to FoxButton and its Text

property to Fox.

174 Chapter 6 n Look-Ahead: The First Step of Planning

11. Drag a button from the Toolbox and place it to the right of FoxButton.

Change the Name property of this new button to HoundsButton and its

Text property to Hounds.

12. Drag a final button from the Toolbox and place it to the right of

HoundsButton. Change the Name property to UndoButton and its

text property to Undo.

This completes the entirety of the graphical elements of the user interface. For

squares, we will create a class that inherits from the built-in Button class, but we

will not do anything graphical with them. We do need to implement our

checkerboard.

Implementing Moves and Neighbors

Right-click Fox AndHounds in the Solution Explorer window (or use the Project

menu) and choose Add?Module. Name it Moves.vb. Add the Public keyword

to the module definition so that the rest of the program can access what we put

here:

Public Module Moves

We will keep the three kinds of possible moves for each square in this module.

The number of moves from any given square will differ from square to square,

but we know in advance exactly how many squares we have to deal with. Arrays

are intuitive when we know how many things there are in advance, and collec-

tions are easy to use with a variable number of things, so we will use both. Add

the following code to the module:

’Three kinds of moves
Public MovesUp(31) As Collection
Public MovesDown(31) As Collection
Public Neighbors(31) As Collection

Reading this carefully, we see that MovesUp is an array with 32 elements, each of

which is a collection. In VB, arrays start with subscript 0 and go as high as the

number given. A range from 0 to 31 has 32 elements. So square 0 will have a

collection of moves going up, as will every square on the board. Examine

Figure 6.4, and you will notice square 0 has no upward moves. We handle this by

making sure that the collection has no moves in it. There will still be a collection

to look at; it will simply have no moves. Squares that are near any edge of the

The Fox and Hounds Project 175

board will have different numbers of moves than squares in the middle of the

board.

When we add moves to the collections, we will add the subscript for every square

that connects to a given square. We will mark each added subscript with a key

corresponding to its value converted to a string so that we can interrogate the

collection using the key to see if it contains the number of a square we are

interested in. (VB collections can hold any type of data, but their keys are always

strings.) The formula for computing neighbors changes between even- and odd-

numbered rows. We will take that into account when we compute the neighbors.

Using Figure 6.4, we can see that the square above and to the left of square 22 is

square 17, which is a difference of 5. But from square 17, the same move takes us

to square 13, a difference of 4. In both cases, the move up and to the right is one

more than the move up and left.

An important point to notice is that we can influence the effectiveness of the AI

by how we arrange the moves in the collections. We will do two things to help.

We will add upward moves first to the neighbors so that the fox tries to go up the

board before trying to go down the board. We will also change how we order

the upward or downward moves so that even and odd rows do left or right moves

in different order. This encourages the fox to zigzag upward instead of going up

and left.

The code to initialize all three arrays may appear daunting, but it beats the

alternative of 200 lines of mind-numbingly regular initializations that differ from

each other only slightly.

Public Sub InitMoves()
Dim row As Integer
Dim col As Integer
’The array subscript is computed off row and col.
Dim ss As Integer
’The final subscript is what we store in the collections.
Dim finalss As Integer
Dim offset As Integer

’Do moves up first so the fox prefers them.

For row = 0 To 7
’Offset will = 0 or 1.
offset = row Mod 2

176 Chapter 6 n Look-Ahead: The First Step of Planning

For col = 0 To 3
ss = row * 4 + col
’Everybody gets a collection even if it might stay empty.
MovesUp(ss) = New Collection
MovesDown(ss) = New Collection
Neighbors(ss) = New Collection

’Treat even and odd rows differently.
’The changing order in which up-left and up-right
’moves are added is by design to make the fox zigzag
’upward instead of going up diagonally.
If offset = 0 Then

’Do moves up first (helps fox AI).
’Don’t fall off the top of the board.
If row > 0 Then

’The last col in even rows lacks the
’neighbors to the right.
If col <> 3 Then

’up and right.
finalss = ss - 3
MovesUp(ss).Add(finalss, finalss.ToString)
Neighbors(ss).Add(finalss, finalss.ToString)

End If

’up and left.
finalss = ss - 4
MovesUp(ss).Add(finalss, finalss.ToString)
Neighbors(ss).Add(finalss, finalss.ToString)

End If
’Now do moves down.

’Even rows always have an odd row below
’down and left.
finalss = ss + 4
MovesDown(ss).Add(finalss, finalss.ToString)
Neighbors(ss).Add(finalss, finalss.ToString)

’The last col in even rows lacks the
’two neighbors to the right.
If col <> 3 Then

’down and right.
finalss = ss + 5

The Fox and Hounds Project 177

MovesDown(ss).Add(finalss, finalss.ToString)
Neighbors(ss).Add(finalss, finalss.ToString)

End If

Else
’This is an odd numbered row.
’Same concepts, different numbers.

’Always an even row above, do the moves up.
’The first col lacks the
’neighbors to the left.
If col <> 0 Then

’up and left.
finalss = ss - 5
MovesUp(ss).Add(finalss, finalss.ToString)
Neighbors(ss).Add(finalss, finalss.ToString)

End If

’The move up and right we always get
finalss = ss - 4
MovesUp(ss).Add(finalss, finalss.ToString)
Neighbors(ss).Add(finalss, finalss.ToString)

’Moves down.
If row < 7 Then

’down and right.
finalss = ss + 4
MovesDown(ss).Add(finalss, finalss.ToString)
Neighbors(ss).Add(finalss, finalss.ToString)
If col <> 0 Then

’down and left.
finalss = ss + 3
MovesDown(ss).Add(finalss, finalss.ToString)
Neighbors(ss).Add(finalss, finalss.ToString)

End If
End If

End If
Next col

Next row
End Sub

Moves and neighbors are only part of the checkerboard. We still have the gra-

phical parts, and we still need to decide what we will pass around to the AI. We

178 Chapter 6 n Look-Ahead: The First Step of Planning

will do the minimum of both needed to get us to the point where we can begin

testing as we go.

Graphical Squares

Our graphical squares will be square buttons that have been adapted to our

needs. We need our squares to know their subscript. We do this because we will

split the graphical elements apart from the state data that drives them. The state

data is going to be copied and passed around and analyzed. We only need one

graphical board. People play Chess with one board in front of them and many

boards in their head; our code follows this pattern as well. Add a class to the

project and name it FaHButton.vb. Add the following code to the class:

Inherits Button

’Just a button, but we would love to know our subscript in the array
’so that we can tell others when we take events.
Private MySubscript As Integer

’When we drag/drop, we will have a hound number or -1 for fox.
Protected HoundNumber As Integer

That last bit is for later, when we will implement player moves using drag and

drop. The rest of the code makes our class act just like a regular button except in

the ways that we extend it. One way we do that is that our class will keep around a

subscript value. We want to make that value available to outside code, but we

never want it to change. Add the following code to do that:

Public ReadOnly Property Subscript() As Integer
Get

Return MySubscript
End Get

End Property

This is the simplest possible property method; it returns our private value and

provides no way for outside code to change that value. We need a way to set it in

the first place, and we will do that when the class is created. Add the following

code to the class:

’We need a subscript value when we are created.
Public Sub New(ByVal ss As Integer)

MySubscript = ss

The Fox and Hounds Project 179

’We use drag and drop for player moves.
AllowDrop = True
’Bold looks nicer.
Me.Font = New System.Drawing.Font("Arial", 9, FontStyle.Bold)

End Sub

Again, we are laying groundwork for implementing player moves in the future

using drag and drop. Since our class is in all respects a button, we let the code that

creates instances of our class manipulate them as though it were a button.

Implementing Game State

We will implement the state data using a class. The code for that class will color

the squares and compute the rank of the board. We will also have it mark the

buttons on the board when we ask it to. We would normally pull that kind of

functionality out of the class, but we will take the expedient route here. Before we

can implement the class, we need some helper code.

Constants

Add a module to the project and name it Constants.vb. Add the Public keyword

to the module declaration.

Public Module Constants

We will keep more than just constants in this file, but we will start with the

constants. Add the following code:

’UNREACHABLE has to be bigger than any possible count.
Public Const UNREACHABLE As Integer = 64
’And TRAPPED needs to be bigger than that.
Public Const TRAPPED As Integer = 127

We use UNREACHABLE as our dividing line between when the fox can and cannot

reach freedom. We use TRAPPED to denote the fox has lost. We also will add the

per-square data definitions to this module.

’The raw data needed to process a square.
Public Class SquareData

Public Holds As Checker
Public Kind As SquareColor
Public Steps As Integer

End Class

180 Chapter 6 n Look-Ahead: The First Step of Planning

’What, if anything, sits on this?
Public Enum Checker As Integer

None
Fox
Hound

End Enum

’Just the color (used when thinking as well as for display).
Public Enum SquareColor As Integer

Black
White
Green

End Enum

GameState class

We are finally ready to start on the class for the state data. Add a class to the

project and name it GameState.vb. Add the following data to that class:

’The fox and hounds are the minimum.
Dim Fox As Integer
Dim Hounds(3) As Integer

’But it is very useful to analyze the board.
Dim Turn As Integer
Dim Rank As Integer
Dim Squares(31) As SquareData

Now we want to create a brand-new game state. Later on we will add a method

that creates a new game state as a copy of a given state. Since this file will contain a

good deal of code, we use regions to be able to group like parts together and to be

able to collapse them out of sight. And the following code to the class:

#Region "Class New"
Public Sub New()

Dim i As Integer

’New game locations; fox on bottom row.
Fox = 30
For i = 0 To 3

’Hounds go in the top row.
Hounds(i) = i

Next i

The Fox and Hounds Project 181

’No one has moved.
Turn = 0

’Allocate the squares.
For i = 0 To 31

Squares(i) = New SquareData
Next

’Make this new board displayable.
Call ColorMe()

End Sub
#End Region

The system will complain that ColorMe does not exist, so we will do that next.

ColorMe is only called within the GameState class, so we will put it in a separate

region. Regions cannot overlap, so put the following code between the #End

Region and the End Class statements.

#Region "Internal Stuff"
Protected Sub ColorMe()

’The only given is where the fox and hounds are.
’Compute everything else.

’The square in game state.
Dim StateSquare As SquareData

’i is for going through squares.
Dim i As Integer
’ss is for subscripts of OTHER squares.
Dim ss As Integer

’The base state is an all black board.
’Do all squares (no need for the subscript).
For Each StateSquare In Squares

StateSquare.Holds = Checker.None
StateSquare.Kind = SquareColor.Black
StateSquare.Steps = UNREACHABLE

Next

’Add the fox.
Squares(Fox).Holds = Checker.Fox

182 Chapter 6 n Look-Ahead: The First Step of Planning

’Add the hounds.
For i = 0 To 3

Squares(Hounds(i)).Holds = Checker.Hound
Next

’Start coloring the top row of green.
For i = 0 To 3

StateSquare = Squares(i)
If StateSquare.Holds <> Checker.Hound Then

StateSquare.Kind = SquareColor.Green
StateSquare.Steps = 0

End If
Next i

’I am green if all of my parents are green
’and no hound sits on me.
For i = 4 To 31

StateSquare = Squares(i)

If StateSquare.Holds <> Checker.Hound Then
Dim AmGreen As Boolean = True
For Each ss In Moves.MovesUp(i)

AmGreen = AmGreen And (Squares(ss).Kind = SquareColor.Green)
Next
If AmGreen Then

StateSquare.Kind = SquareColor.Green
StateSquare.Steps = 0

End If
End If

Next

’Renumber the squares if the hounds left an opening.
’Keep renumbering until the numbers stabilize (at most
’something like 11 times).

Dim NeedsMorePasses As Boolean = True
While NeedsMorePasses

’We are done unless we do something.
NeedsMorePasses = False

’Start at 4, the top row is never white.
For i = 4 To 31

StateSquare = Squares(i)

The Fox and Hounds Project 183

’Don’t number hound squares.
If StateSquare.Holds <> Checker.Hound Then

’Use the neighbors to see if I have a lower number.
For Each ss In Moves.Neighbors(i)

’Can my neighbor lower my steps count?
If Squares(ss).Steps + 1 < StateSquare.Steps Then

StateSquare.Steps = Squares(ss).Steps + 1
’That makes me a white square.
StateSquare.Kind = SquareColor.White
’We changed stuff, have to keep looping.
NeedsMorePasses = True

End If
Next ss

End If
Next i

End While

’Is the fox trapped?
StateSquare = Squares(Fox)
Dim CanMove As Boolean = False
For Each ss In Moves.Neighbors(Fox)

If Squares(ss).Holds <> Checker.Hound Then
CanMove = True

End If
Next

’Set the game rank (and maybe change fox from UNREACHABLE to TRAPPED).
If Not CanMove Then

StateSquare.Steps = TRAPPED
Rank = TRAPPED

Else
’It can move, is it on black or white?
If StateSquare.Steps < UNREACHABLE Then

’Use the steps value if on white.
Rank = StateSquare.Steps

Else
’The first version of the code was happy with UNREACHABLE.
’See Figure 6.6 to see this fail.
’Rank = UNREACHABLE

’Rank is higher the fewer black squares remain,
’but always lower than TRAPPED (four hounds are black)
’and always higher than UNREACHABLE.

184 Chapter 6 n Look-Ahead: The First Step of Planning

’The naive black count has issues: see Figure 6.6 and the
’last part of the discussion of the evaluation function.
’Rank = TRAPPED - NaiveBlackCount()
Rank = TRAPPED - BetterBlackCount()

End If
End If

End Sub
#End Region

We started by making all the squares black. After adding the checkers, we started

coloring in any green squares. The top row is easy to color green; if no hound sits

on a top square, it is green. The rest of the board is checked from top to bottom.

Note that the code uses MovesUp. The hounds cannot move up, and the fox is never

restricted to moving up. But the coloring algorithm needed to know what

neighbors are above any given square. After making green squares, we can number

any white squares. We keep checking the squares against their neighbors until the

numbers settle. We then see if the fox is trapped and if the fox cannot reach

freedom. The code and the comments show the three ways of computing board

rank that were mentioned in the discussion of the evaluation function. All this

work makes the board easy to display, informative for the player, and far easier for

the AI to consider. The benefits for the AI programmer cannot be overemphasized.

We need to implement the two ways we discussed to count the number of black

squares when computing board rank. The simplest is to just count them, so we

will do that one first. Add the following code to the Internal Stuff region:

Private Function NaiveBlackCount() As Integer
’Just count them.
Dim NBC As Integer = 0
For i = 0 To 31

If Squares(i).Kind = SquareColor.Black Then NBC = (NBC + 1)
Next
Return NBC

End Function

This function can distract the AI into making sub-optimal moves as was shown

in Figure 6.6. What we really want is to count the number of black squares

available to the fox. We saw that in the end game, the hounds can be fatally

distracted by reducing black squares that the fox cannot get to. Add the following

code to the region for a better way to count black squares:

Private Function BetterBlackCount() As Integer

The Fox and Hounds Project 185

’Only the ones that the fox can reach.
Dim BN As New Collection
Dim stopAt As Integer = 1
Dim startAt As Integer = 1
Dim ss As Integer
Dim pbs As Integer

Dim i As Integer
’Add the fox’s square to the collection.
BN.Add(Fox, Fox.ToString)
While startAt <= stopAt

’Check the members of the collection we’ve not checked before.
For i = startAt To stopAt

ss = CInt(BN(i))
’My neighbors are potentially black squares.
For Each pbs In Moves.Neighbors(ss)

If Squares(pbs).Holds = Checker.None Then
’Don’t add if already there.
If Not BN.Contains(pbs.ToString) Then

’Add them to be counted, we’ll check
’their neighbors next loop.
BN.Add(pbs, pbs.ToString)

End If
End If

Next pbs
Next i
’Start at the one after the end of the group we just did,
’which is the first new one if we added any.
startAt = stopAt + 1
stopAt = BN.Count
’If we didn’t add any, stopAt didn’t change, so
’startAt is now greater, terminating the loop.

End While
’Add in the hounds.
Return BN.Count + 4

End Function

We need to add the ability to mark the buttons with the values of the game state.

There will be a number of methods that the outside world can use to access the

game state, so we will create a separate region for them. Add the following code to

the class, outside any of the other regions:

#Region "Public Methods"

186 Chapter 6 n Look-Ahead: The First Step of Planning

’Make a graphical board reflect this game state.
Public Sub MarkButtons(ByVal Board() As Button)

Dim i As Integer
’The square on the board.
Dim BoardSquare As Button
’The same square in game state.
Dim StateSquare As SquareData

For i = 0 To 31
BoardSquare = Board(i)
StateSquare = Squares(i)

’Set the back color of that square.
Select Case StateSquare.Kind

Case SquareColor.Black
BoardSquare.BackColor = Color.Black

Case SquareColor.Green
BoardSquare.BackColor = Color.Green

Case SquareColor.White
BoardSquare.BackColor = Color.White

End Select

’Set the text of that square and maybe
’improve the back color.
Select Case StateSquare.Holds

Case Checker.Fox
BoardSquare.Text = "Fox"
’Fox needs better colors.
Select Case StateSquare.Kind

Case SquareColor.White
BoardSquare.BackColor = Color.LightPink

Case SquareColor.Black
BoardSquare.BackColor = Color.Red

Case SquareColor.Green
BoardSquare.BackColor = Color.LightGreen

End Select

Case Checker.Hound
BoardSquare.Text = "Hnd"
’Can’t read text on black.
BoardSquare.BackColor = Color.DarkGray

Case Checker.None

The Fox and Hounds Project 187

Select Case StateSquare.Kind
Case SquareColor.Black, SquareColor.Green

’Green and black squares are solid.
BoardSquare.Text = ""

Case SquareColor.White
’White have the step number.
BoardSquare.Text = Squares(i).Steps.ToString

End Select
End Select

Next
End Sub

#End Region

With some help from the board, we will be able test what we have. We will return

to add more functionality to the GameState class, but we can leave that for later.

Board Code

The board itself will need to store some data. We need our buttons and the game

state used to paint them. As you may have guessed from the figures, we will

support an undo function, so we will need to stash the prior boards away. View

the code for Board.vb and add the following to the class:

’The graphics:
Dim BoardSquares(31) As FaHButton
’Our current game:
Dim ThisGame As GameState
’The boards before this one so we can undo:
Dim PriorBoards As New Collection

We will do one-time initializations in the form Load event handler. Once those

are done, we will ask the reset button click handler to start a new game for us.

Add the following code to the class:

Private Sub Board_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim i As Integer
Dim sq As FaHButton
Const sqsize As Integer = 50

’Do the once per run stuff.
Call InitMoves()
For i = 0 To 31

sq = New FaHButton(i)

188 Chapter 6 n Look-Ahead: The First Step of Planning

sq.Height = sqsize
sq.Width = sqsize

sq.Parent = Me
’Four in every row.
sq.Top = 5 + sqsize * (i \ 4)
’Left: 5 for border, i mod 4 term steps through the 4 columns,
’and the mod 2 term for the offset in alternating rows.
sq.Left = 5 + (sqsize * 2) * (i Mod 4) + sqsize * (((i \ 4) + 1) Mod 2)
BoardSquares(i) = sq

Next

’Just use the reset function from here to get a new game.
Call ResetButton_Click(Nothing, Nothing)

End Sub

That provides us with the one-time initializations. We need to add the reset code

that we called in order to get a new game. Add the following to the class:

Private Sub ResetButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ResetButton.Click

’Start with a brand new one.
ThisGame = New GameState
’Clear the undo collection.
PriorBoards.Clear()
’Means we can’t undo.
UndoButton.Enabled = False
’Have the current game imprint itself on the buttons.
Call ThisGame.MarkButtons(BoardSquares)

End Sub

We are now ready to fire up the game and see if we get the board we expect. Run

the code in the debugger, and you should get the board illustrated in Figure 6.2.

While the reset button works, we cannot tell because we cannot make any

changes to the game. This was a great deal of work for a static picture, so we

should let the player have some fun.

Enabling the Player’s User Interface

We will use drag and drop to let the player make moves. On the graphical side,

there are three parts to a drag-and-drop operation: the mouse button down

event, the drag over, and the drop. Since our game board is more than just

moveable squares, we also have to change the game state after we make our move.

The Fox and Hounds Project 189

In addition, we have to prevent moves that break the rules of the game. We will

make additions to the code in three areas: the board, the button class, and the

GameState class.

The board has to hold the current game state for the game it is showing. Drag and

drop is going to happen to the buttons. The buttons will need to ask the board for

the current game state to validate potential moves. The buttons will need to tell

the board about the new game state after a valid move has been performed. The

buttons will need help from the GameState class to generate that new game state.

As before, the board will ask the GameState class to paint the new state onto

the array of buttons the board is holding.

UI Elements in the Board Class

The board code is the easiest to deal with. Add the following code to the Board

class:

Public Property CurrentGame() As GameState
’There can be two parts to a property.
Get

’Get is very simple for us:
Return ThisGame

End Get

’Set requires some work on our part.
Set(ByVal value As GameState)

’Did we have a prior game to save?
If ThisGame IsNot Nothing Then

’If one side couldn’t move, the undo
’will need multiple clicks to make a visible change.
PriorBoards.Add(ThisGame)
UndoButton.Enabled = True

End If
’Store the new current game.
ThisGame = value
’Ask game state to paint itself.
Call ThisGame.MarkButtons(BoardSquares)

End Set
End Property

The outside world calls Get to get the GameState object that represents the current

game shown on the board. The outside world calls Set to give the board a new

190 Chapter 6 n Look-Ahead: The First Step of Planning

GameState object to display. Before it displays the new GameState, the board

pushes the current game, if any, onto the undo stack. It then paints the UI with

the new game state. The AI code will also exploit these new capabilities. For many

games, it is a great idea to merge the player input pipeline and the AI input

pipeline as early as possible. Doing so prevents you from having to keep two

different pieces of code that do the same thing synchronized.

Now that we have enabled the undo button, we should give it something useful to

do. Add the following code to the Board class:

Private Sub UndoButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles UndoButton.Click

’Do I have a prior board to show?
If PriorBoards.Count > 0 Then

’Overwrite the current board with the last board
’out of the collection.
ThisGame = CType(PriorBoards(PriorBoards.Count), GameState)
’Remove it from the collection.
PriorBoards.Remove(PriorBoards.Count)
’That might have been the last board.
UndoButton.Enabled = (PriorBoards.Count > 0)
’Paint the board.
Call ThisGame.MarkButtons(BoardSquares)

End If
End Sub

The undo function is very handy when debugging the AI. Human players likewise

appreciate the ability to recover from accidentally letting go of the mouse button

too soon. That is all of the additions to the board that the buttons need, but they

still need help from the GameState class.

Game State Support for the UI

The buttons need to be able to ask the game state where the fox is and where the

hounds are. Only those squares can be the source of a valid move. It does not

make sense to move an empty square, and we have to allow the fox to move

differently than the hounds. Getting the location of the fox is easy. Change to the

GameState.vb tab in the editor. Add the following code to the Public Methods

region of the GameState class:

’Where is the fox?
Public Function FoxAt() As Integer

The Fox and Hounds Project 191

Return (Fox)
End Function

For the hounds, we will return a copy of the game state’s array holding the

locations of all of the hounds. Add the following code to the Public Methods region:

’Where are the hounds?
Public Function HoundsAt() As Integer()

’Create a new array.
Dim Locations(3) As Integer
Dim i As Integer
’Fill that array from our private copy.
For i = 0 To 3

Locations(i) = Hounds(i)
Next
’Return that array to protect our private copy.
Return Locations

End Function

To be a valid move, the target square has to be open. If it has a checker on it, it is

blocked. We could use the FoxAt() and HoundsAt () functions, but the code is

easier to read if we can just ask the game state if a checker is on a given square.

Add the following code to the Public Methods region:

’Is some square occupied?
Public Function HasChecker(ByVal ss As Integer) As Boolean

’Is the fox there?
If ss = Fox Then Return True
Dim i As Integer
’Is one of the hounds there?
For i = 0 To 3

If ss = Hounds(i) Then Return True
Next
Return False

End Function

While we are in the Public Methods, we will add some code that the AI will need.

Other code might want to know these things, but the AI has to be able to get to

them. Add the following code to the Public Methods region:

’Fox wants 0, Hounds want TRAPPED (127).
Public Function GameRank() As Integer

Return Rank
End Function

192 Chapter 6 n Look-Ahead: The First Step of Planning

’How many turns have been taken?
Public Function MoveCount() As Integer

Return Turn
End Function

Right now, the buttons can ask the game state if there is a fox or a hound on the

source square. The buttons can ask the game state if there is a checker on the target

square. The buttons can use the arrays inMoves.vb to check for valid moves for the

fox or the hounds. What remains is for the buttons to be able to get the new game

state from the current game state by asking the current game state to make a move.

Then the buttons will be able to set the board’s game state with the new one.

We will have the GameState class provide move capability rather than have outside

code change the game state. This defensivemeasure protects the game fromAI code

bugs as well as user-interface code bugs. We can live with the idea that the AI is not

smart enough, but we cannot accept having an untrustworthy game state. The game

must work, even if the AI goes off the rails. Our highly defensive way of making a

move is to ask the game state to return a clone of itself changed by one move. This

lets us do anything we desire with the new game state, including throwing it away,

which the AI will do often. This also makes our undo method work as expected.

We will implement the cloning part by providing a different way of creating a

new instance of the class. Add the following code to the Class New region. (You

may want to collapse other regions to reduce the clutter in the editor):

’Clone the passed-in gamestate.
Public Sub New(ByVal GS As GameState)

Dim i As Integer

’Copy the positions.
Fox = GS.Fox
For i = 0 To 3

Hounds(i) = GS.Hounds(i)
Next

’Allocate the squares.
For i = 0 To 31

Squares(i) = New SquareData
Next

’Copy the turn number.
Turn = GS.Turn

The Fox and Hounds Project 193

’We do NOT color. The caller will want to move stuff
’and after the move, it will call color.

End Sub

We will not call this Newmethod directly from the outside. Instead, we will provide

an interface based on the idea of making a move. The fox is slightly simpler since

there is only one. Add the following code to the Public Methods region:

’So what do we get if the fox moves to some square?
Public Function ProposeFoxTo(ByVal targetSqaure As Integer) As GameState

’Clone me.
Dim afterMove As GameState = New GameState(Me)
’Take a turn . . .
afterMove.Turn = afterMove.Turn + 1
’ . . . by moving the fox.
afterMove.Fox = targetSqaure
’Analyze the new board.
afterMove.ColorMe()
Return afterMove

End Function

The only difference when moving a hound is that we have to say which hound

moved. Add the following code to the Public Methods region:

’So what do we get if a hound moves to a new square?
Public Function ProposeHoundTo(ByVal houndNumber As Integer, _

ByVal targetSqaure As Integer) As GameState
’Clone me.
Dim afterMove As GameState = New GameState(Me)
’Take a turn . . .
afterMove.Turn = afterMove.Turn + 1
’ . . . by moving one of the hounds.
afterMove.Hounds(houndNumber) = targetSqaure
’Analyze the new board.
afterMove.ColorMe()
Return afterMove

End Function

Drag and Drop in the Button Class

We finally have enough support from the board and the game state to actually

make some moves. Now we will do the three parts to the drag and drop: the

mouse down, the drag over, and the drop. Change to the FaHButton.vb tab in the

editor. We start with the mouse down event. Add the following code to the class:

194 Chapter 6 n Look-Ahead: The First Step of Planning

Private Sub FaHButton_MouseDown(ByVal sender As Object, ByVal e _
As System.Windows.Forms.MouseEventArgs) Handles Me.MouseDown

’Our parent is the board.
Dim MainForm As Board = CType(Me.Parent, Board)
’Get the game state from the board so we can ask it things.
Dim GS As GameState = MainForm.CurrentGame

Debug.WriteLine("Mouse Down " & MySubscript.ToString)

’Is the fox on my square?
If MySubscript = GS.FoxAt Then

’Use -1 to signal that it is the fox.
HoundNumber = -1
’Tell Windows we want to do drag/drop.
Call DoDragDrop(Me, DragDropEffects.Move)
Debug.WriteLine("DragDrop FOx")

End If

Dim i As Integer
’Ask gamestate where the hounds are.
Dim Hounds() As Integer = GS.HoundsAt()
’Is a hound on my square?
For i = 0 To 3

If MySubscript = Hounds(i) Then
’Record which hound is moving.
HoundNumber = i
’Tell Windows we want to drag/drop.
Call DoDragDrop(Me, DragDropEffects.Move)
Debug.WriteLine("DragDrop a Hound")

End If

Next

End Sub

The debug statements provide text that we can follow in the output window when

we run the debugger. You can comment them out or uncomment them to provide

the right level of detail. That handles mouse down.Wewant to provide feedback as

the mouse travels over the other buttons. Add the following code to the class:

Private Sub FaHButton_DragOver(ByVal sender As Object, ByVal e As System.
Windows.Forms.DragEventArgs) Handles Me.DragOver

’Debug.WriteLine("FaH DragOver")

The Fox and Hounds Project 195

’Default to no move allowed
e.Effect = DragDropEffects.None

’Only allow F&H buttons to drag over.
If Not (e.Data.GetDataPresent(GetType(FaHButton))) Then

Return
End If

’We will need the board’s game state.
Dim MainForm As Board = CType(Me.Parent, Board)
Dim GS As GameState = MainForm.CurrentGame

’Can’t drop on me if I am occupied.
If GS.HasChecker(MySubscript) Then

Return
End If

’We also need to know where this drop is coming from.
Dim Source As FaHButton = _

CType(e.Data.GetData(GetType(FaHButton)), FaHButton)
If Source.Subscript = GS.FoxAt Then

’Do the fox’s neighbors include me?
Dim FoxsNeighbors As Collection = Moves.Neighbors(Source.Subscript)
If FoxsNeighbors.Contains(MySubscript.ToString) Then

’A valid move!
e.Effect = DragDropEffects.Move

End If
Else

’So it must therefore be a hound.

Dim HoundMoves As Collection = Moves.MovesDown(Source.Subscript)
If HoundMoves.Contains(MySubscript.ToString) Then

’A valid move!
e.Effect = DragDropEffects.Move

End If
End If

End Sub

Run this code in the debugger. Drag a hound around the board. Drag the fox

around the board. You should be able to tell valid moves by the feedback from

the system. What remains is to deal with the drop. Add this final routine to the

class:

196 Chapter 6 n Look-Ahead: The First Step of Planning

Private Sub FaHButton_DragDrop(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) Handles Me.DragDrop

Debug.WriteLine("DragDrop event.")

’We will need the board’s game state.
Dim MainForm As Board = CType(Me.Parent, Board)
Dim GS As GameState = MainForm.CurrentGame

Dim Source As FaHButton = CType(e.Data.GetData(GetType(FaHButton)),
FaHButton)

If Source.HoundNumber < 0 Then
’Fox moved.
MainForm.CurrentGame = GS.ProposeFoxTo(MySubscript)

Else
’Hound moved.
MainForm.CurrentGame = GS.ProposeHoundTo(Source.HoundNumber,

MySubscript)
End If

End Sub

Run the code and make moves for the fox and the hounds. Use the Undo button

to go backward. Make a number of moves and notice that the board colors

correctly and numbers the squares when the line is broken. Our game so far has

the same game play as a folding checkerboard and five checkers, but the inter-

activity is notably better. The coloring and numbering tells the state of the game

at a glance. This is more engaging for a human player, and it makes the game far

easier on the AI and on the AI programmer.

Adding the AI

The AI in these pages uses look-ahead. It was developed from code that used only

the heuristics. On the CD, the AI code will have both versions. The heuristics-

only AI has the hounds keeping the wall intact if they can. Without look-ahead,

they fail to know how to put it back together when broken. Likewise, the fox AI

breaks the wall by getting lucky, but once it is broken, it heads for the hole and

freedom. There were many benefits to writing the AI this way. First, it proved that

the heuristics worked as expected. Second, it provided experience at writing

code that took moves in the game framework. The heuristics-only AI is in the

No Lookahead region of the file AI.vb on the CD. If you have trouble with the

look-ahead AI, switch to the heuristics-only AI. You can do this by copying the No

Lookahead region to your AI.vb code and then changing the calls to Fox2() and

The Fox and Hounds Project 197

Hounds2() in the Public Interface region to Fox1() and Hounds1(). The look-

ahead AI code here has numerous debug statements, not all of which are com-

mented out. All of them are there to aid in debugging the code, so feel free to

uncomment them if things go wrong.

This look-ahead implementation uses recursion. Recursion is when a routine

directly or indirectly calls itself. ‘‘My best move depends on their countermove,

which depends on the best move I can take after that,’’ involves recursion. Notice

that ‘‘best move’’ is mentioned twice. Our AI will call itself when looking ahead.

The limit on search depth or the use of a heuristic will stop the chain from going

on infinitely.

Our AI has two parts each for the fox and for the hounds. The first part is asked to

pick a move from its available moves. It does this by examining the expected

outcomes of each of the moves. In the code, you will see this in terms of the best

current move being based on the best future result. The basic request of ‘‘give me

your best move’’ has the code looking ahead with each of the possible moves to

decide what is best. That is to say that for every candidate move, there is a future

result that can be used to rank the candidates. We can use game state for both the

candidates and the results.

Since the same code is used to generate both moves and results, we will need to

make sure that the program returns the appropriate one. When the outside world

calls, it wants the move, not the result. When the fox is looking ahead to consider

a candidate move, it will want a countermove from the hounds, not results.

When the fox looks ahead for how well things turn out after the hounds take their

countermove, the fox wants results.

Connecting the UI to the AI

The first task will be to add code for the Fox and Hounds buttons on the board.

Switch to the Board.vb tab in the editor and add the following code to the class. It

will generate errors that we will fix shortly.

’Move the fox.
Private Sub FoxButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles FoxButton.Click
’Give the user an hourglass.
Me.Cursor = Cursors.WaitCursor
’Do some performance measurements.
Dim startTime As Date = Now
’Take an actual move.

198 Chapter 6 n Look-Ahead: The First Step of Planning

Me.CurrentGame = AI.MoveFox(ThisGame)
’Show how long it took.
Debug.WriteLine("Fox move took " & HowLong(startTime) & " ms.")
’Get rid of the hourglass.
Me.Cursor = Cursors.Default

End Sub

’Move a hound.
Private Sub HoundsButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles HoundsButton.Click
’Give the user an hourglass.
Me.Cursor = Cursors.WaitCursor
’Get the current time for performance.
Dim startTime As Date = Now
’Make a move.
Me.CurrentGame = AI.MoveHounds(ThisGame)
’Show how long it all took.
Debug.WriteLine("Hounds move took " & HowLong(startTime) & " ms.")
’Get rid of the hourglass.
Me.Cursor = Cursors.Default

End Sub

’Do the time math and output the result.
Private Function HowLong(ByVal startTime As Date) As String

’Fix the stop time since we compute with it twice.
Dim stopTime As Date = Now
’We have to do the seconds and ms seperately. . .
Dim secs As Integer = stopTime.Subtract(startTime).Seconds
’ . . .since the ms roll over to zero each full second.
Dim ms As Integer = stopTime.Subtract(startTime).Milliseconds
’Combine them and output the string.
Return (secs * 1000 + ms).ToString

End Function

We exploit the fact that the AI code will be passing around and returning game

state here. If the AI goes off the rails and returns a future result instead of a

current move, the board will show that future result. We do this to minimize the

amount of code; it’s not generally a good idea.

The Public Interface to the AI

We are ready for a deep dive into the AI. Add a module to the project and name it

AI.vb. The first thing we will add is the public interface to the AI. It protects the

The Fox and Hounds Project 199

rest of the code from any changes we make to the AI. Add the following code to

the module:

#Region "Public Interface"
Public Function MoveFox(ByVal GS As GameState) As GameState

Debug.WriteLine("")
Debug.WriteLine("Move #" & (GS.MoveCount + 1).ToString)
Debug.WriteLine("Move Fox.")

’The code for this is on the CD.
’Return Fox1(GS)

Return Fox2(GS, 1, True)
End Function

Public Function MoveHounds(ByVal GS As GameState) As GameState
Debug.WriteLine("")
Debug.WriteLine("Move #" & (GS.MoveCount + 1).ToString)
Debug.WriteLine("Move Hounds.")

’The code for this is on the CD.
’Return Hounds1(GS)

Return Hounds2(GS, 1, True)
End Function

#End Region

Internal Helper Routines for the AI

The actual AI will benefit from some helper routines. The discussion of the

evaluation function indicated that the code will not always do a strict comparison

between board rankings. So we will need a way to say that one board is better than

another, and the fox and the hounds will have different opinions on the matter.

That said, often the code will use simple rank, so we should provide a way to keep

a sorted list of candidate boards.

We will create a new region called Internal Stuff in the module. Remember that

regions cannot overlap. The first thing we will add is code to keep a sorted list.

Add the following code:

#Region "Internal Stuff"
Private Sub AddGameStateKeepSorted(ByVal NewGS As GameState, _

ByVal SortedMoves As Collection)

200 Chapter 6 n Look-Ahead: The First Step of Planning

’Compare us to existing moves.
Dim i As Integer
Dim GS As GameState
For i = 1 To SortedMoves.Count

GS = CType(SortedMoves(i), GameState)
’Smallest first.
If NewGS.GameRank < GS.GameRank Then

’Add it here and we are done.
SortedMoves.Add(NewGS, Nothing, i)
Return

End If
Next
’Add it at the end.
SortedMoves.Add(NewGS)

End Sub
#End Region

Recall the discussion of the evaluation function and how sometimes we want to

use rank and sometimes we want to use how fast something happens. Evaluating

the moves by rank alone gives the results we saw in Figures 6.7–6.9. As mentioned

in the sidebar, that code is on the CD as AI.V5.vb. The final version of a better

move is simpler than the intermediate versions. Let us add code for the fox to the

Internal Stuff region:

Private Function BetterFoxMove(ByVal Result As GameState, _
ByVal BetterThan As GameState) As Boolean

’Anything is better than nothing.
If BetterThan Is Nothing Then Return True

’Smaller rank is better for fox.

’For good moves, take the earlier one.
If Result.GameRank < UNREACHABLE _

And BetterThan.GameRank < UNREACHABLE Then

’Settle good moves by time.
If Result.MoveCount < BetterThan.MoveCount Then

Debug.WriteLine("Fox: Result of " & Result.GameRank.ToString & _
" is better than " & BetterThan.GameRank.ToString)

Return True
Else

’If need be, add a debug statement here.
End If

The Fox and Hounds Project 201

End If

’One or both of the moves is bad.

’Is this result worse than what we have?
If Result.GameRank > BetterThan.GameRank Then Return False

’Is it better?
If Result.GameRank < BetterThan.GameRank Then

Debug.WriteLine("Fox: Result of " & Result.GameRank.ToString & _
" is better than " & BetterThan.GameRank.ToString)

Return True
Else

’Break ties based on move count.
If Result.GameRank < UNREACHABLE Then

’Make good things happen sooner.
If Result.MoveCount < BetterThan.MoveCount Then

Return True
End If

Else
’Make bad things happen later.
If Result.MoveCount > BetterThan.MoveCount Then

Return True
End If

End If
End If
’Default to false.
Return False

End Function

The fox uses this code when looking ahead, which is to say when it is trying to

break the line. This code would not work when the line is broken. The same

routine for the hounds is critical for them, as the discussion of the evaluation

function showed. Add the following code to the Internal Stuff region:

Private Function BetterHoundsMove(ByVal Result As GameState, _
ByVal BetterThan As GameState) As Boolean

’Anything is better than nothing.
If BetterThan Is Nothing Then Return True

’Are they both good moves?
If BetterThan.GameRank >= UNREACHABLE And _

Result.GameRank >= UNREACHABLE Then

202 Chapter 6 n Look-Ahead: The First Step of Planning

’Faster is better; slam the door first, win later.
If Result.MoveCount < BetterThan.MoveCount Then

Debug.WriteLine("Hounds a " & Result.GameRank.ToString & _
" at move " & Result.MoveCount.ToString & _
" is better than a " & BetterThan.GameRank.ToString & _
" at move " & BetterThan.MoveCount.ToString)

Return True
Else

Debug.WriteLine("Hounds a " & Result.GameRank.ToString & _
" at move " & Result.MoveCount.ToString & _
" is worse than a " & BetterThan.GameRank.ToString & _
" at move " & BetterThan.MoveCount.ToString)

Return False
End If

End If

’Are the moves tied?
If Result.GameRank = BetterThan.GameRank Then

’Break ties based on move count.
If Result.GameRank >= UNREACHABLE Then

’Make good things happen sooner.
If Result.MoveCount < BetterThan.MoveCount Then

Return True
End If

Else
’Make bad things happen later.
If Result.MoveCount > BetterThan.MoveCount Then

Return True
End If

End If
End If

’Larger rank is better for hounds.
Return Result.GameRank > BetterThan.GameRank

End Function

The Fox’s Move

The AI module now has the support services the two AIs will call upon. It is time

to add the two-part AI for the fox. The AI will go in a separate region. Add the

following code to the module:

The Fox and Hounds Project 203

#Region "With Lookahead"
Private Function Fox2(ByVal GS As GameState, ByVal depth As Integer, _

ByVal WantMove As Boolean) As GameState

’Move to lowest steps square if I have one.

’I’m not moving if I already won or lost.
If GS.GameRank = 0 Or GS.GameRank = TRAPPED Then

Debug.WriteLine("Fox2: Game already over, not moving.")
Return GS

End If

’Get my potential moves.
Dim ss As Integer
Dim SortedMoves As New Collection
’The fox can move to any neighbor . . .
For Each ss In Moves.Neighbors(GS.FoxAt)

’ . . . that is not blocked.
If Not GS.HasChecker(ss) Then

’We have a potential move, represented by its game state.
’Store it in the sorted list.
AddGameStateKeepSorted(GS.ProposeFoxTo(ss), SortedMoves)

End If
Next

’If I can’t move, return the existing game.
’This should never happen since it means I’m trapped
’but it protects the rest of the code that follows.
If SortedMoves.Count = 0 Then

Debug.WriteLine("## # # # ## # # # # # # # # # # # # ## # # # # " & _
"Fox2: not trapped, but no candidates.")

Return GS
End If

’Look at the lowest steps move as our first candidate.
Dim Candidate As GameState
Candidate = CType(SortedMoves(1), GameState)

’Is freedom reachable?
If GS.GameRank < UNREACHABLE Then

’I need to win - for now, follow shortest path.
’This means fox never looks ahead when hounds
’have to look ahead.

204 Chapter 6 n Look-Ahead: The First Step of Planning

Debug.WriteLine("Fox following shortest path to " & _
Candidate.FoxAt.ToString)

Return Candidate
Else

’Look-ahead code - only when hemmed in:

’If they asked for a move and we only have 1,
’no need to look ahead. If they didn’t ask
’for a move, we look ahead to evaluate the quality
’of our one move.
If WantMove And SortedMoves.Count = 1 Then

Debug.WriteLine("Fox OPTIMIZING: Only one move at depth " & _
depth.ToString)

Return Candidate
End If

’I need to break that line (or die trying).

’At the moment, nothing looks good. (Pun alert).
Dim BestCurrentMove As GameState = Nothing
Dim BestFutureResult As GameState = Nothing

’What does the future hold for each move I can make?
For Each Candidate In SortedMoves

’Ask the future.
Dim FutureGame As GameState = FoxLookAhead(Candidate, depth)
’Is it the best future?
If BetterFoxMove(FutureGame, BestFutureResult) Then

BestCurrentMove = Candidate
BestFutureResult = FutureGame

End If
Next Candidate

’I should always have a best move.
If BestCurrentMove IsNot Nothing Then

’Debug.WriteLine(depth.ToString & _
’ " Fox2: Fox’s best move is to " & _
’ BestCurrentMove.FoxAt.ToString)

’Did the caller want the move or the result?
If WantMove Then

Return BestCurrentMove

The Fox and Hounds Project 205

Else
Return BestFutureResult

End If
End If

End If

’This is not a good sign to be here; make the message stand out.
Debug.WriteLine("######################### Fox2: " & _

"hit default return.")

’Default is the first move in the list, given that things are bad.
Return CType(SortedMoves(1), GameState)

End Function
#End Region

The first thing to notice is that the code is heavily commented and liberally

sprinkled with debug output, both commented and not. Recursive code should

be written with care and treated as broken until proven working. For all of that,

the routine is simple at its core once the defensive coding is ignored. Looking at

the code from the top down, we see that the goal is to get the fox to a square with

a lower number of steps to freedom. Squares with 0 steps are green squares that

no hound can get to, which means that making it to a 1 is also an assured victory.

The first chunk of code checks to see if the game is already over. There is no need

to move if the outcome has been decided. If the game is in play, then the fox

creates a game state for every valid move that it can make and stores those games

in a sorted list. What follows is a defensive chunk of coding. The passed-in game

state claims not to be a victory for the hounds. Therefore, the fox should have a

move. If the passed-in game state has an incorrect rank, the fox will try to make

moves when it has none. Now we are ready to evaluate the available moves.

We start with the first game in the sorted list. This candidate will have the lowest

rank, which the fox likes. How the fox acts depends on whether it is hemmed in.

When not hemmed in, the AI uses the heuristic of taking the shortest path to

freedom and does not bother looking ahead. In such cases, the first candidate is

the best next move.

Things get interesting when the fox is forced to look ahead. The first part of the

look-ahead checks if the fox only has one move and the caller wanted a move

instead of a result. The look-ahead is optimized away; when only one move is

possible, it is the best move. This situation happens late in the game and can be

seen in Figure 6.10. This board is seen after the hounds take move 40 in an AI

206 Chapter 6 n Look-Ahead: The First Step of Planning

versus AI game. The fox needs to look ahead to break the wall, but it has only one

move, so that is the move it must take. Most of the time, there are multiple moves

to ponder.

The fox then creates storage for the best move and for the future result that the

best move yields. Then, for each move it has, it asks the future for the outcome of

that move. Each result is used to decide whether the move is best. Once all the

moves are checked, there should always be a best move, and the code returns

either themove or the result of the move, depending on what the caller requested.

If something went wrong and no move or result was returned, the code com-

plains with an easily seen error message in the debugging output. These messages

are never seen when the current bug-free code executes, but the code was not

always bug free. Professionals never assume that code is bug free.

The Fox’s Look-Ahead

All of this sounds perfectly reasonable, except that bit about asking the future. Let

us see what asking the future looks like in code. Add the following to the region:

Figure 6.10
The fox is behind a line with only one move.

The Fox and Hounds Project 207

’Tell me the future outcome of this move.
Private Function FoxLookAhead(ByVal GS As GameState, _

ByVal depth As Integer) As GameState

’Evaluate the candidate they passed in.

If GS.GameRank < UNREACHABLE Then
Debug.WriteLine("**************** FoxLookAhead: line is " & _

"broken, so why am I looking ahead?.")
Return GS

End If

’If you set the depth too low, it won’t see how to break the wall.
’It needs at least 5. It can break the line from the start in
’5 moves at square 8, in 7 moves at square 10, and in 10 moves at 14.
If depth > 5 Then

’Debug.WriteLine("Terminating Fox on depth.")
Return GS

End If

’I’m not moving if I already won or lost.
If GS.GameRank = 0 Or GS.GameRank = TRAPPED Then Return GS

’I’m enclosed, or I would not be here. I can’t tell one
’enclosed move from another, so I need to see the hounds’ response.
Dim TheirMove As GameState = Hounds2(GS, depth, True)

’If I broke them, it’s a great move.
If TheirMove.GameRank < UNREACHABLE Then

Debug.WriteLine("Fox can break the line at " & GS.FoxAt.ToString & _
" in " & depth.ToString & " moves.")

Return TheirMove
End If
’I am looking ahead, I give back results from the future.
Return Fox2(TheirMove, depth + 1, False)

End Function

Much like the Fox2() function, the FoxLookAhead() function starts by checking

that the code is operating as expected. The job of this routine is to foretell how

good the move passed in will turn out to be. Early on it checks for how deep the

search is going. The fox needs five levels of search to see the first place it can break

the line when the fox starts at the back row. There are later moves that break the

208 Chapter 6 n Look-Ahead: The First Step of Planning

line that will exist then, but there is no point in waiting for them. At any point in

the game, five is enough to see the next break if one exists.

Then the look-ahead checks to see if the game it was passed in wins for one side or

the other. It is not an error for this to happen here, but it certainly terminates the

search for good or ill. If the fox is still in the game and looking ahead, it needs to

break the line. Fox moves by themselves do not break the line. A fox move can

force the hounds to break the line, but it is always a hound’s move that opens any

hole. So the look-ahead asks the hounds to make their next move so that the fox

can see if it has forced a hole.

Before your brain melts, remember that when the fox is looking ahead from

behind an unbroken line, the hounds know exactly what to do. They know to

keep the line intact if they can and squeeze the fox out of squares it can move to.

Failing that, they know that of the moves that break the line, the one that puts the

hole the farthest from the fox is best. The hounds do not need to use look-ahead

to do this.

If the hounds’ best move breaks the line, the fox knows that this is a great move,

so it returns as a result the board provided by the hounds that shows them

breaking their line. The look-ahead was able to say, ‘‘This is the best result of the

move you gave me.’’ If the hounds did not break their line, then the look-ahead

asks the fox to return the future result of their best countermove by calling Fox2()

with a False parameter, indicating that the look-ahead wants a result, not a

move. The fox will spread out a tree at most five fox moves deep into the future,

looking for boards that break the line.

We mentioned the calming fact that the hounds do not need to look ahead when

the fox is looking ahead. This happens to be true for us, and that heuristic goes a

long way to manage computational complexity, but it is not really required. The

task might not be suitable for beginners, but with careful analysis, the code can be

changed to accommodate both sides looking ahead at the same time. Search

depth limits still work, but a problem can arise. If the fox is looking ahead past

when the line is broken, it will see that in the future the line will be reformed. At

one point it will decline to take the early break in the line in favor of a later break

because with the later break it cannot see far enough into the future to see the

hounds reforming the line after the later break. With the early move, it sees

freedom followed by enclosure, and with the later move it sees freedom but can’t

see the enclosure that surely follows. A sure cure to this is to let the fox see the

future all the way to the end. This is computationally expensive, and in this

The Fox and Hounds Project 209

context pointless. We know in advance that the early break is better. We also

know in advance that the fox loses unless the hounds make a blunder. We know

that the later break is as doomed as the early break, but the AI does not. Without

that foreknowledge, the AI would be correct in avoiding the doomed early break

in favor of the later break with the uncertain future. We optimize that away with

search depth to make a more interesting and effective AI. An AI that correctly

refuses to try anything because it knows it will fail is not very much fun. By taking

the early breaks, the fox is trying to force the hounds into a mistake instead of

letting them take an easy win.

The point here is that both sides could easily need to look ahead in other games.

Fox and Hounds is too straightforward and too full of rich heuristics to need it,

but other games will certainly call for it. Tic-Tac-Toe is one such game; looking

ahead on both sides is not limited to large and complex games.

The Hounds’ Move

Having seen how the fox will look ahead, the hounds should be reasonably easy to

understand. Once we do the code for the hounds, we will be able to watch the two

AIs play each other. We start with the basic code that asks the hounds to take a

move. Add the following code to the region:

’Move a hound.
Private Function Hounds2(ByVal GS As GameState, ByVal depth As Integer, _

ByVal WantMove As Boolean) As GameState

’I’m not moving if I already won or lost.
If GS.GameRank = 0 Or GS.GameRank = TRAPPED Then

Debug.WriteLine("Hounds2: Game already over, not moving.")
Return GS

End If

’Look for move that has max fox steps/highest rank.

Dim ss As Integer
’We need to store the moves.
Dim SortedMoves As New Collection
Dim i As Integer
Dim Hounds() As Integer = GS.HoundsAt()
’Go through all four hounds. . .
For i = 0 To 3

210 Chapter 6 n Look-Ahead: The First Step of Planning

’ . . . checking for possible moves . ..
For Each ss In Moves.MovesDown(Hounds(i))

’ . . .that are not blocked.
If Not GS.HasChecker(ss) Then

’Store them away in the sorted list.
AddGameStateKeepSorted(GS.ProposeHoundTo(i, ss), _

SortedMoves)
End If

Next
Next

’If I can’t move, return the existing game.
If SortedMoves.Count = 0 Then

Debug.WriteLine(depth.ToString & " Hounds2: CANNOT MOVE.")
Return GS

End If

’Look at the highest steps move (the last one).
Dim Candidate As GameState
Candidate = CType(SortedMoves(SortedMoves.Count), GameState)

’Did I win or keep the fox in black? No need to look further.
If Candidate.GameRank >= UNREACHABLE Then

’It’s a good move for the hounds.

If GS.GameRank < UNREACHABLE Then
’Oh, happy day, this move fixes a broken line.
Debug.WriteLine(depth.ToString & _ "

"Hounds found a way to win or restore the line.")
End If
’Here is where the naive counting of black squares leads to trouble.
’The bad moves wind up last in the list when there are ties.
’The better count doesn’t have the problem.
Return Candidate

End If

’If we are here, the line is already broken or about to break.

’Is the line about to break?
If GS.GameRank >= UNREACHABLE Then

’Simple rule when we break the line - put the fox farthest
’from the hole.

The Fox and Hounds Project 211

’MIGHT WANT TO DO SOME TIE BREAKING BY LOOKING AHEAD HERE?
’Not really, the final result doesn’t fail.
Return Candidate

End If

’Line is already broken, we have to look ahead.

’Initialize the variables.
Dim BestCurrentMove As GameState = Nothing
Dim BestFutureResult As GameState = Nothing

’What does the future hold for each of my moves?
For Each Candidate In SortedMoves

’Ask the future.
Dim FutureGame As GameState = HoundsLookAhead(Candidate, depth)
’Is that the best?
If BetterHoundsMove(FutureGame, BestFutureResult) Then

BestCurrentMove = Candidate
BestFutureResult = FutureGame

End If
Next Candidate

’I should always have a best move.
If BestCurrentMove IsNot Nothing Then

’Debug.WriteLine(depth.ToString & _
’ " Hounds2: Hounds’s best move is a " & _
’ BestCurrentMove.GameRank.ToString)

’Did the caller want the move or the result?
If WantMove Then

Return BestCurrentMove
Else

Return BestFutureResult
End If

End If

’This is not a good sign to be here; make the message stand out.
Debug.WriteLine("## # # # # # # # # # # ## # # # # # # # # # # # Hounds2: " & _

"hit default return.")

’Best we have in a broken situation.
Return CType(SortedMoves(SortedMoves.Count), GameState)

End Function

212 Chapter 6 n Look-Ahead: The First Step of Planning

The analysis of this code is very similar to the fox’s move code. It begins with a

quick victory check and then goes on to catalog the available moves. After the

same defensive code, it checks to see if it can employ a heuristic on moves

without doing any looking ahead. Putting the line back together is always a good

thing for the hounds. The sorting, when combined with the final version of the

evaluation function, makes it very easy for the hounds to pick among their good

moves. It also helps when they have to break the line. Putting a broken line back

together involves the exact same kind of look-ahead that the fox uses; just ask the

future about the results of the candidate moves.

Hounds’ Look-Ahead

The hounds’ look-ahead carries the same structure as the fox’s look-ahead. There

are some differences worth pointing out, however. Add the following code to the

region:

’Give me the future result of this move.
Private Function HoundsLookAhead(ByVal GS As GameState, _

ByVal depth As Integer) As GameState
’Evaluate this hounds move they gave me.

If GS.GameRank > UNREACHABLE Then
Debug.WriteLine("**************** HoundsLookAhead: line is good, " & _

"so why am I looking ahead?.")
Return GS

End If

’It can reform the first broken line in 11, 10, and 5 moves.
If depth > 6 Then

’Debug.WriteLine("Hounds: terminating early at " & Depth.ToString)
Return GS

End If

’I’m not moving if I already won or lost.
If GS.GameRank = 0 Or GS.GameRank = TRAPPED Then Return GS

’I need to put the line back together, which I can’t do
’until I see the fox move.

Dim TheirMove As GameState = Fox2(GS, depth, True)
’If they win, this move stinks and all futures based on it are

The Fox and Hounds Project 213

’equally bad.
If TheirMove.GameRank <= 1 Then

’Debug.WriteLine(depth.ToString & _
’ " HoundsLookahead found a losing move.")
Return TheirMove

End If

’We are still in the game.

’I am looking ahead, I give back results from the future.
Return Hounds2(TheirMove, depth + 1, False)

End Function

The code starts with the expected ways to abort the look-ahead. Depth is

limited to 6 instead of 5, since earlier versions of the code had trouble with 5.

Since a fox victory is a very important condition in determining the quality of a

prior move, the extra depth keeps the hounds out of trouble. The look-ahead

expects that the move it is evaluating still involves a broken line (or Hounds2()

would not have called). Unlike the fox with its shortest path, the hounds get no

other guidance on intermediate moves when reforming the line, so it simply

asks for the result of the hounds’ next move now that the look-ahead knows

what the fox will do with the current move. Eventually, one of those future

moves will reform the line.

Run the code in the debugger. Click on the Fox and the Hounds buttons in turn,

starting with the Fox button. Watch the debugging output carefully in the output

window. The hounds’ AI should play a perfect game against any opponent. If the

human intervenes, the fox can win. One way to do this is to make the hounds

move three times in a row with no fox moves between.

Chapter Summary
If the computational complexity can be managed, look-ahead provides real

‘‘smarts’’ to the game AI. It can be easily toned down for less of a challenge to the

player. There are certainly some challenges for the programmer, but pruning and

heuristics help mitigate them. Possibly the hardest task for the programmer is

coming up with an evaluation function that works reliably. The nuances to

an evaluation function need careful examination. If nothing else, look-ahead

provides a concrete method for fighting Artificial Stupidity.

214 Chapter 6 n Look-Ahead: The First Step of Planning

Chapter Review
Answers are in the appendix.

1. What does an evaluation function do? How is it similar to or different from

a goal?

2. What is a heuristic? How do heuristics help?

3. What is pruning and how does it help?

4. What is the most common drawback to look-ahead?

Exercises
1. Have the fox look ahead when the line is broken. Note if this improves the

AI for the fox.

2. Change the way black squares are counted and examine the effects on the

end of the game.

References
[Dill08] Dill, Kevin. ‘‘Embracing Declarative AI with a Goal-Based Approach.’’

AI Game Programming Wisdom 4, pp. 229–238. Charles River Media, 2008.

[Knuth74] Knuth, Donald. ‘‘Structured Programming with go to Statements.’’

ACM Journal Computing Surveys, Vol 6, No. 4, Dec. 1974. p. 268.

[Wikimedia04] Gdr (original uploader). 2004. Available online at http://

en.wikipedia.org/wiki/File:Tic-tac-toe-game-tree.png.

References 215

http://en.wikipedia.org/wiki/File:Tic-tac-toe-game-tree.png
http://en.wikipedia.org/wiki/File:Tic-tac-toe-game-tree.png

This page intentionally left blank

Book of Moves

In American football, teams do not just play football. They execute predefined

plays. Coaches and players do not just make it up as they go, except in ‘‘broken’’

plays, which are usually bad and only occasionally glorious. Indeed, the word

‘‘playbook’’ is common in sports. Likewise, it has a place in game AI. In fact, a

book of moves is applicable to game AI beyond the sports games that require one.

At best, a book of moves encapsulates brilliant play and makes it available to the

AI when conditions are right. At other times, the book can provide a selection of

reasonable, if not brilliant, starting points when the cost of computing them is

too high. Opening moves in Chess fit this description. A book of moves can guide

look-ahead AI to search potentially fruitful paths.

The first thing we will do in this chapter is clear up any confusion between a book

of moves, heuristics, and rule-based AI. Once that is done, we will examine the

rationale for a book of moves, with the idea of encapsulating killer moves leading

the charge. A book can provide more than killer moves; as part of a hybrid AI, we

will see how a book can make it possible to have a reasonable AI at all in a

complex game like Twixt. We will also show how a book of moves can empower

our already effective Minesweeper AI with low-risk opening moves. After sum-

marizing the advantages and disadvantages of the method, we have two projects:

a simple book of opening moves for Fox and Hounds and a more complex one for

Minesweeper.

217

chapter 7

This Seems Familiar
You may be asking, ‘‘Aren’t the moves the same thing as heuristics?’’ You might

also be wondering, ‘‘Isn’t this the same thing as a rule-based AI?’’ Before we dive

into the details, we should shed some light on how to tell a book of moves from

other AI concepts. We will compare them to heuristics first.

For our purposes, a book of moves strongly emphasizes what the AI should do.

Most of the heuristics we have seen so far have been about how the AI should

think. If we think back to the Fox and Hounds AI from Chapter 6, ‘‘Look-Ahead:

The First Step of Planning,’’ we recall that the heuristics focused on the eva-

luation function. The way the AI distinguished between possible moves was

through the evaluation function and not by anything particular to one move

compared to another. If a person walked into a restaurant and told the waiter,

‘‘Bring me a taste of everything, and after I taste everything, I will let you know

what I like best,’’ they would be using an evaluation function to decide the best

move. The evaluation might be guided by heuristics such as, ‘‘Most red sauces do

not agree with me.’’ This time-consuming and costly method of dining would be

avoided if the person exploited the menu. The menu in this case is a book of

moves.

The AI in Fox and Hounds would benefit from a book of moves. The first entry

would be the opening sequence. Rather than looking ahead for its initial moves,

the fox could simply head to square number 8, the left-most square of the third

row from the top. That is the square that can force the earliest possible break in

the line of hounds, and the hounds cannot do anything fatal to the fox if the fox

blindly heads there. Similarly, it is difficult, if not impossible, for the fox to find

itself unable to exploit any fatal mistakes that the hounds might make if the fox

heads blindly for square number 8.

The distinction we are making here is not absolute. One heuristic used by the fox

is close to a gray area between how the AI should think and what the AI should

do. When there is an opening, the heuristic for the fox is to take the square with

the lowest number. It could be argued that this is still about how the AI should

think, as in, ‘‘Find the lowest number,’’ which is different from how it should act,

which might be ‘‘Go up and to the left,’’ but the distinction hardly matters.

Moves have an emphasis on what the AI should do, and heuristics can pertain to

just about anything.

The difference between a book of moves and a rule-based system is also

straightforward, although at first glance it may be difficult to distinguish between

218 Chapter 7 n Book of Moves

the two. Although a book of moves may lend itself to a rule-based imple-

mentation, the focus of this chapter is on hybrid AI in which the book of moves

supplements a more general AI system, which need not be rule based. Our hybrid

AI can ‘‘order from the menu’’ using the book of moves or it can ‘‘send requests

to the kitchen’’ using the general AI. It is easy to think of the book as a set of

narrowly focused, highly effective responses to specific circumstances, but they

need not be that restrictive; the book can also contain typical moves that the

player will expect to see. We will look at some broader, complex applications

before looking in depth at how a book of moves might apply to more accessible

AI. That said, rule-based systems and a book of moves are conceptually quite

close, and fine distinctions between them may not be terribly enlightening.

Killer Moves
Composers today might consider Mozart unfair competition from beyond the

grave, but the truth is that anyone who can read music has full access to Mozart’s

genius. Similarly, with a book of moves, game AI need not compute genius

moves; it just has to be able to use them appropriately. If programmers can

implement the AI equivalent to sheet music, they can then exploit any form of

brilliant play they can codify. Moves tend to be specialized; Mozart’s music might

not be appropriate to the instruments of a rock band. Good moves need not

always be hard to find.

Imagine an in-game cut scene for the aftermath of a great battle. On one side, we

see the local religious authority give the words for the living and the dead. On the

other side, we see a similar figure giving similar but different appropriate words.

There is no reason for the AI programmer to write either set of words; found in

the back of countless hymnals and religious books are brilliant but relatively

unknown writings, perfectly suitable for funerals. The selection of good words

throughout the ages is rather quite rich, translation issues aside. The really old

ones tend not to be familiar, making them novel when reused. As an added

bonus, the copyrights on the oldest works have expired.

A similar case can be made for battle speeches, though more care must be taken:

‘‘And gentlemen in England, now abed,

Shall think themselves accursed they were not here,

And hold their manhoods cheap whiles any speaks

That fought with us upon Saint Crispin’s day.’’

Killer Moves 219

The words are stirring enough, and the year it was written—1599—predates

modern copyright law by a good 110 years, but the utter familiarity of the

St. Crispin’s Day speech from Shakespeare’s Henry V makes it a poor choice for

most computer games. The good news is that the game AI need not compute

brilliance; it only needs to be able to import it and use it for its own.

All that being said, computer games lack the benefits of 3,000 years of written

history and scholarship. Cutting-edge games sport novel forms of gameplay,

employing rules of play that are less than two years old and known only within

the development studio working on them. These rules might not stabilize until

the gold master disk is burned. Where does the AI programmer get expertise

when no experts exist? One potentially risky place is from early reviews of the

core gameplay.

Games are supposed to be fun. Because games are financially quite risky to

produce—indeed, few games break even—many studios review the core

gameplay early and often to validate that the fun is there and stays there. These

reviews and play-test sessions are where the earliest expertise with the game will

be forged. This expertise may be rendered useless as the game evolves, but some

of it may survive. Play-test sessions can be mined for good moves if care is taken

from the outset. An observant set of players willing to write things downmight be

all that is needed. If the games are all logged and the scores are reported, pro-

mising candidates can be found and replayed for in-depth analysis. As the game

develops, special AI can be used to probe and experiment. This AI need not be

limited by the constraints of the regular AI; it can take longer to think or use

more memory or even use a farm of machines to help. Recall from Chapter 6 that

naı̈ve AI methods applied to simple games can generate run times that compare

poorly to the heat decay death of the universe; no farm of AI machines is large

enough to explore a space that large. For any particular new game and the studio

developing it, there will be a balance point between investment and return.

A final consolation in the search for brilliance is that the AI does not have to be

brilliant all of the time. As long as it is rarely stupid, the AI can thrive with

occasional flashes of brilliance punctuating otherwise solid play. As we shall see,

sometimes the book of moves itself enables the solid play.

Having great moves is only part of the task. The code that uses the book has to

ensure that any move selected is good for the current situation. In sports,

selection failures are characterized as ‘‘Good team, bad coach.’’ Recall Horatio,

our opera singer who broke into song at a funeral? What if he was supposed to

220 Chapter 7 n Book of Moves

sing at the funeral? The pattern-matching problem goes from the general

problem of ‘‘Do I sing now?’’ to the more subtle and finer-grained problem of

‘‘What do I sing now?’’ If Horatio has a hybrid AI, the general AI has correctly

figured out that it is time to sing, and it is handing the situation off to a spe-

cialized book of moves AI for song selection. Since he is a tenor and not a

baritone, he is not likely to belt out the difficult, well-known line, ‘‘Figaro!

Figaro! Figaro!’’ But just the same, as an opera singer, his book of moves is deeply

loaded with equally stunning but equally inappropriate songs. The right selection

might not be Rossini or even Mozart, despite the awesome quality of their songs,

but something well known from a church hymnal. The pattern-matching pro-

blems we examined in Chapter 4, ‘‘Rule-Based Systems,’’ are still with us.

Hybrid AI
Here, the term hybrid AI means a combination of more than one kind of AI so

that the different forms mitigate the weak areas of the others. Coaches might call

plays, but players execute them. The players react in real time, adjust and make

changes, and do their best to exploit the unexpected. A book of moves by itself is

not commonly used as a complete AI, although the line blurs in rule-based

systems composed of both general rules and highly specific ones. One of the

particular strengths of a book is the ability to recognize the value or peril of a

situation that a more general system overlooks. We will see this in various

applications.

Chess

Chess is well suited to a hybrid approach. The Deep Blue Chess computer

combined powerful search capabilities with an opening book of 4,000 positions,

an extended book drawn from 700,000 grandmaster games, and a database of

endgames [Campbell02]. In 1997, this software, running on massively parallel

hardware that included custom Chess chips, was the first Chess program to beat a

reigning world champion Chess player. The evaluation function of the search was

astoundingly rich, but the various books helped detect situations the search

would rank improperly or spend too much time evaluating.

While interesting as a thought problem, Chess is hardly suited for programmers

just starting to write AI. Games with simpler rules might appear more

approachable, but it depends on the game. Go is harder for machines than Chess,

but steady improvements suggest that in 20 years, machines may be able to

Hybrid AI 221

achieve parity with professional players. The game Arimaa uses Chess pieces on a

Chess board. It was specifically developed to be easier than Chess for humans and

far harder for computers; opening books and endgame databases have little or no

utility in a game without fixed starting positions, where all of the pieces can still

be on the board at the end of the game. Twixt is another simple game that is hard

for computers, but it does lend itself to a book of moves, as we shall see.

Twixt

Twixt was widely published as a 3M bookshelf game, was later picked up by

Avalon-Hill, and is now out of print in the U.S. The goal of the game is to form a

chain of links between opposite edges of the board; one player attempts to link the

top and bottom edges, while the other player tries to link the left and right edges.

Links may not cross, so if one side achieves its goal, the other side is prevented

from doing so. The simple rules make for complex gameplay, and draws are very

rare. The game is easy to learn, hard to master, and brutally unforgiving of

mistakes. Twixt is a very tactical game. One of the few strategies is to force the

other side to waste one or more moves by cutting off pegs and links from the

border or isolating some of the opponent’s pegs and links, preventing your

opponent from connecting to other pegs and links. This strategy is hinted at in

Figure 7.1, where it appears that if black makes more horizontal links in the

middle of the board, black will block white from building a vertical chain to the

bottom of the board. We will look at the board and see if the complexity of the

game can be tamed.

The Game Board

Twixt is usually played on a square pegboard grid of 24 holes on a side. The

opposite pairs of border rows can be played by only one color, and the corners are

not playable at all. For the board pictured in Figure 7.1, white needs to connect

the top and bottom, and black needs to connect the left and right. This leaves a

22� 22 grid of 484 holes, which both sides can fill with their pegs. Pegs of the

same color can be linked if the two pegs are arranged in a ‘‘knight’s move’’ from

Chess. This is known as a ‘‘Twixt’’ move in Twixt. Such moves place the pegs on

opposite corners of a vertical or horizontal 2� 1 rectangle. The moves in Twixt

are often denoted by the size of the rectangle they make, larger number first, so a

Twixt move is denoted as a (2–1) move. Just as a knight in Chess has access to

every square on a Chess board, pegs that are not a Twixt move apart can be

connected by a sequence of Twixt moves if there are no obstructions. Those

222 Chapter 7 n Book of Moves

sequences and the art of obstructing them provide the core of the gameplay.

Common sequences are known as setups, and setups make the claim, ‘‘These

pegs do not connect now, but you will have a very hard time stopping me from

connecting them later.’’

In order to make it easier on the players, the rows and columns are often given

numbers and letters to assign each hole a unique code. In Figure 7.1, there are

white pegs at L8 and M10 and black pegs at N14 and P13. Another welcome

addition to the original board is the diagonal lines to the corners of the open

playing field, which make it easier to visualize how a race to a corner will turn

out. The lines are on the same 2:1 bias that characterizes the basic Twixt move. A

peg at a corner cannot be prevented from connecting to its border row. Winning

the corner with a chain of links forces the opponent to block the other end of the

chain or lose. Blocking an opponent’s chain from reaching its border is often

done by forcing that chain against your border. This must be accomplished at the

corner or before; whoever wins the corner race blocks the other. The diagonal

lines make the outcome of such races easier to see. The diagonal lines also create

an octagon, delineating the critical center area of the board.

Figure 7.1
A full size Twixt board with two Twixt moves.

Hybrid AI 223

There are boards of other sizes in use. An 18� 18-hole board is less intimidating

and easier for beginners as well as game AI. A quarter-size board, with 12 holes

per side, is good for demonstration purposes—the Twixt resources available on

the Web often make use of these smaller boards—but is too small to allow

interesting play to develop.

Complexity

We will start with brute-force look-ahead and then exploit the tools we have to

see if we can get the complexity of the game down to something that computers

can handle in reasonable amounts of time. As you might expect, the initial

computations show an impossibly complex game. The goal will be to get the

complexity down to something playable. To compute complexity, we will make

some simplifying approximations, all based on the idea of ‘‘which is at least as big

as.’’ If we multiply or add together simple numbers that are smaller than the

actual numbers, we will get a result that is smaller than the actual complexity.

Simple smaller numbers make for simpler computations. If our result using the

simple small numbers is too large to be practical, then we know that the larger,

actual result is likewise too large to be practical. Only when the approximation

suggests that an approach might be practical will we need to use actual numbers

to prove it. Approximations like these are often called ‘‘back-of-the-envelope’’

because they do not need a whole sheet of paper to compute them.

The naı̈ve evaluation of Twixt’s computational complexity yields enormous

numbers. If you could somehow fill every hole in the board, there would be 484!

combinations, which is so large it is not worth computing. It is time for our first

heuristic.

In a very long Twixt game, each side will make 25 moves for a total of 50 moves.

Are the numbers more tractable if the search depth is limited to 25 rounds of

move, counter-move? There are 484 starting moves. After taking 49 moves, we

have 434 possible 50th moves. The actual complexity can be computed by

multiplying the 50 different numbers from 484 to 434 together. If we approx-

imate the 50 numbers between 484 and 434 as all being at least as large as 100, we

will vastly underestimate the result, but we also get a much easier math problem.

484 * 483 * 482 . . . * 436 * 435 * 434 = a very hard to compute number

100 * 100 * 100 . . . * 100 * 100 * 100 = 10050 = 10100 (smaller, easier to

compute)

224 Chapter 7 n Book of Moves

Our approximation yields a google (a one with 100 zeroes after it). Recall from

Chapter 6 that numbers this large will lead to execution times that compare

unfavorably with the estimated time until the heat decay death of the universe.

Math note: 100 = 10 * 10 = 102. So with two 10s multiplied together in every

100, we get 10050 = (102)50 = 10100

Maybe some more heuristics will help. Any serious Twixt play exploits three-

move combinations called setups. Not only are the setups good moves, players

certainly expect the AI to use them. So if the AI wants to see the opponent’s

response to its next three moves, the AI needs to look ahead six moves total

instead of 50. If we again approximate the numbers between 484 and 479 as all

being larger than 100 andmultiply everything, we get a trillion (a one followed by

12 zeroes). The actual number is over 12,000 trillion. This number is still

hopeless, but far better than a google.

484 * 483 * 482 * 481 * 480 * 479 = 12,461,242,792,078,080

100 * 100 * 100 * 100 * 100 * 100 = 1006 = 1012 (smaller, easier to compute)

Maybe we can prune. Because we are assuming that the play is based on setups, let

us look at the complexity of the setups. The collection of basic setups goes in our

book of moves. Once the first peg is placed, assume the best future moves are

based on setups starting with that peg. Let us examine the four setups given in the

original rules for Twixt. These setups, diagrammed in Figure 7.2, are known as

‘‘Beam’’ (4–0), ‘‘Tilt’’ (3–3), ‘‘Coign’’ (3–1), and ‘‘Mesh’’ (2–0). (There are other

setups, including four-move and five-move setups, but these are the basic ones

from the original rules.) The white pegs show the first and second moves, and the

black pegs show the two possible third moves. Either third move links to both the

first and second moves (known as double linking). The setups shown are for

white, which wants to connect the top and bottom rows of the board.

After the first peg is placed, there are two possible follow-up moves that start a

Beam (one toward the top of the board and one toward the bottom), four follow-

up moves each to start a Tilt or Coign, and two for a Mesh. That is a total of 12

likely follow-up moves for the side that placed the first peg, which is far fewer

than 482. If the opposition attacks the setup ineffectually, there will be exactly

one move available to complete the setup. If the opposition does not attack the

setup at all, there is no need to waste a move by completing the setup using either

of the two available third moves, and the AI should look for the next setup that

connects to this one.

Hybrid AI 225

What should the opponent AI do in the face of these possible setups? When

possible, the most common counter is to ‘‘hammer’’ the first peg placed by

putting an opposing peg directly adjacent to the first peg in the setup and linking

to the newly placed peg. This requires that the opponent have an existing peg

from a prior move that is close enough to make the link to the new peg. While the

first side is setting up fancy moves, the opposing side is foiling them or cutting

them off with a carefully placed Twixt move. There are at most eight holes in

which to attempt to hammer the first peg, and not all of them are likely to be a

Twixt move from an existing peg from a prior move. If a hammer attack is

possible at all, there will usually be only a few holes that make it work. Looking

for a hammer attack narrows our search for a counter-move from hundreds to a

few. The hammer attack goes into the book of moves alongside the four setups.

There are 484 opening moves, and we would like to trim that number down to a

more manageable number. In classic Twixt, the opening move is best placed

Figure 7.2
A full-size Twixt board with the four basic setups.

226 Chapter 7 n Book of Moves

roughly in or near the octagon created by the diagonal lines when they reach the

center of the board. Opening moves here are so powerful that modern Twixt has

the ‘‘pie’’ rule: ‘‘You cut the pie it into two pieces, and I pick which one I want.’’ If

the opening move is particularly strong, on the second move (and only the

secondmove) the side that did not go first can take the opening move as played as

if it were its opening move and force the other side to make the second move

against it by switching colors. ‘‘I’ll play your color, so that makes it your move,

with you switching to my original color.’’ Even without the pie rule, three

quarters of the opening board can be eliminated due to symmetry when looking

for an opening move. If we restrict our opening moves to the 80 holes in the

center octagon, symmetry reduces that number to 20, which again is far fewer

than 484. We could probably get by with 10 opening moves.

With a book of moves, our AI will not search at all for an opening move. It will

have opening moves that it likes in the book of moves, along with the best

counter-move in case the pie rule is invoked. Some of these strong opening

moves can be used as a second move against a weak opening move as well. For

other moves, our search strategies will be guided by the book of moves. We avoid

a general search of over 400 open holes and concentrate on the few holes that we

think will matter. So how much does this improve the complexity? We might see

something like the following:

One opening move (selected at random from the book)

One counter-move (based on the opening move)

Twelve holes that are a setup to the opening move

Eight holes to hammer the previous move or 12 holes to do our own setup

One or two holes to complete the setup based on the opening move, or

12 holes to do another setup

What happens when we multiply numbers like these? Our low numbers are 1 and

2; our high numbers are 8 and 12. Let us use 10 to approximate all of them and

compute how expensive six moves of look-ahead would be:

10 * 10 * 10 * 10 * 10 * 10 = 106 = 1,000,000

One million is a very tractable number on current hardware. Playing by the book

using look-ahead should make it possible to create a Twixt AI that is fast enough

to play against, even if it does not ensure that such an AI is powerful against

human players who employ four-move and five-move setups. The book of moves

Hybrid AI 227

has taken us from ‘‘clearly impossible’’ to ‘‘maybe.’’ The code for the Twixt game

shown in the figures is on the CD included with this book. Adding AI to the game

is left as an exercise for the motivated reader. While the book of moves for Twixt

appears straightforward, the rest of a hybrid AI that exploits that book is a

daunting challenge.

Minesweeper

The AI forMinesweeper given in Chapter 4 proved to be pretty awesome once the

player got it started. So how could it benefit from a book of moves when the

general rules seemed to get nearly all of the deterministic moves? One question

that comes to mind is, ‘‘What is the best first move at Minesweeper?’’ That

question might initially get the response of ‘‘The first move is safe, so why does it

matter?’’ But the best first move is one that either exposes the most squares or

that gives the best follow-up moves when the player is forced to start taking

chances. So if the first move did not expose more than one square, a good second

move needs to be a move that can quickly generate the highest number of

deterministic moves. We will look at the numbers and apply them to the various

first moves to see if we can come up with something useful.

The Basic Numbers

In Minesweeper, there are 99 mines in 480 squares. After the first move, that

reduces to 479 squares. This gives a density of 0.207 mines per square on average,

which is the same as having a 79.3 percent probability of being clear. These

numbers are averages; the mines are not evenly spread out. We can use these

numbers to give an expected value of how many mines surround a square before

we click it. We will add or multiply these numbers as needed to evaluate different

moves that could go into our book of moves. We will not compute the exact

values of all the numbers needed to exactly evaluate the different first moves in

order to keep the statistics from interfering with the analysis.

A Middle First Move

For our purposes, a middle move has two or more squares between it and any

edge. As a firstmove, it either exposes eightmore squares or presents the user with

a number between one and eight. The player has a 0.7938 chance of getting lucky

on his or her first move and selecting a square with zero surrounding mines. That

works out to getting eight squares 15.7 percent of the time. The average yield of

the first move in isolation is thus 1.26 squares. The other 84.3 percent of the time,

228 Chapter 7 n Book of Moves

the player is stuck making numerous risky moves to clear out an area big enough

to yield deterministic moves. The problem with a middle first move is that most

of the time, it gives a long series of poor follow-up moves.

A Corner First Move

There is a 0.7933 chance that a corner has no mines in the three surrounding

squares. This computes to a 50 percent chance to get three squares, for an average

yield of 1.50 squares, so it is better than the middle as a first move by itself. But as

shown in Figure 7.3, the other half of the time it leaves the player with at least one

mine to place in three squares for a typical chance of failure on the second move

of 33.3 percent or worse. The corner is a good place for generating deterministic

moves, but playing the corner as a first move leads to a risky second move when

better alternatives are available.

An Edge First Move

There is a 0.7935 chance that a general edge square has no mines around it in

the five surrounding squares. This is a 31.4 percent chance to get five squares, for

an average yield of 1.57 squares, making it the best first move so far. The other

68 percent of the time, the player has one or more mines nearby, typically one or

two. A second move away from the edge, if successful, can yield deterministic

moves. How risky is that second move? It has a risk of 20 percent times the

number revealed by the first square. Twenty percent is slightly lower than the

20.7 percent risk of a random move, so if a 1 was revealed, the edge gives safer

moves than any random guess. If a 2 or higher was revealed, the surrounding

squares are more risky than a random guess. The edge is superior to a corner,

with higher initial yield on the first move and lower risk on the second move.

One Square Away from an Edge

With eight surrounding squares, this kind of first move has the same initial yield

of 1.26 squares that a move to the middle has if the player gets lucky. As shown in

Figure 7.3
Starting in the corner does not produce a good second move.

Hybrid AI 229

Figure 7.4, this move often creates a far better second move the 84.3 percent of

the time there is a nearby mine. On average, there are 1.66 mines in the sur-

rounding squares, making the most common revealed number a 1 or 2. A

revealed 1 makes the risk on the second move 12.5 percent, almost half the risk of

a random move. A revealed 2 means a risk of 25 percent. Although this is worse

than the 20.7 percent risk of a randommove, this is mitigated when you consider

the gain of a well-placed second move. If the revealed number is less than 3, then

a second move should be the neighboring square that is on the edge. There is a

chance the secondmove will reveal a 0 and four free moves, a happy event that we

will ignore for now. The second move cannot reveal a number higher than

the number revealed by the first move. If the first move revealed a 1, the second

move is a mine, a 0 or a 1. If these two squares leading out of an edge have the

same revealed number, then there are three safe moves that ‘‘cross the T’’ of

the first two moves. The number revealed by the second move is constrained

by the number revealed by the first move, so if the second move was safe enough

to take and it did not fail, it has a very high chance of giving the three free moves.

The idea here is that we have created a low-risk second move with a possible

three- or four-square payoff.

One Square Diagonally Away from a Corner

All the initial numbers for this case compute the same as in the previous case, but

the location of the second move should be the corner. As shown in Figure 7.5, a

Figure 7.4
Crossing the T produces three moves but stops there.

Figure 7.5
The corner produces five moves and more after that.

230 Chapter 7 n Book of Moves

revealed 1 means that a second move should certainly be taken. A revealed 2 is

less rosy. The second move itself might reveal a 0, yielding two free squares. This

configuration of a square of four cleared tiles tends to yield deterministic moves.

If the second move reveals the same number as the first move, the second move

generates five free moves. In either case, the resulting shape of the perimeter gives

a superior board to play from. This is shown on the third board of Figure 7.5,

where there is a pair of cross the T moves available for two more squares. The

equally lowest-risk second move available here yields more follow-up moves and

far better playing position.

Can We Apply This?

An AI that computes these numbers on the fly to evaluate openings to Mine-

sweeper would be far more involved than the AI we used in Chapter 4. It would

involve both statistics as well as some look-ahead, which we covered in Chapter 6.

If the exact statistics were beyond the skills of the AI programmer, Monte Carlo

methods mentioned in Chapter 5, ‘‘Random and Probabilistic Systems,’’ could

be used to home in on the right moves. None of these methods would run faster

or give a better result than simply adding a highly specialized set of rules to the AI

that already has the right moves coded in.

Note that we did not do the full-up, no-holds-barred statistical analysis to prove

that the first moves rank in the order presented. Besides lowering the complexity

of the analysis we did, this effort was intentionally skipped to let us drive the

following point home: The AI does not always have to have the exact optimum

move if it has moves that are good enough. Mozart might be the best great

composer whose music is in the public domain, but he is not the only great

composer whose music is free.

When adding a book of moves to an AI, the programmer must pay as much

attention to the integration as to the parts. A good integration is seamless,

making it hard to detect when the AI is playing from the book or playing from a

more general method. A thin book that has a small number of stellar moves

added to modestly good general AI will be obvious to the player and not always

entertaining. If the player stumbles from the conditions where the AI plays using

the modestly difficult general AI into the conditions where the AI plays from the

expert-level book of moves, the player may feel blindsided or be convinced that

the AI cheated once it saw the player getting ahead. Going the other way may not

be any better, leaving the player wondering why a challenging AI decided to roll

Hybrid AI 231

over and play dead. Thankfully, the programmer does have the option to turn

moves on and off to tune the difficulty.

Advantages
A book of opening moves and endgames provides a tremendous speed increase

to the AI. It also can embody brilliant play and effectively leverage the play of

experts. It can recognize situations that more general methods improperly

evaluate. The book of moves can provide expected moves that the regular AI

might miss, such as flanking or ambushing. Moves in the book can be selectively

engaged to adjust the difficulty level of play. And finally, a book of moves can

guide the search of look-ahead.

Disadvantages
A book of moves is often an aid to another AI, but less often the complete AI.

This can mean having two different AIs to write and maintain. The book of

moves makes sense only when it is appreciably better than the regular AI it

advises in some way, such as quality of play or speed. A really good regular AI

might not need the book. Even an AI that needs help from the book will suffer if

the expertise level of the moves in the book is not up to the task. Finding that

expertise can be harder than programming it into the AI. Finally, killer moves are

of no use if they are improperly employed; great plays need great coaches

selecting them.

Having two AI systems means more than the effort of writing both; it means that

the integration needs to be tuned as well. A ‘‘flashes of brilliance’’ AI can be as

frustrating to the player as it is entertaining.

Projects
There are two projects for this chapter. For our first project, we will add an

opening book for the fox in Fox and Hounds. Our book will have only one move,

so we can hard-code the AI for it instead of using a rule-based system. Our

second project is more extensive; adding a book of opening moves to Mine-

sweeper. TheMinesweeper book is nearly as easy, requiring only a modest amount

of code.

232 Chapter 7 n Book of Moves

Fox and Hounds

Open your Fox and Hounds project from Chapter 6 or from the CD-ROM. Edit

the file AI.vb and add the following region to the module between the last #End

Region and the End Module lines.

#Region "Book of Moves"
Private Function ConsultFoxBook(ByVal GS As GameState) As GameState

’We only have one move in our book, only at the beginning.
’We get there on move 8, since the moves start at 0.
If GS.MoveCount > 8 Then

Return Nothing
End If

Dim bestMove As Byte = 64 ’Higher than any square on the board.
Dim ss As Byte
’The fox will move up and left to get to square 8.
For Each ss In Moves.Neighbors(GS.FoxAt)

’Don’t consider a blocked square.
If Not GS.HasChecker(ss) Then

’The smaller the ss the better.
If ss < bestMove Then bestMove = ss

End If

Next
Return GS.ProposeFoxTo(bestMove)

End Function
#End Region

The code is very simple and takes advantage of the way the squares are numbered.

Square 8 is the first square of the third row since we start at 0 at the top left. The

smallest numbered square is always above and if possible to the left. It takes the

fox to square 8, but not if we forget to call the new code. Add the following lines

near the top of the Fox2() function in the same file just below the initial check for

a game either side has won and before where the fox gets its potential moves.

’Check the book of moves.
Dim Candidate As GameState = ConsultFoxBook(GS)
’If the book gave a move, use it.
If Candidate IsNot Nothing Then Return Candidate

You will need to comment out the declaration for the variable Candidate further

down in the routine. Do this by adding a single quote character in front of the

Projects 233

statement. The declaration comes right after a comment. After you comment out

the declarations, the two lines will look like the following.

’Look at the lowest steps move as our first candidate.
’Dim Candidate As GameState

Now you can run the game and test the new code using the Fox button. See how

much faster the book move is than the look-ahead? Note that the fox stops trying

to go up when it gets to square number 8 or after eight moves have elapsed.

Minesweeper

The opening moves for Minesweeper that we have discussed can be reduced to,

‘‘Click a square in a particular untouched area. If you get a 1, click a particular

neighbor of that square, hoping to get a 1 or a 0.’’ So our book expects to have to

try a first move and then a secondmove. Our book also expects to operate only in

places where no squares have been clicked. This is different from the rule-based

AI from Chapter 4 that operates only on revealed squares. This gives us two

reasons not to use the existing rule-based framework for our new code. The first

reason is that the existing framework doesn’t work with blank squares. The

second reason is that we do not want the general AI to make risky moves unless

the player directly tells it to. Since the book of moves is small and reasonably

simple, we will just use some hard-coded AI. Just because a book of moves often

fits very well into a rule-based approach does not mean that it always has to be

implemented that way.

Open your Minesweeper project from Chapter 4. The code on the CD has an AI

Auto button, and we will see it in Figure 7.6. The AI Auto button is very handy.

After every book move, you should click the AI Auto button to make sure that

you take any risk-free moves before going back to the book. The bulk of our code

is in three routines. We need a first move routine, a second move routine, and

something to execute them.We will put the move routines in the file AI.vb. Open

that file and add the following code just above the End Module statement:

#Region "Book of Moves Code"

Public Function BookFirstMove(ByVal FirstSq As Square, _
ByVal SecondSq As Square, ByVal theField As PlayingField) As Integer

’Did somebody already click first move?
If FirstSq.IsRevealed Then Return 0

234 Chapter 7 n Book of Moves

’First move must be unmarked.
If FirstSq.Text <> "" Then Return 0
’The follow-up move must be unmarked.
If SecondSq.Text <> "" Then Return 0
’First square needs eight unclicked neighbors.
Dim Sq As Square
For Each Sq In theField.NearNeighbors(FirstSq.R, FirstSq.C)

If Sq.IsRevealed() Then Return 0
Next
’First move looks good, try it.
theField.MoreThoughts("Book First Move attempting R" & _

FirstSq.R.ToString & " C" & FirstSq.C.ToString)
Call FirstSq.LeftClick()
’We took one move.
Return 1

End Function
#End Region

The whole point of this routine is to take a first move and second move pair and

check that this is a good place to take both moves. If the first move has been

taken, the square would be revealed already, and we obviously cannot take the

Figure 7.6
The board after a number of book moves.

Projects 235

first move again. We don’t want to take the first move if somehow somebody has

already clicked the secondmove or marked the secondmove as being amine. The

code checks for the second square’s text, instead of checking to see if it is revealed.

If it is revealed with no text, that means it is a zero square, and we should let the

regular AI take the first move since it is free. If the second move has text, that text

is either a number or a flag marker, both of which we want to avoid. For the same

reason, we want all the surrounding squares not to have been clicked. We are

hoping the first move reveals a 1, and for the sake of the secondmove we want the

maximum number of squares to be available to hold that one mine, minimizing

the chances that the second move is the one holding it. If the square meets all our

needs, we click it (and hope).

The first move is a risky move that usually does not tell us a whole lot. The second

move is likewise risky, but hopefully it tells us something useful. Add the fol-

lowing code to the same region:

Public Function BookSecondMove(ByVal FirstSq As Square, _
ByVal SecondSq As Square, ByVal theField As PlayingField) As Integer
’Take the second move if the first move looks good.

’First move has to have revealed a minimally risky number.
If FirstSq.Text <> "1" Then Return 0
’First square needs eight unclicked neighbors.
Dim Sq As Square
For Each Sq In theField.NearNeighbors(FirstSq.R, FirstSq.C)

If Sq.IsRevealed() Then Return 0
Next
’First move was perfect, attempt the second move.
theField.MoreThoughts("Book Second Move attempting R" & _

SecondSq.R.ToString & " C" & SecondSq.C.ToString)
Call SecondSq.LeftClick()
’We took one move.
Return 1

End Function

The second move code has the same idea: Make numerous checks and, if they

pass, take the second move. The first move has to have shown a 1. The sur-

rounding squares have not been revealed, so the one mine has the lowest

probability of being on the second move’s square. If that is the case, the second

move is worth taking. Now we need to code to execute these first and second

moves.

236 Chapter 7 n Book of Moves

Switch to the file PlayingField.vb. There is a code tab and a design tab; we will do

the code first. Find the AI Related region and add the following code to it:

Public Sub ExecuteBook()
’Store the pairs of moves in collections.
Dim FirstSquares As New Collection
Dim SecondSquares As New Collection

’Add in pairs of moves to the collections in order.
’Add in the corners first.
’Add the upper-left corner.
FirstSquares.Add(Field(1, 1))
SecondSquares.Add(Field(0, 0))

’Add the lower-right corner.
FirstSquares.Add(Field(NumRows - 2, NumCols - 2))
SecondSquares.Add(Field(NumRows - 1, NumCols - 1))

’You can figure out from here how to add the other two corners.

’Then add some edge moves, from center outward.
Dim Col As Integer
For Col = 1 To NumCols \ 4

’Add moves on upper edge going right.
FirstSquares.Add(Field(1, NumCols \ 2 + Col))
SecondSquares.Add(Field(0, NumCols \ 2 + Col))
’Add moves on upper edge going left.
FirstSquares.Add(Field(1, NumCols \ 2 - Col))
SecondSquares.Add(Field(0, NumCols \ 2 - Col))

’You can figure out how to add the lower edge.

Next
’If we wanted the left and right edge, we’d add them here.

’Now walk down the list in two passes.
Dim pass As Integer
For pass = 1 To 2

Dim FirstMove As Square
Dim SecondMove As Square
Dim i As Integer
For i = 1 To FirstSquares.Count

Projects 237

’Get the first and second moves out of the collections.
FirstMove = FirstSquares(i)
SecondMove = SecondSquares(i)
If pass = 1 Then

’Check for follow-up moves first; they pay off better.
If BookSecondMove(FirstMove, SecondMove, Me) > 0 Then Return

Else
’Look for first moves.
If BookFirstMove(FirstMove, SecondMove, Me) > 0 Then Return

End If
Next

Next
End Sub

That chunk of code can be divided into two parts. The first part collects the pairs

of first-move and second-move squares and stores them in the order we want

them checked. It does the corners first and then the edge moves. The edge moves

concentrate on the middle of the edge, hoping for a good breakout pattern in

three directions. We include only two of the four corners, and we do only the top

edge. If we try all four corners, there is a non-trivial chance that our code will hit a

mine near a corner before it tries an edge move. For the sake of instruction, we

want a good chance at seeing the code take multiple book moves before hitting a

mine. All these moves are low risk, but none of them are risk free.

The second part of this code loops through the pairs of moves in order, stopping

as soon as one of them executes. Notice that it looks for second moves in the first

pass before it looks for first moves in the second pass. This is not a coding error.

The second move is the one most likely to net us deterministic safe moves. We

take the risk of the first move only so that we can execute the second move and

make some headway. So we always check for moves we want to take before we

resort to moves we have to take. In any case, since the code takes only a single

move before it chickens out, it has to check for second moves first; otherwise, it

will risk every possible first move in the collection before doing a follow-up

second move. On any run of the code, the code does not know what first moves

have been taken. Even if the AI kept track of first moves that it took, the player

could have taken some first moves that the AI would not know about, so we

always check to make sure.

All we need now is some user-interface code to enable the user to try these risky

moves. Switch to the design view of PlayingField.vb and add a button. Change

238 Chapter 7 n Book of Moves

the name of the button to BookButton and the text to AI Book. Set the enabled

property to false. (Figure 7.6 shows the button in place.) Then switch back to the

Code view and add the following code:

Private Sub BookButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles BookButton.Click

’Make sure the book button gets enabled and disabled.
FirstThought("Executing from the book of moves (could be risky!)")
Call ExecuteBook()

End Sub

All that remains is a few details. Add the following line of code to the EndGame()

routine:

BookButton.Enabled = False

Add the following line of code to NewGame():

BookButton.Enabled = True

Now we are ready to test. Run the code and start an expert-level game. Click the

AI Book button until the AI hits a mine or until it successfully executes a second

move. Let the regular AI take over if it can. If the regular AI gets stumped, go back

to the AI Book button.

With a new game, see if you can click the AI Book button enough times that the

AI runs out of book moves to attempt before it hits a mine. This may require you

to run a large number of failed games before it happens. This illustrates why we

did not add all the possible combinations to the collections; it will be rare to

exhaust them all without gaining some traction for the regular AI. This can be

seen in Figure 7.6. Note the every-other pattern you get on the top row. The book

of moves won’t attempt adjacent squares, so it skips a square. If the book finally

gets in a second move, this every-other pattern gives the regular AI a fighting

chance to make additional moves via RuleTwoFar in the regular AI.

Our hybrid AI has a reasonable opening book and a very solid rule-base for

general play, but it lacks an endgame AI. Endgame in Minesweeper often boils

down to, ‘‘You have to make N fifty-fifty guesses to complete this board.’’ Our

code demonstrates how a book of moves can provide a powerful adjunct to a

good AI, but there is no book of moves, and there are no general rules that will

help when it comes down to just guessing.

Projects 239

Chapter Summary
A book of moves can make all the difference in a game AI. It can improve the

speed or quality of play that the more general methods provide. A book is very

good at providing the player with expected actions from the AI. When backed up

by a good general AI, it need not have the perfect move for every occasion. It

makes demands on the programmer, especially when used in games with com-

pletely new gameplay.

Chapter Review
Answers are in the appendix.

1. Describe how moves in a book of moves and heuristics are similar and how

they are different.

2. How is a book of moves similar to a rule-based AI? How would you decide

which label to use on a particular system?

Exercises

1. Make a list of moves for your favorite sport. In addition to the moves,

categorize the situations where each move is a great response, a mediocre

response, and a bad response.

References
[Campbell02] Campbell, M.; Hoane, A. J.; and Hsu, F. 2002. Deep Blue. Artif.

Intell. 134, 1-2 (Jan. 2002), 57-83. DOI= http://dx.doi.org/10.1016/S0004-

3702(01)00129-1. Available separately online at http://sjeng.org/ftp/deepblue.pdf.

240 Chapter 7 n Book of Moves

http://dx.doi.org/10.1016/S0004-3702(01)00129-1
http://dx.doi.org/10.1016/S0004-3702(01)00129-1
http://sjeng.org/ftp/deepblue.pdf

Emergent Behavior

One of the more welcome outcomes in computer AI is emergent behavior. It is

very well suited to control simulated flocks of birds or crowds of people. For our

purposes, we will bend the classical definition of emergence to mean behaviors

that were not explicitly programmed into individual software agents but are

exhibited by a group of interacting agents. Early examples are found in the video

Eurythmy produced at the Ohio State University Computer Graphics Research

Group [Girard85] and in Craig Reynolds’ ‘‘boids,’’ used to make Stanley and

Stella in: Breaking the Ice [Reynolds87]. Since then, countless others have made

use of this technology in movies and games.

The impact of the emergent behavior that arises from simple steering forces is

best experienced with animated visual media. The Lord of the Ringsmovies are so

engaging as films that it is difficult to study the computer-generated hordes in

motion, but the boids demonstration on Craig Reynolds’ Web site [Reynolds01]

is accessible to anyone with a Java-enabled browser. The paper airplane–shaped

triangles are not particularly engaging, but the motion they exhibit certainly is.

For anyone who has never seen the demonstration, a few minutes watching the

motion and a glance at the explanation would be time well-spent.

Emergence is a welcome technology for two main reasons: It looks very realistic,

and it can be computationally cheap. Reynolds programmed three simple

behaviors into each boid. These behaviors told each boid to stay with its local

group, to go where its local group is going, and to avoid getting too close to

241

chapter 8

nearby neighbors. Not only are these behaviors simple, they do not involve the

entire flock—just the local group. Because one of the behaviors avoids crowding,

it provides a limit to the complexity of the computations required for a single

boid, regardless of how high the total number of boids goes.

This computationally cheap algorithm produces lifelike results. The motion is

often described as organic or realistic, even when simulated birds are drawn with

simple triangles that look more like paper airplanes. Two similar but not iden-

tical flocks flying the same route will usually behave visibly—but not wildly—

differently. It can be maddening to attempt this level of realism with other AI

methods, particularly those with a centralized control mechanism.

While the life-like results are computationally cheap, so are any undesired

behaviors. Emergent behavior can be hard to predict, difficult to tune, hard to

control, and generally frustrating. The simplicity of the methods can be stymied

by complex situations, something demonstrated to anyone who has seen a

simple-minded bird trying to escape from the inside of a complex building.

This chapter is devoted to giving our software agents lifelike interactions. While

the easiest way to do this is to copy the state of the art, we will examine what goes

on under the hood in modest depth. We will use a freeway-simulation project,

Cars and Trucks, as an example to illustrate some of the real-world issues that

arise. Thankfully, this kind of AI is conceptually simple and rather robust. It even

applies to behaviors outside of steering.

Give My Creature ALife!
In various versions of the Frankenstein story, Dr. Frankenstein pounds his fist or

exhorts to the thundering skies, ‘‘Give my creature life!’’ It does not turn out

quite like he planned, however. Indeed, in some versions, it appears not to

happen at all—at least not at first.

Anyone can make boids flock, but game developers are in the business of creating

new and engaging interactions that no one has experienced before. Without a

known-good cookbook recipe, a game AI programmer has to traverse uncharted

territory in search of good, usable emergent behavior. And of course, completely

new software agents do not come with guarantees as to what will emerge when

they interact. (Recall that the results Dr. Frankenstein achieved did not meet his

goals.)

242 Chapter 8 n Emergent Behavior

This creates two critical concerns for AI programmers. The first concern is

dealing with their game designer. Much like Dr. Frankenstein, a game designer

who demands complete and total control over AI behavior will not gracefully

deal with an AI gifted with all of the controllability of a herd of cats. If the

designer’s task is to achieve a very specific entertainment experience, he or she

may not be able to realize it with these methods. Designers with more leeway

bring a more daunting challenge to the AI programmer—hence the AI pro-

grammer’s second concern.When this more flexible designer says, ‘‘That concept

is too cool to leave out. Put it in and we’ll design around it if we have to,’’ the AI

programmer is committed to making it happen. This second concern cannot be

overemphasized. Any novel application seeking emergent behavior is a high-risk

endeavor. Early prototyping and proof-of-concept work is mandatory. Early

winemakers knew that grape juice usually turned itself into wine if they left it

alone, but they also knew that sometimes it just went bad.

Fortunately, there are some guiding principles worth examining when there is no

recipe. Start with the interactions of simple behaviors, searching for the poten-

tially narrow zone between no results and an unstable system. As part of the

search, you may need to carefully explore the interactions not only for balance

but also for the right timing.

Proven Recipes

New systems that resemble existing systems are likely to show similar emergent

behavior. Tanks and birds have substantial differences, but tank platoons and

bird flocks can benefit from very similar code [VanVerth00]. Steering behaviors

for groups of individuals are the poster child for emergent behavior. Besides

keeping a group in formation, steering behaviors also excel at obstacle avoidance.

Variations on this theme rarely destroy the desired emergent behavior. Failures

in behavior are possible, but they tend to be moderately benign and reasonable.

Car drivers caught in exit-only lanes are forced to leave the freeway when they do

not want to. Game AI that makes mistakes that leave the player thinking, ‘‘That

could have happened to me . . .’’ are more well regarded than AI that makes more

unfathomable errors. Not all failures are benign; agents can get stuck, run in

circles, or even into walls.

The problem of getting good emergent behavior is harder when the issue at hand

does not relate to movement. In computer science, a classic method of attack is to

Proven Recipes 243

transform a new problem into a better-known problem. If the two problems are

truly isomorphic—that is to say, one can be transformed to another without loss

of something important—then any reasoning that can be applied to the known

problem also can be applied to the new problem.

Here’s an example: Although financial systems and flying birds hardly seem

similar, the herd mentality of the stock market is a known phenomenon. Ponzi

schemes might be modeled this way: ‘‘Some of the birds aroundme are flying this

way. This way appears to be taking us closer to the goal.’’ As more ‘‘birds’’

(investors) ‘‘fly this way’’ (invest in the scheme), the purported value of their

investments rises. The movement of some individuals in that direction attracts

more ‘‘birds’’ and further reinforces the appearance of getting closer to the goal.

As we have seen in prior chapters, the AI programmer has to be able to visualize

the problem at hand in the terms of any particular proposed solution. We will

cover these facets in detail.

Interaction
Emergence comes from interaction of multiple influences. With multiple agents,

the multiple influences felt by each agent are typically tied to the other agents. If

the influences between agents are going to be meaningful, then clearly the agents

need to be able to interact in meaningful ways. In the case of boids, the actions

each boid takes change its direction of flight and thus position. All the sur-

rounding boids are paying attention to both properties. The boids see the

actions, they act on the actions, and their own reactions cause further actions.

Another analogy is nuclear fission. One atom splits and ejects high-speed neu-

trons. Those neutrons might or might not hit other fissionable atoms. Those

atoms might or might not split, yielding more high-speed neutrons. With too

little interaction, the reactor is a very expensive warm pile. With the right amount

of interaction, large but manageable quantities of usable heat are available to

make power. If there is too much interaction, the expensive reactor melts down.

So it goes with software agents and emergent behavior; too much or too little

interaction will not give desirable results.

To a first-order approximation, a resting herd of buffalo on the prairie resembles

scattered boulders in the high grass. Things change when one buffalo spots a

hunting predator and gives the alarm. The herd self-organizes spatially, calves

heading for larger members of the herd and males interposing between the herd

and the threat. The individuals acting on their own interact, giving the herd

244 Chapter 8 n Emergent Behavior

coherence as a herd. Without interactions between individuals, there would be

no herd behavior; as best we can tell, bison do not get instructions from any

centralized sources.

Half of a randomly aligned buffalo herd will not see a hunting predator (buffalo

ignore wolves that do not appear to be hunting) because they are pointed the

wrong way. Their safety depends on actions taken by the rest of the herd. A deaf

buffalo will not hear snorts and other signals; unless some action takes place

where it is looking, it will not react with the herd. Its failure to react also means

fewer cues for it neighbors. A deaf buffalo exhibits inferior individual actions, but

it also weakens herd behavior due to its diminished interactions.

There is a chain in all of these examples. It goes like this: Agent A acts, Agent B

notices the action, Agent B reacts, Agent A notices the reaction. . . . Unlike
reactors, bison do not seem to have major problems if the chain of herd reactions

result in a stampede.

In the Cars and Trucks freeway-simulation project for this chapter, each vehicle

pays attention to the lane, speed, and position of the vehicles around it and reacts

by changing its speed and/or its selected lane. The simulation moves the cars and

trucks every animation frame, so differences in speed create changes in relative

position. Thus, the actions taken by each vehicle cause interactions with the

nearby vehicles. The agents could be programmed to do many other things, such

as select a radio station, but the other agents would ignore these behaviors, and

thus they would not cause any interactions.

Simple Behaviors
The basic design for systems that create emergent behavior seems to be, ‘‘Toss in

a few rules and turn them loose.’’ This exploits the simplicity of the system and

keeps the programmer from investing in code that later proves superfluous.

Boids only needed simple behaviors.

Simple behaviors do not always imply that they are simple to code. Simplicity

was a design goal for the Cars and Trucks freeway simulator project for this

chapter. It has three basic behaviors: The vehicles are not allowed to change lanes

into another vehicle, the vehicles prefer the fastest lane possible, starting on the

right, and the vehicles try to keep a safe following distance for their speed.

Avoiding collisions when changing lanes proves to be relatively easy to imple-

ment. Determining the speeds available in nearby lanes is also quite simple.

Simple Behaviors 245

Establishing a safe following distance is more involved and depends on many

factors, however, as we will see in the code. The math for vehicles on a straight

section of freeway is far simpler than the math for birds in flight.

When looking for new emergent behavior, start with the simplest interactions.

The code should resemble general rules more than a book of moves. It is hard to

force emergence, and it can be easy to over-think the problem; tightly scripted

behaviors are too organized to allow new behavior to emerge.

Between Order and Chaos
Individual goal-directed boids do not compute the most direct path to their goal

and take it. They are not striving for optimal behavior; they are settling for

reasonable behavior. Optimization drives toward order, fewer choices, and

predictability. There is little or no room for new behaviors to emerge when

everything that is not mandatory is prohibited. This is fine if the AI is for battle

droids marching in lockstep formation, deterred from conforming only by their

own destruction. It certainly will not be lifelike. Optimal behavior can be hard or

impossible to compute, turning this ‘‘close enough is good enough’’ approach

into a virtue.

The flip side of too much order is none at all. If what emerges is to be termed

behavior, it needs to have some minimal amount of coherence. Conflicting

directives need a rational resolution. If the interaction inputs drown out the

agent’s internal checks and balances, the system will probably not be stable. Ponzi

schemes eventually collapse, stock-market bubbles burst, and bank runs are

stopped by government authorities. If all agents disregard their internal checks

and balances, the system crashes. In contrast, a system in which the agents dis-

regard their internal checks and balances to varying degrees might exhibit large

swings but on the whole remain stable. Getting the checks and balances right is

one of the new challenges presented when dealing with emergent behavior.

The messy middle ground between order and chaos is a hallmark of living things.

If we want our agents to have organic credibility, they must also appear to live in

this messy middle ground. Programmers and designers who abandon the need

for total control may find that emergent behavior gives them the lifelike

appearance that they are after. Most people take steps to manage their time and

their finances. While nearly everyone knows how they can further optimize their

time and their finances, few find that they can comfortably live within the tighter

constraints that additional optimization imposes.

246 Chapter 8 n Emergent Behavior

Feedback and Control
The study of complex systems is beyond the scope of this book, but some of the

basic ideas from feedback and control systems can be illuminating. Aside from

the nuclear reactor example in which the atoms are destroyed, the actors in our

examples can act upon the actions in others that were triggered by the original

actor. ‘‘I do something, you react to it, and then I react to you.’’ This is known as

feedback and is shown in Figure 8.1.

Figure 8.1 has been simplified to show only the feedback. Both agents could have

other inputs. Both agents are free to decide what they do with any of the inputs,

including ignoring some or all of them. We will ignore those complexities as

much as we can. Timing and reinforcement are the key properties of feedback

that we need to examine.

Reinforcement

In Figure 8.1, if the reaction of Agent A to feedback is to do more of what it did in

the first place, this is known as positive feedback. If left unchecked, positive

feedback results in chaos or system failure. Reactors melt, bison stampede at full

speed into places where going slow or perhaps turning might be prudent, and

children act out in ever more outrageous ways. Of course, not all positive

feedback is bad; in fact, positive feedback is one of the ways that good ideas get

turned into innovation. ‘‘That’s a great idea! We should do that!’’ is positive

feedback.

In Figure 8.1, if the reaction of Agent A to feedback is to do less of what it was

doing, we call it negative feedback. Your intuitive ideas about positive and

negative feedback are probably correct; feedback and control theory examine

them in exacting detail. Negative feedback can also be good or bad. ‘‘I’d love to

go boating, but there are small craft warnings out,’’ is probably wisdom. ‘‘Great

idea, none of us has time for it,’’ has prevented countless innovations from

becoming reality. Also called dampening, negative feedback is required to keep

Figure 8.1
Simple feedback between two agents.

Feedback and Control 247

systems stable, but too much of it yields the ultimate in order in which nothing

happens.

It should be obvious that stable systems need a balance between positive and

negative feedback. Boids balance the need to stay with the flock against the need

to avoid overcrowding. When designing a stable system with emergent behavior

in mind, you should examine the interaction behaviors. Every positive-feedback

input is a potential source of instability; it must be balanced in some manner.

With a few simple behaviors, it should be easy to prove that the system will find a

balance point. As the number of behaviors increases, proof becomes impossibly

hard. The programmer is reduced to ‘‘flight testing’’ the system, looking for a

stable regime and then programming in guards against excursions outside the

stable envelope.

Timing

Both kinds of feedback are beneficial in emergent systems. Positive feedback

drives emergence, and negative feedback keeps it from going out of control.

Hidden in all of this is the effect of timing. How fast should the feedback loops

operate? It should come as no surprise that the answer is neither too fast nor too

slow, but just right. Our project simulation can provide some concrete insights

into timing.

Fast Feedback

In the military, feedback is known as a decision loop, and the Holy Grail is to have

a faster decision loop than the enemy. The idea is that the fast side acts, forcing

the slow side to react. The fast side can then turn that reaction into a mistake

before the slow side can adapt. If the advantage is extreme, the fast side can avoid

destructive force-on-force styles of combat and still defeat the enemy. This

works, however, only if the forces of the fast-thinking side are nimble enough to

exploit the advantages of thinking faster. Many systems can think faster than they

can act.

Faster feedback is not always better. Computer games need to stay at human-

compatible speeds. In the case of boids, if the reaction times are too short, the

flock will appear to vibrate instead of undulate. Short times imply higher fre-

quencies, and at some point the frequency is too fast for human perception.

Shorter feedback loops also carry an inherent disadvantage even if the system

would benefit from them. Faster and faster feedback tends to result in decisions

248 Chapter 8 n Emergent Behavior

with less and less input data, because there is not enough time between decisions

to gather enough data. You may need to analyze the data from several cycles of

the decision loop to reliably discern any trends. In this case, you also need to

determine the minimum number of data points required.

The stock market illustrates this dilemma quite well. Trades can be executed in

about a minute. But how long does it take to reliably determine a trend? For a

day-trader, five minutes may suffice. For a buy-and-hold, fee-averse investor, the

answer may be one quarter or even one year. For the first investor, one hour is an

eternity, and for the second investor, one hour is insignificant.

To be effective, feedback loops need to take long enough that real trends can be

distinguished from noise. In the case of our software agents, our feedback loops

need to take enough time that the agents can meaningfully act in ways that will

cause interactions. Games do have an inherent upper limit on effective

feedback speed, which we will see shortly when we look at feedback in Cars and

Trucks.

Slow Feedback

Slow feedback loops give rise to plodding systems such as freight trains that often

travel for miles before appreciably changing their speed. Technically, the feed-

back part is fast, but the control part is slow. The train engineer can hit the air

brakes or the throttle very quickly, but the train needs time to change speed. For

our purposes, we are combining feedback and control for simplicity and because

software systems are far less constrained on the control side than physical systems

are. If the feedback loop for a flock of boids takes too long, a boid that is too close

to its flock mates will fly away from them long enough that it will no longer

regard them as flock mates. A boid that is correcting for excess separation may

collide with all the other flock mates that are making the same correction.

Slow feedback fights against the interaction needed for emergent behavior to

appear. An e-mail exchange would be too slow for use in most games. Instant

messaging provides far faster feedback and enables a sense of ‘‘being there’’ to

emerge. Face-to-face conversation provides feedback at a rate that encourages a

wide range of emergent behaviors.

Fast feedback loops give rise to frenetic systems such as mayflies, constantly

darting here and there at the slightest input; slow feedback gives us freight trains.

Neither would be satisfactory at controlling an automobile. The timing of the

feedback has to be appropriate to the situation. Our project gives a good example

Feedback and Control 249

to analyze. The physics implementation suggests a minimum think speed, as we

shall see.

Feedback in Cars and Trucks

In the Cars and Trucks simulation, we will have independent control over the

frame rate and the AI’s thinking rate. While many games have a single update

loop for animation, AI, and game input, others split one or more of them out.We

get reasonable animation as low as six frames per second. We get reasonable AI

performance at two thoughts per second. The latter number was arrived at by

tuning the system after examining the various options.

It makes no sense to have the think rate higher than the frame rate. The vehicles

move forward only once per animation frame. The vehicles change lanes and

speed every time they think, but they only move when the animation calls for

them to move. Thinking faster than the system can react is pointless, as one

would expect. In terms of the military decision loop, this is the equivalent of

generals pounding their desks in frustration at their slow-reacting forces.

All games have this same upper limit.While you may or may not need to have the

AI think at the frame rate, there is never any need to exceed the frame rate. To be

more precise, the AI need not think faster than important things change. Most

games have animation and physics running in lockstep, so the basic rate of

change is the frame rate. Resource-limited mobile games that have small bits of

rapid animation but slow overall movement can let the AI slow down to the

movement rate. PCs and consoles left such limits behind years ago, making the

frame rate the basic change rate.

In Cars and Trucks, thinking almost as fast as the system can react did not prove

to be optimal, either. The cars changed lanes too often. We got the mayfly effect.

Some dampening was added to the code to make staying in the current lane

more acceptable if the car in front was too close but pulling away. In visual

terms, all the drivers appear to drive like indecisive maniacs; this might be a

reasonable model for some drivers but not for all drivers. Even after dampening

the lane changes, fast AI updates made it hard for the user to see what the AI

was thinking. The AI graphically shows what it is thinking, and the user can

absorb that information only so fast. The simulation would get smoother if the

AI ran more often, but the user would have a hard time keeping up with what

the AI is doing to each car. Game design can place limits on how fast the AI

should react.

250 Chapter 8 n Emergent Behavior

A think rate of one thought per second proved slightly slow. The vehicles miss

opportunities that go by them as they daydream. This rate was still fast enough to

be safe, but the drivers sometimes appeared lethargic, letting openings go by that

they could have safely taken. A think rate as slow as one thought every two

seconds would have resulted in collisions or the possibility that some vehicles

could drive right through other vehicles in their lane. You can replicate the effects

of tuning the AI by completing the exercises at the end of the project.

The thinking speed not only has an impact on the AI, it has wider impacts that

need to be examined. AI is one part of the game, and all parts must balance. There

is give and take available among the major parts of the game; our simulation, as

simple as it is, has enough of the right elements to illustrate this.

If the AI can make certain demands of the simulated physics, our simulation

never has collisions. Once the code was debugged, collision detection was

restricted to the think cycle, not the animation cycle. Given the right physics and

a properly working AI, the collision detection can be skipped altogether. This is

an engineering decision balancing fun, realism, and computational demand. It

would clearly be unacceptable if there were humans driving any of the cars, for

example.

Without certain guarantees, collisions could happen any time there is motion,

which asks that collision detection be performed every frame. During debugging,

collision detection was run every frame. Collision detection is physics, not AI, but

in a virtual world everything is under software control. When working properly,

our ‘‘physics’’ and AI provide certain guarantees that let us move collision

detection out of the animation loop and then make it completely optional. There

are three ways a vehicle can collide in our simulation: It can run into the back of a

slower vehicle in its lane, it can change lanes directly into another vehicle, or it

can change lanes into the path of an oncoming faster vehicle. We will look at the

impact of each of these.

Our AI looks forward two seconds’ worth of travel distance at the vehicle’s

current speed to see what it might hit in its lane. As long as what passes for

physics in our simulation allows the AI to cut the vehicle speed in half before the

next second of travel, a given vehicle will not collide when it comes up on a slower

vehicle already in its lane, even if that vehicle is at a dead stop. We get a realistic-

looking behavior with the fast drivers slowing down over many think cycles as

they come up on slow traffic and match speeds while keeping a safe distance. The

realism suffers when very high speed vehicles shed an unrealistic amount of speed

Feedback and Control 251

in the initial braking. If the blocking vehicle is moving at a reasonable rate, this

drawback is far less noticeable as the overtaking vehicle smoothly matches

speeds. Note that cars can never travel backward in our simulation. They can stop

if they have to, but on our freeway they never back up.

Physics can suggest a minimum feedback speed. In our case, a car that halves its

speed every second needs one second of travel distance to stop. If you sum the

sequence that begins one-half plus one-fourth plus one-eighth . . ., you get a

number that is almost one. So our stopping distance is one second of travel

distance, but we also have to factor in reaction time. The car needs to see the

obstacle before it can get within one second of travel distance. So the AI must

look ahead more than one second, with two seconds travel distance being the

minimum. That minimum works only if the AI thinks at least once a second.

Our AI guarantees that it won’t change lanes into another vehicle, avoiding direct

side-swipe collisions. In addition, it always makes sure that there is a safety

margin of about half a car length of daylight in front and behind before it changes

lanes right in front of or right behind another car. Since it only changes lanes to

increase or maintain speed, it tends not to change lanes to get behind a slower car

that it is now in danger of hitting. This is no help to overtaking drivers a little

farther back in the new lane. Giving the overtaking car a full second of clearance

would have been much more considerate.

The worst problem area for the simulation is when a slow vehicle changes into the

lane of a very-high-speed vehicle. If it cannot change to a clear lane, our fast-

vehicle AI needs to dump enough speed to keep it from slamming into the back

of the slower vehicle that instantly appeared in front of it. When it happens, it

appears unrealistic, even by the admittedly loose standards of our simulation.

The slow-vehicle AI could check for more than half a car length of daylight

behind it when it changes lanes and not change lanes into the clear zone in front

of an overtaking faster car, but the simulation is slanted toward a more enter-

taining American ‘‘My taxes paid for that lane, I’m taking it’’ style of freeway

driving than a German Autobahn style, where pulling into the path of an

overtaking car moving at nearly twice your speed is clearly suicidal.

As you might expect, the problem shows up when there are large differentials in

speed. Vehicles moving at speed of 50 to 85 pixels per second merely appear rude

to each other, but when they interact with vehicles travelling at 120 or 180 pixels

per second, it looks more like a death wish. If our rude vehicles were more

considerate and gave the overtaking vehicle at least a one-second buffer, we could

252 Chapter 8 n Emergent Behavior

use the same realistic-appearing deceleration the normal overtake code uses and

avoid having the high-speed vehicles conduct panic stops. Our simulation

amusingly treads on the physics so that it avoids collisions altogether and so that

the AI can think at a more leisurely pace.

To summarize, we actively balance realism, frame rate, fun, and AI think rate. We

traded realism to protect frame rate. We could have made the AI more con-

siderate, easing the unrealistic demands on physics, but it is more entertaining to

watch the fast drivers stand on their brakes when they get into traffic. In many

games, the limits on the amount of CPU available to the AI will place limits on

how often it is allowed to think. This is always a potential issue, but with

emergent behavior in the mix, it has a direct impact on the limit to feedback

speed. Fortunately, as we have seen, slower feedback loops often work better. The

point should be emphasized strongly that the real-time constraints the game

places on the AI must be carefully considered when tuning the feedback loops

that control emergent behavior.

So with the right feedback, we can get the interactions we want between our

agents. The simple behaviors are sufficient, and they cause the group to exhibit a

pleasing group behavior. All positive feedback is balanced by a negative feedback

to keep the system in balance. While we were not striving for flocking behavior,

by basing our simulation on similar behaviors, we started with good assurances

that we would get a decent group behavior.

Beyond Steering
Steering behaviors are one very accessible way to exploit emergent behavior.

Flocking just looks right. With the proper architecture, we can get emergent

behavior in places other thanmotion control. Consider theDay in the Life project

from Chapter 5, ‘‘Random and Probabilistic Systems.’’ Each actor is influenced

by up to five inputs (cash on hand plus four pieces of data per job). In the original

simulation, the inputs were fixed for every job. There were no pay raises, and the

job descriptions never changed. What happens when the jobs begin changing?

Will we get behaviors that we did not explicitly plan to get? If the chance of

success for crime goes from 30 percent to 59 percent, Barry will give up the stunt

show for a life of crime. Getting more criminals when crime is more enticing

hardly seems unexpected. Similarly, the numbers for stunt show and day job are

‘‘close,’’ and minor changes will cause Eddy and Barry to change jobs in a

predictable manner. How can we get something unexpected?

Beyond Steering 253

What happens when we add interactions and some feedback? We could run the

simulation for all of our available actors simultaneously, and we could make

the jobs and cash change according to what the actors were doing. As soon as

the current actions of the actors change the data upon which the same actors base

their future decisions, we have created feedback. When the current actions of the

actors influence the future decisions of other actors, we have created interactions.

What would that give us? Let us look at some examples.

The money that criminals steal ought to come from somewhere. If the money

gained by each successful criminal action came from the cash on hand of others,

it would slow down or even stop the steady Eddys of our world from ever making

it to retirement as a financier. Successful rock stars, lotto winners, and criminals

who have moved on to become financiers might have to leave their comfortable

life of retirement if large amounts of their cash are stolen all at once. The richest

financiers can tolerate a certain steady level of theft if the criminal Carls of the

world have their successes spread out over time, but if some criminals got lucky

at the same time, it would take the retirees below the minimum level needed to

play the market. This still seems predictable.

If the job market itself was influenced by the actions of actors, we could expect

waves and trends of activity that would be completely unpredictable. Using

simple supply and demand, jobs where the supply of workers is less than the

demand for work to be done will see rising wages as employers compete for

workers. Jobs with an oversupply of workers will see wages drop. We already

know from Chapter 5 that many of our workers are sensitive to the relative wages

of the different jobs. The number of various jobs could shrink and grow, and the

values used to define every job could change with every tick of the simulation. For

example, entertainment jobs such as stunt show and rock star might be more

sensitive to the average level of cash on hand in the population than day job or

financier; a well-off population has discretionary money available for enter-

tainment, and a struggling population does not. The simulation might get stuck

if the interactions are heavily dampened, or it might become unstable if positive

feedback loops are not balanced by negative influences. The basic architecture

has each actor acting on four outside and one inside influences; with some

feedback it is reasonable to predict that we could get emergent behavior from the

system. We expect the job market part of the simulation to exhibit emergent

behaviors driven by the actors. As written for Chapter 5, the actors are heavily

optimized for specific behaviors. Some of the actors and some of the jobs are

‘‘close’’ in terms of how easy it is to get an actor to give up his or her expected job

254 Chapter 8 n Emergent Behavior

if another job changes slightly, but the bulk of the system is meant to be stable.

Along with the feedback, a richer set of actors and a richer set of jobs may be

required to get a critical mass of interactions. It certainly appears plausible that

with a few changes, we could get the job market part of the simulation to give us

emergent behavior.

This example illustrates the critical concerns with emergent behavior. Since we

do not have running code, we do not know if we will get emergent behavior at all.

We think that we can get it, but we cannot predict if we will like what emerges.

Even if we like it, the architecture offers little guidance as to how we will control it

or tune it. Experience from Chapter 5 suggests that some numbers and some

equations will be more sensitive to change than others. That experience also

suggests that we will see substantial run-to-run variations in the outcomes. That

variation causes a particular fear for AI programmers; what if the players play the

game differently from how it was tested, and a new and utterly inappropriate

behavior emerges after the game ships? The fact that other AI techniques can

exhibit a similar vulnerability is a small consolation.

Advantages
Good emergent behavior gives the illusion of higher-order organization and

coordination than are actually present. The method can be very cheap to pro-

gram and is robust. The results typically have lifelike qualities that would be

extremely difficult to achieve using other methods.

Disadvantages
The drawbacks to emergent behavior tend to relate to the unknowns. Game

designers and quality-assurance staff tend to place a very high value on control

and predictability. Neither group will be pleased if the herd of water buffalo

wanders out of the mouth of the ravine and makes itself unavailable for a

stampede that would kill the evil tiger that the player has lured into place. The

unknowns increase if the envisioned system is far from what others have done

before; the AI programmer does not know if he or she will obtain good emergent

behavior until after the system is programmed.

The Cars and Trucks Project
The Cars and Trucks project differs from a typical flocking implementation

in that the vehicles are not expected to stay in a flock. The desired speeds

of our vehicles cover a wide range—from 50-pixels-per-second trucks to

The Cars and Trucks Project 255

180-pixels-per-second exotic cars to the barely subsonic 600-pixels-per-second

collision test vehicle. The player controls the number of available lanes as the

simulation runs. Because the vehicles that have identical desired speeds are

reasonably separated, as long as there are two or more lanes available, the vehicles

eventually sort by speed as you would expect. Realistic group behavior results; the

exotic car can get stuck in the slow lane when it attempts to pass on the right and

fails to make it to a gap in time. When the 55-pixels-per-second truck passes the

50-pixels-per-second truck on a two-lane road, the rest of the convoy bunches up

and jockeys for the best lane position. If the player adds three extra lanes, the

really fast cars cannot clear off until the cluster of four bikes doing between

80 and 90 sort themselves out enough to clear an open lane. When the head of a

line of cars gets an opening, the line behind accordions very realistically as the

cars hold off on acceleration until the gap in front of them starts to open safely, as

shown in Figure 8.2.

The simulation starts with the vehicles in a single lane. Those behind the truck

start dangerously close together, forcing them to drop to a low speed. The upper

lane was added a few frames before the screenshot was captured. The vehicles that

change to the upper lane do so at a speed in the low 40s. In the upper lane, the

Coupe leads, and with nothing ahead of it quickly makes it to its desired speed of

60. With a stable speed, it has a white background. Behind it is Bike C at a speed

of 48 and climbing. The dark backgrounds of Bike C and Bike D are green when

seen in color. Bike D can only accelerate when Bike C starts pulling away, so Bike

D is at a speed of 44 and climbing. The 60–48–44 sequence of speeds shows the

accordion effect as acceleration in vehicles ahead makes for increased clearance,

calling for acceleration in the current vehicle.

Figure 8.2
Cars and Trucks running on two lanes.

256 Chapter 8 n Emergent Behavior

As seen in Figure 8.2, our vehicles will be drawn as boxes using Label and TextBox

controls. The position of a vehicle is the leading edge of the box. Inside each box

is a number showing the current speed of the vehicle. The box will have a white

background if the AI did not change speed the last time it thought. If the AI

slowed down, the background will be reddish; if the AI accelerated, the back-

ground will be greenish. Projecting in front of each vehicle is a headlight—a

narrow beam that projects forward two seconds’ worth of travel distance at the

current speed. This is similar to the feelers or probes often seen in flocking

demos. The vehicle ignores anything ahead of it beyond the reach of the head-

light. Above each box is the vehicle’s name and its desired speed. All vehicles have

a length, in pixels. (The bikes are too long, but a shorter bike body will not hold a

two-digit number.) The sport and the exotic vehicles are the minimum size to

hold a three-digit number.

Alongside the road is a ‘‘pixel marker,’’ equivalent to a mile-marker road sign.

You can see it above the scrollbar and below and between Bike B and Truck in

Figure 8.2. When the simulation is running, the display is centered on a reference

vehicle, which is Bike B in Figure 8.2. The marker goes flying by at the equivalent

of the road speed of the reference vehicle. When the marker falls off the left edge,

it is redrawn at the right. The vehicles travel left to right; a wide-format monitor

enables you to see more of them.

Position is stored in absolute pixels. This makes the motion and display math

easy to understand. In each animation frame, the vehicles are moved and then

drawn. For movement, the internal position of the vehicles is updated according

to their speed in pixels per second, and the frame rate in frames per second. Lane

changes take place on AI think time, not animation time. To draw, the three

labels that make up a vehicle have their Top property set according to the selected

lane and their Left property set to a value reflecting the vehicle’s relative position

to the reference vehicle. Setting properties of labels and text boxes is rather

rudimentary, but it is sufficient for our animation needs.

Two timers are used to control the AI and the animation. (Do not expect this

method to be commonly used in commercial games.) The AI timer typically

fires every half second to run the AI code. The animation timer typically fires

6 to 12 times a second, depending on the desired frame rate. This gives us

the equivalent of complex, multi-threaded game code without the coding

complexity. Performance will depend on the number of vehicles, but it will also

depend greatly upon whether the code is run in the debugger or as an

The Cars and Trucks Project 257

independent executable. In the code, comments identify the core five vehicles

needed for initial testing. Using all 14 will have a speed impact on the simulation.

Debugging statements, when turned on, will have a serious impact on speeds. A

particularly fast computer is not required. (This book was written on an eight-

year-old computer with dual 1.2GHz Athlon MP processors and 2GB of RAM

running numerous background server processes at all times.)

The code has two parts: the road and the vehicles. We will develop both of them

together. First we will put some cars on the road; then we will animate them. The

last thing we will do will be to make them think.

The code uses LineShape controls to mark the edges of the pavement. These

controls are part of the Visual Basic PowerPack, a free download fromMicrosoft.

It is available at http://msdn.microsoft.com/en-us/vbasic/bb735936.aspx. Check

the Toolbox window in Visual Basic to see if you already have the controls

installed. If you do not have them and you do not want to download the

PowerPack, the project will operate properly without the two lines. Simply do

not add them when called for and do not add any code that manipulates them.

The text will note these optional additions.

The Road and the Vehicles

Launch Visual Basic and create a project called CarsAndTrucks. Then follow these

steps:

1. Change the name of Form1.vb file to Road.vb. Set its Text property to Cars

and Trucks.

2. Resize the form. 1,050� 300 is a good size. Depending on your monitor

width, you may want to unpin the Solution Explorer or the Toolbox to gain

width. Wider is better.

3. Double-click My Project in Solution Explorer. Go to the Compile tab and

set Option Strict to On. Option Strict turns off silent type conversions that

could fail and forces us to make them explicit. Being mindful of type con-

versions as we write the code helps prevent bugs.

4. Save all. Do this on a regular basis as we go.

Add a class to the project and call it Vehicle.vb. Our vehicles will keep a modest

amount of data, most of which will be private. To start with, we will want to be

258 Chapter 8 n Emergent Behavior

http://msdn.microsoft.com/en-us/vbasic/bb735936.aspx

able to create a vehicle and draw it. We start with the data that each vehicle needs.

Add the following code to the Vehicle class.

Public Const VehicleWidth As Integer = 20

’We keep most of the vehicle data private.
Private myName As String
’Speeds are in pixels per second.
Private myDesiredSpeed As Integer
’Length is in pixels.
Private myLength As Integer
’Use floating point so that we can accumulate fractions.
Private Xpos As Double = 0
Private myLane As Integer = 1
’Actual speed in pixels per second.
Private currentV As Integer

’Visually, a vehicle is two Label controls and a TextBox control.
’We want to react when the body is clicked, so it is WithEvents.
Dim WithEvents Body As TextBox
Dim HeadLights As Label
Dim NameTag As Label

Most of the data that a Vehicle class object stores will be known when the vehicle

is created. The New() function will have many parameters, so we have a certain

amount of work to do to create our vehicles. Add the following code to the class:

’Create a vehicle.
Public Sub New(ByVal length As Integer, ByVal desiredSpeed As Integer, _

ByVal parent As Road, ByVal X As Integer, ByVal V As Integer, _
ByVal callMe As String)

’Store the basic data.
myName = callMe
myDesiredSpeed = desiredSpeed
currentV = V
Xpos = X
myLength = length

’Create our three controls.
Body = New TextBox
HeadLights = New Label
NameTag = New Label

The Cars and Trucks Project 259

’Not moving? Side of the road please.
If desiredSpeed <= 0 Then

’Only signs have no speed.
NameTag.Visible = False
myLane = 0

End If

’Put the controls on the form.
Body.Parent = parent
HeadLights.Parent = parent
NameTag.Parent = parent

’Get their sizes right. (Note that the
’width of a vehicle is height on a control;
’our vehicles are sideways on the form.
Body.Height = VehicleWidth
HeadLights.Height = VehicleWidth \ 4

’The same way that vehicle length turns into
’control width.
Body.Width = length
HeadLights.Width = 2 * desiredSpeed

’Auto-size the name tag.
NameTag.Text = myName & ":" & desiredSpeed.ToString
NameTag.AutoSize = True

’Color them.
Body.BackColor = Color.White
HeadLights.BackColor = Color.Transparent
NameTag.BackColor = Color.Transparent

’Outline them or not.
Body.BorderStyle = BorderStyle.FixedSingle
HeadLights.BorderStyle = BorderStyle.FixedSingle
NameTag.BorderStyle = BorderStyle.None

’Tweaks for the body since it is a TextBox control.
Body.TextAlign = HorizontalAlignment.Center
Body.ReadOnly = True

’Put us on the map.
Me.Draw(-200)

End Sub

260 Chapter 8 n Emergent Behavior

The careful eye will have noticed that the code for the width of a headlight uses a

backslash (\) instead of a forward slash (/) when dividing by 4. The backslash is

an integer divide with fractions truncated. The result does not need type con-

version when assigned to an integer variable. We want narrow headlights, and we

do not care if they are one pixel narrower than rounding would call for.

Also worth noting is that our road is sideways. That means we have to deal with

the fact that height on the form turns into the width of our vehicles. The length of

our vehicles is the width of the controls that draw them. The drawing code will

also have to keep this transformation in mind. We will have our class speak in

terms of X position and vehicle length to avoid confusion.

The development environment will complain about Me.Draw(�200) because we

have not added that chunk of code. The �200 value will make more sense when

we see the positions we use to place the initial vehicles on the road. Without the

draw call, all the controls would wind up in the top-left corner of the form. This

way, we can take a glance at our starting data before things move. Add the

following code to the class.

Public Sub Draw(ByVal offset As Integer)
’Headlights go out twice our speed.
HeadLights.Width = 2 * currentV

’Position us in the proper lane.
Body.Top = VehicleWidth * (10 - 2 * myLane)
’Headlights same as the body.
HeadLights.Top = Body.Top
’Name tag above the body.
NameTag.Top = Body.Top - NameTag.Height

’And at the right spot along the way.
’Everything gets the offset.
’Body is a Label control. Its width is our
’vehicle’s length. Our right edge is at X, so
’our left is our length further back.
Body.Left = Me.X - Body.Width - offset
’Headlights have their left edge at our position.
HeadLights.Left = Me.X - offset
’Center the name tag.
NameTag.Left = Body.Left + Body.Width \ 2 - NameTag.Width \ 2

’Show how fast we are going.
Body.Text = currentV.ToString

End Sub

The Cars and Trucks Project 261

This code deals with the sideways road, but it needs help from the class in terms

of the X position. Our virtual world is one of integer values, usually in terms of

pixels, made possible by our flat, 2D simulation. We use a floating point value to

store position so that we can accumulate fractions of a pixel of motion because

our frame rate and speeds do not always divide evenly. Aside from that, every-

thing is integer pixels, so we will provide a function that converts our floating-

point position to the closest integer. While we are doing that, we will provide the

rest of the functions used to get read-only access to the internal data of the

vehicle. Add the following code to the Vehicle class.

Public Function ID() As String
Return myName

End Function

’Where along the road is it?
Public Function X() As Integer

Return CInt(Xpos)
End Function

’How fast am I going?
Public Function Speed() As Integer

Return currentV
End Function

’How long is my car?
Public Function Length() As Integer

Return myLength
End Function

’What lane am I in?
Public Function Lane() As Integer

Return myLane
End Function

That gives us a good start on vehicles. We can test the code by adding some code

to the Road form to create a few vehicles. We need to change our focus from

the Vehicle class to the Road form. View the code of the Road.vb and add the

following code:

#Region "Public Stuff"
’A place to keep our car collection.
Public ToyBox As New Collection

262 Chapter 8 n Emergent Behavior

#End Region

Private Sub Road_Load(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles MyBase.Load

’Keep this list in sorted X order, ascending.
’(length, desired speed, parent, X pos, initial speed, name)

’The barely subsonic vehicle for crash testing (250 is a
’more realistic top speed).
ToyBox.Add(New Vehicle(35, 600, Me, -3025, 50, "F1+"))

’To get serious speed differences.
ToyBox.Add(New Vehicle(35, 180, Me, -1025, 50, "Exotic"))

’Various fast bikes.
ToyBox.Add(New Vehicle(30, 95, Me, -605, 50, "Bike F"))
ToyBox.Add(New Vehicle(30, 90, Me, -545, 50, "Bike E"))
ToyBox.Add(New Vehicle(30, 85, Me, -485, 50, "Bike D"))

’Also shows good speed differences.
ToyBox.Add(New Vehicle(35, 120, Me, -425, 50, "Sport"))

ToyBox.Add(New Vehicle(30, 80, Me, -365, 50, "Bike C"))

’These five make good initial test vehicles.
ToyBox.Add(New Vehicle(30, 75, Me, -305, 50, "Bike B"))
ToyBox.Add(New Vehicle(45, 60, Me, -240, 50, "Coupe"))
ToyBox.Add(New Vehicle(200, 50, Me, 0, 50, "Truck"))
ToyBox.Add(New Vehicle(45, 60, Me, 70, 50, "Sedan"))
ToyBox.Add(New Vehicle(30, 80, Me, 120, 50, "Bike A"))

’A two-truck slow pass up ahead.
ToyBox.Add(New Vehicle(200, 55, Me, 1000, 50, "Truck"))
ToyBox.Add(New Vehicle(200, 50, Me, 1400, 50, "Truck"))

End Sub

Nowwe are ready to test. We have created numerous vehicles with widely varying

capabilities. (Feel free to comment out vehicles to make things simpler as you

debug your code.) We keep all of the vehicles in the toy box so that we have them

in one convenient place. We keep the toy box sorted so that the AI and collision

detection can run a great deal faster. If a given vehicle is not hitting the vehicle

The Cars and Trucks Project 263

Figure 8.3
An initial test run of Cars and Trucks.

directly in front of it, it could hardly be hitting any vehicle in front of both of

them. We will have to sort the toy box every time we want to go through it in

order, but the sort should be quick because the list retains a great deal of order

between sorts. Run the code in the debugger. You should see something

resembling Figure 8.3.

If you look at the X positions we loaded and hunt for the �200 value in the list,

you will see that there is a 200-pixel-long truck located at X=0. On the left side of

the form, we see the tail end of that truck at �200. The �200 number we fed to

the initial Draw() calls in New() was picked for this reason. We get a static view. If

we extend the size of the form, we can see the two trucks up ahead, but there is

no way to see the convoy of vehicles behind. They would be a lot easier to see if

they were moving.

Movement and Animation

We loaded all the vehicles at a speed of 50 pixels per second.Without any AI, they

cannot change speed. If we did not put any of them on top of another, we can

defer collision detection until after we get them to move.

We will program in a variable frame rate. Each frame, every vehicle, starting from

the front, is moved forward by its speed in pixels per second divided by the frame

rate. Floating-point math keeps track of fractions for us, giving us some freedom

in setting the frame rate. The upper limit to frame rate will depend on the

particulars of your system. After moving everything, we draw it in its new place.

Animation frames are initiated by a timer. We will start with the user-interface

elements. Switch to the Design view of Road.vb; then follow these steps:

1. A glance at Figure 8.2 may be helpful as you place controls. Drag a Label

control from the Toolbox to the upper-right corner of the form. Change its

264 Chapter 8 n Emergent Behavior

Name property to FpsLabel. Change the Text property to FPS. Change the

Anchor property to Top, Right. This label will show how fast our animation

actually runs.

2. Drag a Button control from the Toolbox to the lower-left corner of the form.

Change its Name property to StartButton. Change its Text property to Start.

Change its Anchor property to Bottom, Left. This button will start the

simulation.

3. Drag another Button control from the Toolbox and place it next to the Start

button. Change its Name property to StopButton. Change its Text property

to Stop. Change its Anchor property to Bottom, Left. This button will stop

the simulation.

4. Drag a Timer control from the Toolbox onto the form. When you let go, it

will jump to the bottom of the editing pane. Timers have no visible user

interface elements, so they are held at the bottom. Change the Name

property of the timer to AnimationTimer.

5. Drag another Timer control to the form. Change its Name property to

ThinkTimer. We do not need it to move the vehicles, but we want it on the

form so that we do not have to revisit some of the code we are about to write.

6. Drag a HScrollBar control from the Toolbox to the bottom-right corner of

the form. Change its Name property to PanScrollBar. Change the Small-

Change property to 10.We will resize it later, after the rest of the controls are

on the form.

7. Drag a Label control to the form and place it to the right of the Stop button.

Change the Name property to RefLabel.

We need to track some data if we are going to compute the frame rate. We also

need to set the frame rate. Once we do that we can turn on the Start and Stop

buttons and ask our vehicles to move. Switch to the Code view of Road.vb and

add the following code inside the class:

’Some constants we can tweak.
Dim FrameRate As Integer = 6
Dim ThinkRate As Integer = 2

’We need a start time to compute frame rate.
Dim startTime As Date
Dim framecount As Integer

The Cars and Trucks Project 265

Private Sub StartButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles StartButton.Click

’Store values for computing frames per second.
startTime = Now
framecount = 0
’Initialize and enable animation.
AnimationTimer.Interval = CInt(1000 / FrameRate)
AnimationTimer.Enabled = True
’Initialize and enable AI.
ThinkTimer.Interval = CInt(1000 / ThinkRate)
ThinkTimer.Enabled = True
’Don’t show FPS when running.
FpsLabel.Visible = False
’Do not scroll when running.
PanScrollBar.Enabled = False

End Sub

Private Sub StopButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles StopButton.Click

’Stop animation and AI.
AnimationTimer.Enabled = False
ThinkTimer.Enabled = False

’Compute frames per second.
Dim stopTime As Date = Now
Dim min As Integer = stopTime.Subtract(startTime).Minutes
Dim secs As Integer = stopTime.Subtract(startTime).Seconds + 60 * min
’Avoid a divide by zero.
If secs < 1 Then secs = 1
’Compute the rate and show it.
FpsLabel.Text = Format((framecount / secs), "0.0") & " FPS "
FpsLabel.Visible = True
’Allow scrolling.
PanScrollBar.Enabled = True

End Sub

The buttons turn the timers on and off. They also disable and enable the

scrollbar. Once we get the vehicles moving, we will switch from a static ground

view of the vehicles going by to a vehicle-relative view so that we can stay with a

266 Chapter 8 n Emergent Behavior

particular vehicle. We need to ask the vehicles to move because they hold their

position values internally. Switch to Vehicle.vb and add the following code:

Public Sub MoveForward(ByVal FrameRate As Integer)
Xpos += currentV / framerate

End Sub

What remains is to ask the vehicles to move when the animation timer fires.

Switch back to the code for Road.vb and add the following code:

Private Sub AnimationTimer_Tick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles AnimationTimer.Tick

Dim Toy As Vehicle

’Increment drawn frames.
framecount += 1

Dim offset As Integer = CInt(Me.Width / 2)

’Move them forward and draw
For Each Toy In ToyBox

Toy.MoveForward(FrameRate)
’Track the reference vehicle when we get it.
Toy.Draw(-offset)

Next

’Our floating marker will need to move when we put it in.
End Sub

Before we run the code, a word or two about timers, frame rate, and perfor-

mance is in order. The timers we use have a maximum resolution of 55 milli-

seconds. This has an impact on how well the system can deliver the desired

frame rate. Running the code in the debugger will not help matters. Our two

timers will interact; the animation may lose smoothness when the AI runs.

While the VB code itself is reasonably fast, changing the positions of controls

using the native Windows desktop is a known choke point. The Microsoft

DirectX technology exists for this very reason. These timers should give rea-

sonable performance at our low frame rates. These timers do provide a number

of concrete benefits to the beginning AI programmer. These are the simplest

timers available. They let us control the think rate and the frame rate inde-

pendently. We do not have to deal with threading issues or the need to write a

time-locked core graphics loop.

The Cars and Trucks Project 267

We will add more to this code later as indicated by the comments. Run the code

in the debugger. Start and stop the simulation and note the frame rate. Aside

from rounding and the occasional glitch, it should stay near six frames per

second. Change the frame rate to something very high, such as 60, and run

again. The animation should be much smoother, but note that it does not run at

60 frames per second. If you run the executable outside of the debugger, the

maximum frame rate will improve. Although the most demanding modern

games strive for 60 frames per second, numbers in the 9 to 12 range are good

enough for our purposes. The original Quake had a design goal of staying above

10 frames per second. When running the code in the debugger, six frames per

second gives the system enough time to output any debugging data that you

might need. If need be, reduce the number of vehicles to the five core vehicles

mentioned in the code and retest. In any case, do not place extreme concern on

the frame rate.

Let us switch from the ground view to a vehicle-relative view. When we do this,

we will need a ground feature to indicate how fast we are going, so we will

implement a sign at the edge of the road. Add the following code to the Road class.

’Who are we tracking?
Private refVehicle As Vehicle
’Let’s have a mile marker go by.
Dim FloatingMarker As New Vehicle(2, 0, Me, 0, 0, "Floating Marker")

Now we can draw relative to the reference vehicle. We will set the reference

vehicle later, but we can change the animation timer code to its final form now.

Find the following line in the animation timer event handler:

Toy.Draw(-offset)

Change that line to read as follows:

Toy.Draw(refVehicle.X - offset)

Just below that code is a comment about the floating marker. Add the following

code below the comment.

’Move the floating marker and draw.
FloatingMarker.MoveFloatingMarker(refVehicle, FrameRate, offset)
FloatingMarker.Draw(refVehicle.X - offset)

We will update the Vehicle class to implement the code needed to move the

floating marker later. For now, we will stay with the Road.vb file.

268 Chapter 8 n Emergent Behavior

Find the Public Stuff region and add the following code. We want to be able to

click on a vehicle to make it the reference vehicle, so the Vehicle class will need a

way to tell the form that a vehicle got clicked.

Public WriteOnly Property ReferenceVehicle() As Vehicle
Set(ByVal value As Vehicle)

refVehicle = value
RefLabel.Text = refVehicle.ID

End Set
End Property

Find Road_Load, the form’s Load event handler, and add the following code to it

after the code that adds the last vehicle. At startup, the reference vehicle is the

middle one.

’The middle vehicle is our starting reference vehicle.
Me.ReferenceVehicle = CType(ToyBox(1 + ToyBox.Count \ 2), Vehicle)

Switch to Vehicle.vb. We need to handle the floating marker, and we need to

react if the user clicks a vehicle to make it the reference vehicle. Add the following

code to the class:

Public Sub MoveFloatingMarker(ByVal refV As Vehicle, _
ByVal Framerate As Integer, ByVal halfSize As Integer)

If refV.Speed = 0 Then Return
’Markers appear to go backward.
Xpos -= refV.Speed / Framerate
’After it falls off the back end, put it back on the front.
While Xpos < refV.X - halfSize

Xpos += 2 * halfSize
End While
’If the user changed the refV, the marker may be too far ahead.
While Xpos > refV.X + halfSize + 1

Xpos -= 2 * halfSize
End While

End Sub

’Let the user tell us which car to follow.
Private Sub Body_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Body.Click
Dim theRoad As Road = CType(Body.Parent, Road)
theRoad.ReferenceVehicle = Me

End Sub

The Cars and Trucks Project 269

Run this code in the debugger. Notice that on the first animation frame, the view

jumps from�200 to center on the reference vehicle. Click a vehicle and watch the

view center on that vehicle. You can walk up and down the chain this way. Below

the vehicles, you can see the marker fly by at 50 pixels per second.

Now we will finish adding the final user-interface elements. While we have

not yet added the AI, we can predict that the richness of the interactions will

be greatly enhanced if we can have more than a single lane. Take a glance at

Figure 8.2 and then switch to the Design view of Road.vb.

1. Drag a Label control to the form and place it to the right of the RefLabel.

Change the Text property of the new label to Lanes.

2. Drag a NumericUpDown control next to the new label. Resize the control

and make it smaller because it has to display only a single-digit number.

Change the Name property to LanesUpDown. Change the Maximum

property to 5 and the Minimum property to 1.

3. Enlarge the PanScrollBar control so that it takes up all of the rest of the

available space.

4. If you have the PowerPack, drag a LineShape control to anywhere on the

form. Change its Name property to FastLineShape. Drag another LineShape

control to the form and change its Name property to SlowLineShape.

Switch to the Code view of Road.vb and locate the Public Stuff region. The AI

will want to ask the form howmany lanes there are. Add the following code to the

region:

’Tell others how many lanes.
Public Function Lanes() As Integer

Return CInt(LanesUpDown.Value)
End Function

If you have the PowerPack and added the two LineShape controls to the form,

add the following code to the form:

Private Sub Road_Resize(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Resize

’Get the slow line into place.
SlowLineShape.X1 = 0
SlowLineShape.X2 = Me.Width

270 Chapter 8 n Emergent Behavior

SlowLineShape.Y1 = Vehicle.VehicleWidth * 19 \ 2
SlowLineShape.Y2 = SlowLineShape.Y1

’Get the fast line into place (it moves).
FastLineShape.X1 = 0
FastLineShape.X2 = Me.Width
FastLineShape.Y1 = Vehicle.VehicleWidth * 19 \ 2 - _

2 * Vehicle.VehicleWidth * Lanes()
FastLineShape.Y2 = FastLineShape.Y1

End Sub

Private Sub LanesUpDown_ValueChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles LanesUpDown.ValueChanged

’The AI can think for itself. The fast lane stripe needs our help.
Call Road_Resize(Nothing, Nothing)

End Sub

If you added the lines, run the code in the debugger and change the number of

lanes. The fast line should respond correctly to the number of lanes specified by

the control. The slow line should be in place half a car width below the line of

cars. If you did not add the lines, there will not be any visible effect until we add

the AI.

As a precursor to the AI, we need to add some helper code to the code in Road.vb.

We will add two routines: one to sort the cars and another to check for collisions.

A side effect of sorting the cars is that we can figure out how to set the scrollbar so

that when the simulation is stopped, we can scroll around and see all the vehicles.

Add the following code to Road.vb:

’The AI and the collision detection need a sorted list.
Private Sub SortToys()

Dim swapped As Boolean = True
Dim Behind As Vehicle
Dim Ahead As Vehicle

’This is the sorting loop.
While swapped

swapped = False
Dim i As Integer
For i = 1 To ToyBox.Count - 1

’The back has a lower subscript.
Behind = CType(ToyBox(i), Vehicle)

The Cars and Trucks Project 271

’The front has a higher subscript.
Ahead = CType(ToyBox(i + 1), Vehicle)
’Are they out of order?
If Ahead.X < Behind.X Then

’The one we thought should be ahead is not;
’we need to swap them.
swapped = True
’Debug.WriteLine("*** " & Behind.ID & _ " has passed " &

Ahead.ID)
ToyBox.Remove(i + 1)
ToyBox.Add(Ahead, , i)

End If
Next

End While

’Grab the leader and trailer to set the scrollbar.
Behind = CType(ToyBox(1), Vehicle)
Ahead = CType(ToyBox(ToyBox.Count), Vehicle)

’The world is half a form bigger on each side of the pack.
Dim offset As Integer = CInt(Me.Width / 2)

’The slow vehicle sets the minimum.
PanScrollBar.Minimum = Behind.X - offset
’The fast vehicle sets the maximum.
PanScrollBar.Maximum = Ahead.X - offset
If refVehicle IsNot Nothing Then

’Get the value right.
PanScrollBar.Value = refVehicle.X - offset

End If

’This more properly belongs on the resize event.
PanScrollBar.LargeChange = Me.Width \ 4

’Protective code to check that our code works OK.
Call CollisionDetect()

End Sub

’Run any time the list is sorted.
Private Sub CollisionDetect()

Dim Toy As Vehicle

272 Chapter 8 n Emergent Behavior

’The bag holds groups of vehicles by lane.
Dim Bag As New Collection
’We use myBag to access one of those groups.
Dim myBag As Collection
Dim key As String
For Each Toy In ToyBox

’Convert the lane to a string so that we can
’use it as a key.
key = Toy.Lane.ToString
If Not Bag.Contains(key) Then

’This is the first one in that lane we’ve seen.
’Create the group.
Bag.Add(New Collection, key)

End If
’Get my group out of the bag. . .
myBag = CType(Bag(key), Collection)
’. . .and put me in it.
myBag.Add(Toy)

Next

’Since we started with a sorted ToyBox, all
’the groups have to be sorted.

Dim Behind As Vehicle
Dim Ahead As Vehicle

Dim i As Integer
For Each myBag In Bag

For i = 1 To myBag.Count - 1
’Grab two vehicles.
Behind = CType(myBag(i), Vehicle)
Ahead = CType(myBag(i + 1), Vehicle)
’My nose is ahead of your nose, so if my tail is
’behind your nose, we conflict.
If Ahead.X - Ahead.Length <= Behind.X Then

Debug.WriteLine("###### COLLISION: " & Behind.ID & _
" is hitting " & Ahead.ID)

End If
Next

Next
End Sub

The Cars and Trucks Project 273

The code needs to be called to be effective. We will call it when the ThinkTimer

ticks. To see that it is working, we will turn on the scrollbar. Add the following

code to Road.vb:

Private Sub ThinkTimer_Tick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ThinkTimer.Tick

’Passing happens; we need this to think, not to draw.
Call SortToys()
‘Real AI code goes here.

End Sub

Private Sub PanScrollBar_Scroll(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.ScrollEventArgs) Handles _
PanScrollBar.Scroll

’Redraw at our new place.
Dim Toy As Vehicle
For Each Toy In ToyBox

Toy.Draw(PanScrollBar.Value)
Next Toy

End Sub

Run this code, making sure to start the simulation. Let it run a second or two and

then stop the simulation. The scrollbar should allow you to scroll back to the F1+

vehicle way in the back. Going the other way should take you to the lead truck.

The call to SortToys() also calls CollisionDetect(). The AI needs the sort, so we

must sort before the AI runs because the animation moved the vehicles, and they

could have been passing each other. However, when debugging, you can call the

sort after every animation frame to make sure that everything works and no

collisions have taken place. Be sure to watch the Immediate window for

debugging output; the collision message will go there.

It is time to add that real AI code promised by the comment in the ThinkTimer

Tick event handler. Replace that comment with the following code:

’Now do the AI.
Dim Toy As Vehicle
Dim i As Integer

’Debug.WriteLine("Thinking. . .")
’Run the AI, front to back.
For i = ToyBox.Count To 1 Step -1

Toy = CType(ToyBox(i), Vehicle)

274 Chapter 8 n Emergent Behavior

Toy.Think(i, Me)
Next

We need to switch to the Vehicle.vb file to get the vehicles to think. The AI will

need a variety of helper functions. The AI is interested in what vehicle is ahead of

or behind it. The vehicles also have a limit to how hard they can accelerate. That

limit allows high acceleration from low speed and lower acceleration when the

vehicle is near its desired speed. The formula used is a simplification of actual

acceleration curves. As you might expect, trucks have too much low-end pickup,

and the exotic vehicles have too much high-speed charge. That said, even this

token nod toward realism gives the right impression. Add the following code to

the Vehicle class:

’Institute acceleration limits.
Public Function BestNextSpeed() As Integer

’Acceleration drops with speed.
Dim a As Integer = CInt(0.1 * (2 * myDesiredSpeed - currentV))
’But even the slowest truck can do 1.
If a < 1 Then a = 1
Dim newV As Integer = currentV + a
’Don’t go faster than desired.
If newV > myDesiredSpeed Then newV = myDesiredSpeed
Return newV

End Function

’Who is ahead of me in a given lane?
Private Function CarAhead(ByVal desiredLane As Integer, _

ByVal myIndex As Integer, ByVal theRoad As Road) As Vehicle
Dim i As Integer
Dim OtherGuy As Vehicle
For i = myIndex + 1 To theRoad.ToyBox.Count

’Ahead of me in the lane we are checking.
OtherGuy = CType(theRoad.ToyBox(i), Vehicle)
If OtherGuy.Lane = desiredLane Then

Return OtherGuy
End If

Next
Return Nothing

End Function

’Who is behind me in a given lane?
Private Function CarBehind(ByVal desiredLane As Integer, _

The Cars and Trucks Project 275

ByVal myIndex As Integer, ByVal theRoad As Road) As Vehicle
Dim i As Integer
Dim OtherGuy As Vehicle
For i = myIndex - 1 To 1 Step -1

’Behind me in the lane we are checking.
OtherGuy = CType(theRoad.ToyBox(i), Vehicle)
If OtherGuy.Lane = desiredLane Then

Return OtherGuy
End If

Next
Return Nothing

End Function

Now that the AI can get answers about the cars around it and the capabilities of

the vehicle itself, it is time for the AI to do some thinking. The AI has two parts.

The first part picks the best speed from the available choices. It depends on the

part that computes the best speed in a given lane.

’The next two are where the AI lives.
Public Sub Think(ByVal myIndex As Integer, ByVal theRoad As Road)

’Find the best lane:
’Which lane is fastest for me?
’Look from right to left.
Dim newlane As Integer = myLane - 1
’No lane is this bad:
Dim newspeed As Integer = -100

Dim i As Integer
’Go through up to three lanes.
For i = myLane - 1 To myLane + 1

’Don’t let cars below lane 1.
If i > 0 Then

Dim otherspeed As Integer = SpeedInLane(i, myIndex, theRoad)
If otherspeed > newspeed Then

newspeed = otherspeed
newlane = i

End If
End If

Next
’Color based on speed changes.
If currentV = newspeed Then Me.Body.BackColor = Color.White

276 Chapter 8 n Emergent Behavior

If newspeed > currentV Then Me.Body.BackColor = Color.LightGreen
If newspeed < currentV Then Me.Body.BackColor = Color.Pink

’Execute the decisions.
currentV = newspeed
myLane = newlane

End Sub

Private Function SpeedInLane(ByVal somelane As Integer, _
ByVal myIndex As Integer, ByVal theRoad As Road) As Integer

’Want some daylight between our bumper and bumpers in other lanes.
Dim CUTOFF_BUFFER As Integer = 21

’Does the lane exist?
If (somelane > theRoad.Lanes()) Or (somelane < 1) Then

’Debug.WriteLine(Me.ID & " checking lane " & somelane.ToString & _
’ " which does not exist.")
Return 0

End If

’If it’s not our current lane, we have to prevent side swiping
’a car in the other lane whose nose is behind our nose.
Dim BlindSpot As Vehicle = CarBehind(somelane, myIndex, theRoad)
If somelane <> myLane Then

’Only if there is somebody in that lane behind me.
If BlindSpot IsNot Nothing Then

’Will I hit them? Add some padding to prevent
’cutting them off.
Dim tail As Integer = Me.X - Me.Length - CUTOFF_BUFFER
’If they are behind me and my tail is behind their nose,
’I’ll hit them.
If tail < BlindSpot.X Then

’Debug.WriteLine(Me.ID & " sees that lane " & _
’ somelane.ToString & " is blocked by " & BlindSpot.ID)
Return -1

End If
’Are we thinking about being rude?
’I could change this to 1x their speed and actually
’decline the lane, but we’ll just cut them off instead.
tail += CUTOFF_BUFFER - BlindSpot.Speed * 2
If tail < BlindSpot.X Then
’Debug.WriteLine("++++" & Me.ID & " considers cutting off " & _

The Cars and Trucks Project 277

’ & BlindSpot.ID & " in lane " & somelane.ToString & ".")
End If

End If
End If

’Is there anyone in front to worry about?
Dim OtherGuy As Vehicle = CarAhead(somelane, myIndex, theRoad)
If OtherGuy Is Nothing Then

’Debug.WriteLine(Me.ID & " finds lane " & somelane.ToString & _
’" is open for an available speed of " & BestNextSpeed().ToString)
Return BestNextSpeed()

Else
’Will we hit his tail end? (Should never happen in our own lane.)
If myLane <> OtherGuy.Lane Then

Dim tail As Integer = OtherGuy.X - OtherGuy.Length - _
CUTOFF_BUFFER

If tail < Me.X Then
’Debug.WriteLine(Me.ID & " sees that lane " & _
’ somelane.ToString & " is blocked by " & OtherGuy.ID)
Return -1

End If
End If

End If

’The lane is usable. How fast is it?

’We like a distance that is numerically equal to twice our speed.
Dim deltaX As Integer = OtherGuy.X - Me.X - OtherGuy.Length
Dim matchSpeed As Integer = deltaX \ 2

’Is the other guy faster than we are?
’This is not worth changing lanes over - only applies in our
’lane. Not checking this in other lane dampens maniacal lane
’switching so we only switch into a lane with non-compromised
’clear distance ahead. In our lane, we’ll take a compromise if
’it is safe.
If OtherGuy.Lane = Me.Lane Then

’If he’s pulling away we don’t slow down
If OtherGuy.Speed > Me.Speed Then

If Me.Speed > matchSpeed Then

278 Chapter 8 n Emergent Behavior

matchSpeed = Me.Speed
End If

End If

’Is the other guy a nutcase?
If OtherGuy.Speed > myDesiredSpeed Then

’He’s going faster now than we want to go, ignore him
’and floor it.
matchSpeed = myDesiredSpeed

End If
End If

’Go to match speed if we can and if we want that much.
If matchSpeed > BestNextSpeed() Then matchSpeed = BestNextSpeed()
’Debug.WriteLine(Me.ID & " can do " & matchSpeed.ToString & _
’ " in lane " & somelane.ToString & " behind " & OtherGuy.ID)

Return matchSpeed
End Function

At this point, you should give the code a thorough thrashing. If your code

misbehaves, there are numerous debug messages commented out that can be

turned on. Some of them are split over multiple lines for readability, so you will

need to uncomment all the lines involved. The easiest way is to select the lines

using the mouse and then click the Uncomment button in the toolbar. Look at

how the vehicles behave in tight groups and then open another lane and watch

how they react. Watch an inbound, high-speed unit slow and match speed over

many seconds. If you reduce the number of lanes, the cars in the closed lane come

to a screeching halt and then dart into traffic as soon as they get an open window

ahead of them, often cutting off oncoming cars. All sorts of accordion behaviors

can be demonstrated. In a two-lane situation with the fast lane at 55 pixels per

second and the slow lane at 50 pixels per second (easily arranged with the two

leading trucks), you can watch the last car in the slow lane change lanes after the

faster line gets past, which in turn keeps the slow line pinned to the slow lane

until the new last car in the slow line can make the same maneuver.

Is any of this emergent behavior? Who really cares? Much of the behavior here

can be deduced by studying the AI code of the individual agents. But some of the

patterns, such as accordion speed changes and fighting for a newly opened fast

lane, are not directly programmed in. In any case, the method gives realistic-

looking (if somewhat rude) behaviors quite cheaply—the hallmarks of emergent

The Cars and Trucks Project 279

behavior. Consider how hard it would be to orchestrate the same behaviors with

a top-down, coordinated approach. As a thought problem, try to see if you can

define these behaviors without resorting to using terms equivalent to the inter-

actions of independent agents. Forcing these formations would be hard; letting

them happen is simple.

Chapter Summary
Emergent behavior yields realism at a low run-time cost, especially when applied

to group movement. More innovative uses will require exploration and tuning to

achieve the maximum effectiveness of the method, but even these efforts are

quite reasonable. AI built this way tends to degrade gracefully in the face of overly

constraining circumstances, but it is not free of its own set of peculiarities. Every

AI programmer considering these methods should keep in mind the unpleasant

behaviors seen when a real bird gets trapped in an unfamiliar environment.

Chapter Review
Answers are in the appendix.

1. List the elements and characteristics of a system that allows and encourages

emergent behavior.

2. Describe the effects of feedback and the effects of feedback rates.

Exercises

1. Adjust the tuning settings for the AI think rate. A rate of one thought per

second is the slowest that is still safe for the simulation. Note how the drivers

miss open slots. Increase the rate above two until it matches the frame rate.

Note how this makes it harder to see what the drivers are doing.

2. Change the SpeedInLane() function to allow the drivers to change into lanes

with compromised clear distance. The comment above an If statement talks

about dampening maniacal lane changes; make that If statement always

true instead of true only when the lane being evaluated is the current lane.

Run the code and note the amount of ruthless lane changing it generates.

Notice how two lanes will swap with each other when a car cuts off another;

this creates a better hole for the car that got cut off, thus creating a ripple

280 Chapter 8 n Emergent Behavior

effect down the two lanes. Note how this interacts with tuning the AI in

Exercise 1; a fast AI will cause constant lane changing but little increase in

speed overall.

3. Add the check to SpeedInLane() that declines a lane change if it would cut

off an oncoming car within the oncoming car’s one-second zone. The ex-

isting code has a commented-out debug statement that is triggered if the

lane change treads on a two-second zone. Changing the multiplier to 1 and

declining the lane change instead of issuing a debug output will make the

drivers far less suicidal about pulling out in front of high-speed inbound

traffic.

References
[Girard85] Girard, M; Amkraut, S; Karl, G. ‘‘Eurythmy,’’ (Computer Graphics

Video), SIGGRAPH Video Review, Issue 21, second entry. 1985.

[Reynolds01] Reynolds, Craig. ‘‘Boids: Background and Update,’’ Web page

available online at http://www.red3d.com/cwr/boids/ last updated 2001.

[Reynolds87] Reynolds, Craig. ‘‘Flocks, Herds, and Schools: A Distributed

Behavioral Model, in Computer Graphics,’’ 21(4) (SIGGRAPH ’87 Conference

Proceedings) pages 25–34. Also available online at http://www.red3d.com/cwr/

papers/1987/boids.html.

[VanVerth00] Van Verth, Jim; Brueggemann, Victor; Owen, Jon; McMurry,

Peter. ‘‘Formation-Based Pathfinding with Real-World Vehicles,’’ Proceedings,

2000 Game Developers Conference. Also available online at http://www

.essentialmath.com/vanverth00formationbased.pdf.

References 281

http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/papers/1987/boids.html
http://www.red3d.com/cwr/papers/1987/boids.html
http://www.essentialmath.com/vanverth00formationbased.pdf
http://www.essentialmath.com/vanverth00formationbased.pdf

This page intentionally left blank

Evoking Emotions
on the Cheap

One of the most difficult tasks in a computer game is to convey emotion. While

some games have no room for emotional content, many more benefit greatly

from it. Modern computers finally have the processing power and graphics

capability needed to show a realistic-looking human face. Players have been

conditioned since birth to instantly read nuances of human expression, but

technology to show them is relatively new. With motion-capture data touched

up by a professional animator, a simulated face and body stance can convey

nearly anything. Things change when the AI is in charge.

The AI programmer’s first protest is quite clear: ‘‘It’s all I can do to get them to

decide what to do. You mean I have to get them to decide what to feel ?’’ Upon

rising to face that challenge, the AI programmer faces the next hurdle: ‘‘How do I

get the AI to show what it is feeling?’’ Many AI programmers lack professional

training as artists, psychologists, and actors; worse yet, many of them are

introverts, outside their comfort zone when dealing with emotionally charged

content. Inexperienced AI programmers who also lack those skills and a wide

comfort zone could easily conclude that there is no way for them to model and

show emotions under the control of game AI. They would be wrong on both

counts.

To start with, they are trying to solve the wrong problem. The core problem is

not how to model and show emotion in games. Showing emotions is the core

283

chapter 9

problem in realistic simulations such as the virtual Bosnian village given in

[Gratch01]. Showing emotion is a secondary problem in games. This may sound

completely counterintuitive; what could be more emotionally engaging than

showing emotion? The real problem to solve in games is evoking an emotional

response in the player. How we get there is a secondary problem and a free choice.

In simulation, showing emotions is primary. Evoking emotions is secondary, but

it is a strong indicator of success. As luck would have it, modeling emotions in

games is not a particularly difficult problem. To varying degrees of fidelity, we

canmake our game AI feel at a level comparable to how well our AI thinks.We do

need to keep foremost in our minds that the feelings that count are the player’s

feelings.

AI game programmers are afforded great liberties with the AI’s ‘‘feelings.’’

Everything from faking it to sophisticatedmodels beyond the scope of this book is

perfectly acceptable. Modeling feelings may be unfamiliar, but it is closely ana-

logous to modeling thinking. In games, we are not required to particularly care

about the AI’s feelings. Even if the AI programmer creates a high-fidelity emotion

system, the game designer may override the AI’s feeling at any time. We are

familiar with overrides from the behavior side already; the designer says, ‘‘Make it

do this, here, regardless of what the AI thought it should do.’’ The designer does

this for dramatic impact. The designer may also say, ‘‘Make it feel angry here,

regardless of what it wants to feel.’’ The AI might have decided to feel depressed,

or it might be coldly planning future retribution, but the designer wants anger for

the emotional impact.

While we do not particularly care about what the AI is feeling, we care deeply

about what the player is feeling. We especially care when the player has feelings

about the virtual characters in the game. ‘‘I’ve saved them! I’ve saved them all!’’

the player shouts. On occasion, we can get the player to be affected by the feelings

attributed to the virtual characters. ‘‘Oh, no! She’s going to be really angry at

me!’’ the player says. These are emotional responses from the player. They do not

require emotions to actually be present in the virtual characters. People attach

sentimental value to non-feeling objects in real life; they even attribute feelings to

inanimate objects. Often, children worry about how lonely a lost toy is going to

be more than they worry about how sad they will be if they never get it back.

The game succeeds when players feel compelled to describe their playing

experiences to their friends with sentences that start out, ‘‘I was so. . .’’ and end

with words like ‘‘pumped,’’ ‘‘scared,’’ ‘‘thrilled,’’ or even ‘‘sad.’’ Evoked emotions

284 Chapter 9 n Evoking Emotions on the Cheap

do not always have to be positive to be meaningful. Games are an art form

capable of a wide range of expression, for good or ill. We have already seen that

the real problem with bad AI is that it frustrates, annoys, or angers the player. We

would like to avoid evoking those particular emotions in the player. The AI can

be the most frustrating part of a computer game, but with some effort, it can also

be one of the parts that evokes the strongest positive emotions.

Showing human faces expressing simulated emotions is a tremendously powerful

tool for evoking an emotional response in the player, but it is far from being the

only tool. There are other, less direct means—many of which are far cheaper to

implement. Novice AI programmers might not want to start with the most

complex tool available. We can evoke emotion via music, mood, plot, and even

camera control. This is only a partial list; the AI can creep into nearly everything,

giving the game better chances at evoking an emotional response from the player.

These tend to be design elements, but they have to be controlled somehow, and

that somehow is AI.

Before delving into other tools, we should recall our definition of game AI to see

if what we will be doing is really AI. Our AI reacts intelligently to changing

conditions. Things that will never change have no need of AI. A face that never

changes expression or lighting that never changes or even music that never

changes require no decisions. These static elements start out purely as art, music,

and level design. These elements need not be static, but once they start changing,

they raise the question, ‘‘How do we control the changes?’’ This is the realm of

AI—even if artists, musicians, and level designers do not always think that way at

first. Like any part of game AI, once it is well understood, it stops being AI to

many people. Everyone knows how to go somewhere, but pedestrians, drivers,

and pilots have different skills, levels of training, and available tools to get

themselves someplace else. The job of the AI programmer is to bring intelligence

into any part of the virtual world that would benefit from it. Doing so gives the

entire creative team a richer palette of tools with which to craft an emotionally

engaging experience. They all know how to ‘‘walk’’ but the AI programmer

provides them a ‘‘pilot and plane’’ when they need one.

Before we get into how we might evoke an emotional response from the player,

we will consider what emotions games evoke. After that, the bulk of this chapter

will go over tools that can be used to evoke an emotional response in the player

other than body posture and facial expression. These more indirect methods

have an impact on what the AI programmer needs to know about other team

Evoking Emotions on the Cheap 285

member’s jobs. This chapter concludes with a treatment of modeling emo-

tional states using techniques ranging from simple to sophisticated. The pro-

jects for the chapter start out with simple touches, progress to an FSM for

emotions, and finish with a relationship model loosely based on The Sims. In

prior chapters, we have shown that beginners can learn how to program game

AI for behaviors. In this chapter, we will show that modeling emotions can be

just as accessible.

What Emotions Do Popular Games Invoke?
As a programmer, you may be thinking something along the lines of, ‘‘I’m a

programmer, not a psychologist.’’ But the emotions we are dealing with make a

pleasantly short list. Our list, shown in Table 9.1, is taken from XEODesign’s

research into why people play games [Lazzaro04]. They observed people playing

popular games and studied the players’ responses and what triggered them.

Words with a non-English origin are marked. This list is not meant to be

exhaustive. For example, relief is not listed. Relief may be thought of as the

removal of fear or feelings of pressure. This list was also aimed at emotions that

come from sources other than story.

Table 9.1 Emotions and Their Triggers

Emotion Common Themes and Triggers

Fear Threat of harm, an object moving quickly to hit player, a sudden fall or loss of
support, or the possibility of pain.

Surprise Sudden change. Briefest of all emotions, does not feel good or bad. After
interpreting the event, this emotion merges into fear, relief, etc.

Disgust Rejection, as with food or behavior outside the norm. The strongest triggers are
body products such as feces, vomit, urine, mucus, saliva, and blood.

Naches/kvell (Yiddish) Pleasure or pride at the accomplishment of a child or mentee. (Kvell is how it
feels to express this pride in one’s child or mentee to others.)

Fiero (Italian) Personal triumph over adversity. The ultimate game emotion. Overcoming
difficult obstacles. Players raise their arms over their heads. They do not need
to experience anger prior to success, but the accomplishment does require
effort.

Schadenfreude (German) Gloat over misfortune of a rival. Competitive players enjoy beating each
other-----especially a long-term rival. Boasts are made about player prowess and
ranking.

Wonder Overwhelming improbability. Curious items amaze players at their unusualness,
unlikelihood, and improbability without breaking out of realm of possibilities.

286 Chapter 9 n Evoking Emotions on the Cheap

The research showed these emotions link to the following four different ways of

having fun [Lazzaro07]. It should hardly be a surprise that the most popular titles

incorporate at least three of the four.

n Hard fun: The fun of succeeding at something difficult

n Easy fun: The fun of undirected play in a sandbox

n Serious fun: ‘‘Games as therapy’’: fun with a purpose

n People fun: The fun of doing something with others

Game designers must be fluent in these areas, and AI programmers should at

least be familiar with them. The AI will be tasked with supporting these kinds of

fun and evoking these emotions in the players. When designers ask for some

‘‘good AI,’’ the AI programmer should ask if they mean ‘‘hard to beat’’ or ‘‘fun to

play with’’ or something altogether different. In order for AI programmers to

implement a good AI, they have to implement the right AI. Let us consider the

many ways such an AI can express itself.

Music
Musicians will tell you that half the emotional content of a film is in the musical

score. Music is a powerful tool for evoking a full range of responses in the player.

Games have incorporated it since shortly after the first PC sound cards became

available. Unlike films, games can exhibit a fluid control over their music and

change it in response to player actions. Games can do more than pick what music

fits a scene. Back in 1990, the game Wing Commander not only made smooth

transitions in the music every two to four bars on beat boundaries, but it also

transitioned instantly when there was a serious change in the game state, such as a

missile chasing the player [Sanger93].

Something has to decide what to play and when. That something is just another

form of AI with new outputs. At its simplest, music follows a fixed script with no

changes based on player interaction. The designer says, ‘‘This is the music I want

for this level.’’ If the designer wants more out of the game, he or she will want

player interaction to drive as much of the experience as possible. Interaction is

the key differentiator between games and other media. ‘‘I need this game to react

to what the player does and do something appropriate’’ are the marching orders

for the AI, whether it is doing resource allocation in a strategy game or music

selection in a flight simulator.

Music 287

Music has similar drawbacks to facial expression. Music is complex and dynamic

and hard to describe, but people almost innately respond to it. That is to say,

critical listeners are far more common than skilled practitioners. Skilled game

musicians are rarer still, but they exist, and the industry is growing. Designers will

want to place certain demands on music. The AI programmer should be part of

the process—and the earlier, the better. Because music is such a powerful tool,

the designer may demand total control of all music changes. AI programmers

might think that this takes them out of the loop, but they may be the people

tasked with translating the designer’s demands into code. As the designer’s vision

expands beyond the simplest triggers, the need for code to reason and react will

increase. A holistic approach that includes considering ‘‘music AI’’ ensures that

even if the music only has the simplest of changes, no creative capability was

unintentionally excluded because no one thought about designing it in.

Mood
Mood here is a catch-all intended to pick up static elements, usually of a visual

nature, that need not be static. Consider the possibilities when AI controls

clothing, lighting, and even the very basic texture maps on the objects in the

world. These are virtual worlds, after all, and the game studio has control over

every bit of it. Mood elements easily play to fear, relief, wonder, and occasionally

to surprise. They provide subtle support to the bold dramatic elements of the

game.

Clothing

Clothing can be under AI control if there are sufficient art assets to support it.

Dress for Success was originally published in 1975, but wardrobe designers for

theatre have long used costuming as visual shorthand to communicate unspoken

information to the audience. People are used to thinking about facial expres-

sions, but wardrobe expression shows at longer ranges and uses less detail. By

using a consistent wardrobe palette, especially one that is well understood by the

public, the game designer can communicate information to the player in more

subtle ways than facial expression, dialog, or music. That information can carry

emotional content or evoke an emotional response. Players who are less tuned in

can be clued in via dialog. Consider the following exchange:

‘‘Uh, oh, this is going to be bad.He’s wearing his black pin-stripe power suit.’’

‘‘What do you mean?’’

288 Chapter 9 n Evoking Emotions on the Cheap

‘‘He wears that to fire people and when he doesn’t have a choice about ram-

rodding something down people’s throats. He wears his less-threatening

navy-blue suit when he’s selling something that actually needs our

cooperation.’’

‘‘That doesn’t sound very friendly.’’

‘‘If he wants you to relax, he’ll shed the jacket or maybe even loosen the

tie. That’s when he asks you if you need to take some time off because your

kid is in the hospital or something. He’s not actually friendly unless he’s

wearing a golf shirt someplace other than here.’’

After that dialog, the game designer has prepped the player for the desired

interpretations of the wardrobe choices presented. The designer has seeded

potential emotional reactions that can be evoked by the game. Fear and trepi-

dation get matched to the black pin-stripe suit. This is hardly new, but once again

we have a venue for AI control. Scripting may provide enough control to manage

wardrobe; after all, once upon a time it used to be sufficient for the entire AI of a

game. Game AI in large part has left scripting behind for more dynamic tech-

niques. These techniques are then applied to the more static elements as

designers envision effective ways to exploit them.

Lighting

Lighting falls into our category of mood as well. Lighting used to be static because

computers lacked the processing power to do anything else. But these days,

dynamic lighting is a fact of life in games; watching your shadow on the floor

shorten as a rocket flies toward your retreating backside warns you in a very

intuitive way of your impending demise. Just like clothing selection, AI control

puts lighting selection in the designer’s bag of tricks.

One day, all designers are going to ask, ‘‘Can we get the AI to do the lighting

selection?’’ A shifty character AI knows to turn off lights and meet only in dark

places like poorly lit parking garages. A naı̈ve community activist AI prefers

brightly lit places and broad daylight. If we can teach the AI to tell time and to use

a light switch, the AI can do its own lighting selection. If the activist AI likes

candlelit dinners, we will have to teach the AI about candles as well. A virtual

character who actively lights candles and turns lights off fishes for an emotional

response from the player more directly than if the character simply meets with

others in dark and spooky parking garages. The action is more noticeable than

the ambience. The AI of the activist could also decide that it is annoyed and turn

Mood 289

the lights back on and blow out the candles. Seeing that is likely to evoke an

emotion in the player as well. Even if the AI can’t handle candles, the emotional

payloads delivered by turning the lights down and then back up compared to the

low cost of having an AI that knows the difference between business and pleasure

makes a strong case for AI-controllable lighting. An FSM might be all that is

needed to model the emotional state of the AI.

The level of AI devoted to lighting control varies from the simple controls

described earlier to the baked-into-the-game control seen in Thief 3, Deadly

Shadows [Spector04]. AI-controlled dynamic lighting shows great promise for a

more engaging player experience, especially with non-gamers and casual gamers.

The ALVA lighting control system given in [El-Nasr09] improved player per-

formance and lowered player frustration.

Unlike clothing, the additional asset cost for AI-controlled lighting is quite low.

Light fixtures and light switches would already be in the level. Compared to

outfits, soft lighting is cheap. Lighting is just as visual as clothing selection.

Texturing

Virtual characters are not the only things in a level that wear ‘‘clothing.’’ As noted

by Chris Hecker when he posited that one day there would be a Photoshop of AI,

graphics rendering in games is done via texture-mapped triangles [Hecker08].

For those unfamiliar with graphics, a texture is an image that is applied to the

geometric skin of an object, and that skin is built using triangles. A flat wooden

door and a flat metal door might share the same geometric skin, but they use

different textures to make that skin look like wood or metal. The graphics system

can switch between those skins easily after an artist has created them both and

they are loaded into the system. This takes us down the same rabbit hole into

Wonderland that the rest of the chapter falls into. If it can be changed, that

change will need control, and why not have the AI manage some of it?

This one really could take us to Wonderland. We start out being able to change

the color of the leaves, which happens in the real world, and wind up wherever

the crazedminds of artists and designers can take us. Imagine a world in which an

unlimited supply of spray paint (including transparent) and wallpaper can be

applied instantly to anything and everything, changing every time you blink or

close your eyes. Shapes remain constant, but appearances change instantly.

Luckily, we do not have to go all the way into this Wonderland. More subtle and

skilled artists could take us partway there, to a world where things change whenwe

290 Chapter 9 n Evoking Emotions on the Cheap

are not looking at them. Imagine a game featuring a house shared by a strange old

man and his daughter. When he is home, the place is dirty and dingy, complete

with the occasional cobweb on the inside and graffiti on the exterior. When she is

home, it is clean and shiny; no cobwebs and no graffiti. What kind of emotional

reactions are we evoking in the player when they interact with either character?

Presume nothing bad ever happens to the player when he or she visits the house or

interacts with either character. Given the cumulative effect on the player of

exposure to countless horror movies of questionable value, what kind of emo-

tional response is the player going to have every time he or she visits this house?

This kind of world inspires new genres of games. Imagine a God game in which the

player is responsible for carrying out the orders of a capricious god modeled on

some stereotypical gamer. The very walls of the buildings seem happy when the

god is happy; you would certainly know who is recently out of favor and who has

recently regained favor. This is fertile ground for evoking emotions in the player,

limited by the imagination of the game designer, the skills of the artists, and the

abilities of the AI programmer to keep it under control. Typical AI tries to simulate

thoughts turning into actions. It is only a modest leap to transform this into

simulating feelings and turning them into effects. We need only modest fidelity in

the simulated feelings as long as the effects evoke the right emotions in the players.

Plot
The emotional responses we listed earlier were taken from gameplay outside of

story. Plot provides rich opportunities for evoking emotions in the player.

Consider a game in which the player runs a fragment of a conflict-torn country.

He is joined by an advisor, who comes with supporting forces. The advisor gives

sound advice and offers good ideas for the player to consider. Sometime later, the

advisor betrays the player and goes over to the other side, helping lead the enemy.

A typical emotional response to this is a feeling of betrayal, followed by an urge

for revenge that revitalizes the player and prompts him or her to play the game to

completion to defeat the traitor. If the betrayal is part of a fixed script, this setup

is a plot device and not part of the AI. But what if the game design does not

require the betrayal? What if the game decides whether or not to use this device?

We are back to AI, possibly some very easy AI to write.

A rich game would use the same betrayal device both ways. A skilled player gets

betrayed as described, but a struggling player would be gifted with the other side’s

advisor changing sides, bringing with him plans, support, and gratitude. This is

Plot 291

just as likely to cause an emotional response in the player as being stabbed in the

back. The positive feelings can be reinforced if the advisor occasionally thanks the

player and offers up advice or volunteers to do dangerous missions.

The game AI could pick which way the betrayal works, or even if the betrayal

happens at all. An experienced game designer will point out that branching

scripts are hardly new andmight claim that they are not AI. They are, as we saw in

Chapter 2, ‘‘Simple Hard-Coded AI.’’ They just do not require an AI pro-

grammer to script them. The scripting system itself is probably the work output

of an AI programmer. The AI programmer does need to make sure that the

scripting system does not get in the way of the designers, but instead frees and

inspires them. Their needs might require the techniques of other chapters. The AI

programmer may not have training as a playwright, but the AI programmer can

ask the designers what tools they need to ensure that they can evoke an emotional

response from the player. Someone else may write the script, but AI owns the

action. It is possible for the AI to own the script, but this is rare.

In the game Façade, the AI owns the entire plot sequence. The AI interprets

player input as best it can and reacts accordingly. In this one-act interactive

drama, the AI has access to 27 plot elements, called beats in dramatic writing

theory, and any particular run-through of the game typically encounters about

15 of them [Mateas05]. Façade certainly succeeds as interactive drama, but it is

not the first thing people think of when they think about computer games. While

it does not fit this chapter’s ‘‘on the cheap’’ emphasis on techniques that are

accessible to beginners, it does show just how far AI-controlled plot has already

gone. For many designers, there are serious issues beyond abandoning control to

the AI; Façade shows at most 25 percent of its total available content in any given

run, often less. Unless the experience provides a compelling reason for repeated

play, the rest of the assets are effectively wasted.

Somewhere between simple branching scripts and total AI control, designers find

their particular sweet spot for AI interaction with the plot. This is the spot that

the AI programmer must support. The simplest techniques can be added as

necessary, but more complex capabilities must be designed in from the start.

Camera
It’s no surprise that computer games are often called video games; this is due in

part to their history, but also to the fact that games have such strong visual

elements to them. We touched on camera AI in Chapter 2. Camera scripts allow

292 Chapter 9 n Evoking Emotions on the Cheap

the designer to take control of what the player sees and from what perspective.

Camera scripts can be used tomake sure that the player can appreciate all the work

the art team has put into the game. Between the scripts and the artwork, there

should be no problem with evoking emotions in the player. Did the runway

survive the combat unscathed? A touch of camera AI at the right point in the game

brings relief or dismay to the player without saying a word or showing a face.

There are two kinds of camera AI to consider. The camera AI described earlier is

on behalf of the designer, who wants to achieve dramatic impact. Like many of

the items in this chapter, the AI is simple to provide, and the real emphasis is on

game design. There is also camera AI that is on behalf of the player. Such AI need

not exist in first-person games, but when we leave first person for another point

of view, we need camera AI. Third-person viewpoints, particularly the chase

camera view, present interesting problems to the camera AI. The first problem to

consider is when the camera hits a wall.

To fully appreciate the problem, a quick graphics refresher may be in order.

Think of the objects in a 3D world as if they were blow-up balloons. Their

geometry ‘‘blows them up’’ to their final shape, and we paint textures on the

outside surfaces. In order to save CPU time, we don’t paint on the inside surfaces;

they might as well not exist. Real balloons are closed, so they hold air, and we

want our objects to be closed so that no one can see inside them and spoil the

illusion that they are solid objects.

Our objects can be as interesting as the real balloons seen in the Macy’s New

Year’s Day Parade or as mundane as a flat sheet of wallboard. We use a mesh of

flat triangles instead of curving air-tight fabric. It takes a large number of tri-

angles to build a detailed world, particularly when our objects appear curved. The

more triangles we consider and the longer we consider them, the slower our

system draws.

One very easy way to reject a triangle is to check which way the triangle is facing.

If the painted outside surface, known as the front face, is facing away from us,

we do not need to draw the triangle. The unpainted back face is facing us, and no

one is ever supposed to see it. As long as our object is closed—it ‘‘holds air’’—

and we are not inside it, we know that there is a front face somewhere on this

object that is closer to the camera than the back face we are considering. This

technique is called back-face culling and has been used to speed up rendering

since the dawn of time in computer graphics. Roughly speaking, back-face cul-

ling lets us reject half the triangles of every object in the scene.

Camera 293

Figure 9.1 shows an over-the shoulder camera view inside a two-story building.

The figure on the first floor is the player. The player’s views above and below are

blocked by the front faces of the floor and ceiling. The player is facing away from

the thick exterior wall shown. The shaded area indicates what the camera can see.

What happens if the player puts his back to the wall? We can either make the

camera change viewpoint or let the camera penetrate the wall. At first blush,

letting the camera penetrate the wall seems enticing. Back-face culling effectively

removes the wall, so we will still see the player exactly as before. Figure 9.2 shows

Figure 9.1
A third-person perspective camera is about to conflict with a wall.

Figure 9.2
A camera inside the wall sees too much.

294 Chapter 9 n Evoking Emotions on the Cheap

potential problems that happen when we let the camera get ‘‘inside’’ the geo-

metry. We want it to look through the back face of the wall to show us the player,

but the camera can also see through the back face of the floor above, showing us

the lower half of the figure on the second floor. The field of view has extended past

the corner of the ceiling and the wall, giving a partial view of the second floor. The

front face of the ceiling still blocks the rest of the second floor. The problematic

corner configuration seen in the side view of the wall and ceiling also shows up in

top-down views when one wall meets another wall. When walls meet, a camera

pushed inside the wall sees sideways past the walls of the current room.

The thick exterior wall makes this point of view possible. Because the first-floor

ceiling does not extend into the wall, its front face no longer prevents us from

seeing part of the upstairs. Extending the ceiling into the wall has two drawbacks.

The first is that it adds triangles that will rarely be seen, making work for our

artists and for our graphics pipeline for very little gain. The second is that if we

put our back to the other side of the wall, the camera would again go into the

wall; we would see the extended ceiling, and there is not supposed to be a ceiling

there! Note that on the left side of the wall, the view is open to the sky; this is an

exterior wall. This thick wall creates problems!

As shown in Figure 9.3, a thin wall presents problems, too. Figure 9.3 makes it

clear that we cannot let the camera punch through walls from the inside heading

Figure 9.3
Thin walls present their own camera problems.

Camera 295

back out, or all we will see is a close-up of the other side of the wall we have our

back to. It is clear that something must be done.

Wemight consider fighting the issues presented by Figure 9.2 and Figure 9.3 with

tightly constrained level designs and careful attention to camera placement. A tall

room with waist-high furniture gives the camera more space than the player has,

keeping it out of trouble. A camera that is close to the player can penetrate walls

without punching through the back side or seeing around corners. A narrow field

of view keeps the camera from peeking into places other than where the player

happens to be. All those limitations go out the window when a designer says,

‘‘That’s too constraining, and third-person is too good to give up. Make the

camera smart enough to keep itself out of trouble.’’ Even if the designer allows a

constrained level, the camera could conflict with mobile objects such as a taller

character walking up behind the player. The view from inside a character is just as

jarring as the view from inside a wall, and the camera needs to be smart enough to

avoid it. This is camera AI on the player’s behalf. The designer is really saying,

‘‘Keep the player’s eyes out of trouble.’’ It can be done, but great care must be

taken to do it well.

Early camera AI of this type had some teething problems. The camera would

make sudden and hard-to-anticipate changes in viewpoint to keep it out of

trouble with the surrounding walls. Players fought against the camera AI as much

as they fought off their enemies. The changing viewpoint changed the player’s

aim point, making combat while moving an exercise in frustration. All of this

evoked an emotional response in the player, but disgust probably was not what

the game designer had in mind.

Other games incorporated camera AI from the outset. The system described in

[Carlise04] used steering behaviors and scripting to control the camera. They

envisioned adding rules to the system for more ‘‘film-like’’ transitions. Effective

camera AI adds to the player’s enjoyment. Beyond effective camera AI, there is

room for the camera AI to provide emotional impact.

The lesson for camera AI is that it is a powerful tool that needs to be used

carefully. Taking control of the player’s eyes should be done sparingly and

carefully. Otherwise, it is easy to frustrate the player. (Of course, preventing the

player from coming to harm while the AI is controlling the camera would be

considerate.) But with the proper care and an integrated approach, having full

control over the player’s eyes is too powerful a tool to ignore, especially when the

game is trying to create an emotional response in the player.

296 Chapter 9 n Evoking Emotions on the Cheap

A Wide Skill Set
Cross-pollination is not possible without something to cross with. AI pro-

grammers do not have to be expert designers, artists, musicians, set designers,

writers, or costume designers, but all of those skills are helpful. We could also add

a touch of psychology and ergonomics for completeness. If the AI programmer

lacks these skills, he or she needs to be able to ask the right questions of the team

members who have them. The programmer also needs to be careful to always

offer up his or her own special skills—making things think, or possibly making

things feel—to the rest of the team. Working together, the team can produce

games in which the richness of the interactivity produces a wide range of emo-

tions in the players. To the player, having done something is fine, but having

done something and felt good about it is better.

Much as the interactions of software agents give us emergent behaviors, so do the

interactions between team members on a game cause a game to emerge. This is

why good communication skills are commonly listed on job openings. For AI

programmers, having a wide range of knowledge in other areas improves com-

munication with the members of the team who are working in those areas. There

is a great deal of synergy, particularly when AI programmers and animators work

closely together to solve each other’s problems. AI programmers should exploit

the expertise of the sound designer if the team is blessed with one. Recall that

emergent behavior depends on the richness of the interactions; if the agents do

not react to other agents’ behaviors, then nothing emerges. The first step for the

AI programmer is speaking ‘‘their’’ language; the next steps are seeing things

their way and offering his or her own abilities as a solution to their problems. If

the AI programmer can talk to the rest of the team, one of the problems that he or

she can help solve is when a designer says, ‘‘I’d like the player to feel. . . .’’

Modeling Emotional States
Computer games have modeled emotions for a very long time. In 1985, Balance

of Power modeled not only integrity, but pugnacity and nastiness as well

[Crawford86]. While the first two might be deemed merely an observation of the

facts, nastiness is close enough for our purposes to be considered as a modeled

emotion. Since then, games have made great strides in modeling emotions.

Most of this chapter talks about evoking an emotional response in the player.

Some of the methods imply that the AI itself has emotions to display. How do we

model the emotional state of the AI? For many AIs, an FSM is sufficient to model

Modeling Emotional States 297

emotional states. The Sims does not directly model emotions, but it does model

relationships. More complex systems store emotional state as a small collection

of numeric values, each indicating the strength of the feeling. A single emotion

might range from 0 toþ100. Opposing emotions such as fear and confidence can

be interpreted from a single stored value. This might call for a range of �100 to

þ100. The different emotions that can coexist are each stored as a separate value.

Numerical methods can then be applied to the collection to determine how the

emotional state should affect actions. We will examine a range of emotional

models, starting with a simple addition to an FSM.

An FSM works for emotions as long as we only need a single emotion at a time.

Recall from Chapter 3, ‘‘Finite State Machines (FSMs),’’ that FSMs work best

when we have short answers to ‘‘I am. . . .’’ Our simple-minded monster was

attacking, fleeing, or hiding. The simplest possible way to make our monster feel

would be to map a single emotion to each of the existing action states. It could be

angry when attacking, afraid when fleeing, and happy when hiding. These are all

believable for the conditions, and the amount of effort to implement them is

extremely low. We get into trouble when we lack a clear mapping between what

our AI is doing and what it is feeling, or when we are not already using an FSM.

The next level of sophistication would be to use a separate FSM for the emotional

state of the AI. This allows a more sophisticated AI for actions than an FSM. A

sports-coach AI might use a book of moves for action selection but could be

augmented with an FSM for feelings. One coach AI may exhibit questionable

judgment when it is upset or angry. A different coach AI might be programmed

to show brilliance only when under pressure. In both cases, the emotional state of

the AI is influencing its actions. If the game foreshadows these traits before using

them and telegraphs the AI’s feelings when they are active, the player enjoys a

richer experience.

The killer weaknesses of an FSM are that it can only be in one state at a time and

that there are no nuances for a given state. For this reason, an FSM should be

used only for the very simplest of emotional models. An FSM used this way does

not allow the time-honored device of emotions in conflict. When we need to

model more than one emotion at a time, and those emotions need a range of

intensity, we are forced to use other techniques. Thankfully, those techniques

present a range of complexity.

The game The Sims does not directly model emotions at all [Doornbos01]. But

the Sims make friends, fall in love, and acquire enemies. How can they do that

298 Chapter 9 n Evoking Emotions on the Cheap

without emotions? The Sims do not have emotions, but they do have needs,

preferences (traits), and relationships. Friends, lovers, and enemies are a function

of the relationships between the Sims. The psychological model for the Sims is

that a strong positive relationship is created between Sims that meet each other’s

needs through shared interests. As a basis for relationships, real-world experience

suggests that this one is pretty bulletproof. The Sims all have needs such as needs

for food, comfort, fun, and social interactivity. Each individual Sim has a small

number of traits selected from a much longer list of possible traits. These traits

provide each Sim with individual preferences. Each Sim keeps its own rela-

tionship score with every other Sim it has met. Relationship scores need not be

mutual. The relationship score runs from �100 to þ100.

Positive interactions build the relationship score, and negative interactions

reduce it. All Sims act to meet their most pressing need. The interaction that one

Sim prefers to use to meet a need might not be an interaction preferred by the

other Sim. The preferences color the interaction, changing each Sim’s relation-

ship score with the other. If both Sims like the interaction, they both react

positively. Thus, meeting needs through shared preferences builds positive

relationships. It is not modeling emotions, but it certainly has proven effective.

Instead of modeling needs, other systems directly model emotions. The same

�100 to þ100 range that The Sims uses for needs is instead used for emotions.

Often thought of as ‘‘sliders’’ (vertical scrollbars), each one carries a pair of

opposed emotions. One might be joy versus sadness. Other pairs include

acceptance versus disgust or fear versus anger. A small number suffices because

the number of combinations grows very rapidly as more sliders are added.

The system deals with all of the emotions combined, so look at the combinations

to see if two emotions that are directly modeled give you an emotion that you are

thinking of adding.

On this core data, an input and output system is required. It is pointless to model

an emotion that the system cannot show. It is equally pointless to model a feeling

that is only subtly different from other feelings. If the player cannot tell the

difference, there is no difference. Just as in personality modeling, a broad brush is

required. A few archetypes suffice. The system can output feelings directly into

expression and posture if the animation assets to support them exist. It can output

them indirectly through the kind of techniques described earlier in this chapter.

The input system has to make emotional sense of the world. Strong emotions

fade over time, but the AI has to react to events in the world around it. The

Modeling Emotional States 299

simplest methods concentrate on the impact of what directly happens to the AI.

Taking damage causes anger or fear. Winning the game causes joy. Restricting

emotions to direct inputs gives rise to a lack of depth in characters. If the AI has

more depth, it needs to respond emotionally to events in the world that hap-

pened to something else.

More sophisticated AIs, particularly AIs that have plans and goals, can evaluate

how events will affect their plans and goals and react with appropriate emotions

[Gratch00]. This makes intuitive sense to people. Consider two roommates

sharing their first apartment. The first roommate has a car, and the second one

occasionally borrows it. What kind of emotional responses do we get when

something goes wrong? ‘‘What do you mean, it’s no big deal that you got a flat

and they will come out and fix it tomorrow? Of course you’re paying for it, but

you don’t understand! I was going to drive to my girlfriend’s tonight!’’ The AI

had a plan in place to achieve a goal, and that plan has been ruined. This is a

perfect place for a negative emotion on the part of the AI. If the AI had a different

plan to achieve the same goal, it would have a much different emotional

response. ‘‘It’s a good thing she’s picking me up tonight. They better have it fixed

by noon when I need to drive to work.’’ AI that deals in plans and goals is briefly

touched upon in Chapter 10, ‘‘Topics to Pursue from Here.’’ As you study them,

keep in the back of your mind how to incorporate emotional modeling into the

AI. Writing an AI that voices its feelings using the spoken lines that illustrate this

paragraph remains a very hard problem, even for experts. The point here is not to

have an AI that speaks its feelings. The spoken text is used here as a vehicle to

convey the emotional response of the AI to events that affect the AI’s plans. As we

have seen, modeling emotions is not particularly difficult. Modifying a planning

AI to help drive the emotional model is not a task for beginners, but it should

present far fewer challenges to an AI programmer experienced with planning AIs.

As we have seen, the core data needed to model emotions is the easy part. The

input and output systems carry more complexity. As you might expect, tuning

the system as a whole is critical. There are some general guidelines. The first is

that a handful of modeled emotions is enough. The range of 0 to þ100 is also

enough. Finer gradations do not improve the system. The hard stop of þ100 or

�100 is also perfectly acceptable; people can only get so angry, and as long as they

do not have a stroke, more bad news will not make them any angrier. Less

obvious is that effects—both input and output—need not be linear. The effect of

the food need in The Sims is not linear. The difference in happiness between a fed

Sim and a very well fed Sim is very small, even if one carries a need ofþ10 and the

300 Chapter 9 n Evoking Emotions on the Cheap

other a need ofþ100. The difference in drive between a hungry Sim (�10) and a

starving Sim (�100) is far more than a linear difference. The same idea could be

applied to how anger affects good judgment; a small amount of anger creates a

small impairment in inhibition, but serious anger drives the AI into actions that

provide immediate satisfaction, regardless of their long-term cost. There is a wide

array of non-linear curves suitable for modeling emotions. The behavioral

mathematics of game AI is the subject of an entire book [Mark09]. Beginning AI

programmers should know that simple linear equations will not be enough.

Evaluation and selection functions are prime candidates for implementing these

emotional effects.

Advantages
Concentrating on evoking an emotional response from the player instead of on

displaying the emotional states of AI agents gives game designers considerable

latitude if they wish to exploit it. A holistic approach leaves no stone unturned in

the quest to pack impact into the game. For many of the avenues, the costs are

reasonable and the technical risks quite low. When games also demand good

modeling of emotional states, they can pick a level of sophistication appropriate

to their needs. The net effect of actively managing emotional content is a game to

which players will have much stronger reactions than any otherwise equivalent

competition.

Disadvantages
The fact that emotional content under the control of some form of AI can be

packed into nearly all aspects of a game means that doing so will have a schedule

impact across the board. A number of low-cost items may not sum to an

acceptable overall cost. Paying that cost is a gamble. Not all players will react in

the same way to the emotional content of a game. Players who are sensitive and

observant will have markedly different reactions from players who are not. There

are players who are clueless about clothing, lighting, or even the impact of a dirty

environment compared to a clean one. It is a well-understood concept in game

AI circles that the AI can be too subtle to be appreciated.

Evoking emotions on the cheap does not free many games from the need to

directly model emotions and display them graphically through facial expression

and body stance. Games that put emotional content front and center this way

Disadvantages 301

may not have the budget to pack emotion into every possible additional avenue

available. The designer may decide that having a main character show emotion is

all that is required.

Dealing in emotions at all forces a broad swath of people to become aware of the

potential to deliver emotional content, like it or not. Even when AI can accurately

make the decisions, the rest of the game has to be able to exploit them. It may be

the case that the rest of the team is not equipped with the analytical skills needed

to judge the emotional impact of their work so that they can create multiple

alternatives.

The emotional payload of the more nuanced effects requires a cultural context.

The difference between a black pin-stripe suit and a navy-blue one will be lost in

cultures where no one wears a suit. Worse than an ‘‘I don’t get it’’ response is

when the cues confuse or worse yet offend the player. These techniques can easily

be the unwitting vehicle of hidden stereotypes and unintentional disrespect. A

nuanced world in front of a clueless player is wasted effort. A clueless design in

front of a sensitive player has the all of the makings of a perfect Internet flame

storm. The last thing any game company needs is an eloquent player who feels

disrespected and yanked around emotionally.

Projects
Pac-man showed us that simply changing the color of the ghosts not only told the

player that the ghosts were vulnerable, it helped imply that they were afraid of the

player. For our project we will add some color to our FSM monster AI from

Chapter 3. That way, we can tell how it is feeling. After we do that, we will give the

emotions their own FSM that is separate from the FSM that controls actions.

After giving our monster emotions, we will model the relationships between

passengers on a cruise ship.

Using Action States for Emotion States

Wewill model the emotional state of our monster using the same states it uses for

thinking. Our monster, when it attacks, is healthy and angry, so we will use pink

as our color for that state. When out monster flees, it is wounded and afraid; we

will use light gray for that state. When our monster is calmly hiding, its protective

camouflage turns it green. We can do this with three lines added to the entry

functions of the three states.

302 Chapter 9 n Evoking Emotions on the Cheap

Open the project and edit the AttackState.vb class. Add the following line to the

Update() routine:

World.BackColor = Color.Pink

Switch to the FleeState.vb class. Add the following line to the Update() routine:

World.BackColor = Color.LightGray

Switch to the HidingState.vb class. Add the following line to the Update() routine:

World.BackColor = Color.LightGreen

Run the code and watch the background of the form change color with the state

of the AI. We have no visual representation of our monster, but we can tell at a

glance how it is feeling. Unfortunately, this forces our monster to be happy any

time it is hiding, even if it is near death and unwilling to fight. The mapping

between our action states and the emotional states is imperfect. It is time to give

our monster a more sophisticated set of feelings.

Using a Separate FSM for Emotions

Comment out or completely remove the three lines you just added and run the

program to make sure that all of them are inoperative. We are going to add a

separate FSM to model the monster’s feelings. We will need three new states, but

we can reuse the existing transitions. Once we have created the states, adding

them to the AI will be very easy. Add a new class to the project and name it

FeelHappy.vb. Just inside the class definition, add the following code:

Inherits BasicState

After you press Enter, VB will populate the required skeletons. Add code until

your file looks like the following:

Public Class FeelHappy
Inherits BasicState

Public Sub New()
Dim Txn As BasicTransition
’Get angry if I see intruders while healthy.
Txn = New SeePlayerHighHealthTxn()
’Set the next state name of that transition.
Txn.Initialize(GetType(FeelAngry).Name)
’Add it to our list of transitions.
MyTransitions.Add(Txn)

Projects 303

’I react to health - if low, be afraid.
Txn = New LowHealthTxn()
’Set the next state name of that transition.
Txn.Initialize(GetType(FeelAfraid).Name)
’Add it to our list of transitions.
MyTransitions.Add(Txn)

End Sub

Public Overrides Sub Entry(ByVal World As Monster)
World.Say("I feel happy now.")

End Sub

Public Overrides Sub ExitFunction(ByVal World As Monster)

End Sub

Public Overrides Sub Update(ByVal World As Monster)
World.BackColor = Color.LightGreen

End Sub
End Class

VBwill complain because we have transitions to states that do not exist yet. Add a

new class to the project. Name it FeelAfraid.vb and make it inherit from

BasicState. Add code until your file looks like the following:

Public Class FeelAfraid
Inherits BasicState

Public Sub New()
Dim Txn As BasicTransition

’Order is important.
’Get angry if I see intruders while healthy.
Txn = New SeePlayerHighHealthTxn()
’Set the next state name of that transition.
Txn.Initialize(GetType(FeelAngry).Name)
’Add it to our list of transitions.
MyTransitions.Add(Txn)

’If healthy and no intruder, I am happy.
Txn = New HighHealthTxn()
’Set the next state name of that transition.
Txn.Initialize(GetType(FeelHappy).Name)

304 Chapter 9 n Evoking Emotions on the Cheap

’Add it to our list of transitions.
MyTransitions.Add(Txn)

End Sub
Public Overrides Sub Entry(ByVal World As Monster)

World.Say("I feel afraid!")
End Sub

Public Overrides Sub ExitFunction(ByVal World As Monster)

End Sub

Public Overrides Sub Update(ByVal World As Monster)
World.BackColor = Color.LightGray

End Sub
End Class

Weonly need onemore state. Add a new class to the project. Name it FeelAngry.vb

and make it inherit from BasicState. Add code until your file looks like the

following:

Public Class FeelAngry
Inherits BasicState

Public Sub New()
Dim Txn As BasicTransition

’Order is important - react to health first.

’I react to health - if low, be afraid.
Txn = New LowHealthTxn()
’Set the next state name of that transition.
Txn.Initialize(GetType(FeelAfraid).Name)
’Add it to our list of transitions.
MyTransitions.Add(Txn)

’If healthy and no intruder, I am happy.
Txn = New NoPlayersTxn()
’Set the next state name of that transition.
Txn.Initialize(GetType(FeelHappy).Name)
’Add it to our list of transitions.
MyTransitions.Add(Txn)

End Sub

Projects 305

Public Overrides Sub Entry(ByVal World As Monster)
World.Say("I feel so angry!")

End Sub

Public Overrides Sub ExitFunction(ByVal World As Monster)

End Sub

Public Overrides Sub Update(ByVal World As Monster)
World.BackColor = Color.Pink

End Sub
End Class

What remains is to put those states into an FSM and wire that FSM to the user

interface. We need a new FSM for the feelings. Switch to the code for Monster.vb

and locate the declaration for the monster’s Brains. Add code for feelings so that

we have two FSMs as follows:

’We need an FSM.
Dim Brains As New FSM
’We need to feel as well as act.
Dim Feelings As New FSM

Now that we have a new FSMmachine for feelings, we need to load it with states.

Add the following lines to Monster_Load() below the lines that states into Brains:

’Load our feelings (make the start state appropriate).
Feelings.LoadState(New FeelHappy)
Feelings.LoadState(New FeelAfraid)
Feelings.LoadState(New FeelAngry)

Nowwe have to tell ourmonster to examine its feelings. Locate ThinkButton_Click()

and add the following line to make our monster feel each time it thinks:

Feelings.RunAI(Me)

Now run the project. Lower the monster’s hit points first and watch it become

afraid while hiding. When we piggy-backed the monster’s feeling onto its

actions, we could not make it feel that way while it was hiding. Run it through

the rest of the transitions to make sure that its feelings match the conditions. If

we need finer-grained control, we could have the feeling FSM react to different

levels of hit points than the action FSM machine uses. Our monster might be in

combat, take damage, feel afraid but stay in combat, take more damage, and

then flee.

306 Chapter 9 n Evoking Emotions on the Cheap

Our monster provides better feelings when the feelings are controlled in their

own FSM. We still use the simple display techniques, but we improved the

emotional model. Our monster is not very sophisticated, so an FSM fills its

emotional needs easily.

Now that we have a separate emotional model, we can use the emotional state to

influence the behaviors of the AI. We are attempting to directly express emotions

with color, but we can also indirectly express emotions with altered behaviors.

Direct expression of emotion is more accessible to the player, but indirect

expression may be more accessible to the AI programmer. Good AI practice is to

attempt both; if the player sees that an AI character is visibly angry, the player will

expect the AI character to act angry as well. (See Exercise 3 at the end of the

chapter.)

Modeling Needs and Relationships

For our final project, we will model needs and relationships instead of modeling

emotions directly. As with The Sims, meeting needs through shared interests will

build relationships. Our project purports to be the social director of a cruise ship.

The director mixes people into pairs to share activities together. The director uses

a mix of intentional and random elements when selecting matchups and activ-

ities. The director makes sure that people with strong needs get those needs met.

The director randomly picks partners for the people with strong needs. The

activities are selected at random from those activities that will meet the need.

Over time, the interactions will build relationships. Let us examine the details

needed to make this general description clear.

We will model only three needs: exercise, culture, and dining. Everyone starts

with random values for each of their three needs. Needs can range from �100 to

þ100, with negative values implying an unmet need and positive values implying

a met need. We will make sure that everyone starts with the sum of all of their

needs equal to zero. This is a design decision that is tunable. We also will limit the

initial range of any one need to �20 to þ20, another tunable design decision.

Each turn, every need is reduced in value by 10. Every time a person does an

activity, the corresponding need is incremented by 30, exactly balancing the net

drop to be zero, keeping our system in balance.

Each need will have three activities that meet that need. Exercise is met by

swimming, tennis, and working out. Going to the movies, on a tour, or to a play

meets the culture need. The available dining pleasures include French cuisine,

Asian cuisine, and pub fare. We will keep these activities in a mini-database.

Projects 307

Each person will have a full set of randomly picked individual preferences, one

for every activity available. This differs from The Sims, which has a small

number of traits selected from a far larger list. The preferences are used along

with needs to judge how a person will react to a given activity. Preferences

range from �2 to þ2, another tunable design decision. Positive values denote

the person liking the activity. The net sum of all preferences is not constrained;

the simulation includes people with both positive and negative viewpoints on

life as a whole.

Everyone also tracks one-way relationship scores with all the people they have

interacted with. This score starts at 0 and has no limit. Relationships are not

required to be mutual. The scores are updated every time two people interact. A

positive score implies a positive relationship.

There are three terms that influence the relationship score with each shared

activity. The first term can be thought of as the ‘‘we think alike’’ term. If both

parties share a positive or negative preference for an activity that they do toge-

ther, it is a positive influence on the relationship. With this term, ‘‘We both hated

it’’ builds relationships just as well as ‘‘We both loved it.’’ This term is computed

by multiplying the two preference values together. For example if one person

dislikes (�1) pub fare and his partner strongly dislikes (�2) it, this term yields

þ2 for their relationship every time they get to dislike it together.

In addition to mutual preferences, individual preferences also count, giving us a

second term to add into our relationship score. If either of the individuals likes

the activity, it adds to their relationship score; if they do not like the activity, it

subtracts. This ‘‘I like it’’ term allows our people to take their own opinions into

account. Note that this second term need not be the same for both people.

Whether the two people think alike or not, each individual still has independent

preferences and wants to be catered to.

The third term in the score is need based instead of preference based. As a bonus,

if the activity matches to an unmet need in both people, it adds to the rela-

tionship; regardless of the food, hungry people prefer to dine with other hungry

people. All together, positive relationships are built between people who have

shared preferences, do things they like to do, and meet shared needs. This bonus

‘‘we needed that’’ term picks up on any shared needs.

Unlike The Sims, our people do not get to pick what they do or who they do it

with. Each round, our cruise director puts everyone into a pool of candidates.

The director selects the person in the pool with the strongest need. The director

308 Chapter 9 n Evoking Emotions on the Cheap

randomly picks that person’s partner, but the activity picked matches the first

person’s strongest need. The activity is also randomly picked. The pair is

removed from the pool, and the selection process is repeated until the pool of

people is empty. The random pairing and selection drives toward all the people

doing all the activities with all the other people. This is not intended as a game

mechanic, but as a way to validate the simulation by driving toward good cov-

erage of the interaction space. We know that left to themselves, people would

self-select toward their own preferences and established friends.

In addition to the needs, preferences, and relationships, we will compute some

other scores to help us make sense of the simulation. Our people have their own

views on life, computed as the simple sum of all of their preferences. We expect

people with a positive view on life to more easily build positive relationships

because they like to do more things. We expect the reverse as well. We will also

compute how opinionated each person is by taking the average of the sum of the

squares of their preferences. Strongly opinionated people might be candidates for

strong relationships, positive or negative. We certainly expect people with weaker

opinions to build their relationships more slowly. The final derived score we keep

is compatibility. Compatibility between two people is computed by multiplying

the matching preferences of each person and summing the result. Since the first

term of the relationship score is based on multiplying the two values of a single

preference, we expect compatibility to help predict strong relationships.

Why do we compute the extra numbers? The derived values are to help us predict

and tune. Our system mixes determinism with random chance, so trends may be

slow to emerge. The preferences and needs for our people will be randomly

initialized; these numbers will make it easier for us to see if any particular set of

people will make for interesting interactions. Compatibility score is one of our

better predictors; without some strong values in the mix, the simulation is

boring. This has game design implications; randomly generated characters are

fine so long as they are not all boring randomly generated characters. Let us build

the simulation and see how they turn out.

User Interface

Our user interface will be quite simple, as shown in Figure 9.4.

1. Launch Visual Basic if it is not already running.

2. Create a new Windows Forms Application project and name it

CruiseDirector.

Projects 309

3. In the Solution Explorer window, rename Form1.vb to Cruise.vb.

4. Click the form in the editing pane and change the Text property to Cruise

Director.

5. Add a button to the form. Change the Text property to People and the Name

property to PeopleButton.

6. Add another button to the form. Change the Text property to Dump and the

Name property to DumpButton.

7. Add a third button to the form. Change the Text property to 1 Time and the

Name property to Button1Time.

8. Add a fourth button to the form. Change the Text property to 100 Times

and the Name property to Button100Times. You may need to make the

button wider to fit the text.

9. Save the project.

Helpers

We will begin our design from the core data and work our way outward. To do

that, we start our thinking from the outside and work inward. We will need a

class for people. We know that each person has needs, preferences, and rela-

tionships to store. The values for all three kinds of data are integers, but we would

like to tag them with names and pass them around. Our lowest-level chunk of

data will be a simple name-value pair object. Our people class will use it, and our

mini-database will need it, too. The data is so simple that we will let other code

manipulate it directly.

Figure 9.4
The user interface for the CruiseDirector project.

310 Chapter 9 n Evoking Emotions on the Cheap

Add a class to the project and name it NVP.vb. When the editor opens, add two

lines of code to the file as follows:

Public Class NVP
Public name As String
Public value As Integer

End Class

Needs and preferences will be initialized to random integer values when we create

a person. To get those random values, we need a helper function. We will use the

concept of rolling an N-sided die to get our integer random values. The code is

extremely useful in a variety of games. Add a module to the project and name it

Dice.vb. Add code to the file as follows:

Module Dice
’Get one roll on an N-sided die.
Public Function getDx(ByVal dots As Integer) As Integer

Return CInt(Int((Rnd() * dots) + 1))
End Function

End Module

The Mini-Database

Between the name-value pair helper object and VB’s Collection object, we are

ready to make our mini-database. The database stores the available activities

along with the need each activity meets. The database also keeps a list of needs

met by the activities. We will use the database when we create a person. From the

list of needs, it can create a set of randomly initialized needs for a person.

Likewise, it can create and initialize a set of randomly initialized preferences from

the list of activities. We will also use the database to help the cruise director.

When the director gets the strongest need, the director will want a random

activity to meet that need. And when we print out the relationship data, we will

need a list of available activities. The mini-database simplifies the rest of the code

considerably; if it gets initialized cleanly, everything else just works.

Add a class to the project and name it MiniDB.vb. Add initialization code so that

it resembles the following:

Public Class MiniDB
’ToDo is activities grouped by need (a collection of collections).
Dim ToDo As New Collection
’Simple list of names of needs.

Projects 311

Dim Needs As New Collection
’Simple list of names of activities.
Dim ActivityNames As New Collection

Public Sub Add(ByVal Activity As String, ByVal Satisfies As String)
Dim Category As Collection
If Not ToDo.Contains(Satisfies) Then

’Must be a new need.
Debug.WriteLine("Creating " & Satisfies)
Needs.Add(Satisfies)
’Different needs get their own category.
Category = New Collection
ToDo.Add(Category, Satisfies)

Else
Category = CType(ToDo.Item(Satisfies), Collection)

End If

’Now add the activity to the category.
If Not Category.Contains(Activity) Then

Debug.WriteLine("Adding " & Activity & " to " & Satisfies)
Category.Add(Activity, Activity)

End If

’Keep a simple list of names of activities.
If Not ActivityNames.Contains(Activity) Then

ActivityNames.Add(Activity, Activity)
End If

End Sub
End Class

When ourmain code initializes the database, it will add each activity with its need

to the database. The ToDo collection of collections lets us use a need name to get a

collection of activities that meet that need. The name of the need is used as a key

in ToDo to find the subtending collection. Along the way, we keep simple lists of

activities and needs so that other code can iterate through them. Much of the rest

of the code keeps us from adding the same thing twice or does explicit type

conversions.

Since everything depends on the database, we should see if we can initialize it.

Switch to the Code view of Cruise.vb and add code as follows:

Public Class Cruise
Dim Roster As New Collection
Dim MDB As New MiniDB

312 Chapter 9 n Evoking Emotions on the Cheap

Private Sub Cruise_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Randomize()

’Load up the database.
MDB.Add("tennis", "exercise")
MDB.Add("swimming", "exercise")
MDB.Add("workout", "exercise")
MDB.Add("movie", "culture")
MDB.Add("tour", "culture")
MDB.Add("drama", "culture")
MDB.Add("French cuisine", "dining")
MDB.Add("Asian cuisine", "dining")
MDB.Add("pub fare", "dining")

’Add people using the people button code.
’Call PeopleButton_Click(Nothing, Nothing)

End Sub
End Class

Our cruise director needs a database and people, so the first thing we did was to

declare variables for them. Upon form load, the Randomize() call reseeds the

random number generator so that we get a different run every time. Then the

code adds activities to the database. At the end, it will eventually add a new group

of people by using the PeopleButton_Click event handler. For now, we leave that

call commented out. Run the code in the debugger and check the debugging

output in the Immediate window. You should see each activity load in the proper

place.

Now that our database can be created, we can add the code that accesses the data.

Switch back to MinDB.vb in the editor. We will start with the database code

needed to help create a person. People will require needs and preferences; we will

add them in that order. Add the following code to the MiniDB class:

’Give some person a set of initialized needs.
Public Function SetOfNeeds() As Collection

Dim PersonalNeeds As New Collection
Dim net As Integer = 0
Dim need As String
Dim thisNeed As NVP = Nothing
For Each need In Needs

thisNeed = New NVP
thisNeed.name = need

Projects 313

’These variability parameters are tunable!
thisNeed.value = 21 - getDx(41)
PersonalNeeds.Add(thisNeed, need)
net += thisNeed.value

Next
’Everyone has a net of zero; adjust a random need.
’Net of zero is another tuning parameter!
If Needs.Count > 0 Then

’Get the random need.
thisNeed = CType(PersonalNeeds(getDx(Needs.Count)), NVP)
’Adjust it to make our net be zero.
thisNeed.value -= net

Else
Debug.WriteLine("cannot create SetOfNeeds: No needs in database.")

End If
Return PersonalNeeds

End Function

’Give a person a set of individual preferences.
’Preferences run from -2 to +2.
Public Function SetOfPreferences() As Collection

Dim PersonalPreferences As New Collection
Dim Activity As String
For Each Activity In ActivityNames

Dim thisPreference As New NVP
thisPreference.name = Activity
’The variability here is a tuning parameter.
’Five minus three gives -2 to +2.
thisPreference.value = getDx(5) - 3
’Seven minus four gives -3 to +3.
’thisPreference.value = getDx(7) - 4
PersonalPreferences.Add(thisPreference, Activity)

Next
Return PersonalPreferences

End Function

Note in the comments where it calls out the tunable parameters. Initial values for

needs are restricted to �20 to þ20 in range, except that a random need is forced

to yield a net of zero. Both the range and the net of zero are tunable and will make

a difference in the simulation. Recall that we give a bonus to relationships if both

parties have an unmet need that the activity in question satisfies. If we move the

balance point up from zero, that bonus becomes less likely. If we make the net

sum of the need values a negative number, the bonus will become more likely; if

314 Chapter 9 n Evoking Emotions on the Cheap

everyone is always hungry, they will always enjoy eating together. If we allow

extreme ranges in the starting values, some of the people will be quite single-

minded for the first part of the simulation, and it will take longer for the true

long-term trends to emerge. If we do not allow somewhat extreme values, our

people will lack interesting diversity.

Preferences are also tunable. Because preference values will be added sometimes

and multiplied other times, the range is important. Increasing the range of

preference values makes strong preferences more dominant in the relationship

score. The code for a range of �3 to þ3 is given as comments. Running the

simulation with the wider range is left as an exercise, but it is well worth doing. So

far, our simulation has three tuning knobs to adjust, and it is a good experience

for AI programmers to try their hand at tuning a simulation.

The cruise director needs the database to pick an activity and to give the list of

activities. We will add that code now to finish up the database. Add the following

to the MiniDB class:

’Get a random activity for this need.
Public Function ActivityForNeed(ByVal Satisfies As String) As String

’Find the collection of activities for this need.
If ToDo.Contains(Satisfies) Then

’We have a collection for this need, get access to it.
Dim category As Collection = CType(ToDo.Item(Satisfies), Collection)
’Pick a random item.
Dim i As Integer = getDx(category.Count)
’The lower-level collection holds activity names (strings).
Return CStr(category(i))

Else
Debug.WriteLine("Error: MiniDB unable to meet need " & Satisfies)
Return ""

End If
End Function

’What is the master list of activities?
Public Function ActivityList() As Collection

’Give them a copy of our list instead of our actual list.
Dim alist As New Collection
Dim activity As String
’Copy from our list to theirs.
For Each activity In ActivityNames

alist.Add(activity, activity)

Projects 315

Next
Return alist

End Function

That completes the code for the mini-database. We can now initialize the needs

and preferences of our people, so we should work on people next.

The Person Class

Create a class and call it Person.vb. We start with the data we store and the code

that does initialization. Add code to the class as follows:

Public Class Person
Dim myname As String
Dim myNeeds As New Collection
Dim myPreferences As New Collection
Dim myRelationships As New Collection

Public Sub New(ByVal name As String, ByVal MDB As MiniDB)
myname = name
’Load all of the needs.
myNeeds = MDB.SetOfNeeds
’Load my preferences.
myPreferences = MDB.SetOfPreferences

End Sub
End Class

All our people require to start is their name and a database from which to get

their needs and preferences. People will lack any relationships until they start to

interact. The cruise director needs to know their highest need. Add the following

to the Person class:

’What is my highest need? We need both the name and value.
Public Function HighestNeed() As NVP

’Default to our first need.
Dim highNeed As NVP = CType(myNeeds(1), NVP)
Dim someNeed As NVP
For Each someNeed In myNeeds

’If we find a bigger need use it instead.
If someNeed.value < highNeed.value Then highNeed = someNeed

Next
Return highNeed

End Function

316 Chapter 9 n Evoking Emotions on the Cheap

In addition, the simulation will want to call for adjustments to the needs. Needs

get stronger over time and interactions satisfy a need. Add the following code to

the Person class:

’We interacted to meet some need.
Public Sub EaseNeed(ByVal Need As String)

Dim someNeed As NVP = CType(myNeeds(Need), NVP)
’30 is picked to balance 3 needs that drop 10 each turn.
someNeed.value += 10 * myNeeds.Count
’Clip at +100.
If someNeed.value > 100 Then someNeed.value = 100

End Sub

’Every turn we need more.
Public Sub IncAllNeeds()

Dim someNeed As NVP
’All my needs get 10 points worse.
For Each someNeed In myNeeds

someNeed.value -= 10
’Clip at -100.
If someNeed.value < -100 Then someNeed.value = -100

Next
End Sub

The code for meeting a need is self balancing. It knows that all needs get stronger

by 10 each turn, so the amount of satisfaction has to be 10 times the number of

needs to maintain balance. Keeping balance and having all needs act the same

way is a design decision. We start with a balanced and conservative simulation.

We can give it wider swings and variability if it proves unsatisfactory. Needs

change when people interact, but so do relationships. Add the following code to

the Person class:

Public Sub UpdateRelationship(ByVal theirName As String, _
ByVal howMuch As Integer)

Dim thisRelation As NVP
’Have we met?
If myRelationships.Contains(theirName) Then

’Update the existing relationship.
thisRelation = CType(myRelationships(theirName), NVP)
thisRelation.value += howMuch

Else
’Create a new relationship.
thisRelation = New NVP

Projects 317

thisRelation.name = theirName
thisRelation.value = howMuch
’Store the relationship.
myRelationships.Add(thisRelation, theirName)

End If
End Sub

’A simple Boolean when the caller does not care about magnitude.
Public Function NeedsSome(ByVal need As String) As Boolean

Dim someNeed As NVP = CType(myNeeds(need), NVP)
Return (someNeed.value <= 0)

End Function

’Return HOW MUCH they like an activity.
Public Function Likes(ByVal activity As String) As Integer

Dim somePref As NVP = CType(myPreferences(activity), NVP)
Return somePref.value

End Function

The NeedsSome() function is used when computing the relationship score for an

interaction. The third term in the computation was a bonus if both parties had an

unmet need satisfied by the activity. So we need to be able to ask a person if a

particular need was unmet. The other parts of the relationship score need a

person’s preference value for an activity, which is provided by the Likes()

function.

The final code for a person handles the various ways outside code interrogates a

person in order to print out results. The simulation will make use of these in

debugging statements that let us see our results. Add the following code to the

Person class:

Public Function CurrentRelationship(ByVal theirName As String) As Integer
’If we have met them...
If myRelationships.Contains(theirName) Then

Dim rel As NVP = CType(myRelationships(theirName), NVP)
’...then return the value of our relationship.
Return rel.value

End If
’Return 0 if we haven’t met yet.
Return 0

End Function

’Give back my name and my needs in a compact form.
Public Function ShortDump() As String

318 Chapter 9 n Evoking Emotions on the Cheap

Dim sn As String = myname & "["
Dim someNeed As NVP
For Each someNeed In myNeeds

sn = sn & " " & someNeed.value.ToString
Next
sn = sn & "]"
Return sn

End Function

Public Function LongDump() As String
Dim ld As String = ""
Dim opinionated As Double = 0.0
Dim view As Integer = 0

Dim attr As NVP
For Each attr In myPreferences

’Strong preferences count more.
opinionated += attr.value * attr.value
’Keep the sign when building their total outlook.
view += attr.value
’Build the string of preferences.
ld = ld & " " & attr.name & "=" & attr.value.ToString

Next
Return (Me.ShortDump & " View=" & view.ToString & " Op=" & _

Format(opinionated / myPreferences.Count, "0.00") & "; " & ld)
End Function

Public Function Name() As String
Return myname

End Function

Now that we can create a database and some people, we are ready for the cruise

director to make an appearance.

Finishing the Cruise Class

Switch to the Code view of the Cruise class. Add code as follows:

Private Sub PeopleButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles PeopleButton.Click

Dim people() As String = {"Drackett", "Jones", "Lincoln", _
"Morrill", "Stradley", "Taylor"}

Projects 319

Dim surname As String

Debug.WriteLine("+++++++++ LOADING NEW PEOPLE.")
’Remove prior people.
Roster.Clear()
’Load up the roster with new people.
For Each surname In people

Roster.Add(New Person(surname, MDB))
Next

End Sub

Uncomment the call to PeopleButton_Click that is near the end of the

Cruise_Load event handler. We had commented it earlier because we lacked any

people code. Now that we have the Person class complete, we can do more

testing.

Run this code in the debugger and look at the output in the Immediate window.

Click the People button. The code claims to be loading new people. We would

like to see these people. Stop debugging and add the flowing code to the Cruise

class:

’Dump all of the people and their relationships.
Private Sub DumpButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles DumpButton.Click
’Dump all of the pair-wise relationships.
Dim PersonA As Person
Dim PersonB As Person

’Do all of the people.
For Each PersonA In Roster

’Make some blank space for readability.
Debug.WriteLine("")
’Dump my personal stats.
Debug.WriteLine(PersonA.LongDump)
’Do all of the pair-wise relationships.
For Each PersonB In Roster

’(With everyone but me.)
If PersonA IsNot PersonB Then

Call DumpRelationship(PersonA, PersonB)
End If

Next
Next

End Sub

320 Chapter 9 n Evoking Emotions on the Cheap

’Dump a single relationship.
Private Sub DumpRelationship(ByVal PersonA As Person, _

ByVal PersonB As Person)
’How compatible are these people?
Dim compatibility As Integer = 0
Dim activity As String
For Each activity In MDB.ActivityList

’Use their preferences to add to their score.
compatibility += PersonA.Likes(activity) * PersonB.Likes(activity)

Next
Debug.WriteLine("[C: " & compatibility.ToString & ", R+R: " & _

(PersonA.CurrentRelationship(PersonB.Name) + _
PersonB.CurrentRelationship(PersonA.Name)).ToString & "] " & _
PersonA.Name & " (" & _
PersonA.CurrentRelationship(PersonB.Name).ToString & ") (" & _
PersonB.CurrentRelationship(PersonA.Name).ToString & ") " & _
PersonB.Name)

End Sub

Run the code in the debugger and click the Dump button. In the Immediate

window, you will see blocks of data, one block per person. The block begins with

the person’s own internal statistics. Let us look at an example:

Taylor[-14 -13 27] View=9 Op=1.89; tennis=2 swimming=1 . . .

The string begins with the person’s name. In square brackets are the three need

values for exercise, culture, and dining, in that order. View is the numeric sum of

the person’s preferences. Taylor in this run is a pretty positive person, since the

expected value is 0. The next value is how opinionated the person is. Taylor in

this run is modestly opinionated. Remember that opinionated values are com-

puted as the average of the squares of the preferences. As a result, strongly

opinionated people have a value above 2 and approaching 3. Following that is a

list of the person’s personal preference values.

After the person’s own statistics are his relationship statistics. Without interac-

tions, only the compatibility number has a value. Let us look at the output and go

through it.

[C: -7, R+R: 0] Taylor (0) (0) Morrill

The first value in square brackets is the mutual compatibility score. The second

value is the sum of their individual relationship scores. Taylor and Morrill are

Projects 321

mildly incompatible. Values within 10 points of 0 are too low to be accurate

predictors of future relationships. Values in the teens are strong predictors, but

smaller values less so. The simulation is slightly biased toward positive rela-

tionships due to the bonus term when both parties need an activity. Taylor is

more likely to have positive relationships because Taylor likes nearly everything.

Taylor’s partners might not share that view, but in general, Taylor is a positive

person in this run. Between Taylor and Morrill in parentheses is how they

feel about each other. Taylor’s score for Morrill is next to Taylor’s name, and

Morrill’s score for Taylor is next toMorrill’s name. Since they have not interacted

yet, both are 0. These are the two values that are added to get the RþR number

out front.

Scroll through your output. If no two people have a compatibility value in the

teens (including in the negative teens) or larger, the interactions might not

produce strong results. Click the People button and the Dump button a few times

to get an interesting set of people. A compatibility score of 17 can produce twice

the relationships score of a compatibility of 12. To see this, we will have to make

our people interact. Add the following code to the Cruise class:

’Have two people interact.
Private Sub Interact(ByVal PersonA As Person, ByVal PersonB As Person, _

ByVal Need As String, ByVal Activity As String)
Dim RCa As Integer
Dim RCb As Integer
Dim bonus As Integer = 0
’We like it more if we both need it.
If PersonA.NeedsSome(Need) And PersonB.NeedsSome(Need) Then bonus += 1
RCa = PersonA.Likes(Activity) * PersonB.Likes(Activity) + _

PersonA.Likes(Activity) + bonus
RCb = PersonA.Likes(Activity) * PersonB.Likes(Activity) + _

PersonB.Likes(Activity) + bonus

Debug.WriteLine(PersonA.ShortDump & " tries " & Activity & "(" & _
PersonA.Likes(Activity).ToString & ", " & _
PersonB.Likes(Activity).ToString & ") with " & _
PersonB.ShortDump & " result (" & RCa.ToString & ", " & _
RCb.ToString & ")")

PersonA.UpdateRelationship(PersonB.name, RCa)
PersonB.UpdateRelationship(PersonA.Name, RCb)

PersonA.EaseNeed(Need)
PersonB.EaseNeed(Need)

End Sub

322 Chapter 9 n Evoking Emotions on the Cheap

That provides the basic interaction, but we need to wrap a few layers around it.

We need to be able to run a complete round of interaction, and we need to hook

the interactions to the user interface. Add the following code to the Cruise class:

Private Sub OneRound()
Dim Pool As New Collection
Dim PersonA As Person = Nothing
Dim NeedyPerson As Person

’Load the pool from the roster, increment all needs.
For Each PersonA In Roster

Pool.Add(PersonA, PersonA.Name)
Call PersonA.IncAllNeeds()

Next

While Pool.Count >= 2
’Grab the person with the highest need.
’Default to the first person.
NeedyPerson = CType(Pool.Item(1), Person)
’We keep both the person and their need.
Dim BigNeed As NVP = NeedyPerson.HighestNeed
’Look for a person with a higher need.
For Each PersonA In Pool

Dim Aneed As NVP = PersonA.HighestNeed
If Aneed.value < BigNeed.value Then

NeedyPerson = PersonA
BigNeed = Aneed

End If
Next
’Take the needy person out of the pool.
Pool.Remove(NeedyPerson.Name)
’Pick a random partner.
PersonA = CType(Pool(getDx(Pool.Count)), Person)
’Take them out of the pool.
Pool.Remove(PersonA.Name)
’Make them randomly interact to meet the highest need.
Dim activity As String = _

MDB.ActivityForNeed(NeedyPerson.HighestNeed.name)
Interact(NeedyPerson, PersonA, BigNeed.name, activity)

End While
End Sub

Private Sub Button1Time_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1Time.Click

Projects 323

’Test the interaction code.
Call OneRound()

End Sub

Private Sub Button100Times_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button100Times.Click

’Enough interactions to get trends.
Dim i As Integer
For i = 1 To 100

Call Debug.WriteLine("Round " & i.ToString)
Call OneRound()

Next
Call Debug.WriteLine("")

End Sub

Run the project in the debugger. Click the Dump button and then click the

1 Time button and look at the debug output. Following is an example line of

interaction output. Your numbers will vary.

Taylor[-15 -23 8] tries drama(2, -2) with Lincoln[-3 -19 -8] result (-1, -5)

Needs are in square brackets after each name. Here we see that Taylor and

Lincoln have culture needs of �23 and �19, respectively. Recall that needs are

listed as exercise, culture, and then dining. Their preferences are in parentheses

between them. Taylor strongly likes drama (þ2), and Lincoln strongly dislikes

(�2) it. In terms of their relationship, the ‘‘we think alike’’ term comes out to�4

and the bonus ‘‘we needed that’’ term gives þ1. That gives �3, to which we add

each individual ‘‘I like it’’ value to get the final change in relationship. Taylor

adds þ2 to get a total of �1. Lincoln adds �2 to get a total of �5, which is listed

in that order as the result at the end.

Check your output to see that the highest-need person was picked first. Work

through the computations to make sure that the relationship’s changes are

correct. Click the Dump button and look to make sure that each person has the

correct relationship value as given by the single interaction. If all is correct, click

the 100 Times button and then dump again. Look at the output and compare the

relationships scores of different pairs of people who have similar compatibility

scores. Note also that positive relationships are more common. What are these

numbers telling us?

As we alluded to before, compatibility is not a strong predictor until the value

gets away from 0. The simulation has other factors that can dominate the

324 Chapter 9 n Evoking Emotions on the Cheap

relationship score. The ‘‘we needed that’’ bonus term adds an average of half of

one point every interaction. We know that the first person in every pair was

picked on the basis of need. Because our needs average to 0, we expect the first

person to nearly always have an unmet need. Because the person’s partner is

picked at random, that partner is equally likely to have any need be met as unmet.

So half of the time, we expect to see the ‘‘we needed that’’ bonus to apply. In the

absence of strong personality matches or conflicts, the bonus gently eases our

simulation toward positive relationships. We can think of this as ‘‘most people

get along, even if they don’t actually like each other.’’

Another influence on our system is that our people have a full set of preferences

that are picked without bias. This means that on the average, any given person’s

net preference value is near 0. It also means that with so many pairs of potential

interactions available, we will see a good deal of cancelations. Statistically, this is

known as ‘‘reversion to the mean.’’ We could change our people so that they only

held strong opinions or did not care. In the code, we would turn any þ1 or �1

values for preferences to 0.

Along that same line, our range of preferences is notably constrained. If we

increased the range from the current�2 toþ2 to�3 toþ3 or even more, we will

see different results. Note that this would completely change the scaling of the

compatibility number; simulations with one range would be tuned differently

than with the expanded range. The expanded range can also be combined with

the preceding idea of strong opinions only.

Another driver toward the mean is our cruise director. By pushing toward full

coverage of all the possible interactions, we suppress weaker trends that might

appear if our people had a chance to pick who they interacted with and what

interactions they tried. The flip side of this is that the strong trends we see—those

between people with compatibility scores in double digits—indicate that our

simulation does deliver what we expect. If you do not see these trends, try

different sets of people. Just click the People button and dump the new roster.

Repeat until you see one or more compatibility scores in the teens, positive or

negative. A value of 17 or higher is especially informative.

A final note on tuning is that this whole process is driven purely by numbers and

simple equations. These numbers belong in a spreadsheet and on charts for better

clarity. Statistical analysis may seem to be far removed from emotions, but for

game AI, these heartless tools are a warmly welcomed help.

Projects 325

Chapter Summary
The job of the AI programmer is twofold. The first is to drive the capability to

make intelligent changes to the game in every nook and cranny that will become

richer for having it. The second is to infect the ‘‘creative’’ sides of the game with

the idea that everything might be subject to intelligent manipulation. All these

manipulations can be bent toward realizing all the creative goals for the game,

including evoking emotional responses from the player. This simply might not

apply to some games; for example, no one really expects any emotional content

attributable to the black and white stones used to play the game of Go. But if the

opponent is displayed as a virtual human, that virtual human needs virtual

emotions. Once any decision is made about the emotional content of a game, a

certain amount of care is called for.

Chapter Review
Answers are in the appendix.

1. Many aspects of a game have an emotional payload. What additional attri-

bute is required to make these aspects part of the overall AI?

2. Describe the critical difference between games and simulations with regard

to what they are trying to do with emotions.

3. Some of the techniques in this chapter are subtle. How can the game make

sure the player catches on?

4. List some general categories of places where some AI control adds to the

ability of the game to deliver emotional content.

5. Expand the range of preferences for our people on the cruise and examine

the numbers. Consider trying to balance for some sense of ‘‘realism’’ to your

sense of ‘‘fun.’’

Exercises

1. Create a list of wall colors and the emotions they evoke.

2. Not only do clothes convey information, but accessories do as well. Make a

list of the impact from different kinds of footwear, sunglasses, rings,

326 Chapter 9 n Evoking Emotions on the Cheap

watches, and jewelry. List aspects of the accessories that would take them

frommundane to noteworthy. Why is a plain wedding band different from a

wedding ring with a multi-carat diamond or a pinky ring?

3. Change the Brains state machine transitions for the monster so that they are

influenced by the emotional state of the monster.

4. What emotions does trash in a neighborhood evoke?

References
[Carlisle04] Carlisle, Phil. ‘‘An AI Approach to Creating an Intelligent Camera

System,’’ AI Game Programming Wisdom 2, edited by Steve Rabin, pp. 179–185.

Charles River Media, 2004.

[Crawford86] Crawford, Chris. International Politics as the Ultimate Global

Game, Microsoft Press, 1986. Available online at http://www.erasmatazz.com/

library/Balance%20of%20Power.txt.

[Doornbos01] Doornbos, Jamie. ‘‘Those Darn Sims: WhatMakes Them Tick?’’ in

lecture, Game Developers Conference, 2001. Similar material can be found online

at http://www.cs.northwestern.edu/*forbus/c95-gd/lectures/The_Sims_Under_

the_Hood_files/frame.htm.

[El-Nasr09] Seif El-Nasr, Magy; Vasilakos, Thanos; Rao, Chinmay; Zupko,

Joseph. ‘‘Dynamic Intelligent Lighting for Directing Visual Attention in Inter-

active 3D Scenes,’’ IEEE Transactions on Computational Intelligence and AI in

Games, Vol 1, No. 2, 2009.

[Gratch00] Gratch, Jonathan. ‘‘Émile: Marshalling Passions in Training and

Education.’’ Proceedings of the Fourth International Conference on Intelligent

Agents, Barcelona, Spain. June 2000.

[Gratch01] Gratch, Jonathan; Marsella, Stacy. ‘‘Tears and Fears: Modeling

Emotions and Emotional Behaviors in Synthetic Agents’’ Proceedings of the Fifth

International Conference onAutonomous Agents, pp. 278–285. ACMPress, 2001.

Available online at http://people.ict.usc.edu/*gratch/agents01-emotion.pdf.

[Hecker08] Hecker, Chris. ‘‘Structure vs Style.’’ In lecture, 2008 Game Devel-

opers Conference, San Francisco, CA. Slides and audio available online at

http://chrishecker.com/Structure_vs_Style.

References 327

http://www.erasmatazz.com/library/Balance%20of%20Power.txt
http://www.erasmatazz.com/library/Balance%20of%20Power.txt
http://www.cs.northwestern.edu/~forbus/c95-gd/lectures/The_Sims_Under_the_Hood_files/frame.htm
http://www.cs.northwestern.edu/~forbus/c95-gd/lectures/The_Sims_Under_the_Hood_files/frame.htm
http://people.ict.usc.edu/~gratch/agents01-emotion.pdf
http://chrishecker.com/Structure_vs_Style

[Mateas05] Mateas, Michael; Stern, Andrew. ‘‘Structuring Content in the Façade

Interactive Drama Architecture.’’ Presented at AIIDE 2005. Available online at

http://www.interactivestory.net/papers/MateasSternAIIDE05.pdf.

[Lazzaro04] Lazzaro, Nicole. ‘‘Why We Play Games: Four Keys to More Emotion

Without Story’’ 2004. In lecture, GameDevelopers Conference 2004, San Jose, CA.

Available online at http://www.xeodesign.com/xeodesign_whyweplaygames.pdf.

[Lazzaro07] Lazzaro, Nicole. ‘‘The 4 Most Important Emotions of Game

Design.’’ In lecture, Game Developers Conference 2007, San Francisco, CA.

Slides available online at http://www.xeodesign.com/gdc2007/Lazzaro_GDC07-

100n030607.zip.

[Lazzaro08] Lazzaro, Nicole. ‘‘Halo vs. Facebook: Emotion and the Fun of

Games.’’ In lecture, Game Developers Conference 2008, San Francisco, CA.

Slides available online at http://www.xeodesign.com/halo_v_facebook_2008/

halo_vs_facebook_xeodesign_102n033108.zip.

[Mark09] Mark, Dave. Behavioral Mathematics for Game AI, Course Technology

PRT, March, 2009.

[Sanger93] Sanger, George ‘‘The Fatman.’’ At an audio roundtable discussion.

1993 Computer Game Developers Conference, Santa Clara, California. Con-

firmed in private e-mail.

[Spector04] Spector, Warren. ‘‘Thief: Deadly Shadows Interview.’’ Given at E3

Conference, 2004. Available online at http://gamespot.com/video/528587/

6099282.

328 Chapter 9 n Evoking Emotions on the Cheap

http://www.interactivestory.net/papers/MateasSternAIIDE05.pdf
http://www.xeodesign.com/xeodesign_whyweplaygames.pdf
http://www.xeodesign.com/gdc2007/Lazzaro_GDC07-100n030607.zip
http://www.xeodesign.com/gdc2007/Lazzaro_GDC07-100n030607.zip
http://www.xeodesign.com/halo_v_facebook_2008/halo_vs_facebook_xeodesign_102n033108.zip
http://www.xeodesign.com/halo_v_facebook_2008/halo_vs_facebook_xeodesign_102n033108.zip
http://gamespot.com/video/528587/6099282
http://gamespot.com/video/528587/6099282

Topics to Pursue
from Here

The topics in this chapter range from next steps (A* path finding) to topics at the

leading edge in game AI (planning, behavior trees). In between is machine

learning. All these are of interest to AI programmers and are the subject of articles

and even whole sections in the four volumes of the AI Game Programming

Wisdom series of books. Besides being the topics of game-industry–focused

publications, game AI issues have been picked up by academia as vehicles for

research. Game AI is too broad for one book to cover, so we will wrap up with a

selection of topics.

A* Path Finding
This topic might be considered the graduation exercise for the readers of this

book. The algorithm is one that all AI programmers need to have mastered.

Rather than provide a project with code, just the algorithm is given. Armed with

an understanding of how it works and aided by the numerous free resources

available on the Internet, you should be able to write your own implementation

of A*.

A* (pronounced A-star) is the algorithm of choice for general path finding in

most games. Path finding answers the question, ‘‘What’s the best way to get from

here to there?’’ If there are only a few places in your game, you can precompute

the paths between them and store the paths.

329

chapter 10

Precomputed paths are cheaper than A* paths, but two major issues crop up

quickly. The first issue is that the number of paths explodes as the number of

places increases. The number of paths is related to the square of the number of

places. The second issue is that precomputed paths require knowing all the places

in advance. They cannot be used with dynamically created maps. Precomputed

paths fail if elements such as bridges can be rendered unusable during play. When

you lack a static map with a small number of places, you need a general path

finder, and A* is hard to beat.

A* works with two core concepts. The first is, ‘‘I know how much it costs to get

from the starting point to here,’’ for any particular ‘‘here’’ to which the algorithm

has progressed. The second concept is, ‘‘I can estimate the cost of getting from

here to the goal,’’ again for any particular ‘‘here.’’ In technical terms, A* is a best-

first graph search algorithm to determine the lowest cost path between two

nodes. We will examine what all these words mean and why they are important.

The best-first part is one of the major reasons why A* is so popular. A* is

reasonably fast, and that speed comes from examining the most promising steps

first. A character standing in a building would first check if he or she can walk

directly toward his or her goal. If the character is standing in an open-air gazebo,

this will in fact be the best way to go. If the character is standing in a room with

walls and doors, the extremely high cost of going through a wall would force the

character to examine less direct paths. If there is a door in the wall blocking the

direct path, that door will probably be checked before other doors that lead away

from the goal.

‘‘Reasonably fast’’ is a relative term. A* is a search method, and search as a

computational problem is not cheap. The difference between ‘‘cheaper than the

alternatives’’ and ‘‘cheap’’ should be kept in mind.

A* is a graph search algorithm. For navigation purposes, most virtual worlds are

not really contiguous. Unlike on Earth, in games, the concept of ‘‘here’’ is not a

set of coordinates such as latitude and longitude that can always be more finely

specified. In games, ‘‘here’’ is some discrete space, perhaps a triangle. Board

games often use squares or hexagons for this purpose; they are spaces that cannot

be subdivided. Whether in board games or computer games, every ‘‘here’’ has

some neighboring places that are directly connected to it. To A*, a graph is a set

of points and a set of lines connecting those points to their neighbors. These

points represent the ‘‘here’’ for any location in the virtual world; in graph-theory

terms, these are called nodes. Every square or hexagon in a board game becomes

330 Chapter 10 n Topics to Pursue from Here

one node in a graph. The lines connecting the nodes, called edges of the graph,

have costs associated with them. A roadmap showing only the distance between

cities is a familiar example of this kind of graph; the roads are drawn as simple

straight lines, and the cities are drawn as circles. Our discrete computer-game

world can be modeled as a graph like this. Outside of navigation, our game may

have a very finely detailed and continuous definition, but for navigation purposes

there are powerful motivations for minimizing the number of nodes in the graph.

A* is going to search for a path through the nodes, and having fewer nodes yields

a faster search.

As long as certain givens remain true, A* will produce the lowest-cost path

between the two nodes if any legal path exists. So what are the certain givens

about A* that need to remain true? The big one is the heuristic upon which A*

depends. A* uses a heuristic to make decisions using imperfect data. Perfect data

would be expensive to compute, and much of it would be thrown away. The

heuristic in A* tells the algorithm that from any point in the graph, the distance

to the goal is at least a certain amount. Of the two core concepts in A*, this is

the estimate part. For driving on roads, a good heuristic is the direct straight-line

overland distance to the goal.

There are twomajor requirements for a good heuristic. The first is that it needs to

be admissible, and the second is that it needs to be as close as possible to the

actual distance. An admissible heuristic is one that is never larger than the actual

distance.

As an example, imagine that our heuristic was the direct straight-line overland

distance. Because driving is restricted to roads, the actual path will generally be

longer than the heuristic. But we know that the actual path is rarely shorter

(a tunnel through a mountain could be shorter than the direct path over the

mountain). If we have no tunnels, the heuristic is admissible; if we have tunnels,

the heuristic is inadmissible.

It should be easy to get a heuristic that never overestimates the actual distance

between two nodes, but we also want it to be as large as possible without going

over.Wewill see the importance of this whenwe get to some examples. If the roads

are all set on hillsides, none of themwill ever be anywhere near as short as a straight

line, so we should adjust the heuristic to something larger than the direct distance.

Both parts of a good heuristic have a profound impact on the performance of A*.

We can use Figure 10.1 to walk through an example of how A* works.

A* Path Finding 331

An A* Example

On some major rivers such as the Rhine, there are few bridges and many ferry

stops. Let us consider a journey from C to X in Figure 10.1. Presume that all the

towns are regularly spaced to make the math simpler. It takes only four minutes

to drive on the roads between two neighboring towns, but using the ferry takes

20 minutes. If you could drive it, B and X would be 5.66 minutes apart, taking the

diagonal into account.

A* starts at the beginning and evaluates the nodes around it. So if the trip is from

C to X, the algorithm starts with C, which has neighbors B and Z. Because we

start at node C, the cost to get there is 0. In A* terms, this is g, the known lowest

cost to get to a node. This is the first of the core concepts of A*: knowing the

actual cost to get someplace. The cost to get to B is 4. Because the bridge and the

road are equally fast, the cost g to get to Z is also 4.

Is it faster to take B or Z to get to X? We do not know, but we can use a heuristic

to make a guess. In A* terms, the heuristic is h, the estimated cost to the goal. For

this example we will use straight-line driving time, which is directly proportional

to distance, as our heuristic. Obviously we cannot use the actual driving time; if

we do not yet know what the shortest path is, how can we know how long it will

take to drive?

The heuristic h tells us that Z is 8 minutes away from X, and using a direct

diagonal path, B is 5.66 minutes away from X. Our heuristic is reasonable, but it

does mislead us from time to time. No actual cost is lower than our heuristic, a

required given if the algorithm is to function optimally. A* uses the sum of the

Figure 10.1
Transportation graph between river towns.

332 Chapter 10 n Topics to Pursue from Here

known cost and the estimate of the remaining cost supplied by the heuristic to

give f = (g þ h), the ‘‘fitness’’ of the node in A* terms. The fitness is used to

decide what node to pursue next. This is where the best-first part of the algorithm

comes into play; fitness tells us the best node to examine next. Let us examine the

values we have so far.

We started with node C, but because it is not the goal and we have added all its

neighbors to the list of nodes to examine, we are done with C. After we dealt with

node C, we had B and Z to pick from.

Node B: f = g þ h = 4 þ 5.66 = 9.66

Node Z: f = g þ h = 4 þ 8 = 12

At this point, we can offer some commentary on our heuristic. At node B, we

estimated 5.66 as the cost to X. The actual value using the ferry is 24. Even if there

had been a bridge instead of the ferry, the actual would have been 8. This amount

of underestimation is making B look more enticing than it is. We will waste time

exploring from B before we decide to abandon it and go through Z.

If we know that our nodes exhibit a regular grid pattern and lack diagonals, we

can use the ‘‘Manhattan distance’’ as our heuristic. Instead of using Pythagoras’

theorem to compute the hypotenuse of a right triangle from the lengths of the

sides, we simply add the lengths. On the streets of a city with a grid pattern of

streets, this is the distance that will be covered to get from one place to another.

In our example, usingManhattan distance makes the estimate for node B equal 8.

A larger but admissible estimate makes us more likely to abandon suboptimal

nodes earlier, and that is a serious performance gain. In this case, it puts node B

and Z on equal footing. Tuning the heuristic to the particulars of the application

is an important optimization. Let us return to the algorithm using our original

heuristic.

Node B is more promising at this stage, so it will be examined first. We will keep

Z around in case B does not work out. Node B is not our destination, so we have

to add its neighbors (in this case, just node A) to the list of nodes to examine. We

do not add nodes we have already visited, such as node C; driving in circles never

makes a path shorter. Getting to node A adds 4 to the known cost to the goal, g,

and the estimated cost (h) to get from node A to node X is 4 (because that is the

straight-line distance to cross the river).

Node A: f = g þ h = 8 þ 4 = 12

A* Path Finding 333

With that, we are done with node B. Nodes A and Z have the same estimated cost,

so we could investigate either one next. Since it doesn’t matter which we choose,

let’s look at node A next. The only new neighbor to add to our list is node X.

Getting from node A to node X costs 20 (since we have to take the ferry), so we

add that to 8, the known cost for node A, giving us a g of 28. Since node X is the

goal, h is zero.

Node X (via A): f = g þ h = 28 þ 0 = 28

When we compare the 28 to the values we have, we find that we have paths with a

potentially lower cost. Node Z is claiming 12 for its estimated total cost. As long

as that path can stay under 28, we will continue pursuing it. Going from Z to Y

adds 4 to g, the known cost thus far to the goal.

Node Y: f = g þ h = 8 þ 4 = 12

That finishes node Z. The path using node Y is still below our 28, so we continue.

Going on to X from Y adds 4 to g, the known cost thus far to the goal. Since X is

the goal, we have the following:

Node X (via Y): f = g þ h = 12 þ 0 = 12

There are no paths left that might come in lower, so we have the shortest path. By

using best-first, A* can still pursue blind alleys, but it abandons them as soon as

their cost rises above alternatives. It does not foresee obstacles, but it will avoid

them as they appear.

Details in the Lists

Implementing A* is harder than understanding how it works. The details in this

section will be of particular interest to those readers who will need to implement

their own A*. We will go over the lists used to make A* work, and we will

comment on how admissibility of the heuristic has a performance impact.

We keep two lists in A*: the open list and the closed list. The open list holds nodes

that might need further examination. We need to be able to easily find the node

with the best fitness from the open list because that is always the next node to

examine. To hold nodes that are no longer on the open list, we have the closed

list. Once we have put the neighbors of a node on the open list, we can take that

node off the open list and put it on the closed list. The two lists make things easier

to juggle.

334 Chapter 10 n Topics to Pursue from Here

To start with, we added C to the open list. Each step involves removing the fittest

node from the open list and checking its children to see if they get updated and

belong on the open list. In the evaluation of node C, we removed C from the open

list after we added nodes B and Z to the open list and updated their values. B and

Z had not been looked at before, so their values were set, and they went onto the

open list. New nodes always go on the open list. Neighboring nodes already on

the open list will have their numbers updated only if the new numbers are better.

Neighboring nodes on the closed list go back on the open list only if their

numbers improve, but this will never happen if the heuristic is good, and the cost

always increases with additional steps. Since most applications have the cost

increase with each step, the only concern is with the heuristic.

For simplicity, we did not show in the discussion the fact that when we evaluated

node B, the algorithm considered going back to node C since node C is a

neighbor of node B. Node Cwas given a 0 value for gwhen we started. A path that

goes from node C to node B back to node C will want to give C a g value of 8,

which is worse than what is already there. For path finding related to travel in

time or space, the costs always increase, so looping paths will automatically be

worse than non-looping paths. C is a neighbor of B, but C will not go back onto

the open list unless it can do so with better numbers than it already has. This

never happens in our example because cost is monotonic (taking another step

can only increase cost) and our heuristic is admissible. Because it never happens,

we can safely ignore any neighbor that has made it to the closed list. Real

implementations of A* would not have computed the cost of going to node C;

instead they would first see if node C was on the closed list, and if it was they

would ignore node C.

Being able to ignore nodes on the closed list is a huge performance win! Once again,

this optimization is made possible by having an admissible heuristic and

monotonically increasing cost. Monotonically increasing cost is usually a given,

but admissibility of the heuristic is a design decision.

If the estimate provided by the heuristic is sometimes higher than the actual cost,

not only do we no longer have a guarantee that the path we get will be the shortest

one, but we may also find that we need to move nodes that are on the closed list

back to the open list in pursuit of the shortest path. It is extremely unlikely that

any real implementation of A* will ever allow backtracking by reexamining nodes

on the closed list.

A* Path Finding 335

Let us change our example to see what happens if the heuristic is not always

admissible and we still want the shortest path. We will have to take some liberties

with the graph to make this happen, yielding the revised graph shown in

Figure 10.2. In order to shorten travel times, the cities at node A and node X have

commissioned a catapult service to fling travelers across the river extremely

quickly. This makes our heuristic inadmissible. The move to catapult service was

sparked by heavy rains that forced the cancellation of the ferry service and caused

major damage to the road between node B and node C. The roads to and from

node X also suffered some minor damage.

We wish that the code should not need to touch any node that it has already

touched, but the combination of an inadmissible heuristic and the desire for the

shortest path means we need to handle paths that split and then merge differently

than before. If a second path makes it to a merge point—a node we have already

touched—with a lower g value than what the merge point already has, then the

first path through the merge point is not the optimal path, and the merge

point goes back onto the open list with new values for g and f. This is the case in

Figure 10.2.

Again, we start at C. Our final goal is node W instead of node X. Node X is the

merge point. The numbers for the nodes are shown in the figure. Node C goes on

the open list first. Being the only node there, its neighbors, B and Z, which are not

on any list, go on the open list, and C goes on the closed list. We examine the

open list for the most promising node.

Figure 10.2
A somewhat more varied transportation graph between river towns.

336 Chapter 10 n Topics to Pursue from Here

Z at 16 beats B at 16.9, so Z is examined next. Z cannot improve C’s numbers, so

C stays on the closed list. Z puts Y on the open list with B because Y is a new node.

We are done with Z, so it joins C on the closed list. Again, we examine the open

list for the most promising node.

Y at 16 also beats B at 16.9, so we examine Y. Y cannot improve on Z’s numbers,

so Z stays on the closed list. X is new, so it goes on the open list. Y is done, so Y

joins Z and C on the closed list.

From the open list, B at 16.9 beats X at 17, so we examine B next. B cannot

improve C’s numbers, so C stays on the closed list. A is new, so B adds A to the

open list with X. B gets put on the closed list with C, Z, and Y.

On the open list, X at 17 beats A at 17.7, so we examine X next. X cannot improve

Y’s numbers, so Y stays on the closed list. X cannot improve A’s numbers, so X

does not update A on the open list. W is new, so X puts W on the open list.

X joins Y, Z, C, and B on the closed list.

On the open list, A at 17.7 beats W at 18, so A is examined next. Here is where we

will encounter the effects of an inadmissible heuristic. The catapult method of

crossing the river is far faster than the heuristic expects anyone to ever go. This is

where the heuristic gives an inadmissible estimate of the cost. Node A cannot

improve B’s numbers, so B stays on the closed list. Node A can improve X’s

numbers, so X is updated and moved from the closed list back to the open list to

join W.

An A* implementation that has the normal optimization of ignoring nodes on

the closed list would not have touched X again. Nor would it have taken the effort

to see if it could improve the numbers of any node on the closed list as we did in

the preceding paragraphs. Node A goes onto the closed list with B, C, Y, and Z.

The open list is again checked. X at 16.5 beats the existing W at 18, so X is given

another chance. X cannot improve A or Y, so they remain on the closed list. X can

improve W on the open list, so W goes from 18 to 17.5. X goes to the closed list

with all the other nodes except W. Since the goal node has the best score on the

open list, it is used as it is.

This example shows that the world does not end if the heuristic is sometimes

inadmissible. It can have easily happened that with an inadmissible heuristic, A*

will not find the shortest path, regardless of whether it reexamines nodes on the

closed list or not (see Exercise 2 at the end of this chapter). This is the penalty for

A* Path Finding 337

using an inadmissible heuristic. But if catapults are rare and roads are the norm,

we might stay with our inadmissible heuristic. We do this because it is more

aggressive about discarding paths early, and that is a performance win. The effect

in our example would be that sometimes, the pathfinder neglects to exploit

catapults when they are off the beaten path. In our example, the catapult is

8 times faster than the heuristic. If we tune for catapults instead of roads, we have

to expand our searching by a factor of 8 to get to the point where we say, ‘‘Even a

catapult won’t help you when you are this far away,’’ and that could be a lot of

useless searching.

Since reexamining nodes on the closed list does not guarantee getting the shortest

path when the heuristic is inadmissible, and reexamining nodes on the closed list

is pointless when the heuristic is admissible, the case for reexamining nodes on

the closed list is too weak to justify.

Besides holding the f, g, and h numbers, each node also tracks what node came

before it in the path. When our code reached X via A, X would store A. When a

node is placed on the open list for the first time or updated with better numbers,

the node is also updated with the new predecessor in the path.When our example

reached X via Y, it updated the costs and also overwrote the stored A with Y. This

way, when A* completes, the nodes have stored the best path.

Caveats

A* is popular because it usually performs well and gives optimal results. Per-

forming well does not make it free, however; A* can be costly to run. When no

path exists, A* exhibits maximum cost as it is forced to explore every node in the

graph. If the usual case is that paths usually exist and obstacles are localized, then

dealing with the difference in performance between the usual case and the worst

case presents a difficult engineering challenge.

A* also depends heavily on the concept of ‘‘here’’ in the graph. The world may be

represented at a low level by a mesh of tiny triangles that can be fed to the

graphics engine, but that mesh makes for expensive path finding. A room may

have a large number of triangles that make up the floor, but for navigation

purposes it can be reduced to a single ‘‘here’’ or a small number of ‘‘heres.’’ To

help with path finding, many games have a coarse navigation mesh with far fewer

nodes than the graphics mesh. The navigation mesh makes the global pathfinder

run quickly by greatly reducing the number of nodes. The nodes in the navi-

gation mesh can be forced to have nice properties that make them easier to deal

338 Chapter 10 n Topics to Pursue from Here

with, such as being convex. Path finding within a node in the navigation mesh is

done locally, and simple methods often suffice; if the node is convex, then a

straight line is all that is required.

An issue with any pathfinder is that long paths are fragile paths. Bridges get

blown up, freeways are subject to being closed by accidents, and fly-over rights

can be denied after a flight takes off. Before blindly using A* and expecting all

paths to work, you should investigate the methods that are being used to deal

with path problems.

Before the novice AI programmer rejoices that path finding is solved, he or she

needs to consider the needs of the virtual world. A* will rightly determine that

using roads and bridges is better than taking cross-country treks and fording

streams. What A* does not do is traffic control. Unexpected traffic jams on

popular routes and near choke points are realistic, but so are traffic cops. The

game’s AI might be smart enough to prevent gridlock, but the planning code still

has a problem. The planning code has to factor in the effects of the very traffic the

planning code is dispatching. If the planning code places a farm tractor, a truck

carrying troops, and a motorcycle dispatch rider on the same narrow path in that

order, the whole convoy is slowed to the speed of the tractor. A* told the planner

that the dispatch rider will get to its destination in far less time than will actually

happen. A* told the planner that the troops will get there on time as well. Even

worse is the case when opposing traffic is dispatched to both sides of a one-lane

bridge. A* by itself may not be enough.

Machine Learning
Machine learning has been ‘‘the next big thing’’ in game AI for many years. The

methods have been described as elegant algorithms searching for a problem to

solve. The algorithms have been put to good use in other areas of computer

science, but they have gained very little traction in game AI. People have been

looking for ways of getting around the limits of machine learning in games for

some time now [Kirby04].

Realizing the potential of machine learning is difficult. There are many kinds of

machine learning. Two of them are popular discussion topics: neural networks

and genetic algorithms. Neural networks appear to be very enticing, particularly

to novice game AI programmers. They have been a popular topic for over a

decade in the AI roundtables at the Game Developers Conference. The topic is

Machine Learning 339

usually raised by those with the least industry experience and quickly put to rest

by those with many years of experience. The conventional wisdom is that neural

networks are not used in commercial games. By contrast, genetic algorithms have

gained a very modest toe-hold into game AI, but not in the manner that you

might first expect, as we shall see. A major goal of this section is to give beginning

AI programmers sufficient knowledge and willpower to enable them to resist

using either method lightly.

Before considering the different machine-learning algorithms, it is worthwhile to

consider how they will be used. The first big question to ask of any proposed

game feature is, ‘‘Does it make the game more fun?’’ If cool techniques do not

translate into improved player experience, they do not belong in the game.

The next big question to answer is, ‘‘Will it learn after it leaves the studio?’’ For

most machine learning used in games, the answer is a resounding ‘‘No!’’ Quality-

assurance organizations do not want support calls demanding to know why the

AI suddenly started cheating or why it suddenly went stupid. In the first case, the

AI learned how to defeat the player easily; in the second case, the AI learned

something terribly wrong. Most ordinary car drivers are happy with the factory

tuning of their real-world automobiles, and most players are fine with carefully

tuned AI. That being said, the answer is not always ‘‘No’’; Black & White is an

early example of a game that turned machine learning in the field into a gameplay

virtue.

Learning algorithms are susceptible to learning the wrong thing from outlier

examples, and people are prone to the samemistake. Black &White learned in the

field, and learning supported a core gameplay mechanic. One of the main fea-

tures of the game was teaching your creature. If teaching is part of the gameplay,

then learning is obviously an appropriate algorithm to support the gameplay.

Howmany games can be classified as teaching games? Most games do not employ

teaching in their gameplay, and most of those same games have no need of

learning algorithms. There may be other gameplay mechanics besides teaching

that are a good fit for machine learning in the field, but it will take an innovative

game designer backed by a good development team to prove it.

The final question always to ask is, ‘‘Is this the right tool for this job?’’ For neural

networks in game AI, the answer is usually an emphatic ‘‘No.’’ In some cases

involving genetic algorithms, the answer will be a resounding ‘‘Yes.’’ One of the

clarifying questions to ask is, ‘‘Is it better to teach this than it is to program it?’’

340 Chapter 10 n Topics to Pursue from Here

Of course, ‘‘better’’ can have many different interpretations: easier to program,

produces a better result, can be done faster, etc.

Training

The trick with teaching—or training, as it often is called—is to make sure that

the right things are taught. This is not always a given. A system trained to

distinguish men from women at first had trouble with long-haired male rock

stars. Another image-analysis system learned to distinguish the photographic

qualities of the training data instead of differences in the subjects of the pho-

tographs. The system is only as good as the training data; it will faithfully reflect

any biases in the training data. Lionhead Studios improved the user interface to

the learning system in Black & White II to make it explicitly clear to players

exactly what feedback they were about to give their creature, solving a major

source of frustration with the original game.

The most straightforward way to ensure that learning has taken place is to

administer a test with problems that the student has never seen before. This is

called an independent test set. A system that is tested using the same data that

trained it is subject to memorizing the problems instead of working out the

solutions. Just as other software is tested, learning systems need test data that

covers a broad range of the typical cases, as well as the borderlines and outliers.

The system is proven to work only in the areas that the test set covers. If the

system will never encounter a situation outside of the training set, the demand

for an independent test set is relaxed.

Hidden in this coverage of training is a fact that needs to be made explicit: We are

talking about two different kinds of training. The two methods of training are

supervised training and reinforcement training. In supervised training, the

learning algorithm is presented with an input situation and the desired outputs.

The image-analysis system designed to identify men versus women mentioned

earlier was taught this way. The system trained against a set of pictures of people,

where each picture was already marked as male or female. Supervised training

happens before the system is used and not when the system is in use. If there is a

knowledgeable supervisor available at run-time, there is no need for the learning

system to begin with. The success of supervised training in learning algorithms

outside of the game industry has not been echoed within the game industry.

Unless otherwise noted, supervised learning is the default when discussing

learning algorithms.

Machine Learning 341

Reinforcement learning, by contrast, emphasizes learning by interacting with the

environment. The system starts with some basic knowledge and the need to

maximize a reward of some kind. In operation, the system must balance between

exploitation and exploration. At any given point in time, the system might pick

the action it thinks is best, exploiting the knowledge it already has. Or it can pick

a different action to better explore the possibilities. Reinforcement learning uses

exploration to improve future decision making by making changes to the basic

knowledge the system starts with.

A good introduction to reinforcement learning is given in the first chapter of

[Sutton98], which is available in its entirety online. Advanced readers will want

to study the method of temporal differences (TD); TD(l) is of particular interest.

Reinforcement learning has produced a few notable success stories; in com-

mercial video games, Black & White used reinforcement learning. TD-Gammon

began as a research project at IBM’s Watson Research Center using TD(l). It

plays backgammon at slightly below the skill level of the top human players, and

some of its plays have proven superior to the prior conventional wisdom

[Tesauro95]. Reinforcement learning creeps into games in small ways as well

[Dill10].

Why Don’t These Methods Get Used in Games?

Many experienced game AI programmers attribute characteristics of undead

vampires to neural networks and genetic algorithms; they are enticing, parti-

cularly to the naı̈ve. They keep returning, at least as a topic of conversation,

despite heroic efforts to lay them to rest. They cannot be trusted to do what you

want them to do, and it takes arcane knowledge and skills to get them to do

anything at all. At the end of the project, there is great fear that they will turn to

dust should the game ever see the light of day. All kidding aside, what are the real

reasons?

There are three basic concerns: control over the AI, lack of past history of

achieving a successful AI with these methods in games, and control over the

project.

Many game designers demand arbitrary control over what the game AI does. The

smarter the AI gets, the more it wants to think for itself. In and of itself, that is not

a problem; the problem comes when a designer wants to override the AI, usually

for dramatic impact or playability reasons. As we shall see, neural networks

effectively are a black box. They might as well carry the standard warning label,

342 Chapter 10 n Topics to Pursue from Here

‘‘No user-serviceable parts inside.’’ You can train them (repeatedly if necessary),

you can use them, and you can throw them away. For all of the other methods

that we have covered in prior chapters, there are places where the AI programmer

can intervene. Places where numbers can be altered or scripts can be injected

abound in those methods, but not inside these black boxes. They have to be

trained to do everything expected of them, and that is often no small task.

Supervised training is notorious for its need of computational resources. In

addition, every tweak to the desired outputs is essentially a ‘‘do-over’’ in terms of

training. The combination of these two issues is a rather non-agile development

cycle. My non-game industry experience with supervised training could be

summarized as, ‘‘Push the Start Learning button on Monday; come back on

Friday to test the results.’’ When a game designer says, ‘‘Make it do this!’’ the AI

programmer starts the entire learning process over from scratch. Worse, there is

no guarantee that the system will learn the desired behavior. Nor is there any

guarantee that old behaviors will not degrade when the system is taught new ones.

Effectively training a learning system is a black art, and expertise comes mainly

through experience. Getting the desired outputs is not always intuitive or

obvious. This lack of surety makes the methods a technical risk.

Just as building a learning system is an acquired skill, so is testing one. The

learning systems I built were never released for general availability until after they

had successfully passed a field trial in the real world. Learning systems in games

need their own particular test regimes [Barnes02]. The task is not insurmoun-

table, but it does create project schedule risks—the test team has to learn how to

do something new.

The issue of completeness also crops up. A neural network operates as an inte-

grated whole. All of the inputs and desired outputs need to be present to conduct

the final training. So the AI cannot be incrementally developed in parallel with

everything else. Prior versions may not work in the final game. From a project-

management perspective, this is usually unacceptable; it pushes a risky tech-

nology out to the end of a project, when there is no time left to develop an

alternative if learning does not work out. Good project management calls for

mitigating risks as early as possible.

Neural Networks

Neural networks loosely mimic the structure of the human brain. As shown in

Figure 10.3, a typical network has three layers: the input layer, a hidden layer, and

Machine Learning 343

an output layer. The hidden layer helps provide a way to create associations

among multiple inputs and multiple outputs. Key to exploiting neural networks

is knowing that they are classifiers and that they need the right inputs.

Classifiers

Neural networks are classifiers. They take inputs and render an opinion on what

they are. As a learning algorithm, they infer relationships instead of requiring the

relationships to be explicitly programmed in. This is critical to understanding the

utility of the method. When you know the relationships among the inputs, you

can get exactly what you want by directly programming them. When you do not,

or when they tend to defy an exact definition, it may be easier and more accurate

for the network to infer, or learn the relationship.

At this point, we know enough to ask the final question we should always ask, ‘‘Is

this the right tool for the job?’’ If the job of our AI is to classify the situation

before it, we might still be okay. However, the job of most game AI is to answer

the question, ‘‘What should I do?’’ It is not always obvious that the answer to

‘‘What is the situation?’’ that we get from a classifier will directly yield the answer

to ‘‘What should I do?’’ that the AI needs to provide.

The neural network show in Figure 10.3 could be used to determine the best next

state in the FSM from Chapter 3, ‘‘Finite State Machines (FSMs).’’ The network

classifies the world by indicating the next state that is the best fit to the conditions

at hand. Using a neural network for this simple example is total overkill, but

Figure 10.3
A neural network for determining monster state.

344 Chapter 10 n Topics to Pursue from Here

recall our discussion of complexity in an FSM. The complexity of the transition

rules can be the downfall of an FSM that has a manageable number of states.

Using a neural network frees programmers from the task of programming the

transition rules, provided they can teach the network instead.

An advantage of using a neural net to classify is that the outputs are not fixed to

binary values. In our existing monster FSM AI, when the monster is attacking or

fleeing, it has nomiddle ground in which it is considering both. A neural network

can be trained to consider two or more different alternatives. If the training data

did not have a sharp cutoff between attacking and fleeing, the neural network will

reflect that for those inputs that had more than one different valid output. The

training data would indicate that sometimes the monster flees players when hit

points are at a given level, and sometimes it continues an attack. The FSM code

that disambiguates multiple possible next states can weigh the options presented

by the outputs. If the highest output is always used, the behavior will be the same

as before. If a weighted random selection is used, the behavior will more closely

match the proportions in the training data.

Using a different example, the output of a neural network trained to recognize

letters might show strong outputs for Q, G, O, and C when presented with a Q to

recognize. If the network did not have a strong preference, the next character

might be used to assist in the decision. In English, Q is almost always followed by

U or u. Having weighted outputs instead of binary outputs coming from the

neural network allows the overall system greater leeway in making decisions. This

is true of other methods as well.

Classifiers such as recognition systems are oracles. When asked a question—any

question—they give an answer. On the surface this capability seems impressive,

but it is also true of the Magic 8-Ball toy. If you feed text that uses the Greek or

Cyrillic alphabet to a recognizer trained on the Roman characters present in

English, the recognizer will output what it thinks are English characters. It would

make the same attempt when fed Hebrew or Hiragana characters or even Kanji

symbols and random applications of the spray-paint tool on a bitmap. One of the

more important design decisions to make with such a system is what to do when

presented with inputs that have no particular correct response. Such inputs are

commonly called garbage, but they include ambiguous input as well.

There are two ways to approach this problem. The simplest is to demand, ‘‘Give

me an answer, even if it’s wrong.’’ In this case, the system is trained with the

broadest array of data available and sent into battle. The alternative is to design a

Machine Learning 345

system that has an ‘‘I don’t think so’’ output. In these systems, the training data

includes properly marked garbage. Good garbage for training can be hard to find,

and tuning systems that have a garbage output can be a black art. The question

for the designer is to ponder the difference between an AI that is resolute, if

occasionally stupid, compared with one that sometimes does not know what to

do. If the designer says, ‘‘All the choices are always good, just sometimes some are

better than others,’’ then the resolute system is fine. On the other hand, if there is

a good default behavior available to the AI, especially when some of the outputs

could be badly inappropriate, then it may be worth the effort to implement a

garbage output. Whether it is programmed to recognize garbage or not, a clas-

sifier should always be tested with data that has no right answer.

Input Features

Getting the inputs right can make or break a neural network. The inputs are

collectively known as the features presented to the network. We could have pre-

processed two of the inputs, hit points and max hit points, and used the ratio as a

single input instead. In our particular case, a properly engineered network will

infer the relationship, but this is not always a given.

Consider a monster that is in combat with a powerful foe. The monster is losing

hit points in large chunks. The monster will go from the attacking state to dead

without ever having a chance to flee. Our current set of features is not sufficient.

If we add rate of change of hit points as an input feature, our monster can act

more intelligently. It can know that it can stay in combat longer against a weak

foe, even if the monster is hurting. And it will know to flee early if it is being

hammered by a potent foe.

Getting the features right is critical if the network needs to deal with time-varying

data. The rate of change in a value (the first derivative, in mathematical terms)

can be very useful, as we saw in the monster-hit-points example. The rate of

change of a first derivative (the second derivative of the value) can be useful as

well. When the steering wheel of a car is turned, the car begins to deviate from a

straight course and to rotate. The change rate of the vehicle’s heading (the first

derivative) gives a sense of how fast the vehicle is getting around the corner. The

second derivative, combined with other data (notably the position of the steering

wheel and its first derivative), tells the driver if he or she has exceeded the

available traction and is beginning to spin out. The increasing rate of heading

change, easily noticed when the second derivative is positive, means that the car is

346 Chapter 10 n Topics to Pursue from Here

not only cornering, but spinning as well. Stable cornering has a constant rate of

change in heading and therefore a zero second derivative (the rate of change of a

constant is zero). The amount of counter-steering required to catch the spin

depends on how bad the spin is; the second derivative is a very useful number.

Going the other way and summing data over time may also have merit. If the

monster is tracking the cumulative number of points of damage it is dealing out

to a foe, the monster may have a good idea of how soon it will vanquish a foe

without resorting to cheating and looking at the foe’s actual hit points. The

monster is guessing at the number of hit points the foe started with, but it will

know the cumulative number of hit points that the foe has lost. The cumulative

sum is the first integral of damage delivered. The monster may want to decide to

stay in a difficult combat because it thinks it can finish off a potent foe before the

foe can return the favor. A single value for damage delivered does not tell enough

of the story to be useful. Time-varying data typically needs special handling to

create effective features to input to a neural network.

As mentioned earlier, using a neural network in place of our familiar monster

FSM is total overkill. It is used as a familiar example only. There are better ways

than neural networks to do everything we have illustrated so far.

Genetic Algorithms

Genetic algorithms are rarely if ever used for game AI. Instead they are sometimes

used for tuning variables in games. Motorsports provide us with a good example

[Biasillo02]. A mechanic setting up a car manages many tunable parameters to

obtain optimum performance on any particular track. There are the camber,

caster, and toe angles to be adjusted when doing a basic wheel alignment. There is

the braking proportion between front and rear tires—a setting more easily

understood if you consider the rear braking needs of an empty pickup truck

compared to a fully loaded one. An empty pickup truck needs minimal rear

braking force because the lightly loaded rear tires provide minimal traction. A

heavily loaded truck benefits from having a great deal of rear braking force to

exploit the greater traction available. This is only a partial list of tuning para-

meters; as you might expect, there can be interactions between variables.

Genetic algorithms can help us in our search for the optimal settings. Genetic

algorithms roughly mimic biological evolution. We start with a population that

has different characteristics. Some are more fit than others. Cross-breeding and

mutation yield new members with different characteristics. Some of these will

Machine Learning 347

hopefully be more fit than any of their parents. The best are emphasized for

further improvement, possibly along with a small number of less-fit individuals

in order to keep the diversity of the population high. The best need not be

restricted to children of the current generation; it could include members from

older generations as well. We continue until we have a good reason to stop. Let us

expand on the concepts of this paragraph in detail.

In programming terms, our variables to tune are the characteristics of our

individuals. Each of the angles used in wheel alignment is a characteristic. The

braking proportion is another. For production vehicles, you might think that

these values have already been optimized by the factory, but the factory settings

may degrade lap times to decrease tire wear or increase stability. Even relatively

uncompromising road-legal sports cars such as the Lotus Elise are specified for

road use and need to be tuned for optimal track handling; specialized vehicles

also offer room for improvement on the track.

Selection requires a way to tell which individual is more fit than another. At first

blush, we can pick lap time as the fitness function. Why would lap time not be the

best fitness function?Most races runmore than one lap. One of the compromises

in street specifications for wheel alignment is a trade-off between handling and

tire wear. Do racers care about tire wear? Racers care about the lowest total time

to complete the race (or the farthest distance traveled in a given time period in

endurance racing). There is more to it than stringing together a sequence of fast

laps. Time spent changing tires might or might not have an impact. Autocross

racers have trouble keeping their tires warm between runs and might not wear

out a fresh set of tires in an entire day’s competition. Things are very different in

NASCAR, especially at tire-hungry tracks such as Talladega. The point is that

great care must be taken in selecting a fitness function for a genetic algorithm, or

your system will tune for the wrong situation. In motorsports games, as in real

life, vehicles are often tuned to individual tracks.

Hidden in the selection criteria is the cost of the fitness function. In our

motorsports case, we have to simulate a lap or possibly an entire race with each

member of the new population that we want to evaluate. In our case, not only do

we have to run a simulated race, but we need a good driver AI. We are going to

optimize the car not only for a particular track but also for a particular driver.

The cost to mix and match characteristics is typically quite modest when com-

pared to the cost to evaluate them. Not only do we have to select for the right

thing, but the very act of measuring for selection must have a reasonable cost.

348 Chapter 10 n Topics to Pursue from Here

Crossbreeding in a genetic algorithm involves how we select which parent pro-

vides each characteristic of the child. There are a number ways to make the

selection, but it is worth emphasizing that the process is selection, not averaging.

The child car will not have the toe angle set to the average of the two parents; it

will get the exact toe angle value from one of them.

Mutation calls for changing a value in a child randomly to something other than

the two values present in the parents. At first glance, it may seem that if the

starting population is diverse enough, there is no need for mutation. However,

the selection process will tend to suppress diversity as it emphasizes fit indivi-

duals who are likely to resemble each other. Diversity is required to keep the

algorithm from falsely converging early on a sub-optimal solution.

If we are to keep our population from growing without bound, we need to figure

out which individuals are not going to make it to the next run. An obvious

method is to replace the worst individuals. Another method would be to replace

the members who score closest to the new individuals. Doing selection this way

also helps keep a diverse population.

There are many reasons for stopping the algorithm. If the new generations have

stopped improving, then perhaps the optimal population has been found, and

there is no reason to continue. If the latest generation has individuals that are

‘‘good enough,’’ then it may be time to go on to other things. If each generation

takes a large amount of computation, time will be a limiting factor. And finally, if

the original population contains individuals thought to be optimal, a few gen-

erations may be all that is needed to confirm their status.

Genetic algorithms are good at getting close to an optimal solution, but they can

be very slow to converge on the most optimal solution. If the problem can be

expressed in terms of genes and fitness, the algorithm gives us a way to search

arbitrarily complex spaces. It does not need heuristics to guide it or any expertise

in the area searched. Our search speed will depend heavily on how expensive our

fitness function is to run.

Behavior Trees
Behavior trees made it on to the industry’s radar in a big way with Damian Isla’s

paper at the 2005 Game Developers Conference [Isla 2005]. The paper was about

managing complexity in the AI. Behavior trees bring welcome relief to that

problem area without introducing any new major problems of their own.

Behavior Trees 349

One of the drawbacks of an FSM is that the number of possible transitions

between states grows with the square of the number of states. An FSM with a

large-but-manageable number of states may find itself with an unmanageable

number of transitions. In Chapter 3, we brushed on hierarchical state machines

as a way to control state explosion, with the idea that two-level machines often

suffice. If we emphasize the hierarchy more than the state machines, we wind up

with something like behavior trees. Behavior trees attempt to capture the clarity

of FSMs while reducing their complexity. Behavior trees have been used effec-

tively in some very popular games. Figure 10.4 shows a subset of the behavior tree

for Halo 2, and Figure 10.5 shows a subset of the behavior tree used in Spore.

There are a few important observations to make about the trees. The first

observation is that the number of levels in the tree is arbitrary. The second

Figure 10.4
A subset of the behavior tree used in Halo 2.

(I
m
a
g
e
co
u
rt
e
sy

o
f
D
a
m
ia
n
Is
la
.)

350 Chapter 10 n Topics to Pursue from Here

observation is that the tree is not a proper tree in that children can have more

than one parent. The careful eye will note that Grenade appears in many places in

theHalo 2 tree. REST and FIGHT appear more than once in the Spore tree. These

are not different behaviors with the same name; they are the same behaviors with

multiple parents in the tree. The third and less obvious observation is that there

are no loops in the trees. A final observation is that these diagrams are far easier

to understand than an equivalent single-level FSM diagram would be. Behavior

trees attempt to keep the best parts of an FSM while managing their drawbacks.

We will look at how behavior trees work by looking at the two ways we can

evaluate them: top-down and bottom-up.

Top-Down Evaluation

So how do behavior trees work? The Spore behavior tree in Figure 10.5 is marked

with asterisks to denote the current state of the AI, which is EAT_FOOD. Each

time the AI is asked to think, it starts at the top of the tree and checks that the

current decision is still a good one. A common arrangement for the items at any

level is a prioritized list. Note that IDLE is listed last on both diagrams. All the

ways of disambiguating states can come into play here. All the states have a

decider that indicates if it wants to activate and possibly how strongly it wants to

activate. So in the Spore case, FLEE, GUARD, and FIGHT can interrupt EAT. If

any of them do want to interrupt, the machine has EAT_FOOD terminate, then

EAT is asked to terminate, and then the new sequence is started. With no

interruptions at the highest level, EAT continues to run. FIND_FOOD has

Figure 10.5
A subset of the behavior tree used in Spore.

(I
m
a
g
e
co
u
rt
e
sy

o
f
C
h
ri
s
H
e
ck
e
r.
)

Behavior Trees 351

priority over EAT_FOOD, so it can interrupt EAT_FOOD if it wants in the next

level down.

Actual implementations of behavior trees include some subtleties. A number of

good ideas from other AI methods find a home in behavior trees as well. The

current behavior gets a boost in priority when it is rechecked against alternatives.

This helps stop the AI from equivocating between two actions. In actual use, the

trees need some help to better deal with events in the world. The sound of a

gunshot is an event; it is highly unlikely that the AI will ever ‘‘hear’’ a gunshot by

examining the current world state. Instead, the event has to be handled imme-

diately or remembered until the next time the AI thinks, and the behavior tree

needs hooks to make that memory happen.

An important subtlety more particular to top-down evaluation in behavior trees

is that a high-level behavior cannot decide that it wants to activate unless it

knows that at least one of its children will also want to activate. In real life, it is

wasted effort to drive into the parking lot of a restaurant if no one in the car

wants to eat there. This requirement needs to hold true all the way down the tree

to the level of at least one usable behavior. The lowest-level items in the tree that

actually do something are the behaviors, and all the things above them are

deciders. Deciders need to be fast because they are checked often. The Spore

diagram only shows deciders. Most of the nodes in the tree we have covered so far

do selection; they pick a single child to run. Nodes can also do sequencing, where

they run each child in turn.

Bottom-Up Evaluation

If there is sufficient CPU available, we can switch from the top-down evaluation

described to a bottom-up evaluation. The top-down method requires the

highest-level deciders to accurately predict whether any of their descendants

wants to activate in the current situation. This capability is critical. Given that

assurance, the tree evaluates very quickly, and top-down evaluation gives better

performance. Bottom-up evaluation starts by having the lowest-level leaves of the

tree, the behaviors, comment on the current situation and feed their opinions up

the tree to the deciders. The deciders no longer have to predict whether one of

their descendant behaviors wants to activate; instead, they are armed with sure

knowledge that includes how much each descendant wants to activate. The

deciders are then left with the task of prioritizing the available options. The

results are fed up the tree to the highest level for final selection.

352 Chapter 10 n Topics to Pursue from Here

What benefit does bottom-up evaluation provide that is worth the performance

hit? Bottom-up offers the possibility of better decision making. In particular,

nuanced and subtle differences in behaviors can be more easily exhibited in a

bottom-up system. The highest-level deciders in a top-down system need to be

simple in order to run quickly and to keep complexities from the lowest levels

from creeping up throughout the tree. The high-level deciders in top-downmake

broad-brush, sweeping, categorical decisions. The tree in Figure 10.5 decides

between flee, guard, fight, eat, or idle at the highest level before it decides how it

will implement the selected category of action. It decides what to do before it

works out how to do it. With a bottom-up system, we can let the question of how

we do something drive the decision whether to do it. Let us consider an example

of how this might work.

In a fantasy setting, an AI character is being driven by the decision tree shown in

Figure 10.6. Decider nodes have italic text, and behavior nodes have bold text.

Extraneous nodes have been left out for clarity. A top-down evaluation decides to

evade at the highest level. The next level down, it has to decide between running

away and hiding. It decides to hide in a nearby building, simplified as the Hide

node in Figure 10.6. The next level down, it decides between picking the lock on

the door, using a spell to unlock the door, or breaking the door down. If the

character has no picks and no spells, the only option is to break the door down.

Unfortunately, breaking the door down will be obvious to any pursuers. It would

be better to keep running away in this case, but the decision between running and

hiding has already been made at a higher level, and hiding is usually better than

running. Hiding would have been the best choice if the character had picks or a

spell.

A bottom-up evaluation takes care of this problem. Both the Pick Lock behavior

and the Cast Unlock Spell behavior return a very strong desire to activate if the

Figure 10.6
A partial decision tree used by a fantasy character.

Behavior Trees 353

character is properly equipped and no desire at all to activate otherwise. The

Break Down Door behavior always returns a weak desire to activate. The Run

Away behavior returns a medium desire to activate. The Hide node will pick the

best of the three methods for opening the door and offer them to the Evade node

in the next level up in the tree. The selected hiding result will be compared to

running away. If the character is properly equipped, hiding will be preferred to

running away. If the character lacks picks or spells, the character runs away.

Looking at all the leaves this way may seem vaguely familiar. Bottom-up eva-

luation in a behavior tree is analogous to a rule-based system with an explicit

hierarchical disambiguation system. The argument for or against bottom-up

evaluation centers on whether or not nuances are lost by making high-level

decisions first. If there are no nuances to lose, top-down evaluation is simple and

fast. If low-level complexities keep creeping into the high-level deciders, the

system is losing the simplicity and possibly the speed that top-down systems are

supposed to deliver. In such a case, the system can be simplified by pushing

the detail back down to the leaves where it belongs and evaluating from the

bottom up.

Advantages

Behavior trees provide two major advantages: They are easy to understand, and

they allow for sophisticated behavior selection. The diagrams shown are easy for

AI programmers to understand, and they are easy for experienced game designers

to understand. This point is critical; if the vision of the designer is to make it into

the AI of the game, the designer needs to understand what the AI will do. Besides

being easy for a designer to understand, the diagrams are straightforward for an

AI programmer to implement. The method is also easy to debug. All these

advantages make for a more productive team, allowing more time to get the AI

right because of the clarity provided.

Where does that clarity come from? The diagram partitions the AI problem,

allowing the team to look at one node (along with its parents and children) and

safely ignore details that are important only to other nodes. FSMs also divide the

AI problem, but behavior trees add their hierarchy as an additional way of

partitioning the problem that FSMs lack. Hierarchical FSMs are a middle ground

between pure FSMs and behavior trees in terms of partitioning. With FSMs, the

mindset at any level is finishing the statement, ‘‘I am. . .’’ yielding a flat diagram.

In contrast, a typical behavior tree works on the idea of ‘‘The big decisions count

354 Chapter 10 n Topics to Pursue from Here

the most,’’ yielding an appropriate number of levels in the diagram. In an FSM,

the partitioning is done once; in a behavior tree, it is done as many times as

needed. Superior partitioning localizes concerns better. Graphically, this can be

seen if the nodes in a behavior tree have few links and the states in an FSM have

many transitions. In addition, behavior trees do not loop.

Like all divide-and-conquer methods, great pains must be taken in the divide. If

the divide is not clean, then the conquer is unlikely to succeed. The divide step is

also a good time to evaluate which method to use. If your tree has minimal levels

and a relatively broad base, an FSM or a hierarchical FSM might be the optimal

solution. If your tree has much depth or is uneven, with broad parts here and

deep parts there, a behavior tree may be best.

Throughout the discussion, we have tied behavior trees to diagrams. Non-

graphical methods of specifying a tree or an FSM may detract from the clarity of

the design, but decisions about what AI algorithm you use should be made

holistically. Tool support may have a strong influence on those decisions; the

Spore developers described their particular way of defining their behavior tree as

‘‘fairly self-documenting’’ while at the same time having ‘‘the side benefit of

compiling extremely rapidly’’ [Hecker07]. Implicit in that statement is the idea

that their design definition was used to generate code, avoiding any disconnect

between the design and the code at the potential price of a design that was harder

for people to deal with.

The sophisticated behavior selection available does a very good job at handling

AI that thinks in terms of ‘‘What should I be doing right now?’’ Whether we

evaluate in the typical top-down or the more expensive bottom-up sequence, we

arrive at a single thing that the AI should be doing. This is predicated on a

fundamental question to ask before considering a behavior tree for your AI: ‘‘Can

I make high-level decisions or categorizations at all?’’ Along with that is the

question of whether doing just one thing is appropriate.

The benefits to behavior trees come from the fact that they control complexity. If

your tree starts with a single root and then explodes immediately into a large

number of leaves, you have lost the simplifying power of the method. Put another

way, you need to ask, ‘‘Can I effectively organize the AI behaviors into a hier-

archy?’’ If there is no benefit to the hierarchy, perhaps another method would be

better. If you cannot because you need to string a bunch of behaviors together, a

planning architecture may be what you need.

Behavior Trees 355

Planning
‘‘Can’t the AI just work out all of the steps it needs to pull this off by itself?’’ is the

essential question that brings us to planning. We got a taste of planning in

Chapter 6, ‘‘Look-Ahead: The First Step of Planning.’’ In general terms, our AI

searched for things to do that would take it to some goal. The preceding sentence

seems pretty innocuous, but if we analyze it in careful detail, we can examine any

planning system.

Note that we used the term search. Recall the astronomical numbers we com-

puted in Chapters 6, ‘‘Look-Ahead: The First Step of Planning,’’ and 7, ‘‘Book of

Moves.’’ Planners do searching as well, so it should come as no surprise that their

computational complexity is a serious issue. Writing a planner is no small task,

either, but their novel capability of sequencing steps together at run-time make

them well worth examining.

You may recall from Chapter 6 that systems that think about the future need a

way to represent knowledge that is independent from the game world. This is

especially true for planning systems. Good knowledge representation needs to be

designed in from the start. The AI is not allowed to change the world merely by

thinking about the world; it can only change the world by acting on the world.

Planning AI emphasizes capability instead of action. The elements in a planning

system are couched in terms of their results on the world instead of the actions

they will perform. Planning elements declare, ‘‘This is what I make happen,’’

instead of emphasizing procedure by saying, ‘‘This is what I do.’’ They are

declarative instead of procedural. The overall system is tasked with meeting goals

instead of performing actions. With planning, the system is given a goal and

given the command, ‘‘Make it so’’ instead of telling all the elements what they are

supposed to do.

Consider a visitor to a large city who is talking with friends, some old and some

recently met. ‘‘I need a place to sleep,’’ the visitor says. This is declarative. ‘‘You

can sleep on my sofa,’’ one friend says, which is the only thing the visitor was

expecting. ‘‘You can sleep on the other half of my king-sized bed,’’ another friend

offers. ‘‘I’m the night manager of a hotel; I can get you a room at cost,’’ says a

third. None of the other friends speak up. All three options meet the goal, and

two of them were unexpected. The visitor decides the best plan. The visitor could

have said, ‘‘Can I sleep on your sofa?’’ to the one friend and left it at that. This is

procedural. While planners deal with dynamic situations gracefully, other,

356 Chapter 10 n Topics to Pursue from Here

cheaper methods do as well. Planners’ strong suit is more than just picking the

single best action.

The biggest benefit of planning comes when the AI assembles multiple actions

into a plan. This capability is a reasonable working definition for a planner and

the biggest reason to justify their costs. Planning systems search the space of

available actions for a path through them that changes the state of the world to

match the goal state. Let us look at an example, loosely based on the old chil-

dren’s folk song, ‘‘There’s a Hole in the Bucket.’’

The setting is a farm back in the days when ‘‘running water’’ meant someone

running out to the well to get water. Our agent, named Henry, is tasked with

fetching water. So the goal is to deliver water to the house. There are many objects

available for Henry to use, including a bucket with a hole in it. Henry searches for

a way to achieve the goal with the objects at hand. He will patch the bucket with

straw. The straw needs to be cut to length. He will cut the straw with a knife. The

knife needs to be sharpened. He will sharpen the knife on a stone. At this point,

we will depart from the song, because in the song you need water in order to

sharpen the knife on the stone, and as programmers we despise infinite loops. In

our example, the stone will be perfectly fine for sharpening the knife. Our

Henry’s plan goes like this: Sharpen the knife on the stone. Cut the straw to fit.

Patch the bucket with the cut straw. Use the bucket to fetch water.

Just as behavior trees scale better than pure FSMs, planning systems scale better

than behavior trees when the need is for sequences of actions. In a behavior tree,

the sequences are assembled by the programmer as part of the tree. With a

planner, the AI dynamically performs the assembly, although not without cost.

Once again, we see an almost Zen-like condition where adding sophistication

makes the systems simpler. The execution systems are becoming more abstract

andmore data driven. This pulls the actions code into smaller, more independent

chunks. What used to be code is slowly turning into something more like data.

This phenomenon is not restricted to AI; it is a common progression seen in

nearly all programming areas. The cost we mentioned was further alluded to

when we said, ‘‘adding sophistication.’’

By analogy, consider simple programs that use numbers and strings as input

data. By now, every reader of this book has written some of them. Consider the

task of writing a compiler, such as the VB compiler we have been using. While at

the lowest level the input data to the VB compiler is still simple strings, in reality

that data is written at a much higher level. The VB compiler as a program is far

Planning 357

more sophisticated than nearly all of the programs it compiles. The output of the

VB compiler is far more flexible and wider ranging than the simpler programs it

usually compiles. Few of the readers of this book are sufficiently qualified to write

a VB compiler. ‘‘Adding sophistication’’ raises the bar for the programmers. We

need not debate whether writing a planner is more or less difficult than writing a

compiler, but we should again also emphasize that the more-sophisticated

programs consume more-sophisticated data. VB code is more than simple

strings, and the actions made available to a planner are likewise more than simple

strings.

We will examine three planning systems: STRIPS, GOAP, and HTN. The latter

two (along with behavior trees) are very current topics among industry

professionals.

STRIPS

STRIPS stands for the Stanford Research Institute Problem Solver and dates to

1971 [Fikes71]. The basic building blocks in STRIPS are actions and states. From

these, we can develop plans to reach goals. Let us examine these states, goals,

actions, and plans. Along the way, we will touch on conditions as well.

States are not the states of an FSM, but the state of the virtual world. States can be

partial subsets of the world state. States in this sense are a collection of attributes

that have specific values. A state for nice weather might call for clear skies and

warm temperatures.

Goals are specified as states in this manner. A goal state is defined by a set of

conditions that are met when the goal is reached. Goal states differ from other

states in that the AI places importance on achieving the goal states, and it does

not particularly care about other states along the way to the goal.

Actions have preconditions and postconditions. An action cannot be performed

unless all its preconditions are met. If an action succeeds, all the postconditions

of the action will become true, whether they were previously true or not. As far as

the planner is concerned, only things expressed in the preconditions or post-

conditions matter. Planners are results oriented.

Let us examine the sharpen knife action from Henry’s plan to mend the bucket

earlier in this section. It would have two preconditions: Henry has to possess the

knife, and he has to possess the stone. As a postcondition of the action, the knife

will be sharp.

358 Chapter 10 n Topics to Pursue from Here

A plan is a sequence of actions leading to a goal. Every precondition of every

action that is not forced to be true by a prior action in the planmust be true in the

initial state that is used to develop the plan. If those conditions are true and the

plan is successfully executed, then the world state will match the goal state at the

end.

Let us revisit our example of Henry and the bucket. Our states are given in

Table 10.1. We have two states of interest: the state of the world and our goal

state. The goal state only has one condition: showing that most states are far

simpler than the world state.

To transform the world state so that it also matches the goal state, we have the

actions listed in Table 10.2. The column order shows how the action transforms

the state of the world; start with the preconditions and perform the action to get

the postconditions.

Table 10.1 Hole-in-the-Bucket States

State Conditions

World Kitchen has no water.

Bucket has a hole.

Have straw.

Straw is too long.

Have a knife.

Knife is dull.

Have a stone.

Goal Kitchen has water.

Table 10.2 Hole-in-the-Bucket Actions

Precondition Action Postcondition

Bucket is mended Use bucket Water is delivered.

Cut straw is available Mend bucket with straw Bucket is mended.

Have a knife

Have straw

Knife is sharp Cut straw to length Cut straw is available.

Have a stone

Have a knife Sharpen knife Knife is sharp.

Planning 359

We start with the goal. The only action that transforms the world state to the goal

state is the ‘‘use bucket’’ action. The precondition for using the bucket is not met,

so we seek actions that will transform the world state to one where the pre-

conditions are met.

The mend the bucket action has the postcondition of the bucket being mended,

whichmeets the preconditions needed for using the bucket. This might not be the

first time that the bucket needed to be mended. If the world state had included

leftover straw from the last time the bucket was mended, all of the outstanding

preconditions would be met, and we would get a shorter plan that used the state

of the world instead of more actions. In our case, we do not have cut straw.

The cut straw to length action has that as a postcondition. To make use of this

action, we need to meet three preconditions. The state of the world provides us

with a knife and with straw meeting two of the preconditions, but the knife is

dull, giving our plan another outstanding precondition. If we cannot find a way

to meet this outstanding precondition, this particular plan will fail.

The sharpen knife action can meet the outstanding precondition, but it adds two

preconditions of its own. The world state provides both the knife and the stone,

meeting all of our outstanding preconditions. This leaves us with a workable plan;

the world state, when transformed by a string of actions, meets the goal state.

Our simple example illustrates chaining actions together into a plan but leaves

out dealing with alternatives and failures. We might also have scissors capable of

cutting the straw but lack a sharpening stone. As you might expect, an initial plan

to use the knife would fail to meet all of its outstanding preconditions, and the

planner would explore using the scissors instead. We will see these facets of

planning in the sections on GOAP and HTN planners.

The ideas behind STRIPS are reasonably easy to grasp. The complexities of

programming the system are not trivial. A great deal of effort needs to be applied

to the knowledge-representation problem presented by states, preconditions,

and postconditions. The knowledge-representation issues have implications

about the interface between the planning system and the game. STRIPS is not

widely used in games.

GOAP

If Damian Isla’s presentation on behavior trees at the 2005 Game Developers

Conference put that method on the radar of game AI programmers, then Jeff

360 Chapter 10 n Topics to Pursue from Here

Orkin’s articles and presentations did the same thing for goal-oriented action

planning (GOAP) [Orkin03], [Orkin06]. For our purposes, GOAP (rhymes with

soap) can roughly be considered as STRIPS adapted to games and uses the same

vocabulary. We will look at how GOAP is typically applied to games.

When used in games, actors controlled by GOAP systems typically have multiple

goals, but only one goal active at a time. The active goal is the highest-priority goal

that has a valid plan. For independent agents, this single mindedness is not a

major drawback. Some games require that multiple goals be active at the same

time. In this case, the planner needs to be more sophisticated. It may want to

accept a higher-cost plan for one goal so that other goals can be pursued in

parallel. It may need to ensure that the many plans have no resource-contention

problems. It is up to the game designer to decide whether the game is better served

by having a wise AI that plans around these issues or a potentially more realistic

AI that correctly models the problems. Adding such a capability adds complexity

to an already complex algorithm, and it adds CPU demands to an algorithm that

is already demanding of uncomfortable amounts of processing power.

No t e

These are real-world problems; a full-scale review by the U.S. military many years ago found that
in one scenario, the combined demands of the worldwide commands collectively called for five
times the total airlift capacity of the Military Airlift Command and deployment of the Rapid
Deployment Force simultaneously to 10 different locations.

In games, GOAP actions are typically simplified so that each action can report a

cost value associated with it that can be used to compare that action to other

actions. These costs can be used to tune the AI’s preference of one action over

another. The lowest-cost action might have a cost of 1. If costs tend to be roughly

comparable, the planner will prefer plans with fewer steps. It will accept Rube-

Goldberg–style plans only when there are no simpler means of accomplishing the

goal. The actions themselves are implemented with scripts or small FSMs that are

restricted to doing just the one action. FSMs work quite well because the

implementation of the action is often heavily tied to animation sequences, and

those sequences are often easily controlled by FSMs.

Given those simplifications to the actions, GOAP planners in games can use the

now-familiar A* algorithm to search the action space for a path between the goal

and the current state. With A*, the direction in which we search has an impact.

To use A* at all, we need a heuristic. We will examine both of these facets in

detail.

Planning 361

Note the direction of search, from the goal to the current state. This is for

performance reasons. As long as A* has a good heuristic, it will find the lowest-

cost path, but the performance will vary, depending on which end of the final

path the search starts. The typical GOAP or STRIPS case gives the actor many

possible actions that might be checked if we start by acting on the current state.

Most of those actions will not take us closer to our goal, which gives us a large

search space to examine and discard. If we start at the goal, we are far more likely

to see only a few actions that need to be searched to take us toward the current

state. As Figure 10.7 suggests, if you start at the base of a tree looking for an ant

that is on the tip of one of the leaves, it would be easier for the ant to find you at

the base of the tree than it will be for you to find the ant.

If all the actions are simple enough that each one changes only a single post-

condition, then we can create a good heuristic for A* to use when estimating.

That heuristic is that the minimum cost to finish A* from any point is the

number of conditions that need to change. If the minimum cost of a step is 1 and

the actions can change only one condition, this heuristic holds true. Plans could

cost more if the designer gave some steps higher weight than the minimum to

help steer the search. Plans could also cost more if there are no direct paths.

Indirect paths happen when the steps that lead to the goal add extra unmet

conditions that will need to be satisfied by later actions. A real-world example

might be in order.

Figure 10.7
The direction of the search matters.

362 Chapter 10 n Topics to Pursue from Here

A farmer who stands at the door of his house wants to go out into the night to

find out what is making noise in the barn. A single action, ‘‘GOTO,’’ would take

him to the barn. That action has a precondition, ‘‘has light to see by,’’ that is

unmet. The lantern has the capability to change that condition, but it also has

preconditions for being in hand, for fuel, and for being lit. Since the lantern has

fuel, the precondition for fuel does not count. The precondition of being lit does

count because the lantern in not currently lit. The matches have the capability to

light things on fire, and they carry the precondition of being in hand. So the final

plan will have grown to get matches, get the lantern, light a match, light the

lantern, and finally go to the barn. The designer might have included a flashlight

object that has a much lower cost than the lantern, making it preferable because a

dropped flashlight is less likely to cause a barn fire than a dropped lantern. In this

case, the flashlight has no batteries, and there are no batteries in the house, so the

A* stopped progress on the path using the flashlight when it hit the high cost of

driving into town to get more batteries.

A* connected the dots to form a plan to meet the goal. The AI programmer did

not have to do it himself or herself the way he or she would have for an FSM. The

programming paradigm shifts to something like, ‘‘Toss in capabilities in the form

of actions and stir them with goals to see what plans you get.’’ The simplicity of

the actions is supposed to make programming the set of them simpler in total

than trying to program the equivalent capability in an FSM or a behavior tree.

Knowledge representation is critical to the success of the method. The actions

have to be able to get all the inputs they need from the state representation and

make concrete changes to it. Notice that many of our preconditions and

postconditions are simple Booleans that can be represented by one bit of a bit

field. Performance of the knowledge representation is critical, and bit fields are a

common way to help achieve it. Goal-oriented agents coded this way resemble

goal-driven people; they do not stop to smell the flowers along the way, but they

do get the details right.

HTN

‘‘Don’t we have a plan for that? Or something close?’’ One of the caveats that we

gave about A* is that although we appreciate its performance, we know it is not

free. A* connects the dots for us in GOAP. Maybe there is a way to save and reuse

chunks of plans the way we might pre-compute popular paths. Each of the

travelers who passed through the Cumberland Gap or crossed the Rocky

Planning 363

Mountains on the various trails did not come up with a brand-new plan before

setting out (with the possible exception of the disastrous Donner party). We

might like our AI to have a deep bag of tricks to use in terms of pre-computed

plans while still being able to re-plan when things go decidedly wrong.

At the lowest level, a hierarchical task network (HTN) resembles the other

planners we have mentioned. We have actions that can be directly executed if

their preconditions are met, providing us with a change to the state of the world.

These are often referred to as primitive tasks. HTNs also include a task library.

Any task that is not a directly executable primitive task is called an abstract task.

The abstract tasks in the task library decompose into lower-level abstract tasks

and finally into primitive tasks. An example might be in order.

As shown in Figure 10.8, our farmer from the GOAP example has a ‘‘light

source’’ abstract task in his task library. That task decomposes into the ‘‘use

lantern’’ and ‘‘use flashlight’’ abstract tasks. The ‘‘use lantern’’ abstract task

decomposes into a ‘‘light lantern’’ abstract task and the highly useful ‘‘get’’

abstract task. As they must, all the remaining abstract tasks similarly reduce to

primitive tasks, although for simplicity, the diagram does not show the full

Figure 10.8
A subset of a hierarchical task network.

364 Chapter 10 n Topics to Pursue from Here

decomposition of everything. Details of the flashlight and other methods for

making fire are not shown.

The decompositions are hierarchical. In a rich environment, there will be many

such decompositions to choose from for each task; our farmer has a flashlight

and a lantern at his disposal for use as a light source, and probably more than one

means of making fire. The task library is comparable to a rich script library

[Kelly07] and can be computed offline [Kelly08]. There are some compelling

advantages to HTN: The plans can be rapidly forward searched, and they deal

gracefully with changing conditions. While they can be computed offline,

designers can create plans to their liking as well.

The highest-level abstract tasks tend to be a very close match to typical goals that

might be presented to a STRIPS or GOAP planner. Instead of running A* from

the end goal back to the current state, we can more rapidly find matching high-

level abstract tasks that take us to our goal, a welcome performance improvement.

Instead of hoping that the ant on the leaf finds us at the base of the tree, we pull

out the closest thing we have to an ant-locator plan and follow it directly to the

ant. The forward search with HTN is faster than the backward search with GOAP.

Because of their forward and hierarchical nature, HTNs are also part of plan

execution. Again using our farmer example, suppose the farmer starts to use the

flashlight, and the batteries fail before he gets out the door. The light source task

needs to re-plan, but nothing higher in the hierarchy has to change. The basic

plan for getting to the barn and exploring the noises is sound. Only the part about

getting some light has to change. A GOAP or STRIPS planner would have to

restart the search because its plans do not natively retain the dependencies

explicitly or keep alternatives that were discarded along the way. Once a GOAP or

STRIPS planner discovers the flashlight in our example, it will discard using the

lantern. Even if a clever implementation were to recognize that only a portion of

the plan had failed, GOAP or STRIPS would need to search through all actions

for alternative means of making light. The HTN planner in Figure 10.8 has the

alternative light sources encoded in the abstract tasks.

To make sure everything works properly, HTNs include a new feature known as

critics. Critics detect conflicts early in an effort to minimize backtracking. Instead

of going out to investigate noises in the barn, suppose our farmer was going out

after dark to light a bonfire for roasting marshmallows. Critics would detect the

fact that he might not have enoughmatches to both light the lantern and light the

bonfire.

Planning 365

HTN planners are gaining traction in real-time–strategy games [Brickman08]

[Cerpa08] and other genres. The potential for better performance is always

welcome in computer games. The increase in intelligence is equally welcome; not

only do agents make workable plans, but they re-plan when things go wrong.

Resources
The hot topics among professional game AI programmers are always the subject

of presentations at the Game Developers Conference (GDC), particularly at the

AI summits that have been held in recent years. Along with academics and

various other people outside of the industry, this same group of professional

game AI programmers has authored the articles in the AI Game Programming

Wisdom series of books. They also present at other conferences such as AIIDE

and AAAI. Some of them even run Web sites devoted to game AI.

The first volume of the AI Game Programming Wisdom series, edited by Steve

Rabin, has an entire section devoted to A*. Machine learning is the subject of

the articles in section 10, and neural networks are the subject of the articles in

section 11 in AI Game Programming Wisdom 2, although by volume 4, the editor

openly asks, ‘‘What happened to Learning?’’ [Rabin08]. The entire four-volume

series was written by and for industry professionals, so some of the articles may

be hard going for novice AI programmers. A full list of the articles in the series as

well as from many other sources can be found at http://www.aiwisdom.com/.

The noteworthy Web sites for game developers are too numerous to keep track

of, so we will mention only a few:

n http://www.gamedev.net. The AI section of gamedev.net is reasonably

extensive.

n http://aigamedev.com. The aigamedev.com site is focused entirely on game

AI at a professional level, although some of the articles require paid

membership to view.

n http://www.gamasutra.com. The gamasutra.com site tends to collect GDC-

related material; Damian Isla’s behavior tree paper is available there.

n http://www.wikipedia.org. While in no way guaranteed to be academically

rigorous or even factually correct, Wikipedia is probably the best place on the

Internet to read about a topic for the first time, including AI-related topics.

Although Wikipedia is a good place to get the first clue about a topic, all

366 Chapter 10 n Topics to Pursue from Here

http://www.aiwisdom.com/
http://www.gamedev.net
http://aigamedev.com
http://www.gamasutra.com
http://www.wikipedia.org

articles should be read whilst wondering what mistakes are in it. The

references section of the articles that have them is a rich hunting ground for

good information, often pointing to papers of higher quality than the

Wikipedia article citing them.

n Your favorite search engines.

Chapter Summary
This chapter covers a wide range of topics. Every game AI programmer needs to

be fluent in A*. From there, we find that the more sophisticated topics have to be

judged on the basis of whether they will be useful in a project. The important

point is not that machine learning or planning systems are cool, which they are,

but whether they are the right tool for the job. Unlike the topics in prior chapters,

these were not picked for near-universal applicability or ease of understanding.

By the same token, there is no VB code project for a neural network or some

flavor of planner. They are topics that aspiring AI programmers who have made

it this far should strive toward. The code for them would not be in keeping with

the non-threatening nature of the code in this book, particularly for those novice

AI programmers who come from a background other than hard-core pro-

gramming, such as animators, producers, or even managers who have worked

thus far to gain solid background in game AI.

Chapter Review
Answers are in the appendix.

1. What are the two concepts in A* that let us perform the best-first search?

2. What conditions could cause a node to move from the closed list back onto

the open list in A*?

3. When is a machine-learning system easier to implement than a directly

programmed system?

4. What is the major advantage of behavior trees over FSMs?

5. Why does the search run backward in a GOAP system and forward in an

HTN system?

Chapter Review 367

Exercises
1. Search for A* on the Internet. Write an A* implementation that directs the

fox in Fox and Hounds when there is an opening.

2. Change the graph in Figure 10.2 so that the catapult service is between node

A and node W at cost 0.5. Reduce the cost of road travel to or from node X

back to 4. A path from node C to node W through A now has an actual cost

of 12.5, while a path through node Z has cost 16. Prove to yourself that

regardless of whether the algorithm reexamines nodes on the closed list, the

inadmissible heuristic will cause the algorithm to return the longer path.

3. Search for neural network implementations on the Internet. Write one in

VB for our monster. When training the network, leave out training data

with hit-point values between the always fight and always flee levels. Watch

the network outputs in the transition area.

References
[Barnes02] Barnes, Jonty; Hutchens, Jason. ‘‘Testing Undefined Behavior as a

Result of Learning,’’ AI Game Programming Wisdom. Charles River Media, 2002.

[Biasillo02] Biasillo, Gari, ‘‘Training an AI to Race,’’ AI Game Programming

Wisdom, Charles River Media, 2002.

[Brickman] Brickman, Noah; Nishant, Joshi. ‘‘HTN Planning and Game State

Management in Warcraft II.’’ Available online at http://users.soe.ucsc.edu/

*nishant/CS244.pdf.

[Fikes71] Fikes, Richard; Nilsson, Nils. ‘‘STRIPS: A New Approach to the

Application of Theorem Proving to Problem Solving.’’ Artificial Intelligence, v2,

pp. 189–208. 1971.

[Hecker07] Hecker, Chris. Liner Notes for Spore/Spore Behavior Tree Docs, Web

page 2007. Available online at http://chrishecker.com/My_Liner_Notes_

for_Spore/Spore_Behavior_Tree_Docs.

[Isla05] Isla, Damian. ‘‘HandlingComplexity in theHalo 2 AI.’’ Proceedings of the

2005 Game Developers Conference. CMPMedia, 2005. Available online at http://

www.gamasutra.com/view/feature/2250/gdc_2005_proceeding_handling_.php.

368 Chapter 10 n Topics to Pursue from Here

http://users.soe.ucsc.edu/~nishant/CS244.pdf
http://users.soe.ucsc.edu/~nishant/CS244.pdf
http://chrishecker.com/My_Liner_Notes_for_Spore/Spore_Behavior_Tree_Docs
http://chrishecker.com/My_Liner_Notes_for_Spore/Spore_Behavior_Tree_Docs
http://www.gamasutra.com/view/feature/2250/gdc_2005_proceeding_handling_.php
http://www.gamasutra.com/view/feature/2250/gdc_2005_proceeding_handling_.php

[Cerpa08] Cerpa, David; Obelleiro, Julio. ‘‘An Advanced Motivation-Driven

Planning Architecture.’’ AI Game Programming Wisdom 4, pp. 373–382. Charles

River Media, 2008.

[Dill10] Dill, Kevin. Comments regarding Axis & Allies and Kohan 2 in private

correspondence, 2010.

[Kelly07] Kelly, John-Paul; Botea, Adi; Koenig, Sven. ‘‘Planning with Hierarchical

Task Networks in Games.’’ Proceedings of the Seventeenth International Con-

ference on Automated Planning and Scheduling, American Association for

Artificial Intelligence, 2007. Available online at http://www.plg.inf.uc3m.es/

icaps-pg2007/papers/Planning%20with%20Hierarchical%20Task%20Networks%

20in%20Video%20Games.pdf.

[Kelly08] Kelly, John-Paul; Botea, Adi; Koenig, Sven. ‘‘Offline Planning with

Hierarchical Task Networks in Video Games.’’ Proceedings of the Fourth Arti-

ficial Intelligence and Interactive Digital Entertainment Conference, American

Association for Artificial Intelligence, 2008. Available online at http://www.aaai

.org/Papers/AIIDE/2008/AIIDE08-010.pdf.

[Kirby04] Kirby, Neil. ‘‘Getting Around the Limits of Machine Learning.’’

AI Game Programming Wisdom 2, pp. 603–611. Charles River Media, 2004.

[Orkin03] Orkin, Jeff. ‘‘Applying Goal-Oriented Action Planning to Games.’’

AI Game Programming Wisdom 2, pp. 217–228. Charles River Media, 2003.

[Orkin06] Orkin, Jeff. ‘‘Three States and a Plan: The A.I. of F.E.A.R.’’

Proceedings of the 2006 Game Developers Conference. Available online at http://

web.media.mit.edu/*jorkin/gdc2006_orkin_jeff_fear.pdf.

[Rabin08] Rabin, Steve. Preface, AI Game Programming Wisdom 4. pp. x. Course

Technology, 2008.

[Sutton98] Sutton, Richard; Barto, Andrew. Reinforcement Learning: An Intro-

duction. The MIT Press, Cambridge, Massachusetts, 1998. Available online at

http://webdocs.cs.ualberta.ca/*sutton/book/ebook/the-book.html.

[Tesauro95] Tesauro, Gerald, ‘‘Temporal Difference Learning and TD-

Gammon,’’ Communications of the ACM, volume 38, Association for Com-

puting Machinery, 1995.

References 369

http://www.plg.inf.uc3m.es/icaps-pg2007/papers/Planning%20with%20Hierarchical%20Task%20Networks%20in%20Video%20Games.pdf
http://www.plg.inf.uc3m.es/icaps-pg2007/papers/Planning%20with%20Hierarchical%20Task%20Networks%20in%20Video%20Games.pdf
http://www.plg.inf.uc3m.es/icaps-pg2007/papers/Planning%20with%20Hierarchical%20Task%20Networks%20in%20Video%20Games.pdf
http://www.aaai.org/Papers/AIIDE/2008/AIIDE08-010.pdf
http://www.aaai.org/Papers/AIIDE/2008/AIIDE08-010.pdf
http://web.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf
http://web.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf
http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

This page intentionally left blank

Answers to Chapter
Review Questions

Most of the review questions have straightforward answers. Others call for

opinions, and opinions may vary. The answers given here are one set of opinions.

Chapter 1: What Is Game AI?
1. What are the three parts to our definition of game AI? The AI has to be able

to act, it has to be intelligent, and it has to deal with changing conditions.

2. Why is game physics not game AI? All choices are forced in physics, so there

is no room for intelligence.

Chapter 2: Simple Hard-Coded AI
1. What are the common drawbacks to hard-coded AI?Hard-coded AI lacks a

formal methodology for determining which behavior to employ. Without

formal organization, hard-coded AI tends to grow quickly in size and

complexity. It can be very difficult to change or maintain.

2. What are the advantages to hard-coded AI?Hard-coded AI is intuitive and

can be fast to write and fast to execute.

3. Complexity can be as low as the sum of the parts and as high as the product

of the parts. What is the relationship between the parts when complexity is

371

Appendix

the sum? What is it when complexity is the product? When complexity is

the sum of the number of parts, the parts are independent. When it is the

product, all the parts are interrelated.

4. What is the design of the data called when the data is information the AI

uses to help it think about (or even imagine about) the world? It is called

knowledge representation.

5. Critique the expediencies in the code that interrogates the world in the

four-set-point thermostat. Comment on the dangers versus the additional

complexity needed to mitigate the risks. In general, the wrapper code knows

the internal implementation of the world. It does not ask the world for

values; it goes in and finds those values. The world code and the wrapper

code are two separate files that must be kept synchronized. If the wrapper

asked the world via a function in the world code, the world code could

change however it liked as long as it kept the function valid. The function

would be in the world-code file. It is easier to keep one file consistent than it

is to keep two files synchronized. Internally in the wrapper, the parallel

arrays are very handy, but they must be kept synchronized. In addition, the

settings are in time-sorted order, and the search for the right setting silently

depends on this fact. If the settings were allowed to be changed, the code

that stores the new settings would have to sort them. Expediencies should be

kept localized; within a routine is fine, within a file is tolerable, and across

files is questionable.

6. Why is the side effect in the code that gets the set-point temperature in the

four-set-point thermostat important? The side effect of showing the tem-

perature used helps let us see what the AI is thinking.

Chapter 3: Finite State Machines (FSMs)
1. Define a finite state machine and tell what each part does. A finite state

machine is composed of states and transitions. The transitions are used to

change from one state to another. The states are used to define the different

things the machine will do.

2. What are the advantages of a finite state machine compared to hard-coded

AI? The formal organization combats complexity by making the states

372 Appendix n Answers to Chapter Review Questions

independent. The transitions remain, but they are organized into a

regular system. The code is less fragile.

3. What are some indicators that a finite state machine is inappropriate

to use? An FSM has fundamental problems when it needs to be in more

than one state at a time. It has problems if the states are not inherently

discrete. If the complexity rises past a certain level, other methods may be

easier to implement.

4. What do we mean by ambiguous transitions? When more than one

transition is valid, they are ambiguous.

5. What do we call it when ambiguous transitions exist? What are three ways

of dealing with them?When there are ambiguous transitions, we have a race

condition. We can ignore them (which is free), we can fully specify the

transitions (this is usually a very bad idea), or most likely we will prioritize

the transitions.

Chapter 4: Rule-Based Systems
1. What are the two parts of a rule in a rule-based system? The rules have a

matching part and an execution part.

2. What does the framework do in a rule-based system? The framework

presents the current conditions to the rule base, selects a rule (or rules) to

execute, and executes it. If more than one rule is to execute, the framework

ensures that there are no conflicts between them.

3. Why is it that a rule-based system can play like both a human and a

machine at the same time? The rule-based system plays like a human when

it exploits human-sourced behaviors. It plays like a machine in that it never

gets tired of picking the same best way to respond to a given situation.

4. What makes a rule-based AI appear intelligent? What makes it appear

stupid? A rule-based system appears intelligent when it comes up with a

good or possibly even great response for a situation. It appears stupid when

the rules are too sparse and the best response it has is not appropriate for the

situation. It also has issues when it lacks good defaults or the ability to

recognize when to use them.

Chapter 4: Rule-Based Systems 373

Chapter 5: Random and Probabilistic Systems
1. What are three ways to get odds for a game? You can get odds for a game by

precomputing them, by Monte Carlo methods, or by faking them and

tuning to suit.

2. What are the drawbacks to these methods? The first potential drawback to

these methods is that they demand good numbers and possibly a large

number of them. Furthermore, tuning those numbers is an acquired skill.

Chapter 6: Look-Ahead: The First Step of Planning
1. What does an evaluation function do? How is it similar to or different

from a goal? An evaluation function attempts to comment on how good an

indeterminate situation is. The function should correspond in some way to

how close the situation is to a goal, but it does not require that the goal be in

sight.

2. What is a heuristic? How do heuristics help? Heuristics are general

guidelines. They can help guide the search toward fruitful paths and away

from poor ones. They can help evaluate indeterminate situations.

3. What is pruning and how does it help? Pruning is the act of discarding

paths deemed to have low potential for success. It narrows the search space,

allowing a deeper look down higher-potential paths.

4. What is the most common drawback to look-ahead? There is rarely enough

processor time to search every promising path.

Chapter 7: Book of Moves
1. Describe how moves in a book of moves and heuristics are similar and how

they are different. Both can guide the AI, but moves tend to be concrete

actions posed in game terms, and heuristics can be more abstract and

generalized. Moves are about how the game is played, and heuristics tend to

be about how the game is evaluated.

2. How is a book of moves similar to a rule-based AI? How would you decide

which label to use on a particular system? The book of moves is a spe-

cialized form of a rule-based AI. A system that uses rules for basic AI is

374 Appendix n Answers to Chapter Review Questions

probably a rule-based system, particularly if it includes general rules and

defaults. An AI that is assisted by a specialized rule base might be said to be

using a book of moves.

Chapter 8: Emergent Behavior
1. List the elements and characteristics of a system that allows and en-

courages emergent behaviors. Systems that feature independent agents who

employ simple behaviors and interact tend to exhibit emergent behaviors.

2. Describe the effects of feedback and the effects of feedback rates. Feedback

is what enables continued interaction. If the rate is too slow, the interaction

will fade. If the interaction is too fast, the system may not allow any

significant variations to develop.

Chapter 9: Evoking Emotions on the Cheap
1. Many aspects of a game have an emotional payload. What additional

attribute is required to make these aspects part of the overall AI? They have

to be changeable in order for the AI to have anything to do.

2. Describe the critical difference between games and simulations with regard

to what they are trying to do with emotions. Simulations attempt to model

emotions accurately as a first priority. Games attempt to evoke emotional

responses in the players as a first priority.

3. Some of the techniques in this chapter are subtle. How can the game make

sure the player catches on? The most straightforward way is to tell them in

some more direct manner.

4. List some general categories of places where some AI control adds to the

ability of the game to deliver emotional content. The AI can help control

music, ambient settings (mood), plot, and even the camera itself.

Chapter 10: Topics to Pursue from Here
1. What are the two concepts in A� that let us perform the best-first search?A�

tracks the cost so far and estimates the cost remaining to the goal. It is

useful to have an admissible heuristic, but tracking and estimating cost

allows the algorithm to be best-first.

Chapter 10: Topics to Pursue from Here 375

2. What conditions could cause a node to move from the closed list back onto

the open list in A*? This can happen when the heuristic is inadmissible and

there are branching paths that can rejoin. This never happens if the

algorithm is written with the usual optimization to ignore all nodes on the

closed list.

3. When is a machine-learning system easier to implement than a directly

programmed system?Machine learning is superior when it is easier to teach

the machine than it is to directly program the machine.

4. What is the major advantage of behavior trees over FSMs? They control

complexity better, allowing faster iteration cycles in development.

5. Why does the search run backward in a GOAP system and forward in an

HTN system? In GOAP the number of actions that are close to the goal is

typically smaller than the number of actions that are close to the agent. A�

is faster when it has fewer branches to explore. HTN task libraries are

designed to present goal states to the agents, making a forward search faster.

376 Appendix n Answers to Chapter Review Questions

A
A*

implementation, 329–339

lists, 334–338

absolute pixels, 257

abstract tasks, 364

access, read-only, 262

adding

AI, 197–214

character class radio

buttons, 10

code, 26

comments, 87

complexity, 57

controls, 7

feedback, 254

flags, 98–99

frameworks, 107–110

IncrementMineCount

routines, 86

interactions, 254

modes, 37

modules, 26

moves, 176

public interfaces, 58

Public keywords, 175

routines, 107

safety features to

Minesweeper, 98–99
squares to playing fields, 82–84

user-interface elements, 270

vertical scrollbars, 100

wrapper functions, 28

Add New Item dialog box, 26, 59

ad-hoc code organization, 21

advantages

behavior trees, 354–355

emergent behavior, 255

emotions, 301

look-aheads, 162–163

moves, 232

probabilistic systems, 130

random systems, 130

rule-based systems, 78

agents

feedback, 247

interactions, 244–245, 253

AI

adding, 197–214

Day in the Life project,
141–143

hybrid, 221

internal helper routines,

200–203

public interfaces, 199–200

random and probabilistic

systems, 125–126

rule-based system

implementations, 99–121

user-interface connections,

198–199

aigamedev.com, 366

AI Game Programming
Wisdom, 366

AI Related region, 237

AI.V5.vb file, 170

algorithms

A*, 329–339

complexity of code, 21

genetic, 342–343, 347–349

machine learning, 339

training, 341

AmbientUpDown control, 26

ambiguities, FSMs (finite state

machines), 47

analysis

FSMs (finite state machines),

44–45

probabilistic systems, 130

random systems, 130

rule-based systems, 77–78

Thermostat project, 30–32

angles, cameras, 295. See also
cameras

animation

Cars and Trucks, 264–280
loop updates, 250

timers, 257

AnimationTimer, 265

answers to review questions,

371–376

applicability, look-aheads, 163

applications, Windows

operating system, 4

applying moves in

Minesweeper, 231–232
archetypes, 299

Arimaa, 222
arrays

initialization, 32, 176

ModeValues, 37

variables, denoting, 32

assigning values to variables, 88

assumptions, Monte Carlo

methods, 127

377

INDEX

Attack state, 61

automatic garbage collection,

116

B
BackColor property, 11, 26

back-face culling, 293

backslash (\), 261

Balance of Power, 297
balancing realism, 253

behavior

appropriateness of, 20

emergent. See emergent

behavior

simple, 245–246

steering, 253–255

trees, 349–351

advantages, 354–355

planning, 356–358

Behavioral Mathematics for
Game AI, 49

Black & White, 340
Black & White II, 341
blank tiles, 84

blocks, adding comments, 87

Board class, 190–191

boards

code, 188–189

Twixt, 222–224
user interfaces, 174–175

Boolean variables, 95

BorderStyle property, 26

bottom-up evaluation, 352–354

branching factors, 158

brute-force look-aheads, 224

Button class, 80

drag and drop, 194–197

Button control, 80, 265

buttons, 4. See also radio

buttons

ByRef keyword, 104

C
cameras, 23, 292–296

Cars and Trucks, 255–258
debugging, 279

feedback in, 250–253

movement and animation,

264–280

roads and vehicles, 258–264

chaos, emergent behavior,

246–247

characters

class radio buttons, adding, 10

termination, 28

checks for errors, 65

Chess moves, 221–222

child

classes, 60

values, 349

classes

Board, 190–191

Button, 80, 194–197

child, 60

Cruise, 319

GameState, 181–188

Job, 138

parent, 60

Person, 316–325

PlayingField, 88

RuleOne, 104

RuleTwoNear, 118

Square, 80

Vehicle, 259, 269

classifiers, 344–346

Click event, 87, 96, 98

cloning, implementation of, 193

clothing, 288–289

CLR (Common Language

Runtime), 66

code, 19–22. See also hard-

coded AI

adding, 26

Day in the Life project,
143–146

game boards, 188–189

NewGame, 85

organization, 21

Collection object, 60

collision detection, 251

CollisonDetect() function, 274

ColorMe routine, 173

comments, adding, 87

Common Language Runtime

(CLR), 66

completion, Day in the Life
project, 143–146

complexity, 21–22, 30

adding, 57

Day in the Life project,
135–136

with depth-limit heuristics,

160

FSMs (finite state machines),

49–50

with line heuristics, 159–160

Twixt, 224–228
without heuristics, 157–159

computation

faking it, 128

odds, 126–128

precomputing, 127–128

concurrent states, 50

conditions

race, 47

reacting to changing, 30

configuration

emotions, 283–328

FaHButton.vb tab, 194

game-board code, 188–189

graphical squares, 179–180

interfaces, 174–175

vehicles, 262

connecting user interfaces,

198–199

constants

game-state implementation,

180–181

UNREACHABLE, 168

constraints, real-time, 253

constructs, nested indentation,

88

contents variable, 85

Continue For directive, 115

controls, 4

adding, 7

AmbientUpDown, 26

Button, 80

emergent behavior, 247

Level, 13

NumericUpDown, 12, 26

placement of, 24

placing, 8

ThoughtsTextBox, 59

Crime occupation, Day in the
Life project, 133

cross-breeding genetic

algorithms, 349

Cruise class, 319

378 Index

culling, back-face, 293

Cyrillic alphabet, 345

D
dampening, 247

databases, 311–316

Day in the Life project, 131–148
completion of code, 143–146

complexity, 135–136

debugging, 145

implementation, 136–140

occupations, 132–134

results, 147–148

simulated people, 134–135

simulations, 132

Day Job occupation, Day in the
Life project, 133

debugging, 16

Cars and Trucks, 279
collision detection, 251

Day in the Life project, 145
FSMs (finite state machines),

69

statements, 195

decisions

loops, 248

Monte Carlo methods, 127

Deep Blue Chess computer,

221

Delegate keyword, 61

depth-limit heuristics,

complexity with, 160

design. See also configuration;

formatting

FSMs (finite state machines),

44–45

knowledge representation

(KR), 25

probabilistic systems, 130

random systems, 130

rule-based systems, 77–78

rules, 101–106

simple behaviors, 245

views, 270

detection, collisions, 251

dialog boxes

Add New Item, 26, 59

New Project, 5

directives, Continue For, 115

disabling scrollbars, 266

disadvantages

emergent behavior, 255

emotions, 301–302

faster feedback, 248

look-aheads, 163

moves, 232

probabilistic systems, 130–131

random systems, 130–131

rule-based systems, 78–79

disambiguation, 47

transitions, 72

discrete moves, 161–162

disgust. See also emotions

Done property, 76

Doom, 73
drag and drop, Button class,

194–197

Draw() function, 264

Dump button, 321

E
easy fun, 287

edges of graphs, 331

elements, Board class, 190–191

emergent behavior, 241–281

advantages, 255

Cars and Trucks, 255–280
disadvantages, 255

feedback

and control, 247

inCars andTrucks, 250–253
fast, 248–249

slow, 249–250

interaction, 244–245

order and chaos, 246–247

overview of, 243

reinforcement, 247–248

simple behaviors, 245–246

timing, 248

emotions, 283–328

advantages, 301

cameras, 292–296

clothing, 288–289

disadvantages, 301–302

evoking, 286–287

finite state machines (FSMs)

for, 303–307

lighting, 289–290

mini-databases, 311–316

music, 287–288

needs and relationship

models, 307–325

plot, 291–292

projects, 302–328

skill sets, 297

states, 297–301

texturing, 290–291

tools, 285

enabling

scrollbars, 266

user interfaces, 189–197

End Class statement, 67, 72

End Function statement, 67

ending Minesweeper, 95
End Region line, 58

entry functions, 49

entry methods, 54

Error List window, 67

errors

checks, 65

lists, 33

evaluation

bottom-up, 352–354

functions, 152–153

Fox and Hounds, 167–174
heuristics, 154–157

top-down, 351–352

events, 4

Click, 87, 96, 98

handlers, 34

Load, 12

Monte Carlo methods, 127

MouseDown, 98

MouseUp, 98

evoking emotions, 286–287

exit functions, 49

exit methods, 54

explosions

state, 50

transitions, 51–52

F
faces, 285. See also emotions

factors, branching, 158

FaHButton.vb tab,

formatting, 194

failure modes, FSMs (finite state

machines), 50–52

faking it, 128

fast feedback, 248–249

Index 379

fear, 286. See also emotions

feedback

adding, 254

in Cars and Trucks, 250–253
emergent behavior, 247

fast, 248–249

slow, 249–250

fields, playing, 79–80

fiero, 286. See also emotions

FIGHT, 351

files

AI.V5.vb, 170

PlayingField.vb, 237

Financier occupation, Day in
the Life project, 134

finite state machines. See FSMs

first-order approximation,

244

fitness functions, 348

flags, adding, 98–99

Flee state, 49, 61

flight testing, 248

floating-point math, 264

floating-point numbers, 90

formatting

emotions, 283–328

FaHButton.vb tab, 194

game-board code, 188–189

graphical squares, 179–180

interfaces, 174–175

rules, 101–106

squares, transforming into

mines, 84–90

vehicles, 262

forms, 4

creating, 7

forward slash (/), 261

Fox and Hounds, 155
adding AI, 197–214

complexity without heuristics,

157–159

discrete moves, 161–162

evaluation functions, 167–174

game state, 166–167

look-aheads, 203–214

moves, 164–165, 203–214,

233–234

neighbors, 164–165

projects, 163–214

frame rates, 264, 267

frameworks

adding, 107–110

rule design, 101–106

FSMs (finite state machines), 43,

298, 344–346

analysis, 44–45

behavior trees, 350

complexity, 49–50

debugging, 69

design, 44–45

for emotions, 303–307

failure modes, 50–52

MonsterAI project, 55–73

multiple-transition review,

47–49

objects, 53–55

overview of, 43–44

projects, 52–73

single-transition review, 45–47

fun, 287

functions

CollisonDetect(), 274

Draw(), 264

entry, 49

evaluation, 152–153

Fox and Hounds, 167–174
heuristics, 154–157

exit, 49

GetUpperBound, 37

helper, 275

NearNeighbor, 112

NearNeighbors, 90

NeedsSome(), 318

New(), 71, 259, 264

update, 50

G
gamasutra.com, 366

Game Developers Conference,

339, 349

gamedev.net, 366

games. See also specific games

AI, definition of, 1–3

boards

code, 188–189

Twixt, 222–224
user interfaces, 174–175

Fox and Hounds, 155
frameworks, adding, 107–110

interfaces, enabling, 189–197

Minesweeper, 79–121, 228–232
state

implementation, 180–188

support for user interfaces,

191–194

Tic-Tac-Toe, 152–155
Twixt, 222–228

GameState class, 181–188

garbage collection, automatic,

116

genetic algorithms, 342–343,

347–349

GetType method, 64

GetUpperBound function, 37

Git, 6

goal-oriented action planning

(GOAP), 361–363

graphics

squares, 179–180

loops, 267

graphs, 331

transportation, 332, 336

Greek alphabet, 345

guesses, productive, 119

H
Halo2, 350
handlers, events, 34

Handles keyword, 13

hard-coded AI, overview of,

19–22

hard fun, 287

Hebrew characters, 345

helpers

emotions, 310–311

functions, 275

routines, 200–203

squares, 109

heuristics, 154–157

A*, 331

complexity without, 157–159

depth-limit, complexity with,

160

drawbacks to, 160–161

line, 157

lines, 159–160

sequences, 159

Hiding state, 49, 61, 69

hierarchical task network

(HTN), 364–366

380 Index

Hiragana characters, 345

hit-point calculator project,

5–17

HScrollBar control, 265

hybrid AI, 221

I
IBM, 342

If statements, 88

implementation

A*, 329–339

AI rule-based systems, 99–121

cloning, 193

Day in the Life project,
136–140

FSMs (finite state machines),

44, 49–50

game state, 180–188

Minesweeper, 79–99
moves and neighbors, 175–179

Thermostat project, 32–39

IncrementMineCount routines,

adding, 86

indentation, nested constructs,

88

individual goal-directed boids,

246

initialization

arrays, 32, 176

Minesweeper, 92
playing field, 86

transitions, 62

inputs

agents, 247

neural networks, 346–347

instability, 248

Intellisense, 13

interaction, emergent behavior,

244–245

interactions

adding, 254

agents, 253

interactivity, quality, 2

interfaces, 11

AI connections, 198–199

Board class, 190–191

Day in the Life project, 139
emotions, 309–310

enabling, 189–197

game boards, 174–175

MonsterAI project, 57

numbers on, 94

public

adding, 58

AI, 199–200

set-back thermostat, 34

support, 191–194

internal helper routines, 200–203

Isla, Damian, 349, 360

J
Job class, 138

K
Kanji symbols, 345

keywords

ByRef, 104

Delegate, 61

Handles, 13

Me, 69

MustInherit, 60

MustOverride, 60

New, 60

Private, 53

Public, 53, 58, 175

knowledge representation (KR),

25, 162

L
labels, 257

Level control, 13

lighting, 289–290

line heuristics, 157

lines

heuristics, complexity with,

159–160

reforming, 161

LineShape control, 270

lists

A*, 334–338

errors, 33

Load events, 12, 188, 269

loading routines, rules for, 107

look-aheads

advantages of, 162–163

applicability, 163

brute-force, 224

disadvantages of, 163

Fox and Hounds, 203–214

loops

animation updates, 250

decision, 248

feedback, 249–250

graphics, 267

loss, 152

Lotto occupation, Day in the
Life project, 133

M
machine learning, 339–341

machine objects, 54

Mage radio button, 15

MainForm, 140

completion of code, 143

management, refactoring,

22

Manhattan distance, 333

Matches routine, 104

Me keyword, 69

methods

entry, 54

exit, 54

GetType, 64

Monte Carlo, 126–127

New, 194

PaintTheTrim(somecolor),

53

of training, 341

transition-check, 54

update, 54

mines

placement of, 109

squares, transforming into,

84–90

Mines project, 80

Minesweeper
AI implementation, 99–121

ending, 95

flags, adding, 98–99

implementation, 79–99

initialization, 92

moves, 228–232, 234–239

applying, 231–232

basic numbers, 228

corner first move, 229

edge first move, 229

middle first move, 228–229

one square away from an

edge move, 229–230

Index 381

Minesweeper (continued)
one square diagonally away

from a corner move,

230–231

playing, 92–98

safety features, adding, 98–99

Minesweeper project, 79–121
mini-databases, emotions,

311–316

minimum feedback speed, 252

models

emotional states, 297–301

personalities, 299

single-transition review, 45–47

modes

adding, 37

failures, FSMs (finite state

machines), 50–52

ModeValues array, 37

modification of states, 85

modules, adding, 26

MonsterAI project, FSMs (finite

state machines), 55–73

monster objects, 54

Monte Carlo methods, 126–127

mood, 288. See also emotions

MouseDown events, 98

MouseUp event, 98

movement, Cars and Trucks,
264–280

moves

advantages, 232

Chess, 221–222
disadvantages, 232

discrete, 161–162

Fox and Hounds, 164–165,
203–214, 233–234

hybrid AI, 221

implementation, 175–179

Minesweeper, 228–232,
234–239

applying, 231–232

basic numbers, 228

corner first move, 229

middle first move, 228–229

one square away from an

edge move, 229–230

one square diagonally away

from a corner move,

230–231

optimization, 219–221

overview of, 217–219

projects, 232

safe, 110, 120–121

Twixt, 222–228
multiple-transition review,

FSMs (finite state machines),

47–49

music, emotions, 287–288

MustInherit keyword, 60

MustOverride keyword, 60

mutation, 349

N
Name property, 7, 265

naming objects, 7

nashes/kvell, 286. See also
emotions

navigation

A*, 331

Visual Basic, 3–17

NearNeighbor function, 112

NearNeighbors function, 90

need for rules, 119–121

needs models, 307–325

NeedsSome() function, 318

neighbors, 90–92

Fox and Hounds, 164–165
implementation, 175–179

two-square evaluation,

110–117

nested construct indentation, 88

networks

hierarchical task network

(HTN), 364–366

neural, 342–343, 343–347

New() function, 71, 259, 264

NewGame code, 85

NewGame routine, 93

New keyword, 60

New method, 194

New Project dialog box, 5

NextState string variable, 62

nodes, 341

optimization, 337

No Lookahead region, 197

non-adjacent squares, two-

square evaluation, 117–119

numbers

faking it, 128

floating-point, 90

on interfaces, 94

random generators, 89

NumericUpDown control, 12, 26

O
object-oriented programming

(OOP), 52–53

objects

Collection, 60

FSMs (finite state machines),

53–55

machine, 54

monster, 54

naming, 7

state, 54

transitions, 54

Type, 64

occupations, Day in the Life
project, 132–134

odds

computation, 126–128

faking it, 128

precomputing, 127–128

using, factors to consider,

129–130

optimization

moves, 219–221

nodes, 337

oracles, 345

order and chaos, emergent

behavior, 246–247

Orkin, Jeff, 360–361

P
PaintTheTrim(somecolor)

method, 53

parent classes, 60

paths, A*, 329–339

people

Day in the Life project,
134–135

fun, 287

People button, 320

performance, 267

A*, 331

personalities, models, 299

Person class, 316–325

perspective, cameras, 294

physics, 251

382 Index

pixels, absolute, 257

placement

of controls, 8, 24

of mines, 109

planning, 356–358

goal-oriented action planning

(GOAP), 361–363

hierarchical task networks

(HTNs), 365

players

interfaces, enabling, 189–197

views, 294. See also views

PlayingField class, 88

playing fields, 79–80

initialization, 86

squares, adding, 82–84

PlayingField.vb file, 237

playing Minesweeper,
92–98

plot, 291–292

precomputing, 127–128

paths, 330. See also A*

predictions, Monte Carlo

methods, 126–127

primitive tasks, 364

Private keyword, 53

probabilistic systems

analysis, 130

design, 130

probabilistic systems, 125

advantages, 130

disadvantages, 130–131

productive guesses, 119

programming, 52–53. See also
code

projects, 22–40

Day in the Life, 131–148
emotions, 302–328

Fox and Hounds, 163–214
FSMs (finite state machines),

52–73

hit point calculator, 5–17

mines, 80

Minesweeper, 79–121
MonsterAI, FSMs (finite state

machines), 55–73

moves, 232

running, 16

Thermostat, 23–40

analysis, 30–32

implementation, 32–39

state of the art, 39–40

properties

BackColor, 11, 26

BorderStyle, 26

Done, 76

Name, 7

ScrollBars, 100

Properties window, 6

pruning, 153–154

heuristics, 154–157

public arrays, 32

public interfaces

adding, 58

AI, 199–200

Public keyword, 53, 58, 175

Public Methods region, 191

PublicStuff region, 269

Pythagoras theorem, 333

Q
Quake, 2
quality, interactivity, 2

questions, answers to review,

371–376

R
Rabin, Steve, 366

race conditions, 47

radio buttons, 37

character class, adding, 10

Mage, 15

random events, Monte Carlo

methods, 127

random number generators, 89

random systems, 125

advantages, 130

analysis, 130

design, 130

disadvantages, 130–131

rates, frames, 264, 267

read-only access, 262

realism, balancing, 253

real-time constraints, 253

refactoring, 22

reforming lines, 161

regions, 58

AI Related, 237

No Lookahead, 197

Public Methods, 191

PublicStuff, 269

reinforcement of emergent

behavior, 247–248

relationships

classifiers, 344

models, 307–325

representation, knowledge (KR),

25, 162

resources, 366–367

REST, 351

results, Day in the Life project,

147–148

Revealed variable, 95

rich script libraries, 365

roads, Cars and Trucks,
258–264

Rock Band occupation, Day in
the Life project, 133–134

routines

AI, 200–203

ColorMe, 173

IncrementMineCount,

adding, 86

Matches, 104

NewGame, 93

rules, loading, 107

rule-based systems, 75

advantages, 78

AI implementation, 99–121

analysis, 77–78

design, 77–78

disadvantages, 78–79

implementation, 79–99

Minesweeper project, 79–121
overview of, 75–77

RuleOne class, 104

rules

design, 101–106

need for, 119–121

routines, loading, 107

for single-square evaluation,

103–106

testing, 106

for two-square evaluation,

108–110

RuleTwoNear class, 118

running

Minesweeper, 92–98
projects, 16

Index 383

S
safe moves, 110, 120–121

safety features, adding to

Minesweeper, 98–99
Schadenfreude, 286. See also

emotions

scrollbars

disabling, 266

enabling, 266

vertical, adding, 100

ScrollBars property, 100

searching

A*, 329–339

direction of, 362

selection criteria, 348, 349

sequences, heuristics, 159

serious fun, 287

set-back thermostat interface, 34

shortcuts, 88

simple behaviors, 245–246

simplicity, 20

Sims, The, 298
simulated people, Day in the

Life project, 134–135

simulations

Day in the Life project, 132
Monte Carlo methods,

126–127

single-square evaluation, rules

for, 103–106

single-transition review, FSMs

(finite state machines),

45–47

skill sets, emotions, 297

sliders, emotions, 299

slow feedback, 249–250

Solution Explorer, 6

sophistication, 20

Source Safe, 6

speed, 276

speed, thinking, 251

Spore, 350
Square class, 80

squares, 80–82

graphical, 179–180

mines, transforming into,

84–90

non-adjacent, two-square

evaluation, 117–119

playing field, adding, 82–84

Stanford Research Institute

Problem Solver (STRIPS),

358–360

starting debugging, 16

statements

debugging, 195

End Class, 67, 72

End Function, 67

If, 88

states

of the art Thermostat project,

39–40

Attack, 61

child classes, 61

classifiers, 344

concurrent, 50

emotions, 297–301

explosion, 50

finite state machines (FSMs),

298

Flee, 61

FSMs (finite state machines).

See FMS

games, 166–167

implementation, 180–188

support for user interfaces,

191–194

Hiding, 61, 69

modification, 85

objects, 54

statistics, 103

steering behaviors, 253–255

stopping debugging, 16

storage, Day in the Life project,
137

Street occupation, Day in the
Life project, 133

Stunt Show occupation, Day in
the Life project, 133

subversion, 6

support

for user interfaces, 191–194

Visual Basic, 3–4

surprise, 286. See also emotions

T
temporal differences (TD), 342

termination characters, 28

testing

Cars and Trucks, 264

flight, 248

rules, 106

text boxes, 4

texturing, 290–291

Thermostat project, 23–40

analysis, 30–32

implementation, 32–39

state of the art, 39–40

thinking speed, 251

ThoughtsTextBox control, 59

Tic-Tac-Toe, 152–155
discrete moves, 161–162

tie, 152

tiles, blank, 84

Timer control, 265

timers, 257, 267

timing, emergent behavior, 248

Toolbox window, 258

tools, emotions, 285

top-down evaluation, 351–352

training, 341–342

transition-check method, 54

transitions

child classes, 61

disambiguation, 72

explosions, 51–52

FSMs (finite state machines),

43

multiple-transition review,

47–49

single-transition review,

45–47

initialization, 62

objects, 54

transportation graphs, 332, 336

trees, behavior, 349–351

advantages, 354–355

planning, 356–358

Twixt, 222–228
two-square evaluation

neighbors, 110–117

non-adjacent squares, 117–119

rules for, 108–110

Type objects, 64

U
underscore (_) continuation

character, 89

unknown value, 152

UNREACHABLE constant, 168

384 Index

updates

animation loops, 250

functions, 50

methods, 54

user interfaces

AI connections, 198–199

Board class, 190–191

emotions, 309–310

enabling, 189–197

game boards, 174–175

support, 191–194

V
values

child, 349

variables, assigning, 88

variables

arrays, denoting, 32

Boolean, 95

contents, 85

genetic algorithms, 348

NextState string, 62

Revealed, 95

values, assigning, 88

Vehicle class, 259, 269

vehicles, Cars and Trucks,
258–264

versions, 6

vertical scrollbars, adding, 100

victory, 152

viewing

projects, 6

safe moves, 110

views

cameras, 294. See also
cameras

design, 270

Visual Basic

automatic garbage

collection, 116

hit point calculator project,

5–17

navigating, 3–17

Toolbox window, 258

W
walls, camera angles, 295

Watson Research Center,

342

Web sites, 366

Wikimedia Commons, 153

wikipedia.com, 366

windows

Error List, 67

Properties, 6

Toolbox, 258

Windows operating system

applications, 4

Wing Commander, 287
wonder, 286. See also emotions

wrapper functions, adding,

28

writing hard-coded AI, 19–22

Index 385

License Agreement/Notice of Limited Warranty
By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of
limited warranty, you cannot agree to the terms and conditions set forth, return the
unused book with unopened disc to the place where you purchased it for a refund.

License
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc.
You are licensed to copy the software onto a single computer for use by a single user and to a
backup disc. You may not reproduce, make copies, or distribute copies or rent or lease the
software in whole or in part, except with written permission of the copyright holder(s). You may
transfer the enclosed disc only together with this license, and only if you destroy all other copies
of the software and the transferee agrees to the terms of the license. You may not decompile,
reverse assemble, or reverse engineer the software.

Notice of Limited Warranty
The enclosed disc is warranted by Course Technology to be free of physical defects in
materials and workmanship for a period of sixty (60) days from end user’s purchase of the
book/disc combination. During the sixty-day term of the limited warranty, Course Technology
will provide a replacement disc upon the return of a defective disc.

Limited Liability
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST
ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL
COURSE TECHNOLOGY OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES,
INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL
CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS
INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF COURSE TECHNOLOGY
AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY
OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties
COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL
OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES
OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR
FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF
IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other
This Agreement is governed by the laws of the State of Massachusetts without regard to choice of
law principles. The United Convention of Contracts for the International Sale of Goods is
specifically disclaimed. This Agreement constitutes the entire agreement between you and
Course Technology regarding use of the software.

	Contents
	Introduction
	Chapter 1 What Is Game AI?
	An Introduction to Visual Basic
	Getting Visual Basic
	The Hit Point Calculator Project

	Chapter Summary
	Chapter Review
	References

	Chapter 2 Simple Hard-Coded AI
	The Good, the Bad, and the Ugly
	The Good
	The Bad
	The Ugly

	Projects
	A Simple Thermostat
	Analysis
	A More Sophisticated Implementation
	State of the Art

	Chapter Summary
	Chapter Review
	Exercises

	Chapter 3 Finite State Machines (FSMs)
	What Are FSMs?
	Design and Analysis
	Single-Transition Review
	Multiple-Transition Review
	Complexity
	Failure Modes

	Projects
	A Brief Foray into Object-Oriented Programming
	FSM Objects
	Creating the MonsterAI Project

	Chapter Summary
	Chapter Review
	Exercises
	References

	Chapter 4 Rule-Based Systems
	What Is a Rule-Based AI?
	Design and Analysis
	Advantages
	Disadvantages
	The Minesweeper Project
	Implementing the Basic Game
	Implementing the AI

	Chapter Summary
	Chapter Review
	Exercises
	References

	Chapter 5 Random and Probabilistic Systems
	Can That Be AI?
	Computing the Odds
	Monte Carlo Methods
	Precomputing
	Faking It

	Using the Odds: Factors to Consider
	Design and Analysis
	Advantages
	Disadvantages
	The Day in the Life Project
	The Simulation
	Occupations
	The Simulated People
	Complexity
	Implementing the Basic Game
	Implementing the AI
	Finishing the Code
	Results

	Chapter Summary
	Chapter Review
	Exercises
	References

	Chapter 6 Look-Ahead: The First Step of Planning
	Evaluation Functions
	Pruning
	Heuristics
	Complexity Without Heuristics
	Complexity with the Line Heuristics
	Complexity with Depth-Limit Heuristics
	Drawbacks to Heuristics

	Discrete Moves
	Knowledge Representation
	Advantages to Look-Ahead
	Disadvantages
	Applicability
	The Fox and Hounds Project
	Moves and Neighbors
	What Is Needed for Game State?
	Evolution of the Evaluation Function
	Game Board User Interface
	Implementing Moves and Neighbors
	Graphical Squares
	Implementing Game State
	Board Code
	Enabling the Player’s User Interface
	Adding the AI

	Chapter Summary
	Chapter Review
	Exercises
	References

	Chapter 7 Book of Moves
	This Seems Familiar
	Killer Moves
	Hybrid AI
	Chess
	Twixt
	Minesweeper

	Advantages
	Disadvantages
	Projects
	Fox and Hounds
	Minesweeper

	Chapter Summary
	Chapter Review
	Exercises
	References

	Chapter 8 Emergent Behavior
	Give My Creature ALife!
	Proven Recipes
	Interaction
	Simple Behaviors
	Between Order and Chaos
	Feedback and Control
	Reinforcement
	Timing

	Beyond Steering
	Advantages
	Disadvantages
	The Cars and Trucks Project
	The Road and the Vehicles
	Movement and Animation

	Chapter Summary
	Chapter Review
	Exercises
	References

	Chapter 9 Evoking Emotions on the Cheap
	What Emotions Do Popular Games Invoke?
	Music
	Mood
	Clothing
	Lighting
	Texturing

	Plot
	Camera
	A Wide Skill Set
	Modeling Emotional States
	Advantages
	Disadvantages
	Projects
	Using Action States for Emotion States
	Using a Separate FSM for Emotions
	Modeling Needs and Relationships

	Chapter Summary
	Chapter Review
	Exercises
	References

	Chapter 10 Topics to Pursue from Here
	A* Path Finding
	An A* Example
	Details in the Lists
	Caveats

	Machine Learning
	Training
	Why Don’t These Methods Get Used in Games?
	Neural Networks
	Genetic Algorithms

	Behavior Trees
	Top-Down Evaluation
	Bottom-Up Evaluation
	Advantages

	Planning
	STRIPS
	GOAP
	HTN

	Resources
	Chapter Summary
	Chapter Review
	Exercises
	References

	Appendix: Answers to Chapter Review Questions
	Chapter 1: What Is Game AI?
	Chapter 2: Simple Hard-Coded AI
	Chapter 3: Finite State Machines (FSMs)
	Chapter 4: Rule-Based Systems
	Chapter 5: Random and Probabilistic Systems
	Chapter 6: Look-Ahead: The First Step of Planning
	Chapter 7: Book of Moves
	Chapter 8: Emergent Behavior
	Chapter 9: Evoking Emotions on the Cheap
	Chapter 10: Topics to Pursue from Here

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

