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Preface

Smart communication, computing, sensing, and actuation devices are increasingly
permeating through our world in an unstoppable manner. These technological
advances are fostering the emergence of a variety of large-scale networked systems
and applications, including multivehicle networks, the smart grid, smart buildings,
medical device networks, intelligent transportation systems, and social networks.
It has been an efficient practice to abstract these complex systems as multi-agent
networks. In particular, each agent in the network represents a strategic entity and is
able to communicate, sense, compute, and autonomously react to surrounding
changes. The interactions among the agents allow them to solve problems beyond
their individual capabilities, resulting in a whole that is certainly more than the sum
of its parts.

In order to ensure that the network performs at an optimal level, agents face the
problem of choosing the best option among a set of candidates. Distributed opti-
mization-based control (DOC, for short) provides a holistic and mathematically
rigorous framework to entail network-wide optimal decision making and control. In
particular, desired network-wide behavior is encoded as a DOC problem where
agents seek for different subobjectives and are required to obey inhomogeneous
constraints of physical dynamics and decision choices. This class of problems is
characterized by a number of salient features. First, the network consists of a large
number of geographically distributed agents. Second, due to information privacy,
the agents may not be willing to disclose their own components which define the
DOC problem. Third, the agents are expected to self-adapt to internal faults and
external changes. Given these features, the top-down frameworks in classic cen-
tralized and hierarchical approaches are not well suited for the needs of DOC.
It necessitates bottom-up paradigms, i.e, the synthesis of distributed algorithms
which allow the agents to coordinate with others via autonomous actions and local
interactions resulting into an emerging network-wide behavior that globally opti-
mizes the problem of interest. Bottom-up paradigms are characterized by that the
desired global behavior emerges from local actions and interactions.

In a number of engineering applications, agents are required to operate in
dynamically changing, uncertain, and hostile environments. Take multivehicle
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networks as an example. Due to a limited communication bandwidth, underwater
vehicles can only exchange information intermittently and thus intervehicle
communication topologies frequently change over time. Ground vehicles may be
commanded to perform surveillance missions in a region where the environmental
information is not provided in advance. In addition, aerial vehicles operate far away
from base stations and thus can be compromised by human adversaries who may
attack the cyber infrastructures. In order to ensure the high performance and high
confidence of multi-agent networks, DOC should explicitly take into account the
unforeseeable elements during the algorithm design and performance analysis.

An Outline of the Book

This book aims at a concise and in-depth exposition of specific algorithmic solu-
tions for DOC and their performance analysis. We focus on addressing the par-
ticular challenges induced by the environmental complexities: topological
dynamics, environmental uncertainties, and cyber adversaries via integrating mis-
cellaneous ideas and tools from Dynamic Systems, Control Theory, Graph Theory,
Optimization, Game Theory, and Markov Chains. To achieve this goal, we organize
the book in the following way:

Chapter 1 presents a summary of mathematical tools for DOC used in this book.
We start with the consensus problem, a canonical problem in multi-agent networks.
In particular, we introduce the matrix representation of multi-agent networks as well
as the algorithms and convergence results for static and dynamic average consen-
sus. After this, we present a concise introduction to convex optimization and
noncooperative game theory. We conclude with a treatment of Markov chains and
stochastic stability.

Chapter 2 studies a class of generic distributed convex optimization problems. In
particular, each agent is associated with a private objective function and a private
convex constraint set. Meanwhile, all the agents are subject to a pair of global
inequality and equality constraints. The key feature of the problem is that all the
component functions depend upon a global decision variable. The agents aim to
agree upon two global quantities: (1) a global minimizer of the sum of all private
objective functions, simultaneously enforcing all the given constraints; (2) the
induced optimal value.

Chapter 3 investigates a game theoretic solution of an optimal sensor deploy-
ment problem. In particular, a set of mobile visual sensors are self-deployed in a
geographically extended environment to accomplish a variety of Intelligence,
Surveillance and Reconnaissance (ISR) missions, such as environmental monitor-
ing, source seeking, and target assignment. The key feature of the problem is that
the environmental distribution function is unknown a priori but its values can be
measured on site.

Chapter 4 considers attack-resilient distributed formation control of operator-
vehicle networks. Through communication infrastructures, human operators
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remotely control a group of vehicles such that the vehicle team is able to finish the
given cooperative mission, e.g., formation achieving. The key feature of the
problem is that the communication network is compromised by external cyber
attackers who aim to abort the cooperative mission.

The Intended Audience

The intended audience of the book consists of first-year or second-year graduate
students in Control, Robotics, Decision Making, Optimization, and Distributed
Algorithms from Aerospace Engineering, Computer Science, Electrical
Engineering, Mechanical Engineering, and Operations Research. The students are
assumed to have a basic background in Mathematical Analysis, Probability Theory,
Stochastic Processes, Control Theory, Decision Theory, and Numerical
Computation. Yet we hope that the students who do not have a sufficient back-
ground can still capture essential ideas. The researchers in Control, Robotics,
Decision Making, Optimization, and Distributed Algorithms may also find the book
useful as a reference.
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Chapter 1
Preliminaries

In this chapter, we present a set of instrumental results for DOC. In particular, we
introduce the so-called consensus problem, which can be considered to be the sim-
plest DOC problem. This will be followed by a concise introduction to convex opti-
mization and noncooperative game theory. At the end of this chapter, we summarize
a set of results for Markov chains and their stochastic stability.

1.1 Basic Notations

We introduce a set of basic notations which will be used throughout the book. R
represents the set of real numbers and Z+ stands for the set of nonnegative integers.
‖ · ‖ is the 2-norm in the Euclidean space. We let the function [·]+ : Rs → R

s≥0
denote the projection operator onto the nonnegative orthant in R

s . For any vector
c ∈ R

r , we denote |c| � (|c1|, . . . , |cr |)T . 1N is the vector in RN with all ones.
The affine hull of set S is defined as aff(S) � {θ1x1 + · · · + θk xk | xi ∈ S, θ1 +

· · ·+ θk = 1}. The convexhull of set S is defined as co(S) � {θ1x1 + · · ·+ θk xk | xi ∈
S, θi ≥ 0, θ1 + · · · + θk = 1}. Given a set S, diag(S) � {(i, j) ∈ S × S | i �= j}.

1.2 The Consensus Problem

The consensus problem addresses the question of how agents can agree upon a quan-
tity of interest via a distributed algorithm involving local agent computations and
interagent communications. One can view the consensus problem as the simplest
DOC problem, where the agents aim to minimize their maximum deviation from
agreement. The study on consensus is beneficial for understanding how information
constraints limit or not the attainment of networkwide objectives. Further, consensus
algorithms serve as building blocks of more sophisticated protocols; e.g., distributed

© The Author(s) 2015
M. Zhu and S. Martínez, Distributed Optimization-Based Control
of Multi-Agent Networks in Complex Environments, SpringerBriefs in Control,
Automation and Robotics, DOI 10.1007/978-3-319-19072-3_1
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2 1 Preliminaries

estimation, formation control, and task assignment. A special case of particular
interest, namely distributed average consensus (or distributed averaging), aims to
compute the average of the values generated by different agents.

1.2.1 Algebraic Graph Theory

We review next some basic notions of algebraic graph theory following standard
texts as [1, 2]. This will help us formulate the consensus problem and its algorith-
mic solutions.

A directed weighted graph of order N is defined as G � (V,E , A), where V
is a finite set of N elements or nodes, E ⊂ V × V \ diag(V ) is a set of ordered
pairs of nodes called the edge set, and A � [ai

j ] ∈ R
N×N is the adjacency matrix

with entries ai
j ≥ 0 or weight assigned to the pair ( j, i) ∈ V × V \ diag(V ). Here,

ai
j > 0 if and only if ( j, i) ∈ E . The in-neighbors of node i are the nodes in the

set Ni � { j ∈ V | ( j, i) ∈ E and j �= i}. Node j is called an out-neighbor of
node i if i ∈ N j . A directed graph G is said to be undirected if (i, j) ∈ E implies
( j, i) ∈ E . When clear from the context, we will use the notation G = (V,E ) for
a directed weighted graph and refer to it as a digraph. A path of G is an ordered
sequence of nodes such that any pair of consecutive nodes in the sequence is an
edge of the graph. A directed weighted graph G is said to be strongly connected if,
for any pair of i, j ∈ V , there is a path connecting i and j . For undirected graphs,
strong connectivity is simply referred to as connectivity. Figure1.1 is an illustrative
example of a directed weighted graph which is also strongly connected. Here, an
edge ( j, i) is represented by an arrow from j to i . For undirected graphs, a pair of
arrows between two nodes can be replaced by a simple link. A directed tree is a
digraph where any two nodes are connected by exactly one path. A spanning tree

Fig. 1.1 An illustrative
example of a directed
weighted graph which is
strongly connected
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1.2 The Consensus Problem 3

of a digraph is a directed tree formed by graph edges that connect all the nodes of
the graph.

1.2.2 Network Model

Weconsider a set of agents labeled by i ∈ V � {1, . . . , N }. Agent interactions at time
k ≥ 0 are modeled by means of a directed weighted graph G (k) � (V,E (k), A(k)).
Therefore, these interactions can potentially change over time. In the following, we
make the following assumptions on the network graphs or interaction topologies:

Assumption 1.1 (Nondegeneracy) There exists a constant α > 0 such that ai
i (k) ≥

α, and ai
j (k), for i �= j , satisfies ai

j (k) ∈ {0} ∪ [α, 1], for all k ≥ 0.

Assumption 1.2 (Double stochasticity) It holds that
∑

j∈V ai
j (k) = 1 for all i ∈ V

and k ≥ 0, and
∑

i∈V ai
j (k) = 1 for all j ∈ V and k ≥ 0.

Assumption 1.3 (Periodic strong connectivity) There is an integer B > 0 such that,
for all k0 ≥ 0, the directed graph (V,

⋃B−1
k=0 E (k0 + k)) is strongly connected where

⋃B−1
k=0 E (k0 + k) � E (k0) ∪ E (k0 + 1) · · · ∪ E (k0 + k).

Intuitively speaking, the weight ai
j (k) is a measure of the influence exerted

by agent j onto the computation of agent i at time k. With this, the nondegen-
eracy Assumption1.1 indicates that the influence of any neighbor onto agent i is
nontrivial. The double stochasticity Assumption1.2 then means that the total influ-
ence of agent i’s in-neighbors is identical to that of agent i’s out-neighbors. This
assumption is necessary for achieving the average consensus; otherwise, the constant
sum property (1.2) does not hold. The periodic strong connectivity Assumption1.3
essentially means that any agent i can influence any other agent j �= i nontrivially
in a finite time.

1.2.3 The Static Average Consensus Problem

We consider here the static average consensus problemwhere agents aim to converge
to the average of their initial states xi (0) ∈ R. The classicDistributed Averaging
Algorithm solves this problem employing a memoryless diffusion process: at each
time instant, each agent receives the current estimates from neighbors and updates
its own estimate by a value in the convex hull of all of them. More precisely, the
update rule for agent i is given by:

xi (k + 1) =
∑

j∈V

ai
j (k)x j (k), k ≥ 0, (1.1)
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Fig. 1.2 Illustration of one iteration of theDistributed Averaging Algorithm. On the left, the
agent with the red estimate computes a value (marked with a star) in the convex hull of neighbors’
estimates. On the right, the set of updates (marked with stars) for all agents are in the convex hull
of their initial values

see Fig. 1.2. Here, wewould like to provide an intuition of whyDistributed Aver-
aging Algorithm (1.1) converges asymptotically. Notice that a property of the
algorithm is that it maintains the sum of initial values constant all the time; i.e., the
following holds for all k ≥ 0:

∑

i∈V

xi (k) =
∑

i∈V

xi (0), (1.2)

and the maximum deviation diminishes; i.e.,

lim
k→+∞ D(k) = 0, (1.3)

where D(k) � M(k)−m(k)with M(k) � maxi∈V xi (k) and m(k) � mini∈V xi (k).
Property (1.2) trivially holds under the double stochasticity Assumption1.2. The
combination of the nondegeneracy Assumption1.1 and the periodic strong connec-
tivity Assumption1.3 ensures that at any time instant k, the value of agent i with
xi (k) = M(k) can reach agent j with x j (k) = m(k) within next (N − 1)B itera-
tions. The nondegeneracy Assumption1.1 further ensures that D(k + (N − 1)B) is
smaller than D(k) by a constant factor and thus D(k) decreases at an exponential
rate. The convergence result is formally stated in the following theorem:

Theorem 1.1 Let the nondegeneracy Assumption1.1, the double stochasticity
Assumption1.2 and the periodic strong connectivity Assumption1.3 hold.
Then, the Distributed Averaging Algorithm converges asymptotically as

characterized by lim
k→+∞ ‖xi (k) − 1

N

∑

j∈V

x j (0)‖ = 0, for all i ∈ V .

Remark 1.1 In other words, the previous theorem guarantees that the average con-
sensus value is reached. If this requirement is relaxed; i.e., the consensus value does
not have to be necessarily the average of the initial states, then property (1.2) is
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not necessary and the double stochasticity Assumption1.2 in Theorem1.1 can be
weakened into the following row stochasticity:

Assumption 1.4 (Row stochasticity) It holds that
∑

j∈V ai
j (k) = 1 for all i ∈ V

and k ≥ 0.
•

Next, let us examine the convergence rate of the Distributed Averaging

Algorithm. Consider the disagreement function V (x) �
∑

i∈V

(xi − 1

N

∑

j∈V

x j )2.

The following theorem establishes that the convergence time of the Distributed
Averaging Algorithm is of order ( N2

α
)B.

Theorem 1.2 ([3]) Let the nondegeneracy Assumption1.1, the double stochasticity
Assumption1.2, and the periodic strong connectivity Assumption1.3 hold. Then, there
is a constant c > 0 such that for any ε > 0, the following holds for the Distributed
Averaging Algorithm:

V (x(k)) ≤ εV (x(0)), ∀k ≥ c

(
N 2

α

)

B log

(
1

ε

)

.

In particular, if one chooses ai
j (k) = 1

|Ni (k)| , then α ≥ 1
N and the convergence time

in Theorem1.2 is of order N 3B. If the network topology is fixed; i.e., A(k) = A
for all k ≥ 0, the convergence rate can be alternatively characterized in terms of
the eigenvalues of A. Let λ1, λ2, . . . , λN be the set of eigenvalues of A, sorted
by nonincreasing magnitudes. The double stochasticity Assumption1.2 implies that
λ1 = 1 with associated eigenvector 1N . As [4, 5], we define a convergence rate for
Distributed Averaging Algorithm (1.1) as follows:

ρ � sup
x(0)/∈ diagRN

lim
k→+∞

(‖x(k) − 1
N

∑
j∈V x j (0)1N ‖

‖x(0) − 1
N

∑
j∈V x j (0)1N ‖

) 1
k

.

The following theorem identifies the relation between the convergence rate of
Distributed Averaging Algorithm and the essential spectral radius of A:
ρess(A) � max{|λ2|, |λN |}.
Theorem 1.3 ([4, 5]) It holds that ρess(A) < 1.

1.2.4 The Dynamic Average Consensus Problem

Avariety ofmissions require autonomous agents to operate in dynamic environments
where each agent is influenced by local time-varying signals. A fundamental problem
is how the agents distribute their real-time data over the network and further keep
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track of the average of individually measured time-varying signals. This problem
is referred to as the dynamic average consensus problem in opposition to the static
average consensus problem of the previous section.

To define a possible solution, consider that each agent synchronously measures
a local continuous signal ri : R → R at every integer multiple k = th of a time
unit h > 0. By induction, we define the nth-order difference of ri (k), for n ∈ N, as
follows. First, Δ(1)ri (k) ≡ Δri (k) � ri (k) − ri (k − h), for k ≥ 0. Then,

Δ(n)ri (k) = Δ(n−1)ri (k) − Δ(n−1)ri (k − h), n ≥ 2, i ∈ V .

In addition, we will denote Δ(n)rmax(k) = maxi∈V Δ(n)ri (k) and Δ(n)rmin(k) =
mini∈V Δ(n)ri (k) for n ≥ 2. The following is the nth-order Distributed Dynamic
Averaging Algorithm:

x [�]
i (k + h) =

∑

j∈V

ai
j (k)x [�]

j (k) + x [�−1]
i (k + h), � ∈ {2, . . . , n},

x [1]
i (k + h) =

∑

j∈V

ai
j (k)x [1]

j (k) + Δ(n)ri (k). (1.4)

The Distributed Dynamic Averaging Algorithm can be viewed as a cascade
of n-layer first-order Distributed Averaging Algorithm, where each layer
is subject to some external inputs and � is the layer index. In particular, for any
� ∈ {2, . . . , n}, the update rule ∑

j∈V ai
j (k)x [�]

j (k) + x [�−1]
i (k + h) at the �th layer

can be viewed as the Distributed Averaging Algorithm
∑

j∈V ai
j (k)x [�]

j (k)

subject to external inputs x [�−1]
i (k+h)which are the states of the (�−1)th layer.When

� = 1 and Δri (k) = 0, then the Distributed Dynamic Averaging Algorithm
reduces to the Distributed Averaging Algorithm. The double stochasticity
Assumption1.2 implies that the sums of time-varying signals are maintained at the
highest layer; i.e.,

∑

i∈V

x [n]
i (k + h) =

∑

i∈V

ri (k). (1.5)

On the other hand, the disagreement among x [�]
i for i ∈ V can be viewed as a

disturbance to the consensus operation on x [�+1]
i . The deviations among 	(n)ri (k)

for i ∈ V can be viewed as external inputs to the consensus operation on x [1]
i . By

the arguments of input-to-state stability; e.g., in [6–8], one can show that dynamic
average consensus is asymptotically achieved if lim

k→+∞ 	(n)ri (k) = 0.

Theorem 1.4 Let the nondegeneracy Assumption1.1, the double stocha-
sticity Assumption1.2, and the periodic strong connectivity Assumption1.3
hold. For all i ∈ V , choose initial states x [�]

i (0) = Δ(n−�)ri (−h) for � ∈



1.2 The Consensus Problem 7

{1, . . . , n − 1} and x [n]
i (0) = ri (−h). If lim

k→+∞ Δ(n)ri (k) = 0, then the nth-order

Distributed Dynamic Averaging Algorithm converges as characterized by
lim

k→+∞ ‖x [�]
i (k) − x [�]

j (k)‖ = 0, for all i, j ∈ V and � ∈ {1, . . . , n}.

Remark 1.2 Theorem1.4 can be readily extended to the case where ri (k) is a vector
by running the nth-order Distributed Dynamic Averaging Algorithm for
each dimension. •

1.3 Convex Optimization

This section provides a concise exposition of convex optimization. Our presentation
mainly follows the books [9–12].

1.3.1 Convex Analysis

A set X ∈ R
n is called convex if αx + (1 − α)y ∈ X , ∀x, y ∈ X and ∀α ∈ [0, 1].

That is, a set is convex if the line segment connecting any pair of two points in the set
belongs to the set. Examples of convex sets include lines, hyperplanes, cones, and
convex hulls.

A function f : X → R defined over a convex set X is convex if the following
holds for all x, y ∈ X and α ∈ [0, 1]:

f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y). (1.6)

That is, a function f is convex if the line segment connecting any pair of x and y
is above the portion of f between x and y. Any convex function is continuous. A
convex function f : X → R is called strictly convex if inequality (1.6) is strict for
∀x, y ∈ X with x �= y and ∀α ∈ (0, 1). The function f is concave if − f is convex.
Examples of convex functions include quadratic function and exponential function.
An affine function is both convex and concave. Readers are referred to [11] for the
ways to check the convexity of sets and functions.

Given nonempty, convex, and closed set X ∈ R
n , the projection operator onto

X , PX : Rn → X , is defined as PX [z] = argminx∈X‖x − z‖. Although PX is well-
defined for any nonempty, convex, and closed set X , the projection PX [z] is easy
to compute only for limited cases; e.g., X is a box or Euclidean ball. The following
lemma shows that the projection PX [z] is closer than z to any point y in X .

Lemma 1.1 (Nonexpansiveness property of projection operators) Let X be a non-
empty, closed, and convex set in R

n. For any z ∈ R
n, the following holds for any

y ∈ Z: ‖PX [z] − y‖2 ≤ ‖z − y‖2 − ‖PX [z] − z‖2.
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1.3.2 Constrained Optimization

Let us consider the following optimization problem:

min
x∈Rn

f (x), s.t. x ∈ X,

where f : R
n → R is the objective function and X ⊆ R

n is a constraint set.
A vector x∗ is referred to as a minimizer or global minimum of f over X if
f (x∗) = inf x∈X f (x). Correspondingly, f (x∗) is referred to as the optimal value.
The following Weierstrass’ Theorem provides a sufficient condition such that the
global minimum is achievable.

Theorem 1.5 (Weierstrass’ Theorem for continuous functions) If f is continuous
and X is compact, then there is at least one global minimum of f over X.

A vector x∗ is a local minimum of f over X if x∗ ∈ X and there is some ε > 0
such that f (x∗) ≤ f (x), ∀x ∈ X with ‖x − x∗‖ ≤ ε. In what follows, we will focus
on convex optimization problems; i.e., problems for which f and X are convex. The
convexity of f and X implies that all local minima are also global.

Proposition 1.1 If X is a convex set and f is a convex function, then any local
minimum of f over X is also a global minimum. If f is strictly convex, there is at
most one global minimum of f over X.

1.3.3 Duality Theory

Consider the following constrained optimization problem:

min
x∈X

f (x), s.t. g(x) ≤ 0, (1.7)

where X ⊂ R
n , f : X → R and g : X → R

r are all convex. We refer to (1.7) as the
primal problem and f ∗ as the primal optimal value with f ∗ = inf x∈X,g(x)≤0 f (x).

By duality, the constraint function g can be taken into account by augmenting
the objective function f with a weighted combination of f and g. We define the
Lagrangian function as L : X × R

r → R such that L (x, μ) � f (x) + μT g(x),
and we refer toμ as the Lagrange multiplier vector or Lagrange multiplier. The dual
function q : Rr → R is defined as follows:

q(μ) =
{
infx∈X L (x, μ), μ ≥ 0,

−∞, otherwise.

The dual function can be used to obtain a lower bound on the primal optimal value,
as it holds that q(μ) ≤ L (x, μ) for all x ∈ X and μ ∈ R

r and it can be seen that
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q(μ) ≤ f ∗. The best lower bound is obtained by solving the following dual problem:

max
μ≥0

q(μ), (1.8)

with optimal value q∗ referred to as the dual optimal value. The dual problem is
a convex optimization problem consisting of a concave q and a convex constraint
set. In particular, we have q∗ ≤ f ∗, which is known as the weak duality relation.
The following proposition provides necessary and sufficient conditions for strong
duality; i.e., q∗ = f ∗.

Theorem 1.6 (Optimality conditions) Consider problem (1.7). There holds that
f ∗ = q∗ and (x∗, μ∗) are a pair of primal and dual solutions for (1.7) and (1.8) if
and only if

• x∗ ∈ X;
• μ∗ ≥ 0;
• x∗ ∈ argminx∈XL (x, μ∗);
• μ∗

�g�(x∗) = 0, for all � ∈ {1, . . . , r}.
In Theorem1.6, the first and second conditions ensure the feasibility of the primal

and dual optimal solutions, respectively. The third condition indicates that the primal
optimal solution x∗ is a global minimizer of the Lagrangian function L given the
dual optimal solution μ∗. The fourth condition is referred to as the complementary
slackness; i.e., for any inactive constraint g�(x∗) < 0, the corresponding Lagrange
multiplier μ∗

� is equal to zero.
The notion of saddle point plays a key role in Lagrangian duality theory. Consider

a function φ : X × M → R where X and M are nonempty subsets of Rn and R
m ,

respectively. A pair of vectors (x∗, μ∗) ∈ X × M is called a saddle point of φ over
X × M if φ(x∗, μ) ≤ φ(x∗, μ∗) ≤ φ(x, μ∗) holds for all (x, μ) ∈ X × M .

Remark 1.3 Equivalently, (x∗, μ∗) is a saddle point of φ over X × M if and only if
(x∗, μ∗) ∈ X × M , and supμ∈M φ(x∗, μ) ≤ φ(x∗, μ∗) ≤ infx∈X φ(x, μ∗). •

The primal and Lagrangian dual optimal solutions can be characterized as the
saddle points of the Lagrangian function.

Theorem 1.7 (Lagrangian Saddle point Theorem) The pair of (x∗, μ∗) is a saddle
point of the Lagrangian function L over X × R

m≥0 if and only if it is a pair of pri-
mal and Lagrangian dual optimal solutions and the following Lagrangian minimax
equality holds:

sup
μ∈Rm≥0

inf
x∈X

L (x, μ) = inf
x∈X

sup
μ∈Rm≥0

L (x, μ).
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1.4 Noncooperative Game Theory

In this section, we will provide a brief presentation on game theory. The readers can
find a throughout introduction in [13–17].

Game theory can be divided into twomain categories: noncooperative game theory
[13] and cooperative game theory [18]. Noncooperative game theory analyzes the
interactions of a number of strategic decision-makers; i.e., players, where the players
may have partially or totally conflicting interests and their decisions jointly affect
the outcome of a decision process. Cooperative game theory studies situations where
players can cooperate to create value by forming coalitions, but also compete to
capture value.

Noncooperative games can be further grouped into static games and dynamic
games. In static games, the order of players’ decisions does not matter. In contrast,
the notion of time has a central role in dynamic games. Noncooperative games can
also be categorized into discrete and continuous games. In discrete games, each
player has a finite number of actions. Continuous games allow players to choose an
action from a continuous set. In the remainder of the book, we restrict our attention
to static discrete games.

A static discrete noncooperative game Γ � 〈V,A , U 〉 has three components:

1. A player set V enumerating players i ∈ V � {1, . . . , N }.
2. A finite action set A �

∏
i∈V Ai , which is the space of all action vectors,

where si ∈ Ai is the action of player i and a (multiplayer) action s ∈ A has
components s1, . . . , sN .

3. A collection of utility functions U = {ui : A → R}, where the utility function
ui models player i’s preferences over action profiles.

Denote by s−i the action profile of all players other than i , and byA−i �
∏

j �=i A j

the set of action profiles for all players except i . The concept of (pure) Nash equilib-
rium is the most important one in noncooperative game theory [15] and is defined as
follows.

Consider the static discrete noncooperative game Γ . An action profile s∗ �
(s∗

i , s∗−i ) is a (pure) Nash equilibrium (NE) of the game Γ if ∀i ∈ V and ∀si ∈ Ai ,
it holds that ui (s∗) ≥ ui (si , s∗−i ).

An action profile corresponding to aNash equilibrium represents a scenario where
no player can benefit from unilateral deviations. It is known that Nash equilibrium
exists for potential games [19] and, more generally, weakly acyclic games [20]. In
particular, in weakly acyclic games, for every action profile, there exists a better-
response improvement path leading from that action profile to a Nash equilibrium.
However, the existence of Nash equilibrium may not be true for a generic game. In
noncooperative games, players seek to maximize their own interest instead of the
social interest. Hence, a Nash equilibrium may not be identical to a social optimum.
The price of anarchy and price of stability concepts characterize the efficiency loss of
Nash equilibria [16, 21]. In particular, we can define a measure of efficiency of each
outcome which we call welfare function W : A → R. The price of anarchy is then
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defined as the ratio between the worst Nash equilibrium and the social optimum:

PoA = mina∈E W (a)

maxa∈A W (a)
,

where E ⊆ A is the set of Nash equilibria. The price of stability is defined as the
ratio between the best Nash equilibrium and the social optimum:

PoS = maxa∈E W (a)

maxa∈A W (a)
.

So it is clear that PoA ≤ PoS ≤ 1.

Remark 1.4 In this book, we restrict our attention to pure Nash equilibria. For two-
player matrix games, mixed Nash equilibrium always exists where each player can
choose probability distributions over its ownaction space [13]. For continuous games,
Nash equilibrium exists for supermodular games [22] and convex games [23]. In par-
ticular, supermodular games are those characterized by strategic complementarities
where, if one player increases action, the others want to do the same. For convex
games, Nash equilibrium exists if the utility function of each player is convex in its
own action and the action set of each player is compact. •

1.4.1 Potential Games

Potential games forman important class of strategic games. The static noncooperative
game Γ is an ordinal potential game if there exists a potential function φ : A → R

such that for every i ∈ V , s−i ∈ A−i , and si , s′
i ∈ Ai , it holds that

φ(si , s−i ) − φ(s′
i , s−i ) > 0 ⇔ ui (si , s−i ) − ui (s

′
i , s−i ) > 0. (1.9)

For ordinal potential games, the change in a player’s utility caused by a unilateral
deviation is aligned with that of a potential function. Exact potential games are a
special class of ordinal potential games where the change in a player’s utility caused
by a unilateral deviation can be exactly captured by a potential function. The static
noncooperative game Γ is an exact potential game if there exists a potential function
φ : A → R if for every i ∈ V , for every s−i ∈ A−i , and for every si , s′

i ∈ Ai , it
holds that

φ(si , s−i ) − φ(s′
i , s−i ) = ui (si , s−i ) − ui (s

′
i , s−i ). (1.10)

Congestion games are a special class of potential games [19]. In a congestion
game, the utility of each player depends on the resources it chooses and the number
of players choosing the same resource.
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1.4.2 Constrained Games

In conventional noncooperative game theory, all the actions in Ai can always be
selected by player i in response to other players’ actions. However, in the context of
motion coordination, the actions available to player i can often be constrained to a
state-dependent subset of Ai . For example, collision avoidance type of constraints
can be encoded this way. In particular, we denote by Fi (si , s−i ) ⊆ Ai the set of
feasible actions of player i when the action profile is s � (si , s−i ). We assume that
si ∈ Fi (si , s−i ) for any s ∈ A throughout this book. Denote F(s) �

∏
i∈V Fi (s) ⊆

A , ∀s ∈ A and F � ∪{F(s) | s ∈ A }. The introduction of F leads naturally to
the notion of constrained static noncooperative game, Γcons � 〈V,A , U, F〉, and
the following associated concepts. Consider the constrained static noncooperative
game Γcons. An action profile s∗ is a constrained (pure) Nash equilibrium of the
game Γcons if ∀i ∈ V and ∀si ∈ Fi (s∗

i , s∗−i ), it holds that ui (s∗) ≥ ui (si , s∗−i ). The
game Γcons is a constrained exact potential game with potential function φ(s) if for
every i ∈ V , every s−i ∈ A−i , and every si ∈ Ai , the equality (1.10) holds for every
s′

i ∈ Fi (si , s−i ).
With the assumption of si ∈ Fi (si , s−i ) for any s ∈ A , we observe that if s∗ is a

Nash equilibrium of the static noncooperative game Γ , then it is also a constrained
Nash equilibrium of the constrained static noncooperative game Γcons. Hence, any
constrained exact potential game with the assumption of si ∈ Fi (si , s−i ) for any
s ∈ A has at least one constrained Nash equilibrium.

1.5 Markov Chains

In this section, we provide a brief summary of results in the literature of Markov
chains [24] and their stochastic stability [20]. We refer the readers to [24] for a
comprehensive exposition to Markov chains.

A discrete-time Markov chain is a discrete-time stochastic process on a finite
(or countable) state space which satisfies the Markov property; i.e., the future state
depends on its present state, but not the past states. A discrete-time Markov chain
is said to be time-homogeneous if the probability of going from one state to another
is independent of the time when the step is taken. Otherwise, the Markov chain is
said to be time-inhomogeneous. Since time-inhomogeneous Markov chains include
time-homogeneous ones as special cases, we restrict our attention to the former in
the remainder of this section.

The evolution of a time-inhomogeneous Markov chain {Pk} can be described
by a transition matrix P(k) which encodes the probability of traversing from one
state to another at each time k. Consider a Markov chain {Pk} with time-dependent
transition matrix P(k) on a finite state space X . Denote by P(m, n) �

∏n−1
t=m P(k),

for all 0 ≤ m < n.
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The Markov chain {Pk} is strongly ergodic if there exists a stochastic vector μ∗
such that for any distribution μ on X and any m ∈ Z+, it holds that
lim

k→+∞ μT P(m, k) = (μ∗)T . Strong ergodicity of {Pk} is equivalent to {Pk} being
convergent in distribution and can be employed to characterize the long-run proper-
ties of Markov chains. The investigation of conditions under which strong ergodicity
holds is aided by the following concepts.

Given a matrix M , Mi j is the element at the i th row and the j th column. For
any n × n stochastic matrix P , its coefficient of ergodicity is defined by λ(P) �
1 − min1≤�,�′≤n

∑n
τ=1 min(P�τ , P�′τ ). The Markov chain {Pk} is weakly ergodic

if ∀x, y, z ∈ X , ∀m ∈ Z+, it holds that lim
k→+∞(Pxz(m, k) − Pyz(m, k)) = 0. Weak

ergodicity merely implies that {Pk} asymptotically forgets its initial state, but it
does not guarantee convergence. For a time-homogeneous Markov chain, there is no
distinction between weak ergodicity and strong ergodicity. The following theorem
provides the sufficient and necessary condition for {Pk} to be weakly ergodic.

Theorem 1.8 The Markov chain {Pk} is weakly ergodic if and only if there is a
strictly increasing sequence of positive numbers k�, � ∈ Z+ such that it holds that
+∞∑

i=0

(1 − λ(P(k�, k�+1))) = +∞.

We are now ready to present the sufficient conditions for strong ergodicity of the
Markov chain {Pk}.
Theorem 1.9 A Markov chain {Pk} is strongly ergodic if the following conditions
hold:

(C1) The Markov chain {Pk} is weakly ergodic.
(C2) For each k, there exists a stochastic vector μk on X such that μk is the left

eigenvector of the transition matrix P(k) with eigenvalue 1.

(C3) The eigenvectors μk in (C2) satisfy
+∞∑

k=0

∑

z∈X

‖μk
z − μk+1

z ‖ < +∞.

Moreover, if μ∗ = lim
k→+∞ μk , then μ∗ is the vector in the definition of strong

ergodicity.

1.5.1 Stochastic Stability

Let P0 be the transition matrix of the time-homogeneous Markov chain {P0
k } on

a finite state space X . Furthermore, let Pε be the transition matrix of a perturbed
Markov chain, say {Pε

k }.With probability 1−ε, the process {Pε
k } evolves according

to P0, while with probability ε, the transitions do not follow P0.
A family of stochastic processes {Pε

k } is called a regular perturbation of {P0
k }

if the following holds ∀x, y ∈ X :
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(A1) For some ς > 0, the Markov chain {Pε
k } is irreducible and aperiodic for all

ε ∈ (0, ς ].
(A2) lim

ε→0+ Pε
xy = P0

xy .

(A3) If Pε
xy > 0 for some ε, then there exists a real number χ(x → y) ≥ 0 such

that lim
ε→0+

Pε
xy

εχ(x→y)
∈ (0,+∞).

In (A3), χ(x → y) is called the resistance of the transition from x to y.
(A1) ensures that for ε ∈ (0, ς ], there is a unique stationary distribution of {Pε

k };
i.e., μ(ε)T Pε = μ(ε)T .

Let H1, H2, . . . , HJ be the recurrent communication classes of the Markov chain
{P0

k }. Note that within each class H�, there is a path of zero resistance from every
state to every other. Given any two distinct recurrent communication classes H� and
Hs , consider all paths which start from H� and end at Hs . Denote by χ�s the least
resistance among all such paths.

Now define a complete directed graph G where there is one vertex � for each
recurrent class H�, and the resistance on the edge (�, s) is χ�s . An �-tree on G is a
spanning tree such that from every vertex s �= �, there is a unique path from s to �.
Denote by G(�) the set of all �-trees on G . The resistance of an �-tree is the sum of
the resistances of its edges. The stochastic potential of the recurrent class H� is the
least resistance among all �-trees in G(�).

Theorem 1.10 Let {Pε
k } be a regular perturbation of {P0

k }. Then the limit
lim

ε→0+ μ(ε) exists and the limit distribution μ(0) is a stationary distribution of {P0
k }.

The stochastically stable states; i.e., the support of μ(0), are precisely those states
contained in the recurrence classes with minimum stochastic potential.

Markov chain {Pε
k } is obtained by perturbing {P0

k } and the perturbation magni-
tude is characterized by ε. Informally speaking, Theorem1.10 says that, as pertur-
bations diminish, the sequence of stationary probability distributions of perturbed
Markov chains converge and the support of the limit distribution is contained in the
recurrence classes of {P0

k } with minimum stochastic potential. It means that the
states of minimum stochastic potential of {P0

k } can be used to predict the behavior
of limit distributions of perturbed Markov chains.

1.6 Notes

Consensus roots in Computer Science and plays a fundamental role in parallel and
distributed computation [25]. The first consensus algorithm was proposed in [26].
Recently, the emergence of multi-agent networks has attracted researchers from
various engineering and scientific disciplines, yielding substantial generalizations
of the basic consensus algorithm. It is hard to provide a complete literature review
given the vast volume of papers devoted to consensus problems. Here we only
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list a set of representative papers concerned with different aspects of consensus.
The readers are referred to the survey papers [27, 28], the monographs [4, 29,
30] and the special issues [31–34] for more comprehensive literature review. In
particular, the papers [35, 36] study continuous-time consensus algorithms, and
the papers [37–39] instead focus on discrete-time consensus algorithms. In [40],
the authors discuss the asynchronous implementation of consensus algorithms. The
convergence rates of consensus algorithms are characterized in [3, 5, 41, 42]. Gossip-
based consensus algorithms are investigated in [43, 44]. The paper [45] treats the
problem of reaching the consensus state when it is constrained in some given con-
vex set and the paper [46] studies manifold consensus. The papers [47, 48] address
how to achieve consensus within a finite time, while the algorithm in [49] allows
agents to construct a balanced graph out of a non-balanced one in order to imple-
ment consensus algorithms. A number of issues on network unreliability have been
addressed, including quantization [50–52], transmission delays [53], event-triggered
scheduling [54], and limited data rate [55]. As with static average consensus, one can
find continuous-time and discrete-time solutions to the dynamic average consensus
problem. In continuous time, the early work of [56] provides a first type of algorithm
which is analyzed via frequency domain techniques, and which tracks ramp signals.
The approach presented in [57] considers a common reference input for all nodes
in the network. A PI dynamic consensus algorithm in continuous time is presented
in [58], which is extended in [59] to track a wider class of time-varying signals. An
interesting property of the algorithms of [58, 59] is their robustness to initializa-
tion errors, which allows algorithm adaptation to sporadically departing agents. The
paper [60] proposes a discontinuous control algorithm capable of tracking bounded
signals with bounded derivatives. Finally, [61] has introduced continuous-time algo-
rithms to solve a type of dynamic consensus algorithms for multiple vehicles under
limited control authority. Discrete-time approaches are more appealing as they can
usually handle larger discretization steps. These algorithms include the one presented
in this chapter, its extension to fast dynamic consensus [62], and their robustification
to errors initialization [63]. Finally, an event-triggered dynamic consensus algorithm
is introduced in [64].

New algorithms have significantly extended the application scope of consensus.
Some interesting examples include, to name a few, attitude alignment [65, 66], clock
synchronization [67], coverage control [68], opinion formation [69], oscillator syn-
chronization [70–73], parameter estimation [74], social learning [75], task assign-
ment [76–78], multi-vehicle formation control [30], biochemical networks [79],
ocean sampling [80, 81] and microgrid control [82]. The applications of dynamic
average consensus include multi-robot coordination [83], sensor fusion [56, 84, 85],
distributed spatial estimation [86, 87], feature-based map merging [88], and distrib-
uted tracking [89].
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Chapter 2
Distributed Cooperative Optimization

2.1 Introduction

In this chapter, we consider a general multi-agent optimization problem where the
goal is to minimize a global objective function, given as a sum of local objective
functions, subject to global constraints, which include an inequality constraint, an
equality constraint, and a (state) constraint set. Each local objective function is con-
vex and only known to one particular agent. On the other hand, the inequality (resp.
equality) constraint is given by a convex (resp. affine) function and known to all
agents. Each node has its own convex constraint set, and the global constraint set is
defined as their intersection. This problem is motivated by others in distributed esti-
mation [1, 2], distributed source localization [3], network utility maximization [4],
optimal flow control in power systems [5, 6], and optimal shape changes of mobile
robots [7]. An important feature of the problem is that the objective and (or) con-
straint functions depend upon a global decision vector. This requires the design of
distributed algorithms where, on one hand, agents can align their decisions through
a local information exchange and, on the other hand, the common decisions will
coincide with an optimal solution and the optimal value.

More precisely, we study two cases: one in which the equality constraint is absent,
and the other in which the local constraint sets are identical. For the first case,
we adopt a Lagrangian relaxation approach, define a Lagrangian dual problem and
devise theDistributed Lagrangian Primal- Dual Subgradient Algorithm
based on the characterization of the primal-dual optimal solutions as the saddle
points of the Lagrangian function. The Distributed Lagrangian Primal- Dual
Subgradient Algorithm involves each agent updating its estimates of the saddle
points via a combination of an average consensus step, a subgradient (or supgradient)
step, and a primal (or dual) projection step onto its local constraint set (or a compact
set containing thedual optimal set). TheDistributed Lagrangian Primal- Dual
Subgradient Algorithm is shown to asymptotically converge to a pair of primal-
dual optimal solutions under Slater’s condition and the periodic strong connectivity
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22 2 Distributed Cooperative Optimization

assumption. Furthermore, each agent asymptotically agrees on the optimal value by
implementing a Distributed Dynamic Averaging Algorithm (1.4), which
allows a multi-agent system to track time-varying average values.

For the second case, to dispense with the additional equality constraint, we adopt
a penalty relaxation approach, while defining a penalty dual problem and devising
the Distributed Penalty Primal- Dual Subgradient Algorithm. Unlike
the first case, the dual optimal set of the second case may not be bounded, and thus
the dual projection steps are not involved in the Distributed Penalty Primal-
Dual Subgradient Algorithm. It renders that dual estimates and thus (primal)
subgradients may not be uniformly bounded. This challenge is addressed by a more
careful choice of step-sizes. We show that the Distributed Penalty Primal-
Dual Subgradient Algorithm asymptotically converges to a primal optimal
solution and the optimal value under Slater’s condition and the periodic strong con-
nectivity assumption.

2.2 Problem Formulation

Consider a network of agents labeled by V � {1, . . . , N } that can only interact with
each other through local communication.

[Objective]We aim to synthesize distributed algorithmswhich allow themulti-agent group to
cooperatively solve the following optimization problem (Fig. 2.1):

min
x∈Rn

N∑

i=1

fi (x), s.t. g(x) ≤ 0, h(x) = 0, x ∈ ∩N
i=1Xi , (2.1)

where fi : Rn → R is the convex objective function of agent i , Xi ⊆ R
n is the compact and

private convex constraint set of agent i , and x is a global decision vector.

Here we assume that the projection onto the set Xi is easy to compute. Assume
that fi and Xi are private information of agent i , and probably different across agents.
The function g : Rn → R

m is known to all the agents with each component g�, for
� ∈ {1, . . . , m}, being convex. The inequality g(x) ≤ 0 is understood component
wise; i.e., g�(x) ≤ 0, for all � ∈ {1, . . . , m}, and represents a global inequality
constraint. The function h : Rn → R

ν , defined as h(x) � Ax − b with A ∈ R
ν×n ,

represents a global equality constraint, and is known to all the agents. We denote
X � ∩N

i=1Xi , f (x) �
∑N

i=1 fi (x), and Y � {x ∈ R
n | g(x) ≤ 0, h(x) = 0}.

We assume that the set of feasible points is nonempty; i.e., X ∩ Y �= ∅. Since X is
compact and Y is closed, then we can deduce that X ∩ Y is compact. The convexity
of fi implies that of f and thus f is continuous. In this way, the optimal value p∗
of the problem (2.1) is finite and X∗, the set of primal optimal points, is nonempty.
Throughout this chapter, we suppose the following Slater’s condition holds:

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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x ∈ XN

x ∈ X1

x ∈ X2 x ∈ X3

f1(x)

f2(x) f3(x)

fN(x)

min
x∈Rn

i∈V
fi(x)

g(x) ≤ 0, h(x) = 0

x ∈ ∩i∈VXi

Fig. 2.1 A graphical illustration of problem (2.1)

Assumption 2.1 (Slater’s Condition) There exists a vector x̄ ∈ X such that g(x̄) <

0 and h(x̄) = 0. And there exists a relative interior point x̃ of X such that h(x̃) = 0
where x̃ is a relative interior point of X ; i.e., x̃ ∈ X and there exists an open sphere
S centered at x̃ such that S ∩ aff(X) ⊂ X with aff(X) being the affine hull of X .

In this chapter, we will study two particular cases of Problem (2.1): one in which
the global equality constraint h(x) = 0 is not included, and the other in which all
the local constraint sets are identical. For the case where the constraint h(x) = 0 is
absent, the Slater’s condition2.1 reduces to the existence of a vector x̄ ∈ X such that
g(x̄) < 0. Our techniques rely on duality theory in Sect. 1.3.

2.2.1 Subgradient Notions and Notations

In this chapter, we do not assume the differentiability of the problem functions. At
the points where functions are not differentiable, the subgradient plays the role of the
gradient. For a given convex function F : Rr → R and a point x ∈ R

r , a subgradient
of the function F at x is a vector DF(x) ∈ R

r such that the following subgradient
inequality holds for any y ∈ R

r : DF(x)T (y − x) ≤ F(y) − F(x). Similarly, for
a given concave function G : R

s → R and a point μ ∈ R
s , a supgradient of

the function G at μ is a vector DG(μ) ∈ R
s such that the following supgradient

inequality holds for any λ ∈ R
s : DG(μ)T (λ − μ) ≥ G(λ) − G(μ).

http://dx.doi.org/10.1007/978-3-319-19072-3_1


24 2 Distributed Cooperative Optimization

2.3 Case (i): Absence of Equality Constraint

In this section, we study the case of problem (2.1) where the equality constraint
h(x) = 0 is absent; i.e.,

min
x∈Rn

N∑

i=1

fi (x), s.t. g(x) ≤ 0, x ∈ ∩N
i=1Xi . (2.2)

In the following,we first provide some preliminary results, including aLagrangian
saddle point characterization of the problem (2.2) and a superset containing the
Lagrangian dual optimal set of the problem (2.2). After this, the Distributed
Lagrangian Primal- Dual Subgradient Algorithm will be presented along
with a summary of its convergence properties.

Overall Strategy and Lagrangian Saddle Point Characterization

First, the problem (2.2) is equivalent to

min
x∈Rn

f (x), s.t. Ng(x) ≤ 0, x ∈ X,

with associated Lagrangian dual problem given by

max
μ∈Rm

qL(μ), s.t. μ ≥ 0.

Here, the function qL : Rm≥0 → R, is defined as qL(μ) � infx∈X L (x, μ), where
L : Rn × R

m≥0 → R is the Lagrangian L (x, μ) = f (x) + NμT g(x). We denote
the Lagrangian dual optimal value of the Lagrangian dual problem by d∗

L and the
set of Lagrangian dual optimal points by D∗

L . As is well-known, under the Slater’s
condition2.1, the property of strong duality holds; i.e., p∗ = d∗

L , and D∗
L �= ∅.

As explained in Theorem1.7, saddle points of the Lagrangian correspond to
min-max solutions of the primal and dual problems. Assume for simplicity that
the Lagrangian is differentiable and there are no other constraints than the ones
included already in the Lagrangian. Then, one can define an associated saddle point
dynamics (gradient descent in one argument and gradient ascent in the other) as
follows. Let Lμ : Rn −→ R be the function Lμ(x) := L (x, μ), for μ fixed, and
Lx : R

n −→ R be Lx (μ) := L (x, μ), for x fixed. Then, the continuous-time
saddle point dynamics is given as:

ẋ(t) = −∇Lμ(t)(x(t), μ(t)),

μ̇(t) = ∇Lx(t)(x(t), μ(t)). (2.3)

IfLμ(t) is convex andLx(t) is concave, these dynamics converge to a saddle point
of the Lagrangian from any initial and see [8]. The discrete-time counterpart can be

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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generalized for nondifferentiable Lagrangians and to include additional projections
over x ∈ X [9].

We would like to use a distributed discrete-time version of (2.3) for the multi-
agent system by defining related and separated problems for each agent, which then
are globally coordinated through a consensus algorithm. To do this, note that, while
Lx is naturally separable as a sum of factors fi (x) + g(x) for each agent, the dual
function qL is not. Then, our strategy will be to define certain sets Mi for each agent
that contain the dual solution set, and, which used with a projection operation on Mi ,
can converge to a saddle point and a min-max solution.

This following lemma presents some preliminary analysis of saddle points toward
this objective.

Lemma 2.1 (Preliminary results on saddle points) Let M be any superset of D∗
L .

(a) If (x∗, μ∗) is a saddle point of L over X ×R
m≥0, then (x∗, μ∗) is also a saddle

point of L over X × M.
(b) There is at least one saddle point of L over X × M.
(c) If (x̌, μ̌) is a saddle point of L over X × M, then L (x̌, μ̌) = p∗ and μ̌ is

Lagrangian dual optimal.

Proof (a) It just follows from the definition of saddle point of L over X × M .
(b) Observe that

sup
μ∈Rm≥0

inf
x∈X

L (x, μ) = sup
μ∈Rm≥0

qL (μ) = d∗
L , inf

x∈X
sup

μ∈Rm≥0

L (x, μ) = inf
x∈X∩Y

f (x) = p∗.

Since the Slater’s condition2.1 implies zero duality gap, the Lagrangian minimax
equality holds. From Theorem1.7 it follows that the set of saddle points of L over
X × R

m≥0 is the Cartesian product X∗ × D∗
L . Recall that X∗ and D∗

L are nonempty,
so we can guarantee the existence of the saddle point ofL over X × R

m≥0. Then by
(a), we have that (b) holds.
(c) Pick any saddle point (x∗, μ∗) of L over X × R

m≥0. Since the Slater’s condi-
tion2.1 holds, from Theorem1.7 one can deduce that (x∗, μ∗) is a pair of primal and
Lagrangian dual optimal solutions. This implies that

d∗
L = inf

x∈X
L (x, μ∗) ≤ L (x∗, μ∗) ≤ sup

μ∈Rm≥0

L (x∗, μ) = p∗.

From Theorem1.7, we have d∗
L = p∗. Hence, L (x∗, μ∗) = p∗. On the other

hand, we pick any saddle point (x̌, μ̌) ofL over X × M . Then for all x ∈ X andμ ∈
M , it holds thatL (x̌, μ) ≤ L (x̌, μ̌) ≤ L (x, μ̌). By Theorem1.7, thenμ∗ ∈ D∗

L ⊆
M . Recall x∗ ∈ X , and thus we have L (x̌, μ∗) ≤ L (x̌, μ̌) ≤ L (x∗, μ̌). Since
x̌ ∈ X and μ̌ ∈ R

m≥0, we have L (x∗, μ̌) ≤ L (x∗, μ∗) ≤ L (x̌, μ∗). Combining
the above two relations gives that L (x̌, μ̌) = L (x∗, μ∗) = p∗. From Remark1.3
we see that L (x̌, μ̌) ≤ inf x∈X L (x, μ̌) = qL(μ̌). Since L (x̌, μ̌) = p∗ = d∗

L ≥
qL(μ̌), then qL(μ̌) = d∗

L and thus μ̌ is a Lagrangian dual optimal solution. �

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1


26 2 Distributed Cooperative Optimization

Remark 2.1 Despite that (c) holds, the reverse of (a) may not be true in general. In
particular, x∗ may be infeasible; i.e., g�(x∗) > 0 for some � ∈ {1, . . . , m}. •

An Upper Estimate of the Lagrangian Dual Optimal Set

In what follows, we will find a compact superset of D∗
L . To do that, we define the

following primal problem for each agent i :

min
x∈Rn

fi (x), s.t. g(x) ≤ 0, x ∈ Xi .

Due to the fact that Xi is compact and the fi are continuous, the primal optimal value
p∗

i of each agent’s primal problem is finite and the set of its primal optimal solutions
is nonempty. The associated dual problem is given by

max
μ∈Rm

qi (μ), s.t. μ ≥ 0.

Here, the dual function qi : R
m≥0 → R is defined by qi (μ) � infx∈Xi Li (x, μ),

where Li : R
n × R

m≥0 → R is the Lagrangian function of agent i and given by
Li (x, μ) = fi (x) + μT g(x). The corresponding dual optimal value is denoted by
d∗

i . In this way, L is decomposed into a sum of local Lagrangian functions; i.e.,

L (x, μ) = ∑N
i=1Li (x, μ).

Define now the set-valued map Q : R
m≥0 → 2(Rm≥0) by Q(μ̃) = {μ ∈

R
m≥0 | qL(μ) ≥ qL(μ̃)}. Additionally, define a function γ : X → R by

γ (x) = min�∈{1,...,m}{−g�(x)}. Observe that if x is a Slater-vector, then γ (x) > 0.
The following lemma is a direct result of Lemma 1 in [10].

Lemma 2.2 (Boundedness of dual solution sets) The set Q(μ̃) is bounded for any
μ̃ ∈ R

m≥0, and, in particular, for any Slater-vector x̄ , it holds that maxμ∈Q(μ̃) ‖μ‖ ≤
1

γ (x̄)
( f (x̄) − qL(μ̃)). �

Notice that D∗
L = {μ ∈ R

m≥0 | qL(μ) ≥ d∗
L}. Picking any Slater-vector x̄ ∈ X ,

and letting μ̃ = μ∗ ∈ D∗
L in Lemma2.2 gives that

max
μ∗∈D∗

L

‖μ∗‖ ≤ 1

γ (x̄)
( f (x̄) − d∗

L). (2.4)

Define the function r : X×R
m≥0 → R∪ {+∞}by r(x, μ) � N

γ (x)
maxi∈V { fi (x)−

qi (μ)}. By the property of weak duality, it holds that d∗
i ≤ p∗

i and thus fi (x) ≥ qi (μ)

for any (x, μ) ∈ X × R
m≥0. Since γ (x̄) > 0, r(x̄, μ) ≥ 0 for any μ ∈ R

m≥0.
With this observation, we pick any μ̃ ∈ R

m≥0 and the following set is well-defined:

M̄i (x̄, μ̃) � {μ ∈ R
m≥0 | ‖μ‖ ≤ r(x̄, μ̃) + θi } for some θi ∈ R>0. Observe that for

all μ ∈ R
m≥0:
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qL(μ) = inf
x∈∩m

i=1Xi

N∑

i=1

( fi (x) + μT g(x)) ≥
N∑

i=1

inf
x∈Xi

( fi (x) + μT g(x)) =
N∑

i=1

qi (μ).

(2.5)

Since d∗
L ≥ qL(μ̃), it follows from (2.4) and (2.5) that

max
μ∗∈D∗

L

‖μ∗‖ ≤ 1

γ (x̄)
( f (x̄) − qL(μ̃)) ≤ 1

γ (x̄)

(

f (x̄) −
N∑

i=1

qi (μ̃)

)

≤ N

γ (x̄)
max
i∈V

{ fi (x̄) − qi (μ̃)} = r(x̄, μ̃).

Hence, we have D∗
L ⊆ M̄i (x̄, μ̃) for all i ∈ V .

Note that in order to compute M̄i (x̄, μ̃), all the agents have to agree on a com-
mon Slater-vector x̄ ∈ ∩N

i=1Xi which should be obtained in a distributed fashion.
To handle this difficulty, we now propose a distributed algorithm, namely Distrib-
uted Slater- Vector Computation Algorithm, which allows each agent i to
compute a superset of M̄i (x̄, μ̃).

Initially, each agent i chooses a common value μ̃ ∈ R
m≥0; e.g., μ̃ = 0, and

computes two positive constants bi (0) and ci (0) such that bi (0) ≥ supx∈Ji
{ fi (x) −

qi (μ̃)} and ci (0) ≤ min1≤�≤m infx∈Ji {−g�(x)} where Ji � {x ∈ Xi | g(x) < 0}.
At every time k ≥ 0, each agent i updates its estimates by:

bi (k + 1) = max
j∈Ni (k)∪{i}

b j (k), ci (k + 1) = min
j∈Ni (k)∪{i}

c j (k).

We denote b∗ � max j∈V b j (0), c∗ � min j∈V c j (0) for all k ≥ (N − 1)B, and
M [i](μ̃) � {μ ∈ R

m≥0 | ‖μ‖ ≤ Nb∗
c∗ + θi }, J � {x ∈ X | g(x) < 0}.

Lemma 2.3 (Convergence of the Distributed Slater- Vector Computation
Algorithm) Assume that the periodical strong connectivity Assumption1.3 holds.
Consider the sequences of {bi (k)} and {ci (k)} generated by the Distributed
Slater- Vector Computation Algorithm. It holds that after at most (N −1)B
steps, all the agents reach the consensus, i.e., bi (k) = b∗ and ci (k) = c∗ for all
k ≥ (N − 1)B. Furthermore, we have M [i](μ̃) ⊇ M̄i (x̄, μ̃) for i ∈ V .

Proof It is not difficult to verify achieving max-consensus by the periodical strong
connectivity Assumption1.3. Note that J ⊆ Ji , ∀i ∈ V . Hence, we have

max
i∈V

sup
x∈J

{ fi (x) − qi (μ̃)} ≤ max
i∈V

sup
x∈Ji

{ fi (x) − qi (μ̃)} ≤ b∗,

inf
x∈J

min
1≤�≤m

{−g�(x)} ≥ min
i∈V

inf
x∈Ji

min
1≤�≤m

{−g�(x)} ≥ c∗.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Since x̄ ∈ J , then the following estimate on r(x̄, μ̃) holds:

r(x̄, μ̃) ≤ N supx∈J maxi∈V { fi (x) − qi (μ̃)}
infx∈J min1≤�≤m{−g�(x)} ≤ Nb∗

c∗ .

The desired result immediately follows. �

From Lemma2.3 and the fact that D∗
L ⊆ M̄i (x̄, μ̃), we can see that the set of

M(μ̃) � ∩N
i=1M [i](μ̃) contains D∗

L . In addition, M [i](μ̃) and M(μ̃) are nonempty,
compact, and convex. To simplify the notations, we will use the shorthands Mi �
M [i](μ̃) and M � M(μ̃).

Convexity of the Lagrangian Function

For each μ ∈ R
m≥0, we define the function Liμ : Rn → R as Liμ(x) := Li (x, μ).

Note thatLiμ is convex since it is a nonnegative weighted sum of convex functions.
For each x ∈ R

n , we define the functionLi x : Rm≥0 → R asLi x (μ) := Li (x, μ). It
is easy to check thatLi x is a concave (actually affine) function. Then the Lagrangian
function L is the sum of a collection of convex–concave local functions.

2.3.1 The DISTRIBUTED LAGRANGIAN PRIMAL-DUAL

SUBGRADIENT ALGORITHM

Here, we introduce the Distributed Lagrangian Primal- Dual Subgradient
Algorithm to find a saddle point of the Lagrangian functionL over X × M and the
optimal value. This saddle point will coincide with a pair of primal and Lagrangian
dual optimal solutions which is not always the case; see Remark2.1.

Through the algorithm, at each time k, each agent i maintains the estimate of
(xi (k), μi (k)) to the saddle point of the Lagrangian functionL over X × M and the
estimate of yi (k) to p∗. To produce xi (k +1) (resp.μi (k +1)), agent i takes a convex
combination vi

x (k) (resp. vi
μ(k)) of its estimate xi (k) (resp.μi (k)) with the estimates

sent from its neighboring agents at time k, makes a subgradient (resp. supgradient)
step to minimize (resp. maximize) the local Lagrangian function Li , and takes a
primal (resp. dual) projection onto the local constraint Xi (resp. Mi ). Furthermore,
agent i generates the estimate yi (k + 1) by taking a convex combination vi

y(k) of its
estimate yi (k) with the estimates of its neighbors at time k and taking one step to
track the variation of the local objective function fi .More precisely, theDistributed
Lagrangian Primal- Dual Subgradient Algorithm is described as follows:

Initially, each agent i picks a common μ̃ ∈ R
m≥0 and computes the set Mi with

some θi > 0 by using the Distributed Slater-vector Computation Algorithm. Agent i
then chooses any initial state xi (0) ∈ Xi , μi (0) ∈ R

m≥0, and yi (1) = N fi (xi (0)).



2.3 Case (i): Absence of Equality Constraint 29

At every k ≥ 0, each agent i generates xi (k+1),μi (k+1) and yi (k+1) according
to the following rules:

vi
x (k) =

N∑

j=1

ai
j (k)x j (k), vi

μ(k) =
N∑

j=1

ai
j (k)μ j (k), vi

y(k) =
N∑

j=1

ai
j (k)y j (k),

xi (k + 1) = PXi [vi
x (k) − α(k)D i

x (k)], μi (k + 1) = PMi [vi
μ(k) + α(k)D i

μ(k)],
yi (k + 1) = vi

y(k) + N ( fi (xi (k)) − fi (xi (k − 1))),

where PXi (resp. PMi ) is the projection operator onto the set Xi (resp. Mi ), the scalars
ai

j (k) are nonnegative weights and the scalars α(k) > 0 are step-sizes.1 We use the

shorthands D i
x (k) ≡ DLivi

μ(k)(v
i
x (k)), and D i

μ(k) ≡ DLivi
x (k)(v

i
μ(k)).

The following theorem summarizes the convergence properties of the Distrib-
uted Lagrangian Primal- Dual Subgradient Algorithm where it is guar-
anteed that agents asymptotically agree upon a pair of primal-dual optimal solutions.

Theorem 2.1 (Convergence of the Distributed Lagrangian Primal- Dual
Subgradient Algorithm)Consider the optimization problem (2.2). Let the nonde-
generacy Assumption1.1, the double stochasticity Assumption1.2, and the periodic
strong connectivity Assumption1.3 hold. Consider the sequences of {xi (k)}, {μi (k)}
and {yi (k)} of the Distributed Lagrangian Primal- Dual Subgradient

Algorithm with the step-sizes {α(k)} satisfying lim
k→+∞ α(k) = 0,

+∞∑

k=0

α(k) = +∞,

and
+∞∑

k=0

α(k)2 < +∞. Then, there is a pair of primal and Lagra-

ngian dual optimal solutions (x∗, μ∗) ∈ X∗×D∗
L such that lim

k→+∞ ‖xi (k) − x∗‖ = 0

and lim
k→+∞ ‖μi (k) − μ∗‖ = 0, for all i ∈ V . Furthermore, lim

k→+∞ ‖yi (k) − p∗‖ = 0,

for all i ∈ V .

2.3.2 A Numerical Example for the DISTRIBUTED

LAGRANGIAN PRIMAL-DUAL SUBGRADIENT

ALGORITHM

In order to illustrate the performance of the Distributed Lagrangian Primal-
Dual Subgradient Algorithm, we here study a numerical example of network
utility maximization, e.g., in [4]. Consider five agents and one link where each agent
sends data through the link at a rate of zi , and the link capacity is 5. The global decision
vector x := (z1 z2 z3 z4 z5)T ∈ R

5 is the resource allocation vector. Each agent
i is associated with a concave utility function fi (zi ) := √

zi , representing the utility

1Each agent i executes the update law of yi (k) for k ≥ 1.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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agent i obtained through sending data at a rate of zi . Agents aim to maximize the
network utility and it can be formulated as follows:

min
x∈R5

∑

i∈V

−√
zi s.t. z1 + z2 + z3 + z4 + z5 ≤ 5, x ∈ ∩i∈V Xi , (2.6)

where local constraint sets Xi are given by:

X1 := [0.5, 5.5] × [0.5, 5.5] × [0.5, 5.5] × [0.5, 5.5] × [0.5, 5.5],
X2 := [0.55, 5.25] × [0.55, 5.25] × [0.55, 5.25] × [0.55, 5.25] × [0.55, 5.25],
X3 := [0.5, 6] × [0.5, 6] × [0.5, 6] × [0.5, 6] × [0.5, 6],
X4 := [0.5, 5] × [0.5, 5] × [0.5, 5] × [0.5, 5] × [0.5, 5],
X5 := [0.525, 5.75] × [0.525, 5.75] × [0.525, 5.75] × [0.525, 5.75] × [0.525, 5.75].

One can verify that the optimal solution is [1 1 1 1 1]T . We use the Dis-
tributed Lagrangian Primal- Dual Subgradient Algorithm to solve prob-
lem (2.6) by choosing step-size α(k) = 1

k+1 . Figures2.2 and 2.3 show the simulation
results of the Distributed Lagrangian Primal- Dual Subgradient Algo-
rithm, demonstrating that the agents take 104 iterates to agree upon value 1 for z1
and z2.

Fig. 2.2 The estimates on z1 generated by different agents in the Distributed Lagrangian
Primal- Dual Subgradient Algorithm (DLPDS)
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Fig. 2.3 The estimates on z2 generated by different agents in the Distributed Lagrangian
Primal- Dual Subgradient Algorithm (DLPDS)

2.4 Case (ii): Identical Local Constraint Sets

In the previous section, we study the case where the equality constraint is absent in
problem (2.1). Here, we turn our attention to another case of problem (2.1), where
h(x) = 0 is taken into account but we require that local constraint sets are identical;
i.e., Xi = X for all i ∈ V .We first adopt a penalty relaxation formulation and provide
a penalty saddle point characterization of the primal problem (2.1) with Xi = X . We
then introduce the Distributed Penalty Primal- Dual Subgradient Algo-
rithm, followed by its convergence properties.

Overall Strategy and a Penalty Saddle Point Characterization

As in the previous section, our strategy will be to define an appropriate dynamics
to converge to a saddle point or a min-max solution of the problem. However, to
deal with the equality constraint, we will employ a penalty function, which includes
positive terms penalizing the violation of the equality and inequality constraints. The
identical local constraint sets will also help in guaranteeing the convergence of the
method. More precisely, consider the following.

The primal problem (2.1) with Xi = X is trivially equivalent to the following:

min
x∈Rn

f (x), s.t. Ng(x) ≤ 0, Nh(x) = 0, x ∈ X, (2.7)

with associated penalty dual problem given by

max
μ∈Rm ,λ∈Rν

qP (μ, λ), s.t. μ ≥ 0, λ ≥ 0. (2.8)



32 2 Distributed Cooperative Optimization

Here, the penalty dual function, qP : Rm≥0 × R
ν≥0 → R, is defined by

qP (μ, λ) � inf
x∈X

H (x, μ, λ),

where H : Rn × R
m≥0 × R

ν≥0 → R is the penalty function given by H (x, μ, λ) =
f (x) + NμT [g(x)]+ + NλT |h(x)|. We denote the penalty dual optimal value by
d∗

P and the set of penalty dual optimal solutions by D∗
P . We define the penalty func-

tionHi (x, μ, λ) : Rn ×R
m≥0×R

ν≥0 → R for each agent i as follows:Hi (x, μ, λ) =
fi (x)+μT [g(x)]+ + λT |h(x)|. In thisway,wehave thatH (x, μ, λ) = ∑N

i=1Hi (x,

μ, λ). As proven in the next lemma, the Slater’s condition2.1 ensures zero duality
gap and the existence of penalty dual optimal solutions.

Lemma 2.4 (Strong duality and nonemptiness of the penalty dual optimal set) The
values of p∗ and d∗

P coincide, and D∗
P is nonempty.

Proof Consider the auxiliary Lagrangian functionLa : Rn ×R
m≥0 ×R

ν → R given
byLa(x, μ, λ) = f (x) + NμT g(x) + NλT h(x), with the associated dual problem
defined by

max
μ∈Rm ,λ∈Rν

qa(μ, λ), s.t. μ ≥ 0. (2.9)

Here, the dual function, qa : Rm≥0 × R
ν → R, is defined by

qa(μ, λ) � inf
x∈X

La(x, μ, λ).

The dual optimal value of problem (2.9) is denoted by d∗
a and the set of dual optimal

solutions is denoted D∗
a . Since X is convex, f and g�, for � ∈ {1, . . . , m}, are convex,

p∗ is finite and the Slater’s condition2.1 holds, it follows from Proposition5.3.5
in [11] that p∗ = d∗

a and D∗
a �= ∅. We now proceed to characterize d∗

P and D∗
P . Pick

any (μ∗, λ∗) ∈ D∗
a . Since μ∗ ≥ 0, then

d∗
a = qa(μ∗, λ∗) = inf

x∈X
{ f (x) + N (μ∗)T g(x) + N (λ∗)T h(x)}

≤ inf
x∈X

{ f (x) + N (μ∗)T [g(x)]+ + N |λ∗|T |h(x)|} = qP (μ∗, |λ∗|) ≤ d∗
P .

(2.10)

On the other hand, pick any x∗ ∈ X∗. Then x∗ is feasible, i.e., x∗ ∈ X , [g(x∗)]+ = 0
and |h(x∗)| = 0. It implies that qP (μ, λ) ≤ H (x∗, μ, λ) = f (x∗) = p∗ holds for
any μ ∈ R

m≥0 and λ ∈ R
ν≥0, and thus d∗

P = supμ∈Rm≥0,λ∈Rν≥0
qP (μ, λ) ≤ p∗ = d∗

a .

Therefore, we have d∗
P = p∗.

To prove the emptiness of D∗
P , we pick any (μ∗, λ∗) ∈ D∗

a . From (2.10) and
d∗

a = d∗
P , we can see that (μ∗, |λ∗|) ∈ D∗

P and thus D∗
P �= ∅. �
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The following is a slight extension of Theorem1.7 to penalty functions.

Theorem 2.2 (Penalty Saddle point Theorem) The pair of (x∗, μ∗, λ∗) is a saddle
point of the penalty function H over X × R

m≥0 × R
ν≥0 if and only if it is a pair

of primal and penalty dual optimal solutions and the following penalty minimax
equality holds:

sup
(μ,λ)∈Rm≥0×R

ν≥0

inf
x∈X

H (x, μ, λ) = inf
x∈X

sup
(μ,λ)∈Rm≥0×R

ν≥0

H (x, μ, λ).

Proof The proof is analogous to that of Proposition 6.2.4 in [12], and for the sake of
completeness, we provide the details here. It follows from Proposition 2.6.1 in [12]
that (x∗, μ∗, λ∗) is a saddle point of H over X × R

m≥0 × R
ν≥0 if and only if the

penalty minimax equality holds and the following conditions are satisfied:

sup
(μ,λ)∈Rm≥0×R

ν≥0

H (x∗, μ, λ) = min
x∈X

{ sup
(μ,λ)∈Rm≥0×R

ν≥0

H (x, μ, λ)}, (2.11)

inf
x∈X

H (x, μ∗, λ∗) = max
(μ,λ)∈Rm≥0×R

ν≥0

{ inf
x∈X

H (x, μ, λ)}. (2.12)

Notice that infx∈X H (x, μ, λ) = qP (μ, λ); and if x ∈ Y , then the following holds:

sup
(μ,λ)∈Rm≥0×R

ν≥0

H (x, μ, λ) = f (x),

otherwise, sup(μ,λ)∈Rm≥0×R
ν≥0

H (x, μ, λ) = +∞. Hence, the penalty minimax

equality is equivalent to d∗
P = p∗. Condition (2.11) is equivalent to the fact that

x∗ is primal optimal, and condition (2.12) is equivalent to (μ∗, λ∗) being a penalty
dual optimal solution. �

Convexity of the Penalty Function

Since g� is convex and [·]+ is convex and nondecreasing, [g�(x)]+ is convex in x for
each � ∈ {1, . . . , m}. Denote A � (aT

1 , . . . , aT
ν )T . Since | · | is convex and aT

� x − b�

is an affine mapping, then |aT
� x − b�| is convex in x for each � ∈ {1, . . . , ν}.

We denote w � (μ, λ). For each w ∈ R
m≥0 × R

ν≥0, we define the function Hiw :
R

n → R asHiw(x) := Hi (x, w). Note thatHiw(x) is convex in x by using the fact
that a nonnegative weighted sum of convex functions is convex. For each x ∈ R

n ,
we define the function Hix : Rm≥0 × R

ν≥0 → R as Hix(w) := Hi (x, w). It is easy
to check that Hix(w) is concave (actually affine) in w. Then the penalty function
H (x, w) is the sum of convex–concave local functions.

Remark 2.2 The Lagrangian relaxation does not fit into our approach here since the
Lagrangian function is not convex in x by allowing λ entries to be negative. •

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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2.4.1 The DISTRIBUTED PENALTY PRIMAL-DUAL

SUBGRADIENT ALGORITHM

We now proceed to devise the Distributed Penalty Primal- Dual Subgra-
dient Algorithm, which is based on the penalty saddle point Theorem2.2, to find
the optimal value and a primal optimal solution to the primal problem (2.1) with
Xi = X . The main steps of the Distributed Penalty Primal- Dual Subgra-
dient Algorithm are described as follows.

Initially, agent i chooses any initial state xi (0) ∈ X , μi (0) ∈ R
m≥0, λ

i (0) ∈ R
ν≥0,

and yi (1) = N fi (xi (0)). After this, at every k ≥ 0, agent i computes the following
convex combinations:

vi
x (k) =

N∑

j=1

ai
j (k)x j (k), vi

y(k) =
N∑

j=1

ai
j (k)y j (k),

vi
μ(k) =

N∑

j=1

ai
j (k)μ j (k), vi

λ(k) =
N∑

j=1

ai
j (k)λ j (k),

and generates xi (k+1), yi (k+1),μi (k+1), andλi (k+1) according to the following:

xi (k + 1) = PX [vi
x (k) − α(k)S i

x (k)],
yi (k + 1) = vi

y(k) + N ( fi (xi (k)) − fi (xi (k − 1))),

μi (k + 1) = vi
μ(k) + α(k)[g(vi

x (k))]+, λi (k + 1) = vi
λ(k) + α(k)|h(vi

x (k))|,

where PX is the projection operator onto the set X , the scalars ai
j (k) are nonnegative

weights, and the positive scalars {α(k)} are step-sizes.2 The vector

S i
x (k) � D fi (v

i
x (k)) +

m∑

�=1

vi
μ(k)�D[g�(v

i
x (k))]+ +

ν∑

�=1

vi
λ(k)�D |h�|(vi

x (k))

is a subgradient of Hiwi (k)(x) at x = vi
x (k) where wi (k) � (vi

μ(k), vi
λ(k)).

Given a step-size sequence {α(k)}, we define the sum over [0, k] by s(k) �∑k
�=0 α(�), which should satisfy the following; see Remark2.4 on how to define

such a sequence.

Assumption 2.2 (Step-size assumption) The step-sizes satisfy

lim
k→+∞ α(k) = 0,

+∞∑

k=0

α(k) = +∞,

+∞∑

k=0

α(k)2 < +∞,

2Each agent i executes the update law of yi (k) for k ≥ 1.
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lim
k→+∞ α(k + 1)s(k) = 0,

+∞∑

k=0

α(k + 1)2s(k) < +∞,

+∞∑

k=0

α(k + 1)2s(k)2 < +∞.

The following theorem is the main result of this section, characterizing the con-
vergence properties of the Distributed Penalty Primal- Dual Subgradient
Algorithm, where an optimal solution and the optimal value are asymptotically
achieved.

Theorem 2.3 (Convergence of the Distributed Penalty Primal- Dual Sub-
gradient Algorithm) Consider the problem (2.1) with Xi = X. Let the non-
degeneracy Assumption1.1, the double stochasticity Assumption1.2, and the peri-
odic strong connectivity Assumption1.3 hold. Consider the sequences of {xi (k)} and
{yi (k)} of theDistributed Penalty Primal- Dual Subgradient Algorithm,
where the step-sizes {α(k)} satisfy the step-size Assumption2.2. Then there exists a
primal optimal solution x̃ ∈ X∗ such that lim

k→+∞ ‖xi (k) − x̃‖ = 0, for all i ∈ V .

Furthermore, we have lim
k→+∞ ‖yi (k) − p∗‖ = 0, for all i ∈ V .

Remark 2.3 Observe that μi (k) ≥ 0, λi (k) ≥ 0 and vi
x (k) ∈ X (due to the

fact that X is convex). Furthermore, ([g(vi
x (k))]+, |h(vi

x (k))|) is a supgradient of
Hivi

x (k)(w
i (k)); i.e., the following penalty supgradient inequality holds for any

μ ∈ R
m≥0 and λ ∈ R

ν≥0:

([g(vi
x (k))]+)T (μ − vi

μ(k)) + |h(vi
x (k))|T (λ − vi

λ(k))

≥ Hi (v
i
x (k), μ, λ) − Hi (v

i
x (k), vi

μ(k), vi
λ(k)). (2.13)

•
Remark 2.4 A step-size sequence that satisfies the step-size Assumption2.2 is the

harmonic series {α(k) = 1
k+1 }k∈Z≥0 . It is obvious that lim

k→+∞
1

k + 1
= 0, and well-

known that
∑+∞

k=0
1

k+1 = +∞ and
∑+∞

k=0
1

(k+1)2
< +∞. We now proceed to check

the property of lim
k→+∞ α(k + 1)s(k) = 0. For any k ≥ 1, there is an integer n ≥ 1

such that 2n−1 ≤ k < 2n . It holds that

s(k) ≤ s(2n) = 1 + 1

2
+

(
1

3
+ 1

4

)

+ · · · +
(

1

2n−1 + 1
+ · · · + 1

2n

)

≤ 1 + 1

2
+

(
1

3
+ 1

3

)

+ · · · +
(

1

2n−1 + 1
+ · · · + 1

2n−1 + 1

)

≤ 1 + 1 + 1 + · · · + 1 = n ≤ log2 k + 1.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Then we have lim sup
k→+∞

s(k)

k + 2
≤ lim

k→+∞
log2 k + 1

k + 2
= 0. Obviously, lim inf

k→+∞
s(k)

k + 2
≥ 0. Then we have the property of lim

k→+∞ α(k + 1)s(k) = 0. Since log2 k ≤
(log2 k)2 < (k + 2)

1
2 , then

+∞∑

k=0

α(k + 1)2s(k)2 ≤
+∞∑

k=0

(log2 k + 1)2

(k + 2)2
=

+∞∑

k=0

(
(log2 k)2

(k + 2)2
+ 2 log2 k

(k + 2)2
+ 1

(k + 2)2

)

≤
+∞∑

k=0

1

(k + 2)
3
2

+
+∞∑

k=0

2

(k + 2)
3
2

+
+∞∑

k=0

1

(k + 2)2
< +∞.

Additionally, we have
∑+∞

k=0 α(k + 1)2s(k) ≤ ∑+∞
k=0 α(k + 1)2s(k)2 < +∞. •

2.4.2 A Numerical Example for the DISTRIBUTED PENALTY

PRIMAL-DUAL SUBGRADIENT ALGORITHM

Consider a network with five agents and their objective functions are defined as

f1(x) := 1

5

(
(a − 5)2 + (b − 2.5)2 + (c − 5)2 + (d + 2.5)2 + (e + 5)2

)
,

f2(x) := 1

5

(
(a − 2.5)2 + (b − 5)2 + (c + 2.5)2 + (d + 5)2 + (e − 5)2

)
,

f3(x) := 1

5

(
(a − 5)2 + (b + 2.5)2 + (c + 5)2 + (d − 5)2 + (e − 2.5)2

)
,

f4(x) := 1

5

(
(a + 2.5)2 + (b + 5)2 + (c − 5)2 + (d − 2.5)2 + (e − 5)2

)
,

f5(x) := 1

5

(
(a + 5)2 + (b − 5)2 + (c − 2.5)2 + (d − 5)2 + (e + 2.5)2

)
,

where the global decision vector x := [a b c d e]T ∈ R
5. The global equality

constraint function is given by h(x) := a + b + c + d + e − 5, and the global
constraint set is as follows: X := [−5, 5] × [−5, 5] × [−5, 5] × [−5, 5] ×
[−5, 5]. Consider the optimization as follows:

min
x∈R5

∑

i∈V

fi (x), s.t. h(x) = 0, x ∈ X.

One can verify that the optimal solution is [1 1 1 1 1]T . We employ the
Distributed Penalty Primal- Dual Subgradient Algorithm to solve the
above optimization problem with the step-size α(k) = 1

k+1 . Its simulation results
are included in Figs. 2.4 and 2.5. Observe that the estimates of a and b generated by
different agents asymptotically achieve value 1.
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Fig. 2.4 The estimates on a generated by different agents in theDistributed Penalty Primal-
Dual Subgradient Algorithm
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Fig. 2.5 The estimates on b generated by different agents in theDistributed Penalty Primal-
Dual Subgradient Algorithm
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2.5 Appendix

Wenext provide the proofs for themain results, Theorems2.1 and 2.3, of this chapter.
Before doing that, let us state an instrumental result as follows.Consider the following
distributed projected subgradient algorithmproposed in [13]: xi (k+1) = PZ [vi

x (k)−
α(k)di (k)]. Denote by ei (k) := PZ [vi

x (k) − α(k)di (k)] − vi
x (k). The following is a

slight modification of Lemma 8 and its proof in [13].

Lemma 2.5 Let the nondegeneracy Assumption1.1, the double stochasticity
Assumption1.2, and the periodic strong connectivity Assumption1.3 hold. Suppose
Z ∈ R

n is a closed and convex set. Then there exist γ > 0 and β ∈ (0, 1) such that

‖xi (k) − x̂(k)‖ ≤ Nγ

k−1∑

τ=0

βk−τ {α(τ)‖di (τ )‖

+ ‖ei (τ ) + α(τ)di (τ )‖} + Nγβk−1
N∑

i=0

‖xi (0)‖.

Suppose {di (k)} is uniformly bounded for each i ∈ V , and
∑+∞

k=0 α(k)2 < +∞, then
we have

∑+∞
k=0 α(k)maxi∈V ‖xi (k) − x̂(k)‖ < +∞.

We start our analysis on Theorems2.1 and 2.3 by providing the properties of the
sequences weighted by {α(k)}.
Lemma 2.6 (Convergence of weighted sequences) Let K ≥ 0. Consider the

sequence {δ(k)} defined by δ(k) �
∑k−1

�=K α(�)ρ(�)
∑k−1

�=K α(�)
where k ≥ K + 1, α(k) > 0

and
∑+∞

k=K α(k) = +∞.

(a) If lim
k→+∞ ρ(k) = +∞, then lim

k→+∞ δ(k) = +∞.

(b) If lim
k→+∞ ρ(k) = ρ∗, then lim

k→+∞ δ(k) = ρ∗.

Proof (a) For any Π > 0, there exists k1 ≥ K such that ρ(k) ≥ Π for all k ≥ k1.
Then the following holds for all k ≥ k1 + 1:

δ(k) ≥ 1
∑k−1

�=K α(�)

⎛

⎝
k1−1∑

�=K

α(�)ρ(�) +
k−1∑

�=k1

α(�)Π

⎞

⎠

= Π + 1
∑k−1

�=K α(�)

(
k1−1∑

�=K

α(�)ρ(�) −
k1−1∑

�=K

α(�)Π

)

.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Take the limit on k in the above estimate and we have lim inf
k→+∞ δ(k) ≥ Π . Since

Π is arbitrary, then lim
k→+∞ δ(k) = +∞.

(b) For any ε > 0, there exists k2 ≥ K such that ‖ρ(k)−ρ∗‖ ≤ ε for all k ≥ k2+1.
Then we have

‖δ(k) − ρ∗‖ = ‖
∑k−1

τ=K α(τ)(ρ(τ) − ρ∗)
∑k−1

τ=K α(τ)
‖

≤ 1
∑k−1

τ=K α(τ)

⎛

⎝
k2−1∑

τ=K

α(τ)‖ρ(τ) − ρ∗‖ +
k−1∑

τ=k2

α(τ)ε

⎞

⎠ ≤
∑k2−1

τ=K α(τ)‖ρ(τ) − ρ∗‖
∑k−1

τ=K α(τ)
+ ε.

Take the limit on k in the above estimate and we have lim sup
k→+∞

‖δ(k) − ρ∗‖ ≤ ε.

Since ε is arbitrary, then lim
k→+∞ ‖δ(k) − ρ∗‖ = 0. �

2.5.1 Convergence Analysis of the DISTRIBUTED

LAGRANGIAN PRIMAL-DUAL SUBGRADIENT

ALGORITHM

We now proceed to show Theorem2.1. To do that, we first rewrite the Distributed
Lagrangian Primal- Dual Subgradient Algorithm into the following form:

xi (k + 1) = vi
x (k) + ei

x (k), μi (k + 1) = vi
μ(k) + ei

μ(k), yi (k + 1) = vi
y(k) + ui (k),

where ei
x (k) and ei

μ(k) are projection errors described by

ei
x (k) � PXi [vi

x (k) − α(k)D i
x (k)] − vi

x (k),

ei
μ(k) � PMi [vi

μ(k) + α(k)D i
μ(k)] − vi

μ(k),

and ui (k) � N ( fi (xi (k)) − fi (xi (k − 1))) is the local input which allows agent i to
track the variation of the local objective function fi . In this manner, the update law
of each estimate is decomposed in two parts: a convex sum to fuse the information
of each agent with those of its neighbors, plus some local error or input. With this
decomposition, all the update laws are put into the same form as the dynamic average
consensus algorithm in the Chap.1. This observation allows us to divide the analysis
of the Distributed Lagrangian Primal- Dual Subgradient Algorithm in
two steps. First, we show all the estimates asymptotically achieve consensus by
utilizing the property that the local errors and inputs are diminishing. Second, we
further show that the consensus vectors coincidewith a pair of primal and Lagrangian
dual optimal solutions and the optimal value.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Lemma 2.7 (Lipschitz continuity of Li ) Consider Liμ and Li x . Then there are
L > 0 and R > 0 such that ‖DLiμ(x)‖ ≤ L and ‖DLi x (μ)‖ ≤ R for each pair of
x ∈ co(∪N

i=1Xi ) and μ ∈ co(∪N
i=1Mi ). Furthermore, for each μ ∈ co(∪N

i=1Mi ), the
functionLiμ is Lipschitz continuous with Lipschitz constant L over co(∪N

i=1Xi ), and
for each x ∈ co(∪N

i=1Xi ), the function Li x is Lipschitz continuous with Lipschitz
constant R over co(∪N

i=1Mi ).

Proof Observe that DLiμ = D fi + μTDg and DLi x = g. Since fi and g� are
convex, it follows from Proposition 5.4.2 in [11] that ∂ fi and ∂g� are bounded over
the compact co(∪N

i=1Xi ). Since co(∪N
i=1Mi ) is bounded, so is ∂Liμ, i.e., for anyμ ∈

co(∪N
i=1Mi ), there exists L > 0 such that ‖∂Liμ(x)‖ ≤ L for all x ∈ co(∪N

i=1Xi ).
Since g� is continuous (due to its convexity) and co(∪N

i=1Xi ) is bounded, then g and
thus ∂Li x are bounded, i.e., for any x ∈ co(∪N

i=1Xi ), there exists R > 0 such that
‖∂Li x (μ)‖ ≤ R for all μ ∈ co(∪N

i=1Mi ).
It follows from the Lagrangian subgradient inequality that

DLiμ(x)T (x ′ − x) ≤ Liμ(x ′) − Liμ(x), DLiμ(x ′)T (x − x ′) ≤ Liμ(x) − Liμ(x ′),

for any x, x ′ ∈ co(∪N
i=1Xi ). By using the boundedness of the subdifferentials, the

above two inequalities give that −L‖x − x ′‖ ≤ Liμ(x) − Liμ(x ′) ≤ L‖x − x ′‖.
This implies that ‖Liμ(x) − Liμ(x ′)‖ ≤ L‖x − x ′‖ for any x, x ′ ∈ co(∪m

i=1Xi ).
The proof of the Lipschitz continuity of Li x is analogous by using the Lagrangian
supgradient inequality. �

The following lemma provides a basic iteration relation used in the convergence
proof of the Distributed Lagrangian Primal- Dual Subgradient Algo-
rithm.

Lemma 2.8 (Basic iteration relation) Let the double stochasticity Assumption1.2
and the periodic strong connectivity Assumption1.3 hold. For any x ∈ X, any μ ∈ M
and all k ≥ 0, the following estimates hold:

N∑

i=1

‖ei
x (k) + α(k)D i

x (k)‖2 ≤ −
N∑

i=1

2α(k)(Li (v
i
x (k), vi

μ(k)) − Li (x, vi
μ(k)))

+
N∑

i=1

α(k)2‖D i
x (k)‖2 +

N∑

i=1

{‖xi (k) − x‖2 − ‖xi (k + 1) − x‖2}, (2.14)

N∑

i=1

‖ei
μ(k) − α(k)D i

μ(k)‖2 ≤
N∑

i=1

2α(k)(Li (v
i
x (k), vi

μ(k)) − Li (v
i
x (k), μ))

+
N∑

i=1

α(k)2‖D i
μ(k)‖2 +

N∑

i=1

{‖μi (k) − μ‖2 − ‖μi (k + 1) − μ‖2}. (2.15)

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Proof By Lemma1.1 with Z = Mi , z = vi
μ(k) + α(k)D i

μ(k) and y = μ ∈ M , we
have that for all k ≥ 0

N∑

i=1

‖ei
μ(k) − α(k)D i

μ(k)‖2 ≤
N∑

i=1

‖vi
μ(k) + α(k)D i

μ(k) − μ‖2 −
N∑

i=1

‖μi (k + 1) − μ‖2

=
N∑

i=1

‖vi
μ(k) − μ‖2 +

N∑

i=1

α(k)2‖D i
μ(k)‖2

+
N∑

i=1

2α(k)D i
μ(k)T (vi

μ(k) − μ) −
N∑

i=1

‖μi (k + 1) − μ‖2

≤
N∑

i=1

α(k)2‖D i
μ(k)‖2 +

N∑

i=1

2α(k)D i
μ(k)T (vi

μ(k) − μ)

+
N∑

i=1

‖μi (k) − μ‖2 −
N∑

i=1

‖μi (k + 1) − μ‖2. (2.16)

One can show (2.15) by substituting the following Lagrangian supgradient inequality
into (2.16):

D i
μ(k)T (μ − vi

μ(k)) ≥ Li (v
i
x (k), μ) − Li (v

i
x (k), vi

μ(k)).

Similarly, the equality (2.14) can be shown by using the following Lagrangian sub-
gradient inequality: D i

x (k)T (x − vi
x (k)) ≤ Li (x, vi

μ(k)) − Li (vi
x (k), vi

μ(k)). �

The following lemma shows that the consensus is asymptotically reached.

Lemma 2.9 (Achieving consensus)Let the nondegeneracy Assumption1.1, the dou-
ble stochasticity Assumption1.2, and the periodic strong connectivity Assumption1.3
hold. Consider the sequences of {xi (k)}, {μi (k)}, and {yi (k)} of the Distrib-
uted Lagrangian Primal- Dual Subgradient Algorithm with the step-size
sequence {α(k)} satisfying lim

k→+∞ α(k) = 0. Then there exist x∗ ∈ X and μ∗ ∈ M

such that

lim
k→+∞ ‖xi (k) − x∗‖ = 0, lim

k→+∞ ‖μi (k) − μ∗‖ = 0, ∀i ∈ V,

lim
k→+∞ ‖yi (k) − y j (k)‖ = 0, ∀i, j ∈ V .

Proof Observe that vi
x (k) ∈ co(∪N

i=1Xi ) and vi
μ(k) ∈ co(∪N

i=1Mi ). Then it follows
from Lemma2.7 that ‖D i

x (k)‖ ≤ L . From Lemma2.8 it follows that

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k) − x‖2 +
N∑

i=1

α(k)2L2

+
N∑

i=1

2α(k)(‖Li (v
i
x (k), vi

μ(k))‖ + ‖Li (x, vi
μ(k))‖). (2.17)

Notice that vi
x (k) ∈ co(∪N

i=1Xi ), vi
μ(k) ∈ co(∪N

i=1Mi ) and x ∈ X are bounded.
SinceLi is continuous, thenLi (vi

x (k), vi
μ(k)) andLi (x, vi

μ(k)) are bounded. Since

{α(k)} diminishes, one can verify that lim
k→+∞

N∑

i=1

‖xi (k) − x‖2 exists for any x ∈ X .

On the other hand, taking limits on both sides of (2.14), we obtain

lim
k→+∞

N∑

i=1

‖ei
x (k) + α(k)D i

x (k)‖2 = 0,

and therefore we deduce that lim
k→+∞ ‖ei

x (k)‖ = 0 for all i ∈ V . It follows from

Theorem1.4 that lim
k→+∞ ‖xi (k) − x j (k)‖ = 0 for all i, j ∈ V . Combining this with

the property that lim
k→+∞ ‖xi (k) − x‖ exists for any x ∈ X , we deduce that there exists

x∗ ∈ R
n such that lim

k→+∞ ‖xi (k) − x∗‖ = 0 for all i ∈ V . Since xi (k) ∈ Xi and Xi

is closed, it implies that x∗ ∈ Xi for all i ∈ V and thus x∗ ∈ X . Similarly, one can
show that there is μ∗ ∈ M such that lim

k→+∞ ‖μi (k) − μ∗‖ = 0 for all i ∈ V .

Since lim
k→+∞ ‖xi (k) − x∗‖ = 0 and fi is continuous, then lim

k→+∞‖ui (k)‖ = 0. It

follows from Theorem1.4 that lim
k→+∞ ‖yi (k) − y j (k)‖ = 0 for all i, j ∈ V . �

From Lemma2.9, we know that the sequences of {xi (k)} and {μi (k)} of the
Distributed Lagrangian Primal- Dual Subgradient Algorithm asymp-
totically agree on some point in X and some point in M , respectively. Denote by
Θ ⊆ X × M the set of such limit points. Denote by the average of primal and
dual estimates x̂(k) � 1

N

∑N
i=1 xi (k) and μ̂(k) � 1

N

∑N
i=1 μi (k), respectively. The

following lemma further characterizes that the points in Θ are saddle points of the
Lagrangian function L over X × M .

Lemma 2.10 (Saddle point characterization ofΘ) Each point in Θ is a saddle point
of the Lagrangian function L over X × M.

Proof Denote by Δx (k) � maxi, j∈V ‖x j (k) − xi (k)‖ the maximum deviation of
primal estimates. Notice that

‖vi
x (k) − x̂(k)‖ = ‖

N∑

j=1

ai
j (k)x j (k) −

N∑

j=1

1

N
x j (k)‖

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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= ‖
∑

j �=i

ai
j (k)(x j (k) − xi (k)) −

∑

j �=i

1

N
(x j (k) − xi (k))‖

≤
∑

j �=i

ai
j (k)‖x j (k) − xi (k)‖ +

∑

j �=i

1

N
‖x j (k) − xi (k)‖ ≤ 2Δx (k).

Denote by the maximum deviation of dual estimates Δμ(k) � maxi, j∈V ‖μ j (k) −
μi (k)‖. Similarly, we have ‖vi

μ(k) − μ̂(k)‖ ≤ 2Δμ(k).
We will show this lemma by contradiction. Suppose that there is (x∗, μ∗) ∈ Θ

which is not a saddle point of L over X × M . Then at least one of the following
equalities holds:

∃x ∈ X s.t. L (x∗, μ∗) > L (x, μ∗), (2.18)

∃μ ∈ M s.t. L (x∗, μ) > L (x∗, μ∗). (2.19)

Suppose first that (2.18) holds. Then, there exists ς > 0 such that L (x∗, μ∗) =
L (x, μ∗) + ς . Consider the sequences of {xi (k)} and {μi (k)} which converge
respectively to x∗ and μ∗ defined above. The estimate (2.14) leads to

N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k) − x‖2 + α(k)2
N∑

i=1

‖D i
x (k)‖2 − 2α(k)

×
N∑

i=1

(Ai (k) + Bi (k) + Ci (k) + Di (k) + Ei (k) + Fi (k)),

where the notations are given by:

Ai (k) = Li (v
i
x (k), vi

μ(k)) − Li (x̂(k), vi
μ(k)),

Bi (k) = Li (x̂(k), vi
μ(k)) − Li (x̂(k), μ̂(k)),

Ci (k) = Li (x̂(k), μ̂(k)) − Li (x∗, μ̂(k)), Di (k) = Li (x∗, μ̂(k)) − Li (x∗, μ∗),
Ei (k) = Li (x∗, μ∗) − Li (x, μ∗), Fi (k) = Li (x, μ∗) − Li (x, vi

μ(k)).

It follows from the Lipschitz continuity property of Li ; see Lemma2.7, that

‖Ai (k)‖ ≤ L‖vi
x (k) − x̂(k)‖ ≤ 2LΔx (k), ‖Bi (k)‖ ≤ R‖vi

μ(k) − μ̂(k)‖ ≤ 2RΔμ(k),

‖Ci (k)‖ ≤ L‖x̂(k) − x∗‖ ≤ L

N

N∑

i=1

‖xi (k) − x∗‖,

‖Di (k)‖ ≤ R‖μ̂(k) − μ∗‖ ≤ R

N

N∑

i=1

‖μi (k) − μ∗‖,

‖Fi (k)‖ ≤ R‖μ∗ − vi
μ(k)‖ ≤ R‖μ∗ − μ̂(k)‖ + R‖μ̂(k) − vi

μ(k)‖
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≤ R

N

N∑

i=1

‖μ∗(k) − μi (k)‖ + 2RΔμ(k).

Since lim
k→+∞ ‖xi (k) − x∗‖ = 0, lim

k→+∞ ‖μi (k) − μ∗‖ = 0, lim
k→+∞ Δx (k) = 0 and

lim
k→+∞ Δμ(k) = 0, then all Ai (k), Bi (k), Ci (k), Di (k), Fi (k) converge to zero as

k → +∞. Then there exists k0 ≥ 0 such that for all k ≥ k0, it holds that

N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k) − x‖2 + Nα(k)2L2 − ςα(k).

Following a recursive argument, we have that for all k ≥ k0, it holds that

N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k0) − x‖2 + NL2
k∑

τ=k0

α(τ)2 − ς

k∑

τ=k0

α(τ).

Since
∑+∞

k=k0 α(k) = +∞ and
∑+∞

k=k0 α(k)2 < +∞ and xi (k0) ∈ Xi , x ∈ X are
bounded, the above estimate yields a contradiction by taking k sufficiently large. In
other words, (2.18) cannot hold. Following a parallel argument, one can show that
(2.19) cannot hold either. This ensures that each (x∗, μ∗) ∈ Θ is a saddle point of
L over X × M . �

The combination of (c) in Lemmas2.1 and 2.10 gives that, for each (x∗, μ∗) ∈ Θ ,
we have that L (x∗, μ∗) = p∗ and μ∗ is Lagrangian dual optimal. We still need to
verify that x∗ is a primal optimal solution. We are now in the position to show
Theorem2.1 based on two claims.

Proofs of Theorem 2.1:

Claim 2.1 Each point (x∗, μ∗) ∈ Θ is a point in X∗ × D∗
L .

Proof The Lagrangian dual optimality of μ∗ follows from (c) in Lemmas2.1
and 2.10. To characterize the primal optimality of x∗, we define an auxiliary

sequence {z(k)} by z(k) �
∑k−1

τ=0 α(τ)x̂(τ )
∑k−1

τ=0 α(τ)
which is a weighted version of the aver-

age of primal estimates. Since lim
k→+∞ x̂(k) = x∗, it follows from Lemma2.6 (b) that

lim
k→+∞ z(k) = x∗.

Since (x∗, μ∗) is a saddle point ofL over X × M , thenL (x∗, μ) ≤ L (x∗, μ∗)
for any μ ∈ M ; i.e., the following relation holds for any μ ∈ M :

g(x∗)T (μ − μ∗) ≤ 0. (2.20)
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Choose μa = μ∗ + mini∈V θi
μ∗

‖μ∗‖ where θi > 0 is given in the definition of Mi .
Then μa ≥ 0 and ‖μa‖ ≤ ‖μ∗‖ + mini∈V θi implying μa ∈ M . Letting μ = μa in
(2.20) gives that

mini∈V θi

‖μ∗‖ g(x∗)T μ∗ ≤ 0.

Since θi > 0, we have g(x∗)T μ∗ ≤ 0. On the other hand, we choose μb = 1
2μ

∗
and then μb ∈ M . Letting μ = μb in (2.20) gives that − 1

2g(x∗)T μ∗ ≤ 0 and thus
g(x∗)T μ∗ ≥ 0. The combination of the above two estimates guarantees the property
of g(x∗)T μ∗ = 0.

We now proceed to show g(x∗) ≤ 0 by contradiction. Assume that g(x∗) ≤ 0
does not hold. Denote J+(x∗) � {1 ≤ � ≤ m | g�(x∗) > 0} �= ∅ and η �
min�∈J+(x∗){g�(x∗)}. Then η > 0. Since g is continuous and vi

x (k) converges to x∗,
there exists K ≥ 0 such that g�(vi

x (k)) ≥ η
2 for all k ≥ K and all � ∈ J+(x∗).

Since vi
μ(k) converges to μ∗, without loss of generality, we say that ‖vi

μ(k)−μ∗‖ ≤
1
2 mini∈V θi for all k ≥ K . Choose μ̂ such that μ̂� = μ∗

� for � /∈ J+(x∗) and
μ̂� = μ∗

� + 1√
m
mini∈V θi for � ∈ J+(x∗). Since μ∗ ≥ 0 and θi > 0, μ̂ ≥ 0.

Furthermore, ‖μ̂‖ ≤ ‖μ∗‖ + mini∈V θi , then μ̂ ∈ M . Equating μ to μ̂ and letting
D i

μ(k) = g(vi
x (k)) in the estimate (2.16), the following holds for k ≥ K :

N |J+(x∗)|ηmin
i∈V

θiα(k) ≤ 2α(k)

N∑

i=1

∑

�∈J+(x∗)
g�(v

i
x (k))(μ̂ − vi

μ(k))�

≤
N∑

i=1

‖μi (k) − μ̂‖2 −
N∑

i=1

‖μi (k + 1) − μ̂‖2 + NR2α(k)2

− 2α(k)

N∑

i=1

∑

�/∈J+(x∗)
g�(v

i
x (k))(μ̂ − vi

μ(k))�. (2.21)

Summing (2.21) over [K , k − 1] with k ≥ K + 1, dividing by
∑k−1

τ=K α(τ) on
both sides, and using −∑N

i=1 ‖μi (k) − μ̂‖2 ≤ 0, we obtain

N |J+(x∗)|ηmin
i∈V

θi ≤ 1
∑k−1

τ=K α(τ)

{
N∑

i=1

‖μi (K ) − μ̂‖2 + NR2
k−1∑

τ=K

α(τ)2

−
k−1∑

τ=K

2α(τ)

N∑

i=1

∑

�/∈J+(x∗)
g�(v

i
x (τ ))(μ̂ − vi

μ(τ))�

⎫
⎬

⎭
. (2.22)
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Since μi (K ) ∈ Mi , μ̂ ∈ M are bounded and
∑+∞

τ=K α(τ) = +∞, then the
limit of the first term on the right-hand side of (2.22) is zero as k → +∞. Since∑+∞

τ=K α(τ)2 < +∞, then the limit of the second term is zero as k → +∞. Since
lim

k→+∞ vi
x (k) = x∗ and lim

k→+∞ vi
μ(k) = μ∗, the following holds:

lim
k→+∞ 2

N∑

i=1

∑

�/∈J+(x∗)
g�(v

i
x (k))(μ̂ − vi

μ(k))� = 0.

Then it follows fromLemma2.6 (b) that the limit of the third term is zero as k → +∞.
We have N |J+(x∗)|ηmini∈V θi ≤ 0. Recall that |J+(x∗)| > 0, η > 0 and θi > 0.
Then we reach a contradiction, implying that g(x∗) ≤ 0.

Since x∗ ∈ X and g(x∗) ≤ 0, then x∗ is a feasible solution and thus f (x∗) ≥ p∗.
On the other hand, since z(k) is a convex combination of x̂(0), . . . , x̂(k − 1) and f
is convex, we have the following estimate:

f (z(k)) ≤
∑k−1

τ=0 α(τ) f (x̂(τ ))
∑k−1

τ=0 α(τ)

= 1
∑k−1

τ=0 α(τ)

{
k−1∑

τ=0

α(τ)L (x̂(τ ), μ̂(τ )) −
k−1∑

τ=0

Nα(τ)μ̂(τ )T g(x̂(τ ))

}

.

Recall the following convergence properties:

lim
k→+∞ z(k) = x∗, lim

k→+∞L (x̂(k), μ̂(k)) = L (x∗, μ∗) = p∗,

lim
k→+∞ μ̂(k)T g(x̂(k)) = g(x∗)T μ∗ = 0.

It follows from Lemma2.6 (b) that f (x∗) ≤ p∗. Therefore, we have f (x∗) = p∗,
and thus x∗ is a primal optimal point. �

Claim 2.2 It holds that lim
k→+∞ ‖yi (k) − p∗‖ = 0.

Proof The following can be proven by induction on k for a fixed k′ ≥ 1:

N∑

i=1

yi (k + 1) =
N∑

i=1

yi (k′) + N
k∑

�=k′

N∑

i=1

( fi (xi (�)) − fi (xi (� − 1))). (2.23)

Let k′ = 1 in (2.23) and recall that initial state yi (1) = N fi (xi (0)) for all i ∈ V .
Then we have
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N∑

i=1

yi (k + 1) =
N∑

i=1

yi (1) + N
N∑

i=1

( fi (xi (k)) − fi (xi (0))) = N
N∑

i=1

fi (xi (k)).

(2.24)

The combination of (2.24) with lim
k→+∞ ‖yi (k) − y j (k)‖ = 0 gives the desired

result. �

2.5.2 Convergence Analysis of the DISTRIBUTED PENALTY

PRIMAL-DUAL SUBGRADIENT ALGORITHM

In order to analyze the Distributed Penalty Primal- Dual Subgradient
Algorithm, we first rewrite it into the following form:

μi (k + 1) = vi
μ(k) + ui

μ(k), λi (k + 1) = vi
λ(k) + ui

λ(k),

xi (k + 1) = vi
x (k) + ei

x (k), yi (k + 1) = vi
y(k) + ui

y(k),

where ei
x (k) is projection error described by

ei
x (k) � PX [vi

x (k) − α(k)S i
x (k)] − vi

x (k),

and the quantities ui
μ(k) � α(k)[g(vi

x (k))]+, ui
λ(k) � α(k)|h(vi

x (k))| and ui
y(k) =

N ( fi (xi (k)) − fi (xi (k − 1))) represent local inputs. Denote by the maximum devi-
ations of dual estimates Mμ(k) � maxi∈V ‖μi (k)‖ and Mλ(k) � maxi∈V ‖λi (k)‖.
Before showing Lemma2.11, we present some useful facts. Since X is compact,
and fi , [g(·)]+ and h are continuous, there exist F, G+, H > 0 such that for all
x ∈ X , it holds that ‖ fi (x)‖ ≤ F for all i ∈ V , ‖[g(x)]+‖ ≤ G+, and ‖h(x)‖ ≤ H .
Since X is a compact set and fi , [g�(·)]+, |h�(·)| are convex, then it follows from
Proposition 5.4.2 in [11] that there exist DF , DG+ , DH > 0 such that for all x ∈ X ,
it holds that ‖D fi (x)‖ ≤ DF (i ∈ V ), m‖D[g�(x)]+‖ ≤ DG+ (1 ≤ � ≤ m)
and ν‖D |h�|(x)‖ ≤ DH (1 ≤ � ≤ ν). Denote by the averages of primal and dual
estimates x̂(k) � 1

N

∑N
i=1 xi (k), μ̂(k) � 1

N

∑N
i=1 μi (k) and λ̂(k) � 1

N

∑N
i=1 λi (k).

Lemma 2.11 (Diminishing and summable properties) Suppose the double stochas-
ticity Assumption1.2 and the step-size Assumption2.2 hold.

(a) The following holds:

lim
k→+∞ α(k)Mμ(k) = 0, lim

k→+∞ α(k)Mλ(k) = 0, lim
k→+∞ α(k)‖S i

x (k)‖ = 0.

Furthermore, the sequences of {α(k)2M2
μ(k)}, {α(k)2M2

λ(k)}, and {α(k)2‖S i
x

(k)‖2} are summable.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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(b) The following sequences are summable:

{α(k)‖μ̂(k) − vi
μ(k)‖}, {α(k)‖λ̂(k) − vi

λ(k)‖}, {α(k)Mμ(k)‖x̂(k) − vi
x (k)‖},

{α(k)Mλ(k)‖x̂(k) − vi
x (k)‖}, {α(k)‖x̂(k) − vi

x (k)‖}.

Proof (a) Notice that

‖vi
μ(k)‖ = ‖

N∑

j=1

ai
j (k)μ j (k)‖ ≤

N∑

j=1

ai
j (k)‖μ j (k)‖ ≤

N∑

j=1

ai
j (k)Mμ(k) = Mμ(k),

where in the last equality we use the double stochasticity Assumption1.2. Recall that
vi

x (k) ∈ X . This implies that the following holds for all k ≥ 0:

‖μi (k + 1)‖ ≤ ‖vi
μ(k) + α(k)[g(vi

x (k))]+‖ ≤ ‖vi
μ(k)‖ + G+α(k) ≤ Mμ(k) + G+α(k).

From here, then we deduce the following recursive estimate on Mμ(k + 1): Mμ(k +
1) ≤ Mμ(k) + G+α(k). Repeatedly applying the above estimates yields that

Mμ(k + 1) ≤ Mμ(0) + G+s(k). (2.25)

Similar arguments can be employed to show that

Mλ(k + 1) ≤ Mλ(0) + Hs(k). (2.26)

Since lim
k→+∞ α(k + 1)s(k) = 0 and lim

k→+∞ α(k) = 0, we know that

lim
k→+∞ α(k + 1)Mμ(k + 1) = 0, lim

k→+∞ α(k + 1)Mλ(k + 1) = 0.

Notice that the following estimate on S i
x (k) holds:

‖S i
x (k)‖ ≤ DF + DG+ Mμ(k) + DH Mλ(k). (2.27)

Recall that lim
k→+∞ α(k) = 0, lim

k→+∞ α(k)Mμ(k) = 0 and lim
k→+∞ α(k)Mλ(k) = 0.

Then the result of lim
k→+∞ α(k)‖S i

x (k)‖ = 0 follows. By (2.25), we have

+∞∑

k=0

α(k)2M2
μ(k) ≤ α(0)2M2

μ(0) +
+∞∑

k=1

α(k)2(Mμ(0) + G+s(k − 1))2.

It follows from the step-size Assumption2.2 that
∑+∞

k=0 α(k)2M2
μ(k) < +∞. Simi-

larly, one can show that
∑+∞

k=0 α(k)2M2
λ(k) < +∞. By using (2.25)–(2.27), we have

the following estimate:

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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+∞∑

k=0

α(k)2‖S i
x (k)‖2 ≤ α(0)2(DF + DG+ Mμ(0) + DH Mλ(0))

2

+
+∞∑

k=1

α(k)2(DF + DG+(Mμ(0) + G+s(k − 1)) + DH (Mλ(0) + Hs(k − 1)))2.

Then the summability of {α(k)2}, {α(k + 1)2s(k)} and {α(k + 1)2s(k)2} verifies that
of {α(k)2‖S i

x (k)‖2}.
(b) Consider the dynamics of μi (k) which is in the same form as the distributed
projected subgradient algorithm in [13]. Recall that {[g(vi

x (k))]+} is uniformly
bounded. Then following from Lemma2.5 in the Appendix2.5 with Z = R

m≥0 and
di (k) = −[g(vi

x (k))]+, we have the summability of {α(k)maxi∈V ‖μ̂(k) − μi (k)‖}.
Then {α(k)‖μ̂(k) − vi

μ(k)‖} is summable by using the following set of inequalities:

‖μ̂(k) − vi
μ(k)‖ ≤

N∑

j=1

ai
j (k)‖μ̂(k) − μ j (k)‖ ≤ max

i∈V
‖μ̂(k) − μi (k)‖, (2.28)

where we use
∑N

j=1 ai
j (k) = 1. Similarly, it holds that

∑+∞
k=0 α(k)‖λ̂(k)− vi

λ(k)‖ <

+∞.
We now consider the evolution of xi (k). Recall that vi

x (k) ∈ X . By Lemma1.1
with Z = X , z = vi

x (k) − α(k)S i
x (k) and y = vi

x (k), we have

‖xi (k + 1) − vi
x (k)‖2 ≤ ‖vi

x (k) − α(k)S i
x (k) − vi

x (k)‖2
− ‖xi (k + 1) − (vi

x (k) − α(k)S i
x (k))‖2,

and thus ‖ei
x (k) + α(k)S i

x (k)‖ ≤ α(k)‖S i
x (k)‖.With this relation, fromLemma2.5

with Z = X and di (k) = S i
x (k), the following holds for some γ > 0 and 0 < β < 1:

‖xi (k) − x̂(k)‖ ≤ Nγβk−1
N∑

i=0

‖xi (0)‖ + 2Nγ

k−1∑

τ=0

βk−τ α(τ )‖S i
x (τ )‖. (2.29)

Multiplying both sides of (2.29) by α(k)Mμ(k) and using (2.27), we obtain

α(k)Mμ(k)‖xi (k) − x̂(k)‖ ≤ Nγ

N∑

i=0

‖xi (0)‖α(k)Mμ(k)βk−1 + 2Nγα(k)Mμ(k)

×
k−1∑

τ=0

βk−τ α(τ )(DF + DG+ Mμ(τ) + DH Mλ(τ )).

Notice that the above inequalities hold for all i ∈ V . Then by employing the
relation of ab ≤ 1

2 (a
2 + b2) and regrouping similar terms, we obtain

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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α(k)Mμ(k)max
i∈V

‖xi (k) − x̂(k)‖ ≤ Nγ

(
1

2

N∑

i=0

‖xi (0)‖ + (DF + DG+ + DH )

k−1∑

τ=0

βk−τ

)

× α(k)2M2
μ(k) + 1

2
Nγ

N∑

i=0

‖xi (0)‖β2(k−1)

+ Nγ

k−1∑

τ=0

βk−τ α(τ )2(DF + DG+ M2
μ(τ) + DH M2

λ(τ )).

Part (a) gives that {α(k)2M2
μ(k)} is summable. Combining this fact with the prop-

erty of
∑k−1

τ=0 βk−τ ≤ ∑+∞
k=0 βk = 1

1−β
, then we can say that the first term on the

right-hand side in the above estimate is summable. It is easy to check that the second
term is also summable. It follows from Part (a) that

lim
k→+∞ α(k)2(DF + DG+ M2

μ(k) + DH M2
λ(k)) = 0,

and thus {α(k)2(DF +DG+ M2
μ(k)+DH M2

λ(k))} is summable. ThenLemma7 in [13]
with γ� = Nγα(�)2(DF + DG+ M2

μ(�) + DH M2
λ(�)) ensures that the third term

is summable. Therefore, the summability of {α(k)Mμ(k)maxi∈V ‖xi (k) − x̂(k)‖}
is guaranteed. Following the same lines in (2.28), one can show the summability
of {α(k)Mμ(k)‖vi

x (k) − x̂(k)‖}. Following analogous arguments, we have that
{α(k)Mλ(k)‖vi

x (k) − x̂(k)‖} and {α(k)‖vi
x (k) − x̂(k)‖} are summable. �

Remark 2.5 In Lemma2.11, the assumption of all local constraint sets being iden-
tical is utilized to find an upper bound of the convergence rate of ‖x̂(k) − vi

x (k)‖ to
zero. This property is crucial to establish the summability of expansions pertaining
to ‖x̂(k) − vi

x (k)‖ in part (b). •
The following is a basic iteration relation of theDistributed Penalty Primal-

Dual Subgradient Algorithm.

Lemma 2.12 (Basic iteration relation) The following estimates hold for any x ∈ X
and (μ, λ) ∈ R

m≥0 × R
ν≥0:

N∑

i=1

‖ei
x (k) + α(k)S i

x (k)‖2 ≤
N∑

i=1

α(k)2‖S i
x (k)‖2

−
N∑

i=1

2α(k)(Hi (v
i
x (k), vi

μ(k), vi
λ(k)) − Hi (x, vi

μ(k), vi
λ(k)))

+
N∑

i=1

(‖xi (k) − x‖2 − ‖xi (k + 1) − x‖2), (2.30)



2.5 Appendix 51

0 ≤
N∑

i=1

(‖μi (k) − μ‖2 − ‖μi (k + 1) − μ‖2)

+
N∑

i=1

(‖λi (k) − λ‖2 − ‖λi (k + 1) − λ‖2)+

N∑

i=1

2α(k)(Hi (v
i
x (k), vi

μ(k), vi
λ(k)) − Hi (v

i
x (k), μ, λ))

+
N∑

i=1

α(k)2(‖[g(vi
x (k))]+‖2 + ‖h(vi

x (k))‖2). (2.31)

Proof One can finish the proof by following analogous arguments in Lemma2.8.
�

Lemma 2.13 (Achieving consensus) Let us suppose that the nondegeneracy
Assumption1.1, the double stochasticity Assumption1.2, and the periodical strong
connectivity Assumption1.3 hold. Consider the sequences of {xi (k)}, {μi (k)}, {λi (k)},
and {yi (k)} of the distributed penalty primal-dual subgradient algorithm
with the step-size sequence {α(k)} and the associated {s(k)} satisfying
lim

k→+∞ α(k) = 0 and lim
k→+∞ α(k + 1)s(k) = 0. Then there exists x̃ ∈ X such that

lim
k→+∞ ‖xi (k) − x̃‖ = 0 for all i ∈ V . Furthermore, lim

k→+∞ ‖μi (k) − μ j (k)‖ = 0,

lim
k→+∞ ‖λi (k) − λ j (k)‖ = 0 and lim

k→+∞ ‖yi (k) − y j (k)‖ = 0 for all i, j ∈ V .

Proof Similar to (2.16), we have

N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k) − x‖2

+
N∑

i=1

α(k)2‖S i
x (k)‖2 +

N∑

i=1

2α(k)‖S i
x (k)‖‖vi

x (k) − x‖.

Since lim
k→+∞ α(k)‖S i

x (k)‖ = 0, the proofs of lim
k→+∞ ‖xi (k) − x̃‖ = 0 for all i ∈ V

are analogous to those in Lemma2.9. The remainder of the proofs can be finished
by Theorem1.4 with the properties of lim

k→+∞ ui
μ(k) = 0, lim

k→+∞ ui
λ(k) = 0 and

lim
k→+∞ ui

y(k) = 0 (due to lim
k→+∞ xi (k) = x̃ and fi is continuous). �

We now proceed to show Theorem2.3 based on five claims.

Proof of Theorem 2.3:

Claim 2.3 For any x∗ ∈ X∗ and (μ∗, λ∗) ∈ D∗
P , the following sequences are

summable:

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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{

α(k)

[
N∑

i=1

Hi (x∗, vi
μ(k), vi

λ(k)) − H (x∗, μ̂(k), λ̂(k))

]}

,

{

α(k)

[
N∑

i=1

Hi (v
i
x (k), μ∗, λ∗) − H (x̂(k), μ∗, λ∗)

]}

Proof Observe that

‖Hi (x∗, vi
μ(k), vi

λ(k)) − Hi (x∗, μ̂(k), λ̂(k))‖
≤ ‖vi

μ(k) − μ̂(k)‖‖[g(x∗)]+‖ + ‖vi
λ(k) − λ̂(k)‖‖h(x∗)‖

≤ G+‖vi
μ(k) − μ̂(k)‖ + H‖vi

λ(k) − λ̂(k)‖. (2.32)

By using the summability of {α(k)‖μ̂(k) − vi
μ(k)‖} and {α(k)‖λ̂(k) − vi

λ(k)‖} in
Part (b) of Lemma2.11, we have that the following are summable:

{

α(k)

N∑

i=1

‖Hi (x∗, vi
μ(k), vi

λ(k)) − Hi (x∗, μ̂(k), λ̂(k))‖
}

,

{

α(k)

[
N∑

i=1

(
Hi (x∗, vi

μ(k), vi
λ(k)) − Hi (x∗, μ̂(k), λ̂(k))

)
]}

.

Similarly, the following estimates hold:

‖Hi (v
i
x (k), μ∗, λ∗) − Hi (x̂(k), μ∗, λ∗)‖

≤ ‖ fi (v
i
x (k)) − fi (x̂(k))‖ + ‖(μ∗)T ([g(vi

x (k))]+ − [g(x̂(k))]+)‖
+ ‖(λ∗)T (|h(vi

x (k))| − |h(x̂(k))|)‖
≤ (DF + DG+‖μ∗‖ + DH ‖λ∗‖)‖vi

x (k) − x̂(k)‖.

Then the property of
∑+∞

k=0 α(k)‖x̂(k) − vi
x (k)‖ < +∞ in Part (b) of Lemma2.11

implies the summability of the following sequences:

{

α(k)

N∑

i=1

‖Hi (v
i
x (k), μ∗, λ∗) − Hi (x̂(k), μ∗, λ∗)‖

}

,

{

α(k)

N∑

i=1

(
Hi (v

i
x (k), μ∗, λ∗) − Hi (x̂(k), μ∗, λ∗)

)
}

.

�

Claim 2.4 Denote the weighted version of Hi as
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Ĥi (k) � 1

s(k − 1)

k−1∑

�=0

α(�)Hi (v
i
x (�), vi

μ(�), vi
λ(�)).

The following property holds: lim
k→+∞

N∑

i=1

Ĥi (k) = p∗.

Proof Summing (2.30) over [0, k − 1] and replacing x by x∗ ∈ X∗ leads to

k−1∑

�=0

α(�)

N∑

i=1

(Hi (v
i
x (�), vi

μ(�), vi
λ(�)) − Hi (x∗, vi

μ(�), vi
λ(�)))

≤
N∑

i=1

‖xi (0) − x∗‖2 +
k−1∑

�=0

N∑

i=1

α(�)2‖S i
x (�)‖2. (2.33)

The summability of {α(k)2‖S i
x (k)‖2} in Part (b) of Lemma2.11 implies that the

right-hand side of (2.33) is finite as k → +∞, and thus

lim sup
k→∞

1

s(k − 1)

k−1∑

�=0

α(�)

[
N∑

i=1

(
Hi (v

i
x (�), vi

μ(�), vi
λ(�)) − Hi (x∗, vi

μ(�), vi
λ(�))

)
]

≤ 0.

(2.34)

Pick any (μ∗, λ∗) ∈ D∗
P . It follows from Theorem2.2 that (x∗, μ∗, λ∗) is a saddle

point of H over X × R
m≥0 × R

ν≥0. Since (μ̂(k), λ̂(k)) ∈ R
m≥0 × R

ν≥0, then we have

H (x∗, μ̂(k), λ̂(k)) ≤ H (x∗, μ∗, λ∗) = p∗. Combining this relation, Claim 2.3
and (2.34) renders that

lim sup
k→+∞

1

s(k − 1)

k−1∑

�=0

α(�)

[
N∑

i=1

Hi (v
i
x (�), vi

μ(�), vi
λ(�)) − p∗

]

≤ lim sup
k→+∞

1

s(k − 1)

k−1∑

�=0

α(�)

[
N∑

i=1

(
Hi (v

i
x (�), vi

μ(�), vi
λ(�)) − Hi (x∗, vi

μ(�), vi
λ(�))

)
]

+ lim sup
k→+∞

1

s(k − 1)

k−1∑

�=0

α(�)

[
N∑

i=1

Hi (x∗, vi
μ(�), vi

λ(�)) − H (x∗, μ̂(�), λ̂(�))

]

+ lim sup
k→+∞

1

s(k − 1)

k−1∑

�=0

(H (x∗, μ̂(�), λ̂(�)) − p∗) ≤ 0,

and thus lim supk→+∞
∑N

i=1 Ĥi (k) ≤ p∗.
On the other hand, x̂(k) ∈ X (due to the fact that X is convex) implies that

H (x̂(k), μ∗, λ∗) ≥ H (x∗, μ∗, λ∗) = p∗. Along similar lines, by using (2.31) with
μ = μ∗, λ = λ∗, and Claim 2.3, we have lim infk→+∞

∑N
i=1 Ĥi (k) ≥ p∗. Then we

have the desired relation. �
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Claim 2.5 Denote byπ(k)�
∑N

i=1Hi (vi
x (k), vi

μ(k), vi
λ(k))−H (x̂(k), μ̂(k), λ̂(k)).

And we denote the weighted version of H as

Γ (k) � 1

s(k − 1)

k−1∑

�=0

α(�)H (x̂(�), μ̂(�), λ̂(�)).

The following property holds: lim
k→+∞ Γ (k) = p∗.

Proof Notice that

π(k) =
N∑

i=1

( fi (v
i
x (k)) − fi (x̂(k))) +

N∑

i=1

(
vi
μ(k)T [g(vi

x (k))]+ − vi
μ(k)T [g(x̂(k))]+)

+
N∑

i=1

(
vi
μ(k)T [g(x̂(k))]+ − μ̂(k)T [g(x̂(k))]+)

+
N∑

i=1

(
vi
λ(k)T |h(vi

x (k))| − vi
λ(k)T |h(x̂(k))|)

+
N∑

i=1

(
vi
λ(k)T |h(x̂(k))| − λ̂(k)T |h(x̂(k))|). (2.35)

By using the boundedness of subdifferentials and the primal estimates, it follows
from (2.35) that

‖π(k)‖ ≤ (DF + DG+ Mμ(k) + DH Mλ(k)) ×
N∑

i=1

‖vi
x (k) − x̂(k)‖

+ G+
N∑

i=1

‖vi
μ(k) − μ̂(k)‖ + H

N∑

i=1

‖vi
λ(k) − λ̂(k)‖. (2.36)

Then it follows from (b) in Lemma2.11 that {α(k)‖π(k)‖} is summable. Notice that

‖Γ (k)−∑N
i=1 Ĥi (k)‖ ≤

∑k−1
�=0 α(�)‖π(�)‖

s(k−1) , and thus lim
k→+∞ ‖Γ (k) −

N∑

i=1

Ĥi (k)‖ = 0.

The desired result immediately follows from Claim 2.4. �

Claim 2.6 The limit point x̃ in Lemma2.13 is a primal optimal solution.

Proof Let μ̂(k) = (μ̂1(k), . . . , μ̂m(k))T ∈ R
m≥0. By the double stochasticity

Assumption1.2, we obtain

N∑

i=1

μi (k + 1) =
N∑

i=1

N∑

j=1

ai
j (k)μ j (k) + α(k)

N∑

i=1

[g(vi
x (k))]+

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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=
N∑

j=1

μ j (k) + α(k)

N∑

i=1

[g(vi
x (k))]+.

This implies that the sequence {μ̂�(k)} is nondecreasing inR≥0. Observe that {μ̂�(k)}
is lower bounded by zero. In this way, we distinguish the following two cases:

Case 1: The sequence {μ̂�(k)} is upper bounded. Then {μ̂�(k)} is convergent in
R≥0. Recall that lim

k→+∞ ‖μi (k) − μ j (k)‖ = 0 for all i, j ∈ V . This implies that

there exists μ∗
� ∈ R≥0 such that lim

k→+∞ ‖μi
�(k) − μ∗

�‖ = 0 for all i ∈ V . Observe

that
∑N

i=1 μi (k +1) = ∑N
i=1 μi (0)+∑k

τ=0 α(τ)
∑N

i=1[g(vi
x (τ ))]+. Thus, we have

the property of
∑+∞

k=0 α(k)
∑N

i=1[g�(vi
x (k))]+ < +∞, further implying the property

of lim infk→+∞[g�(vi
x (k))]+ = 0. Since lim

k→+∞ ‖xi (k) − x̃‖ = 0 for all i ∈ V , then

it holds that lim
k→+∞ ‖vi

x (k) − x̃‖ = 0, implying [g�(x̃)]+ = 0.

Case 2: The sequence {μ̂�(k)} is not upper bounded. Since {μ̂�(k)} is
nondecreasing, then μ̂�(k) → +∞. It follows from Claim 2.5 and (a) in Lemma2.6
that it is impossible that H (x̂(k), μ̂(k), λ̂(k)) → +∞. Assume that [g�(x̃)]+ > 0.
Then we have

H (x̂(k), μ̂(k), λ̂(k)) = f (x̂(k)) + N μ̂(k)T [g(x̂(k))]+ + Nλ(k)T |h(x̂(k))|
≥ f (x̂(k)) + μ̂�(k)[g�(x̂(k))]+. (2.37)

Taking limits on both sides of (2.37) and we obtain:

lim inf
k→+∞ H (x̂(k), μ̂(k), λ̂(k)) ≥ lim sup

k→+∞
( f (x̂(k)) + μ̂�(k)[g�(x̂(k))]+) = +∞.

Then we reach a contradiction, implying that [g�(x̃)]+ = 0.
In both cases, we have [g�(x̃)]+ = 0 for any 1 ≤ � ≤ m. By utilizing similar

arguments, we can further prove that |h(x̃)| = 0. Since x̃ ∈ X , then x̃ is feasible

and thus f (x̃) ≥ p∗. On the other hand, since
∑k−1

�=0 α(�)x̂(�)
∑k−1

�=0 α(�)
is a convex combination

of x̂(0), . . . , x̂(k − 1) and lim
k→+∞ x̂(k) = x̃ , then Claim 2.5 and (b) in Lemma2.6

implies that

p∗ = lim
k→+∞ Γ (k) = lim

k→+∞

∑k−1
�=0 α(�)H (x̂(�), μ̂(�), λ̂(�))

∑k−1
�=0 α(�)

≥ lim
k→+∞ f

(∑k−1
�=0 α(�)x̂(�)
∑k−1

�=0 α(�)

)

= f (x̃).

Hence, we have f (x̃) = p∗ and thus x̃ ∈ X∗. �
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Claim 2.7 It holds that lim
k→+∞ ‖yi (k) − p∗‖ = 0.

Proof The proof follows the same lines in Claim 2.2 of Theorem2.1 and thus is
omitted here. �

2.6 Notes

Distributed optimization traces back to 1970s. In [14], the classic dual decomposition
approach is proposed to the class of distributed optimization problems characterized
by separable component functions. This approach has been successfully applied to
handle network utility maximization (NUM) in; e.g., [4, 15, 16]. In [17, 18], the
authors develop a general framework for parallel and distributed computation over
a set of processors.

Recently, diffusion consensus algorithms have been integrated into distributed
optimization to address the nonseparability in component functions and dynamic
changes of network topologies. In particular, distributed projected subgradient algo-
rithms are proposed in [13] to address non-smooth multi-agent optimization with
constraint sets. The paper [19] comes upwithDistributed Lagrangian Primal-
Dual Subgradient Algorithm and Distributed Penalty Primal- Dual
Subgradient Algorithm to further address inequality and equality constraints.
The results developed in [19] are extended to solve a class of distributed nonconvex
optimization problems in [20]. All the algorithms aforementioned are discrete-time.
The continuous-time counterparts are investigated in [21–23]. In [24], a distributed
continuous-time algorithm with discrete-time communication is proposed. Random
network and state-dependent topologies are investigated in [25, 26] respectively.

There have been a number of other interesting algorithms for distributed opti-
mization. The authors in [27, 28] apply the second-order Newton method to dis-
tributed optimization. The paper [29] studies the dual averaging algorithm and the
papers [30, 31] investigate the algorithm of Alternating Direction Method of Multi-
pliers. Distributed Nesterov gradient algorithms are developed in [32] to accelerate
the convergence. In [33], the authors aim to minimize a sequence of dynamically
changing convex functions. In [34, 35], the authors investigate the robustness of dis-
tributed algorithms against external disturbances. In [36], game design is utilized to
address distributed optimization. In [37], the authors propose a distributed algorithm
to compute Pareto optimal solutions of multiobjective optimization problems.

Distributed Lagrangian Primal- Dual Subgradient Algorithm and
Distributed Penalty Primal- Dual Subgradient Algorithm presented in
this chapter are built on saddle point dynamics. For a convex–concave function,
continuous-time saddle point dynamics is proved in [8] to converge globally towards a
saddle point. Recently, [9] presents (discrete-time) primal-dual subgradient methods
which relax the differentiability of [8] and further incorporate state constraints. The
method in [8] is adopted by [38, 39] to study a distributed optimization problem on
fixed graphs where objective functions are separable.
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Chapter 3
Game Theoretic Optimal
Sensor Deployment

3.1 Introduction

In noncooperative games, players are self-interested and aim to maximize their own
utilities. The selfishness makes the decision-making of players naturally distributed.
This attractive feature is evident in a large number of game theoretic learning algo-
rithms, e.g., better and best reply dynamics. As a result, game theoretic learning
provides a powerful arsenal for the synthesis of efficient distributed algorithms to
multi-agent networks. This chapter will discuss one of its applications to sensor
deployment.

There is a widespread belief that continuous and pervasive monitoring will be
possible in the near future with large numbers of networked, mobile, and wireless
sensors. Thus, we are witnessing an intense research activity that focuses on the
design of efficient control mechanisms for these systems. In particular, decentralized
algorithms would allow sensor networks to react autonomously to changes in the
environment with minimal human supervision.

A substantial body of research on sensor networks has concentrated on simple sen-
sors that can collect scalar data, e.g., temperature, humidity, or pressure data. Here, a
main objective is the design of algorithms that can lead to optimal collective sensing
through efficient motion control and communication schemes. However, scalar mea-
surements can be insufficient in many situations, e.g., in automated surveillance or
traffic monitoring applications. In contrast, data-intensive sensors such as cameras
can collect visual data that are rich in information, thus having tremendous potential
for monitoring applications, but at the cost of higher processing overhead.

Precisely, this chapter aims to solve a coverage optimization problem taking into
account part of the sensing/processing trade-off. Coverage optimization problems
have mainly been formulated as cooperative problems where each sensor benefits
from sensing the environment as a member of a group. However, sensing may also
require expenditure, e.g., the energy consumed or the time spent by image processing
algorithms in visual networks. Because of this, we endow each sensor with a utility

© The Author(s) 2015
M. Zhu and S. Martínez, Distributed Optimization-Based Control
of Multi-Agent Networks in Complex Environments, SpringerBriefs in Control,
Automation and Robotics, DOI 10.1007/978-3-319-19072-3_3

59



60 3 Game Theoretic Optimal Sensor Deployment

function that quantifies this trade-off, formulating a coverage problem as a variation
of congestion games in [1]. The coverage game we consider here is shown to be
a (constrained) exact potential game. A number of learning rules, e.g., better (or
best) reply dynamics and adaptive play, have been proposed to reach Nash equilibria
in potential games. In these algorithms, each player must have access to the utility
values induced by alternative actions. However, this information is unaccessible
in our problem setup because of the information constraints caused by unknown
rewards, motion, and sensing limitations. To tackle this challenge, we develop two
distributed payoff-based learning algorithms where each sensor only remembers its
own utility values and actions played during the last two plays. Our algorithms extend
the use of the payoff-based learning dynamics first novelly proposed in [2, 3].

In the first algorithm, at each time step, each sensor repeatedly updates its action
synchronously, either trying some new action in the state-dependent feasible action
set or selecting the actionwhich corresponds to a higher utility value in themost recent
two time steps. As the algorithm for the special identical interest games in [3], the
first algorithm employs a diminishing exploration rate. The dynamically changing
exploration rate renders the algorithm a time-inhomogeneous Markov chain, and
allows for the convergence in probability to the set of (constrained) Nash equilibria,
from which no agent is willing to unilaterally deviate.

The second algorithm is asynchronous. At each time step, only one sensor is
active and updates its state by either trying some new action in the state-dependent
feasible action set or selecting an action according to a Gibbs-like distribution from
those played in the last two time steps when it was active. The algorithm is shown to
be convergent in probability to the set of global maxima of a coverage performance
metric. Rather than maximizing the associated potential function in [2], the second
algorithm optimizes the sum of local utility functions which captures better a global
trade-off between the overall network benefit from sensing and the total energy the
network consumes. By employing a diminishing exploration rate, our algorithm is
guaranteed to have stronger convergence properties than the ones in [2].

3.2 Problem Formulation

We refer the reader to the basic game-theoretic concepts introduced in Chap.1,
Sect. 1.4. Thesewill allow us to formulate subsequently an optimal coverage problem
for mobile visual sensor networks as a repeated multi-player game.

3.2.1 Coverage Game

3.2.1.1 Mission Space

We consider a convex 2-D mission space that is discretized into a (squared) lattice.
We assume that each square of the lattice has unit dimensions. Each square will be

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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labeled with the coordinate of its center q = (qx , qy), where qx ∈ [qxmin , qxmax ]
and qy ∈ [qymin , qymax ], for some integers qxmin , qymin , qxmax , qymax . Denote by Q the
collection of all squares of the lattice.

We now define an associated location graph Gloc � (Q, Eloc) where ((qx , qy),

(qx ′ , qy′)) ∈ Eloc if and only if |qx −qx ′ |+|qy −qy′ | = 1 for (qx , qy), (qx ′ , qy′) ∈ Q.
Note that the graph Gloc is undirected; i.e., (q, q ′) ∈ Eloc if and only if (q ′, q) ∈ Eloc.
The set of neighbors of q in Eloc is given byN loc

q � {q ′ ∈ Q \{q} | (q, q ′) ∈ Eloc}.
We assume that the location graphGloc is fixed and connected, and denote its diameter
by D.

Agents are deployed in Q to detect certain events of interest. As agents move
in Q and process measurements, they will assign a numerical value Wq ≥ 0 to the
events in each square with center q ∈ Q. If Wq = 0, then there is no significant
event at the square with center q. The larger the value of Wq is, the more interest the
set of events at the square with center q is of. Later, the amount Wq will be identified
with the benefit of observing the point q. In this setup, we assume the values Wq to
be constant in time. Furthermore, Wq is not a priori knowledge to the agents, but the
agents can measure this value through sensing the point q.

3.2.1.2 Modeling of the Visual Sensor Nodes

Eachmobile agent i ismodeled as a pointmass inQ, with location ai � (xi , yi ) ∈ Q.
Each agent has mounted a pan-tilt-zoom camera, and can adjust its orientation and
focal length.

The visual sensing range of a camera is directional, limited-range, and has a finite
angle of view. Following a geometric simplification, we model the visual sensing
region of agent i as an annulus sector in the 2-D plane; see Figs. 3.1 and 3.2.

The visual sensor footprint is completely characterized by the following para-
meters: the position of agent i , ai ∈ Q, the camera orientation, θi ∈ [0, 2π), the

Fig. 3.1 Visual sensor
footprint
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Fig. 3.2 A configuration of
the mobile sensor network
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camera angle of view, ζi ∈ [αmin, αmax], and the shortest range (resp. longest range)
between agent i and the nearest (resp. farthest) object that can be recognized from the
image, r shrti ∈ [rmin, rmax] (resp. r lngi ∈ [rmin, rmax]). The parameters r shrti , r lngi , ζi

can be tuned by changing the focal length FLi of agent i’s camera. In this way, ci :=
(FLi , θi ) ∈ [0,FLmax]× [0, 2π) is the camera control vector of agent i . In what fol-
lows, we will assume that ci takes values in a finite subsetC ⊂ [0,FLmax]×[0, 2π).
An agent action is thus a vector si � (ai , ci ) ∈ Ai � Q × C , and a multi-agent
action is denoted by s = (s1, . . . , sN ) ∈ A � Π N

i=1Ai .
Let D(ai , ci ) be the visual sensor footprint of agent i . Now we can define a

proximity sensing graph1 Gsen(s) � (V, Esen(s)) as follows: the set of neighbors of
agent i ,N sen

i (s), is given asN sen
i (s) � { j ∈ V \{i} | D(ai , ci )∩D(a j , c j )∩Q �=

∅}.
Each agent is able to communicate with others to exchange information. We

assume that the communication range of agents is 2rmax. This induces a 2rmax-disk
communication graph Gcomm(s) � (V, Ecomm(s)) as follows: the set of neighbors of
agent i is given byN comm

i (s) �
{

j ∈ V \{i}| (xi − x j )
2 + (yi − y j )

2 ≤ (2rmax)
2
}
.

Note that Gcomm(s) is undirected and that Gsen(s) ⊆ Gcomm(s).
The motion of agents will be limited to a neighboring point in Gloc at each time

step. Thus, an agent feasible action set will be given byFi (ai ) � ({ai }∪N loc
ai

)×C .

3.2.1.3 Coverage Game

We now proceed to formulate a coverage optimization problem as a constrained
strategic game. For each q ∈ Q, we denote nq(s) as the cardinality of the set

1See [4] for a definition of proximity graph.
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{k ∈ V | q ∈ D(ak, ck) ∩ Q}; i.e., the number of agents which can observe the
point q. The “profit” given by Wq will be equally shared by agents that can observe
the point q. The benefit that agent i obtains through sensing is thus defined by
∑

q∈D(ai ,ci )∩Q
Wq

nq (s) .
On the other hand, and as argued in [5], the processing of visual data can incur

a higher cost than that of communication. This is in contrast with scalar sensor
networks,where the communication cost dominates.With this observation,wemodel
the energy consumption of agent i by fi (ci ) � 1

2ζi ((r
lng
i )2 − (r shrti )2). A similar

energy model is used in [6] and references therein. This measure corresponds to
the area of the visual sensor footprint and can serve to approximate the energy
consumption or the cost incurred by image processing algorithms.

We will endow each agent with a utility function that aims to capture the above
sensing/processing trade-off. In this way, we define a utility function for agent i by

ui (s) =
∑

q∈D(ai ,ci )∩Q

Wq

nq(s)
− fi (ci ).

Note that the utility function ui is local over the visual sensing graph Gsen(s); i.e., ui

is only dependent on the actions of {i} ∪ N sen
i (s). With the set of utility functions

Ucov = {ui }i∈V , and feasible action set Fcov = Π N
i=1

⋃
ai ∈Ai

Fi (ai ), we now have

all the ingredients to introduce the coverage game Γcov � 〈V,A , Ucov,Fcov〉. This
game is a variation of the congestion games introduced in [1].

Lemma 3.1 The coverage game Γcov is a constrained exact potential game with
potential function

φ(s) =
∑

q∈Q

nq (s)∑

	=1

Wq

	
−

N∑

i=1

fi (ci ).

Proof The proof is a slight variation of that in [1]. Consider any s � (si , s−i ) ∈ A
where si � (ai , ci ).Wefix i ∈ V and pick any s′

i = (a′
i , c′

i ) fromFi (ai ). Denote s′ �
(s′

i , s−i ), 
1 � (D(ai , ci )\D(a′
i , c′

i )) ∩ Q and 
2 � (D(a′
i , c′

i )\D(ai , ci )) ∩ Q.
Observe that

φ(si , s−i ) − φ(s′
i , s−i )

=
∑

q∈
1

(

nq (s)∑

	=1

Wq

	
−

nq (s′)∑

	=1

Wq

	
) +

∑

q∈
2

(−
nq (s)∑

	=1

Wq

	
+

nq (s′)∑

	=1

Wq

	
) − fi (ci ) + fi (c

′
i )

=
∑

q∈
1

Wq

nq(s)
−

∑

q∈
2

Wq

nq(s′)
− fi (ci ) + fi (c

′
i )

= ui (si , s−i ) − ui (s
′
i , s−i )
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where in the second equality we utilize the fact that for each q ∈ 
1, nq(s) =
nq(s′) + 1, and each q ∈ 
2, nq(s′) = nq(s) + 1. �

We denote by E (Γcov) the set of constrained NEs of Γcov. It is worth mentioning
that E (Γcov) �= ∅ due to the fact that Γcov is a constrained exact potential game.

Remark 3.1 The assumptions of our problem formulation admit several extensions.
For example, it is straightforward to extend our results to non-convex 3-D spaces.
This is because the results that follow can also handle other shapes of the sensor
footprint; e.g., a complete disk, a subset of the annulus sector. On the other hand,
note that the coverage problem can be interpreted as a target assignment problem—
here, the value Wq ≥ 0 would be associated with the value of a target located at the
point q. •

3.2.2 Our Objective

In our coverage problem,we assume that Wq is unknown to all the sensors in advance.
Furthermore, due to the restrictions of motion and sensing, each agent is unable to
obtain the information of Wq if the point q is outside its sensing range. In addition,
the utility of each agent depends on the group strategy. These information constraints
render that each agent is unable to access the utility values induced by alternative
actions. Thus the action-based learning algorithms, e.g., better (or best) reply learning
algorithm and adaptive play learning algorithm cannot be employed to solve our
coverage games. It motivates us to design distributed learning algorithms which only
require the payoff received.

[Objective] We aim to design and analyze distributed payoff-based algorithms which
allow sensors to identify optimal configuration.

3.2.3 Notations

In the following, we will use the Landau symbol, O , as in O(ει), for some
ι ≥ 0. This implies that 0 < limε→0+ O(ει)

ει < +∞. We denote diag(A ) �
{
(s, s) ∈ A 2| s ∈ A

}
and diag(E (Γcov)) �

{
(s, s) ∈ A 2| s ∈ E (Γcov)

}
.

Consider a, a′ ∈ QN where ai �= a′
i and a−i = a′−i for some i ∈ V . The transition

a → a′ is feasible if and only if (ai , a′
i ) ∈ Eloc. A feasible path from a to a′ consisting

of multiple feasible transitions is denoted by a ⇒ a′. Let �a �
{
a′ ∈ Q| a ⇒ a′}

be the reachable set from a.
Let s = (a, c), s′ = (a′, c′) ∈ A where ai �= a′

i and a−i = a′−i for some
i ∈ V . The transition s → s′ is feasible if and only if s′

i ∈ Fi (a). A feasible path
from s to s′ consisting of multiple feasible transitions is denoted by s ⇒ s′. Finally,
�s �

{
s′ ∈ A | s ⇒ s′} will be the reachable set from s.
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3.3 Distributed Learning Algorithms

In this section, we come up with two distributed payoff-based learning algorithms,
say the Coverage Learning Algorithm and the Asynchronous Coverage
Learning Algorithm. We then present their convergence properties. Relevant
and related algorithms include the payoff-based learning algorithms proposed in [2]
and [3].

3.3.1 The COVERAGE LEARNING ALGORITHM

For each k ≥ 1 and i ∈ V , we define τi (k) as follows: τi (k) = k if ui (s(k)) ≥
ui (s(k − 1)), otherwise, τi (k) = k − 1. Here, si (τi (k)) is the more successful action
of agent i in last two steps. The Coverage Learning Algorithm is formally
stated in the following table:

1: [Initialization:] At k = 0, all agents are uniformly placed inQ. Each agent i uniformly chooses
its camera control vector ci from the set C , communicates with agents in N sen

i (s(0)), and
computes ui (s(0)). At k = 1, all the agents keep their actions.

2: [Update:] At each time k ≥ 2, each agent i updates its state according to the following rules:

• Agent i chooses the exploration rate ε(k) = k− 1
N (D+1) with D being the diameter of the

location graph Gloc, and computes si (τi (k)).
• With probability ε(k), agent i experiments, and chooses the temporary action stpi � (atp

i , ctpi )

uniformly from the set Fi (ai (k)) \ {si (τi (k))}.
• With probability 1 − ε(k), agent i does not experiment, and sets stpi = si (τi (k)).

• After stpi is chosen, agent i moves to the position atp
i and sets the camera control vector to ctpi .

3: [Communication and computation:] At position atp
i , each agent i sends the information

D(atp
i , ctpi ) ∩ Q to agents in N sen

i (stpi , stp−i ). After that, each agent i identifies the quantity

nq (stp), for each q ∈ D(atp
i , ctpi ) ∩ Q, and computes the utility ui (s

tp
i , stp−i ) and the feasible

action set of Fi (a
tp
i ).

4: Repeat Steps 2 and 3.

Remark 3.2 A variation of the Coverage Learning Algorithm corresponds to
ε(k) = ε ∈ (0, 1

2 ] constant for all k ≥ 2. If this is the case, we will refer to the
algorithm as the Homogeneous Coverage Learning Algorithm. Later, the
convergence analysis of the Coverage Learning Algorithm will be based on
the analysis of the Homogeneous Coverage Learning Algorithm. •

Denote the space B �
{
(s, s′) ∈ A × A | s′

i ∈ Fi (ai ), ∀i ∈ V
}
. Observe that

z(k) � (s(k − 1), s(k)) in the Coverage Learning Algorithm constitutes a
time-inhomogeneous Markov chain {Pk} on the space B. The following theorem
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implies that the Coverage Learning Algorithm asymptotically converges to
the set of E (Γcov) in probability.

Theorem 3.1 Consider the Markov chain {Pk} induced by theCoverage Learn-
ing Algorithm. It holds that limk→+∞ P(z(k) ∈ diag(E (Γcov))) = 1.

The proofs of Theorem 3.1 are provided in Sect. 3.4.

Remark 3.3 An algorithm is proposed for the general class of weakly acyclic games
(including potential games as special cases) in [3], and is able to find an NE with
an arbitrarily high probability by choosing an arbitrarily small and fixed exploration
rate ε in advance. However, it is difficult to derive an analytic relation between the
convergent probability and the exploration rate. For the special case of identical
interest games (all players share an identical utility function), the authors in [3]
exploit a diminishing exploration rate and obtain a stronger result of convergence
in probability. This motivates us to utilize a diminishing exploration rate in the
Coverage Learning Algorithmwhich allows for convergence to the set of NEs
in probability. In the algorithm for weakly acyclic games in [3], each player may
execute the baseline action which depends on all the past plays. As a result, the
algorithm for weakly acyclic games in [3] cannot be utilized to solve our problem
because the baseline action may not be feasible when the state-dependent constraints
are present. It is worth mentioning that the paper [3] also investigates a case where
the utility values are corrupted by noises. •

3.3.2 The ASYNCHRONOUS COVERAGE LEARNING

ALGORITHM

Lemma 3.1 shows that the coverage game Γcov is a constrained exact potential game
with potential function φ(s). However, this potential function is not a straightforward
measure of the network coverage performance. On the other hand, the objective func-
tion Ug(s) �

∑
i∈V ui (s) captures the trade-off between the overall network benefit

from sensing and the total energy the network consumes, and thus can be perceived as
amore natural coverage performancemetric.Denote by S∗ �

{
s| argmaxs∈A Ug(s)

}

the set of global maximizers of Ug(s). In this part, we present the Asynchronous
Coverage Learning Algorithmwhich is convergent in probability to the set S∗.

Before that,wefirst introduce somenotations for theAsynchronous Coverage
Learning Algorithm. Denote by the space B′ as follows:

B′ �
{
(s, s′) ∈ A × A | s−i = s′−i , s′

i ∈ Fi (ai ) for some i ∈ V
}
.

For any s0, s1 ∈ A with s0−i = s1−i for some i ∈ V , we denote

Δi (s
1, s0) � 1

2

∑

q∈
1

Wq

nq(s1)
− 1

2

∑

q∈
2

Wq

nq(s0)
,
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where 
1 � D(a1
i , c1i )\D(a0

i , c0i ) ∩ Q and 
2 � D(a0
i , c0i )\D(a1

i , c1i ) ∩ Q, and

ρi (s
0, s1) � ui (s

1) − Δi (s
1, s0) − ui (s

0) + Δi (s
0, s1),

�i (s
0, s1) � max{ui (s

0) − Δi (s
0, s1), ui (s

1) − Δi (s
1, s0)},

m∗ � max
(s0,s1)∈B,s0i �=s1i

{�i (s
0, s1) − (ui (s

0) − Δi (s
0, s1)),

1

2
}.

It is easy to check that Δi (s1, s0) = −Δi (s0, s1) and �i (s0, s1) = �i (s1, s0).
Assume that at each time instant, one of the agents becomes active with equal prob-
ability. This can be realized by employing the asynchronous time model proposed
in [7] where each node has a clock which ticks according to a rate 1 Poisson process.
For this reason, we will refer the following algorithm to be asynchronous. Denote
by γi (k) the last time instant before t when agent i was active. We then denote
γ

(2)
i (k) � γi (γi (k)). The main steps of theAsynchronous Coverage Learning
Algorithm are described in the following.

1: [Initialization:] At k = 0, all agents are uniformly placed inQ. Each agent i uniformly chooses
the camera control vector ci from the set C , and then communicates with agents inN sen

i (s(0))
and computes ui (s(0)). Furthermore, each agent i chooses mi ∈ (2m∗, K m∗] for some K ≥ 2.
At k = 1, all the sensors keep their actions.

2: [Update:] Assume that agent i is active at time k ≥ 2. Then agent i updates its state according
to the following rules:

• Agent i chooses the exploration rate ε(k) = k− 1
(D+1)(K+1)m∗ .

• With probability ε(k)mi , agent i experiments and uniformly chooses stpi � (atp
i , ctpi ) from the

action set Fi (ai (k)) \ {si (k), si (γ
(2)
i (k) + 1)}.

• With probability 1 − ε(k)mi , agent i does not experiment and chooses stpi according to the
following probability distribution:

P(stpi = si (k)) = 1

1 + ε(k)ρi (si (γ
(2)
i (k)+1),si (k))

,

P(stpi = si (γ
(2)
i (k) + 1)) = ε(k)ρi (si (γ

(2)
i (k)+1),si (k))

1 + ε(k)ρi (si (γ
(2)
i (k)+1),si (k))

.

• After stpi is chosen, agent i moves to the position atp
i and sets its camera control vector to be

ctpi .

3: [Communication and computation:] At position atp
i , the active agent i initiates a message

to agents in N sen
i (stpi , s−i (k)). Then each agent j ∈ N sen

i (stpi , s−i (k)) sends the informa-

tion of D(atp
j , ctpj ) ∩ Q to agent i . After receiving such information, agent i identifies the

quantity nq (stpi , s−i (k)) for each q ∈ D(atp
i , ctpi ) ∩ Q, computes the utility ui (s

tp
i , s−i (k)),

Δi ((s
tp
i , s−i (k)), s(γi (k) + 1)), and the feasible action set of Fi (a

tp
i ).

4: Repeat Steps 2 and 3.
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Remark 3.4 A variation of the Asynchronous Coverage Learning Algo-
rithm corresponds to ε(k) = ε ∈ (0, 1

2 ] constant for all k ≥ 2. If this is the case,
we will refer to the algorithm as the Homogeneous Asynchronous Cover-
age Learning Algorithm. Later, we will base the convergence analysis of the
Asynchronous Coverage Learning Algorithm on that of theHomogeneous
Asynchronous Coverage Learning Algorithm. •

As in the Coverage Learning Algorithm, z(k) � (s(t − 1), s(k))

in the Asynchronous Coverage Learning Algorithm constitutes a time-
inhomogeneousMarkov chain {Pk} on the spaceB′. The following theorem implies
that the Asynchronous Coverage Learning Algorithm asymptotically con-
verges to the set of S∗ with probability one.

Theorem 3.2 Consider the Markov chain {Pk} induced by the Asynchronous
Coverage Learning Algorithm for the game Γcov. Then it holds that
limk→+∞ P(z(k) ∈ diag(S∗)) = 1.

The proofs of Theorem 3.2 are provided in Sect. 3.4.

Remark 3.5 A synchronous payoff-based, log-linear learning algorithm is proposed
in [2] for potential games in which players aim to maximize the potential function
of the game. As mentioned before, the potential function is not suitable to act as
a coverage performance metric. As opposed to [2], the Asynchronous Cover-
age Learning Algorithm instead seeks to optimize a different function Ug(s)
perceived as a natural network performance metric. Furthermore, the Asynchro-
nous Coverage Learning Algorithm exploits a diminishing step-size, and this
choice allows for convergence to the set of global optima in probability. On the other
hand, convergence in [2] is to the set of NE with arbitrarily high probability. Theo-
retically, our result is stronger than that of [2] by choosing an arbitrarily small and
fixed exploration rate in advance. •

3.4 Convergence Analysis

In this section, we prove Theorems 3.1 and 3.2 by appealing to the Theory of Resis-
tance Trees in [8] and the results in strong ergodicity in [9]. Relevant papers include
[2, 3] where the Theory of Resistance Trees in [8] are novelly utilized to study the
class of payoff-based learning algorithms, and [10–12] where the strong ergodicity
theory is employed to characterize the convergenceproperties of time-inhomogeneous
Markov chains.
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3.4.1 Convergence Analysis of the COVERAGE LEARNING

ALGORITHM

We first utilize Theorem 1.10 to characterize the convergence properties of the asso-
ciated Homogeneous Coverage Learning Algorithm. This is essential for
the analysis of the Coverage Learning Algorithm.

Observe that z(k) � (s(k −1), s(k)) in theHomogeneous Coverage Learn-
ing Algorithm consists of a time-homogeneous Markov chain {Pε

k } on the space
B. Consider z, z′ ∈ B. A feasible path from z to z′ consisting of multiple feasible
transitions of {Pε

t } is denoted by z ⇒ z′. The reachable set from z is denoted as
�z � {z′ ∈ B | z ⇒ z′}.
Lemma 3.2 {Pε

k } is a regular perturbation of {P0
k }.

Proof Consider a feasible transition z1 → z2 with z1 � (s0, s1) and z2 � (s1, s2).

Then we can define a partition of V as �1 �
{

i ∈ V | s2i = sτi (0,1)
i

}
and �2 �

{
i ∈ V | s2i ∈ Fi (a1

i ) \ {sτi (0,1)
i }

}
. The corresponding probability is given by

Pε
z1z2 =

∏

i∈�1

(1 − ε) ×
∏

j∈�2

ε

|Fi (a1
i )| − 1

. (3.1)

Hence, the resistance of the transition z1 → z2 is |�2| ∈ {0, 1, . . . , N } since

0 < lim
ε→0+

Pε
z1z2

ε|�2| =
∏

j∈�2

1

|Fi (a1
i )| − 1

< +∞.

We have that (A3) holds. It is not difficult to see that (A2) holds, and we are now
in a position to verify (A1). Since Gloc is undirected and connected, and multiple
sensors can stay in the same position, then �a0 = QN for any a0 ∈ Q. Since sensor
i can choose any camera control vector from C at each time, then �s0 = A for any
s0 ∈ A . It implies that �z0 = B for any z0 ∈ B, and thus the Markov chain {Pε

k }
is irreducible on the space B.

It is easy to see that any state in diag(A ) has period 1. Pick any (s0, s1) ∈
B \ diag(A ). Since Gloc is undirected, then s0i ∈ Fi (a1

i ) if and only if s1i ∈ Fi (a0
i ).

Hence, the following two paths are both feasible:

(s0, s1) → (s1, s0) → (s0, s1)

(s0, s1) → (s1, s1) → (s1, s0) → (s0, s1).

Hence, the period of the state (s0, s1) is 1. This proves aperiodicity of {Pε
k }. Since

{Pε
k } is irreducible and aperiodic, then (A1) holds. �

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Lemma 3.3 For any (s0, s0) ∈ diag(A ) \ diag(E (Γcov)), there is a finite sequence
of transitions from (s0, s0) to some (s∗, s∗) ∈ diag(E (Γcov)) that satisfies

L � (s0, s0)
O(ε)→ (s0, s1)

O(1)→ (s1, s1)
O(ε)→ (s1, s2)

O(1)→ (s2, s2)
O(ε)→ · · · O(ε)→ (sτ−1, sτ )

O(1)→ (sτ , sτ )

where (sτ , sτ ) = (s∗, s∗) for some τ ≥ 1.

Proof If s0 /∈ E (Γcov), there exists a sensor i with an action s1i ∈ Fi (a0
i ) such

that ui (s1) > ui (s0), where s0−i = s1−i . The transition (s0, s0) → (s0, s1) happens
when only sensor i experiments, and its corresponding probability is (1 − ε)N−1 ×

ε

|Fi (a0i )|−1
. Since the function φ is the potential function of the game Γcov, we have

that φ(s1) − φ(s0) = ui (s1) − ui (s0) and thus φ(s1) > φ(s0).
Since ui (s1) > ui (s0) and s0−i = s1−i , the transition (s0, s1) → (s1, s1) occurs

when all sensors do not experiment, and the associated probability is (1 − ε)N .
We repeat the above process and construct the path L with length τ ≥ 1. Since

φ(si ) > φ(si−1) for i = {1, . . . , τ }, then si �= s j for i �= j and thus the pathL has
no loop. Since A is finite, then τ is finite and thus sτ = s∗ ∈ E (Γcov). �

A direct result of Lemma 3.2 is that for each ε, there exists a unique stationary dis-
tribution of {Pε

k }, sayμ(ε). We now proceed to utilize Theorem 1.10 to characterize
limε→0+ μ(ε).

Proposition 3.1 Consider the regular perturbation {Pε
k } of {P0

k }. Then the limit
of lim

ε→0+ μ(ε) exists and the limiting distribution μ(0) is a stationary distribution of

{P0
k }. Furthermore, the stochastically stable states (i.e., the support of μ(0)) are

contained in the set diag(E (Γcov)).

Proof Notice that the stochastically stable states are contained in the recurrent com-
munication classes of the unperturbed Markov chain that corresponds to the Homo-
geneous Coverage Learning Algorithm with ε = 0. Thus the stochastically
stable states are included in the set diag(A ) ⊂ B. Denote by Tmin the minimum
resistance tree and by hv the root of Tmin. Each edge of Tmin has resistance 0, 1, 2, . . .
corresponding to the transition probability O(1), O(ε), O(ε2), . . . . The state z′ is
the successor of the state z if and only if (z, z′) ∈ Tmin. Like Theorem 3.2 in [3],
our analysis will be slightly different from the presentation in 1.5. We will construct
Tmin over states in the set B (rather than diag(A )) with the restriction that all the
edges leaving the states inB \ diag(A ) have resistance 0. The stochastically stable
states are not changed under this difference.

Claim 3.1 For any (s0, s1) ∈ B \ diag(A ), there is a finite path

L ′ � (s0, s1)
O(1)→ (s1, s2)

O(1)→ (s2, s2)

where s2i = sτi (0,1)
i for all i ∈ V .

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Proof These two transitions occur when all agents do not experiment. The corre-
sponding probability of each transition is (1 − ε)N . �

Claim 3.2 The root hv belongs to the set diag(A ).

Proof Suppose that hv = (s0, s1) ∈ B \ diag(A ). By Claim 3.1, there is a finite

path L ′ � (s0, s1)
O(1)→ (s1, s2)

O(1)→ (s2, s2). We now construct a new tree T ′ by
adding the edges of the pathL ′ into the tree Tmin and removing the redundant edges.
The total resistance of added edges is 0. Observe that the resistance of the removed
edge exiting from (s2, s2) in the tree Tmin is at least 1. Hence, the resistance of T ′ is
strictly lower than that of Tmin, and we get to a contradiction. �

Claim 3.3 Pick any s∗ ∈ E (Γcov) and consider z � (s∗, s∗), z′ � (s∗, s̃) where
s̃ �= s∗. If (z, z′) ∈ Tmin, then the resistance of the edge (z, z′) is some τ ≥ 2.

Proof Suppose the deviator in the transition z → z′ is unique, say i . Then the
corresponding transition probability is O(ε). Since s∗ ∈ E (Γcov) and s̃i ∈ Fi (a∗

i ),
we have that ui (s∗

i , s∗−i ) ≥ ui (s̃i , s̃−i ), where s∗−i = s̃−i .
Since z′ ∈ B \ diag(A ), it follows from Claim 3.2 that the state z′ cannot be the

root of Tmin and thus has a successor z′′. Note that all the edges leaving the states
in B \ diag(A ) have resistance 0. Then none of the experiments are in transition
z′ → z′′ and z′′ = (s̃, ŝ) for some ŝ. Since ui (s∗

i , s∗−i ) ≥ ui (s̃i , s̃−i ) with s∗−i = s̃−i ,
we have ŝ = s∗ and thus z′′ = (s̃, s∗). Similarly, the state z′′ must have a successor
z′′′ and z′′′ = z. We then obtain a loop in Tmin which contradicts that Tmin is a tree.

It implies that at least two sensors experiment in the transition z → z′. Thus the
resistance of the edge (z, z′) is at least 2. �

Claim 3.4 The root hv belongs to the set diag(E (Γcov)).

Proof Suppose that hv = (s0, s0) /∈ diag(E (Γcov)). By Lemma 3.3, there is a finite
path L connecting (s0, s0) and some (s∗, s∗) ∈ diag(E (Γcov)). We now construct
a new tree T ′ by adding the edges of the path L into the tree Tmin and removing
the edges that leave the states in L in the tree Tmin. The total resistance of added
edges is τ . Observe that the resistance of the removed edge exiting from (si , si ) in
the tree Tmin is at least 1 for i ∈ {1, . . . , τ − 1}. By Claim 3.3, the resistance of the
removed edge leaving from (s∗, s∗) in the tree Tmin is at least 2. The total resistance
of removed edges is at least τ + 1. Hence, the resistance of T ′ is strictly lower than
that of Tmin, and we get to a contradiction. �

It follows fromClaim3.4 that the states in diag(E (Γcov))haveminimumstochastic
potential. Since Lemma 3.2 shows that Markov chain {Pε

τ } is a regularly perturbed
Markov process, Proposition 3.1 is a direct result of Theorem 1.10. �

We are now ready to show Theorem 3.1.

Proof of Theorem 3.1

Claim 3.5 Condition (C2) in Theorem 1.9 holds.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Proof For each k ≥ 0 and each z ∈ X , we define the numbers

σz(ε(k)) �
∑

T ∈G(z)

∏

(x,y)∈T

Pε(k)
xy , σ k

z = σz(ε(k))

μz(ε(k)) � σz(ε(k))
∑

x∈X σx (ε(k))
, μk

z = μz(ε(k)).

Since {Pε
k } is a regular perturbation of {P0

k }, it is irreducible and thus σ k
z > 0. As

Lemma 3.1 of Chap.6 in [13], one can show that (μk)T Pε(k) = (μk)T . Therefore,
condition (C2) in Theorem 1.9 holds. �

Claim 3.6 Condition (C3) in Theorem 1.9 holds.

Proof We now proceed to verify condition (C3) in Theorem 1.9. To do that, let us
first fix k, denote ε = ε(k), and study the monotonicity of μz(ε) with respect to ε.
We write σz(ε) in the following form:

σz(ε) =
∑

T ∈G(z)

∏

(x,y)∈T

Pε
xy =

∑

T ∈G(z)

∏

(x,y)∈T

αxy(ε)

βxy(ε)
= αz(ε)

βz(ε)
(3.2)

for some polynomials αz(ε) and βz(ε) in ε. With (3.2) in hand, we have that
∑

x∈X σx (ε) and thus μz(ε) are ratios of two polynomials in ε; i.e., μz(ε) = ϕz(ε)
β(ε)

where ϕz(ε) and β(ε) are polynomials in ε. The derivative of μz(ε) is given by

∂μz(ε)

∂ε
= 1

β(ε)2
(
∂ϕz(ε)

∂ε
β(ε) − ϕz(ε)

∂β(ε)

∂ε
).

Note that the numerator ∂ϕz(ε)
∂ε

β(ε) − ϕz(ε)
∂β(ε)
∂ε

is a polynomial in ε. Denote by

ιz �= 0 the coefficient of the leading term of ∂ϕz(ε)
∂ε

− ϕz(ε)
∂β(ε)

ε
. The leading term

dominates ∂ϕz(ε)
∂ε

− ϕz(ε)
∂β(ε)

ε
when ε is sufficiently small. Thus there exists εz > 0

such that the sign of ∂μz(ε)
∂ε

is the sign of ιz for all 0 < ε ≤ εz . Let ε∗ = maxz∈X εz .
Since ε(k) strictly decreases to zero, there is a unique finite time instant k∗ such

that ε(k∗) = ε∗ (if ε(0) < ε∗, then k∗ = 0). Since ε(k) is strictly decreasing, we can
define a partition of X as follows:

Ξ1 � {z ∈ X | μz(ε(k)) > μz(ε(t + 1)), ∀t ∈ [k∗,+∞)},
Ξ2 � {z ∈ X | μz(ε(k)) < μz(ε(t + 1)), ∀t ∈ [k∗,+∞)}.

Weare now ready to verify (C3) of Theorem1.9. Since {Pε
k } is a regular perturbed

Markov chain of {P0
t }, it follows from Theorem 1.10 that limt→+∞ μz(ε(k)) =

μz(0), and thus it holds that

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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+∞∑

k=0

∑

z∈X

‖μk
z − μk+1

z ‖ =
+∞∑

k=0

∑

z∈X

|μz(ε(k)) − μz(ε(k + 1))|

=
k∗

∑

k=0

∑

z∈X

|μz(ε(k)) − μz(ε(k + 1))| +
+∞∑

k=k∗+1

(
∑

z∈Ξ1

μz(ε(k)) −
∑

z∈Ξ1

μz(ε(k + 1)))

+
+∞∑

k=k∗+1

(1 −
∑

z∈Ξ1

μz(ε(k + 1)) − (1 −
∑

z∈Ξ1

μz(ε(k))))

=
k∗

∑

k=0

∑

z∈X

|μz(ε(k)) − μz(ε(k + 1))| + 2
∑

z∈Ξ1

μz(ε(k
∗ + 1)) − 2

∑

z∈Ξ1

μz(0) < +∞.

�
Claim 3.7 Condition (C1) in Theorem 1.9 holds.

Proof Denote by Pε(k) the transition matrix of {Pk}. As in (3.1), the probability of
the feasible transition z1 → z2 is given by

Pε(k)

z1z2
=

∏

i∈�1

(1 − ε(k)) ×
∏

j∈�2

ε(k)

|Fi (a1
i )| − 1

.

Observe that |Fi (a1
i )| ≤ 5|C |. Since ε(k) is strictly decreasing, there is t0 ≥ 1 such

that t0 is the first time when 1 − ε(k) ≥ ε(k)
5|C |−1 . Then for all k ≥ t0, it holds that

Pε(k)

z1z2
≥ (

ε(k)

5|C | − 1
)N .

Denote P(m, n) �
∏n−1

k=m Pε(k), 0 ≤ m < n. Pick any z ∈ B and let uz ∈ B be
such that Puz z(k, k + D +1) = minx∈B Pxz(k, k + D +1). Consequently, it follows
that for all k ≥ t0,

min
x∈B

Pxz(k, k + D + 1) =
∑

i1∈B
· · ·

∑

iD∈∈B
Pε(k)

uzi1
· · · Pε(k+D−1)

iD−1iD
Pε(k+D)

iD z

≥ Pε(k)
uzi1

· · · Pε(k+D−1)
iD−1iD

Pε(k+D)
iD z ≥

D∏

i=0

(
ε(k + i)

5|C | − 1
)N ≥ (

ε(k)

5|C | − 1
)(D+1)N

where in the last inequality we use that ε(k) is strictly decreasing. Then we have

1 − λ(P(k, k + D + 1)) = min
x,y∈B

∑

z∈B
min{Pxz(k, k + D + 1), Pyz(k, k + D + 1)}

≥
∑

z∈B
Puz z(k, k + D + 1) ≥ |B|( ε(k)

5|C | − 1
)(D+1)N .

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Choose ki � (D + 1)i and let i0 be the smallest integer such that (D + 1)i0 ≥ t0.
Then, we have that:

+∞∑

i=0

(1 − λ(P(ki , ki+1))) ≥ |B|
+∞∑

i=i0

(
ε((D + 1)i)

5|C | − 1
)(D+1)N

= |B|
(5|C | − 1)(D+1)N

+∞∑

i=i0

1

(D + 1)i
= +∞. (3.3)

Hence, the weak ergodicity property follows from Theorem 1.8. �

All the conditions in Theorem 1.9 hold. Thus it follows from Theorem 1.9
that the limiting distribution is μ∗ = limk→+∞ μk . Note that limk→+∞ μk =
limk→+∞ μ(ε(k)) = μ(0) and Proposition 3.1 shows that the support of μ(0) is
contained in the set diag(E (Γcov)). Hence, the support of μ∗ is contained in the set
diag(E (Γcov)), implying that limt→+∞ P(z(k) ∈ diag(E (Γcov))) = 1. It completes
the proof.

3.4.2 Convergence Analysis of the ASYNCHRONOUS

COVERAGE LEARNING ALGORITHM

First of all, we employ Theorem 1.10 to study the convergence properties of the asso-
ciatedHomogeneous Asynchronous Coverage Learning Algorithm. This
is essential to analyze the Asynchronous Coverage Learning Algorithm.

To simplify notations, we will use si (k − 1) � si (γ
(2)
i (k) + 1) in the remainder

of this section. Observe that z(k) � (s(k − 1), s(k)) in the Homogeneous Asyn-
chronous Coverage Learning Algorithm constitutes a Markov chain {Pε

k }
on the space B′.

Lemma 3.4 The Markov chain {Pε
k } is a regular perturbation of {P0

k }.
Proof Pick any two states z1 � (s0, s1) and z2 � (s1, s2) with z1 �= z2. We have
that Pε

z1z2
> 0 if and only if there is some i ∈ V such that s1−i = s2−i and one of

the following occurs: s2i ∈ Fi (a1
i ) \ {s0i , s1i }, s2i = s1i or s2i = s0i . In particular, the

following holds:

Pε
z1z2 =

⎧
⎪⎨

⎪⎩

η1, s2i ∈ Fi (a1
i ) \ {s0i , s1i },

η2, s2i = s1i ,

η3, s2i = s0i ,

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1


3.4 Convergence Analysis 75

where

η1 �
εmi

N |Fi (a1
i ) \ {s0i , s1i }| , η2 �

1 − εmi

N (1 + ερi (s0,s1))
, η3 �

(1 − εmi ) × ερi (s0,s1)

N (1 + ερi (s0,s1))
.

Observe that 0 < limε→0+ η1
εmi < +∞. Multiplying the numerator and denomi-

nator of η2 by ε�i (s1,s0)−(ui (s1)−Δi (s1,s0)), we obtain

η2 = 1 − εmi

N
× ε�i (s0,s1)−(ui (s1)−Δi (s1,s0))

η′
2

,

where η′
2 � ε�i (s0,s1)−(ui (s1)−Δi (s1,s0)) + ε�i (s0,s1)−(ui (s0)−Δi (s0,s1)). Use

lim
ε→0+ εx =

{
1, x = 0,

0, x > 0,

and we have

lim
ε→0+

η2

ε�i (s0,s1)−(ui (s1)−Δi (s1,s0))
=

{
1
N , ui (s0) − Δi (s0, s1) �= ui (s1) − Δi (s1, s0),
1
2N , otherwise.

Similarly, it holds that

lim
ε→0+

η3

ε�i (s0,s1)−(ui (s0)−Δi (s0,s1))
∈ { 1

2N
,
1

N
}.

Hence, the resistance of the feasible transition z1 → z2, with z1 �= z2 and sensor i
as the unilateral deviator, can be described as follows:

χ(z1 → z2) =

⎧
⎪⎨

⎪⎩

mi , s2i ∈ Fi (a1) \ {s0i , s1i },
�i (s0, s1) − (ui (s1) − Δi (s1, s0)), s2i = s1i ,

�i (s0, s1) − (ui (s0) − Δi (s0, s1)), s2i = s0i .

Then (A3) in Sect. 1.5 holds. It is straightforward to verify that (A2) in Sect. 1.5
holds.We are now in a position to verify (A1). SinceGloc is undirected and connected,
and multiple sensors can stay in the same position, then �a0 = QN for any a0 ∈ Q.
Since sensor i can choose any camera control vector from C at each time, �s0 = A
for any s0 ∈ A . This implies that �z0 = B′ for any z0 ∈ B′, and thus the Markov
chain {Pε

t } is irreducible on the space B′.
It is easy to see that any state in diag(A ) has period 1. Pick any (s0, s1) ∈

B′ \diag(A ). Since Gloc is undirected, then s0i ∈ Fi (a1
i ) if and only if s1i ∈ Fi (a0

i ).
Hence, the following two paths are both feasible:

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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(s0, s1) → (s1, s0) → (s0, s1)

(s0, s1) → (s1, s1) → (s1, s0) → (s0, s1).

Hence, the period of the state (s0, s1) is 1. This proves aperiodicity of {Pε
t }. Since

{Pε
t } is irreducible and aperiodic, (A1) holds. �

Adirect result of Lemma 3.4 is that for each ε > 0, there exists a unique stationary
distribution of {Pε

k }, say μ(ε). From the proof of Lemma 3.4, we can see that the
resistance of an experiment ismi if sensor i is the unilateral deviator.We nowproceed
to utilize Theorem 1.10 to characterize limε→0+ μ(ε).

Proposition 3.2 Consider the regular perturbed Markov process {Pε
k }. Then the

limit of limε→0+ μ(ε) exists and the limiting distribution μ(0) is a stationary dis-
tribution of {P0

t }. Furthermore, the stochastically stable states (i.e., the support of
μ(0)) are contained in the set diag(S∗).

Proof The unperturbed Markov chain corresponds to the Homogeneous Asyn-
chronous Coverage Learning Algorithm with ε = 0. Hence, the recurrent
communication classes of the unperturbed Markov chain are contained in the set
diag(A ). We will construct resistance trees over vertices in the set diag(A ). Denote
by Tmin the minimum resistance tree. The remainder of the proof is divided into the
following four claims.

Claim 3.8 χ((s0, s0) ⇒ (s1, s1)) = mi +�i (s1, s0)−(ui (s1)−Δi (s1, s0)) where
s0 �= s1 and the transition s0 → s1 is feasible with sensor i as the unilateral deviator.

Proof One feasible path for (s0, s0) ⇒ (s1, s1) is L � (s0, s0) → (s0, s1) →
(s1, s1) where sensor i experiments in the first transition and does not experiment in
the second one. The total resistance of the path L is mi + �i (s1, s0) − (ui (s1) −
Δi (s1, s0)) which is at most mi + m∗.

Denote byL ′ the path with minimum resistance among all the feasible paths for
(s0, s0) ⇒ (s1, s1). Assume that the first transition in L ′ is (s0, s0) → (s0, s2)
where node j experiments and s2 �= s1. Observe that the resistance of (s0, s0) →
(s0, s2) is m j . Regardless of whether j is equal to i or not, the pathL ′ must include
at least one more experiment to introduce s1i . Hence the total resistance of the path
L ′ is at least mi + m j . Since mi + m j > mi +2m∗, the pathL ′ has a strictly larger
resistance than the path L . To avoid contradiction, the path L ′ must start from the
transition (s0, s0) → (s0, s1). Similarly, the sequent transition (which is also the
last one) in the path L ′ must be (s0, s1) → (s1, s1) and thus L ′ = L . Hence, the
resistance of the transition (s0, s0) ⇒ (s1, s1) is the total resistance of the path L ;
i.e., mi + �i (s1, s0) − (ui (s1) − Δi (s1, s0)). �

Claim 3.9 All the edges ((s, s), (s′, s′)) in Tmin must consist of only one deviator;
i.e., si �= s′

i and s−i = s′−i for some i ∈ V .

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Proof Assume that (s, s) ⇒ (s′, s′) has at least two deviators. Suppose the path L̂
has the minimum resistance among all the paths from (s, s) to (s′, s′). Then, 	 ≥ 2
experiments are carried out along L̂ . Denote by iτ the unilateral deviator in the τ -th
experiment sτ−1 → sτ where 1 ≤ τ ≤ 	, s0 = s and s	 = s′. Then the resistance
of L̂ is at least

∑	
τ=1 miτ ; i.e., χ((s0, s0) ⇒ (s′, s′)) ≥ ∑	

τ=1 miτ .
Let us consider the following path on Tmin:

L̄ � (s0, s0) ⇒ (s1, s1) ⇒ · · · ⇒ (s	, s	).

FromClaim3.1,weknow that the total resistance of the path L̄ is atmost
∑	

τ=1 miτ +
	m∗.

A new tree T ′ can be obtained by adding the edges of L̄ into Tmin and removing
the redundant edges. The removed resistance is strictly greater than

∑	
τ=1 miτ +

2(	 − 1)m∗ where
∑	

τ=1 miτ is the lower bound on the resistance on the edge from
(s0, s0) to (s	, s	), and 2(	−1)m∗ is the strictly lower bound on the total resistances
of leaving (sτ , sτ ) for τ = 1, . . . , 	−1. The added resistance is the total resistance of
L̄ which is at most

∑	
τ=1 miτ + 	m∗. Since 	 ≥ 2, we have that 2(	−1)m∗ ≥ 	m∗

and thus T ′ has a strictly lower resistance than Tmin. This contradicts the fact that
Tmin is a minimum resistance tree. �
Claim 3.10 Given any edge ((s, s), (s′, s′)) in Tmin, denote by i the unilateral devi-
ator between s and s′. Then the transition si → s′

i is feasible.

Proof Assume that the transition si → s′
i is infeasible. Suppose the path Ľ has the

minimum resistance among all the paths from (s, s) to (s′, s′). Then, there are 	 ≥ 2
experiments in Ľ . The remainder of the proof is similar to that of Claim 3.9. �
Claim 3.11 Let hv be the root of Tmin. Then, hv ∈ diag(S∗).
Proof Assume that hv = (s0, s0) /∈ diag(S∗). Pick any (s∗, s∗) ∈ diag(S∗). By
Claims 3.9 and 3.10, we have that there is a path from (s∗, s∗) to (s0, s0) in the tree
Tmin as follows:

L̃ � (s	, s	) ⇒ (s	−1, s	−1) ⇒ · · · ⇒ (s1, s1) ⇒ (s0, s0)

for some 	 ≥ 1. Here, s∗ = s	, there is only one deviator, say iτ , from sτ to sτ−1,
and the transition sτ → sτ−1 is feasible for τ = 	, . . . , 1.

Since the transition sτ → sτ+1 is also feasible for τ = 0, . . . , 	 − 1, we obtain
the reverse path L̃ ′ of L̃ as follows:

L̃ ′ � (s0, s0) ⇒ (s1, s1) ⇒ · · · ⇒ (s	−1, s	−1) ⇒ (s	, s	).

By Claim 3.8, the total resistance of the path L̃ is

χ(L̃ ) =
	∑

τ=1

miτ +
	∑

τ=1

{�iτ (s
τ , sτ−1) − (uiτ (s

τ−1) − Δiτ (s
τ−1, sτ ))},
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and the total resistance of the path L̃ ′ is

χ(L̃ ′) =
	∑

k=1

miτ +
	∑

τ=1

�iτ (s
τ−1, sτ ) − (uiτ (s

τ ) − Δiτ (s
τ , sτ−1)).

We make the following notations:

�′
1 � (D(aτ

iτ , r τ
iτ )\D(aτ−1

iτ−1
, r τ−1

iτ−1
)) ∩ Q, �′

2 � (D(aτ−1
iτ−1

, r τ−1
iτ−1

)\D(aτ
iτ , r τ

iτ )) ∩ Q.

Observe that

Ug(s
τ ) − Ug(s

τ−1) = uiτ (s
τ ) − uiτ (s

τ−1) −
∑

q∈�′
1

Wq(
nq(sτ−1)

nq(sτ−1)
− nq(sτ−1)

nq(sτ )
)

+
∑

q∈�′
2

Wq(
nq(sτ )

nq(sτ )
− nq(sτ )

nq(sτ−1)
)

= (uiτ (s
τ ) − Δiτ (s

τ , sτ−1)) − (uiτ (s
τ−1) − Δiτ (s

τ−1, sτ )).

We now construct a new tree T ′ with the root (s∗, s∗) by adding the edges of
L̃ ′ to the tree Tmin and removing the redundant edges L̃ . Since �iτ (s

τ−1, sτ ) =
�iτ (s

τ , sτ−1), the difference in the total resistances across the trees χ(T ′) and
χ(Tmin) is given by

χ(T ′) − χ(Tmin) = χ(L̃ ′) − χ(L̃ )

=
	∑

τ=1

−(uiτ (s
τ−1) − Δiτ (s

τ−1, sτ )) −
	∑

τ=1

−(uiτ (s
τ ) − Δiτ (s

τ , sτ−1))

=
	∑

τ=1

(Ug(s
τ ) − Ug(s

τ−1)) = Ug(s
0) − Ug(s

∗) < 0.

This contradicts that Tmin is a minimum resistance tree. �

It follows from Claim 3.4 that the state hv ∈ diag(S∗) has minimum stochastic
potential. Then Proposition 3.2 is a direct result of Theorem 1.10. �

We are now ready to show Theorem 3.2.

Proof of Theorem 3.1

Claim 3.12 Condition (C2) in Theorem 1.9 holds.

Proof The proof is analogous to Claim 3.5. �

Claim 3.13 Condition (C3) in Theorem 1.9 holds.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Proof Denote by Pε(k) the transitionmatrix of {Pk}. Consider the feasible transition
z1 → z2 with unilateral deviator i . The corresponding probability is given by

Pε(k)

z1z2
=

⎧
⎪⎨

⎪⎩

η1, s2i ∈ Fi (a1
i ) \ {s0i , s1i },

η2, s2i = s1i ,

η3, s2i = s0i ,

where

η1 � ε(k)mi

N |Fi (a1
i ) \ {s0i , s1i }| , η2 � 1 − ε(k)mi

N (1 + ε(k)ρi (s0,s1))
,

η3 � (1 − ε(k)mi ) × ε(k)ρi (s0,s1)

N (1 + ε(k)ρi (s0,s1))
.

The remainder is analogous to Claim 3.6. �

Claim 3.14 Condition (C1) in Theorem 1.9 holds.

Proof Observe that |Fi (a1
i )| ≤ 5|C |. Since ε(k) is strictly decreasing, there is t0 ≥ 1

such that t0 is the first time when 1 − ε(k)mi ≥ ε(k)mi .
Observe that for all t ≥ 1, it holds that

η1 ≥ ε(k)mi

N (5|C | − 1)
≥ ε(k)mi +m∗

N (5|C | − 1)
.

Denote b � ui (s1) − Δi (s1, s0) and a � ui (s0) − Δi (s0, s1). Then ρi (s0, s1) =
b − a. Since b − a ≤ m∗, then for k ≥ t0 it holds that

η2 = 1 − ε(k)mi

N (1 + ε(k)b−a)
= (1 − ε(k)mi )ε(k)max{a,b}−b

N (ε(k)max{a,b}−b + ε(k)max{a,b}−a)

≥ ε(k)mi ε(k)max{a,b}−b

2N
≥ ε(k)mi +m∗

N (5|C | − 1)
.

Similarly, for k ≥ t0, it holds that

η3 = (1 − ε(k)mi )ε(k)max{a,b}−a

N (ε(k)max{a,b}−b + ε(k)max{a,b}−a)
≥ ε(k)mi +m∗

N (5|C | − 1)
.

Since mi ∈ (2m∗, K m∗] for all i ∈ V and K m∗ > 1, for any feasible transition
z1 → z2 with z1 �= z2, it holds that

Pε(k)

z1z2
≥ ε(k)(K+1)m∗

N (5|C | − 1)

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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for all k ≥ t0. Furthermore, for all k ≥ t0 and all z1 ∈ diag(A ), we have that

Pε(k)

z1z1
= 1− 1

N

N∑

i=1

ε(k)mi = 1

N

N∑

i=1

(1−ε(k)mi ) ≥ 1

N

N∑

i=1

ε(k)mi ≥ ε(k)(K+1)m∗

N (5|C | − 1)
.

Choose ki � (D + 1)i and let i0 be the smallest integer such that (D + 1)i0 ≥ t0.
Similar to (3.3), we can derive the following property:

+∞∑

	=0

(1 − λ(P(k	, k	+1))) ≥ |B|
(N (5|C | − 1))(D+1)(K+1)m∗

+∞∑

i=i0

1

(D + 1)i
= +∞.

Hence, the weak ergodicity of {Pk} follows from Theorem 1.8. �

All the conditions in Theorem 1.9 hold. Thus it follows from Theorem 1.9 that
the limiting distribution is μ∗ = limk→+∞ μk . Notice the following relation:

lim
k→+∞ μk = lim

k→+∞ μ(ε(k)) = μ(0),

and Proposition 3.2 shows that the support of μ(0) is contained in the set diag(S∗).
Hence, the support of μ∗ is contained in the set diag(S∗), implying that limk→+∞
P(z(k) ∈ diag(S∗)) = 1. It completes the proof.

3.5 Numerical Examples

In this section, we present some remarks along with two numerical examples to
illustrate the performance of our algorithms.

Theorems 3.1 and 3.2 guarantees the asymptotic convergence in probability of the
proposed algorithms. However, our theoretic results do not provide any estimate of
the convergence rates, which could be very slow in practice. This is a consequence of
the well-known exploration-exploitation trade-off termed in reinforcement learning;
e.g., in [14]. Intuitively, each algorithm starts from a relatively large exploration
rate and this allows the algorithm to explore the unknown environment quickly. As
time processes, the exploration rate is decreased, allowing each algorithm to exploit
the information collected and converge to some desired configuration. In order to
avoid being locked-in some undesired configuration, each algorithm requires a very
slow exploration decreasing rate. In the numerical examples below, we have chosen
suitable exploration rates empirically.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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3.5.1 A Numerical Example of the COVERAGE LEARNING

ALGORITHM

Consider a 10 × 10 square and each grid is 1 × 1 and a group of 9 mobile visual
sensors are deployed in this area. Note that, given arbitrary sensing range and distri-
bution, it would be difficult to compute an NE. In order to avoid this computational
challenge and make our simulation results evident, we make the following assump-
tions:

1. All the sensors are identical, and each has a fixed sensing range which is a circle
of radius 1.5.

2. Each point in this region is associated with a uniform value of 1.

With these two assumptions, it is not difficult to see that any configuration where
sensing ranges of sensors do not overlap is an NE at which the global potential
function is equal to 81.

In this example, the diameter of the location graph is 20 and N = 9. According

to our theoretic result, we should choose an exploration rate of ε(k) = ( 1k )
1
189 . The

exploration rate decreases extremely slowly and the algorithm requires an extremely

long time to converge. Instead, we choose ε(k) = ( 1
k+210

)
1
2 in our simulation.

Figure3.3 shows the initial configuration of the group where all of the sensors start
at the same position. Figure3.5 presents the configuration at iteration 5000 and it
is evident that this configuration is an NE. Figure3.4 is the evolution of the global
potential function which eventually oscillates between 78 and the maximal value of
81. This verifies that the sensors approach the set of NEs.

Fig. 3.3 Initial
configuration of the network
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Fig. 3.4 The evolution of
the global potential function
with a diminishing
exploration rate for the
Coverage Learning
Algorithm

Fig. 3.5 Final network
configuration at iteration
5000 of the Coverage
Learning Algorithm
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As in [2, 3], we will use fixed exploration rates in the Coverage Learn-
ing Algorithmwhich then reduces to the Homogeneous Coverage Learning
Algorithm. Figures3.6, 3.7 and 3.8 present the evolution of the global potential
functions for ε = 0.1, 0.01, 0.001, respectively. When ε = 0.1, the convergence
to the neighborhood of the value 81 is the fastest, but its variation is the largest.
When ε = 0.001, the convergence rate is slowest. The performance of ε = 0.01 is

similar to the diminishing step-size ε(k) = ( 1
k+210

)
1
2 . This comparison shows that,

for both diminishing and fixed exploration rates, we have to empirically choose the
exploration rate to obtain a good performance.
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Fig. 3.6 The evolution of
the global potential function
under Coverage Learning
Algorithm when ε = 0.1

Fig. 3.7 The evolution of
the global potential function
under Coverage Learning
Algorithm when ε = 0.01

3.5.2 A Numerical Example of the ASYNCHRONOUS

COVERAGE LEARNING ALGORITHM

We consider a lattice of unit grids and each point is associated with a uniform weight
0.1. There are four identical sensors, and each of themhas a fixed sensing rangewhich
is a circle of radius 1.5. The global optimal value of Ug is 36. All the sensors start
from the center of the region. We run the Asynchronous Coverage Learning
Algorithm for 50,000 iterations and sample the data every 5 iterations (Fig. 3.9).
Figures3.10, 3.11, 3.12 and 3.13 show the evolution of the global function Ug for

the following four cases, respectively: ε(k) = 1
4 (

1
k+1 )

1
4 , ε = 0.1, ε = 0.01 and

ε = 0.001.
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Fig. 3.8 The evolution of
the global potential function
under Coverage Learning
Algorithm when ε = 0.001

Fig. 3.9 Final configuration
of the network at iteration
50,000 of the
Asynchronous Coverage
Learning Algorithm
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3.6 Notes

In broad terms, the problem studied in this chapter is related to a bevy of sensor
location and planning problems in the Computational Geometry, Geometric Opti-
mization, and Robotics literature. For example, different variations on the (combina-
torial) ArtGallery problem include [15–17]. The objective here is to find the optimum
number of guards in a non-convex environment so that each point is visible from at
least one guard. A related set of references for the deployment of mobile robots with
omnidirectional cameras includes [18, 19]. Unlike theArt Gallery classic algorithms,
the latter papers assume that robots have local knowledge of the environment and
no recollection of the past. Other related references on robot deployment in convex
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Fig. 3.10 The evolution of
the global potential function
under the Asynchronous
Coverage Learning
Algorithm with a
diminishing exploration rate

Fig. 3.11 The evolution of
the global potential function
under the Asynchronous
Coverage Learning
Algorithm when ε = 0.1 is
kept fixed

environments include [20] for anisotropic and circular footprints. The paper [21]
is an excellent survey on multimedia sensor networks where the state of the art in
algorithms, protocols, and hardware is surveyed, and open research issues are dis-
cussed in detail. As observed in [22],multimedia sensor networks enhance traditional
surveillance systems by enlarging, enhancing, and enabling multi-resolution views.
The investigation of coverage problems for static visual sensor networks is conducted
in [6, 23, 24].

From the technical point of view, this chapter falls into the framework of game
theoretic learning or learning for games. As for discrete games, the classic meth-
ods to compute Nash equilibrium include best-response dynamics, better-response
dynamics, factitious play, regret matching, logit-based dynamics, replicator dynam-
ics, and see [25–28]. As for continuous games, generalized Nash games consist of an
important class and are first formulated in [29]. Since then, great efforts have been
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Fig. 3.12 The evolution of
the global potential function
under the Asynchronous
Coverage Learning
Algorithm when ε = 0.01
is kept fixed

Fig. 3.13 The evolution of
the global potential function
under the Asynchronous
Coverage Learning
Algorithm when ε = 0.001
is kept fixed

dedicated to studying the existence and structural properties of generalized Nash
equilibria in; e.g., [30] and the recent survey paper [31]. A number of algorithms
have been proposed to compute generalized Nash equilibria, including ODE-based
methods [30], nonlinear Gauss-Seidel-type approaches [32], iterative primal-dual
Tikhonov schemes [33], and best-response dynamics [34]. Recently, a self-triggering
algorithm is considered in [35]. When the game model is not available in advance,
a number of algorithms are proposed to compute Nash equilibrium; e.g., [2, 3, 36,
37] for discrete games and [38–41] for continuous games. The results presented in
this chapter are based on our paper [37].

This chapter is restricted to static games. As for dynamic games, differential
games consist of an important class where the decisions of each player are restricted
by a differential equation. Among the limited number of differential games for which
closed-form solutions have been derived are the homicidal-chauffeur and the lady-
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in-the-lake games [42, 43], which are played in unobstructed environments. For
more complicated games, numerical methods must be used to determine solutions,
including PDE-based methods in [42, 44, 45], viability-based approaches in [46–48]
and level-set methods in [49, 50]. The papers [51–54] study mean-field games where
the player number is very large.

As discussed at the beginning of this chapter, game theory recently emerges as
a new tool to synthesize efficient distributed coordination algorithms. The connec-
tions between distributed control and potential games are elaborated in [55]. The
paper [56] discusses utility design for multi-agent networks. In [57], game theory
is used in algorithm design of distributed optimization. For multi-vehicle networks,
game theory is used in [37, 40] for sensor deployment, [36] for vehicle routing
and [58] for robotic motion planning.

References

1. R.W. Rosenthal, A class of games possessing pure strategyNash equilibria. Int. J. GameTheory
2(1), 65–67 (1973)

2. J.R. Marden, J.S. Shamma, Revisiting log-linear learning: asynchrony, completeness and
payoff-based implementation. Games Econ Behav. 72(2), 788–808 (2012)

3. J.R. Marden, H.P. Young, G. Arslan, J.S. Shamma, Payoff based dynamics for multi-player
weakly acyclic games. SIAM J. Control Optim. 48(1), 373–396 (2009)

4. F. Bullo, J. Cortés, S. Martínez, Distributed Control of Robotic Networks. Applied Math-
ematics Series (Princeton University Press, Princeton, 2009). Available at http://www.
coordinationbook.info

5. C.B. Margi, V. Petkov, K. Obraczka, R. Manduchi, Characterizing energy consumption in
a visual sensor network testbed, in International Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities, pp. 332–339, March 2006

6. C. Vu, Distributed energy-efficient solutions for area coverage problems in wireless sensor
networks. Ph.D. thesis, Georgia State University (2007)

7. S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Randomized gossip algorithms. IEEE Trans. Inf.
Theory 52(6), 2508–2530 (2006)

8. H.P. Young, The evolution of conventions. Econometrica 61, 57–84 (1993)
9. D. Isaacson, R. Madsen, Markov Chains (Wiley, New York, 1976)
10. S. Anily, A. Federgruen, Ergodicity in parametric nonstationary Markov chains: an application

to simulated annealing methods. Oper. Res. 35(6), 867–874 (1987)
11. B. Gidas, Nonstationary Markov chains and convergence of the annealing algorithm. J. Stat.

Phys. 39(1), 73–131 (1985)
12. D. Mitra, F. Romeo, A. Sangiovanni-Vincentelli, Convergence and finite-time behavior of

simulated annealing. Adv. Appl. Probab. 18(3), 747–771 (1986)
13. M. Freidlin, A. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York,

1984)
14. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge,

1998)
15. J. O’Rourke,Art Gallery Theorems and Algorithms (Oxford University Press, NewYork, 1987)
16. T.C. Shermer, Recent results in art galleries. Proc. IEEE 80(9), 1384–1399 (1992)
17. J. Urrutia, Art gallery and illumination problems, in Handbook of Computational Geometry,

ed. by J.R. Sack, J. Urrutia (North-Holland, 2000), pp. 973–1027
18. A. Ganguli, J. Cortés, F. Bullo, Visibility-based multi-agent deployment in orthogonal envi-

ronments, in American Control Conference, New York, pp. 3426–3431, July 2007

http://www.coordinationbook.info
http://www.coordinationbook.info


88 3 Game Theoretic Optimal Sensor Deployment

19. A. Ganguli, J. Cortés, F. Bullo, Multirobot rendezvous with visibility sensors in nonconvex
environments. IEEE Trans. Robot. 25(2), 340–352 (2009)

20. J. Cortés, S. Martínez, F. Bullo, Spatially-distributed coverage optimization and control with
limited-range interactions. ESAIM: Control Optim. Calc. Var. 11, 691–719 (2005)

21. I.F. Akyildiz, T.Melodia, K. Chowdhury,Wireless multimedia sensor networks: a survey. IEEE
Trans. Wirel. Commun. 14(6), 32–39 (2007)

22. R. Cucchiara,Multimedia surveillance systems, inProceedings of the Third ACM International
Workshop on Video Surveillance and Sensor Networks, pp. 3–10 (2005)

23. K.Y. Chow, K.S. Lui, E.Y. Lam,Maximizing angle coverage in visual sensor networks, in IEEE
International Conference on Communications, pp. 3516–3521, June 2007

24. E. Hörster, R. Lienhart, On the optimal placement of multiple visual sensors, in ACM Interna-
tional Workshop on Video Surveillance and Sensor Networks, pp. 111–120, 2006

25. T. Basar, G. Olsder, Dynamic Noncooperative Game Theory. SIAM Classics in Applied Math-
ematics (1999)

26. D. Fudenberg, D. Levine, The Theory of Learning in Games (MIT Press, Cambridge, 1998)
27. W. Sandholm, Population Games and Evolutionary Dynamics (MIT Press, Cambridge, 2010)
28. H.P. Young, Individual Strategy and Social Structure (Princeton University Press, Princeton,

1998)
29. K.J. Arrow, G. Debreu, Existence of an equilibrium for a competitive economy. Econometrica

22, 265–290 (1954)
30. J.B.Rosen,Existence anduniqueness of equilibriumpoints for concaven-persongames.Econo-

metrica 33(3), 520–534 (1965)
31. F. Facchinei, C. Kanzow, Generalized Nash equilibrium problems. J. Oper. Res. 5(3), 173–210

(2007)
32. J.-S. Pang, G. Scutari, F. Facchinei, C.Wang, Distributed power allocation with rate constraints

in Gaussian parallel interference channels. IEEE Trans. Inf. Theory 54(8), 3471–3489 (2008)
33. H. Yin, U.V. Shanbhag, P.G. Mehta, Nash equilibrium problems with scaled congestion costs

and shared constraints. IEEE Trans. Autom. Control 56(7), 1702–1708 (2011)
34. D.P. Palomar, Y.C. Eldar, Convex Optimization in Signal Processing and Communications

(Cambridge University Press, Cambridge, 2010)
35. A. Cortés, S. Martínez, Self-triggered best response dynamics for continuous games. IEEE

Trans. Autom. Control (2013). To appear
36. A. Arsie, K. Savla, E. Frazzoli, Efficient routing algorithms for multiple vehicles with no

explicit communications. IEEE Trans. Autom. Control 54(10), 2302–2317 (2009)
37. M. Zhu, S. Martínez, Distributed coverage games for energy-aware mobile sensor networks.

SIAM J. Control Optim. 51(1), 1–27 (2013)
38. P. Frihauf,M. Krstic, T. Basar, Nash equilibrium seeking for gameswith non-quadratic payoffs,

in IEEE International Conference on Decision and Control, Atlanta, pp. 881-886, December
2010

39. S.J. Liu, M. Krstic, Stochastic Nash equilibrium seeking for games with general nonlinear
payoffs. SIAM J. Control Optim. 49(4), 1659–1679 (2011)

40. M.S. Stankovic, K.H. Johansson, D.M. Stipanovic, Distributed seeking of Nash equilibria with
applications to mobile sensor networks. IEEE Trans. Autom. Control 57(4), 904–919 (2012)

41. M. Zhu, E. Frazzoli, Distributed robust adaptive equilibrium computation for generalized con-
vex games. Automatica (2015). Accepted

42. M. Bardi, M. Falcone, P. Soravia, Numerical methods for pursuit-evasion games via viscosity
solutions. Ann. Int. Soc. Dyn. Games 4, 105–175 (1999)

43. R. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare and Pur-
suit, Control and Optimization (Dover, Mineola, 1999)

44. M. Bardi, I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-
Bellman Equations (Birkhäuser, Boston, 1997)

45. P.E. Souganidis, Two-player, zero-sum differential games and viscosity solutions. Ann. Int.
Soc. Dyn. Games 4(1), 69–104 (1999)

46. J.P. Aubin, Viability Theory (Springer, New York, 2009)



References 89

47. J.P. Aubin, A. Bayen, P. Saint-Pierre, Viability Theory: New Directions (Springer, New York,
2011)

48. E. Mueller, S. Yong, M. Zhu, E. Frazzoli, Anytime computation algorithms for stochastically
parametric approach-evasion differential games, in IEEE/RSJ International Conference on
Intelligent Robots and Systems (Tokyo, Japan, 2013), pp. 3816–3821

49. J. Lygeros, On reachability and minimum cost optimal control. Automatica 40(6), 917–927
(2004)

50. I. Mitchell, A. Bayen, C. Tomlin, A time-dependent Hamilton-Jacobi formulation of reachable
sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)

51. M. Huang, P. Caines, P. Malhame, Large-population cost-coupled LQG problems with nonuni-
form agents: individual-mass behavior and decentralized epsilon-Nash equilibria. IEEE Trans.
Autom. Control 52(9), 1560–1571 (2007)

52. J. Lasry, P. Lions, Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)
53. J. Tembine, Q. Zhu, T. Basar, Risk-sensitive mean field games. IEEE Trans. Autom. Control

59(4), 835–850 (2014)
54. H. Yin, P. Mehta, S. Meyn, U. Shanbhag, Synchronization of coupled oscillators is a game.

IEEE Trans. Autom. Control 57(4), 920–935 (2012)
55. J.R. Marden, G. Arslan, J.S. Shamma, Cooperative control and potential games. IEEE Trans.

Syst. Man Cybern. Part B: Cybern. 39(6), 1393–1407 (2009)
56. J. Marden, A. Wierman, Overcoming the limitations of utility design for multiagent systems.

IEEE Trans. Autom. Control 58(6), 1402–1415 (2013)
57. N. Li, J. Marden, Designing games for distributed optimization. IEEE J. Sel. Top. Signal

Process. 7(2), 230–242 (2013)
58. M. Zhu, M. Otte, P. Chaudhari, E. Frazzoli, Game theoretic controller synthesis for multi-robot

motion planning—part I: trajectory based algorithms, in IEEE International Conference on
Robotics and Automation, Hong Kong, China, pp. 1646–1651, May 2014



Chapter 4
Distributed Resilient Formation Control

4.1 Introduction

In recent years, unmanned vehicles have been substantially developed and so their
markets have been undergoing a dramatic expansion [1]. Without crew on board,
unmannedvehicles offer competitive advantages over theirmanned counterparts such
as lower deployment costs and longer lifetime. Thus, unmanned vehicles have been
widely deployed in civilian and military settings, including examples of border and
road patrol, search and rescue, scientific monitoring in severe climates, firefighting,
agriculture, and transportation. In this way, the Federal Aviation Administration is
developing the NextGen air transportation system so that unmanned vehicles can be
included into the national airspace system.

In particular, the use of unmanned vehicles by (human) operators has been pro-
posed to enhance information sharing and maintain situational awareness. However,
this capability comes at the expense of the inherent vulnerability of information tech-
nology systems to cyber attacks. The communication between operators and vehicles
can be intentionally compromised by (human) adversaries, disrupting the network-
wise objective. Since we cannot rule out that adversaries are able to successfully
mount attacks, it is of prominent importance to provide resilient solutions that assure
mission completion despite the presence of security threats.

The current chapter formulates the problem of distributed constrained formation
control against replay attacks in an operator-vehicle adversarial network. In partic-
ular, each vehicle is remotely controlled by an operator and its actuation is limited.
Vehicles aim to reach the desired formation within a given constraint set through
real-time coordination with operators. Each operator-vehicle pair is attacked by an
adversary, who is able to produce replay attacks by maliciously and consecutively
repeating the control commands for a period of time. The information that operators
know about their opponents is limited and restricts to themaximumnumber, say τmax,
of consecutive attacks each adversary is able to launch.We focus on cyber resilience;
that is, we are interested in devising distributed algorithms which ensure the mission

© The Author(s) 2015
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Automation and Robotics, DOI 10.1007/978-3-319-19072-3_4
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completion in the presence of replay attacks. To achieve this goal, we come up with a
distributed formation control algorithmwhich is based on Receding Horizon Control
(RHC) and leverages the idea of moving toward target points of [2]. We show that
the input and state constraints are always enforced, and the desired formation can be
asymptotically achieved provided that the union of communication graphs between
operators satisfies certain connectivity assumption. Under the same set of conditions,
our proposed algorithm shows an analogous resilience to denial-of-service attacks.

4.2 Problem Formulation

In this section, we first present the architecture of the operator-vehicle network,
and the distributed constrained formation control problem of interest. After that, we
introduce the model of replay attackers considered in this chapter. This is followed
by a description of the prior knowledge operators possess about their rivals and the
objective of this chapter.

4.2.1 The Operator-Vehicle Network

Consider a group of vehicles in R
d , for some d ∈ Z>0, labeled by i ∈ V �

{1, . . . , N }. The dynamics of each vehicle is governed by the following second-
order, discrete-time dynamic system:

pi (k + 1) = pi (k) + vi (k),

vi (k + 1) = vi (k) + ui (k), (4.1)

where pi (k) ∈ X ⊆ R
d (resp. vi (k) ∈ R

d ) is the position (resp. the velocity) of
vehicle i , and ui (k) ∈ U ⊆ R

d then stands for its input. Throughout this chapter, we
suppose the following on the constraint sets:

Assumption 4.1 (Constraint sets) The state constraint set X is convex and compact.
The input constraint set U is a box; i.e., U � {u ∈ R

d | ‖u‖∞ ≤ umax}1 for some
umax > 0. •

Each vehicle i is remotely maneuvered by an operator i , and this assignment is
one-to-one and fixed. Each vehicle is able to identify its location and velocity, and
send this information to its operator through a communication network. Within the
vehicle team, vehicles cannot communicate with each other. Each operator, on the
one hand, can exchange information with neighboring operators, and on the other
hand, deliver control commands to her associated vehicle via the communication
network. See Fig. 4.1 for the sketch of the operator-vehicle network.

1In this chapter, the notation of ‖ · ‖ (resp. ‖ · ‖∞) stands for the 2-norm (resp. ∞-norm) of vectors.
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Fig. 4.1 The architecture of
the operator-vehicle
adversarial network where
the operator is represented
by the humanoid robot

The mission of the operator-vehicle network is to achieve a desired formation
which is characterized by the formation digraph G F � (V,E F ). Each edge (i, j) ∈
E F ⊆ V ×V \diag(V ), starting fromvehicle j and pointing to vehicle i , is associated
with a formation vector νi j ∈ R

d . Throughout this chapter, we impose the following
on G F :

Assumption 4.2 (Formation digraph) The formation digraph G F is strongly con-
nected; i.e., for any pair of ( j, i) ∈ E F , there is a directed path starting from i and
ending up with j . •

Being a member of the team, each operator i is only aware of local formation
vectors; i.e., νi j for j ∈ Ni where Ni � { j ∈ V \ {i} | ( j, i) ∈ E F }. The
multi-vehicle constrained formation control mission can be formulated as a team
optimization problem where each global optimum corresponds to the formation of
interest. In particular, the constrained formation control problem is encoded as the
following quadratic program:

min
p∈X N

∑

(i, j)∈E F

‖pi − p j − νi j‖2,

whose solution set, denoted as X∗ ⊆ X N , satisfies the following:

Assumption 4.3 (Feasibility) The optimal solution set X∗ is nonempty. •
We assume that operators and vehicles are synchronized by using a single clock.

The interconnection between operators at time k ≥ 0will be represented by a directed
graph G (k) = (V,E (k)) where E (k) ⊆ E F is the set of edges. Here (i, j) ∈ E (k)

if and only if operator i is able to receive the message from operator j at time k.
Denote by Ni (k) � { j ∈ V | (i, j) ∈ E (k)} the set of (in-)neighboring operators
of operator i at time k. In order to achieve network-wise objectives, interoperator
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topologies should be sufficiently connected such that decisions of any operator can
eventually affect any other one. This is formally stated in the following assumption:

Assumption 4.4 (Periodic Communication) There is a positive integer B such that,
for any k ≥ 0, (i, j) ∈ ⋃B−1

s=0 E (k + s) for any (i, j) ∈ E F . •
A direct result of Assumptions 4.2 and 4.4 is that

⋃B−1
s=0 E (k + s) is a superset of

E F , and thus (V,
⋃B−1

s=0 E (k + s)) is strongly connected.

4.2.2 Model of Adversaries

We now set out to describe the attacker model we consider in this chapter. A group of
N adversaries try to abort the mission of achieving formation in X . An adversary is
allocated to attack a specific operator-vehicle pair and this assignment is fixed over
time. Thus, we identify adversary i with the operator-vehicle pair i . In this chapter,
we consider the class of replay attackswhere the packages transmitted fromoperators
to vehicles are maliciously repeated by adversaries. In particular, each adversary i
is associated with a memory storing past information and its state is denoted by
Ma

i (k). If she launches a replay attack at time k, adversary i executes the following:
(1) erases the data sent from operator i ; (2) delivers the past control command
stored in her memory, Ma

i (k), to vehicle i ; (3) keeps the state of the memory; i.e.,
Ma

i (k + 1) = Ma
i (k). In this case, sa

i (k) = 1, indicates the occurrence of a replay
attack, where the auxiliary variable sa

i (k) ∈ {0, 1}. If she does not produce any replay
attack at time k, adversary i intercepts the data, say ui , sent from operator i and stores
it in her memory; Ma

i (k + 1) = ui . In this case, sa
i (k) = 0 and ui is successfully

received by vehicle i . Without loss of any generality, we assume that sa
i (0) = 0.

Wedefine the variable τ a
i (k)with initial state τ a

i (0) = 0 to indicate the consecutive
number of attacks. The evolution of τ a

i (k) is determined in the following way: if
sa

i (k) = 1, then τ a
i (k) = τ a

i (k − 1) + 1; otherwise, τ a
i (k) = 0. It is noted that τ a

i (k)

is reset to zero when adversary i does not replay the data at time k. Hence, for any
k with sa

i (k) = 0, τ a
i (k) represents the number of consecutive attacks produced by

adversary i up to time k since the largest 0 ≤ k′ < k with sa
i (k′) = 0.

Each adversary needs to spend certain amount of energy to launch a replay attack.
We assume that the energy of adversary i is limited, and adversary i is only able to
launch at most τmax ≥ 1 consecutive attacks, i.e.,

Assumption 4.5 (Maximum number of consecutive attacks) There is τmax ≥ 1 such
that maxi∈V supk≥0 τ a

i (k) ≤ τmax. •
Remark 4.1 Replay attacks have been successfully used in the past, and show a
number of advantages to an adversary. Stuxnet was the latest cyber attack to control
systems. In this accident, Stuxnet exploited replay attacks to compromise a nuclear
facility, see [3, 4].

Replay attacks (and denial-of-service attacks in Sect. 4.6) do not require any infor-
mation of the operator-vehicle network and the algorithmexploited. This is in contrast
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to false data injection in [5–7] and deception attacks in [8–10]. From the point of view
of adversaries, replay attacks (and denial-of-service attacks) are easier to launch, and
thus more preferable when they lack the information of the target control systems.
Note that replay attacks are less sophisticated than deception attacks and false data
injection. However, the discussion in next section demonstrates that replay attacks
are still capable of making a mission fail if they are not explicitly taken into account
in the algorithm design.

Finally, in comparison with denial-of-service attacks, deception attacks and
false data injection, replay attacks demand more memory to store intercepted
information. •
Remark 4.2 For the ease of presentation, we assume that only the links from opera-
tors to vehicles are compromised. Our proposed algorithm can be readily applied to
the scenario where the links from vehicles to operators are attacked. •

4.2.3 A Motivating Scenario

In this section,weuse a simple scenario to illustrate the failure of the classic formation
control algorithm under replay attacks. For the ease of presentation, we consider the
special case: (1) νi j = 0; (2) the vehicle dynamics is first order; (3) the input and
state constraints are absent; i.e., X = U = R. The special case is the consensus or
rendezvous problem which has been extensively studied.

The classic consensus algorithm; e.g., in [11], is rephrased to fit in our setup as fol-
lows: at each time instant k, operator i receives p j (k) from neighboring operator j ∈
Ni (k), and sends the control command ui (k) = ∑

j∈V ai j (k)p j (k) − pi (k) to vehi-
cle i . If sa

i (k) = 1, adversary i sends Ma
i (k) to vehicle i and lets Ma

i (k+1) = Ma
i (k).

If sa
i (k) = 0, adversary i then lets Ma

i (k +1) = ui (k). After receiving the data ui (k)

(if sa
i (k) = 0) or Ma

i (k) (if sa
i (k) = 1), vehicle i implements it and then sends the

new location pi (k +1) = pi (k)+ui (k) (if sa
i (k) = 0) or pi (k +1) = pi (k)+ Ma

i (k)

(if sa
i (k) = 1) to operator i .
In the above classic consensus algorithm, it is not difficult to verify that if the

event of sa
i (k) = 1 occurs infinitely often for any i ∈ V , then vehicles fail to reach

any consensus. Even worse, the maximum deviation of D(k) � maxi∈V pi (k) −
mini∈V pi (k) can be intentionally driven to infinity despite the limitation of τmax.
We further look into a simpler case to illustrate this point.

Consider two operator-vehicle pairs with p1(0) 
= p2(0). Assume that the two
operators communicate with each other all the time, and the update rule is 1

2 (pi (k)+
p j (k)). Suppose τmax ≥ 2, and that adversaries adopt a periodic strategy: s1(k) =
s2(k) = 0 if k is a multiple of τmax + 1; otherwise, s1(k) = s2(k) = 1. It is not
difficult to verify that D(κ(τmax + 1)) = τκ

maxD(0) for integer κ ≥ 1. Hence D(k)

diverges to infinity at a geometric rate of τmax.
The above discussion yields the following insights: first, the classic consensus

algorithm can be easily prevented from reaching consensus by persistently launching
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replay attacks; second, in the worst case adversaries may be able to drive D(k) to
infinity if adversaries know the algorithm and are able to intelligently take advantage
of this information; further, if their energy restriction is smaller; i.e., τmax is larger,
adversaries can speed up the divergence of D(k). These facts evidently motivate
the design of new distributed resilient algorithms which explicitly take into account
replay attacks.

The detection of replay attacks is not difficult when operators and vehicles are
synchronized. A detection scheme consists of attaching a time index to each control
command from the operator, and then the vehicle can detect replay attacks by simply
comparing the current time instant and the time index of the received command. This
simple detection scheme will be employed in our subsequent algorithm design.

4.2.4 Prior Information About Adversaries and Objective

In hostile environments, it would be reasonable to expect that operators have limited
information about adversaries. In this chapter, we assume that the only information
operator i possesses is the quantity τmax or any of its upper bounds. At each time,
each operator i makes a decision before her opponent, adversary i . Hence, operator i
cannot predictwhether adversary i would produce an attack at this time.Our objective
is to design a distributed algorithm which ensures formation control under the above
informational restriction.

[Objective] Given the only information of τmax, we aim to devise a distributed algorithm,
including the distributed control law ui (k) for vehicle i , such that pi (k) ∈ X and ui (k) ∈ U
for all k ≥ 0 and i ∈ V , and it holds that lim

k→+∞ dist(p(k), X∗) = 0, lim
k→+∞ ‖vi (k)‖ = 0.

To conclude this section, we summarize the main notations in Table4.1 that will be
used in Sects. 4.3 and 4.4. In particular, ui (k + s|k) means the control command of
time instant k + s (s ≥ 0) and this control command is generated at time instant k.

Table 4.1 Summary of common notation used in the sequel

n The computing horizon

ui (k → k + n − 1|k) The collection of {ui (k + s|k)}0≤s≤n−1

ūi (k → k + n − 1|k) The collection of � {ūi (k + s|k)}0≤s≤n−1

Ki (k → k + n − 1|k) The collection of � {Ki (k + s|k)}0≤s≤n−1

|Ni (k)| The cardinality ofNi (k)

pmax (resp. vmax) The upper bound on the position (resp. the velocity)

PX The projection operator onto X
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4.3 Preliminaries

In this section, we provide both notations and a set of preliminary results that will
be used to state our algorithm and analyze its convergence properties in the sequel.

4.3.1 A Coordinate Transformation

We pick any scalar β > 1, and define the change of coordinates T : R3d → R
3d

such that T (pi , vi , ui ) = (pi , qi , ūi ) where qi = pi + βvi and ūi = vi + βui =
1
β
(qi − pi ) + βui . Applying this coordinate transformation on dynamics (4.1), we

obtain:

pi (k + 1) =
(

1 − 1

β

)

pi (k) + 1

β
qi (k),

qi (k + 1) =
(

1 + 1

β

)

qi (k) − 1

β
pi (k) + βui (k) = qi (k) + ūi (k). (4.2)

We refer to ūi (k) as the auxiliary control of vehicle i .

Remark 4.3 Since β is nonzero, then the formation property of lim
k→+∞ dist(p(k),

X∗) = 0 and lim
k→+∞ ‖vi (k)‖ = 0 is equivalent to

lim
k→+∞ dist(q(k), X∗) = 0, lim

k→+∞ ‖pi (k) − qi (k)‖ = 0, ∀i ∈ V .

This equivalence will be used for the algorithm design and analysis. •

4.3.2 A Constrained Multiparametric Program

In this part, we introduce a constrained multiparametric program which will be used
in our distributed resilient formation control algorithms. Given any pair of umax > 0
and β > 1, we choose a pair of positive constants vmax and ūmax such that the
following holds:

vmax + ūmax ≤ βumax, ūmax ≤ vmax. (4.3)

We then introduce the following notations:

ρ � min

{
1

2
,

ūmax

2pmax + βvmax

}

, (4.4)

W � {vi ∈ R
d | ‖vi‖∞ ≤ vmax}, Ū � {ūi ∈ R

d | ‖ūi‖∞ ≤ ūmax},
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where W (resp. Ū ) is the constraint set imposed on the velocity vi (resp. the auxiliary
input ūi ) of vehicle i .

Choose ρ̂ ∈ (0, ρ]. One can see that a set of positive constants δ, α, and γ can be
chosen so that:

(1 + (1 − ρ̂)2)α + ρ̂2γ < min{2α, α + γ } − δ. (4.5)

The relation (4.5) will be used in the proof of Claim 4.3 of Proposition 4.1.

Remark 4.4 Wenowproceed to choose one set of parameters to satisfy (4.5). Choose
γ < α, then (4.5) is equivalent to (1 + (1 − ρ̂)2)α + ρ̂2γ < α + γ − δ and then

α <
1 − ρ̂2

(1 − ρ̂)2
γ − 1

(1 − ρ̂)2
δ.

Notice that 1−ρ̂2

(1−ρ̂)2
> 1. Then one can always choose a set of δ, α, and γ with γ < α

and δ being sufficiently small to satisfy the above relation. •
With the above notations in place, we then define the following n-horizon optimal

control with the state and input constraints X and U (n-OC, for short) parameterized
by the vector (pi , qi , zi , vi ) ∈ X3 × W :

min
ūi ∈Rd×n

n−1∑

s=0

(
α‖zi − qi (s)‖2 + γ ‖ūi (s)‖2

) + α‖zi − qi (n)‖2,

such that qi (s + 1) = qi (s) + ūi (s),

pi (s + 1) =
(

1 − 1

β

)

pi (s) + 1

β
qi (s),

ūi (s) = Ki (s)(zi − qi (s)),

vi (s) = 1

β
(qi (s) − pi (s)),

qi (s + 1) ∈ X, vi (s) ∈ W,

ūi (s) ∈ Ū , 0 ≤ s ≤ n − 1. (4.6)

The initial states are given by pi (0) = pi , qi (0) = qi , vi (0) = vi . This problem
is defined for sets satisfying Assumption 4.1 and constants α, γ satisfying the con-
dition (4.5). In the n-OC problem (4.6), the state zi ∈ X will be some target point
defined later. A detailed discussion on problem (4.6) will be given in Remark 4.5.

The following proposition characterizes the solutions to the n-OC and its proof
will be given in Sect. 4.5.

Proposition 4.1 (Characterization of the optimal solutions to the n-OC). There is at
least one solution to the n-OC parameterized by the vector (pi , qi , zi , vi ) ∈ X3×W .
Consider any of its optimal solution ūi = (ūi (0), . . . , ūi (n − 1))T ∈ R

d×n with
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ūi (s) = Ki (s)(zi −qi (s)), for all 0 ≤ s ≤ n−1. There is a pair of ϑmin, ϑmax ∈ (0, 1)
independent of (pi , qi , zi , vi ) ∈ X3 × W such that Ki (s) ∈ [ϑmin, ϑmax].

We will use the n-OC problem in our algorithms for some (pi (k), qi (k), zi (k),

vi (k)) ∈ X3×W , which change for k ≥ 0.When necessary, we will use the notation
ui (k → k + n − 1|k), and Ki (k → k + n − 1|k) to refer to the resulting control
sequences.

4.4 Distributed Attack-Resilient Algorithm

In this section, we propose a distributed constrained formation control algorithm.
After this, we summarize the algorithm resilience to replay attacks.

4.4.1 Algorithm Statement

In order to play against replay attackers, we exploit the Receding Horizon Control
(RHC) methodology to synthesize a distributed algorithm. The usage of RHC in
the proposed algorithm is motivated by two salient features of RHC: first, it can
explicitly handle state and input constraints, which is a unique advantage of RHC;
second, it is able to generate suboptimal control laws approximating an associated
infinite-horizon optimal control problem. More importantly, RHC is able to produce
a sequence of feasible control commands for the next few steps. These commands
serve as backup and are used by vehicles in response to replay attacks. As mentioned
before, operators cannot predict the occurrence of replay attacks and have to account
for the worst case. That is, each operator assumes that her opponent would launch
attacks at every time instant, and chooses n ≥ τmax + 1. The distributed algorithm
is described as follows.

[Algorithm Description] Each vehicle has a memory storing the backup control
commands in response to replay attacks. The state of vehicle i’s memory is denoted
by Mv

i (k) ∈ R
d×n .

At each time k, operator i receives p j (k) from operator j ∈ Ni (k). Operator i
assumes that the vehicles of his/her current neighbors do not move over a finite time
horizon of length n, and then identifies φi (k), the target point which minimizes the
local formation error of

∑
j∈Ni (k) ‖qi −p j (k)−νi j‖2+‖qi −pi (k)‖2+‖qi −qi (k)‖2:

φi (k) � 1

2 + |Ni (k)|

⎛

⎝qi (k) + pi (k) +
∑

j∈Ni (k)

(p j (k) + νi j )

⎞

⎠ .
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According toRemark 4.3, the local formation error of
∑

j∈Ni (k) ‖qi − p j (k)−νi j‖2+
‖qi − pi (k)‖2 + ‖qi − qi (k)‖2 captures the sum of the distance of q(k) to X∗ and
the disagreement between pi and qi .

If νi j = 0, then φi (k) is a convex combination of the time-dependent states. If
these time-dependent states are in X , so is φi (k). However, the formation vectors
νi j are nonzero, then φi (k) is potentially outside X . In order to enforce the state
constraint X , operator i computes the target point zi (k) via projecting φi (k) onto X ,
that is, zi (k) � PX [φi (k)] where PX is the projection operator onto the set of X .

After obtaining the target point zi (k), operator i solves the n-OC parameterized by
the vector of (pi (k), qi (k), zi (k), vi (k)), and obtains the auxiliary control sequence
ūi (k → k + n − 1|k).2 Operator i then generates the real control sequence of
ui (k → k + n − 1|k) by simulating the dynamics of vehicle i over the time frame
[k, k + n] as follows:

pi (k + s + 1|k) =
(

1 − 1

β

)

pi (k + s|k) + 1

β
qi (k + s|k),

qi (k + s + 1|k) = qi (s + k|k) + ūi (k + s|k),

ui (k + s|k) = 1

β
ūi (k + s|k) − 1

β2 (qi (k + s|k)

− pi (k + s|k)), 0 ≤ s ≤ n − 1, (4.7)

where qi (k|k) = qi (k) and pi (k|k) = pi (k). After that, operator i sends the package
including ui (k → k + n − 1|k) to vehicle i where each element ui (k + s|k) in the
package is labeled by the time index k + s for 0 ≤ s ≤ n − 1.

If sa
i (k) = 1, adversary i launches a replay attack, sending the stored command

Ma
i (k) to vehicle i , and letting Ma

i (k + 1) = Ma
i (k). If sa

i (k) = 0, adversary i
then does not produce any attack, but instead intercepts the package containing
ui (k → k +n −1|k), and updates her memory as Ma

i (k +1) = ui (k → k +n −1|k).
After receiving the package, vehicle i checks the time index which is k −τ a

i (k). If
the package is new (i.e., τ a

i (k) = 0), then vehicle i replaces it in her memory by the
newarrival (i.e., Mv

i (k+1) = ui (k → k+n−1|k)), implementsui (k) = ui (k|k), and
sends pi (k+1) and vi (k+1) to operator i . If the package is repeated (i.e., τ a

i (k) ≥ 1),
then vehicle i implements ui (k|k − τ a

i (k)) in its memory, sets Mv
i (k + 1) = Mv

i (k),
and sends pi (k +1) and vi (k +1) to operator i . At the next time k +1, every decision
maker will repeat the above process.

Remark 4.5 In the n-OC parameterized by the vector of (pi (k), qi (k), zi (k), vi (k)),
the solution ūi (k → k +n−1|k) is a suboptimal controller on steering the state qi (k)

toward the target point zi (k) on saving the control effort ūi (k) in (4.2). The idea of
moving toward target points for distributed RHC was first proposed and analyzed
in [2]. Like any other RHC law, e.g., in [12, 13], our proposed algorithm requires that

2Here we assume the feasibility of the n-OC parameterized by the vector of (pi (k), qi (k),

zi (k), vi (k)). Later we will verify this point in Lemma 4.1.
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each operator online solves an optimization problem, the n-OC, at each time instant.
We will discuss the issue of solving these optimization problems in Sect. 4.6. •

We summarize the distributed Replay-Attack Resilient Formation Con-
trol Algorithm in Algorithm 1.

Algorithm 1 Replay-attack resilient formation control
• Initially, operators agree on β > 1 and a pair of positive constants vmax and ūmax such that (4.3)
holds. In addition, operators agree on a set of positive constants δ, α, and γ such that (4.5) holds.

• At each k ≥ 0, adversary, operator, and vehicle i execute the following steps:

1.Operator i receives the location p j (k) from her neighboring operator j ∈ Ni (k), and
computes the target point zi (k). Operator i solves the n-OC parameterized by the vector of
(pi (k), qi (k), zi (k), vi (k)), and obtains the solution of ūi (k → k + n − 1|k). After that, oper-
ator i computes ui (k → k + n − 1|k) via (4.7) and sends it to vehicle i .

2. If sa
i (k) = 1, adversary i sends Ma

i (k) to vehicle i , and let Ma
i (k + 1) = Ma

i (k). If sa
i (k) = 0,

adversary i sets Ma
i (k + 1) = ui (k → k + n − 1|k).

3. If τ a
i (k) = 0, then vehicle i sets Mv

i (k + 1) = ui (k → k + n − 1|k), implements ui (k|k), and
sends pi (k +1) and vi (k +1) to operator i . If τ a

i (k) ≥ 1, then vehicle i implements ui (k|k −τ a
i (k))

in Mv
i (k), sets Mv

i (k + 1) = Mv
i (k), and sends pi (k + 1) and vi (k + 1) to operator i .

4. Repeat for k = k + 1.

4.4.2 The Resilience Properties

The theorem to follow summarizes the convergence properties of the distributed
Replay-Attack Resilient Formation Control Algorithm, whose proof is
included in Sect. 4.5.

Theorem 4.1 (Convergence properties of the distributed replay-attack resilient for-
mation control algorithm) Suppose that Assumptions 4.1, on the constraint sets, 4.2,
on the connected formation digraph, 4.3, on problem feasibility, 4.4, on periodic com-
munication, and 4.5, on the maximum number of attacks hold. Let vehicle i start from
(pi (0), vi (0)) with (pi (0), pi (0) + βvi (0)) ∈ X2 and vi (0) ∈ W for i ∈ V . Then,
the distributed replay-attack resilient formation control algorithm with n ≥ τmax+1
ensures the following properties:

[Constraint Satisfaction] pi (k) ∈ X and ui (k) ∈ U for all i ∈ V and k ≥ 0.
[Achieving Formation] It holds that

lim
k→+∞ dist(p(k), X∗) = 0, and lim

k→+∞ ‖vi (k)‖ = 0, i ∈ V .
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4.5 Convergence Analysis

In this section, we provide complete analysis of Proposition 4.1 and Theorem 4.1.
We start with the proof of Proposition 4.1.

Proof of Proposition 4.1 To simplify notations in the proof, we assume that k = 0
anddrop the conditional independencyon the starting time k; e.g.,qi (s) = qi (k+s|k).

By (4.2), one can verify that vi (s + 1) is a convex combination of vi (s) and ūi (s)
through the following relations:

vi (s + 1) = 1

β
(qi (s + 1) − pi (s + 1))

= 1

β
(qi (s) + ūi (s) −

(

1 − 1

β

)

pi (s) − 1

β
qi (s))

=
(

1 − 1

β

)

vi (s) + 1

β
ūi (s). (4.8)

In order to simplify the notations of the n-OC, we define the coordinate trans-
formation yi (s) = qi (s) − zi (0). Then the n-OC parameterized by (pi (0), qi (0),
zi (0), vi (0)) ∈ X3 × W becomes the following one:

min
Ki (0→n−1)∈Rn

n−1∑

s=0

(
α‖yi (s)‖2 + γ ‖ūi (s)‖2

) + α‖yi (n)‖2,

s.t. pi (s + 1) =
(

1 − 1

β

)

pi (s) + 1

β
(yi (s) + zi (0)),

yi (s + 1) = yi (s) + ūi (s),

ūi (s) = −Ki (s)yi (s), 0 ≤ s ≤ n − 1,

vi (s + 1) =
(

1 − 1

β

)

vi (s) + 1

β
ūi (s),

yi (s + 1) + zi (0) ∈ X, vi (s) ∈ W,

ūi (s) ∈ Ū , 0 ≤ s ≤ n − 1, (4.9)

where yi (0) 
= 0 andwechange the decisionvariable ūi (0 → n−1) toKi (0 → n−1)
for the ease of presentation. The remainder of the proof is divided into the following
three claims to characterize the solutions to (4.9).

Claim 4.1 Given zi (0) ∈ R
d , the set of Y � {yi ∈ R

d | yi + zi (0) ∈ X} is convex.
Proof Pick any ȳi and ỹi from Y , and any μ ∈ [0, 1]. Since ȳi and ỹi are in Y , and
thus ȳi + zi (0) and ỹi + zi (0) are in X . Since X is convex, then μ(ȳi + zi (0))+ (1−
μ)(ỹi +zi (0)) = μȳi +(1−μ)ỹi +zi (0) ∈ X . This implies thatμȳi +(1−μ)ỹi ∈ Y
and the convexity of Y follows. •
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With Claim 4.1, we are now ready to find a feasible solution to (4.9) which will
produce an upper bound of the optimal value of (4.9).

Claim 4.2 Consider the scalar sequence of K̃i (0 → n − 1) � {K̃i (s)}0≤s≤n−1. If
K̃i (s) ∈ [0, ρ] for 0 ≤ s ≤ n − 1 and ρ satisfies (4.4), then K̃i (0 → n − 1) is a
feasible solution candidate to (4.9).

Proof Consider (4.9) where vi (0) = ṽi (0), yi (0) = ỹi (0) and Ki (0 → n − 1) =
K̃i (0 → n − 1). Let {ṽi (s)}0≤s≤n and {ỹi (s)}0≤s≤n be the generated states and
{ūi (s)}0≤s≤n−1 be the produced auxiliary inputs in (4.9).

In order to verify the feasibility of K̃i (0 → n − 1) to (4.9), we will check by
induction that the following property, say Constraint Verification (CV, for short),
holds for all 0 ≤ τ ≤ n − 1: for 0 ≤ s ≤ τ , we have that ỹi (s + 1) ∈ Y ,
ṽi (s + 1) ∈ W , and ūi (s) ∈ Ū .

Let us start from the case τ = 0. Recall that zi (0) ∈ X and ỹi (0) + zi (0) =
qi (0) ∈ X . This implies that 0 and ỹi (0) are both in Y . Since Y is convex shown in

Claim 4.1 and K̃i (0) ∈ [0, 1], then K̃i (0) × 0 + (1 − K̃i (0)) × ỹi (0) = ỹi (1) ∈ Y .
In addition, we notice the following estimates on ‖ỹi (0)‖∞:

‖ỹi (0)‖∞ ≤ ‖pi (0) − zi (0)‖∞ + β‖ṽi (0)‖∞ ≤ 2pmax + βvmax,

where pmax (resp. vmax) is the uniform bound on X (resp. W ). Since K̃i (0) ∈ [0, ρ]
and (4.4), then we have

‖ūi (0)‖∞ ≤ K̃i (0)‖ỹi (0)‖∞ ≤ ρ(βvmax + 2pmax) ≤ ūmax,

i.e., ūi (0) ∈ Ū . Note that ṽi (1) is a convex combination of ṽi (0) ∈ W and ūi (0) ∈
Ū ⊆ W . Hence, we have ṽi (1) ∈ W and CV holds for τ = 0.

Assume thatCVholds for some0 ≤ τ ≤ n−2.One can follow the samearguments
above by replacing the time instants 0 and 1 with τ and τ + 1, respectively, to show
that CV holds for τ + 1. By induction, we conclude that K̃i (0 → n − 1) consists of
a feasible solution candidate to (4.9). This completes the proof of Claim 4.2. •

It follows from Claim 4.2 that the n-OC is feasible; that is, one can build a
candidate solution by taking 0 ≤ K̃i (s) ≤ ρ, with 0 ≤ s ≤ n − 1. We now set out
to further characterize its optimal solutions.

Claim 4.3 There is a pair of ϑmin and ϑmax in (0, 1) such that Ki (s) ∈ [ϑmin, ϑmax]
for any optimal solution Ki (0 → n − 1) to (4.9).

Proof Let {yi (s)}0≤s≤n be the states generated by the optimal solutionKi (0 → n−1)
in (4.9). Pick any 1 ≤ τ ≤ n and assume that yi (n − τ) 
= 0. From Bellman’s
principle of optimality, we know that the last τ components, {Ki (s)}n−τ≤s≤n−1, of
Ki (0 → n − 1) define an optimal solution to the truncated version of n-OC. More
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precisely, {Ki (s)}n−τ≤s≤n−1 is an optimal solution to the (n − τ)-OC parameterized
by (pi (n − τ), vi (n − τ), qi (n − τ), zi (0)) which is given by:

min
Ki (n−τ→n−1)∈Rτ

n−1∑

s=n−τ

(
α‖yi (s)‖2 + γ ‖ūi (s)‖2

) + α‖yi (n)‖2,

s.t. pi (s + 1) =
(

1 − 1

β

)

pi (s) + 1

β
(yi (s) + zi (0)),

yi (s + 1) = yi (s) + ūi (s),

ūi (s) = −Ki (s)yi (s), n − τ ≤ s ≤ n − 1,

vi (s + 1) =
(

1 − 1

β

)

vi (s) + 1

β
ūi (s),

yi (s + 1) + zi (0) ∈ X, vi (s) ∈ W,

ūi (s) ∈ Ū , n − τ ≤ s ≤ n − 1. (4.10)

Denote by r∗
τ the optimal value of (4.10). It is easy to see that r∗

τ is lower bounded
by the sum of the first two running states and the first input; that is:

r∗
τ ≥ α‖yi (n − τ)‖2 + γ ‖Ki (n − τ)yi (n − τ)‖2 + α‖(1 − Ki (n − τ))yi (n − τ)‖2

= h(Ki (n − τ))‖yi (n − τ)‖2, (4.11)

where (1− Ki (n − τ))yi (n − τ) is the state by applying the auxiliary input−Ki (n −
τ)yi (n − τ) to yi (n − τ), and h(ν) � α + γ ν2 + α(1 − ν)2.

Regarding the function h(ν), we notice that h(ν) is quadratic in ν and reaches the
minimum at α

α+γ
. Then there is a pair of ϑmin and ϑmax in (0, 1) such that

h(ν) ≥ min{α + γ, 2α} − δ, ν /∈ [ϑmin, ϑmax], (4.12)

where α + γ = h(1), 2α = h(0), and δ is given in (4.5).
We now set out to show that Ki (n − τ) ∈ [ϑmin, ϑmax]. To achieve this, we

now construct a solution candidate {K̃i (s)}n−τ≤s≤n−1 to (4.10) where K̃i (s) = ρ̂ ∈
(0, ρ] for n − τ ≤ s ≤ n − 1. It follows from Claim 4.2 that {K̃i (s)}n−τ≤s≤n−1
is a feasible solution candidate to (4.9). Let r̃τ be the value of (4.10) generated by
{K̃i (s)}n−τ≤s≤n−1. We then have the following relations on r̃τ :

r̃τ = α

τ∑

κ=0

(1 − ρ̂)2κ‖yi (n − τ)‖2 + γ

τ−1∑

κ=0

ρ̂2(1 − ρ̂)2κ‖yi (n − τ)‖2

≤ 1

1 − (1 − ρ̂)2

(
α(1 − (1 − ρ̂)4) + γ ρ̂2(1 − (1 − ρ̂)2)

) × ‖yi (n − τ)‖2

= (
(1 + (1 − ρ̂)2)α + ρ̂2γ

)‖yi (n − τ)‖2. (4.13)
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On the right-hand side of the first equality of (4.13), the first summation is the
aggregation sum of running states and the second one is the accumulated control
cost.

By (4.11–4.13) and (4.5), one can verify that if Ki (n − τ) /∈ [ϑmin, ϑmax], then

r̃τ = (
(1 + (1 − ρ̂)2)α + ρ̂2γ

)‖yi (n − τ)‖2
< (min{α + γ, 2α} − δ)‖yi (n − τ)‖2 ≤ r∗

τ .

That is, r̃τ < r∗
τ , contradicting the optimality of {Ki (s)}n−τ≤s≤n−1 for (4.10). Hence,

it must be the case that Ki (n − τ) ∈ [ϑmin, ϑmax] ⊂ (0, 1). This holds for any
1 ≤ τ ≤ n, and thus this completes the proof of Claim 4.3. •

The last claim establishes the result of Proposition 4.1. •
The following lemma shows the property of constraint enforcement in

Theorem 4.1.

Lemma 4.1 (Constraint satisfaction and feasibility of the n-OC) The n-OC para-
meterized by (pi (k), qi (k), zi (k), vi (k)) ∈ X3 × W is feasible for all i ∈ V and
k ≥ 1. In addition, it holds that pi (k) ∈ X, vi (k) ∈ W , and ui (k) ∈ U for all i ∈ V
and k ≥ 0.

Proof It is trivial that zi (0) ∈ X is due to the projection operator. Recall that X
is convex, and (pi (0), qi (0)) ∈ X2. Since pi (1) is a convex combination of pi (0)
and qi (0) by (4.2), thus pi (1) ∈ X . As a consequence of Claim 4.2 in the proof of
Proposition 4.1, the n-OC parameterized by (pi (0), qi (0), zi (0), vi (0)) ∈ X3 × W
is feasible. This ensures that qi (1) ∈ X , vi (1) ∈ W , and ūi (0) ∈ W . Note that
‖ui (0)‖∞ ≤ 1

β
(‖vi (0)‖∞ + ‖ūi (0)‖∞) ≤ 1

β
(ūmax + vmax) ≤ umax by (4.3). Hence,

it yields that ui (0) ∈ U .
The remainder of the proof can be derived by means of induction, and is omitted

here. •
With the above instrumental results, we are now ready to characterize the con-

vergence properties of the Replay-Attack Resilient Formation Control
Algorithm and complete the proof of Theorem 4.1.

Proof of Theorem 4.1 Consider i ∈ V and time k ≥ 0. Note that the control
command ui (k) = ui (k|k − τ a

i (k)) is applied to (4.1), or, equivalently, ūi (k) is
applied to (4.2). Thus, the closed-loop dynamics of (4.2) is given by:

pi (k + 1) =
(

1 − 1

β

)

pi (k) + 1

β
qi (k),

qi (k + 1) = qi (k) + ūi (k|k − τ a
i (k))

= qi (k) + Ki (k|k − τ a
i (k))(zi (k − τ a

i (k)) − qi (k))

= qi (k) + Ki (k|k − τ a
i (k))(PX [φi (k − τ a

i (k))] − qi (k))

= qi (k) + Ki (k|k − τ a
i (k))(φi (k − τ a

i (k)) − qi (k)) + wi (k). (4.14)
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The term wi (k) in (4.14) is the error induced by the projection operator PX given by:

wi (k) � Ki (k|k − τ a
i (k))(PX [φi (k − τ a

i (k))] − φi (k − τ a
i (k))).

Substituting directly the definition of φi (k − τ a
i (k)) as follows:

φi (k − τ a
i (k)) = qi (k − τ a

i (k)) + pi (k − τ a
i (k))

2 + |Ni (k − τ a
i (k))|

+
∑

j∈Ni (k−τa
i (k))(p j (k − τ a

i (k)) + νi j )

2 + |Ni (k − τ a
i (k))| ,

into (4.14) leads to the following:

pi (k + 1) =
(

1 − 1

β

)

pi (k) + 1

β
qi (k),

qi (k + 1) = qi (k) + Ki (k|k − τ a
i (k))

×
⎧
⎨

⎩

1

2 + |Ni (k − τ a
i (k))|

(
qi (k − τ a

i (k)) + pi (k − τ a
i (k))

+
∑

j∈Ni (k−τa
i (k))

(p j (k − τ a
i (k)) + νi j )

) − qi (k)

⎫
⎬

⎭
+ wi (k). (4.15)

Pick any p∗ ∈ X∗, and we define the errors qe
i (k) � qi (k) − p∗

i and pe
i (k) �

pi (k) − p∗
i . Subtract p∗

i on both sides of (4.15), and we rewrite (4.15) in terms of
pe

i (k) and qe
i (k) as follows:

pe
i (k + 1) =

(

1 − 1

β

)

pe
i (k) + 1

β
qe

i (k),

qe
i (k + 1) = (1 − Ki (k|k − τ a

i (k)))qe
i (k)

+ Ki (k|k − τ a
i (k))

2 + |Ni (k − τ a
i (k))|qe

i (k − τ a
i (k))

+
∑

j∈Ni (k−τa
i (k))∪{i}

Ki (k|k − τ a
i (k))

2 + |Ni (k − τ a
i (k))| pe

j (k − τ a
i (k)) + wi (k),

(4.16)

where we use p∗
i − p∗

j = νi j for p∗ ∈ X∗ in (4.16). By Remark 4.3, we notice that
the following consensus property for algorithm (4.16)

lim
k→+∞ ‖pe

i (k) − qe
j (k)‖ = 0, i, j ∈ V, (4.17)
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is equivalent to achieving the formation control mission in (4.1). In particular,
lim

k→+∞ ‖pe
i (k) − qe

i (k)‖ = 0 implies that lim
k→+∞ ‖pi (k) − qi (k)‖ = 0. And the prop-

erty lim
k→+∞ ‖qe

i (k) − qe
j (k)‖ = 0 implies the following:

lim
k→+∞ ‖(qi (k) − p∗

i ) − (q j (k) − p∗
j )‖ = lim

k→+∞ ‖qi (k) − q j (k) − di j‖ = 0.

We will show that wi (k) is diminishing in Claim 4.4. In this way, the dynamics
of (4.16) are decoupled along different dimensions, and thus we will only consider
the scalar case; i.e., d = 1, for the ease of presentation in the remainder of the proof.

In order to show the consensus property (4.17), we transform the second-order
algorithm (4.16) into an equivalent first-order one. To achieve this, we introduce a
transformed systemwith two classes of agents: location agents labeled by {1, . . . , N }
and velocity agents labeled by {N + 1, . . . , 2N }. With these, we define the state
x(k) ∈ R

2N in such a way that xi (k) = pe
i (k) for location agent i ∈ {1, . . . , N },

xi (k) = qe
i−N (k) for velocity agent i ∈ {N + 1, . . . , 2N }. Let VT � {1, . . . , 2N }.

Consequently, algorithm (4.16) can be transformed into the following first-order
consensus algorithm subject to delays and errors e�(k):

x�(k + 1) = a��(k)x�(k) + ā��(k)x�(k − τ a
� (k))

+
∑

�′∈VT \{�}
a��′(k)x�′(k − τ a

� (k)) + e�(k), (4.18)

where e�(k) = 0, ā��(k) = 0 for � ∈ {1, . . . , N }, and e�(k) = w�−N (k) for � ∈
{N + 1, . . . , 2N }. Without loss of any generality, we assume that x�(k) = x�(0) for
k = −1, . . . ,−τmax.

The weights in (4.18) induce the communication graph GT (k) � {VT ,ET (k)}
defined as (�, �′) ∈ ET (k) if and only if a��′(k) 
= 0 for � 
= �′. From (4.15), we can
see that location agent i and velocity agent i can communicate to each other all the
time. This observation in conjunction with Assumptions 4.2, on the connectedness of
the formation digraph, and 4.4, on periodic communication, yields that the directed

graph (VT ,
⋃B−1

k=0 ET (k0+k)) is strongly connected for any k0 ≥ 0. Figure4.2 shows

an illustrative example with three operators where operators 1 and 2 communicate
when k is odd, and operators 2 and 3 communicate when k is even.

Recall that Ki (k|k − τ a
i (k)) ∈ [ϑmin, ϑmax] ⊂ (0, 1) by Proposition 4.1.

For (4.18), one can verify that there is ηmin ∈ (0, 1) such that:

a��(k) ≥ ηmin, a��′(k) 
= 0 ⇒ a��′(k) ≥ ηmin, (4.19)

ā��(k) +
∑

�′∈VT

a��′(k) = 1, (4.20)

where (4.19) is referred to as the nondegeneracy property and (4.20) is referred to
as the stochasticity property.
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Fig. 4.2 Three agents
communicate as indicated by
the first two graphs over even
and odd times. This
translates into the
communication graphs
below for the transformed
system

k is odd

k is even

k is odd

k is even

1 2 3

1 2 3

p1 p2 p3

v1 v2 v3

p1 p2 p3

v1 v2 v3

In order to show the consensus property (4.17), we first show that the error term
e�(k) is diminishing.

Claim 4.4 For any � ∈ {N + 1, . . . , 2N }, it holds that

lim
k→+∞ ‖e�(k)‖ = 0.

Proof Since X is convex and p∗
i ∈ X , then it follows from the projection theorem

(e.g., on p. 17 in [14]) that the following holds for i ∈ V :

‖zi (k − τ a
i (k)) − p∗

i ‖2 = ‖PX [φi (k − τ a
i (k))] − p∗

i ‖2
≤ ‖φi (k − τ a

i (k)) − p∗
i ‖2 − ‖wi (k)‖2. (4.21)

For the term of ‖φi (k − τ a
i (k)) − p∗

i ‖2, the following relations hold:

‖φi (k − τ a
i (k)) − p∗

i ‖2

= ‖qe
i (k − τ a

i (k)) + pe
i (k − τ a

i (k))

2 + |Ni (k − τ a
i (k))| +

∑
j∈Ni (k−τa

i (k)) pe
j (k − τ a

i (k))

2 + |Ni (k − τ a
i (k))| ‖2

≤ ‖qe
i (k − τ a

i (k))‖2 + ‖pe
i (k − τ a

i (k))‖2
2 + |Ni (k − τ a

i (k))| +
∑

j∈Ni (k−τa
i (k)) ‖pe

j (k − τ a
i (k))‖2

2 + |Ni (k − τ a
i (k))| ,

(4.22)

where in the equality we use p∗
i − p∗

j = νi j , and in the inequality we use the fact that

the function ‖ · ‖2 is a convex function and the Jensen’s inequality (e.g., inequality
(1.7) on p. 19 in [14]).
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Subtract p∗
i on both sides of the update rule for qi (k) in (4.14), and it renders the

following:

qe
i (k + 1) = (1 − Ki (k|k − τ a

i (k)))qe
i (k) + Ki (k|k − τ a

i (k))(zi (k − τ a
i (k)) − p∗

i ).

Since ‖ · ‖2 is a convex function, then the following holds:

‖qe
i (k + 1)‖2 ≤ (1 − Ki (k|k − τ a

i (k)))‖qe
i (k)‖2

+ Ki (k|k − τ a
i (k))‖zi (k − τ a

i (k)) − p∗
i ‖2. (4.23)

Analogously, one can verify the following relation via the update rule for pi (k)

in (4.15):

‖pe
i (k + 1)‖2 ≤ (1 − 1

β
)‖pe

i (k)‖2 + 1

β
‖qe

i (k)‖2. (4.24)

Recall that Ki (k|k−τ a
i (k)) ∈ [ϑmin, ϑmax] by Proposition 4.1. Then the combination

of (4.21–4.24) establishes that the following holds for all � ∈ VT :

‖x�(k + 1)‖2 ≤ b��(k)‖x�(k)‖2 + b̄��(k)‖x�(k − τ a
� (k))‖2

+
∑

�′∈VT \{�}
b��′(k)‖x�′(k − τ a

� (k))‖2 − ϑmin‖e�(k)‖2, (4.25)

where the following properties hold for the weights:

b�� ≥ η̄min, b��′(k) 
= 0 ⇒ b��′(k) ≥ η̄min, (4.26)

b̄��(k) +
∑

�′∈VT

b��′(k) = 1, (4.27)

for some η̄min ∈ (0, 1).
The iterative relation (4.25) induces the communication graph ḠT (k) � {VT ,

ĒT (k)} where (�, �′) ∈ ĒT (k) if and only if b��′(k) 
= 0 with � 
= �′. Recall that
Ki (k|k − τ a

i (k)) ∈ [ϑmin, ϑmax] by Proposition 4.1. Then ET (k) = ĒT (k) and thus

the directed graph (VT ,
⋃B−1

k=0 ĒT (k0 + k)) is strongly connected for any k0 ≥ 0.

We denote the maximum value of ‖x�‖2 over the interval [k −τmax, k] as follows:

Π(k) � max
0≤s≤τmax

max
�∈VT

‖x�(k − s)‖2.

By (4.20) and τ a
i (k) ≤ τmax, it then follows from (4.25) and (4.27) that the following

holds for any � ∈ VT :

‖x�(k + 1)‖2 ≤ Π(k) − ϑmin‖e�(k)‖2,
and thus, Π(k + 1) ≤ Π(k); i.e., the sequence of {Π(k)} is nonincreasing.
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We now move to show by contradiction that ‖e�(k)‖2 decreases to zero for all
� ∈ {N + 1, . . . , 2N } via studying the iterative relation (4.25). In particular, we
assume that ‖e�(k)‖2 is strictly away from zero infinitely often and derive that Π(k)

could be arbitrarily negative, contradicting Π(k) ≥ 0.
Assume that there is some �̄ ∈ {N + 1, . . . , 2N } and ε > 0 such that the event

ϑmin‖e�̄(k)‖2 ≥ ε occurs infinitely often. Denote by the set {s1, s2, . . .} the collection
of time instants when ϑmin‖e�̄(k)‖2 ≥ ε occurs. Without loss of any generality, we
assume that s1 ≥ 2N B + 1, and sκ+1 ≥ sκ + 2N B + 1 for κ ≥ 1.

We now consider the time instant s1. Define the set D0 = {�̄}. Since the graph

(VT ,
⋃B−1

k=0 ĒT (s1+k)) is strongly connected, there is a nonempty setD1 ⊂ VT \{�̄}
of agents such that for all � ∈ D1, b��̄(k) 
= 0 occurs at least once during the time
frame [s1, s1 + B − 1]. By induction, a set Dκ+1 ⊂ VT \ (D0 ∪ · · · ∪ Dκ) can
be defined by considering those agents � /∈ D0 ∪ · · · ∪ Dκ where there is some
�′ ∈ D0 ∪ · · · ∪Dκ such that b��′(k) 
= 0 occurs at least once during the time frame
[s1 + κ B, s1 + (κ + 1)B − 1]. The graph (VT ,

⋃B−1
k=0 ĒT (s1 + κ B + k)) is strongly

connected, Dκ+1 
= ∅ as long as VT \ (D0 ∪ · · · ∪ Dκ) 
= ∅. Thus, there exists
L ≤ 2N − 1 such that the collection of D0, . . . ,DL is a partition of VT .

For each time instant k ≥ s1+1, we define the set�(k) ⊆ VT such that � ∈ �(k)

if and only if ‖x�(k + 1)‖2 ≤ Π(s1) − η̄
k−s1−1
min ε. One then can verify that the

following properties hold for the set �(k):
(P1) If � ∈ �(K ), then � ∈ �(k) for all k ≥ K + 1.
(P2) If �′ ∈ �(k) and b��′(k) 
= 0, then � ∈ �(k + 1).
In particular, (P1) is a result of the following:

‖x�(k + 1)‖2 ≤ b��(k)‖x�(k)‖2 − (1 − b��(k))Π(k)

≤ b��(k)‖x�(k)‖2 − (1 − b��(k))Π(s1),

where we use the monotonicity property of {Π(k)} and the stochasticity prop-
erty (4.27). Analogously, (P2) is a result of the following:

‖x�(k + 1)‖2 ≤ b��′(k)‖x�′(k)‖2 − (1 − b��′(k))Π(s1).

One can see thatD0 = {�̄} ⊆ �(s1+1). By (P1),D0 = {�̄} ⊆ �(k) for all k ≥ s1+1.
Assume that D0 ∪ · · · ∪ Dκ ⊆ �(s1 + 1 + κ B) for some 0 ≤ κ ≤ L − 1. Pick
any � ∈ Dκ+1 for κ ≥ 0. By construction of the set of {D0, . . . ,DL}, there is some
�′ ∈ D0∪· · ·∪Dκ such thatb��′(k′) 
= 0 at some time k′ ∈ [s1+κ B, s1+(κ+1)B−1].
Hence, {�} ∪D0 ∪ · · · ∪Dκ ⊆ �(k′ + 1), and thus D0 ∪ · · · ∪Dκ+1 ⊆ �(s1 + 1+
(κ + 1)B) by (P1) and (P2). By induction, we have VT = �(s1 + 1 + (L + 1)B).
By (P1), we further have VT = �(s1 + 1 + 2N B) and thus:

Π(s1 + 1 + 2N B) ≤ Π(s1) − η̄2N B
min ε. (4.28)
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Recall that s2 ≥ s1 + 2N B + 1. By the monotonicity of {Π(k)}, we have

Π(s2) ≤ Π(s1 + 1 + 2N B) ≤ Π(s1) − η̄2N B
min ε. (4.29)

Following analogous lines toward (4.29), one can verify the following by induction:

Π(sκ+1) ≤ Π(sκ) − η̄2N B
min ε, ∀κ ≥ 1.

This further gives that

Π(sκ+1) ≤ Π(s1) − κη̄2N B
min ε.

Since infk≥0 Π(k) ≥ 0, we reach a contradiction by letting κ → +∞ in the above
relation. Consequently, it establishes that {e�(k)} diminishes. •

With Claim 4.4 at hand, we are now ready to show the consensus property (4.17).

Claim 4.5 The consensus property (4.17) holds.

Proof We denote

M(k) � max
0≤s≤τmax

max
�∈VT

x�(k − s), (4.30)

m(k) � min
0≤s≤τmax

min
�∈VT

x�(k − s), (4.31)

D(k) � M(k) − m(k).

To summarize, algorithm (4.18) enjoys the nondegeneracy property (4.19), the sto-
chasticity property (4.20) and the property that the graph (VT ,

⋃B−1
k=0 ET (k0 + k))

is strongly connected for any k0 ≥ 0. By using Claim 4.4 and following similar
lines toward Corollary 3.1 in [15], we show that the maximum deviation of D(k) is
diminishing, and the desired result is established.

Hereweprovide a sketch of the proof on D(k) being diminishing. Let us fix � ∈ VT

for every time instant k and define D0 = {�}. Recall that (VT ,
⋃B−1

k=0 ET (k0 + k)) is
strongly connected for any k0 ≥ 0. We replace B by max{B, τmax} in the paragraph
right before Lemma 3.1 in [15] and construct the collection ofD0, . . . ,DL consisting
of a partition of VT with some L ≤ 2N − 1. Following the same lines in Lemma 3.1
and using the new definitions of m(k) and M(k) in (4.30) and (4.31), one can show
that for every κ ∈ {1, . . . ,L}, there exists a real number ηκ > 0 such that for every
integer s ∈ [κ max{B, τmax}, (Lmax{B, τmax}+max{B, τmax}− 1)], and κ ′ ∈ Dκ ,
it holds that for t = k + s
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xκ ′(t) ≥ m(k) +
s−1∑

q=0

min
�′∈VT

e�′(k + q) + ηκ(x�(s) − m(s)),

xκ ′(t) ≤ M(k) +
s−1∑

q=0

max
�′∈VT

e�′(k + q) − ηκ(M(s) − x�(s)).

The remaining of the proofs can be finished by following the same lines in [15] and
replacing B by max{B, τmax}. •

By Remark 4.3, the consensus property (4.17) establishes the desired result. This
completes the proof. •

4.6 Discussion

In this section, we discuss several aspects of the distributed replay-attack resilient
formation control algorithm and its possible variations.

4.6.1 The Special Case of Consensus

In the constrained formation control problem, we cannot characterize the dimin-
ishing rate of projection errors, and this prevents us from finding an estimate of
the convergence rate of the Replay-Attack Resilient Formation Control
Algorithm. When νi j = 0, the formation control problem reduces to the consensus
(or rendezvous) problem. Since X is convex and φi (k) is a convex combination of
states in X , zi (k) = φi (k) and the projection errors are absent. For this special case,
we can guarantee that the algorithm converges at a geometric rate.

Corollary 4.1 Suppose that νi j = 0 and Assumptions 4.1, 4.4, and 4.5 hold. Let
vehicle i start from (pi (0), vi (0)) with (pi (0), pi (0)+βvi (0)) ∈ X2 and vi (0) ∈ W
for i ∈ V . The Replay-Attack Resilient Formation Control Algorithm
with n ≥ τmax ensures that the vehicles converge to the consensus at a geometric

rate of (1 − η)
1

2N B−1 for some η ∈ (0, 1).

4.6.2 Resilience to Denial-of-Service Attacks

Consider the class of denial-of-service (DoS) attacks; e.g., in [16–18]. In particu-
lar, adversary i produces a DoS attack by erasing the control commands sent from
operator i , and vehicle i receives nothing at this time. It is easy for vehicles to detect
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the occurrence of DoS attacks via verifying the receipt of control commands at each
time instant. TheReplay-Attack Resilient Formation Control Algorithm
can be slightly modified to address the scenario where adversaries launch replay or
denial-of-service attacks on the data sent from vehicles to operators. If adversary i
produces an attack at time k, then operator i does nothing at this time. In this way, the
results of Theorem 4.1 apply as well provided that the computing horizon is larger
than the maximum number of consecutive DoS attacks; i.e., n ≥ τmax + 1.

4.6.3 The Issue of Solving the n-OC

As in Proposition 4.1, we will focus on the program (4.9) in order to simplify the
notations. Now we convert the program (4.9) into a quadratic program through the
following steps. By using the relation of yi (s) = yi (0) + ∑s−1

τ=0 ūi (τ ), one can see
that ūi (s) = −Ki (s)

∏s−1
τ=0(1 − Ki (τ ))yi (0) and yi (s) = ∏s−1

τ=0(1 − Ki (τ ))yi (0).
We denote Ji (s) � Ki (s)

∏s−1
τ=0(1− Ki (τ )). By using yi (s) = yi (0) + ∑s−1

τ=0 ūi (τ )

and ūi (s) = −Ji (s)yi (0), one can simplify (4.9) to the following compact form after
some algebraic manipulation:

min
Ji (0→n−1)∈Rn

Ji (0 → n − 1)T Pi Ji (0 → n − 1) + yi (0)
T Qi Ji (0 → n − 1)

s.t. Ei Ji (0 → n − 1) ≤ Fi yi (0) + Gi zi (0) + Hi , (4.32)

where a term independent of Ji (0 → n − 1) has been removed from the original
objective function. In (4.32), the matrix Pi is symmetric and positive definite, and
the matrices Qi , Ei , Fi , Gi , and Hi have proper dimensions. One can see that the
program (4.32) is a multiparametric quadratic program and a number of existing
efficient algorithms can be used to solve it. Given the solution Ji (0 → n − 1)
to (4.32), operator i then computes {ūi (s)}0≤s≤n−1 by using ūi (s) = −Ji (s)yi (0).

4.6.4 Pros and Cons

By exploiting the RHCmethodology, theReplay-Attack Resilient Formation
Control Algorithm demonstrates the resilience to replay attacks and denial-of-
service attacks. The resilience is achieved under limited information about adver-
saries; that is, operators are only aware of τmax, but do not need to know the attacking
policy. In addition, the usage of the RHC methodology explicitly guarantees that the
state and input constraints are enforced all the time. These attractive advantages stim-
ulate the interesting future direction of extending the usage of the RHCmethodology
to other cooperative control tasks in the presence of replay and DoS attacks.
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On the other hand, we also notice that the resilience of our algorithms comes at the
expense of higher computation, communication, and memory costs in comparison
with the classic consensus algorithm. In particular, each operator needs to solve a
multiparametric program at each time; a sequence of control commands have to be
sent to each vehicle; and each vehicle is required to store a sequence of control
commands as backup. If X is a polyhedron, the computational burden of solving
the multiparametric quadratic program (4.32) can be traded with memory costs by
means of explicit model predictive control initiated in [19].

4.6.5 Tradeoff Between Computation, Memory,
and Communication Costs

One can trade communication costs with computation costs by exploiting the idea
of event/self-triggered control; e.g., in [20]. In particular, each operator increases
the computing horizon n ≥ τmax + 1 and, aperiodically computes and sends the
control commands. Consider the time instant ki,0 ≥ 0, and assume si (ki,0) = 0.
Then ūi (ki,0 → ki,0 + n − 1) is successfully delivered. After that, operator i does
not compute and send any control command to vehicle i until the time instant ki,0 +
(n − τmax − 2). Since ki,0 + (n − τmax − 2), operator i keeps executing Step 1 in
the Replay-Attack Resilient Formation Control Algorithm at each time
instant until si (ki,1) = 0 for some ki,1 ∈ [ki,0 + (n − τmax − 2), ki,0 + n]. Operator i
then repeats the above process after ki,1.

Event/self-triggered control only requires operator i to perform local computa-
tion and communication to vehicle i at {ki,�}�≥0. However, on the other hand, self-
triggered control increases the size of the n-OC and introduces larger delays into the
system, potentially slowing down the convergence rate.

4.7 Numerical Examples

Consider a groupof ten vehicles restricted in the area X � [−10, 10]×[−10, 10]. The
input and velocity limits of each vehicle are umax = 5 and vmax = 2.5, respectively.
We study the following three cases via numerical simulations:

(1) n = 10 and τmax = 0 (no attacks occur);
(2) n = 10 and τmax = 10 (each adversary launches the attacks all the time except

the time instants which are the multiples of 10);
(3) n = 30 and τmax = 30 (each adversary launches the attacks all the time except

the time instants which are the multiples of 30).

We now proceed to discuss the simulation results. Figure4.3 is concerned with
Case (3), and demonstrates that the vehicles start from four corners of the square X
and eventually form the desired configuration at the center of X . Figure4.4 compares



4.7 Numerical Examples 115

Fig. 4.3 The vehicle
trajectories for Case (3)
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the error evolution of three cases. It is evident that a larger τmax slows down the
convergence rate, and makes the error evolution less smooth. This coincides with the
theoretic results in Theorem 4.1 and the intuition that a larger τmax would produce a
greater damage to the operator-vehicle network.

4.8 Notes

Security is a critical issue for information technology networks. In practice, either
reactive or protectivemechanisms have been exploited to prevent cyber attacks. Non-
cooperative game theory is used as a rigorous mathematical framework that models
the interdependency between attackers and administrators, see the (incomplete) list
of references [21, 22].
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Recently, the topic of security of a class of control systems, namely cyber-physical
systems, is drawing mounting attention. Three classes of attacks have been investi-
gated: denial-of-service (DoS) attacks, replay attacks, and deception (or false data
injection) attacks. Denial-of-service attacks destroy data availability in control sys-
tems, and see [16–18]. Replay attacks maliciously repeat transmitted data, and their
impact to control systemswas first studied in [23]. SeeRemark 4.1 for amore detailed
discussion on the above two classes of attacks. Deception attacks compromise the
data integrity of state estimation and control, and see for example [5–10]. In [24], an
attack space defined by the adversary’s system knowledge, disclosure, and disruption
resources is introduced.

Attack detection, attack resilient control, and security economics are three impor-
tant aspects of the security of CPS. More specifically, attack detection aims to detect
the existence of malicious attacks and further identify their actions. This is achieved
by designing input–state estimators and see [25–27]. Attack resilient control is to
design control laws which can ensure control system performance despite malicious
attacks. In [28, 29], the authors exploit pursuit-evasion games to compute optimal
evasion strategies for mobile agents in the face of jamming attacks. Event trigger
control under denial-of-service attacks is studied in [30]. Our papers [31, 32] dis-
cuss distributed attack-resilient formation control of multiple vehicles against DoS,
replay, and deception attacks. The paper [33] considers the problem of computing
arbitrary functions of initial states in the presence of faulty or malicious agents,
whereas [34] focuses on consensus problems. Security economics aims to incen-
tivize heterogeneous stock holders to contribute to the security of CPS. Some papers
along this line include [16] and [35]

This chapter employs a distributed receding horizon control methodology for the
resilient control of a class of multi-agent systems. Previously, distributed receding
horizon control has been applied to solve the problem of stabilizing an a priori known
common set point for decoupled subsystems [36, 37], coupled subsystems [38], and
the problem of reaching consensus in [2, 39]. Our chapter is also relevant to the
set of papers concerned with formation control of multiple vehicles; e.g., in [36].
Centralized receding horizon control over unreliable communication networks is
studied in [40–42] for package dropouts and in [43, 44] for transmission delays.
Recently, a recursive and centralized networked predictive control method based on
round-trip time delay is proposed in [45] to compensate for denial-of-service attacks.
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