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Preface

T he recent financial crisis and its impact on the broader economy under-
score the importance of financial risk management in today’s world. At

the same time, financial products and investment strategies are becoming
increasingly complex. It is more important than ever that risk managers
possess a sound understanding of mathematics and statistics.

Mathematics and Statistics for Financial Risk Management is a guide
to modern financial risk management for both practitioners and academics.
Risk management has made great strides in recent years. Many of the math-
ematical and statistical tools used in risk management today were originally
adapted from other fields. As the field has matured, risk managers have re-
fined these tools and developed their own vocabulary for characterizing risk.
As the field continues to mature, these tools and vocabulary are becoming
increasingly standardized. By focusing on the application of mathematics
and statistics to actual risk management problems, this book helps bridge
the gap between mathematics and statistics in theory and risk management
in practice.

Each chapter in this book introduces a different topic in mathematics
or statistics. As different techniques are introduced, sample problems and
application sections demonstrate how these techniques can be applied to
actual risk management problems. Exercises at the end of each chapter, and
the accompanying solutions at the end of the book, allow readers to practice
the techniques they are learning and to monitor their progress.

This book assumes that readers have a solid grasp of algebra and at
least a basic understanding of calculus. Even though most chapters start out
at a very basic level, the pace is necessarily fast. For those who are already
familiar with the topic, the beginning of each chapter will serve as a quick
review and as an introduction to certain vocabulary terms and conventions.
Readers who are new to these topics may find they need to spend more time
in the initial sections.

Risk management in practice often requires building models using
spreadsheets or other financial software. Many of the topics in this book are
accompanied by a icon, as shown here. These icons indicate that Excel
examples can be found at John Wiley & Sons’ companion website for

ix
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Mathematics and Statistics for Financial Risk Management, at www.wiley
.com/go/millerfinance.

You can also visit the author’s web site, www.risk256.com, for the latest
financial risk management articles, code samples, and more. To provide
feedback, you can contact the author at mike@risk256.com.

http://www.wiley.com/go/miller%EF%AC%81nance
http://www.risk256.com
mailto:mike@risk256.com
http://www.wiley.com/go/miller%E2%80%A2nancehttp://www.wiley.com/go/miller%E2%80%A2nancehttp://www.wiley.com/go/miller%E2%80%A2nance


P1: TIX/XYZ P2: ABC
JWBT625-Ack JWBT625-Miller December 19, 2011 18:59 Printer: Courier Westford

Acknowledgments

L ike most of today’s risk managers, I learned much of what I know about
risk management on the job. I was fortunate to work with some very

knowledgeable individuals early in my career. In particular, I would like to
thank Gideon Pell and Kent Osband.

This book would not have been possible without the help of many
individuals. I would like to thank Jeffrey Garnett, Steve Lerit, Hyunsuk
Moon, Elliot Noma, and Eldar Radovici for taking time to read early drafts.
The book is certainly better for their comments and feedback. I would also
like to thank everybody at John Wiley & Sons for their help in bringing this
book together.

Finally, and most importantly, I would like to thank my wife, Amy,
who not only read over early drafts and talked me through a number of
decisions, but also put up with countless nights and weekends of typing and
editing. For this and much, much more, thank you.

xi



P1: TIX/XYZ P2: ABC
JWBT625-Ack JWBT625-Miller December 19, 2011 18:59 Printer: Courier Westford

xii



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c01 JWBT625-Miller December 19, 2011 19:5 Printer: Courier Westford

CHAPTER 1
Some Basic Math

I n this chapter we will review three math topics—logarithms, combina-
torics, and geometric series—and one financial topic, discount factors.

Emphasis will be given to the specific aspects of these topics that are most
relevant to risk management.

LOGARITHMS

In mathematics, logarithms, or logs, are related to exponents, as follows:

logb a = x ⇔ a = bx (1.1)

We say, “The log of a, base b, equals x, which implies that a equals b to
the x and vice versa.” If we take the log of the right-hand side of Equation
1.1 and use the identity from the left-hand side of the equation, we can show
that:

logb(bx) = x (1.2)

Taking the log of bx effectively cancels out the exponentiation, leaving us
with x.

An important property of logarithms is that the logarithm of the product
of two variables is equal to the sum of the logarithms of those two variables.
For two variables, X and Y:

logb(XY) = logb X + logb Y (1.3)

Similarly, the logarithm of the ratio of two variables is equal to the
difference of their logarithms:

logb

(
X
Y

)
= logb X − logb Y (1.4)

1



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c01 JWBT625-Miller December 19, 2011 19:5 Printer: Courier Westford

2 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

If we replace Y with X in Equation 1.3, we get:

logb(X2) = 2 logb X (1.5)

We can generalize this result to get the following power rule:

logb(Xn) = n logb X (1.6)

In general, the base of the logarithm, b, can have any value. Base 10 and
base 2 are popular bases in certain fields, but in many fields, and especially
in finance, e, Euler’s number, is by far the most popular. Base e is so popular
that mathematicians have given it its own name and notation. When the
base of a logarithm is e, we refer to it as a natural logarithm. In formulas,
we write:

ln(a) = x ⇔ a = ex (1.7)

From this point on, unless noted otherwise, assume that any mention of
logarithms refers to natural logarithms.

Logarithms are defined for all real numbers greater than or equal to
zero. Figure 1.1 shows a plot of the logarithm function. The logarithm
of zero is negative infinity, and the logarithm of one is zero. The function
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Some Basic Math 3

grows without bound; that is, as X approaches infinity, the ln(X) approaches
infinity as well.

LOG RETURNS

One of the most common applications of logarithms in finance is computing
log returns. Log returns are defined as follows:

rt ≡ ln(1 + Rt) where Rt = Pt − Pt−1

Pt−1
(1.8)

Here rt is the log return at time t, Rt is the standard or simple return,
and Pt is the price of the security at time t. We use this convention of capital
R for simple returns and lowercase r for log returns throughout the rest of
the book. This convention is popular, but by no means universal. Also, be
careful: Despite the name, the log return is not the log of Rt, but the log of
(1 + Rt).

For small values, log returns and simple returns will be very close in
size. A simple return of 0% translates exactly to a log return of 0%. A
simple return of 10% translates to a log return of 9.53%. That the values
are so close is convenient for checking data and preventing operational
errors. Table 1.1 shows some additional simple returns along with their
corresponding log returns.

TABLE 1.1 Log Returns and
Simple Returns

R ln(1 + R)

1.00% 1.00%
5.00% 4.88%

10.00% 9.53%
20.00% 18.23%

To get a more precise estimate of the relationship between standard
returns and log returns, we can use the following approximation:∗

r ≈ R − 1
2

R2 (1.9)

∗This approximation can be derived by taking the Taylor expansion of Equation 1.8
around zero. Though we have not yet covered the topic, for the interested reader a
brief review of Taylor expansions can be found in Appendix B.
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4 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

As long as R is small, the second term on the right-hand side of Equation
1.9 will be negligible, and the log return and the simple return will have very
similar values.

COMPOUNDING

Log returns might seem more complex than simple returns, but they have a
number of advantages over simple returns in financial applications. One of
the most useful features of log returns has to do with compounding returns.
To get the return of a security for two periods using simple returns, we have
to do something that is not very intuitive, namely adding one to each of the
returns, multiplying, and then subtracting one:

R2,t = Pt − Pt−2

Pt−2
= (1 + R1,t)(1 + R1,t−1) − 1 (1.10)

Here the first subscript on R denotes the length of the return, and the sec-
ond subscript is the traditional time subscript. With log returns, calculating
multiperiod returns is much simpler; we simply add:

r2,t = r1,t + r1,t−1 (1.11)

By substituting Equation 1.8 into Equation 1.10 and Equation 1.11,
you can see that these are equivalent. It is also fairly straightforward to
generalize this notation to any return length.

SAMPLE PROBLEM

Question:
Using Equation 1.8 and Equation 1.10, generalize Equation 1.11

to returns of any length.

Answer:

Rn,t = Pt − Pt−n

Pt−n
= Pt

Pt−n
− 1 = Pt

Pt−1

Pt−1

Pt−2
· · · Pt−n+1

Pt−n
− 1

Rn,t = (1 + R1,t)(1 + R1,t−1) · · · (1 + R1,t−n+1) − 1

(1 + Rn,t) = (1 + R1,t)(1 + R1,t−1) · · · (1 + R1,t−n+1)

rn,t = r1,t + r1,t−1 + · · · + r1,t−n+1
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Some Basic Math 5

Note that to get to the last line, we took the logs of both sides of the
previous equation, using the fact that the log of the product of any two
variables is equal to the sum of their logs, as shown in Equation 1.3.

L IMITED L IABIL ITY

Another useful feature of log returns relates to limited liability. For many
financial assets, including equities and bonds, the most that you can lose is
the amount that you’ve put into them. For example, if you purchase a share
of XYZ Corporation for $100, the most you can lose is that $100. This is
known as limited liability. Today, limited liability is such a common feature
of financial instruments that it is easy to take it for granted, but this was not
always the case. Indeed, the widespread adoption of limited liability in the
nineteenth century made possible the large publicly traded companies that
are so important to our modern economy, and the vast financial markets
that accompany them.

That you can lose only your initial investment is equivalent to saying
that the minimum possible return on your investment is −100%. At the
other end of the spectrum, there is no upper limit to the amount you can
make in an investment. The maximum possible return is, in theory, infinite.
This range for simple returns, −100% to infinity, translates to a range of
negative infinity to positive infinity for log returns.

Rmin = −100% ⇒ rmin = −∞
Rmax = +∞ ⇒ rmax = +∞

(1.12)

As we will see in the following chapters, when it comes to mathemat-
ical and computer models in finance, it is often much easier to work with
variables that are unbounded, that is variables that can range from negative
infinity to positive infinity.

GRAPHING LOG RETURNS

Another useful feature of log returns is how they relate to log prices. By
rearranging Equation 1.10 and taking logs, it is easy to see that:

rt = pt − pt−1 (1.13)
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6 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

where pt is the log of Pt, the price at time t. To calculate log returns, rather
than taking the log of one plus the simple return, we can simply calculate
the logs of the prices and subtract.

Logarithms are also useful for charting time series that grow exponen-
tially. Many computer applications allow you to chart data on a logarithmic
scale. For an asset whose price grows exponentially, a logarithmic scale
prevents the compression of data at low levels. Also, by rearranging Equa-
tion 1.13, we can easily see that the change in the log price over time is equal
to the log return:

� pt = pt − pt−1 = rt (1.14)

It follows that, for an asset whose return is constant, the change in the
log price will also be constant over time. On a chart, this constant rate of
change over time will translate into a constant slope. Figures 1.2 and 1.3
both show an asset whose price is increasing by 20% each year. The y-axis
for the first chart shows the price; the y-axis for the second chart displays
the log price.

For the chart in Figure 1.2, it is hard to tell if the rate of return is
increasing or decreasing over time. For the chart in Figure 1.3, the fact that
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the line is straight is equivalent to saying that the line has a constant slope.
From Equation 1.14 we know that this constant slope is equivalent to a
constant rate of return.

In the first chart, the y-axis could just have easily been the actual price
(on a log scale), but having the log prices allows us to do something else.
Using Equation 1.13, we can easily estimate the log return. Over 10 peri-
ods, the log price increases from approximately 4.6 to 6.4. Subtracting and
dividing gives us (6.4 − 4.6)/10 = 18%. So the log return is 18% per pe-
riod, which—because log returns and simple returns are very close for small
values—is very close to the actual simple return of 20%.

CONTINUOUSLY COMPOUNDED RETURNS

Another topic related to the idea of log returns is continuously compounded
returns. For many financial products, including bonds, mortgages, and credit
cards, interest rates are often quoted on an annualized periodic or nominal
basis. At each payment date, the amount to be paid is equal to this nominal
rate, divided by the number of periods, multiplied by some notional amount.
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8 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

For example, a bond with monthly coupon payments, a nominal rate of 6%,
and a notional value of $1,000, would pay a coupon of $5 each month:
(6% × $1,000)/12 = $5.

How do we compare two instruments with different payment frequen-
cies? Are you better off paying 5% on an annual basis or 4.5% on a monthly
basis? One solution is to turn the nominal rate into an annualized rate:

RAnnual =
(

1 + RNominal

n

)n

− 1 (1.15)

where n is the number of periods per year for the instrument.
If we hold RAnnual constant as n increases, RNominal gets smaller, but at

a decreasing rate. Though the proof is omitted here, using L’Hôpital’s rule,
we can prove that, at the limit, as n approaches infinity, RNominal converges
to the log rate. As n approaches infinity, it is as if the instrument is making
infinitesimal payments on a continuous basis. Because of this, when used
to define interest rates the log rate is often referred to as the continuously
compounded rate, or simply the continuous rate. We can also compare
two financial products with different payment periods by comparing their
continuous rates.

SAMPLE PROBLEM

Question:
You are presented with two bonds. The first has a nominal rate

of 20% paid on a semiannual basis. The second has a nominal rate
of 19% paid on a monthly basis. Calculate the equivalent continu-
ously compounded rate for each bond. Assuming both bonds have the
same credit quality and are the same in all other respects, which is the
better investment?

Answer:
First we compute the annual yield for both bonds:

R1,Annual =
(

1 + 20%
2

)2

− 1 = 21.00%

R2,Annual =
(

1 + 19%
12

)12

− 1 = 20.75%
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Some Basic Math 9

Next we convert these annualized returns into continuously com-
pounded returns:

r1 = ln(1 + R1,Annual) = 19.06%

r2 = ln(1 + R2,Annual) = 18.85%

All other things being equal, the first bond is a better investment.
We could base this on a comparison of either the annual or the con-
tinuously compounded rates.

COMBINATORICS

In elementary combinatorics, one typically learns about combinations and
permutations. Combinations tell us how many ways we can arrange a
number of objects, regardless of the order, whereas permutations tell us
how many ways we can arrange a number of objects, taking into account
the order.

As an example, assume we have three hedge funds, denoted X, Y, and
Z. We want to invest in two of the funds. How many different ways can we
invest? We can invest in X and Y, X and Z, or Y and Z. That’s it.

In general, if we have n objects and we want to choose k of those objects,
the number of combinations, C(n, k), can be expressed as:

C(n, k) =
(

n
k

)
= n!

k!(n − k)!
(1.16)

where n! is n factorial, such that:

n! =
{

1 n = 0

n(n − 1)(n − 2) · · · 1 n � 0
(1.17)

In our example with the three hedge funds, we would substitute n = 3
and k = 2, to get three possible combinations.

What if the order mattered? What if instead of just choosing two funds,
we needed to choose a first-place fund and a second-place fund? How many
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10 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

ways could we do that? The answer is the number of permutations, which
we express as:

P(n,k) = n!
(n − k)!

(1.18)

For each combination, there are k! ways in which the elements of that
combination can be arranged. In our example, each time we choose two
funds, there are two ways that we can order them, so we would expect twice
as many permutations. This is indeed the case. Substituting n = 3 and k = 2
into Equation 1.18, we get six permutations, which is twice the number of
combinations computed previously.

Combinations arise in a number of risk management applications. The
binomial distribution, which we will introduce in Chapter 4, is defined using
combinations. The binomial distribution, in turn, can be used to model de-
faults in simple bond portfolios or to back-test Value at Risk (VaR) models,
as we will see in Chapter 5.

Combinations are also central to the binomial theorem. Given two vari-
ables, x and y, and a positive integer, n, the binomial theorem states:

(x + y)n =
n∑

k=0

(
n
k

)
xn−kyk (1.19)

For example:

(x + y)3 = x3 + 3x2y + 3xy2 + y3 (1.20)

The binomial theorem can be useful when computing statistics such as
variance, skewness, and kurtosis, which will be discussed in Chapter 3.

DISCOUNT FACTORS

Most people have a preference for present income over future income. They
would rather have a dollar today than a dollar one year from now. This
is why banks charge interest on loans, and why investors expect positive
returns on their investments. Even in the absence of inflation, a rational
person should prefer a dollar today to a dollar tomorrow. Looked at another
way, we should require more than one dollar in the future to replace one
dollar today.
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In finance we often talk of discounting cash flows or future values. If we
are discounting at a fixed rate, R, then the present value and future value
are related as follows:

Vt = Vt+n

(1 + R)n
(1.21)

where Vt is the value of the asset at time t and Vt+n is the value of the asset
at time t + n. Because R is positive, Vt will necessarily be less than Vt+n. All
else being equal, a higher discount rate will lead to a lower present value.
Similarly, if the cash flow is further in the future—that is, n is greater—then
the present value will also be lower.

Rather than work with the discount rate, R, it is sometimes easier to
work with a discount factor. In order to obtain the present value, we simply
multiply the future value by the discount factor:

Vt =
(

1
1 + R

)n

Vt+n = �nVt+n (1.22)

Because � is less than one, Vt will necessarily be less than Vt+n. Different
authors refer to � or �n as the discount factor. The concept is the same, and
which convention to use should be clear from the context.

GEOMETRIC SERIES

In the following two subsections we introduce geometric series. We start
with series of infinite length. It may seem counterintuitive, but it is often
easier to work with series of infinite length. With results in hand, we then
move on to series of finite length in the second subsection.

In f in i te Series

The ancient Greek philosopher Zeno, in one of his famous paradoxes, tried
to prove that motion was an illusion. He reasoned that, in order to get any-
where, you first had to travel half the distance to your ultimate destination.
Once you made it to the halfway point, though, you would still have to
travel half the remaining distance. No matter how many of these half jour-
neys you completed, there would always be another half journey left. You
could never possibly reach your destination.

While Zeno’s reasoning turned out to be wrong, he was wrong in a very
profound way. The infinitely decreasing distances that Zeno struggled with
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foreshadowed calculus, with its concept of change on an infinitesimal scale.
Also, an infinite series of a variety of types turn up in any number of fields.
In finance, we are often faced with series that can be treated as infinite.
Even when the series is long, but clearly finite, the same basic tools that we
develop to handle infinite series can be deployed.

In the case of the original paradox, we are basically trying to calculate
the following summation:

S = 1
2

+ 1
4

+ 1
8

+ · · · (1.23)

What is S equal to? If we tried the brute force approach, adding up all
the terms, we would literally be working on the problem forever. Luckily,
there is an easier way. The trick is to notice that multiplying both sides
of the equation by 1/2 has the exact same effect as subtracting 1/2 from
both sides:

Multiply both sides by 1
2 : Subtract 1

2 from both sides:

S = 1
2

+ 1
4

+ 1
8

+ · · ·

1
2

S = 1
4

+ 1
8

+ 1
16

+ · · ·

S = 1
2

+ 1
4

+ 1
8

+ · · ·

S − 1
2

= 1
4

+ 1
8

+ 1
16

+ · · ·

The right-hand sides of the final line of both equations are the same, so
the left-hand sides of both equations must be equal. Taking the left-hand
sides of both equations, and solving:

1
2

S = S − 1
2

1
2

S = 1
2

S = 1

(1.24)

The fact that the infinite series adds up to one tells us that Zeno was
wrong. If we keep covering half the distance, but do it an infinite number of
times, eventually we will cover the entire distance. The sum of all the half
trips equals one full trip.
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To generalize Zeno’s paradox, assume we have the following series:

S =
∞∑

i=1

�i (1.25)

In Zeno’s case, � was 1/2. Because the members of the series are all
powers of the same constant, we refer to these types of series as geomet-
ric series. As long as |�| is less than one, the sum will be finite and we
can employ the same basic strategy as before, this time multiplying both
sides by �.

�S =
∞∑

i=1

�i+1

�S = S − �1 = S − �

S(1 − �) = �

S = �

1 − �

(1.26)

Substituting 1/2 for �, we see that the general equation agrees with our
previously obtained result for Zeno’s paradox.

Before deriving Equation 1.26, we stipulated that |�| had to be less than
one. The reason that |�| has to be less than one may not be obvious. If � is
equal to one, we are simply adding together an infinite number of ones, and
the sum is infinite. In this case, even though it requires us to divide by zero,
Equation 1.26 will produce the correct answer.

If � is greater than one, the sum is also infinite, but Equation 1.26 will
give you the wrong answer. The reason is subtle. If � is less than one, then �∞

converges to zero. When we multiplied both sides of the original equation
by �, in effect we added a �∞+1 term to the end of the original equation.
If |�| is less than one, this term is also zero, and the sum is unaltered. If |�|
is greater than one, however, this final term is itself infinitely large, and we
can no longer assume that the sum is unaltered. If this is at all unclear, wait
until the end of the following section on finite series, where we will revisit
the issue. If � is less than −1, the series will oscillate between increasingly
large negative and positive values and will not converge. Finally, if � equals
−1, the series will flip back and forth between −1 and +1, and the sum will
oscillate between −1 and 0.
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One note of caution: In certain financial problems, you will come across
geometric series that are very similar to Equation 1.25 except the first term
is one, not �. This is equivalent to setting the starting index of the sum-
mation to zero (�0 = 1). Adding one to our previous result, we obtain the
following equation:

S =
∞∑

i=0

�i = 1
1 − �

(1.27)

As you can see, the change from i = 0 to i = 1 is very subtle, but has a
very real impact.

SAMPLE PROBLEM

Question:
A perpetuity is a security that pays a fixed coupon for eternity.

Determine the present value of a perpetuity, which pays a $5 coupon
annually. Assume a constant 4% discount rate.

Answer:

V =
∞∑

i=1

$5
(1.04)i

V = $5
∞∑

i=1

(
1

1.04

)i

= $5
∞∑

i=1

0.96i = $5
0.96

1 − 0.96
= $5 • 25

V = $125

F in i te Series

In many financial scenarios—including perpetuities and discount models for
stocks and real estate—it is often convenient to treat an extremely long series
of payments as if it were infinite. In other circumstances we are faced with
very long but clearly finite series. In these circumstances the infinite series
solution might give us a good approximation, but ultimately we will want a
more precise answer.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c01 JWBT625-Miller December 19, 2011 19:5 Printer: Courier Westford

Some Basic Math 15

The basic technique for summing a long but finite geometric series is
the same as for an infinite geometric series. The only difference is that the
terminal terms no longer converge to zero.

S =
n−1∑
i=0

�i

�S =
n−1∑
i=0

�i+1 = S − �0 + �n

S = 1 − �n

1 − �

(1.28)

We can see that for |�| less than 1, as n approaches infinity �n goes to
zero and Equation 1.28 converges to Equation 1.26.

In finance, we will mostly be interested in situations where |�| is less
than one, but Equation 1.28, unlike Equation 1.26, is still valid for values
of |�| greater than one (check this for yourself). We did not need to rely on
the final term converging to zero this time. If � is greater than one, and we
substitute infinity for n, we get:

S = 1 − �∞

1 − �
= 1 − ∞

1 − �
= −∞

1 − �
= ∞ (1.29)

For the last step, we rely on the fact that (1 − �) is negative for � greater
than one. As promised in the preceding subsection, for � greater than one,
the sum of the infinite geometric series is indeed infinite.

SAMPLE PROBLEM

Question:
What is the present value of a newly issued 20-year bond, with a

notional value of $100, and a 5% annual coupon? Assume a constant
4% discount rate, and no risk of default.

Answer:
This question utilizes discount factors and finite geometric series.
The bond will pay 20 coupons of $5, starting in a year’s

time. In addition, the notional value of the bond will be returned
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with the final coupon payment in 20 years. The present value, V,
is then:

V =
20∑

i=1

$5
(1.04)i

+ $100
(1.04)20

= $5
20∑

i=1

1
(1.04)i

+ $100
(1.04)20

We start by evaluating the summation, using a discount factor of
� = 1/1.04 ≈ 0.96:

S =
20∑

i=1

1
(1.04)i

=
20∑

i=1

(
1

1.04

)i

=
20∑

i=1

�i = � + �2 + · · · + �19 + �20

�S = �2 + �3 + · · · + �20 + �21 = S − � + �21

S(1 − �) = � − �21

S = � − �21

1 − �
= 13.59

Inserting this result into the initial equation we obtain our final
result:

V = $5 × 13.59 + $100
(1.04)20

= $113.59

Note that the present value of the bond, $113.59, is greater than
the notional value of the bond, $100. In general, if there is no risk of
default, and the coupon rate on the bond is higher than the discount
rate, then the present value of the bond will be greater than the notional
value of the bond.

When the price of a bond is less than the notional value of the
bond, we say that the bond is selling at a discount. When the price of
the bond is greater than the notional, as in this example, we say that
it is selling at a premium. When the price is exactly the same as the
notional value we say that it is selling at par.
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PROBLEMS

1. Solve for y, where:
a. y = ln(e5).
b. y = ln(1/e)
c. y = ln(10e)

2. The nominal monthly rate for a loan is quoted at 5%. What is the
equivalent annual rate? Semiannual rate? Continuous rate?

3. Over the course of a year, the log return on a stock market index is
11.2%. The starting value of the index is 100. What is the value at the
end of the year?

4. You have a portfolio of 10 bonds. How many different ways can exactly
two bonds default? Assume the order in which the bonds default is
unimportant.

5. What is the present value of a perpetuity that pays $100 per year? Use
an annual discount rate of 4%, and assume the first payment will be
made in exactly one year.

6. ABC stock will pay a $1 dividend in one year. Assume the dividend will
continue to be paid annually forever and the dividend payments will
increase in size at a rate of 5%. Value this stream of dividends using a
6% annual discount rate.

7. What is the present value of a 10-year bond with a $100 face value,
which pays a 6% coupon annually? Use an 8% annual discount rate.

8. Solve for x, where eex = 10.

9. Calculate the following summation:
9∑

i=0
(−0.5)i

10. The risk department of your firm has 10 analysts. You need to select
four analysts to serve on a special audit committee. How many possible
groupings of four analysts can be put together?

11. What is the present value of a newly issued 10-year bond, with a notional
value of $100, and a 2% annual coupon? Assume a constant 5% annual
discount rate, and no risk of default.
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CHAPTER 2
Probabilities

I n this chapter we will explore the application of probabilities to risk man-
agement. We will also introduce basic terminology and notations that will

be used throughout the rest of this book.

DISCRETE RANDOM VARIABLES

The concept of probability is central to risk management. Many concepts
associated with probability are deceptively simple. The basics are easy, but
there are many potential pitfalls.

In this chapter, we will be working with both discrete and continuous
random variables. Discrete random variables can take on only a countable
number of values—for example, a coin, which can only be heads or tails, or
a bond, which can only have one of several letter ratings (AAA, AA, A, BBB,
etc.). Assume we have a discrete random variable X, which can take various
values, xi. Further assume that the probability of any given xi occurring
is pi. We write:

P[X = xi ] = pi s.t. xi ∈ {x1, x2, . . . , xn} (2.1)

where P[ • ] is our probability operator.∗

An important property of a random variable is that the sum of all the
probabilities must equal one. In other words, the probability of any event

∗Note that “s.t.” is shorthand for “such that,” and xi ∈ {x1, x2, . . . , xn} indicates that
xi is a member of a set that includes n possible values, x1, x2, . . . , xn. You could read
the full equation as: “The probability that X equals xi is equal to pi, such that xi is
a member of the set x1, x2, to xn.”

19
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occurring must equal one. Something has to happen. Using our current
notation, we have:

n∑
i=i

pi = 1 (2.2)

CONTINUOUS RANDOM VARIABLES

In contrast to a discrete random variable, a continuous random variable can
take on any value within a given range. A good example of a continuous
random variable is the return of a stock index. If the level of the index can
be any real number between zero and infinity, then the return of the index
can be any real number greater than −1.

Even if the range that the continuous variable occupies is finite, the
number of values that it can take is infinite. For this reason, for a continuous
variable, the probability of any specific value occurring is zero.

Even though we cannot talk about the probability of a specific value
occurring, we can talk about the probability of a variable being within a
certain range. Take, for example, the return on a stock market index over
the next year. We can talk about the probability of the index return being
between 6% and 7%, but talking about the probability of the return being
exactly 6.001% or exactly 6.002% is meaningless. Even between 6.001%
and 6.002% there are literally an infinite number of possible values. The
probability of any one of those infinite values occurring is zero.

For a continuous random variable X, then, we can write:

P[r1 � X � r2] = p (2.3)

which states that the probability of our random variable, X, being between
r1 and r2 is equal to p.

Probabi l i ty Density Funct ions

For a continuous random variable, the probability of a specific event oc-
curring is not well defined, but some events are still more likely to occur
than others. Using annual stock market returns as an example, if we look at
50 years of data, we might notice that there are more data points between
0% and 10% than there are between 10% and 20%. That is, the density of
points between 0% and 10% is higher than the density of points between
10% and 20%.
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For a continuous random variable we can define a probability density
function (PDF), which tells us the likelihood of outcomes occurring between
any two points. Given our random variable, X, with a probability p of being
between r1 and r2, we can define our density function, f (x), such that:

r2∫
r1

f (x)dx = p (2.4)

The probability density function is often referred to as the probability
distribution function. Both terms are correct, and, conveniently, both can
be abbreviated PDF.

As with discrete random variables, the probability of any value occurring
must be one:

rmax∫
rmin

f (x)dx = 1 (2.5)

where rmin and rmax define the lower and upper bounds of f (x).

SAMPLE PROBLEM

Question:
Define the probability density function for the price of a zero

coupon bond with a notional value of $10 as:

f (x) = x
50

s.t. 0 ≤ x ≤ 10

where x is the price of the bond. What is the probability that the price
of the bond is between $8 and $9?

Answer:
First, note that this is a legitimate probability function. By inte-

grating the PDF from its minimum to its maximum, we can show that
the probability of any value occurring is indeed one:

10∫
0

x
50

dx = 1
50

10∫
0

xdx = 1
50

[
1
2

x2
]10

0
= 1

100
(102 − 02) = 1
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0.0

0.1

0.2

0 2 4 6 8 10
x

f(
x
)

Probability Density Function

If we graph the function, we can also see that the area under the
curve is one. Using simple geometry:

Area of triangle = 1
2

• Base • Height = 1
2

• 10 • 0.2 = 1

To answer the question, we simply integrate the probability density
function between 8 and 9:

9∫
8

x
50

dx =
[

1
100

x2
]9

8
= 1

100
(92 − 82) = 17

100
= 17%

The probability of the price ending up between $8 and $9 is 17%.
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Cumulat ive Distr ibut ion Funct ions

Closely related to the concept of a probability density function is the concept
of a cumulative distribution function or cumulative density function (both
abbreviated CDF). A cumulative distribution function tells us the probability
of a random variable being less than a certain value. The CDF can be
found by integrating the probability density function from its lower bound.
Traditionally, the cumulative distribution function is denoted by the capital
letter of the corresponding density function. For a random variable X with a
probability density function f (x), then, the cumulative distribution function,
F(x), could be calculated as follows:

F (a) =
a∫

−∞
f (x)dx = P[X ≤ a] (2.6)

As illustrated in Figure 2.1, the cumulative distribution function corre-
sponds to the area under the probability density function, to the left of a.

0.1

0.0

0.2

0 2 4 6 8 10
x

f(
x

)

CDF(a = 7)

F IGURE 2.1 Cumulative Distribution Function
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By definition, the cumulative distribution function varies from 0 to 1
and is nondecreasing. At the minimum value of the probability density func-
tion, the CDF must be zero. There is no probability of the variable being
less than the minimum. At the other end, all values are less than the max-
imum of the PDF. The probability is 100% (CDF = 1) that the random
variable will be less than or equal to the maximum. In between, the function
is nondecreasing. The reason that the CDF is nondecreasing is that, at a
minimum, the probability of a random variable being between two points is
zero. If the CDF of a random variable at 5 is 50%, then the lowest it could
be at 6 is 50%, which would imply 0% probability of finding the variable
between 5 and 6. There is no way the CDF at 6 could be less than the
CDF at 5.

Just as we can get the cumulative distribution from the probability
density function by integrating, we can get the PDF from the CDF by taking
the first derivative of the CDF:

f (x) = dF (x )
dx

(2.7)

That the CDF is nondecreasing is another way of saying that the PDF
cannot be negative.

If instead of wanting to know the probability that a random variable
is less than a certain value, what if we want to know the probability that
it is greater than a certain value? Or between two values? We handle both
cases by adding and subtracting cumulative distribution functions. To find
the probability that a variable is between two values, a and b, assuming b is
greater than a, we would simply subtract:

P[a � X ≤ b] =
b∫

a

f (x)dx = F (b) − F (a) (2.8)

To get the probability that a variable is greater than a certain value, we
simply subtract from 1:

P[X � a] = 1 − F (a) (2.9)

This result can be obtained by substituting infinity for b in the previous
equation, remembering that the CDF at infinity must be 1.
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SAMPLE PROBLEM

Question:
Calculate the cumulative distribution function for the probability

density function from the previous problem:

f (x) = x
50

s.t. 0 ≤ x ≤ 10 (2.10)

Then answer the previous problem: What is the probability that
the price of the bond is between $8 and $9?

Answer:
The CDF can be found by integrating the PDF:

F (x) =
∫

f (x)dx =
∫

x
50

dx = 1
50

∫
xdx = 1

50
1
2

x2 = x2

100

To get the answer to the question, we simply evaluate the CDF at
$8 and $9 and subtract:

P[$8 � x ≤ $9]= F (9)−F (8)= 92

100
− 82

100
= 81

100
− 64

100
= 17

100
=17%

As before, the probability of the price ending up between $8 and
$9 is 17%.

Inverse Cumulat ive Distr ibut ion Funct ions

The inverse of the cumulative distribution can also be useful. For example,
we might want to know that there is a 5% probability that a given equity
index will return less than −10.6%, or that there is a 1% probability of
interest rates increasing by more than 2% over a month.

More formally, if F(x) is a cumulative distribution function, then we
define F−1(p), the inverse cumulative distribution, as follows:

F (x) = p ⇔ F −1(p) = x s.t. 0 ≤ p ≤ 1 (2.11)

As we will see in Chapter 4, while some popular distributions have very
simple inverse cumulative distribution functions, for other distributions no
explicit inverse exists.
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SAMPLE PROBLEM

Question:
Given the cumulative distribution from the previous sample

problem:

F (x) = x2

100
s.t. 0 ≤ x ≤ 10

Calculate the inverse cumulative distribution function. Find the
value of x such that 25% of the distribution is less than or equal to x.

Answer:
We have:

F (x) = p = x2

100

Solving for p:

x = 10
√

p

Therefore, the inverse CDF is:

F −1(p) = 10
√

p

We can quickly check that p = 0 and p = 1, return 0 and 10, the
minimum and maximum of the distribution. For p = 25% we have:

F −1(0.25) = 10
√

0.25 = 10 • 0.5 = 5

So 25% of the distribution is less than or equal to 5.

MUTUALLY EXCLUSIVE EVENTS

For a given random variable, the probability of any of two mutually exclusive
events occurring is just the sum of their individual probabilities. In statistics
notation, we can write:

P[A∪ B] = P[A] + P[B] (2.12)
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where A∪ B is the union of A and B. This is the probability of either A or
B occurring. This is true only of mutually exclusive events.

This is a very simple rule, but, as mentioned at the beginning of the
chapter, probability can be deceptively simple, and this property is easy to
confuse. The confusion stems from the fact that and is synonymous with
addition. If you say it this way, then the probability that A or B occurs
is equal to the probability of A and the probability of B. It is not terribly
difficult, but you can see where this could lead to a mistake.

This property of mutually exclusive events can be extended to any num-
ber of events. The probability that any of n mutually exclusive events occurs
is simply the sum of the probabilities of those n events.

SAMPLE PROBLEM

Question:
Calculate the probability that a stock return is either below −10%

or above 10%, given:

P[R � −10%] = 14%
P[R � +10%] = 17%

Answer:
Note that the two events are mutually exclusive; the return cannot

be below −10% and above 10% at the same time. The answer is:
14% + 17% = 31%.

INDEPENDENT EVENTS

In the preceding example, we were talking about one random variable and
two mutually exclusive events, but what happens when we have more than
one random variable? What is the probability that it rains tomorrow and
the return on stock XYZ is greater than 5%? The answer depends crucially
on whether the two random variables influence each other or not. If the
outcome of one random variable is not influenced by the outcome of the
other random variable, then we say those variables are independent. If stock
market returns are independent of the weather, then the stock market should
be just as likely to be up on rainy days as it is on sunny days.

Assuming that the stock market and the weather are independent ran-
dom variables, then the probability of the market being up and rain is just
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the product of the probabilities of the two events occurring individually. We
can write this as follows:

P[rain and market up] = P[rain ∩ market up] = P[rain] • P[market up]

(2.13)

We often refer to the probability of two events occurring together as
their joint probability.

SAMPLE PROBLEM

Question:
According to the most recent weather forecast, there is a 20%

chance of rain tomorrow. The probability that stock XYZ returns more
than 5% on any given day is 40%. The two events are independent.
What is the probability that it rains and stock XYZ returns more than
5% tomorrow?

Answer:
Since the two events are independent, the probability that it rains

and stock XYZ returns more than 5% is just the product of the two
probabilities. The answer is: 20% × 40% = 8%.

PROBABIL ITY MATRICES

When dealing with the joint probabilities of two variables, it is often con-
venient to summarize the various probabilities in a probability matrix or
probability table. For example, pretend we are investigating a company that
has issued both bonds and stock. The bonds can either be downgraded, be
upgraded, or have no change in rating. The stock can either outperform the
market or underperform the market.

Equity

Outperform Underperform

Bonds

Upgrade 5%15% 20%

No Change 25%30% 55%

Downgrade 20%5% 25%

50%50% 100%
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In this table, the probability of both the company’s stock outperforming
the market and the bonds being upgraded is 15%. Similarly, the probability
of the stock underperforming the market and the bonds having no change
in rating is 25%. We can also see the unconditional probabilities, by adding
across a row or down a column. The probability of the bonds being up-
graded, irrespective of the stock’s performance, is: 15% + 5% = 20%.
Similarly, the probability of the equity outperforming the market is: 15% +
30% + 5% = 50%. Importantly, all of the joint probabilities add to 100%.
Given all the possible events, one of them must happen.

SAMPLE PROBLEM

Question:
You are investigating a second company. As with our previous

example, the company has issued both bonds and stock. The bonds
can either be downgraded, be upgraded, or have no change in rat-
ing. The stock can either outperform the market or underperform the
market. You are given the following probability matrix, which is miss-
ing three probabilities, X, Y, and Z. Calculate values for the missing
probabilities.

Equity

Outperform Underperform

Bonds

Upgrade 0%5% 5%

No Change 40% Y Z

Downgrade X 30% 35%

50%50% 100%

Answer:
All of the values in the first column must add to 50%, the proba-

bility of the equity outperforming the market; therefore, we have:

5% + 40% + X = 50%

X = 5%

We can check our answer for X by summing across the third row:
5% + 30% = 35%.
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Looking down the second column, we see that Y is equal to 20%:

0% + Y + 30% = 50%

Y = 20%

Finally, knowing that Y = 20%, we can sum across the second
row to get Z:

40% + Y = 40% + 20% = Z

Z = 60%

CONDIT IONAL PROBABIL ITY

The concept of independence is closely related to the concept of conditional
probability. Rather than trying to determine the probability of the market
being up and having rain, we can ask, “What is the probability that the stock
market is up given that it is raining?” We can write this as a conditional
probability:

P[market up | rain] = p (2.14)

The vertical bar signals that the probability of the first argument is condi-
tional on the second. You would read this as “The probability of ‘market
up’ given ‘rain’ is equal to p.”

If the weather and the stock market are independent, then the probability
of the market being up on a rainy day is the same as the probability of the
market being up on a sunny day. If the weather somehow affects the stock
market, however, then the conditional probabilities might not be equal.
We could have a situation where:

P[market up | rain] 
= P[market up | no rain] (2.15)

In this case, the weather and the stock market are no longer independent.
We can no longer multiply their probabilities together to get their joint
probability.
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BAYES’ THEOREM

Assume we have two bonds, Bond A and Bond B, each with a 10% probabil-
ity of defaulting over the next year. The probability that both bonds default
is 6%. The probability that neither bond defaults is 86%. It follows that the
probability that only Bond A defaults is 4%, and the probability that only
Bond B defaults is also 4%. We can summarize all of this information in a
probability matrix:

Bond A

No Default Default

Bond B
No Default 4%86% 90%

Default 6%4% 10%

10%90% 100%

As required, the rows and columns of the matrix add up, and the sum
of all the probabilities is equal to 100%.

Notice however that the probability of both bonds defaulting is 6%.
This is higher than the 1% probability we would expect if the default events
were independent (10% × 10% = 1%). This might be because both bonds
are issued by similar companies, because the issuers are located in the same
geographic region, or because defaults are correlated in general. The prob-
ability that neither bond defaults, 86%, is also higher than what we would
expect if the defaults were independent (90% × 90% = 81%).

We could also express features of the probability matrix in terms of
conditional probabilities. What is the probability that Bond A defaults,
given a default by Bond B? Bond B defaults in 10% of the scenarios, but
the probability that Bond A and Bond B both default is 6%. In other words,
Bond A defaults in 60% of the scenarios in which Bond B defaults. We write
this as follows:

P[A | B] = P[A∩ B]
P[B]

= 6%
10%

= 60% (2.16)

Notice that the conditional probability is different from the uncondi-
tional probability. The unconditional probability of default is 10%.

P[A] = 10% 
= 60% = P[A| B] (2.17)
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It turns out that Equation 2.16 is true in general. More often the equation
is written as follows:

P[A∩ B] = P[A| B] • P[B] (2.18)

In other words, the probability of both A and B occurring is just the
probability that A occurs, given B, multiplied by the probability of B occur-
ring. What’s more, the ordering of A and B doesn’t matter. We could just
as easily write:

P[A∩ B] = P[B | A] • P[A] (2.19)

Combining the right-hand side of both these equations and rearranging
terms leads us to a very important result:

P[A| B] = P[B | A] • P[A]
P[B]

(2.20)

This result is known as Bayes’ theorem, named after the eighteenth-
century English mathematician Thomas Bayes, who first described this rela-
tionship. Bayes never actually publicized his eponymous theorem in his own
lifetime. The result might have been confined to the dustheap of history had
not a friend submitted it to the Royal Society two years after his death. As
simple as it looks, the result has wide-ranging applications.

In the example, in which the default rate is the same for both bonds,
the application of Bayes’ theorem is trivial. The probability that Bond A
defaults, given a default by Bond B, is 60%, which is equal to (60% ×
10%)/10%. As we will see, in more complicated situations the results can
be far less intuitive.

SAMPLE PROBLEM

Question:
Imagine there is a disease that afflicts just 1% of the population.

A new test has been developed to detect the disease, which is 99%
accurate. That is, for people with the disease, the test correctly indicates
that they have the disease in 99% of cases. Similarly, for those who do
not have the disease, the test correctly indicates that they do not have
the disease in 99 out of 100 cases.
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If a person takes the test and the result comes back positive, what
is the probability that he or she actually has the disease?

Answer:
While not exactly financial risk, this is a classic example of how

conditional probability can be far from intuitive. This type of problem
is also far from being an academic curiosity. A number of studies
have asked doctors similar questions; see, for example, Gigerenzer and
Edwards (2003). The results are often discouraging. The physicians’
answers vary widely and are often far from correct.

If the test is 99% accurate, it is tempting to guess that there is a
99% chance that the person who tests positive actually has the disease.
Unfortunately, this turns out be a very bad guess. According to Bayes’
theorem, the correct answer is 50%:

P[have disease | positive test]= P[positive test | have disease] • P[have disease]
P[positive test]

In the denominator, the unconditional probability of a positive test
is simply the sum of the probability of a positive test being produced by
somebody with the disease and the probability of a positive test being
produced by somebody without the disease.

P[positive test] = P[have disease] • P[positive test | have disease]

+ P[have disease] • P[positive test | have disease]

P[positive test] = 1% • 99% + 99% • 1% = 2% • 99%

where we use the line above “have disease” to represent logical nega-
tion. In other words, P[have disease] is the probability of not having
the disease.

Substituting this result into our Bayes’ theorem equation, we arrive
at the final answer:

P[have disease | positive test] = 99% • 1%
2% • 99%

= 50%

The reason the answer is 50% and not 99% is because the disease
is so rare. Most people don’t have the disease, so even a small number
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of false positives overwhelms the number of actual positives. It is easy
to see this in a matrix. Assume 10,000 trials:

Actual

+ −

Test
+ 99 99 198

− 1 9,801 9,802

100 9,900 10,000

If you check the numbers, you’ll see that they work out exactly as
described: 1% of the population with the disease, and 99% accuracy
in each column. In the end though, the number of positive test results is
identical for the two populations, 99 in each. This is why the probabil-
ity of actually having the disease given a positive test is 50%. In order
for a test for a rare disease to be meaningful, it has to be extremely
accurate.

Bayes’ theorem is often described as a procedure for updating beliefs
about the world when presented with new information. For example, pre-
tend you had a coin that you believed was fair, with a 50% chance of landing
heads or tails when flipped. If you flip the coin 10 times and it lands heads
each time, you might start to suspect that the coin is not fair. Ten heads
in a row could happen, but the odds are only 1:1,024 for a fair coin. How
do you update your beliefs? If you believed there was a 90% probability
that the coin was fair before you started flipping, then your view of the coin
after seeing 10 heads should probably be between 0% and 90%. You are
less certain than you were before about the coin’s fairness, but there is still
some chance that the coin is fair. As the following sample problem will make
clear, Bayes’ theorem provides a framework for deciding exactly what our
new beliefs should be.

SAMPLE PROBLEM

Question:
You are an analyst at Astra Fund of Funds. Based on an examina-

tion of historical data, you determine that all fund managers fall into
one of two groups. Stars are the best managers. The probability that
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a star will beat the market in any given year is 75%. Other managers
are just as likely to beat the market as they are to underperform it.
For both types of managers, the probability of beating the market is
independent from one year to the next.

Stars are rare. Of a given pool of managers, only 16% turn out to
be stars. A new manager was added to your portfolio of funds three
years ago. Since then, the new manager has beaten the market every
year. What was the probability that the manager was a star when the
manager was first added to the portfolio? What is the probability that
this manager is a star now?

Answer:
We start by summarizing the information from the problem, and

introducing some notation. The probability that a manager beats the
market given that the manager is a star is 75%:

P[B | S] = 75% = 3
4

The probability that a manager who is not a star beats the market
is 50%:

P
[
B | S

] = 50% = 1
2

At the time the manager was added to the portfolio, the probability
that the manager was a star was just the probability of any manager
being a star, 16%, the unconditional probability:

P[S] = 16% = 4
25

To answer the final question, we need to find P[S|3B], the proba-
bility that the manager is a star, given that the manager has beaten the
market for three years. We can find this using Bayes’ theorem:

P[S | 3B] = P [3B | S] P [S]
P [3B]
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We know P[S]. Because outperformance is independent from one
year to the next, the other part of the numerator, P[3B | S], is just the
probability that a star beats the market in any given year to the third
power:

P[3B | S] =
(

3
4

)3

= 27
64

The denominator is the unconditional probability of beating the
market for three years. This is just the weighted average probability of
three beats over both types of managers:

P[3B] = 4
25

(
3
4

)3

+ 21
25

(
1
2

)3

= 4
25

27
64

+ 21
25

1
8

= 69
400

Putting it all together, we get our final result:

P[S | 3B] =
27
64

4
25

69
400

= 9
23

≈ 39%

Our updated belief about the manager, having seen the manager
beat the market three times, is approximately 39%, a significant in-
crease from our prior belief of 16%. A star is much more likely to beat
the market three years in a row—almost four times as likely—so it
makes sense that we believe our manager is more likely to be a star now.

Even though it is much more likely that a star will beat the market
three years in a row, we are still far from certain that this manager
is a star. At 39%, the odds are more likely that the manager is not a
star. As before, the reason has to do with the overwhelming number
of false positives. There are so many nonstar managers that some of
them are bound to beat the market three years in a row. The real stars
are simply outnumbered by these lucky nonstar managers.

PROBLEMS

1. You are invested in two hedge funds. The probability that hedge fund Al-
pha generates positive returns in any given year is 60%. The probability
that hedge fund Omega generates positive returns in any given year
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is 70%. Assume the returns are independent. What is the probability
that both funds generate positive returns in a given year? What is the
probability that both funds lose money?

2. Corporation ABC issues $100 million of bonds. The bonds are rated
BBB. The probability that the rating on the bonds is upgraded within
the year is 8%. The probability of a downgrade is 4%. What is the
probability that the rating remains unchanged?

3. Stock XYZ has a 20% chance of losing more than 10% in a given
month. There is also a 30% probability that XYZ gains more than
10%. What is the probability that stock XYZ either loses more
than 10% or gains more than 10%?

4. There is a 30% chance that oil prices will increase over the next six
months. If oil prices increase, there is a 60% chance that the stock
market will be down. What is the probability that oil prices increase
and the stock market is down over the next six months?

5. The probability that gross domestic product (GDP) decreases is 20%.
The probability that unemployment increases is 10%. The probability
that unemployment increases given that GDP has decreased is 40%.
What is the probability that GDP decreases given that unemployment
has increased?

6. An analyst develops a model for forecasting bond defaults. The model
is 90% accurate. In other words, of the bonds that actually default, the
model identifies 90% of them; likewise, of the bonds that don’t default,
the model correctly predicts that 90% will not default. You have a
portfolio of bonds, each with a 5% probability of defaulting. Given
that the model predicts a bond will default, what is the probability that
it actually defaults?

7. Given the following density function:

f (x) =
{

c(100 − x2) for − 10 ≤ x ≤ 10
0 otherwise

Calculate the value of c.
8. Given the following cumulative distribution function, F(x), for 0 ≤

x ≤ 10:

F (x) = x
100

(20 − x)

Check that this is a valid CDF (i.e., show that F(0) = 0 and
F(10) = 1). Calculate the probability density function, f (x).

9. Given the probability density function, f (x):

f (x) = c
x
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where 1 ≤ x ≤ e. Calculate the cumulative distribution function, F(x),
and solve for the constant c.

10. You own two bonds. Both bonds have a 30% probability of defaulting.
Their default probabilities are statistically independent. What is the
probability that both bonds default? What is the probability that only
one bond defaults? What is the probability that neither bond defaults?

11. As a risk analyst, you are asked to look at EB Corporation, which has
issued both equity and bonds. The bonds can either be downgraded, be
upgraded, or have no change in rating. The stock can either outperform
the market or underperform the market. You are given the following
probability matrix from an analyst who had worked on the company
previously, but some of the values are missing. Fill in the missing values.
What is the conditional probability that the bonds are downgraded given
that the equity has underperformed?

Equity

Outperform Underperform

Bonds

Upgrade W 5% 15%

No Change 45% X 65%

Downgrade Y 15% Z

40%60%

12. The following table is a one-year ratings transition matrix. Given a
bond’s rating now, the matrix gives the probability associated with the
bond having a given rating in a year’s time. For example, a bond that
starts the year with an A rating has a 90% chance of maintaining that
rating and an 8% chance of migrating to a B rating. Given a B-rated
bond, what is the probability that the bond defaults over one year?
What is the probability that the bond defaults over two years?

To a rating of:

A B C D

From a rating of:

A 90% 8% 2% 0%

B 10% 80% 8% 2%

C 0% 25% 60% 15%

D 0% 0% 0% 100%
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CHAPTER 3
Basic Statistics

I n this chapter we will learn how to describe a collection of data in precise
statistical terms. Many of the concepts will be familiar, but the notation

and terminology might be new. This notation and terminology will be used
throughout the rest of the book.

AVERAGES

Everybody knows what an average is. We come across averages every day,
whether they are earned run averages in baseball or grade point averages
in school. In statistics there are actually three different types of averages:
means, modes, and medians. By far the most commonly used average in risk
management is the mean.

Populat ion and Sample Data

If you wanted to know the mean age of people working in your firm, you
would simply ask every person in the firm his or her age, add the ages
together, and divide by the number of people in the firm. Assuming there
are n employees and ai is the age of the ith employee, then the mean, �,
is simply:

� = 1
n

n∑
i=1

ai = 1
n

(a1 + a2 + · · · + an−1 + an) (3.1)

It is important at this stage to differentiate between population statistics
and sample statistics. In this example, � is the population mean. Assuming
nobody lied about his or her age, and forgetting about rounding errors and

39
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other trivial details, we know the mean age of people in your firm exactly.
We have a complete data set of everybody in your firm; we’ve surveyed the
entire population.

This state of absolute certainty is, unfortunately, quite rare in finance.
More often, we are faced with a situation such as this: estimate the mean
return of stock ABC, given the most recent year of daily returns. In a situation
like this, we assume there is some underlying data generating process, whose
statistical properties are constant over time. The underlying process still has
a true mean, but we cannot observe it directly. We can only estimate that
mean based on our limited data sample. In our example, assuming n returns,
we estimate the mean using the same formula as before:

�̂ = 1
n

n∑
i=1

ri = 1
n

(r1 + r2 + · · · + rn−1 + rn) (3.2)

where �̂ (pronounced “mu hat”) is our estimate of the true mean based on
our sample of n returns. We call this the sample mean.

The median and mode are also types of averages. They are used less
frequently in finance, but both can be useful. The median represents the
center of a group of data; within the group, half the data points will be less
than the median, and half will be greater. The mode is the value that occurs
most frequently.

SAMPLE PROBLEM

Question:
Calculate the mean, median, and mode of the following data set:

−20%, −10%,−5%, −5%, 0%, 10%, 10%, 10%, 19%

Answer:

Mean = 1
9

(−20% − 10% − 5% − 5% + 0% + 10% + 10%

+ 10% + 19%) = 1%

Mode = 10%

Median = 0%
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If there is an even number of data points, the median is found by aver-
aging the two center-most points. In the following series:

5%, 10%, 20%, 25%

the median is 15%. The median can be useful for summarizing data that is
asymmetrical or contains significant outliers.

A data set can also have more than one mode. If the maximum frequency
is shared by two or more values, all of those values are considered modes.
In the following example, the modes are 10% and 20%:

5%, 10%, 10%, 10%, 14%, 16%, 20%, 20%, 20%, 24%

In calculating the mean in Equation 3.1 and Equation 3.2, each data
point was counted exactly once. In certain situations, we might want to
give more or less weight to certain data points. In calculating the average
return of stocks in an equity index, we might want to give more weight to
larger firms, perhaps weighting their returns in proportion to their market
capitalization. Given n data points, xi = x1, x2, . . . , xn, with corresponding
weights, wi, we can define the weighted mean, �w, as:

�w =

n∑
i=1

wi xi

n∑
i=1

wi

(3.3)

The standard mean from Equation 3.1 can be viewed as a special case
of the weighted mean, where all the values have equal weight.

Discrete Random Variables

For a discrete random variable, we can also calculate the mean, median, and
mode. For a random variable, X, with possible values, xi, and corresponding
probabilities, pi, we define the mean, �, as:

� =
n∑

i=1

pi xi (3.4)
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The equation for the mean of a discrete random variable is a special
case of the weighted mean, where the outcomes are weighted by their prob-
abilities, and the sum of the weights is equal to one.

The median of a discrete random variable is the value such that the
probability that a value is less than or equal to the median is equal to
50%. Working from the other end of the distribution, we can also de-
fine the median such that 50% of the values are greater than or equal
to the median. For a random variable, X, if we denote the median as m,
we have:

P[X ≥ m] = P[X ≤ m] = 0.50 (3.5)

For a discrete random variable, the mode is the value associated with
the highest probability. As with population and sample data sets, the mode
of a discrete random variable need not be unique.

SAMPLE PROBLEM

Question:
At the start of the year, a bond portfolio consists of two bonds,

each worth $100. At the end of the year, if a bond defaults, it will
be worth $20. If it does not default, the bond will be worth $100.
The probability that both bonds default is 20%. The probability that
neither bond defaults is 45%. What are the mean, median, and mode
of the year-end portfolio value?

Answer:
We are given the probability for two outcomes:

P[V = $40] = 20%

P[V = $200] = 45%

At year-end, the value of the portfolio, V, can only have one of
three values, and the sum of all the probabilities must sum to 100%.
This allows us to calculate the final probability:

P[V = $120] = 100% − 20% − 45% = 35%
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The mean of V is then $140:

� = 0.20 • $40 + 0.35 • $120 + 0.45 • $200 = $140

The mode of the distribution is $200; this is the most likely single
outcome. The median of the distribution is $120; half of the outcomes
are less than or equal to $120.

Cont inuous Random Variables

We can also define the mean, median, and mode for a continuous random
variable. To find the mean of a continuous random variable, we simply
integrate the product of the variable and its probability density function
(PDF). In the limit, this is equivalent to our approach to calculating the
mean of a discrete random variable. For a continuous random variable, X,
with a PDF, f (x), the mean, �, is then:

� =
xmax∫

xmin

xf (x)dx (3.6)

The median of a continuous random variable is defined exactly as it is
for a discrete random variable, such that there is a 50% probability that
values are less than or equal to, or greater than or equal to, the median. If
we define the median as m, then:

m∫
xmin

f (x)dx =
xmax∫
m

f (x)dx = 0.50 (3.7)

Alternatively, we can define the median in terms of the cumulative dis-
tribution function. Given the cumulative distribution function, F(x), and the
median, m, we have:

F (m) = 0.50 (3.8)

The mode of a continuous random variable corresponds to the maxi-
mum of the density function. As before, the mode need not be unique.
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SAMPLE PROBLEM

Question:
Using the now-familiar probability density function from Chap-

ter 2:

f (x) = x
50

s.t. 0 ≤ x ≤ 10

What are the mean, median, and mode of x?

Answer:
As we saw in a previous example, this probability density function

is a triangle, between x = 0 and x = 10, and zero everywhere else.

0.0

0.1

0.2

0 2 4 6 8 10
x

f(
x
)

Probability Density Function

For a continuous distribution, the mode corresponds to the maxi-
mum of the PDF. By inspection of the graph, we can see that the mode
of f (x) is equal to 10.
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To calculate the median, we need to find m, such that the integral
of f (x) from the lower bound of f (x), zero, to m is equal to 0.50. That
is, we need to find:

m∫
0

x
50

dx = 0.50

First we solve the left-hand side of the equation:

m∫
0

x
50

dx = 1
50

m∫
0

xdx = 1
50

[
1
2

x2
]m

0
= 1

100
(m2 − 0) = m2

100

Setting this result equal to 0.50 and solving for m, we obtain our
final answer:

m2

100
= 0.50

m2 = 50

m = √
50 = 7.07

In the last step we can ignore the negative root. If we hadn’t cal-
culated the median, looking at the graph it might be tempting to guess
that the median is 5, the midpoint of the range of the distribution.
This is a common mistake. Because lower values have less weight, the
median ends up being greater than 5.

The mean is approximately 6.67:

� =
10∫

0

x
x

50
dx = 1

50

10∫
0

x2dx = 1
50

[
1
3

x3
]10

0
= 1000

150
= 20

3
= 6.67

As with the median, it is a common mistake, based on inspection
of the PDF, to guess that the mean is 5. However, what the PDF is
telling us is that outcomes between 5 and 10 are much more likely
than values between 0 and 5 (the PDF is higher between 5 and 10 than
between 0 and 5). This is why the mean is greater than 5.
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EXPECTATIONS

On January 15, 2005, the Huygens space probe landed on the surface of
Titan, the largest moon of Saturn. This was the culmination of a seven-year-
long mission. During its descent and for over an hour after touching down
on the surface, Huygens sent back detailed images, scientific readings, and
even sounds from a strange world. There are liquid oceans on Titan, the
landing site was littered with “rocks” composed of water ice, and weather
on the moon includes methane rain. The Huygens probe was named after
Christiaan Huygens, a Dutch polymath who first discovered Titan in 1655.
In addition to astronomy and physics, Huygens had more prosaic interests,
including probability theory. Originally published in Latin in 1657, De
Ratiociniis in Ludo Aleae, or The Value of All Chances in Games of Fortune,
was one of the first texts to formally explore one of the most important
concepts in probability theory, namely expectations.

Like many of his contemporaries, Huygens was interested in games of
chance. As he described it, if a game has a 50% probability of paying $3
and a 50% probability of paying $7, then this is, in a way, equivalent to
having $5 with certainty. This is because we expect, on average, to win $5
in this game:

50% • $3 + 50% • $7 = $5 (3.9)

As one can already see, the concepts of expectations and averages are
very closely linked. In the current example, if we play the game only once,
there is no chance of winning exactly $5; we can win only $3 or $7. Still,
even if we play the game only once, we say that the expected value of the
game is $5. That we are talking about the mean of all the potential payouts
is understood.

We can express the concept of expectation more formally using the
expectations operator. We could state that the random variable, X, has an
expected value of $5 as follows:

E[X] = 0.50 • $3 + 0.50 • $7 = $5 (3.10)

where E[ • ] is the expectation operator.∗

∗Those of you with a background in physics might be more familiar with the term
expectation value and the notation �X� rather than E[X]. This is a matter of
convention. Throughout this book we use the term expected value and E[ • ], which
is currently more popular in finance and econometrics. Risk managers should be
familiar with both conventions.
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In this example, the mean and the expected value have the same nu-
meric value, $5. The same is true for discrete and continuous random vari-
ables. The expected value of a random variable is equal to the mean of the
random variable.

While the value of the mean and the expected value may be the same in
many situations, the two concepts are not exactly the same. In many situa-
tions in finance and risk management the terms can be used interchangeably.
The difference is often subtle.

As the name suggests, expectations are often thought of as being
forward-looking. Pretend we have a financial asset for which the mean
annual return is equal to 15%. This is not an estimate; in this case, we know
that the mean is 15%. We say that the expected value of the return next year
is 15%. We expect the return to be 15%, because the probability-weighted
mean of all the possible outcomes is 15%.

Now pretend that we don’t actually know what the mean return of the
asset is, but we have 10 years’ worth of historical data, for which the sample
mean is 15%. In this case the expected value may or may not be 15%. In
most cases if we say that the expected value is equal to 15%, we are making
two assumptions: first, we are assuming that the returns in our sample were
generated by the same random process over the entire sample period; second,
we are assuming that the returns will continue to be generated by this same
process in the future. These are very strong assumptions. In finance and risk
management, we often assume that the data we are interested in are being
generated by a consistent, unchanging process. Testing the validity of this
assumption can be an important part of risk management in practice.

The concept of expectations is also a much more general concept than
the concept of the mean. Using the expectations operator, we can derive
the expected value of functions of random variables. As we will see in
subsequent sections, the concept of expectations underpins the definitions
of other population statistics (variance, skew, kurtosis), and is important
in understanding regression analysis and time series analysis. In these cases,
even when we could use the mean to describe a calculation, in practice we
tend to talk exclusively in terms of expectations.

SAMPLE PROBLEM

Question:
At the start of the year, you are asked to price a newly issued zero-

coupon bond. The bond has a notional of $100. You believe there is a
20% chance that the bond will default, in which case it will be worth
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$40 at the end of the year. There is also a 30% chance that the bond
will be downgraded, in which case it will be worth $90 in a year’s time.
If the bond does not default and is not downgraded, it will be worth
$100. Use a continuous interest rate of 5% to determine the current
price of the bond.

Answer:
We first need to determine the expected future value of the bond,

that is the expected value of the bond in one year’s time. We are given
the following:

P[Vt+1 = $40] = 0.20

P[Vt+1 = $90] = 0.30

Because there are only three possible outcomes, the probability of
no downgrades and no default must be 50%:

P[Vt+1 = $100] = 1 − 0.20 − 0.30 = 0.50

The expected value of the bond in one year is then:

E[Vt+1] = 0.20 • $40 + 0.30 • $90 + 0.50 • $100 = $85

To get the current price of the bond we then discount this expected
future value:

E[Vt] = e−0.5 E[Vt+1] = e−0.5$85 = $80.85

The current price of the bond, in this case $80.85, is often referred
to as the present value or fair value of the bond. The price is considered
fair because the discounted expected value of the bond is the rational
price to pay for the bond, given our knowledge of the world.

The expectations operator is linear. That is, for two random variables,
X and Y, and a constant, c, the following two equations are true:

E[X + Y] = E[X] + E[Y]

E[cX] = cE[X]
(3.11)
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If the expected value of one option, A, is $10, and the expected value
of option B is $20, then the expected value of a portfolio containing A and
B is $30, and the expected value of a portfolio containing five contracts of
option A is $50.

Be very careful, though; the expectations operator is not multiplicative.
The expected value of the product of two random variables is not necessarily
the same as the product of their expected values:

E[XY] �= E[X]E[Y] (3.12)

Imagine we have two binary options. Each pays either $100 or nothing,
depending on the value of some underlying asset at expiration. The proba-
bility of receiving $100 is 50% for both options. Further, assume that it is
always the case that if the first option pays $100, the second pays $0, and
vice versa. The expected value of each option separately is clearly $50. If we
denote the payout of the first option as X and the payout of the second as
Y, we have:

E[X] = E[Y] = 0.50 • $100 + 0.50 • $0 = $50 (3.13)

It follows that E[X]E[Y] = $50 × $50 = $2,500. In each scenario,
though, one option is valued at zero, so the product of the payouts is always
zero: $100 • $0 = $0 • $100 = $0. The expected value of the product of
the two option payouts is:

E [XY] = 0.50 • $100 • $0 + 0.50 • $0 • $100 = $0 (3.14)

In this case, the product of the expected values and the expected value
of the products are clearly not equal. In the special case where E[XY] =
E[X]E[Y], we say that X and Y are independent.

If the expected value of the product of two variables does not necessarily
equal the product of the expectations of those variables, it follows that the
expected value of the product of a variable with itself does not necessarily
equal the product of the expectations of that variable with itself; that is:

E[X2] �= E[X]2 (3.15)

Imagine we have a fair coin. Assign heads a value of +1 and tails a value
of −1. We can write the probabilities of the outcomes as follows:

P[X = +1] = P[X = −1] = 0.50 (3.16)
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The expected value of any coin flip is zero, but the expected value of X2

is +1, not zero:

E[X] = 0.50 • (+1) + 0.50 • (−1) = 0

E[X]2 = 02 = 0

E[X2] = 0.50 • (+12) + 0.50 • (−12) = 1

(3.17)

As simple as this example is, this distinction is very important. As we
will see, the difference between E[X2] and E[X]2 is central to our definition
of variance and standard deviation.

SAMPLE PROBLEM

Question:
Given the following equation:

y = (x + 5)3 + x2 + 10x

What is the expected value of y? Assume the following:

E[x] = 4

E[x2] = 9

E[x3] = 12

Answer:
Note that E[x2] and E[x3] cannot be derived from knowledge

of E[x]. In this problem, E[x2] �= E[x]2. As forewarned, the expecta-
tions operator is not necessarily multiplicative. To find the expected
value of y, then, we first expand the term (x + 5)3 within the expecta-
tions operator:

E[y] = E[(x + 5)3 + x2 + 10x] = E[x3 + 16x2 + 85x + 125]

Because the expectations operator is linear, we can separate the
terms in the summation and move the constants outside the expecta-
tions operator. We do this in two steps:

E[y] = E[x3] + E[16x2] + E[85x] + E[125]

= E[x3] + 16E[x2] + 85E[x] + 125
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At this point, we can substitute in the values for E[x], E[x2], and
E[x3], which we were given at the start of the exercise:

E[y] = 12 + 16 • 9 + 85 • 4 + 125 = 741

This gives us the final answer, 741.

VARIANCE AND STANDARD DEVIATION

The variance of a random variable measures how noisy or unpredictable
that random variable is. Variance is defined as the expected value of the
difference between the variable and its mean squared:

�2 = E[(X − �)2] (3.18)

where �2 is the variance of the random variable X with mean �.
The square root of variance, typically denoted by �, is called standard

deviation. In finance we often refer to standard deviation as volatility. This
is analogous to referring to the mean as the average. Standard deviation is a
mathematically precise term, whereas volatility is a more general concept.

SAMPLE PROBLEM

Question:
A derivative has a 50/50 chance of being worth either +10 or −10

at expiry. What is the standard deviation of the derivative’s value?

Answer:

� = 0.50 • 10 + 0.50 • (−10) = 0

�2 = 0.50 • (10 − 0)2 + 0.50 • (−10 − 0)2 = 0.5 • 100 + 0.5 • 100 = 100

� = 10

In the previous example, we were calculating the population variance
and standard deviation. All of the possible outcomes for the derivative
were known.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c03 JWBT625-Miller January 9, 2012 23:40 Printer: Courier Westford

52 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

To calculate the sample variance of a random variable X based on n
observations, x1, x2, . . . , xn, we can use the following formula:

E
[
�2

x

] = �̂2
x = 1

n − 1

n∑
i=1

(xi − �̂x)2 (3.19)

where �̂x is the sample mean from Equation 3.2. Given that we have n data
points, it might seem odd that we are dividing the sum by (n − 1) and not
n. The reason has to do with the fact that �̂x itself is an estimate of the true
mean, which also contains a fraction of each xi. We leave the proof for a
problem at the end of the chapter, but it turns out that dividing by (n − 1),
not n, produces an unbiased estimate of �2. If the mean is known or we are
calculating the population variance, then we divide by n. If instead the mean
is also being estimated, then we divide by n − 1.

Equation 3.18 can easily be rearranged as follows (we leave the proof
of this for an exercise, too):

�2 = E[X2] − �2 = E[X2] − E[X]2 (3.20)

Note that variance can be nonzero only if E[X2] �= E[X]2.
When writing computer programs, this last version of the variance for-

mula is often useful, since it allows you to calculate the mean and the
variance in the same loop. Also, in finance it is often convenient to assume
that the mean of a random variable is close to zero. For example, based on
theory, we might expect the spread between two equity indexes to have a
mean of zero in the long run. In this case, the variance is simply the mean
of the squared returns.

SAMPLE PROBLEM

Question:
Assume that the mean of daily Standard & Poor’s (S&P) 500

returns is zero. You observe the following returns over the course of
10 days:

7% −4% 11% 8% 3% 9% −21% 10% −9% −1%

Estimate the standard deviation of daily S&P 500 returns.
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Answer:
The sample mean is not exactly zero, but we are told to assume

that the population mean is zero; therefore:

E
[
�2

r

] = �̂2
r = 1

n

n∑
i=1

(
r2

i − 02) = 1
n

n∑
i=1

r2
i = 1

10
0.0963 = 0.00963

�̂r = 9.8%

Note, because we were told to assume the mean was known, we
divide by n = 10, not (n − 1) = 9.

As with the mean, for a continuous random variable we can calculate
the variance by integrating with the probability density function. For a
continuous random variable, X, with a probability density function, f (x),
the variance can be calculated as:

�2 =
xmax∫

xmin

(x − �)2 f (x)dx (3.21)

It is not difficult to prove that, for either a discrete or a continuous ran-
dom variable, multiplying by a constant will increase the standard deviation
by the same factor:

�[cX] = c�[X] (3.22)

In other words, if you own $10 of an equity with a standard deviation
of $2, then $100 of the same equity will have a standard deviation of $20.

Adding a constant to a random variable, however, does not alter the
standard deviation or the variance:

�[X + c] = �[X] (3.23)

This is because the impact on the mean is the same as the impact on
any draw of the random variable, leaving the deviation from the mean
unchanged. If you own a portfolio with a standard deviation of $20, and
then you add $1,000 of cash to that portfolio, the standard deviation of the
portfolio will still be $20.
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STANDARDIZED VARIABLES

It is often convenient to work with variables where the mean is zero and the
standard deviation is one. From the preceding section it is not difficult to
prove that, given a random variable X with mean � and standard deviation
�, we can define a second random variable Y:

Y = X − �

�
(3.24)

such that Y will have a mean of zero and a standard deviation of one. We
say that X has been standardized, or that Y is a standard random variable.
In practice, if we have a data set and we want to standardize it, we first
compute the sample mean and the standard deviation. Then, for each data
point, we subtract the mean and divide by the standard deviation.

The inverse transformation can also be very useful when it comes to
creating computer simulations. Simulations often begin with standardized
variables, which need to be transformed into variables with a specific mean
and standard deviation. In this case, we simply take the output from the
standardized variable, multiply by the desired standard deviation, and then
add the desired mean. The order is important. Adding a constant to a random
variable will not change the standard deviation, but multiplying a non-mean-
zero variable by a constant will change the mean.

COVARIANCE

Up until now we have mostly been looking at statistics that summarize one
variable. In risk management, we often want to describe the relationship
between two random variables. For example, is there a relationship between
the returns of an equity and the returns of a market index?

Covariance is analogous to variance, but instead of looking at the devi-
ation from the mean of one variable, we are going to look at the relationship
between the deviations of two variables:

�XY = E[(X − �X)(Y − �Y)] (3.25)

where �XY is the covariance between two random variables, X and Y, with
means �X and �Y, respectively. As you can see from the definition, variance
is just a special case of covariance. Variance is the covariance of a variable
with itself.
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If X tends to be above �X when Y is above �Y (both deviations are pos-
itive), and X tends to be below �X when Y is below �Y (both deviations are
negative), then the covariance will be positive (a positive number multiplied
by a positive number is positive; likewise, for two negative numbers). If the
opposite is true and the deviations tend to be of opposite sign, then the co-
variance will be negative. If the deviations have no discernible relationship,
then the covariance will be zero.

Earlier in this chapter, we cautioned that the expectations operator is
not generally multiplicative. This fact turns out to be closely related to the
concept of covariance. Just as we rewrote our variance equation earlier, we
can rewrite Equation 3.25 as follows:

�XY = E[(X − �X)(Y − �Y)] = E[XY] − �X�Y = E[XY] − E[X]E[Y]

(3.26)

In the special case where the covariance between X and Y is zero, the
expected value of XY is equal to the expected value of X multiplied by the
expected value of Y:

�XY = 0 ⇒ E[XY] = E[X]E[Y] (3.27)

If the covariance is anything other than zero, then the two sides of this
equation cannot be equal. Unless we know that the covariance between
two variables is zero, we cannot assume that the expectations operator is
multiplicative.

In order to calculate the covariance between two random variables, X
and Y, assuming the means of both variables are known, we can use the
following formula:

�̂X,Y = 1
n

n∑
i=1

(xi − �X)(yi − �Y)

If the means are unknown and must also be estimated, we replace n
with (n − 1):

�̂X,Y = 1
n − 1

n∑
i=1

(xi − �̂X)(yi − �̂Y)

If we replaced yi in these formulas with xi, calculating the covariance of
X with itself, the resulting equations would be the same as the equations for
calculating variance from the previous section.
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CORRELATION

Closely related to the concept of covariance is correlation. To get the corre-
lation of two variables, we simply divide their covariance by their respective
standard deviations:

�XY = �XY

�X�Y
(3.28)

Correlation has the nice property that it varies between −1 and +1.
If two variables have a correlation of +1, then we say they are perfectly
correlated. If the ratio of one variable to another is always the same and
positive then the two variables will be perfectly correlated.

If two variables are highly correlated, it is often the case that one variable
causes the other variable, or that both variables share a common underlying
driver. We will see in later chapters, though, that it is very easy for two
random variables with no causal link to be highly correlated. Correlation
does not prove causation. Similarly, if two variables are uncorrelated, it
does not necessarily follow that they are unrelated. For example, a random
variable that is symmetrical around zero and the square of that variable will
have zero correlation.

SAMPLE PROBLEM

Question:
X is a random variable. X has an equal probability of being −1,

0, or +1. What is the correlation between X and Y if Y = X2?

Answer:
We have:

P[X = −1] = P[X = 0] = P[X = 1] = 1
3

Y = X2

First we calculate the mean of both variables:

E[X] = 1
3

(−1) + 1
3

(0) + 1
3

(1) = 0

E[Y] = 1
3

(−12) + 1
3

(02) + 1
3

(12) = 1
3

(1) + 1
3

(0) + 1
3

(1) = 2
3



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c03 JWBT625-Miller January 9, 2012 23:40 Printer: Courier Westford

Basic Statistics 57

The covariance can be found as:

Cov[X, Y] = E[(X − E[X])(Y − E[Y])]

Cov[X, Y] = 1
3

(−1 − 0)
(

1 − 2
3

)
+ 1

3
(0 − 0)

(
0 − 2

3

)

+ 1
3

(1 − 0)
(

1 − 2
3

)
= 0

Because the covariance is zero, the correlation is also zero. There
is no need to calculate the variances or standard deviations.

As forewarned, even though X and Y are clearly related, the cor-
relation is zero.

APPLICATION: PORTFOLIO VARIANCE AND HEDGING

If we have a portfolio of securities and we wish to determine the variance
of that portfolio, all we need to know is the variance of the underlying
securities and their respective correlations.

For example, if we have two securities with random returns XA and XB,
with means �A and �B and standard deviations �A and �B, respectively, we
can calculate the variance of XA plus XB as follows:

�2
A+B = �2

A + �2
B + 2�AB�A�B (3.29)

where �AB is the correlation between XA and XB. The proof is left as an
exercise. Notice that the last term can either increase or decrease the total
variance. Both standard deviations must be positive; therefore, if the corre-
lation is positive, the overall variance will be higher compared to the case
where the correlation is negative.

If the variance of both securities is equal, then Equation 3.29 simpli-
fies to:

�2
A+B = 2�2(1 + �AB) where �2

A = �2
B = �2 (3.30)

Now we know that the correlation can vary between −1 and +1, so,
substituting into our new equation, the portfolio variance must be bound by
0 and 4�2. If we take the square root of both sides of the equation, we see that
the standard deviation is bound by 0 and 2�. Intuitively this should make
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sense. If, on the one hand, we own one share of an equity with a standard
deviation of $10 and then purchase another share of the same equity, then
the standard deviation of our two-share portfolio must be $20 (trivially,
the correlation of a random variable with itself must be one). On the other
hand, if we own one share of this equity and then purchase another security
that always generates the exact opposite return, the portfolio is perfectly
balanced. The returns are always zero, which implies a standard deviation
of zero.

In the special case where the correlation between the two securities is
zero, we can further simplify our equation. For the standard deviation:

�AB = 0 ⇒ �A+B =
√

2� (3.31)

We can extend Equation 3.29 to any number of variables:

Y =
n∑

i=1

Xi

�2
Y =

n∑
i=1

n∑
j=1

�i j �i �j

(3.32)

In the case where all of the Xi’s are uncorrelated and all the variances
are equal to �, Equation 3.32 simplifies to:

�Y = √
n� iff �i j = 0∀i �= j (3.33)

This is the famous square root rule for the addition of uncorrelated
variables. There are many situations in statistics in which we come across
collections of random variables that are independent and have the same
statistical properties. We term these variables independent and identically
distributed (i.i.d). In risk management we might have a large portfolio of
securities, which can be approximated as a collection of i.i.d. variables.
As we will see in subsequent chapters, this i.i.d. assumption also plays an
important role in estimating the uncertainty inherent in statistics derived
from sampling, and in the analysis of time series. In each of these situations,
we will come back to this square root rule.

By combining Equation 3.29 with Equation 3.22, we arrive at an equa-
tion for calculating the variance of a linear combination of variables. If Y is
a linear combination of XA and XB, such that:

Y = aXA + bXB (3.34)
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then, using our standard notation, we have:

�2
Y = a2�2

A + b2�2
B + 2ab�AB�A�B (3.35)

Correlation is central to the problem of hedging. Using the same notation
as before, imagine we have $1 of Security A, and we wish to hedge it with $h
of Security B (if h is positive, we are buying the security; if h is negative, we
are shorting the security). In other words, h is the hedge ratio. We introduce
the random variable P for our hedged portfolio. We can easily compute the
variance of the hedge portfolio using Equation 3.35:

P = XA + hXB

�2
P = �2

A + h2�2
B + 2h�AB�A�B

(3.36)

As a risk manager, we might be interested to know what hedge ratio
would achieve the portfolio with the least variance. To find this minimum
variance hedge ratio, we simply take the derivative of our equation for the
portfolio variance with respect to h, and set it equal to zero:

d�2
P

dh
= 2h�2

B + 2�AB�A�B

h∗ = −�AB
�A

�B

(3.37)

You can check that this is indeed a minimum by calculating the second
derivative. Substituting h∗ back into our original equation, we see that the
smallest variance we can achieve is:

min
[
�2

P

] = �2
A

(
1 − �2

AB

)
(3.38)

At the extremes, where �AB equals −1 or +1, we can reduce the portfolio
volatility to zero by buying or selling the hedge asset in proportion to the
standard deviation of the assets. In between these two extremes we will
always be left with some positive portfolio variance. This risk that we cannot
hedge is referred to as idiosyncratic risk.

If the two securities in the portfolio are positively correlated, then selling
$h of Security B will reduce the portfolio’s volatility to the minimum possible
level. Sell any less and the portfolio will be underhedged. Sell any more and
the portfolio will be overhedged. In risk management it is possible to have
too much of a good thing. A common mistake made by portfolio managers
is to overhedge with a low-correlation instrument.
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Notice that when �AB equals zero (i.e., when the two securities are
uncorrelated), the optimal hedge ratio is zero. You cannot hedge one secu-
rity with another security if they are uncorrelated. Adding an uncorrelated
security to a portfolio will always increase its volatility.

This last statement is not an argument against diversification. If your en-
tire portfolio consists of $100 invested in Security A and you add any amount
of an uncorrelated Security B to the portfolio, the dollar standard deviation
of the portfolio will increase. Alternatively, if Security A and Security B are
uncorrelated and have the same standard deviation, then replacing some of
Security A with Security B will decrease the dollar standard deviation of
the portfolio. For example, $80 of Security A plus $20 of Security B will
have a lower standard deviation than $100 of Security A, but $100 of Secu-
rity A plus $20 of Security B will have a higher standard deviation—again,
assuming Security A and Security B are uncorrelated and have the same
standard deviation.

MOMENTS

Previously, we defined the mean of a variable X as:

� = E [X]

It turns out that we can generalize this concept as follows:

mk = E[Xk] (3.39)

We refer to mk as the kth moment of X. The mean of X is also the first
moment of X.

Similarly, we can generalize the concept of variance as follows:

�k = E[(X − �)k] (3.40)

We refer to �k as the kth central moment of X. We say that the moment is
central because it is central around the mean. Variance is simply the second
central moment.

While we can easily calculate any central moment, in risk manage-
ment it is very rare that we are interested in anything beyond the fourth
central moment.

SKEWNESS

The second central moment, variance, tells us how spread-out a random vari-
able is around the mean. The third central moment tells us how symmetrical
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the distribution is around the mean. Rather than working with the third
central moment directly, by convention we first standardize the statistic.
This standardized third central moment is known as skewness:

Skewness = E[(X − �)3]
�3

(3.41)

where � is the standard deviation of X.
By standardizing the central moment, it is much easier to compare two

random variables. Multiplying a random variable by a constant will not
change the skewness.

A random variable that is symmetrical about its mean will have zero
skewness. If the skewness of the random variable is positive, we say that the
random variable exhibits positive skew. Figures 3.1 and 3.2 show examples
of positive and negative skewness.

Skewness is a very important concept in risk management. If the distri-
butions of returns of two investments are the same in all respects, with the
same mean and standard deviation but different skews, then the investment
with more negative skew is generally considered to be more risky. Historical
data suggest that many financial assets exhibit negative skew.

Positive Skew

No Skew

F IGURE 3.1 Positive Skew
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Negative Skew

No Skew

F IGURE 3.2 Negative Skew

As with variance, the equation for skewness differs depending on
whether we are calculating the population skewness or the sample skew-
ness. For the population statistic, the skewness of a random variable X,
based on n observations, x1, x2, . . . , xn, can be calculated as:

ŝ =
n∑

i=1

(
xi − �

�

)3

(3.42)

where � is the population mean and � is the population standard deviation.
Similar to our calculation of sample variance, if we are calculating the sample
skewness, there is going to be an overlap with the calculation of the sample
mean and sample standard deviation. We need to correct for that. The
sample skewness can be calculated as:

s̃ = n
(n − 1)(n − 2)

n∑
i=1

(
xi − �̂

�̂

)3

(3.43)
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Based on Equation 3.20 for variance, it is tempting to guess that the
formula for the third central moment can be written simply in terms of
E[X3] and �. Be careful, as the two sides of this equation are not equal:

E[(X − �)k] �= E[X3] − �3 (3.44)

The correct equation is:

E[(X − �)3] = E[X3] − 3��2 − �3 (3.45)

SAMPLE PROBLEM

Question:
Prove that the left-hand side of Equation 3.45 is indeed equal to

the right-hand side of the equation.

Answer:
We start by multiplying out the terms inside the expectation. This

is not too difficult to do, but, as a shortcut, we could use the binomial
theorem as mentioned in Chapter 1:

E[(X − �)3] = E[X3 − 3�X2 + 3�2 X − �3]

Next we separate the terms inside the expectations operator and
move any constants, namely �, outside the operator:

E[x3 − 3�X2 + 3�2 X − 3�3] = E[X3] − 3�E[X2] + 3�2E[X] − �3

E[X] is simply the mean, �. For E[X2], we reorganize our equation
for variance, Equation 3.20, as follows:

�2 = E[X2] − �2

E[X2] = �2 + �2

Substituting these results into our equation and collecting terms,
we arrive at the final equation:

E[(X − �)3] = E[X3] − 3�
(
�2 + �2

) + 3�2� − �3

E[(X − �)3] = E[X3] − 3��2 − �3
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For many symmetrical continuous distributions, the mean, median, and
mode all have the same value. Many continuous distributions with negative
skew have a mean that is less than the median, which is less than the mode.
For example, it might be that a certain derivative is just as likely to produce
positive returns as it is to produce negative returns (the median is zero), but
there are more big negative returns than big positive returns (the distribution
is skewed), so the mean is less than zero. As a risk manager, understanding
the impact of skew on the mean relative to the median and mode can be
useful. Be careful, though, as this rule of thumb does not always work. Many
practitioners mistakenly believe that this rule of thumb is in fact always
true. It is not, and it is very easy to produce a distribution that violates
the rule.

KURTOSIS

The fourth central moment is similar to the second central moment, in that
it tells us how spread-out a random variable is, but it puts more weight
on extreme points. As with skewness, rather than working with the cen-
tral moment directly, we typically work with a standardized statistic. This
standardized fourth central moment is known as the kurtosis. For a random
variable X, we can define the kurtosis as K, where:

K = E[(X − �)4]
�4

(3.46)

where � is the standard deviation of X, and � is its mean.
By standardizing the central moment, it is much easier to compare two

random variables. As with skewness, multiplying a random variable by a
constant will not change the kurtosis.

The following two populations have the same mean, variance, and skew-
ness. The second population has a higher kurtosis.

Population 1: {−17, −17, 17, 17}
Population 2: {−23, −7, 7, 23}
Notice, to balance out the variance, when we moved the outer two points

out six units, we had to move the inner two points in 10 units. Because the
random variable with higher kurtosis has points further from the mean, we
often refer to distribution with high kurtosis as fat-tailed. Figures 3.3 and
3.4 show examples of continuous distributions with high and low kurtosis.

Like skewness, kurtosis is an important concept in risk management.
Many financial assets exhibit high levels of kurtosis. If the distribution of
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High Kurtosis

No Excess

F IGURE 3.3 High Kurtosis

Low Kurtosis

No Excess

F IGURE 3.4 Low Kurtosis
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returns of two assets have the same mean, variance, and skewness, but
different kurtosis, then the distribution with the higher kurtosis will tend to
have more extreme points, and be considered more risky.

As with variance and skewness, the equation for kurtosis differs depend-
ing on whether we are calculating the population kurtosis or the sample
kurtosis. For the population statistic, the kurtosis of a random variable X
can be calculated as:

K̂ =
n∑

i=1

(
xi − �

�

)4

(3.47)

where � is the population mean and � is the population standard deviation.
Similar to our calculation of sample variance, if we are calculating the sample
kurtosis, there is going to be an overlap with the calculation of the sample
mean and sample standard deviation. We need to correct for that. The
sample kurtosis can be calculated as:

K̃ = n(n + 1)
(n − 1)(n − 2)(n − 3)

n∑
i=1

(
xi − �̂

�̂

)4

(3.48)

In the next chapter we will study the normal distribution, which has a
kurtosis of 3. Because normal distributions are so common, many people
refer to “excess kurtosis,” which is simply the kurtosis minus 3.

Kexcess = K − 3 (3.49)

In this way, the normal distribution has an excess kurtosis of 0. Distri-
butions with positive excess kurtosis are termed leptokurtotic. Distributions
with negative excess kurtosis are termed platykurtotic. Be careful; by default,
many applications calculate excess kurtosis.

When we are also estimating the mean and variance, calculating the
sample excess kurtosis is somewhat more complicated than just subtracting
3. The correct formula is:

K̃excess = K̃ − 3
(n − 1)2

(n − 2)(n − 3)
(3.50)

where K̃ is the sample kurtosis from Equation 3.46. As n increases, the last
term on the right-hand side converges to 3.
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COSKEWNESS AND COKURTOSIS

Just as we generalized the concept of mean and variance to moments and
central moments, we can generalize the concept of covariance to cross cen-
tral moments. The third and fourth cross central moments are referred to
as coskewness and cokurtosis, respectively. Though used less frequently,
higher-order cross moments can be very important in risk management.

As an example of how higher-order cross moments can impact risk
assessment, take the series of returns shown in Table 3.1 for four fund
managers, A, B, C, and D.

TABLE 3.1 Fund Returns

Time A B C D

1 0.0% −3.8% −15.3% −15.3%
2 −3.8% −15.3% −7.2% −7.2%
3 −15.3% 3.8% 0.0% −3.8%
4 −7.2% −7.2% −3.8% 15.3%
5 3.8% 0.0% 3.8% 0.0%
6 7.2% 7.2% 7.2% 7.2%
7 15.3% 15.3% 15.3% 3.8%

In this admittedly contrived setup, each manager has produced exactly
the same set of returns; only the order in which the returns were produced
is different. It follows that the mean, standard deviation, skew, and kurtosis
of the returns are exactly the same for each manager. In this example it is
also the case that the covariance between managers A and B is the same as
the covariance between managers C and D.

If we combine A and B in an equally weighted portfolio and combine C
and D in a separate equally weighted portfolio, we get the returns shown in
Table 3.2.

TABLE 3.2 Combined Fund Returns

Time A + B C + D

1 −1.9% −15.3%
2 −9.5% −7.2%
3 −5.8% −1.9%
4 −7.2% 5.8%
5 1.9% 1.9%
6 7.2% 7.2%
7 15.3% 9.5%
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The two portfolios have the same mean and standard deviation, but the
skews of the portfolios are different. Whereas the worst return for A + B is
−9.5%, the worst return for C + D is −15.3%. As a risk manager, knowing
that the worst outcome for portfolio C + D is more than 1.6 times as bad
as the worst outcome for A + B could be very important.

So how did two portfolios whose constituents seemed so similar end up
being so different? One way to understand what is happening is to graph
the two sets of returns for each portfolio against each other, as shown in
Figures 3.5 and 3.6.

The two charts share a certain symmetry, but are clearly different. In the
first portfolio, A + B, the two managers’ best positive returns occur during
the same time period, but their worst negative returns occur in different
periods. This causes the distribution of points to be skewed toward the
top-right of the chart. The situation is reversed for managers C and D:
their worst negative returns occur in the same period, but their best positive
returns occur in different periods. In the second chart, the points are skewed
toward the bottom-left of the chart.

–20%
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–5%

0%

5%

10%

15%
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–20% –15% –10% –5% 0% 5% 10% 15% 20%
A

B

F IGURE 3.5 Funds A and B
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F IGURE 3.6 Funds C and D

The reason the charts look different, and the reason the returns of the
two portfolios are different, is because the coskewness between the managers
in each of the portfolios is different. For two random variables, there are
actually two nontrivial coskewness statistics. For example, for A and B,
we have:

�AAB = E[(A− �A)2(B − �B)]

�ABB = E[(A− �A)(B − �B)2]
(3.51)

The complete set of sample coskewness statistics for the sets of managers
is shown in Table 3.3.

TABLE 3.3 Sample Coskewness

A + B C + D

SXXY 0.99 −0.58
SXYY 0.58 −0.99
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Both coskewness values for A and B are positive, whereas they are both
negative for C and D. Just as with skewness, negative values of coskewness
tend to be associated with greater risk.

In general, for n random variables, the number of nontrivial cross-
central moments of order m is:

k = (m + n − 1)!
m!(n − 1)!

− n (3.52)

In this case, nontrivial means that we have excluded the cross mo-
ments that involve only one variable (i.e., our standard skewness and kur-
tosis). To include the nontrivial moments, we would simply add n to the
preceding result.

For coskewness, Equation 3.52 simplifies to:

k3 = (n + 2)(n + 1)n
6

− n (3.53)

Despite their obvious relevance to risk management, many standard
risk models do not explicitly define coskewness or cokurtosis. One reason
that many models avoid these higher-order cross moments is practical. As
the number of variables increases, the number of nontrivial cross moments
increases rapidly. With 10 variables there are 30 coskewness parameters
and 65 cokurtosis parameters. With 100 variables, these numbers increase
to 171,600 and over 4 million, respectively. Table 3.4 compares the number
of nontrivial cross moments for a variety of sample sizes. In most cases there
is simply not enough data to calculate all of these cross moments.

Risk models with time-varying volatility (e.g., GARCH; see Chapter 9)
or time-varying correlation can display a wide range of behaviors with very
few free parameters. Copulas can also be used to describe complex inter-
actions between variables that go beyond covariances, and have become

TABLE 3.4 Number of Nontrivial Cross Moments

n Covariance Coskewness Cokurtosis

2 1 2 3
5 10 30 65

10 45 210 705
20 190 1,520 8,835
30 435 4,930 40,890

100 4,950 171,600 4,421,175
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popular in risk management in recent years. All of these approaches capture
the essence of coskewness and cokurtosis, but in a more tractable frame-
work. As a risk manager, it is important to differentiate between these
models—which address the higher-order cross moments indirectly—and
models that simply omit these risk factors altogether.

BEST LINEAR UNBIASED ESTIMATOR (BLUE)

In this chapter we have been careful to differentiate between the true param-
eters of a distribution and estimates of those parameters based on a sample
of population data. In statistics we refer to these parameter estimates, or to
the method of obtaining the estimate, as an estimator. For example, at the
start of the chapter, we introduced an estimator for the sample mean:

�̂ = 1
n

n∑
i=1

xi (3.54)

This formula for computing the mean is so popular that we’re likely to
take it for granted. Why this equation, though? One justification that we
gave earlier is that this particular estimator provides an unbiased estimate
of the true mean. That is:

E[�̂] = � (3.55)

Clearly, a good estimator should be unbiased. That said, for a given
data set, we could imagine any number of unbiased estimators of the mean.
For example, assuming there are at least three data points in our sample, x1,
x2, and x3, the following equation:

�̃ = 0.75x1 + 0.25x2 + 0.00x3 (3.56)

is also an unbiased estimator of the mean. Intuitively, this new estimator
seems strange; we have put three times as much weight on x1 as on x2, and
we have put no weight on x3. There is no reason, as we have described
the problem, to believe that any one data point is better than any other, so
equally distributing the weight might seem like a logical procedure. Still, this
new estimator is unbiased, and our criteria for judging this estimator to be
strange seems rather subjective. What we need is an objective measure for
comparing different estimators.
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As we will see in coming chapters, just as we can measure the variance
of random variables, we can measure the variance of parameter estimators
as well. For example, if we measure the sample mean of a random variable
several times, we can get a different answer each time. Imagine rolling a die
10 times and taking the average of all the rolls. Then repeat this process
again and again. The sample mean is potentially different for each sample
of 10 rolls. It turns out that this variability of the sample mean, or any other
distribution parameter, is a function not only of the underlying variable, but
of the form of the estimator as well.

When choosing among all the unbiased estimators, statisticians typi-
cally try to come up with the estimator with the minimum variance. If we
limit ourselves to estimators that can be written as a linear equation, we can
often prove that a particular candidate has the minimum variance among
all the potential unbiased estimators. We call an estimator with these prop-
erties the best linear unbiased estimator, or BLUE. This is certainly one of
the more amusing acronyms in statistics. All of the estimators that we pro-
duced in this chapter for the mean, variance, covariance, skew, and kurtosis
are BLUE.

It is possible to have two estimators for the same parameter, one BLUE
and the other biased but with lower variance. Just such a situation occurs
with our sample variance estimator in Equation 3.19. Remember that, if the
sample mean was also an estimate, we divided the summation by (n − 1).
If we had instead divided by n, this new estimator would be biased but
would in fact have a lower variance. Of course, we could drive the variance
of the estimator all the way to zero, simply by choosing a constant as an
estimator. This would be a very poor choice. In almost all situations, for
most statisticians, the BLUE estimator will be the preferred estimator.

PROBLEMS

1. Compute the mean and the median of the following series of returns:

12% 5% −8% 20% 4% 10% 2%

2. Compute the sample mean and the standard deviation following returns:

7% 2% 6% −4% −4% 3% 0% 18% −1%

3. Prove that Equation 3.2 is an unbiased estimator of the mean. That is,
show that �̂ = E[r].



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c03 JWBT625-Miller January 9, 2012 23:40 Printer: Courier Westford

Basic Statistics 73

4. What is the standard deviation of the estimator in Equation 3.2? Assume
the various data points are i.i.d.

5. Calculate the population covariance and correlation of the following
series:

Series #1 21% 53% 83% 19%

Series #2 20% 32% 80% 40%

6. Calculate the population mean, standard deviation, and skewness of
each of the following two series:

Series #1 −51 −21 21 51

Series #2 −61 −7 33 35

7. Calculate the population mean, standard deviation, and kurtosis for
each of the following two series:

Series #1 −23 −7 7 23

Series #2 −17 −17 17 17

8. Given the probability density function for a random variable X:

f (x) = x
50

s.t. 0 ≤ x ≤ 10

Find the variance of X.
9. Prove that Equation 3.19 is an unbiased estimator of variance.

E
[
�2

r

] = �̂2
r = 1

n − 1

n∑
i=1

(ri − �̂r )2

10. Given two random variables, XA and XB, with corresponding means
�A and �B and standard deviations �A and �B, prove that the variance
of XA plus XB is:

Var[XA + XB] = �2
A + �2

B + 2�AB�A�B

where �AB is the correlation between XA and XB.
11. A $100 notional, zero-coupon bond has one year to expiry. The proba-

bility of default is 10%. In the event of default, assume that the recovery
rate is 40%. The continuously compounded discount rate is 5%. What
is the present value of this bond?
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CHAPTER 4
Distributions

I n Chapter 2, we were introduced to random variables. In nature and in
finance, random variables tend to follow certain patterns, or distributions.

In this chapter we will learn about some of the most widely used probability
distributions in risk management.

PARAMETRIC DISTRIBUTIONS

Distributions can be divided into two broad categories: parametric distri-
butions and nonparametric distributions. A parametric distribution can be
described by a mathematical function. In the following sections we will
explore a number of parametric distributions including the uniform distri-
bution and the normal distribution. A nonparametric distribution cannot be
summarized by a mathematical formula. In its simplest form, a nonparamet-
ric distribution is just a collection of data. An example of a nonparametric
distribution would be a collection of historical returns for a security.

Parametric distributions are often easier to work with, but they force
us to make assumptions, which may not be supported by real-world
data. Nonparametric distributions can fit the observed data perfectly. The
drawback of nonparametric distributions is that they are potentially too
specific, which can make it difficult to draw any general conclusions.

UNIFORM DISTRIBUTION

For a continuous random variable, X, recall that the probability of an out-
come occurring between b1 and b2 can be found by integrating as follows:

P[b1 ≤ X ≤ b2] =
b2∫

b1

f (x)dx

where f (x) is the probability density function (PDF) of X.

75



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c04 JWBT625-Miller January 9, 2012 23:44 Printer: Courier Westford

76 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

c

b1 b 2

F IGURE 4.1 Probability Density Function of a Uniform Distribution

The uniform distribution is one of the most fundamental distributions in
statistics. The probability density function is given by the following formula:

u(b1,b2) =
{

c ∀b1 ≤ x ≤ b2

0 ∀b1 � x � b2
s.t. b2 � b1 (4.1)

In other words, the probability density is constant and equal to c between
b1 and b2, and zero everywhere else. Figure 4.1 shows the plot of a uniform
distribution’s probability density function.

Because the probability of any outcome occurring must be one, we can
find the value of c as follows:∫ +∞

−∞
u(b1,b2)dx = 1

∫ +∞

−∞
u(b1,b2)dx =

∫ b1

−∞
0dx +

∫ b2

b1

cdx +
∫ +∞

b2

0dx =
∫ b2

b1

cdx (4.2)

∫ b2

b1

cdx = [cx]b2
b1

= c(b2 − b1) = 1

c = 1
b2 − b1
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On reflection, this result should be obvious from the graph of the density
function. That the probability of any outcome occurring must be one is
equivalent to saying that the area under the probability density function
must be equal to one. In Figure 4.1, we only need to know that the area of
a rectangle is equal to the product of its width and its height to determine
that c is equal to 1/(b2 – b1).

With the probability density function in hand, we can proceed to calcu-
late the mean and the variance. For the mean:

� =
b2∫

b1

cxdx = 1
2

(b2 + b1) (4.3)

In other words, the mean is just the average of the start and end values of
the distribution.

Similarly, for the variance, we have:

�2 =
b2∫

b1

c(x − �)2dx = 1
12

(b2 − b1)2 (4.4)

This result is not as intuitive. The proof of both results is left as an exercise
at the end of the chapter.

For the special case where b1 = 0 and b2 = 1, we refer to the distribution
as a standard uniform distribution. Standard uniform distributions are ex-
tremely common. The default random number generator in most computer
programs (technically a pseudo random number generator) is typically a
standard uniform random variable. Because these random number gener-
ators are so ubiquitous, uniform distributions often serve as the building
blocks for computer models in finance.

To calculate the cumulative distribution function (CDF) of the uniform
distribution, we simply integrate the PDF. Again, assuming a lower bound
of b1 and an upper bound of b2, we have:

P[X ≤ a] =
a∫

b1

cdz = c [z]a
b1

= a − b1

b2 − b1
(4.5)

As required, when a equals b1, we are at the minimum, and the CDF is
zero. When a equals b2, we are at the maximum, the entire distribution is
less than the maximum, and the CDF equals one.
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As we will see later, we can use combinations of uniform distributions
to approximate other more complex distributions. As we will see in the next
section, uniform distributions can also serve as the basis of some of the
simplest distributions, including Bernoulli distributions.

BERNOULL I D ISTRIBUTION

Bernoulli’s principle explains how the flow of fluids or gases leads to changes
in pressure. It can be used to explain a number of phenomena, including how
the wings of airplanes provide lift. Without it, modern aviation would be im-
possible. Bernoulli’s principle is named after Daniel Bernoulli, an eighteenth-
century Dutch-Swiss mathematician and scientist. Daniel came from a family
of accomplished mathematicians. Daniel and his cousin Nicolas Bernoulli
first described and presented a proof for the St. Petersburg Paradox. But it is
not Daniel or Nicolas, but rather their uncle, Jacob Bernoulli, for whom the
Bernoulli distribution is named. In addition to the Bernoulli distribution, Ja-
cob is credited with first describing the concept of continuously compounded
returns, and, along the way, discovering Euler’s number, e, both of which
we explored in Chapter 1.

The Bernoulli distribution is incredibly simple. A Bernoulli random vari-
able is equal to either zero or one. If we define p as the probability that X
equals one, we have:

P[X = 1] = p and P[X = 0] = 1 − p (4.6)

We can easily calculate the mean and variance of a Bernoulli variable:

� = p • 1 + (1 − p) • 0 = p

�2 = p • (1 − p)2 + (1 − p) • (0 − p)2 = p(1 − p)
(4.7)

Binary outcomes are quite common in finance: a bond can default or
not default; the return of a stock can be positive or negative; a central bank
can decide to raise rates or not to raise rates.

In a computer simulation, one way to model a Bernoulli variable is to
start with a standard uniform variable. Conveniently, both the standard
uniform variable and our Bernoulli probability, p, range between zero and
one. If the draw from the standard uniform variable is less than p, we set
our Bernoulli variable equal to one; likewise, if the draw is greater than p,
we set the Bernoulli variable to zero (see Figure 4.2).
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Random Number Generator
Standard Uniform Random 

Variable
U

X = 1

X = 0

Evaluate
U

U ≥ p

U < p

F IGURE 4.2 How to Generate a Bernoulli Distribution from a
Uniform Distribution

BINOMIAL DISTRIBUTION

A binomial distribution can be thought of as a collection of Bernoulli random
variables. If we have two independent bonds and the probability of de-
fault for both is 10%, then there are three possible outcomes: no bond
defaults, one bond defaults, or both bonds default. Labeling the number of
defaults K:

P[K = 0] = (1 − 10%)2 = 81%

P[K = 1] = 2 • 10% • (1 − 10%) = 18%

P[K = 2] = 10%2 = 1%

Notice that for K = 1, we have multiplied the probability of a bond
defaulting, 10%, and the probability of a bond not defaulting, 1 – 10%,
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by 2. This is because there are two ways in which exactly one bond can
default: the first bond defaults and the second does not, or the second bond
defaults and the first does not.

If we now have three bonds, still independent and with a 10% chance
of defaulting, then:

P[K = 0] = (1 − 10%)3 = 72.9%

P[K = 1] = 3 • 10% • (1 − 10%)2 = 24.3%

P[K = 2] = 3 • 10%2 • (1 − 10%) = 2.7%

P[K = 3] = 10%3 = 0.1%

Notice that there are three ways in which we can get exactly one default
and three ways in which we can get exactly two defaults.

We can extend this logic to any number of bonds. If we have n bonds,
the number of ways in which k of those bonds can default is given by the
number of combinations:

(
n
k

)
= n!

k!(n − k)!
(4.8)

Similarly, if the probability of one bond defaulting is p, then the prob-
ability of any particular k bonds defaulting is simply pk(1 − p)n−k. Putting
these two together, we can calculate the probability of any k bonds default-
ing as:

P[K = k] =
(

n
k

)
pk(1 − p)n−k (4.9)

This is the probability density function for the binomial distribution.
You should check that this equation produces the same result as our ex-
amples with two and three bonds. While the general proof is somewhat
complicated, it is not difficult to prove that the probabilities sum to one for
n = 2 or n = 3, no matter what value p takes. It is a common mistake when
calculating these probabilities to leave out the combinatorial term.

For the formulation in Equation 4.9, the mean of random variable K is
equal to np. So for a bond portfolio with 40 bonds, each with a 20% chance
of defaulting, we would expect eight bonds (8 = 20 × 0.40) to default on
average. The variance of a binomial distribution is np(1 – p).
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SAMPLE PROBLEM

Question:
Assume we have four bonds, each with a 10% probability of de-

faulting over the next year. The event of default for any given bond is
independent of the other bonds defaulting. What is the probability that
zero, one, two, three, or all of the bonds default? What is the mean
number of defaults? The standard deviation?

Answer:
We can calculate the probability of each possible outcome as fol-

lows:

# of Defaults
(

n
k

)
pk(1 − p)n−k Probability

0 1 65.61% 65.61%
1 4 7.29% 29.16%
2 6 0.81% 4.86%
3 4 0.09% 0.36%
4 1 0.01% 0.01%

100.00%

We can calculate the mean number of defaults two ways. The first
is to use our formula for the mean:

� = np = 4 • 10% = 0.40

On average there are 0.40 defaults. The other way we could arrive
at this result is to use the probabilities from the table. We get:

� =
4∑

i=0

pi xi = 65.61% • 0 + 29.16% • 1 + 4.86% • 2 + 0.36% • 3

+ 0.01% • 4 = 0.40

This is consistent with our earlier result.
To calculate the standard deviation, we also have two choices.

Using our formula for variance, we have:

�2 = np(1 − p) = 4 • 10%(1 − 10%) = 0.36

� = 0.60
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As with the mean, we could also use the probabilities from the
table:

�2 =
4∑

i=0

pi (xi − �)2

�2 = 65.61% • 0.16 + 29.16% • 0.36 + 4.86% • 2.56 + 0.36% • 6.76

+ 0.01% • 12.96 = 0.36

� = 0.60

Again, this is consistent with our earlier result.

Figure 4.3 shows binomial distributions with p = 0.50, for n = 4, 16,
and 64. The highest point of each distribution occurs in the middle. In
other words, the most likely outcome for a binomial random variable, the

n = 4

n = 16

n = 64

F IGURE 4.3 Binomial Probability Density Functions
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mode, is n/2 when n is even or the whole numbers either side of n/2 when n
is odd.

POISSON DISTRIBUTION

Another useful discrete distribution is the Poisson distribution, named for
the French mathematician Simeon Denis Poisson.

For a Poisson random variable X:

P[X = n] = �n

n!
e−� (4.10)

for some constant �. It turns out that both the mean and variance of X are
equal to �. Figure 4.4 shows the probability density function of a Poisson
distribution.

The Poisson distribution is often used to model the occurrence of events
over time—for example, the number of bond defaults in a portfolio or
the number of crashes in equity markets. In this case, n is the number of
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Lambda = 2
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Lambda = 8

F IGURE 4.4 Poisson Probability Density Function
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events that occur in an interval, and � is the expected number of events in
the interval. Poisson distributions are often used to model jumps in jump-
diffusion models.

If the rate at which events occur over time is constant, and the probability
of any one event occurring is independent of all other events, then we say
that the events follow a Poisson process, where:

P[X = n] = (�t)n

n!
e−�t (4.11)

where t is the amount of time elapsed. In other words, the expected number
of events before time t is equal to �t.

SAMPLE PROBLEM

Question:
Assume that defaults in a large bond portfolio follow a Poisson

process. The expected number of defaults each month is four. What is
the probability that there are exactly three defaults over the course of
one month? Two months?

Answer:
For the first question, we solve the following:

P[X = 3] = (�t)n

n!
e−�t = (4 • 1)3

3!
e−4 • 1 = 19.5%

Over two months, the answer is:

P[X = 3] = (�t)n

n!
e−�t = (4 • 2)3

3!
e−4 • 2 = 2.9%

NORMAL DISTRIBUTION

The normal distribution is probably the most widely used distribution in
statistics, and is extremely popular in finance. The normal distribution occurs
in a large number of settings, and is extremely easy to work with.

In popular literature, the normal distribution is often referred to as
the bell curve because of the shape of its probability density function (see
Figure 4.5).
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FIGURE 4.5 Normal Distribution Probability Density Function

The probability density function of the normal distribution is symmetri-
cal, with the mean and median coinciding with the highest point of the PDF.
Because it is symmetrical, the skew of a normal distribution is always zero.
The kurtosis of a normal distribution is always 3. By definition, the excess
kurtosis of a normal distribution is zero.

In some fields it is more common to refer to the normal distribution as
the Gaussian distribution, after the famous German mathematician Johann
Gauss, who is credited with some of the earliest work with the distribution.
It is not the case that one name is more precise than the other as with
mean and average. Both normal distribution and Gaussian distribution are
acceptable terms.

For a random variable X, the probability density function for the normal
distribution is:

f (x) = 1

�
√

2�
e− 1

2 ( x−�
� )2

(4.12)

The distribution is described by two parameters, � and �; � is the mean
of the distribution and � is the standard deviation. We leave the proofs of
these statements for the exercises at the end of the chapter.

Rather than writing out the entire density function, when a variable is
normally distributed it is the convention to write:

X ∼ N(�, �2) (4.13)
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This would be read “X is normally distributed with a mean of � and
variance of �2.”

One reason that normal distributions are easy to work with is that any
linear combination of independent normal variables is also normal. If we
have two normally distributed variables, X and Y, and two constants, a and
b, then Z is also normally distributed:

Z = aX + bY s.t. Z ∼ N
(
a�X + b�Y, a2�2

X + b2�2
Y

)
(4.14)

This is very convenient. For example, if the log returns of individual
stocks are normally distributed, then the average return of those stocks will
also be normally distributed.

When a normal distribution has a mean of zero and a standard deviation
of one, it is referred to as a standard normal distribution.

� = 1√
2�

e− 1
2 x2

(4.15)

It is the convention to denote the standard normal PDF by �, and the
cumulative standard normal distribution by �.

Because a linear combination of normal distributions is also normal,
standard normal distributions are the building blocks of many financial
models. To get a normal variable with a standard deviation of � and a mean
of �, we simply multiply the standard normal variable by � and add �.

X = � + �� ⇒ X ∼ N(�, �2) (4.16)

To create two correlated normal variables, we can combine three inde-
pendent standard normal variables, X1, X2, and X3, as follows:

XA = √
	 X1 + √

1 − 	 X2

XB = √
	 X1 + √

1 − 	 X3

(4.17)

In this formulation, XA and XB are also standard normal variables,
but with a correlation of 	 . The proof is left for an exercise at the end of
the chapter.

Normal distributions are used throughout finance and risk manage-
ment. In the first chapter, we suggested that log returns are extremely useful
in financial modeling. One attribute that makes log returns particularly
attractive is that they can be modeled using normal distributions. Nor-
mal distributions can generate numbers from negative infinity to positive
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infinity. For a particular normal distribution, the most extreme values might
be extremely unlikely, but they can occur. This poses a problem for stan-
dard returns, which typically cannot be less than –100%. For log returns,
though, there is no such constraint. Log returns also can range from negative
to positive infinity.

Normally distributed log returns are widely used in financial simula-
tions, and form the basis of a number of financial models, including the
Black-Scholes option pricing model. As we will see in the coming chapters,
while this normal assumption is often a convenient starting point, much of
risk management is focused on addressing departures from this normality
assumption.

There is no explicit solution for the cumulative standard normal distri-
bution, or for its inverse. That said, most statistical packages will be able
to calculate values for both functions. To calculate values for the CDF or
inverse CDF for the normal distribution, there are a number of well-known
numerical approximations.

Because the normal distribution is so widely used, most practitioners
are expected to have at least a rough idea of how much of the distribution
falls within one, two, or three standard deviations. In risk management it is
also useful to know how many standard deviations are needed to encompass
95% or 99% of outcomes. Table 4.1 lists some common values. Notice that
for each row in the table, there is a “one-tailed” and “two-tailed” column.
If we want to know how far we have to go to encompass 95% of the mass
in the density function, the one-tailed value tells us that 95% of the values
are less than 1.64 standard deviations above the mean. Because the normal
distribution is symmetrical, it follows that 5% of the values are less than
1.64 standard deviations below the mean. The two-tailed value, in turn, tells
us that 95% of the mass is within +/–1.96 standard deviations of the mean.
It follows that 2.5% of the outcomes are less than –1.96 standard deviations

TABLE 4.1 Normal Distribution Confidence Intervals

One-Tailed Two-Tailed

1.0% −2.33 −2.58
2.5% −1.96 −2.24
5.0% −1.64 −1.96

10.0% −1.28 −1.64
90.0% 1.28 1.64
95.0% 1.64 1.96
97.5% 1.96 2.24
99.0% 2.33 2.58
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from the mean, and 2.5% are greater than +1.96 standard deviations from
the mean. Rather than one-tailed and two-tailed, some authors refer to
“one-sided” and “two-sided” values.

LOGNORMAL DISTRIBUTION

It’s natural to ask: if we assume that log returns are normally distributed,
then how are standard returns distributed? To put it another way: rather
than modeling log returns with a normal distribution, can we use another
distribution and model standard returns directly?

The answer to these questions lies in the lognormal distribution, whose
density function is given by:

f (x) = 1

x�
√

2�
e− 1

2

(
ln x−�

�

)2

(4.18)

If a variable has a lognormal distribution, then the log of that variable
has a normal distribution. So, if log returns are assumed to be normally dis-
tributed, then one plus the standard return will be lognormally distributed.

Unlike the normal distribution, which ranges from negative infinity to
positive infinity, the lognormal distribution is undefined, or zero, for negative
values. Given an asset with a standard return, R, if we model (1 + R)
using the lognormal distribution, then R will have a minimum value of
–100%. As mentioned in Chapter 1, this feature, which we associate with
limited liability, is common to most financial assets. Using the lognormal
distribution provides an easy way to ensure that we avoid returns less than
–100%. The probability density function for a lognormal distribution is
shown in Figure 4.6.

Equation 4.18 looks almost exactly like the equation for the normal
distribution, Equation 4.12, with x replaced by ln(x). Be careful, though,
as there is also the x in the denominator of the leading fraction. At first
it might not be clear what the x is doing there. By carefully rearranging
Equation 4.18, we can get something that, while slightly longer, looks more
like the normal distribution in form:

f (x) = e
1
2 �2−� 1

�
√

2�
e− 1

2

(
ln x−(�−�2)

�

)2

(4.19)

While not as pretty, this starts to hint at what we’ve actually done.
Rather than being symmetrical around �, as in the normal distribution, the
lognormal distribution is asymmetrical and peaks at exp(� – �2).
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F IGURE 4.6 Lognormal Probability Density Function

Given � and �, the mean is given by:

E[X] = e�+ 1
2 �2

(4.20)

This result looks very similar to the Taylor expansion of the natural
logarithm around one. Remember from Chapter 1, if R is a standard return
and r the corresponding log return, then:

r ≈ R − 1
2

R2 (4.21)

Be careful: because these equations are somewhat similar, it is very easy
to get the signs in front of �2 and R2 backward.

The variance of the lognormal distribution is given by:

E[(X − E[X])2] = (e�2 − 1)e2�+�2
(4.22)

The equations for the mean and the variance hint at the difficulty of
working with lognormal distributions directly. It is convenient to be able
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to describe the returns of a financial instrument as being lognormally dis-
tributed, rather than having to say the log returns of that instrument are
normally distributed. When it comes to modeling, though, even though they
are equivalent, it is often easier to work with log returns and normal distri-
butions than with standard returns and lognormal distributions.

CENTRAL L IMIT THEOREM

Assume we have an index made up of a large number of equities, or a
bond portfolio that contains a large number of similar bonds. In these situ-
ations and many more, it is often convenient to assume that the constituent
elements—the equities or bonds—are made up of statistically identical ran-
dom variables, and that these variables are uncorrelated with each other. As
mentioned previously, in statistics we term these variables independent and
identically distributed (i.i.d.). If the constituent elements are i.i.d., it turns
out we can say a lot about the distribution of the population, even if the
distribution of the individual elements is unknown.

We already know that if we add two i.i.d. normal distributions together
we get a normal distribution, but what happens if we add two i.i.d. uni-
form variables together? Looking at the graph of the uniform distribution
(Figure 4.1), you might think that we would get another uniform distribu-
tion, but this isn’t the case. In fact, the probability density function resembles
a triangle.

Assume we have two defaulted bonds, each with a face value of $100.
The recovery rate for each bond is assumed to be uniform, between $0 and
$100. At best we recover the full face value of the bond; at worst we get
nothing. Further, assume the recovery rate for each bond is independent of
the other. In other words, the bonds are i.i.d. uniform, between $0 and $100.
What is the distribution for the portfolio of the two bonds? In the worst-
case scenario, we recover $0 from both bonds, and the total recovery is $0.
In the best-case scenario, we recover the full amount for both bonds, $200
for the portfolio. Because the bonds are independent, these extremes are
actually very unlikely. The most likely scenario is right in the middle, where
we recover $100. This could happen if we recover $40 from the first bond
and $60 from the second, $90 from the first and $10 from the second, or
any of an infinite number of combinations. Figure 4.7 shows the distribution
of values for the portfolio of two i.i.d. bonds.

With three bonds, the distribution ranges from $0 to $300, with the
mode at $150. With four bonds, the distribution ranges from $0 to $400,
with the mode at $200. As we continue to add more bonds, the shape of
the distribution function continues to change. Figure 4.8 shows the density
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functions for the sums of 4, 8, and 16 i.i.d. uniform variables, normalized
to have the same range.

Oddly enough, even though we started with uniform variables, the dis-
tribution is starting to look increasingly like a normal distribution. The
resemblance is not just superficial; it turns out that as we add more and
more variables, the distribution actually converges to a normal distribution.
What’s more, this is not just true if we start out with uniform distributions;
it applies to any distributions with finite variance.∗ This result is known as
the central limit theorem.

More formally, if we have n i.i.d. random variables, X1, X2, . . . , Xn,
each with mean � and standard deviation �, and we define Sn as the sum of
those n variables, then:

lim
n→∞ Sn ∼ N(n�, n�2) (4.23)

In other words, as n approaches infinity, the sum converges to a normal
distribution. This result is one of the most important results in statistics and
is the reason why the normal distribution is so ubiquitous. In risk, as in a
number of other fields, we are often presented with data that either is i.i.d.
by construction or is assumed to be i.i.d. Even when the underlying variables
are not normal—which is rare in practice—the i.i.d. assumption, combined
with the central limit theorem, allows us to approximate a large collection
of data using a normal distribution. The central limit theorem is often used
to justify the approximation of financial variables by a normal distribution.

APPLICATION: MONTE CARLO SIMULATIONS
PART I : CREATING NORMAL RANDOM VARIABLES

While some problems in risk management have explicit analytic solutions,
many problems have no exact mathematical solution. In these cases, we
can often approximate a solution by creating a Monte Carlo simulation. A
Monte Carlo simulation consists of a number of trials. For each trial we
feed random inputs into a system of equations. By collecting the outputs

∗Even though we have not yet encountered any distributions with infinite variance,
they can exist. The Cauchy distribution is an example of a parametric distribution
with infinite variance. While rare in finance, it’s good to know that these distributions
can exist.
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from the system of equations for a large number of trials, we can estimate
the statistical properties of the output variables.

Even in cases where explicit solutions might exist, a Monte Carlo so-
lution might be preferable in practice if the explicit solution is difficult to
derive or extremely complex. In some cases a simple Monte Carlo simulation
can be easier to understand, thereby reducing operational risk.

As an example of a situation where we might use a Monte Carlo sim-
ulation, pretend we are asked to evaluate the mean and standard deviation
of the profits from a fixed strike arithmetic Asian option, where the value of
the option, V, at expiry is:

V = max

[
1
T

T∑
t=1

St − X, 0

]
(4.24)

Here X is the strike price, St is the closing price of the underlying asset at
time t, and T is the number of periods in the life of the option. In other
words, the value of the option at expiry is the greater of zero, or the average
price of the underlying asset less the strike price.

Assume there are 200 days until expiry. Further, we are told that the
returns of the underlying asset are lognormal, with a mean of 10% and a
standard deviation of 20%. The input to our Monte Carlo simulation would
be lognormal variables with the appropriate mean and standard deviation.
For each trial, we would generate 200 random daily returns, use the returns
to calculate a series of random prices, calculate the average of the price series,
and use the average to calculate the value of the option. We would repeat
this process again and again, using a different realization of the random
returns each time, and each time calculating a new value for the option.

The initial step in the Monte Carlo simulation, generating the random
inputs, can itself be very complex. In Chapter 6, we will learn how to create
correlated normally distributed random variables from a set of uncorrelated
normally distributed random variables. How do we create the uncorrelated
normally distributed random variables to start with? Many special-purpose
statistical packages contain functions that will generate random draws from
normal distributions. If the application we are using does not have this fea-
ture, but does have a standard random number generator, which generates a
standard uniform distribution, there are two ways we can generate random
normal variables. The first is to use an inverse normal transformation. As
mentioned previously, there is no explicit formula for the inverse normal
transformation, but there are a number of good approximations.
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The second approach takes advantage of the central limit theorem. By
adding together a large number of i.i.d. uniform distributions, and then
multiplying and adding the correct constants, a good approximation to any
normal variable can be formed. A classic approach is to simply add 12
standard uniform variables together, and subtract 6:

X =
12∑

i=1

Ui − 6 (4.25)

Because the mean of a standard uniform variable is 1/2 and the variance
is 1/12, this produces a good approximation to a standard normal variable,
with mean zero and standard deviation of one. By utilizing a greater number
of uniform variables, we could increase the accuracy of our approximation,
but for most applications, this approximation is more than adequate.

CHI -SQUARED DISTRIBUTION

If we have k independent standard normal variables, Z1, Z2, . . . , Zk, then
the sum of their squares, S, has a chi-squared distribution. We write:

S =
k∑

i=1

Z2
i

S ∼ 
 2
k

(4.26)

The variable k is commonly referred to as the degrees of freedom. It
follows that the sum of two independent chi-squared variables, with k1 and
k2 degrees of freedom, will follow a chi-squared distribution, with (k1 + k2)
degrees of freedom.

Because the chi-squared variable is the sum of squared values, it can
only take on nonnegative values and is asymmetrical. The mean of the dis-
tribution is k, and the variance is 2k. As k increases, the chi-squared
distribution becomes increasingly symmetrical. As k approaches infinity, the
chi-squared distribution converges to the normal distribution. Figure 4.9
shows the probability density functions for some chi-squared distributions
with different values for k.

For positive values of x, the probability density function for the chi-
squared distribution is:

f (x) = 1
2k/2�(k/2)

x
k
2 −1e− x

2 (4.27)
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F IGURE 4.9 Chi-Squared Probability Density Functions

where � is the gamma function:

�(n) =
∞∫

0

xn−1e−xdx (4.28)

The chi-squared distribution is widely used in risk management, and in
statistics in general, for hypothesis testing.

STUDENT’S t DISTRIBUTION

Another extremely popular distribution in statistics and in risk management
is Student’s t distribution. The distribution was first described in English,
in 1908, by William Sealy Gosset, an employee at the Guinness brewery in
Dublin. In order to comply with his firm’s policy on publishing in public
journals, he submitted his work under the pseudonym Student. The distri-
bution has been known as Student’s t distribution ever since. In practice, it
is often referred to simply as the t distribution.
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If Z is a standard normal variable and U is a chi-square variable with k
degrees of freedom, which is independent of Z, then the random variable X:

X = Z√
U/k

(4.29)

follows a t distribution with k degrees of freedom.
Mathematically, the distribution is quite complicated. The probability

density function can be written:

f (x) =
�

(
k + 1

2

)

√
k��

(
k
2

)
(

1 + x2

k

)−(k+1)/2

(4.30)

where k is the degrees of freedom and � is the gamma function.
Very few risk managers will memorize this PDF equation, but it is

important to understand the basic shape of the distribution and how it
changes with k. Figure 4.10 shows the probability density function for three
Student’s t distributions. Notice how changing the value of k changes the
shape of the distribution, specifically the tails.

0.0

0.1

0.2

0.3

0.4

–3 –2 –1 0 1 2 3

k = 1

k = 5

k = 10

F IGURE 4.10 Student’s t Probability Density Functions
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The t distribution is symmetrical around its mean, which is equal to zero.
For low values of k, the t distribution looks very similar to a standard normal
distribution, except that it displays excess kurtosis. As k increases, this
excess kurtosis decreases. In fact, as k approaches infinity, the t distribution
converges to a standard normal distribution.

The variance of the t distribution for k � 2 is k/(k – 2). You can see
that as k increases, the variance of the t distribution converges to one, the
variance of the standard normal distribution.

As we will see in the following chapter, the t distribution’s popularity
derives mainly from its use in hypothesis testing. The t distribution is also a
popular choice for modeling the returns of financial assets, since it displays
excess kurtosis.

F -D ISTRIBUTION

If U1 and U2 are two independent chi-squared distributions with k1 and k2

degrees of freedom, respectively, then X:

X = U1/k1

U2/k2
∼ F (k1, k2) (4.31)

follows an F-distribution with parameters k1 and k2.
The probability density function of the F-distribution, as with the chi-

squared distribution, is rather complicated:

f (x) =

√
(k1x)k1kk2

2

(k1x + k2)k1+k2

xB
(

k1

2
,

k2

2

) (4.32)

where B(x, y) is the beta function:

B(x, y) =
∫ 1

0
zx−1(1 − z)y−1dz (4.33)

As with the chi-squared and Student’s t distributions, memorizing the
probability density function is probably not something most risk managers
would be expected to do; rather, it is important to understand the general
shape and some properties of the distribution.

Figure 4.11 shows the probability density functions for several
F-distributions. Because the chi-squared PDF is zero for negative values,
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F IGURE 4.11 F-Distribution Probability Density Functions

the F-distribution’s density function is also zero for negative values. The
mean and variance of the F-distribution are as follows:

� = k2

k2 − 2
for k2 � 2

�2 = 2k2
2(k1 + k2 − 2)

k1(k2 − 2)2(k2 − 4)
for k2 � 4

(4.34)

As k1 and k2 increase, the mean and mode converge to one. As k1 and k2

approach infinity, the F-distribution converges to a normal distribution.
There is also a nice relationship between Student’s t distribution and the

F-distribution. From the description of the t distribution, Equation 4.29, it
is easy to see that the square of a variable with a t distribution has an F-
distribution. More specifically, if X is a random variable with a t distribution
with k degrees of freedom, then X2 has an F distribution with 1 and k degrees
of freedom:

X2 ∼ F (1, k) (4.35)
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MIXTURE DISTRIBUTIONS

Imagine a stock whose log returns follow a normal distribution with low
volatility 90% of the time, and a normal distribution with high volatility
10% of the time. Most of the time the world is relatively dull, and the
stock just bounces along. Occasionally, though—maybe there is an earnings
announcement or some other news event—the stock’s behavior is more
extreme. We could write the combined density function as:

f (x) = wL fL(x) + wH fH(x) (4.36)

where wL = 0.90 is the probability of the return coming from the low-
volatility distribution, fL(x), and wH = 0.10 is the probability of the return
coming from the high-volatility distribution fH(x). We can think of this as
a two-step process. First, we randomly choose the high or low distribution,
with a 90% chance of picking the low distribution. Second, we generate a
random return from the chosen normal distribution. The final distribution,
f (x), is a legitimate probability distribution in its own right, and although it
is equally valid to describe a random draw directly from this distribution, it
is often helpful to think in terms of this two-step process.

Note that the two-step process is not the same as the process described
in a previous section for adding two random variables together. An example
of adding two random variables together is a portfolio of two stocks. At
each point in time, each stock generates a random return, and the portfolio
return is the sum of both returns. In the case we are describing now, the
return appears to come from either the low-volatility distribution or the
high-volatility distribution. Adding the probability density functions is not
the same as adding random variables.

The distribution that results from a weighted average distribution of
density functions is known as a mixture distribution. More generally, we
can create a distribution:

f (x) =
n∑

i=1

wi fi (x) s.t.
n∑

i=1

wi = 1 (4.37)

where the various fi(x)’s are known as the component distributions, and the
wi’s are known as the mixing proportions or weights. Notice that in order
for the resulting mixture distribution to be a legitimate distribution, the sum
of the component weights must equal one.

Mixture distributions are extremely flexible. In a sense they occupy a
realm between parametric distributions and nonparametric distributions. In
a typical mixture distribution, the component distributions are parametric,
but the weights are based on empirical data, which is nonparametric. Just
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as there is a trade-off between parametric distributions and nonparametric
distributions, there is a trade-off between using a low number and a high
number of component distributions. By adding more and more component
distributions, we can approximate any data set with increasing precision.
At the same time, as we add more and more component distributions, the
conclusions that we can draw tend to become less general in nature.

Just by adding two normal distributions together, we can develop a
large number of interesting distributions. Similar to the previous exam-
ple, if we combine two normal distributions with the same mean but dif-
ferent variances, we can get a symmetrical mixture distribution that dis-
plays excess kurtosis. By shifting the mean of one distribution, we can also
create a distribution with positive or negative skew. Figure 4.12 shows
an example of a skewed mixture distribution created from two normal
distributions.

Finally, if we move the means far enough apart, the resulting mixture
distribution will be bimodal; that is, the PDF will have two distinct maxima,
as shown in Figure 4.13.

Mixture distributions can be extremely useful in risk management. Se-
curities whose return distributions are skewed or have excess kurtosis are

Skewed Density Function
0.5N (0,1) + 0.5N (–1,4)
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F IGURE 4.12 Skewed Mixture Distribution
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Bimodal Density Function
0.5N (2,1) + 0.5N (–2,1)
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F IGURE 4.13 Bimodal Mixture Distribution

often considered riskier than normal distributions, since extreme events can
occur more frequently. Mixture distributions provide a ready method for
modeling these attributes.

A bimodal distribution can be extremely risky. If one component of a
security’s returns has an extremely low mixing weight, we might be tempted
to ignore that component. If the component has an extremely negative mean,
though, ignoring it could lead us to severely underestimate the risk of the
security. Equity market crashes are a perfect example of an extremely low-
probability, highly negative mean event.

SAMPLE PROBLEM

Question:
Assume we have a mixture distribution with two independent com-

ponents with equal variance. Prove that the variance of the mixture
distribution must be greater than or equal to the variance of the two
component distributions.
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Answer:
Assume the two random variables, X1, and X2, have variance �2.

The means are �1 and �2, with corresponding weights w and (1 – w).
The mean of the mixture distribution, X, is just the weighted

average of the two means:

� = E[X] = w1E[X1] + w2 E[X2] = w�1 + (1 − w)�2

The variance is then:

E[(X − �)2)] = w1 E[(X1 − �)2)] + (1 − w)E[(X2 − �)2]

First, we solve for one term on the right-hand side:

E[(X1 − �)2] = E[(X1 − w�1 − (1 − w)�2)2]

= E[(X1 − �1 − (1 − w)(�2 − �1))2]

= E[(X1 − �1)2 − 2(X1 − �1)(1 − w)(�2 − �1)

+ (1 − w)2(�2 − �1)2]

= �2 + (1 − w)2(�1 − �2)2

Similarly for the second term:

E[(X2 − �)2] = �2 + w2(�1 − �2)2

Substituting back into our original equation for variance:

E[(X − �)2)] = �2 + w(1 − w)(�1 − �2)2

Because w and (1 – w) are always positive and (�1 – �2)2 has
a minimum of zero when u1 equals u2, the variance of the mixture
distribution must always be greater than or equal to �2. When u1

equals u2, the two components are equal and the distribution collapses
to a normal distribution with variance �2.

PROBLEMS

1. XYZ Corporation announces its earnings four times per year. Based
on historical data, you estimate that in any given quarter the probabil-
ity that XYZ Corporation’s earnings will exceed consensus estimates
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is 30%. Also, the probability of exceeding the consensus in any one
quarter is independent of the outcome in any other quarter. What is the
probability that XYZ Corporation will exceed estimates three times in
a given year?

2. The market risk group at your firm has developed a Value at Risk
(VaR) model. In Chapter 5 we examine VaR models more closely. In the
meantime, assume the probability of an exceedance event on any given
day is 5%, and the probability of an exceedance event occurring on any
given day is independent of an exceedance event having occurred on any
previous day. What is the probability that there are two exceedances
over 20 days?

3. Assume the annual returns of Fund A are normally distributed with a
mean and standard deviation of 30%. The annual returns of Fund B are
also normally distributed, but with a mean and standard deviation of
40%. The returns of both funds are uncorrelated to each other. What is
the mean and standard deviation of the difference of the returns of the
two funds, Fund B minus Fund A? At the end of the year, Fund B has
returned 80%, and Fund A has lost 12%. How likely is it that Fund B
outperforms Fund A by this much or more?

4. The number of defaults per month in a large bond portfolio follows
a Poisson distribution. On average, there are two defaults per month.
The number of defaults is independent from one month to the next.
What is the probability that there are five defaults over five months?
Ten defaults? Fifteen defaults?

5. The annual returns of an emerging markets bond fund have a mean
return of 10% and a standard deviation of 15%. Your firm invests
$200 million into the fund. What is the probability of losing more
than $18.4 million? Assume the returns are normally distributed, and
ignore the limited liability constraint (i.e., the impossibility of losing
more than the initial $200 million investment).

6. The annual returns of an emerging markets exchange-traded fund (ETF)
have an expected return of 20.60% and a standard deviation of 30.85%.
You are asked to estimate the likelihood of extreme return scenarios.
Assume the returns are normally distributed. What is the probability
that returns are worse than –30%?

7. For a uniform distribution with a lower bound x1 and an upper bound
x2, prove that the formulas for calculating the mean and variance are:

� = 1
2

(x2 + x1)

�2 = 1
12

(x2 − x1)2
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8. Prove that the normal distribution is a proper probability distribution.
That is, show that:

∞∫
−∞

1√
2��2

e
(x−�)2

2�2 dx = 1

You may find it necessary to use the Gaussian integral:

∞∫
−∞

e−x2
dx = √

�

9. Prove that the mean of the normal distribution, as specified in Equa-
tion 4.12, is �. That is, show that:

∞∫
−∞

x
1√

2��2
e

(x−�)2

2�2 dx = �

10. Prove that the variance of a normal distribution, as specified in Equa-
tion 4.12, is �2. You may find the following result useful:

∞∫
−∞

x2e−x2
dx = 1

2

√
�

11. Prove that the correlation between XA and XB is 	 , where:

XA = √
	 X1 +

√
1 − 	 X2

XB = √
	 X1 +

√
1 − 	 X3

and X1, X2, and X3 are uncorrelated standard normal variables.
12. Imagine we have two independent uniform distributions, A and B. A

ranges between –2 and –1, and is zero everywhere else. B ranges between
+1 and +2, and is zero everywhere else. What are the mean and standard
deviation of a portfolio that consists of 50% A and 50% B? What are
the mean and standard deviation of a portfolio where the return is a
50/50 mixture distribution of A and B?
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CHAPTER 5
Hypothesis Testing &
Confidence Intervals

I n this chapter we will explore two closely related topics, confidence in-
tervals and hypothesis testing. At the end of the chapter, we will explore

applications, including value at risk (VaR).

THE SAMPLE MEAN REVIS ITED

Imagine we take the output from a standard random number generator on
a computer, and multiply it by 100. The resulting data generating process
(DGP) is a uniform random variable, which ranges between 0 and 100, with
a mean of 50. If we generate 20 draws from this DGP and calculate the
sample mean of those 20 draws, it is unlikely that the sample mean will
be exactly 50. The sample mean might round to 50, say 50.03906724, but
exactly 50 is next to impossible. In fact, given that we have only 20 data
points, the sample mean might not even be close to the true mean.

The sample mean is actually a random variable itself. If we continue
to repeat the experiment—generating 20 data points and calculating the
sample mean each time—the calculated sample mean will be different every
time. As we proved in Chapter 3, even though we never get exactly 50, the
expected value of each sample mean is in fact 50. It might sound strange to
say it, but the mean of our sample mean is the true mean of the distribution.
Using our standard notation:

E[�̂] = � (5.1)

Instead of 20 data points, what if we generate 1,000 data points? With
1,000 data points, the expected value of our sample mean is still 50, just as
it was with 20 data points. While we still don’t expect our sample mean to

105
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be exactly 50, we expect our sample mean will tend to be closer when we
are using 1,000 data points. The reason is simple: a single outlier won’t have
nearly the impact in a pool of 1,000 data points that it will in a pool of 20.
If we continue to generate sets of 1,000 data points, it stands to reason that
the standard deviation of our sample mean will be lower with 1,000 data
points than it would be if our sets contained only 20 data points.

It turns out that the variance of our sample mean doesn’t just decrease
with the sample size; it decreases in a predictable way, in proportion to the
sample size. In other words, if our sample size is n and the true variance of
our DGP is �2, then the variance of the sample mean is:

�2
�̂ = �2

n
(5.2)

It follows that the standard deviation of the sample mean decreases with
the square root of n. This square root is important. In order to reduce the
standard deviation of the mean by a factor of 2, we need four times as many
data points. To reduce it by a factor of 10, we need 100 times as much data.
This is yet another example of the famous square root rule for independent
and identically distributed (i.i.d.) variables.

In our current example, because the DGP follows a uniform distribution,
we can easily calculate the variance of each data point, which is 10,000/12 =
833.33 (Equation 4.4). This is equivalent to a standard deviation of approx-
imately 28.87. For 20 data points, the standard deviation of the mean will
then be 28.87/

√
20 = 6.45, and for 1,000 data points, the standard deviation

will be 28.87/
√

1, 000 = 0.91.
We have the mean and the standard deviation of our sample mean, but

what about the shape of the distribution? You might think that the shape of
the distribution would depend on the shape of the underlying distribution
of the DGP. If we recast our formula for the sample mean slightly, though:

�̂ = 1
n

n∑
i=1

xi =
n∑

i=1

1
n

xi (5.3)

and regard each of the (1/n)xi’s as a random variable in its own right, we see
that our sample mean is equivalent to the sum of n i.i.d. random variables,
each with a mean of �/n and a standard deviation of �/n. Using the central
limit theorem, we claim that the distribution of the sample mean converges to
a normal distribution. For large values of n, the distribution of the sample
mean will be extremely close to a normal distribution. Practitioners will
often assume that the sample mean is normally distributed.
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SAMPLE PROBLEM

Question:
You are given 10 years of monthly returns for a portfolio manager.

The mean monthly return is 2.3%, and the standard deviation of the
returns series is 3.6%. What is the standard deviation of the mean?

The portfolio manager is being compared against a benchmark
with a mean monthly return of 1.5%. What is the probability that the
portfolio manager’s mean return exceeds the benchmark? Assume the
sample mean is normally distributed.

Answer:
There are a total of 120 data points in the sample (10 years ×

12 months per year). The standard deviation of the mean is then 0.33%:

��̂ = �√
n

= 3.6%√
120

= 0.33%

The distance between the portfolio manager’s mean return and the
benchmark is −2.43 standard deviations: (1.50% − 2.30%)/0.33% =
−2.43. For a normal distribution, 99.25% of the distribution lies above
−2.43 standard deviations, and only 0.75% lies below. The difference
between the portfolio manager and the benchmark is highly significant.

SAMPLE VARIANCE REVIS ITED

Just as with the sample mean, we can treat the sample variance as a random
variable. For a given DGP if we repeatedly calculate the sample variance,
the expected value of the sample variance will equal the true variance, and
the variance of the sample variance will equal:

E[(�̂2 − �2)2] = �4
(

2
n − 1

+ �

n

)
(5.4)

where n is the sample size, and � is the excess kurtosis.
If the DGP has a normal distribution, then we can also say something

about the shape of the distribution of the sample variance. If we have n
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sample points and �̂2 is the sample variance, then our estimator will follow
a chi-squared distribution with (n − 1) degrees of freedom:

(n − 1)
�̂2

�2
∼ � 2

n−1 (5.5)

where �2 is the population variance. Note that this is true only when the
DGP has a normal distribution. Unfortunately, unlike the case of the sample
mean, we cannot apply the central limit theorem here. Even when the sample
size is large, if the underlying distribution is nonnormal, the statistic in
Equation 5.5 can vary significantly from a chi-squared distribution.

CONFIDENCE INTERVALS

In our discussion of the sample mean, we assumed that the standard devia-
tion of the underlying distribution was known. In practice, the true standard
deviation is likely to be unknown. At the same time we are measuring our
sample mean, we will typically be measuring a sample variance as well.

It turns out that if we first standardize our estimate of the sample mean
using the sample standard deviation, the new random variable follows a
Student’s t distribution with (n − 1) degrees of freedom:

t = �̂ − �

�̂/
√

n
(5.6)

Here the numerator is simply the difference between the sample mean
and the population mean, while the denominator is the sample standard
deviation divided by the square root of the sample size. To see why this
new variable follows a t distribution, we simply need to divide both the
numerator and the denominator by the population standard deviation. This
creates a standard normal variable in the numerator, and the square root of
a chi-square variable in the denominator with the appropriate constant. We
know from the previous chapter on distributions that this combination of
random variables follows a t distribution. This standardized version of the
population mean is so frequently used that it is referred to as a t-statistic, or
simply a t-stat.

Technically, this result requires that the underlying distribution be nor-
mally distributed. As was the case with the sample variance, the denomina-
tor may not follow a chi-squared distribution if the underlying distribution
is nonnormal. Oddly enough, for large sample sizes the overall t-statistic
still converges to a t distribution. If the sample size is small and the data
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distribution is nonnormal, be aware that the t-statistic, as defined here, may
not be well approximated by a t distribution.

By looking up the appropriate values for the t distribution, we can
establish the probability that our t-statistic is contained within a certain
range:

P
[

xL ≤ �̂ − �

�̂/
√

n
≤ xU

]
= 1 − � (5.7)

where xL and xU are constants, which, respectively, define the lower and
upper bounds of the range within the t distribution, and (1 − �) is the
probability that our t-statistic will be found within that range. The right-
hand side may seem a bit awkward, but, by convention, (1 − �) is called the
confidence level, while � by itself is known as the significance level.

In practice, the population mean, �, is often unknown. By rearranging
the previous equation we come to an equation with a more interesting form:

P
[

�̂ − xL�̂√
n

≤ � ≤ �̂ + xU�̂√
n

]
= 1 − � (5.8)

Looked at this way, we are now giving the probability that the popula-
tion mean will be contained within the defined range. When it is formulated
this way, we call this range the confidence interval for the population mean.
Confidence intervals are not limited to the population mean. Though it
may not be as simple, in theory we can define a confidence level for any
distribution parameter.

HYPOTHESIS TESTING

One problem with confidence intervals is that they require us to settle on
an arbitrary confidence level. While 95% and 99% are common choices for
the confidence level in risk management, there is nothing sacred about these
numbers. It would be perfectly legitimate to construct a 74.92% confidence
interval. At the same time, we are often concerned with the probability
that a certain variable exceeds a threshold. For example, given the observed
returns of a mutual fund, what is the probability that the standard deviation
of those returns is less than 20%?

In a sense, we want to turn the confidence interval around. Rather than
saying there is an x% probability that the population mean is contained
within a given interval, we want to know what the probability is that the



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c05 JWBT625-Miller January 9, 2012 23:45 Printer: Courier Westford

110 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

population mean is greater than y. When we pose the question this way, we
are in the realm of hypothesis testing.

Traditionally the question is put in the form of a null hypothesis. If we
are interested in knowing if the expected return of a portfolio manager is
greater than 10%, we would write:

H0 : �r � 10% (5.9)

where H0 is known as the null hypothesis. Even though the true population
mean is unknown, for the hypothesis test we assume the population mean
is 10%. In effect, we are asking, if the true population mean is 10%, what
is the probability that we would see a given sample mean? With our null
hypothesis in hand, we gather our data, calculate the sample mean, and form
the appropriate t-statistic. In this case, the appropriate t-statistic is:

t = �̂ − 10%
�/

√
n

(5.10)

We can then look up the corresponding probability from the t distri-
bution.

In addition to the null hypothesis, we can offer an alternative hypothesis.
In the previous example, where our null hypothesis is that the expected
return is greater than 10%, the logical alternative would be that the expected
return is less than or equal to 10%:

H1 : �r ≤ 10% (5.11)

In principle, we could test any number of hypotheses. In practice, as
long as the alternative is trivial, we tend to limit ourselves to stating the null
hypothesis.

Which Way to Test?

If we want to know if the expected return of a portfolio manager is greater
than 10%, the obvious statement of the null hypothesis might seem to be
�r � 10%. But there is no reason that we couldn’t have started with the
alternative hypothesis, that �r ≤ 10%. Finding that the first is true and
finding that the second is false are logically equivalent.

Many practitioners construct the null hypothesis so that the desired
result is false. If we are an investor trying to find good portfolio managers,
then we would make the null hypothesis �r ≤ 10%. That we want the
expected return to be greater than 10% but we are testing for the opposite
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makes us seem objective. Unfortunately, in the case where there is a high
probability that the manager’s expected return is greater than 10% (a good
result), we have to say, “We reject the null hypothesis that the manager’s
returns are less than or equal to 10% at the x% level.” This is very close to
a double negative. Like a medical test where the good outcome is negative
and the bad outcome is positive, we often find that the good outcome for a
null hypothesis is rejection.

To make matters more complicated, what happens if the portfolio man-
ager doesn’t seem to be that good? If we rejected the null hypothesis when
there was a high probability that the portfolio manager’s expected return
was greater than 10%, should we accept the null hypothesis when there is a
high probability that the returns are less than 10%? In the realm of statistics,
outright acceptance seems too certain. In practice, we can do two things.
First, we can state that the probability of rejecting the null hypothesis is low
(e.g., “The probability of rejecting the null hypothesis is only 4.2%”). More
often we say that we fail to reject the null hypothesis (e.g., “We fail to reject
the null hypothesis at the 95.8% level”).

SAMPLE PROBLEM

Question:
At the start of the year, you believed that the annualized volatility

of XYZ Corporation’s equity was 45%. At the end of the year, you
have collected a year of daily returns, 256 business days’ worth. You
calculate the standard deviation, annualize it, and come up with a value
of 48%. Can you reject the null hypothesis, H0: � = 45%, at the 95%
confidence level?

Answer:
The appropriate test statistic is:

(n − 1)
�̂2

�2
= (256 − 1)

0.482

0.452
= 290.13 ∼ � 2

255

Notice that annualizing the standard deviation has no impact on
the test statistic. The same factor would appear in the numerator and
the denominator, leaving the ratio unchanged. For a chi-squared dis-
tribution with 255 degrees of freedom, 290.13 corresponds to a prob-
ability of 6.44%. We fail to reject the null hypothesis at the 95%
confidence level.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c05 JWBT625-Miller January 9, 2012 23:45 Printer: Courier Westford

112 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

One Tai l or Two

Novice statisticians often get confused about the choice between one-tailed
and two-tailed critical values. In many scientific fields where positive and
negative deviations are equally important, two-tailed confidence levels are
the more prevalent. In risk management, more often than not, we are more
concerned with the probability of bad outcomes, and this concern naturally
leads to one-tailed tests.

A two-tailed null hypothesis could take the form:

H0 : � = 0

H1 : � �= 0
(5.12)

In this case, H1 implies that extreme positive or negative values would
cause us to reject the null hypothesis. If we are concerned with both sides of
the distribution (both tails), we should choose a two-tailed test.

A one-tailed test could be of the form:

H0 : � � c

H1 : � ≤ c
(5.13)

In this case, we will reject H0 only if the estimate of � is significantly less
than c. If we are only concerned with deviations in one direction, we should
use a one-tailed test.

As long as the null hypothesis is clearly stated, the choice of a one-tailed
or two-tailed confidence level should be obvious.

The 95% confidence level is a very popular choice for confidence levels,
both in risk management and in the sciences. Many non–risk managers re-
member from their science classes that a 95% confidence level is equivalent
to approximately 1.96 standard deviations. For a two-tailed test this is cor-
rect; for a normal distribution 95% of the mass is within +/–1.96 standard
deviations. For a one-tailed test, though, 95% of the mass is within +/–1.64
standard deviations. Using 1.96 instead of 1.64 is a common mistake for
people new to risk management.

Table 5.1 shows common critical values for t-tests of varying degrees
of freedom and for a normal distribution. Notice that all distributions are
symmetrical. For small sample sizes, extreme values are more likely, but
as the sample size increases, the t distribution converges to the normal
distribution. For 5% significance with 100 degrees of freedom, the difference
between our rule of thumb based on the normal distribution, 1.64 standard
deviations, is very close to the actual value of 1.66.
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TABLE 5.1 Common Critical Values for Student’s t Distribution

t10 t100 t1,000 N

1.0% −2.76 −2.36 −2.33 −2.33
2.5% −2.23 −1.98 −1.96 −1.96
5.0% −1.81 −1.66 −1.65 −1.64

10.0% −1.37 −1.29 −1.28 −1.28
90.0% 1.37 1.29 1.28 1.28
95.0% 1.81 1.66 1.65 1.64
97.5% 2.23 1.98 1.96 1.96
99.0% 2.76 2.36 2.33 2.33

The Conf idence Level Returns

As we stated at the beginning of this section, one of the great things about a
hypothesis test is that we are not required to choose an arbitrary confidence
level. In practice, though, 95% and 99% confidence levels are such gold
standards that we often end up referring back to them. If we can reject
a null hypothesis at the 96.3% confidence level, some practitioners will
simply say that the hypothesis was rejected at the 95% confidence level. The
implication is that even though we may be more confident, 95% is enough.
This convention can be convenient when testing a hypothesis repeatedly. As
an example, we might want to test the validity of a risk model against new
market data every day and be alerted only when the hypothesis cannot be
rejected at the 95% confidence level. In the end, our inability to decide on a
universal confidence level should serve as a reminder that, in statistics, there
is no such thing as a sure bet; there is no such thing as absolute certainty.

CHEBYSHEV’S INEQUALITY

In the preceding sections, we were working with sample statistics where the
shape of the distribution was known. Amazingly, even if we do not know the
entire distribution of a random variable, we can form a confidence interval,
as long as we know the variance of the variable. For a random variable, X,
with a standard deviation of �, the probability that X is within n standard
deviations of � is less than or equal to 1/n2:

P[|X − �| ≥ n�] ≤ 1
n2

(5.14)

This is a result of what is known as Chebyshev’s inequality.
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For a given level of variance, Chebyshev’s inequality places an upper
limit on the probability of a variable being more than a certain distance from
its mean. For a given distribution, the actual probability may be considerably
less. Take, for example, a standard normal variable. Chebyshev’s inequality
tells us that the probability of being greater than two standard deviations
from the mean is less than or equal to 25%. The exact probability for a
standard normal variable is closer to 5%, which is indeed less than 25%.

Chebyshev’s inequality makes clear how assuming normality can be very
anticonservative. If a variable is normally distributed, the probability of a
three standard deviation event is very small, 0.27%. If we assume normality,
we will assume that three standard deviation events are very rare. For other
distributions, though, Chebyshev’s inequality tells us that the probability
could be as high as 1/9, or approximately 11%. Eleven percent is hardly
a rare occurrence. Assuming normality when a random variable is in fact
not normal can lead to a severe underestimation of risk. Risk managers
take note!

APPLICATION: VaR

Value at risk (VaR) is one of the most widely used risk measures in finance.
VaR was popularized by J.P. Morgan in the 1990s. The executives at J.P.
Morgan wanted their risk managers to generate one statistic at the end of
each day, which summarized the risk of the firm’s entire portfolio. What
they came up with was VaR.

Figure 5.1 provides a graphical representation of VaR. If the 95% VaR
of a portfolio is $100, then we expect the portfolio will lose $100 or less in
95% of the scenarios, and lose $100 or more in 5% of the scenarios. We can
define VaR for any level of confidence, but 95% has become an extremely
popular choice in finance. The time horizon also needs to be specified for
VaR. On trading desks, with liquid portfolios, it is common to measure
the one-day 95% VaR. In other settings, in which less liquid assets may be
involved, time frames of up to one year are not uncommon. VaR is decidedly
a one-tailed confidence interval.

For a given confidence level, 1 − �, we can define value at risk more
formally as:

P[L ≤ VaR�] = 1 − � (5.15)

where the random variable L is our loss.
Value at risk is often described as a confidence interval. As we saw

earlier in this chapter, the term confidence interval is generally applied to



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c05 JWBT625-Miller January 9, 2012 23:45 Printer: Courier Westford

Hypothesis Testing & Confidence Intervals 115

x %

V
aR

F IGURE 5.1 Value at Risk Example

the estimation of distribution parameters. In practice, when calculating VaR,
the distribution is often taken as a given. Either way, the tools, concepts,
and vocabulary are the same. So even though VaR may not technically be a
confidence interval, we still refer to the confidence level of VaR.

Most practitioners reverse the sign of L when quoting VaR numbers. By
this convention, a 95% VaR of $400 implies that there is a 5% probability
that the portfolio will lose $400 or more. Because this represents a loss,
others would say that the VaR is –$400. The former is more popular, and is
the convention used throughout the rest of the book. In practice, it is often
best to avoid any ambiguity by, for example, stating that the VaR is equal
to a loss of $400.

If an actual loss exceeds the predicted VaR threshold, that event is
known as an exceedance. Another assumption of VaR models is that ex-
ceedance events are uncorrelated with each other. In other words, if our
VaR measure is set at a one-day 95% confidence level, and there is an ex-
ceedance event today, then the probability of an exceedance event tomorrow
is still 5%. An exceedance event today has no impact on the probability of
future exceedance events.
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SAMPLE PROBLEM

Question:
The probability density function (PDF) for daily profits at Triangle

Asset Management can be described by the following function:

p = 1
10

+ 1
100

� − 10 ≤ � ≤ 0

p = 1
10

− 1
100

� 0 	 � ≤ 10

0.00

0.10

–12 –10 –8 –6 –4 –2 0 2 4 6 8 10 12
π

p

Triangular Probability Density Function

What is the one-day 95% VaR for Triangle Asset Management?

Answer:
To find the 95% VaR, we need to find a, such that:

a∫
−10

pd� = 0.05
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By inspection, half the distribution is below zero, so we need only
bother with the first half of the function:

a∫
−10

(
1

10
+ 1

100
�

)
d� =

[
1

10
� + 1

200
�2

]a

−10

= 1
10

a + 1
200

a2 + 0.50 = 0.05

a2 + 20a + 90 = 0

Using the quadratic formula, we can solve for a:

a = −20 ± √
400 − 4 • 90
2

= −10 ±
√

10

Because the distribution is not defined for � 	 –10, we can ignore
the negative, giving us the final answer:

a = −10 +
√

10 = −6.84

The one-day 95% VaR for Triangle Asset Management is a loss
of approximately 6.84.

Back-Test ing

An obvious concern when using VaR is choosing the appropriate confidence
interval. As mentioned, 95% has become a very popular choice in risk man-
agement. In some settings there may be a natural choice for the confidence
level, but most of the time the exact choice is arbitrary.

A common mistake for newcomers is to choose a confidence level that
is too high. Naturally, a higher confidence level sounds more conservative.
A risk manager who measures one-day VaR at the 95% confidence level
will, on average, experience an exceedance event every 20 days. A risk
manager who measures VaR at the 99.9% confidence level expects to see an
exceedance only once every 1,000 days. Is an event that happens once every
20 days really something that we need to worry about? It is tempting to
believe that the risk manager using the 99.9% confidence level is concerned
with more serious, riskier outcomes, and is therefore doing a better job.

The problem is that, as we go further and further out into the tail of the
distribution, we become less and less certain of the shape of the distribution.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c05 JWBT625-Miller January 9, 2012 23:45 Printer: Courier Westford

118 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

In most cases, the assumed distribution of returns for our portfolio will be
based on historical data. If we have 1,000 data points, then there are 50 data
points to back up our 95% confidence level, but only one to back up our
99.9% confidence level. As with any distribution parameter, the variance
of our estimate of the parameter decreases with the sample size. One data
point is hardly a good sample size on which to base a parameter estimate.

A related problem has to do with back-testing. Good risk managers
should regularly back-test their models. Back-testing entails checking the
predicted outcome of a model against actual data. Any model parameter
can be back-tested.

In the case of VaR, back-testing is easy. As we saw in a problem at the
end of Chapter 4, each period can be viewed as a Bernoulli trial. In the case
of one-day 95% VaR, there is a 5% chance of an exceedance event each day,
and a 95% chance that there is no exceedance. Because exceedance events
are independent, over the course of n days, the distribution of exceedances
follows a binomial distribution:

P[K = k] =
(

n
k

)
pk(1 − p)n−k (5.16)

In this case, n is the number of periods that we are using to back-test, k is
the number of exceedances, and (1 − p) is our confidence level.

SAMPLE PROBLEM

Question:
As a risk manager, you are tasked with calculating a daily 95%

VaR statistic for a large fixed income portfolio. Over the past 100 days,
there have been four exceedances. How many exceedances should you
have expected? What was the probability of exactly four exceedances
during this time? Four or less? Four or more?

Answer:
The probability of exactly four exceedances is 17.81%:

P[K = 4] =
(

100
4

)
0.054(1 − 0.05)100−4 = 0.1781

Remember, by convention, for a 95% VaR the probability of an
exceedance is 5%, not 95%.
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The probability of four or fewer exceedances is 43.60%. Here we
simply do the same calculation as in the first part of the problem, but
for zero, one, two, three, and four exceedances. It’s important not to
forget zero:

P[K ≤ 4] =
4∑

k=0

(
100

k

)
0.05k(1 − 0.05)100−k

= 0.0059 + 0.0312 + 0.0812 + 0.1396 + 0.1781 = 0.4360

For the final result, we could use the brute force approach and
calculate the probability for k = 4, 5, 6, . . . , 99, 100, a total of 97
calculations. Instead we realize that the sum of all probabilities from 0
to 100 must be 100%; therefore, if the probability of K ≤ 4 is 43.60%,
then the probability of K � 4 must be 100% − 43.60% = 56.40%. Be
careful, though, as what we want is the probability for K ≥ 4. To get
this, we simply add the probability that K = 4, from the first part of
our question, to get the final answer, 74.21%:

P[K ≥ 4] = 0.5640 + 0.1781 = 0.7421

Subaddit iv i ty

There is a reason VaR has become so popular in risk management. The
appeal of VaR is its simplicity. Because VaR can be calculated for any
portfolio, it allows us to easily compare the risk of different portfolios.
Because it boils risk down to a single number, VaR provides us with a
convenient way to track the risk of a portfolio over time. Finally, the concept
of VaR is intuitive, even to those not versed in statistics.

Because it is so popular, VaR has come under a lot of criticism. The
criticism generally falls into one of three categories.

At a very high level, financial institutions have been criticized for being
overly reliant on VaR. This is not so much a criticism of VaR as it is a
criticism of financial institutions for trying to make risk too simple.

At the other end of the spectrum, many experts have criticized how
VaR is measured in practice. This is not so much a criticism of VaR as it is a
criticism of specific implementation of VaR. For example, in the early days of
finance it was popular to make what is known as a delta-normal assumption.
That is, when measuring VaR, you would assume that all asset returns were
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normally distributed, and that all options could be approximated by their
delta exposures. Further, the relationship between assets was based entirely
on a covariance matrix (no coskewness or cokurtosis). These assumptions
made calculating VaR very easy, even for large portfolios, but the results
were often disappointing. As computing power became cheaper and more
widespread, this approach quickly fell out of favor. Today VaR models can
be extremely complex, but many people outside of risk management still
remember when delta-normal was the standard approach, and mistakenly
believe that this is a fundamental shortcoming of VaR.

In between, there are more sophisticated criticisms. One such criticism is
that VaR is not a subadditive risk measure. It is generally accepted that a log-
ical risk measure should have certain properties; see, for example, Artzner,
Delbaen, Eber, and Heath (1999). One such property is known as subaddi-
tivity. Subadditivity is basically a fancy way of saying that diversification is
good, and a good risk measure should reflect that.

Assume our risk measure is a function f that takes as its input a random
variable representing an asset or portfolio of assets. Higher values of the risk
measure are associated with greater risk. If we have two risky portfolios, X
and Y, then f is said to be subadditive if:

f (X + Y) ≤ f (X) + f (Y) (5.17)

In other words, the risk of the combined portfolio, (X + Y), is less than
or equal to the sum of the risks of the separate portfolios. Variance and
standard deviation are subadditive risk measures.

While there is lots to recommend VaR, unfortunately it does not always
satisfy the requirement of subadditivity. The following example demon-
strates a violation of subadditivity.

SAMPLE PROBLEM

Question:
Imagine a portfolio with two bonds, each with a 4% probability of

defaulting. Assume that default events are uncorrelated and that there
is a recovery rate of 0%. The bonds are currently worth $100 each.
If a bond defaults, it is worth $0; if it does not, it is still worth $100.
What is the 95% VaR of each bond separately? What is the 95% VaR
of the bond portfolio?
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Answer:
For each bond separately, the 95% VaR is $0. For an individual

bond, in (over) 95% of scenarios, there is no loss.
In the combined portfolio, however, there are three possibilities,

with the following probabilities:

P[x] x

0.16% −$200

7.68% −$100

92.16% $0

As we can easily see, there are no defaults in only 92.16% =
(1 − 4%)2 of the scenarios. In the other 7.84% of scenarios, the loss
is greater than or equal to $100. The 95% VaR of the portfolio is
therefore $100.

Because the VaR of the combined portfolio is greater than the sum
of the VaRs of the separate portfolios, VaR seems to suggest that there
is no diversification benefit, even though the bonds are uncorrelated. It
seems to suggest that holding $200 of either bond would be less risky
than holding a portfolio with $100 of each. Clearly this is not correct.
For this portfolio, VaR is not subadditive.

This example makes clear that when assets have payout functions that
are discontinuous near the VaR critical level, we are likely to have prob-
lems with subadditivity. By the same token, if the payout functions of
the assets in a portfolio are continuous, then VaR will be subadditive.
In many settings this is not an onerous assumption. In between, we have
large, diverse portfolios, which contain some assets with discontinuous
payout functions. For these portfolios subadditivity will likely be only a
minor issue.

Expected Shortfa l l

Another criticism of VaR is that it does not tell us anything about the tail of
the distribution. Two portfolios could have the exact same 95% VaR, but
very different distributions beyond the 95% confidence level.

More than VaR, then, what we really want to know is how big the loss
will be when we have an exceedance event. Using the concept of conditional
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probability, we can define the expected value of a loss, given an exceedance,
as follows:

E[L|L � VaR�] = S (5.18)

we refer to this conditional expected loss, S, as the expected shortfall.
If the profit function has a probability density function given by f (x),

and VaR is the VaR at the � confidence level, we can find the expected
shortfall as:

S = 1
1 − �

VaR∫
−∞

xf (x)dx (5.19)

In most cases the VaR for a portfolio will correspond to a loss, and
Equation 5.19 will produce a negative value. As with VaR, it is common to
reverse the sign when speaking about the expected shortfall.

Expected shortfall does answer an important question. What’s more,
expected shortfall turns out to be subadditive, thereby avoiding one of
the major criticisms of VaR. As our discussion on back-testing suggests,
though, the reliability of our expected shortfall measure may be difficult
to gauge.

SAMPLE PROBLEM

Question:
In a previous example, the probability density function of Triangle

Asset Management’s daily profits could be described by the following
function:

p = 1
10

+ 1
100

� − 10 ≤ � ≤ 0

p = 1
10

− 1
100

� 0 	 � ≤ 10

We calculated Triangle’s one-day 95% VaR as a loss of (10 −√
10) = 6.84. For the same confidence level and time horizon, what is

the expected shortfall?
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π

p

ES

VaR

Triangular PDF, VaR, and Expected Shortfall

Answer:
Because the VaR occurs in the region where � 	 0, we only

need to utilize the first half of the function. Using Equation 5.19, we
have:

S = 1
0.05

VaR∫
−10

�pd� = 20

VaR∫
−10

�

(
1

10
+ 1

100
�

)
d�

=
VaR∫

−10

(
2� + �2

5

)
d� =

[
�2 + 1

15
�3

]VaR

−10

S =
((

−10 + √
10

)2
+ 1

15

(
−10 +

√
10

)3
)

−
(

(−10)2 + 1
15

(−10)3
)

S = −10 + 2
3

√
10 = −7.89
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Thus, the expected shortfall is a loss of 7.89. Intuitively this should
make sense. The expected shortfall must be greater than the VaR, 6.84,
but less than the minimum loss of 10. Because extreme events are less
likely (the height of the PDF decreases away from the center), it also
makes sense that the expected shortfall is closer to the VaR than it is
to the maximum loss.

PROBLEMS

1. Given the following data set, how confident can we be that the mean is
greater than 40?

64 70 20 3 58 13 74 84 47 17

2. You are given the following sample of annual returns for a portfolio
manager. The mean return is positive, but how confident should you be
about this?

–7% 7% 19% 23% –18% –12% 49% 34% –6% –20%

3. You are presented with an investment strategy with a mean return of
20% and a standard deviation of 10%. What is the probability of a
negative return if the returns are normally distributed? What if the
distribution is symmetrical, but otherwise unknown?

4. Suppose you invest in a product whose returns follow a uniform distri-
bution between –40% and +60%. What is the expected return? What
is the 95% VaR? The expected shortfall?

5. You are the risk manager for a portfolio with a mean daily return of
0.40% and a daily standard deviation of 2.3%. Assume the returns are
normally distributed (not a good assumption to make, in general). What
is the 95% VaR?

6. You are told that the log annual returns of a commodities index are
normally distributed with a standard deviation of 40%. You have
33 years of data, from which you calculate the sample variance. What
is the standard deviation of this estimate of the sample variance?

7. In the previous question, you were told that the actual standard devi-
ation was 40%. If, instead of 40%, the measured standard deviation
turns out to be 50%, how confident can you be in the initial assumption?
State a null hypothesis and calculate the corresponding probability.
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8. A hedge fund targets a mean annual return of 15% with a 10% standard
deviation. Last year, the fund returned –5%. What is the probability of a
result this bad or worse happening, given the target mean and standard
deviation? Assume the distribution is symmetrical.

9. A fund of funds has investments in 36 hedge funds. At the end of the
year, the mean return of the constituent hedge funds was 18%. The
standard deviation of the funds’ returns was 12%. The benchmark
return for the fund of funds was 14%. Is the difference between the
average return and the benchmark return statistically significant at the
95% confidence level?

10. The probability density function for daily profits at Box Asset Manage-
ment can be described by the following function:

p = 1
200

− 100 ≤ � ≤ 100

p = 0 − 100 � � � 100

0.00

0.01

–120 –100 –80 –60 –40 –20 0 20 40 60 80 100 120
π

p

Probability Density Function for Box Asset Management

What is the one-day 95% VaR of Box Asset Management?
11. Continuing with our example of Box Asset Management, find the ex-

pected shortfall, using the same PDF and the calculated VaR from the
previous answer.
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12. The probability density function for daily profits at Pyramid Asset Man-
agement can be described by the following functions:

p = 3
80

+ 1
400

� − 15 ≤ � ≤ 5

p = 5
80

− 1
400

� 5 	 � ≤ 25

0.00

0.05

–25 –20 –15 –10 –5 0 5 10 15 20 25
π

p

Probability Density Function for Pyramid Asset Management

The density function is zero for all other values of �. What is the
one-day 95% VaR for Pyramid Asset Management?



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c06 JWBT625-Miller January 10, 2012 0:4 Printer: Courier Westford

CHAPTER 6
Matrix Algebra

T his chapter starts with a brief review of matrix notation and operations.
We then explore the application of matrix algebra to risk management.

MATRIX NOTATION

A matrix is a two-dimensional array of numbers, or variables. By convention,
the size of a matrix is denoted by the number of rows, and then by the number
of columns. For example, the following is a 3 × 2 matrix (pronounced “three
by two”):

A =
⎡
⎣ 3 5

−9 3
10 8

⎤
⎦ (6.1)

Matrices with only one column are also known as vectors. The following
is a 4 × 1 vector:

b =

⎡
⎢⎢⎣

43
17

−56
64

⎤
⎥⎥⎦ (6.2)

In matrix algebra, we typically refer to ordinary real numbers or vari-
ables as scalars. The elements of matrices A and b shown here are all
scalars. Traditionally, as here, matrices are denoted by bold letters. Matrices
with more than one column are designated by bold capital letters, whereas
vectors (i.e., one-column matrices) are designated by bold lowercase let-
ters. Scalars, including the elements of a matrix, are denoted by nonbold
lowercase letters.

127
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The various elements of a matrix are differentiated by subscripts, which
indicate first the row and then the column of the element. For example:

C =
[

c1,1 c1,2

c2,1 c2,2

]
(6.3)

In the case of a vector like b, if it does not cause any ambiguity, we often
just use a single subscript for each of the elements:

b =

⎡
⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎦ (6.4)

Matrices like C with the same number of rows and columns are known
as square matrices. The main diagonal of a square matrix consists of the
entries running down the diagonal from the top-left corner to the bottom-
right corner. In other words, all the entries xi,j, where i = j. If all of the
entries above the main diagonal are zero, then a matrix is said to be a lower
triangular matrix. The following is a 3 × 3 lower triangular matrix:

L =
⎡
⎣ l1,1 0 0

l2,1 l2,2 0
l3,1 l3,2 l3,3

⎤
⎦ (6.5)

Similarly, a matrix in which all of the entries below the main diagonal
are zero is said to be an upper triangular matrix. The following is a 3 × 3
upper diagonal matrix:

U =
⎡
⎣ u1,1 u1,2 u1,3

0 u2,2 u2,3

0 0 u3,3

⎤
⎦ (6.6)

If all of the entries both above and below the main diagonal are zero,
then the matrix is said to be diagonal. The following are all diagonal
matrices:

⎡
⎣15 0 0

0 −9 0
0 0 2

⎤
⎦

[
5.6 0
0 23.9

] ⎡
⎣47 0 0

0 0 0
0 0 3

⎤
⎦ (6.7)
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MATRIX OPERATIONS

The following sections introduce some basic matrix operations. Just as we
can add, subtract, and multiply scalars, we can also add, subtract, and
multiply matrices. We rarely talk about matrix division, but there is inver-
sion, which is analogous. Finally there are operations, such as transposition,
which are unique to matrices.

Addit ion and Subtract ion

To add two matrices together, we simply add the corresponding elements
in each matrix together. Matrix addition can occur only between matrices
with the same number of rows and columns. As an example, suppose we
have two matrices, D and E:

D =
[

32 51
−10 0

]
E =

[
25 −21
3 14

]
(6.8)

We could add them together as follows:

D + E =
[

(d1,1 + e1,1) (d1,2 + e1,2)
(d2,1 + e2,1) (d2,2 + e2,2)

]
=

[
57 30
−7 14

]
(6.9)

Matrix addition is commutative; that is, the order of the matrices does
not matter when we are adding:

D + E = E + D (6.10)

Matrix addition is also associative. If we want to add together more than
two matrices, the order in which we carry out the addition is not important.
Given three matrices, D, E, and F, all the same size:

D + (E + F) = (D + E) + F (6.11)

In other words, we can add E and F together first, and then add the result
to D, or we can add D and E first and add that to F. The result is the same.

We can also multiply a matrix by a scalar. The result is a new matrix,
the same size as the original, but with all the elements multiplied by the
scalar value. Using the matrix A, from before, and a scalar, s = 10:

sA = 10

⎡
⎣ 3 5

−9 3
10 8

⎤
⎦ =

⎡
⎣ 30 50

−90 30
100 80

⎤
⎦ (6.12)
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To subtract one matrix from another matrix, we simply subtract the
corresponding elements in each matrix. Again the matrices must be of the
same size. Using our matrices D and E:

D − E =
[

32 51
−10 0

]
−

[
25 −21

3 14

]
=

[
32 − 25 51 + 21

−10 − 3 0 − 14

]

=
[

7 72
−13 −14

]
(6.13)

Subtraction is equivalent to adding a matrix to a second matrix multi-
plied by –1. It’s slightly more complicated, but we get the same result:

D − E =
[

32 51
−10 0

]
+ (−1)

[
25 −21
3 14

]
=

[
32 51

−10 0

]
+

[−25 21
−3 −14

]

=
[

7 72
−13 −14

]
(6.14)

Because matrix subtraction can also be turned into matrix addition,
matrix subtraction is also commutative and associative.

Mult ip l icat ion

We can also multiply two matrices together. In order to multiply two ma-
trices together, the number of columns in the first matrix must be equal to
the number of rows in the second matrix. The resulting matrix has the same
number of rows as the first matrix and the same number of columns as the
second. For example, the product of a 3 × 2 matrix and a 2 × 5 matrix is a
3 × 5 matrix. To determine each entry in the new matrix, we multiply the
corresponding elements from the same row in the first matrix by the corre-
sponding elements in the same column in the second matrix. For example,
for the following matrices, G and H, to get the first element of the product
matrix, J = GH, we go across the first row of G and down the first column
of H:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ ⋅+⋅
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

⎥
⎦

⎤
⎢
⎣

⎡=⎥
⎦

⎤
⎢
⎣

⎡=

??

?20

??

?8126

48

32

59

16

48

32

59

16

GHJ

HG

(6.15)
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Similarly, to get the first entry in the second row, we go across the second
row of G and down the first column of H:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅+⋅
⋅+⋅

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

?58

?20

?8529

?8126

48

32

59

16
GHGJ (6.16)

To get the second entry in the first row, we go across the first row of G
and down the second column of H:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅+⋅

⋅+⋅⋅+⋅
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

?58

2220

?8529

41368126

48

32

59

16
GHJ (6.17)

Finally, to get the last entry in J, we go across the second row of G, and
down the second column of H:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅+⋅⋅+⋅
⋅+⋅⋅+⋅

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

4758

2220

45398529

41368126

48

32

59

16
J (6.18)

More formally, for the entry in J in the ith row and jth column, ji,j, we
have:

ji, j =
2∑

k=1

gi,khk, j (6.19)

We can generalize this to larger matrices. Assuming G is m × n, and H
is n × p, we would obtain an m × p matrix J = GH, as follows:

GH =

⎡
⎢⎢⎢⎣

g1,1 g1,2 · · · g1,n

g2,1 g2,2 · · · g2,n
...

...
. . .

...
gm,1 gm,2 · · · gm,n

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

h1,1 h1,2 · · · h1,p

h2,1 h2,2 · · · h2,p
...

...
. . .

...
hn,1 hn,2 · · · hn,p

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

g1,i hi,1

n∑
i=1

g1,i hi,2 · · ·
n∑

i=1
g1,i hi,p

n∑
i=1

g2,i hi,1

n∑
i=1

g2,i hi,2 · · ·
n∑

i=1
g2,i hi,p

...
...

. . .
...

n∑
i=1

gm,i hi,1

n∑
i=1

gm,i hi,2 · · ·
n∑

i=1
gm,i hi,p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.20)



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c06 JWBT625-Miller January 10, 2012 0:4 Printer: Courier Westford

132 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

As with matrix addition, matrix multiplication is associative. If we have
three matrices of the appropriate size, G, H, and J, it does not matter if we
multiply H and J together first or G and H. That is:

G(HJ) = (GH)J (6.21)

Be careful, though; unlike matrix addition or scalar multiplication, the
order of matrix multiplication does matter. Matrix multiplication is not
commutative.

GH �= HG (6.22)

Clearly this is true for matrices that are of different size. We can multiply
a 10 × 5 matrix by a 5 × 6 matrix, but if we try to reverse the order and
multiply a 5 × 6 matrix by a 10 × 5 matrix, the number of columns and
rows will not match. Even if the matrices are square and we can reverse the
order of multiplication, the result will not necessarily be the same.

SAMPLE PROBLEM

Question:
Given the following matrices M and N, find the products MN

and NM:

M =
[

3 5
9 8

]
N =

[
2 6
1 5

]

Answer:

MN =
[

3 • 2 + 5 • 1 3 • 6 + 5 • 5
9 • 2 + 8 • 1 9 • 6 + 8 • 5

]
=

[
11 43
26 94

]

NM =
[

2 • 3 + 6 • 9 2 • 5 + 6 • 8
1 • 3 + 5 • 9 1 • 5 + 5 • 8

]
=

[
60 58
48 45

]

As you might have guessed, in this case, MN does not equal NM.

Because a square matrix has the same number of rows and columns, a
square matrix can always be multiplied by itself. Because the resulting matrix
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has the same dimensions, we can multiply the resulting product matrix by
the original square matrix. We can continue doing this as many times as
we want. Just as with scalars, we denote this repeated multiplication, or
exponentiation, with an exponent:

MM = M2

MMM = M3

...

(6.23)

There is a distributive law for matrix multiplication, too. Assuming the
matrices are of the correct size, we have:

F(D + E) = FD + FE
(M + N)P = MP + NP (6.24)

Because multiplication is involved, it is important that we have preserved
the order of the matrices. In the first line, F is always before D and E, and
in the second line, P remains after M and N.

One matrix that comes up again and again in matrix algebra is the
identity matrix. The identity matrix is a diagonal matrix with 1’s along
its main diagonal. An identity matrix with n rows and columns is typi-
cally denoted In, or simply by I if the number or rows and columns can
be inferred.

I2 =
[

1 0
0 1

]
I3 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ (6.25)

When we multiply a matrix by the appropriately sized identity matrix,
the result is the original matrix. If we have an r × c matrix A, then:

AIc = IrA = A (6.26)

The identity matrix leads us to define the inverse of a matrix. The inverse
of a matrix A is denoted A−1. If we multiply a matrix by its inverse, we get
an identity matrix:

AA−1 = A−1A = I (6.27)
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SAMPLE PROBLEM

Question:
The following matrices, A and A−1, are inverses of each other.

Prove this by showing that the products AA−1 and A−1A are both
equal to the identity matrix.

A =
[

1 4
2 9

]
A−1 =

[
9 −4

−2 1

]

Answer:

AA−1 =
[

1 • 9 + 4 • (−2) 1 • (−4) + 4 • 1
2 • 9 + 9 • (−2) 2 • (−4) + 9 • 1

]
=

[
1 0
0 1

]

A−1A =
[

9 • 1 + (−4) • 2 9 • 4 + (−4) • 9
(−2) • 1 + 1 • 2 −2 • 4 + 1 • 9

]
=

[
1 0
0 1

]

In the preceding example, if the inverse matrix hadn’t been given to us,
how would we calculate it? There are well-established methods for finding
the inverse of a matrix. For relatively small matrices, these methods are
straightforward, and can often be carried out by hand. For even moderately
sized matrices, these methods grow quickly in complexity. Finding the in-
verse of a 4 × 4 matrix by hand might be possible, but it will certainly be
tedious. For large matrices, calculating the inverse can be very complex. Be-
cause of the potentially large number of steps involved, a simple algorithm
is likely to be very slow, and susceptible to rounding errors. A good statistics
software package will use algorithms that are both accurate and efficient,
but often very complex. While both the simple and the complex methods
are interesting, in practice most risk management applications will involve
large matrices, which will necessitate using a statistics program to calculate
inverses. In practice, understanding the properties of a matrix is much more
important. Because there is a possibility of rounding error, it never hurts to
check the output of a statistical package by making sure that the product of
a matrix and the calculated inverse is, in fact, equal to an identity matrix.

It is important to note that not every matrix has an inverse. Take, for
example, the following matrix:

U =
[

1 1
1 1

]
(6.28)

There is no matrix with which we can multiply U to get an identity matrix.
U has no inverse. While this is easy to see with U, it is not always obvious
when matrices are noninvertible.
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Zero Matrix

In addition to the identity matrix, we will often find it convenient to define
a zero matrix, where all the entries are zero. We will denote the zero matrix
with a bold zero, 0.

The zero matrix has similar properties to its scalar equivalent. First,
if we multiply anything by an appropriately sized zero matrix, we get the
zero matrix:

0A = A0 = 0 (6.29)

Second, if we add the zero matrix to anything, we get back the original
matrix. Again, assuming the matrices are of the appropriate size:

0 + A = A + 0 = A (6.30)

Because of this last relationship, some texts refer to 0 as the additive
identity matrix, and to I as the multiplicative identity matrix. From here on
out, we will refer to 0 as a zero matrix, and continue to refer to I as an identity
matrix. The zero matrix is another example of a noninvertible matrix.

Transpose

The transpose of a matrix can be formed by swapping the columns and
rows of the original matrix. For a matrix A, we denote its transpose by A′

(pronounced “A prime” or “A transpose”).∗ We can easily determine each
element of the transpose matrix by reversing the row index and column
index of each element of the original matrix:

a′
ij = a ji (6.31)

The following are examples of matrices and their transposes:

A =
⎡
⎣ 3 5

−9 3
10 8

⎤
⎦ A′ =

[
3 −9 10
5 3 8

]

M =
[

3 5
9 8

]
M′ =

[
3 9
5 8

] (6.32)

Note that for a square matrix, taking the transpose can be thought of
as reflecting the matrix across the main diagonal.

∗Another common way to denote the transpose of a matrix is with a superscript T,
as in AT. In finance and economics the prime notation seems to be more popular,
and we will use that convention throughout the rest of the book.
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If we reverse the row and column indexes of an element and then reverse
them again, we get back our original indexes. This means that if we take the
transpose of a transpose, we get back the original matrix:

(A′)′ = A (6.33)

A square matrix that is equal to its own transpose is said to be symmet-
rical. The following matrices are both symmetrical:

S1 =
[

6 −7
−7 6

]

S2 =
⎡
⎣9 5 8

5 3 −2
8 −2 14

⎤
⎦

(6.34)

In the second application section, we will work with covariance ma-
trices. Covariance and correlation matrices are examples of symmetrical
matrices.

APPLICATION: TRANSIT ION MATRICES

A ratings transition matrix provides the probability that a bond’s rating will
change or stay the same over a given time period, given its rating at the
start of the period. At the end of Chapter 2, we looked at the following
problem: Given the following one-year ratings transition matrix, what is the
probability that a bond that starts with a B rating defaults over two years?

1-Year To

A B C D

A 90% 8% 2% 0%

B 10% 80% 8% 2%
From

C 0% 25% 60% 15%

D 0% 0% 0% 100%

For a bond with a B rating, over the first year the probability of migrating
to A is 10%, the probability of staying at B is 80%, the probability of
migrating to C is 8%, and the probability of defaulting is 2%. Over two
years, there are four ways in which the bond could default: it could migrate
to A in the first year and then default; it could remain at B during the
first year, then default; it could migrate to C, then default; or it could
default the first year and stay defaulted. We can easily calculate each of
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these probabilities. For example, the probability of migrating from B to
C to D is just the probability of migrating from B to C, multiplied by
the probability of migrating from C to D, or 8% × 15% = 1.2%. The
probability of the bond migrating from B to D over two years is just the sum
of the probabilities of the four possible paths. The following set of equations
shows this calculation, with the final result, 4.80%.

P[B→D] = P[B→A→D] + P[B→B→D] + P[B→C→D] + P[B→D→D]
= x21x14 + x22x24 + x23x34 + x24x44

= 10% • 0% + 80% • 2% + 8% • 15% + 2% • 100% = 4.80%

In the second row, we have expressed the problem in terms of our
standard matrix notation. Notice that for the first element in each product,
we are just going across the second row of the transition matrix, and for
the second element in each product we are going down the fourth column.
This is exactly what we would do to get the element in the second row and
fourth column if we were multiplying the transition matrix by itself. This
is no coincidence. It turns out rather conveniently that we can calculate the
complete two-year transition matrix by multiplying the one-year transition
matrix by itself. If T1 is our one-year transition matrix, and T2 is our two-
year transition matrix, then:

T2 = T1T1 = T2
1

Interested readers should check this for themselves by calculating additional
values for the two-year matrix.

What is even more convenient is that we can generalize this formula. To
calculate the n-year transition matrix, we simply raise T1 to the nth power:

Tn = Tn
1

The following would be the five-year transition matrix based on the
one-year transition matrix:

5-Year To

A B C D

A 64.7% 24.8% 6.7% 3.7%

B 28.1% 46.0% 12.1% 13.8%
From

C 11.8% 35.0% 14.3% 39.0%

D 0.0% 0.0% 0.0% 100.0%

In this example, A-rated bonds, which have a high probability of maintain-
ing their rating and zero probability of defaulting over one year, have a
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much lower probability of staying at the same rating and a much higher
probability of defaulting over five years. For C-rated bonds, which have a
relatively low probability of staying in one place over one year, the proba-
bility of maintaining the same rating also decreases and the probability of
defaulting also increases, but the probability of migrating to a higher rating
also increases.

APPLICATION: MONTE CARLO SIMULATIONS
PART I I : CHOLESKY DECOMPOSIT ION

In risk management it is often useful to generate simulations, in which we can
specify the covariance between different variables. Imagine that we wanted
to create a Monte Carlo simulation of a portfolio containing N stocks. The
variance of the portfolio will be a function of the variance of each of the
stocks, the position sizes, and the covariances between the stocks. In Chap-
ter 4, we saw how we could create uncorrelated normally distributed random
variables. We also saw how we could create two correlated normal variables
using linear combinations of uncorrelated normal variables. We can use ma-
trix algebra to extend this approach to a large number of variables.

Imagine that we have N random variables, X1, X2, . . . , XN, representing
the returns of different stocks. In order to describe the relationship between
each of the variables, we could form an N × N covariance matrix, where
each element, �i,j, corresponds to the covariance between the ith and jth
random variables:

� =

⎡
⎢⎢⎢⎣

�1,1 �1,2 · · · �1,n

�2,1 �2,2 · · · �2,n
...

...
. . .

...
�n,1 �n,2 · · · �n,n

⎤
⎥⎥⎥⎦ s.t. �i, j = E[(Xi − E[Xi ])(Xj − E[Xj ])]

(6.35)

Each of the elements along the main diagonal represents the covariance
of a random variable with itself, which is simply that variable’s variance.
For the off-diagonal elements, because �i,j = �j,i, the covariance matrix is
necessarily symmetrical.

If the covariance matrix satisfies certain minimum requirements, we can
decompose the covariance matrix, rewriting it in terms of a lower triangular
matrix, L, and its transpose, L′, which is an upper triangular matrix:

� = LL′ (6.36)

This is what is known as a Cholesky decomposition.
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It turns out that if we take the matrix L from our Cholesky decomposi-
tion and multiply it by a vector of i.i.d. standard normal variables, we will
obtain a new vector of normal variables that satisfy the original covariance
matrix, � . To see why this is the case, designate an N × 1 vector of i.i.d.
standard normal variables as �, and the resulting product as C:

L� = C (6.37)

As with any matrix product, we can write any element of C as follows:

ci =
N∑

j=1

li, j �i (6.38)

We can see that each of the ci’s are normally distributed random variables,
because they are linear combinations of other normal variables; furthermore,
it is easy to see that the expected value of each ci is zero:

E[ci ] = E

[
N∑

m=1

li,m�m

]
=

N∑
m=1

li,mE[�m] =
N∑

j=1

li,m • 0 = 0 (6.39)

For the last step, we were able to set E[�m] equal to zero, since the mean of
any standard normal variable is zero by definition.

Now that we have the means of each of the ci, we can easily calculate
the covariance between any two elements:

Cov[ci c j ] = E[ci c j ] + E[ci ]E[c j ] = E[ci c j ]

Cov[ci c j ] = E

[
N∑

m=1

li,m�m

N∑
n=1

l j,n�n

]

= E

⎡
⎣ N∑

m=1

li,ml j,m�2
m+

N∑
m=1

∑
n�=m

li,ml j,n�m�n

⎤
⎦

Cov[ci ck] =
N∑

m=1

li,ml j,mE[�2
m]+

N∑
m=1

∑
n�=m

li,ml j,nE[�m�n]

=
N∑

m=1

li,ml j,m • 1+
N∑

m=1

∑
n�=m

li,ml j,n • 0

Cov[ci ck] =
N∑

m=1

li,ml j,m = �i,k

(6.40)
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For the second to last row we relied on the fact that the variance of a
standard normal variable is 1, and the correlation between any two i.i.d.
variables is, by definition, 0. The last line follows from our initial decompo-
sition of � into LL′.

Given � , how do we go about getting L and L′ in the first place, though?
Many statistical packages will perform a Cholesky decomposition, and, in
practice, that might be the best solution. That said, there is a simple algo-
rithm that can be used to perform the decomposition. Given our covariance
matrix � , with entries �i,j, we can calculate entries in L, li,j, proceeding row
by row, from left to right:

li,i =
√√√√�i,i −

i−1∑
m=1

l2
i,m

li,j = 1
l j,j

(
�i,j −

j−1∑
m=1

li,ml j,m

)
∀i � j

li,j = 0 ∀i � j

(6.41)

SAMPLE PROBLEM

Question:
Given the following covariance matrix, � , develop a set of equa-

tions that converts three uncorrelated normal variables into three cor-
related normal variables:

� =
⎡
⎣ 16 8 12

8 29 26
12 26 61

⎤
⎦

Answer:
We can use our Cholesky algorithm to calculate the entries of a

lower triangular matrix, L:

l1,1 =
√

16 = 4

l2,1 = 1
4

(8) = 2

l2,2 =
√

29 − 22 = 5
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l3,1 = 1
4

(12) = 3

l3,2 = 1
5

(26 − 3 • 2) = 4

l3,3 =
√

61 − 32 − 42 = 6

Next, place the entries in a matrix:

L =
⎡
⎣ 4 0 0

2 5 0
3 4 6

⎤
⎦

Given a vector of three uncorrelated standard normal variables, �, and
using Equation 6.37:

L� = C

we can create a vector of correlated random variables, C. The elements
of C are:

c1 = 4�1

c2 = 2�1 + 5�2

c3 = 3�1 + 4�2 + 6�3

PROBLEMS

1. Given the following matrices, what is A + B? BC? CB?

A =
[−10 9

8 7

]
B =

[
2 9
1 1

]
C =

[ −5 7
−10 7

]

2. Using the same matrices from Question 1, what is B + (A + C)? What
is B(A – C)?

3. Using the same matrices from Question 1, what is the transpose of A?
of C?
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4. Given the following matrices, what is F + G? FG′? F′G?

F =
⎡
⎣−6 1

−8 2
−6 −3

⎤
⎦ G =

⎡
⎣ 5 0

0 −1
−8 −7

⎤
⎦

5. Given the following matrices, what is UI? I2? U2? AU?

A =
[−10 9

8 7

]
U =

[
1 1
1 1

]
I =

[
1 0
0 1

]

6. Given the following matrices, prove that J is the inverse of K.

J =
[

4 1
9 2

]
K =

[−2 1
9 −4

]

7. Given the matrix M, what is M5?

M =
[

2 0
0 2

]

8. You are the risk manager for a large corporate bond portfolio. At the
start of the year, 60% of the bonds in the portfolio are rated A, and
40% are rated B. Given the following one-year rating transition matrix,
what is the expected distribution of ratings after one year?

1-Year To

A B C D

A 95% 4% 1% 0%

B 10% 85% 4% 1%
From

C 0% 20% 65% 15%

D 0% 0% 0% 100%

9. Using the one-year ratings transition matrix from the previous question,
calculate the corresponding two-year transition matrix.

10. Calculate the Cholesky decomposition for the following covariance
matrix:

∑
=

⎡
⎣ 4 14 16

14 50 58
16 58 132

⎤
⎦



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c07 JWBT625-Miller January 9, 2012 23:48 Printer: Courier Westford

CHAPTER 7
Vector Spaces

I n this chapter we introduce the concept of vector spaces. At the end of
the chapter we introduce principal component analysis and explore its

application to risk management.

VECTORS REVIS ITED

In the previous chapter we stated that matrices with a single column could
be referred to as vectors. While not necessary, it is often convenient to
represent vectors graphically. For example, the elements of a 2 × 1 matrix
can be thought of as representing a point or a vector in two dimensions,∗ as
shown in Figure 7.1.

v1 =
[

10

2

]
(7.1)

Similarly, a 3 × 1 matrix can be thought of as representing a point or
vector in three dimensions, as shown in Figure 7.2.

v2 =

⎡
⎢⎣

5

10

4

⎤
⎥⎦ (7.2)

∗In physics, a vector has both magnitude and direction. In a graph a vector is repre-
sented by an arrow connecting two points, the direction indicated by the head of the
arrow. In risk management we are unlikely to encounter problems where this con-
cept of direction has any real physical meaning. Still, the concept of a vector can be
useful when working through the problems. For our purposes, whether we imagine
a collection of data to represent a point or a vector, the math will be the same.

143
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While it is difficult to visualize a point in higher dimensions, we can still
speak of an n × 1 vector as representing a point or vector in n dimensions,
for any positive value of n.

In addition to the operations of addition and scalar multiplication that
we explored in the previous chapter, with vectors we can also compute the
Euclidean inner product, often simply referred to as the inner product. For
two vectors, the Euclidean inner product is defined as the sum of the product
of the corresponding elements in the vector. For two vectors, a and b, we
denote the inner product as a • b:

a • b = a1b1 + a2b2 + · · · + anbn (7.3)

We can also refer to the inner product as a dot product, so referred
to because of the dot between the two vectors.† The inner product is equal
to the matrix multiplication of the transpose of the first vector and the
second vector:

a • b = a′b (7.4)

We can use the inner product to calculate the length of a vector. To
calculate the length of a vector, we simply take the square root of the inner
product of the vector with itself:

||a|| = √
a • a (7.5)

The length of a vector is alternatively referred to as the norm, the Euclidean
length, or the magnitude of the vector.

Every vector exists within a vector space. A vector space is a mathemat-
ical construct consisting of a set of related vectors that obey certain axioms.
For the interested reader, a more formal definition of a vector space is pro-
vided in Appendix C. In risk management we are almost always working in
a space Rn, which consists of all of the vectors of length n, whose elements
are real numbers.

† In physics and other fields, the inner product of two vectors is often denoted not
with a dot, but with pointy brackets. Under this convention, the inner product of a
and b would be denoted �a,b�. The term dot product can be applied to any ordered
collection of numbers, not just vectors, while an inner product is defined relative
to a vector space. For our purposes, when talking about vectors, the terms can be
used interchangeably.
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SAMPLE PROBLEM

Question:
Given the following vectors in R3:

a =

⎡
⎢⎣

5

−2

4

⎤
⎥⎦ b =

⎡
⎢⎣

10

6

1

⎤
⎥⎦ c =

⎡
⎢⎣

4

0

4

⎤
⎥⎦

find the following:

a. a • b
b. b • c
c. The magnitude of c

Answer:

a. a • b = 5 • 10 + (−2) • 6 + 4 • 1 = 42
b. b • c = 10 • 4 + 6 • 0 + 1 • 4 = 44
c. ||c|| = √

c • c = √
4 • 4 + 0 • 0 + 4 • 4 = √

32 = 4
√

2

ORTHOGONALITY

We can use matrix addition and scalar multiplication to combine vectors
in a linear combination. The result is a new vector in the same space. For
example, in R4, combining three vectors, v, w, and x, and three scalars, s1,
s2, and s3, we get y:

s1v + s2w + s3x = s1

⎡
⎢⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎥⎦ + s2

⎡
⎢⎢⎢⎣

w1

w2

w3

w4

⎤
⎥⎥⎥⎦ + s3

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎥⎦ = y (7.6)

Rather than viewing this equation as creating y, we can read the equa-
tion in reverse, and imagine decomposing y into a linear combination of
other vectors.
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A set of n vectors, v1, v2, . . . , vn, is said to be linearly independent if,
and only if, given the scalars c1, c2, . . . , cn, the solution to the equation:

c1v1 + c2v2 + · · · + cnvn = 0 (7.7)

has only the trivial solution, c1 = c2 = · · · = cn = 0. A corollary to this
definition is that if a set of vectors is linearly independent, then it is impossible
to express any vector in the set as a linear combination of the other vectors
in the set.

SAMPLE PROBLEM

Question:
Give a set of linear independent vectors, S = {v1, v2, . . . , vn}, and

a set of constants, c1, c2, . . . , cn, prove that the equation:

c1v1 + c2v2 + · · · + cnvn = 0

has a nontrivial solution if any of the vectors in S can be expressed as
a linear combination of the other vectors in the set.

Answer:
Let us start by assuming that the first vector, v1, can be expressed

as a linear combination of the vectors v2, v3, . . . , vm, where m � n;
that is:

v1 = k2v2 + · · · + knvm

where k2, . . . , kn, are constants. We can rearrange this equation as:

v1 − k2v2 − · · · − knvm = 0

Now if we set all the constants, cm+1, cm+2, . . . , cn, to zero, for the
other vectors we have:

cm+1vm+1 + cm+2vm+2 + · · · + cnvn = 0

Combining the two equations we have:

v1 − k2v2 − · · · − kmvm + cm+1vm+1 + · · · + cnvn = 0 + 0 = 0
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This then is a nontrivial solution for the original equation. In terms
of the original constants, the solution is:

c1 = 1

c2 = −k2, c3 = −k3, . . . , cm = −km

cm+1 = 0, cm+2 = 0, . . . , cn = 0

Moreover, this is a general proof, and not limited to the case
where v1 can be expressed as a linear combination of v2, v3, . . . , vm.
Because matrix addition is commutative, the order of the addition is
not important. The result would have been the same if any one vector
had been expressible as a linear combination of any subset of the
other vectors.

We can use the concept of linear independence to define a basis for a
vector space, V. A basis is a set of linearly independent vectors, S = {v1,
v2, . . . , vn}, such that every vector within V can be expressed as a unique
linear combination of the vectors in S. As an example, we provide the
following set of two vectors, which form a basis, B1 = {v1, v2}, for R2:

v1 =
[

1

0

]
v2 =

[
0

1

]
(7.8)

First, note that the vectors are linearly independent. We cannot multiply
either vector by a constant to get the other vector. Next, note that any vector
in R2, [x y]′, can be expressed as a linear combination of the two vectors:

[
x

y

]
= xv1 + yv2 (7.9)

The scalars on the right-hand side of this equation, x and y, are known
as the coordinates of the vector. We can arrange these coordinates in a vector
to form a coordinate vector.

c =
[

c1

c2

]
=

[
x

y

]
(7.10)
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In this case, the vector and the coordinate vector are the same, but this need
not be the case.

As another example, take the following basis, B2 = {w1, w2}, for R2:

w1 =
[

7

0

]
w2 =

[
0

10

]
(7.11)

These vectors are still linearly independent, and we can create any vector,
[x y]′, from a linear combination of w1 and w2. In this case, however,
the coordinate vector is not the same as the original vector. To find the
coordinate vector, we solve the following equation for c1 and c2 in terms of
x and y:

[
x

y

]
= c1w1 + c2w2 = c1

[
7

0

]
+ c2

[
0

10

]
=

[
7c1

10c2

]
(7.12)

Therefore, x = 7c1 and y = 10c2. Solving for c1 and c2, we get our coordinate
vector relative to the new basis:

c =
[

c1

c2

]
=

[
x/7

y/10

]
(7.13)

Finally, the following set of vectors, B3 = {x1, x2}, would also be a
legitimate basis for R2:

x1 =
[

1/
√

2

1/
√

2

]
x2 =

[
0

1

]
(7.14)

These vectors are also linearly independent. For this third basis, the coordi-
nate vector for a vector, [x y]′, would be:

c =
[ √

2x

y − x

]
(7.15)

Of the three bases, is one preferable to the others? We can’t really say
that one basis is the best—this would be subjective—but we can describe
certain features of a basis, which may make them more or less interesting in
certain applications.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c07 JWBT625-Miller January 9, 2012 23:48 Printer: Courier Westford

150 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

The first way to characterize a basis is to measure the length of its
vectors. Note that the vectors in B2 are really just scalar multiples of the
vector in B1.

w1 = 7v1 w2 = 10v2 (7.16)

This is not a coincidence. For any vector space, we can create a new basis
simply by multiplying some or all the vectors in one basis by nonzero scalars.
Multiplying a vector by a scalar doesn’t change the vector’s orientation in
space; it just changes the vector’s length. We can see this if we plot both sets
of vectors (see Figure 7.3).

If the lengths of the vectors in a basis don’t matter, then one logical
choice is to set all the vectors to unit length, ‖v‖ = 1. A vector of unit length
is said to be normal or normalized.

The second way to characterize a basis has to do with how the vectors
in the basis are oriented with respect to each other. The vectors in B3 are
also of unit length, but, as we can see in Figure 7.4 if we plot the vectors,
the vectors in B1 are at right angles to each other, whereas the vectors in B3

form a 45-degree angle.

–2

0

2

4

6

8

10

–2 0 2 4 6 8 10

v1
v2

w1

w2

F IGURE 7.3 Vectors with Same Orientation but Different Lengths
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B3

–1

1

–1 1

B1

–1

1

–1 1

F IGURE 7.4 Orthogonal and Nonorthogonal Vectors
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When vectors are at right angles to each other, we say that they
are orthogonal to each other. One way to test for orthogonality is to
calculate the inner product between two vectors. If two vectors are or-
thogonal, then their inner product will be equal to zero. For B1 and B3,
then:

v1 • v2 = 1 • 0 + 0 • 1 = 0

x1 • x2 = 1√
2

• 0 + 1√
2

• 1 = 1√
2

(7.17)

While it is easy to picture vectors being orthogonal to each other in two
or three dimensions, orthogonality is a general concept, extending to any
number of dimensions. Even if we can’t picture it in higher dimensions, if
two vectors are orthogonal, we still describe them as being at right angles,
or perpendicular to each other.

In many applications it is convenient to work with a basis where all the
vectors in the basis are orthogonal to each other. When all of the vectors in
a basis are of unit length and are all orthogonal to each other, we say that
the basis is orthonormal.

ROTATION

In the preceding section, we saw that the following set of vectors formed an
orthonormal basis for R2:

v1 =
[

1

0

]
v2 =

[
0

1

]
(7.18)

This is known as the standard basis for R2. In general, for the space Rn,
the standard basis is defined as the set of vectors:

v1 =

⎡
⎢⎢⎢⎢⎣

1

0
...

0

⎤
⎥⎥⎥⎥⎦ v2 =

⎡
⎢⎢⎢⎢⎣

0

1
...

0

⎤
⎥⎥⎥⎥⎦ · · · vn =

⎡
⎢⎢⎢⎢⎣

0

0
...

1

⎤
⎥⎥⎥⎥⎦ (7.19)

where the ith element of the ith vector is equal to one, and all other elements
are zero. The standard basis for each space is an orthonormal basis. The
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standard bases are not the only orthonormal bases for these spaces, though.
For R2, the following is also an orthonormal basis:

z1 =
[

1/
√

2

1/
√

2

]
z2 =

[
−1/

√
2

1/
√

2

]
(7.20)

SAMPLE PROBLEM

Question:
Prove that the following basis is orthonormal:

z1 =
[

1/
√

2

1/
√

2

]
z2 =

[
−1/

√
2

1/
√

2

]
(7.21)

Answer:
First we show that the length of each vector is equal to one:

||z1|| = √
z1 • z1 =

√
1√
2

1√
2

+ 1√
2

1√
2

=
√

1
2

+ 1
2

=
√

1 = 1

||z2|| = √
z2 • z2 =

√(
− 1√

2

) (
− 1√

2

)
+ 1√

2

1√
2

=
√

1
2

+ 1
2

=
√

1 = 1 (7.22)

Next, we show that the two vectors are orthogonal to each other,
by showing that their inner product is equal to zero:

z1 • z2 = 1√
2

(
− 1√

2

)
+ 1√

2

1√
2

= −1
2

+ 1
2

= 0 (7.23)

All of the vectors are of unitary length, and are orthogonal to each
other; therefore, the basis is orthonormal.

The difference between the standard basis for R2 and our new basis can
be viewed as a rotation about the origin, as shown in Figure 7.5.

It is common to describe a change from one orthonormal basis to an-
other as a rotation in higher dimensions as well.
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–1

1

–1 1

F IGURE 7.5 Basis Rotation

It is often convenient to form a matrix from the vectors of a basis, where
each column of the matrix corresponds to a vector of the basis. If the vectors
v1, v2, . . . , vn form an orthonormal basis, and we denote the jth element of
the ith vector, vi, as vi,j, we have:

V = [
v1 v2 · · · vn

] =

⎡
⎢⎢⎢⎢⎣

v11 v21 · · · vn1

v21 v22 · · · vv2
...

...
. . .

...

vn1 vn2 · · · vnn

⎤
⎥⎥⎥⎥⎦ (7.24)

For an orthonormal basis, this matrix has the interesting property that
its transpose and its inverse are the same.

VV′ = VV−1 = I (7.25)

The proof is not difficult. If we multiply V by its transpose, every element
along the diagonal is the inner product of a basis vector with itself. This is
just the length of the vector, which by definition is equal to one. The off-
diagonal elements are the inner product of different vectors in the basis with
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each other. Because they are orthogonal, these inner products will be zero.
In other words, the matrix that results from multiplying V by V′ is the
identity matrix, so V′ must be the inverse of V.

This property makes calculating the coordinate vector for an orthonor-
mal basis relatively simple. Given a vector x of length n, and the matrix
V, whose columns form an orthonormal basis in Rn, the corresponding
coordinate vector can be found as follows:

c = V−1x = V′x (7.26)

The first part of the equation, c = V−1x, would be true even for a
nonorthonormal basis.

Rather than picture the basis as rotating and the vector as remaining
still, it would be equally valid to picture a change of basis as a rotation of a
vector, as in Figure 7.6.

–2

0

2

4

6

–2 0 2 4 6

–2

0

2

4

6

–2 0 2 4 6

F IGURE 7.6 Change of Basis
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If the orthonormal basis for the first vector space is the standard basis,
then the coordinate for the new vector space, with orthonormal basis V, is
just c = V′x. If we premultiply both sides of this equation by V, though, we
have Vc = V V′x = Ix = x. In other words, if V′ rotates x into the new vector
space, then multiplying by V performs the reverse transformation, rotating
c back into the original vector space. It stands to reason that V′ is also an
orthonormal basis. If the vectors of a matrix form an orthonormal basis in
Rn, then the rows of that matrix also form an orthonormal basis in Rn. It
is also true that if the columns of a square matrix are orthogonal, then the
rows are orthogonal, too. Because of this, rather than saying the columns
and rows of a matrix are orthogonal or orthonormal, it is enough to say
that the matrix is orthogonal or orthonormal.

SAMPLE PROBLEM

Question:
Given the following basis for R2:

z1 =
[

1/
√

2

1/
√

2

]
z2 =

[
−1/

√
2

1/
√

2

]

Find the coordinate vector for the vector x, where x′ = [9 4].

Answer:

c = Z′x =
[

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

] [
9

4

]
=

⎡
⎣ 13/√

2
−5/√

2

⎤
⎦

We can verify this result as follows:

c1z1 + c2z2 = 13√
2

[
1/

√
2

1/
√

2

]
− 5√

2

[
−1/

√
2

1/
√

2

]
=

⎡
⎣13/

2 + 5/
2

13/
2 − 5/

2

⎤
⎦

=
[

9
4

]
= x
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PRINCIPAL COMPONENT ANALYSIS

For any given vector space, there are potentially an infinite number of or-
thonormal bases. Can we say that one orthonormal basis is better than
another? As before, the decision is ultimately subjective, but there are fac-
tors we could take into consideration when trying to decide on a suitable
basis. Due to its simplicity, the standard basis would seem to be an obvious
choice in many cases. Another approach is to choose a basis based on the
data being considered. This is the basic idea behind principal component
analysis (PCA). In risk management, PCA can be used to examine the un-
derlying structure of financial markets. Common applications, which we
explore at the end of the chapter, include the development of equity indexes
for factor analysis, and describing the dynamics of yield curves.

In PCA, a basis is chosen so that the first vector in the basis, now called
the first principal component, explains as much of the variance in the data
being considered as possible. For example, on the left-hand side of Table
7.1 we have presented annual returns over 10 years for two hedge funds,
Fund X and Fund Y, using the standard basis. We have plotted the returns
of both funds in Figure 7.7. As can be seen in the chart the returns are

TABLE 7.1 Change of Basis

Standard Basis Alternative Basis

s1 =
[

1
0

]
s2 =

[
0
1

]
z1 =

[
1/

√
2

1/
√

2

]
z2 =

[ −1/
√

2
1/

√
2

]

T X Y t X′ Y′

1 13.00% 13.00% 1 18.38% 0.00%
2 9.00% 10.00% 2 13.44% 0.71%
3 10.00% 9.00% 3 13.44% −0.71%
4 6.00% 8.00% 4 9.90% 1.41%
5 8.00% 6.00% 5 9.90% −1.41%
6 −13.00% −13.00% 6 −18.38% 0.00%
7 −9.00% −10.00% 7 −13.44% −0.71%
8 −10.00% −9.00% 8 −13.44% 0.71%
9 −6.00% −8.00% 9 −9.90% −1.41%

10 −8.00% −6.00% 10 −9.90% 1.41%

Mean 0.00% 0.00% Mean 0.00% 0.00%

Variance 1.00% 1.00% Variance 1.99% 0.01%

Std. dev. 10.00% 10.00% Std. dev. 14.10% 1.05%
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F IGURE 7.7 Fund Returns Using Standard Basis

highly correlated. On the right-hand side of Table 7.1 and in Figure 7.8,
we have transformed the data using the basis from the previous example
(readers should verify this). In effect, we’ve rotated the data 45-degrees.
Now almost all of the variance in the data is along the X′-axis.

By transforming the data, we are calling attention to the underlying
structure of the data. In this case, the X and Y data are highly correlated,
and almost all of the variance in the data can be described by variance in
X′, our first principal component. It might be that the linear transformation
we used to construct X′ corresponds to an underlying process, which is
generating the data. In this case, maybe both funds have similar portfolios,
maybe both funds have similar investment styles, or maybe both are run by
the same portfolio manager.

The transformed data can also be used to create an index to analyze the
original data. In this case, we could just use the transformed data along the
first principal component as our index (possibly scaled). This index could
then be used to benchmark the performances of both funds.

Tracking the index over time might also be interesting, in and of it-
self. For a summary report, we might not need to know how each fund
is performing. With the index, rather than tracking two data points every
period, we only have to track one. This reduction in the number of data
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F IGURE 7.8 Fund Returns with Alternative Basis

points is an example of dimensionality reduction. In effect we have taken
what was a two-dimensional problem (tracking two funds) and reduced it
to a one-dimensional problem (tracking one index). Many problems in risk
management can be viewed as exercises in dimensionality reduction—taking
complex problems and simplifying them.

SAMPLE PROBLEM

Question:
Using the first principal component from the previous example,

construct an index with the same standard deviation as the original
series. Calculate the tracking error of each fund in each period.

Answer:
In order to construct the index, we simply multiply each value of

the first component of the transformed data, X′, by the ratio of the
standard deviation of the original series to X′, 10.00%/14.10%. The
tracking error for the original series is then found by subtracting
the index values from the original series.
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Index Error[X] Error[Y]

13.04% −0.04% −0.04%
9.53% −0.53% 0.47%
9.53% 0.47% −0.53%
7.02% −1.02% 0.98%
7.02% 0.98% −1.02%

−13.04% 0.04% 0.04%
−9.53% 0.53% −0.47%
−9.53% −0.47% 0.53%
−7.02% 1.02% −0.98%
−7.02% −0.98% 1.02%

Mean 0.00% 0.00% 0.00%

Variance 1.00% 0.01% 0.01%

Std. dev. 10.00% 0.75% 0.75%

We can easily extend the concept of PCA to higher dimensions using the
techniques we have covered in this chapter. In higher dimensions, each suc-
cessive principal component explains the maximum amount of variance in
the residual data, after taking into account all of the preceding components.
Just as the first principal component explained as much of the variance in
the data as possible, the second principal component explains as much of the
variance in the residuals, after taking out the variance explained by the first
component. Similarly, the third principal component explains the maximum
amount of variance in the residuals, after taking out the variance explained
by the first and second components.

Now that we understand the properties of principal components, how
do we actually go about calculating them? A general approach to PCA
involves three steps:

1. Transform the raw data.
2. Calculate a covariance matrix of the transformed data.
3. Decompose the covariance matrix.

Assume we have a T × N matrix of data, where each column represents
a different random variable, and each row represents a set of observations of
those variables. For example, we might have the daily returns of N different
equity indexes, over T days. The first step is to transform the data so that
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the mean of each series is zero. This is often referred to as centering the data.
To do this, we simply calculate the mean of each series and subtract that
value from each point in that series. In certain situations we may also want
to standardize the variance of each of the series. To do this, we calculate the
standard deviation of each series, and divide each point in the series by that
value. Imagine that one of our series is much more volatile than all of the
other series. Because PCA is trying to account for the maximum amount of
variance in the data, the first principal component might be dominated by
this highly volatile series. If we want to call attention to the relative volatility
of different series, this may be fine and we do not need to standardize the
variance. However, if we are more interested in the correlation between the
series, the high variance of this one series would be a distraction, and we
should fully standardize the data.

Next we need to calculate the covariance matrix of our transformed
data. Denote the T × N matrix of transformed data as X. Because the data
is centered, the covariance matrix, � , can be found as follows:

� = 1
N

X′X (7.27)

Here we assume that we are calculating the population covariance, and
divide by N. If instead we wish to calculate the sample covariance, we
can divide by (N − 1). If we had standardized the variance of each se-
ries, then this matrix would be equivalent to the correlation matrix of the
original series.

For the third and final step, we need to rely on the fact that � is a
symmetrical matrix. It turns out that any symmetrical matrix, where all of
the entries are real numbers, can be diagonalized; that is, it can be expressed
as the product of three matrices:

� = PDP′ (7.28)

where the N × N matrix P is orthonormal, and the N × N matrix D is
diagonal.∗ Combining the two equations and rearranging, we have:

X′ = NPDP′X−1 = PDM (7.29)

∗We have not formally introduced the concept of eigenvalues and eigenvectors. For
the reader familiar with these concepts, the columns of P are the eigenvector of � ,
and the entries along the diagonal of D are the corresponding eigenvalues. For small
matrices, it is possible to calculate the eigenvectors and eigenvalues by hand. In
practice, as with matrix inversion, for large matrices this step almost always involves
the use of commercial software packages.
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where M = NP′X−1. If we order the column vectors of P, so that the first col-
umn explains most of the variance in X, the second column vector explains
most of the residual variance, and so on, then this is the PCA decomposition
of X. The column vectors of P are now viewed as the principal components,
and serve as the basis for our new vector space.

To transform the original matrix X, we simply multiply by the ma-
trix P:

Y = XP (7.30)

As we will see in the following application sections, the values of the
elements of the transition matrix, P, often hint at the underlying structure
of the original data.

APPLICATION: THE DYNAMIC TERM STRUCTURE
OF INTEREST RATES

A yield curve plots the relationship between yield to maturity and time
to maturity for a given issuer or group of issuers. A typical yield curve is
concave and upward-sloping. An example is shown in Figure 7.9.

Over time, as interest rates change, the shape of the yield curve will
change, too. At times, the yield curve can be close to flat, or even inverted
(downward-sloping). Examples of flat and inverted yield curves are shown
in Figures 7.10 and 7.11.

Because the points along a yield curve are driven by the same or similar
fundamental factors, they tend to be highly correlated. Points that are closer
together on the yield curve and have similar maturities tend to be even more
highly correlated.

Because the points along the yield curve tend to be highly correlated,
the ways in which the yield curve can move are limited. Practitioners tend
to classify movements in yield curves as a combination of shifts, tilts,
or twists. A shift in the yield curve occurs when all of the points along
the curve increase or decrease by an equal amount. A tilt occurs when
the yield curve either steepens (points further out on the curve increase
relative to those closer in) or flattens (points further out decrease rela-
tive to those closer in). The yield curve is said to twist when the points
in the middle of the curve move up or down relative to the points on
either end of the curve. Figures 7.12, 7.13, and 7.14 show examples of
these dynamics.
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F IGURE 7.9 Upward-Sloping Yield Curve
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F IGURE 7.10 Flat Yield Curve
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F IGURE 7.11 Inverted Yield Curve
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F IGURE 7.13 Tilt
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These three prototypical patterns—shifting, tilting, and twisting—can
often be seen in PCA. The following is a principal component matrix ob-
tained from daily U.S. government rates from March 2000 through August
2000. For each day, there were six points on the curve representing maturi-
ties of 1, 2, 3, 5, 10, and 30 years. Before calculating the covariance matrix,
all of the data was centered and standardized.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.39104 −0.53351 −0.61017 0.33671 0.22609 0.16020

0.42206 −0.26300 0.03012 −0.30876 −0.26758 −0.76476

0.42685 −0.16318 0.19812 −0.35626 −0.49491 0.61649

0.42853 0.01135 0.46043 −0.17988 0.75388 0.05958

0.41861 0.29495 0.31521 0.75553 −0.24862 −0.07604

0.35761 0.72969 −0.52554 −0.24737 0.04696 0.00916

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.31)

The first column of the matrix is the first principal component. Notice
that all of the elements are positive and of similar size. We can see this if
we plot the elements in a chart, as in Figure 7.15. This flat, equal weight-
ing represents the shift of the yield curve. A movement in this component
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F IGURE 7.15 First Three Principal Components of the Yield Curve
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increases or decreases all of the points on the yield curve by the same amount
(actually, because we standardized all of the data, it shifts them in propor-
tion to their standard deviation). Similarly, the second principal component
shows an upward trend. A movement in this component tends to tilt the
yield curve. Finally, if we plot the third principal component, it is bowed,
high in the center and low on the ends. A shift in this component tends to
twist the yield curve.

It’s worth pointing out that, if we wanted to, we could change the sign
of any principal component. That is, we could multiply all of the elements
in one column of the principal component matrix, P, by −1. As we saw
previously, we can always multiply a vector in a basis by a nonzero scalar
to form a new basis. Multiplying by −1 won’t change the length of a vector,
just the direction; therefore, if our original matrix is orthonormal, the matrix
that results from changing the sign of one or more columns will still be an
orthonormal matrix. Normally, the justification for doing this is purely
aesthetic. For example, our first principal component could be composed
of all positive elements or all negative elements. The analysis is perfectly
valid either way, but many practitioners would have a preference for all
positive elements.

Not only can we see the shift, tilt, and twist in the principal com-
ponents, but we can also see their relative importance in explaining the
variability of interest rates. In this example, the first principal component
explains 90% of the variance in interest rates. As is often the case, these
interest rates are highly correlated with each other, and parallel shifts ex-
plain most of the evolution of the yield curve over time. If we incorporate
the second and third principal components, fully 99.9% of the variance
is explained. The two charts in Figures 7.16 and 7.17 show approxima-
tions to the 1-year and 30-year rates, using just the first three principal
components. The differences between the actual rates and the approxima-
tions are extremely small. The actual and approximate series are almost
indistinguishable.

Because the first three principal components explain so much of the
dynamics of the yield curve, they could serve as a basis for an interest rate
model or as the basis for a risk report. A portfolio’s correlation with these
principal components might also be a meaningful risk metric. We explore
this idea in more depth in our discussion of factor analysis in Chapter 8.

APPLICATION: THE STRUCTURE OF
GLOBAL EQUITY MARKETS

Principal component analysis can be used in many different ways when an-
alyzing equity markets. At the highest level, we can analyze the relationship
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F IGURE 7.16 Actual and Approximate 1-Year Rates
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between different market indexes in different countries. Global equity mar-
kets are increasingly linked. Due to similarities in their economies or because
of trade relationships, equity markets in different countries will be more or
less correlated. PCA can highlight these relationships.

Within countries, PCA can be used to describe the relationships between
groups of companies in industries or sectors. In a novel application of PCA,
Kritzman, Li, Page, and Rigobon (2010) suggest that the amount of variance
explained by the first principal components can be used to gauge systemic
risk within an economy. The basic idea is that as more and more of the
variance is explained by fewer and fewer principal components, the economy
is becoming less robust and more susceptible to systemic shocks. In a similar
vein, Meucci (2009) proposes a general measure of portfolio diversification
based in part on principal component analysis. In this case, a portfolio can
range from undiversified (all the variance is explained by the first principal
component) to fully diversified (each of the principal components explains
an equal amount of variance).

In many cases, PCA analysis of equity markets is similar to the analysis
of yield curves: the results are simply confirming and quantifying structures
that we already believed existed. PCA can be most interesting, however,
when it points to relationships that we were previously unaware of. For ex-
ample, as the economy changes over time, new industries form and business
relationships change. We can perform PCA on individual stocks to try to
tease out these relationships.

The following matrix is the principal component matrix formed from
the analysis of nine broad equity market indexes, three each from North
America, Europe, and Asia. The original data consisted of monthly log
returns from January 2000 through April 2011. The returns were centered
and standardized.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3604 −0.1257 0.0716 −0.1862 0.1158 −0.1244 0.4159 0.7806 0.0579

0.3302 −0.0197 0.4953 −0.4909 −2.132 0.4577 0.2073 −0.3189 −0.0689

0.3323 0.2712 0.3359 −0.2548 0.2298 −0.5841 −0.4897 −0.0670 −0.0095

0.3520 −0.3821 −0.2090 0.1022 −0.1805 0.0014 −0.2457 0.0339 −0.7628

0.3472 −0.2431 −0.1883 0.1496 0.2024 −0.39178 0.5264 −0.5277 0.1120

0.3426 −0.4185 −0.1158 0.0804 −0.3707 0.0675 −0.3916 0.0322 0.6256

0.2844 0.6528 −0.4863 −0.1116 −0.4782 −0.0489 0.1138 −0.0055 −0.0013

0.3157 0.2887 0.4238 0.7781 −0.0365 0.1590 0.0459 0.0548 −0.0141

0.3290 0.1433 −0.3581 −0.0472 0.6688 0.4982 −0.1964 −0.0281 0.0765

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.32)
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F IGURE 7.18 First Three Principal Components for Equity Indexes

As before, we can graph the first, second, and third principal compo-
nents. In Figure 7.18, the different elements have been labeled with either
N, E, or A for North America, Europe, and Asia, respectively.

As before, the first principal component appears to be composed of
an approximately equal weighting of all the component time series. This
suggests that these equity markets are highly integrated, and most of their
movement is being driven by a common factor. The first component explains
just over 75% of the total variance in the data. Diversifying a portfolio across
different countries might not prove as risk reducing as one might hope.

The second factor could be described as long North America and Asia
and short Europe. Going long or short this spread might be an interesting
strategy for somebody with a portfolio that is highly correlated with the
first principal component. Because the two components are uncorrelated by
definition, investing in both may provide good diversification. That said, the
pattern for the second principal component certainly is not as distinct as
the patterns we saw in the yield curve example. For the equity indexes the
second component explains only an additional 7% of the variance.
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By the time we get to the third principal component, it is difficult to
posit any fundamental rationale for the component weights. Unlike our
yield curve example, in which the first three components explained 99.9%
of the variance in the series, in this example the first three components
explain only 87% of the total variance. This is still a lot, but it suggests that
these equity returns are much more distinct.

Trying to ascribe a fundamental explanation to the third and possi-
bly even the second principal component highlights one potential pitfall
of PCA analysis: identification. When the principal components account
for a large part of the variance and conform to our prior expectations,
they likely correspond to real fundamental risk factors. When the princi-
pal components account for less variance and we cannot associate them
with any known risk factors, they are more likely to be spurious. Un-
fortunately, it is often these hidden components that we are hoping PCA
will identify.

Another closely related problem is stability. If we are going to use PCA
for risk analysis, we will likely want to update our principal component
matrix on a regular basis. The changing weights of the components over
time might be interesting, illuminating how the structure of a market is
changing. Unfortunately, nearby components will often change place, the
second becoming the third and the third becoming the second, for example. If
the weights are too unstable, tracking components over time can be difficult
or impossible.

PROBLEMS

1. Given the following vectors, a, b, and c, are a and b orthogonal? b
and c?

a =

⎡
⎢⎣

10

−5

4

⎤
⎥⎦ b =

⎡
⎢⎣

6

2

−4

⎤
⎥⎦ c =

⎡
⎢⎣

5

5

10

⎤
⎥⎦

2. Find x such that A is an orthonormal basis:

A =

⎡
⎢⎢⎣

x
1
3

1
3

2
√

2
3

⎤
⎥⎥⎦
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3. Find x and y such that B is an orthonormal basis:

B =

⎡
⎢⎢⎣

x
1
5

y
2
√

6
5

⎤
⎥⎥⎦

4. Given the following matrix B, whose columns are orthonormal and form
a vector space in R2, find the coordinate vector for the vector x:

B =
⎡
⎣ 1/√

2
−1/√

2
1/√

2
1/√

2

⎤
⎦ x =

[
6

4

]

5. Given the following matrix B, whose columns form a vector space in R3,
find the coordinate vector for the vector x:

B =

⎡
⎢⎣

4 2 −46

1 −18 −1

5 2 37

⎤
⎥⎦ x =

⎡
⎢⎣

−170

−19

165

⎤
⎥⎦
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CHAPTER 8
Linear Regression Analysis

T his chapter provides a basic introduction to linear regression models. At
the end of the chapter, we will explore two risk management applications,

factor analysis and stress testing.

L INEAR REGRESSION (ONE REGRESSOR)

One of the most popular models in statistics is the linear regression model.
Given two constants, � and �, and a random error term, ε, in its simplest
form the model posits a relationship between two variables, X and Y:

Y = � + �X + ε (8.1)

As specified, X is known as the regressor or independent variable. Similarly,
Y is known as the regressand or dependent variable. As dependent implies,
traditionally we think of X as causing Y. This relationship is not necessary,
and in practice, especially in finance, this cause-and-effect relationship is
either ambiguous or entirely absent. In finance, it is often the case that both
X and Y are being driven by a common underlying factor.

The linear regression relationship is often represented graphically as a
plot of Y against X, as shown in Figure 8.1. The solid line in the chart
represents the deterministic portion of the linear regression equation, Y = �
+ �X. For any particular point, the distance above or below the line is the
error, ε, for that point.

Because there is only one regressor, this model is often referred to as a
univariate regression. Mainly, this is to differentiate it from the multivariate
model, with more than one regressor, which we will explore later in this
chapter. While everybody agrees that a model with two or more regressors
is multivariate, not everybody agrees that a model with one regressor is uni-
variate. Even though the univariate model has one regressor, X, it has two

173
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F IGURE 8.1 Linear Regression Example

variables, X and Y, which has led some people to refer to Equation 8.1
as a bivariate model. From here on out, however, we will refer to
Equation 8.1 as a univariate model.

In Equation 8.1, � and � are constants. In the univariate model, � is
typically referred to as the intercept, and � is often referred to as the slope.
� is referred to as the slope because it measures the slope of the solid line
when Y is plotted against X. We can see this by taking the derivative of Y
with respect to X:

dY
dX

= � (8.2)

The final term in Equation 8.1, ε, represents a random error, or residual.
The error term allows us to specify a relationship between X and Y, even
when that relationship is not exact. In effect, the model is incomplete, it
is an approximation. Changes in X may drive changes in Y, but there are
other variables, which we are not modeling, which also impact Y. These
unmodeled variables cause X and Y to deviate from a purely deterministic
relationship. That deviation is captured by ε, our residual.
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In risk management this division of the world into two parts, a part
that can be explained by the model and a part that cannot, is a common
dichotomy. We refer to risk that can be explained by our model as systematic
risk, and to the part that cannot be explained by the model as idiosyncratic
risk. In our regression model, Y is divided into a systematic component, �
+ �X, and an idiosyncratic component, ε.

Y = � + �X︸ ︷︷ ︸
systematic

+ ε︸︷︷︸
idiosyncratic

(8.3)

Which component of the overall risk is more important? It depends on
what our objective is. As we will see, portfolio managers who wish to hedge
certain risks in their portfolios are basically trying to reduce or eliminate
systematic risk. Portfolio managers who try to mimic the returns of an index,
on the other hand, can be viewed as trying to minimize idiosyncratic risk.

Ordinary Least Squares

The univariate regression model is conceptually simple. In order to uniquely
determine the parameters in the model, though, we need to make some
assumption about our variables. While relatively simple, these assumptions
allow us to derive some very powerful statistical results.

By far the most popular linear regression model is ordinary least squares
(OLS). The objective of OLS is to explain as much of the variation in Y as
possible, based on the constants � and �. This is equivalent to minimizing
the role of ε, the error term. More specifically, OLS attempts to minimize
the sum of the squared error terms (hence “least squares”).

OLS makes several assumptions about the form of the regression model,
which can be summarized as follows:

(A1) The relationship between the regressor and the regressand is linear.

(A2) E[ε | X] = 0

(A3) Var[ε | X] = �2

(A4) Cov[εi , ε j ] = 0∀i �= j

(A5) εi ∼ N(0, �2)∀εi

(A6) The regressor is nonstochastic.

We examine each assumption in turn.
The first assumption (A1) really just reiterates what Equation 8.1 im-

plies, that we are assuming a linear relationship between X and Y. This
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assumption is not nearly as restrictive as it sounds. Suppose we suspect that
default rates are related to interest rates in the following way:

D = � + �R3/4 + ε (8.4)

Because of the exponent on R, the relationship between D and R is clearly
nonlinear. Still, the relationship between D and R3/4 is linear. Though not
necessary, it is perfectly legitimate to substitute X, where X = R3/4, into the
equation to make this explicit.

As specified, the model implies that the linear relationship should be
true for all values of D and R. In practice, we often only require that the
relationship is linear within a given range. In this example, we don’t have to
assume that the model is true for negative interest rates or rates over 500%.
As long as we can restrict ourselves to a range within which the relationship
is linear, this is not a problem. What could be a problem is if the relationship
takes one form over most of the range, but changes for extreme but plausible
values. In our example, maybe interest rates tend to vary between 0% and
15%; there is a linear relationship between D and R3/4 in this range, but
beyond 15% the relationship becomes highly nonlinear. As risk managers,
these extreme but plausible outcomes are what we are most interested in.
We will return to this topic at the end of the chapter when we discuss
stress testing.

Assumption (A2) states that for any realization of X, the expected value
of ε is zero. From a very practical standpoint, this assumption resolves any
ambiguity between � and ε. Imagine ε could be modeled as:

ε = �′ + ε′ (8.5)

where �′ is a nonzero constant and ε′ is mean zero. By substituting this
equation into Equation 8.1, we have:

Y = (� + �′) + �X + ε′ (8.6)

In practice, there is no way to differentiate between � and �′, and it is the
combined term, (� + �′), that is our constant.

Using (A2) and taking the expectation of both sides of Equation 8.1, we
arrive at our first result for the OLS model, namely:

E[Y | X] = � + �X (8.7)
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Given X, the expected value of Y is fully determined by � and �. In other
words, the model provides a very simple linear and unbiased estimator of Y.

(A2) also implies that the error term is independent of X. We can express
this as:

Cov[X, ε] = 0 (8.8)

This result will prove useful in deriving other properties of the OLS model.
(A3) states that the variance of the error term is constant. This prop-

erty of constant variance is known as homoscedasticity, in contrast to het-
eroscedasticity, where the variance is nonconstant. This assumption means
that the variance of the error term does not vary over time or depending on
the level of the regressor. In finance, many models that appear to be linear
often violate this assumption. As we will see in the next chapter, interest
rate models often specify an error term that varies in relation to the level of
interest rates.

(A4) states that the error terms for various data points should be uncor-
related with each other. As we will see in the next chapter, this assumption
is often violated in time series models, where today’s error is correlated with
the previous day’s error. Assumptions (A3) and (A4) are often combined. A
random variable that has constant variance and is uncorrelated with itself is
termed spherical. OLS assumes spherical errors.

Combining (A2) and (A3) allows us to derive a very useful relationship,
which is widely used in finance. Given X and Y in Equation 8.1:

� = Cov[X, Y]

�2
X

= �XY
�X

�Y
(8.9)

where �X and �Y are the standard deviation of X and Y, respectively, and
�XY is the correlation between the two. The proof is left as an exercise at the
end of the chapter.

One of the most popular uses of regression analysis in finance is
to regress stock returns against market index returns. This regression is
so popular that we frequently speak of a stock’s beta. While there are
other ways to calculate the slope parameter, the functional form given in
Equation 8.9 is extremely popular, as it relates two values, �X and �Y, with
which traders and risk managers are often familiar, to two other terms, �XY

and �, which should be rather intuitive.
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OPTIMAL HEDGING REVIS ITED

In Chapter 3, we determined that the optimal hedge ratio for two
assets, A and B, was given by:

h∗ = −�AB
�A

�B

where �A is the standard deviation of the returns of asset A, �B is the
standard deviation of the returns of asset B, and �AB is the correlation
between the returns of A and B.

Although we didn’t know it at the time, our optimal hedge ratio
is just the negative of our slope from the following regression:

rA = � + �rB + ε
h∗ = −�

(8.10)

In other words, in order to minimize the variance of the portfolio, we
need to short � units of asset B. This completely negates the �rB term
in the portfolio, leaving us with a constant, �, and the idiosyncratic
residual, ε, which cannot be hedged:

rA − �rB = � + ε

This is the minimum variance portfolio.
As an example, pretend we are monitoring a portfolio with $100

million worth of assets, and the portfolio manager wishes to hedge
the portfolio’s exposure to fluctuations in the price of oil. We per-
form an OLS analysis and obtain the following regression equation,
where rportfolio is the portfolio’s percentage return, and rOil is the return
associated with the price of oil:

rportfolio = 0.01 + 0.43rOil + ε

This tells us that for every unit of the portfolio, the optimal hedge
would be to short 0.43 units of oil. For the entire $100 million port-
folio, the hedge would be −$43 million of oil.

Assumption (A5) states that the error terms in the model should be nor-
mally distributed. Many of the results of the OLS model are true, regardless
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of this assumption. This assumption is most useful when it comes to defining
confidence levels for the model parameters.

Finally, assumption (A6) assumes that the regressor is nonstochastic,
or nonrandom. In science, the regressor is often carefully controlled by an
experimenter. A researcher might vary the amount of a drug given to mice,
to determine the impact of the drug on their weight. One mouse gets one
unit of the drug each day, the next gets two, the next three, and so on.
Afterward, the regressand, the weight of each mouse, is measured. Ignoring
measurement errors, the amount of the drug given to the mice is nonran-
dom. The experiment could be repeated, with another researcher providing
the exact same dosages as in the initial experiment. Unfortunately, the abil-
ity to carefully control the independent variable and repeat experiments is
rare in finance. More often than not, all of the variables of interest are ran-
dom. Take, for example, the regression of stock returns on index returns.
As the model is specified, we are basically stating that the index’s return
causes the stock’s return. In reality, both the index’s return and stock’s
return are random variables, determined by a number of factors, some of
which they might have in common. At some point, the discussion around
assumption (A6) tends to become deeply philosophical. From a practical
standpoint, most of the results of OLS hold true, regardless of (A6). In
many cases the conclusion needs to be modified only slightly. For example,
a result that was unconditional, given (A6), might be conditional on (A6)
without it.

Est imat ing the Parameters

Now that we have the model, how do we go about determining the con-
stants, � and �? In the case of OLS, we need only find the combination of
constants that minimizes the squared errors. In other words, given a sam-
ple of regressands, y1, y2, . . . , yn, and a set of corresponding regressors,
x1, x2, . . . , x3, we want to minimize the following sum:

RSS =
n∑

i=1

ε2
i =

n∑
i=1

(yi − � − �xi )2 (8.11)

where RSS is the commonly used acronym for the residual sum of squares
(sum of squared residuals would probably be a more accurate description,
but RSS is the convention). In order to minimize this equation, we first
take its derivative with respect to � and � separately. We set the derivatives



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c08 JWBT625-Miller January 9, 2012 23:51 Printer: Courier Westford

180 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

to zero and solve the resulting simultaneous equations. The result is the
equations for OLS parameters:

� = Y − �X

� =

n∑
i=1

xi yi − nYX

n∑
i=1

x2
i − nX

2

(8.12)

where X and Y are the sample mean of X and Y, respectively. The proof is
left for an exercise at the end of the chapter.

Evaluat ing the Regression

Unlike a controlled laboratory experiment, the real world is a very noisy and
complicated place. In finance it is rare that a simple univariate regression
model is going to completely explain a large data set. In many cases, the data
are so noisy that we must ask ourselves if the model is explaining anything
at all. Even when a relationship appears to exist, we are likely to want some
quantitative measure of just how strong that relationship is.

Probably the most popular statistic for describing linear regressions is
the coefficient of determination, commonly known as R-squared, or just R2.
R2 is often described as the goodness of fit of the linear regression. When
R2 is one, the regression model completely explains the data. If R2 is one,
all the residuals are zero, and the residual sum of squares, RSS, is zero. At
the other end of the spectrum, if R2 is zero, the model does not explain any
variation in the observed data. In other words, Y does not vary with X, and
� is zero.

To calculate the coefficient of determination, we need to define two
additional terms: TSS, the total sum of squares, and ESS, the explained sum
of squares. They are defined as:

TSS =
n∑

i=1

y2
i

ESS =
n∑

i=1

ŷ2
i =

n∑
i=1

(� + �xi )2

(8.13)

These two sums are related to the previously encountered residual sum
of squares, as follows:

TSS = ESS + RSS (8.14)
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In other words, the total variation in our regressand, TSS, can be broken
down into two components, the part the model can explain, ESS, and the
part the model cannot, RSS. These sums can be used to compute R2:

R2 = ESS
TSS

= 1 − RSS
TSS

(8.15)

As promised, when there are no residual errors, when RSS is zero, R2 is
one. Also, when ESS is zero, or when the variation in the errors is equal to
TSS, R2 is zero. It turns out that for the univariate linear regression model,
R2 is also equal to the correlation between X and Y squared. If X and Y are
perfectly correlated, � xy = 1, or perfectly negatively correlated, � xy = –1,
then R2 will equal one.

Estimates of the regression parameters are just like the parameter es-
timates we examined in the preceding chapter, and subject to hypothesis
testing. In regression analysis, the most common null hypothesis is that the
slope parameter, �, is zero. If � is zero, then the regression model does not
explain any variation in the regressand.

In finance, we often want to know if � is significantly different from
zero, but for different reasons. In modern finance, alpha has become syn-
onymous with the ability of a portfolio manager to generate excess returns.
This is because, in a regression equation modeling the returns of a portfolio
manager, after we remove all the randomness, ε, and the influence of the
explanatory variable, X, if � is still positive, then it is suggested that the port-
folio manager is producing positive excess returns, something that should
be very difficult in efficient markets. Of course, it’s not just enough that the
� is positive; we require that the � be positive and statistically significant.

In order to test the significance of the regression parameters, we first
need to calculate the variance of � and �, which we can obtain from the
following formulas:

�̂2
� =

n∑
i=1

x2
i

n
n∑

i=1
(xi − x)2

�̂2
ε

�̂2
� = �̂2

ε
n∑

i=1
(xi − x)2

�̂2
ε =

n∑
i=1

ε2
i

n − 2

(8.16)
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where the last formula gives the variance of the error term, ε, which is simply
the RSS divided by the degrees of freedom for the regression. Using the equa-
tions for the variance of our estimators, we can then form an appropriate
t-statistic. For example, for � we would have:

�̂ − �

�̂�
∼ tn−2 (8.17)

SAMPLE PROBLEM

Question:
As a risk manager and expert on statistics, you are asked to evalu-

ate the performance of a long/short equity portfolio manager. You are
given 10 years of monthly return data. You regress the log returns of
the portfolio manager against the log returns of a market index.

rportfolio manager = � + �rmarket + ε

Assume both series are normally distributed and homoscedastic. From
this analysis, you obtain the following regression results:

Constant Beta

Value 1.13% 20.39%
Std. dev. 0.48% 9.71%
R2 8.11%

What can we say about the performance of the portfolio manager?

Answer:
The R2 for the regression is low. Only 8.11% of the variation

in the portfolio manager’s returns can be explained by the constant,
beta and variation in the market. The rest is idiosyncratic risk, and is
unexplained by the model.

That said, both the constant and the beta seem to be statistically
significant (i.e., they are statistically different from zero). We can get
the t-statistic by dividing the value of the coefficient by its standard
deviation. For the constant, we have:

�̂ − �

�̂�
= 1.13% − 0%

0.48%
= 2.36
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Similarly, for beta we have a t-statistic of 2.10. Using a statistical
package, we calculate the corresponding probability associated with
each t-statistic. This should be a two-tailed test with 118 degrees of
freedom (10 years × 12 months per year – 2 parameters). We can reject
the hypothesis that the constant and slope are zero at the 2% level and
4% level, respectively. In other words, there seems to be a significant
market component to the fund manager’s return, but the manager is
also generating statistically significant excess returns.

In the preceding example, both regression parameters were statistically
significant, even though the R2 was fairly modest. Which is more impor-
tant, R2 or the significance of the regression parameters? Of course this is
a subjective question and both measures are useful, but in finance one is
tempted to say that the t-statistics, and not R2, are more important. For
many who are new to finance, this is surprising. Many of us first encounter
regression analysis in the sciences. In a scientific experiment where condi-
tions can be precisely controlled, it is not unusual to see R2 above 90%.
In finance, where so much is not being measured, the error term tends to
dominate, and R2 is typically much lower. That � can be statistically signif-
icant even with a low R2 may seem surprising, but in finance this is often
the case.

L INEAR REGRESSION (MULTIVARIATE)

Univariate regression models are extremely common in finance and risk
management, but sometimes we require a slightly more complicated model.
In these cases, we might use a multivariate regression model. The basic
idea is the same, but instead of one regressand and one regressor, we
have one regressand and multiple regressors. Our basic equation will look
something like:

Y = �1 + �2 X2 + �3 X3 + · · · + �n Xn (8.18)

Notice that rather than denoting the first constant with �, we chose to
go with �1. This is the more common convention in multivariate regression.
To make the equation even more regular, we can assume that there is an
X1, which, unlike the other X’s, is constant and always equal to one. This
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convention allows us to easily express a set of observations in matrix form.
For t observations and n regressands, we could write:

⎡
⎢⎢⎢⎣

y1

y2
...
yt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

xt1 xt2 · · · xtn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�1

�2
...

�n

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

ε1

ε2
...
εt

⎤
⎥⎥⎥⎦ (8.19)

where the first column of the X matrix—x11, x21, . . . , xt1—is under-
stood to consist entirely of ones. The entire equation can be written more
succinctly as:

Y = X� + ε (8.20)

where, as before, we have used bold letters to denote matrices.

Mult ico l l inearity

In order to determine the parameters of the multivariate regression, we again
turn to our OLS assumptions. In the multivariate case, the assumptions are
the same as before, but with one addition. In the multivariate case, we
require that all of the independent variables be linearly independent of each
other. We say that the independent variables must lack multicollinearity:

(A7) The independent variables have no multicollinearity.

To say that the independent variables lack multicollinearity means that it is
impossible to express one of the independent variables as a linear combina-
tion of the others.

This additional assumption is required to remove ambiguity. To see why
this is the case, imagine that we attempt a regression with two independent
variables where the second independent variable, X3, can be expressed as a
linear function of the first independent variable, X2:

Y = �1 + �2 X2 + �3 X3 + ε1

X3 = �1 + �2 X2 + ε2
(8.21)

If we substitute the second line of Equation 8.21 into the first, we get:

Y = (�1 + �3�1) + (�2 + �3�2)X2 + (�3ε2 + ε1)

Y = �4 + �5 X2 + ε3
(8.22)
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In the second line, we have simplified by introducing new constants
and a new error term. We have replaced (�1 + �3�1) with �4, replaced
(�2 + �3�2) with �5, and replaced (�3ε2 + ε1) with ε3. �5 can be uniquely
determined in a univariate regression, but there is an infinite number of
combinations of �2, �3, and �2 that we could choose to equal �5. If
�5 = 10, any of the following combinations would work:

�2 = 10, �3 = 0, �2 = 100

�2 = 0, �3 = 10, �2 = 1

�2 = 500, �3 = −49, �2 = 10

(8.23)

This is why we say that �2 and �3 are ambiguous in the initial equation.
Even in the presence of multicollinearity, the regression model still

works in a sense. In the preceding example, even though �2 and �3 are
ambiguous, any combination where (�2 + �3�2) equals �5 will produce
the same value of Y for a given set of X’s. If our only objective is to pre-
dict Y, then the regression model still works. The problem is that the value
of the parameters will be unstable. A slightly different data set can cause
wild swings in the value of the parameter estimates, and may even flip the
signs of the parameters. A variable that we expect to be positively cor-
related with the regressand may end up with a large negative beta. This
makes interpreting the model difficult. Parameter instability is often a sign
of multicollinearity.

There is no well-accepted procedure for dealing with multicollinearity.
The easiest course of action is often simply to eliminate a variable from the
regression. While easy, this is hardly satisfactory.

Another possibility is to transform the variables, to create uncorrelated
variables out of linear combinations of the existing variables. In the previous
example, even though X3 is correlated with X2, X3 – �2X2 is uncorrelated
with X2.

X3 − �2 X2 = �1 + ε3

Cov[X2, X3 − �2 X2] = Cov[X2, �1 + ε3] = Cov[X2, ε3] = 0
(8.24)

One potential problem with this approach is similar to what we saw
with principal component analysis (which is really just another method
for creating uncorrelated variables from linear combinations of correlated
variables). If we are lucky, a linear combination of variables will have a
simple economic interpretation. For example, if X2 and X3 are two equity
indexes, then their difference might correspond to a familiar spread. Simi-
larly, if the two variables are interest rates, their difference might bear some
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relation to the shape of the yield curve. Other linear combinations might be
difficult to interpret, and if the relationship is not readily identifiable, then
the relationship is more likely to be unstable or spurious.

Global financial markets are becoming increasingly integrated. More
now than ever before, multicollinearity is a problem that risk managers
need to be aware of.

Est imat ing the Parameters

Assuming our variables meet all of the OLS assumptions, how do we go
about estimating the parameters of our multivariate model? The math is a
bit more complicated, but the process is the same as in the univariate case.
Using our regression equation, we calculate the residual sum of squares and
seek to minimize its value through the choice of our parameters. The result
is our OLS estimator for �, �̂:

�̂ = (X′X)−1X′Y (8.25)

Where we had two parameters in the univariate case, now we have a vector
of n parameters, which define our regression equation.

Given the OLS assumptions—actually, we don’t even need (A6), that
the regressors are nonstochastic—�̂ is the best linear unbiased estimator of
�. This result is known as the Gauss-Markov theorem.

Evaluat ing the Regression

Just as with the univariate model, once we have calculated the parameters of
our multivariate model, we need to be able to evaluate how well the model
explains the data.

We can use the same process that we used in the univariate case to
calculate R2 for the multivariate regression. All of the necessary sums, RSS,
ESS, and TSS, can be calculated without further complication. Just as in the
univariate case, in the multivariate model, R2 varies between zero and one,
and indicates how much of the dependent variable is being explained by the
model. One problem in the multivariate setting is that R2 tends to increase
as we add independent variables to our regression. In fact, adding variables
to a regression can never decrease the R2. At worst, R2 stays the same.
This might seem to suggest that adding variables to a regression is always a
good thing, even if they have little or no explanatory power. Clearly there
should be some penalty for adding variables to a regression. An attempt to
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rectify this situation is the adjusted R2, which is typically denoted by R
2
,

and defined as:

R
2 = 1 − (1 − R2)

t − 1
t − n

(8.26)

where t is the number of sample points and n is the number of regressors,
including the constant term. While there is clearly a penalty for adding
independent variables and increasing n, one odd thing about R

2
is that the

value can turn negative in certain situations.
Just as with the univariate model, we can calculate the variance of the

error term. Given t data points and n regressors, the variance of the error
term is:

�̂2
ε =

t∑
i=1

εi

t − n
(8.27)

The variance of the ith estimator is then:

�̂2
i = �̂2

ε [(X′X)−1]i,i (8.28)

where the final term on the right-hand side is the ith diagonal element of
the matrix (X′X)−1. We can then use this to form an appropriate t-statistic,
with t − n degrees of freedom:

�̂i − �i

�̂i
∼ tt−n (8.29)

Instead of just testing one parameter, we can actually test the significance
of all of the parameters, excluding the constant, using what is known as an
F-test. The F-statistic can be calculated using R2:

R2/(n − 1)
(1 − R2)/(t − n)

∼ Fn−1,t−n (8.30)

As the name implies, the F-statistic follows an F-distribution with
n − 1 and t − n degrees of freedom. Not surprisingly, if the R2 is zero,
the F-statistic will be zero as well.

Table 8.1 shows 5% and 10% critical values for the F-distribution for
various values of n and t, where the appropriate degrees of freedom are
n − 1 and t − n. For a univariate regression, n = 2, with a large number of
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TABLE 8.1 F-Distribution Critical Values

n t 5% 10%

2 20 4.41 3.01
2 50 4.04 2.81
2 100 3.94 2.76
2 1,000 3.85 2.71
4 20 3.24 2.46
4 50 2.81 2.21
4 100 2.70 2.14
4 1,000 2.61 2.09

data points, a good rule of thumb is that values over 4.00 will be significant
at the 5% level.

In general, we want to keep our models as simple as possible. We don’t
want to add variables just for the sake of adding variables. This principle
is known as parsimony. R

2
, t-tests, and F-tests are often used in deciding

whether to include an additional variable in a regression. In the case of R
2
,

a variable will be added only if it improves R
2
. In finance, even when the

statistical significance of the betas is high, R2 and R
2

are often very low.
For this reason, it is common to evaluate the addition of a variable on the
basis of its t-statistic. If the t-statistic of the additional variable is statistically
significant, then it is kept in the model. It is less common, but it is possible,
to have a collection of variables, none of which are statistically significant
by themselves, but which are jointly significant. This is why it is important
to monitor the F-statistic as well. When applied systematically, this process
of adding or removing variables from a regression model is referred to as
stepwise regression.

APPLICATION: FACTOR ANALYSIS

In risk management, factor analysis is a form of risk attribution, which
attempts to identify and measure common sources of risk within large,
complex portfolios.∗ These underlying sources of risk are known as factors.

∗In statistics, factor analysis can also refer to a specific method of data analysis,
similar to PCA. What we are exploring in this section might be more formally referred
to as risk factor analysis. Risk factor analysis is a much more general concept, which
might utilize statistical factor analysis, regression analysis, PCA, or any number of
statistical methods.
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Factors can include equity market risk, sector risk, region risk, country risk,
interest rate risk, inflation risk, or style risk (large-cap versus small-cap,
value versus growth, momentum, etc.). Factor analysis is most popular for
equity portfolios, but can be applied to any asset class or strategy.

In a large, complex portfolio it is sometimes far from obvious how much
exposure a portfolio has to a given factor. Depending on a portfolio man-
ager’s objectives, it may be desirable to minimize certain factor exposures
or to keep the amount of risk from certain factors within a given range. It
typically falls to risk management to ensure that the factor exposures are
maintained at acceptable levels.

The classic approach to factor analysis can best be described as risk
taxonomy. For each type of factor, each security would be associated with
one and only one factor. If we were trying to measure country exposures,
each security would be assigned to a specific country—France, South Korea,
the United States, and so on. If we were trying to measure sector exposures,
each security would similarly be assigned to an industry, such as technology,
manufacturing, or retail. After we had categorized all of the securities, we
would simply add up the exposures of the various securities to get our
portfolio-level exposures. Table 8.2 shows how a portfolio’s exposure to
different regions and countries could be broken down.

In this portfolio, which has a total value of $10,643, there is $359 of
exposure to China and a net −$323 of exposure to Europe. Importantly,
the classic approach is binary. A security is an investment in either China
or Germany; it is either in utilities or in agriculture. It can’t be one-third in
Russia and two-thirds in Poland, or just 42% in value stocks. This creates
a problem in the real world. What do you do with a company that is
headquartered in France, has all of its manufacturing capacity in China, sells

TABLE 8.2 Geographic Exposures

Market Value

Asia
China $359
Japan $3,349

Europe
Germany −$823
Ireland $500

North America
United States $4,865
Mexico $2,393

Total $10,643
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its products in North America, and has listed shares on both NASDAQ and
the London Stock Exchange? Is a company that sells electronics a technology
company or a retailer?

These kinds of obvious questions led to the development of various
statistical approaches to factor analysis. One very popular approach is to
associate each factor with an index, and then to use that index in a regression
analysis to measure a portfolio’s exposure to that factor. For example, if we
want to measure a portfolio’s exposure to Japan, we would run a regression
of our portfolio’s returns against the returns of a Japanese index:

rportfolio = � + �rindex + ε (8.31)

The Japanese index could be a publicly available index, such as the
Nikkei, or it could be an index of our own construction based on a basket of
Japanese securities. The return series for our portfolio should reflect what the
returns of the current portfolio would have been, given the current holdings
of the portfolio. This type of return series is often referred to as a what-if
or back-cast return series. This is as opposed to the actual return series,
which would be impacted by the changing composition of the portfolio over
time. Of course this analysis assumes that both return series obey all the
OLS assumptions.

In Equation 8.31, � now represents our factor exposure. The exposure
will be in the same units as the portfolio returns. If the portfolio returns are
in U.S. dollars, the exposure will be in U.S. dollars, too. From this equation,
we would already be able to predict that if the index return was −10%,
then the impact on the portfolio’s return would be −0.10�. Being able to
summarize the risk of a large, complex portfolio in such simple terms is
what makes regression analysis so powerful.

Another nice thing about factor analysis is that the factor exposures
can be added across portfolios. If Portfolio A has $100 of exposure to tech-
nology, and Portfolio B has $200 of exposure to the same factor, then a
combined portfolio, Portfolio A + B, would have $300 of exposure to tech-
nology. This result can be obtained by simply adding together the regression
equations of Portfolios A and B:

rportfolio A = �A + �Arindex + εA

rportfolio B = �B + �Brindex + εB

rportfolio A+B = (�A + �B) + (�A + �B)rindex + (εA + εB)

(8.32)

Because factor exposures are additive, this makes hedging a factor ex-
posure relatively simple. If we have $300 of exposure to technology, and
assuming the technology index is tradable, we can hedge this factor by
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TABLE 8.3 Adding Factor Exposures across Portfolios

Market Value Factor Exposure

Portfolio A $9,378 −$30,592
Portfolio B $39,348 $45,829
Portfolio C −$2,938 −$2,674
Total $45,788 $12,563

shorting $300 of the technology index; $300 less $300 leaves us with $0 of
factor exposure.

Table 8.3 shows a sample exposure breakdown for an unspecified factor.
Notice how the factor exposures are not necessarily proportional to the
market values or even of the same sign. Even though there is not a fixed
relationship between market value and factor exposure across portfolios,
the market values and the factor exposures can each be added up separately
to arrive at their respective totals.

In addition to giving us the factor exposure, the factor analysis allows
us to divide the risk of a portfolio into systematic and idiosyncratic com-
ponents. In this case, systematic risk refers to the risk in a portfolio that
can be attributed to a factor. The risk that is not systematic (i.e., that cannot
be attributed to a factor) is referred to as idiosyncratic risk. In an equity
portfolio this is often referred to as stock-specific risk. From our OLS as-
sumptions, we know that rindex and ε are not correlated. Calculating the
variance of rportfolio in Equation 8.31, we arrive at the following:

�2
portfolio = �2�2

index + �2
ε (8.33)

In other words, the variance of the portfolio can be broken into two
components, �2�2

index, the systematic component, and �2
ε , the idiosyncratic

component. As mentioned previously, depending on the objective of the
portfolio, we might consider more or less idiosyncratic variance desirable.
If our objective is to replicate an index, we might want to minimize id-
iosyncratic risk. If our goal is to produce portfolio returns that are uncor-
related with the market, we would want to minimize the systematic risk in
the portfolio.

In theory, there is no reason why we cannot extend our factor analysis
using multivariate regression analysis. In practice, many of the factors we
are interested in will be highly correlated (most equity indexes are highly
correlated with each other). This leads naturally to the use of spreads be-
tween indexes for secondary factors in order to avoid multicollinearity. For
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example, if we are using a broad market index as a primary factor, then
the spread between that index and a country factor might be an interesting
secondary factor. As outlined in the section on multicollinearity, we can use
the residuals from the regression of our secondary index on the primary in-
dex to construct a return series that is uncorrelated with the primary series.
Even when we have constructed these secondary factors, for the purpose of
exposition, factor exposures are usually presented separately.

In theory, factors can be based on almost any kind of return series. The
advantage of indexes based on publicly traded securities is that it makes
hedging very straightforward. At the same time, there might be some risks
that are not captured by any publicly traded index. Some risk managers
have attempted to resolve this problem by using statistical techniques, such
as principal component analysis (PCA) or cluster analysis, to develop more
robust factors. Besides the fact that these factors might be difficult to hedge,
they might also be unstable, and it might be difficult to associate these factors
with any identifiable macroeconomic variable. Even using these statistical
techniques, there is always the possibility that we have failed to identify a
factor that is an important source of risk for our portfolio. Factor analysis
is a very powerful tool, but it is not without its shortcomings.

APPLICATION: STRESS TESTING

In risk management, stress testing assesses the likely impact of an extreme,
but plausible, scenario on a portfolio. There is no universally accepted
method for performing stress tests. One popular approach, which we con-
sider here, is closely related to factor analysis.

The first step in stress testing is defining a scenario. Scenarios can be
either ad hoc or based on a historical episode. An ad hoc scenario might
assume that equity markets decline 20% or that interest rates jump 5%,
for example. A historical scenario might examine the Russian Debt Crisis of
1998 or the Asian Currency Crisis of 1997. Black Monday, the equity market
crash of 1987, is probably one of the most popular scenarios for historical
stress tests. For both the ad hoc and the historical approaches, we want to
quantify our scenario by specifying the returns of a few key instruments,
or factors. For the 5% jump in interest rates, we might specify that 10-year
U.S. Treasury rates increase by 5%, BBB credit spreads increase 2%, and the
Standard & Poor’s 500 index decreases 10%. In the Black Monday scenario,
we might choose to focus on the change in the Dow Jones Industrial Average,
the price of gold, and the London Interbank Offered Rate (LIBOR). Just as
with our factor analysis, we need to be careful that the instruments defining
our scenario are not highly correlated.
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In the second step, we need to define how all other underlying finan-
cial instruments react, given our scenario. In order to do this we construct
multivariate regressions. We regress the returns of each underlying financial
instrument against the returns of the instruments that define our scenario.
What might seem strange is that, even in the case of the historical scenarios,
we use recent returns in our regression. In the case of the historical scenar-
ios, why don’t we just use the actual returns from that period? The reason
we use current returns and not returns from the historical episode is partly
practical. Consider Black Monday, 1987. Credit default swaps didn’t exist
in 1987. The euro, the world’s second largest currency, didn’t exist. Many of
today’s largest companies didn’t exist, including Google (IPO in 2004) and
Exxon Mobil (Exxon and Mobil did not merge until 1999). If our current
portfolio holds any of these securities and we wanted to use actual returns
from the stress period, we would have no data to use for those securities.
Even if we did have historical returns for all of the securities in our portfolio,
would we want to use them? The world has changed significantly over the
past 30 years. Companies and relationships between companies are likely to
be very different now than they were 30 years ago. To put it another way, we
choose a specific historical episode not because we expect that event to re-
peat exactly, in every detail, but because we expect something like that event
could happen again. As Mark Twain was supposed to have said, “History
does not repeat itself, but it often rhymes.”

In the final step, after we have generated the returns for all of the
underlying financial instruments, we price any options or other derivatives.
This last step is important. While using delta approximations might have
been acceptable for calculating Value at Risk statistics at one point in time,
it should never have been acceptable for stress testing. By definition, stress
testing is the examination of extreme events, and the accurate pricing of
nonlinear instruments is critical.

As an example of how a stress test might work in practice, let’s imagine
a scenario that we’ll call Simple Oil Crisis. In this scenario, crude oil prices
increase 20% and the Standard & Poor’s 500 index decreases by 10%.
Imagine that our portfolio consists solely of $100 worth of shares in Exxon
Mobil. To see how Exxon Mobil reacts, we would construct the following
regression:

rExxonMobil = �1 + �2rOil + �3rEquity Index + ε (8.34)

where the returns would be based on recent historical data, say the past
year of daily returns. In order to avoid issues with multicollinearity,
we’ll assume that rOil and rEquity_Index are uncorrelated. Assume that the
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OLS regression produces the following equation describing Exxon Mobil’s
returns:

rExxonMobil = 0.0000 + 0.0899rOil + 0.7727rEquity Index + ε (8.35)

Based on this equation, we expect Exxon Mobil to return –5.93% in
our stress scenario:

E[rExxonMobil | stress] = 0.0000 + 0.0899 • 0.20 + 0.7727 • − 0.10

= −0.0593 (8.36)

Given our starting value of $100, we would expect to lose $5.93 in
this scenario. To evaluate the expected return of a portfolio with multiple
securities, we could proceed stepwise, evaluating each security in turn, and
adding up the losses. Alternatively, we could calculate the back-cast dollar
return series for the entire portfolio, and use this series in our regression
analysis, to calculate the loss directly.

Earlier in the chapter, when we were reviewing the assumptions of the
OLS model, we noted that the model assumes that the relationship between
the regressand and regressors is true over the entire range being considered.
We cautioned that this assumption could be problematic if the relationship
takes one form over most of the range, but changes for extreme but plausible
values. Stress testing is, by definition, about extreme but plausible values. In
Chapter 10, we discuss some alternative approaches to regression that may
be better suited to the analysis of extreme returns. Regardless of which form
of regression analysis we settle on, the other steps in constructing the stress
test remain the same.

PROBLEMS

1. The following regression equation describes the daily returns of stock
XYZ, rXYZ, in terms of an index return, rIndex, and a mean zero distur-
bance term, ε:

rXYZ = � + �rIndex + ε

where � and � are constants; ε is mean zero with a standard deviation
of 1.0%, � is 0.01%, and � is 1.20. If the index return on a given day
is 5%, what is the expected return of XYZ?

2. In addition to the assumption in the previous question, assume rIndex
has a mean of 0.05% and a standard deviation of 1.5%. What is the
expected value of rXYZ? What is the standard deviation of rXYZ?
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3. Using all the information from the previous two questions, determine
the correlation between the index returns and the returns of XYZ.

4. You perform a regression analysis of a hedge fund’s returns against an
industry benchmark. You have 50 data points. The total sum of squares,
TSS, is 13.50%. The residual sum of squares, RSS, is 10.80%. What is
the R2?

5. In the previous question, what is the critical value for the F-test? Is the
F-statistic significant at the 95% confidence level?

6. An initial univariate regression produces an R2 of 60%. There are 20
data points. In an effort to improve the model, two additional regressors
are added, which boost the R2 to 64%. Determine which model is better
based on adjusted R2.

7. Based on your analysis of Company ABC’s stock returns, rABC, you
develop the following OLS regression model:

rABC = 0.01 + 1.25rA + 0.34rB + ε

where rA and rB are two uncorrelated indexes, and ε is a mean zero
disturbance term. If rA = 10% and rB = 50%, what is the expected
value of rABC?

8. You perform the following multivariate regression:

r = �1 + �2 X2 + �3 X3 + ε1

Upon closer inspection you notice that X2 and X3 are, in fact, correlated.
Their relationship can be described in the following regression:

X3 = �4 + �5 X2 + ε2

Suggest a new model that avoids the problem of multicollinearity.
9. Prove Equation 8.9. That is, given the standard univariate regression:

Y = � + �X + ε

Prove that:

� = Cov[X, Y]

�2
X

= �XY
�Y

�X

where �X and �Y are the standard deviations of X and Y, respectively,
and �XY is the correlation between the two. Hint: start by calculating
the covariance between X and Y.
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10. The equation for the residual sum of squares (RSS) of the univariate
regression model is:

RSS =
n∑

i=1

ε2
i =

n∑
i=1

(yi − � − �xi )2

Take the derivatives of this equation, first with respect to �, then with
respect to �. Set the two resulting equations to zero, and solve to get the
standard equations for the OLS regression parameters, Equation 8.12.
Technically, we should also prove that this solution is a minimum and
not a maximum, but that is beyond the scope of this text.
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CHAPTER 9
Time Series Models

I n this chapter, we provide an introduction to time series analysis. Time
series describe how random variables evolve over time and form the basis

of many financial models.

RANDOM WALKS

A time series is an equation or set of equations describing how a random
variable or variables evolves over time. Probably the most basic time series
is the random walk. For a random variable X, with a realization xt at time
t, the following conditions describe a random walk:

xt = xt−1 + εt

E[εt] = 0

E[ε2
t ] = �2

E[εsεt] = 0 ∀s �= t

(9.1)

In other words, X is equal to its value from the previous period, plus a
random disturbance, εt; εt is mean zero, with a constant variance. The last
assumption, combined with the fact that εt is mean zero, tells us that the ε’s
from different periods will be uncorrelated with each other. In time series
analysis, we typically refer to xt–1 as the first lagged value of xt, or just the
first lag of xt. By this convention, xt–2 would be the second lag, xt–3 the
third, and so on.

We can also think in terms of changes in X. Subtracting xt–1 from both
sides of our initial equation:

� xt = xt − xt−1 = εt (9.2)

197
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In this basic random walk, � xt has all of the properties of our stochastic
term, εt. Both are mean zero. Both have a constant variance, �2. Most
importantly, the error terms are uncorrelated with each other. This system
is not affected by its past. This is the defining feature of a random walk.

How does the system evolve over time? Note that Equation 9.1 is true
for all time periods. All of the following equations are valid:

xt = xt−1 + εt

xt−1 = xt−2 + εt−1
...

xt−i = xt−i−1 + εt−i

(9.3)

By substituting the equation into itself, we can see how the equation
evolves over multiple periods:

xt = xt−1 + εt = xt−2 + εt−1 + εt = x0 +
t∑

i=1

εi (9.4)

At time t, X is simply the sum of its initial value, x0, plus a series of
random steps. Using this formula, it is easy to calculate the conditional mean
and variance of xt:

E[xt | x0] = x0

Var[xt | x0] = t�2
(9.5)

If the variance increases proportionally with t, then the standard devia-
tion increases with the square root of t. This is our familiar square root rule
for independent and identically distributed (i.i.d.) variables. For a random
walk, our best guess for the future value of the variable is simply the cur-
rent value, but the probability of finding it near the current value becomes
increasingly small.

Though the proof is omitted here, it is not difficult to show that, for a
random walk, skewness is proportional to t−0.5 and kurtosis is proportional
to t−1. In other words, while the mean, variance, and standard deviation
increase over longer time spans, skewness and kurtosis become smaller.

The simple random walk is not a great model for equities, where we
expect prices to increase over time, or for interest rates, which cannot be
negative. With some rather trivial modification, though, we can accommo-
date both of these requirements.
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DRIFT-D IFFUSION

One simple modification we can make to the random walk is to add a
constant term, in the following way:

pt = � + pt−1 + εt (9.6)

Now the current realization of our random variable pt is a function of a
constant, �, its previous value, pt–1, and our random disturbance, εt. Just
as before, the variance of εt is constant over time, and the various εts are
uncorrelated with each other.

The choice of pt for our random variable is intentional. If pt is the log
price, then rearranging terms, we obtain an equation for the log return:

rt = � pt = � + εt (9.7)

The constant term, �, is often referred to as the drift term, for reasons
that will become apparent. In these cases, εt is typically referred to as the
diffusion term. Outside of finance, these types of models are most famously
used in physics to describe the motion of particles. We can imagine a bunch
of particles starting out close together, randomly drifting about, and filling
a space, or diffusing. Putting these two terms together, the entire equation
is known as a drift-diffusion model.

When equity returns follow a drift-diffusion process, we say that eq-
uity markets are perfectly efficient. We say they are efficient because the
expected return is not impacted by past prices or returns. Put another way,
the conditional and unconditional returns are equal. Mathematically:

E[rt | rt−1] = E[rt] = � (9.8)

If this was not the case, if there was some information in the past that
suggested that tomorrow’s return should be higher than average, then buyers
should enter the market to buy the security, in the process pushing up the
price. In a perfectly efficient market, this process would continue until there
was no arbitrage opportunity, until tomorrow’s expected return was no
higher or lower than the unconditional mean return.

Just as with the random walk equation, we can iteratively substitute the
drift-diffusion model into itself:

pt = 2� + pt−2 + εt + εt−1 = t� + p0 +
t∑

i=1

εi (9.9)
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And just as before, we can calculate the conditional mean and variance
of our drift-diffusion model:

E[pt | p0] = p0 + t�

Var[pt | p0] = t�2
(9.10)

Just as with the random walk, the variance of the drift-diffusion process
is proportional to t. This time, however, the mean is not constant. The
expected value of pt continues to increase or decrease steadily, to drift, as
time goes by at a rate of �. This is why � is known as the drift term.

AUTOREGRESSION

The next modification we’ll make to our time series model is to multiply the
lagged term by a constant:

rt = � + �rt−1 + εt (9.11)

Here, both � and � are constants. Depending on the value of �, the behavior
of this model can vary greatly. As we’ll see, when |�| is less than one, this
model can produce a stable time series. Figure 9.1 shows the results of
a Monte Carlo simulation based on Equation 9.11, with � = 0.50 and
� = 0.90. Models similar to this can be used to model interest rates, hence
the use of r for our random variable.

Equation 9.11 is known as an autoregressive (AR) model. More specif-
ically, Equation 9.11 is known as an AR(1) model, since rt depends only on
its first lag. The random walk is then just a special case of the AR(1) model,
where � is zero and � is equal to one. Although our main focus will be on
AR(1) models, we can easily construct an AR(n) model as follows:

rt = � + �1rt−1 + �2rt−2 + · · · + �nrt−n + εt (9.12)

where � and the �’s are all constants.
How does the addition of � to our equation change the behavior of rt?

To find out, just as we did before, we can iteratively substitute our AR(1)
model into itself to obtain the following equation:

rt = �

n−1∑
i=0

�i + �nrt−n +
n−1∑
i=0

�i εt−i (9.13)
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F IGURE 9.1 Mean Reversion (� = 0.50; � = 0.90)

To proceed further, we can use methods developed in Chapter 1 for
summing geometric series. The conditional mean and variance are now:

E[rt | rt−n] = 1 − �n

1 − �
� + �nrt−n

Var[rt | rt−n] = 1 − �2n

1 − �2
�2

(9.14)

As you might expect, for values of |�| greater than one, the variance of
rt increases exponentially as n increases. We say that the series diverges or
that it is unstable. For values of |�| greater than one, r will tend to move
further and further away from its starting value as n increases. Figure 9.2
shows the results of a Monte Carlo simulation based on Equation 9.11, with
� = –0.10 and � = 1.02. The standard deviation of the error term is 0.50.

For values of |�| less than one, notice that the impact of rt–n on the
expected value of rt decreases as n increases, but never goes to zero. This
may seem a bit strange. It’s as if the system has infinite memory. If we use
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F IGURE 9.2 Divergent Series (� = –0.10; � = 1.02; � = 0.50)

this as an interest rate model, then a spike in rates from 100 years ago
would still be impacting current rates. In practical terms, the impact would
be so small as to be negligible, but it is a potential criticism of autoregressive
models in practice.

For values of |�| less than one, the AR(1) process is stable. If we continue
to extend the series back in time, as n approaches infinity, �n becomes
increasingly small, causing �nrt–n to approach zero. In other words:

rt = 1
1 − �

� +
∞∑

i=0

�i εt−i (9.15)

Continuing to use our geometric series techniques, we then arrive at the
following results for the mean and variance:

E[rt] = 1
1 − �

�

Var[rt] = 1
1 − �2

�2

(9.16)
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So, for values of |�| less than one, as n approaches infinity, the initial state
of the system ceases to matter. The mean and variance are only a function
of the constants.

For a random walk, the conditional and unconditional means are equal.
This is not the case for an AR(1) process. For an AR(1) process, because
this period’s value is a function of the previous period’s value, knowing the
value from the previous period will impact our expectation of the value in
this period.

Using these results suggests an interesting way to reformulate our orig-
inal AR(1) equation. We define two new constants, � and �, and rewrite
Equation 9.11 as follows:

� = (1 − �)

� = �

�

rt = �� + (1 − �)rt−1 + εt

(9.17)

Viewed this way, our AR(1) can now be seen as a weighted average of its
mean and its lagged value. Our previous restriction that |�| is less than one
is now replaced by a new restriction, 0 � � � 2.

We can get some idea of the dynamic behavior of rt by subtracting rt–1

from both sides of the equation:

�rt = �(� − rt−1) + εt

E[�rt] = �(� − rt−1)
(9.18)

If � is between zero and two, then the expected value of � rt will always
be the same sign as (� – rt–1). If rt–1 is less than the mean, � rt will be
positive; if rt–1 is greater than the mean, � rt will be negative. In other
words, rt is always moving back toward its mean. This helps explain why
the system is stable.

Looking even closer, we see that the behavior of the system is different
if � is between zero and one than if it is between one and two. Between zero
and one, at each step, the expected value of � rt is a fraction of the distance
between rt–1 and �. For 0 � � � 1, r tends to move closer to the mean
with each step. This property is known as mean reversion and is thought
to be a common feature of many financial time series. For 1 � � � 2, the
series tends to overshoot the mean. If � = 1.5, we expect the � rt will be 1.5
times (� – rt–1), so r will tend to overshoot � by 0.5 times (� – rt–1). Figure
9.3 shows the results of a Monte Carlo simulation based on Equation 9.17,
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F IGURE 9.3 Mean Reversion with Overshooting (� = 5.0; � = –0.90; � = 1.90)

which exhibits mean reversion with overshooting. This system is stable, but
this constant overshooting is unusual in practice. In finance, more often than
not, for AR(1) systems, we expect � to be between zero and one, and for the
system to exhibit mean reversion.

We can quantify the level of mean reversion by calculating the cor-
relation of rt with its first lag. This is known as autocorrelation or serial
correlation. For our AR(1) series, we have:

	t,t−1 = 1 − � = � (9.19)

The proof is left as an exercise. Clearly this makes sense only when |�| is less
than one. Remember that covariance and correlation look at expected devi-
ations from the mean. In light of our discussion of the dynamics of AR(1)
systems, this result should make sense. For 0 � � � 1, if rt–1 is below the
mean, we expect rt to also be below the mean, and the autocorrelation is
positive. Similarly, for 1 � � � 2, if rt–1 is below the mean, we expect the pro-
cess to overshoot, causing rt to be above the mean, and the autocorrelation
is negative.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c09 JWBT625-Miller January 9, 2012 23:54 Printer: Courier Westford

Time Series Models 205

VARIANCE AND AUTOCORRELATION

Autocorrelation has a very important impact on variance as we look at
longer and longer time periods. For our random walk, as we look at longer
and longer periods, the variance grows in proportion to the length of time.

Assume returns follow a random walk:

rt = εt (9.20)

where εt is an i.i.d. disturbance term. Now define yn,t as an n period return;
that is:

yn,t =
n−1∑
i=0

rt−i =
n−1∑
i=0

εt−i (9.21)

As stated before, the variance of yn,t is proportional to n:

Var[yn,t] = n�2
ε (9.22)

and the standard deviation of yn,t is proportional to the square root of n. In
other words, if the daily standard deviation of an equity index is 1% and
the returns of the index follow a random walk, then the standard deviation
of 25-day returns will be 5%, and the standard deviation of 100-day returns
will be 10%.

When we introduce autocorrelation, this square root rule no longer
holds. If instead of a random walk we start with an AR(1) series:

rt = � + �rt−1 + εt = �

1 − �
+

∞∑
i=0

�i εt−i (9.23)

Now define a two-period return:

y2,t = rt + rt−1 = 2�

1 − �
+ εt +

∞∑
i=0

�i (1 + �)εt−i−1 (9.24)

With just two periods, the introduction of autocorrelation has already made
the description of our multiperiod return noticeably more complicated. The
variance of this series is now:

Var[y2,t] = 2
1 − �

�2
ε (9.25)
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If � is zero, then our time series is equivalent to a random walk and
our new variance formula gives the correct answer: that the variance is still
proportional to the length of our multiperiod return. If � is greater than
zero, and serial correlation is positive, then the two-period variance will
be more than twice as great as the single-period variance. If � is less than
zero, and the serial correlation is negative, then the two-period variance
will be less than twice the single-period variance. This makes sense. For
series with negative serial correlation, a large positive return will tend to
be followed by a negative return, pulling the series back toward its mean,
thereby reducing the multiperiod volatility. The opposite is true for series
with positive serial correlation.

Time series with slightly positive or negative serial correlation abound
in finance. It is a common mistake to assume that variance is linear in time,
when in fact it is not. Assuming no serial correlation when it does exist can
lead to a serious overestimation or underestimation of risk.

STATIONARITY

In the preceding section we discussed unstable series whose means and
variances tend to grow without bound. There are many series in the real
world that tend to grow exponentially—stock market indexes and gross
domestic product (GDP), for example—while other series—interest rates,
inflation, and exchange rates—typically fluctuate in narrow bands. This
dichotomy, between series that tend to grow without limit and those series
that tend to fluctuate around a constant level, is extremely important in
statistics. We call series that tend to fluctuate around a constant level
stationary time series. In contrast, series that are divergent are known as
nonstationary. Determining whether a series is stationary or not is often the
first step in time series analysis.

To be more precise, we say that a random variable X is stationary if for
all t and n:

1. E[xt] = � and | � | � ∞
2. Var[xt] = �2 and | �2| � ∞
3. Cov[xt, xt−n] = �t,t−n

(9.26)

where �, �2 and �t,t-n are constants. These three conditions state that the
mean, variance, and serial correlation should be constant over time. We also
require that the mean and variance be finite. In addition, some statisticians
include the condition that the distribution of X is stable over time. This is
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often called strong stationarity, as opposed to weak stationarity when only
the first three conditions are met.

While we can calculate a sample mean or variance for a nonstationary
series, these statistics are not very useful. Because the mean and variance
are changing, by definition, these sample statistics will not tell us anything
about the mean and variance of the distribution in general.

Regression analysis on nonstationary series is likely to be even more
meaningless. If a series is nonstationary because its volatility varies over
time, then it violates the ordinary least squares (OLS) requirement of ho-
moscedasticity. Even if the variance is constant, but the mean is drifting, any
conclusions we might draw about the relationship between two nonstation-
ary series will almost certainly be spurious.

SAMPLE PROBLEM

As an example of this type of spurious correlation, imagine two AR(1)
series with nonzero drifts. To make the calculations easier, we also
assume that both series start at zero:

pt = �p + pt−1 + εp,t where �p �= 0, p0 = 0

qt = �q + qt−1 + εq,t where �q �= 0, q0 = 0

We assume that both disturbance terms are mean zero and uncor-
related, which can be summarized as:

E[εp,t] = E[εq,t] = 0

E[εp,tεq,t] = 0

The two series are independent by design; pt is not a function of
qt, nor is qt a function of pt (e.g., pt might be a model of milk prices
in Germany, and qt a model of life expectancy in Singapore). The two
series have no causal relationship.

At any given point in time, the expected value of p is just t�p:

pt = �p + pt−1 + εp,t = n�p + pt−n +
n−1∑
i=0

εp,t−i = t�p +
t−1∑
i=0

εp,t−i

E[pt] = E[t�p +
t−1∑
i=0

εp,t−i ] = t�p
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Imagine that we tried to calculate the mean of p between 0 and t:

p̃ = 1
t + 1

t∑
i=0

pi

It is quite simple to calculate the expected value of this sample
mean:

E[ p̃] = 1
t + 1

t∑
i=0

E[pi ] = 1
t + 1

t∑
i=0

i�p = �p

t + 1

t∑
i=0

i = �p

t + 1
t(t + 1)

2

= �p
t
2

As expected, the sample mean is not independent of t. The result
for our second series, q, is similar, only replacing �p with �q. If we
take these sample means as given, we could try to construct a sample
covariance:

�̃p,q = 1
t + 1

t∑
i=0

piqi − E[ p̃]E[q̃] = 1
t + 1

t∑
i=0

piqi − �p�q
t2

4

To calculate the expected value of this series, we need to know
that the sum of series, 0, 1, 4, 9, . . . (t – 1)2, t2 is equal to
t(t + 1)(2t + 1)/6:

E[�̃p,q] = �p�q
t2 + 2t

12

Clearly, if both �p and �q are nonzero, then this sample covari-
ance estimator will also be nonzero, despite the fact that the series are
uncorrelated by design. We could imagine trying to calculate a sim-
ilar variance estimator (variance is just the covariance of a variable
with itself) and using the result to create an estimate of the slope in a
regression of p on q:


 = �̃p,q

�̃2
p

=
�p�q

t2 + 2t
12

�2
p
t2 + 2t

12

= �q

�p
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Though it was a long time in coming, this result is rather intuitive. If
�p is twice the value of �q, then at any point in time we will expect p
to be twice the value of q. If we plotted our sample points from 0 to
t, they would tend to line up along a line with a slope equal to 
. The
following chart shows one iteration from a Monte Carlo simulation
with �p = 2, �q = 1.

–50

0

50

100

150

200

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

p

q

t

This should all seem very wrong. If two variables are independent,
we expect them to have zero covariance, but because these series both
have nonzero drift terms, the sample covariance and beta will also tend
to be nonzero. The results are clearly spurious.

In a situation such as our sample problem, you could argue that even
though the two AR(1) series are independent, the positive sample covariance
is telling us something meaningful: that both series have nonzero drift terms.
How meaningful is this? Not very, as it turns out. Any random variable with
a nonzero mean can be turned into a nonstationary series. Log returns of
equities tend to be stationary, but the addition of those returns over time,
log prices, are nonstationary.
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To show just how silly all of this can get, in a classic example, Hendry
(1980) showed how, if done incorrectly, you might conclude that cumula-
tive rainfall in the United Kingdom and the UK price index where causally
related. In most stable economies, inflation tends to be slightly positive on
average, and stationary. The accumulation of this inflation over time results
in ever-increasing prices. Rainfall, which in any given year will be equal to
or greater than zero—almost certainly greater than zero in the UK—can also
safely be assumed to be a stationary series. But if we plot the cumulative
rainfall in the United Kingdom since 1900, say, this series will be constantly
growing, and nonstationary. Rainfall doesn’t cause inflation, or the oppo-
site way around, but if done improperly, statistical analysis might make you
think it did.

Figure 9.4 shows a regression of cumulative rainfall and the log price
index in the United Kingdom between 1949 and 2010. We use the log price
level to ensure that the relationship is linear (remember from Chapter 1:
plotted on a logarithmic scale, a series whose growth rate is constant over
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F IGURE 9.4 United Kingdom: Log Price Level and Cumulative Rain Fall,
1949–2010
Sources: Met Office and Office for National Statistics.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c09 JWBT625-Miller January 9, 2012 23:54 Printer: Courier Westford

Time Series Models 211

time will have a constant slope and appear as a straight line). The two series
are highly correlated, but only because both series are increasing over time.

The remedy for stationarity in statistical analysis is clear. Just as we
can construct a nonstationary series from a stationary one by summing
over time, we can usually create a stationary series from a nonstationary
series by taking its difference. Transforming a price series into returns is by
now a familiar example. Occasionally additional steps will need to be taken
(e.g., differencing twice), but for most financial and economic series, this
will suffice.

Figure 9.5 shows a regression based on the same data set we used in
Figure 9.4, only now instead of cumulative rainfall we are using annual
rainfall, and instead of the log price level we are using changes in the log
price index. This new chart looks very different. The regression line is very
close to being flat, and the slope parameter is in fact not significant.

Ascribing a causal relationship when none exists is a serious mistake.
Unfortunately, in this day and age, it is easy to gather massive amounts of
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F IGURE 9.5 United Kingdom: Change in Log Price Level and Annual Rain
Fall, 1949–2010
Sources: Met Office and Office for National Statistics.
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data and perform a quick regression analysis. When performing statistical
analysis of time series data, it is important to check for stationarity.

MOVING AVERAGE

Besides autoregressive (AR) series, the other major class of time series is
moving averages (MAs). An MA(n) series takes the form:

xt = εt + �1εt−1 + · · · + �nεt−n (9.27)

Moving average series can be combined with autoregressive series to
form ARMA(p,q) processes:

xt = �1xt−1 + �2xt−2 + · · · + �pxt−p + εt + �1εt−1 + · · · + �qεt−q (9.28)

Moving averages and ARMA processes are important in statistics, but
are less common in finance.

CONTINUOUS MODELS

Up until now, our time series models have all assumed discrete time intervals.
From time t – 1 to t to t + 1, our models progressed in uniform intervals.
Time just jumped from one instance to the next. By contrast, continuous time
series models define a system as a function of a continuous time variable.

A continuous time series model can be thought of as a discrete time
series model, where the time interval is infinitely short. To see how this
works, we can start with a discrete random walk. This time we specify that
there are n discrete steps of length h between t = 0 and t = T:

pt = pt−1 + εt t = 0, h, 2h, 3h · · ·nh nh = T (9.29)

Unlike in previous examples where the disturbance term was continu-
ous, we imagine that the disturbance term is also discrete. At the start of
each time interval, the time series jumps by positive or negative � , with
equal probability:

P[εt = � ] = 0.5

P[εt = −� ] = 0.5
(9.30)
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F IGURE 9.6 Step Function

To make the model continuous, all we really need to do is specify what
happens between jumps. In a discrete model, what happens between t and
(t + 1) is unknown. To make our model continuous, we only need to specify
what happens in this interval. We start by assuming the model is constant
between jumps. In other words, plotted over time, the series would look
something like Figure 9.6.

This type of process is often described as a step function. We can write
the relationship between the discrete and continuous series formally as:

pn(t) = p[t/h] (9.31)

Here, pn(t) is a continuous function defined for any real value of t
between 0 and T. The square brackets, [ • ], signify the greatest integer
function. For example, if our time interval is two units, for t = 8.648
we get: [8.648/2] = [4.324] = 5. This series, pn(t), is continuous but not
differentiable.

At the time t = T, the mean and variance of pn(t) are:

E[pn(T)] = 0

Var[pn(t)] = T
h � 2

(9.32)
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To make this process both continuous and differentiable, we imagine
shrinking h down to zero, which is equivalent to letting n go to infinity. The
trick is to define � in such a way that the variance is well behaved (i.e.,
finite) as n goes to infinity. It would also be nice if the variance was linear
in time; therefore, we specify:

Var[pn(t)] = T
h

� 2 = �2T (9.33)

We can solve for � to get:

� = �
√

h (9.34)

In the limit, as h goes to zero, � remains proportional to the square
root of h. In the limit, this process is referred to as a Wiener process, or
Brownian motion. When the mean is zero and the variance is one, we refer
to the process as standard Brownian motion, which is often denoted as B(t).
The proof is beyond the scope of this book, but it might not be surprising to
learn that Brownian motion is also normally distributed.∗ We can summarize
this as:

B(t) ∼ N(0, 1) (9.35)

Standard Brownian motion forms the basis for a more general class
of processes known as arithmetic Brownian motion, which can be formu-
lated as:

p(t) = �t + �B(t) (9.36)

This process is also normally distributed, but with a mean of � and a
standard deviation of �. If we take the exponent of p(t), we get geometric
Brownian motion:

P(t) = ep(t) (9.37)

Here p(t) is arithmetic Brownian motion, and P(t) is geometric Brown-
ian motion. One of the most celebrated uses of geometric Brownian mo-
tion is in the derivation of the Black-Scholes equations for options pric-
ing. In Black-Scholes, it is assumed that the stock price follows geometric
Brownian motion.

∗For a more formal version of this derivation and an excellent introduction to
stochastic differential equations, see Campbell, Lo, and MacKinlay (1996).
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Continuous time series models offer both advantages and disadvan-
tages compared to discrete models. Continuous time series models can
provide closed-form solutions to some extremely difficult problems. When
these solutions exist, they can provide answers to problems that would
be difficult or impossible to solve with discrete models. Unfortunately,
the mathematics for these solutions is often very difficult. Discrete mod-
els are extremely flexible, and—as we’ve seen—their behavior is often easy
to analyze using our standard statistical toolbox. Digital computers are in-
herently discrete, making discrete time series models a logical choice for
computer simulations. As computers become increasingly powerful, they
are gradually eliminating a major advantage of continuous models, namely
computational speed.

APPLICATION: GARCH

Up until this point, all of our time series models have assumed that the
variance of the disturbance term remains constant over time. In financial
markets, variance appears to be far from constant. Both prolonged periods
of high variance and prolonged periods of low variance are observed. While
the transition from low to high variance can be sudden, more often we
observe serial correlation in variance, with gradual mean reversion. When
this is the case, periods of above-average variance are more likely to be fol-
lowed by periods of above-average variance, and periods of below-average
variance are likely to be followed by periods of below-average variance.
For risk managers, this is one of the most important features of financial
markets. It implies that risk varies over time, and that this variation in risk
is, in part, predictable.

Figure 9.7 shows the rolling annualized 60-day standard deviation of
the S&P 500 between 1928 and 2008. Notice how the level of the standard
deviation is far from random. There are periods of sustained high volatility
(e.g., 1996–2003) and periods of sustained low volatility (e.g., 1964–1969).

One of the most popular models of time-varying volatility is the auto-
regressive conditional heteroscedasticity (ARCH) model. We start by defin-
ing a disturbance term at time t, εt, in terms of an i.i.d. standard normal
variable, ut, and variable time varying standard deviation, �t:

εt = �tut (9.38)

Because the standard deviation of ut is one, the standard deviation of εt

must be �t. With the exception of the degenerate case, where �t is constant,
εt will not be i.i.d. This is a departure from all of the models that we have
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F IGURE 9.7 S&P 500, Annualized 60-Day Return Standard Deviation,
1928–2008

seen up until now. In the simplest ARCH model, we can model the evolution
of the variance as:

�2
t = �0 + �1�2

t−1u2
t−1 = �0 + �1ε2

t−1 (9.39)

where �0 and �1 are constants. To ensure that �2 remains positive, we square
ut−1 and εt−1 and require �0 � 0, �1 ≥ 0, and �0 � 0. Notice how �t is
influenced by the lagged value of the disturbance term, εt−1. If there is a large
disturbance (positive or negative) and �1 is greater than zero, then �t will be
greater than when the disturbance is small. This leads to serial correlation in
our disturbance term. High volatility begets high volatility. Equation 9.39
is typically referred to as an ARCH(1) model. By adding more lagged terms
containing �2 and u2, we can generalize to an ARCH(n) specification.

�2
t = �0 +

n∑
i=1

�i �
2
t−i u

2
t−i (9.40)
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Besides the additional disturbance terms, we can also add lags of �2

itself to the equation. In this form, the process is known as generalized auto-
regressive conditional heteroscedasticity (GARCH). The following describes
a GARCH(1,1) process:

�2
t = �0 + �1�2

t−1u2
t−1 + 
�2

t−1 (9.41)

Just as with the ARCH model, by adding additional terms we can build a
more general GARCH(n, m) process.

APPLICATION: JUMP-DIFFUSION

In the GARCH model, volatility changes gradually over time. In financial
markets we do observe this sort of behavior, but we also see extreme events
that seem to come out of nowhere. For example, on February 27, 2007, in
the midst of otherwise calm markets, rumors that the Chinese central bank
might raise interest rates, along with some bad economic news in the United
States, contributed to what, by some measures, was a –8 standard deviation
move in U.S. equity markets. A move of this many standard deviations would
be extremely rare in most standard parametric distributions.

One popular way to generate this type of extreme return is to add a
so-called jump term to our standard time series model. This can be done by
adding a second disturbance term:

rt = � + εt + [It]ut (9.42)

Here, rt is the market return at time t, � is a constant drift term, and εt is
our standard mean zero diffusion term. As specified, our jump term has two
components: [It], an indicator variable that is either zero or one, and ut, an
additional disturbance term. Not surprisingly, as specified, this time series
model is referred to as a jump-diffusion model.

The jump-diffusion model is really just a mixture model. To get the
type of behavior we want—moderate volatility punctuated by rare extreme
events—we can set the variance of εt to relatively modest levels. We then
specify the probability of [It] equaling one at some relatively low level, and
set the variance of ut at a relatively high level. If we believe that extreme
negative returns are more likely than extreme positive returns, we can also
make the distribution of ut asymmetrical.

GARCH and jump-diffusion are not mutually exclusive. By combining
GARCH and jump-diffusion, we can model and understand a full range of
market environments and dynamics.
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APPLICATION: INTEREST RATE MODELS

In our discussion of autoregressive processes, we mentioned that these mod-
els, or models similar to them, might be used to model interest rates. In this
section we give a very brief introduction to quantitative interest rate models.
Most of these models were originally developed as continuous time models,
but it is easy enough to describe a discrete time counterpart. With cheap
computer power and increasingly complex derivatives, the discrete form is
increasingly common. For these reasons and for consistency with the rest
of this chapter, we present the interest rate models in their discrete form,
without further comment.

The simplest interest rate models are known as one-factor models. They
describe the evolution of one interest rate, typically the short rate. The rest
of the interest rate curve can then be derived from the short rate. Though
less rigorous, most interest rate models can be used to model an interest rate
of a specific term directly. If all you are interested in is the 10-year Treasury
rate, then there is no need to model the whole interest rate curve.

One popular interest rate model, known as the Vasicek model, simply
describes interest rates as an AR(1) process:

rt = �rt−1 + (1 − �)� + �εt ε ∼ N(0, 1), 0 ≤ � ≤ 1 (9.43)

Here, we’ve split our disturbance term into two parts. Now ε is a standard
normal variable, and we’re multiplying it by a constant, �, to alter the
volatility of the disturbance term. This is entirely equivalent to having a
disturbance term with a standard deviation of �. Neither way of representing
the disturbance term is necessarily better, but this functional form is popular
in finance, and very popular for interest rate models.

Just as with any AR(1) process, the expected value of the process, the
expected interest rate, is �. Also, � determines how quickly the process mean
reverts. In this case a value of � closer to zero causes the interest rate to move
more quickly back toward the mean level, �. A value closer to one implies
that the interest rate is closer to a random walk, and reverts more slowly to
the mean.

One problem with the Vasicek model is that it allows interest rates to
take on negative values. In the real world, nominal interest rates are almost
never negative. In practice, if � is high enough and � is low, the probability
of generating negative rates can be kept very low. If a negative interest rate is
generated, we can discard it or override it with some very small nonnegative
value. This kludge is not very elegant, and it will alter the statistical
properties of the model, but in certain settings this may be acceptable.
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A slightly more complex model, known as the Cox-Ingersoll-Ross (CIR)
model, aims to solve the negative interest rate problem by varying the dis-
turbance term as the level of the interest rate changes. As the interest rate
approaches zero, the magnitude of the disturbance term becomes smaller
and smaller. This is accomplished by adding one additional term to the
Vasicek model:

rt = �rt−1 + (1 − �)� + �r1/2
t−1εt ε ∼ N(0, 1), 0 ≤ � ≤ 1 (9.44)

As you can see, the disturbance term is now proportional to the square
root of the interest rate. In the continuous case, this is enough to keep interest
rates from ever becoming zero. In the discrete case, rates can still become
negative, but it is much less likely to happen.

Modifying the disturbance term in this way solves one problem, but it is
not without its drawbacks. Chief among the drawbacks is that our standard
trick of iteratively substituting the model into itself will no longer work.
In order to derive the statistical properties of this process—the mean and
variance, for example—we would need to use other methods.

Besides preventing interest rates from becoming negative, the CIR model
is appealing because the volatility of interest rates does appear to vary with
the level of interest rates. When interest rates are high—say 15 to 20%—they
are likely to be much more volatile than when they are low—say 0 to 5%.
This pattern can be observed historically, between countries and between
different financial instruments within countries.

Interest rate volatility tends to increase as interest rates rise, but does
it vary exactly with the square root of interest rates as implied by the CIR
model? This square root rule has some theoretical advantages, but might
seem arbitrary. The obvious solution is to make the exponent in the distur-
bance term variable as well:

rt = �rt−1 + (1 − �)� + �r�
t−1εt ε ∼ N(0, 1), 0 ≤ � ≤ 1 (9.45)

This is known as the constant elasticity of volatility (CEV) model. For a par-
ticular instrument, the new parameter, �, can be determined by examining
interest rate data over time. As it turns out, many empirical studies have
ended up with values for � very close to 0.5. This has led some practitioners
to stick with the simpler CIR model.

To avoid negative rates, the Black-Karasinski interest rate model utilizes
log rates:

ln(rt) = � ln(rt−1) + (1 − �)� + �εt ε ∼ N(0, 1), 0 ≤ � ≤ 1 (9.46)
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Note that this is not the log of (1 + r), but simply the log of r. Unlike the
use of log returns in equity models, where we want to ensure that returns
are greater than –100%, here we want to ensure that rates are greater than
zero. Unfortunately, while the ln(1 + r) is very close in value to the r, the log
of r is nothing like r. For example, the log of 4% is approximately –3.22.

One-factor interest rates models display a wide variety of adaptations
aimed at solving real-world problems. They begin to hint at the flexibility
and complexity of time series modeling in practice.

PROBLEMS

1. Classify each of the following time series models in terms of the random
variable rt:
a. rt = � + �1rt−1 + �2rt−2 + εt

b. rt = �� + (1 − �)rt−1 + εt

c. rt = �1rt−1 + �2rt−2 + εt + �1εt−1

d. rt = � + εt

2. You are given the following time series model. What is the long-term
expected value of rt?

rt = 0.02 + 0.8rt−1 + εt

3. Assume that a credit spread evolves according to the following time
series equation:

rt = 0.01 + 0.30rt−1 − 0.20rt−2 + εt

Further, assume rt was 2% during the most recent period, and 4% the
period before that. What is the expected value of rt in the next period?
The period after that?

4. Assume that daily stock returns for RW Corporation can be described
by the following equation:

rt = � pt = εt

where rt is a log return, and the error term, εt, is i.i.d., with a mean of
zero and a standard deviation of 1.5%. What is the expected log return
over one year? What is the standard deviation of this annual log return?
Ignore weekends, and assume 256 business days per year.
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5. Assume that daily stock returns for Drift Corporation can be described
by the following equation:

rt = � pt = � + εt

where rt is a log return; the error term, εt, is i.i.d., with a mean of
zero and a standard deviation of 1.5%; and alpha is a constant equal
to 0.10%. What is the expected log return over one year? What is the
standard deviation of this annual log return? Ignore weekends, and
assume 256 business days per year.

6. Assume that daily stock returns for Reversion Corporation can be de-
scribed by the following time series equation:

rt = � + �rt−1 + εt

where rt is a log return; the error term, εt, is i.i.d., with a mean of zero
and a standard deviation of 1.5%; alpha is a constant equal to 0.10%;
and � is a constant equal to 0.50. What is the expected log return over
two days? What is the standard deviation of this two-day return? Ignore
weekends, and assume that rt was equal to zero in the distant past. What
would the mean and standard deviation of the two-day return be if �
was equal to –0.50?

7. Assume that interest rates evolve according to the following Vasicek
model:

rt = �rt−1 + (1 − �)� + �εt ε ∼ N(0, 1)

� = 0.50

� = 0.04

� = 0.02

What is the unconditional expected value of rt? Assuming interest rates
are currently 6%, what is the conditional expected value of rt over the
next three periods?

8. Assume the spread between two equity indexes can be described by the
following time series equation:

rt = 	rt−1 + εt ε ∼ N(0, �2), |	 | ≤ 1

Cov[εt−1, εt− j ] = 0 ∀i �= j

Derive equations for the unconditional mean and variance of this pro-
cess.
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9. For the time series equation in the previous problem, what is the corre-
lation between rt and a previous return, rt–n?

10. Given our AR(1) process, Equation 9.11:

rt = � + �rt−1 + εt

Prove that the serial correlation is equal to �.
11. You are provided with 10 years of monthly log returns for a mutual

fund. The mean monthly log return is 2.0%, the standard deviation
of the returns is 1.5%, the skewness is –1.0, and the kurtosis is 2.4.
Assuming the log returns are i.i.d., what is the expected annualized
mean, standard deviation, skewness, and kurtosis of the log returns?
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CHAPTER 10
Decay Factors

I n this chapter we explore a class of estimators that has become very popular
in finance and risk management for analyzing historical data. These models

hint at the limitations of the type of analysis that we have explored in
previous chapters.

MEAN

In previous chapters, we showed that the best linear unbiased estimator
(BLUE) for the sample mean of a random variable was given by:

�̂ = 1
n

n−1∑
i=0

xt−i (10.1)

For a practitioner, this formula immediately raises the question of what
value to use for n. Because this chapter is concerned with historical data,
what value to choose for n is equivalent to asking how far back in time we
should look for data. Should we use 10 years of data? One year? Thirty
days? A popular choice in many fields is simply to use all available data.
If we have only 20 days of data, use 20 days; if we have 80 years, use
80 years. While this can be a sensible approach in some circumstances,
it is much less common in modern finance. Using all available data has
three potential drawbacks. First, the amount of available data for different
variables may vary dramatically. If we are trying to calculate the mean
return for two fixed-income portfolio managers, and we have 20 years of
data for one and only two years of data for another, and the last two years
have been particularly good years for fixed-income portfolio managers, a
direct comparison of the means will naturally favor the manager with only
two years of data. We could limit ourselves to the length of the shortest
series, but there are potential drawbacks to this approach as well.

223
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The second problem that arises when we use all available data is that our
series length changes over time. If we have 500 days of data today, we will
have 501 tomorrow, 502 the day after that, and so on. This is not necessarily
a bad thing—more data may lead to a more accurate forecast—but, in
practice, it is often convenient to maintain a constant window length. Among
other advantages, a constant window length makes it easier to compare the
accuracy of models over time.

Finally, there is the problem that the world is constantly changing. The
Dow Jones Industrial Average has been available since 1896. There were
initially just 12 companies in the index, including American Cotton Oil
Company and Distilling & Cattle Feeding Company. That same year, Utah
became the 45th U.S. state, and Queen Victoria became the longest-ruling
monarch in British history. Forget computers; in 1896, the Model T had not
yet been introduced (1908), and the Wright Brothers’ famous flight at Kitty
Hawk was still some years off (1903). Does it make any sense to use stock
market data from 1896 to evaluate the risk of a securities portfolio today?
It is easy to argue that the world was so different in the distant past—and in
finance, the distant past is not necessarily that distant—that using extremely
old data makes little sense.

If we are not going to use all available data, then a logical alternative
is a constant window length. This is not without its own problems. If we
use Equation 10.1 with a constant window length, then in each successive
period, we add the most recent point to our data set and drop the oldest.
The first objection to this method is philosophical. How can it be that the
oldest point in our data set is considered just as legitimate as all the other
points in our data set today (they have the same weight), yet in the very next
period, the oldest point becomes completely illegitimate (zero weight)?

The second objection is more aesthetic. As extreme points enter and
leave our data set, this can cause dramatic changes in our estimator. Fig-
ure 10.1 shows a sample time series. Notice the outlier in the series at time
t = 50. Figure 10.2 shows the rolling 40-day mean for the series.

Notice how the spike in the original times series causes a sudden rise
and drop in our estimate of the mean. Because of its appearance, this
phenomenon is often referred to as plateauing. Technically, there is nothing
wrong with plateauing, but many practitioners find this type of behavior
unappealing.

In the end, the window length chosen is often arbitrary. Rarely in risk
management are we presented with an obvious right choice for window
length. Practitioners often choose windows that correspond to standard
calendar units (one week, one month, one year) or round numbers (100 days,
500 days). While they are convenient and widely used, it is difficult to see
why these common window lengths are better than, say, one year plus five
days or 142 days.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c10 JWBT625-Miller January 9, 2012 23:58 Printer: Courier Westford

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100 110
t

y

F IGURE 10.1 Time Series with Spike

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

0 10 20 30 40 50 60 70 80 90 100 110
t

40
-D

ay
 m

M
an

F IGURE 10.2 Rolling Mean of Time Series with Spike

225



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-c10 JWBT625-Miller January 9, 2012 23:58 Printer: Courier Westford

226 MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT

One approach that addresses many of these objections is known as an
exponentially weighted moving average (EWMA). An EWMA is a weighted
mean in which the weights decrease exponentially as we go back in time.
The EWMA estimator of the mean can be formulated as:

�̂t = 1 − �

1 − �n

n−1∑
i=0

�i xt−i (10.2)

Here, � is a decay factor, where 0 � � � 1. For the remainder of this chapter,
unless noted otherwise, assume that any decay factor, �, is between zero and
one.

In the EWMA, more weight is placed on more recent events. For exam-
ple, if we have 10 sample points and a decay factor of 0.90, then the first
point gets approximately 15% of the total weight, and the last point gets
less than 6%. Table 10.1 shows the weights for all 10 points.

TABLE 10.1 Example of EWMA Weights

Age �i Weight

0 1.00 15.35%
1 0.90 13.82%
2 0.81 12.44%
3 0.73 11.19%
4 0.66 10.07%
5 0.59 9.07%
6 0.53 8.16%
7 0.48 7.34%
8 0.43 6.61%
9 0.39 5.95%

Total 6.51 100.00%

Figure 10.3 plots these weights against time, as well as the corresponding
weights for the standard equally weighted BLUE.

As you can see, the EWMA weights form a smooth exponential curve
that fades at a constant rate as we go back in time. Because of the shape of the
chart, we often refer to the equally weighted mean as a rectangular window.

One way we can characterize an EWMA is by its half-life. Half of the
weight of the average comes before the half-life, and half after. We can find
the half-life by solving for h, in the following equation:

h−1∑
i=0

�i = 1
2

n−1∑
i=0

�i (10.3)
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F IGURE 10.3 EWMA versus Rectangular Weights

The solution is:

h = ln(0.5 + 0.5�n)
ln(�)

(10.4)

For a sample of 250 data points and a decay factor of 0.98, the half-life is
approximately 34. In other words, half of the weight of the estimator would
be captured by the most recent 34 data points, and half in the remaining
216. A rectangular window of 250 data points, by comparison, would have
a half-life of 125. Looked at another way, the EWMA with 250 data points
and a decay factor of 0.98 has the same half-life as a rectangular window
with 68 data points.

The EWMA can solve the problem of plateauing. The addition of an
extreme data point to our data set can still cause a sudden change in our
estimator, but the impact of that data point will slowly fade over time. Just
before it exits the data set, the weight on the data point is likely to be so
small that its removal will hardly be noticed. Figure 10.4 shows the same
series as before. In addition to the estimator based on an equally weighted
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40-day window, we have added an estimator based on a 40-day window
with a decay factor of 0.95. As you can see, for the series with the decay
factor, the second transition is much more gradual.

Besides addressing the aesthetic issue of plateauing, the EWMA esti-
mator also addresses our philosophical objection to fixed windows. Rather
than suddenly dropping out of the data set, the weight on any point is slowly
reduced over time.

Finally, a fixed window length with a decay factor can be viewed as a
compromise between a rectangular window of arbitrary length and using all
available data. Because |�| is less than one, as n goes to infinity, Equation 10.2
can be rewritten as:

�̂t = (1 − �)
∞∑

i=0

�i xt−i (10.5)

Clearly an infinite series, if it did exist, would be using all available
data. In practice, though, for reasonable decay factors, there will be very
little weight on points from the distant past. Because of this, we can use
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a finite window length, but capture almost all of the weight of the infinite
series. Using our geometric series math:

Weight of finite series
Weight of infinite series

=
1 − �n/

1 − �
1/

1 − �
= 1 − �n (10.6)

For a decay factor of 0.98, if our window length is 250, we would cap-
ture 99.4% of the weight of the infinite series. Ultimately, the window length
is still arbitrary, but the precise choice becomes less important. Whether we
choose a window length that captures 99% of the weight or 99.9% will
typically have little impact on our estimator.

By carefully rearranging Equation 10.5, we can express the EWMA
estimator as a weighted average of its previous value and the most recent
observation:

�̂t = (1 − �)
∞∑

i=0

�i xt−i = (1 − �)xt + �

∞∑
i=0

�i xt−i−1 = (1 − �)xt + ��̂t−1

(10.7)

Viewed this way, our EWMA is a formula for updating our beliefs about
the mean over time. As new data becomes available, we slowly refine our
estimate of the mean. This updating approach seems very logical, and could
be used as a justification for the EWMA approach.

While the use of a decay factor addresses many practical and aesthetic
problems associated with the standard equally weighted estimator, there
may be little theoretical justification for the precise form of the EWMA
estimator. If our data generating process is constant over time, then the
standard estimator is still the best linear unbiased estimator.

If the world is constantly changing, then the distributions of the variables
we are interested in—stock returns, interest rates, and so on—will also be
changing over time. It’s not necessarily the case, but if the variables we
are interested in are constantly changing, then the parameters that describe
these variables may be more similar to their recent values than to their
values in the distant past. While there is a certain logic to this changing
world justification, most of the models that we have developed up until
now assume constant parameters, not parameters that slowly change over
time. Unless we specify a time series model that explicitly justifies the EWMA
estimator, this approach represents a significant departure from the methods
we have explored in previous chapters.
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VARIANCE

Just as we used a decay factor to weigh more recent data more heavily
when calculating the mean, we can use a decay factor when calculating
other estimators. For an estimator of the sample variance, when the mean is
known, the following is an unbiased estimator:

�̂2
t = 1 − �

1 − �n

n−1∑
i=0

�i (rt−i − �)2 0 � � � 1 (10.8)

The term in front of the summation is the—by now familiar—inverse of the
summation of � from 0 to n − 1.

If we imagine an estimator of infinite length, then the term �n goes to
zero, and we have:

�̂2
t = (1 − �)

∞∑
i=0

�i (rt−i − �)2 0 � � � 1 (10.9)

This formula, in turn, leads to a useful updating rule:

�̂2
t = (1 − �) (rt − �)2 + ��̂2

t−1 (10.10)

Just as with our estimator of the mean, using a decay factor is equivalent to
an updating rule. In this case, the new value of our estimator is a weighted
average of the previous estimator and the most recent squared deviation.

As with the standard estimator of the mean, it is not uncommon in
finance for the mean to be close to zero and much smaller than the standard
deviation of returns. If we assume the mean is zero, then our updating rule
simplifies even further to:

�̂2
t = (1 − �)r2

t + ��̂2
t−1 (10.11)

Remember that the preceding formula is valid only if we assume the mean
is known and equal to zero.

In the case where the mean is unknown and must also be estimated, our
estimator takes on a slightly more complicated form:

�̂2
t = A

n−1∑
i=0

�i r2
t−i − B�̂2

t (10.12)
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where �̂t is our estimator of the sample mean, based on the same decay
factor, �, and A and B are constants defined as:

A = S1

S2
1 − S2

B = S1 A

S1 = 1 − �n

1 − �

S2 = 1 − �2n

1 − �2

(10.13)

Though these constants should look familiar by now, the addition of a decay
factor has certainly made our variance estimator more complicated.

It is not too difficult to prove that in the limit, as � approaches one—that
is, as our estimator becomes a rectangular window—A approaches 1/n and
B converges to one. Just as we would expect, in the limit our new estimator
converges to the standard variance estimator.

If we wish to know the standard deviation of a time series using a decay
factor, we can simply take the square root of the appropriate estimator of
the variance. No additional steps are required.

WEIGHTED LEAST SQUARES

To apply the same decay factor logic to linear regression analysis, we simply
need to multiply all of the sample data, both the regressors and regressands,
by the appropriate decay factors. Recall from Chapter 8 that, for a multi-
variate regression, the ordinary least squares (OLS) estimator is defined as:

�̂ = (X′X)−1X′Y (10.14)

where X is a t × n matrix for our regressor, and Y is a t × 1 matrix for
our regressand. To integrate our decay factor into this analysis, we start
by defining � as the square root of our decay factor, �. Next, we construct
a diagonal weight matrix, W, whose diagonal elements are a geometric
progression of �:

W =

⎡
⎢⎢⎢⎣

�n−1 · · · 0 0
...

. . . 0 0
0 0 � 0
0 0 0 1

⎤
⎥⎥⎥⎦ (10.15)
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We can then form a new estimator for our regression parameters:

�̃ = (X′W′WX)−1X′W′WY (10.16)

This estimator is known as the weighted least squares estimator.
One way to view what we are doing is to redefine our regressors and

regressands as follows:

X∗ = WX
Y∗ = WY

(10.17)

The new matrices take our original data, and multiply the data at time t
− i by �i. The effect is to make data points from the distant past smaller,
which decreases their variance and decreases their impact on our parameter
estimates. With these new matrices in hand, our weighted least squares
estimator can now be written as:

�̃ = (X∗′X∗)−1X∗′Y∗ (10.18)

In this way, our weighted least squares estimator can be viewed as the OLS
estimator of our transformed data.

One potential problem with the weighted least squares approach, as de-
scribed here, involves heteroscedasticity. If the initial data set is homoscedas-
tic, then clearly the transformed data will be heteroscedastic. As with our
mean and variance estimators, when we use a decay factor, the resulting
estimator will be unbiased, but it will not be the BLUE.

Why did we choose to define W using the square root of �, and not
� itself? By defining W this way, we are being consistent with the way we
defined our variance estimator in the previous section.

OTHER POSSIB IL IT IES

So far we have explored two weighting schemes for estimating population
parameters. The traditional approach applies an equal weight to all data
points, while our decay factor approach applies weights that decline at a
constant rate as we go back in time. In theory, there are an infinite number of
possible weighting schemes we could use, but one novel approach pioneered
by Philip Hua and Paul Wilmott is worth mentioning (Hua and Wilmott
(1997)).

As risk managers, if we are ultimately concerned with extreme markets,
then the suggestion is that we should be placing more weight on data from
extreme markets, and little or no weight on data from normal markets.
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This approach seems particularly appropriate for stress testing, where, by
definition, we are dealing with extreme events.

One way to implement this approach would be to define a cutoff return
that separates extreme markets and normal markets, and use only the data
from extreme markets to calculate statistics (weights are zero or one). Alter-
natively, we could define weights as a function of how extreme the returns
are (e.g., the weights are equal to the square of the return of a given index).
When applied to stress testing or VaR, Hua and Wilmott refer to this as the
CrashMetrics approach. Looked at more generally, it provides a novel third
way of calculating sample parameters.

APPLICATION: HYBRID VAR

One of the simplest approaches to estimating value at risk (VaR) is the
historical method or historical simulation. In this approach, we calculate the
back-cast returns of a portfolio of assets, and take these as the portfolio’s
return distribution. To calculate the 95th percentile VaR, we would simply
find the least worst of the worst 5% of returns. For example, suppose we
have 100 returns, ranked from lowest to highest:

Best 100 1.52%

99 1.17%

98 0.95%

97 0.93%

. . . . . .

7 −0.65%

6 −0.66%

5 −0.68%

4 −0.73%

3 −0.75%

2 −0.82%

Worst 1 −1.40%

Here the 95th percentile VaR would be the fifth return, −0.68%.
Instead of giving equal weight to all data, we can use a decay fac-

tor to weight more recent data more heavily. Rather than finding the fifth
worst return, we would order the returns and find the point where we
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have 5% of the total weight. Using the same returns as in the preceding
example:

Rank Return Weight % Total Weight

Best 100 1.52% 0.67 100.0%

99 1.17% 0.25 98.5%

98 0.95% 0.63 97.9%

97 0.93% 0.16 96.4%

. . . . . . . . . . . .

7 −0.65% 0.31 9.1%

6 −0.66% 0.74 8.4%

5 −0.68% 0.52 6.7%

4 −0.73% 0.87 5.5%

3 −0.75% 0.42 3.5%

2 −0.82% 0.27 2.5%

Worst 1 −1.40% 0.83 1.9%

In this case, we get to 5% of the total weight between the third and
fourth returns. At this point there are two approaches. The more conser-
vative approach is to take the third return, −0.75%. The alternative is to
interpolate between the third and fourth returns, to come up with −0.74%.
Unless there is a strong justification for choosing the interpolation method,
the conservative approach is recommended.

This general approach, using historical returns with decreasing weights,
is often called the hybrid approach because it combines aspects of standard
historical simulation and weighted parametric approaches; see, for example,
Allen, Boudoukh, and Saunders (2004).

PROBLEMS

1. For an estimator based on n data points, with a decay factor of �, prove
that the half-life, h, is given by:

h = ln(0.5 + 0.5�n)
ln(�)

2. Using a decay factor of 0.95, calculate the mean, sample variance, and
sample standard deviation of the following series. Assume t = 7 is the
most recent data point, and use all eight points:
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t 0 1 2 3 4 5 6 7

x 11 84 30 73 56 58 52 35

3. Given the following set of data, calculate the mean using no decay factor
(rectangular window), a decay factor of 0.99, and a decay factor of 0.90.
Assume time t = 10 is the most recent data point, and use all 11 points:

t 0 1 2 3 4 5 6 7 8 9 10

x 0.04 0.84 0.28 0.62 0.42 0.46 0.66 0.69 0.39 0.99 0.37

4. Calculate the sample standard deviation for the data set in problem #3,
also using no decay factor, a decay factor of 0.99, and a decay factor
of 0.90.

5. You are estimating the expected value of the annual return of a stock
market index using an EWMA estimator with a decay factor of 0.98.
The current estimate of the mean is 10%. Over the next three years, the
index returns 15%, −4%, and finally 8%. Recalculate the estimate of
the mean in each of the next three years.

6. What is the half-life for an estimator with a decay factor of 0.95 and
200 data points? What is the half-life for the same decay factor with
1,000 data points?

7. What is the half-life of an EWMA estimator with a decay factor of 0.96
and 32 data points? What is the length of a rectangular window with
the most similar half-life?

8. Assume we have an EWMA estimator with a decay factor of 0.96 and
50 data points. What percentage of the weight is captured with this
estimator, compared to an estimator with the same decay factor and an
infinite length?

9. Assume that the mean of a data generating process is known and equal
to 10%. The initial estimate of the standard deviation is 20%, when you
observe a return of 15%. What is your updated estimate of the mean?
Assume the data series is of infinite length, and use a decay factor of 0.97.

10. Assume that the mean of a data generating process is known and equal
to zero. Your initial estimate of the standard deviation is 10%. You
observe the following returns (t = 6 is the most recent period). Assume
that the initial estimator was generated from an infinitely long series,
and use a decay factor of 0.95. What is your updated estimate of the
standard deviation?

t 1 2 3 4 5 6

r −5% 18% 16% −2% 5% −10%
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APPENDIX A
Binary Numbers

T his appendix could have been subtitled “How to do risk management
on the back of a cocktail napkin.” Binary numbers are important in risk

management for two reasons. First, most of the mathematics and statistics in
this book will end up being implemented on computers. Implementation can
often be as difficult as, if not more difficult than, the theoretical aspects of
a problem. Even if you’re not doing the programming yourself, understand-
ing programming can make the transition from theory to working systems
easier. Understanding programming means understanding computers, and
binary is the language that computers speak. The second reason that binary
numbers are of interest is that—just by chance—they provide a very useful
shortcut for doing some very common calculations. Even if you’re building
highly complex systems, you’ll often need to perform these back-of-the-
envelope calculations.

Ordinarily, when we’re doing arithmetic, we’re using decimal numbers.
If you see 157, this is usually shorthand for:

1 • 102 + 5 • 101 + 7 • 100

We say that decimal is base 10. Binary, by contrast, is base 2. In binary,
1,001 is shorthand for:

1 • 23 + 0 • 22 + 0 • 21 + 1 • 20

If you work this out, you’ll see that binary 1,001 is equivalent to
decimal 9.

Computers work in binary. The standard unit for most computers is
the byte, which consists of 8 bits. Coincidentally, 210 is 1,024, which is
very close to 1,000. This is why kilobytes are 1,024 bytes, not 1,000 bytes.
Megabytes are 220 = 1,048,576 bytes, not 1 million bytes. Knowing that
210 is close to 1,000 is very useful.
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Just as 210 turns out to be very close to 1,000, 28 equals 256, which is
very close to the number of business days in a year. It is often the case that
we need to convert from daily standard deviations to annualized standard
deviation, or vice versa. If returns are independent and identically distributed
(i.i.d.), then translating daily standard deviations into annualized standard
deviations requires multiplying by the square root of the number of business
days in a year. If we use 256 business days per year as an approximation,
then we would annualize daily standard deviations by multiplying by 16:

256 = 28 = 24 • 24 = 16 • 16

So if the daily standard deviation of a stock is 1%, then the annualized
volatility is close to 16%. If the annualized volatility is close to 48%, then the
daily standard deviation is close to 3%. This is a very useful approximation
to be familiar with.

If returns are normally distributed—not an assumption you should make
lightly—then the 95% value at risk (VaR) of a security will be approximately
1.6 standard deviations. Combining this with our approximate annualiza-
tion factor, it is very easy to see why the one-day VaR should be close to
one-tenth of the annualized volatility. A stock with a quoted annualized
volatility of 43% will often have a one-day 95% VaR close to 4.3%. You
should always be careful when using this kind of approximation, but being
able to perform this calculation quickly can be very useful.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-bapp02 JWBT625-Miller December 19, 2011 20:27 Printer: Courier Westford

APPENDIX B
Taylor Expansions

A Taylor series expansion can be used to provide approximations to a
function. Given a function f (x), assuming the necessary derivatives exist,

we can define the Taylor series:

f (x) = f (a) + f ′(a)(x − a) + 1
2!

f ′′(a)(x − a)2 + 1
3!

f (3)(a)(x − a)3 + · · ·

+ 1
n!

f (n)(a)(x − a)n + · · ·

where f ′, f ′′, and f (3) are, respectively, the first, second, and third derivatives
of f (x) with respect to x.

We can talk about an nth order Taylor series expansion, which would
extend to the nth term,

1
n!

f (n)(a)(x − a)n

As an example, take the exponential function. The corresponding Taylor
series expansion is:

ex ≈ f (a) + ea(x − a) + 1
2!

ea(x − a)2 + 1
3!

ea(x − a)3 + · · ·

+ 1
n!

ea(x − a)n + · · ·

An obvious choice for a is a = 0, which implies ea = 1. In this case, we
say that we are expanding ex around zero. The expansion then simplifies to:

ex ≈ 1 + x + 1
2!

x2 + 1
3!

x3 + · · · + 1
n!

xn + · · ·
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Table B.1 shows the first few approximations for ex, expanded around
zero, for various values of x:

TABLE B.1 Taylor Approximations for ex

x

Order −0.5 0.5 1 2

1 0.50 1.50 2.00 3.00
2 0.63 1.63 2.50 5.00
3 0.60 1.65 2.67 6.33
4 0.61 1.65 2.71 7.00
5 0.61 1.65 2.72 7.27
exact 0.61 1.65 2.72 7.39

The last row is the exact value of the function, which would be equal to
the infinite expansion. Notice that as we add more terms, the approximation
gets closer and closer to the real value. Also notice that the closer x is to
the expansion point, the better the approximation. Be careful: while many
functions exhibit this type of convergence, this need not be the case. One
important counterexample is the natural logarithm. The Taylor expansion
for ln(x) around one is:

ln(x) = (x − 1) − 1
2

(x − 1)2 + 1
3

(x − 1)3 − · · · − (−1n)
1
n

(x − 1)n + · · ·

In this case, for values x such that 0 � x ≤ 2, the Taylor series expansion
converges as we increase the order of the approximation. As can be seen
in Table B.2, for values of x greater than 2, increasing the order of the
approximation can actually make matters worse:

TABLE B.2 Taylor Approximations for ln(x)

x

Order 0.5 1.5 2 3

1 −0.50 0.50 1.00 2.00
2 −0.63 0.38 0.50 0.00
3 −0.67 0.42 0.83 2.67
4 −0.68 0.40 0.58 −1.33
5 −0.68 0.39 0.38 −7.73
exact −0.69 0.41 0.69 1.10
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APPENDIX C
Vector Spaces

W e can define a vector space more formally. Given three vectors, v, w,
and x, and two scalars, s and t, we begin by defining two operations:

1. Addition, v + w, which produces a sum.
2. Scalar multiplication, sv, which produces a scalar multiple.

In the most general definition of a vector space, these operations need not
conform to the standard definitions we have explored in real vector spaces,
Rn. What we do require is that the following 10 axioms are satisfied:

1. If v and w exist in V, then v + w exists in V as well.
2. v + w = w + v.
3. u + (v + w) = (u + v) + w.
4. There is a zero vector in V, 0, such that 0 + v = v + 0 = v for all v.
5. For every v, there is a negative of v, –v, such that v + (–v) = (–v) +

v = 0.
6. For any scalar, s, and any vector in V, v, sv is also in V.
7. s(v + w) = sv + sw.
8. (s + t)v = sv + tv.
9. s(tv) = (st)v.

10. 1v = v.
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APPENDIX D
Greek Alphabet

A � alpha N � nu
B � beta � � xi
� � gamma O o omicron
	 
 delta � � pi
E ε epsilon P 
 rho
Z � zeta � � sigma
H � eta Y � tau
� � theta Y � upsilon
I � iota � � phi
K � kappa X � chi
� � lambda � � psi
M � mu  ! omega
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APPENDIX E
Common Abbreviations

D oes your DGP produce a PDF that leads to an MSE of e? What follows
are some common abbreviations from statistics and risk management:

avg.: average
BLUE: best linear unbiased estimator
CDF: cumulative density function or cumulative

distribution function
ESS: explained sum of squares
EWMA: exponentially weighted moving average
DGP: data generating process
i.i.d.: independent and identically distributed
MSE: mean squared error
OLS: ordinary least squares
PDF: probability density function or probability

distribution function
RNG: random number generator
RSS: residual sum of squares
std. dev. or s.d.: standard deviation
TSS: total sum of squares
Var: variance
VaR: value at risk
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Answers

CHAPTER 1

1. a. y = 5
b. y = ln(1) – ln(e) = 0 – 1 = –1
c. y = ln(10) + ln(e) = ln(10) + 1 = 3.3026

2. Annual rate = 5.12%; semiannual rate = 5.05%; continuous rate =
4.99%.

3. 100 • e0.112 = 111.85

4. C(10, 2) =
(

10
2

)
= 10!

2!(10 − 2)!
= 10 • 9 • 8!

2! • 8!
= 10 • 9

2
= 45

5. V =
∞∑

i=1

100
1.04i

= 100
∞∑

i=1

(
1

1.04

)i

= 100
1/

1.04
1 − 1/

1.04

= 100
1

1.04 − 1
= 2,500

6. V = 1.00
1.06

+ 1.05
1.062

+ 1.052

1.063
+ · · · = 1

1.06

(
1 + 1.05

1.06
+ 1.052

1.062
+ · · ·

)

V = 1
1.06

1

1 − 1.05
1.06

= 1
1.06

1.06
0.01

= 100

7. V = 6
1.08

+ 6
1.082

+ · · · 6
1.089

+ 106
1.0810

= 6 • 6.71 + 46.32 = 86.58

8. ln(ln(10)) = 0.8340.

9. S =
9∑

i=0

(−0.5)i = 1 + (−0.5) + (−0.5)2 + · · · + (−0.5)8 + (−0.5)9

−0.5S = (−0.5) + (−0.5)2 + · · · (−0.5)9 + (−0.5)10

= S − 1 + (−0.5)10

S = 1 − (−0.5)10

1.5
=

1 − 1
1, 024
1.5

= 1, 023
1, 536

= 0.67

245
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10.
(

10
4

)
= 10!

4!6!
= 210

11. The bond will pay 10 coupons of $2, starting in a year’s time. In ad-
dition, the notional value of the bond will be returned with the final
coupon payment in 10 years. The present value, V, is then:

V =
10∑

i=1

$2
(1.05)i

+ $100
(1.05)10

= $2
10∑

i=1

1
(1.05)i

+ $100
(1.05)10

We start by evaluating the summation, using a discount factor of
� = 1/1.05 ≈ 0.95:

S =
10∑

i=1

1
(1.05)i

=
10∑

i=1

(
1

1.05

)i

=
10∑

i=1

�i = � + �2 + · · · + �9 + �10

�S = �2 + �3 + · · · + �10 + �11 = S − � + �11

S(1 − �) = � − �11

S = � − �11

1 − �
= 7.72

Inserting this result into the initial equation we obtain our final result:

V = $2 × 8.72 + $100
(1.05)10

= $76.83

Note that the present value of the bond, $78.83, is less than the
notional value of the bond, $100. This is what we would expect, given
that there is no risk of default, and the coupon rate is less than the
discount rate.

CHAPTER 2

1. Probability that both generate positive returns = 60% × 70% = 42%.
Probability that both funds lose money = (1 – 60%) × (1 – 70%) =
40% × 30% = 12%.

2. 88%. The sum of all three events—upgrade, downgrade, and no
change—must sum to one. There is no other possible outcome. 88% +
8% + 4% = 100%.
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3. 50%. The outcomes are mutually exclusive; therefore, 20% + 30% =
50%.

4. P[oil up ∩ market down] = P[market down|oil up] • P[oil up]
P[oil up ∩ market down] = 60% • 30% = 18%

5. P[GDP down | unemployment up] =
P[unemployment up | GDP down] • P[GDP down]

P[unemployment up]

P[GDP down | unemployment up] = 40% • 20%
10%

= 80%

6. 32.14%. By applying Bayes’ theorem, we can calculate the result:

P[actual = D | model = D] = P[model = D | actual = D] • P[actual = D]
P[model = D]

P[actual = D | model = D] = 90% • 5%
90% • 5% + 10% • 95%

= 32.14%

Even though the model is 90% accurate, 95% of the bonds don’t
default and it predicts that 10% of them will. Within the bond portfolio,
the model identifies 9.5% of the bonds as likely to default, even though
they won’t. Of the 5% of bonds that actually default, the model correctly
identifies 90%, or 4.5% of the portfolio. This 4.5% correctly identified
is overwhelmed by the 9.5% incorrectly identified.

Actual

D No D

Model
D 9.54.5 14.0

No D 85.50.5 86.0

95.05.0 100.0

7. Given the density function, we can find c by noting that the sum of
probabilities must be equal to one:

∞∫
−∞

f (x)dx =
10∫

−10

c(100 − x2)dx = c
[
100x − 1

3
x3
]10

−10

c = 3
4,000
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8. First we check that this is a valid CDF, by calculating the value of the
CDF for the minimum and maximum values of x:

F (0) = 0
100

(20 − 0) = 0

F (10) = 10
100

(20 − 10) = 1

Next we calculate the PDF by taking the first derivative of the CDF:

f (x) = d
dx

F (x) = 20
100

− 2x
100

= 1
50

(10 − x)

9. We first calculate the CDF by integrating the PDF:

F (x) =
x∫

1

f (t)dt =
x∫

1

c
t
dt = c

[
ln t
]x

1 = c ln x

We first try to find c using the fact that the CDF is zero at the minimum
value of x, x = 0.

F (0) = c ln(1) = c • 0 = 0

As it turns out, any value of c will satisfy this constraint, and we cannot
use this to determine c.

If we use the fact that the CDF is 1 for the maximum value of
x, x = e, we find that c = 1:

F (e) = c ln(e) = c • 1 = c

∴ c = 1

The CDF can then be expressed simply as:

F (x) = ln(x)

10. P (both bonds default) = 9%.
P (one defaults) = 42%.
P (neither defaults) = 49%.
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11. We can start by summing across the first row to get W:

W + 5% = 15%

W = 10%

In a similar fashion, we can find X by summing across the second row:

45% + X = 65%

X = 20%

To calculate Y, we can sum down the first column, using our previously
calculated value for W:

W + 45% + Y = 10% + 45% + Y = 60%

Y = 5%

Using this result, we can sum across the third row to get Z:

Y + 15% = 5% + 15% = Z

Z = 20%

The completed probability matrix is:

Equity

Outperform Underperform

Bonds

Upgrade 5%10% 15%

No Change 20%45% 65%

Downgrade 15%5% 20%

40%60% 100%

The last part of the question asks us to find the conditional probability,
which we can express as:

P[Downgrade | Underperform]

We can solve this by taking values from the completed probability
matrix. The equity underperforms in 40% of scenarios. The equity
underperforms and the bonds are downgraded in 15% of scenarios.
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Dividing, we get our final answer, 37.5%.

P[Downgrade | Underperform] = (P[Downgrade ∩ Underperform])/

(P[Underperform])

P[Downgrade | Underperform] = 15%/40% = 37.5%

12. The probability that a B-rated bond defaults over one year is 2%. This
can be read directly from the last column of the second row of the
ratings transition matrix.

The probability of default over two years is 4.8%. During the first
year, a B-rated bond can either be upgraded to an A rating, stay at B, be
downgraded to C, or default. From the transition matrix, we know that
the probability of these events is 10%, 80%, 8%, and 2%, respectively.
If the bond is upgraded to A, then there is zero probability of default in
the second year (the last column of the first row of the matrix is 0%). If
it remains at B there is a 2% probability of default in the second year,
the same as in the first year. If it is downgraded to C, there is a 15%
probability of default in the second year. Finally if a bond defaulted in
the first year it stays defaulted (the last column of the last row is 100%).
Putting this all together we have:

P[default] = 10% × 0% + 80% × 2% + 8% × 15% + 2% × 100%
= 4.8%.

CHAPTER 3

1. Mean = 6.43%; median = 5%.
2. Mean = 3.00%; standard deviation = 6.84%.

3. �̂ = 1
n

n∑
i=1

ri = 1
n

(r1 + r2 + · · · + rn−1 + rn)

E[�̂] = 1
n

n∑
i=1

E[ri ] = 1
n

n∑
i=1

� = 1
n

• n • � = �

4. Using the results of Question 3, we first calculate the variance of the
estimator of the mean:

E
[
(�̂ − �)2] = E

⎡
⎣
(

1
n

n∑
i=1

ri − �

)2
⎤
⎦



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-Ans JWBT625-Miller January 9, 2012 23:9 Printer: Courier Westford

Answers 251

E
[
(�̂ − �)2] = 1

n2
E

⎡
⎣ n∑

i=1

(ri − �)2 −
n∑

i=1

∑
i �= j

(ri − �)(r j − �)

⎤
⎦

E
[
(�̂ − �)2] = 1

n2
E

[
n∑

i=1

(ri − �)2

]
− 1

n2
E

⎡
⎣ n∑

i=1

∑
i �= j

(ri − �)(r j − �)

⎤
⎦

E
[
(�̂ − �)2] = 1

n2
n�2 − 1

n2
(n2 − n)Cov

[
ri , r j

] = 1
n2

n�2 = �2

n

where � is the standard deviation of r. For the last step we rely on
the fact that, because the data points are i.i.d., the covariance between
different data points is zero. We obtain the final answer by taking the
square root of the variance of the estimator:

��̂ =
√

�2

n
= �√

n

5. Covariance = 4.87%; correlation = 82.40%.
6. Series #1: Mean = 0, standard deviation = 39, skewness = 0.

Series #2: Mean = 0, standard deviation = 39, skewness = –0.626.
7. Series #1: Mean = 0, standard deviation = 17, kurtosis = 1.690.

Series #2: Mean = 0, standard deviation = 17, kurtosis = 1.
8. The variance is approximately 5.56. From a previous example we know

the mean to be 20/3; thus the variance can be found as:

�2 =
10∫

0

(
x − 20

3

)2 x
50

dx = 1
50

10∫
0

(
x3 − 40

3
x2 + 400

9
x
)

dx

�2 = 1
50

[
1
4

x4 − 40
9

x3 + 200
9

x2
]10

0
= 50/9 = 5.56

9. We start by expanding the mean:

�̂2
x = 1

n − 1

n∑
i=1

(xi − �̂x)2 = 1
n − 1

n∑
i=1

⎛
⎝n − 1

n
xi − 1

n

∑
j �=i

xj

⎞
⎠

2



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-Ans JWBT625-Miller January 9, 2012 23:9 Printer: Courier Westford

252 ANSWERS

By carefully rearranging terms, we are left with:

�̂2
x = 1

n

n∑
i=1

x2
i − 1

n(n − 1)

n∑
i=1

∑
j �=i

xi xj

Assuming that all the different values of X are uncorrelated with each
other, we can use the following two relationships:

E[x2
i ] = �2 + �2

E[xi xj ] = �i � j iff �i j = 0 ∀i �= j

Then:

E
[
�̂2

x

] = 1
n

n(�2 + �2) − 1
n(n − 1)

n(n − 1)�2 = �2

10. First we note that the expected value of XA plus XB is just the sum of
the means:

E[XA + XB] = E[XA + XB] = �A + �B

Substituting into our equation for variance, and rearranging, we get:

Var[XA + XB] = E[(XA + XB − E[XA + XB])2]

= E[((XA − �A) + (XB − �B))2]

Expanding the squared term and solving:

Var[XA + XB] = E[(XA − �A)2 + (XB − �B)2

+ 2(XA − �A)(XB − �B)]

Var[XA + XB] = E[(XA − �A)2] + E[(XB − �B)2]

+ 2E[(XA − �A)(XB − �B)]

Var[XA + XB] = �2
A + �2

B + 2Cov[XA, XB]

Using our definition of covariance we arrive at our final answer:

Var[XA + XB] = �2
A + �2

B + 2�AB�A�B

11. If the bond does not default, you will receive $100. If the bond does
default, you will receive 40% × $100 = $40. The future value, the
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expected value of the bond at the end of the year, is then $94:

E [V] = 0.90 • $100 + 0.10 • $40 = $94

The present value of the bond is approximately $89.42:

PV = e−0.05$94 = $89.42

CHAPTER 4

1. The number of times XYZ Corporation exceeds consensus estimates
follows a binomial distribution; therefore:

P[X = 3] =
(

4
3

)
0.3030.701 = 4 • 0.303 • 0.70 = 7.56%

2. The cumulative number of exceedance events follows a binomial distri-
bution; therefore:

P[X = 2] =
(

20
2

)
0.0520.9518 = 18.87%

3. Because the annual returns of both funds are normally distributed, the
difference in their returns is also normally distributed:

RB−A ∼ N
(
�B − �A, �2

A + �2
B

)

The mean of this distribution is 10%, and the standard deviation is
50%. At the end of the year, the difference in the expected returns is
92%. This is 82% above the mean, or 1.64 standard deviations. Using
Excel or consulting the table of confidence levels in the chapter, we see
that this is a rare event. The probability of more than a 1.64 standard
deviation event is only 5%.

4. The average number of defaults over five months is 10; therefore:

P[x = 5] = 105

5!
e−10 = 3.78%

P[x = 10] = 1010

10!
e−10 = 12.51%

P[x = 15] = 1015

15!
e−10 = 3.47%

5. If the returns of the fund are normally distributed with a mean of 10%
and a standard deviation of 15%, then the returns of $200 million



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-Ans JWBT625-Miller January 9, 2012 23:9 Printer: Courier Westford

254 ANSWERS

invested in the fund are also normally distributed, but with an expected
return of $20 and a standard deviation of $30. A loss of $18.4 million
represents a –1.28 standard deviation move:

z = −$18.4 − $20
$30

= −1.28

This is a one-tailed problem. By consulting the table of confidence inter-
vals or using a spreadsheet, we determine that just 10% of the normal
distribution lies below –1.28 standard deviations.

6. The return of –30% is approximately a –1.64 standard deviation event:

z = −30% − 20.60%
30.85%

= −1.64

According to the table of confidence intervals, 5% of the normal distri-
bution lies below –1.64 standard deviations. The probability of a return
less than –30% is then 5%.

7. For the mean:

� =
x2∫

x1

cxdx = c

x2∫
x1

xdx = c
[

1
2

x2
]x2

x1

= c
1
2

(
x2

2 − x2
1

)

From a previous example, we know that c = 1/(x2 – x1); therefore:

� = 1
2

(
x2

2 − x2
1

)
(x2 − x1)

= 1
2

(x2 − x1)(x2 + x1)
(x2 − x1)

= 1
2

(x2 + x1)

For the variance:

�2 =
x2∫

x1

c(x − �)2dx = c

x2∫
x1

(x2 − 2�x + �2)dx = c
[

1
3

x3 − �x2 + �2x
]x2

x1

Substituting in for c and � from above:

�2 = 1
x2 − x1

[
1
3

(
x3

2 − x3
1

)− 1
2

(x2 + x1)
(
x2

2 − x2
1

)+ 1
4

(x2 + x1)2(x2 − x1)
]

For the final step, we need to know that:

x3
2 − x3

1 = (x2 − x1)
(
x2

2 + x2
1 + x1x2

)
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Substituting in and solving, we have:

�2 = 1
12

(x2 − x1)2

8. Using integration by substitution, define a new variable y and solve:

y = x − �√
2�

dx = √
2�dy

∞∫
−∞

1

�
√

2�
e− (�−x)2

2�2 dx = 1√
�

∞∫
−∞

e−y2
dy = 1√

�

√
� = 1

9. Using the same substitution as in the previous question:

y = x − �√
2�

dx = �
√

2dy

∞∫
−∞

x
1

�
√

2�
e− (�−x)2

2�2 dx = 1√
�

∞∫
−∞

(�
√

2y + �)e−y2
dy

= �
√

2√
�

∞∫
−∞

ye−y2
dy + �√

�

∞∫
−∞

e−y2
dy

= �
√

2√
�

[−2ye−y2
]∞−∞ + � = �

10. Using the same substitution as before:

y = x − �√
2�

dx = �
√

2dy

Var[x] =
∞∫

−∞
(x − �)2 1

�
√

2�
e− (�−x)2

2�2 dx = 2�2

√
�

∞∫
−∞

y2e−y2
dy
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For the final step we need to know that:

∞∫
−∞

x2e−x2
dx = 1

2

√
�

Using this result, we achieve the desired result:

Var[x] = 2�2

√
�

1
2

√
� = �2

11. First we note that the mean of XA is zero:

E[XA] = E[
√

� X1 +√1 − � X2] = √
� E[X1] +√1 − � E[X2]

= √
� • 0 +√1 − � • 0 = 0

Similarly, the mean of XB is zero.
Next, we want to calculate the variance. In order to do that, it will

be useful to know two relationships. First we rearrange the equation for
variance, Equation 3.20, to get:

E
[
X2

i

] = Var[Xi ] − E[Xi ]2 = 1 − 02 = 1 for i = 1, 2, 3

Similarly, we can rearrange our equation for covariance, Equation 3.26,
to get:

E[Xi Xj ] = Cov[Xi , Xj ] − E[Xi ]E[Xj ] = 0 − 0 • 0 = 0 ∀ i �= j

With these results in hand, we now show that the variance of XA is one:

Var[XA] = E
[
X2

A

]− E[XA]2 = E
[
X2

A

]

Var[XA] = E
[
� X2

1 + 2
√

� (1 − � )X1 X2 + (1 − � )X2
2

]

Var[XA] = � E
[
X2

1

]+ 2
√

� (1 − � )E[X1 X2] + (1 − � )E
[
X2

2

]

Var[XA] = � • 1 + 2
√

� (1 − � ) • 0 + (1 − � ) • 1 = 1
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Next we calculate the covariance of XA and XB:

Cov[XA, XB] = E[XAXB] − E[XA]E[XB] = E[XAXB]

Cov[XA, XB] = E
[
� X2

1 + √
�
√

1 − � (X1 X2 + X1 X3) + (1 − � )X2 X3

]

Cov[XA, XB] = � E
[
X2

1

]+ √
�
√

1 − � (E[X1 X2] + E[X1 X3])

+ (1 − � )E[X2 X3]

Cov[XA, XB] = � • 1 + √
�
√

1 − � (0 + 0) + (1 − � ) • 0 = �

Putting the last two results together completes the proof:

Corr[XA, XB] = Cov[XA, XB]√
Var[XA] • Var[XB]

= �√
1 • 1

= �

12. For the portfolio consisting of 50% A and 50% B, we can proceed two
ways. The PDF of the portfolio is a triangle, from –0.5 to +0.5, with
height of 2.0 at 0. We can argue that the mean is zero based on geometric
arguments. Also, because both distributions are just standard uniform
variables shifted by a constant, they must have variance of 1/12; 50% of
each asset would have a variance of 1/4 this amount, and—only because
the variables are independent—we can add the variance of the variable,
giving us:

�2 = 2
1
4

1
12

= 1
24

� =
√

1
24

= 1
2

√
1
6

Alternatively, we could calculate the mean and variance by integration:

� =
∫ 0

−0.5
x(2 + 4x)dx +

∫ +0.5

0
x(2 − 4x)dx

=
[

x2 + 4
3

x3
]0

−0.5
+
[

x2 − 4
3

x3
]+0.5

0
= 0
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�2 =
∫ 0

−0.5
x2(2 + 4x)dx +

∫ +0.5

0
x2(2 − 4x)dx

=
[

2
3

x3 + x4
]0

−0.5
+
[

2
3

x3 − x4
]+0.5

0
= 1

24

This confirms our earlier answer.
For the 50/50 mixture distribution, the PDF is bimodal and sym-

metrical around zero, giving a mean of zero:

� = 0.5
∫ −1

−2
xdx + 0.5

∫ +2

+1
xdx = 0.5

([
1
2

x2
]−1

−2
+
[

1
2

x2
]2

1

)

= 0.5
1
2

(1 − 4 + 4 − 1) = 0

For the variance we have:

�2 = 0.5

(∫ −1

−2
x2dx +

∫ +2

+1
x2dx

)
= 0.5

([
1
3

x3
]−1

−2
+
[

1
3

x3
]+2

+1

)

= 1
6

(−1 + 8 + 8 − 1) = 7
3

� =
√

7
3

Notice that, while the mean is the same, the variance for the mixture
distribution is significantly higher.

CHAPTER 5

1. Mean = 45.0; standard deviation = 29.3; standard deviation of mean =
9.3. For the hypothesis that the mean is greater than 40, the appropriate
t-statistic has a value of 0.54. For a one-sided t-test with 9 degrees of
freedom, the associated probability is 70%. There is a 30% chance that
the true mean is found below 40, and a 70% chance that it is greater
than 40.

2. The mean is 6.9%, and the standard deviation of the returns is 23.5%,
giving a standard deviation of the mean of 7.4%. The t-statistic is 0.93.
With 9 degrees of freedom, a one-sided t-test produces a probability of
81%. In other words, even though the sample mean is positive, there is
a 19% chance that the true mean is negative.
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3. A negative return would be greater than 2 standard deviations. For
a normal distribution, the probability (one-tailed) is approximately
2.28%. If we do not know the distribution, then, by Chebyshev’s
inequality, the probability of a negative return could be as high as
12.5% = 1/2 × 1/(22). There could be a 25% probability of a +/–2
standard deviation event, but we’re interested only in the negative tail,
so we multiply by 1/2. We can only perform this last step because we
were told the distribution was symmetrical.

4. The expected return is +10%. The 95% VaR is 35% (i.e., 5% of the
returns are expected to be worse than –35%). The expected shortfall is
37.5% (again the negative is implied).

5. For a normal distribution, 5% of the weight is less than –1.64 standard
deviations from the mean. The 95% VaR can be found as: 0.40% –
1.64 • 2.30% = –3.38%. Because our quoting convention for VaR, the
final answer is VaR = 3.38%.

6. We can use Equation 5.4 to calculate the expected variance of the sample
variances. Because we are told the underlying distribution is normal, the
excess kurtosis can be assumed to equal zero and n = 33; therefore:

E[(�̂2 − �2)2] = �4
(

2
n − 1

+ �

n

)
= 0.404

(
2

32

)
= 0.162

42
= 0.042

The standard deviation of the sample variances is then 4.0%.
7. An appropriate null hypothesis would be: H0: � = 40%. The appropri-

ate test statistic is:

(33 − 1)
0.502

0.402
= 50

Using a spreadsheet, or other program, we calculate the corresponding
probability for a chi-squared distribution with 32 degrees of freedom.
Only 2.23% of the distribution is greater than 50. At a 95% confidence
level, we would reject the null hypothesis.

8. Answer: 12.5%. This is a –2 standard deviation event. According to
Chebyshev’s inequality, the probability of being more than 2 standard
deviations from the mean is less than or equal to 25%.

P[|X − �| ≥ n�] ≤ 1
n2

P[|X − 15%| ≥ 2 • 10%] ≤ 1
22

= 25%

Because the distribution of returns is symmetrical, we assume that half
of these extreme events are greater than +2 standard deviations, and
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half are less than –2 standard deviations. This leads to the final result,
of 12.5%.

9. The standard deviation of the mean is 2%:

�� = 12%√
36

= 2%

This makes the difference between the average fund return and the
benchmark, 18% – 14% = 4%, a +2 standard deviation event. For
a t distribution with 35 degrees of freedom, the probability of being
more than +2 standard deviations is just 2.67%. We can reject the null
hypothesis, H0: � = 14% at the 95% confidence level. The difference
between the average return and the benchmark return is statistically
significant.

10. To find the 95% VaR, we need to find v, such that:

v∫
−100

pd� = 0.05

Solving, we have:

v∫
−100

1
200

d� =
[ �

200

]v
−100

= v + 100
200

= 0.05

v = −90

The VaR is a loss of 90. Alternatively, we could have used geometric
arguments to arrive at the same conclusion. In this problem, the PDF
describes a rectangle whose base is 200 units and whose height is 1/200.
As required, the total area under the PDF, base multiplied by height, is
equal to one. The leftmost fraction of the rectangle, from –100 to –90,
is also a rectangle, with a base of 10 units and the same height, giving
an area of 1/20, or 5% of the total area. The edge of this area is our
VaR, as found by integration before.

11. In the previous question we found that the VaR, v, was equal to –90.
To find the expected shortfall, we need to solve the following equation:

ES = 1
0.05

−90∫
−100

�pd�
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Solving, we find:

ES = 1
0.05

−90∫
−100

�
1

200
d� = 1

20

−90∫
−100

2�d� = 1
20

[
�2]−90

−100

= 1
20

(
(−90)2 − (−100)2) = −95

The final answer, a loss of 95 for the expected shortfall, makes
sense. The PDF in this problem is a uniform distribution, with a min-
imum at –100. Because it is a uniform distribution, all losses between
the (negative) VaR, –90, and the minimum, –100, are equally likely;
therefore, the average loss, given a VaR exceedance, is halfway between
–90 and –100.

12. To find the 95% VaR, we need to find v, such that:

v∫
−15

pd� = 0.05

By inspection, half the distribution is below 5, so we need only bother
with the first half of the function:

v∫
−15

(
3
80

+ 1
400

�

)
d� =

[
3

80
� + 1

800
�2
]v

−15

= 3
80

(v + 15) + 1
800

(v2 − 225) = 0.05

v2 + 30v + 185 = 0

We can use the solution to the quadratic equation:

v = −30 ± √
900 − 4 • 185

2
= −15 ± 2

√
10

Because the distribution is not defined for � � –15, we can ignore the
negative, giving us the final answer:

v = −15 + 2
√

10 = −8.68

The one-day 95% VaR for Pyramid Asset Management is approxi-
mately 8.68.
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CHAPTER 6

1. A + B =
[−10 9

8 7

]
+
[

2 9
1 1

]
=
[−8 18

9 8

]

BC =
[

2 9
1 1

] [ −5 7
−10 7

]
=
[−100 77

−15 14

]

CB =
[ −5 7

−10 7

] [
2 9
1 1

]
=
[ −3 −38

−13 −83

]

2. For the first part of the question, because matrix addition is commutative
and associative, the order in which we perform the operations does not
matter:

B + (A + C) = A + B + C

=
[−10 9

8 7

]
+
[

2 9
1 1

]
+
[ −5 7

−10 7

]

=
[−13 25

−1 15

]

B (A − C) =
[

2 9
1 1

]([−10 9
8 7

]
−
[ −5 7

−10 7

])

=
[

2 9
1 1

] [−5 2
18 0

]
=
[

152 4
13 2

]

3. A′ =
[−10 8

9 7

]
C′ =

[−5 −10
7 7

]

4. F + G =
⎡
⎣−6 1

−8 2
−6 −3

⎤
⎦+

⎡
⎣ 5 0

0 −1
−8 −7

⎤
⎦ =

⎡
⎣ −1 1

−8 1
−14 −10

⎤
⎦

FG′ =
⎡
⎣−6 1

−8 2
−6 −3

⎤
⎦
[

5 0 −8
0 −1 −7

]
=
⎡
⎣−30 −1 41

−40 −2 50
−30 3 69

⎤
⎦

F′G =
[−6 −8 −6

1 2 −3

]⎡⎣ 5 0
0 −1

−8 −7

⎤
⎦ =

[
18 50
29 19

]

5. A matrix multiplied by an appropriately sized identity matrix is itself.

UI = U =
[

1 1
1 1

]
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This is true when the identity matrix is multiplied by itself, too.

I2 = II = I =
[

1 0
0 1

]

For U2:

U2 =
[

1 1
1 1

] [
1 1
1 1

]
=
[

2 2
2 2

]

For AU:

AU =
[−10 9

8 7

] [
1 1
1 1

]
=
[−1 −1

15 15

]

6. To prove that J is the inverse of K, we need to show that the two matrices
multiplied together produce an identity matrix.

JK =
[

4 1
9 2

] [−2 1
9 −4

]
=
[

1 0
0 1

]

7. To solve this problem we could multiply M by itself five times. Alterna-
tively, we can reexpress M as the product of a constant and an identity
matrix:

M5 =
([

2 0
0 2

])5

=
(

2
[

1 0
0 1

])5

= 25

([
1 0
0 1

])5

= 32
[

1 0
0 1

]

=
[

32 0
0 32

]

8. At the end of the year, it is expected that 61% of the bonds will have
an A rating, 36.4% B, 2.2% C, and 0.4% D. To get the answer, we can
proceed one rating at a time. Of the 60% of bonds that are rated A at
the start of the year, we expect 95% will still be rated A at the end of the
year. Of the 40% of bonds that are rated B at the start of the year, we
expect 10% to have been upgraded to A by the end of the year. Putting
the two together, we have:

60% × 95% + 40% × 10% = 57% + 4% = 61%
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We can calculate the other three ratings similarly:

60% × 4% + 40% × 85% = 2.4% + 34% = 36.4%

60% × 1% + 40% × 4% = 0.6% + 1.6% = 2.2%

60% × 0% + 40% × 1% = 0% + 0.4% = 0.4%

We can check our answer by noting that the sum of the answers is
100%. At the end of the year each bond must be either A, B, C, or D;
therefore, the sum of the expected values must be 100%.

9. To calculate the two-year transition matrix, we simply square the one-
year matrix. Using T1 and T2 to denote our one-year and two-year
matrices, respectively, we have:

T2 = T1T1

=

⎡
⎢⎢⎢⎣

0.95 0.04 0.01 0.00

0.10 0.85 0.04 0.01

0.00 0.20 0.65 0.15

0.00 0.00 0.00 1.00

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0.95 0.04 0.01 0.00

0.10 0.85 0.04 0.01

0.00 0.20 0.65 0.15

0.00 0.00 0.00 1.00

⎤
⎥⎥⎥⎦

T2 =

⎡
⎢⎢⎢⎣

0.9065 0.0740 0.0176 0.0019

0.1800 0.7345 0.0610 0.0245

0.0200 0.3000 0.4305 0.2495

0.0000 0.0000 0.0000 1.0000

⎤
⎥⎥⎥⎦

Though not necessary, we can reformat this to match the original
one-year matrix:

To
2-year

A B C D

A 90.65% 7.40% 1.76% 0.19%

B 18.00% 73.45% 6.10% 2.45%
From

C 2.00% 30.00% 43.05% 24.95%

D 0.00% 0.00% 0.00% 100.00%
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10. We can use our Cholesky algorithm to find the elements of the matrix:

l1,1 = √
�11 = √

4 = 2

l2,1 = 1
l11

�21 = 1
2

(14) = 7

l2,2 =
√

�22 − l2
2,1 = √

50 − 72 = 1

l3,1 = 1
l1,1

(�3,1) = 1
2

(16) = 8

l3,2 = 1
l2,2

(�3,2 − l3,1l2,1) = 1
1

(58 − 8 • 7) = 2

l3,3 =
√

�33 − l2
3,1 − l2

3,2 = √
132 − 82 − 22 = 8

We can express the full lower triangular matrix as:

L =
⎡
⎣2 0 0

7 1 0
8 2 8

⎤
⎦

We can verify this answer by noting that LL′ is indeed equal to our
original covariance matrix, 	 .

CHAPTER 7

1. Vectors a and b are not orthogonal, but b and c are orthogonal. We
know this from their inner products, which we can calculate as follows:

a • b =
⎡
⎣ 10

−5
4

⎤
⎦ •

⎡
⎣ 6

2
−4

⎤
⎦ = 10 • 6 + (−5) • 2 + 4 • (−4) = 60 − 10 − 16

= 34 �= 0

b • c =
⎡
⎣ 6

2
−4

⎤
⎦ •

⎡
⎣ 5

5
10

⎤
⎦ = 6 • 5 + 2 • 5 + (−4) • 10 = 30 + 10 − 40 = 0
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2. In order for A to be an orthonormal basis, we require that the column
vectors are orthogonal and have a magnitude of one. For the two column
vectors to be orthogonal, we require that their inner product is zero:

a1 • a2 =

⎡
⎢⎣

x

1
3

⎤
⎥⎦ •

⎡
⎢⎢⎣

1
3

2
√

2
3

⎤
⎥⎥⎦ = x •

1
3

+ 1
3

•
2
√

2
3

= 0

x = −2
√

2
3

We next check that the column vectors have a magnitude of one:

||a1|| = √
a1 • a1 =

√√√√√√√

⎡
⎢⎢⎣

−2
√

2
3

1
3

⎤
⎥⎥⎦ •

⎡
⎢⎢⎣

−2
√

2
3

1
3

⎤
⎥⎥⎦ =

√
8
9

+ 1
9

= 1

||a2 • || = √
a2 • a2 =

√√√√√√√

⎡
⎢⎢⎣

1
3

2
√

2
3

⎤
⎥⎥⎦ •

⎡
⎢⎢⎣

1
3

2
√

2
3

⎤
⎥⎥⎦ =

√
1
9

+ 8
9

= 1

Both vectors are normal; therefore, the solution:

x = −2
√

2
3

makes A an orthonormal basis.
3. In order for B to be an orthonormal basis, we require that the column

vectors are orthogonal and have a magnitude of one. For the two column
vectors to be orthogonal, we require that their inner product is zero:

b1 • b2 =
[

x

y

]
•

⎡
⎢⎢⎣

1
5

2
√

6
5

⎤
⎥⎥⎦ = x •

1
5

+ y •
2
√

6
5

= 0

x = −2
√

6y
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Using the fact that the magnitude of the first column vector must
be one:

||b1|| =
√

b1 • b1 =
√

x2 + y2 = 1

x2 + y2 = 1

Substituting in our previous result:

(
−2

√
6y
)2 + y2 = 24y2 + y2 = 1

y2 = 1
25

y = ±1
5

Both the positive and negative root are legitimate solutions. There
are actually two possible final answers.

Solution 1: y = +1
5

; x = −2
√

6
5

Solution 2: y = −1
5

; x = +2
√

6
5

4. Because B is an orthonormal basis, we can find the coordinate vector
for x:

c = B′x =
⎡
⎣ 1/√

2
1/√

2

−1/√
2

1/√
2

⎤
⎦
[

6

4

]
=
⎡
⎣ 10/√

2

−2/√
2

⎤
⎦

5. A coordinate vector, c, for x should satisfy the following equation:

c1

⎡
⎢⎣

4

1

5

⎤
⎥⎦+ c2

⎡
⎢⎣

2

−18

2

⎤
⎥⎦+ c3

⎡
⎢⎣

−46

−1

37

⎤
⎥⎦ =

⎡
⎢⎣

−170

−19

165

⎤
⎥⎦
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Working through produces three simultaneous equations:

4c1 + 2c2 − 46c3 = −170

c1 − 18c2 − c3 = −19

5c1 + 2c2 + 37c3 = 165

By solving and substituting in, we arrive at the final answer: c1 = 3,
c2 = 1, c3 = 4.

CHAPTER 8

1. The expected return of XYZ is 6.01%:

E[rXYZ | rIndex] = E[(
 + �rIndex + ε) | rIndex]

= E[
 | rIndex] + �E[rIndex | rIndex] + E[ε | rIndex]

E[rXYZ | rIndex] = 
 + �rIndex = 0.01% + 1.20 • 5.0% = 6.01%

2. The expected value of rXYZ is 0.07%:

E[rXYZ] = E[
 + �rIndex + ε] = E[
] + �E[rIndex] + E[ε]

E[rXYZ] = 
 + �E[rIndex] = 0.01% + 1.20 • 0.05% = 0.07%

The variance of rXYZ is:

Var[rXYZ] = E[(rXYZ − E[rXYZ])2] = E
[
(�(rIndex − E[rIndex]) + ε)2

]

Var[rXYZ] = E
[
�2(rIndex − E[rIndex])2 + 2�ε(rIndex − E[rIndex]) + ε2

]
Var[rXYZ] = �2 E

[
(rIndex − E[rIndex])2

]+ 2�E[εrIndex]

− 2�E[ε]E[rIndex] + E[ε2]

Var[rXYZ] = �2Var[rIndex] + Var[ε2] = 0.000424

To get to the last line, we use the fact that the covariance between the
regressor and the disturbance term is zero in a linear regression, which
implies:

Cov[ε, rIndex] = E[εrIndex] − E[ε]E[rIndex] = E[εrIndex] = 0
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Taking the square root of the variance, we get a standard deviation of
2.06%.

3. We start by calculating the covariance:

Cov[rXYZ, rIndex] = E [(rXYZ − E[rXYZ])(rIndex − E[rIndex])]

= E [(�(rIndex − E[rIndex]) + ε)(rIndex − E[rIndex])]

Cov[rXYZ, rIndex] = E
[
�(rIndex − E[rIndex])2 + εrIndex − εE[rIndex]

]
Cov[rXYZ, rIndex] = E

[
�(rIndex − E[rIndex])2

]+ E [εrIndex] − E[rIndex]E [ε]

= �E
[
(rIndex − E[rIndex])2

]
Cov[rXYZ, rIndex] = �Var[rIndex]

The correlation is then:

� = Cov[rXYZ, rIndex]√
Var[rIndex]Var[rXYZ]

= �Var[rIndex]√
Var[rIndex]Var[rXYZ]

= �

√
Var[rIndex]√
Var[rXYZ]

= 1.20
1.50%
2.06%

= 87.42%

4. The R2 is 20%:

R2 = 1 − RSS
TSS

= 1 − 10.80%
13.50%

= 20%

5. The corresponding F-statistic is 12:

R2/(n − 1)
(1 − R2)/(t − n)

= 20%/(2 − 1)
(1 − 20%)/(50 − 2)

= 12

Using a spreadsheet or other program, we see that the probability
associated with this F-statistic is 0.11%; that is, there is only a 0.11%
chance that an F-statistic of this magnitude (or greater) would have
happened by chance. The F-statistic is significant at the 95% confidence
level.
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6. We compute the adjusted R2 for each model. The univariate model has
two regressors, including the constant. The second has four:

R
2
2 = 1 − (1 − 0.60)

20 − 1
20 − 2

= 57.78%

R
2
4 = 1 − (1 − 0.64)

20 − 1
20 − 4

= 57.25%

On this basis, the original univariate model is slightly better.
7. 30.5%:

E[rABC | rA, rB] = E[0.01 + 1.25rA + 0.34rB + ε | rA, rB]

= 0.01 + 1.25rA + 0.34rB

E[rABC | rA, rB] = 0.01 + 1.25 • 10% + 0.34 • 50%

= 0.01 + 0.125 + 0.17 = 30.5%

8. One possible solution is to drop X3 from the model:

r = �1 + �2 X2 + ε1

Another possibility, if the spread between X2 and X3 is of
interest, is:

r = �6 + �7 X2 + �8(X3 − �5 X2) + ε

where �5 is taken from the regression of X2 on X3. Based on the as-
sumption of the OLS model, the term in parentheses will be uncorrelated
with X2.

9. We start by writing the equation for the covariance of X and Y:

Cov[X, Y] = E[(X − E[X])(Y − E[Y])]

Using our linear regression equation and making use of the OLS as-
sumptions, we see that the second term can be expressed in terms of X,
�, and ε:

Y − E[Y] = (
 + �X + ε) − (
 + �E[X] + E[ε])

Y − E[Y] = �(X − E[X]) + (ε − E[ε])
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Substituting this into our covariance equation:

Cov[X, Y] = E [(X − E[X]) (�(X − E[X]) + (ε − E[ε]))]

Cov[X, Y] = E[�(X − E[X])2 + (X − E[X])(ε − E[ε])]

Cov[X, Y] = �E[(X − E[X])2] + E[(X − E[X])(ε − E[ε])]

Cov[X, Y] = ��2
X + Cov[X, ε] = ��2

X

All that remains is to divide both sides by the variance of X, and to
expand the correlation term:

� = Cov[X, Y]

�2
X

= �XY�X�Y

�2
X

= �XY
�Y

�X

10. First, we find the optimal value of 
, 
*:

∂RSS
d


= −2
n∑

i=1

(yi − 
 − �xi )

n∑
i=1

(yi − 
∗ − �xi ) = 0

n∑
i=1

(yi − �xi ) =
n∑

i=1


∗ = n
∗


∗ = 1
n

n∑
i=1

(yi − �xi ) = 1
n

n∑
i=1

yi − �
1
n

n∑
i=1

xi


∗ = Y − �X

Next, we solve for �:

∂RSS
d�

= −2
n∑

i=1

xi (yi − 
 − �xi )

n∑
i=1

xi (yi − 
 − �∗xi ) = 0

n∑
i=1

xi yi − 


n∑
i=1

xi = �∗
n∑

i=1

x2
i
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At this point we substitute in our optimal value of 
, 
*:

n∑
i=1

xi yi − (Y − � ∗X)nX = � ∗
n∑

i=1

x2
i

�∗ =

n∑
i=1

xi yi − nYX

n∑
i=1

x2
i − nX

2

CHAPTER 9

1. The models are:
a. AR(2)
b. AR(1)
c. ARMA(2,1)
d. Drift-diffusion

2. E[rt] = 1
1 − �


 = 1
1 − 0.8

0.02 = 0.10

3. The expected value of rt is 0.80% the next period, and 0.84% the
following period:

E[rt | rt−1, rt−2] = 0.01 + 0.30rt−1 − 0.20rt−2

= 0.01 + 0.30 • 0.02 − 0.20 • 0.04 = 0.0080

To get the two-period-ahead forecast, we can use the previous result:

E[rt | rt−1, rt−2] = 0.01 + 0.30 • 0.80 − 0.20 • 0.02 = 0.0084

Alternatively, we can substitute the original equation into itself to get rt

in terms of rt–2 and rt–3:

rt = 0.01 + 0.30rt−1 − 0.20rt−2 + εt

rt = 0.01 + 0.30(0.01 + 0.30rt−2 − 0.20rt−3 + εt−1) − 0.20rt−2 + εt

rt = 0.013 − 0.11rt−2 − 0.06rt−3 + εt + 030εt−1

E[rt | rt−2, rt−3] = 0.013 − 0.11rt−2 − 0.06rt−3

= 0.013 − 0.11 • 0.02 − 0.06 • 0.04 = 0.0084



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT625-Ans JWBT625-Miller January 9, 2012 23:9 Printer: Courier Westford

Answers 273

4. The expected log return over one year is 0.0%. The standard deviation
of the annual log return is 24%.

We can get this result by recognizing the annual return as a collec-
tion of i.i.d. variables, and using our square root rule to calculate the
standard deviation. More formally, we can construct the annual return
series (remember, log returns are additive):

r256,t =
255∑
i=0

rt−i =
255∑
i=0

εt−i

where r256,t is our 256-day annual return. We can find the expected
value as follows:

E [r256,t] = E

[
255∑
i=0

εt−i

]
=

255∑
i=0

E [εt−i ] =
255∑
i=0

0 = 0

We can then calculate the variance as follows:

Var [r256,t] = E
[
(r256,t − E[r256,t])2

] = E
[
r2

256,t

] = E

⎡
⎣
(

255∑
i=0

εt−i

)2⎤
⎦

= E

⎡
⎣ 255∑

i=0

255∑
j=0

εt−i εt− j

⎤
⎦

Var [r256,t] = E

⎡
⎣ 255∑

i=0

255∑
j �=i

εt−i εt− j +
255∑
i=0

ε2
t−i

⎤
⎦

=
255∑
i=0

255∑
j �=i

E
[
εt−i εt− j

]+
255∑
i=0

E
[
ε2

t−i

]

For each term in the final summation, we can determine the value by
noting the following:

Var[εt] = E
[
(εt − E[εt])

2
]

= E
[
ε2

t

]
Cov[εs, εt] = E [(εs − E[εs]) (εt − E[εt])] = E [εsεt] = 0 ∀ s �= t
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Now we have:

Var [r256,t] =
255∑
i=0

255∑
j �=i

0 +
255∑
i=0

Var [εt] = 256 • Var[εt]

The variance of the annual returns is 256 times as great as the variance
of the daily returns. To get the standard deviation, we just take the
square root of both sides:

�256 =
√

256 • Var[εt] = 16�ε = 16 • 1.5% = 24%

5. The expected log return over one year is 25.6%. The standard deviation
of the annual log return is 24%.

As before, we can get this result by recognizing the annual return
as a collection of i.i.d. variables, and using our square root rule to
calculate the standard deviation. More formally, we can construct the
annual return series (remember, log returns are additive):

r256,t =
255∑
i=0

rt−i =
255∑
i=0

(
 + εt−i ) = 256
 +
255∑
i=0

εt−i

where r256,t is our 256-day annual return. We can find the expected
value as follows:

E [r256,t] = E

[
256
 +

255∑
i=0

εt−i

]
= 256
 +

255∑
i=0

(E [εt−i ])

= 256
 +
255∑
i=0

0 = 256
 = 25.6%

Using this result, we can then calculate the variance as follows:

Var [r256,t] = E
[
(r256,t − E[r256,t])

2
]

= E

⎡
⎣
(
256
 +

255∑
i=0

εt−i − 256


)2⎤
⎦

Var [r256,t] = E

⎡
⎣
(

255∑
i=0

εt−i

)2⎤
⎦
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This is exactly the same as what we had in the previous question.
The addition of the drift term does not impact the variance or standard
deviation. The final result is the same as before:

�256 =
√

256 • Var[εt] = 16�ε = 16 • 1.5% = 24%

6. The expected log return over two days is 0.40%. The standard deviation
of the two returns is 3.0%. For the case where � equals –0.50, the mean
of the two-day return would be approximately 0.13%, and the standard
deviation would be approximately 1.73%.

We start by expressing the original AR(1) equation as an infinite
sum of lags of the disturbance term:

rt = 
 + �rt−1 + εt−1 = 


n−1∑
i=0

�i + �nrt−n +
n−1∑
i=0

�i εt−i

rt = 

1

1 − �
+

∞∑
i=0

�i εt−i

Constructing the two-period return is fairly straightforward. Paying
careful attention to the time subscripts, we can group the disturbance
terms into one summation:

r2,t = rt + rt−1 = 2

1

1 − �
+ εt + (1 + �)

∞∑
i=0

�i εt−i−1

where r2,t is our two-day return. We can find the expected value as
follows:

�2 = E[r2,t] = 2

1

1 − �
+ E [εt] + (1 + �)

∞∑
i=0

�i E [εt−i−1] = 2

1

1 − �

We then proceed to find the variance:

Var[r2,t] = E
[
r2

2,t

]− E[r2,t]2

Var[r2,t] = E

⎡
⎣�2

2 + ε2
t + (1 + �)2

( ∞∑
i=0

�i εt−i−1

)2

+ 2�εt

+ 2�(1 + �)
∞∑

i=0

�i εt−i−1 + 2εt(1 + �)
∞∑

i=0

�i εt−i−1

]
− �2

2
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Var[r2,t]=E
[
ε2

t

]+ (1 + �)2E

⎡
⎣
( ∞∑

i=0

�i εt−i−1

)2
⎤
⎦+ 2(1 − �)

∞∑
i=0

�i E[εtεt−i−1]

Var[r2,t]=�2
ε + (1 + �)2E

⎡
⎣ ∞∑

i=0

�2i ε2
t−i−1 +

∞∑
i=0

∞∑
j �=i

�i � j εt−i−1εt− j−1

⎤
⎦+ 0

Var[r2,t]=�2
ε

[
1 + (1 + �)2

∞∑
i=0

�2i

]
= 2�2 1

1 − �

The standard deviation of the two-day return is then:

�2 =
√

2�2
1

1 − �
= �

√
2

1 − �

7. The unconditional mean of the model is equal to 
, 4%. If interest
rates start out at 6%, then we would expect interest rates to be 5.00%,
then 4.50%, and then 4.25% over the next three periods. This result is
obtained by noting that the conditional expectation for the next period’s
interest rate is, in this case, simply the average of the previous period’s
rate and the long-term mean of 4%:

E[rt | rt−1] = 0.5rt−1 + (1 − 0.5) • 4% + �E[εt]

E[rt | rt−1] = 0.5(rt−1 + 4%)

8. By iteratively substituting the equation into itself, we see that this process
can be written as an infinite moving average:

rt = �rt−1 + εt = �2rt−2 + �εt + εt = �nrt−n +
n−1∑
i=0

� i εt−i =
∞∑

i=0

� i εt−i

The unconditional mean is 0:

E[rt] = E

[ ∞∑
i=0

� i εt−i

]
=

∞∑
i=0

� i E[εt−i ] =
∞∑

i=0

� i • 0 = 0

Similarly, we can find the unconditional variance. First we note
that, because the covariance between different disturbance terms is zero
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and the expected value of any individual disturbance terms is zero, we
have the following:

Cov[εt−1, εt− j ] = E[εt−1εt− j ] + E[εt−1]E[εt− j ] = E[εt−1εt− j ] = 0

Using this and the fact that the unconditional mean is also zero:

Var[rt] = E
[
r2

t

]+ E[rt]2 = E
[
r2

t

] = E

⎡
⎣ ∞∑

i=0

∞∑
j=0

� i � j εt−i εt− j

⎤
⎦

Var[rt] =
∞∑

i=0

� 2i E
[
ε2

t−i

]+
∞∑

i=0

∞∑
j �=i

� i � j E[εt−i εt− j ] = �2
∞∑

i=0

� 2i

= �2 1
1 − �2

9. Using the results from the previous question, we first derive an expres-
sion for the covariance:

Cov[rt, rt−n] = E[rtrt−n] + E[rt]E[rt−n] = E[rtrt−n]

= E

⎡
⎣ ∞∑

i=0

� i εt−i

∞∑
j=0

� j εt− j−n

⎤
⎦

Cov[rt, rt−n] = E

⎡
⎣
(

n−1∑
i=0

� i εt−i +
∞∑

i=n

� i εt−i

) ∞∑
j=0

� j εt− j−n

⎤
⎦

Cov[rt, rt−n] = E

⎡
⎣
(

n−1∑
i=0

� i εt−i + �n
∞∑

i=0

� i εt−i−n

) ∞∑
j=0

� j εt− j−n

⎤
⎦

Cov[rt, rt−n] = E

⎡
⎣n−1∑

i=0

� i εt−i

∞∑
j=0

� j εt− j−n + �n
∞∑

i=0

∞∑
j=0

� i � j εt−i−nεt− j−n

⎤
⎦

Cov[rt, rt−n] = � nE

⎡
⎣ ∞∑

i=0

∞∑
j=0

� i � j εt−i−nεt− j−n

⎤
⎦ = �nVar[rt]
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For the last line we were able to eliminate the first term in the expec-
tations by noting that all the products contained different disturbance
terms. From the preceding problem we know that the expected value
of these cross products is zero. Because the unconditional variance is
the same for both rt and rt–n, finding the correlation is just a matter of
dividing Var[rt]:

Corr[rt, rt−n] = �nVar[rt]√
Var[rt]

√
Var[rt]

= �nVar[rt]
Var[rt]

= �n

10. We start by expressing both rt, and rt–1 as infinite series:

rt = 


1 − �
+

∞∑
i=0

�i εt−i = 


1 − �
+ εt + �

∞∑
i=0

�i εt−i−1

rt−1 = 


1 − �
+

∞∑
i=0

�i εt−i−1

Next we find the mean of both series:

E[rt] = E[rt−1] = 


1 − �

Because the error terms are uncorrelated, we know that:

E[εsεt] = 0 ∀s �= t

Using this and the previous results, we calculate the variances and co-
variance:

Var[rt] = E

⎡
⎣
( ∞∑

i=0

�i εt−i

)2
⎤
⎦ = �2

ε

1 − �2

Var[rt−1] = E

⎡
⎣
( ∞∑

i=0

�i εt−i−1

)2
⎤
⎦ = �2

ε

1 − �2

Cov[rt, rt−1] = E

[(
εt + �

∞∑
i=0

�i εt−i−1

)( ∞∑
i=0

�i εt−i−1

)]
= ��2

ε
1 − �2
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Finally, the correlation is:

Corr[rt, rt−1] = Cov[rt, rt−1]√
Var[rt]Var[rt−1]

= �

11. To annualize the log return, we simply multiply by the number of
months in a year, 12. To get the annualized standard deviation, we
multiply by the square root of the number of periods. For skewness and
kurtosis, we divide by the square root of 12 and 12, respectively. This
gives: mean = 24%; standard deviation = 5.20%; skewness = –0.29;
kurtosis = 0.20.

CHAPTER 10

1. We need to find h, such that:

h−1∑
i=0

�i = 1
2

n−1∑
i=0

�i = 1
2

1 − �n

1 − �
= 1 − �h

1 − �

Solving, we find:

0.5(1 − �n) = 1 − �h

�h = 0.5(�n + 1)

h ln(�) = ln(0.5 + 0.5�n)

h = ln(0.5 + 0.5�n)
ln(�)

Alternatively, the formula for the half-life can be expressed as:

h = ln(0.5) + ln(1 + �n)
ln(�)

2. We start by computing decay factors and values for x2:

t 0 1 2 3 4 5 6 7

x 11 84 30 73 56 58 52 35

� 0.6983 0.7351 0.7738 0.8145 0.8574 0.9025 0.9500 1.0000

x2 121 7,056 900 5,329 3,136 3,364 2,704 1,225
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For the mean, using Equation 10.2, we have:

�̂t = 1 − �

1 − �n

n−1∑
i=0

�i xt−i = 0.15 × 336.86 = 50.04

For the variance, using Equation 10.12, we have:

�̂2
t = A

n−1∑
i=0

�i x2
t−i − B�̂2

t = 0.17 × 19826.75 − 1.15 × 50.042 = 505.18

Finally, we can take the square root of our answer for the variance, to
get the standard deviation, 22.48.

3. We start by calculating the following values:

t 0 1 2 3 4 5

x 0.04 0.84 0.28 0.62 0.42 0.46

�1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

�2 0.9044 0.9135 0.9227 0.9321 0.9415 0.9510

�3 0.3487 0.3874 0.4305 0.4783 0.5314 0.5905

t 6 7 8 9 10

x 0.66 0.69 0.39 0.99 0.37

�1 1.0000 1.0000 1.0000 1.0000 1.0000

�2 0.9606 0.9703 0.9801 0.9900 1.0000

�3 0.6561 0.7290 0.8100 0.9000 1.0000

We then use Equation 10.2 to calculate our estimates of the mean: mean
(no decay) = 0.5236; mean (decay = 0.99) = 0.5263; mean (decay =
0.90) = 0.5486.

4. We start by expanding the table from our answer to question #3:

t 0 1 2 3 4 5

x 0.04 0.84 0.28 0.62 0.42 0.46

�1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

�2 0.9044 0.9135 0.9227 0.9321 0.9415 0.9510

�3 0.3487 0.3874 0.4305 0.4783 0.5314 0.5905

x2 0.0016 0.7056 0.0784 0.3844 0.1764 0.2116

(x-E[x1])2 0.233904 0.100086 0.059359 0.009286 0.01074 0.00405
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t 6 7 8 9 10

x 0.66 0.69 0.39 0.99 0.37

�1 1.0000 1.0000 1.0000 1.0000 1.0000

�2 0.9606 0.9703 0.9801 0.9900 1.0000

�3 0.6561 0.7290 0.8100 0.9000 1.0000

x2 0.4356 0.4761 0.1521 0.9801 0.1369

(x-E[x1])2 0.018595 0.027677 0.017859 0.217495 0.023604

In the last line, we have used our estimate of the mean (no decay) from
the previous problem.

For the first estimator with no decay factor we can use Equa-
tion 3.19 to calculate the variance:

�̂2
1 = 1

n − 1

n∑
i=1

(xi − �̂x)2 = 0.7227
11 − 1

= 0.0723

For the second and third estimators, we use Equation 10.12, and our
estimates of the mean from the previous question:

�̂2
2 = A

n−1∑
i=0

�i x2
t−i − B�̂2

t = 0.11 × 10.47 − 1.10 × 0.52632 = 0.0716

�̂2
3 = A

n−1∑
i=0

�i x2
t−i − B�̂2

t = 0.16 × 6.86 − 1.11 × 0.54862 = 0.2610

Taking the square root of the variances, we arrive at our final answers:
standard deviation (no decay) = 0.2688; standard deviation (decay =
0.99) = 0.2676; standard deviation (decay = 0.90) = 0.2610.

5. The new estimates are 10.10%, 9.82%, and finally 9.78%. These can
be found as follows:

�̂t = 0.02xt + 0.98�̂t−1

�̂1 = 0.02 • 15% + 0.98 • 10.00% = 10.10%

�̂2 = 0.02 • − 4% + 0.98 • 10.10% = 9.82%

�̂3 = 0.02 • 8% + 0.98 • 9.82% = 9.78%
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6. The half-lives are:

h200 = ln(0.5 + 0.5 × 0.95200)
ln(0.95)

= 13.5127

h1,000 = ln(0.5 + 0.5 × 0.951,000)
ln(0.95)

= 13.5134

7. The half-life of the EWMA estimator is approximately 11.11 days. A
rectangular window with 22 days would have the most similar half-life,
11 days.

h32 = ln(0.5 + 0.5 × 0.9632)
ln(0.96)

= 11.11

8. 1 − 0.9650 = 87%.
9. Approximately 19.72%. We first update our estimate of the variance,

and then take the square root:

�̂2
t = (1 − �) (rt − �)2 + ��̂2

t−1

= (1 − 0.97)(15% − 10%)2 + 0.97 • 20%2 = 0.038875

�̂t = 19.72%

10. Approximately 10.25%. We can use our updating rule:

�̂2
t = (1 − �)r2

t + ��̂2
t−1

to calculate successive estimates of the variance. The estimate of the
standard deviation is just the square root of the variance estimator:

t 0 1 2 3 4 5 6

r −5% 18% 16% −2% 5% −10%

E[�2] 0.010000 0.009625 0.010764 0.011506 0.010950 0.010528 0.010501

E[�] 10% 9.81% 10.37% 10.73% 10.46% 10.26% 10.25%
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Abbreviations, 243
Addition, matrix, 129
Alpha, in finance, 181
Alphabet, Greek, 242
ARCH, Autoregressive conditional

heteroscedasticity, 215–217
Arithmetic Brownian motion, 214
Autocorrelation, 205–206
Autoregression, 200–204
Autoregressive conditional heteroscedasticity

(ARCH) model, 215–217
Averages:

continuous random variables, 43–45
discrete random variables, 41–43
population and sample data, 39–41

Back-testing, 103, 117–119
Bayes’ theorem, 31–36
Bernoulli distribution, 78–79
Best linear unbiased estimator (BLUE):

decay factor comparison, 223, 226, 229
definition, 71–72

Beta, of stock, 177
Bimodal mixture distribution, 101
Binary numbers, 237–238
Binomial distribution, 10, 79–83. See also

Distributions
Black-Karasinski model, 219–220
Black Monday scenario, 192–193
Black-Scholes equations, 214
BLUE (best linear unbiased estimator):

comparison to decay factors, 223, 226,
229

definition, 71–72
Brownian motion, 214

Cauchy distribution, 92
CDF (cumulative distribution functions),

23–26
Central limit theorem, 90–92

Central moments, 60
CEV (constant elasticity of volatility) model,

219
Chebyshev’s inequality, 113–114
Chi-squared distribution, 94–95
Cholesky decomposition, 138–141
CIR (Cox-Ingersoll-Ross) model, 219
Coefficient of determination, 180–181
Coin flip examples, 34, 49–50
Cokurtosis, 67–71
Combinatorics, 9–10
Component distributions, 99–100
Compounding, 4–5
Computer simulations, 215
Conditional probability, 30
Confidence intervals, 108–109, 114–115
Confidence level, choosing, 109, 113
Constant elasticity of volatility (CEV) model,

219
Continuously compounded returns, 7–9
Continuous random variables:

cumulative distribution functions, 23–26
definition, 43–45
probability density functions, 20–23

Continuous time series models, 212–215
Coordinate vectors, 148–149
Copulas, 70–71
Correlation, 56–57
Coskewness, 67–71
Country exposures, 189–190
Covariance, 54–56
Cox-Ingersoll-Ross (CIR) model, 219
CrashMetrics approach, 232–233
Cumulative distribution functions (CDF),

23–26

Data generating process (DGP), 105–108
Decay factors:

application, 233–234
CrashMetrics approach, 232–233
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Decay factors (Continued )
hybrid VaR, 233–234
mean, 223–229
problems, 234–235
variance, 230–231
weighted least squares, 231–232

Diffusion:
drift-diffusion, 199–200
jump-diffusion, 217

Discount factors, 10–11
Discrete models, 215
Discrete random variables, 19–20, 41–43
Distributions:

application, 92–94
Bernoulli, 78–79
bimodal mixture, 101
binomial, 10, 79–83
Cauchy, 92
central limit theorem, 90–92
chi-squared, 94–95
creating random variables, 92–94
cumulative distribution functions, 23–26
F-distribution, 97–98
Gaussian, 85
lognormal, 88–90
mixture, 99–102
Monte Carlo simulations, 92–94
nonparametric, 75
normal, 84–88
parametric, 75
Poisson, 83–84
problems, 102–104
Student’s t distribution, 95–97
uniform, 75–78

Dot product, 145
Dow Jones Industrial Average, history of,

224
Drift-diffusion, 199–200
Drug research example, 179

Eigenvalues, 161
Eigenvectors, 161
Equity markets, structure of, 167–171
Euclidean inner product, 145
EWMA. See Exponentially weighted moving

average
Excel examples, ix, 66, 67, 78, 87, 93, 94,

105, 139, 166, 169, 180, 200, 207, 211,
215, 217

Expectations, 46–51

Expected shortfall, 121–124
Expected value, 46–50
Exponentially weighted moving average

(EWMA), 226–229

Factor analysis, 188–192
F-distribution, 97–98, 187–188
Finite series, 14–16
Flat yield curve, 162, 163
F-tests, 187–188

GARCH, Generalized autoregressive
conditional heteroscedasticity, 215–217

Gaussian distribution, 85
Gauss-Markov theorem, 186
Generalized autoregressive conditional

heteroscedasticity (GARCH) model,
215–217

Geometric Brownian motion, 214
Geometric series:

decay factors, 229
definition, 13
math basics, 11–16
time series models, 201–202

Global equity markets, structure of, 167–171
Greek alphabet, 242

Hedging, 59–60, 178
Heteroscedasticity, 177, 215–217
Historical simulation for VaR, 233–234
Homoscedasticity, 177
Hua and Wilmott approach, CrashMetrics,

232–233
Huygens, Christiaan, 46
Hybrid VaR, 233–234
Hypothesis testing, 109–113

Identification, in principal component
analysis, 171

Identity matrix, 133–134
Idiosyncratic risk, 59, 175
Independent and identically distributed

(i.i.d.) variables:
central limit theorem, 90–92
definition, 58
random walks, 198

Independent events, 27–28
Infinite series, 11–14
Infinite variance, 92
Inner product, 145
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Interest rates:
continuously compounded returns, 7–9
dynamic term structure of, 162–167
linear regression analysis, 177
quantitative models, 218–220

Inverse, of matrix, 129, 133–134
Inverse distribution functions, 25–26
Inversion, matrix, 129, 133–134
Inverted yield curve, 162, 164

Jump-diffusion, 217

Kurtosis, 64–67. See also Cokurtosis

Limited liability, 5
Linear independence, 147–149
Linear regression analysis:

applications, 188–194
estimating the parameters, 179–180,

186
evaluating the regression, 180–183,

186–188
factor analysis, 188–192
multicollinearity, 184–188
multivariate, 183–188
ordinary least squares, 175–179,

231–232
problems, 195–196
stress testing, 192–194
univariate, 173–183
weighted least squares, 231–232

Logarithms, 1–3
Lognormal distribution, 88–90
Log returns, 3–7

Matrix algebra:
applications, 136–141
Cholesky decomposition, 138–141
matrix notation, 127–128
matrix operations, 129–136
Monte Carlo simulations, 138–141
problems, 141–142
transition matrices, 136–138

Matrix notation, 127–128
Matrix operations:

addition, 129
inversion, 133–134
multiplication, 130–134
subtraction, 130
transpose, 135–136

Mean,
decay factors, and, 223–229
definition, 39–45
expectations and, 46–47

Medical research example, 179
Mixture distributions, 99–102
Moments, 60
Monte Carlo simulations:

Cholesky decomposition, and, 138–141
definition, 92–94
time series models, 201–202, 204

Moving averages, 212
Multicollinearity, 184–186
Multiplication, matrix, 130–134
Multivariate regression. See also Linear

regression analysis
estimating the parameters, 179–180
evaluating the regression, 180–183
multicollinearity, 184–186
overview of, 183–184

Mutually exclusive events, 26–27

Natural logarithms, 2
Nonparametric distributions, 75
Nonstationarity series, 207–209
Normal distribution, 84–88
Null hypothesis, 110–111
Numbers, binary, 237–238

OLS (Ordinary least squares), 175–179,
231–232

Optimal hedging, 59–60, 178
One-factor interest rate models, 218–220
One-tailed:

hypothesis testing, 112
values for normal distribution, 87–88

Ordinary least squares (OLS), 175–179,
231–232

Orthogonality, 146–152
Orthonormal bases, 152–156

Paradox, Zeno’s, 11–13
Parametric distributions, 75
Parsimony principle, 188
PCA (principal component analysis),

157–162
PDF (probability density functions), 20–23
Plateauing, in time series, 224, 227–228
Poisson distribution, 83–84
Population and sample data, 39–41
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Portfolio variance and hedging, 57–60, 178
Principal component analysis (PCA),

157–162
Probabilities:

Bayes’ theorem, 31–36
conditional probability, 30
continuous random variables, 20–26
discrete random variables, 19–20
independent events, 27–28
mutually exclusive events, 26–27
probability matrices, 28–30

Probability density functions (PDF),
20–23

Probability distributions. See Distributions
Probability matrix, 28–30

Quantitative interest rate models, 218–220

Rainfall example, 210–211
Random variables:

continuous, 20–26, 43–45
creating, 92–94
discrete, 19–20, 41–43

Random walks, 197–198
Ratings transition matrices, 136–138
Rectangular window, 226–228, 231
Regressand, use of term, 173
Regression analysis. See Linear regression

analysis
Regressor, use of term, 173
Risk factor analysis, 188–192
Risk taxonomy, 189
Rolling mean, of time series, 224, 225, 228
Rotation, vector 152–156

Sample and population data, 39–41
Sample mean, 105–107
Sample variance, 107–108
Scalars, use of term, 127
Scenarios, in stress testing, 192–194
Shifting, in yield curve, 162, 164, 166–167
Shortfall, expected, 121–124
Skewness, 60–64. See also Cokewness
Spherical errors, 177
Spikes, in time series, 224, 225
Stability, in component tracking, 171
Standard Brownian motion, 214
Standard deviation and variance, 51–53
Standardized variables, 54
Standard uniform distributions, 77

Stationarity, 206–207
Step function, 213
Stress testing, 192–194, 233
Strong stationarity, 206–207
Student’s t distribution, 95–97
Subadditivity, 119–121
Subtraction, matrix, 130
Symmetrical matrices, 136
Systemic risk, 175

Taylor expansions, 3, 239–240
t distribution, 95–97
Testing:

back-testing, 117–119
F-tests, 187–188
hypothesis testing, 109–113
stress testing, 192–194, 233
t-tests, 187

Theorems:
Bayes, 31–36
central limit, 90–92
Gauss-Markov, 186

Three-dimensional vectors, 143–145
Tilting, in yield curve, 162, 165, 166–167
Time series models. See also Decay factors

applications, 215–220
ARCH and GARCH, 215–217
autoregression, 200–204
continuous models, 212–215
drift-diffusion, 199–200
interest rate models, 218–220
jump-diffusion, 217
linear regression analysis, 177
moving averages, 212
problems, 220–222
random walks, 197–198
stationarity, 206–212
variance and autocorrelation, 205–206

Transition matrices, 136–138
Transpose, of matrix, 135–136
Transposition, 129
t-tests, 187
Twisting, in yield curve, 162, 165, 166–167
Two-dimensional vectors, 143–145
Two-tailed:

hypothesis testing, 112
values for normal distribution, 87–88

Uniform distribution, 75–78
United Kingdom rainfall example, 210–211
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Univariate regression. See also Linear
regression analysis

estimating the parameters, 179–180
evaluating the regression, 180–183
ordinary least squares, 175–179
overview of, 173–175

Upward-sloping yield curve, 162, 163

Value at risk (VaR):
application, 114–124
back-testing, 117–119
binary numbers, 238
expected shortfall, 121–124
hybrid VaR, 233–234
overview of, 114–117
problems, 124–126
subadditivity, 119–121
VaR. See Value at risk

Variables:
independent and identically distributed,

58, 90–92, 198
random, 19–26, 41–45, 92–94
standardized, 54

Variance:
autocorrelation and, 205–206
decay factors and, 230–231
portfolio variance, 57–60, 178

sample variance, 107–108
standard deviation and, 51–53

Vasicek model, 218, 219
Vector, use of term, 127
Vector spaces:

applications, 162–171
definition of, 241
global equity markets application,

167–171
interest rates application, 162–167
orthogonality, 146–152
principal component analysis, 157–162
problems, 171–172
rotation, 152–156
vectors revisited, 143–146

Weak stationarity, 207
Weighted least squares, 231–232
Wiener process, 214
Wilmott and Hua approach, CrashMetrics,

232–233
Window length, decay factors and, 224–231

Yield curve, 162–167

Zeno’s paradox, 11–13
Zero matrix, 135
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