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When you can measure what you are
speaking about, and express it in numbers,
you know something about it.

When you cannot measure it, when you
cannot express it in numbers, your knowledge
is of a meager and unsatisfactory kind. It may
be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the
stage of science.

Lord Kelvin



Preface

The beauty of statistics lies in the fact that almost all planning, management,
business and engineering problems, and phenomena require statistics as an ana-
Iytical tool to help in subsequent decision making. The users of these and other
sciences need statistics equally. To most of the users, the applied parts and not the
fine mathematics of the subject are of great importance. They have little opportunity
and time in going to the sophisticated theories of statistics. At the same time, they
must be in a position to interpret the technical details of the subject in order to
correctly use the tool. This is important to guard against misuse of statistics. It is
recognized that the users of statistics come largely from various disciplines, some
having no strong mathematical background. Emphasis of such users is on the
application of statistics in the real and practical problems.

My engineering background, training in planning and management, and teaching
of statistics in the Asian Institute of Technology, Bangkok, have helped me in
identifying the need of the subject in a wide variety of applications in the real-world
perspective and the problems the students face in handling the statistical techniques.
To overcome these, a lot of techniques and ideas were used and found successful in
the classroom. The purpose of writing this text book is to transfer these practical
aspects into a reference book from which a wider range of readers can benefit.
While I started teaching statistics to the students coming from various disciplines,
the students were found fearful of the subject. My constant efforts were, therefore,
to make the subject interesting to them rather than a fearful one. This book will
reflect to some extent these efforts.

The coverage of the book is evident from the Table of Contents. The chapter
“Index Numbers” with their construction techniques, applications, and interpreta-
tions is not normally available in ordinary statistics books. Yet the planning and
management students need it frequently and to them it is of a great help. This has
been added for their benefit.

Bangkok Abdul Quader Miah
April 2015
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Chapter 1
Basics

Abstract Statistics deals with data. The basics of collection, summarization,
presentation, description, and analysis of data are explained. Knowledge of the rules
and the levels of measurement are important because each statistical technique is
appropriate for data measured only at certain levels. So levels of measurement are
introduced. Analysis of data that may vary will depend on the variables. So types of
variables according to suitability are introduced.

Keywords Statistics - Data - Measurements - Variable

1.1 History

The subject “statistics” as we find it today has emerged from three different sci-
ences. The first science was “Staatenkunde” which involved a collection of infor-
mation on history, resources, and military expertise of nations. This science
developed from the felt need of gathering information on resources and other
aspects of the states. For example, Aristotle gathered and compiled information on
158 city states.

The second science was the “political arithmetic” dealing with population esti-
mates and mortality. The present-day demography derived its roots from this sci-
ence. This science developed gradually but its refined methodology has developed
only recently.

The third science was “a calculus of probability” dealing with mathematical
theorems and techniques for problems involving uncertainty. The theory of prob-
ability is the foundation of modern statistics.

© Springer Science+Business Media Singapore 2016 1
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1.2 Statistics

Statistics may be defined in several ways. Some authors say that statistics are
classified facts, especially numerical facts, about a particular class of objects. Others
say that statistics is the area of science that deals with the collection of data on a
relatively small number of cases so as to form conclusions about the general case.

Another definition says that statistics is the science of collecting, simplifying,
and describing data as well as drawing conclusions. Wikipedia says that statistics is
a mathematical science pertaining to the collection, analysis, interpretation, and
presentation of data. Statistics is used by a wide variety of academic disciplines.

Statistics has two distinct branches—descriptive statistics and inferential statis-
tics. Descriptive statistics deals with collection, summarization, presentation, and
description of data and is sometimes called the primary analysis. Inferential
statistics deals with further analysis of data in order to draw conclusions and is
sometimes called secondary analysis.

1.3 Contents of Statistics

In the above section the definition of statistics has been outlined. In this section the
contents of statistics is summarized. Statistics deals with data relating to

— collection,

— summarization,
— presentation,

— description, and
— analysis.

It is evident that any exercise in statistics concerns data. Thus data are the central
requirement of any statistical work. Hence comes the question of data and their
collection.

Data may be collected from secondary sources such as census reports, other
documents, previous studies, etc. Data that are not readily available need to be
collected from the field. There are recognized ways/techniques of data collection
from the field. The important ones include

— structured/semi-structured interviews,
— standardized questionnaires,

— observation schedules,

— direct measurements, and

— experiments.
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In the structured/semi-structured interview, the points of interest on which
information is sought, are noted on a piece of paper. Then questions are asked to the
respondents or a guided discussion is held with the respondent. The points of
discussion are noted while discussing. Afterwards the information is summarized.
Sometimes, group discussions are arranged and the outcomes of the discussions are
recorded.

A more formalized way of collecting data from the field is the use of stan-
dardized questionnaires. A wide variety of information can be collected through this
technique. Questions on selected topics are previously formulated. With the
questionnaire in hand, the survey personnel go to the field and the preset questions
are asked to the respondent exactly in the same manner they were set. The answers
are recorded in the manner also previously prescribed in the questionnaire.

Some of the information can be obtained by simple observations, for example,
housing conditions. In such cases an observation schedule may be used. The pre-
scribed schedules (different for different purposes) are used in order to have uni-
formity in the recordings. This facilitates subsequent data processing and analysis.

Sometimes direct measurements of data are possible. If possible, this gives the
most accurate information. Measurements of plot size, house size, road width, etc.,
are examples where direct measurements are possible. Direct measurements are
usually done for data generated in laboratory experiments as well as in some field
experiments. Devices such as scales, tapes, surveying equipments, etc., are used in
measurements. Although relatively little judgment is involved in this technique, the
accuracy of measurements depends on the skills and efficiency of the person
recording the measurements.

Considerable data is also generated from experiments conducted by researchers
in the fields, laboratories, and manufacturing processes (see Chap. 17).

1.4 Data

Based on the source, data may be classified as secondary and primary data.
Secondary data are those that are obtained from the available reports, records, and
documents. Primary data are those that are not readily available and as such are
collected from the field or experiments. In any statistical problem when secondary
data are used, care should be taken to see their relevancy and accuracy.

On the basis of the use of units of measurement or type of measurement, data
may be classified as

— categorical,
— ranked, and
— metric.
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Categorical data are those in which individuals are simply placed in the proper
category or group, and the number in each category is counted. Each item must fit
into exactly one category.

Example 1

Sex Number
Male 706
Female 678

In the above example, male and female are categories. Only their frequencies are
counted. No other measurement units are used to identify these.

Ranked data is also categorical data. But this type of data has order among the
categories. In addition to categories, ranking or ordering is inherent in the data.

Example 2
People are categorized on the basis of income levels such as low, lower middle,
middle, upper middle, and high income. The low income people represent the
lowest category. The high income people represent the highest category. The
intermediate ones follow accordingly. These are ranked data. Although low, lower
middle, middle, upper middle, and high income are categories, some ranking is
inherent in the categories.

Metric data are those that need certain units of measurements. These data have
values that are continuous over a certain range, and are expressed with the help of
standard units of measurements.

Example 3
Expenditures of AIT students on food Bahts 2021, 1850; agricultural productivity
2000 kgf/rai, velocity 10.52 m/s, etc.

Often, metric data are converted to rank data. Suppose the individual incomes of
the people of a city are known to us. We can categorize them in the following way
(Table 1.1).

Table 1.1 Income category  [pcome range (US $/month) Category
Up to 200 Poor income
More than 200 Middle income

but up to 500
More than 500 High income
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1.5 Level of Measurement

Measurement constitutes the process of assigning a value to the data and the rules
defining the assignment of an appropriate value determine the level of measure-
ment. The levels of measurement are distinguished on the basis of ordering or
distance properties inherent in the measurement rules. Knowledge of the rules and
the levels of measurement is important because each statistical technique is
appropriate for data measured only at certain levels.

On the basis of traditional classification, four levels of measurements are iden-
tified. These are

— nominal,

— ordinal,

— interval, and
— ratio.

Nominal level is the lowest in the levels of measurements. Each value is a
distinct category. The value itself serves merely as a label or name (hence,
“nominal” level) for the category. No assumption regarding ordering or distances
between categories is made. The real number properties (addition, subtraction,
multiplication, division) are not applicable to the nominal level of measurement.
Categorical data fall under this level of measurement.

Example 4
Names of cities—Bangkok, Manila, Dhaka.

Ordinal level of measurement is derived from nominal level with the addition
that in the ordinal level of measurement, it is possible to rank-order all the cate-
gories according to certain criterion. Although ordering property is present in the
ordinal level of measurement, the distance property is absent. Consequently, the
properties of real number system cannot be used to summarize relationships of an
ordinal level variable. Ranked data fall under this level of measurement.

Example 5
Education levels are measured as primary, secondary, higher secondary, and
tertiary.

In this example primary, secondary, higher secondary, and tertiary are cate-
gories. But there is a meaningful ordering also. So the values would have ordering
property. But we cannot say what is the distance between primary and secondary,
and between secondary and higher secondary, and so forth. This means that there is
no distance property.

Interval level is the third in the level of measurement. In addition to ordering, the
interval level measurement has the property that the distances between the cate-
gories are defined in terms of fixed and equal units. It is important to note that in the
interval level measurement we study the difference between things and not their
proportionate magnitude. The interval level measurement has ordering and distance
properties but the inherently determined zero point is not available.
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It would be noted that in social science, a true interval level measurement is
difficult to be found. If the distances between categories can be measured, a zero
point can also be established. Another point is to be kept in mind. Statistics
developed for one level of measurement can always be used with higher level
variables, but not with variables measured at a lower level. An appropriate example
in this case is the median. The median assumes an ordinal level of measurement.
But it can be used with interval level or ratio level scales also. However, it cannot
be used with variables measured at nominal level. Metric data fall under this level
of measurement.

Example 6
Readings in a thermometer. The difference between 400 and 41 °F is the same as
the difference between 80 and 81 °F. But 80 °F does not mean the double of 40 °F.
The ratio level measurement has all the properties of an interval level mea-
surement. It has an additional property, i.e., well-defined zero point. The zero point
is inherently defined by the measurement scheme. Consequently, the distance
comparisons as well as ratio comparisons can be made. Any mathematical
manipulation appropriate for real numbers can be applied in ratio-level measure-
ments. Also, all statistics requiring variables measured at interval level are appro-
priate for use with variables at ratio level. Metric data fall under this level of
measurement.

Example 7
Height of student—155, 160 cm; income Baht 4000, 20,000 per month. In all cases
measurements start from zero.

In this example, the distance between 155 and 160 cm, and between Baht 4000
and Baht 20,000 is well defined. In each case zero point is specified. It can precisely
be said that the income of Baht 20,000 is exactly five times the income of Baht
4000. This type of comparison cannot be made for temperature measured in
Fahrenheit.

There are other typologies for measurements which we come across quite fre-
quently. The following are important.

— Quantitative—a fixed unit of measurement is defined (interval and ratio levels).
— Qualitative—a fixed unit of measurement is not defined (nominal and ordinal
levels).

1.6 Variable

The term “variable” is used to mean something that varies. But this definition is an
oversimplification. The variable itself does not vary. Rather its values vary. In other
words, a variable may have some values and at a certain point of time or at a
certain situation it may assume a specific value. For example, “age” is a variable. It
can assume any value. But the age of a particular person at a certain point of time is
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a fixed value. After some time this value is changed. Another example of a variable
is the strength of bricks. A particular brick may have, for example, strength of
200 psi, another brick may have strength of 250 psi, and so on.

Three types of variables can be distinguished in statistical problems. These are

— numerical variable,
— categorical variable,
— rank variable.

A numerical variable is a variable whose possible values are numbers. Again, in
numerical variables two types can be distinguished—a discrete variable and a
continuous variable. Discrete variables can assume only integer values. There is a
definite jump from one value to another. An example of a discrete variable is the
number of occupants in houses. The number of occupants can be 2, 3, 5, 7, and so
forth, but it cannot be a fractional number such as 3.52. The mean for several
houses may however, be expressed as a fractional number. A continuous variable is
one that can take any possible value within a certain range. The values are on a
continuous scale of measurement. An example of a continuous variable is the speed
of motor cars. The speed can be 90, 95 km/h or even 95.35 km/h.

Careful distinction should be made between a discrete variable and a continuous
variable. The scale of measurement of a discrete variable is discontinuous. But the
scale of measurement of a continuous variable is continuous. The scale of mea-
surement of the number of occupants is discontinuous between 2 and 3, between 3
and 4, and so on. The scale of measurement of the speed of motor cars is contin-
uous. There are all possible values between 95 and 96 km/h. It may be argued that
when the speeds are expressed as 95.32 and 95.33 km/h., there is discontinuity
between 95.32 and 95.33 because the intermediate values could be 95.321, 95.322,
95.323 ... 95.329, 95.33. The point is that while recording we record usually up to
two figures after the decimal point. This does not mean that the intermediate values
are absent. A measured variable is discrete, because we cannot be infinitely precise
in measuring the values of a variable.

A categorical variable is a variable whose values are expressed as a few cate-
gories, usually stated in words rather than in numbers. A categorical variable with
only two values is called a dichotomous variable. A categorical variable with more
than two values is called a polytomous variable. A categorical variable may come
from two sources. A variable can be naturally categorical or a numerical variable
can be converted to a categorical variable. Examples of natural categorical variables
are satisfaction (with values highly satisfied, satisfied, neutral, dissatisfied, highly
dissatisfied), response (yes, no, no answer). Examples of variables converted to
categorical variables are exam scores (0—100) converted to grades A, B, C, D; years
of education converted to primary, secondary, higher secondary, bachelor, doctoral
degrees.

Rank variables are those whose values are ranks. Rank variables can also come
from two sources—naturally rank variable and numerical variable converted to rank
variable. Examples of natural rank variables are class ranking (first, second, third,
fourth), priority (first priority, second priority, third priority). Example of a
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numerical variable converted to rank variable is achievement test scores of 15
subjects reduced to ranks from 1 to 15.

1.7 Notation

Several notations are used in statistics. Some Greek letters are universally used in
statistics. These are not explained here but will be shown in places of their
occurrences later. A complete list of symbols together with their meanings is shown
in the appendix. But one notation is considered here. This is summation notation. Its
uses are more frequent and the symbol is J (summation). As an example, if we
want sum of n observations, i.e., X; + X» + X3 + X4 + ... + X,,, We express it as » _ x;.
This means

Dox=xitn At o+
This can be generalized. If f(x;) is a function of x, then

fla) =) () 1) + -+ +f ()

Suppose the set of observations for two variables x and y are given as shown
below:

[N SR OO
—_ 0 =~

x;=34+44+14+2+5
(@) Z

— 15
S yi=24140+1-3
(b) |
S =0 +@)+ 1)+ @27+ 5
© =9+16+1+4+25

=55
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Notation 9

S -2 =22+ (1 =22+ (027 +(1 -2 +(-3-2)

@) =0+14+4+1+25
=31
Z(xiyi) =3424+4x1+1%x04+2%1+5%(-3)
© =64+4+0+2—15
=-3
Problems
1.1 Name the type of variables in the following cases:

1.2

1.3

1.4

Income of people; area of plots; fish production; quantity of water; attitude
toward a statement (agree or disagree); attitude toward a statement (strongly
agree, agree, neutral, disagree, strongly disagree); attitude (agreed, neutral, not
agreed); sex; outcome of a task (pass/fail); result of exam (pass/fail); years of
schooling; proportion; ranking in participation; attitude measured on a
ten-point scale.

Letx; =5; x,=6; x3=2; x4 = —2; x5 = —1;

Find

@ Y x; ) 22 (© {X )
2
@ L -1% ©{Sw-27};

Two variables are y; and y,. When can the following be true?

Z)’iz = {Z)’i}z

Three variables are x;, x,, and x3. Find out a simple relationship between the
three variables, given

2

S = {3

If X1 = _10, X3 = 30, find X>.

1.5 Five sets of observations for two variables x and y are given
Observation X y

1 10 15

2 12 18

3 5 7

4 20 25

5 30 40
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1.6 Four sets of observations for three variables x, y, and z are shown:

Compute

@ Sxyi (b) Zxi Xy (©) Sa3? (d) {E(xi)’i>2}

1

Basics

Observation

x y z
1 5 3 0
2 6 2 5
3 4 0 8
4 10 8 8

Compute

(@ Y xyiz

(b) Z Xi Z Yi Z Zi

1.7

© X=X m=3)2 (-2

Data of two variables x and y are given:

10

15

20

30

25

30

Express the following in notation form:

(@ 15+30+5+0

(b) 10%15420%30+25%x5+30x0

(c) 107 % 15% +207% % 307 + 257 % 52 +30? % 0%
(d) (10 420%+252+30%)(15+30+5+0)

Answers

1.2
1.3
1.4
1.5
1.6
1.7

(a) 10; (b) 70; (c) 100; (d) 55; (e) 2500

if, either y; =0 or y, =0

X1Xp + Xox3 + x3x1 = 0; 15

(a) 2101; (b) 8085; (c) 1,760,381; (d) 4,414,201
(a) 700; (b) 59; (c) 286

@ Yy 0 Yxys © >y @ (X)X )



Chapter 2
Presentation of Statistical Data

Abstract Data are collected often in raw form. These are then not useable unless
summarized. The techniques of presentation in tabular and graphical forms are
introduced. Some illustrations provided are real-world examples. Graphical pre-
sentations cover bar chart, pie chart, histogram, frequency polygon, pareto chart,
frequency curve and line diagram.

Keywords Presentation - Table presentation - Graph presentation - Types of
presentation

Data are often collected in raw form. These are then not useable unless summarized.
There are certain guidelines for data summarization such as
summarization

— should be as useful as possible,
— should represent data fairly, and
— should be easy to interpret.

After collection of data (primary or secondary), it is necessary to summarize
them suitably and present in such forms as can facilitate subsequent analysis and
interpretation. There are two major tools/techniques for presentation of data as
follows:

— Presentation in tabular form
— Presentation in graphical form.

2.1 Tabular Presentation

Data may be presented in the form of statistical tables. In one table only simple
frequencies can be shown. Also, in the same table cumulative frequencies, relative
frequencies, and cumulative relative frequencies can be shown. Relative frequen-
cies and cumulative frequencies are defined as follows:

Relative frequency: It means the ratio of the frequency in the category of concern
to the total frequency in the reference set.

© Springer Science+Business Media Singapore 2016 11
A.Q. Miah, Applied Statistics for Social and Management Sciences,
DOI 10.1007/978-981-10-0401-8_2
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actual frequency of X;

Relative fi fX = .
clative frequency o sum of all frequencies

= proportion

Relative frequency of X; (%) = proportion * 100

Cumulative frequency of X; = sum of all frequencies of all values up to and
including X;.

In the same table the simple frequencies combined with one or more but not all,
of the cumulative frequencies, relative frequencies, and cumulative relative fre-
quencies may be shown. Table 2.1 serves as an example of tabular presentation of
simple frequency distribution. In the same table all have been shown together for
illustrative purposes.

In Table 2.1 only one dimension has been shown. But intelligently more than
one dimension may also be shown in the same table. This is demonstrated in
Table 2.2.

There are advantages in such table presentation. One advantage is that more than
one parameter (here education and occupation) can be shown in the same table.
This serves as a concise presentation. Another advantage is easy comparison and
interpretation. In Table 2.2 both fathers’ and mothers’ situations against each of the
variables of the parameters can be readily compared and interpreted.

In the examples provided in Tables 2.1 and 2.2, frequencies have been shown
against each categories. The categories served as groups, which were predetermined
on the basis of certain criteria. More specifically, these are presentations of cate-
gorical data. But in practice it often becomes necessary to group the metric data to
form some groups or categories or classes. Here the point of interest is to see how
well the data can be grouped or classed. There are certain guidelines that help in
grouping the data. The guidelines are

Table 2.1 Types of organizations in which AIT alumni (1960-1987) are working

Type of organization Freq. Cumul. Relative Cumul relative
freq. freq. freq.
Govt. office at central level 16 16 13.01 13.01
Govt. office at regional 5 21 4.07 17.08
level
Public state enterprise 12 33 9.76 26.84
Private enterprise 32 65 26.02 52.86
Educational institution 31 96 25.20 78.06
Nongovt. organization 8 104 6.50 84.56
International organization 9 113 7.31 91.87
Others 10 123 8.13 100.00
Total 123 100.00
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Table 2.2 Educational and Status and levels Father Mother

occupational status of AIT

alumni (1960-1987) parents f % f %
Education
Formal education 56 10.6 115 21.8
Primary education 105 19.9 182 34.5
Secondary education 119 22.5 112 21.2
Post secondary schooling 67 12.7 43 8.1
College education 70 13.2 38 7.2
University education 108 20.5 29 5.2
NA 3 0.6 9 1.7
Total 528 100.0 528 100.0
Occupational
Farming 71 134 63 11.8
Commerce 119 22.5 97 18.4
Industry 16 3.0 9 1.7
Public service 207 39.2 45 8.5
Private service 75 14.2 36 6.8
Teaching 4 0.8 4 0.8
Multiple job 13 2.5 1 0.2
Housework 0 0 204 38.6
Other 15 2.8 9 1.7
NA 8 1.5 60 11.4
Total 528 100.0 528 100.0

Source AIT, AIT Alumni 1961-1987

— every score must fit into exactly one class,
— intervals should be nice, and
— classes should preferably be of the same width.

A frequency distribution is a more compact summary of data than the original
observations. To construct a frequency distribution, we need to divide the range of
the data into intervals known as classes. As already mentioned, the class intervals,
whenever possible, should be of equal width, to enhance the visual information in
the frequency distribution. We need to apply our judgment in selecting the number
of classes in order to give a reasonable display. The number of classes used depends
on the number of observations and the amount of dispersion in the data. Too few or
too many classes are not very informative. It has been found that the number of
classes between 5 and 20 is satisfactory in most of the cases. Also, the number of
classes should increase with the number of observations. The number of classes
may be chosen to be approximately equal to the square root of the number of
observations. Thus, no. of classes = v (approx.).

It is convenient to use a single nonoverlapping type of class for all types of data
(discrete or continuous). Look at the following example (data in Table 2.3).
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Table 2.3 Crushing strength (psi) of bricks

215 147 296 230 215 150 171 215 211 228
155 236 267 192 204 185 126 212 198 200
213 224 192 210 231 196 198 221 210 215
257 193 208 271 244 278 213 195 224 220
170 181 226 178 173 246 181 251 287 248
218 217 250 200 210 226 284 230 200 207
210 231 158 249 258 214 250 224 228 160
184 215 137 208 185 219 215 203 204 230
249 164 214 217 233 185 222 237 224 219
165 268 221 243 227 240 233 208 225 201

No. of observations 100

Approx. no. of classes V100 = 10

The highest value 296

The smallest value 126

Range 296 — 126 = 170

If the lowest and the highest values in the frequency distribution are chosen to be
120 and 300, respectively, the range becomes 180 (i.e., 300 — 120). So, nine classes
are chosen and consequently the class width is 180/9 = 20. The results of this
classification are shown in Table 2.4.

Another tabular presentation often used is cross tabulation. Cross tabulation is a
joint frequency distribution of different values of two (or more) variables. Table 2.5
is an example of cross tabulation of two variables, namely “Academic Divisions”
and “Levels of Satisfaction with Selected Aspects.” The figures in the table are
indexes of satisfaction.

Very frequently, statistical test results are also presented in the form of tabular
presentation. Table 2.6 is an example.

Table 2.4 Crushing strength  14q4 interval Frequency

(psi) of bricks (classes)
120 < x < 140 2
140 < x < 160 4
160 < x < 180 7
180 < x < 200 13
200 < x <220 32
220 < x < 240 24
240 < x < 260 11
260 < x < 280 4
280 < x < 300 3
Total 100
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Table 2.5 AIT alumni’s satisfaction with selected aspects of thesis research conducted at AIT

Academic Level of satisfaction with selected aspects
division/period Flexibility in topic Practical Support
selection applicability service
Division
AFE 0.78 0.71 0.75
CA/CS 0.58 0.64 0.63
CRD/SE 0.57 0.52 0.50
EE 0.75 0.70 0.73
ET 0.76 0.76 0.74
GTE 0.76 0.70 0.67
HSD 0.76 0.71 0.66
IEM 0.75 0.63 0.65
SEC 0.66 0.64 0.69
WRE 0.67 0.67 0.70
Period
Before 1965 0.58 0.73 0.55
1966-1970 0.58 0.56 0.60
1971-1975 0.70 0.63 0.65
1976-1980 0.72 0.67 0.67
1981-1985 0.74 0.69 0.72
1986-1997 0.72 0.71 0.70
Average 0.71 0.68 0.68

Source AIT, AIT Alumni 1961-1987

The main purpose of tabular presentation, in fact of all aspects of presentation, is
that summary or presentation should be informative and meaningful. It should
facilitate interpretation and subsequent analysis. To highlight this aspect, data in
Table 2.7 are used.

During the several years from 1790 to 1984, both the urban and rural population
of the United States maintained a steady increase. From the figures in column 4, it is
also clear that the percentage of urban population continued to increase steadily.
This indicates, together with the figures in columns 2 and 3 that the urban popu-
lation grew at a faster rate compared to the rural population.

The underlying purpose in making the analysis of the data presented in Table 2.7
is to demonstrate that every table prepared should convey some interpretation
message. Mere presentation of data in some tables is meaningless unless such
purpose is served.
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Table 2.6 Attitudes toward necessity of education for men—results of multiple regression
analysis

X B a(B) T-value C.l (%)
A 3.9745 0.0963 41.270 100.00
HH —0.0171 0.0081 - 2.104 94.00
Occupation

Agr —0.0404 0.0491 - 0.822 59.00
Trd —0.1678 0.0819 —2.046 96.00
Srv —0.0146 0.0518 - 0.282 22.00
Age years 0.0017 0.0014 1.202 77.00
Sch years 0.0089 0.0054 1.645 90.00

Test statistics

R? = 184 df: Regression = 6
F-value = 2.48 Residual = 66
Confidence level = 97.00 %

Notes

X = independent variables
a = constant term

B = coefficient

a(B) = standard error of B
C.1 = confidence level
HH = household member
Agr = agriculture

Trd = trade

Srv = service

Rs = respondent

sch = schooling

Table 2.7 Urban population growth in the United States

Year Urban population Rural population Urban as a percentage of total
(million) (million) population
1790 0.2 3.7 5
1810 0.5 6.7 7
1830 1.1 11.7 9
1850 35 19.6 15
1870 9.9 28.7 25
1890 22.1 40.8 35
1910 42.0 50.0 46
1930 69.0 53.8 56
1950 96.5 54.2 64
1970 | 149.8 539 73
1975 155.9 57.3 73
1980 | 170.5 56.1 74
1984 | 179.9 56.2 76

Source U.S. Bureau of the census. The census bureau as cities and other incorporated places,
which have 2500 or more inhabitants define “Urban areas”
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2.2 Graphical Presentation

Data presented in the form of tables give good information in concise form. Tables
provide all relevant information of the data. Apart from tabular presentation,
graphical presentation of data has also become quite popular. It gives visual
information in addition to magnitudes. Furthermore, comparisons and changes in
the data can be well visualized when presented in graphical form. A very useful part
of graphical presentation is the interpretation of the graphs. In every graph we
should try to interpret the data.

With the help of computer software packages such as Harvard Graphics, Lotus
123, Energraphics, etc., graphical presentation of data can be made in a variety of
ways. But these may broadly be categorized into the following:

— Bar chart

— Pie chart

— Histogram

— Frequency polygon
— Pareto chart

— Frequency curve
— Line diagram.

2.2.1 Bar Charts

Bar charts are used for categorical data or metric data that are transformed into
categorical data. Categories are shown on the horizontal axis. Frequency, per-
centage, or proportion is shown on the vertical axis. Bars are separated from each
other to emphasize the distinctness of the categories. The bars must be of the same
width. The length of each bar is proportional to the frequency, percentage, or
proportion in the category. Levels ought to be provided on both axes.

In one figure only one variable can be depicted. This is illustrated in Figs. 2.1
and 2.2. Two or more variables can also be depicted in the same figure for ease of
comparison. Figures 2.3 and 2.4 show presentation of two bars and Fig. 2.5 shows
triple bar presentation.

2.2.2 Pie Charts

Like bar charts, pie charts are also used for categorical data. A circle is divided into
segments, the areas of which are proportional to the values in the question. But the
areas are proportional to the angles the corresponding segments make at the center
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of the circle. Thus, segments of the circle are cut in such a way that their values are
proportional to the angles.

In one pie chart only values of one variable can be shown. However, two or
more pie charts may be constructed side by side for comparison or to study the
change over time. In Fig. 2.6 Thailand population (2009) is shown. Figure 2.7 is
another example of pie chart presentation (Table 2.8).
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Table 2.8 Newly constructed dwellings in Bangkok and adjoining provinces

Type 1987 1991

Units % Angle Units % Angle
Individual homes 34,679 65.0 234 35,604 27.6 99
Town house 16,326 30.6 110 52,116 40.4 146
Flat and condominium 1,707 3.2 12 39,861 30.9 111
Twin house 641 1.2 4 1,419 1.1 4
Total 53,353 100 360 129,000 100 360

2.2.3 Histogram

Histograms are used for metric data but converted to categories. These are some-
what similar to bar charts. However, there are some important features in his-
tograms. The blocks in histograms are placed together one after another. These are
not separated. Classes are ordered on the horizontal axis, with scores increasing
from left to right. Areas of the blocks are proportional to the frequencies. If the class
intervals are of equal width, the heights of the blocks/rectangles are proportional to
the frequencies. If the class intervals are of unequal width, the blocks/rectangles are
drawn in such a way that the areas of the blocks/rectangles are proportional to the
frequencies. However, it is easier to interpret the histograms, if the class intervals
are of equal width.
Data of Table 2.4 are used here to construct a histogram shown in Fig. 2.8.

2.2.4 Frequency Polygon

It is also a graphical presentation of frequency distribution. It is more convenient
than the histogram. The midpoints of the upper extremes of the blocks of the
histogram are joined by straight lines. The first and the last parts of the polygon are
to be brought to the horizontal axis at a distance equal to half of the class width.

Data of Table 2.4 are used here for construction of the frequency polygon shown
in Fig. 2.9.

2.2.5 Pareto Chart

A pareto chart is a bar chart for count (discrete) data. It displays the frequency of
each count on the vertical axis and the count type on the horizontal axis. The count
types are always arranged in descending order of frequency of occurrence. The most
frequent occurring type is on the left, followed by the next-most frequently
occurring type, and so on. Bars are placed side by side with no gap between the
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Fig. 2.3 Comparison of foreign tourist arrivals (Q1 2008 and Q1 2009). Data Source Pacific Asia
Travel Association
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Fig. 2.4 Change in vehicles sales. Data Source Toyota Motors Thailand

adjacent ones. A segmented line is also drawn to depict the relative cumulative
frequency distribution.

Pareto charts are useful, among other uses, in the analysis of defect data in
manufacturing system, construction management, and others, and is an important
part of quality improvement program since it allows the management and engineers
to focus attention on the most critical defects in a production or process.

Data in Table 2.9 are used to construct the pareto chart shown in Fig. 2.10.
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Fig. 2.5 Investment as a percentage of GDP. Data Source NESDB
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Fig. 2.8 Crushing strength of

bricks (histogram)

Fig. 2.9 Crushing strength of
bricks (frequency polygon)
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Table 2.9 Defects in building construction

Code defects Frequency Relative frequency (%) R.C.F. (%)
Plaster 60 37.5 37.5
Curing 42 26.2 63.7
Flooring 12 7.5 71.2
Door 12 7.5 78.7
Distemper 10 6.3 85.0
Power line 10 6.3 91.3
Plumbing 8 5.0 96.3
Others 6 3.7 100.0
Total 160 100.0
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Fig. 2.10 Defects in building Pareto Chart
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2.2.6 Line Diagram

Line diagrams are drawn by plotting the values of two continuous variables. These
show trends or changes in one variable resulting from changes in the other. One
important application of the line diagram is to study the changes of various eco-
nomic indicators over time. Line diagrams may be presented in the form of con-
tinuous lines or segmented lines depending on the phenomenon under study.
Figures 2.11, 2.12 and 2.13 will serve as examples.

2.2.7 Frequency Curve

Frequency curve is a smoothed frequency polygon. It is produced by plotting the
absolute frequency of an infinitesimally small range of a continuous variable. It is a
theoretical distribution.

An example of frequency polygon is given in Fig. 2.14.
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Fig. 2.12 Thailand debt as
percentage of GDP. Data
Source Ministry of Finance

Fig. 2.13 Comparison of
economic outlook. Data
Source International
Monetary Fund
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Fig. 2.14 Frequency curve
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Problems

25

2.1 The Canadian International Development Agency (CIDA) has been providing
financial support to AIT. The overall financial status as of 31 March 1991 is
shown below.

Project activity Planned expend Actual expend Actual/planned expend
Scholarship 4400 2270 51.6
Student research 387 108 27.9
Exploratory research 250 106 42.4
Demonstration project 250 58 23.2
Dissemination project 450 134 29.8
Seminar/workshop 400 75 18.8
Project support 150 59 39.3
Total 6287 2810 44.7

Note: The expenditure figures are in 1000 Canadian dollars

Construct bar charts for the expenditures as well as the proportions. Interpret the
charts in comparing the planned and actual expenditures.

2.2 The number of enrolled students (as of May 1987) in the College of Medical
Technology and Nursing, University of Tsukuba, Japan is as follows:

Level Total no. of students Female students
Undergraduate 7969 2194
Master degree program 1140 260
Doctoral degree program 1228 204
Laboratory school 4536 0
Medical technology 361 352
Total 15,234 3010

Construct pie charts to depict the distributions. Interpret the charts

2.3 The actual expenditures under CIDA activities in AIT during the four con-
secutive periods are shown:

Project Actual expenditures in 1000 CDN$
component
2nd quarter 3rd quarter 4th quarter Ist quarter
1990 1990 1990 1991
AGP 82 74 94 162
EPM/NRP 133 88 24 99
HSD 148 169 45 100
Project support 6 6 7 5
Total 369 337 170 366
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Draw segmented line diagrams for all the four project components in one chart.
Interpret the results.

2.4 A quality control manager obtained samples to check the number of defective
products. The number of defective products noted was as follows:

4 7 5 8 7 8

3 11 2 7 5 9
7 16 16 12 14 5
6 12 14 11 4 9
4 10 6 13 9 6
13 12 16 15 12 17
3 5 10 20 4 19
10 8 12 9 7 12
2 12 7 3 12 11
7 7 7 6 14 8
3 15 5 4 10
8 6 5 6 9

Group the data. Construct a histogram. Draw the frequency polygon. Comment
on the distribution.

2.5 Electrical power demand in Dhaka was noted in two sample occasions—one
in winter and the other in summer. The recorded demands were as follows:

Time (h) Winter demand (MW) Summer demand (MW)
16:00 972 1141
17:00 1203 1161
18:00 1519 1147
18:30 1551 1251
19:00 1549 1334
19:30 1475 1343
20:00 1475 1318
21:00 1317 1344
22:00 1170 1281
23:00 908 1227
24:00 841 1184

(a) Draw smooth line charts to depict the trend of power demand over time.
(b) Compare the two demands.
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Chapter 3
Descriptive Statistics

Abstract Descriptive statistics and inferential statistics are distinguished. Concepts
of descriptive statistics are presented. The techniques of using descriptive statistics
dealing with mean (arithmetic, geometric), median, and mode are explained. The
technique for calculation of the “growth rates” and future projection is shown.
Measures of dispersion of data are explained. Descriptive statistics entails central
tendency of data.

Keywords Descriptive statistics - Inferential statistics - Central tendency
Dispersion - Growth rate

Statistical applications can be viewed as having two broad main branches. These are
descriptive statistics which deals with the description of the data elements and
inferential statistics which deals with the inferences. In this chapter, we shall dis-
cuss the descriptive statistics. This again will be divided into two broad areas as
follows.
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3.1 Central Tendency

Previously, we have seen how to summarize data and present them in the form of
tables and graphs. Now we are in a position to analyze the data. In this attempt we
should study first the measures of central tendency. There are several measures to
indicate the central tendency. But the most common ones are

— mean (arithmetic; geometric)
— median and
— mode.

3.1.1 Mean

There are two types of means, namely arithmetic and geometric means. Although
the term “mean” should be used for any of the two “arithmetic mean” or “geometric
mean,” in practice it is used only for arithmetic mean (average). Thus, whenever the
term “mean” is used, it would indicate arithmetic mean (average). If it is a case of
geometric mean, it would be expressed in that way.

(A) Arithmetic mean

The mean (arithmetic) of a set of scores is the sum of the scores divided by the
number of scores. It is the most common measure of central location.
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For assorted data, if the observations are x1, x,, x3, ..., X,,, then the mean is given as

¥ 2K
N

where

X mean,

X; score of ith case,

N total number of cases.

Example 1
At the end of the third term final examination, the GPA of 10 randomly selected
students in AIT was found to be 3.83, 3.49, 4.00, 3.50, 3.33, 3.54, 3.13, 3.88, 3.50,
and 3.71. Calculate the mean GPA.

The mean GPA is given as

X =(3.83+3.49+4.00+3.50+3.33+3.5443.134+3.88+3.50+3.71)/10
=3.59

For weighted data, simple averages or mean do not reflect the true situation. It
becomes necessary to attach different weightages to different sets of observations.
The method involves weighted mean. The following example will illustrate the
concept.

Example 2

One student took three tests. First test—time taken is half an hour; earned grade is
50. Second test—time taken is one hour; earned grade is 80. Third test—time taken
is one hour and a half; earned grade is 70.

> Xiw;
dowi

Weighted mean =

where,
X; score of ith case
w; weightage of ith case.

In the above example
Xl = 50, X2 = 807 X3 =70

wi=1;, wy=2; w3=3
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Xw; + Xows + X3ws

w1+ wy +ws
50%x14+80*%2+70%3

Weighted mean =

1+2+3
50+ 160 4210
- 6

420
== =170

6

Sometimes, especially when a large number of observations are involved, each
individual observation is not readily available. Instead, frequency distribution is
given. In such a case the formula for calculating the mean is to be modified as
follows:

X
N

SN

5(:

where

X; individual score of ith case
f; frequency of ith case

N total number of cases

=2 fu.

Example 3

The high-rise buildings and built spaces (average per building) of Bangkok for
4 years from 1987 to 1990 are shown in columns 2 and 3 in Table 3.1. Calculate the
mean space per building over the 4-year period.

17,242,940
720
= 23,949 m? per building over the four - year period.

X =

Often the continuous data are transformed into groups by forming certain classes
and frequencies of respective classes are provided. We need to calculate the mean
of the whole dataset. In such a case, the procedure is similar to that applied to the

Table 3.1 High-rise

1o ) . Year Average space No. of xifi
buildings and built space in (m?) x, buildings f;
Bangkok (1987-1990) 1987 | 18.868 16 301,888
1988  |23,192 86 1,994,512
1989 | 20,346 291 5,920,686
1990 | 27,602 327 9,025,854
Total 720 17,242,940
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previous example. The difference is only that we need to find the midpoint of the
classes and assume that all the observations in the class are centered on the mid-
point or are perfectly symmetrical about the midpoint. Since this assumption will
not be 100 % valid in almost all practical cases, the mean calculated using this
method will be approximate.

The formula for mean when frequency distribution is given for grouped data is
as follows:

where

m; midpoint of ith class
f; frequency of ith class
n  total number of cases.

Example 4
In a sample survey of 640 households in a city the household income distribution
was found as shown (first and second columns) in Table 3.2.

13,075 * 1000
640
= $20,429.69 per household.

X:

Sometimes it becomes quite inconvenient to deal with large figures as in the
previous example. A short method of calculation of the mean can be applied in such
situations. The technique is demonstrated as follows:

For ungrouped data

_ Z d;
X=a+
n
Table 3.2 Household income distribution
HH income class (000 $) No of HHs f; Midpoint m; mif;
5<5x<10 100 7.5 750
10<x<15 110 12.5 1375
15<x<20 120 17.5 2100
20<x<25 130 22.5 2925
25<x<30 90 27.5 2475
30 <x<40 60 35.0 2100
40 <x< 50 30 45.0 1350
Total 640 13,075
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where
a a constant (assumed mean)
d; deviation
=X;,—a
n total no. of cases.

For grouped data

v > fidi
X=a+ Zfi

* C

where,

a a constant (assumed midpoint of the middle class or assumed mean)
d; deviation=(m; — a)lc; c is class width

m; midpoint of ith class

f; frequency of ith class.

To illustrate the use of the formula, an example hereafter is given for grouped
data.

Example 5
Scores of 50 students in a subject are transformed into several classes and the
distribution is given in Table 3.3. Calculate the mean score using the short method
of calculation.

a (assumed mean) = 65; ¢ (class width) = 10

X=a+ 2 fid *c
> i
3

=65+ 50" 10

=65+0.6

=65.6

Table 3.3 Scores distribution (146 m m — a f d; fd;

30 <x <40 35 -30 4 -3 -12
40 <x <50 45 -20 6 -2 -12
50 <x <60 55 —-10 8 -1 -8
60 <x <70 65 0 12 0 0
70 <x < 80 75 +10 9 +1 9
80 <x<90 85 +20 7 +2 14
90 < x < 100 95 +30 4 +3 12
Total 50 3
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(B) Geometric Mean

In certain circumstances geometric mean is preferred to arithmetic mean. It is
suitable for rate of change, time series data, and ratios, and also for data in geo-
metric progression. The geometric mean is defined as

Geometric mean (GM) = \”/(Xl EPD.CED.CERERD. &)

The calculations can be simplified by taking the logarithm of both sides. Thus,

logGM = log{{/(Xl * Xp % X3 *Xn)}

= log{(X; * X5 * X3 # - - - X,,)}'/"
= 1/n{logX; + log X, + log X3+ - - -log X,,}

Example 6

The yearly sales of a company for 5 years from 1986 to 1991 are given in Table 3.4.
Calculate the mean percentage change over the 5-year period.

GM = /(111 * 150 * 133 * 120 * 104)

= (27636336 % 10'0)!/°
=122.55%

Therefore, mean percentage change = 122.55 — 100 = 22.55 per year. The
calculations can be simplified by using logarithm. Thus, taking logarithm of both
sides we can get

logGM = 1/5(logl11 +log150 +1log133 + log120 + log104)
= 1/5(2.0453 +2.1761 +2.1239 + 2.0792 + 2.0171)
= 1/5(10.4415)
=2.0883
Therefore, GM = anti - log(2.0883)
= 122.55

Table 3.4 Yearly sales ($) Year | Sales (§) | Percentage compared with a year earlier

1986 4500 —

1987 5000 111
1988 7500 150
1989 10,000 133
1990 12,000 120
1991 12,500 104
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For frequency distribution the formula should be modified in the following way:

GM = (/(x{" XX )
= logGM = 1/n{fi xlogX; +f> xlog Xy +f3 * log X3 + - - -f, x log X,,}

An important application of the concept of the geometric mean is growth rate
calculation. There are certain phenomena showing continuous increase/decrease
and the increase/decrease is measured as a percentage or fraction of the previous
year’s figure. Such increase/decrease is known as growth rate. Growth rate is
always measured on a per year basis.

Suppose, population of a country during the present year = Py. Growth rate (rate
of increase of population per year) = 5 % = 0.05. Therefore, at the end of year 1
population will be

P, = base year population + increase in one year
= Py +0.05P,
= Py(1+0.05)

Population at the end of year 2 will be

P, = population of year 1 4 increase in one year
= P; +0.05P;
= Py(1+40.05) +0.05Py(1+0.05)
= Po(1+0.05)(1+0.05)
= Py(1+0.05)°

Population at the end of year 3 will be

P3 = population of year 2 + increase in one year
= P, +0.05P,

= Py(140.05)% +0.05 % Po(1 +0.05)
= Po(1+0.05)% % (140.05)
= Po(1+0.05)°

If the growth rate is r, then the population at the end of n years will be

Pn = P()(l —|—r)"

Example 7
Exports of Thailand during 1984 and 1989 were 175,237 and 515,745 million Baht.
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(a) Calculate the growth rate during the period from 1984 to 1989.

(b) Assuming the same growth rate for another 5 years, estimate the export during
1994.

Solution
Here, Py = 175,237; P,, = 515,745; n = 5 years.

P, = Po(1+7r)"
= 515,745 = 175,237(1 +r)°
Therefore, 2.9431 = (1+r)°
Therefore, (1+r) = (2.9431)'°
= 1.2410
Therefore, r = 1.2410 — 1
= 0.2410
= 24.10%
Pioos = Progo(1+71)°
= 515,745(1+0.2410)°
= 515,745(1.2410)°
= 1,518,077 million Baht

Example 8

Import of Thailand in million Bahts during 3 years is shown hereafter:
Year Import

1983 236,609

1986 241,358

1989 656,428

Calculate the average growth rate during 1983-1989.

Solution
For 1983-1986

241,358 = 236,609(1 +ry)’
= 1.02007 = (1 +r))*
= (14r) = (1.02007)"/3
= 1.0066
= r, = 0.0066
= 0.66%
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For 1986-1989

656,428 = 241,358(1 +ry)’
= 27197 = (1+n,)’
= (14r,) = (2.7197)"/3
= 1.39586

For 1983-1989

656,428 = 236,609(1 +r3)°
= 27743 = (14r3)°
= (14r3) = (2.7743)"/6
=1.1854
= r; = 0.1854
= 18.54%
r+nrn+t+rnr

3
_0.0066 +0.3959 +0.1354

3

Average growth rate =

= 0.1960
= 19.60%

3.1.2 Median

It is another measure of central tendency. When it is desirable to divide data into
two groups, each group containing exactly the same number of values, the median
is the appropriate measure. It is defined to be the middle value in a set of numbers
arranged according to magnitude. The median has the property that half the scores
are less than (or equal to) the median and half the scores are greater than (or equal
to) the median. If n is odd, the middle value is one. So position of M, is at (n + 1)/2.
If n is even, there are two mid-values. M, lies halfway in between these two values.

Examples 9
The following two sets of observations (ungrouped) show how to calculate the
median.

(D (2)
415 415
480 480

(continued)
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(continued)

@ )

525 525

608 608

719 719

1090 1090

2059 2059

4000 4000

6000

No. of cases =9 No. of cases = 8

M, =719 M, = (608 + 719)/2 = 663.5

When the observations/measurements are given in classes, we need to use the

following formula to calculate the median.

where

My = L, +Cy x

lower limit of median class
class width of the median class

total number of observations

Ly,

o

fm frequency of the median class
n

T

(n+1)/2-T

I

cumulative frequency corresponding to the class preceding the median class.

Example 10

Table 3.5 shows some hypothetical data. Find the median.

Table 3.5 Hypothetical data

Data Frequency Cumulative frequency
x < 10.0 1 1
10.0 £ x < 10.5 7 8
105 <x<11.0 13 21
11.0<x< 115 23 44
11.5<x< 120 47 91
120 <x< 125 39 130
125 <x<13.0 17 147
13.0<x< 135 4 151
135<x< 140 3 154
140<x< 145 1 155
145<x<150 1 156
15.0 and above 1 157
Total 157
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The median class is the class in which the middle value lies. In this example, the
middle observation is (n + 1)/2 = (157 + 1)/2 = 79th observation. This lies in the
class in which the cumulative frequency is 91. The class is 11.5-12.0. Therefore,

79 — 44
47

My =11.5+05«

=11.5+0.37
=11.87

3.1.3 Mode

The mode is defined to be that value which occurs most frequently. This is another
measure of central tendency.

Example 11 (ungrouped data)

X:1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,5,6,8
M, =3; (unimodal)
Y:1,1,1,2,2,2,2,2,3,3,4,4,4,4,4,5,6,6
M, =2,4; (bimodal)

In the first example, 3 occurs six times, the highest frequency. So the mode is 3.
Since only one value has the highest frequency, the set of observations is unimodal.
In the second example, both 2 and 4 occur five times—equal frequencies. So there
are two modes 2 and 4. The set of observations is bimodal.

If the datasets are available in classes, we need to modify our technique of
calculating the mode. In this case the following formula may be used.

M, =L, +C, *
a+b

where

L,, lower limit of modal class

C,, class width of the modal class

a  absolute value of the difference in frequency between the modal class and the
preceding class

b  absolute value of the difference in frequency between the modal class and the
following class.

The modal class is the class with the highest frequency. The following example
illustrates the use of the formula.



3.1 Central Tendency 41

Table 3.6 Housing expenditure of slum dwellers

Housing expenditure class ($/month) No of owners No of renters
0<x<6 3 186
6<x<12 12 220
12<x<18 20 65
18<x<24 23 31
24 <x<30 18 8
30<x<45 51 1
45 < x < 60 45 2
60 < x <90 32 0
90 < x 16 0
Total 220 513

Data source: Miah (1990)

Example 12
Calculate the modes of the owner and renter categories from the data given in
Table 3.6

The modal class for owners is 30—45 and that for renters is 6—12.

For owners:

M, =L+ Cy *

a
a+b
51 —18

—30+15
TGI8 1 (51 —45)

= 1
30+ 5*33—1—6

=30+12.69
= $42.69

For renters:

a

a+b
220 — 186

(220 — 186) + (220 — 65)
34

34 4 155

= 6+1.08

= $7.08

Mo: m“i’cm>|<

=6+6x%

=6+6%*

If there are two adjacent classes having the same highest frequency, the two
classes may be combined together to form one single class and the calculation for
mode can be done in the usual process.
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Table 3.7 Housing expenditure of slum dwellers

Housing expenditure class ($/month) No. of owners No. of renters
0<x<6 3 186
6<x<12 12 220
12<x<18 20 65
18<x<24 23 31
24 <x<30 18 8
30<x<45 50 1
45 < x < 60 50 2
60 < x <90 28 0
90 < x 16 0
Total 220 513
Example 13

To illustrate the technique, we can use the previous example with slight modifi-
cation of owners’ frequency distribution as shown in Table 3.7.

Here, two classes 30—45 and 45-60 in case of owners having the same and the
highest frequency of 50 each. So these two classes can be combined together to
form one single class 30-60 with a total frequency of 50 + 50, i.e., 100 and the
calculations can be carried out in the following manner:

M, = m""cm>’< a
a+b
100 — 18
= 30+30
30100 = 18) + (100 — 28)

= 30+30 % =0
=30+ 15.97
= $45.97

If there are two classes having the same and the highest frequency, but not
adjacent to each other, then the dataset would be bimodal. Mode for each class can
be computed independently.

3.1.4 Comparison of Mean, Median, and Mode

When the distribution is symmetrical, the mean, median, and mode coincide. It is
illustrated in Fig. 3.1.

When the distribution is skewed to the right, Mean > Median > Mode. This is
illustrated in Fig. 3.2.
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Fig. 3.1 Symmetrical
distribution

Mean, Median, Mode

Fig. 3.2 Right-skewed N
distribution

Mode Median Mean

Fig. 3.3 Left-skewed
distribution

Mean Median Mode

When the distribution is skewed to the left, Mean < Median < Mode. This is
illustrated in Fig. 3.3.

3.2 Measures of Dispersion

In the previous chapter, we have studied measures of central tendency. Although
measures of central tendency are quite useful, a measure of central tendency, by
itself, is not sufficient to provide an adequate summary of the characteristics of a
dataset. For example, consider the following three sets of observations in income:



44 3 Descriptive Statistics

x($) 14,000 17,000 20,000 23,000 26,000
y(§) 4000 12,000 20,000 28,000 36,000
z($) 2000 10,000 30,000 38,000

The mean of the income in all the three distributions is $20,000. But the dis-
tributions are not the same. Apparently, they differ. In order to study such situa-
tions, we need to study another measure called a measure of dispersion. There are
several measures to study the dispersion in the datasets. Broadly these may be
enumerated as follows:

— Range

— Interquartile range (IQR)

— Mean deviation

— Variance

— Standard deviation

— Coefficient of variation

— Stem-and-leaf diagram

— Other measures of dispersion.

3.2.1 Range

It is the simplest measure of dispersion. It is the absolute difference between the
maximum value and the minimum value of the dataset. In the income example cited
above, the range of x income set is $26,000 — 14,000 = $12,000 and range of the
z income set is $38,000 — 2000 = $36,000.

3.2.2 Interquartile Range (IQR)

IQR is the difference between the third quartile and the first quartile. A general rule
is necessary to set out for locating the first, second, and third quartiles in a set of
data. If there are n observations arranged in ascending order, then the location of the
first quartile is (n + 1)/4, the location of the second quartile, i.e., the median is
(n + 1)/2 and the location of the third quartile is 3(n + 1)/4. If (n + 1) is not an
integer multiple of 4, then the quartiles are to be found out by interpolation. Look at
the following two examples.

Examples 1
€] )
515 450
510 449

(continued)
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(continued)

1) )
500 = Qs 445
490 440
447 438
445 = 0, 432
441 428
438 420
435 = 0,

430

420

For set 1:

Range = 515 — 420 = 95
Location of Q1 = (n + 1)/4 = (11 + 1)/4 = 3;
So Q; = third observation = 435;
Location of Q> = (n + 1)/2 = (11 + 1)/2 = 6;
So Q, = sixth observation = 445
Location of Q3 =3(n + 1)/4 =3(11 + 1)/4 =9;
So Q3 = ninth observation = 500
IQR =Q3 — Q; =500 — 435 =65
For set 2:
Range = 450 — 420 =30

Locationof 0y = (n+1)/4 = (84+1)/4 =2.25
So Q; = 2nd + 0.25 from 428 to 432
=428+0.25 * (432 — 428)
=428+1.0
=429
Locationof 0 = (n+1)/2=(8+1)/2 =4.5;
So Q, = 4th + 0.50 from 4th to S5th
=438+ 0.50 * (440 — 438)
=438+1
=439
Locationof 3 =3(n+1)/4 =3(8+1)/4 = 6.75;
So Q3 = 6th +0.75 from 6th to 7th
=445+ 0.75 % (449 — 445)
=445+3
=448
Interquartile Range = Q3 — Q) =448 —429 =19
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For grouped data the same rule as given for the median may be used to calculate
0, and Q5. The position of Q; is given by (n + 1)/4 and that for Q5 by 3(n + 1)/4.

Example 2
Use the dataset shown in Table 3.8 and calculate the IQR.
157+1
Locationof Q| = 4+
= 39.5; theclassis 8.4 — 8.6
39.5 - 21
S =84+02% —
00 +0.2 3
=8.4+40.16
= 8.56
3(157+1
Locationof Q3 = %
= 118.5; theclassis 8.8 — 9.0
118.5-91
S =88+02% ——
0 Qs +0.2 % 29
=8.840.14
=8.94
The interquartile range = Q3 — Q)
= 8.94 — 8.56
=0.38
Table 3.8 Hypothetical data  pagy clags Frequency Cumulative frequency
x< 80 1 1
8.0<x<82 7 8
82<x<84 13 21
84 <x<86 23 44
8.6 <x<88 47 91
88<x<90 39 130
9.0<x<94 19 149
94 <x<10.0 5 154
10.0 and above 3 157
Total 157
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3.2.3 Mean Deviation

Mean deviation is another measure of dispersion. It is the average of the absolute
deviations from some central value, usually mean. If X;, X,, X3, ... X, are the
observations, then

X —X
Mean deviation = M
n
Example 3
Six students have scores 50, 55, 60, 70, 75, 80. Calculate the mean deviation
(Table 3.9).

X = 65; Mean deviation = 60/6 = 10. Thus, the average absolute discrepancy of
the student scores is 10.

3.2.4 Variance

Variance is the average (mean) of the squared deviations about the mean. There is
an inherent problem in ordinary deviations about the mean, i.e., sum of all the
deviations about the mean is zero. Variance avoids this problem. It is a good
measure of the spread and is the traditional method of measuring the variability of a
dataset. If X, X5, X3, ... X,, are the observations, then the variance is given as

12
Variance §? = M
n
Table 3.9 Scores of students  Grqdes (X) X, — X [X; — X]
50 -15 15
55 -10 10
60 =5
70 +5 5
75 +10 10
80 +15 15
Total 60 ignoring sign
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3.2.5 Standard Deviation

Variance is a measure of dispersion. But there remains a problem. The deviations
are squared and hence the unit of the variable is also squared. Thus, there is an
inadequacy in measuring the dispersion. In order to correct the inadequacy and to
reduce the variance into the original unit of measurement, the square root of the
variance is taken. This is called standard deviation.

Standard deviation S = 1/ (Variance)

For frequency distribution

SHX - XY

n

where X; = ith observation or midpoint of the ith class.

Standard deviation S =

Example 4

Farming costs per year of seven farmers in a Thai village are shown in Table 3.10.

Calculate the mean deviation, variance, and the standard deviation.
n=7,X=9914

Table 3.10 Farming cost Cost (B) X — X) X — X)?
10,000 +86 7396
12,500 +2586 6,687,396
9600 -314 98,596
10,000 +86 7396
8800 —1114 1,240,996
9500 —414 171,396
9000 —914 835,396
Total 5514 (ignoring sign) 9,048,572
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5514
Mean deviation = — = 787.71 Baht

9,048,572

Variance §> = =1,292,653

Standard deviation S = v(1,292,653) = 1,136.95 Baht

Example §
Nonhousing expenditures of owners and renters recorded in sample surveys in
several slums of a city are given in expenditure classes (Tables 3.11 and 3.12).
Calculate the mean, variance, and standard deviation of owner and renter
expenditures.

For owners

19,072.5
220
= $86.69

Zf;lml 2 _ (2)2

)_(:

Variance S =

2,043,393.8 5
=T (86.69)

=9288.2 —7515.2
=1773.0

Table 3.11 Nonhousing expenditures of slum dwellers in a city (owners)

Expenditure class ($/month) Midpoint m; Owners
fi fam; fim?

0<x<l15 7.5 00 0.0 0.0
15<x<30 22.5 02 45.0 1,012.50
30<x<45 37.5 24 900.0 33,750.00
45 < x < 60 52.5 37 1942.5 101,981.30
60<x<75 67.5 38 2565.0 173,137.50
75 <x<90 82.5 38 3135.0 258,637.50
90 < x < 120 105.0 45 4725.0 496,125.0
120 £ x < 150 135.0 21 2835.0 382,725.0
150 < x < 180 165.0 09 1485.0 245,025.0
180 < x <240 210.0 03 630.0 132,300.0
240 < x < 300 270.0 03 810.0 218,700.0
Total 220 19,072.50 2,043,393.8
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Table 3.12 Nonhousing expenditures of slum dwellers in a city (renters)

Expenditure class ($/month) Midpoint m; Renters
fi Sfmi fm;

0<x<l15 7.5 2 15 112.5
15<x<30 22.5 74 1665.00 37,462.50
30<x<45 37.5 192 7200.00 270,000.00
45 < x < 60 52.5 125 6562.50 344,531.30
60 <x<75 67.5 72 4860.00 328,050.00
75 <x<90 82.5 24 1980.00 163,350.00
90 < x < 120 105 13 1365.00 143,325.00
120 < x < 150 135 04 540 72,900.00
150 < x < 180 165 04 660 108,900.00
180 < x < 240 210 02 420 88,200.00
240 < x < 300 270 01 270 72,900.00
Total 513 25,537.50 1,629,731.30

Data source: Miah (1990)

Standard deviation = S

= /(1773.0)
= $42.1

For renters

25,537.5
513
= $49.78

Z{imi _ (X)Z

)_(:

Variance S =

~1,629,731.3
- 513
=3176.9 — 2478.0

= 698.9
Standard deviation = §

= 1/(698.8)

=$264

— (49.78)
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3.2.6 Coefficient of Variation

Sometimes the standard deviation which is expressed in absolute terms is inade-
quate and the relative measure of dispersion is preferred. Example of such a situ-
ation is comparison of variability of distributions with different variables.
Coefficient of variation is the standard deviation expressed as a percentage of the
arithmetic mean and is given as

100S
Co - efficient of variation = X

Example 6
Use the data in the owner—renter example and show which group (owner or renter)
has greater spread in the nonhousing expenditure.

100 % 42.1
86.69
= 48.56%
100 x 26.4
49.78
=53.03%

Thus, the spread of nonhousing expenditures of renters is greater than that of the
owners.

Owners co - efficient of variation =

Renters co - efficient of variation =

3.2.7 Stem-and-Leaf Diagram

The histogram is a useful graphic display. It can give the decision maker a good
understanding of the data and is useful in displaying the shapes, location, and
variability of the data. However, the histogram does not allow individual data points
to be identified, since all the observations falling in a cell (class) are indistin-
guishable. The stem-and-leaf diagram is a new graphical display which is more
informative than the histogram. Since stem-and-leaf display is often most useful at
the initial stage of data analysis, it is one of the exploratory data analysis methods.

To construct a stem-and-leaf diagram, each number x; is divided into two parts: a
stem, consisting of one or more of the leading digits, and a leaf, consisting of the
remaining digits.

Example 7

The data in crushing strength of bricks example are used to construct the
stem-and-leaf diagram. The observations range from 126 to 296. So the values 12,
13, 14, ... 29 are selected as stems. The resulting diagrams are shown in Figs. 3.4
and 3.5.
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Sometimes there are too many stems with very few leaves in each stem. Also,
there may be too few stems with too many leaves in a stem. This type of display
does not provide a good impression. The problem of too many stems can be
handled by choosing appropriate stems and leaves. Suppose there is an observation
375 after 296 in the example under study. In such a case it will be unwise to
continue the stems 30, 31, 32, 33, 34, 35, 36, and 37. Instead of that only one stem
can be shown after stem 29 as shown hereafter.

Stem Leaf
29 6
HI 375

The other problem of having too many leaves in a stem can be handled by
breaking the stem into 2-5 parts. Data in the crushing strength of bricks may be
used to illustrate this technique. Let us suppose that we want to divide the stem 21
into 2 parts. The first part should contain the leaves from O to 4 and the second part
of the stem should contain the leaves from 5 to 9. The resulting diagram would look
like the following:

Stem Leaf
21 0,0,0,0,1,2,3,3,4,4
21 5,555,557,7,8,9,9

If we want to divide stem 21 into 5 parts, then the resulting diagram would look
like the following:

Stem Leaf

21 0,0,0,0,1

21 2,3,3

21 4,4,5,5,5,5,5,5
21 7,7

21 8,9,9

It would be noted that a stem-and-leaf diagram is a combination of tabular and
graphical display and looks like a histogram. But in the histogram, the individual
observations are not available, whereas in the stem-and-leaf diagram the individual
observations are available.

Examples for usefulness of the stem-and-leaf diagram based on the above plot
are highlighted hereafter.
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1. Most of the observations lie between 180 and 250.

2. The central value is somewhere between 210 and 220.

3. n=100; n/2 = 50. So median is in between observations with ranks 50 and 51.
M, = (215 + 215)/2 = 215 = Q,.

4. Rank of 10th percentile observation = (0.1)(100) + 0.5 = 10.5 (midway between
10th and 11th observations); value of the 10th percentile = (170 + 171)/
2 =170.5

5. Rank of the first quartile = (0.25)(100) + 0.5 = 25.5, (approx.) (midway between
25th and 26th observations); value of the first quartile Q; = (198 + 198)/2 = 198

6. Rank of the third quartile = (0.75)(100) + 0.5 = 75.5, (approx.) (midway
between 75th and 76th observations); value of the third quartile
03 = (231 + 231)/2 = 231.

7. IQR = Q3 — Q; =231 — 198 = 33.

3.2.8 Other Measures of Dispersion

— Skewness
— Kurtosis

While mean, median, and mode provide information regarding central location
of data, variance, standard deviation, and others show the dispersion. But they do
not provide any information on the shape of the distribution of values. Skewness
and Kurtosis provide such information.

3.2.8.1 Skewness

A distribution is considered to be skewed when there are a considerably larger
number of cases on one side of the distribution as compared to the other side. The
skewness is defined as

> AXi=X)/s)’
N

Skewness =

If the result is positive, the distribution is skewed to the right. If the result is
negative, the distribution is skewed to the left.

3.2.8.2 Kurtosis

Kurtosis shows the flatness or peakedness of the distribution. A flat distribution
with short broad tails is called platykurtic. A very peaked distribution with long thin
tails is called leptokurtic. The kurtosis is defined as
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A =X/
N

Kurtosis =

A positive value indicates leptokurtosis (more peaked in the middle than the
normal distribution), and a negative value indicates platykurtosis.

Problems on Central Tendency

3.1.1 Use the data shown in Table 2.4 and calculate the mean, median, and mode.
3.1.2 Use the data shown in Table 3.7 and calculate the mean and median housing
expenditure of owners and renters.

3.1.3 Use the data presented in Table 3.5 and calculate the mean.

3.1.4 Scores of students in the written examination of statistics course are shown in
table.

78.50 59.75 50.00 57.00 75.50
49.50 55.00 58.50 71.50 53.00
68.00 62.50 57.00 56.50 78.00
71.00 50.75 34.75 81.50 23.50
64.50 64.75 78.50 57.00 81.00
62.75 23.50 52.50 81.75 82.00
76.75 57.50 82.00 84.00 52.75
23.00 58.75 74.50 68.25 54.00
58.50 44.50 38.00 56.00 55.00
53.00 35.00 73.00 71.00 83.00

Calculate the mean, median, and mode of the scores based on individual scores
and classes.

3.1.5 As per the report of the Bank of Thailand (vol. 29, No. 4, December 1989),
Thailand’s national assets continued to rise. Figures for 1982 and 1987 are 23,891
and 36,203 million USS$, respectively.

(a) Calculate the growth rate.

(b) If the same growth rate continues, predict the country’s assets during 1994.

(c) Assuming the same growth rate to continue, show when the country’s assets
will be double the figure of 1982.

3.1.6 United Nations reported the child population of Asia as follows:

1985 987.4 million
1990 1019.7 million
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(a) Calculate the growth rate of child population between 1985 and 1990.
(b) Assume the future growth rate to be 150 % of this growth rate. Show when the
child population of Asia will be 1159.5 million.

3.1.7 In Thailand the national government actual revenue from taxation for 4 years
are as follows:

Year 1983 1985 1987 1989
Revenue (million Baht) 129,062 144,947 185,690 302,057

(a) Calculate the average growth rate between 1983 and 1989.
(b) Estimate the revenue from taxation for 1993.

Problems on Measures on Dispersion

3.2.1 A traffic engineer measured the motor car speeds in a certain section of a
highway. The observations recorded in feet per second are as follows:

91 97 90 113 80 93 87
102 95 86 101 80 82 81
82 94 102 95 91 97 106
83 76 107 102 72 104 105
92 101 89 84 97 101 76
92 106 86 88 98 86 90
104 105 92 82 99 86 95
108 90 97 75 108 89 107
96 93 98 79 91 82 78
104 99 83 80 92 95 86

(a) Group the data in suitable classes.
(b) Calculate the range, IQR, variance, standard deviation, and coefficient of
variation using the original observations and classes and compare the results.

3.2.2 In a final examination the scores of a sample of randomly selected students are
as follows:

94.59 93.58 90.44 54.03 97.01 74.59
92.61 90.07 90.41 92.22 83.15 63.67
74.63 80.33 84.57 90.22 92.97 81.12

(continued)
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(continued)

85.86 82.93 84.20 70.25 96.32 74.87

83.12 81.36 90.09 90.11 65.68 90.21

53.95 83.88 83.08 91.15 97.88 15.86

85.58 63.37 80.84 66.44 85.46 94.15

92.61 96.62 82.42 77.02 79.90 80.33

77.26 90.02 92.20 76.55 94.60 50.06

90.11 84.12 92.00

(a) Group the data in suitable classes and present in
table showing frequency, relative frequency,

frequency.
(b) Calculate the range and IQR.

(c) Calculate the variance, standard deviation, and coefficient of variation.

the frequency distribution
and cumulative relative

3.2.3 Students’ scores in a written examination are shown in the following

frequency distribution:

Score range Frequency Frequency cumulative
40 <x <50 3 3

50 <x <60 9 12

60 < x <70 13 25

70 <x < 80 12 37

80 <x<90 5 42

90 < x < 100 3 45

Total 45

(a) Calculate the IQR.
(b) Calculate the coefficient of variation.

3.2.4 Use the data of problem 3.2.1 for the following questions:

(a) Draw a stem-and-leaf diagram.
(b) Calculate the IQR.

(c) Calculate the percentage of observations above the 75th percentile.
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3.2.5 Using the data of problem 3.2.2 answer the following questions:

(a) Draw a stem-and-leaf diagram.
(b) Find the median score.

3.2.6 Use the data in problem 3.2.2 and

(a) Calculate the variance and standard deviation
(b) Calculate the coefficient of variation.

Answers

Sect. 3.1: Central Tendency

301 X =214.6; My = 21531: M, = 214.07
3.1.2 Owners X = $43.39; M, = $40.35
Renters X = $8.82; M, = $7.94
3.1.3 11.88
3.14 X =60.77; M, = 58.63; M, = 57.00; 71.00
3.1.5 (a) 8.67 %; (b) $64,791 million; (c) 1990
(sd = 15.84)
3.1.6 (a) 0.65 %: (b) 2010
3.1.7 (a) 15.02 %; (b) 528,667 (million Baht)

Sect. 3.2: Measures of Dispersion

32.1 (b)R=41;IQR = 15; * = 91.71; s = 9.58; CV = 10.36; X = 92.47
322 (b) R =82.02; IQR = 16.25
(c) 5% = 214.99; 5 = 14.66; CV = 17.54 %
323 (a) 18.48; CV = 18.71
32.4 (b) IQR = 0.38; (c) 24.84 %
32.5 (b) 87.65
32.6 (a) s> =200.76; s = 14.17; (b) 17.28 %

Reference

Miah, Md.A.Q., Weber, K.E.: Potential for Slum Upgrading among Owners and Renters. AIT,
Bangkok, p. 69, 72 (1990)



Chapter 4
Probability Theory

Abstract Inferential statistics involves drawing conclusion regarding population
parameters based on sample data drawn from the same population. In the process
probabilities are an inherent part. Probabilities along with their axioms are defined.
Calculation of probabilities in different situations is different and is explained with
examples.

Keywords Probability - Inferential « Axiom of probability - Examples in
probability

Up to this stage we have studied the descriptive statistics—presentation of data,
central tendency and dispersion. Now is the time to study how the statistical
inferences are to be made. This refers to drawing of conclusions about the popu-
lation, on the basis of samples drawn from the same population. Accurate con-
clusions can be made only if the whole population is studied. As such if some
conclusions are drawn based on the sample information, there is likelihood of some
degree of uncertainty. Probability deals with the nature of this uncertainty.
Probability is of fundamental importance in statistical inference. Before going into
the details of probability, a good idea of the following terminology would be
necessary.

Population: Population or universe is the aggregate of all possible values of a
variable or all possible objects whose characteristics are of interest in any particular
investigation or enquiry.

Example 1
Incomes of all citizens of a country. It is a finite population. All possible outcomes
in tossing a coin. It is an infinite population.

Sample: A sample is the part of a population about which information is gath-
ered. A sample is a relatively small group chosen so as to represent the population.
Data for the sample are collected. But the statistician is interested in the whole
population.

© Springer Science+Business Media Singapore 2016 59
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Example 2
A doctor tests a new drug on 100 patients with malaria, chosen at random. Here the
sample consists of 100 patients tested. The population is all malaria patients.

An outcome: An outcome is one particular result of an experiment.

An event: An event is a set of outcomes.

A sample space: A sample space (S) is the set of all possible outcomes of an
experiment. The outcomes are also called elements of the sample space.

Example 3

A fair 4-sided die is tossed several times. The sides are numbered E;, E,, E5 and Ej,.
Here tossing the die several times is an experiment. In any one toss any one of the 4
sides (E, E,, E5, E4) may appear. Here possible outcomes are E|, E,, E5 or E4 (any
one at time—not more than one at a time). Appearing E, or E; or E5 or E, is an
event. It is said like this “E is the event that side one will come”. The sample space
is the aggregate of all sample points.

S - (E17E27E37E4)

4.1 Probability Definition

The probability that something occurs is the proportion of times it occurs when
exactly the experiment is repeated a very large (preferably infinite) number of times
in independent trials. “Independent” here means that the outcome of one trial of the
experiment does not affect any other outcome.

Example 4
Let, x = number of times A happened in an experiment,
n = total number of cases,
f = number of cases A did not happen.
Then n = x + f and the probability of A occurring is given by

X X

P(4) :Z:x+f

4.2 Two Approaches in Calculating Probability

One is a priori probability. In this case we know all possible outcomes in a set of
circumstances. So it is possible for us to evaluate the probability of one of the
outcomes occurring. Here the key point is that the probability can be obtained in
advance, before the event takes place.
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The second approach is the empirical probability. In this case we must know
how many times the event A occurred in the past, out of a known number of
possible outcomes. Then it is assumed that the same proportion will continue to
happen into the future.

4.3 Axioms of Probability

There are three axioms of probability as stated hereunder.

1. PS)=1
2.0<PA)=<1
3. If A and B are mutually exclusive events, then

P(A or B) = P(A) + P(B)

The first axiom states that if an event is certain to occur, then its probability to
occur is 1. If the event is certain not to occur, then its probability to occur is 0. The
second axiom states that the answer to every probability problem will lie between 0
and 1, inclusive. The third axiom is self- explanatory.

If events A and B are the exhaustive events in a mutually exclusive set, then the
probability of A occurring is one minus the probability of B occurring. This may be
made clear by an example. During a period of 6 months (182 days) a train arrived
late on 16 days. So the probability of its arriving late is 16/182. The probability of
its arriving in time is 1 — 16/182 = 166/182 = 83/91.

4.4 Probability in Mutually Exclusive Events

If two events, A and B, are possible outcomes from n occurrences, but cannot take
place at one and at the same time, then the probability of A or B occurring is the
sum of the probabilities that each will occur.

P(A or B) = P(A) + P(B)
Example 5

A box contains 10 balls of which 2 are red, 3 are black and 5 are green. Therefore,
probabilities of drawing specific colored ball are

P(red) =2/10 =0.2; P(black) =3/10=0.3; P(green) 5/10 =0.5.
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So
P(red) + P(black) + P(green) = 0.2+ 0.34+0.5=1.0

In this example events are mutually exclusive.
The probability of drawing either a red or a black ball is

P(red or black) = P(red) + P(black) = 0.2 +0.3 = 0.5
The probability of drawing either a red or a green ball is

P(red or green) = P(red) + P(green) = 0.2+ 0.5 = 0.7
The probability of drawing either a red or a black or a green ball is

P(red or black or green) = P(red) + P(black) + P(green)
=02+03405=1.0

4.5 Probability in Independent Events

If two events, A and B, are independent of each other meaning that outcome of one
does not affect the outcome of the other, then the probability that both of them will
occur is the product of the probabilities that each will occur. Thus

P(A and B) = P(A) % P(B)

Example 6

A manufacturer has two machines to produce similar parts. The probability of a
defective item from either of these two machines is 1/100. The probability that an
item from machine I is defective is not affected by whether or not another item
produced in machine II is defective. So

P(A) = P(B) = 1/100.
The probability that both items (one from each machine) are defective is

P(A and B) = P(A) * P(B) = (1/100) * (1/100) = 1/10,000
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4.6 Probability in Dependent Events
(Conditional/Unconditional Probability)

If two events, A and B, are related in such a way that the probability of B taking
place depends on the probability of A having occurred, then the probability of both
A and B occurring is the product of the unconditional probability of A occurring and
the conditional probability of B occurring.

P(A and B) = P(A) = P(B|A)

P(B|A) means conditional probability of B, given A.

Example 7

A random sample is to be taken from a group of 100 houses on a new estate to
examine the standard of workmanship. One house is selected randomly and sur-
veyed. Then the second one is selected. This process is continued until the sample
size is obtained. Let the sample size be 5.

The probability of first house to be chosen is 1/100. The probability of the
second house to be chosen is 1/99, since there are only 99 un-surveyed houses left
after selecting the first house. In this way, the probabilities of selecting the third,
fourth and the fifth houses are 1/98, 1/97 and 1/96 respectively. Therefore, the
probability of any particular five houses being selected is

(1/100) * (1/99) = (1/98) % (1/97) = (1/96) = 1/9,034, 502,400

4.7 Probability in Non-mutually Exclusive Events

If two events, A and B, may occur separately or together, then the probability that
A or B will occur is the sum of the probabilities of each occurring minus the
probability of both A and B occurring.

P(A or B) = P(A) + P(B) — P(A and B)

In this case we cannot write P(A or B) = P(A) + P(B) because some elements are
common both in event A and event B.

Example 8
We need to select a playing card from a well-shuffled pack. What is the probability
of picking either a spade or a queen?

P(spade or queen) = P(spade) + P(queen) — P(queen of spade)
= 13/524+4/52 —1/52
= 16/52 = 4/13
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4.8 Probability and Number of Possible Samples

We have studied the probabilities in different situations. In many cases, before the
probability of an event can be evaluated, it is necessary to work out the total number
of events which could result from the circumstances in question. In other words, we
need to calculate the number of possible samples in different circumstances. Three
types of circumstances which are likely to come across often, will be described
hereafter.

4.8.1 Sampling with Replacement

Suppose, we have 4 different objects. We need to select a sample size of 3. How
many samples are possible?

Of the 3, the first object can be selected in 4 different ways. Since the sampling is
with replacement, the second object can also be selected in 4 different ways.
Similarly, the third object can also be selected in 4 different ways. Thus, the total
number of different possible samples will be

4x4x4=4"=64

The probability of selecting a particular sample is 1/64, when sampling is with
replacement.

In general, if there are n different objects and a sample size of r to be selected,
then the total number of possible samples is n".

4.8.2 Sampling Without Replacement (Order Important)

In this case, the arrangement is different from that stated in Sect. 4.8.1. Here, if we
select one thing, we do not put it back to the sample space, so that for the second
choice we are left with less one object.

Suppose, we have 4 letters A, B, C and D. How many different arrangements
(samples) can be made taken 2 at a time?

A: AB AC AD
B: BA BC BD
C: CA CB CD
D: DA DB DC

The first letter can be selected in 4 different ways. When the first letter is
selected, we are left with 3 letters. So the second letter can be selected in4 — 1 =3
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different ways. Therefore, the total number of different arrangements (samples) is
4 % 3 = 12. This type of arrangement is known as permutation. Remember, here the
order is important. AB is different from BA.

In general, the number of permutations (arrangements) of n items taken r at a
time is given by

7Pr=nn—1)(n—2)...(n—r+1); the product is taken over r terms

n!

(n—r)!

In the example illustrated above (letters A, B, C, D)

4 4%3x2%1

WPr = 4Py = - =12
T2 2% 1

The probability of selecting a particular arrangement (sample) is 1/12.

4.8.3 Sampling Without Replacement (Order Irrelevant)

There are certain circumstances when order does not matter, contrary to the
arrangement shown in Sect. 4.8.2. Here, we come across the concept of combi-
nation. Suppose, a quality control inspector takes a handful of components from a
bin to check the number defective. He will select his sample in one fell swoop. In
this case, there is no question of order of selection because all sample units are
taken simultaneously. This is combination.

The number of combinations (arrangements) of n items taken r at a time is given
by

n!

nCr=—
(n—r)ir!

In the example (letters A, B, C, D), how many arrangements or combinations
(samples) can be made taken 3 at a time?

4! 4 x3x2x1

lCr:C: = =
T T 4 —3)3 T 13%2+%1

The arrangements are ABC, ABD, ACD and BCD. Here ABC is not different
from ACB or BCA.
The probability of selecting a particular arrangement (sample) is 1/4.
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Problems

4.1 Interpret
(@ PS)=1
(b) 0=PA)=<1

4.2 You are interested in studying the productivity of land in a certain section of
your countryside. There are 50 plots approximately of equal sizes. You want
to take a sample of 5 plots.

(a) How many possible samples there can be?
(b) What is the probability of selecting a particular sample?

4.3 Students enrollments in 1991 in AIT are as shown in the following table.

Term Division/School Centers Total

January 805 85 890

May 851 50 901

September 869 80 949

Total 2525 215 2740
Of all the students enrolled in 1991, one is selected by random process. Find
the probability that he/she was enrolled in:

(a) Divisions/School in May term.
(b) Centers in January and Division/School in September term.

4.4 Suppose a list of eight real estate projects, each in a different location is
presented to a board of management of the company. Each member may rank
the four projects that the company may undertake. How many conceivable
different rankings of the projects may be possible?

4.5 A real estate firm is to develop two sites (A and B). From location consid-
eration, each site has equal weightage. From marketing consideration, each is
equally likely to be profitable or non-profitable. Assume that the site location
and marketing condition are independent. What is the probability that the site
A will be profitable?

4.6 The Student Union of AIT wants to choose a committee consisting of three
judges for the cultural show from among three men faculty and two female
faculty. The women students want to know the probability that no women
faculty will be chosen. What is the probability?

4.7 Ten graduates are applying for two positions—one for research supervisor

and the other for research associate. Each graduate is equally qualified for the
positions. You are one of the graduates applying for the positions. Suppose
that the choices will be made at random.



4.8 Probability and Number of Possible Samples 67

4.8

4.9

4.10

(a) How many possible choices are there for the management to select the
candidates?

(b) In how many choices which have been made in (a), you are likely to be
included?

(¢) In how many choices made in (a) you are likely to be chosen for a
research associate?

(d) What is the probability that you will be chosen for an appointment?

(e) What is the probability that you will be chosen for a research associate?

A committee consisting of four gentlemen and three ladies is to be selected
from among six gentlemen and four ladies. One gentleman out of the six and
one lady out of the four are considered aggressive.

(a) How many different combinations for the committee are possible?

(b) What is the probability that both aggressive gentleman and the lady will
be included in the committee? Assume random selection.

(c) What is the probability that the committee will contain no aggressive
member?

In a survey of economic indicators in a certain city it was revealed that 20 %
of all the working age people were engaged in service sector and 30 % were
engaged in the industry sector. It was also found that 10 % of all the working
age people were engaged in the formal sector (which includes both service
and industry sector). If a worker is chosen at random, what is the probability
that he is engaged in at least one of the service sector and industry sector?
In a countrywide survey it was found that 55 % of the farmers produce rice,
25 % of them produce jute and 15 % of them produce both the cash crops. If
a farmer is chosen at random from the countryside, what is the probability
that he produces at least one of the two cash crops?

4.11 Fifty per cent students get A grade in written exam, 50 % get A in assign-
ment and 30 % get A both in written exam and assignment. A student is
selected at random. What is the probability that he gets A grade at least in
one of the categories?

4.12 Consider that data in Problem 4.11. If 60 % of those students who get A
grade in at least one category, are chosen for a particular study, what is the
probability that a randomly selected student will be chosen for the study?

Answers

4.2 (a) 2118760; (b) 1/2118760

4.3 (a) 0.31; (b) 0.0

4.4 1680

45 0.50

4.6 0.10

4.7 (a) 90; (b) 18; (c) 9; (d) 0.2; (e) 0.1
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4.8
49
4.10
4.11
4.12

(a) 60; (b) 0.5; (c) 0.083
0.40
0.65
0.70
0.42

4 Probability Theory



Chapter 5
Probability Distributions

Abstract A random variable is introduced. More commonly used probabilities are
introduced. Discrete probability distributions introduced are binomial probability
distribution, multinomial probability distribution, hypergeometric probability dis-
tribution, and Poisson probability distribution. Continuous probability distributions
introduced are normal probability distribution, Student’s ¢ distribution,
F distribution, and Chi-square distribution. Important features are presented in a
tabular form. The technique of fitting the data of unknown distribution to known
probability distribution is introduced.

Keywords Probability distribution - Important features - Data fitting to
distributions

We have studied the probabilities associated with different outcomes. Now we
ought to learn something of the distribution of probabilities, usually called proba-
bility distribution. Associated with probability distribution is a random variable.

A random variable is a well-defined rule for making the assignment of a
numerical value to any outcome of the experiment. In other words, A variable that
has numerical values and has probabilities associated with each value is called a
random variable. A random variable is simple a numeric value that has an asso-
ciated probability distribution.

A discrete random variable is a random variable whose values have gaps
between them; not all values are possible in the range of values. A continuous
random variable is a random variable whose values include all the numbers within a
certain range (refer to discrete and continuous variables in Sect. 1.6).

The distribution of probabilities of a discrete random variable is called discrete
probability distribution. The distribution of probabilities of a continuous random
variable is called continuous probability distribution.

It is important to distinguish carefully between values of a random variable (such
as 0, 1, 2, etc.) and the probabilities of these values (such as 0.065, 0.130 etc.).
There is no restriction on the numeric values of a random variable may take, except
that a discrete variable has gaps in its range and a continuous variable does not. But
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there are definite restrictions on the probabilities of a random variable. The prob-
abilities in a probability distribution must each be nonnegative; must not exceed
1.0; and must sum, in total, to 1.0.

Basically there are two types of distributions. These are

1. Discrete Probability Distribution
The distribution of a discrete random variable is called a discrete probability
distribution. A discrete random variable is a random variable which has discrete
measurement (not continuous).

2. Continuous Probability Distribution
The distribution of a continuous random variable is called a continuous prob-
ability distribution. A continuous random variable is a random variable which
has a continuous measurement.

5.1 Discrete Probability Distribution

There are a couple of discrete probability distributions. The more commonly used
ones are

1. Binomial Probability Distribution

2. Multinomial Probability Distribution

3. Hypergeometric Probability Distribution
4. Poisson Probability Distribution.

5.1.1 The Binomial Distribution

A random experiment is carried out. It has two possible outcomes—*“success”
(yes) and “failure” (no). Outcomes are exclusive and exhaustive. P is the proba-
bility of success (yes) in a single trial. Total number of trials is n. The distribution of
number of success x is called the binomial distribution and the experiment is called
the binomial experiment. Its probability function is

P(x) = ,C.P(1-P)""
n!

B (n —x)x! Pr(=p)

The binomial experiment and distribution are very important in a variety of
statistical inferences. This is simply because of the fact that the proportion of
elements in a population possessing a certain characteristic of interest can be
viewed as the probability of success in a binomial experiment.
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The mean of the expected value of x (success), the binomial random variable is
given by

n=E(x)
=n.p

The variance of the binomial random variable is

Example 1
A student appeared in the examination of five papers. He/she believes that his/her
probability of getting A in each of the papers is 0.40. The distribution of number
papers getting A is binomial with n = 5 and p = 0.40.

The probabilities of getting A in different papers are as follows:

5!

P(0 subject) = P(0) = 3101

(0.40)°(0.60)°

= (0.60)°
=0.078

5!
4111
= 5(0.40)' (0.60)*
=0.259

P(1 subject) = P(1) = (0.40)'(0.60)*

P(2 subjects) = P(2) = (0 40)*(0.60)°

30
= 10(0.40)?(0.60)°
—0.346

P(3 subjects) = P(3) = (0 40)*(0.60)>

2031
= 10(0.40)° (0.60)°
=0.230

P(4 subjects) = P(4) = (0 40)*(0.60)"

1141
= 5(0.40)*(0.60)"
=0.077

5!
0'5!
= (0.40)°(0.60)°
=0.010

P(5 subjects) = P(5) = (0.40)°(0.60)"
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Probability of getting A in no more than two subjects

=p(0)+p(1) +p(2)
= 0.078 +0.259 + 0.346
—0.683

Example 2

Suppose that the number of students favoring a change in curricula in AIT follows a
binomial distribution. Previous reports show that 80 % of the students favored the
change. If 200 students are selected at random, find

(a) the mean
(b) the variance
(c) the standard deviation of the students favoring the change.

Solution
In this case p = 0.80 and n = 200

Mean = E(x)
=nx*p
= 200 * (0.80)
=160
Variance =n*p * q
=n#*px*(l-p)
=200 * (0.80) * (1—0.80)
=200 = (0.80) * (0.20)
=32
Standard Deviation = /32
= 5.65

5.1.2 Multinomial Probability Distribution

The multinomial distribution is a generalization of the binomial distribution. In the
binomial distribution, we have two possible outcomes each outcome having a
certain probability. In the multinomial distribution, we consider more than two
outcomes and each outcome is associated with a certain probability. Each outcome
is a discrete value. Thus, the multinomial probability distribution is a discrete
probability distribution.
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Let,

n = number of trials

k = total number of possible outcomes

n; = number of occurrences of outcome 1
n, = number of occurrences of outcome 2

n; = number of occurrences of outcome k
p1 = probability associated with outcome 1
p> = probability associated with outcome 2

Di = probability associated with outcome k

Then

nm+n+---+n=n
p1+p2+ - +pe=1.00

The probability function is given by

N!

P(nl,nz,...,nk): )*(prf]*pgz*-
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Example 3

s

..pk

)

73

Labor force distribution in Thailand during 2009 shows the following composition:

Agriculture 42.6 %
Service 372 %
Industry 20.2 %
Total 100.00

If a sample of 12 is taken at random, find the probability that

1. The sample will contain 6 persons from agriculture sector, 4 persons from the

service sector, and 2 persons from industry sector.

2. The sample will contain 8 persons from the agriculture sector and 4 persons

from the industry sector.

Solution
Let us denote

Agriculture sector = 1
Service sector = 2
Industry sector = 3
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Then

ny = 6;ny = 4;n3 = 2 for question (1) above.
n=n+n+n=6+4+2=12.

ny = 8;n, = 0;n3 = 4 for question (2) above.
n=n+n+n=8+0+4=12.

p1 = 0.426;py = 0.372;p3 = 0.202.

Therefore, p = p; + p» + p3 = 0.426 + 0.372 + 0.202 = 1.00
Now,

Ut

N!
)"

3
P(ny,ny,n3) = m s pht sk pi7)

For Question (1):

12!
T 61412!
=0.0647

p % (0.426)°(0.372)*(0.202)

Question (2):

12
~ 8104/
= 0.000894

p % (0.426)%(0.372)°(0.202)*

5.1.3 Hypergeometric Distribution

The hypergeometric distribution describes the number of successes in a sequence of
n draws from a finite population without replacement. It is unlike the binomial
distribution which describes the number of successes for draws with replacement.
The hypergeometric distribution is a discrete probability distribution.

The situation in the hypergeometric distribution may look like a binomial dis-
tribution since there are success and failure. But in binomial distribution, the
probability of success or failure in each trial is the same. In hypergeometric dis-
tribution, probability of success or failure in each trial is not the same because the
sampling is done without replacement. Consequent upon the effect of sampling
without replacement, the size of the remaining population changes as we remove
each unit in each of the trials.
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If X is a random variable, its hypergeometric probability distribution is given by

mck x N—m Cnfk

The parameters are N, m, and n.
The notations used in the above formula are as follows:

P = probability of X being equal to &,

N = population size,

m = the number of items successful in the whole population,

n = sample size,

k = the number of items successful in the sample,

"Cy = combination of m things taken k at a time,

N=mc . = combination of (N — m) things taken (n — k) at a time,
NC, = combination of N things taken n at a time.

NCn = Ak

nl(N —n)!

N! is factorial N. Its value is multiplication of all integers from N to 1. For example,
SI=5%4%3%2x%x1=120.

Sum of all the values of p in a particular event is equal to one.

It may be noted that in a population of size N taking a sample of size n, number
of all possible samples is VC,. So the probability that a particular sample will be
drawn is equal to 1/VC,,.

The notations in the formula can be summarized as in shown in the following
table (Wikipedia website, 08 January 2010).

Situation Drawn Not drawn Total
Successes k m—k m
Failures n—k N—(m—k —n N-—-m
Total n N-n N

The mean of the random variable of the distribution is given by

nm

W=—

N

The variance of the random variable of the distribution is given by

2 nm(N —m)(N — n)

N2(N —1)
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Example 4

In a small farming community there are 12 farmers. Out of those, 5 have farming
education. From the community a sample of 4 farmers are drawn at random. What
is the probability that 2 farmers will have farming education?

In this example,

N=12
m=
=
k=2

We have

Putting these figures into the formula, we get as follows:

56‘2 * 76'2

p =
2,

5! 7!
_ 3 ¥ o

10
18]
210
495
=0.424
For this distribution, we can also calculate the mean and the variance of the
random variable as follows:
The mean is given by

7nm74>|<5

h= = = 1667

The variance is given by

o, nm(N—m)(N—n) 4x%5(12—-5)(12—4)
TN 122(1z-1)

= 0.707

5.1.4 Poisson Distribution

This distribution is named after French mathematician Simeon Denise Poisson
(1971-1940). It is a discrete distribution. It expresses the probability of a number of
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events occurring in a fixed period of time if these events occur with a known
average rate and independently of the time since the last event (Wikipedia website
07 January 2010). The distribution is suitable for analysis of time interval related
data. It can also be used for number of events in other specified intervals such as
distance, area, volume etc.

The probability is given by the following:

e

p(k,\) = o

where,

p = probability

k = number of occurrences

A = expected (mean) number of occurrences that occur during the given interval (a
non-negative, real and whole number, no fractional number)

e = base of natural logarithm = 2.71828.

k! = factorial k£ (multiplication of all numbers starting from 1 until k).

The following assumptions are made in a Poisson distribution:

1. The probability that an event will occur during a time interval is same for all
time intervals.

2. The number that occurs during one interval is independent of the number that
occurs during another time interval.

Example 5§

In a road intersection, the mean number of traffic light violation has been observed
to be 12 per day. What is the probability that 8§ traffic light violations will be
observed in a particular day?

Here,
Ar=12
k=238
e =2.71828.
The formulae is
Mee >
plk,) =

Therefore,

128 % 2.718282712
8!

p =
= 0.0655
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5.1.5 [Important Features

Some important features of the four discrete probability distributions discussed
above are shown in the following table. These will act as a guide for identifying the
distribution for a specific data set or an event.

Distribution Outcomes | Sampling Remark
Binomial 2 With replacement
Multinomial More Without replacement. If the Generalization of
than 2 population is large, both binomial
replacement and without distribution

replacement converge; Practically
no change in probability

Hypergeometric | More Without replacement
than 2
Poisson 1 NA Data per unit

interval (time,
distance, area,
volume)

5.2 Continuous Probability Distribution

1. Normal Probability Distribution
2. Student’s ¢ Distribution

3. F Distribution

4. Chi-Square Distribution

5.3 The Normal Distribution

The distribution of a continuous random variable is normal distribution. This is the
most widely known and used of all distributions. The importance of the normal
distribution lies in the fact that a vast number of phenomena have approximately
normal distribution. Normal distribution has a wide application in statistics.
Another importance of the normal distribution is that it has a number of mathe-
matical properties. Some of the properties of the normal distribution are outlined in
the following sections.
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5.3.1 Properties/Characteristics of Normal Distribution

Among others the following properties/characteristics need to be remembered.
The mathematical equation of the normal curve depicting the normal distribution is

flx) = Te_(lm(x_“)z/“z for —oco<x<o0
c+/(2n
L —@p -
fx) = 07(271:)6 puiting z = (x—p)/o

where,

7 = 3.1416 (a constant)

e = 2.71828 (base of natural logarithm)
| = mean of the normal distribution

o? = variance of the normal distribution
z = standard variate

The distribution has a bell-shaped symmetrical distribution. The y-axis (ordinate)
shows the probability density function pdf. The x-axis can have two scales x and
z. The x and/or z values can be shown along this axis. This is depicted in Fig. 5.1.

(i) The normal distributions have the characteristic “bell” shape and are sym-
metrical and are unimodal. Many distributions beside the normal distributions
are unimodal and symmetric. But only a normal distribution has a particular
shape given by the above mathematical formula. Only distributions that satisfy
this formula, and hence have this particular shape, qualify as normal distri-
butions. Other unimodal, symmetric distributions may be approximately
normal, but they are not exactly normal unless they satisfy the mathematical
formula.

(ii) The total area under the normal curve is given by

£{x) = Pdr
— Pﬂu\t of __
0_399‘(0 inflection
“
o C
g ag
u-20 H-c B L+o p+20 X scale

-2 -1 0 1 2 Z scale

Fig. 5.1 Probability density function of normal distribution
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(iii)

(iv)
(v)

(vi)
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+ 00
/f@M:L%

Thus the total area under the normal curve is 1.00. The area represents the
probability. The probability that a score is between a and b equals the area
under the normal curve between a and b.

The curve extends to infinity in both directions. The curve gets very close to
the horizontal axis, but actually does not touch the axis. Most of the area under
the normal curve falls between —3 and +3 times the standard deviation.

For a standard normal curve, the mean is O and variance is 1.00.

The distribution is unimodal; the height decreases on either side of the peak.
The slope of the curve becomes steeper and steeper until a point maximum
steepness is reached. Thereafter, the curve becomes less and less steep. The
turning point is called the point of inflection. There are two points of inflection
on either side of the peak. Each of the two points of inflection is exactly one
standard deviation from the mean. Thus the distance between the two points of
inflection is two standard deviations.

All normal distributions are not identical. Some are broad with a wide range;
others fall with a narrow range. But all share a valuable property: with a
knowledge of the mean and the standard deviation, every characteristic can be
determined. There is another more important fact than this. Measurement of
the standard deviations from the mean establishes positions between and
beyond which known properties of the total frequencies lie.

See the following diagram showing three normal distributions with standard
deviations (spreads) of different sizes (Fig. 5.2).

5.3.2 Some Examples

(i)

z refers to the area marked shaded in the sketch.

P(z<22) ="

o high — O low

—Z [+] +Z

Fig. 5.2 Normal distribution with different spreads



5.3 The Normal Distribution 81

Total area under the normal curve is 1.00; area to the right of z = 2.2 is 0.0139
from the table.

Therefore,
P(z<2.2) =1-0.0139
= 0.9861
=98.61%
(ii) P(1.38<z<1.42)="

The probability of z lying between 1.38 and 1.42 is the area shown in the sketch.
From the table, area for z = 1.38 is 0.0838 and for z = 1.42 is 0.0778.
Therefore, the area between the two points = 0.038 — 0.0778 = 0.006.
Therefore, P(1.38 < z < 1.42) = 0.006 = 0.60 %.

-2 (4] 1.38 1.42 +2Z

p=153
(i) oX = 0.683
P(X<14) =2

In order to find out the probability of ¥ having values less than or equal to 14, we
need to convert its value to z scores as follows:

I-p 14-153

Z = =
s 0.683

-19

From the table we find that the area to the left of z = 1.9 is 0.0287.
Therefore, P(x<14) = P(z< — 1.9) = 0.0287 = 2.87 %.
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5.4 The ¢ Distribution

The “¢ distribution” is the short expression usually used for “Student’s
t Distribution”. The distribution was developed by William S. Gosset. He did not
use his own name, but the pen name of student and hence the name “Student’s
t Distribution”.

The Z transformation statistic used in case of normal distribution is applicable
when the following are true:

(i) When the population variance o° is known, irrespective of the size of sample.

(ii) The population variance o> is unknown, but the sample size is large (n > 30).
If n > 30, the sample estimation of the unknown population variance sﬁ is good
approximation to o°.

If none of these conditions is fulfilled, the Z transformation is not appropriate.
But if the parent population is normal or approximately normal and the sample size
is small (n < 30), we can apply another transformation, based on Student’s ¢ dis-
tribution. The transformation is

-k
s/\/n

The ¢ distribution has the following properties:

t

(i) There is not just one ¢ distribution, The ¢ distributions are many, in fact an
infinite number. Each distribution is associated with a parameter known as
degree of freedom (df). In the expression

I-q

s/Vn
the degree of freedom (df) =n — 1.

(ii)) In appearance the ¢ distribution is similar to normal distribution. It is bell
shaped and symmetric about zero (mean is zero). In general, the variance is
greater than 1.

(iii) It extends from minus infinity to plus infinity.

(iv) The curve is flatter (has more spread) than the normal curve, because of
larger standard deviation. However, the total area under the curve is 1.

t

As the sample size becomes larger, the ¢ distribution approached the standard
normal distribution. In fact, for n > 30, a ¢ distribution is approximately standard
normal. This means for n = 30, if one uses z distribution instead of ¢, the error will
be very small.

The t curve and z curve (standard normal curve) are compared in Fig. 5.3.

Some examples will help to use the ¢ distribution. The ¢ table has been given in
the appendix. The left most column shows the degree of freedom, the upper row
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Fig. 5.3 Comparison of t and / Standard normal

VA IV
curves Student t with 10 d|

Btudent t with 1L dr

shows the alpha values. The figures inside the table are areas of the shaded part,
indicating probabilities.
For 10 degrees of freedom:

P(t>1.812) = 0.05
Also,
P(t< —1.812) =0.05

(since the distribution is symmetrical)
For 25 degrees of freedom:

P(t>2.060) = 0.025
Also,
P(r< —2.060) = 0.025
For 15 degrees of freedom:

P(—1.753 <1< 2.602) = (0.50—0.05) + (0.50—0.01)
= 0.45+0.49
=0.94

Suppose, the students’ scores are normally distributed. A sample of 14 students
produced a mean of 85.78 with a standard deviation of 25.64. What proportion of
the students will have scores above 95?7

Here,
~95.00 — 85.78
25.64/\/14
922
T 6.829

=135
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Therefore, P(x = 95.00) = P(t = 1.35) = 0.10 with 13 df.
Therefore, the proportion of students who will have scores above 95 is 0.10, i.e.,
10.00 %.

5.5 The F Distribution

The F distribution was developed by a British statistician Sir Ronald A. Fisher.
Suppose, there are two populations with variances of G% and G% and two inde-
pendent random samples of sizes n; and n, are taken from the two populations
producing sample variances of s% and s%, respectively. Then

_si/ot

- 53/

has F distribution with numerator degrees of freedom n; — 1 and denominator
degrees of freedom m, — 1.

An F distribution with numerator degrees of freedom « and denominator degrees
of freedom v is denoted by F, .

The properties of F distribution are

(i) The F distribution is not just one distribution. There are an infinite number of
F distributions.
(i) Each F distribution has a pair of degrees of freedom: numerator degrees of
freedom (n; — 1) and denominator degrees of freedom (1, — 1).
(iii) An F curve starts from zero and extends to the right up to infinity, i.e., its
range is O to infinity.
(iv) The total area under the curve is 1.

The shape of the F curve is shown in Fig. 5.4.
A few examples may be used to see the F distributions.

Example 6
Use the F distribution table and find out the values of
Fo.05,10,155 F0.10,10,15 F0.05,1,45 P(F10,20 > 2.35); P(F0,10 > 4.41)

Fig. 5.4 The F distribution p(F)
curve

d.f. = 256,120

df.= B.12
df.o= 2,12

o 1 1.8 2.86 a.8%9
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Solution
Fo.05.1015 = 7.71
Fo.10,10,15 = 3.80
Foos,14 =4.24
P(Floﬁz() > 235) =0.05
P(FQ()J() > 441) =0.01
Example 7

Two population variances are 25.32 and 20.26. Samples sizes of 21 from popula-

tionl and 17 from population2 produced variances of 10.58 and 27.60, respectively.

What is the F value? What is the probability that F' will be greater than this value?
Here,

o] = 25.32; 05 = 20.26
57 = 10.58; 53 = 27.60
dfy =21—1;df, = 171

=20:=16
_si/oi
53/03
10.58,/25.32
~27.60/20.26
04178

T 1.3623
= 0.3067

So, P(F>0.16 > 0.3067) > 0.01 from table.
The tabulated values of F' distributions are upper percentage points of F. The
lower percentage points of F can be calculated from the following relationship:

Fl—a,u,v =
Fot.,um

Thus,

Foos14 = =1/7.71=0.1297

Fo.05,1.4
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5.6 The Chi-Square Distribution

The Chi-square distribution is another distribution useful in many statistical
inferences. The Chi-square distribution is not a single distribution, but a family of
distributions. For each degree of freedom, there is a member of the family.

Chi-square is a random variable and is defined to be the sum of squares of the
variables z1, 22, 23, --., Zg- It is denoted by x2, i.e., the square of the Greek letter chi.
Thus,

L =d+5+5+ -+

The Chi-square distribution is the distribution of the random variable %>. As an
illustration, take a sample of size D from a normal distribution of z scores. Then
determine

2 _ (x1 — H)2 (x2 — H)z (x3 — M)2
X o2 o2 o2 o2
G+ 5+5+ -+

The sum we are getting as above is the first score in the Chi-square distribution
for D degrees of freedom. If you repeat the process for all different samples of size
D, you will get the whole Chi-square Distribution for D degrees of freedom. There
is different distribution foe each different value of D. All Chi-square distributions
have some common properties. These are as follows:

(i) Every Chi-square distribution extends indefinitely to the right from zero.

(i) The Chi-square distribution has only one (right) tail.

(iii) The Chi-square probability density function has only one parameter, the
degree of number of freedom. The number of degrees of freedom completely
determines what the shape of f(x*) will be. When the number of degrees of
freedom is small, the shape of the density function is highly skewed to the
right. As the number of degrees of freedom increases, the curves become
more and more bell shaped and approach the normal curve in appearance.
The y* curve starts from zero and extends up to infinity to the right unlike the
normal curve which extends from —00 to +00.

An important application of Chi-square distribution lies in the relationship of the
sample and the population variances. Let us suppose that x is a variable with normal
distribution with unknown means p and unknown variance 6. Let us also suppose
that x;, x5, X3, ..., X, be a random sample of size n from the same population and let
the sample variance be s*. Then

(n—1)s?
o2
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follows a Chi-square distribution with n — 1 degrees of freedom. Thus,

v = (n *21)52
c

Using this relationship, the confidence interval for the population variance can
be constructed.
If two samples of sizes n; and n, with variances S and S3 are taken from two

populations with variances o7 and o3, respectively, then

2 _ (ny — I)S%
X1 = 6%

2 _ (ny — I)S%
X2 = G%

Dividing one by the other, we get

(m — 1)5%/(’12 - 1S3
o2 o3

 82/ctdf(n; — 1)

- S3/c3df(n, — 1)

206 =

Thus, it follows that if W and Y are two Chi-square random variables,

W/u
S

Follows F distribution with u df in the numerator and v df in the denominator
(Fig. 5.5).

The area under the curve equals one. The area also represents the probability.
A few examples will help us in the use of the Chi-square distribution.

Example 8
Find the value of X20A05ﬁ4-

Fig. 5.5 The Chi-square h(f)
distribution
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The first figure 0.05 associated with the Chi-square represents the area or the
probability in the Chi-square distribution and the second figure 4 represents the
degrees of freedom. From the table of Chi-square distribution, the value of the
required Chi-square is 9.49. If x represents a Chi-square random variable, the
present problem could be represented as

P(x > 9.49) = 0.05.

Example 9
Find the value of P(x> > 19.02) for 9 degrees of freedom.

In the Chi-square distribution table, looking along the degrees of freedom,
reaching at 9 and then moving to the right along the same row, we note the
figure 19.02. Moving upward along the same column we find that the probability is
0.025. It may be noted that the probability (or area) denoted along the top row of the
table shows the area on the right hand tail of the curve shown blank.

Example 10
A random sample of size 12 is taken from a normal population with its variance ¢*
of 5. The sample variance is S°. Find the value of x such that

(@) P(115%5 > x) = 0.05
(b) P(S?>x) =0.10

Solution

() P{“S—SZ > x} —0.05
= P{I% >} — 0.5

X = X(2)A05A,11'
= 19.68
() P(S2>x) =0.10
2 X J—
= P{US > Ul —0.10

= P{005 > 1t~ 0.10

Therefore,

Ix
Therefore, 5 o101
=17.28
~ (17.28) % (5)
So, VT 11

=7.85
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There are three requirements for the validity of Chi-square tests. The require-
ments are as follows:

(i) Random Sampling: The subjects in the sample (or samples) must be selected at
random from the population(s) of interest.
(i) Independence of Observations: Each observation must be independent of
every other observations in the study.
(iii) Large Expected Frequencies: Each expected (not observed) frequency must be
5 or more in order for the Chi-square distribution to be satisfactory approxi-
mation to the normal distribution of ngs'

5.7 Joint Probability Distribution

Joint probability distribution is the probability distribution of two or more random
variables happening together. For example, the rice production on an agricultural
land depends jointly on availability of rain and use of fertilizer. Here availability of
rain and use of fertilizer are two random variables.

5.7.1 Discrete Joint Probability Distribution

In case of discrete random variables, the joint probability mass function for two
random variables X and Y is given by

P(x,y) =p(X =x,Y =y).

This notation indicates the joint probability of X and Y when X assumes a
specific value of x and Y assumes a specific value of y. In this case, the properties of
the joint probability distribution are as follows:

For all values of x and y,

P(x,y) 20
> 2_,P(x,y) = 1; this means summation of all probabilities in a specific case is

one.

Example 11
In a study of the AIT students’ performance, one researcher obtained the following
distribution (number of students). Notice that there are two random variables GPA
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measured by grade A, B, and C, and Gender measured by gents and ladies. The
sample size was 200.

Gender GPA

A B C Total
Gents 20 60 30 110
Ladies 10 20 60 90
Total 30 80 90 200

Dividing the number of each cell, we get the probability distribution as shown in
the following table:

Gender GPA

A B C Total
Gent 0.10 0.30 0.15 0.55
Lady 0.05 0.10 0.30 0.45
Total 0.15 0.40 0.45 1.00

If we chose a student at random, what is the probability that the student will be a
lady and her GPA will be B? The answer is 0.10. If we want to state this, we may
write as follows:

P(lady, B) = 0.10.
What is the probability that the student will have GPA of A?

P(A) = 0.10+0.05 = 0.15.

5.7.2 Continuous Joint Probability Distribution

In case of continuous random variables, the joint probability density function for
two random variables X and Y may be given as follows.

If the boundary of the random variable X is specified by x; and x, and that of the
random variable Y is specified by y; and y,, then the joint probability density
function may be written as follows:

Soy(X,Y) = aspecific function of X and ¥ for x <X <x,
<Y<y
= 0, otherwise.
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And the probability may be calculated as follows:
¥ X
P(a specific function of x and y) [ [ (function(x,y)dxdy
Y1 X
Example 12
Suppose bricks manufactured for construction purpose have sizes varying from
5600 cm?® (coded as 5.6) to 7200 cm® (coded as 7.2). Let the size be represented by
the random variable X.
Let also the weight of the bricks vary from 120 kg/m?® (coded as 12) to
160 kg/m?* (coded as 16). Let the random variable of weight be represented by Y.
Again let the joint probability density function of the two random variables
(X and Y) be as follows:

(x+y)

1
X.Y) =
Py X, Y) = s

Mathematically, we can state the above problem in the following way.

foy(X,Y) =5 (x+y) for 56<x<7.2
12<y<16
= 0 otherwise.

Now let us see what is the probability that a brick collected at random will have
the dimension and weight as stated in the problem. The calculations can be carried
as follows:

16 7.2

P{%%(x—ky):/ / 66%t(x—f—y)dxdy

12 5.6

1
=——(2592 - 15. 128 — 72
66.24(59 5.68 4128 ),

by the process of double integration
= (1/66.24)(10.24 + 56)

= (1/66.24)(66.24)

=1.00

This means that the total probability within the boundary defined by the two
random variables (x and y) is always equal to one.

5.8 Data Fitting to Probability Distribution

Data obtained from natural phenomenon is analyzed using certain distributions. We
have studied several distributions (discrete and continuous). Sometimes we get a set
of data but we do not know which distribution can be used to analyze the data,
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describe the underlying characteristics and decide the action to be taken. In this
situation, it is imperative to check which distribution is the best-fitted one. Certainly
all data sets cannot be explained using the same or similar distributions. This
exercise involves the process of fitting of data to probability distribution.

An initial examination of the data should be carried out to find out some can-
didate distributions. Then we can make some detailed analysis to see which dis-
tribution is the best-fitted one. In this exercise, an idea of the characteristics and
properties of the candidate distributions is necessary. One way of the initial analysis
is the graphical presentation of the raw data sets. This may provide an idea of the
distribution to be fitted. Scatter plots and histograms are useful tools in this respect.

There are many ways how to analyze the data to see the best fitting. There are a
lot of software packages that can be used to find the best fit. However, one method
which many statisticians suggest is to use the Chi-square Goodness-of-Fit test. How
this method is used in determining the best-fit distribution for a given data set is
explained with the help of an example.

Suppose we have the data shown in Table 2.3 for crushing strength of bricks in
Chap. 2. Based on the type of data and having knowledge of the normal distri-
bution, let us assume that normal distribution is a candidate distribution. Now it is
our exercise to check whether the data set can be fitted well into normal distribu-
tion. We have to apply Chi-square Goodness-of-Fit test for the purpose.

First of all, we calculate the mean and standard deviation of the observations.
There are 100 observations. The mean is 214.26 psi and the standard deviation is
32.18 psi. We have to group the data into a few classes with certain class width.
From our knowledge of the normal distribution, we know the following:

The class width is usually one standard deviation. Starting from the mean, if we
go one standard deviation toward the higher and lower sides, we find the following
classes with class width of one standard deviation.

No. Classes Frequency (%)
1 Between —2 std. and —3 std. 2.3

2 Between —1 std. and —2 std. 13.6

3 Between mean and —1 std. 34.1

4 Between mean and +1 std. 34.1

5 Between +1 std. and +2 std. 13.6

6 Between +2 std and +3 std. 23

Total 100

In our example, the lowest observation is 126 and the highest observation is 296.
Based on the class width principle shown in the table above, the classes and
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observed frequencies are shown in the table hereafter. The frequencies shown in the
table below are the observed frequencies. These come from observed data.

No. Classes Frequency
1 Between 117.72 and 149.90 3

2 Between 149.90 and 182.08 12

3 Between 182.08 and 214.26 32

4 Between 214.26 and 246.44 38

5 Between 246.44 and 276.62 11

6 Between 276.62 and 310.80 4

Total 100

The corresponding classes in the normal distribution are shown in the following
table:
To check the Goodness-of-Fit, we have to formulate the hypotheses as follows:

Hy: Data comes from normal distribution
H,: Data does not come from normal distribution.
Let us assume the significance level = 0.05.

We now prepare the following table for the Chi-square Goodness-of-Fit test.
Note that the total frequencies in both the tables above are 100 in each case. If
different, these should be converted to percentages.

No. Classes Frequency (O1i) Frequency (Ei) (Oi — Ei)zlEi
1 Between 117.72 and 149.90 3 23 0.2130
2 Between 149.90 and 182.08 12 13.6 0.1882
3 Between 182.08 and 214.26 32 34.1 0.1293
4 Between 214.26 and 246.44 38 34.1 0.4460
5 Between 246.44 and 276.62 11 13.6 0.4971
6 Between 276.62 and 310.80 4 2.3 1.2565
Total 100 100 2.7302

Thus the calculated ¥* = 2.7302
df =c—1=6-1=5

The critical A* = 11.1 from the table for df = 5 and a = 0.05.

The calculated Chi-square value (y* = 2.7302) is less than the critical Chi-square
vale (x* = 11.1). It falls in the acceptance region.

Decision: The null hypothesis Hy, is not rejected. This means that the data comes
from normal distribution. In other words, the data set fits normal distribution.
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The example shown here demonstrates how to check the fitting of data to a
certain distribution using Chi-square Goodness-of-Fit test. In some cases, this
procedure may be applied for two or more distributions and comparing these, the
best-fitted one may be selected.

Problems

5.1 Distinguish between a variable and a random variable.

5.2 Distinguish between values and probabilities.

5.3 Assume that the number of villagers (x) opposing the construction of a dam
in a certain location follows the binomial distribution. Previous reports show
that 65 % of the villagers opposed the dam construction. A random sample of
100 villagers are taken.

(a) Find the probability that 10 of those villagers will oppose the dam
construction.

(b) Find the probability that no more than 3 villagers will oppose the dam
construction.

(c) Find the probability that 3 villagers will oppose the dam construction.

5.4 In a certain manufacturing process, the number of defective items is assumed
to follow the binomial distribution. Usually, 3 % of the items manufactured
are found defective. A shipment is made of 150 pieces.

(a) What is the probability that 3 pieces will be found defective ?

(b) What is the probability that 147 pieces in the shipment will be found
defective?

(c) What is the probability that 105 of those pieces shipped will be found
defective?

5.5 Find the mean, variance, and standard deviation of the number of villagers
opposing the dam construction as shown in the problem 5.3

5.6 Calculate the mean, variance, and standard deviation of the number of
defective items as shown in problem 5.4.

5.7 Show in the sketch P(—0.05 < z < 1.96). Interpret the meaning of this.

5.8 Find the value of the following:

(a) Find the value of P(Z,, > 1.96).

(b) Find the value of P(Z,, < 1.96).

() P(Zy» > z) = 0.025. What is the value of z?
(d) P(Zy» < z) = 0.025 What is the value of z?
(e) Find P(0.00 < z 1.47).

(f) Find P(-0.44 < 7 2.33).
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59

5.10

5.11

5.12

5.13

5.14

Assume that students’ scores are normally distributed with mean of 83.5 and
standard deviation of 7.5.

(a) Calculate P(80 < scores < 90).
(b) What is the probability of scores falling within one standard deviation
from the mean?

Household income in a city is normally distributed with mean = $8000 and
standard deviation = $ 1000. A household is drawn from the city at random.

(a) What is the probability that its income will fall between $7000 and
$10,000?

(b) What is the minimum income needed if the household intends to be
within to 5 %?

In the following problems, z is a variable that has a standard normal distri-
bution and is a variable that is normally distributed and has a mean of 100
and standard deviation of 15.

(a) What is the probability that z is greater than 1.35?

(b) What is the probability that z is between 1.73 and 2.73?

(¢) Find the interval of z scores, centered on zero, which includes 80 % of
the probability of z.

(d) What is the probability that y falls between 99 and 106?

(e) Find the interval of values of y, centered on the mean of y, which
includes 50 % of the probability of y.

(f) What is the probability that y is less than 115?

The mean income of a certain group of people is normally distributed with
mean $2500 and standard deviation $2000. One man is taken at random.

(a) What is the probability that the income of the man will be less than
$2000?

(b) What is the probability his income will be greater than $3100.

(c) What is the probability that his income will be between $2000 and
$3000?

(d) What is the proportion of the people whose income will be within
$2000 and $3000?

Students’ scores are normally distributed with mean 68.92 and standard
deviation 35.32. What should be the minimum score of a student to enable
him to be within to 5 %?

In case of a normally distributed random variable,

(a) Find the proportion of scores falling within one standard deviation
around the mean.

(b) Find the proportion of scores falling beyond one standard deviation
above the mean.
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5.15

5.16

5.17
5.18

5.19
5.20
5.21

5.22

5.23

5 Probability Distributions

(c) Find the proportion of scores falling below one standard deviation
above the mean.

(d) What is the probability of a randomly selected score to be below 1.5
times the standard deviation lower than the mean?

Suppose that the number of hours of the RCC of AIT Functions smoothly is
normally distributed.

(a) The standard deviation is 30 h. In 15 % occasion interruption takes
place in less than 50 h. What is the mean time of smooth functioning?

(b) The mean time is 75 h. In 25 % occasions, the RCC runs smoothly for
more than 80 h. What is the standard deviation in this case?

Find the values of the following:

(@) 1.0s,10
(b) t0014
(©) 1002538

f0.025.« = 1.753. What is the value of a?
Find the values of the following:

(@) P(t > 2.447) for df 6.
(b) P(t < 2.447) for df 6.

) P(t<—1.796) for df 11.

(d) P(t>—1.796) for df 11.

(f) P(—2.567 < t < 0.00) for df 17.

P(t > x) = 0.05 for 5 df What is the value of x?

P(t < x) = 0.99 for 10 df What is the value of x?

From a normal population, a random sample of size 15 is taken. The sample
mean and standard deviation are 50.25 and 22.58, respectively. The popu-
lation mean is 60.25.

(a) Find the r-value.
(b) Find P(t > x), where x is the z-value calculated in (a) above.

Find the values of the following:

(@ Fooss,1s
(b) Fo.10,10.20
©) Fooessi6
(d) Foo009.12
(©) Foos,10,15

Two normally distributed populations have variances of 102.59 and 95.23.
Two random samples of sizes 10 from the first and 20 from the second
populations, respectively, are drawn from the two populations. The sample
variances are 95.26 and 90.36, respectively.
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5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

(a) Calculate the F-value.

(b) What is the probability that F-value will be greater than this value?

(c) What is the probability that the F-value will be less than the value
calculated in (a) above?

Find the values of the following:

@ %0520
(b) X%,m 15°
(© X%.005.25-

Find the values of the following:

(@) P(Z > 15.99) for 10 df
(b) P > 25.00) for 15 df
(¢) PG > 25.00) for 10 df
(d) P > 23.50) for 16 df

Assume that X is a variable and has a Chi-square distribution with 5 df Find
the value of x such that P ()(2 > x) = 0.05.

Assume that X is a variable and has a Chi-square distribution with 6 df Find
the value of x such that P (x2 < x) = 0.90.

The variable X has a Chi-square distribution and P(X > 21.90) = 0.025. What
is the df?

The variable X has a Chi-square distribution and P(X < 17.12) = 0.75. Find
the df?

From a normal population with variance 10, a sample of 18 is selected. The
sample variance is $%. Find the value of x such that

(@) P(S* > x) = 0.025.
(@) P(S? < x)=0.025.

In the example above, ff a brick is selected at random, find the probability
that the size of the brick (X) will lie between 6 and 7 and the weight (Y) will
lie between 14 and 15.

Salaries of professionals in a government system vary depending on two
random variables. One rv is years of education (say X) starting with 4
(Bachelor) and ending with 10 (Doctoral). Another rv is experience (say Y)
varying from O to 20 years. With these specifications, the joint density
function has been estimated to be as follows:

foX,Y) =(1/242)(X+Y) for 4<X<10
0<Y <20
= 0 otherwise.
If an official is chosen at random, what is the probability that his education
level will be within 5 and 6 years, and experience will be within 10 and
15 years?
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5.33 In a locality of rice farming, the rice yield is influenced by the seasonal
rainfall and the use of fertilizer. Rainfall (say random variable X) has been
recorded to vary between 10 and 30 cm. Fertilizer use (say random variable
Y) has been between 2 kg/1600 and 5 kg/1600 m>.

The joint probability function model has been established to be
X7 =~ (4p
oY) =55 (54 7°)
Yield from a plot of land chosen at random has been noted. What is the
probability that the rice yield from this plot has experienced rainfall between
15 and 20 cm and fertilizer use between 2.5 and 3 kg?

5.34 Salary of professionals in a government system is influenced by numbers of
years of education from bachelor level (X), years of experience (Y) and
professional training (Z). Assume the probability density function as follows:

foyz(X,Y,Z) = (1/237)(X+Y+Z) for 4<X<10
5<Y<20
1<Z<4
= 0 otherwise.
If a professional is chosen at random from the system, find the probability
that his education level will be within 5-6 years, experience within 8-
10 years and professional training within 2-3 years.
Answers
53 (a) 2.16 x 107% (b) 2.69 x 107%% (c) 1(approx.)
5.4 (a) 0.169; (b) 0 (approx.); (c) O (approx.)
5.5. 65; 22.75
5.6. 4.5;4.37
5.8. (a) 0.02502; (b) 0.02502; (c) 1.96; (d) —1.96; (e) 0.42922; (f) 0.64885
5.9 (a) 0.48867; (b) 0.68268

5.10 (a) 0.81859; (b) 9645

5.11 (a) 0.08849; (b) 0.03865; (c) —1.285 < z < + 1.285; (d) 0.18343;
(e) 89.87 <y < 110.13; () 0.84134

5.12 (a) 0.40129; (b) 0.38209; (c) 0.19742; (d) 19.74 %

5.13 127

5.14 (a) 68.27 %; (b) 15.87 %; (c) 34.13 %; (d) 0.06679

5.15 (a) 81.05 h; (b) 741 h

5.16 (a) 1.812; (b) 3.747; (c) 2.306

5.17 15

5.18 (a) 0.025; (b) 0.975; (c) 0.050; (d) 0.950; (e) 0.875; (f) 0.490

5.19 2.015

5.20

2.764
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5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34

(a) —1.715; (b) 0.95 (approx.)

(a) 2.90; (b) 1.94; (c) 3.12; (d) 0.452; (e) 0.394
(a) 1.02; (b) 0.25; (c) 0.75

(a) 31.41; (b) 30.58; (c) 46.93

(a) 0.10; (b) 0.05; (c) 0.005; (d) 0.10
11.07

10.65

11

14

(a) 17.76; (b) 4.45

0.317

0.281

0.199

0.1097



Chapter 6
Statistical Inference

Abstract Parameters and statistics, estimation, estimators, and estimates are pre-
sented. Properties of estimators are explained and the central limit theorem is
introduced. Point estimation and interval estimation are explained and distinguished.
The techniques of calculating confidence intervals in various situations are shown.

Keywords Parameters - Estimators - Estimates - Point estimate - Interval
estimate « Confidence interval

Statistical inferences may broadly be classified as (i) estimation and (ii) hypothesis
testing. We shall deal with the theory of estimation first to be followed by
hypothesis testing.

6.1 Parameter and Statistics

Although data are collected from samples, our main purpose is to study the pop-
ulation. So the problem is to estimate the population characteristics based on sample
characteristics. In estimating, we shall frequently come across with such termi-
nology as “parameter” and “statistic.”

Parameter is a characteristic of population. Statistic is a characteristic of sample
data.

Statistical inferences about population characteristics are called parameters, as
already told. A parameter is a number that describes a population distribution. Thus,
population mean and standard deviation are parameters. The population mean is a
number that measures or describes the central tendency of the population distribu-
tion. The population standard deviation is number that measures or describes the
variability of the population distribution. When we say statistical inference, we mean
to infer the value of a population parameter such as a mean or a standard deviation.

How do we make the statistical inference? We make the inference based on a
number computed from the sample data. The number is called a statistic or a sample

© Springer Science+Business Media Singapore 2016 101
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statistic. A statistic is a number that describes a sample distribution. We must not be
confused with a parameter or a statistic. A parameter is related to population and a
statistic is related to a sample.

The following notations for population parameters and sample statistics should
be noted.

Population Sample

N = no. of observations n = no. of observations
X; = ith observation x; = ith observation

W = mean X = mean

o2 = variance §* = variance

o = standard deviation s = standard deviation
Parameters = p, 6%, ... elc. Statistics = X. 5°. ...

6.2 Estimation

Usually in statistical studies the population parameters are unknown. Since it is
almost impossible or just too much trouble because of time and expense, we need to
estimate the population parameters from a sample. Here also we shall come across
with the terminology “estimators” and “estimates,” The random variable used to
estimate the population parameter is called an “estimator.” The specific value of this
variable is called an “estimate” of the population parameter. The random variables X
and 5% are the estimators of the population parameters pu and o, respectively.
A specific value of X such as ¥ = 120 is an estimate of 1. A specific value of s* such
as s> = 237.1 is an estimate of ¢°.

An estimate of a population parameter may be reported in two ways. If a single
number is given as the estimate, it is called a point estimate. The word “point” is
used to indicate that a single value is being reported as the estimate. The other way
to report an estimate is to give an interval of values in which the population
parameter is claimed to fall. This estimate is called an interval estimate. An example
may be cited. The point for the average 1.Q. of college undergraduates might be
120, implying that our best estimate of the population mean is 120. We can also say
that interval estimate of the I.Q. of the undergraduates is 115-125, meaning that the
population mean is expected to fall within the range of 115-125.

6.3 Properties of Estimators

When we estimate the population parameters using sample statistics, i.e., estima-
tors, a question arises—how good are the estimators for estimating the population
parameters? In other words, what are the criteria for “good” estimators? Four
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properties that are most relevant may be identified. These are (i) unbiasedness,
(i1) efficiency, (iii) sufficiency, and (iv) consistency.

6.3.1 Unbiasedness

This property suggests that the expected value of the estimator should be very close
to the population parameter being estimated. It is preferable to have the expected
value of the estimator being exactly equal to the population parameter. This implies
that the error term be equal to zero. An estimator is said to be unbiased if the
expected value of the estimator is equal to the parameter being estimated. Thus, if
we want to estimate the population mean using sample mean, then

E(X) = p (population mean)

This is the definition of the unbiased estimator. Similarly, if s* is an unbiased
estimator of o, then

E(s*) = o?

6.3.2 Efficiency

This property suggests that an estimator should have a relatively small variance.
From a population if a sample size of n is repeated, then in each case the estimator
should have values close to each other. This means that if we use random sample
more than once in the same population, then in each case the estimator should have
values of a particular estimator close to each other. Even if we chose a random
sample of size n and find a particular value of an estimator, and if another researcher
uses a sample of the same size from the same population and finds a value of the
estimator, then these two values should be close to each other.

The most efficient estimator among a group of unbiased estimators is the one
with the smallest variance.

6.3.3 Sufficiency

This property suggests that the estimator uses all the information about the popu-
lation parameter that the sample can provide. For instance, we certainly want an
estimator to use all sample observations, as well as the information provided by
these observations. Let us take us the case of median. It uses only the rankings of



104 6 Statistical Inference

the observations and not their precise numerical values. Hence, the median is not a
sufficient estimator. A primary importance of the property of sufficiency is that it is
a necessary condition for efficiency.

6.3.4 Consistency

The distribution of an estimator normally changes as the sample size changes. Then
it is important to see what happens when the sample size tends to be infinity
(n — 00). The central limit theorem (which will be introduced hereafter) states that
in the limit n approaches a very large size, the distribution of X approaches the
normal distribution. In general, an estimator is said to be consistent, if it yields
estimates which approach the population parameter being estimated as n becomes
larger.

6.4 Central Limit Theorem

This relates to the size of the sample. When the population is not normally dis-
tributed, the sample size has an important role. When n is small, the shape of the
distribution will depend mostly on the shape of the parent population. As n
becomes large, one of the most important theorems in statistical inference says that
the shape of the sampling distribution will become more and more like a normal
distribution, no matter what the shape of the parent population is. This is called the
central limit theorem which is formally stated as follows:

The distribution of means of random samples taken from a population having
mean p and finite variance 6> approaches the normal distribution with mean p and
variance 6%/n as n goes to infinity.

The meaning of the theorem may be put in the following simple form.

The distribution of the sample mean, based on random samples of size n drawn
from a population with mean p and standard deviation o, has the following
characteristics:

(i) the mean px is equal to the population mean p;

(i) the standard deviation cXx is exactly equal to the population standard deviation
divided by the square root of the sample size, o/Vn;

(iii) the shape is approximately normal. The approximation of the shape to nor-
mality improves rapidly with increasingly sample size, so that for n > 10, the
shape can be taken to be normal. Furthermore, if the population is normally
distributed, then the distribution of the sample means is exactly normal, even
for small sample size.
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6.5 Some Examples in Estimation

We are given a population consisting of numbers 1, 2, and 3. We need to select
sample size of 2 with replacement.

Q.1: How many samples are possible?

Q.2: List the samples.

Q.3: Show that E(x) = p (mean of the sampling distribution equal to the popu-
lation mean).

Q.4: Show that E(sz) =0o? (variance of the individual samples about the means of
the sampling distribution equal to the population variance).

Q.5: Show that ox*> = o?/n (variance of the means of the sampling distribution
about the population mean equal to the population variance divided by the
sample size).

Solutions:
Q.1: Here N=3;r=2.

Therefore, no. of samples = N* = 3% = 9.
See the following table and calculations for answers to the rest questions:

p=(1+2+3)/3=2

Sample X (x; — %)% = s (x—n x—p)?
1,1 1.0 1-1.0°%+1-1.02%=00 -1.0 1.00
1,2 1.5 1-15%*+@2-152=05 -0.5 0.25
1.3 2.0 (1-207%+@3-207=20 0.0 0.00
2,1 1.5 2-15%*+(1-152=05 -0.5 0.25
2.2 2.0 2-20°%+@2-207%=00 0.0 0.00
2,3 25 2-25%+3B-252=05 0.5 0.25
3,1 2.0 (3 —207+(1-207%=20 0.0 0.00
32 25 B3-25%+@2-252%=05 0.5 0.25
33 3.0 (3-3.02+ @3 -3.0)72=00 1.0 1.00
9 18.0 6.0 3.00

Q.2: Listing of the samples is shown above.
Q3 E(x)=%¥=2
p=le2i3 -9

Therefore, E(X) = p
Q.4: Mean of s> = E(s*) =8 =12
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Population variance
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6.6 Point Estimation

6 Statistical Inference

As the terminology implies, a point estimate of a population parameter is a single
numerical value corresponding to the parameter. The population parameter is not
known. So we want to estimate it. We do this estimation with the help of sample
data. So our interest in this section is to study the point estimates of different
population parameters. The situation where often we need to estimate the popula-

tion parameters are as follows:

(i) To estimate the population mean p (single population)

In this case the sample mean Xx is considered to be the point estimate of the

population mean. In other words, p = X.
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(ii) To estimate the population variance o> (single population)

Similar to the mean, the sample variance is taken to be the point estimate of
the population variance. Symbolically, 6* = s°.

(iii) To estimate the population proportion P (single population)

The sample proportion may reasonably be taken as the point estimate of the
population proportion. Thus, if x is the number of responses of interest in a
sample of size n, then the sample proportion p = x/n and as such the point
estimate of the population proportion P = x/n.

(iv) To estimate the difference between two population means namely, p; = L.
For this purpose two independent random samples from the two populations
are necessary. If x; and X, are the sample means of the two random samples
drawn from the two populations having means p; and p,, respectively, then
the point estimate of the difference of the two population means is the dif-
ference of the two sample means. Thus, |; — W, = X; — Xz,

(v) To estimate the difference between two population proportions, P; = P,

This estimation is similar to the one described in (iv) above. The difference
between the two independent random sample (drawn from the two populations)
proportions is taken to be the point estimate of the difference of the two population
proportions. Thus, P; — P, = p; — pa.

6.7 Interval Estimation/Confidence Interval of the Mean
of a Single Population

In the previous section we have seen how the point estimation of population
parameters is made. But it should be agreed that a point estimate does not provide
enough information regarding population parameter. For example, if we want to
estimate the mean income of a certain group of people, a single value of the
population parameter may not be very meaningful. We would rather be interested in
estimating the range or interval within which the population mean is expected to lie.
Thus, the interval estimate of the form L < p < U could be more useful. Here in this
expression L and U are the two statistics showing the lower and the upper bounds of
the parameter. The two pints L and U are random variables, since they are the
functions of the same data.

The two end points L and U are set such that the probability of the population
parameter lying between the two end points is (1 — o). Thus,

PLER<U) = (1-2).

The interval L < p < U is called the 100(1 — o) % confidence interval of the
parameter p. Here the population mean has been used as an example of any pop-
ulation parameter. In specific cases, it should be replaced by the parameter of
interest. The interpretation of the confidence interval is simple. It implies “we are
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100(1 — a) % confident that the population parameter will lie between these end
points L and U.”

There can be several cases of sampling distribution of X and accordingly there
will be equal number of ways of constructing confidence interval for interval
estimation of the population mean. These are highlighted in the following
illustrations.

(i) First case: Population has normal distribution; 6> (population variance) known.

Let us suppose that x is a random variable. Its mean p is unknown, but the
variance o~ is known. Le us also assume that a random sample size of n with values
X1, X2, X3, .... X,, i taken from this population. The mean of this sample is x. The
confidence interval of the population mean can be obtained by considering sam-
pling distribution of x. If the population is normal, the sampling distribution of X is
also normal. The mean of X is w and the variance of ¥ is 6°/n. The distribution of
statistic

_iop
o/ v/

is a standard normal distribution.
Now,

P(~Zyp <Z<Zyp) =1-0

Using the substitution of Z we get,

P(—Za/2<—<z )=1-a

o/vn

On simplification, it gives

P(=Zyp % 6/\/n<X—n<Zyp*6/\/n)=1—a
This can be rearranged as

P(X = Zyp* 0/Vn<p<i+Z,nxc/yn)=1-0
Thus, the 100(1 — o) confidence interval is given by

Za/Z*G/\/ESHSJ_C+Zu/2*G/\/'_l

(i1)) Second case: Population is unknown (does not have to be normal); o’ (popu-
lation variance) known; n = 30
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In this case, use of the central limit theorem is of relevance. If the sample size is
large (n = 30) then the distribution of X may be assumed to be normal. Furthermore,
if the population variance o® is known, then the Z-transformation is also relevant
and the distribution of Z statistic can be taken to be standard normal. Therefore, the
confidence interval is given by

)_C_Zm/Z*G/\/ESHS)_C'i'Zu/Z*G/\/’;

(iii) Third case: Population is normal; o’ (population variance) unknown

(iv) In the previous two cases, the population variance o> was known and a
confidence interval of the population mean was constructed. But if the pop-
ulation variance o is not known, a difficulty arises. One possibility could be to
replace the population variance o by the sample variance s°. If the sample size
is large (n = 30), this could be acceptable. But if the sample size is small
(n < 30), this would not be acceptable. However, if the population is normal,
then another alternative is available. We can accomplish the task using the t
distribution. The statistic

s/v/n

has standard normal distribution with (n — 1) degrees of freedom. Applying
the same justification as in the case of Z distribution, we can write

t

P(_toc/Z,n—l Stgta/l,n—l) =1-a
Substituting ¢ in this expression we get
X—p
P(—typp 1< ——=<typ,1)=1—a
( o/2,n—1 = S/\/ﬁ_ o/2.n 1)

On simplification, it gives

P(—typp1 *S/Vn<X—pn<typu 1 *xs/vn)=1—ua
This can be rearranged as

P(X—typp1 % 8/Vn<PW<X+1ypu1%s/V/n)=1—a
Thus, the 100(1 — o) confidence interval is given by

X —lypp1 *S/VN<PU<X4ly, 1 % 5/V/n
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6.8 Confidence Interval of the Difference of Means of Two
Normal Populations

(i) First case: Population variance o known

Let p; and p, be the two population means and o7 and o3 be their respective
variances. If two independent random samples of sizes n; and n; are taken, whose
means are x; and X, respectively, then

(1 —%) = ( — )
(o1/m +03/m)

7 =

Here the distribution of this Z statistic is standard normal, if the two populations
are normal or if the sample sizes are large (n; = 30, n; = 30) in case the populations
are not normal. It may be noted that the mean of (x; — x;) is (i; — ) and the

standard deviation of (X; — X;) is \/(07/n1 + 03 /n2).
Now using the logic as before, we can write
P(~=Zy2n <Z<Zyp) = 1-a

Using the transformation of Z, we get

(X1 —%) — (1 — 1)
(o1/m +o3/n?)

P(~Zy < <Zyp) =1-u

This can be simplified as

p((xl —32) = Zyjy# 1/ (03 m + 03 fma)

IN

(Hi—H2)
<Zyp 4/ (0} /n1 + G%/I’lz))
=1—a
Therefore, the 100(1 — o) confidence interval is given by
P(X| — X2) — Zypp % 1/ (07 /n1 + 03 /n2)
<(—m)

<Zyp * /(0% /n1 + 03 /ny)
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(i) Second case: Population variances unknown

In the first case of this section the two populations were normal or the sample
sizes were large. Furthermore, the population variances were known. So the Z-
transformation and its distribution were used to construct the confidence interval.
But the difficulty arises if the population variances are not known or if the sample
sizes are small. In this case, we can overcome the difficulty using the ¢ distribution.

Here we make two assumptions. First, two populations are normal. Second, the
two population variances are equal. If the two population variances are equal, then
o7 = 65 = 6. This o is the common variance and is estimated from the sample

variances as the pooled estimator (sg) of the o in the following way:

o =D+ =13

P n1—|—n2—2

The standard deviation of the sampling distribution of (X —X;) is

spy/(1/n1+1/ny) and the distribution of

C ) ()
sp\/(1/ny +1/ny)

is the ¢ distribution with (n; + n,_,) degrees of freedom. Therefore, we get as before

P(_toc/2,nl+ n2-2 <t< ta/2,nl+n272) =l-a
(1 — %) = (1 — 1)
spy/(1/ny +1/ny)

= P(_lu/Z,nl-‘rnZ—Z < < +t0€/27n1+n2—2) =1-0

This can be simplified and rearranged as

P(x; —Xp) — Ty/2nl +n2—2 * Sp (1/n +1/n)
< (1 —Ky)

<X = %) = typar4m— ¥ Sp/(1/m+1/m) =1 -«

Therefore, the 100(1 — a) confidence interval is given by

(X — %) — Ta/2.m1 +n2—2 * Sp (1/n1+1/n3)
< (H—Hp)
< (%1 = X2) = taomt+m2—2 * Sp/ (1/n1 +1/n2)

If the two population variances are not assumed equal, then the t statistic should
be calculated as follows:
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(X1 =) = (1 — 1)

=
(s7/m +53/n2)

and the degrees of freedom for the ¢ statistic is to be calculated as

(s1/m1 +53/m2)

{/m)/n+1) + (3/m) 2+ 1) |

V= -2

and subsequently the 100(1 — o) confidence interval will be given by

(X1 — X2) — tyy2y * Spy/ (1/n1 +1/n3)
< (M=)
S()_Cl —)_CQ)—IQ/Q_V*SP (1/n1—|—1/n2)

6.9 Confidence Interval of the Variance of a Normal
Population

Let x be a random variable with unknown mean p and unknown variance o°.
Let also n be the sample size with values x;, x5, X3, .... X, giving sample variance s°.
We have seen the statistic

,  (n—1)s?

r = o2

has a chi-square distribution with (n — 1) degrees of freedom. The chi-square
distribution is shown in Fig. 6.1.
From the figure we can write

P(X%fot/lnfl < Xz < Xi/lnfl) =1-a
(n—1)s?

2
= P(lea/Z,nfl < )

chzx/Z,nfl) =1l-a

This by simplification and rearrangement we can write

P{w§62<w}:1_u

)
Lo/2,n—1 Xl —0/2.n—1
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Y21-a/2, -1 Y22, 01

Fig. 6.1 Distribution of chi-square distribution

Therefore, the 100(1 — a) % confidence interval of the population variance is
given by

(n—1)s?

12
E <ol< M
Xo/2.n—1

=073
X1—0/2,n—1

6.10 Confidence Interval of a Population Proportion

Let a sample size of n be taken from a large population in which x (x < n) number of
observations have the characteristic of our interest. Then the sample proportion is
p = x/n. Here p and n are the parameters of a binomial distribution. The sampling
distribution of p (sample proportion) is approximately normal with mean equaling
P (population proportion) and variance P (1 — P)/n. This is valid if P is not very
close to zero or one and if n is relatively large. Thus, the statistic

__p-F
VAP(1 = P)/n}

has standard normal distribution. From the Z distribution curve, we can write

P(—Za/z R e gz&/2> = 1-o
{P(1 —P)/n}

= P(—=Zyp + \/{P(1-P)/n} <p — P
< +Zypx V{P(1=P)/n} = 10
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This can be simplified and rearranged as

P(p — Zoja * /TP P)/n} <P <p+ Zyyo+ /IP(1-P) /)

=1-a

It may be noted here that in the lower and upper limits of the above expression
there is a term P (1 — P)/n, the standard error of p (sample proportion containing an
unknown parameter P). However, for the standard error, P can be estimated by
p. Therefore, the 100(—a) % confidence interval of the population proportion is
given by

P —Zyp ¥ \Ap(1=p)/n} <P <p+Z,p  \/{p(1-p)/n}

6.11 Confidence Interval of the Difference of Two
Population Proportions

Let,

n independent sample drawn from population 1,

X1 no. of units in n; having particular characteristic of our interest,
ny independent sample drawn from population 2,

X2 no. of units in n, having particular characteristic of our interest,

P, & P, respective populations proportions.

Now,
p1  xi/n; (sample 1 proportion),
P, x/n, (sample 2 proportion).

In this case too ny, p; and n,, p, are parameters of binomial distribution. But if
the sample sizes are large and the population proportions P, and P, are not close
one or zero, then the binomial distribution can be approximated by normal
distribution.

Thus,

_ (p1 —p2) — (P — P2)
VAPI(1 = P1)/ni + Py(1 — P2) /ny}

has approximately standard normal distribution. As reasoned before, P, and P, for
the standard errors can be estimated by p; and p,, respectively. Thus,
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(P1=P2) = Zop2 \/{Pl(l —Py) |, Pa(l - Pz)}

ni n;

P

< (P1—P)
< (p1=p2) +Zypr * \/{Pl(l —P) + P21 _Pz)}

nj n;

=1-a

After simplification and rearrangement, the 100(1 — o) % confidence interval can
be written as

ny np

(P1—p2) — Zyp * \/{Pl(l —Py) n Py(1 Pz)}

<(P1—P)

< (p1=p2) + Zya * \/{P1(1 —P) , P21 —Pz)}

ny ny

6.12 Finite Population Correction Factor

In the previous sections for variance of the sampling distribution of x we have used

) c?
oX =—
n

If the sample size is small as compared to the population size N, then this
expression holds good. But if the sample size n is not very small fraction of the
population size N, then approximate expression would be

n N-—1
= oo¥ o2 N—-n
oX= — %
n N-1

The term (N — n)/(N — 1) is called the finite population correction factor (fpc). In
case of proportions also, if the sample size is not a very small fraction of the
population size, the variance of p would be given by
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_p(l=p) N—n
var(p) = T
_ [fp(l=p) N—n
= Standard error(p)—\/{ AN T

As N becomes larger relative to n, then n/N becomes small and so fpc approa-
ches unity. If n/N < 0.05 or in other words, if the sample size is not more than 5 %
of the population size, then the fpc may be omitted.

Using the fpc, the confidence interval for population mean would be given by

N >ks N—n <<
5 — SNz n
“rEm\\w=—1f=t=

PRI ) Sl
PR\ N1

Examples

Example 1

Compressive strength of concrete is normally distributed with standard deviation of

40.35 psi. A random sample of 25 specimens showed the mean strength of

3165 psi. Construct a 95 % confidence interval of the mean strength of concrete.
Solution:

c =4035psi; x=3165psi
oa=1-0.95=0.05; o/2=0.025
Zyn = 1.96

The 95 % confidence interval is given by

X_Za/Z*G/\/ESHSX+Zu/2*G/\/E

4035 3165 + 106+ 4035
V25

= 3165—1.96 * 8.07 <p <3165+ 1.96 x 8.07
= 3165—-15.82 <pu <3165+ 15.82
= 3149.18 <pn<3180.82

= 3165—1.96 =
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At 95 % confidence level, the mean strength of concrete will lie between
3149.18 and 3180.82 psi.

Example 2
From a normally distributed population a random sample of 15 is drawn. The
sample mean and standard deviation are found to be 2500 and 145, respectively.
Construct a 95 % confidence interval of the population mean.

Solution:

%=12500; s=145n=15
o = 1-0.95 = 0.05;0/2 = 0.025
Z,y = 1.96

Here the population is normal; its variance is not given; also the sample size is
small (less than 30). So we need to use the ¢ distribution.

loj2n—1 = 1002514 = 2.145
Thus, 95 % confidence interval is given by
X =ty %8/ Vn<PW<X+1y,1 *5/\V/n
= 2500—2.145 % \1;% <p<2500 + 2.145 *

= 2500 — 80.31 <p <2500 + 80.31
= 2419.69 <11 <2580.31

145

The population mean will lie between 2419.69 and 2580.31.

Example 3
Incomes of two normally distributed populations are being studied. The variances
are o7 = $508 and o3 = $425. Two randomly selected samples of sizes n; = 40 and
n, = 60 produced mean x; = $2520 and x, = $1950, respectively. Construct a 95 %
confidence interval of the difference of the two population incomes.

Solution:

o7 = $508; o3 = $425
X1 = $2520; x, = $1950
ny = 40, ny = 60
a=1-0.95

= 0.05; a/2 =0.025
Zyj = 1.96
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Therefore, the 100(1 — o) confidence interval is given by
(X1 = X2) — Zyjp * /(07 /1 + 03 /m2)
< (1 —m)
< +Zyp (cf/nl +G%/I’l2))

508 425
2520-1 —1. — 4+ —
= (2520—1950)—1.96 x {40+60}
< — )
508 425
< 2520—1 1. —_—+ —
< +(2520—1950) + 1.96 {40+60}

570—1.96 % (4.45) < (1 —1,) < + 570 + 1.96 * (4.45)
561.28 < (4, —p,) < 578.72

At 95 % confidence the difference between the two population means will lie
between $561.28 and $578.72.

Example 4
The diameters of pipes manufactured in two machines are assumed to be normally
distributed. The engineer-in-charge of the quality control is investigating the pipe
diameters. He selected two random samples of sizes n; = 20 and n, = 22 which
produced means and standard deviations X; = 12.80 mm, s; = 0.55 mm, x; =
11.50 mm and s, = 0.48 mm, respectively. Assume that the two population vari-
ances G% and G% are equal.
Construct a 90 % confidence interval for the difference of mean diameters.
Solution:

n; = 20; n, =22

X1 = 12.80 mm; X, = 11.50 mm
s1 = 0.55 mm; s, = 0.48 mm
62 = o%;

oa=1-0.90=0.10; o/2=0.05
Here we need to use the ¢ distribution:

2 (= D)si+(np — )53

P ny+ny; — 2
(20— 1)(0.55)> + (22 — 1)(0.48)°
- 20422 -2
5754484
==
= 0.264

sp = 0.515

fojant +n2—2 = fo.0540 = 1.684
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The 90 % confidence interval is given by

(X1 — X2) = tojant +n2—2 * Sp\/ (1/n1 +1/n2)
Sy = W) S (X1 = X2) = typamt +n2—2 * spy/ (1/n1 +1/n2)
= (12.80—11.50)—1.684 % 0.515 % \/(1/20+ 1/22) < (4, — ) <
(12.80—11.50) + 1.684 % 0.515 * /(1/20 + 1/22)
= 1.30—0.268 < (1, —p,) < 1.30 + 0.268
= 1.032 < (i, —p,) < 1.568

The difference between the mean diameters of pipes produced from two
machines will lie between 1.032 and 1.568 mm.

Example 5
The GPA of students is normally distributed. A random sample of size 10 students
showed the GPA: 3.5, 3.3, 3.0, 2.8, 2.9, 3.9, 3.7, 3.8, 3.4, and 2.9.

Construct a 90 % confidence interval of o°.

Solution:

The sample mean is x = 3.32.

The sample variance is s* = 0.164.

o= 1-0.90 = 0.10;
/2 = 0.05

Xajin 1 = Xooso = 16.92
X%—Q/Z,nfl = X0495,9 =3.33

Therefore, the 90 % confidence interval of the population variance is given by

_ 2 _ 2
(n2 )s <oP< (}21 1)s
Xu/2,nfl lem/Z,nfl
9(0.164) P 9(0.164)
1692 —  — 333
= 0.087 < 6 <0.443

Example 6

A quality control manager wants to estimate the fraction of defective items in the
manufacturing process. A random sample of 6000 units contained 240 defective
units. Construct a 95 % confidence interval of the fraction defective.
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Solution:

n =6000; x =240

240
= 004

P = 6000

0 =1-095=005 o/2=0.025

Zyp = 1.96

The confidence interval is given by
P = Zyp* V{P(1-P)/n} <P <
P+ 2y x {P(1=P)/n}

:0.04_1.96*¢{w}§p§

6000

0.04(1 — 0.04)
.04 +1. —_—
oou s 16 {200}

= 0.04—0.005 <P <0.04 +0.005
= 0.035<P<0.045

The fraction of defective items in the manufacturing process will lie between
0.035 and 0.045.

Example 7

The fraction of defective items produced by two different processes is to be esti-
mated. Two random samples from the two processes were taken. In the process 1,
24 units were found defective in a sample of 1200. In the process 2, 15 units were
found defective in a sample of 1500. Construct a 90 % confidence interval on the
difference in the fraction of defective items.

np = 1200; n; = 1500;
x; = 24; X, = 15;

! 15
Pr=700 P>~ 1500
—0.02 —=0.01

o =1-0.90 =0.10; o0/2=0.05
Zyp = 1.645
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The 90 % confidence interval is given by

(P1=D2) = Zypo * \/{Pl(l —-P) N Py(1 _Pz)}

ni n;

<(P1—P2)

S(Pl—pz)—i-Za/z % \/{Pl(l —Py) n Py(1 Pz)}

ny n;

0.02(1 —0.02)  0.01(1 —0.01)
= (0.02—0.01)—1.645 x \/{ 200 T 1500

<(P1—P2)

0.02(1 —0.02)  0.01(1 —0.01)
<(0.02—-0.01 1.64
<(0.02-0.01) + 65*\/{ 500 + 500

= 0.01-0.0079 < (P;—P,) < 0.01 +0.0079
= 0.0021 < (P,—P,) <0.0179

The difference in the fraction of defective items from the two processes will lie
between 0.0021 and 0.0179.

Problems
6.1 Distinguish between

(i) Parameter and statistic
(i) Confidence level and significance level.

6.2 In the interval estimation of the population mean, state the effect of the

following:

(a) sample size on the interval
(b) sample standard deviation on the interval
(c) confidence level on the interval.

6.3 Based on a simple random sampling involving a sample size of 225, the

95 % confidence interval of the mean income of the people of a city is shown
to be

15,010.70 < p < 15,989.30:

(a) What is the sample mean?
(b) What is the sample standard deviation?

6.4 A process produces bags of refined sugar. A random sample of 25 bags had a

mean weight of 1.95 kg:

(a) If the contents of the bags are normally distributed with std. dev. of
0.21 kg., find 95 % confidence interval of the p.
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(b) The contents of the bags are normally distributed. The population std.
dev. is not known, but sample std. dev. is 0.21 kg. Find the 95 %
confidence interval of p.

(c) The distribution of the contents of bags is not known. Sample std. dev. is
0.21. Find the 95 % confidence interval of L.

A quality control manager of a ball bearing manufacturing plant wants to
estimate the mean diameter of ball bearings manufactured in the plant. He
checked 61 ball bearings at random and found to have the mean diameter of
9.4 mm with a standard deviation of 3.25 mm.

Estimate the mean diameter of all ball bearings manufactured in the plant.
You should be 95 % confident in your estimate.

A hospital wishes to estimate the average number of days required for
treatment of patients between ages of 25 and 34. A random sample of 500
hospital patients between these ages produced a mean and standard deviation
equal to 5.4 and 3.1 days, respectively.

Estimate the mean length of stay for the population of patients from which
the sample was drawn.

If the total number of patients within the same age group is 5000, estimate
the mean length of stay with 98 % confidence interval.

A sample of 16 persons is studied. Their scores have a mean of 32.84 and a
standard of 2.08.

Construct 95 and 99 % confidence intervals for the population mean and
compare the two results.

Construct a 95 % confidence interval if the sample size is 36 and the pop-
ulation size is 600.

Income is normally distributed in a population. The mean is Baht 15,000 and
the standard deviation is Baht 2200. Total population size is 25,000.

(a) Find the range of income, centered on the mean that will include 90 %
probability of income.

(b) What is the probability of income falling between Baht 11,381 and bath
18,6197

(c) How many people in the population will have income greater than Baht
18,6197

(d) How many people will have income less than Baht 11,3817

(e) How many people will have income between Baht 11,381 and Baht
18,6197

In a 95 % confidence interval estimate, the population proportion is stated to
lie between 0.352 and 0.548. What was the sample size?

Construct a 90 % confidence interval for the population mean based on
sample size of 36, if the sample mean is 950 and the population standard is
70. What happens when 95 % confidence interval is used?

In a bank, 25 loan applications were randomly selected for the purpose of
determining the average amount required for each loan. The mean loan
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amount was found to be $900 with a standard deviation of $150. Estimate the
90 % confidence interval of the mean loan amount for all the applications in
the bank. What is the point estimate for the mean loan amount for all the
applications?

To estimate the IQ of 450 students in an institution, a sample size of 25 was
chosen. The mean IQ of this sample was found to be 127 with a standard
deviation of 5.4 points. Make an interval estimation of the mean 1Q of the
450 students. Use 90 % confidence level. What is the point estimate in this
case?

The compressive strength of concrete is normally distributed. From an
experiment a civil engineer obtained a random sample of size 10 and noted
the following strength measurements (in psi):

2200, 2210, 2205, 2100, 2115, 2300, 2250, 2350, 2150, 2250

(a) Construct a 90 % confidence interval for o
(b) Construct a 95 % confidence interval for o°.

Students scores in two universities are to be studied. The scores are normally
distributed. Two independent samples produced the following results:

University Sample size Mean score Std. dev.

1

41 85 8.2

2

51 76 7.5

6.15

6.16

6.17

6.18

(a) If the two population variances are 8.5 and 7.2, respectively, construct
95 % confidence interval for the difference between the two university
mean Scores.

(b) If the population variances are not known, construct 95 % confidence
interval for the difference between the two university mean scores,
assuming the two population variances equal.

(c) Repeat the problem in (b) above, assuming the two population variances
unequal.

A random sample of size 41 from a normal population has a standard
deviation of 0.55. Construct a 95 % confidence interval for the population
variance 7.

From a normal population a sample of size 30 produced a mean of 950 and a
standard deviation of 70. Construct a 95 % confidence interval for the
population variance o°.

In a sample of 144 households 54 were found to own cars. Find a 95 %
confidence interval of the proportion of households who have cars.

The Division of Human Settlements Development wanted to see if the work
load of Statistics course is heavy. A random sample of 36 students was
selected for opinion. Out of them 10 students termed the course heavy.
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Make an estimation of the proportion of students who think that the course is
heavy. Use 97.5 % confidence level.

To estimate the proportion of unemployed in a city, a researcher selected a
random sample of 400 persons from the working class. Of them, 25 were
unemployed.

Estimate the proportion of unemployed workers.

If the size of the working class is 12,000, estimate the number of persons
unemployed.

A drug manufacturer wants to study the effect of a patent medicine. In a
random sample of 25 he finds that 15 obtained relief.

Estimate the population proportion not obtaining relief from the medicine. If
the population size is 10,000, how many people will not obtain relief from
the medicine?

To estimate the proportion of passengers who had purchased tickets for more
than $200 over a year’s time, an airline official obtained a random sample of
80. The number of those who purchased tickets for more than $200 was 45.
Make the estimation. Use 97.5 % confidence level.

A manufacturer produces spare parts in his factory. He ships the spare parts;
he prepares 10,000 pieces in each shipment. He is aware of the quality
control. During one shipment, he took a random sample of 500 parts for
inspection. He found 10 parts to be defective. The manufacturer desires to
estimate the number of defective parts with 90 % confidence level.

(a) Construct the necessary confidence interval.
(b) What is the number of defective parts in the shipment?

In a study of students’ opinion on course standard of two departments, two
random samples were drawn. In department A, 35 students out of a sample of
45 were found to be satisfied. In department B, 31 students out of 49 were
found satisfied.

(a) Construct a 95 % confidence interval for the difference of the proportion
of students satisfied with the course standard in the two departments.

(b) Construct a 99 % confidence interval for the difference of the proportion
of students satisfied with the course standard in the two departments.

Population size is 5000; the sample size is 256; the sample standard deviation
is 2 and the sample mean is 70. Construct a 99 % confidence interval.
Use FPC. What happens if you do not use FPC?

Answers

6.3
6.4

6.5

(a) 15,500 (b) 3,744.64

(a) 1.868 < p <2.032; (b) 1.863 < pn < 2.037
(c) 1.863 < p < 2.037; if assumed normal
8.58 < nu <10.22 mm
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6.6

6.7
6.8

6.9
6.10
6.11
6.12
6.13
6.14

6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24

Point estimate 5.4 days;

95 % confidence estimate 5.13 < p < 5.67 days;

5.09 < p <5.71 days

31.73 £ 1 <33.95; 31.31 < u<3437;31.85 < <3383
(a) 11,381 < p < 18,619 Baht;

(b) 0.90; (c) 1,250; (d) 1,250; (e) 22,500

n =81

930.81 < p £ 969.19; interval increased by 7.36

848.67 < u < 951.33; $900;

125.20 < u < 128.80; 127

(a) 2,961 < 6° < 15,043; (b) 2,634 < 6° < 18,553

(@) 792 < p; — up £ 10.08; (b) 5.75 < puy — pp £ 12.25
(€)5.75 <y —up, £12.25

0.20 £ 6? £0.50

3108 < ¢? < 8854

0.296 < P < 0.454

0.111 £ P <0.445

0.0625; 0.0388 < P < 0.0862 (95 %); 750; 466 < N < 1034
0.40; 0.21 < P £ 0.59 (95 %); 4,000; 2,100 < N < 5,900
0.4383 < P < 0.6867

(a) 0.01 <= P <0.03; (b) 100 < N < 300

(a) —0.037 £ P, — P, £0.327; (b) —0.094 < P, — P, < 0.384
(a) 69.69 < pn <70.31; (b) 69.68 < n <70.32



Chapter 7
Hypothesis Testing

Abstract The importance of hypothesis testing lies in the fact that many types of
decision-problems can be formulated as hypothesis testing problems. Simple
hypothesis, composite hypothesis, null, and alternative hypotheses are introduced.
One-tail and two-tail tests are explained. Errors in hypothesis testing are mentioned.
A standard procedure for testing of hypotheses is set. Examples are provided for
testing of various types of hypotheses. A standard procedure is set for testing of
population means and proportions in many situations. The technique for drawing
conclusions at the end of the test is illustrated through examples. The drawing of
conclusions is the core of hypothesis testing. A highly useful and new chart called
“Flow Chart for Hypothesis Testing” is provided. The technique of calculating
power of hypothesis testing is illustrated with the help of examples.

Keywords Hypothesis testing - One-tail test - Two-tail test -+ Simple hypothesis -
Composite hypothesis - Null and alternative hypothesis - Flow chart of hypothesis
testing - Test procedure - Power of test

In the previous chapter, we have studied how to estimate the characteristics of
population known as parameters. We dealt with the point estimation and interval
estimation. Apart from this, there are many problems where we need to decide
whether to accept or to reject a statement about some population parameters. The
statement is called a hypothesis, and the decision-making procedure regarding the
hypothesis is called hypothesis testing. Hypothesis testing is a very useful aspect of
statistical inference. The importance of hypothesis testing lies in the fact that many
types of the decision-problems can be formulated as hypothesis testing problems.

7.1 Introduction

There are several types of hypotheses. A thorough discussion of all those is beyond
the scope of this book. Here, we shall deal with statistical hypotheses only.
Statistical hypotheses concern assumed values of the population parameters. The
assumptions regarding the assumed values of the parameters are referred to as
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statistical hypotheses. Determining the validity of an assumption of this kind is
called a test of a statistical hypothesis or simply hypothesis testing.

Within the scope of statistical hypotheses, there are a few types. We can dis-
tinguish between simple hypotheses and composite hypotheses. In a simple
hypothesis, only one value of the population parameter is specified. For example,
the mean IQ of a group of students is 120. The exact difference between two
population parameters is also a simple hypothesis. Example is p;y — p, = 0. In a
composite hypothesis, instead of specifying one value, a range of values is speci-
fied. Example of this hypothesis is u # 120. Another example is u; — p, # 0.

In testing hypotheses, the standard procedure is to state two conflicting
hypotheses. These are mutually exclusive. These are called “null hypothesis” and
“alternative hypothesis”. In a null hypothesis, that value of a population parameter
is specified which the researcher hopes would be rejected. The word “null” means
invalid, void or amounting to nothing. In an alternative hypothesis, those values of
the population parameter are specified which the researcher believes to hold true.
Null and alternative hypotheses are usually denoted by H, and H,, respectively.
Examples are given below.

Hy: p = 120 (null hypothesis)

H,: 1 # 120 (alternative hypothesis)

=

Hy: 1y — 1y = 120 (null hypothesis)

H,: 1y — 1, # 120 (alternative hypothesis)

The null hypothesis and the alternative hypothesis can both be simple or com-
posite. See the following examples.

Hy: p = 120 (simple)
H,: i =100 (simple)
=

H,: n # 100 (composite)
=

H,

Hy: 1< 120 (composite)
H,: u= 100 (simple)

=

: <100 (composite)

H,: n > 100 (composite)

Here, it is useful to have an understanding of the concept of tests. A test may be
one-tail or two-tail test. A statistical test in which the alternative hypothesis spec-
ifies that the population parameter lies entirely above or entirely below the value
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specified in the null hypothesis, is called a one-tail test. An alternative hypothesis
which does not specify that the parameter lies on one particular side of the value
specified in the null hypothesis is called a two-tail test. The following examples
illustrate this concept.

One-Tail Test

H,: Production of a crop = 2 tons per acre
H,: Production of a crop > 2 tons per acre

Two-Tail Test

Hy: Production of a crop = 2 tons per acre
H_: Production of a crop # 2 tons per acre

It is important to note that hypotheses are statements regarding population
parameters and not statements regarding the sample. We have defined null and
alternative hypothesis. There is a question how the value in the null hypothesis is
set. This may be set in any one of the three ways. First, our past experience or
knowledge of the phenomenon or prior experimentation may help us in setting the
value in the null hypothesis. Testing of hypothesis in this case refers to determi-
nation whether that value or situation has changed. Second, the value in the null
hypothesis may also be set based on some theory or model regarding the phe-
nomenon. Testing in this case refers to the verification of the theory or model.
Third, sometimes the value in the null hypothesis is set based on external con-
siderations, designs, specifications, etc. In this case, the objective of testing is to see
whether the results conform to these considerations, designs, specifications.

When we make some statements regarding population parameters and test those,
one objective is to make a decision whether the statement is true or false. The
testing procedure uses the information from random samples drawn from the
respective population. If the sample information is consistent with the hypothesis,
then we can conclude that the hypothesis is true. On the other hand, if the sample
information is inconsistent with the hypothesis, then we can conclude that the
hypothesis is false.

The usual procedure in testing a hypothesis is to take a random sample from the
population of our interest, compute an appropriate test statistic from the sample
data, and then use this statistic to make decision whether the hypothesis is accepted
or rejected. We shall detail the procedure in the subsequent sections.

Errors in Hypothesis Testing

In estimating we might have noticed that we cannot estimate the population
parameters with certainty; we need to use probability distribution. In hypothesis
testing also we cannot say with certainty that a particular hypothesis is to be
accepted or rejected. We face the problem because of uncertainty inherent in
sampling from a population. In decision to accept or to reject a hypothesis we
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always commit some error. This error is called error of hypothesis testing. In
hypothesis testing usually our decision will focus on the null hypothesis H, whether
to accept or to reject. Therefore, error of hypothesis testing can better be explained
by use of the null hypothesis. There are chances of error in decision because the
decision to accept or to reject H, is based on the probabilities and not on the
certainty. There are two types of errors. They are called Type I error and Type 11
error. Based on test results we may decide to reject the null hypothesis when this
hypothesis is, in fact, true. The error committed in this case is Type I error and is
usually denoted by a. This is also called significance level. Again, based on the test
results, we may decide to accept the null hypothesis when this hypothesis is not
actually true. The error committed in this case is Type II error. This is usually
denoted by B. The situation is summarized in the Table 7.1.

The probabilities of occurrences of type I and type II errors are illustrated below:

o = P(type I error) = P(reject Hy |Hy is true)
B = P(type II error) = P(not reject Hy |Hy is false)
Associated with type I and type II errors is the power of test defined by
Power = 1 — § = P(reject Hy |Hy is false)

Thus, the power of the test is the probability that a false hypothesis is correctly
rejected. The analyst or the researcher usually sets the probability of type I error,
i.e., o and it is under his control. Since the significance level a is the probability of
type I error when the null hypothesis is actually rejected and since the
analyst/decision maker sets this value himself, he has a control over it and as such
rejection of Hy is a strong conclusion.

Unlike type I error, type II error is not a constant quantity. Type II error is a
function of the true mean value of the population as well as the sample size. The
probability of type II error decreases as the sample size increases. Also decreasing o
would increase  and vice versa.

There is another error called type III error. This is also called type O error. This
error occurs when a false null hypothesis is rejected but the direction is wrong. For
example, suppose that the null hypothesis is Hy: [y = [ or iy — g = 0 (two
population means are equal), and the alternative hypothesis is H,: i, — 1 > 0 which

Table 7.1 Decision in Decision Actual situation of Hy
hypothesis testing True False
Reject Type I error (o) v
Not reject v Type 1 error ()
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means [1; > [,. Based on the test result, we find the Hj to be false and so we reject it
and conclude that p; > p,. But actually p, > p;. This means that there is an error in
decision about the direction. This error is type III error.

7.2 Test Procedure

The standard test procedure in testing hypothesis followed in this book involves
identifying the critical region in the distribution concerned. This also involves
identification of the acceptance and rejection regions of the null hypothesis. Then
based on the sample information, a test statistic is computed. If this test statistic falls
in the acceptance region, the null hypothesis is accepted (better not rejected). If this
statistic falls in the rejection, the null hypothesis is rejected.

Suppose that we are interested in testing the following hypothesis:

Hy: 1= po (Yo is a specific value of p)
Hg:p>pg

For identifying the acceptance and rejection regions, we look at the alternative
hypothesis. In this particular example, the alternative hypothesis states that the
population mean is greater than 0, the specific value set in the null hypothesis. This
suggests that the critical region falls on the right side of the distribution as illus-
trated in Fig. 7.1.

On the basis of the set significance level a, the critical value of the test statistic
(in this particular case Z,) is identified and the acceptance and rejection regions are
noted. Since the alternative hypothesis specifies/implies one side of the distribution,
the a value is also set on the same side of the distribution. This is a one-tail test,
since only one tail of the distribution is used to test the hypothesis.

Fig. 7.1 Acceptance and
rejection regions (rejection
region on right side)
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Fig. 7.2 Acceptance and
rejection regions (rejection
region on left side)

— R/R | A/R

Now, if we are interested in testing the following hypothesis:

Ho: p =,
H,:p<ypy

The alternative hypothesis states that the population mean is less than the
specific value set in the null hypothesis. The critical region is, therefore, on the left
side of the distribution as shown in Fig. 7.2.

Based on the test statistic (in this case Z,) the rejection and acceptance regions
are established. In this case also, the rejection region is on one side of the distri-
bution and, therefore, the test is a one-tail test.

Let us now consider the third situation. Let the set of hypotheses we are testing
in, be

Ho: p=py
Ha: H# Ho

In this case, the alternative hypothesis states that the population mean is not
equal to . This implies that the population mean may either be less than or greater
than . Here obviously, two situations are involved simultaneously. In order to
incorporate this, the set o value is equally divided into two, a/2 each. Therefore,
based on these two o/2 values, two critical regions are established. However, the
acceptance region is only one as before. The regions are illustrated in Fig. 7.3.

There are two test statistics (in this particular case —Zy, and Z,,). The null
hypothesis would be rejected if the calculated test statistic falls in either of the two
rejection regions.

The standard procedure in testing hypotheses may be summarized as follows:

(i) Set the significance level a, if not already given.
(ii) State the appropriate hypotheses, null and alternative.
(iii) Sketch the acceptance and rejection regions.
(iv) Compute the appropriate test statistic based on sample information.
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Fig. 7.3 Acceptance and
rejection regions (rejection
region on both sides)

0
—RR! A/R !RR—

(v) Examine whether the calculated test statistic falls in the acceptance or rejection
region. If it falls in the rejection region, reject the null hypothesis. If it falls in
the acceptance region, do not reject the null hypothesis.

(vi) Make suitable conclusion. The nature of the conclusion may be tuned to the
problem under study.

7.3 Hypothesis Testing—One Population Mean
(Variance Known)

This test is valid (a) if the population is normal or (b) if the central limit theorem holds
in case the population is not normal. Here, we shall study the one-tail and two-tail tests.

7.3.1 One-Tail Test

Let X be the random variable. If the population is normal or where the central limit
theorem holds, the distribution is also normal. Its mean equals the population mean
u which is unknown. Its variance o> is known. We are interested in testing the
hypothesis

Hy: 1=y (Y is a specific value of p)
Hg: > g (or p<py)

The appropriate test statistic is

Xl

%= o]y

The subscript ¢ means the calculated value of Z to distinguish it from the table
value of Z. The quantity o/Vn is the standard error of X. In other words, o//n is the
standard deviation of the sampling distribution of X. Thus, the test statistic could
also be written as
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7 — X — Yo
c — —
standard error of X

If the alternative hypothesis is H,: i > L, the rejection region is on the right side
of the distribution and the null hypothesis is rejected if

Z. > 7,

If the alternative hypothesis is H,: 1 < L, the rejection region is on the left side
of the distribution and the null hypothesis is rejected if

Ze< —Zy

Example 1

The IQ of students is normally distributed. It is claimed that the mean IQ of all
students in AIT is greater than 120. It is known from past record that the standard
deviation of IQ of all students is 30.25. A random sample of 50 students showed a
mean of 130. Test the claim at 5 % level of significance.

Solution
Here,

n=50; x=130
o =30.25; o=0.05

The null and alternative hypotheses are formulated as follows:

Hy: p=120
H,:p> 120

This is a one-tail test. From Table Z; s = 1.645. The acceptance and rejection
regions are shown in the following figure.

Z 0 1.645 -+
A/R —R/R —
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X = Hy
%=
130 - 120
©30.25/30
—2.34

This falls on the rejection region. The null hypothesis is, therefore, rejected at
5 % level of significance.
Conclusion: The mean IQ of all the students is greater than 120.

7.3.2 Two-Tail Test

Here, the same considerations prescribed in Sect. 7.3.1 apply except that the form of
the alternative hypothesis is different. We are interested in testing the hypothesis

Hp: p =y
Hg: o # g

The test statistic Z, is the same as before,

X —Ho
Z. =
- o/vn
The set a value is divided equally into two parts, o/2 each and the values of —Z,

» and +Z,, are identified. There are two rejection regions, one located on each side
of the distribution. The null hypothesis is rejected if

ZC > Zu/2 or if ZC < — Zu/Z

7.4 Hypothesis Testing—One Population Mean (Variance
Unknown—Large Sample)

The test procedure outlined in Sect. 7.3 assumes known population variance ¢°. But
if the population variance is not known, we cannot use it in calculating the test
statistic. However, if the sample is large (n > 30), the sample variance s* can be
substituted for o° in the test procedure. Thus, the test statistic is
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Xl

%=

The rest procedure is the same as outlined in Sect. 7.3.

Example 2

In Example 1 above, suppose that the claim is that the mean IQ of students is less
than 120. Suppose also that sample mean is 115 and the sample standard deviation
is 30.25 (population standard deviation not known). Test the claim.

Solution
The population variance is not known. But the sample size is large.

Here,

n = 50; x=115
c =30.25; o=0.05

The null and alternative hypotheses are formulated as follows:

This is also a one-tail test. From Table Z;o,s = —1.645. The acceptance and
rejection regions are shown in the following figure

_ XK
s/\/n
115 - 120

30.25v/50
=—1.17

This falls on the acceptance region. The null hypothesis is, therefore, not rejected
at 5 % level of significance.
Conclusion: The mean IQ of all the students is not less than 120.
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7.5 Hypothesis Testing—Equality of Two Population
Means (Variance Known)

Both one-tail and two-tail tests may be necessary in testing hypothesis concerning
equality of two population means. The test procedure is valid if both the popula-
tions are normal. It is also valid if the populations are not normal but conditions of
central limit theorem apply.

Let there be two populations—population 1 and population 2. Let also X; and X,
are the random variables in populations 1 and 2 respectively. Here X; has unknown
mean 1 and known variance a%, and X, has unknown mean p1, and known variance O'%.

Two independent samples—one from each population, are drawn. If the popu-
lations are normal (or where the conditions of central limit theorem apply) the
distributions of (X — X7) is normal and its standard error is

VAot/m +03/m}

7.5.1 One-Tail Test

We are interested in testing the hypothesis of the form

Ho: 1y = 1y Ho:pyp —pp =0
=
Hy:py >y Hg:py —ppy >0

The alternative hypothesis states that the difference between the two population
means is greater than zero, a specific value set in the null hypothesis. Thus, the
rejection region falls on the right-hand tail of the distribution. The appropriate test
statistic is

G —x) - — )
VA{ot/m+03/m),
(%1 — %)

(ol m + o3/m),

since ([ — M) = 0 according to null hypothesis.
The null hypothesis is rejected if

c

L. > Zy.
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If the alternate hypothesis is of the form

Ho: 1y = 1y Ho:pyp — i =0
=
H,: p<py Hy:p — <0

the rejection region falls on the left-hand tail of the distribution and the null
hypothesis is rejected if

Lo < —Zy.
Example 3

Two manufacturing processes are to be compared. The following information is
available:

Process 1 Process 2
o; = 15.18 o, = 18.50
n; =40 n, =45

X1 = 150.56 X =141.23

Test at 5 % level of significance whether the mean from process 1 is greater than
that from process 2.

Solution

o = 0.05

The null and alternative hypotheses are as follows:

H—H =0
M =M >0
This is a one-tail test. The rejection region falls on the right side of the distri-

bution. From table, Z; o5 = 1.645. The acceptance and rejection regions are shown
in the following figure.
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AR p 4 RR—

(X1 — %)
VAoi/m+o3/m)
_ 150.56 — 141.23
V{(15.18)2/40 + (18.50)°/45)

9.33
=—=255
3.66

Z =

This falls in the rejection region. The null hypothesis is, therefore, rejected at
5 % level of significance.

Conclusion: The mean from process 1 is significantly greater than that from
process 2.

7.5.2 Two-Tail Test

Our interest here is to test a hypothesis of the form

Ho: 1y = 1y Ho:py —Hp =0
=

Hy: py # 1y Hag:py — iy #0

The alternative hypothesis states that the difference between the two means of
the two populations is not equal to zero, a specific value set in the null hypothesis.
This implies that the difference could either be less than zero or greater than zero.
Thus, the rejection region may fall either on the right or on the left side of the
distribution. This means that there are two rejection regions. However, there is only
one acceptance region. The test statistic is the same as outlined in the previous
section.
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(X1 — X2)
Z. =
VAioi/m+0c3/m)

The null hypothesis is rejected if

L. < — Zu/Z or, ifZ.> Za/z

Example 4
Incomes of normally distributed populations are being studied. The variances are
o3 = $508 and 63 = $425. Two randomly selected samples n; = 40 and n, = 60
produced means X; = $2520 and X, = $2350, respectively.

Test at 90 % confidence level whether the two population means are equal.

Solution
o7 = $508; o3 = $425
x1 = $2520; X = $2350
ny; = 40; n, = 60

a=1-0.90=0.10
The null and alternative hypotheses are formulated as follows:

Ho:pyy — i =0
Hyipy — iy #0

This is a two-tail test. Z,, = Zyos = 1.645 (from table). The acceptance and
rejection regions are shown in the following figure.

"SR R—t AR —RR—
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(X1 — %)
VAoi/ni+63/m)
252012350
 /{508/40+425/60)
170
T 445

=38.20

This falls in the rejection region. The null hypothesis is, therefore, rejected at
90 % confidence level.
Conclusion: The two population incomes are not equal.

7.6 Hypothesis Testing—One Population Mean (Variance
Unknown)

The test procedure developed so far used Z statistic. This applies if the population is
normal and if the population variance is known. Also, this applies when the sample
size is large (n = 30), in case the population is nonnormal. Use of Z statistic in case
of nonnormal population but with large sample size implies that the underlying
population is assumed to be approximately normal. In many practical cases, this
approximation is satisfactory.

The difficulty arises if the sample size is small and if the population variance is not
known. In such cases, we need to use the ¢ distribution and not the Z distribution.

7.6.1 One-Tail Test

Let X be a random variable whose mean p is unknown and variance o° is also
unknown. The population is assumed to be normal. Then the sampling distribution,
i.e., the distribution of X is also normal and its standard error is sin. We are now
interested in testing the hypothesis of the form

Ho: py =y
Hy:py > 1y
The appropriate test statistic is

;X7 Ho
SN
where s is sample standard deviation. The degrees of freedom is n — 1. As indicated

by the alternative hypothesis, the rejection region falls on the right-hand tail of the
distribution. The null hypothesis can be rejected if
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te > toc,n—l

If we are interested in testing hypothesis of the form

Ho: 1y = 1y
Hy: py <py

the rejection region falls on the left-hand tail of the distribution. In this case, the null
hypothesis can be rejected if

< — ta‘nfl

Example §

In the IQ example suppose that the mean IQ of student population is assumed to be
less than 120. A random sample of size 25 shows the mean of 115 and standard
deviation of 20.15. Test the assumption at 97.5 % confidence level.

Solution
The population is normal. The population variance is not known. The sample size is
less than 30 (small sample). So we need to use ¢ distribution.

n = 25; x=115
s =20.15; o =1-0.975=0.025

The null and alternative hypotheses are formulated as shown to suit the problem.

H()Z L = 120
Hy: p, <120

This is a one-tail test. The ¢ value, i.e., fy02524 = —2.064. The acceptance and
rejection regions are shown in the figure.

= -2.064 0. =t
R/R t
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_X—Ho
s/\/n
115120

20.15
V25

-5
T 4.02
=-1.24

1

This falls in the acceptance region. The null hypothesis is not rejected at 97.5 %
confidence level.

Conclusion: The mean IQ of the student population is not statistically less than 120.

7.6.2 Two-Tail Test

In this case we are interested in testing the hypothesis of the form

Ho: py = py
Hy: [y # Yo

The alternative hypothesis specifies that the value of n may be either on the left
or on the right-hand side of the distribution. The test statistic remains the same as

X —Hy

NG

t.

The null hypothesis is rejected if

< — t:x/Z,n—l or I, > tot/Z.n—l

Example 6

In the IQ example, suppose that the mean IQ of the student population is assumed
to be different from 120 (same as saying not equal to 120). A random sample of size
25 shows the mean of 115 with a standard deviation of 20.15. Test the assumption
at 98 % confidence level.

Solution
The population is normal. The population variance is unknown. The sample size is
small (n < 30). So, we should use ¢ distribution.

n=125; x=115
s =20.15; a=1-0.98=0.02
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The null and alternative hypotheses are formulated as shown to suit the problem.

Hy: p = 120
Hy:p # 120

This is a two-tail test. In this case fo ,—1 = 19,0124 = 2.492. The acceptance and
rejection regions are shown.

SRR — AR —RR—
; _X—Ho
©os/vn
115 - 120
©20.15/V/25
=5
T 402
=—-124

This falls in the acceptance region. The null hypothesis is therefore, not rejected
at 95 % confidence level.
Conclusion: The mean 1Q of the student population is not different from 120.

7.7 Hypothesis Testing—Equality of Two Population
Means (Variance Unknown—Small Sample)

Let i, and p, be two unknown means and 67 and o3 be the unknown variances of two
normal populations 1 and 2, respectively. There are two situations which require
different treatments. In one situation o7 and g3 are assumed to be equal. In another
situation 67 and o3 are assumed not to be equal. Here we need to use the t distribution.
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7.7.1 Situation 1: 62 = 3 = o’

Let two random independent samples with variances of 57 and s5 be drawn from the

two populations. We need to compute one common or pooled estimated variance s;

for computing the test statistic. The common or pooled estimated variance is given by

o _ (= Dsit(m—1)s3

P n1—|—n2—2

The degrees of freedom is n; + n, — 2. If we are interested in testing the
hypothesis of the form

Ho: 1y = 1y Ho:py — i =0
=
H,: py <y, Hy:p — <0

implying one tail test, the appropriate test statistic is

%) — ()
© s/(/m+1/m)
(X1 — %)
sp/ (1/m1+ 1/m2)

since [; — [, = 0 according to null hypothesis.

Here S,\/{1/n1 4+ 1/n,} is the standard error of the distribution of the statistic
(1 — x2).

If the alternative hypothesis is H,: 1, — W > 0, the rejection region falls on the
right-hand tail of the distribution. The null hypothesis is rejected if

Ie > tu,nl +ny—2

with (n; + n, — 2) degrees of freedom.
If the alternative hypothesis is H,: 1 — 1, < 0, the rejection region falls on the
left-hand tail of the distribution. The null hypothesis is rejected if

< — totﬁnl +ny—2

with (n; + n, — 2) degrees of freedom.

If the alternative hypothesis is H,: p; — p, # 0, there are two rejection regions
and one each of them falls on right-and left-hand tails of the distribution. The null
hypothesis is rejected if
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< — [oc/ZA,nl +ny-2

or, if

Ie > — toc/2,n1 +np—-2

with (n; + n, — 2) degrees of freedom.

Example 7

Let us consider the income example. The population variances are not known. Two
randomly selected samples of sizes n; = 20 and n, = 22 produced means x; =
$2520 and X, = $2450 with standard deviations s; = $504 and s, = $415,
respectively. Test at 5 % significance level whether the two population means are
equal. Assume that the two population variances are equal.

Solution

ny = 20; ny =22
X = $2520; x; = $2450
s1 = $504; 5o = $415

2 52— (2
G| =05;=5s
o= 0.05

Sample sizes are small. So we need to use t distribution. The appropriate
hypotheses are as follows:

Ho: py —pp, =0
Hypy —py #0
This is a two-tail test. Now o/2 = 0.025. The degrees of freedom d.

f.=n; +ny, —2 =20+ 22 — 2 =40. From table # 92540 = 2.2021.
The acceptance and rejection regions are shown in the figure

——RR—+ AR ——FR—
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The common or pooled estimated variance is given by

2 (= 1)si+(np—1)s3

P ny+n, —2
(20 — 1)(504) + (22 — 1)(415)°
20422 -2
8,443,029
==
= 211,075.73
sp = 459.43
(¥1 —7)
spy/ (1/n1 +1/m3)
B 2520 — 2450
 459.43,/(1/20 + 1/22)
70
141.94
=0.49

c =

This falls in the acceptance region. The null hypothesis is, thus, not rejected at
5 % significance level.
Conclusion: Statistically, the two population mean incomes are not different.

7.7.2  Situation 2: 62 # o,

There are some situations where it is not reasonable to assume the equality of the
two population variances. In such a case, there is no exact t distribution to test Hy:
H = W. However, the approximate statistic is

_ . n-m)
spy/ (1/n1+1/ny)

and its degrees of freedom (v) is given by

L fstmts/my
(sf/nl)z + (xg/nz)z

np+1 np+1

If the alternative hypothesis is H,: p; — pp > 0, the null hypothesis Hy:
L — W =0, is rejected if
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te > tyy
If the alternative hypothesis is H,: |11 — [ < 0, the null hypothesis is rejected if
le<< —Ioy
If the alternative hypothesis is H,: p; — pp # 0, the null hypothesis is rejected if

le< —typ, or ifte>1t,

Example 8
Solve problem 7 assuming the two population variances not equal.

Solution
ny = 20; n, =22
X1 = $2520; x; = $2450

s1 = $504; 5, = $415
oi # 03

The null and alternative hypotheses are formulated as follows:

Ho:py =1, =0
Hoipp —ppy #0

Now, a = 0.05; o/2 = 0.025. The degrees of freedom v is given by

L stmrsim)?

(s%/nl )2 (s%/nz)2
np+1 n+1

+

{(504)2 /20 + (415)? /22}2

{5047 /20}" | {(@157%/22}’
20+1 22+1

_421%10°

T1.03%107

=40.87 -2

= 38.87

Therefore, 1y 025.35.87 = 2.024. The acceptance and rejection regions are shown in
the figure.
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L — AR ——RR—

(- %)
spy/ (1/ny +1/ny)
2520 — 2450

\/{(504)2/20 n (415)2/22}
70

~ 143.28
— 0.489

t, =

This falls in the acceptance region. Therefore, the null hypothesis is not rejected
at 5 % significance level.
Conclusion: Statistically, the two population mean incomes are the same.

7.8 Testing of Hypothesis—Population Proportion

In many planning, management and engineering decisions we are concerned with a
variable which follows binomial distribution. Examples of such cases are the
proportion of people below the poverty line, fraction of defective items in a
manufacturing process, proportion of concrete blocks that failed in a particular test.

If the proportion is not very close to one or zero and if the sample size is large,
then the binomial distribution can be approximated by normal distribution.
Therefore, in testing hypothesis on proportions, test procedure based on normal
distribution is developed hereafter.
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7.8.1 One Population Proportion

Let X be a random variable and x be the number of observations having the charac-
teristics of our interest in a random sample of size n. Then, the sample proportion is

pP=-
n

If we are interested in testing a hypothesis of the form

H()IP:PO
H,: P> P,

where, Py is a specific value of P,
then the appropriate test statistic is given by

p—P

{P(I—P)}

ZC =

and the null hypothesis is rejected if

Ze > 2y

If we are interested in testing the hypothesis of the form

H()Z P= Po
H,: P<Py

the null hypothesis is rejected if
Z. < —Zy

But if we are interested in testing the hypothesis of the form

HQZPZPO
H,: P # Py

the null hypothesis is rejected if

. < — Za/2 or, ifZ. > Za/2
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Example 9

There has been a considerable debate on environmental problems arising out of
automobiles in cities. It is claimed that more than 50 % of the people are concerned
about the problem. In a random sample of 400 people, 220 people showed concern
about the problem. At 99 % confidence level, test the claim that

(a) more than 50 % people are concerned about the problem.
(b) the proportion of people expressing concern about the problem is not 50 %.

Solution

n=400; x=220
220

a=1-0.99 =0.01

(a) The null and alternative hypotheses are formulated as shown.

Hy: P = 0.50
H,: P> 0.50

This is a one-tail test. Therefore, Zyo; = 2.33. The acceptance and rejection
regions are as follows:

AR ——RR—
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055050

0.55(1—0.50)
400

Z.

7 Hypothesis Testing

This falls in the acceptance region. Therefore, the null hypothesis is not

rejected at 99 % confidence level.

Conclusion: The proportion of people expressing concern about the environ-

mental problem is not more than 50 %.
(b) The null and alternative hypotheses are as follows:

Hy: P = 0.50
Hy: P #0.50

This is a two-tail test. Therefore, Z,/, = Zy ¢os. From table, Zg o5 = 2.575. The

acceptance and rejection regions are as follows:

-2.575 U
—RR t AR

_prP- Py
/P(1—P)
7. = .55 -0.50

0.55(1-0.50)
400

Z
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This falls in the acceptance region. The null hypothesis is, therefore, not
rejected at 0.01 level of significance.

Conclusion: Statistically, the proportion of people who are concerned about the
environmental problem in cities is 50 %.

7.8.2 Equality of Two Population Proportions

Let X, and X, be two random variables in population 1 and 2, respectively. Let also
n; and n, be the random and independent sample sizes drawn from population 1 and
2, respectively. If x; and x, are the number of observations having the character-
istics of our interest in sample 1 and 2, respectively, then

X1 X2

P1= P2 =

np ’ ny

the sample proportions. We are interested in testing whether the respective popu-
lation proportions P; and P, are equal, i.e., if P; = P,.
Thus, the null hypothesis is

H()Z Pl = Pz.

Our concern here is the sampling distribution of p; — p,. The distribution has the
variance

-2 = Oy +
Therefore,
Opi—p2 = \/{61271 - 61272}
Furthermore,
GZ[ = 4131(1”? ) and
2 — Py(1 — P,)

na
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Therefore,

o {Pl(l —P1) Pl —Pz)}
pPi—=p2 n 1y
= V{P(1=P)(1/m+1/m)}

since P, = P, according to null hypothesis (and taking P, = P, = P).
This P in the above expression is the pooled proportion and is estimated by

_ puu A pom
ny+ny

The standard error of the distribution of p; — p, is thus,

V{P(1 = P)(1/n; +1/ny)}

where,
__ping +pam
np + ny

If we are interested in testing hypothesis of the form

H()ZPl :P2 HO:Pl—P2:0
=
H,: P, > P, H,:Pi—P, >0

the appropriate test statistic is

(p1 —p2) = (P1— P2)
standard error of p; — p»
P1— P2

\/{Pl* 1/}’ll+1/}’l2)

since Py = P, according to null hypothesis.
The null hypothesis is rejected if

Z. =

Ze > ZLs.
If we are interested in testing hypothesis of the form
H01P1=P2 HQZPl—PQZO

=
H,: P, <P, H,: P, — P,<0
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the test statistic is the same and the null hypothesis is rejected if
Z. < —Zs.
Furthermore, if we want to test the hypothesis of the form
H()ZPl:Pz H()IPl—PZZO
=

HaIPI#PQ Huipl—Pg#O

the same statistic is used. The null hypothesis is rejected if
L. < — Za/z or, if Z. > Zu/z

Example 10
A quality control manager wants to compare the fraction of defective items in two

manufacturing processes. In two independent random samples drawn from the two
processes, he obtained the following information:

Process 1 Process 2
n; = 6000 n, = 5000
X1 = 240 x = 150

Test at 5 % significance level whether the two processes produce the same
proportion of defective items.

Solution
240 150
= == . 4' = — = .
Pr= G000 ~ 0% P2 = 5550 = 003
o= 0.05

The following are the null and the alternative hypotheses:

H05P1—P2:O
Halpl—Pz#O

This is obviously a two-tail test. So, a/2 = 0.025. Zy g5 = 1.96 (from table). The
following figure shows the acceptance and rejection regions.
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a -1.56 [ 1.56 -
£ 2R R— AR —RRr—Z

The pooled estimated P is given by

_pim +pany
ny+np
~0.04(6000) + 0.03(5000)

6000 + 5000
2404150
~ 11,000
390
~ 11,000
=0.0355

P

Therefore, the test statistic Z, is given by

_ P1— P2
VIP(1=P)(1/n; + 1/ny)
0.04 — 0.03
/{0.0355(1 — 0.0355)(1/6000 + 1/5000)}
~ 001
~0.00354
=2.82

c

This calculated test statistic falls in the rejection region. The null hypothesis is,
therefore, rejected at 5 % significance level.

Conclusion: The two processes do not produce the same proportion of defective
items.
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Flow Chart for Hypothesis Testing

Set Objective

See which tests wanted — means, fitting of
regression, forecasting, relationship,
ANOVA for experimental design etc.

!

Identify tests — z, t, F, chi-square, rank
etc.

A 4

Formulate hypotheses (Hy and H,)
Set o level

A 4

Set the A/R and R/R regions. Draw the
sketch.

Calculate test statistics: z, t., Fe, xz etc.

!

Examine A/R or R/R region where test
statistic falls.

Conclude Hy, rejected or not rejected.

!

Interpret the result: Keep in mind Hy, H,
and objectives.

7.9 Power of Hypothesis Testing

We know

o = P(type I error) = P(reject Hy| Hp is true)
B = P(type II error) = P(not reject Hy|Hy is false)

and the power of test defined by

157
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Power = 1 — B = P(reject Hy| Hy is false)

Thus, it is seen that in order to calculate the power we need to have the value of
B. It is not a constant quantity. It depends on a, population true mean and n. Power
increases as o increases, power increases as ¢ (population standard deviation)
increases and power increases as n increases.

For hypothesis dealing with one population mean, the hypotheses can be of the
form

Hy: 1=, (a specific value)
Hy:p> pg
Hy:n<py
Hg: o # g

Notice that all the three forms of the alternate hypotheses are open ended. These
do not refer to any specific value. In such cases, § cannot be computed, and hence
power cannot be computed. To compute  and consequently power, we need to
know a specific value of the population true mean in the alternate hypothesis such
as H,: p = 150.

For hypothesis dealing with two population means (comparing two population
means), the hypotheses can be of the form

Hoy: 1, — 1, = 0 (no difference between two population means)
Hyp —py >0
Ha:py — 1 <0
Heyipy — i #0

Here also all the three forms of the alternate hypotheses are open ended. So we
cannot compute the power of test. We need a specific value in the alternate
hypothesis. It is important to note that we can put a specific value in the alternate
hypothesis and compute the power of the test. But difference between two popu-
lation means having a specific value has no practical use. It is only theoretical. So
here we shall not work for calculation of power of test. Similar is the reasoning for
comparing two population proportions.

Example 1
The following data are obtained from a study:

n=>50; x=125; s=30.25; a=0.05
Hypothesis is as follows:

Hy: p = 120
H,: p> 120
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(a) Test the hypothesis.
The A/R and R/R are shown. For a = 0.05, z = 1.645.

AR + 643 RR—

S Ty 125120
“ s/vn 30.25//50

= 1.1688

The test statistic Z. falls on the acceptance region. So the Hy is not rejected.
(Note: since n > 30, we are using normal distribution according to central limit
theorem. Population std. dev ¢ is not known; we are using s for o)
(b) Calculate the type II error B
Calculate x at z = 1.645
rendle vatc 120 %—120

T 3025/V50 4278

Solving we get x = 127.037

The alternate hypothesis says p > 120 which indicates many values (any value
greater than 120). For calculating B, we need a specific value. Let us suppose
w, = 130.

/ .‘120“127.04 130

B=0.2451 o =0.05

For p, = 130, calculate z value.

_127.04-130 296

— = = —0.6919
30.25//50  4.278
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©

(d

7 Hypothesis Testing

From the normal distribution table, area of the left tail from this
z value = 0.2451. Therefore, B = 0.2451.
Calculate the power of the test.

Power =1—p=1-0.2451 =0.7549 — 75.49%

If the power is to be 90 %, calculate the sample size.
Power = 90 % — 0.90. Therefore, 1 — B = 0.90. So B = 0.10. For = 0.10,
corresponding z score is 1.28.
For distribution with py = 120
X — W x—120 x—120

- - 1.645 = = _
$T3025/yn 3025/ 0 30.25/n

=
¥ =120+49.76/\/n

For distribution with py = 130

L F-m _ ®-130 0 ¥—130
©T3025/n 3025/ 0 T 3025/ym

=
x = 130+38.72/v/n

This x is common to both the distribution. Therefore,
120+49.76/\/ﬁ =130 — 38.72/\/5

On solution this gives, n = 78.29 ~ 79
Using a short formula:

2
n= %, o is not known. So use s for o.
_ (16454 1.28)%430.25% _ -
Therefore, n = ETETT T 78.29 ~ 79
H()Z n= 120
H,:p> 120
Example 2

The following data are obtained from a study:

n=>50; x=125; s=30; a=0.05
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Hypothesis is as follows:
Hy: p =120
H,:pn# 120

(a) Test the hypothesis.
The A/R and R/R are shown. For a = 0.05, o/2 = 0.025, z,» = 1.96.

e Rr— AR —Hhr—=

L, _F—my 125-120
‘T s/Vn 30/V/50

The test statistic Z, falls on the acceptance region. So the Hy is not rejected.

1.178

(b) Calculate the Type II error B
Let us assume p, = 130, a specific value in the alternate hypothesis.
Type II error is B. This is equal to the area of the left tail of the distribution
with p, = 130.
Calculate x at a = 0.025.

X120 %120
T 30/V/50 4243

or, X — 120 = 8.3156, or x = 128.32

T 128.32 — 130
XM — 0396

TSR 30/4/30

In the normal curve, the left tail area for this z score = 0.3446. Therefore,
B = 0.3446.
The summary is shown in the following figure.
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Distribution with n0 = 120 Distribution with pa = 130

X >
Mean 120 / |15 \130
/ \
B = 0.3446 o =0.025

(c) Calculate the power of the test.

Power =1 — =1 —0.3446 = 0.6554 — 65.54 %

(d) If the power is to be 85 %, calculate the sample size.
Power = 85 % — 0.85. Therefore, 1 — = 0.85. So B = 0.15. For B = 0.15,
corresponding z score is 1.035.
For distribution with py = 120

_ X _x-1200 o %120
ST30/va 30/m 0T T30/

=
X =120+58.8/vn

For distribution with py = 130

oy x—130 x— 130
= - . —1035="_""
T30 30/vm 30//n

=
X =130—31.05/vn

This x is common to both the distribution. Therefore,
120 +58.8/y/n = 130 — 31.05/v/n

On solution this gives, n = 80.73 ~ 81

Using the short formula

(24 +2p)"%0°
(Ha—Ho)

_ (1.96+1.035)%%302 -
Therefore, n = TS 80.73 ~ 81

n= ; 0 is not known. So use s for c.
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Example 3

The following figures are available from a study:
n =400,x = 220;0 = 0.01;z =2.33
P =220/400 = 0.55

Hy: P=0.50
H,: P> 0.50

Now,

L P=P 0.55 — 0.50 B
" VPI=P)/n  /(0.55(1 — 0.55)/400

This falls in the acceptance region. So the H, is not rejected.

(b) Calculate B
To find p at z = 2.33

p—Py p —0.50 (p — 0.50)
= = _
VP(1—P)/n +/(0.55(1 —0.55)/400  0.02449
~ (p—0.50) B ) B
2.33 = 0.02449 or, p—0.50=0.0570; sop =0.5570

The corresponding z score is given by

0.5572 — 0.60 —0.0428
= = =
V05572(1 — 0.5572)/400  0.0249

—1.72;

Therefore, left tail area = 0.04272.

Therefore, B = 0.04272

Therefore, Power = 1 — f =1 — 0.04272 = 0.9572 — 95.72 %
The summary is shown below.

Distribution with p0: PO = 0.50 Distribution with pa: Pa = 0.60

. >
Mean | f | 0.50\1 0.5572 | 0.60 | |
/

B =0.04272 o =0.01
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(c) If power is to be 90 %, n = ?

Power = 0.90; therefore, 1 — = 0.90. So p = 0.10
zg (from table) = 1.28

Zq = 2.33

HO: Wo = 0.50

Let us assume H,: p, = 0.60 for finding p.

Here two distributions are involved as follows;

Distribution of Hy: with py = 0.50 and
Distribution of H,: with p, = 0.60 as shown hereafter.

Distribution with n0: PO = 0.50 Distribution with pa: Pa = 0.60

Mean | 0.:50 f| Ep R{\ 6.60 | | |
/ \
B o

Let the p = proportion common to both the distributions. From both the distri-
butions, find expressions for p.
From distribution of Hy: with py = 0.50

—Ppo
Zu:L or, p—po=2za\/po(l —po)/n
po(1 —po)/n

Or,

P =po+za\v/po(l —po)/n

From distribution of H,: with p, = 0.60

P — D1

—————— o1, p—pr=Vpi(1=p1)/n
pi(l —pi)/n

B =

p=pi+zvpi(l—p1)/n
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Therefore,
Po+ 20/ po(l — po)/n = p1 +zp/p1(1 —p1)/n
Putting the values we get,

0.50+2.334/0.50(1 — 0.50)/n = 0.60 — 1.28+/0.60(1 — 0.60) /n

Or,

0.50+2.331/0.25/n = 0.60 — 1.281/0.24/n
Or,

0.50 +1.165//n = 0.60 — 0.627/+/n

Or,

1.165/+/n +0.627/+/n = 0.60 — 0.50 = 0.10

1.792/+/n = 0.10

n=321.13 ~ 322

Problems

7.1 Results of course evaluation carried out by the Students Union of AIT in
respect of the course HS71: Statistics for May 1992 Term for two items of
“Course and Teaching” is summarized below:

Items Total no. of responses No. of positive responses
Grading system clear 37 35
Appropriate text used 36 31

Are the proportion of positive responses against both the items the same?
Use 5% level of significance?

7.2 Tt is claimed that the starting salaries (per annum) of AIT graduates from
Engineering Divisions are higher than those of graduates from other
Divisions. Two random samples produced the following results:

Graduates from engineering divisions Graduates from other divisions
n=17 n=15

X = $10,250 X = $9670

s = $500 s = $400
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1.3

7.4

7.5

7.6

7.7

7.8

7 Hypothesis Testing

(a) Using 95 % confidence level, test the claim.
(b) What is the probability that the starting salaries of the two groups are
equal?

It is reported that the mean income of a population is 15,000 Baht with a std.
dev of 5000 Baht. In a sample survey of 200 units the mean income was
found to be 17,500. Use 2.5 % level of significance for the following
questions.

(a) Test the hypothesis that the population mean income is greater than
15,000 Baht.

(b) Test if the mean population income is less than 15,000 Baht when the
sample mean is 12,500 Baht.

(c) The sample mean is 14,500 Baht. Test if the population mean income is
less than 15,000 Baht.

(d) The sample mean is 14,000 Baht. Test if the population mean income is
equal to 15,000 Baht.

Ten years ago a survey showed that 65 of 110 employees in a factory were
satisfied with their jobs. A recent questionnaire targeting the same population
found 40 satisfied among a sample of 76. At the 0.10 level of significance,
can we conclude that job satisfaction among the workers is declining?

It is claimed that the mean IQ of all students in a certain university is 130. It
is known that the student population is normally distributed with a standard
deviation of 5.4. A random sample of 25 students produced a mean IQ of
134.12 and a standard of 5.5.

Test the claim. Use 95 % confidence level.

It is claimed that the mean IQ of all students in a certain university is 130. It
is known that the student population is normally distributed with a standard
deviation of 5.4. A random sample of 25 students produced a mean 1Q of
128.5 and a standard of 5.5.

Test the claim. Use 95 % confidence level.

The starting salaries of college graduates from university A are assumed to
be the same as the starting salaries of the graduates from university B.

A random sample of 100 from university A graduates produced a mean
salary of $10,250 and a standard deviation of $200. For graduates of uni-
versity B a random sample of 60 yields a mean of $10,150 and a standard
deviation of $180.

Test the hypothesis using 95 % confidence interval.

The starting salaries of college graduates working in city A are assumed to be
the same as the starting salaries of the similar graduates working in the city B.
A random sample of 11 college graduates from city A produced a mean
salary of $10,250 and a standard deviation of $200. a random sample of nine
graduates from city B yields a mean of $10,150 and a standard deviation of
$180.
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7.9

7.10

7.11

7.12

7.13

7.14

7.15
7.16

7.17

Test the hypothesis. Use 95 % confidence interval.

Use the data given in Problem 7.8. But do not assume that the two population
variances are equal. Test the claim.

In a city the mayor claimed that only 20 % of the residents were concerned
with anti-noise and anti-pollution law. A group of citizens challenged this
claim. They conducted a survey. In a sample survey of 81 residents 33 were
found to be concerned with the law.

Test the claim. Use 99 % confidence level.

In a region, improvement in poverty was being studied. A random sample of
100 households showed that 13 households were below a defined poverty
line. Does this indicate an improvement over a previously established figure
of 15 %? Use 95 % confidence level to test this hypothesis?

A survey of 29 households in Bangkok, selected at random, revealed that
television is watched 27 h per week, on average. The sample standard
deviation was 4 h.

Do the sample data indicate that the number of hours Bangkok families
watch television is greater than the national average of 25 h per week? Use
99 % confidence level.

Two types of new cars are tested for gas mileage. One group consisting of 36
cars, had an average mileage of 24 miles per gallon with a standard deviation
of 1.5 miles, the corresponding figures for the other group, consisting of 72
cars, were 22.5 and 2.0, respectively.

Is there any difference between the two types of cars with respect to gas
mileage, at 0.01 level of significance?

In Bangkok traffic engineers were concerned with the increased number of
motor cycle accidents. They passed a law requiring all motor cyclists to wear
protective helmets. Traffic police reported that before this law, motor cyclists
were fatally injured in 20 % of all motor cycle accidents reported. But after
the law was passed, there were only 6 fatal injuries in 120 accidents reported.
Do the data indicate that the law has been helpful in reducing fatal injuries?
Use 1 % level of significance.

Distinguish between Rejection region and Acceptance Region.

The manufacturer of a chemical manufacturing plant assumes that the daily
average production of the chemical is 880 tons. A sample survey of 50 days
observations showed a mean of 871 tons with a standard deviation of 21 tons.
Test the manufacturer’s assumption. Use 95 % confidence level.

In comparing the mean weight of two comparable groups of people, the
following sample data were obtained:

Group 1 Group II

Sample size 40 40

Sample mean 60.50 kg 63.25 kg

Sample variance 4.25 kg* 5.20 kg*
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7.18

7.19

7.20

7 Hypothesis Testing

Do the data provide sufficient evidence to indicate that group II have greater
weight than group I? Use 5 % significance level.

A manufacturer claimed that at least 95 % of the equipment which he sup-
plied to a factory conformed to the specification. An examination of sample
of 700 pieces of the equipment revealed that 53 were faulty.

Test his claim at a significance level of 0.05.

The records of a hospital show that 52 men in a sample of 1,050 patients had
heart disease; and 28 women in a sample of 1,100 had the same disease.
Do the data present sufficient evidence to indicate that there is a higher rate of
heart disease among men as compared to the women?

The mean salary data of electricians and carpenters in three different work
sites are given:

| Electrician | Carpenter

(a) Work Site 1

Sample size 100 81
Mean $1700 $1550
Standard deviation $200 $100
(b) Work Site 2

Sample size 25 20
Mean $1,700 $1,650
Standard deviation $200 $100

(assume equality of population variance)

(c) Work Site 3

Sample size 25 20
Mean $1700 $1650
Standard deviation $200 $100

(assume no equality of population variance)

7.21

7.22

Using 0.05 level of significance, test in each situation whether the salaries of
electricians and carpenters are equal.

In a random sample survey in AIT it was found that 175 married students had
mean GPA of 3.34 with a standard deviation of 0.45 while 125 unmarried
students had a mean GPA of 3.31 with a standard deviation of 0.31.

(a) At 0.10 level of significance, is there a difference between the GPA of
married and unmarried students?

(b) At 0.05 level of significance, is the GPA of married students greater
than that of unmarried students?

An agency working on environmental problems claims that not more than
50 % of the people are aware of the environmental pollution. A random
sample of 255 people showed 140 to be aware of the pollution.

Carry out a suitable test to refute the claim. Use 95 % confidence level.
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7.23 It is claimed that Engineering students do better in Statistics course as
compared to others. Two random samples showed the following results:

Engineering students Others

Mean score = 21.49 Mean score = 19.06

Standard deviation = 2.44 Standard deviation = 2.52

Sample size = 7 Sample size = 15
Using 2 % level of significance, test the claim.

7.24 The mean IQ of all students in a certain university is claimed to be 140. The
student population is normally distributed with a standard deviation of 5.4.
A random sample of 36 students produced a mean IQ of 137 and a standard
of 6.5.

(a) Test the claim.

(b) Find the type II error.

(c) Find the power of test.

(d) If the power is 80 %, find the required sample size.
Use 95 % confidence level.

7.25 The claim of mean production of a manufacturing plant is 750 tons/day.
A sample random survey of 50 days produced a mean of 745 tons/day with a
standard deviation of 25 tons.

(a) Test the claim. Use 0.05 % of significance;

(b) Find the type II error;

(c) Find the power of the test;

(d) If the 80 % power is considered acceptable, what sample size will be
ok?

7.26 An auto manufacturing plant wants to produce parts such that at least 75 % of
the products meet the premium quality standards. A sample survey of 125
parts showed 95 parts that met the premium quality standard.

(a) At 0.05 % of significance level, test the manufacturer’s expectation;
(b) Find type II error;

(c) Find the power of the test;

(d) If the power of the test is to be 80 %, find the required sample size.

Answers

7.1 Same
7.2 (a) Do not reject the claim; (b) 0.001
7.3 (a) Do not reject the hypothesis

(b) Yes, less than Baht 15,000
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7.4

1.5

7.6

7.7

7.8

7.9
7.10
7.11
7.12
7.13
7.14
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26

(c) Not less than Baht 15,000
(d) Not equal to Baht 15,000
No, we cannot conclude

Not equal to 130

Yes; 130

Not same

Same

Same

More than 20 %

No.

Yes, greater than 25
Difference

Yes

Reject the claim

Yes

Reject the claim

Yes

(a) Not equal; (b) Equal; (c) Equal
(a) No difference; (b) not greater

Not refuted
Support the claim

7 Hypothesis Testing

(a) Reject the claim; (b) 0.0014; (c) 99.85 %; (d) 15 if p, = 135
(a) Accept Hy; (b) 0.00108; (c) 99.89 %; (d) 81 if p, = 750
(a) Accept Hy; (b) 0.1515; (c) 84.85 %; (d) 103 if p = 0.85



Chapter 8
The Chi-Square Test

Abstract The chi-square test is suitable for test of hypothesis dealing with cate-
gorical data. Two types of tests are provided—goodness-of-fit test and test of
independence. Distributions of frequencies of different classes within two cate-
gorical variables are used to test the good fit or bad fit according to goodness-of-fit
test. In the test of independence, two distributions in two categorical variables are
tested whether they are related or not. Each is explained with the help of examples.

Keywords Chi-square test - Goodness-of-fit test - Test of independence

We have learnt how to estimate population parameters and test hypotheses, both in
case of means and proportions. Inference about population means is limited to
metric data. Inferences about population proportions can be made with categorical
data. But the categorical data were restricted to two categories. Here, we will learn
how to test hypothesis related to categorical data having two or more categories.

Test of hypotheses using chi-square distribution is very simple. It is easy to
understand and calculate. As such it is very popular in testing hypothesis. The
chi-square test makes very few assumptions about the underlying population. For
this reason, it is sometimes called a nonparametric test. We shall deal with
the nonparametric tests in the next chapter. Another feature may be noted in the
techniques developed in the previous chapter to test hypothesis. There the
hypothesis involved the parameters of the populations. In this chapter, we shall
cover tests of hypotheses which do not involve population parameters.

There are a few situations in which we can use chi-square test. But we shall cover
only two types of tests, namely (a) goodness-of-fit test and (b) test of independence.

8.1 Goodness-of-Fit Test

In goodness-of-fit test, each test compares a set of observed frequencies to a set of
expected frequencies (calculated on the basis of null hypothesis). The test statistic is
small when the two sets of frequencies are similar (good fit) and large when two sets
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of frequencies are quite different (bad fit). If the fit is good, the null hypothesis is
supported (strictly: H, cannot be rejected); if the fit is bad, the alternative
hypothesis is supported.

Goodness of fit may be looked into in a different way. A goodness-of-fit test is a
test of one categorical variable measured in one population. The null hypothesis
specifies the probability (proportion) of each possible value of the categorical
variable. The proportions of each value of the categorical variable are then observed
in a sample. The goodness-of-fit test determines whether the observed frequencies
are close to the specified probabilities (good fit, H, cannot be rejected) or observed
proportions are different from the specified probabilities (bad fit, Hy is rejected).
The decision between a good fit and a bad fit is made on the basis of a test statistic
chi-square, which is computed from the observed and expected frequencies. The
test statistic is compared to a critical value from the chi-square distribution with
df = ¢ — 1, where c is the number of categories of the categorical variable.

o (0 — E)
Test statistic chi-square = Z E,
where,

i mno. of class

O; observed frequencies in class i

E; expected frequencies in class i

¢ number of categories

df c-1

It will be noted that the goodness-of-fit test focuses on comparing two distri-
butions: one is the observed distribution and the other the expected distribution.

Example 1
The percentage distribution of household income in a country in 1985 was as shown
in Table 8.1.

A random sample of 300 families in 1990 showed the distribution shown in
Table 8.2.

Table 8.1 Percent

Income class ($) Percent

distribution of household

income in 1985 <1000 14
1000 < x < 2000 15
2000 < x < 3000 16
3000 < x < 4000 18
4000 < x < 5000 14
5000 < x < 7500 13
7500 and above 10
Total 100
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Table 8.2 .Distn'bl%tion of Income class ($) No of families
household income in 1990 <1000 2

1000 < x < 2000 36

2000 < x < 3000 31

3000 < x < 4000 33

4000 < x < 5000 36

5000 < x < 7500 75

7500 and above 65

Total 300

Question: Has the household income distribution changed significantly during
the time? Use 5 % level of significance.
The hypotheses are formulated as follows:

Hy: Distribution of families in 1990 is similar to that of 1985
H,: Distribution of families in 1990 is different from that of 1985

Since the figures of 1985 are given in percentages, they need to be converted to
absolute frequencies. Table 8.3 shows the conversion and the subsequent calcula-
tions are done as follows:

df =c—1=7-1=6

From the chi-square distribution table, we can see that at o = 0.05 with df = 6, the
critical value of chi-square is 12.59. The acceptance and rejection regions are
shown in the figure.

|—CI =0.05

0 12.59 4
AR —RAR—7

The calculated value of chi-square 98.62 falls in the rejection region. The null
hypothesis is, therefore, rejected at 5 % significance level.
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Table 8.3 .Ca.llculations for Income class ($) 1990 | 1985 |O; — E; (0, — E,-)z JE:
the test statistic 0; E;

<1000 24 42 -18 7.71

1000 < x < 2000 36 45 -9 1.80

2000 < x < 3000 31 48 -17 6.02

3000 < x < 4000 33 54 -21 8.17

4000 < x < 5000 36 42 -6 0.86

5000 < x < 7500 75 39 +36 33.23

7500 and above 65 30 +35 40.83

Total 300 300 7* = 98.62

Decision: There is a significant difference between the two distributions. This
means that the income distribution has changed significantly during the time.

Another test called “test of homogeneity” is associated with goodness-of-fit test.
In fact, test of homogeneity does not involve a new technique. It implies to test
whether the population is homogeneous, i.e., whether all the categories have similar
distribution. This means that in calculating the expected frequencies, all the cate-
gories are assumed to have equal frequencies.

8.2 Test of Independence

The second type of problem in which chi-square test is of use is testing of the
difference between the observed frequencies of several classifications of two vari-
ables. The elements of a sample from the population are classified according to two
different criteria. Each criterion is a variable of our interest and each class is a
qualitative value. Our interest is to see whether the methods of classification, i.e.,
the variables are statistically independent. In this case, either classificatory or
ordinal scale data may be used.

The joint frequencies of two related or independent variables may be presented
in an r X ¢ table, where r is the number of rows and c is the number of columns.
This type of table is often called a contingency table and as such the test is called
“Contingency Table Test”. An r x ¢ table is equivalent to saying that the first
variable has r levels and the second variable has c levels.

Let O;; be the observed frequency for level i of the first variable and level j of the
second variable. If n is large, then the test statistic is given by

. (04 — E-i)2
Test statistic chi- = E E -
€St statistic chi-square Ej,'
_ .2
= Xr=1)(c—1)

with (r — 1)(c — 1) degrees of freedom.
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The hypotheses are of the form

Hy: The two variables are independent (no relationship)
H,: The two variables are not independent (related)

The two variables are independent is equivalent to saying that there is no rela-
tionship between the two variables. Similarly, the two variables are not independent
is equivalent to saying that they are related. For this matter, the test is sometimes
called a test of relationship. It may be noted here that the test does not say what sort
of relationship there is or is not. It simply says that there is a relationship or there is
no relationship between the two variables. More explanation, based on the joint
frequencies, will have to be provided regarding the type of relationship.

The calculations for chi-square test in this case are similar to those applied to
goodness-of-fit test. The expected frequencies (based on laws of probability) may
be calculated as follows:

Column total * Row total
Grand total

Expected frequency =

The number of degrees of freedom for a general contingency table with r rows
and ¢ columns is given by

df:(r—l)*(c—l))(2

Thus, the rejection region is

2 2
Xcalculated > Xtable

The procedure for the test may be understood with the help of an example.

Example 2
A random sample of 1432 adults of a country showed the following distribution of
educational levels by sex (Table 8.4). Is there any relationship between educational
levels and sex? Use a = 0.05

Calculations for expected frequencies are shown in the following table
(Table 8.5). Note that the expected frequencies can be in fractions, but the observed
frequencies cannot be in fractions.

Table 8.4 Educational levels

Educational level Sex Total
by sex Male Female

No education 63 75 138

Primary 152 162 314

Secondary 370 350 720

Higher secondary 160 100 260

Total 745 687 1432
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Table 8.5 Calculations for expected frequencies

Educational level Expected frequencies of Total
Male Female

No education 745 * 138/1432 = 71.8 138 — 71.8 = 66.2 138

Primary 745 * 314/1432 = 163.4 314 - 163.4 = 150.6 314

Secondary 745 * 720/1432 = 374.6 720 — 374.6 = 3454 720

Higher secondary 745 * 260/1432 = 135.2 260 — 135.2 = 124.8 260

Total 745 687 1432

The hypotheses are formulated as follows:

Hy: Educational level is independent of sex
H,: Educational level is associated with sex

To test at a = 0.05.

df =(r—1)x(c—1)
=(@4-1)x(2-1)
=3x%1

The acceptance and rejection regions are shown in the figure that follows.

From the table of chi-square distribution, the critical value of chi-square
at a = 0.05 with df = 3, is found to be 7.81. Observed and Expected frequencies are
shown in Table 8.6.

AR +—R/R—7 °

Calculations for the test statistic (chi-square) are shown in Table 8.7.
The calculated chi-square (13.51) is greater than the critical value (7.81). So the
calculated chi-square falls in the rejection region.
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Table 8.6 Observed and expected frequencies

177

Educational level Male Female Row total
O; E; O; E;

No education 63 71.8 75 66.2 138
Primary 152 163.4 162 150.6 314
Secondary 370 374.6 350 3454 720
Higher secondary 160 135.2 100 124.8 260
Column total 745 745.0 687 687.0 1432
Table 8.7 Calculations for test statistic

Observed frequency O; Expected frequency E; 0; - E; (0; — E)/E;
63 71.8 -8.8 1.08

152 163.4 -114 0.80

370 374.6 —4.6 0.06

160 135.2 24.8 4.55

75 66.2 8.8 1.17

162 150.6 11.4 0.86

350 345.4 4.6 0.06

100 124.8 —24.8 4.93

Total 13.51

Calculated > = 13.51

Decision: The null hypothesis is rejected. This means that there is an association
between educational level and sex.

In the above example chi-square test has been applied to see if there is an
association between two variables. We might have noted that this test did not give
us the strength of association. In order to measure the degree of association we need
to calculate the contingency co-efficient c. Fundamentally, contingency coefficient
c is the same as correlation coefficient, but it may be applied to classificatory or
ordinal scale data in addition to interval scale measurements. The contingency
coefficient c is calculated as follows:

where, N = grand total of observations.

In the above example,

13.51
1432 +13.51
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Problems

8 The Chi-Square Test

8.1 A computer scientist wanted to generate random numbers. He developed a

computer program to generate the random numbers. In generating 1000
random digits, he observed that the integers between zero and nine occurred

according to the following frequencies:

Integers Total
0 1 2 3 4 5 6 7 8 9
94 93 112 101 104 96 100 99 107 94 1000

Frequency of occurrence

The discrete uniform distribution suggests that each integer between zero and
nine should occur exactly 100 times each.
Do the data indicate that the computer is generating random numbers

according to the uniform discrete distribution?

8.2 The income and expenditure distributions of slum dwellers in Dhaka are
shown:

Income and Expenditure of Slum Dwellers

Income/Expenditure range Frequencies
(Tk/month) Income Expenditure
Tenants Owners Tenants Owners

0 <x <500 4 1 5 1

500 < x < 1000 33 12 31 12
1000 < x < 1500 25 19 28 21
1500 < x < 2000 14 15 12 13
2000 < x 10 39 10 39
Total 86 86 86 86

The sample survey was

(a)
(b)
©)

carried out during 1983-84. One Tk = US$0.33

Are the distributions of tenants and owners across all income groups

similar?

Are the distributions of tenants and owners across all expenditure groups

similar?

Are the distributions of owners across income and expenditure groups

similar?

8.3 A genetic theory predicts that the offsprings in a breeding experiment in the
types a, b, ¢, and d will be in the proportions of 8/16, 4/16, 3/16, and 1/16,

respectively.

In an experiment, 214 offsprings are observed. The frequencies of the cate-
gories a, b, ¢, and d were found to be 131, 52, 18, and 13, respectively.
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(a) Do the data support the genetic theory?
(b) Are the distributions of the offsprings across the four categories
equal/same?

8.4 The management of a company has to choose among three working sched-

ules. The management wishes to know whether the preference for working
schedules is independent of job categories. The opinions of 500 employees
are shown hereafter:

Job categories Working schedule

A B C
Salaried workers 160 140 40
Hourly workers 40 60 60

8.5

Do the necessary job.

Site condition and customer dealing in an enterprise are the subject matter of
an investigator. A sample of 441 sites was investigated with the results shown
in the following table. Is there evidence that site condition and customer
dealing are independent?

Customer dealing Site condition
Not good Good Very good
Unimpressive 24 52 58
Neutral 15 73 86
Impressive 17 80 36
8.6 An agricultural extension researcher wants to study the farm size and pro-

ductivity relationship in certain countryside. One of the objectives was to
study the distributions of farms across sizes. In a sample survey, he generated
the data shown in the above table.

Show by a suitable test that the farm sizes are not evenly distributed across
the sizes.

Distribution of farmers across farm sizes

Farm size (acres) No of farms
0<x<1.0 66
1.0<x<20 71
20<x<35 48
35<x<50 33
50<x<75 15
75<x<145 7
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8.7

8 The Chi-Square Test

A study is conducted to determine if there is a relationship between political
awareness and income level. A random sample of 140 persons is surveyed.
Political awareness is measured on a four-point scale from 1 (negative) to 4
(positive). Income is defined as low, medium, and high. The joint frequency
distribution is shown below:

Socio-economic class Awareness scale

1 2 3 4 Total

Low

17 28 6 2 53

Medium 15 14 11 7 47

High

8 12 17 3 40

Total

40 54 34 12 140

8.8

8.9

8.10

Conduct a suitable test to see if there is a relationship between the political
awareness and income level. Use 0.01 level of significance. Comment on the
strength of relationship.

A researcher wanted to study if there has been a change in the distribution of
college, school graduates, and those who are not graduates. Previously there
were 22 % college graduates, 48 % high school graduates and 30 % not
graduates at all. At present a study of 1000 sample men show that there are
248 college graduates, 522 high school graduates and 230 have not finished
high school. Test it at 0.01 level of significance.

A random sample of 1000 students shows that 325 are in level 1, 360 in level
2 and 315 are in level 3 according to a certain standard score-scale. Is the
distribution same across all the three levels? Use a = 0.05.

Is there a relationship between sex and smoking? A random sample of 100
persons showed the following results:

Smoking Male Female

Smoker 30 10
Non-smoker 20 40

Total

50 50

8.11

Test the hypothesis at 0.005 level of significance.

In a random sample survey, the age groups of drivers and the number of
accidents they made are reported as follows:

No of accidents Age of drivers

18-25 26-40 Over 40

75 115 110

50 65 35

25 20 5
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Test if there is a relationship between number of accidents and the age of

drivers. Use 0.01 as the level of significance.

8.12 The owner of a large company claimed that 1/10 of the personnel earned
income in groupl, 3/10 earned income in group2, 3/10 earned income in
group3 and 3/10 earned income in group4. A random sample showed the
following:

Group Income range ($) Frequency

1 x < 20,000 19

2 20,000 < x < 25,000 56

3 25,000 < x < 30,000 51

4 30,000 < x 40
Using 5 % level of significance, test the claim.

Answers

8.1 Yes (95 %)

8.2 (a) Not similar (95 %);
(b) Not similar (95 %);
(¢) Yes, Similar (95 %)

8.3 (a) Do not support (95 %);
(b) Not equal (95 %)

8.4 Not independent
8.5 Not independent
8.6 Yes, there is a relationship; ¢ = 0.40
8.7 Distribution same
8.8 Yes
8.9 Yes, there is a relationship
8.10 There is a relationship
8.11 Claim is not rejected (a = 0.05)



Chapter 9
Nonparametric Test

Abstract Nonparametric tests are suitable for categorical and rank data and data
having no assumption of normal distribution. Sign test, rank test (Wilcoxon
rank-sum test), and Spearman rank correlation test are introduced. The technique
for use of the tests is explained with the help of examples.

Keywords Nonparametric test - Rank test -+ Wilcoxon rank-sum test - Sign test -
Spearman rank correlation test

A nonparametric test is one in which (a) it is not necessary to assume that the
population is normally distributed. Even no other strong assumption regarding the
population distribution is required in nonparametric test; (b) categorical or ranked
data are used. In nonparametric test the computations are simple. We may notice
that both the mean and standard deviation are meaningless in categorical and ranked
data. In this chapter we shall deal with three tests namely, (a) sign test, (b) rank test
and (c¢) Spearman rank correlation test.

9.1 The Sign Test

The sign test is the simplest test in the family of nonparametric tests. It is used to
test a hypothesis about the median of a continuous distribution. The characteristics
of a median in a continuous distribution tells us that the median is a value of the
random variable such that the probability of an observed value to be less than or
equal to the median is 0.50. Also, the probability of an observed value of the
random variable to be greater than or equal to the median is 0.50. The procedure for
the sign test is described below.
The hypotheses that may be tested are of the form

Ho:Md ZMO
HaZMd > M();Md <M();Md 7é M07
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where M, is a specific value of M, set in the null the hypothesis and M, is the
population median.

Let arandom sample of size n with observations xy, x,, X3, ..., X, be drawn from the
population of our interest. Then the differences (x; — My), i =1, 2, 3, ..., n are cal-
culated. Let R+ be the number of positive differences and R— be the number of
negative differences. If the null hypothesis Hy: M; = My is true, any difference x; — M,
is equally likely to be positive or negative, i.e., its probability to be positive or negative
is 0.50. The test statistic r is chosen such that r is the minimum of the two R+ and R—.

R has a binomial distribution with parameters n and 0.50. We may remember
that if » is sufficiently large (n > 20 in this case), the binomial distribution can be
approximated by the normal distribution. Some authors suggest that this approxi-
mation is valid if # is at least 10. Most of the planning researches involve a sample
size of more than 20. Therefore, the test procedure developed here regarding the
sign test uses the normal distribution criterion. It involves the technique of pro-
portion. The sample proportion is given by

R
n

p

It may be noted here that R is the minimum of R+ and R— and it is possible that
in one or more of the difference(s) zero will be encountered. This is a case of a tie.
When a tie occurs, that should be set aside and the sign test be applied to the
remaining data. The n value will thus be reduced by the number of tied observa-
tions. Thus, the effective n = n—number of tied observations.

The test statistic is given by

p—P
P(1-P)

Ze =

~ p—0.50

N /0.50(1—0.50)

p—0.50
)

/0.500.50

_p—050 p—0.50
B 00 ~0.50/\/n

If the alternative hypothesis is H,: M; > M, the null hypothesis is rejected if

[Z.] > Z,.
If the alternative hypothesis is H,: M; < M, the null hypothesis will be rejected if

[Z.]< — Z,.
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If the alternative hypothesis is H,: My # M, the null hypothesis will be rejected
if

[ZC] > Zon/2 or, lf[ZC] < — Za/Z-

Example 1
A random sample of size 22 households drawn from a population had the following
incomes (US $):

2100, 2550, 2200, 2590, 2250, 2680, 2300, 2685, 2325,2715, 2775,
2380, 2795,2425, 2480, 2815, 2865, 2500, 2900, 3000, 2952, 2950.
Test the hypothesis that the median income of the population is US $2500. Use
a = 0.05.

Solution
The hypotheses are formulated as follows:

HQIMd = 2500
H,: M, # 2500

This is a two-tail test. We have a = 0.05; so, o/2 = 0.025 and Z,, = 1.96. The
acceptance and rejection regions are shown as follows:

-Z -1.9 1.96 =
£ pridl AR 0 pp L

The calculations for the sign test are shown in Table 9.1.

There is one tie. Therefore, the effective n =22 —-1=21. R+ =13 and R—=8. So
R (min of R+ and R—) = 8. Sample proportion p = 8/21 = 0.381. The test statistic
calculations are shown after Table 9.1.
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Table 9.1 Income data for

) Observation Income (x; $) x; — 2500 Sign
sign test 1 2100 ~400 -
2 2550 +50 +
3 2200 —=300 -
4 2590 +90 +
5 2250 —250 -
6 2680 +180 +
7 2300 —200 -
8 2685 +185 +
9 2325 —175 -
10 2715 +215 +
11 2775 +275 +
12 2380 —120 -
13 2795 +295 +
14 2425 =75 -
15 2480 =20 -
16 2815 +315 +
17 2865 +365 +
18 2500 0 0
19 2900 +400 +
20 3000 +500 +
21 2952 +452 +
22 2950 +450 +
7 p—0.50
©0.50/\/n
~0.381 -0.50
©0.50/v21
~ —0.119
©0.50/v21
=—1.09
[Z] =1.09

This falls in the acceptance region. Therefore, the null hypothesis is not rejected
at 5 % level of significance.

Conclusion: The population median is US $2500.

The sign test can also be applied to paired samples, if the samples are drawn
from two continuous populations. The computations and test procedure are slightly
different in this case.

Let (x; x07), i = 1, 2, 3, ..., n be the paired observations drawn from two
continuous populations. Then
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Di:xli_xZi; i:1,2,3,...,}’l

The differences D; of the pairs of observations are computed and signs are
recorded. The rest procedure is similar to the one developed earlier. The null
hypothesis in this case is that the two populations have a common median, i.e.,
M, = My,. This means My — M = 0 or in other words, Mg = 0.

Example 2

An income generating program was launched in countryside. Twenty farmers were
selected randomly to study the result of the program. The average monthly incomes
(in $) before and after the program were recorded as follows:

Before

10,500 11,200 10,500 9600 7500 8200 12,800
10,250 11,800 10,100 12,000 8270 7800 11,200
After

10,200 10,250 9200 15,000 7600 5500 6250

11,400 12,250 12,200 17,000 9200 5600 6260
8900 8905 7825 15,000 13,250 12,500

9000 8965 7800 16,000 13,000 12,600

Test at 5 % significance level if there has been a change in the median income
after the program.
The null and alternative hypotheses are formulated as follows:

Ho:Mg1 —Mgp =0
Ho: Mg # Mg, # 0

This is a two-tail test. We have a = 0.05; so, o/2 = 0.025. From table Z; g»5 = 1.96.
The acceptance and rejection regions are shown in the following figure.

} A/R

el
i~
-
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The paired observations are arranged in Table 9.2, differences are computed, and
the signs are recorded.

Here R+ = 6 and R— = 14. Therefore, R = 6. The proportion p = 6/20 = 0.30. The
test statistic is

~ p—0.50

~0.50/\/n
030 - 0.50
©0.50/1/20
020

T 0112
=—1.79

[Z] =1.79

Z

This falls in the acceptance rejection. The null hypothesis is not rejected at 5 %
significance level.

Conclusion: The two population medians are similar. There has not been any
statistical change in the median income after the program.

Table 9.2 Income data before and after program

Observation Before x; After x, Difference D = x; — x, Sign
1 10,500 10,250 +250 +
2 11,200 11,800 —600 -
3 10,500 10,100 +400 +
4 9600 12,000 —2400

5 7500 8270 =770 -
6 8200 7800 +400 +
7 12,800 11,200 +1600 +
8 10,200 11,400 -1200 -
9 10,250 12,250 —2000 -
10 9200 12,200 —3000 -
11 15,000 17,000 —2000 -
12 7600 9200 —1600 -
13 5500 5600 -100 -
14 6250 6260 -10 -
15 8900 9000 -100 -
16 8905 8965 -60 -
17 7825 7800 +25 +
18 15,000 16,000 —1000 -
19 13,250 13,000 +250 +
20 12,500 12,600 —100 -
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Now suppose that the question is “has the median income increased after the
program?” Note that R value (6) has come from R+ and the plus sign indicates that
the income before is higher than the income after, since we have subtracted the
second figure from the first. Therefore, median income after the program has
increased would imply that the p value is smaller than 0.50 and consequently we
would expect a negative test statistic. Therefore, the critical region (rejection
region) would also lie on the left side of the distribution.

The hypotheses are

H():Mdl - Mdg =0
H, M; —Myp»<0

It is a one-tail test. Here a = 0.05; Za. = 1.645. The acceptance and rejection
regions are shown in the following figure.

\H_'_"‘—'—-—

-z -1.643 [i Z
R/R— +

Z. is calculated before = —1.79. This falls in the rejection region. The null
hypothesis is, therefore, rejected at 0.05 level of significance.
Conclusion: The median income has increased after the program.

9.2 The Rank Test

Rank test is a nonparametric test and nonparametric test is characterized by being
distribution free. No assumption is made regarding the distribution as already
mentioned. In rank test the observations are ranked and on the basis of the ranking a
statistic is calculated to test a hypothesis.

Rank tests are very efficient, and so are very popular. These are easy to
understand and calculate. Rank tests have a crucial advantage for data which are
originally ranked and not in numerical form. In such data, numerical calculations
such as mean and standard deviation are not possible. If there are some outliers
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which are likely to create problems, then also the observations can be transformed
into ranks and rank test can be performed.

9.2.1 The Wilcoxon Rank-Sum Test

Wilcoxon rank test is a typical and popular form of rank test. It is used to compare
two population means. In order to perform the test, follow these steps:

(i) Make a combined listing of the scores of both the samples (n; and n,)
arranged in ascending order. The smaller sample is 7, and the larger sample
18 no.

(i) Rank the combined scores starting from the lowest score. The lowest score is
rank 1, and the highest score is the highest rank.

(iii)) Sum the ranks of both the samples separately for n; and n,. Sum of the ranks
of the smaller sample (n,) is for testing. This is w. The sum of the ranks of
the larger sample (n,) is for getting an idea of the direction only.

(iv) Set the level of significance (say o = 0.05) for testing. Formulate the
hypothesis. The null hypothesis is of the form
Hy: The two population distributions are equal/identical/similar (W, = W,).
The alternative hypothesis (H,) will depend on the type of question to be
solved (W, # W,, W, > W, or W; < W, as the case may be).

(v) Use the value of ny, n,, and w and from the table, and find the value of the
probability.

(vi) If the probability thus found out is less than the set value of a, reject the null
hypothesis (Hp). If it is a one-tail test, compare directly with o. If it is a
two-tail test, compare with the value of o/2.

(vii) Interpret the test result.

The operation of the test is demonstrated with the help of an example.

Example 3
The household annual incomes of two randomly selected samples from two groups
of people in a city during a year were as follows (Table 9.3).

Our task is to test the following hypothesis (assumed o = 0.05):

Hy = Incomes of the two groups are equal.

H, = People of group I are poorer than those of group II.

Obviously, it is a one-tail test. We rank the observations as shown in Table 9.4.

Two steps are important here. Identification of the smaller sample is one and
ranking is the other. Ranking should start from the smallest score. In our example,
group I is the smaller sample (n; = 5), and so rank of 3900 in n; is 1. The highest
score is 25,000 (in n,). So its rank is 11 (n; + n, = 11). The test statistic Wilcoxon
rank sum w is the sum of the ranks of the smaller sample ().
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Table 9.3 Household annual Group I Group 11
income ($) 3900 7150
5000 8450
7500 9100
9750 11,000
17,400 13,500
20,500
Table 9.4 Ranking of Combined observations Combined
household incomes ordered rankings
Group 1 Group 11 R, R,
3900 1
5000 2
7150 3
7500 4
8450 5
9100 6
9750 7
11,000 8
13,500 9
17,400 10
20,500 11

n=5n=6w=24

In our example, w = 24, n; = 5, n, = 6. From the table, we note that the
probability p = 0.20. This means that the probability of the two income sets to be
equal is 0.20 or 20.00 %. This value is larger than our set value of a (0.05). So we
do not reject the null hypothesis. This decision implies that the incomes of the two

groups of people are identical/similar/equal.

Let us consider another example. Independent two random samples of men and
women in Thailand gave the following incomes (Table 9.5).
Are the incomes of the groups—men and women—identical?

Solution
Let us assume o = 0.05.

The null and the alternative hypotheses are formulated as follows:

Hjy: Incomes of men and women are equal.

H,:Incomes of men and women are different.

The alternative hypothesis tells us that it is a two-tail test. So we should compare
the probability with o/2 or 0.05/2 or 0.025. The income observations arranged in

order are as follows (Table 9.6).
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Table 9.5 Income of men Men Women
and women (Baht) 1700 3500
4000 2500
4900 3000
7800 1900
3490 4650
4800
1800
1700
8000
Table 9.6 Incomes of men Men Women Combined
and women (in order) rankings
Sample 1(n;) Sample 2 (1) R, R,
1700 1
1800 2
1900 3
2500 4
3000 5
3490 6
3500 7
4000 8
4650 9
4700 10
4900 4800 12 11
7800 13
8000 14
w =49 (56)

Here, ny =5, n, =9, and w = 49. From table we note that value of p is between
0.05 and 0.10 (less than 0.10 and greater than 0.05). This is larger than a/2 or 0.025.
So we do not reject the null hypothesis. This implies that the incomes of the two
groups are not different. Note that the table does not always provide the exact value

of p. But the computer will do.

Now, with the same data sets consider the following question.

Question

Is the income of the women group more than that of the men group?
Here, the hypotheses should be formulated as follows:

Hj: Incomes of men and women are equal.

H,:Income of the women group is more than that of the men group.
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Here, obviously it is a one-tail test. So we should compare the p value with
a (0.05) and not o/2 (0.025).

From table for n; = 5, n, =9, and w = 49, value of p is between 0.05 and 0.10
(less than 0.10 and greater than 0.05) as we have already observed. This p value is
more than our set o value of 0.05. So we do not reject the null hypothesis. This
implies that income of the women group is not more than that of the men group.

If the sample sizes of both the samples (n; and n,) are larger than 10 (n, > 10 and
n, > 10), we can use normal distribution (approximately) to test the hypothesis. The
normal distribution has population mean = p and standard deviation = . The
calculation will be as follows:

ni(n +ny+1)
W=

2
mna(ny +ny + 1)
SLENTTTTI

w1 — Iy

Z:i

(&)

This may be illustrated by an example. Let us suppose that in one study the
researcher found n; = 12, n, = 15, and w; = 155. Test the hypothesis that the two
populations are not equal.

Let a = 0.05.

The hypotheses are formulated as follows:

Hj: The two population distributions are same.

H,: The two population distributions are not same.

It is obviously a two-tail test. Therefore, a/2 = 0.05/2 = 0.025 7y 9o5 = 1.96.
Reject Hy if z. > 1.96 or z. < —1.96.

12(12+15+1)
2
. \/12x15(12+15—|—1) 5040
1 =

B = = 168

V420 = 20.494

12 12
155 — 168  —13
20494 20494~ 063

This z value is larger than —1.96. It falls in the acceptance region of H,.
Therefore, the null hypothesis H, is not rejected. This implies that the two popu-
lation distributions are same. These are not different.
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9.2.2 The Spearman Rank Correlation

The Spearman rank correlation or simply Spearman correlation is a measure of the
degree to which two numerical variables are monotonically related or associated.
The Spearman correlation is used both as a measure of the degree of monotonic
association and as a test statistic to test the hypothesis of monotonic association.
Since variables that are linearly associated are necessarily also monotonically
related, the spearman correlation may be used in situations in which the Pearson
correlation (a measure of linear association) is used. The values and interpretations
of the two correlations are essentially the same when the actual relation is linear.
The spearman correlation is defined by the following formula:

6> d?
re=1-— 72 !
n(n? —1)
where
d; difference of ranks of the ith pair of observation,
n  no. of pairs of observations.

The values of the correlations may lie between —1 and +1 (—1 < r; < +1). The
sign indicates the kind of relationships. A positive value indicates agreement
between the rankings in the same direction, i.e., high ranks in one series tend to go
with high ranks in the second. A negative sign indicates the reverse.

The calculation of the spearman correlation is simple. Suppose, there are two
variables x and y. First, reduce the x scores to ranks. Second, reduce the y scores to
ranks. Third, calculate the difference (d;) between the pairs of the scores. Finally,
use the formula given above to calculate the spearman correlation (r).

For testing the hypothesis of association between two variables, the calculated
correlation (ry) is converted to ¢ value and 7 test can be carried out as learnt earlier.
The conversion may be done using the following formula:

Based on the result of the 7 test, a decision is taken as either to reject or not to
reject the null hypothesis. The null hypothesis would state that there is no associ-
ation between the two variables (Table 9.7).
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Table 9.7 Scores of X and Y

Example 4

195
by y Rank x |Ranky |d; =Rank x — Rank y &
13 |15 (2 4 -2 4
14 |12 |3 2 1 1
15 |13 |4 3 1 1
16 |19 |5 6 -1 1
19 |20 |7 7 0 0
17 |16 |6 5 1 1
11 (10 |1 1 0 0
Total 8

., 6Xd
e n(n? —1)
_1 6 %8

T 7(49-1)
B 48

T 7 %48
= 0.857

Hy: py = 0; (p; = population spearman correlation between the two populations)

H;:ps>0
Use o = 0.05.
Now,

=)

266
=0.857 « V18.797
= 0.857 + 4.336
=3.716
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From the 1 table, the critical value of # = 1.943 for o 0.05 and df 6 (7 — 1 = 6).
The calculated ¢ value (3.716) is larger than the critical 7 value (1.943) and hence it
falls on the rejection region. Therefore, the null hypothesis is rejected. This means
that there is significant association between the two populations.

Regarding corrected rank order correlation, see Xycoon (2009).

9.3 Nonparametric Method in Analysis of Variance

Analysis of variance (one way) can be carried out by one of the nonparametric
methods. The particular method is Kruskal-Wallis Test. The test is named after
William Kruskal and W. Allen Wallis. It is a nonparametric test and it does not
assume a normal population, unlike the analogous one-way analysis of variance.
However, it assumes an identically shaped population.

The test involves ranking of all the data from all the groups together. The lowest
value is assigned rank 1, next lowest value is assigned rank 2, and the highest value
is assigned the rank of N (the total number of sample). If there is any tie, assign the
average of the ranks they would have received had they not been tied.

After performing the transformation of the raw data to the ranks as stated above,
the Kruska—Wallis test statistic K is calculated. The test statistic K is approximately
followed the chi-square distribution. Then hypotheses are formulated as usual. The
null hypothesis is “there is no difference between the mean ranks of the groups.”
This would mean that there is no difference between the means of the groups.

In calculating the test statistic K, different authors have suggested different
formulae. But the one shown here seems to be easy and familiar. The procedure is
as follows:

1. Calculate the sum of squares of the ranks of the data of the groups in the same
way as was done in the case of one-way analysis of variance.
2. Next, calculate the test statistic K from the formula.

SSr
NN+1)/12

3. Then compare this test K value with the critical chi-square from the table with
appropriate o value and degrees of freedom. Reject null hypothesis if K > xiﬁdf

Example 5
Incomes ($/month) of four groups of people are shown in the following table. Use
Kruskal-Willis rank test to see if there is difference between the means of the
incomes of four groups of people.

The raw data as well as the ranks of the combined data of all the four groups are
shown in the table.
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Raw data (group) Rank data (group)
1 2 3 4 1 2 3 4 Total
495 500 550 600 8.0 12.0 23.5 26.5
490 510 545 625 5.5 15.0 22.0 33.0
475 495 540 630 2.0 8.0 21.0 34.5
498 515 550 622 10.0 16.5 23.5 32.0
475 520 565 615 2.0 18.5 25.0 30.0
489 528 600 660 4.0 20.0 26.5 37.0
501 495 610 630 14.0 8.0 29.0 34.5
500 475 620 640 12.0 2.0 29.0 36.0
515 490 599 16.5 5.5 26.0
520 500 18.5 12.0
Total 92.5 117.5 225.5 263.5 703
Let SSr be sum of squares of ranks. Then
(92.5)%  (117.5)*  (225.5)*  (263.5)* (703)
SSr = + —
10 10 9 8 37
= 3425.64
Krustal-Wallis test statistic
SSr
K=— """
N(N+1)/12
3425.64
3737+ 1)/12
3425.64
BETUAT Akt

Degree of Freedom (df) = no. of groups—1 =4 —1=3
Hypotheses are formulated as follows:

Hy: There is no difference between groups (all group rank means are same)

H,: There is difference between groups (all group rank means are not same).

From the table we find ¥?) 053 = 7.81.
The calculated chi-square value (29.237) being larger than the table value (7.81),
the null hypothesis falls in the rejection region of H. Therefore, the null hypothesis
is rejected. This means that the all rank means are not the same. This further means
that the group means are different.
The same conclusion will be drawn if we run the test using the technique of
analysis of variance.
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Yet, another technique is available for testing the hypothesis involving rank data.
This is rank transformation. The K statistic can be approximately transformed into
the F test statistic in the following way:

K(g—1)

F=w—1-0/v-9

g the number of groups,
N total no. of observations,
F, F statistic of the ranks.

In our example,

29.237(4 — 1)
(37 —1-129.237)/(37 — 4)
= 428.07

F, =

Df for this F, in this example are 3.33. From the F table, Fp 5333 = 2.92.
Therefore, the calculated F, value is larger than the table critical F value. Therefore,
the null hypothesis is rejected.

A question may arise if both the techniques provide the same conclusion, then
which technique is to be used. The answer to this question may be summarized in
the following way.

(a) If the calculated test statistic value is marginal meaning that it is closer to the
critical value (table value), then both the techniques may be used and the
results may be reviewed as to which one is to be used depending on the exact
situation of the problem.

(b) If the value of the calculated test statistic is too high as compared to the critical
value (table), then any one test may be used. But if the nonparametric test is
carried out, it may avoid the influence of the outliers.

Problems

9.1. Five photocopy machines of model A and eight photocopy machines of model
B were randomly selected to determine the continuous service hours until they
required rest. The following are the results:

Model A: 24, 20, 23, 22, 18
Model B: 21, 19, 16, 25, 26, 17, 28, 30

Based on Wilcoxon rank test, calculate the probability of the service hours of
the two machines being equal.

9.2. In arandom sample of five courses the given grading and expected grading are
as follows:
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Given grading: 2.8 3.7 40 3.6 38

Expected grading: 2.6 2.9 33 32 3.1
Use Wilcoxon rank test to test the following:

(a) Is the expected grading less than the given grading?
(b) Is the given grading greater than the expected grading?
(c) Are the two grading equal? Use 5 % significance level.

9.3 Use the data given in problem 9.2 and answer the following:

(a) Calculate the Spearman rank correlation coefficient.
(b) Is there positive correlation between the two grading?
(c) Is the correlation between the two gradings significant?
In all the cases use 5 % significance level.
9.4 Ten students in AIT were selected at random. The purpose was to examine if
there is a correlation between the undergraduate scores and first term scores of
the students in AIT. The following were their scores.

Undergraduate scores First term scores in AIT
56 60
70 75
50 60
65 64
90 92
49 45
63 59
69 69
71 81
81 85

(a) Calculate the rank correlation coefficient.
(b) Test at 5 % level of significance if the correlation coefficient is
significant.

9.5 Distinguish between Spearman rank correlation coefficient and Pearson cor-
relation coefficient.

9.6 The following numbers represent numbers of hours taken by two groups of
people to complete a work. The two sample groups of people are comparable
in performing the works.
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Group 1:
15,15,12,10,11,13,18,17, 15,12, 18, 20,22, 19, 15,17, 20, 19, 18, 20.
14,18,15,20, 16, 14,19,20, 15,17, 14,12,10,17,19, 19, 18, 13, 19, 20.
Group 2:

Run the median test and conclude if the two works require different hours to
complete the work.

Hours of study and grade points in respect of 8 students in a certain course are
as follows:

Hours of study Grade points
5.0 3.8
4.0 3.7
4.5 3.5
6.0 4.0
5.5 35
29 39
3.8 3.6
5.3 3.0

9.8

9.9

Test if there is relationship between hours of study and grade points, using
rank correlation coefficient.
Two groups of students randomly drawn from a larger group were assigned
two methods of instruction in a particular course. In a combined test the
following were their scores:

Group 1: (n = 12)
180,193,142, 173,155,186, 192,149,169, 173,182, 183

189, 148,200, 190, 185, 177, 189, 156, 188,171, 191,299, 178, 189, 162.

Group 2: (n = 15)
Run the median test and conclude if there is any difference in the results of the
two methods of instruction. (Determine the combined median. Count the
frequencies below and above the combined median in each group. Prepare the
r X ¢ table. Run the chi-square test. Drop any observation falling exactly on the
combined median).
A group of 10 students were selected at random and their scores on assignment
and written examination were recorded as shown below:
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Student Assignment scores Written exam scores
1 75 88
2 60 72
3 88 100
4 88 90
5 98 70
6 99 100
7 75 77
8 79 85
9 77 87
10 90 86

Compute the Spearman rank correlation coefficient and test if there is a
relationship between the two types of tasks. Use 0.05 level of significance.

Answers

9.1. 0.262

9.2. (a) Yes; (b) Yes; (c) Yes

9.3. (a) 0.70; (b) No; (c) No

9.4. (a) 0.96 (b) Significant

9.5. Require similar time

9.6. Yes, there is a relationship

9.7. No difference

9.8. 0.327; no significant relationship

Reference

Xycoon: Statistics—Econometrics—Forecasting, Office of Research Development and Education,
http://www.xycoon.com (30 Sept 2009)


http://www.xycoon.com

Chapter 10
Correlation

Abstract The concept of correlation always refers to the linear relationship
between two variables and uses their joint distribution. It is shown how to interpret
the correlation coefficient. Through the use of examples, it is demonstrated how to
formulate the hypotheses concerning correlation, interpretation, and draw
conclusions.

Keywords Correlation - Linear relationship - Hypothesis formulation - Testing

We use correlation analysis to study the linear relationship between two variables. It
is always advisable to make a plot of the variables and get an idea of the possibility
of the linear relationship. For example, if two variables x and y are associated in the
form of x* + y* = a?, where “a” is a constant, the relationship between x and y is
perfect. The relationship is circular and not linear (Fig. 10.1). But if we consider the
concept of “correlation,” which measures the linear relationship, the relationship
would come out to be zero indicating no relationship. So it is important to
remember that the concept of “correlation” refers always to linear relationship.

In correlation analysis we are concerned with the joint distribution of x and y. If
there is a linear relationship between x and y, where x and y are random variables,
the joint observations on pairs of x and y will tend to be clustered around a straight
line. It is immaterial to think which set of observations represent x and which set of
observations represent y.

In order to avoid the rigorous mathematical derivations, we want to state the
computational formulae only. As usual, inferential statistics deal with inferences
regarding the population correlation which is estimated from the sample correlation.
Therefore, we set two sets of formulae, one for the population and the other for the
sample.

© Springer Science+Business Media Singapore 2016 203
A.Q. Miah, Applied Statistics for Social and Management Sciences,
DOI 10.1007/978-981-10-0401-8_10
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Fig. 10.1 Circular correlation Y
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If X and Y are a pair of random variables with mean p, and p, and variances o2
and 65, then the population correlation coefficient p between X and Y is given as

Cov(X,Y)

E{(X —p)(Y — )}

oo - wr)

The sample correlation coefficient is given as

{(1/(n=1)} > xi —x) (i =)
5.5,
> (i =%)(vi —y)
S w-2S0-57)
> Xy — nxy
VIS —n®) (v —ny?)}

Interpretation of the correlation coefficient is important. The correlation coeffi-
cient may lie between —1 and +1. In other words,

p=corr(X,Y)=

—1<p< +1

A positive correlation means larger values of x are associated with larger values
of y and smaller values of x are associated with smaller values of y. A negative
correlation means larger values of x are associated with smaller values of y and
smaller values of x are associated with larger values of y.
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The interpretation of the correlation coefficient may be summarized as follows:

(a) a correlation coefficient of —1 implies perfect negative relationship (Fig. 10.2).

(b) a correlation coefficient of +1 implies perfect positive relationship (Fig. 10.3).

(c) a correlation coefficient of zero implies no linear relationship (Fig. 10.4).

(d) the larger the absolute value of the correlation coefficient, the stronger the
linear relationship between the random variables.

Fig. 10.2 Perfect negative Y
correlation
0 X
Fig. 10.3 Perfect positive Y’
correlation

Fig. 10.4 No correlation Y
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The sample correlation coefficient is quite useful. It measures the strength of
linear relationship between two variables in a sample. But the sample correlation
coefficient can also be used to test the hypothesis of no relationship between a pair
of random variables in the population. To a researcher, this test is of great
importance. In almost all practical cases, a value of r other than zero in absolute
term will be obtained. What we want to study from the test is to see if the popu-
lation correlation coefficient is significantly different from zero. The test can be
accomplished by use of the #-test. It can be shown that the random variable

has a student’s z-distribution with n — 2 degrees of freedom.
The test procedure can be carried out in the following manner:

(a) To test if the correlation coefficient is greater than zero.
The hypotheses are

H():p:()
H,;:p>0

Reject H if calculated ¢ > 1, 5.
(b) To test if the correlation coefficient is less than zero.
The hypotheses are

Hy: p = 0
H,: p<0

Reject H if calc. t < 1, 5.
(¢) To test if there the correlation coefficient is other than zero.
The hypotheses are
H(): p = 0
Hy:p#0
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Reject Hy if calc. t < —typ 2 OF t > typnno

Example 1
Students’ scores in examination and assignment are assumed to be correlated.
A random sample of 10 students had the following scores:

Examination
81 62 74 78 93 69 72 83 90 84
76 71 69 76 87 62 80 75 92 79
Assignment

(a) Find the sample correlation coefficient.
(b) Test at 5 % significance level the hypothesis of no linear association between
examination and assignment.

Solution:

(a) Here examination scores are taken as x scores and assignment scores are taken
as y scores. From the data we calculate the following:

inyi =60,862; x=78.6; y=76.7;n=10
D =62,604; Y 37 =59,497

> xiyi — nxy
VIS K —n?)(Xy7 — ny?)}
60,862 — 10 % 78.6 % 76.7
\/{62,604 — 10 % (78.6)2}{59,497 —10% (76.7)2}

60,862 — 60,286.2
V/{(62,604 — 61,779.6)(59,497 — 58,828.9)}
575.8
(824.4 % 668.1)
=0.776

r =
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(b) The hypotheses are formulated as follows:

H():p:()
Hi:p#0

{1 - (0.778)2}
_ 0776+ 2.828

0.631
=3.478

o = 0.05; a/2 = 0.025.

From table # g25.8 = 2.306; t. > # 025 3. Therefore, Hy is rejected. This means that
the population correlation coefficient between examination scores and assignment
scores is not zero. This can also be stated that the population correlation coefficient
between examination scores and assignment scores is significantly different from
zZero.

Example 2
In a market survey a random sample of eight textbooks sold during the year and the
sale prices are shown.

Sales 122 186 292 157 254 352 147 111
Price ($) 292 305 297 313 308 299 278 270

(a) Find the sample correlation between sales and price.

(b) Test at 5 % significance level the hypothesis of no linear association between
sales and price.

(c) Test at 5 % significance level if the correlation between sales and price is
greater than zero.

Solution:
(a) Here sales and price are taken as x and y scores, respectively. From the data we
can calculate the following:
X=202.6; y=12953; » xy;=482535 n=38
xF =381,743; y? = 698,916
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DXy — nxy

VIS —n?) (57 —n3?)}
482,535 — 8% 202.5 % 295.3

r =

\/[{381,743 ~ 8 (202.6)2}{698,916 ~ 8 (295.3)2}}

3913
 /{(381,743 — 328 374)(698,916 — 697,617)}
B 3913

/(53,369 x 1299)

= 0.470

(b) The hypotheses are formulated as follows:

Hy: p = 0
Hy:p#0
fo=—Y 2
-7
0.470,/(8 —2)
{1 - (0.470)2}

0470 % 2.449
T 0.883
= 1.304

o = 0.05; a/2 = 0.025.

From table 10.025,6 = 2.447

Calculated ¢ < table t. Therefore, Hj is not rejected. This means that correlation
between sales and price is not significantly different from zero. In other words, there
is no significant relationship between sales and price.

(c) The hypotheses are formulated as follows:

H():p:O
H;:p>0

Calculated r = 1.304 as worked out in (b) above. a = 0.05. From table
10,056 = 1.943. Therefore, calculated ¢ < table ¢. The null hypothesis Hy is, therefore,
not rejected. This means that the correlation between sales and price is not greater
than zero.



210 10 Correlation

Example 3
Land cost varies inversely with the distance from the city center. In a sample survey
in a city, the following data were recorded:

Distance (km) 1 2 4 8 15 20 25 30
Cost ($/m?) 100 80 70 60 50 40 30 25

(a) Calculate the sample correlation between distance and land cost.
(b) Test at 5 % significance level if the correlation between distance from the city
center and the land cost is less than zero.

From the data we can calculate the following figures:

X=13.13; y=5688; Y xy; =4070
> o =2235 )y =30525

> Xiyi — nxy

VA —n?) (357 —ny?)}
4070 — 8 % 13.13 * 56.88

\/{2235 8 (13.13)2}{30,525 . (56.88)2}
- —1904.68
- /{(855.82)(4642.32)}
—1904.68

T 1993.24
= —-0.956

r =

(b) The hypotheses are formulated as follows:

Hy: p = 0
H,: p<0
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ry/(n—2)
=7

_—0.956,/(8 —2)

.=

{1 - (=0.956)*}

 —0.956 % 2.449
T 0293
=799

o = 0.05. From table #4056 = —1.943.

211

Calculated ¢ < table ¢. Therefore, the null hypothesis Hj is rejected. This means
that the correlation between distance from the city center and the land cost is less

than zero.

Problems

10.1 A firm had the following profits and investment expenditures during the

period 1982-1990.

Year 1982 1984 1986 1988 1990
Profit 200 400 600 800 1000
($1000)

Investment 45 65 70 85 95
expenditure

($1000)

(a) Estimate the correlation coefficient between profit and investment expenditure.

(b) Test the significance of the correlation coefficient.

10.2 The following data pertain to selling prices and volume measured by the

number of pages of new statistics books:

Price ($) Number of pages
10 400
12 600
12 500
10 300
400

200
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Is there any correlation between price and number of pages for the statistics
books? Use 5 % level of significance.

10.3 Use the data in the following table, calculate the correlation coefficient and
test the relationship between sales volume and promotional expenses with
respect to a few products.

Product Sales volume Promotional expenses ($1000)
1 31 5
2 40 11
3 25 3
4 30 4
5 20 2
6 34 5

10.4 A researcher wanted to study if there was a relationship between GRE scores
and GPA scores of students. A random sample of eight students shows the
following scores:

GRE scores GPA scores
480 2.70
490 2.90
510 3.30
510 2.90
530 3.10
550 3.00
610 3.20
640 3.70

Calculate the correlation coefficient between GRE and GPA scores and test at
0.02 level of significance if the relationship is significant.

10.5 A student in statistics class wants to study if there is any relationship between
number of hours a student reads during the night preceding the examination
day, and the score he obtains in the said examination. He selects a random
sample of size 10 and finds the following results:

Number of hours read Scores
5.0 70
6.0 72
4.0 55
4.5 50
6.5 75

(continued)
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(continued)

Number of hours read Scores

2.0 75

3.0 62

7.0 69

7.0 65

5.0 80

Conduct the correlation test at 0.05 level of significance and conclude if there is
a significant correlation between hours of reading and scores.

10.6 In order to draw a demand curve, the unit prices and per capita consumptions
of a commodity were recorded for several periods as follows:

Unit price

75.4

68.0

62.8 50.4 414 38.6

Per capita consumption

18.3

20.6

21.9 244 20.4 25.0

Name the techniques that may be used to test if there is a significant relationship
between price and consumption. Do the test using any one. Use 5 % level of

significance.

10.7 An economist is interested in the production cost of fertilizer in an industry.
In four occasions he noted the following:

Production (000 tons)

Cost per ton ($)

3.0 40
24 50
2.6 55
5.5 30

Using the technique of linear correlation, test if there is a significant correlation
between production and cost. Use 98 % confidence level.

10.8 In pond water, dissolved oxygen content and temperature vary with depth.
The following data are taken from a research work conducted in an aqua-

culture pond in AIT (March 1993):



214 10 Correlation
Depth (cm) Dissolved oxygen (mg/L) Temperature (°C)

10 15 345

20 14 34.0

30 10 33.0

50 5 31.0

78 30.0

(a) Compute the correlation coefficients between depth and dissolved content as
well as between depth and temperature.
(b) Test at 2 % level of significance if the correlation coefficients are significant.

Answers

10.1 r, = 0.986; significant
10.2 r, = 0.79; not significant
10.3  ry = 0.91; significant

10.4 ry = 0.812; significant
10.5 r¢ = 0.165; not significant
10.6 r¢=-0.70; not significant
10.7 no significant relationship

10.8 (a) r,

= -0.963; —0.97; (b) both significant



Chapter 11
Simple Regression

Abstract A regression model is introduced. Basically, a simple regression model
deals with one dependent variable and one independent variable. The technique is
demonstrated to show how to formulate the hypotheses in a simple regression
model and tested. Setting the confidence intervals of the parameters as well as
checking the adequacy of a regression model is explained. It is demonstrated how to
calculate the Coefficient of Determination and interpret it. With the help of
examples it is shown how to transform data and convert a nonlinear model into a
linear model thus making it easy to use the basic concept of a simple regression.

Keywords Simple regression - Dependent and independent variables - Parameter
estimation - Coefficient of determination - Data transformation

In the correlation chapter we studied the relationship between two random variables
x and y. Correlation shows the direction as well as the strength of relationship. In
correlation the two variables are treated perfectly symmetrically. It is immaterial
which variable is treated as x and which variable is treated as y. This means that we
do not consider whether one variable is dependent on the other. In correlation, it is
not evident how change in response in one variable takes place as a result of a unit
change in the other variable.

Linear regression takes into account the dependency of one variable on one or
more other variable(s). Also it exhibits the change in the response of the dependent
variable as a result of a unit change in the independent variable(s). In other words,
regression analysis serves the model building purpose. In this chapter we shall
study the Simple Linear Regression Model. Multiple Regression Models will be
dealt with in the next chapter.

11.1 Simple Linear Regression Model

In Simple Linear Regression only one independent variable is considered. To
illustrate the concept, the yield and fertility of agricultural land may be cited as an
example. The more the fertility of land, the more is the yield. Here yield and fertility

© Springer Science+Business Media Singapore 2016 215
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are correlated. Yield depends on fertility and hence it is the dependent variable.
Fertility controls the yield. So fertility is an independent variable.

In the Simple Regression Model we are interested in the relationship between the
dependent variable (¥) and one independent variable (X). If the independent random
variable X takes a specific value x; and consequently the dependent variable Y takes
the value y;, the population regression model is expressed by the following:

Yi=o+BXite

where a and B are constants (parameters) and e; is a random variable with mean
equal to zero. In fact, e; is the error part which explains the variation in Y; not
explained by X;. Our concern now is to estimate the coefficients o and . The most
commonly used method of estimating o and f is the Least Square Estimation. What
we want to do is to find out a straight line through n pairs of observations (x;, y;),
(x2, ¥2), (3, ¥3), ... (x,, ¥,) in such a way that the sum of the squares of the
deviations from the regression line is the minimum.

If a and b are the estimates of o and B, then the regression line would assume the
form

yi=a+bx;+e

Therefore, the error part e; = y; — (a + bx;) and the square of the error part
e? = {y; — (a + bx;)}*. The principle in the Least Square Estimation is to minimize
this square summed up to all pairs of the observations. Thus, our purpose is to
minimize Ye?, i.e., Y {y — (a + bx;)}> Using this criterion and with the help of
calculus, it can be shown that the resulting estimates a and b are as follows:

2 =X)0i—Y)
> (5 —%)°

DX — nXy

Y - nx?

kg

XX

— bx

<l

a =
and the sample regression line of y on x is

y=a-+bx
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Example 1
An irrigation engineer wants to study the vertical temperature distribution in water
reservoirs. In a reservoir he records the following observations:

Depth (x cm) Temperature (y °C)
10 34.5
20 34.0
30 33.0
40 31.0
50 30.0
60 29.5
70 29.0
80 28.0
90 27.0
100 25.0

Find out the sample regression line showing the relationship between tempera-
ture and depth.

Solution:
From the data we can calculate the following quantities:

n=10; > x=550; Yy =30l

X =55; 5 =30.1
> xf =38,500; Yy =9145.5;
> xiyi = 15,725

Sxy - Z-xiyi - ”@
= 15,725 — 10 % 55 % 30.1
= —830

See = Zx,z — n¥*
= 38,500 — 10 * (55)°
= 8250
Sy
See
—830
~ 8250
= —0.1006
a=y—Dbx
=30.1 — (—0.1006) * 55
=35.633

b=
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The regression line is
y = 35.633 — 0.1006 x

11.2 Hypothesis Testing in Simple Linear Regression

Our interest in this section is to study the adequacy of the simple regression model.
This we want to do by testing the hypothesis about the model parameters and
constructing confidence intervals of the same. The important hypothesis is whether
the estimated parameter is significant. This could be also said that we want to test if
the estimated parameters are significantly different from zero. Thus, the hypotheses
are

B=0
B#0

The test procedure is carried out in a specified manner. The sum of squares (S,,,
of the dependent variable, i.e., the sum of the squares of the deviations from the
mean can be broken down into two parts—the regression sum of squares (SSR) and
error sum of squares (SSE). This may be stated in the following way:

SST = SSR + SSE
where,

SST = §,,
= Z i —3)°
=> yi—ny’

SSR = b x Sy,

b S )

and SSE = SST — SSR

The SSR and SSE divided by their appropriate degrees of freedom will give
respective Mean Squares. The degrees of freedom for SSR and SSE are 1 and n — 2
respectively. Therefore,

SSR

SSE

MSE =
S n—2
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Table 11.1 Analysis of variance

Source of Sum of squares | Degrees of Mean Fy
variation freedom squares
Regression SSR = bS,y 1 MSR MSR/MSE
Error or residual SSE =

Sy = bS,y n—2 MSE
Total Sy n—1

The test statistic for testing hypothesis formulated above is given by

MSR

Fo = ——r
%~ MSE

Reject Hy, if Fo > F,1,-2. It is advisable to prepare the ANOVA (analysis of
variance) table as shown (Table 11.1).

Example 2
For the temperature-depth problem, run a test for the significance of the coefficient.
Use 5 % significance level.

Solution:
The hypotheses are formulated as follows:

B=0
p#0
Sy = Z (i — y)z
=Y vy
—=9145.5 — 10 % (30.1)°
= 85.40
SSR = b * S,,
= (—0.1006) * (—830)
= 83.50
SSE = S,, — SSR
= 85.40 — 83.50
=1.90

Now, Fy = 347.92 and Fyps,1s = 5.32. Therefore, Fy > Fposs. The null
hypothesis Hy, is rejected. This means that the coefficient is not equal to zero at 5 %
level of significance (Table 11.2).
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Table 11.2 Analysis of variance

Source of variation Sum of squares Degrees of freedom Mean squares Fy
Regression 83.50 1 83.50 347.92
Error or residual 1.90 10-2=8 0.24

Total 85.40 10-1=9

11.3 Confidence Intervals of Parameters

The confidence intervals for the parameters o and B are quite useful. With the help of
these intervals, the quality of regression line can be judged. If o is the desired level of
significance, then the confidence interval for a and  (parameters) are given by

a—ty/20-2y/[MSE x {1/n+3* /S }]
<a<
a+typn2y/[MSEx* {1/n+%/S}]

and

b — lq/z,nfz\/[{lvgiEH

<B<
b +ta/2,n72\/|:{M§§E}:|

Example 3
For the temperature-depth problem, construct 95 % confidence intervals for the

population parameters.

Solution:

Here, o = 0.05 o/2 =0.025 n=10
10.025,8 = 2.306.

Confidence interval for a is given by

a—ty20-2v/ [MSE*{1/n+% /S, }]
<a<
a4ty 2/ [MSE*{1/n+% /S }]
= 35.633 — 2.306,/[0.24 x {1/10 + (55)2/8250}]
<a<
35.633 +2.306,/[0.24 * {1/10 + (55)2/8250}]
= 35.633 — 0.772 <0< 35.633 + 0.772
= 34.862 < . < 36.405
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Confidence interval for 8 is given by

b tss/[{MSEY]

<B<

b+t1/2,n—2\/[{N£§EH
=b— lo.ozsﬁsx/[{NEEH

<Ps<
= b+10.0258V HMSSEH

= —0.1006 — 2.306,/[{22}]

8250
<B<
—0.1006 +2.306/[{2241]

= —0.1006 — 0.0124 < B < — 0.1006 + 0.01214
= —0.1130< B < —0.0882

11.4 Adequacy of the Regression Model

In fitting a regression model, several assumptions are made. In parameter estima-
tion, it is assumed that the errors are uncorrelated random variables with mean zero
and constant variance. In hypothesis testing, it is assumed that the errors are nor-
mally distributed. It is also assumed that the order of the model is correct (first-order
polynomial, polynomial of degree two, etc.).

11.4.1 Residual Analysis to Test Uncorrelated Errors

The residuals are obtained by subtracting the predicted y observations based on
regression line from the corresponding individual y observations. The residuals are
plotted against the predicted y observations. By checking the plots it is possible to
identify if the residuals are uncorrelated or not.
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11.4.2 Residual Analysis to Test Normality

Normality of the residuals can also be checked by plotting of the residuals. The
frequency histogram of the residuals is constructed and a normal distribution curve
is superimposed on this. By comparing the frequency histogram and the normal
curve, it can be checked if the residuals are normally distributed.

11.4.3 Lack-of-Fit Test

Regression models are fitted with the experimental data in which the true rela-
tionship is not previously known. Therefore, it is necessary to check whether the
assumed model is correct. The check can be carried out with the help of the
Lack-of-Fit Test.

The test is carried out by partitioning the SSE into two—sum of squares due to
the pure error SSpe and sum of squares due to lack-of-fit SSlof. Thus,

SSE = SSpe + SSlof

First the sum of squares due to pure error SSpe is calculated and then sum of
squares due to lack-of-fit SSlof is calculated from

SSlof = SSE — SSpe

For calculation of SSpe, there must be repeated observations on y for at least one
level of x. The hypotheses to be tested are
Hy: The model adequately fits the data
H.: The model does not adequately fit the data

The technique is illustrated with the help of an example.

Example 4
Let the following be the pairs of observations from an experiment.

x 20 20 30 44 44 51 51 51 58 60
y: 24 29 32 49 47 57 57 60 63 6.5

Solution:

In this example, there are two, two and three repeated observations on y for levels of
x at 2.0, 4.4, and 5.1 respectively. We can calculate the following figures from the
data.
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X =429 y=483 > xiy =226.72

Su=» (xi—%)°=1935
Sy=>_ (y—y)’=20.14
Sy = (=% —)
_ Cx) oy
n
= inyi — nxy
=1226.72 — 10 % 4.29 % 4.83
=226.72 — 207.21
=19.51
S
bh="2
S
1951
1935
= 1.0083

a = y —bxXx
=4.83 — 1.0083 % 4.29
=0.51

The regression line is y = 0.51 + 1.0083x

SSR = b * Sy,
= 1.0083 x 19.35
=19.51

The calculations for SSpe are shown in the following table (Table 11.3).
Thereafter the ANOVA table is constructed as follows (Table 11.4):
For Lack-of-Fit Test,

_ MSlof
~ MSpe
~0.105
~0.053
=1.98

0

From the table
Fo.0s5.44 = 6.39. Therefore, Fy < Fy0s5.4.4. Therefore, we do not reject Hy. This
means that the model describes the data adequately.



224 11 Simple Regression

Table 11.3 The SSpe

Level of x yi 3, i —y)* DF

2.0 24,29 2.65 0.125 2-1=1
44 4.9, 4.7 4.80 0.020 2-1=1
5.1 5.7,5.7, 6.0 5.80 0.060 3-1=2
Totals SSpe = 0.205 4

Table 11.4 Analysis of variance

Source of variation Sum of squares Degrees of freedom Mean squares Fy
Regression 19.51 1 19.51 246.96
Residual 0.63 8 0.079 1.98
(lack of fit) 0.42 4 0.105

(pure error) 0.21 4 0.053

Total 20.14 9

11.5 Coefficient of Determination

The coefficient of determination is used to measure the adequacy of the regression
model. It is defined by

RZ_SSR_l_SS_E
~ SST SST

Its value lies between zero and one, i.e.,
0<R*<1

R? refers to the variability in the data explained by the regression model. In the
previous example, R* = SSR/SST = 19.51/20.14 = 0.9687. This means 96.87 % of
the variability in the data is accounted for by the regression model.

If more and more terms are added to the regression model, R* will generally
increase. But this does not always mean that the model fit is better with the addi-
tional terms. The fit will be better if the mean square error is reduced. This implies
larger values of F.
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11.6 Data Transformation

Sometimes theory specifies a nonlinear model. It is possible to transform the
nonlinear model to linear one and then the Least Square Technique can be applied
to estimate the model parameters. As an example, the length—weight relationship of
fish usually or always can adequately be represented by

w=al

where w = weight, [ = length; and a and b are coefficients to be estimated. Taking
logarithm of both sides we can get

logw = loga + b * log(l),
and this is equivalent to
y=d +bx

First the sample weights w; are to be transformed into log w; to be represented by
v, and sample lengths /; are to be transformed into log (/;) to be represented by
x. Then the estimated coefficient b of x is the same as the exponent b of . From the
regression, a' will be known. So the coefficient a can be computed from the known
transformation log a = a'.

Example 5§
In an experiment dealing with length—weight relationship of a particular fish spe-
cies, the following observations were recorded from a random sample of 4.

weight (wg): 0.13 1.8 13 90
Length (mm): 20 50 100 200

Determine the coefficients a and b of the theoretical model

w=al’

Solution:
Here we need to estimate the model already specified. In this prescribed model we
need logarithmic transformation. The calculations are shown hereafter (Table 11.5).

Table 11.5 Model estimates

w(2) [ (mm) y (log w) x (log )
0.13 20 —0.886 1.301
1.80 50 0.255 1.699
13.00 100 1.114 2.000
90.00 200 1.954 2.301
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From these data we can calculate the following figures:
X = 1.825; 3 = 0.6093; ) x;y; = 6.005

Sy = inyi — nxy
= 6.005 — 4 x 1.825 % 0.6093
= 6.005 — 4.448
= 1.557
Sy = 0.548
) S
Six
1.557
T 0.548
=2.841
d=y—bxx
= 0.6093 — 2.841 * 1.825
= 0.6093 — 5.185
= —4.5757
loga = d’
= —4.5757

Taking antilog we get a = 2.6564 x 107>
Therefore, we get the estimated model

w = 2.6564 x 1075 (1)**!

For this model too hypothesis for significance of the coefficients can be tested,
their confidence levels can be constructed, coefficient of determination can be
computed, and lack of fit can be tested in the usual process.

The data transformation technique can be applied in a variety of problems.
Calculation of population growth rate and forecasting are good examples. The
multiplicative and exponential population forecasting model is P, = Py (1 + r)",
where P, is the population of the base year, P, is the population at the end of
n years, r is the growth rate, and n is the number of years. Let us now see how the
simple regression can be used after data transformation and how the growth rate can
be calculated. For generalization purpose, we shall use ¢ for n indicating time in the
above model.

P =Py(l+7)
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Taking logarithm of both sides we get,

logP; = log{Py(1+r)'}
= logPy + log(1 +r)’
= logPy+1xlog(1+4r)
= logPy +log(1+r) = ¢

Setting
Y = logP;,
A =logPyand
B =log(l+r),
we get,
y=A+Bt

which is linear. Now suppose, in a regression analysis, based on several years
population data, we have the following model equation:

Y =2.36412 4+ 0.02952t
Here, B =0.02952
= log(1+r) = 0.02952
= 1+r = anti - log(0.02952)
=1.0703
= r=1.0703 -1
=0.0703
=7.03%

This growth rate, if assumed to remain steady, can be used in the original model
and forecast of population for some future period can be made.

11.7 Interpretation of Simple Regression Model

In practice, regression models are built based on several pairs of observations.
Manual computations in such cases are extremely difficult and time-consuming.
With the advent of computers, it is also not necessary to do the manual calculations.
Software packages such as SPSS are used and easily the model building purpose is
accomplished. What is the most important of the regression models is, therefore, the
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interpretation. Decisions are based on the interpretation of the regression models.
As such it is desirable to deal with this aspect more specifically.

Problems

11.1 In a pilot study of a new fertilizer, four standard plots were selected at
random. The following results were noted:

Fertilizer (Ibs) Yield (Ibs)
1 70
2 70
3 80
4 100

(a) Establish the sample regression model.

(b) Predict the yield if 5 lbs of fertilizer is used.

11.2 While examining the relationship between water depth and dissolved oxygen
concentration in a pond, an aquaculturist recorded the following the

observations:
Depth (cm) 10 20 30 40 50 60 70 80 90 100
DO (mg/L) 15 4 |13 2 |10 8 5 4 2 2

(a) Establish the sample regression.

(b) Estimate the DO concentration at 105 cm depth

(c) Test if the coefficient is significant (use 5 % level of significance).
(d) Find the 95 % confidence interval of the constant term.

(e) Find the 95 % confidence interval of the coefficient.

(f) Find the coefficient of determination.

11.3 The demand (y) for a commodity and the corresponding price (x) are shown

as follows:
Price (x) 45 40 35 32 30 25 24 23 22 20
Demand (y) 500 550 560 580 585 600 610 620 650 670

(a) Based on the data estimate the demand function

Y = AX"¢"(e is the error term)
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(b) How much variability in demand is explained by the price of the
commodity?
(c) Estimate the demand if the price is 60 and 15?
11.4 An investigator wants to study the percentage of urban population based on

percentage of literacy. He knows that percentage of urban population of a
country depends on its percentage of literacy. In a study of 50 country
observations the simple linear regression analysis shows the following results.

Multiple R

R square

0.75705
0.57313

Standard Error 10.43147

Analysis of variance

Source of variation Sum of squares DF Mean square F Sig. of F
Regression 7012.75950 1 7012.75950 64.44623 0.0000
Residual 5223.15170 48 108.81566

Total 12,235.91120

Variables in the equation

Variable B SE B T Sig T

% literacy 1.227722 0.152933 8.028 0.0000
(Constant) —1.946212 3.103777 —-0.627 0.5336

11.5

Dependent variable is percent urban population.

(a) Write down the sample regression equation.
(b) Write down the interpretations.

Available number of scientists and engineers in a country depends on its
population size. A simple linear regression based on 24 country studies
shows the following results.

Multiple R 0.74246
R square 0.55124
Standard Error 1523456.611

Analysis of variance

Source of variation Sum of squares DF Mean square F Sig. of F
Regression 6272 (exp 10) 1 6272 (exp 10) 27.02396 0.0000
Residual 5106 (exp 10) 22 232 (exp 10)

Total 11378 (exp 10) 23
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Variables in the equation

Variable B SE B T Sig T
Population 5365.866 1032.20 5.198 0.0000
(Constant) 454201.617 370257.74 1.227 0.2329

Dependent variable is available number of scientists and engineers.
Population is in million.

(a) Write down the sample regression equation.
(b) Use this model and estimate the number of scientists and engineers of
your country.

11.6 Population of Bangladesh figures during several census periods is shown.

Census year Population
1901 28,972,786
1911 31,555,056
1921 33,254,096
1931 35,604,170
1941 41,997,297
1951 44,165,740
1961 55,222,663
1974 76,398,000
1981 89,912,000

Calculate the growth rate of population of Bangladesh during 1901-1981.
11.7 The Gross National Incomes per capita ($) for India and Pakistan for several
years are shown in the following table:

Year India Pakistan
1978 270 260
1979 250 270
1980 250 280
1981 260 290
1982 270 290
1983 280 300
1984 280 310
1985 300 320
1986 300 330
1987 300 340
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(a) Calculate the growth rates of India and Pakistan and compare these.
(b) Project the per capita gross national income of India and Pakistan
during 1995.

11.8 The Gross Domestic Investment as percentage of gross domestic product for
Thailand and Singapore for few years is shown in the following table:

Year Singapore Thailand
1972 414 21.7
1974 453 26.6
1976 40.8 24.0
1979 434 27.2
1981 46.3 26.3
1983 479 259
1985 42.5 24.0
1987 39.4 23.8

(a) Calculate the growth rates for Singapore and Thailand during the
periods 1972-1987.

(b) Calculate the growth rates of Singapore and Thailand during
1972-1983 and compare these growth rates with those calculated for the
period 1972—-1987 in (a).

Answers

11.1 (a) y =55 + 10x, i.e.; yield = 55 + 10 (fertilizer quantity)
(b) 105
11.2 (a) DO = 17.467 — 0.1630 (depth)
(b) 0.352 mg/L; (c) significant
(c) 16.695 < a < 18.239
(d) (—0.1837) < ? < (-0.1423)
(e) 0.9766
11.3 (a) y = 1650.89x 03963
(b) 92.16 %; (c) 471; 720
11.4 (a) Urban Population (%)
=—1.946212 + 1.227722 (% literacy)
11.5 (a) No. of Scientists and Engineers
=454,201.617 + 5365.866 (Population million)
11.6 1.39 %
11.7 (a) India = 2.08 %; Pakistan = 2.90 %; (b) India = 354; Pakistan = 427
11.8 (a) Singapore = —0.03 % (not good estimate);
Pakistan = —0.22 % (not good estimate);
(b) Singapore = 1.09 %; Pakistan = 1.26 %



Chapter 12
Multiple Regression

Abstract A multiple regression model deals with one dependent variable and two
or more independent variables. A very important feature of a multiple regression
model is interpretation. It is demonstrated and explained here how to use a cate-
gorical variable in a regression model by use of dummy variables. A useful feature
of a regression model is prediction/forecasting. It is demonstrated through exam-
ples. The technique of how to transform nonlinear relationships into linear rela-
tionships is also explained, thus making it suitable for use of the basic concept of
linear regression models in such cases.

Keywords Multiple regression model - Interpretation - Prediction/forecasting -
Dummy variables - Other regression model

12.1 Multiple Regression Model

In Chap. 11 we studied the simple linear regression. In simple linear regression model
one dependent variable and only one independent variable are involved. There we
studied the influence of the independent variable on the dependent variable. In
practice, there are several situations where more than one independent variable makes
influences on the dependent variable. In such situations we need to study the
simultaneous influences of all the independent variables on the dependent variables.

Let us take the example of household income. It may depend on educational
level of the household head, length of service in a job, income of other members,
income from enterprises, income from shares, and a few other variables. Multiple
regression deals with such problems, i.e., problems dealing with the simultaneous
influences of several (more than one) independent variables on a single dependent
variable.

The general regression model is

Y:B0+B1X1+B2X2+B3X3+ +Bka+€
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If (vi, X110, X215 X315 -2 Xk1)s (V25 X125 X225 X325 +- 05 Xi2)s (V3 X13, X235 X33, -5 Xg3), -
are the sets of sample observations, a is an estimator of B, and by, by, b3, ..., by are
the estimators of By, B, B3, ..., Pr, respectively, then the model assumes the form

yi=a+bix;+byxy+bsxz+ - +bxx+e;
Therefore, the error term is
e = {yi — (a—i—blxl +byxs +b3xzs+ - -- +bkxk)}

and the square of the error part is

eiz = {yi — (a +bi1x1 +byxs +b3xs+ --- +bkxk)}2

The principle of least square estimation is to sum up all the squares of these error
parts across all sets of observations and minimize these sums of squares with
respect to the coefficients a, by, by, b3, ..., by.

In the case of simple linear regression we used two simple expressions to cal-
culate the values of a and b. But in multiple regression when several independent
variables are involved, it becomes extremely difficult to calculate the values of a,
by, by, b3, ..., by manually. Fortunately, computerization has made this task easy
and we do not need to do the computation manually. For this reason, derivations of
the computation formulae are avoided here. However, one important criterion that

must be kept in mind is that the computed values of a, by, by, b3, ..., by are based on
the least square estimation. Computers compute these coefficients using the matrix
algebra.

In the computer outputs, the statistics for testing the significance of the regres-
sion such as

Ho: By =Py =P3=-=pB =0
H,: B; # 0 for at least one j.

are available. Also available are the statistics to test the individual regression
coefficients such as

H,:B; #0
Usually, standard errors of the individual coefficients are provided along with the

desired confidence levels. The coefficient of determination R* can also be obtained
from the computer output.
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12.2 Interpretation

It is quite important to interpret the multiple regression analysis produced from a
computer run. The basic idea of the meaning of the regression model/equation and
the various coefficients along with their statistics is of utmost importance. We must
see that we are able to use the regression equation judicially and guard against
misinterpretation.

The R* as usual, will mean the proportion of the variability of the dependent
variable explained by the set of the independent variables. The F-value tells us the
adequacy of the regression model as a whole. The #-values and the corresponding
significance levels indicate the statistics to test the null hypothesis of the individual
coefficients (Hy: a = 0; b; = 0). Let the sample regression equation be

y=a+bix;+byx +b3xzs+ -+ + bpxy

Here,

a intercept on the y-axis. If all x’s assume the value of zero, y will be equal to a

b, magnitude of the change in y for a unit change in x;. It is the rate of change of
y with respect to x;, keeping all other explanatory variables constant (partial
differentiation)

b, magnitude of the change in y for a unit change in x,. It is the rate of change of
y with respect to x,, keeping all other explanatory variables constant (partial
differentiation)

b, magnitude of the change in y for a unit change in x;. It is the rate of change of
y with respect to x;, keeping all other explanatory variables constant (partial
differentiation)

The change in y resulting from any amount of change in x; (not unit change) is
given by

Ay:bj*AXj

If all the x’s change, then the change in y is the sum of the changes in x’s. This
means

Ay = b1 Ax) + Dy Axy + b3Axs + - -+ + DrAxy

12.3 Prediction

A regression model shows the relationship between the dependent variable and a set
of independent variables. Once the model is established for a particular phe-
nomenon, it can be used to predict the value of the dependent variable for other sets
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of values of the independent variables. However, when the regression model is used
for some important forecasting purpose, the problems of multicollinearity,
homoscedasticity/heteroscedasticity, and autocorrelation will have to be checked.
These topics are not discussed here.

12.4 Use of Dummy Variables

Categorical data can also be used in regression analysis. In this case a dummy
variable is to be created. A dummy variable may assume two values only—zero and
one. Suppose we want to see the influence of sex characteristics in a regression
analysis. Sex has two values, male and female. The task can be carried out creating
two dummy variables. One dummy variable could be D; with values “1”, if it is a
case of male and “0” otherwise. The other dummy variable could be D, with values
“17, if it is a case of female and “0” otherwise.

12.5 Other Regression Models

What we have studied above are linear models. These models are characterized by
X’s. No polynomial or fractional power of X’s is involved. Also, no interaction
terms such as X;X, are included. But models involving polynomial or fractional
powers as well as with interaction terms are encountered. Regression models can be
applied in some of these situations. One example of a polynomial model is yield of
a crop, say paddy. Yield depends on fertilizer. The more the fertilizer used, the
more the yield is. But this happens up to a certain limit only. Beyond that, if more
fertilizer is used, the yield is reduced. This phenomenon may be represented by a
model of polynomial degree two. Thus,

Y =a+b X +bX?
In order to estimate the parameters, we need to define a set of new variables as

X =X
X, = X?

Therefore, we get the model as an ordinary multiple regression as

Y=a+bXi+bX,
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Let us have an illustration. An experiment with various quantities of fertilizer
resulted in the following regression:

Y =30+27.25X; +4.16X;

where Y is the yield, X is the quantity of fertilizer, and X; is equal to square of X. If
the fertilizer is represented by X, then the regression equation becomes

Y =30+27.25X — 4.16X>

It can be shown with the help of calculus that maximum yield results when
X = 3.28. The yield increases with the increase of fertilizer so long as it does not
exceed 3.28 units. If the quantity of fertilizer is increased beyond 3.28, the yield
decreases.

In a similar way the following nonlinear models can be fitted using multiple
regression:

Y =a+bX+bX*+b:X+ - + Xt

define as: X; =X

X, =X?
X; =X?
X; = x*

so that
Y=a+bXi+0:X0+b03X3+ - + b Xy
Another form of a nonlinear model is
Y=a+b/X

defined as X; = 1/X
so that

Y =a+b1X;

One important application of nonlinear model which is estimated using multiple
regression technique is Cobb-Douglas production function of the type:

Y = al’' K™
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where Y = output, L = labor input, and K = capital input. If we take logarithm of
both sides, we can get

InY=Ina+b;InL+b,InK

Here define Y, =InY

a; =1Ina
X1 =InL
XQ =InK

so that the transformed model is
Yl = da] +b1X1 +b2X2

Suppose in a sample survey of some industries the following estimated model is
established:

InY =0.2852+0.8252InL+0.23191In K
This can be written as
InY =1n1.3340.8252InL+0.23191In K
which can easily be converted to the form
Y — .33]0-8252 02319

So it has been possible to estimate the parameters of the Cobb—Douglas pro-
duction function using least square regression.

There are certain situations where the effect of one independent variable (X)
depends on the level of another independent variable (X5). In this case, an inter-
action term (X;X,) may be used in the model (think of the multicollinearity also).

Consider the following illustration:

In testing the efficiency of a chemical plant producing nitric acid from ammonia,
the stack losses and several related variables were measured for 17 different days.
Then the following regression equation was fitted by least squares (Wonnacott and
Wonnacott 1990: 451):

Y =1.4+0.07X; +0.05X, 4 0.0025X, X,

where

Y stack loss (% of ammonia lost)

X, airflow, measured as deviation from the mean

X, temperature of cooling water, measured as deviation from the mean.
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Example 1
Throughput, raw water consumption, and wastewater treatment demand for ten
petrochemical industries are shown in the following table.

S. Throughput (000 Raw water consumption Wastewater treatment demand
No. TPY) (m>/day) (m*/day)
1 900 6500 852

2 700 4000 585

3 690 4250 600

4 800 4300 625

5 850 5000 750

6 250 1200 190

7 790 4200 636

8 125 650 85

9 1400 8500 1200

10 550 3100 400

Note 000TPY = thousand tons per year

Run a multiple regression analysis to see how wastewater treatment demand
depends on raw water consumption and throughput. Write down the regression
equation.

Solution
Analysis of variance
Sum of squares DF Mean squares

Regression 916,871.20 2 458,435.60
Residual 4010.90 7 572.99

Total 920,882.10 9

F =800.08 Significance F = 5.45 x 107°
Variables in the equation

Variable B SE B T Sig T
Throughput 0.3860 0.1162 3.3210 0.01275
Raw water consumption 0.0803 0.01794 4.4800 0.002868
(Constant) —15.0499 18.5034 —-0.8134 0.4428

R? = 0.9956

In this example the dependent variable is wastewater treatment demand. The
regression equation is

Wastewater treatment demand = —15.0499 + 0.3860 x throughput +
0.0803 x raw water consumption.

Units are same as in the input data.
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We note that 99.56 % of the variability in the dependent variable (wastewater
treatment demand) is explained by the two independent variables (throughput and
raw water consumption).

Significance level of the coefficients of the two independent variables is low (less
than 5 %, if we set the significance level in our analysis at 5 %). So these coeffi-
cients are significant. But the significance level of the constant term (intercept) is
not significant (it is 44.28 % much higher than 5 %). So it is not good.

Since the significance level of the constant term is too high, we can force the
regression equation to pass through zero by putting constant term = O in the
regression analysis. If we do this, the output is as follows:Analysis of variance

Sum of squares DF Mean squares
Regression 916,492.1 2 458,246.1
Residual 4390.0 8 548.7
Total 920,882.1 10
F = 835.08 Significance F = 4.7 x 107°
Variables in the equation
Variable B SE B T Sig T
Throughput 0.3419 0.1006 3.3976 0.009393
Raw water consumption 0.0848 0.0167 5.07056 0.000963

R* = 0.9952

In this case, significance level of the coefficients of both the independent vari-
ables is very low. This means that the coefficients are highly significant. In this case
99.52 % of the variability in the wastewater treatment demand is explained by the
two independent variables, throughput and raw water consumption.

Problems
A few problems are set hereafter. These are taken from practical studies and are part
of the computer outputs.

12.1 In order to predict the employment of developed countries, a multiple
regression based on several country observations for a few years produced the
following results.

Multiple R 0.96233
R? 0.92609
Standard error 0.04498
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Analysis of variance

Sum of squares DF Mean squares
Regression 1.77480 3 0.59160
Residual 0.14165 70 0.00202
Total 1.91645 73
F =1292.35604 Significance F' = 0.0000
Variables in the equation
Variable B SE B T Sig T
Industry share of GNP 1.911553 0.11120 17.191 0.0000
Service share of GNP 0.982751 0.069089 15.760 0.0000
Manufacturing of GNP —0.251779 0.069089 —3.644 0.0000
(Constant) —0.701170 0.049748 —14.093 0.0000

Dependent variable is employment measured as percentage of population.
Share is in percentage.

()
(b)
(©)

(d)
(e)
®

Write down the regression model.
Write down the interpretations.
Using the model, predict the employment in Korea, given

Industry share of GNP = 11.4 %
Service share of GNP = 45.7 %
Manufacturing share of GNP = 45.7 %

If the industry share of GNP is increased by one percent, what change
will take place in employment?

If the service share of GNP is decreased by one percent, what change
will take place in employment?

If the manufacturing share of GNP is increased by one percent, what
change will take place in employment?

12.2 In study of employment, a multiple regression based on several country
observations spread over a few years yielded the following results.

Multiple R~ 0.99673

R2

0.99347

Standard error 10.35127
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Analysis of variance

Sum of squares DF Mean squares

Regression 2,201,321.431 2 1,100,660.716
Residual 14,465.089 135 107.149
Total 2,215,786.52 137

F =10272.263 Significance F' = 0.0000
Variables in the equation

Variable B SE B T Sig T
Population (million) 0.472473 0.00332 142.119 0.0000
GNP/cap ($) 0.001192 0.00111 1.077 0.2832
(Constant) —6.429729 1.067992 —6.020 0.0000

Dependent variable is employment (million).

(a) Write down the sample regression equation.

(b) Estimate the employment in your country using this model.

(c) What will be the change in employment if population of a country
increases by 0.45 million and GNP/cap increases by $20?

12.3 A point of interest of an urban planner was to study the remittances sent by
slum dwellers in cities to their village homes. Using least square multiple
regression and based on several households of a number of slums in a city he
developed a “remittance model.” The following is a computer output.

Multiple R 0.58028
R? 0.33672
Standard error 306.50434

Analysis of variance

Sum of squares DF Mean squares
Regression 24.04 (exp 6) 7 3.43 (exp 6)
Residual 47.35 (exp 6) 504 0.09 (exp 6)
Total 71.39 (exp 6) 511
F =36.55199 Significance F' = 0.0000
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Variables in the equation
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Variable B SE B T Sig T

HH income (Taka) 0.060377 0.00838 7.203 0.0000
D, (dummy) 286.53479 32.87474 8.716 0.0000
HH member (no) 5.983047 7.38530 0.810 0.4182
Length of stay (years) —4.619365 2.45172 —1.884 0.0601
School going children (no) 8.382230 20.73630 0.404 0.6862
D, (dummy) 95.891214 32.32095 2.967 0.0032
Housing consumption (Tk) -0.221813 0.08963 —2.475 0.0137
(Constant) —44.337606 49.40786 -0.897 0.3699

Dependent variable is the amount of money (Tk) sending to village home per
month. Tk 33.00 = US $1.00. D, refers to family living at village. D, refers to
availability of property at village.

(a) Write down the sample regression equation.

(b) Interpret the coefficients.
(c) Estimate the remittance to be sent by a slum dweller if

(1) his HH income is Tk 2000,

(i) he has four persons in his family,
(iii) he has been staying in the city for 9 years,
(iv) he has three school going children,

(v) his housing consumption is Tk 500,
(vi) his family lives in the village, and
(vii) he has no property in the village.

12.4 The following is the partial computer output of a multiple regression analysis:

Multiple R 0.9460
R? 0.8949

Analysis of variance

Sum of squares DF Mean squares
Regression 3085.78 2 1542.89
Residual 364.22 7 52.03
Total 3450.00 9
F =36.55199 Significance F' = 0.0000

Variables in the equation
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Variable B SE B T Sig T

Price ($) -7.19 2.55 —2.81 0.0260
Income ($) 0.014 0.01 1.28 0.2400
Constant 111.69 23.50 4.75 0.0021

Dependent variable is quantity demanded.

(a) Write down the sample regression model.
(b) Calculate the F-—statistic.

(c) Predict the changes in quantity demanded, if price changes from $10 to
$5 and income changes from $1200 to $1500.

Answers

12.1 (a) Employment(% Population) = —0.701170 + 1.911553(Industry share of GNP)
+0.982751(Service share of GNP)

—0.251779(Manufac. /Industry share of GNP)

(b) () R*> = 0.92609; this means 92.61 variability of employment (%) is
explained by the three cited independent variables.

F value is high, significance of F is zero. This shows a very good
fitting of the model (at least one of the coefficients is not zero).

If industry share of GNP is increased by 1 %, employment (%) will
increase by 1.911553 (decrease will cause decrease).

If service share of GNP is increased by 1 %, employment (%) will
increase by 0.982751 (decrease will cause decrease)

If manufacturing/industry share of GNP is increased by 1 %,
employment (%) will be decrease by 0.251779 (decrease will cause

(i1)
(iii)
(iv)

)

(¢) 54.50; (d) 1.91 % increase; (e) 0.98 % decrease;

increase)

) 0.25 % decrease

12.2 (a) Employment (million) = —6.429729 + 0.472473 (Population) + 0.001192
(GNP/cap).

(c) Increase by 0.236 million

12.3 (c¢) Tk 259.55/month
12.4 (a) Quantity demanded = 111.69 — 7.19(price) + 0.014(income)

(b) 29.65; (c) Increase by 40

Reference

Wonnacott, T.H., Wonnacott, R.J.: Introductory Statistics for Business and Economics. Wiley,
Singapore (1990)



Chapter 13
Sampling Theory

Abstract For population inferences, a complete count of the population would be
desirable. Time and resource usually do not permit this. So we go for sampling. For
population inferences to be valid, sampling is to be done complying with the
theoretical requirements. The theories are explained. Advantages of sampling and
prior survey considerations are explained. Principal steps involved in the choice of
sample size are mentioned. Commonly used sampling methods dealing with simple
random sampling, systematic sampling, cluster sampling, and stratified random
sampling are explained.

Keywords Sampling - Advantages - Types of sampling - Random - Systematic -
Cluster - Stratified sampling

If we want to study a population, how can we do? This could be done by a complete
enumeration or census of the aggregate. But this is not always feasible. Time and
resource may not permit us to have the complete enumeration. So we go for
sampling. We select a sample of size much smaller than the size of the population.
We obtain data from the selected sample. We analyze these data and make infer-
ences about the population. However, sampling has certain advantages.

13.1 Advantages of Sampling

One of the advantages of sampling is the reduction of cost. A complete enumeration
would obviously necessitate a large amount of money. This can be reduced greatly
by use of sampling. For designing and executing adequately the survey, relatively
better resources are employed. Thus, cost per unit of observation is higher than that
necessary for a complete count. But the total cost is much less in sampling than that
in a complete count.

Another advantage of sampling is greater speed. In a sample survey, the number
of observations is smaller than that in a complete count. So the data can be collected
and processed quickly. This is a vital point in case the results are urgently required.
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Sampling allows collection of comprehensive data. Since the size of the sample
is small, it may be investigated thoroughly. Also, sampling is flexible and adapt-
able. Thus, a variety of information may be gathered. In certain situations, spe-
cialized equipments and highly trained personnel need to be employed. In such
situations a complete count becomes impossible. Either sampling is to be used or
the idea of data collection is to be abandoned. In this sense, sampling has greater
scope.

Sampling has an advantage over the complete count in terms of accuracy. In
sampling qualified personnel can be employed and an intensive training can be
imparted to them. Also, field work and data processing can be supervised and
quality controlled. This can lead to greater accuracy of the results.

There are certain situations when sampling is the only recourse of data collec-
tion. In testing the crushing strength of bricks, we cannot crush all the bricks. In
studying the harmful effects of insecticides in agricultural fields, we cannot take all
the insecticides to the laboratory for testing.

Last but not the least advantage of sampling is that we can measure the reliability
of the sample results.

13.2 Considerations Prior to Sample Survey

Surveys vary greatly depending on the type, context, and complexity. It is not
possible to design a single format for all types of surveys. But there are certain
considerations which help in designing any survey. These are summarized in the
following paragraphs. A considerable coverage may be seen from Cochran’s work
(1984: 4-8).

A clear statement of the objectives is necessary. Otherwise, there may be a
shortcoming in the data collection. Some vital data may be forgotten to collect and
some collected data may be superfluous. Furthermore, it may deviate from the main
path of the research in question.

The next point of consideration is target and sample population. For conve-
nience, sampled population is studied and on the basis of this inferences are made
regarding the target population. So the sampled population ought to coincide with
the target population. Otherwise, inferences made from the sampled population may
not be fruitfully relevant to the target population.

A coordination schema is of utmost importance. In its absence, some essential
data may be omitted and some superfluous data may be collected. This can only be
detected while analyzing the data and drawing conclusions in conformity with the
objectives. Often there is a tendency to use a lengthy questionnaire incorporating
unimportant questions. This lowers the quality of responses.

Based on the analysis of data collected from a sample, inferences are made
regarding the population. Since the data are collected from a part of the population,
there is a certain amount of error in the inferences. This refers to precision. To have
a greater precision, a larger sample size would be needed, which in turn involves
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higher cost. Same degree of precision may also not be necessary in all research
works. Thus, the degree of precision desired in a particular research work ought to
be clearly spelled out.

Data when measured are normally either in qualitative or quantitative form.
Quantitative data are easy to analyze, interpret, and are subject to more sophisti-
cated tests. Therefore, quantitative data, as far as possible, should be collected. It
should further be kept in mind that quantitative data can be converted to qualitative
data later. But the reverse is not true. When measuring data, this point should be
kept in mind.

Sampling unit is a very element in sample survey. Many-a-times major diffi-
culties arise for confusion in units. If we are interested in studying the housing
conditions of slum dwellers in a city, the unit may be a household. But if we want to
study the employment opportunity based on level of education, the unit may be an
individual. If we want to study agricultural crops, the unit may be a field, a farm or
an area of known quantity such as an acre, a hectare. When the units are resolved,
the frame will have to be prepared. The frame will consist of a list of all the units of
the population under study. It should be a complete list and will not have an
overlapping.

For the results to be useful to explain the population characteristics, an adequate
sample size followed by a scientific method of sample selection is to be used. More
detailed discussions will be made of sample selection later.

Often data are collected using standardized questionnaires. In constructing the
questionnaire, it is not always possible to identify the field conditions. A pretesting
is, therefore, useful. Pretesting almost in all cases results in improvement in the
questionnaire.

Usually, the volume of the research is such that a number of enumerators or field
assistants need to be employed. They must be trained for the methods of mea-
surements to be employed. For quality control, an adequate supervision of the
fieldwork should be ensured. While the field work continues, editing of the com-
pleted questionnaires is very useful. In this way errors can be detected and rectified.
Also the erroneous errors may be deleted. For this purpose, a detailed plan of the
fieldwork is to be made.

13.3 Considerations in Sampling

In course of planning a sample survey, we will reach at a stage when we must
decide the size of the sample. This decision is important. The larger the sample size,
the better is the precision and better is the result. But if a smaller size of sample
serves the purpose in some situations, then taking a larger sample size will mean
wastage of resources. Again, if the sample is too small, it diminishes the utility of
the results. The decision, however, cannot be always made satisfactorily. Often we
will not have enough information to be sure that the sample size we have selected is
the best one.
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Among other things, there are two major considerations which we must think of
in determining the size of a sample. One is the precision. If the precision we desire
is higher (smaller error) the sample size ought to be higher and vice versa. The other
point of consideration is the cost. If the sample size is large, the cost involved is
high. So if we want to have a higher degree of precision, a larger sample size
becomes necessary which in turn requires larger amount of budget. So we cannot
always go for larger sample size in view of budget constraint. If we go for a smaller
sample size, we can manage with less cost. But in this case we are sacrificing higher
degree of precision. Therefore, we need to make a balance between the degree of
precision and cost in determining the sample size in any particular situation. The
balance will aim at maximum precision obtainable with minimum cost.

The sampling cost needs some discussion. The cost of sampling includes the cost
of designing the sample, constructing the frame, training the interviewers, collecting,
compiling, and calculating the data, office expenses, other overhead expenses, etc.
However, these costs can be divided into two categories, namely, fixed cost and
variable cost. Thus, the cost function can be represented in a simple form

C=co+crxn

where C = total sampling cost, ¢y = fixed cost, ¢; = cost per unit of sample, and
n = sample size. Cy is the fixed cost and include office rent, fixed administrative
costs, equipment costs, etc. This fixed cost does not depend on the size of the
sample survey. The other part ¢ * n is the variable cost. If the sample size is large,
¢ * n will be large, but ¢y remains constant. It must be remembered that the cost
function shown above is the simplest one. Other more complicated cost functions
can be constructed depending on a particular situation. But it ought to be taken into
consideration that the cost function should be an accurate and useable one.

13.4 Principal Steps Involved in the Choice
of a Sample Size

Two major considerations in determining the sample size have been discussed in
the previous subsection. Determining the sample size is really a big problem. The
following principal steps will help us in the choice of a sample size.

(i) There must be a statement concerning what is expected of the sample. This
statement may be in terms of the desired precision, or in terms of decision
that is to be taken or action that is to be taken when sample results are
known.

(i) Some equation connecting n (sample size) with the desired precision of the
sample must be found. The equation will vary with the content of the
statement of precision and with the kind of sampling that is contemplated.
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(iii) This equation will contain, as parameters, certain unknown properties of the
population. These must be estimated in order to give specific results.

(iv) It may so happen that data are to be analyzed for certain major subdivisions
of the population and the desired degree of precision may be different for
each subdivision. In such cases, separate calculations are to be made for each
of the subdivisions. The total sample size n is to be found out by addition.

(v) Usually, more than one item or characteristics is measured in a sample
survey. Sometimes the number of items is large. If a desired degree of
precision is prescribed for each item, the calculations may lead to a series of
conflicting values of n, one for each item. These values must be reconciled
by some methods.

(vi) The last step is the appraisal of the chosen value of n in order to see that it is
consistent with the resources available to take the sample. This necessitates
an estimation of the cost, labor, time, and materials needed to obtain the
proposed size of the sample. It sometimes becomes apparent that n will have
to be drastically reduced. A hard decision must be faced—whether to pro-
ceed with a much smaller sample size, thus reducing the precision, or to
abandon the efforts until more resources become available.

13.5 Types of Commonly Used Sampling Methods

There are several considerations and specifications which lead to different classifi-
cation of sampling. A detailed discussion on the classification and types of sampling
is beyond the scope of this book. Here we shall limit our discussion on simple
random sampling, systematic sampling, stratified sampling, and cluster sampling.
These are the sampling techniques that we will most often use in our research work.

13.5.1 Simple Random Sampling

Simple random sampling is the most commonly used sampling method. In this
method every unit of the population has the equal chance of being selected in the
sample. There may be two ways of drawing the units, namely sampling with
replacement and sampling without replacement. In the former case, the unit already
drawn, has the equal chance, like other units, of being drawn again. In the latter
case, the unit once drawn, no more qualifies for subsequent draws.

If there are N units in the population and a sample of » is to be drawn, then a
particular unit has the probability of 1/N to be drawn. There may be 5C,, number of
possible samples. So the probability that a particular sample of size n will be drawn
is 1/(nCp).

Drawing the selected units from the population may be accomplished in a sys-
tematic way. First, all the units of the population are numbered from 1 to N.
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Then using either random numbers from random digits table or a suitable computer
program, the actual numbers are drawn, unit by unit until the sample size of n is
reached.

Let us now see how this technique may be applied in the selection of sampled
households in one of the study areas, Kathal Bagan in Dhaka. There are 351
households. A sample size of 35 households is to be selected using random
numbers.

No official list is available for the households of the slum in question. So one has
to go along the lanes, by-lanes, and the passages inside the slum and identify the
households. Then use the random table. In this case 351 is a three-digit figure. So
we can use consecutive three columns of the random table. Either columns 1-3 or
24 from each group may be used. Let us use columns 1-3. Starting from the first
group (column 1-4) we go down and pick up the following numbers (Table 13.1).

Table 13.1 Picked up 195 862 764 937 164 601
random numbers 711 355 886 484 823 384
669 387 054 638 465 497
862 757 051 903 241 351
629 384 574 064 422 103
324 329 317 461 111 380
233 900 270 945 146 582
577 879 978 714 842 091
054 709 883 843 453 563
419 931 605 388 612 239
228 131 659 629 767 849
851 680 705 348 763 611
466 804 878 398 883 270
205 566 889 927 209 155
031 787 410 255 979 975
118 324 530 856 820 166
197 685 473 646 842 099
679 791 912 660 935 454
684 965 593 717 223 150
298 927 917 545 906 711
560 229 999 079 870 986
472 609 516 045 555 630
003 235 515 121 327 924
027 492 861 078 940 675
939 468 909 581 017 647

Note Started from first thousand, went down through second
thousand, third thousand and until end of fourth thousand; then
again started from first thousand and went down until end of
second thousand to select tentatively 150 numbers
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Table 13.2 Chosen random 195 197 235 045 223 155
numbers 324 298 054 121 327 166
233 003 051 078 017 099
054 027 317 164 351 150
228 329 270 241 103
205 131 064 111 091
031 324 255 146 239
118 229 079 209 270

In our list we have no number above 351. So dropping the numbers above 351
the following numbers are picked up (Table 13.2).

We want to do the sampling without replacement. In the chosen numbers 054,
324, and 270 occur twice. Keep these numbers once only. Then order first 35
numbers. Ordering is necessary for convenience of interviewing, because first
interviewing household number 195, then going to 324 and coming back to 233,
and so forth causes inconvenience and wastage of time. When ordered the numbers
are as follows (Table 13.3).

Keep the rest six numbers, i.e., 091, 239, 155, 166, 099, and 150 (without
ordering) as reserved numbers to be used in case any household among the selected
35 is not, for some reason or other, available for interviewing. If one household
from the chosen 35 is not available for interviewing select 091st household. In case
another household is not available, select 239th household and so on.

It may be noted that in selecting 35 households (plus about 20 %), we had to use
150 random numbers from the table, resulting in a loss of about 3/4 of the random
numbers. There are several ways/techniques of avoiding this wastage. For more
details on this account, please, see, for example, Yamane’s work (1967: 64—68).

One technique is demonstrated here. In our example we have 351 the highest
number. We divide the chosen random numbers by 351 and use the reminders as
the selected random numbers. This is illustrated in Table 13.4.

From the above list select the first 35 numbers. When these 35 numbers are
ordered they stand as shown in Table 13.5.

Seven more numbers (about 20 %), i.e., 102, 215, 085, 334, 089, 263, and 225
may be kept as reserved. These should, however, not be ordered. This technique has
obviously made efficient utilization of random numbers.

Table 13.3 Ordered chosen 003 054 118 197 233 317
random numbers 017 064 121 205 235 324
027 078 131 209 241 327
031 079 146 223 255 329
045 103 164 228 270 351

051 111 195 229 298




252

Table 13.4 Calculations for chosen random numbers

13 Sampling Theory

Random Calculation Selected Random Calculation Selected
number number number number
195 0 * 351 + 195 195 862 2 * 351 + 160 160x
711 2 *351 +009 |009 355 1 *351 +004 | 004
669 1 *351 +318 |318 387 1 *351+036 |036
862 2 * 351 + 160 160 757 2 *351 + 055 |055
629 1 *351 +278 |278 384 1 #351+033 |033
324 0*351 +324 |324 329 0 *351 +329 |329
233 0 *351 +233 |233 900 2 * 351 + 198 198
577 1 #351 +226 |226 879 2 * 351 + 177 177
054 0 *351 +054 |054 709 2 *351 + 007 | 007
419 1 *351 + 068 | 068 931 2 *351 +229 |229
228 0 *351 +228 |228 131 0 * 351 + 131 131
851 2 * 351 + 149 149 680 1 *351 +329 |329x
466 1 *351 + 115 115 804 2 * 351 + 102 102
205 0 *351 +205 |205 566 1 #3511 +215 |215
031 0 * 351 + 031 031 787 2 *351 +085 | 085
118 0 *351 + 118 118 324 0 *351 +324 |324x
197 0 * 351 + 197 197 685 1 *351 +334 |334
679 1 *351 +328 |328 791 2 *351 +089 | 089
684 1 #351 +333 |333 965 2 *351 +263 |263
298 0 *351 +298 |298 927 2 * 351 +225 |225
560 1 *351+209 |209 229 0 * 351 +229 | 229x
472 1 #*351 + 121 121 609 1 *351 +258 |258
003 0 *351 +003 |003 235 0 *351 +235 |235
027 0 *351+027 |027 492 1 *351 + 141 141
939 2 * 351 +237 |237 468 1 *351 + 117 117
Note x skip since it occurred earlier
Table 13.5 Selected random (3 033 115 177 226 298
numbers 004 036 118 195 228 318
007 054 121 197 229 324
009 055 131 198 233 328
027 068 149 205 237 329
031 089 160 209 209

It may be noted here that numbers of households selected in this sample are
different from those selected previously. This does not pose a problem at all.
Number of all possible samples from 351 households taken 35 at a time is given by
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351!
351(351 — 35)!
351
~ 351316!
= 2.04 % 10*® (approximately)

351C35 =

The selected sample is one of those possible samples.
Nowadays the random numbers can be generated easily by the computer
software.

13.5.2 Systematic Sampling

Another sampling technique is systematic sampling. When saving of time and
efforts become important, systematic sampling technique is used. In certain situa-
tions it is more efficient than simple random sampling. It is easy in drawing a
sample. If the population is spread more evenly then systematic sampling provides
more representation of the population. However, one disadvantage of this technique
is that the variance of estimators cannot be obtained from a single sample.
Furthermore, if the population units are poorly arranged, this technique will pro-
duce a very inefficient sample.

If a sample size of n is to be drawn from a population N, then a sample fraction
k is calculated (k = n/N). Suppose the sampling fraction is 0.04. This 4 % sampling
fraction means one sample unit is to be chosen from every 25 units of the popu-
lation. Then using simple random numbers, a number is chosen between 1 and 25.
Suppose this number is 12. This will be the first unit in the sample. Subsequent
units are chosen systematically adding 25 to each of the selected units. Thus, the
selected units will be 12, 37, 62, 87 ... etc. until the last unit chosen completes the
sample size of n.

This sampling technique can be demonstrated by using a practical example. In
Babupura, one of the study areas, total owner population was 161 HHs out of which
16 HHs were to be selected. Here the sampling fraction is 16/161 = 0.099. Let it be
taken as 0.10 (10 %). This means one unit of sample is to be chosen from every 10
population units. Here 10 is a two-digit figure. Using last two columns of group 3,
i.e., third thousand (we can chose any two columns from any group) of random
numbers (Table A.13), the first 10 numbers are 77, 37, 67, 99, 33, 25, 94, 55, 82,
01. So 01 will be selected since it occurs first between 1 and 10. Therefore, the first
chosen sample unit is 1st HH. The second sample unit will be 1 + 10, i.e., 11th HH.
In this way the 16 sample HHs will be 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101,
111, 121, 131, 141, and 151.
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13.5.3 Cluster Sampling

In cluster sampling the population is divided into some clusters or groups. It is
advantageous if the recording units are available in some suitable clusters. Out of
several clusters, a few are selected using simple random sampling. From the
selected clusters, individual recording units are again selected using simple random
sampling.

Suppose, there are n clusters (M, M,, M5, ... M) in a population. From these,
m clusters are selected using simple random sampling. From each of the selected
m clusters individual sample units n; (i = 1, 2, 3, 4, ...) are again selected using
simple random technique.

The use of cluster sampling can be demonstrated with the help of an example.
Suppose, there are nine slums under study (slum;, slum,, slums, ... slumy). Three
slums are to be selected. Using the random table suppose, the chosen three random
numbers are 2, 5, and 8. Populations of these three slums are 161, 1131, and 252
respectively. It is decided that subsample sizes of 16, 113, and 25 are to be chosen
from these slums respectively. This can be accomplished by using simple random
technique. The entire process is illustrated schematically in Chart 13.1. The cal-
culations are as follows:

Mi M, Mz My Ms Mg M; Mg My

191 161 60 180 1131 720 175 252 301

m; = 161 m, =1131 m;3 =252

n =16 =113 n3 =25

Chart 13.1 Example of cluster sampling
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Population size

N =161+4119+60+ 180+ 1131+ 720+ 75 + 252 + 301
= 3099 HHs.

Sample size

n=16+113+25
=154

Sampling fraction = 154/3099
= 0.0496
=496 %

13.5.4 Stratified Random Sampling

In this sampling technique the population is divided into a number of nonover-
lapping subpopulations based on certain criteria. Each subpopulation is known as
stratum. From each of these strata, subsamples are chosen by simple random
sampling. The master sample size is the sum of all subsamples drawn from all
strata. This process is known as stratified random sampling.

Stratified sampling differs from cluster sampling. In cluster sampling a few
clusters are chosen from several clusters and subsamples are drawn from these
chosen clusters only. In stratified sampling subsamples are drawn from all the strata.

Stratified random sampling has some advantages. If the population can be
stratified into homogeneous strata, increased precision, as compared to that in
simple random sampling, can be obtained. Sometimes, it may be desirable to collect
information concerning individual strata and make explicit the difference between
the strata. In this sampling it may also be easier to collect information for either
physical or administrative reasons.

Suppose, a population is divided into L number of strata (L; L,, L3, ...) with
respective subpopulations of Ny, N,, N3, ... Subsamples are drawn (using simple
random technique) from each of these subpopulations. Let these subsamples be 7,
ny, n3, .... The master sample size is obtained by n = ny + n, + n3 + .... The
population size is given by N=N; + N, + N5 + N, ... Thus, the sample fraction is n/N.

The use of stratified sampling can be illustrated with the help of an example. In
Wahab Colony, one large slum in Dhaka, it was desired to study the difference in
various attributes between house owners and house renters who appeared to be two
distinct groups in the said slum. The slum having 1732 households, was divided
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into two strata, namely house owners (720 households) and house renters (1012
households). Thereafter, using simple random sampling, 72 households were
chosen from house owners and 101 households were chosen from 1012 renter
households. Since simple random sampling was applied in each of the two strata,
the technique here employed was a stratified random sampling. The sampling
fractions in the house owners, house renters, and overall were 0.10, 0.0998, and
0.0998 respectively.



Chapter 14
Determination of Sample Size

Abstract Basic theoretical basis for determining required sample sizes using
various theories are set. Examples are used in each case.

Keywords Basic principle - Sampling - Continuous data - Proportion - Allocation
of subsamples

The larger the sample size, the better is the estimation. But always larger sample
sizes cannot be used in view of time and budget constraints. Therefore, the practical
way of calculating the sample size is to do it based on certain precision and
reliability. There are several situations and in each case a different technique is
employed to calculate the sample sizes. These are briefly discussed hereafter.

14.1 Basic Principle

Confidence interval, for example, for mean is given by

_ (&) _ (]
X—2Zgpk—= SPSX+ 2y *x—=

vn vn

Thus, the length of confidence interval is 2 * z,, * 6/+/n. The precision is 1/2
of the length of the confidence interval, i.e., z,/; * G/ V.

Precision = z,/, * 6/y/n
or,
Precision = (reliability) * (standard error)
This is the basic relationship between precision, reliability, and standard error.
© Springer Science+Business Media Singapore 2016 257
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14.2 Sample Size in the Case of Random Sampling
(Continuous Data)

We have,

Precision = (reliability)  (standard error)

or,
d= Zo/2 * G/\/r_l

If o is not known, it may be estimated by sample standard deviation s.

Therefore, d = zy/> * s/\/n

When sampling is without replacement, the fpc is necessary and the relationship
becomes

s N—n
d=ap* m "N
Solving for n you get

. N(zs)*
N+ (zs)

Example 1

A sample of families is to be selected without replacement to estimate the average
weekly expenditures on food. The precision is to be within +$4 with 95 % confi-
dence level. It is known from past surveys that s = $12. The total number of families
is 2000. How large the sample must be?

L N(zs)?
N + (zs)°

here, N =2000; s = 12,z =1.96,d = 4

_2000(1.96 x 12)?
©2000(4)* 4 (1.96 x 12)°
_1,106,380.8
32,000 +553.19
~1,106,380.8
~32,553.19

= 34
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Sometimes the precision is given in relative term or for simplicity it may be
desired to express the precision in terms of percentage of the mean. In that case the
formula is to be modified.

Let dy be the desired precision in relative term and d be the precision in absolute
term. We have the coefficient of variation ¢ = s/%. Now,

=l

Therefore, s = x x c.

Again,

do(precision in fraction) =

=l X

Therefore, d = X * dj
Now,

_ N(Z+x 5)?
N(d)* + (zs)
_ NZ¥(s)?
 Nd?+(Z)*(s)?
B NZ2(x % ¢)*
CN@)+ (2 Fx0)
NZ2(x * ¢)*
NE*do)’ + (2)* (T %)
_ NZ®’(e)
N o+ (2)°(®) ()
_ ®@Wzke)’
()N} + (%) (2e)”
(x)z{N(Z « c)z}
(2 {Nd§ + (20"}
N(Z * c)?
T N&+ (2e)

Example 2
The quantity of cold drink consumed by students in AIT in a day is to be estimated.
The error is to be within +5 % of the mean. A preliminary survey showed s = 0.3 L
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and ¥ = 1.20L. The total number of students in AIT is 2000. The estimate is to be
made with 95 % confidence level. How large the sample size is to be?
Here,
N 2000
d 0.05
¢ 0.3/1.20=0.25
z 196 (for 95 % confidence level)

2000(1.96 x 0.25)*
n—
2000(0.05)* + (1.96 x 0.25)*
480.2

54024
4802
T 524
=91.6
=92

14.3 Sample Size in Case of Simple Random Sampling
(Proportion)

In case of proportion (sampling without replacement)

Standard error = e, N-—n ;
n—1 N

For practical purposes n — 1 may be replaced by n. Therefore,

Standard error = {IE * N- n}
n N

From the basic relationship

Precision = (reliability) * (standard error)

we get,
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Therefore,
& =77+« pq * N—n
n N
Solving for n we can get,
n szpq
~ Nd®+72%pq

Note that maximum variance (standard error) occurs when p = 0.5.

Inthiscaseqg =1—0.5 =0.5.
Therefore, pg = 0.5 x 0.5 =0.25

Example 3
You are interested in estimating the proportion of AIT students who smoke.
A preliminary random survey showed that out of 25 students 15 smoke.

(a) How large the sample must be if you want to estimate with 95 % confidence
level and 5 % precision?

(b) If the preliminary survey is not available, how can you determine the sample
size? Currently, there are 820 students in AIT.

(a) here, p =15/25=0.6;
sog=1—-06=04;z=1.96
We have,

" szpq
Nd? + 72pq
B 820(1.96)%(0.6 x 0.4)
~820(0.05)% + (1.96)*(0.6 x 0.4)
_ 756.03
720540922
~756.03
2972
=255

(b) If the preliminary survey is not available, the sample size can be deter-
mined using maximum variance condition.
Here, p = 0.5, ¢ =0.5
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_ NZ'pq

~ Nd?+72pq

_ 820(1.96)*(0.5 x 0.5)
~820(0.05) + (1.96)*(0.5 x 0.5)
78753

~2.05+0.96

 787.53

© 3012

=262

14.4 Sample Size in the Case of Stratified Sampling
(Means)

Several cases of determining the sample sizes in case of stratified sampling pro-
cedure are outlined in brief in the following sections.

14.4.1 Allocation of Equal Subsamples to All Strata

There are four ways of allocating subsamples to different strata, namely, equal
subsamples, proportional, optimum, and Neyman allocations. The simple one is to
allocate equal subsamples to each stratum. In proportional allocation, subsamples in
each stratum are allocated according to proportion of the respective subpopulations.
In optimum allocation, the varying sampling costs are taken into account. This
implies that more units are to be chosen from the stratum where cost is less.
Neyman allocation is applicable where sampling costs in different strata do not vary
greatly. It is assumed that the sampling costs are equal in all strata.

Based on these principles, the methods of determining the sample sizes and
allocating the subsamples to different strata are outlined hereafter.

The basic relationship is

Precision = (reliability) * (standard error)
Therefore,

recision
standard error = pi
reliability
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or,
,  (precision)®
(standard error)’=——">——"5
(reliability)
or,
d2
variance = —
2

This variance is desirable variance and may be denoted by D?.
Therefore,

d2
D*=—
22

value of d is in absolute figure.
But for stratified sampling

22
variance = ]% Z N';Sh — % Z NhSﬁ

where,
N;, population size of & stratum,
S>  population variance of / stratum, (if not known, use sample 5%)
N total population size,
n  sample size,
L no. of strata.

Therefore,

L ~N2S2 1
D =) St s,

Solving for n you can get,

LY N;S;
n=——2>2"1—
N2D? + 3 N,S2
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14.4.2 Proportional Allocation

Based on the same principle, it can be shown that

LY N;S?

"TND SN,

14.4.3 Optimum Allocation

Deduction according to the principle used above, the sample size comes out to be

(3> NuSuv/Cr) (3= NS /v/Ci)
N2D? + S N,S?

Neyman allocation
In this case the sample size works out to be

(NS’
N2D? + 3" N,S2

Example 4

We want to study the average number of visitors per day in a city shops. There are
2000 shops in the locality which can be stratified into three categories namely,
small (1200), medium (600), and large (200). Their standard deviations are 25, 35
and 55, respectively, known from past records. The costs of selecting sampling
units are ¢; = $1, ¢; = $2 and ¢; = $3 respectively.

(a) Calculate the sample sizes using various methods of stratified sampling. Use
95 % confidence level and a precision of +3 customers. Calculations are
summarized in the following tables:

Calculations for determination of sample size

Strata N, Sy 52

1 1200 25 625

2 600 35 1225

3 200 55 3025

Total 2000

Strata Ny, % S), Ny S2 NZ % S2

1 30,000 750,000 900,000,000
2 21,000 735,000 441,000,000

3 11,000 605,000 121,000,000
Total 62,000 2,090,000 1,462,000,000
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Strata VCy, Nj, % Sj, % \/Cy, Ny, * Sp/\/Ch,
1 1.000 30,000 30,000
2 1.414 29,694 14,851
3 1.732 19,052 6351
Total 78,746 51,202

95 % confidence level. Therefore, z = 1.96

D=d/z=3/196=1.53

Case 1 Equal size sample

. LY N;S:
N2D? + 3 N,S2
3(1,462, 000, 000)

(200)*(1.53)* 42,090, 000

= 382.9

= 383

Sample in each stratum is

ny =n/L =383/3 =128

Case 2 Proportional allocation

__NY NS
N2D? + 3" N,S?
2000(2, 090, 000)
(2000)*(1.53)* + 2,090, 000

=365
np = (Ny/N) xn
ny = (1200/2000) * 365 = 219
1 = (600/2000) * 365 = 110
ns = (200,/2000) * 365 = 36

Total = 365
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Case 3 Optimum allocation

(3> NuSu/Cn) (3= NS /v/Ci)
N2D? + 3 N S2
(78,746)(51,202)
(2000)*(1.53)* + 2,090,000
=352

. Ny, * S //Ch .

h ZNh*Sh*/\/Ch
ny = (30,000/51,202) % 229 = 206
ny = (14,851/51,202) * 229 = 102
ny = (6351/51,202) x229 = 44

Total = 352

Case 4 Neyman allocation
Here all C), are equal.

_(ENs?
N2D? + 3" N,S2
(62,000)*
(2000)*(1.53)* + 2,090, 000
=336

Ny xSy,
= NS, *n
n; = (30,000/62,000) x 336 = 162
ny = (21,000/62,000) x 336 = 114
n3 = (11,000/62,000) x 336 = 60
Total = 336

ny

Notes: Precision may be expressed

(a) in terms of standard error (D), which equals to d/z; d is in absolute figure.

(b) in terms of absolute figure of d. Then you need to calculate D from D = d/z.

(c) in terms of percentage. In this case you need to know the mean. Calculate d in
absolute figure from d = (X * percentage)/100. Then calculate D from D = d/z.



14.5 Sample Size in the Case of Stratified Sampling (Proportion) 267

14.5 Sample Size in the Case of Stratified Sampling
(Proportion)

Sample allocations are summarized first hereafter.

Case 1 Proportional allocation

N ..
n, = — * n; similar for means.
N

Case 2 Optimum allocation

N (P % On/+/Cr) o
h_ZNh (Ph * On/\/C)

n

P;, and Qy, refer to stratum population. If unknown, use stratum sample p;, and g,
from preliminary survey.

Case 3 Neyman allocation

_ Np/ (Ph * Op) en
SN/ (P Op)

np

Note that in cases of 2 and 3, the formulas are obtained from those for means,

replacing S, by /(Py * Op).
Given the sample allocation procedure, the determination of sample sizes are
outlined below.

Case 1 Proportional allocation

n— N>~ NuPyOn
N2D%+ ST NyPj % Oy

D = d/z; d is in percentage points.
Case 2 Optimum allocation

{CS N/ (CouPux On)) }+ L N/ (o x 01)/V/Ci) }

N2D? + > NyPj x Qp

n =
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Case 3 Neyman allocation

AN (Py Qh)}2

T NI S NP % O

Note that the above three formulas are obtained from those for means replacing
Sh by \/ (Ph * Qh)

Example §
We are interested in estimating the proportion of families in 3 slums, remitting
money to village homes. The numbers of families in the slums are 4000, 6000, and
10,000. A preliminary survey showed that 12, 15, and 25 % families in those slums
remit money. Sampling costs per unit in those slums are $1, $2, and $3 respectively.
We need to estimate with £3 % precision and 95 % confidence level. Find the
sample sizes using various methods of stratified sampling.

Calculations are summarized in the following tables:
Calculations for determination of sample size

Slums Families (V) Pn Ny * py

1 4000 0.12 480

2 6000 0.15 900

3 10,000 0.25 2500

Total 20,000 3880

Slums Ny * pi * gy, Ny, * \/m Ch % \/(Crponqn)
1 422.40 1300 0.32

2 765.50 2142 0.50

3 1875.00 4330 0.75

Total 3062.40 7772

Sms | Ny /o) o a0 NS /O
1 1300 0.32 1280

2 3030 0.25 1500

3 7500 0.25 2500

Total 11,830 0.82 5280

Case 1 Proportional allocation

D =0.03/1.96 = 0.015
" N> NP, Oy
N2D? + Y NyPj + Oy,
20,000 * 3062.40
(20,000 * 0.015)2 + 3062.40
= 658
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N
np = N n
4000
n = 207000*658 =132
6000
= = 1
ny 30,000 * 658 97
10,000
nz = 20,000 * 658 = 329
Total = 658

Case 2 Optimum allocation

{ (X Nu/(CuPr o+ On)) H (32 Nun/ (P * On/Ci)) }

n=

N2D? + " NyPy + O
11,830 % 5280
(20,000 * 0.015)* + 3062.40
= 671

N/ (P % On/Cy)

ny =
Y Ni/ (P x On/Ch)
1280
=——x%x671 =163
"= 5080 "
1500
ny f%*671 =191
2500
Total = 671
Case 3 Neyman allocation
RO AVZET D))
N2D? + 3 NuPy * Oy
(7772)*
(20,000 % 0.015)* + 3062.40

=649

269
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Np/ (Pn * Oh)

np =———————"_x
Y N/ (P % On)
ng = @*649: 109
7772
= 2142 x 649 =179
= 7 -
4330
n3 = ——x 649 = 361
7772
Total = 649

14.6 Simple Cluster Sampling

The mean size of the secondary sampling units may be calculated using the
following relationship, based on optimum allocation principle.

where,

n  mean size of the secondary sampling units

¢ per unit cost of selecting primary units (clusters)

¢, per unit cost of selecting secondary units (units of observations)
52 within-cluster variance

s% between-cluster variance.

If the intra-cluster correlation coefficient (p) is known, the following formula can
be used:
1 —
5] p

c=co+cxm-+cy*xmn

Cost function is given by

where,

c total cost

Co fixed cost

m no. of clusters

n, ¢y and ¢, as above.
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Example 6
In a sample survey the cost of traveling to a slum is $50 and that of interviewing
each household (secondary sampling units) in a slum is $5. The fixed cost is $400
and a budget of $2000. The intra-cluster correlation coefficient is estimated to be
0.15. Determine the number of slums and the average number of households to be
interviewed.

Here

c1 = $50, Cy) = $5, co) = $400,
¢ = $2000, p = 0.15

{Cl 1 — p}
n= ——
(%) p
- @*1—0.15
n 5 0.15

=15

Select 8 units from each selected slum.
Now,

c=cy+c*xm—+comn

or,
2000 =400 +50«m+5xm* 8
or,
90m = 2000 — 400
= 1600
m = 1600/90
=18
Select 18 slums from all slums of the city.

Problems

14.1 You are given the following information:

Population size = 15,000
Desired confidence level = 15,000
Desired precision =13 %

Desired CV =55%
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14.2

14.3

14.4

14.5

14.6
14.7

14 Determination of Sample Size

Total budget = $3000
Fixed cost = $500
Variable cost = $2/unit

Calculate the sample size

Suppose you are interested in estimating the mean household income of the
people of your city, by using simple random sampling.

You want to be 95 % confident and have a precision of + 4 %. Aim at 35 %
as the coefficient of variation.

How large the sample size is to be? (If the number of households of your
city is not readily available, compute it assuming the hh size to be 6).
You want to study the proportion of farmers who are aware of environ-
mental pollution. The study area has a farmer population of 10,500.
Assuming the use of simple random sampling technique, calculate the
sample size based on

(a) expected rate of occurrence,
(b) maximum variance.
The precision is to be £3 %. Assume 5 % level of significance.

You are given the following:

Population size = 15,000
Desired confidence level =95 %
Desired precision =43 %
(i) Desired CV =55%

(for continuous variables)

(ii) Expected rate of occurrence = 0.30
(for bivariate variables)

(iii) Budget

Total amount = $2500
Fixed cost = $480
Variable cost = $2/unit

What should be the sample size?
Us the data in problem 14.4 (i) except population size.

(a) Calculate the sample sizes for population sizes of 1000, 5000, 10,000,
20,000, and 40,000. Draw a graph.

(b) Draw a graph of sample size with the population size.

(c) What is your comment?

Repeat problem 14.5 using data of 14.4 (ii).

The manufacturer of an industrial plant wishes to estimate the mean daily
yield of a chemical during a year. A preliminary survey showed the mean
daily yield to be 871 tons with a standard deviation of 51 tons.
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14.8

14.9

14.10

14.11

14.12

14.13

14.14

How many days the manufacturer should observe the yield, if the precision
is desired to be +2 %?

In a preliminary random sample of 100 students selected from 5000, it is
found that 40 students own cars.

How large a sample must be selected to have a precision of £5 % with a
confidence level of 95 %?

In the eve of an election a sample survey shows that 83 out of 155 intend to
vote for a particular candidate. What sample size should be taken to con-
vince the candidate that he has a 99 % chance of being elected? The
estimate should have precision of (a) £3 % and (b) £2 %.

A manufacturer of refrigerator claims that there is a 99 % chance of the
temperature in the refrigerator to be within £0.1 °C. A customer research
group wants to check this. A preliminary survey shows that the mean
temperature is 2.5 °C with a standard deviation of 0.25 °C. What should be
the sample size to conduct the survey, if the total number of users of the
same refrigerator in the city is 2835?

In a certain population you want to do cluster sampling based on optimum
allocation principle. Your total budget is $2000. The overhead cost is $200.
The estimated cost per unit of observation is $2.5. The estimated cost of
traveling to a cluster and other related work is $30. A preliminary survey
shows that the between cluster variance is 12 times of the within cluster
variance. How large the sample size should be?

In a student population of 4000 you want to estimate the proportion of
students who smoke. In a preliminary survey of 50 students 30 were found
smoking.

How large a sample must be if you want to estimate with +5 % precision at
99 % confidence level?

The Student Union of AIT wants to petition the Dean of Students Affairs to
increase the bursary on the ground that the cost of living has increased
significantly. The Students Union wants to substantiate it by estimating the
current food expenditure of students through a simple random sample
survey.

The estimate is to have a precision of £3 and 99 % confidence level. From a
preliminary survey it has been found that the mean monthly food expen-
diture is Baht 3125 with a standard deviation of Baht 640. How large a
sample size must be? Currently there are 920 students in AIT.

How large the sample size must be if the standard deviation would be Baht
1287

You are required to conduct a survey on birth rate. It has been decided that a
simple cluster sampling will be used for the purpose.

The following information are available to you:

(i) Total budget for the survey is $22,000.
(ii) The overhead cost is estimated to be $2000.
(iii) Enumerator cost per month is $400.
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14.15

14.16

14.17

14.18

14.19

14.20

14 Determination of Sample Size

(iv) The enumerator has to spend 2.5 days, on average, in contacting a
cluster and for other preliminary works.

(v) On average, the enumerator can interview 40 persons per day.

(vi) The intra-cluster correlation coefficient is estimated to be 0.001.
Calculate, based on optimum allocation principle.

(a) The average number of persons from each cluster.

(b) The number of clusters.

(c) Total sample size.

It is desired to estimate the mean of a normally distributed population with
an error of less than 0.50 with a probability of 0.90. It is known that the
variance of the population is 4. How large the sample size is to be in order
to achieve the accuracy stated above? The population size is 12,000.

A company wishes to estimate the proportion of the people who prefer their
brand of soft drink. It wishes to keep the error within 2 %, with a risk of
0.0456. How large a sample must be taken?

You have a sample of size 935. The approximate fixed and variable costs
are Baht 15 and Baht 33 respectively. The fixed cost is converted to per unit
of sample. What is the total sampling cost?

You wish to determine the sample size for estimating the farmers’ income.
The organization sponsoring the research can spend a maximum sum of
Baht 75,000. The fixed and variable costs (all converted to per unit basis)
are Baht 25 and Baht 43 respectively. What sample size should you choose?
In a population of families the household income is normally distributed
with a standard deviation of $1200. How large a sample is to be to deter-
mine the mean income if it is desired that the probability of the sampling
error of more than $55 be less than 5 %?

You wish to estimate the proportion of defectives in large production lot
within 0.05 of the true proportion, with 90 % confidence. How large a
sample must be?

Answers

14.1
14.3
14.4
14.5

14.6
14.7
14.8
14.9

1189

(b) 969

1010

(a) 564; 1026; 1144; 1213; 1251

(c) There is no straight line relationship between sample size and population
size. Rate of increase of sample size diminishes with the increase of
population size.

473; 760; 823; 858; 877

31 days

343

(a) 1549; (b) 2920 (assuming N = 10,000)
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14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18
14.19
14.20

34

360

550

199

(a) 316; (b) 145; (c) 45,820
43

n = N/(0.0004 N + 1) for maximum variance
Baht 44,880

Max. 1147

1829

271

275



Chapter 15
Index Numbers

Abstract Techniques are developed and it is shown how scales are constructed for
the qualitative data and a wide variety of analytical tools are used to analyze these.
Techniques in constructing several indices are shown. These include priority, sat-
isfaction, agreement, performance, price, laspeyres, paasche price, fisher’s ideal
price, quantity, total cost, cost of living, and standard of living indices. The tech-
nique for calculating rate of inflation is shown. The Rule of 70 is explained.

Keywords Index numbers - Priority - Satisfaction - Agreement - Performance -
Price - Laspeyres - Paasche price - Fisher’s ideal price - Quantity - Total cost -
Cost of living - Standard of living indices - Rate of inflation - Rule of 70

Sometimes, it is possible to rank the qualitative data. If that can be done, a wide
variety of analytical techniques can be applied to analyze them. When some sort of
rankings is possible, the intended practice is to construct some scales and on the
basis of those scales, indexes can be constructed. These indexes then will serve a
useful device to analyze and infer.

Scales have the notion of continuous measurements. For example, in a contin-
uous scale we can measure 2, 3 cm, etc. A measurement between 2 and 3 c¢cm can
have any value, say 2.35 cm. There is no jump from 2 to 3 cm. The idea of
constructing a continuous scale for qualitative data is similar. Values of the scales
are conveniently selected and it is assumed that the measurement between any two
values in the scale is continuous. Although this gives an approximation, it has
meaningful interpretation in practical applications. An example may serve the
purpose of explaining the concept.

The employers of AIT alumni were in a survey requested to rate the emphasis
laid on the components of a post-graduate program of studies at master level. The
following scale was used.

© Springer Science+Business Media Singapore 2016 277
A.Q. Miah, Applied Statistics for Social and Management Sciences,
DOI 10.1007/978-981-10-0401-8_15
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Scale:
Emphasis No Low Normal High
Scale value 0 1 2 3

Clearly, there is some meaningful ranking in the scale. Normal emphasis with
value 2 is at a higher level than low emphasis with value 1. Although the
respondents quote only 0, 1, 2, or 3, yet the scale may be assumed to be continuous.
The employers’ responses on “individual research work” were, on average, rated
2.39. This is easily interpretable. The overall emphasis laid by the employers on
individual research work was between normal emphasis and high emphasis, almost
in the middle of the two scale values. This type of scales also serves as a basis by
which several items can be compared. For example, the average emphasis laid by
the employers on “field work™ was rated at 1.98. Thus, it can easily be concluded
that the employers lay more emphasis on individual research work than on field trip.

It is to be kept in mind that statistical tests on the indexes constructed based on
such scales can be applied easily. Thus, the index values can be of sufficient
importance in inferential statistics. In the sections hereafter, several scale and index
construction procedures are outlined.

15.1 Priority

Often we want to study the priorities attached by the target group on certain
components of a development program. Different respondents will cite different
priorities for different components. Our task is to summarize them. How to do
them? Construction of an index is a good answer. Suppose we want to record up to
the fourth priority. The scale may be constructed as follows:

Scale:
Priority First Second Third Fourth No
Scale value 1.00 0.75 0.50 0.25 0.00

The purpose here is to keep the index value between 0 and 1 for convenience and
easy interpretation. There are four gaps, i.e., 0-0.25, 0.25-0.50, 0.50-0.75, and
0.75-1.00. So 1 was divided by four and the scale step was computed as 0.25.
Suppose, now that we want to measure up to the fifth priority. What should be the
scale? Obviously, there are five gaps now. So the scale step can be 1/5, i.e., 0.20
and the scale can be constructed as follows.
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Scale:
Priority First Second Third Fourth Fifth No
Scale value 1.00 0.80 0.60 0.40 0.20 0.00

Once the scale is decided, computation of the index is simple. In this case the
index is computed by the following formula:
> sifi

| ==—
N

where

I priority index such that 0 </ < 1,
s; scale value at ith priority,

f; frequency of ith priority,

N total no. of observations = } f;.

Example 1

In a slum dwellers study, the dwellers were asked to mention their priorities (up to
fifth priority) of upgrading against seven components. The responses are shown in
Table 15.1. Construct a suitable scale, and calculate the priority indexes against
each of the components and compare.

Table 15.1 Priority for upgrading

Priority Frequency of responses against the components of the upgrading for
Hsng Wspl Eltc Gspl Envt Road Dmg

1 121 162 118 196 39 90 13
2 79 92 125 201 89 78 66
3 120 43 31 150 144 119 126
4 163 33 12 32 209 115 163
5 127 90 23 15 153 138 169
0 113 298 408 124 99 191 193
Total 723 718 717 718 733 731 730

Notes Hsng = Housing; Wspl = Water supply; Eltc = Electricity; Gspl = Gas supply;
Envt = Environment; Drng = Drainage
Priorities beyond fifth were treated as no priority
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The scale values are set according to the number of priorities as follows:
Scale:
Priority First Second Third Fourth Fifth No
Scale value 1.00 0.80 0.60 0.40 0.20 0.00

The priority indexes are calculated hereafter.
Housing

I 1.0%1214+0.8 %794 0.6 x 120+ 0.4 x 163 +0.2 % 127+ 0.0 % 113

723
3468

723
=0.48

Water supply

I 1.0%162+0.8%92+0.6 %434+ 0.4%334+0.2 %904 0.0 = 298
- 718

2926
718
=041

Electricity

I— 1.0%118+0.8 % 125+0.6 * 31 +0.4 x 12+ 0.2 x 23 4+ 0.0 x 408

717
~246.0
717
=0.34
Gas supply
[— 1.0x196+0.8x201 +0.6 « 150+0.4 %32 +0.2 % 15+0.0 124I
N 718
~ 462.6
- 718

=0.64
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Table 15.2 Priority indexes of components of upgrading program

Components for upgrading Priority index Rankings in order of priority
Housing 0.48 I
Water supply 0.41 v
Electricity 0.34 VI
Gas supply 0.64 I
Environment 0.42 1
Road 0.41 v
Drainage 0.33 vl
Environment

[— 1.0%3940.8 89 4-0.6 % 144 4+ 0.4 % 2094 0.2 * 153 4+ 0.0 * 99

733
3108

733
=042

Road

I 1.0%x90+0.8 784+ 0.6 * 1194+0.4 % 115+0.2 % 138 +0.0 * 191
o 731

2974
731
=0.41

Drainage

I 1.0%1340.8 %66 +0.6 % 1264+ 0.4 % 163 +0.2 % 169 +0.0 * 193
o 730

2404
730
=0.33

The indexes are summarized in Table 15.2. Rankings are also shown to have the
comparison of various upgrading components in order of priority.

The residents attach the highest priority to gas supply followed by housing
improvement. The lowest priority is attached to improvement of drainage.
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15.2 Satisfaction

Sometimes we are interested in studying the satisfaction of the target group against
an attribute or a set of attributes. Satisfaction with job, satisfaction with the housing
condition, satisfaction with supply of agricultural inputs are some of the numerous
examples where satisfaction measurements become relevant.

Three different scales can be suggested for measuring satisfaction depending on
the type/value of responses recorded. If the responses are in two values only
namely, “satisfied” and “not satisfied,” the scale can be constructed as follows:

Dissatisfied Satisfied
-1.00 1.00

The index can be computed using the following simple computational formula:

1=t1y
N
where
I satisfaction index such that —1 < [ < +1,
f; frequency of responses indicating satisfaction,
fa frequency of responses indicating dissatisfaction,
N total no. of observations = } f;.

Example 2

In a sample survey in a village, the farmers were asked whether they were satisfied
with supply of seeds, fertilizer, and pesticides. The responses were as follows:
(Table 15.3).

Taplfe 15.3 Eairlmers’l " Supply of Frequency of responses Total

.Sdm action with supply o Satisfied Not satisfied

inputs
Seeds 120 180 300
Fertilizer 98 189 287
Pesticides 162 120 282
Over all 380 489 869
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Compute the satisfaction indexes and compare them.

Computation:
For seeds:

,:ﬁ—ﬁ
N
~ 120-180
T 300
_—60
T 300
=-0.20

For Fertilizer:

I _f—fa
98 —189
287
91
T 287
=—-0.32

For Pesticides:

7 _f—fa
N
162120
282
42

T 282
=0.15

For overall:

I:ﬁ*ﬁ
N
380 — 489
T 869
—109

860
= —0.13

The indexes are summarized in Table 15.4. Rankings are also shown to have the
comparison of satisfaction level against input supply.
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Taple 1_5'4 Indexes of Supply of | Index value Rankings in order of satisfaction
satisfaction for supply of
. . Seeds —0.20 1T
agricultural inputs
Fertilizer -0.32 I
Pesticides 0.15 I

The farmers are satisfied to some extent with the supply of pesticides. They are
dissatisfied with the supply of seeds. They are dissatisfied to the greatest extent with
the supply of fertilizer. Overall, the input supply is not satisfactory.

If the responses are recorded at three values, namely, “satisfied,” “neither sat-
isfied nor dissatisfied,” and ‘“dissatisfied,” then the scale can be constructed as
follows:

Satisfaction Dissatisfied Neutral Satisfied
Scale value -1.0 0.0 +1.0

The computational formula for calculation of satisfaction index stands as
follows:

1_1.0*J;+0.0*ﬁ)—1.0*fd
o N

where

I satisfaction index such that —1 < 1 < +1,

fs frequency of responses indicating satisfaction,
Jfo frequency of responses indicating neutral,

fa frequency of responses indicating dissatisfaction,
N total no. of observations = } f; = f; + fy + fa.

Example 3
Satisfaction levels of residents in a city with different aspects were enquired. The
responses recorded on a three-point scale are shown in Table 15.5. Calculate the
satisfaction index and rank them.

Housing

I 1.0 % 102 +0.0 % 521 — 1.0 % 108
B 731

_ —6.0
731
= —0.008



15.2  Satisfaction

Table 15.5 Satisfaction with housing condition
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Aspects Frequency of responses indicating Total
Satisfaction Neutral Dissatisfaction
Housing 102 521 108 731
Water supply 372 144 20 536
Electricity 431 36 17 484
Gas supply 125 13 18 156
Environment 6 339 384 729
Road 178 269 259 706
Drainage 16 298 259 573

Water supply

Electricity

Gas supply

Environment

I— 1.0%372+0.0 % 144 — 1.0 % 20

3520
536
=0.657

536

1

4140
T 484
=0.855

484

_ 1.0%431+0.0%36 — 1.0 17

[— 1.0%1254+0.0% 13 —1.0% 18

1070
156
= 0.686

156

I 1.0x6+0.0 %339 — 1.0 x 384

~ —378.0
729
=—-0.519

729
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Table 15.6 Satisfaction
index of residents with
different housing aspects

Road

Drainage

Index Numbers

Housing Index Rankings in order of
aspect satisfaction

Housing -0.008 |IV

Water supply 0.66 1

Electricity 0.86 I

Gas supply 0.69 I

Environment —-0.519 Vil

Road -0.115 |V

Drainage -0.424 | VI

I— 1.0 % 178 4+ 0.0 * 269 — 1.0 * 259
N 706

—81.0

706
=—0.115

1= 1.0% 16 4+0.0 % 298 — 1.0 %« 259

573

—243.0
573
—-0.424

Satisfaction levels are summarized in Table 15.6. The rankings are also shown.

15.3 Agreement

In certain situations the investigators want to see if the respondents agree to a
certain proposition or not. The expected responses could be a bivariate one “agree”
or “do not agree.” But from such responses, the degree of agreement or disagree-
ment cannot be measured. The following one gives a better measurement.

Scale:
Agreement Strongly disagree Disagree Neutral Agree Strongly agree
Scale value -2.0 -1.0 0.0 +1.0 +2.0

This five-point scale allows recording positive as well as negative responses
indicating agreement and disagreement, respectively.
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Table 15.7 Farmers’ agreement on satisfactory extension services

Agreement Responses
Current year Previous year Year before previous year

Strongly agree 165 140 90
Agree 120 100 85
Neutral 35 30 25
Disagree 80 120 140
Strongly disagree 60 75 122
Total 460 465 462

Note Figures are frequencies of responses

Example 4
In a countryside sample survey the proposition that was put to the farmers was
“extension services were satisfactory during the current year, the previous year and
the year preceding the previous year.” The farmers were asked to respond whether
they agreed to it, according to the five-point scale. The responses were as follows
(Table 15.7):

Calculate the indexes and interpret the results based on the indexes.

Computations:

Current year

1_2.0* 1654 1.0 *12040.0 * 35 — 1.0 * 80 — 2.0 * 60
N 460

~250.0
T 460
= 0.543

Previous year

I 2.0%140+1.0100+0.0 %30 — 1.0 % 120 — 2.0 x 75
N 465

1100
T 465
=0.237

Year before previous year

I_2.0*90+1.0*85+0.0*25 —1.0%x140 —2.0% 122

462
1190

462
= —0.258
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Table 15.8 Summary of Reference year Index value
indexes
Current +0.543
Previous +0.237
Year before previous year —0.258

The index values are summarized in Table 15.8 hereafter.

Positive index implies agreement meaning extension services were satisfactory.
Higher index value implies greater agreement on satisfactory service. Negative
index value implies disagreement and greater negative value suggests greater dis-
agreement on satisfactory service. The index value may be as follows:

—2<I< +2

In the present example during the year before the previous year the index value
is negative. This means that the service in general was not satisfactory. During the
previous year and the current year the index values are positive. This implies that
the services on the average are satisfactory. Furthermore, the index values have a
consistent and steady increase from —0.258 to +0.304. This suggests that extension
services have been performing well gradually over time.

15.4 Performance

We can construct a scale to measure the degree of performance. We could do it in

the way “agreement” scale was constructed. But that could not be suitable.

Agreement scale ranges from —2 to +2. But the performance scale should not read

minus. There is, in fact, no sense in saying “minus performance.” However, the

five-point scale can be constructed in this case too. The scale should be as follows.
Scale:

Performance Poor Excellent
Scale value 0 1 2 3 4

The higher the scale value, the better is the performance. However, the greatest
value can be 4 according to the scale. Therefore, the index value may lie between 0
and 4, i.e.,

0<1<4
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Example 5§
In a sample survey the employers of AIT alumni were requested to indicate on a
five-point scale the performance of the AIT graduates in certain qualities. The
responses are shown in Table 15.9. Calculate the performance indexes.

Solution:

The scale is constructed as shown hereafter. The higher the scale value, the better
is the performance.

Scale:
Performance Poor Excellent
Scale value 0 1 2 3 4

Calculations of indexes are demonstrated hereafter.
General Technical Ability

1_0*3+1*6+2*26+3*39+4*22
B 96

_ 263
96
=274

Special Technical Ability

170*4—1—1*4—1—2*18—#3*424—4*20
o 88

246
© 88
=2.80

Calculations of indexes for other qualities are left to the readers. The indexes
thus computed are shown in Table 15.10.

Table 15.9 Performance of Qualities Values Total
AIT graduates 0 1 2 3 4
General technical 3 6 26 39 22 96
ability
Special technical 4 4 18 42 20 88
ability
Planning ability 3 11 25 21 22 82

[98)

Implementation 11 16 |33 15 78

ability

Problem solving 5 21 39 26 100
Organizing work 4 5 26 |32 |27 94
Coordination 5 19 |33 25 89
Teach/Train ability 2 12 16 |33 26 89
Note Figures are frequencies of responses
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Table 15.10 Index of

Qualities Indexes
performance of AIT graduates General technical ability 2.74
Special technical ability 2.80
Planning ability 2.59
Implementation ability 2.59
Problem solving 2.72
Organizing work 2.78
Coordination 2.74
Teach/Train ability 2.78

15.5 Price Index

Price index helps us to study the movement of prices of an item or a group of items
over certain period of time. Price index is a relative measure and is based on a base
period. For a single item or commodity, the index is calculated as

P+ 100
0

Price index =

where
Py price of the item in base period,
P, price of the item in period under study.

In order to avoid decimal point or fraction, it is customarily multiplied by 100.
Some authors use the term “price relative” instead of price index when one item is
involved.

Let us use one example to calculate the price index. Suppose the prices of a food
item during 1980 and 1985 were $2.25 and $3.00, respectively. What is the price
index of the item in 19857

Here our base period is 1980. Therefore, the price index is calculated as follows:

3.00 * 100
2.25
=133

Price index =

This indicates that if the price in the base year (1980) is 100, the price in 1985
would have been 133 implying 33 % increase over the base period.

In practice we are more concerned with the price movement of several items
together rather than one item only. The following subsections will illustrate the use
and techniques in this regard.
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15.5.1 Laspeyres Price Index

When we calculated the price index for a single item, we used only the unit prices
over two periods of time. No weightage was used for the quantity consumed during
the periods. In Laspeyres price index, we need to introduce the quantities too, thus,
introducing the total cost concept.

Laspeyres price index is the total cost of purchase of a basket of goods traded at
the base period at the prices in the period under study, expressed as a percentage of
the total cost of purchase of the same quantities (base period quantities) at the base
period price. Thus,

S POy * 100
> PoQo

Laspeyres price index =

where

Py price in the base period,
Qo quantity in the base period,
P, price in the current period.

Here P,Q, is the total cost of purchase of the base period quantity at the current
period price. PyQy is the total cost of purchase of the base period quantity at the
base period price. It may be noted here that in this case only the quantity traded
during the base period is considered.

Example 6
The unit prices of five commodities and the quantities sold during two periods of
time are shown. Calculate the Laspeyres price index.

Solution:

The calculations are summarized hereafter in Table 15.12.

> PiQo * 100

> PQo
1525100
1365
=112

Laspeyres price index =

15.5.2 Paasche Price Index

It may be noted that in Laspeyres price index only the quantity traded during the
base period (Qy) was considered. It is easy and suitable if the quantities traded
during the latter period is difficult to obtain. If quantities during both the periods can
be obtained, then Paasche price index may be used. It is the total cost of purchase of
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the quantities in the period under study at the same period price, expressed as a
percentage of the total cost of purchase of the quantities in the latter period at the
base period price. Thus,

P 100
Paasche price index = w
> PoQo

Using the example in Sect. 15.5.1 above, we can calculate the Paasche price
index as follows:

P 100
Paasche price index = ZtL
> PoO:

1648 % 100
T 1240
=133

15.5.3 Fisher’s Ideal Price Index

We have noted that because of use of quantities in different periods, Laspeyres and
Paasche price indexes differ. Fisher’s ideal index is a solution to this problem.
Fisher’s ideal price index is the geometric mean of Laspeyres price index and
Paasche price index. Thus,

Fisher’s ideal price index = +(Laspeyres p. * Paasche p. index).

Let us use the same data as in Sect. 15.5.1 to calculate the Fisher’s ideal price
index:

Fisher's ideal price index = /(112 % 133)
=122

15.5.4 Quantity Index

So far we have studied the price changes with the help of price indexes. In other
words, it measures the change in “cost of living.” There is another set of indexes.
These measure the increase or decrease of quantities indicating change in “standard
of living.”

The following set of three formulae will be used to calculate the quantity
indexes:
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Laspeyres quantity index =

Paasche quantity index =

S PQo * 100
> PoQo
S QP * 100
ZQOPt
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Fisher’s ideal quantity index = v(Laspeyres q. index * Paasche q. index).
To demonstrate their uses we may use the same data as given in Tables 15.11

and 15.12.

Table 15.11 Prices and

quantities traded

Table 15.12 Total cost

summary

Laspeyres quantity index = M
>~ QoPo
1240 % 100
- 1354
=91
Paasche quantity index = M
Z QOP t
1648 x 100
1525
= 108
Fisher's ideal quantity index = /(91 * 108)
=99
Commodities 1985 1990
9o Py O Py
Rice (kg) 500 0.40 500 0.50
Meat (kg) 100 1.25 80 1.50
Gasoline (1) 500 0.40 600 0.23
Shirt (no) 20 10.00 30 12.00
Color TV (no) 2 320.00 2 360.00
Note Prices are in $
Commodities Cost ($)
PoQo P Qo PO PoQ,
Rice 200 250 250 200
Meat 125 150 120 100
Gasoline 200 165 198 240
Shirt 200 240 360 300
Color TV 640 720 720 640
Total 1354 1525 1648 1240
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15.5.5 Total Cost Index

We have studied the price indexes (cost of living index) and quantity indexes
(standard of living index). Here we want to study the total cost of index which
indicates the combined effect of price change and quantity change. Specifically, we
want to study how much the total cost changes as a result of changes in both price
and quantity. The computational formula is as follows:

> PO+ 100
> PoQo

Total cost index =

Using the data of Tables 15.11 and 15.12 we can calculate the total cost index as
follows:

ST PO * 100

> Py0Qo
1648 % 100
T 1354
=121

Total cost index =

Using Fisher’s ideal indexes we can derive another relationship. Let us examine
the following:

(price index) * (quantity index)
= /{(Laspeyres p. index * Paasche p. index)
* (Laspeyres q. index * Paasche q. index)}
_ \/{ZPth . > PO . > 0Py . ZQtPl}
> PoQo D> PoQ: > 0QoPo > QP
_ \/{ZPth . > PO . > OPo . ZQtPl}
> PoQo D> PoQ: > 0Q0Po > QP
_y { (PO’ }
= 2
> (PoQo)
> PO
> PoQo

= Total cost index

This is known as the factor reversal test. We can check it in our previous
example:
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(Fisher's price index) * (Fisher's quantity index) = (1.22) % (0.99)

=1.21
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= Total cost index.

15.5.6 Cost of Living/Standard of Living Index

There are three cost of living indexes. These are price indexes namely, Laspeyres
price index, Paasche price index, and Fisher’s ideal price index. There is not much
superiority of one index over others, but Laspeyres price index is used more widely.
However, Fishers’ ideal price index would be preferred, if there is not much dif-

ficulty in collecting data and computing them.

Similar to the cost of living indexes, there are three standard of living indexes
namely, Laspeyres quantity index, Paasche quantity index, and Fisher’s ideal

quantity index.

Table 15.13 Quantities and
prices of goods and services

Commodities 1985 1990
QO P0($) Ql Pl($)

Rice (kg) 2.00 0.40 2.00 0.50
Meat (kg) 0.50 1.20 0.55 1.60
Fish (kg) 1.00 0.50 1.25 1.00
Bread (kg) 1.00 0.60 1.00 1.00
Vegetable (kg) 1.00 0.40 1.25 0.80
Fruit (kg) 0.50 0.60 1.00 1.25
Spice (kg) 0.70 4.00 0.80 6.00
Cold drink (no) 7.00 0.12 10.00 0.24
Tea/coffee (cup) 3.00 0.12 4.00 0.20
Milk (1) 3.00 0.40 3.50 0.60
Detergent (kg) 0.50 0.60 0.80 0.80
Soap (no) 0.60 0.80 1.00 1.25
Gas (cyl) 0.05 5.00 0.07 6.60
Electricity (kwh) 2.00 0.07 3.00 0.10
Gasoline (1) 2.00 0.50 3.00 0.36
Shirt (no) 0.25 6.00 0.35 12.00
Pant (no) 0.25 14.00 0.30 20.00
Shoe (pair) 0.20 10.00 0.30 21.00
Academic (Is) 1.00 3.00 1.00 5.00
House rent (no) 1.00 20.00 1.00 30.00
Education (no) 0.40 100.00 0.40 150.00
Color TV (no) 0.01 400.00 0.01 600.00
Refrigerator (no) 0.01 300.00 0.01 500.00
Telephone (no) 1.00 6.00 1.00 8.00
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A major work in computing the indexes is to collect data. Usually, a basket of
goods and services that a man consumes during a certain period of time, say one
week/one month, is considered. Appropriate sample sizes of the consumers are
taken. Their quantities of consumption of goods and services are recorded. Unit
prices of those goods and services are also noted. This is done during any part of the
base year. During a latter year the same process is repeated. From these two sets of
data, computations of indexes are done.

Example 7

In a sample survey of consumers in a city during 1985 and 1990, the average

quantities of goods and services consumed by a consumer per week along with the

average unit prices of those goods and services are shown in Table 15.13. Calculate

the cost of living index, standard of living index and carry out the factor reversal test.
Cost components and their calculations are summarized in Table 15.14.

Table 15.14 Cost

Commodities 1985 1990
components (5) P00 PO |0 | 0P
Rice (kg) 0.80 1.00 1.00 0.80
Meat (kg) 0.60 0.88 0.80 0.66
Fish (kg) 0.50 1.25 1.00 0.63
Bread (kg) 0.60 1.00 1.00 0.60
Vegetable (kg) 0.40 1.00 0.80 0.50
Fruit (kg) 0.30 1.25 0.63 0.60
Spice (kg) 2.80 4.80 4.20 3.20
Cold drink (no) 0.84 2.40 1.68 1.20
Tea/coffee (cup) 0.36 0.80 0.60 0.48
Milk (1) 1.20 2.40 1.80 1.40
Detergent (kg) 0.30 0.64 0.40 0.48
Soap (no) 0.48 1.25 0.75 0.80
Gas (cyl) 0.25 0.46 0.33 0.35
Electricity (kwh) 0.14 0.30 0.20 0.21
Gasoline (1) 1.00 1.08 0.72 1.50
Shirt (no) 1.50 4.20 3.00 2.10
Pant (no) 3.50 6.00 5.00 4.20
Shoe (pair) 2.00 6.30 4.20 3.00
Academic (Is) 3.00 5.00 5.00 3.00
House rent (no) 20.00 30.00 30.00 20.00
Education (no) 40.00 60.00 60.00 40.00
Color TV (no) 4.00 6.00 6.00 04.00
Refrigerator (no) 3.00 5.00 5.00 03.00
Telephone (no) 6.00 8.00 8.00 6.00
Total 93.57 150.71 142.11 98.71
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Cost of Living Index:

Laspeyres price index = M
> PoQo
142,11 % 100
9357
=152

Y PO * 100

Paasche price index =
P PoO,

150.71 % 100
T 9871
=153
Fisher's ideal price index = /(152 * 153)
= 1525

Standard of Living Index:

Laspeyres quantity index =
peyresa Y >~ QoPy
~ 98.71 % 100

93.57
=105
> 0P+ 100
>~ QoPy

15071 % 100
- 14211
= 106

Fisher's ideal quantity index = /(105 * 106)
=105.5

Paasche quantity index =

Factor reversal test:

S PO, % 100

> Po0Qo
_ 150.71 % 100

93.57
=161

Total cost index =

S QP * 100
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Using Fisher’s ideal index both for cost of living and standard of living, we can get

(Fisher's ideal price index) * (Fisher's ideal quantity index) = (1.525) % (1.055)
=1.61
= total cost index.

15.5.7 Inflation

The price index shows the movement of prices. Associated within this is the term
“Inflation.” Inflation means general rising level of prices. However, it does not
mean that all prices are rising. In fact over a specific period of time some prices may
rise, some prices may remain constant, and some prices may even fall. If the prices
fall, we call it deflation.

Inflation is measured by price index numbers. As such, it would be useful to
understand what is the meaning of price index. Suppose in 1990 the consumer price
index was 125 with 1985 as the base year. This means the price in the base year
1985 was taken to be 100. Relative to this, the price level rose to 125 in 1990. This
means an increase of price by 25 % over the base year price. If a bundle of
commodities would cost $100 in 1985, it costs $125 in 1990.

Like price index, inflation also involves setting up a base year and measuring the
rate. The rate of inflation is calculated for any given year by subtracting the pre-
vious year’s price index from the current year’s price index and dividing this
difference by the previous year’s price index. Usually, it is expressed in percentage.
To illustrate how inflation is measured, suppose that the consumer price indexes
were 255 in 1989 and 265 in 1990 relative to certain base year. Then

265 — 255
Inflati te = —————* 100
nflation rate 555 *

=3.92%

If the price indexes for two consecutive years are not available, then the inflation
rate should be calculated using the formula:

. LI]P2 — LHP]
r= antiln ——— > — 1
n

where

rannual inflation rate (multiply » by 100 to get it in percentage),
P, price index in the latter period,

P, price index in the former period,

n  number of years between the two periods.
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Suppose the price indexes in 1986 and 1991 were 260 and 320, respectively.
Then the rate of inflation is calculated as follows:

. Lan — LnPl
r=antiln —— — 1
n
- — anti Ln{Ln320 — Ln260} _1
5
. —5.561
= anti Ln{i5 768 —5.56 } —1
5
= anti Ln(0.0414) — 1
=1.0423 -1
=0.0423
=423%

The same formula may be rearranged and used to calculate the number of years
after which the price level will be double. The above formula, if rearranged, stands
as follows:

(1+7r)" = P,y/P,
In the present context P, = 2P,. Therefore,
(14+r)'=2P /P, =2
Taking logarithm of both sides we can get
nln(l1+r) =1In2 = 0.693
Therefore,

_0.693

CIn(1+7)

B 0.693

22433+ -
0.70 .

== (approximately)

070 % 100

~ r*100

70

7 (in %)

This means dividing 70 by the annual inflation rate we get the number of years
after which the price level will be double the present price level. Thus, if the
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inflation rate is 3.5, the number of years after which the price level will be double is
70/3.5 = 20 years. Similarly, an inflation rate of 8 % will double the price level in
70/8, i.e., about 9 years. This is known as the so-called RULE OF 70.

Problems

15.1 In a sample survey for food sufficiency in a rural community, 61 households
reported that the food they produced was sufficient, while 108 households
reported that it was insufficient. Construct a suitable scale, and calculate the
sufficiency index and comment.

15.2 The unit prices of three commodities and the quantities sold during 1988 and
1991 are as follows:

Commodities 1988 1991

Qo Py O Py
Rice (kg) 400 $0.40 400 $0.50
Meat (kg) 80 $1.25 64 $1.50
Gasoline (1) 400 $0.40 480 $0.33

(a) Calculate the Laspeyres, Paasche, and Fisher’s Price and Quantity
indexes.

15.3 Three items of food in a restaurant were checked during 12 months of a year.
The average prices (in $/kg) for the period are shown in the following table.

Table: Prices ($) of three items of food

Month Rice Fish Chicken
January 0.32 2.40 141
February 0.33 2.38 1.19
March 0.35 2.00 1.20
April 0.38 2.61 1.40
May 0.39 2.60 1.40
June 0.40 2.76 1.60
July 0.42 2.78 1.44
August 0.45 2.75 1.58
September 0.48 2.80 1.60
October 0.48 3.10 1.61
November 0.50 3.11 1.90
December 0.51 3.15 2.21
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The following table shows the quantities of the three items of food sold during the
same 12 months.

Table: Quantities (kg) of three items of food ordered

Month Rice Fish Chicken
January 180 247 355
February 170 234 370
March 175 264 387
April 160 222 336
May 168 204 385
June 150 188 345
July 140 188 325
August 135 263 300
September 179 240 428
October 185 247 439
November 187 257 475
December 190 282 510

Take January as the base period and calculate Laspeyres, Paasche, and
Fisher’s Price and Quantity Indexes.

15.4 For data in problems 15.2 and 15.3 run the factor reversal test.

15.5 The consumer price index (CPI) rose 40 % in 1980 and again 80 % in 1990.
How much did the CPI rise over the entire period? Suppose, this overall rise
of CPI was steady at 7.6 % per year. What was the base year? Calculate the
indexes for all the three years, taking 1980 as the base year.

15.6 The price index was 190 last year and 210 this year.

(a) Calculate the rate of inflation

(b) What is the RULE OF 70?

(c) How long will it take for the price level to be double?

(d) How long will it take for the price level to be double if the annual
inflation rates are 4, 7.5, and 10 %?

15.7 The unit prices of three commodities and the quantities sold during 1988 and
1991 are shown below:

Commodities 1988 1991

QO P, 0 Ql P, t
Rice (kg) 400 $0.40 400 $0.50
Meat (kg) 80 $1.25 64 $1.50
Gasoline (1) 400 $0.40 480 $0.33
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Use the data and show that
(Fisher’s ideal price index) * (Fishers’ ideal quantity index) = Total cost
index.

Answers

151 —-1<71<+1;-0.28
15.2 LPI = 107.6; PPI = 105.2; LQI = 79.0; PQI = 100.5
15.3 The indexes are summarized in the following table.

Month LPI PPI LQI PQI

January 100.00 100.00 100.00 100.00
February 92.94 92.58 98.84 98.46
March 85.41 85.29 107.32 107.18
April 105.13 104.99 91.90 91.78
May 105.07 104.48 94.37 93.84
June 114.83 104.48 85.63 85.56
July 110.60 109.97 82.91 82.41
August 114.78 114.63 95.34 95.22
September 116.94 116.65 107.45 107.18
October 123.69 122.84 110.43 109.66
November 133.16 133.34 116.98 117.13
December 143.74 145.00 126.56 127.67

15.5 152 %; 1977; CPI of 1977 = 71; CPI of 1980 = 100;
CPI of 1990 = 180
15.6 (a) 10.535;
(b) if 70 is divided by the inflation rate (in %), a figure is obtained. This
figure represents the number of years when the price index will be double
the base year price. This is known as the Rule of 70.
(c) 6.65 years; (d) 17.5 years; 9.33 years; 7 years



Chapter 16
Analysis of Financial Data

Abstract The chapter shows the techniques for analysis of financial data which
usually entail time series data. Examples are provided to show how to analyze
project investment data and to get financial terms such as NPVC, NPVB, and BCR.
Technique for statistical estimation of IRR is demonstrated. Qualitative and
quantitative assessment of risk is shown. It is shown how to do trend analysis using
time series data. The popular autoregressive model is developed. The technique for
forecasting with and without the use of a model is demonstrated. Examples are
used.

Keywords Financial data - NPVC - NPVB - BCR IRR - Statistical estimation of
IRR - Autoregressive model - Risk assessment

16.1 Financial Terms

There are some terms that will be necessary to study the analysis of financial data.
These terms are explained hereafter.

Time Value of Money: The concept says that the value of money changes over
time. Suppose we have $100 and we deposit in the bank. The interest rate is 5 %.
After one year, the value of $100 will be equal to $100 + interest for one
year = $100 + $100 * 0.05 = $100 + $5 = $105. This is the future value.

Present Value, Future Value and Discounting Rate: In the example above, the
present value is $100 and the future value is $105. If we know the amount of money
we want to invest, we can calculate the future value using the interest rate (this rate
is discounting rate). From the future value we can calculate the present value. The
relation between present value and future value is

P, = P()(l + r)”

where,
Py present value
P, future value at the end of nth period
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A.Q. Miah, Applied Statistics for Social and Management Sciences,
DOI 10.1007/978-981-10-0401-8_16



304 16 Analysis of Financial Data

n  number of period (years)
r  discounting rate

This r is a fractional number and not percentage. For example, if the discounting
rate is 5 %, r = 0.05. Here n and r are to match. For example, if yearly rate is
counted, n will be in years and r will also be per year. If quarterly rate is counted,
n will be in quarter and r will also be per quarter.

Net Present Value: In financial appraisal or feasibility, there are several figures
for income or expenditure. All of these are converted to their respective present
values. All these present values are added. The figure we get is the net present
value.

IRR: This is internal rate of return. The IRR of an investment is the discount rate
at which the following happens.

Net present value of costs (negative cash flows of the investment)—net present
of benefits (positive cash flows of the investment) = 0.

It is used to evaluate the desirability of the investment. It is the break-even
interest rate.

Benefit Cost Ratio (BCR): It is a ratio showing net present value of benefit
divided by net value of cost as shown hereafter.

Net present value of benefit
BCR =

Net present value of cost

Break-Even Point: The break-even point of an investment is the time at which
the present value of cost equals the present value of benefits.

ROI (Return on Investment also ROR Rate of Return): The formula for calcu-
lating ROI is given below:

ROI — Gain from investment — Cost of investment

Cost of investment
ROE (Return on Equity) = Defined by the following:

Netincome

ROE = .
Shareholder Equity

Cash Flow: Cash flow is the movement of cash in and out of the investment
project.

Depreciation: Depreciation is the apportionment of cost of capital during the life
expectancy of the building/structure/asset. There are different ways of calculating
depreciation. Of these, the straight-line method is popular and widely used.
Suppose there is a building constructed with capital cost of $50,000 and the life
expectancy is assumed to be 40 years. According to the straight-line method, the
depreciation rate will be 50,000/40 = $1250/year. This means that the building will
depreciate at the rate of $1250 per year.
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16.2 Calculation of Net Present Values

Refer to Sect. 3.1.1 (Geometric Mean) wherein it was shown by deduction that
P, =Py(1+r)"

where,

P, future population
Py present population
R growth rate

n  number of years

The same concept can be applied for calculating the future value of money if we
know the present value of money and the interest rate. Conversely, we can calculate
the present value of money if its future value and the interest rate are known. It is
the basic concept in financial appraisal of a project. Look at the following example.

The estimated breakdown of estimated cost and benefits of an industrial estate in
Shanghai are shown in the following table. The cost and benefits are in current
prices. Using the Excel spread sheet, the present values have been calculated using
an interest rate known here as ‘discount rate’ of 10 % per annum.

Each future value has been converted to respective present values using the
discount rate of 10 % per annum. Calculation proceeds as follows:

Example 1
Amounts are in thousand US$

Year | Estimated Estimated Present value of cost Present value of benefit
cost benefit (PVC) (PVB)
1995 |- - - -
1996 |32,312 - 26,704 -
1997 | 40,604 35,171 30,506 26,424
1998 | 42,634 40,604 29,120 27,733
1999 | 3534 42,541 2194 26,415
2000 |92,638 86,455 52,292 48,802
2001 | 34,198 92,016 17,549 47,219
2002 | 38,639 96,477 18,025 45,007
2003 | 83,276 61,323 35,317 26,007
2004 | 48,534 63,684 18,712 24,553
2005 | 2950 66,046 1034 23,149
2006 | 72,950 68,360 23,244 21,782
2007 | 57,932 70,721 16,781 20,485
2008 | 150,183 72,309 39,548 19,041
2009 | 306,320 302,657 73,331 72,454

(continued)
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(continued)

Year | Estimated Estimated Present value of cost Present value of benefit
cost benefit (PVC) (PVB)

2010 |165,577 312,130 36,034 67,929

2011 |173,869 321,616 34,399 63,630

Total | 1,346,150 1,732,110 454,790 560,629

In 2000, the estimated cost is US$92,638 thousand dollars. This is expenditure to
the project. Number of years beginning from 1995 to 2000 is n = 6, r = 0.10
(discount rate). So the present value is given by PVC = 92,638/(1 + 0.10)° = 52,292.
The estimated benefit = 86,455. So the PVB = 86,455/(1 + 0.10)° = 48,802.
Calculation for other years is similar.

The NPVC (net present value of cost) = US$454,790,000
The NPVB (net present value of benefit) = US$560,629,000

We may notice that in this example, the benefit is more than the cost. So the
project is profitable. Furthermore, the BCR (benefit cost ratio) = NPVB/
NPVC = 560,629/454,790 = 1.23. This means that based on the NPV, the pro-
ject is expected to provide a profit of 23 %.

16.3 Project Investment Data

Before making a decision whether to invest in a particular project, a thorough
analysis is done. One criterion is to examine whether the IRR is above or equal to a
pre-set IRR. Application of this concept is demonstrated with the help of an
example. The following example is a real-world example. This is the example of an
industrial estate project in China. Here the analysis is made considering the project
life of 16 years (1995-2011). Project life could be considered longer than this. But
one thing is to be kept in mind that the maintenance cost increases over time and
may offset the IRR. Furthermore, the investor may not like to wait for long time to
get his return.

Project cost includes capital cost of construction but does not include the cost of
land. Land cost usually goes up over time and may distort the rate of return.
Revenue comes from the sale/or lease of the developed industrial estate.

The analysis is made using Excel. Discount rate used is 10 %. Normally the
discount rate is the short time lending rate that the Federal Bank charges to other
banks. If discount rate is taken to be different, the calculated IRR will not be
affected. Discount rate is only a reference rate to start with.
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Example 2
Amounts are in US$ million (rounding)
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1 | Construction schedule |Total | 1995 1996 1997 1998 1999 | 2000
2 | Pre-investment 4.50 4.50
3 | Project cost 1346 32.31 40.60 | 42.63 3.53 92.64
4 | O & M cost 80.88 1.14 1.69 1.77 6.91
5 | Depreciation 34.13 2.44 2.44 2.44
6 | Revenue 1732 35.17 |40.60 42.54 | 86.46
7 | Taxes 72.05
8 |ROI
Inflow 1651 34.03 38.92 40.77 |79.55
Outflow 1346 32.31 40.60 | 42.63 3.53 92.64
IRR 32 % |NPVB |533.64 |NPVC |454.79 |BCR |1.17
9 |ROE
Inflow 1545 34.03 36.48 38.33 |77.11
Outflow 1346 32.31 40.60 | 42.63 3.53 92/64
IRR 25 % |NPVB |500.44 |NPVC |454.79 |BCR [1.10
Amounts are in US$ million (rounding)
1 | Construction schedule | Total |2001 2002 2003 2004 2005 2006
2 | Pre-investment 4.50 4.50
3 | Project cost 1346 3420 |[38.64 |83.28 |48.53 |[2.95 72.95
4 | O & M cost 80.88 |7.15 3.44 2.53 2.57 2.68 2.88
5 | Depreciation 34.13 | 244 2.44 2.44 2.44 2.44 2.44
6 | Revenue 1732 192.02 9648 |[61.32 |63.68 |66.05 |68.36
7 | Taxes 72.05 |[3.80 5.71 2.26 10.88
8 ROI
Inflow 1651 84.86 [93.04 |5880 |61.11 |[63.37 |65.48
Outflow 1346 3420 |[38.64 |83.28 |48.53 |[2.95 72.95
IRR
9 |ROE
Inflow 1545 78.63 |84.89 |56.36 |[56.41 |50.06 |63.05
Outflow 1346 3420 |[38.64 |83.28 |48.53 |[2.95 57.93
IRR
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Amounts are in US$ million (rounding)

1 Construction schedule Total 2007 2008 2009 2010 2011
2 Pre-investment 4.50
3 Project cost 1346 57.93 150.18 | 306.32 165.58 173.87
4 O & M cost 80.88 2.89 2.98 12.49 14.61 15.16
5 Depreciation 34.13 2.44 2.44 2.44 2.44 2.44
6 Revenue 1732 70.72 72.31 302.66 312.13 321.62
7 Taxes 72.05 1.78 23.75 23.87
8 ROI
Inflow 1651 67.83 69.33 290.16 297.52 306.46
Outflow 1346 57.93 150.18 306.32 165.58 173.87
IRR
9 ROE
Inflow 1545 63.61 66.90 287.73 271.33 280.15
Outflow 1346 57.93 150.18 306.32 165.58 173.87
IRR

The analysis above gives the following results:

ROI

IRR =32 %; BCR = 1.17

ROE

IRR =25 %; BCR = 1.10

In both the cases of ROI and ROE, the IRR is attractive. The BCR is more than
1.00, which shows benefit is more than the cost measured at present value, which
also shows that the investment is attractive.

The IRR shows the rate of return the investor is expected to get. It does not,
however, show the absolute value (amount) the investor will get during the period.
The NPV does not show the rate of return but shows the absolute value (amount)
the investor is expected get. While the IRRs are comparable for different projects of
different sizes, the NPVs are not.

16.4 Risk and Statistical Estimation of IRR
16.4.1 Risk

Risks are future problems in a project that can be avoided or mitigated. Risks are
not the current problems that must immediately be resolved.
Risks involve probability of occurring at a certain time in future in a project.
In many projects requiring financial investment, there remain some uncertainties.
The uncertainties create risks to the investor. So calculating the risks and their
financial burden on the part of the investor are important. We shall demonstrate here
how to assess the risks. Suppose that a building is going to be constructed.
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Risk may be measured qualitatively and quantitatively. Qualitative assessment of
risk does not give a good idea. For risks may be stated to be low risk, medium risk,
and high risk. From these we do not get a good idea of the risk. Quantitative
assessment involves statistical methods. Mathematically it can be stated in the
following way:

Risk = (probability of occurring of the event) X (expected value of the event)

Example 3
As another illustration, suppose you are going to construct a building. It will cost
$850,000. If the earthquake effect is taken into consideration, the design will be
stronger, but the building costs an additional amount of $7000. The probability of
earthquake occurring is 0.005.

Do you want to consider earthquake effect in the design and construct
accordingly?

Calculate the risk involved and then decide.

If the earthquake occurs then the estimated relevant costs are

Cost of rebuilding the building $850,000
Damage to other properties $400,000
Injury to people residing $700,000
Fine by government agency for not complying earthquake regulations $50,000
Total $2,000,000

R = 0.005 x 2,000,000
= $10,000 (loss)

So, if earthquake is not taken into account, risk is $10,000.

If earthquake is taken into account the loss is $7000.

Note: Probability values lie between 0.00 and 1.00. In any case, probability
cannot be negative. Also in no case probability can be greater than 1.00.
Furthermore, probability 0.00 means that the event cannot occur and probability
1.00 means that the event is certain to occur.

16.4.2 Statistical Estimation of IRR

IRR is an important tool for making a project investment decision. The IRR is
calculated based on costs and benefits spread over a certain period of time and by
converting to present values. If any cost or benefit is changed any time, the IRR
may change. So there is a risk in using this tool (IRR). For this reason an interval
(range) estimation of IRR is useful. This technique may be demonstrated with the
help of an example. We shall use here the example provided in the previous section.
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In this example, the cost is changed by 2.5, 5, 7.5, and 10 % upward and
downward. The resulting IRRs and NCFs (net cash flow) are as follows:

Example 4

Cash flow is in NPV

IRR (%) NCF (net cash flow in 000 $)
44 439.694
40 406.040
38 372.387
35 338.733
32 305.079
29 271.425
26 237.772
23 204.118
20 170.464

By linear regression, we can get the following model (R* = 0.999; a < 0.05).
IRR = 5.146 + 0.088 NCF

The interpretation is simple. If net cash flow in present value is by $200 (actually
$200,000 since the units are in thousand $), the IRR will be as follows:

IRR = 5.146 + 0.088 NCF
IRR = 5.146 +0.088 x 200 = 5.146 + 17.6 = 22.70 — 22.75 %

This model is a particular case for a particular cash flow. It cannot be used for all
cash flow systems. The above analysis is to be made for the particular project. For
any project investment, different situation will be considered that may affect the
cash flow. Then in each of the situation, the resulting IRR and NCF are to be
recorded. Thereafter, run the regression using SPSS for Windows. The interval
estimation of the IRR will be made. The IRR may be assumed to follow normal
distribution. Note that in this example, #-value is used not the z-value. This is done
because the sample size is small. The technique is an example to show how to
analyze any case. In this case we may provide the interval estimation (range) of IRR
associated with its probability, instead of a single value. The interval estimate of
IRR is given by the following:

_ s _ s
X —ty2n-1 *% SUSX+lypp 1 ¥ —=

i

Here,

X sample mean = 31.8889
t-value at a/2 2.306 (a = 0.05, level of significance)
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s standard deviation of sample = 2.2949
n sample size = 9
u IRR being estimated

Putting these values we get
30.00 < u<33.40

This means that the IRR will lie between 30.00 and 33.40 and the probability of
this is 95 %. When we say that its probability is 95 %, it means the risk is 100.00—
95.00 =5 — 5.00 %.

Risk is of more concern to any investor. In the above example, the interval
estimation of IRR with 95 % confidence level is 30.00-33.40 %. This is quite
attractive. However, in analyzing the risk further, the investor may want to know
something more. Let us suppose he may want to see ‘what is the probability that the
IRR may fall below 20 %°’.

This may be calculated as follows:

For ¢ distribution we know

_X-H

s/vn

Note that x4 is the mean of x. Therefore, from original data we can get

t

X—X

NG

Our task is to calculate the value of a and p(a) for x < 20. First we need to
calculate the ¢ value. In our example, x = 20, x = 31.889, s = 2.2949, and n = 9.
Putting these values we get ¢+ = —16.90. From ¢ table the corresponding o value
is <0.001 (dfis 10 — 1 =9). This means that the probability of IRR falling below 20
is less than 0.001 or 0.10 %. In other words, the chance of the IRR falling below 20 is
extremely low. With this information, the investor can take a better decision.

16.5 Time Series Financial Data

A time series is a sequence of data points, measured typically at successive points in
time spaced at uniform time intervals. Two points are important here. The data
points must be measured at successive intervals of time and the time intervals must
be same. Index of a stock exchange is an example of a time series data.

The purpose of analyzing time series data is generally: (i) extracting meaningful
statistics and other characteristics of the data, and (ii) modeling and forecasting
future values.
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16.5.1 Trend Analysis

Trend can better be understood by plotting the records. Since the data are time
series, the x-axis will always be time. The other set of records will be along the y-
axis. If the series shows many ups and downs, trend can be analyzed by some
treatment to the data. One way is to smooth the data by use of the technique of
moving average. The plot with the smoothened data may make it easier to have an
idea of the trend.

The moving average may be 2-period, 3-period, 4-period, S-period, etc.
The table hereafter shows the 3-period moving averages of index values of Stock
Exchange of Thailand (SET) data for March 2013. The calculation may be
explained by an example. The first average of 3-period moving aver-
age = (1st record + 2nd record + 3rd record)/3 and it will be placed along the 3rd
record. In the following table, this value is 1543.28. The next moving
average = (2nd record + 3rd record + 4th record)/3. In the table it is 1549.79 and it
is placed along the 4th record.

Example 5
Moving Average of SET Index Data

Date Index Moving average Date Index Moving average
1 1539.80 18 1591.65 1592.19
4 1540.72 19 1568.25 1586.01
5 1549.31 1543.28 20 1543.67 1567.86
6 1559.35 1549.79 21 1529.52 1547.15
7 1560.98 1556.55 22 1478.97 1517.39
8 1566.92 1562.42 25 1523.95 1510.81
11 1577.64 1568.51 26 1544.03 1515.65
12 1576.68 1573.75 27 1560.87 1542.95
13 1578.70 1577.67 28 1544.57 1549.82
14 1586.79 1580.72 29 1561.06 1555.50
15 1598.13 1587.87

Note Dates refer to March 2013. Moving average is 3-period moving average

Another treatment to the data is exponential smoothening. This technique pro-
vides more weight to the current and records those that are near the current record.
However, there is no fixed rule how much weight is to be given and where.

For analysis of the trend, Fig. 16.1 showing the Stock Exchange of Thailand
index during March 2013 is plotted and may be used. There is no clear trend of the
index. However, during the first half of the month, the trend is rising of the index.
Thereafter, the index in general starts dropping and then again rising.

Further, we can draw a moving average line. Figure 16.2 shows the moving
average (3 period moving average) line (thin line). This also does not show
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Fig. 16.1 Plot of Stock Exchange of Thailand Index During March 2013
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Fig. 16.2 SET Index Trend during March 2013
anything clear. However, the regression line (shown in straight line) shows a clear
line with regression equation. The straight line shows a clear trend. The trend is ‘the

index is decreasing’. The negative coefficient of x also indicates the trend that the
index is decreasing.

16.6 Models for Time Series Financial Data

There are a few models for the time series data such as autoregressive (AR) models,
integrated (I) models, moving average models, and combinations of these models
such as autoregressive moving average (ARMA) model and autoregressive inte-
grated moving average ARIMA models, etc. Here we shall discuss the autore-
gressive model. It is quite popular with the users.

16.6.1 Autoregressive Model

Generally, the autoregressive model is given by

Y =bo+b1Y,_1+bY, 2 +b3Y, 3+DbsY, 4 +bsY, s+ - +¢
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where,

Y, dependent variable at the time ¢

Y, independent variable at the time t —i (i =1, 2, 3, ...)
by, b; (i=1,2,3 ...) regression coefficients; by is a constant or intercept

e; error term (residual)

The coefficients are to be estimated.

Analysis shown here used SPSS for Windows. For using the SPSS for Windows
programme, the following sequence is provided for guidance to those who are not
quite conversant with SPSS for Windows.

Enter the data exactly in the same sequence as in the model. Then follow this:

SPSS —Analysis — Time Series — Variables

— Dependable variable (highlight and press arrow)

— Independent variables (highlight and press arrow)

— Method — Prais—Winsten

—> Constant term (may include, later if found not significant, omit it)

— Option — create variables — do not include

— Predict cases — predict from estimation period through last case — Continue

— Option — Display — Initial and final parameters without iteration summary or
initial and final parameters with iteration details or final parameters only (if you want
all details, any one; otherwise last one only preferably)

— Continue — OK

The SPSS for Windows programme will run and provide results.
(a) Model Fitting

Important indicators for checking the model fitting: One is R*. If R value is high
(say 0.90 or more), the model is ok. If the significance of any parameters including
the constant term is less than 0.05 (a < 0.05), the parameter is ok. If it is greater than
0.05 (a0 = 0.05), the corresponding variable should be omitted. In practice main-
taining this precisely may not be workable. If the significance level is not far above
0.05, it may be accepted. In such a case the error in the model may slightly be
higher; but the model is workable. Do not remove all the variables at a time.
Remove first the one whose a value is far above 0.05. Then check the result. Next
remove the variable whose a value is far this time. Continue this until the a value is
found acceptable. Then write down the model with the estimated parameters.

(b) Checking Autocorrelation (Durbin—Watson Statistic)

In Autoregressive model, the autocorrelation between the errors is an important
item to check. In running the model our assumption is that the errors are inde-
pendent or in other words, there is no correlation between the errors (residuals). The
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Durbin—Watson d statistic is an important tool for checking this correlation. The
statistic is given by

g = 2iza(ei = ei)’
Yiiet

Interpretation of Durbin—Watson d statistic:

0 < d < dl: there is positive autocorrelation

dl < d < du: inconclusive

du < d < 2 + dlI: there is positive autocorrelation

2 + dl < d < 4: there is negative autocorrelation

d = Durbin—Watson d statistics obtained from computer run
dl = lower limit

du = upper limit

Durbin—Watson d statistics table provides the two values dl and du.
If the Durbin—Watson table is not readily available, the following simplified
interpretation may be used:

d = 0: in this case, p = 1; it indicates positive correlation
d = 2: in this case, p = 0; it indicates no correlation
d = 4: in this case, p = —1; it indicates negative correlation

Correlation here means the correlation between errors or residuals.
In general the assessment of correlation between errors (residuals) can also be
made from the following general criteria:

1. If d is closer to 2, there is no correlation or we can say the errors are
independent.

2. If dis closer to 0 or 4 (two extreme values), there is correlation or we can say the
errors are not independent.

Example 6
Consumer Price Index (CPI) Autoregression Data

Year | Quarter | Y, Yoy Y Y3 Y4 Y s Y6 Y7 Y, g Yo Y-10
2001 |1 226.7 |220.2 |216.7 |211.1 |211.1 |202.4 |198.3 |190.7 |185.2 |181.7 |177.1
2001 |2 227.7 | 2213 |216.7 | 2122 |211.7 |203.5 |198.7 |191.8 |186.2 |183.1 |177.8
2001 |3 229.4 | 2235 |217.6 |212.7 |213.5 (2054 |199.8 |193.3 | 1874 |184.2 | 1788
2001 |4 230.1 | 2249 |218 213.2 | 214.8 |206.7 |201.5 |194.6 |188 183.8 | 179.8
2001 |5 229.8 | 226 2182 | 2139 |216.6 2079 |202.5 |[1944 |189.1 |183.5 |179.8
2001 |6 229.5 | 2257 |218 2157 |218.8 | 2084 |2029 |194.5 |189.7 |183.7 |179.9
2001 |7 229.1 | 2259 |218 2154 | 220 208.3 |203.5 | 1954 |189.4 |183.9 |180.1
2001 |8 2304 |226.5 |2183 [2158 [219.1 |207.9 |203.9 |196.4 |189.5 |184.6 |180.7

(continued)
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(continued)

Year | Quarter |V, ) Y Y3 Y4 ) Y6 Y, Y,—g Yo Yi-10
2001 |9 231.4 | 2269 | 2184 |216 218.8 |208.5 |202.9 |198.8 | 1899 |1852 |181
2001 |10 231.3 | 2264 |218.7 [2162 [216.6 |[208.9 |201.8 |199.2 |190.9 |185 181.3
2001 |11 230.2 |226.2 |218.8 [216.3 |[212.4 |210.2 |201.5 |197.6 | 191 184.5 | 181.3
2001 |12 229.6 |225.7 |219.2 2159 |210.2 |210 201.8 | 196.8 | 190.3 |184.3 |180.9
Yt 2012

Data Source Raw Data from Federal Reserve Bank of Dallas: re-arranged by author. Index 2005 = 100

Results (computer output) of the autoregressive model using SPSS for Windows
are summarized here.

Model Description:

Variable Y, (2012); dependent variables
Regressors ) (2011)

Y, » (2010)

Y, 3 (2009)

Y4 (2008)

Y. s (2007)

Y, (2005)

Y —g (2004)

Yo (2003)

Y,—¢ was not significant, so it was removed. All others were included in the
model.

Summary of the computer output (result) is provided hereafter.

Result Description

All the variables were entered in the SPSS run. The dependent variable, as
always the case, was Y,.

Estimation of autocorrelation coefficient
Rho 0

Prais—Winsten estimates

Multiple R 0.99998464
R-squared 0.99996928
Standard error 12.148562

Durbin—Watson 0.95602977
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Analysis of Variance:

317

DF Sum of squares Mean square
Regression 2 48046536.1 24023268.1
Residuals 10 1475.9 147.6

Variables in the Equation:
B SEB BETA T Sig T

Y, —6.870162 1.0387128 —0.0252689 —6.61411 0.0000592
Yo 10.474562 0.0391419 1.0223705 267.60478 0.0000000
(c) Interpretation of the result

Based on the output as shown above, the autoregressive model may now be
written as follows:

()
(b)

(©)

(d
(e)

Y, = —6.70162Y,_, + 10.474562 ¥,_o

The constant term is not significant, so it does not appear in the model.

The coefficients of Y,—; (—6.870162) and Y, (10.474562) are significant
(a £ 0.05), so only these two independent variables appear in the model.
Value of R* is 0.99996928 which means that more than 99.99 % variation in
the dependent variable (Y;) is explained by these two independent variables
(Y;—; and Y,—9). Thus, the model is a good fit.

Durbin—Watson d statistic is 0.95602977 which is closer to one. This means
that there is some autocorrelation between errors.

Other things being constant, if CPI in the year Y,_; increases by 1, the CPI of
the current year would be decreased by 6.70162. If CPI in the year Y,
increases by one, the current year CPI would be increased by 10.474562.

Example 7

Personal consumption expenditure (PCE) inflation rate data for Dallas from 2001 to
2012 are shown in the following table. Establish an autoregressive model and
interpret the results.

Y Yiii | Y2 Yz | Via |Yis | Yie |[Yi7 |Yig |[Yio Yoo |Vin
Month 2012 2011 | 2010 | 2009 |2008 |2007 |2006 |2005 |2004 |2003 |2002 |2001
January [2.08 |098 |[1.31 |242 |256 |2.88 |247 |241 |1.87 |2.08 |2.24 |247
February |2.02 |1.12 |1.19 [240 |245 |3.03 |237 |245 [192 |204 |223 |248
March 202 |1.27 |1.10 |228 |[252 |297 [239 |248 |192 (203 |224 |244

(continued)
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(continued)

Y, Y1 Y Y3 Yi4 Yi-s Yi-6 Y Yi—g Yio Yicio | Yi-11
April 194 143 |[1.00 |222 |256 (286 (249 |239 213 |1.88 |221 |2.53
May 1.89 |1.55 (095 |2.09 |2.63 [270 [2.63 |232 |225 |1.85 |2.16 |2.55
June 1.87 |1.62 |08 |197 |[272 |2.60 |2.78 |223 |238 |[1.79 |2.05 |2.64
July 1.82 | 1.71 |093 |1.68 |[2.85 |254 |283 |221 |239 |1.80 |2.07 |2.59
August 1.74 | 178 095 |1.67 |2.79 |246 |291 |224 (236 |[1.83 |2.06 |2.62
Sept 1.75 | 1.81 [096 |1.62 |2.65 |256 |[2.77 |243 (230 |[1.79 |2.13 |2.50
October | 1.72 | 191 |083 |1.65 |[254 |2.62 |271 (252 |232 |1.77 |213 |247
Nov 1.67 197 085 |1.54 |[247 |276 |2.63 |255 |234 |1.75 |2.12 |2.44
Dec 1.58 |2.06 |0.88 [1.50 |[235 |2.70 |2.76 |2.53 [235 |1.79 |2.12 |236

Data Source Raw Data from Federal Reserve Bank of Dallas: re-arranged by author
The Output from the computer run is shown hereafter

Model Description:

Variable Y, Dependent variable
Regressors )

Y3

Y4

Yis

Final Parameters:

Estimate of autocorrelation coefficient
Rho 0

Prais—Winsten estimates

Multiple R 0.99997356
R-squared 0.99994712
Standard error 0.01645571
Durbin-Watson 2.4941414

Analysis of Variance:

DF Sum of squares Mean square
Regression 4 40.963834 10.240958
Residuals 8 0.002166 0.000271
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Variables in the Equation:
B SEB BETA T Sig T
Y, —0.1852705 0.04832493 —0.16384964 —3.833849 0.00499057
Y3 0.28084766 0.04515018 0.29621570 6.220299 0.00025376
Y4 0.37198087 0.03132903 0.52234736 11.873361 0.00000232
Y, 0.37198087 0.04499271 0.34424727 5.891641 0.00036517

The model is therefore,

Y, = —0.18527050Y;-; + 0.28084766Y; 3 + 0.37198087Y;_4 + 0.26508091Y; 7

Interpretation
The dependent variable is Y.

1. The R? value is 0.99994712. This is close to 1.00. Therefore, the model has a
good fitting;

2. Coefficients of the independent variables Y,—;, Y,—3, Y,—4, and Y, are significant
(o £ 0.05). Therefore, only these variables are in the model.

3. Durbin—Watson statistic d = 2.4941414. This is closer to 2. So practically there
is no autocorrelation between the errors.

The coefficients of Y,—;, Y,—3 and Y,—4 and Y,—; are the quantity increase or
decrease in the value of Y, for one unit change in the respective variables. By partial
differentiation, it can also be shown that these are the rates of changes in Y; with
respect to the respective variables.

16.7 Forecasting

16.7.1 Forecasting Without a Model

Forecasting is the process of making prediction on some future values of an event
based on past or present values of the event. This refers to time series dimension.
Forecasting for some period based on time series data can be done in a simple way
using some trend. However, this simple way of forecasting has some limitation. Let
us use an example to show the technique.

CPI for first quarter and second quarter of USA during 2012 were as follows:

Quarter I
Quarter II

227.9066
224.7790
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Between Quarter I & 11
Per Cent Change = 100 x (227.9066 — 224.7790)/227.9066 = 1.3723

If this is accepted, then CPI for the whole year will be
227.9066 * (1 + 0.013723) = 231.03. Actually the average CPI of the whole year
was 229.594.

Based on the principle we can also calculate the returns on financial investment.
Returns may be expressed in two ways—simple return (usually denoted by R) and
log return (usually denoted by r). The calculation is as follows:

Let us suppose that in a time series data price of an asset was $227.9066 (P,) at a
time ¢ and $224.7790 (P,—,) at a time ¢ — 1. The simple return is defined by

Pt_Pz—l
P,,1

R =

—

2279066 —224.7790  3.1276
- 224.7790 -~ 224.7790

= 0.0139

In percentage form we can say that the simple return is 1.39 %. The other form is
log return (7) to be calculated as

P,

P4

r = Log = LogP; — P,

Another expression,

=r

P, — P, P, P, — P, P
LOg(l—I—R)ZLOg(l—I— t tl)z —1 +P; tl: t

P, Py P
So,
r = L0g227.9066 — L0g224.7790 = 2.357757 — 2.351756 = 0.006001

In percentage form we can say that the log return () is 0.060 %.

Note that the simple return (R) and log return (r) do not produce the same
figures. These are two items and so the figures are different. Usually in financial
investment log return is used.

16.7.2 Forecasting Using a Model

Forecasting is the most important application of model. In the previous sections
only exploratory analyses have been done. This section will deal with the
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forecasting. There are different ways to forecast. We shall discuss the ones which
are easy to apply. We shall use the inflation rate example. The data structure is as
follows:

Example 8
Yt Yt—l Yt—2 Y, =3 Yt—4 Yt—S Yt—6 Yr—7 Yt—8 Yt—9 Yt— 10 Yt— 11
2012 |2011 [2010 |2009 [2008 |2007 |2006 |2005 |2004 |2003 |2002 |2001

The model is

Y, = —0.18527050 Y,_; + 0.28084766Y,_3 + 0.37198087Y,_4 + 0.26508091Y,_;

If we want to forecast the inflation rate in 2013, the time lag will be as follows:

Variable Year Average inflation rate
Y, 2013

Y-y 2012 1.81

Y3 2010 0.88

Y4 2009 1.92

Y, 2006 2.65

Putting these values we get

Y, = —0.18527050 * 1.84 + 0.28084766 * 0.88
+0.37198087 x 1.92 4-0.26508091 * 2.65

Or,
Y; = —0.3408 4 0.2471 4 0.7142 4+ 0.7024 = 1.3229

So the inflation rate in 2013 is likely to be 1.3229.
If you want to estimate the inflation rate in 2014, you will have to estimate it for
2013 and then 2014.

16.8 Seasonal Variation

Different authors have explained some techniques to calculate the seasonal variation
in time series data. Some of those techniques are too technical and theoretical.
These are complicated and in practical field these are difficult to apply. In this
section we shall explain how easily the seasonal variation can be calculated by
using dummy variables.



322 16 Analysis of Financial Data

Suppose we want to estimate the seasonal variation occurring due to change in
quarters of the year. In such a case, appropriate dummy variables may be intro-
duced. These dummy variables may be taken to be D; (lst quarter), D, (2nd
quarter), D3 (3rd quarter), and D, (4th quarter). Values of these dummy variables
are as follows:

Dy 1, if the record falls in first quarter;
0, otherwise
D, 1, if the record falls in second quarter;
0, otherwise
D5 1, if the record falls in third quarter;
0, otherwise
1, if the record falls in fourth quarter;
0, otherwise

D,

This may be explained further with the help of an example.

Example 9
Consumer price indexes for USA for 2008-2012 are shown in the following table.
The example shows how to estimate the seasonal variation by use of dummy
variables.

The data structure is shown in the following table.

Year 2012|2011 2010 2009  |2008

Variable | ¥t Yo Y- Yis Yies D, |D, |D; |Ds
Jan 2267 2202 |216.7 |211.1 |211.1 |1 0 0 0
Feb 2277|2213 |216.7 |2122 |211.7 |1 0 0 0
Mar 2294  |2235 |217.6 |2127 [2135 |1 0 0 0
Apr 230.1 |2249 [2180 [2132 [2148 |0 1 0 0
May 2298 |2260 [2182 [2139 [2166 |0 1 0 0
June 2205 (2257 (2180 [2157 [2188 |0 1 0 0
July 2291 |2259 [2180 [2154 [2200 |0 0 1 0
August 2304 |2265 |2183 [2158 [219.1 |0 0 1 0
Sept 2314 |2269 [2184 [2160 [2188 |0 0 1 0
Oct 2313|2264 |2187 [2162 [2166 |0 0 0 1
Nov 2302|2262 [218.8 [2163 [2124 |0 0 0 1
Dec 2296 |225.7 [2192 [2159 [2102 |0 0 0 1

Data Source Raw data from Consumer Price Index (CPI-U), Department of Labor, Bureau of
Labour Statistics, Washington D.C., 20212; rest arranged by author

Summary of the output appears below. The output is obtained from the run of
SPSS Windows (time series data; autoregressive model).

Model Description:

All the variables were entered into the run.

Final Parameters:
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Estimate of autocorrelation coefficient
Rho 0

Prais—Winsten estimates

Multiple R 0.99999355
R-squared 0.99998709
Adjusted R-squared 0.99998064
Standard error 1.0102265
Durbin-Watson 1.3061489

Analysis of Variance:

DF Sum of squares Mean square
Regression 4 632572.39 158143.10
Residuals 8 8.16 1.02

Variables in the equation:

B SEB BETA T Sig T
D, 229.79267 0.58325454 0.500422486 393.98350 0.0000000
D, 227.90667 0.58325454 0.49631767 390.74992 0.0000000
Ds 230.29667 0.58325454 0.50152243 394.84762 0.0000000
Dy 230.37967 0.58325454 0.50170318 394.98992 0.0000000

Interestingly, the lag variables (Y,—;, Y;—, Y,—3, Y,—4) were not significant (a not
<0.05). All the four dummy variables (D, D,, D;, and D,) were significant.
Remember that this situation has occurred with the particular set of data. If the data
contain different figures, the estimation and consequently the seasonal variation
may be different. The estimated model is

Y; = 227.90667 x Dy 4229.79267 x D, 4-230.29667 x D3 +230.37967 X Dy

If we want to estimate the CPI in the third quarter, we can do it in the following
way:

CPL; = 227.90667 x 04 229.79267 x 0+ 230.29667 x 1+230.37967 x 0
= 230.29667

Note that since there is no lag variable in the estimated model, the estimated CPI
for any quarter of any year will remain the same for that particular quarter.
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Chapter 17
Experimental Design

Abstract Technical terms such as experimental design, factor, treatment, controlled
experiment, and factorial design (full, half, fractional, balanced/unbalanced,
contrast/orthogonal) are explained. A systematic procedure is set. A flow chart
showing the commonly used designs of experiments is provided. Full illustrations
are provided showing development of completely randomized design and a 2* full
factorial design. It is shown how the concept of ANOVA is utilized in the analysis.
A chart is provided. Using SPSS, the techniques of how the concept of ANOVA is
utilized to design single factor experiments are demonstrated. Examples are
provided.

Keywords Design of experiment - Flow chart - Factorial design - Randomized
design - ANOVA - SPSS - Diagram - Factor action

Scientists and engineers conduct experiments to examine certain phenomena and to
conclude how good or useful the outcomes of the experiments are.

17.1 Definition of Design of Experiments

As per Sigma (Sigma, isixsigma.com/dictionary/Design_of_ Experiments 22
October 2009), three definitions of design of experiments (DOE) may be cited as
follows:

(a) DOE is a structured, organized method for determining the relationship
between factors (xs) affecting a process and the output of that process (y).

(b) Design is conducting and analyzing controlled tests to evaluate the factors that
control the value of a parameter or group of parameters.

(c) DOE refers to the experimental methods used to quantify indeterminate
measurements of factors and interactions between factors statistically through
observance of forced changes made methodically as directed by mathemati-
cally systematic tables.

© Springer Science+Business Media Singapore 2016 325
A.Q. Miah, Applied Statistics for Social and Management Sciences,
DOI 10.1007/978-981-10-0401-8_17
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In an experiment, the design is made, the experiment is conducted and the result
is analyzed to conclude to test the hypotheses that were perceived beforehand.

17.2 Terms Related to Experimental Design

(i)

(ii)

(iif)

(iv)
)

(vi)

Experimental Design

The experimenter conducts an experiment to get an answer to his question.
He generates data and runs the experiment and analyzes the results. He is to
ensure that he collects right type of data, enough data, and analyze the results
in such a way that it provides efficient and clear interpretation. The whole
process is called experimental design.

Factor

A factor in an experiment is a controlled independent variable whole levels
are set by the experimenter.

Treatment

A treatment is something that an experimenter administers to the experimental
units. For example, an experimenter wants to study the effect of alloy con-
centration on the product. The factor is alloy concentration. He administers
three concentrations 10, 20, and 30 % to study the effect. These 10, 20, and
30 % of concentration are three treatments on the factor. The treatments may
also be called levels. Treatments are subdivisions of a factor.

Controlled Experiment

A controlled experiment is one in which controlled treatments are applied.
Factorial Design

A factorial design is one in which two or more factors are tested. In each
factor, two or more levels (treatments) are chosen.

Effect on the response variable (experimental unit) may come from level 1,
level 2, or combination of levels 1 and 2 and interaction). This interaction
may be studied if the experimenter thinks that there may be significant effect
of the interaction on the response variable.

A factorial design helps us in the following ways:

(a) We can identify which factor has a significant effect on the response
variable.

(b) We can examine whether the interaction among the factors is
significant.

(c) We can identify which factor has the most important effect on the
response variable.

(d) Based on the above, we can decide whether we need further
investigation.

Full Factorial Design
Number of runs in a full factorial design depends on the number of factors
and the levels. For example, 2° is a full factorial design. In this design there
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(vii)

(viii)

(ix)

x)

17.3

®

(i)

are three factors and each factor has two levels. Total number of runs in this
design = 2°. If there are k factors and two levels in each factor, then total
number of runs = 2%,

Half Factorial Design

In a half factorial design, number of runs = half of the runs in the full factorial
design. For example, in a 2* half factorial design, we test 8 experiments
instead of 16.

Fractional Factorial Design

It is a factorial design where the number of tests is less than that in a full
factorial design.

Balanced/Unbalanced Factorial Design

If the number of levels in all the factors is the same, the design is called a
balanced design. If the number of levels in all the factors is not same, then
the design is called an unbalanced design.

Contrast/Orthogonal

A contrast is a linear combination of two or more factor level means with
coefficients that sum to zero.

Two contrasts are orthogonal if the sum of the products of corresponding
coefficients (i.e., coefficients for the same means) adds to zero.
Mathematically,

C=capm+oamtamt - +ay

where

k
ch:cl+02+C3+ o4 =0
=1

Procedure for Design of Experiments

Identification of the Problem

Problem identification is the first step in the experimental design. Once the
problem is identified, other steps will follow. If the problem can be iden-
tified precisely, the volume of works will be reduced and the results can be
pinpointed. The design should be as simple as possible so that the results or
outcomes of the experiments can be correctly interpreted.

Response Variable

Two types of variables are involved. One is the response or dependent
variable and the other is the independent variable. This is also called factor.
A response variable or dependent variable is one which depends on the
measurements of other variables called independent variables. If a mistake
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(iii)

(iv)

)

(vi)

(vii)

(viii)

(ix)

17 Experimental Design

is made in determining the dependent variable, the whole experiment may
go wrong. The dependent variable must be measurable.

Get a clear understanding of the inputs and outputs under investigation.
Factors or Independent Variables

In the experimental design, the independent variables may also be called
“factors.” Factors are independent variables. The factors influence the
response or dependent variables. For example, compressive strength of
concrete depends on the curing method. So compressive strength is a
dependent variable and the curing method is an independent variable. The
independent variables must also be measurable.

Factor Levels

Determine the number of levels of the factors. The number of levels also
called treatments will depend on the type and the objective of the experi-
ment. For example, if we want to study the effect of curing time on com-
pressive strength of concrete, then the levels of the factor (curing time) may
be three (7, 10, and 15 days). The levels should be realistic. Avoid attribute
measures such as yes/no, pass/fail. If necessary, categorical measures may
be numerically coded, for example, 1 for low and 2 for high.

Possible Interactions

The main effect comes from the factors individually. The effect on the
response variable may also come from various combinations of the factors.
For example, if there are two independent variables A and B, then the
meaningful effect may come from A, B, and AB together.

Replicates

Set the number of replicates for the experiment. This will however depend
on the type of the experiment. The purpose is to obtain statistically sig-
nificant data for interpretable outcomes.

Randomization

In the statistical theory of DOE, randomization involves randomly allo-
cating the experimental units across the treatment groups. Randomization
provides reliable data and the results.

Design Matrix

It is important to create a design matrix for the factors under investigation.
In the design matrix, the main effects of the factors as well as interactions
are shown. It is very useful to develop a specific mathematical model for the
specific experiment. This will make the experiment valid and eliminate the
anomalies otherwise possible.

Running the Experiment

The experiment should be supported by actual and factual data. Collect and
use the actual and relevant data. Avoid collection of unnecessary data. If
unnecessary data are used, the model may produce erroneous results.
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17.4 Types of Designs

The type of design depends on the particular experiment and the objective set out
by the experimenter before the experiment is conducted. The chart appearing
hereafter shows the commonly used designs. An explanation of each of these
designs is provided after the design chart.

Flow Chart Showing the Commonly Used Designs of Experiments.

Completely
Randomized Design
One Factor
Design
(Effect of
treatment;
Compare
treatment
means)
Randomized Block
Design
(Sub-divided into
blocks)
Design of
Experiment
(Randomization; Full Factorial Design
Replicates) ’_
(Main effect;
Interaction effect)

Factorial Design
(2 or more
factors)

Fractional Factorial
Design

(a) Regression (not shown in the chart)
We can also call it as a traditional design. This is particularly useful if there are
several factors perhaps four or more) involved. However, it cannot be con-
trolled for a few factors. Regression may be used for estimating the statistical
relationship between the factor and the response variable. But it is not efficient
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(b)

©
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to measure the changes caused to the response variable as a result of certain
level change of the factor values.

One Factor design

The design involves one factor (independent variable) that is expected to affect
the response variable. The treatment effect can be tested. Also the individual
treatment means can be tested.

Completely Randomized design

This is a specific case of one factor design. This is the primary factor. We are
primarily interested in studying the effect of this factor on the response vari-
able. There may be other variables which may be nuisance variables. We
control those nuisance variables. As the name indicates, the design will also
involve randomization. The sequence of the experimental units is determined
at random. Randomization provides the validity of the results.

In a completely randomized design, the sample size (number of runs) is
given by

N=kxLxn

where

zZ2-o=xZ

sample size (number of runs)

number of factors (=1 for completely randomized design)
number of levels

number of replications

If the design is a balanced design, the number of replications should be same in
all levels of the factor.

17.

S TIllustration of a Completely Randomized Design

The following is a layout of a completely randomized design with three levels and
five replicates. The X values are responses. In the experiment, replace the X values
by the actual responses and the level 1, 2, and 3 by the actual values of the levels.

T. level Replicate Replicate total
1 2 3 4 5

1 X1 X1z X13 X14 Xi1s X

2 X21 X2z X23 X24 X2s X5

3 X31 X3 X33 X34 X35 X5
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If this is translated into the SPSS spreadsheet, it will look like the following:

Treatment X value

[OSIRUSIRUS I USTUS I O NS T N T N R i NS R e e e
&
s

The SPSS output for ANOVA will look like the following:
ANOVA

Source of variation Sum of squares Degrees of freedom Mean square F
Model (treatment)
Error
Total

With the help of F value, results can be interpreted and a conclusion can be
drawn whether the treatment effect is significant or not.

(d) Randomized Block Design

Sometimes the experimental units may not be homogeneous. There may be some
grouping that may cause some effect on the analysis. However, grouping may be
incorporated into the design if it is clear that certain grouping is available in the
experimental units. Example of such a situation is the income of the people. When
we want to study the income of the people, the grouping in terms of sex (male and
female) may be evident. In this case we should introduce the block design involving
two blocks (male and female). The analysis will reveal the effect of the treatments
as well as blocks on the response variable.

Mlustration of a Randomized Block Design.
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The following is an illustration layout for a randomized block design. In this
illustration, number of treatment (level) is 3 and number of block is 4.

T. level Block Replicate total
1 2 3 4

1 Xu X1z X3 X1a Xy

2 Xa1 X2 X23 Xo4 X5

3 X3 X3 X33 X34 X3

Block total

When the values are translated into

SPSS spreadsheet,

it will look like the

following:
Treatment Block X value
1 1 X1
1 2 X1z
1 3 X13
1 4 X4
2 1 X5,
2 2 X2
2 3 X53
2 4 Xo4
3 1 X3
3 2 X3
3 3 X33
3 4 X34

The SPSS output for ANOVA will appear like the following:

ANOVA

Source of variation

Sum of squares

Degrees of freedom

Mean square F

Model (treatment)

Block

Error

Total

With the help of the calculated F values, we can interpret the result and conclude
whether the treatment and block effects are significant or not.
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(e) Factorial Design

Factorial Design is one in which there are two or more factors involved. This
design can be divided into two sets. One is full factorial design and the other is
fractional factorial design. There is no limitation as to how many factors can be.
Also, the number of levels can be 2 or more. In a full factorial design, we can test
the main effect as well as the interaction effect. Main effect is the effect of a factor
that it provides to the response variable. Interaction effect is the effect of two or
more factors jointly. This may be explained in the following way.

Let us suppose there are two factors A and B in an experiment. In addition to the
direct effect of A and B to the response variable, A may have some effect on B and
B may have some effect on A. These are interaction effects. These interaction effects
may have some effect on the response variable.

17.6 Tllustration of a 2° Full Factorial Design

The layout of the 2° Full Factorial Design is given in the following table. The
design has three factors and two levels as indicated by 2°. The figures shown inside
the table are levels. Each of the three factors has two levels (1 and 2). The
interaction levels are automatically set by the computer (SPSS Window). The
experimenter does not need to set it. These are shown in the table for completeness.
Note the following:

Levels 1 and 2 are not the actual level values. These are only notations. In the
experiment actual values are to be used.

Level 1 represents the lower value of the factor.

Level 2 represents the higher value of the factor.

Lower value of factor 1 X lower value of factor 2 = higher value of interaction 1 x 2.
Lower value of factor 1 X higher value of factor 2 = lower value of interaction 1 x 2.
Higher value of factor 1 x higher value of factor 2 = higher value of interaction
1 x2.

The concept is like (when + represents higher value and—represents lower
value):
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Run Factor Interaction Response
1 2 3 1x2 1x3 2x3 1x2x3
1 1 1 1 2 2 2 1
2 1 1 2 2 1 1 2
3 1 2 1 1 2 1 2
4 1 2 2 1 1 2 1
5 2 1 1 1 1 2 2
6 2 1 2 1 2 1 1
7 2 2 1 2 1 1 1
8 2 2 2 2 2 2 2

The interactions act like factors. Whether some or all interactions produce sig-
nificant effect on the response variable will be evident after testing with the help of

ANOVA.
If this design is translated into the SPSS spreadsheet, it will look like the

following:

Factor 1 Factor 2 Factor 3 Response
1 1 1

1 1 2

1 2 1

1 2 2

2 1 1

2 1 2

2 2 1

2 2 2

If this is run into SPSS with appropriate ANOVA options, then the output for
ANOVA will look like the following:

ANOVA

Source of variation

Sum of squares

Degrees of freedom

Mean F
square

Model

Factor 1

Factor 2

Factor 3

Factor 1 * factor 2

Factor 1 * factor 3

Factor 2 * factor 3

Factor 1 * factor 2 * factor 3

Error

Total
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By calculating the respective F values, it can be concluded which factor has
significant effect on the response variable.

(f) Fractional Factorial Design
A fractional factorial design is one in which the sample size (number of runs) is
less than that in a full factorial design. An example may be given here to explain the
concept. The number of runs for a 2* full factorial design is 8 (2° = 8). If we talk of
a half factorial design, the number of runs will be 4. If in a design, the experimenter
is confident that the interaction effect will not be significant, then the interaction
terms may be omitted. In such a case the design will be a fractional factorial design.

17.7 Concept of Anova

17.7.1 Procedure in the Analysis

Main purpose of an analysis in a factorial design is to study the effect of the selected
factors on the response variable. In other words, we want to see whether the
selected factors have statistical significant effect on the response variable. We may
also want to see the change in the effect of the response variable as a result of
change in the treatment (level) of a factor.

The effect of factors on the response variable is studied with the help of Analysis
of Variance (ANOV A). We have seen in case of regression-based ANOVA that the
total sum of squares is divided into sum of squares due to model and sum of squares
due to error. But in the case of ANOVA for factorial design, the sums of squares are
partitioned into sums of squares due to model, each of the factors and error. From
these sums of squares, the respective mean square is calculated. From the mean
squares, the corresponding F statistic is calculated. This F statistic is compared with
the tabulated critical F' values. Then we conclude whether a certain factor has
significant effect on the response variable or not. Follow the steps as outlined
hereafter.

Run the analysis program such as SPSS.

Prepare the ANOVA

State the null hypothesis.

Partition the sums of squares (variability).

Calculate the mean squares.

Calculate the F ratios.

Decide whether the null hypothesis is rejected or not based on a preset a level.
Interpret the result.
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The concept of factor action and the analysis may be summarized as per fol-
lowing diagram.

Concept
Factor 1 [— — SSF1
Factor 2 [ — SSEF2
Response » ANOVA SSF3

Factor 3 » Variable

Total

] Sums of T

Squares

(SST)
Factor k —_ SSFk

SST = sum of squares total; SSF1 = sum of squares due to factor 1; SSF2 = sum
of squares due to factor 2; SSF3 = sum of squares due to factor 3; SSFk = sum of
squares due to factor k; SSE = sum of squares due to error.

SST = SSF1 + SSF2 + SSF3 + - -- 4 SSFk = SSE

17.7.2 Test with ANOVA

We have used Z test and ¢ test for comparing the population means. It may be noted
that in these tests, we could compare the two population means. We can compare
population means of more than two populations by analysis of variance (ANOVA).
We shall do it with the help of an example.

Example 1

Randomly selected students of a course were assigned four different teaching
methods (assignment, tutorial, group discussion, none) in addition to lecture. Their
scores were found as shown in the following table:
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1 (None) 2 (Assignment) 3 (Tutorial) 4 (Group discussion)
56 60 70 68
58 65 75 80
45 54 68 75
60 60 74 82
55 66 82 90
Col total = 274 305 369 395

Here,

np :5, n2=5,n3=5,n4:5.
n=n;+n+nz+ns =20.
X = 67.15.

Our interest is to see whether the four teaching methods produce the same result.
In other words, whether the mean scores produced by the four different teaching
methods are same. In order to test this, we formulate the following hypotheses:

H,: All the means are not same.
For the test let us assume a = 0.05.

Ho:pyp =1y =13 = 1y

In order to test the null hypothesis, we calculate the sums of squares as follows:

4 ni

i=1 j=1

= (sum of squares of all x values) — n(x)*

(56)* + (58)% + (45)* + ... + (90)> — 20(67.15)*
= 92,669.00—-90,182.45
= 2486.55

4
SSTreatmenl = Z {(COl)itOtal}z/ni - n(x)Z

i=1

= (sum of squares of treatment totals, each square divided by its n value) —n(x)

= (274)*/5+ (305)% /5 + (369)%/5 + (395)* /5 — 20(67.15)*
= 92,057.40—90,182.45

= 1874.95

Sserror = Sstotal - SSTrealment
= 2,486.55—1874.95

=611.60

2
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These may be arranged in the following ANOVA table:

Source of variation SS df MS F, value
Treatment 1874.95 3 624.98 16.36
Error 611.60 16 38.23

Total 2486.55 19

Here the calculated value of Fy is 16.38. The F value Fy 53,16 i1s 3.239. This is
less than the calculated F, value. In other words, Fy > Fy0s53.16- The calculated
value of F falls in the rejection region of Hy. The null hypothesis is, therefore,
rejected. This means that the means are not same. In other words, four different
teaching methods produce different results. In this example, it has been demon-
strated how analysis of variance helps to conclude whether the treatments have
significant effects on the students’ performance.

The main concept in the ANOVA concept is to calculate the sums of squares of
the items of our interest and/or partition the sums of squares, calculate the mean
squares (MS), calculate the F, value, and compare this F(, value with that in the
table for the given degrees of freedom and o. Then based on the F values, either
reject the null hypothesis or do not reject it. Thereafter, make inference or
interpretation. This procedure can be shown in the following sequence:

(i) Formulate the null hypothesis. The null hypothesis is “there is no difference
between the means.”
(i) Calculate the sums of squares (for total, treatments, errors).
(iii) Calculate the degrees of freedom for all items.
(iv) Calculate the mean squares.
(v) Calculate the F values.
(vi) Based on the F values, decide whether to reject or not to reject the null
hypothesis.
(vii) Interpret the results.

17.8 Single Factor Experiments

A single factor experiment is one in which the number of factor is one. In the
following sections, the techniques are explained with the help of examples how to
analyze the variance and interpret the test results.

17.8.1 Analysis of Variance

In a manufacturing process, an experimenter wanted to study the effect of content of
an element on the hardness of an alloy which uses the element to manufacture
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the alloy. Four content levels (5, 10, 15, and 20 %) were used. For each concen-
tration, six measurements (replicates) were used. The experiment is shown in the
following table:

Example 2

Content of an Element in an Alloy

Cont. Measurement Total
1 2 3 4 5 6

5 8 10 19 13 11 12 73

10 14 20 16 22 23 18 113

15 17 22 23 20 19 22 123

20 22 30 26 28 22 24 152

Total 461

The calculations proceed in the following way:

SST = (sum of squares of observations)— (sum of squares of observations)?/(no. of observations)
2 2 2 2 (451)°
SST = (8)"+ (14)" + (17)"+ --- +(24)" — .
= 9599.00—8855.04

= 743.96

SSreatment = (sum of squares of treatment totals, divided by respective no of observations)
— (sum of squares of observations)” /(no of observations)

2 2 2 2 2
(73) | (137 (1123 (152)°  (461)

SSTreatmem = 6 6 6 6 - 2%
= 9388.50—8855.04
= 533.40

SSError = SST — SSTreatmem
= 743.96—533.46
= 210.50

The following is the format of the ANOVA table.
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ANOVA
Source of Sums of Degree of freedom Mean squares Fy
variation squares
Between SSTI‘Calanl (N o of MSTrcatmcnt = SSTrcalmcm/ MSTrcalmcnt/
treatment treatments) — 1 DF MSE
Error SSE (No of MSE = SSE/DF
(within observations) — (no
treatments) of treatment)
Total SST (No of

observation) — 1

The results are summarized in the following ANOVA table:
ANOVA

Source of variation SS DF MS Fo
Treatment 533.46 3 177.82 16.89
Error 210.50 20 10.53

Total 743.96 23

The hypotheses may be stated as follows:

Hy: 1y = 1 = p3 = py. There is no effect of treatment levels on the experimental
units.

H,: The means are not same.

Here treatments are contents of the element.

The F value Fy 5320 from table = 3.10. The calculated F value (Fy) is larger
than Fy s 3.20. Therefore, the hull hypothesis (Hy) is rejected. This means that the
treatments (content levels of the element in the alloy) have significant effect on the
experimental units (hardness).

17.8.2 Tests on Individual Treatment Means

In the previous example, the null hypothesis has been rejected and we concluded
that there is a significant difference between treatment means. But we could not
identify and conclude on the nature of the difference. To examine the nature of the
difference or to conclude which treatment mean is larger or less than which treat-
ment mean, we can use the concept of contrast. Hereafter, the contrast is defined
mathematically.

Let

X = a1x1 +axxy + azxz + asxy
Y = biyy + boys + b3ys + bays
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Then X is contrast if,
a+a+az+as =0
Y is a contrast if,
bi+by+b3s+bsy=0
X and Y are orthogonal if the above two relations are true and plus if,
a1by 4+ ayby + azby +ashbys =0

If we want to test the means at level 1 and level 2 of a factor, we may formulate
the hypothesis as follows:

Ho: py = 1y
Ha:py # 1y

We can test this hypothesis using linear combination of level totals as follows:

y1 —y2 = 0, where y, and y, are respective level (treatment) means.

Note that in the linear combination of the above sum of all the coefficients = +1
— 1 = 0. So this is a contrast.

If we want to test the hypothesis

Ho: py + 13 = Ky + 1y
Hy: 413 # 1y + 1y

We can test this hypothesis using linear combination of level totals as follows:
Vi—=y2+y3—ys=0
We use the same example as above to test the hypothesis on treatment means. In

order to do this, the null hypothesis and their point estimates for the contrasts are
shown in the following table.

Null hypothesis Point estimate

Hy: py =y yi—y2=0

or, i — =0

Ho: p = ps y2—y3=0

or, jlb — p3 =0

Ho: W + [y = [ + s Yit+ya—y2—y3=0
or, i+ Ma — o — 3 =0

Ho: 2y + p3 =2 + g 2y +y3 = 2y2 =y =0
or, 2u; + U3 = 2pp — g =0
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The calculations for the contrasts and their respective sums of squares are shown
hereafter.

(=50)*
C1:73—-123 = =50 SS¢; = = 208.33
Cl 602)
(-10)*
C2:113-123 = —-10 SSe = = 8.33
)
(50)°
C3: 73+ 152—-113-123 =50 SS¢3 = @ = 104.17
(—109)
C4:2 x 734 123-2x113—-152 = —109 SS¢3 = W = 198.02
These may be summarized in the following ANOVA table:
ANOVA

Source of variation SS df MS Fy Fo.05 from table
Treatment 533.46 3 177.82 16.90 3.10
C1 (1 vs. 3) 208.33 1 208.33 19.79 4.35
C2 (2 vs. 3) 8.33 1 8.33 0.79 4.35
C3 (1,4 vs. 2,3) 104.17 1 104.17 9.90 4.35
C4 (1,3 vs. 2,4) 198.02 1 198.02 18.81 4.35
Error 210.50 20 10.53
Total 743.96 23

The sum of squares of the treatment (533.46) has been partitioned into four
contrasts (C1, C2, C3, and C4). These four contrasts explain 97.26 % of the sums of
squares of treatment.

Looking at the F values from table with a = 0.05 and appropriate degrees of
freedom, we can conclude that there are significant differences between 1 and 3
(C1), averages of 1 & 4 and 2 & 3 (C3). Their calculated F values are greater than
the respective F values from table. There is no significant difference between 2 and
3 (C2). Its calculated F value is less than the F value from the table.

17.8.3 Estimation of Treatment for Completely Randomized
Design

(a) Single Treatment Mean

Point Estimate: Population treatment mean = sample treatment mean.
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=
Il
~|

Interval Estimate:

T_tu/Z*‘g/\/ﬁSuST+ta/2*s/\/ﬁ

where

T = treatment mean,
s=VMSE; df =n—k

n = samplesize (n = ny +ny +n3+ -+ ng)

(b) Difference between two treatment means
Point Estimate:
b—t=T-T
The interval estimate is given by
(T\ = T2) =ty % s/\/(1/ny +1/ny <u < (Ty — T2) +ty0 % 5/\/1/ny + 1/n2

where

T, = mean of treatment 1
T, = mean of treatment 2
df =n—k

17.8.4 Multiple Factor Design

A multiple factor experiment is one in which the number of factors is 2 or more.

17.8.5 Example of a 2° Factorial Design

An experimenter wanted to test the effect of two factors on a manufacturing pro-
cess. The levels are as follows:

Factor 1: 2 levels (100 and 150)
Factor 2: 2 levels (1 and 2)
Factor 3: 2 levels (1 and 2)
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The design is shown in the following table. The responses are also shown. Our
interest is to see whether the factors have significant effect on the response variable
(o = 0.05).

The design of the experiment is shown in the following table:

No. Factor Response
Factor 1 Factor 2 Factor 3

1 100 1 1 60

2 100 1 2 65

3 100 2 1 67

4 100 2 2 69

5 150 1 1 68

6 150 1 2 67

7 150 2 1 69

8 150 2 2 74
ANOVA

Source of variation SS DF MS Fy Fy.05 from table

Model 6449.500 4 1612.275 678.85 6.388

Factor 1 6373.250 2 3186.625 1341.74 6.944

Factor 2 55.125 1 55.125 23.211 7.709

Factor 3 21.125 1 21.125 8.895 7.709

Error 9.500 4 2.375

Total 6459.000 8

17.8.6 Randomized Block Design

The completely randomized design is appropriate when the experimental units are
somewhat homogeneous. Sometimes, this homogeneity is not available in certain
data sets. In those situations, there may be some groups within the experimental
units. Within the groups the experimental units may be somewhat homogeneous.
But there may be significant differences between the groups. In such a situation, we
may divide the experimental units into certain groups. These groups are called
Blocks.

As an illustration, we may think of three groups of people when studying their
income. These may be people working in the (1) farm sector, (2) industries sector,
(3) service sector, and (4) IT sector. We may want to see whether incomes of the
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people of these groups are different. Let us also say that we apply three treatments
based on the age groups: 25-35, 36-50, 50+. This may be represented as follows:

Blocks
1 2 3 4
1(25-35) y3 y2 yl y3
Treatments 2 (36-50) Y1 yl y3 yl
3 (50+) Y2 y3 y2 y2

The treatments are to be assigned randomly. Each treatment will appear only
once in each block. Based on responses, we can analyze the variances and use the
ANOVA concept to test whether the blocks have significant difference. We shall
have to find out the total sums of squares and partition the total sums of squares to
treatments and blocks to test the significances of the blocks and treatments.

Treatment Block Total
1 2 3 4

1 1.00 2.00 3.00 3.50 9.50

2 1.50 2.50 2.90 4.50 11.40

3 2.00 3.00 4.00 5.00 14.00

Total 4.50 7.50 9.90 13.00 34.90

Notes Responses are in US$(100). Let T represent treatment, B represent block, y represent
observation. Also i indicates from left to right and j indicates from top to bottom.

4 n;
SStotal = Z Zyi - %

i=1 j=1

= (sum of squares of all observations)—(sum of all observations)? /n
= (1.0)* + (1.5)* + (2.0)* + - -- +(13.0)* — (34.90)*/12
=117.41-101.50

= 15091
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4 2 2
SSt _ Zi:l (Titotal) (Zy)
reatment nl n
2
= (sum of squares of treatments, each square divided by its n value)— (2.7
n

= (9.50)% /4 + (11.40)* /4 + (14.00)* /4 — (34.90)* /12
= 104.05—101.50
=255

SSB — YiiB (2y)
n; n
= (4.50)*/3 + (7.50)* /3 4 (9.90)%/3 + (13.00)*—(34.90)* /12
= 114.05—101.50
= 13.00

SSE = SSTotal_SSTreatmem - SSBlock
= 15.91-2.55-13.00
=0.35

These may be arranged in the following ANOVA table:

Source of variation SS DF MS Fy
Block 13.00 3 4.33 73.25
Treatment 2.55 2 1.28 21.56
Error 0.35 6 0.06

Total 1591 11

We may state the null hypotheses as follows:

For Blocks Hy: There is difference between block means.

From F table, Fyos36 = 4.757. Thus, Fy > Fyos3,6 Therefore, the null
hypothesis is rejected and we may conclude that there is significant difference
between block means. In other words, blocks (sectors) have significant effect on the
experimental units.

For Treatment Hy: There is no difference between treatment means.

From F table, Fys26 = 5.143. Here also, Fy > Fgs26. Therefore, the null
hypothesis is rejected and we may conclude that there is significant difference
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between treatment means. In other words, treatments (age groups) have significant
effect on the experimental units.

Problems

17.1 An insurance company wants to study how total premiums obtained in the
insurance are affected by premiums from different sectors. He collects
insurance data for 3 consecutive years (2006, 2007, and 2008) for four
factors. The data area summarized in the following table.

Code:

Factor 1 = Fire

Factor 2 = Marine

Factor 3 = Automobile

Factor 4 = Miscellaneous

Response Variable = Insurance Premium (billion $)

Treatment Factor 1 Factor 2 Factor 3 Factor 4
2006 0.217 0.117 1.720 0.827
2007 0.215 0.116 1.861 0.863
2008 0.227 0.127 1.944 0.920

Prepare the ANOVA Table

(a) State the hypotheses whether treatment and block have significant effect on
the insurance premiums. Use o = 0.05.
17.2  An experimenter wants to study the compressive strength of concrete. He
believes that compressive strength varies according to grade. He collected the
data shown in the following table. Each grade has five replicates.

Grade Compressive strength (N/mm?)

30 30 32 29 32 33
40 39 40 41 40 41
50 48 48 49 50 50

Formulate the null and alternate hypotheses to test whether compressive strength
varies by grade.
Prepare the ANOVA and test the null hypothesis and conclude.

17.3 With the data given in the previous problem, test the individual means to see
whether the individual treatment means are same or not.

17.4 15 students from a school were selected at random. Again 5 students (from
the same 15 students) at random were assigned to each of the three teaching
methods (lecture, tutorial, and assignment). Their scores in percentage are
summarized in the following table:
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Teaching method

Students’ score (%)

1 = Lecture 68 72 64 63 60
2 = Tutorial 75 74 71 75 76
3 = Assignment 69 70 67 66 68

Formulate hypotheses and test whether teaching methods have effect on the
students’ scores.
Test by linear contrast whether individual treatment means are same or different.

17.5 In an experiment, the effect of feeding frequency on growth of a particular
fish species was studied in Asian Institute of Technology. The results are
shown in the following table. Unit of weight is gram. Feeding frequency is 4,
5, 6 times a day (day—night). The raw data are from Baouthong, Pornpimon,

AIT Thesis no. AE-95-23.

Test whether the feeding frequency has significant effect on the weight gain.

Use a = 0.05.
Times Replicate Total
1 2 3 4

4 56.01 49.12 32.36 67.06 204.55

5 64.73 29.34 50.14 33.44 177.65

6 26.47 62.18 19.6 55.26 163.51

Total 147.21 140.64 102.1 155.76 545.71

17.6 In an experiment for the effect of speed on the walking tractor vibration, an

Prepare the ANOVA and test the following:

experimenter recorded the acceleration amplitudes (m/s”) at three speeds
1000, 1200, and 1400 as shown in the following table. Raw data are from
Sookkumnerd, Chanoknun, AIT Thesis no. AE-00-2.

(a) Is the treatment effect on the acceleration amplitude significant (o = 0.05)?
(b) Is factor effect on the acceleration amplitude significant?

Speed | Factor Total

1 2 3 4 5 6 7 8
1000 1.250 |0.698 |0.679 [0.430 [0.420 |0.391 |0.259 |0.156 4.283
1200 0.896 |0.623 |0.623 |0.623 |0.536 |0.429 |0.312 |0.292 4.334
1400 1.172 |10.762 |0.762 |0.547 |0.449 |0.449 |0449 |0.254 4.844
Total 3318 |2.083 |2.064 |1.600 |1.405 |[1.269 |1.020 |0.702 |13.461
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An experimenter conducted an experiment in the Red River Delta of
Vietnam to study the rice yields with two varieties of rice and eight levels of
nitrogen. The records of rice yields from the experiment are shown in the
following table. Raw data are from Trung, Nguyen Manh, AIT Thesis no.

AE-91-43.
Rice | N-Level Total
0 30 45 60 75 90 120 150
V18 2.130 5.07 5.800 6.440 6.990 7.45 8.1 8.39 50.370
IR8 2.23 6.84 7.12 7.32 7.44 7.49 7.36 6.92 52.720
Total |4.360 |11.91 |12.92 13.76 14430 | 1494 |[1546 |15.310 |103.09

Prepare the ANOVA and test the following at a = 0.05.

(a)
(b)
17.8

Does rice variety affect the rice yield significantly?

Does nitrogen level affect rice yield significantly?

Shear Strength of soil in six different fields (A, B, C, D, E, and F) was
investigated at four treatment levels (depth) 5, 10, 15, and 20 cms. The
observed shear strength (kg/cm?) values are shown in the following table.
Raw data are from Ramalingam, Nagarajan, AIT Thesis no. AE-98-1.

Prepare the ANOVA and test at o = 0.05 whether,

(a) Depth has significant effect on shear strength.
(b) Fields have significant effect on shear strength.

Depth A B C D E F Total
5 17.5 14.0 14.2 13.5 21.0 22.5 102.7
10 30.0 28.0 19.2 22.5 27.5 36.0 163.2
15 47.5 54.0 335 29.5 47.5 51.5 263.5
20 68.5 69.5 50.0 56.0 76.0 73.5 393.5
Total 163.5 165.5 116.9 121.5 172.0 183.5 922.9

17.9 In an experimental design to study the water quality, the experimenter used
ammonia concentration in water. Ammonia concentration (ug/l) in water was
recorded at different experimental days and at five treatment levels (0, 25, 50,
75, and 100 open water fish culture ratio). The recorded observations are
shown in the following table. Raw data source: Begam, Rowshan Ara, AIT
Thesis AE-94-20).
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Ratio Experimental days Total
24 38 52 55 66 80 91
0 0.09 0.10 0.24 3.28 0.130 0.16 0.13 4.13
25 0.07 0.07 0.23 3.44 0.29 0.25 0.21 4.56
50 0.13 0.09 0.27 3.37 0.57 0.52 0.42 5.37
75 0.14 0.15 0.18 3.32 1.97 0.42 0.28 6.46
100 0.15 0.16 0.2 3.51 2.11 0.49 0.40 7.02
Total 0.58 0.57 1.12 16.92 5.07 1.84 1.44 27.54

Prepare the ANOVA and test at a = 0.05 whether,

(a) Ratio (treatment) has significant effect on ammonia concentration.
(b) Experimental days have significant effect on ammonia concentration.
17.10 In an experimental design for fish culture in AIT, the experimenter used
phytoplankton concentration (mg/l) at five treatment levels (0, 25, 50, 75,
and 100 open water fish culture ratio, OWFCR) on 7 experimental days of
the experiment. The observations are as shown in the following table. Raw
data source: Begam, Rowshan Ara, AIT Thesis AE-94-20.
OWFCR Experimental days Total
26 40 54 56 68 82 94
0 0.72 0.90 0.540 1.090 2.960 1.71 0.76 8.68
25 0.32 1.00 0.67 1.97 3.79 1.58 1.01 10.34
50 0.25 0.68 0.54 1.52 1.64 1.03 0.56 6.22
75 0.47 1.79 1.07 1.34 3.22 1.34 1.45 10.68
100 0.43 1.61 0.81 1.61 1.61 2.44 1.64 10.15
Total 2.19 5.98 3.63 7.53 13.22 8.10 5.42 46.07

Prepare the ANOVA and test at o = 0.05 whether,

(a) Ratio (treatment) has significant effect on ammonia concentration.
(b) Experimental days have significant effect on phytoplankton concentration.

Answers

17.1
17.2
17.4

17.5

Treatment effect is not significant; block effect is significant.

Conclusion: Compressive strength varies with grade.

1. Teaching methods have effect on students’ score.

2. # Ho

30w = pa.

4wy # pa.

Treatment effect is not significant. Growth does not vary significantly with
feeding frequency (F = 0.356).
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17.6 (a) Treatment effect is not significant (F = 1.385).
(b) Block effect is significant (F' = 25.415).
17.7 1. Effect of variety on rice yield is not significant (F = 0.613).
2. Effect of nitrogen level on rice yield is significant (F = 11.864).
17.8 1. Treatment effect (depth) is significant (F = 127.9).
2. Field effect is significant (F = 9.129).
1. Treatment effect is not significant (F = 1.735).
2. Effect of experimental days on ammonia concentration is significant
(F = 56.871).
17.10 1. Treatment effect is significant at o = 0.10 (F = 1.735).
2. Effect of experimental days on phytoplankton concentration is significant
at o = 0.05 (F = 11.207).

17.9



Chapter 18
Statistical Quality Control

Abstract Quality control deals with the subject matter of assurances and testing for
failure of the products or services in the manufacturing processes. An important tool
is control chart. Several types of control charts and their uses are explained. In each
chart, control lines showing Upper Control Limit (UCL), Centerline (CL), and
Lower Control Limit (LCL) are developed and drawn. The sequence of construc-
tion of control charts and the limits is provided. The technique for development of
“Control Zones” and the interpretations are provided. For examining the “Out of
Control” Processes, WECO rules are used. The rules are summarized. Examples are
provided in each case. Techniques for calculating tolerance limit, process capa-
bility, and sample size based on statistical process control are demonstrated with the
help of examples.

Keywords Statistical quality control - Manufacturing process - Control charts -
Control limits + Control zones - Out of control - WECO rules

18.1 History

Manufacturers are having a tough time in the competitive market environment.
Users are getting products of higher quality not only in any domestic market but
also in the international market. This situation is creating a lot of pressure on the
manufacturers not only in maintaining the quality but also improvement of the
products over time.

Quality control is a branch of engineering. It deals with the subject matter of
assurance and testing for failure of the products or services in the design and
production. The purpose is to see that the products meet or exceed users’
requirements or expectation. Quality is to be built into the process of production.
Quality controls are tools that help the manufacturers identify the quality problems
to the production process. Statistical Quality Control (SQC) is a tool that stems
from the area of statistics. Our focus is on the quality control in the manufacturing
process. Statistical Process Control (SPC) is an alternative term of SQC.
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Walter A. Shewart did the pioneering works in the statistical process control in
the early 1920s. Later during the World War II W. Edwards Deming applied SPC
methods in the US. This led to the successfully improving quality in the manu-
facture of munitions and other strategically important products. Deming was also
instrumental in introducing SPC methods to Japanese industry after war had ended
(Wikipedia, free encyclopedia, website, 19 November 2009).

18.2 Areas of Statistical Quality Control

The quality professionals view the statistical quality control as divided into three
parts (webiste: http://www.wiley.com/college/sc/reid/pdf 19 November 2009).
These are discussed hereafter.

(a) Descriptive Statistics: These are used to describe quality characteristics and
relationships. These are mean, standard deviation, range, and a measure of the
distribution of data.

(b) Statistical Process Control (SPC): This is a statistical tool. It involves a ran-
dom sample of the output from a process and deciding whether the process is
producing products with the characteristics that fall within a predetermined
range. Based on the results of the SPC, we can also see whether the process is
functioning properly or not.

(c) Accepting Sampling: This is a process of randomly inspecting a sample of
goods and deciding whether to accept the entire lot based on the results. Based
on the results, we can decide whether a batch of goods produced should be
accepted or rejected.

18.3 Variation

Variation occurs in the manufacturing process for various reasons. Due to variation,
defective items are produced and the manufacturers are concerned whether a batch
is to be accepted or rejected. They are concerned because final acceptance lies with
the end users.

Variation may occur due to two broad sets of causes. One cause is called
Common Cause Variation. This occurs due to such causes as difference in mate-
rials, workers, machines, tools and similar factors. The other set of causes is called
Assignable Cause Variation. These are variations due to such causes as poor quality
of raw materials, people with no or low training, machines that need repair but not
done.

Whatever is the source of variation, it is to be identified and corrective measures
must be taken. In practical situations, completely eliminating the variations is


http://www.wiley.com/college/sc/reid/pdf

18.3 Variation 355

impossible. Therefore, reducing the variation is the fundamental purpose of sta-
tistical process control. In other words, it is the purpose to maintain the process
stability.

18.4 Control Chart

For control chart, considerable coverage has been provided in the website: http://
www.balancedscorecard.org/portals/o/PDF/control.pdf, 19 November 2009.
A control chart is a chart showing the limits within which the process variation is
expected to lie. Control chart is a tool to use for maintaining process stability.
Process stability may be defined as “a state in which a process has displayed a
certain degree of consistency during the past and is expected to maintain this
consistency.” This consistency refers to the state that all the data will lie within the
predetermined control limits.

We can use a control chart to monitor variation in the process over time, identify
the causes of variation, examine the effectiveness of the process, and improve the
process. It also helps us to examine how the process performed during a certain
period of time.

We shall cover in brief the theoretical part of the control charts, the methods of
their construction and their interpretation.

18.4.1 Type of Data for Control Chart

The data that are used in constructing control charts may be divided into the
following two sets:

(a) Attribute Data: These are discrete data and may also be called categorical data.
These are measured by counting. Example is defect in a process measured by
number such as how many number of items are defective. This defect may also
be measured by such counts as number of items having defects and number of
items having no defect.

(b) Variable Data: Values of these data have continuous measurements. Example
is diameter (in cm, etc.) of piston rings produced by a process.

18.4.2 Types of Control Charts

There are a number of control charts. The following are the more commonly used
charts:
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(a) X-Bar (average) Chart
(b) R (range) Chart

(¢c) I Chart

(d) p Chart

(e) c Chart

(f) u Chart

(g) np Chart

Different techniques are use to construct these charts. Even in constructing
X-Bar charts, there are two techniques namely ordinary averages and moving
averages. In this Chapter we shall cover the charts mentioned above. These are
more common for application in many processes.

18.4.3 Control Limits in Control Charts

Generally there are three control limits namely, Upper Control Limit (UCL),
Centerline, and Lower Control Limit (LCL). See Fig. 18.1.

An important question naturally arises how to establish or construct these control
lines. The next section will provide answer to this question.

18.4.4 Theoretical Basis of the Control Limits

In the chapter on estimation, we have shown that in case of a normal population, the
interval estimation or in other words the confidence interval is given by

X—Zyp*0/\Vn<P<X+Zypa/yn
If we use the population parameter L, then the expression comes out to be

W—=Zyp*o/v/n<pu<p+Zy,,*c/vn

Fig. 18.1 Control limits in a
control chart UCL

Centerline

LCL
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The left hand part of this expression (i — Z,, * 6/+/n) represents the lower
limit (LCL) and the right side (0 +Z,, * © /+/n) the upper limit (UCL). The value
of Z depends on the level of the confidence we want such as 95 % confidence level.

This is the basis of establishing the control limits. Now, the question is how to
estimate 1, o, and set the a level. For a level, for 95 % confidence level, the z value
is set to 1.96c. In constructing the control charts, it is generally set to 3c. In such a
case, the z value becomes

7x7u7u+307u73073
o c o

Z

and the UCL and LCL now may assume the form

LCL = (un—3%*c/v/n)
UCL = (n+3x0/y/n)

Note that (¢/+/n) is the standard error. So the control limits (UCL and LCL)
may be stated as p £ 3 * (standard error).

Now two parameters are to be estimated. These are L and ¢. The mean (i) may
be estimated from the grand mean of the samples. The other parameter ¢ may be
estimated by standard deviation method or by range method. We shall show how to
estimate these two parameters in different situations.

18.4.5 Control Chart for X-Bar and R

X-Bar stands for average and R stands for range. In construction of a control chart,
three control lines are to be drawn. These are (1) Centre line (CL), (2) Upper control
limit (UCL) and (3) Lower control limit (LCL).

The sequence of construction of the control chart is as follows:

(a) Examine the data set and identify the sub-groups;

(b) Calculate the average (mean) of each subgroup;

(c) Calculate the average of the subgroup ranges and the mean of the sub-group
ranges;

(d) Calculate the locations of the three lines (CL, UCL, and LCL);

(e) Determine the appropriate scale;

(f) Plot the control lines (CL, UCL and LCL) as well as the X-bar lines.

Note that in this section subgroups are involved. Data that can be subdivided into
subgroups may be analyzed according to the principle laid down in this section. If
the are no subgroups or in other words if there is only one subgroup, then the
principle will be different.
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Example 1

In a manufacturing process, five subgroups can be identified. Some sample
observations have been recorded from the process. The data set is shown in the
following table.

Xy

X, X, X, X5
15.0 12.5 14.2 11.8 16.1
16.0 12.8 14.8 11.1 16.8
14.5 14.0 15.2 12.3 15.6
14.0 15.5 16.2 15.1 14.3
14.8 15.0 16.1 16.0 14.0
X-bar 14.86 13.96 15.30 13.26 15.36
R 2.00 3.00 2.00 4.90 2.80
Grand average is calculated as follows:
- X1 +X2+ X3+ X+ Xs
X =
5
1486 +13.96 + 15.30 + 13.26 + 15.36

5
= 14.55

Range R in a sub-group = (highest value in the sub-group) — (smallest value in
the sub-group). Average of the R’s is calculated as follows:

R=

200+3.00+200+490+280 147 _
5 5 0~

Let us examine now how to calculate the control limits.
Centreline = x = 14.55

We know that the UCL is given as
p =+ 3 * (standard error)

In calculating the standard error, the range method is more commonly used.

R
According to this method, the standard error is given as ——. Therefore, the UCL

do/n

may be written as

3R
dr/n

UCL = X +
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Here, d, is a function of n and are usually found in the statistical tables. Setting
3

do/n

= A,, we get

UCL = X + AR

Since d, is a function of n, A, is also a function of n and values of A, for various
n values can also be found in a statistical table Thus, the UCL is calculated as
follows:

UCL = X + AoR
= 14.55+0.577 x 2.94
= 14.55+1.70
=16.25

Value of A, is 0.577 for n = 5 from the table.
Similarly, the LCL may be calculated as follows:

LCL = X — AoR
= 14.55-0.577 x 2.94
=14.55-1.70
=12.85

Using the X-bars, the CL, UCL and LCL, the appropriate control chart is drawn
as is provided in Fig. 18.2.

For Ranges

The control chart limits are given by

CL=R
LCL = D; R

D5 and D, are functions of n and can be found from the statistical table for various
values of n. For our particular example, the control limits are calculated as follows:

UCL =Dy *R=2.115%294 =622
CL=R=294
LCL=D;*R=0%294=0.

The control chart showing the control limits for the ranges is shown in Fig. 18.3.
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Fig. 18.2 X-bar control chart 174

X-Bar

1 2 3 4

Sample Number

Fig. 18.3 R control chart

Range
O = N W kA N

|

1 2 3 4

Sample Number

18.4.6 I Chart (Individual Observation Chart)

——UCL

——CL
LCL
X-Bar

——UCL

——CL
LCL
Range

In some processes, subgroups cannot be identified. In those situations “I control
charts” are used using individual observations. Dates are to be in actual sequence
starting from the start date until the finished date. In the table that follows, 1-10

indicates the observation numbers in correct sequence.

Date 1 2 3 4 5 6 7 8 9 10
Individual X 30 29 25 28 26 32 30 31 33 35
Moving R 1 4 3 2 6 2 1 2 2
_ 30+29+25+28+26+32+30+31+33+35 299 9.9
X= =—=29.
10 10

Ranges for this I chart are calculated as follows:
In this case, it is moving range.
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Range in a cell = (observation in that cell) — (observation in the immediate
previous cell). See the table above. The R-bar (moving range bar) is calculated as
follows:

1
po [ +4+3+2+64+2+14+24+2 23
(10— 1) ?

For X-Bar
In the processes where subgroups can be identified, the UCL is given by

UCL = X + AR

For individual observation chart (I chart), the control limits for average are given
by

UCL=x+Ex*R
CL

LCL=x—E=*R

I
=l

In these formulas, E is a control chart factor and can be found from a statistical
table. For two-point average, its value is always is 2.66. For a particular value of n,
E can also be calculated from E = 3/d,. The control limits are calculated as follows:

UCL =x+E * R =29.9+2.66 x2.56 = 36.71
CL=x=1299
LCL=x—E*R=129.9 —2.66 x2.56 = 23.09

For R (moving rage)
The control limits are calculated from the following formulas:

CL =R
LCL = D5 xR

The values of D5 and D, can be obtained from the statistical table.

Therefore,

UCL = 3.267 * 2.56 = 8.364 (from table D, = 3.267 for n = 2. Note that for two
consecutive point range n = 2)

CL=R=256
LCL = 0.0 % 2.56 = 0 (from table D3 = 0 for n = 2)

The UCL, CL, LCL, and R-bar are plotted as shown in Fig. 18.4.
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Fig. 18.4 I chart average 40+
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= —=—CL
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Fig. 18.5 I chart (moving 10
range) o
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g
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= ~% Range
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The moving range control limits in the control chart is plotted as shown in
Fig. 18.5.

18.4.7 P Chart (Proportion Defective)

A P chart is one that monitors the proportion of nonconforming units in a sample.
The appropriate data for P chart are attribute (discrete) data. Example of such data
are good/bad, defective/non-defective, conforming/nonconforming, etc. The
conforming/nonconforming should be clearly defined. It is better if the sample size
is large, say about 100. Also the observation should be recorded according to the
days of a month sequentially.

Example 2
In a manufacturing process, observations were made for checking the noncon-
forming units during a month. The data are shown in the following table.

Day of month No. observed No. defective Proportion defective
1 26 7 0.269
2 28 8 0.286
3 25 9 0.360
4 26 9 0.346
5 27 10 0.370

(continued)
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(continued)
Day of month No. observed No. defective Proportion defective
6 28 10 0.357
7 30 11 0.367
8 31 11 0.355
9 32 12 0.375
10 31 13 0.419
11 30 14 0.467
12 35 10 0.286
13 33 9 0.273
14 32 10 0.313
15 28 8 0.286
16 29 7 0.241
17 30 9 0.300
18 29 10 0.345
19 31 8 0.258
20 25 7 0.280
21 26 8 0.308
22 28 7 0.250
23 29 7 0.241
24 31 6 0.194
25 31 5 0.161
26 27 7 0.259
27 29 8 0.276
28 30 9 0.300
29 32 10 0.313
30 30 8 0.267
Average proportion 0.304
P =0.304

If the process proportion (population proportion) P is known, then the following
formulas may be used for determining the control limits:

P(1—-P
UCL = P+3 %
CL=P
LCL=P—3 M
n

If the process proportion (population proportion) P is not known, then it has to
be estimated from the sample proportion. It is identified as follows:
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p = average of the individual sample proportions

Thus the control limits are given by

T
ucL = p 4 3 /20 =P)
n
CL=p
==
LCL:,;_MM
n

In the example that we are working on, the population proportion P is not
known. So, we have to use the second set of formulas as follows:

-
UCL = p 4 3/20=P) ; P)

304(1 — 0.304
=0.304+3 —030(30030)

0.304 % 0.896
= 030443/ %

= 0.304 + 3 0.084

— 0.304+0.252
—0.556
CL=p
—0.304
LeL —p— 3 /PU=P)
n
— 0.304—0.252
= 0.052

The control limits are shown in the following Fig. 18.6.

18.4.8 ¢ Chart (Control Chart for Defects)

A c chart is a technique by which the number of defects in a process is intended to
be controlled. In a chart, c stands for “counts.” In some situations, it is necessary to
control the number of defects in the manufacturing process rather than the per-
centage of defects. In ¢ charts, it is assumed that the sample sizes of the subgroups
are equal. However, no assumption is made regarding the size of the sample.
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Fig. 18.6 Control chart for 0.6
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Let

c¢; the number of defects in a manufacturing unit
k number of units

1 k
Then, the average of the number of defects ¢ = %Zi:l c

The control limits are given by

UCL = ¢ + 3¢
CL=c¢
LCL =¢ — 3¢

Example 3

In a process, 20 observations are made and the corresponding number of defects
(nonconforming) is recorded. This is shown in the following Table. We shall cal-
culate the control limits and draw the control chart. This is demonstrated hereafter.

Sample No. of defects Sample No. of defects
1 5 11 12
2 6 12 10
3 4 13 9
4 8 14 9
5 7 15 7
6 9 16 9
7 12 17 6
8 12 18 8
9 19 8
10 5 20 7

Average number of defects = 8
The control limits are calculated as follows:
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UCL =¢+3vVe=8+3V8=8+3%2.828 — 81 8.484 — 16.828
C
LCL=¢—-3Vc=8-3V/8=8—-3%2828=8—8484=0

=
I
al
I
o0

If the value of LCL is zero or minus, it is set to zero (Fig. 18.7).

18.4.9 u Chart (Defects Per Unit)

In ¢ chart, we have worked with the total number of defects. But in some manu-
facturing processes, it may be necessary to work with the number of defects per unit
rather than the total number of defects. In such a case u chart is used. A u chart is
for number of defects per unit. The u stands for “units.” The distribution of number
of units is assumed to be a Poisson distribution.

Let,

sample size, and

total number of defects in the sample

k number of samples

o S

Then, the average number of units per unit (sample) is given by

The average of the &k number of samples is given by

_ 1
M:%l:zlu,

Fig. 18.7 C control chart 18
16
14
;Z} 12 ——UCL
& 10 ——CL
s 8 < LCL
:2 6 Defects
4
2
O TOTOTOTOTOTOTOTOTOTHOTOTOTOTOTOTOTOTOS,
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Sample
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The control limits are given by

UCL:ﬁ+3\/E
n

CL=1u
UCL = 12—3\/E
n

367

Similar to a c¢ chart, the distribution of number of defects is assumed to be a
Poisson distribution. In a u chart, it is not necessary that the sample sizes in each

unit be equal. Also there is no assumption regarding the size of the sample.

Example 4
Sample Sample size n No of defects Defects/Unit
1 5 8 1.60
2 6 8 1.33
3 8 10 1.25
4 8 10 1.25
5 7 8 1.14
6 9 10 1.11
7 10 15 1.50
8 10 14 1.40
9 11 12 1.09
10 12 16 1.33
11 8 10 1.25
12 8 14 1.75
13 10 1.11
14 10 12 1.20
15 11 16 1.45
16 10 12 1.20
17 9 10 1.11
18 8 11 1.38
19 11 15 1.36
20 12 18 1.50
21 12 15 1.25
22 12 16 1.33
23 10 8 0.80
24 10 15 1.50
25 11 9 0.82
Sum 32.03
Average n 9.48 1.28
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Control limits are calculated as follows. Since the sample sizes are not constant,
we have used average sample size. This is simple, provides a straight line and easy
to interpret. However, if this is not done, UCL and LCL for each observation

(sample) may be calculated and plotted. In this case, the UCL and LCL will not be
straight lines.

32.03
2 g
V==

UCL=u+3

128
12843
9%\ 948

=1.28+4+3x%0.367 =1.284+1.101 =2.381

=

CL=u=128
UCL =u — 3\/;
n
=1.28—1.101
=0.179

With these, the control chart is plotted as shown in the following figure
(Fig. 18.8).

18.4.10 np Control Chart

In industrial statistics, the np control chart is a type of control chart in which the
total number of nonconforming items is of importance. There are some similarities
between an np chart and a p chart. In a p chart the proportions of nonconforming
units are of interest. In an np chart, the total number of defective units

Fig. 18.8 u control chart 2.5
——UCL
2
é s CL
Z X
E 1 LCL
0.5 Defects/
Unit
O rrrrrrrrrrrrrrrrrorri

1 6 11 16
Sample
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(nonconforming) is of interest. Essentially, in np chart construction and interpre-
tation, the subgroup sample sizes must be equal. Otherwise, there is no point in
comparing. In “np”, n stands for number and p stands for proportion. So the product
of n and p np equals the average number of nonconforming units.

The control limits are set as follows:

UCL = 7ip+3 = \/ap(1 — p)
CL=mp

LCL =7p —3*y/ap(1 —p); if this value is O or negative, use 0.

Consider the following example.

Example 5

From a process, 20 subgroups were identified. From each subgroup, number of
defective units was recorded. Sample size in each subgroup was 25. The data
recorded and calculated are as follows:

Sample No. observed No. defective Proportion defective
1 25 7 0.280
2 25 8 0.320
3 25 9 0.360
4 25 9 0.360
5 25 10 0.400
6 25 10 0.400
7 25 11 0.440
8 25 11 0.440
9 25 12 0.480
10 25 13 0.520
11 25 14 0.560
12 25 10 0.400
13 25 9 0.360
14 25 10 0.400
15 25 8 0.320
16 25 7 0.280
17 25 9 0.360
18 25 10 0.400
19 25 8 0.320
20 25 7 0.280
Average 25 9.6 0.384
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Fig. 18.9 np control chart 20+
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The control limits are calculated as follows (see Fig. 18.9):

UCL = 25 # 0.384 + 3 * /25 = 0.384(1 — 0.384)
=9.6+3%2.43
=9.6+7.29
= 16.89
CL=7p =96

LCL = 7ip — 3 = \/#p(1 — p)

=9.6-7.29
=231

The control limits are plotted and shown in Fig. 18.10.
Interpretation: All the observations fall within the control limits (UCL and LCL).
So, the process is running within control.

Fig. 18.10 Control chart UCL
Zone A 1 o
zones
Zone B 10|
Zone C 10|
CL
Zone C 10|
Zone B 1 ¢
Zone A
19
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18.4.11 Control Chart Zones

Control zones may be divided into three zones for interpreting purposes. The zones
are as follows. See Fig. 18.10.

Zone C: It is the next to centre line zone. There are two C zones, one each on
either side of the centre line. Its width is one o©.

Zone B: This is next to C. Its width is also one o. Like zone C, Zone B also lies
on both sides of the centre line.

Zone A: It is the farthest zone. There are 2 zones A, one each on either side of
the centre line. Its width is also one o.

Note the following:

(a) Zone C lies between centre line and one o limit of the CL.
(b) Zone B lies between 1o and 2c limit from the CL.
(¢c) Zone A lies between 20 and 3¢ limit from the CL.

Generally, if any point lies outside the control limits (UCL and LCL), the
process is said to be out of control. If more observations fall close to the centre line,
this is an indication of less variability in the design.

For examining the “Out of Control” processes, WECO rules may be applied.
WECO stands for Western Electric Company. The rules are summarized in the
following table.

Zone | Observation Remark

A A single point falls outside 36 (Zone A) Process out of
control

A Two out of three successive points fall in Zone A or beyond; the | Process out of
odd point may be anywhere control

B Four out of five successive points fall in Zone B; the odd point may | Process out of
be anywhere control

C Eight successive points fall in Zone C or beyond Process out of
control

Further, to WECO rules, note also the interpretations summarized hereafter.
These relate to the comments regarding the process (ref.: website: www.stasoft.
com/textbook/stqacon.html dated 11 December 2009).

S1. Observation Remark

no.

1 Nine points fall in Zone C or beyond (on one The process average has probably
side of centre line) changed

2 Eight points in a row steadily increasing or Perhaps drift in process average
decreasing

(continued)


http://www.stasoft.com/textbook/stqacon.html
http://www.stasoft.com/textbook/stqacon.html
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(continued)

Sl Observation Remark

no.

3 Fourteen points in a row alternatively up and Two systematically alternating

down causes are producing different
results

4 Two out of three points in a row in Zone or Early warning of a process shift
beyond

5 Four out of five points in a row in Zone B or Early warning of potential process
beyond shift

6 Fifteen points in a row in Zone C (above and Smaller variability than expected
below the centre line

7 Eight points in a row in Zone B, A or beyond, on | An indication that different

either side of the centre line (without points in

Zone C)

factors

samples are affected by different

18.4.12 Guide for Using Type of Control Chart

The situations in which case which chart may be used are summarized in the
following table. This is for guide only. Before deciding the type of chart to be
constructed more pros and cons need to be considered.

S1. Chart type | Description Use Type of data
No.
1 X-bar and Average and If 2 or more sub-groups Measurement
R range chart are available (continuous
measurement)
2 I chart Average and If one group/sub-group Measurement
moving range (continuous
measurement)
3 P chart Proportion If proportion is of Attribute/discrete
interest
4 C chart Number of If number of defects is Attribute/discrete
defects of interest
5 U chart Defects per If number of defects per | Attribute/discrete
unit unit is of interest
6 Np chart Total no. of If total no. of defective Attribute/discrete

defective units

units is of interest
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18.4.13 Special Topics

(a) Tolerance Limits

Sometimes it is necessary to know the capability of the process. In this effort, the
tolerance chart may be useful. Tolerance chart, histogram and regression analysis
may be used to assess the process capability. In the tolerance chart, the upper
specification limit (USL) and lower specification limit (LSL) are set. These USL
and LSL are not the same as UCL and LCL. The UCL and LCL are the limits
showing the proportion of samples would lie in. The proportion such as about
99.99 % (for 60) is fixed by the control limits. In case of USL and LSL, the limits
are determined to indicate to include a specified proportion of the samples.

The USL and LSL for the normally distributed population may be set by the
following:

USL = X + ks
LSL = X — kys

where, k> = a factor and s = sample standard deviation.

The value of k, may be determined by the following (NIST/SEMATECH
e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 14
December 2009)

W=+ (2 0)

ky =
X«z,,zvfl

where,
N sample size,
P proportion of the parameter will lie (this is pre-set),
v probability
N — 1 degree of freedom for *
K, is for two-sided tolerance limit
Example 6

See the data in the example of Sect. 17.4.6 (I chart). We need to calculate the USL
and LSL.
In the said example, we have the following:

N =10
X =299
s = 3.0714 (calculated now)


http://www.itl.nist.gov/div898/handbook/
http://dx.doi.org/10.1007/978-981-10-0401-8_17
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Let us assume that we want to set the limit that 90 % of the observations will fall
within the limits (USL and LSL) This means that we setting p = 0.90.

Probability that the observations will fall within 90 is 99 %. This means that
vy =0.99.

Now,

P =0.90

Therefore,

(1 =p)2=(1-0.90)2=0.10/2 = 0.05.

Therefore, z = 1.645 (from the table)

Again,

vy =0.99

Therefore,

;(%0_997% = 2.0879 (from the table)

W=D+ (2 ,0)

2
XyN-1

_ \/(10 —1)(1+ &)(1.645)

ky =

2.0897

9(L(1.645)2
_ apaesy
2.0897

Therefore,

USL = X + kas
=129.94+3.582 x 3.0714
=299+11.00
=40.90

LSL =X — kys
=129.9 —3.582 x 3.0714
=29.90—-11.00
= 18.90

Note that standard deviation was not calculated in the example of Sect. 17.4.6. It
is now calculated and used in this example.

From the example of Sect. 17.4.6, we know

UCL = 36.71
LCL = 23.09

Therefore, USL, LSL, UCL, and LCL are shown here for comparison


http://dx.doi.org/10.1007/978-981-10-0401-8_17
http://dx.doi.org/10.1007/978-981-10-0401-8_17
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Fig. 18.11 Tolerance limits 45
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USL = 40.90
UCL = 36.71
LCL = 23.09
LSL = 18.90

UCL and LCL are natural control limits.
The limits are plotted and shown in Fig. 18.11.
Note that in this particular example, the USL and LSL fall outside UCL and LCL

(b) Process Capability

In a manufacturing process, quite often it becomes necessary to check the
capability of the process when the process is operating in control. Tolerance chart,
histogram and process capability ration (PCR) are the tools that may be used for the
purpose. We shall discuss here only the PCR.

Process capability Ratio (PCR) is given by

USL — LSC

PCR =
60

The USL and LSL will be known from the specific process set by the man-
agement or the process design engineer, the spread 66 will need to be calculated.
The sigma (o) may be estimated by
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Therefore,
PCR — USL — LSC
6c
~40.90 - 18.90
T 6%0.862
~22.00
- 5.172
=4.254
Interpretation:

The interpretation of the PCR may be made in the following way:

. If the PCR = 1.00, there will be a good number of nonconforming units.
. If PCR < 1.00, a large number of nonconforming units will be produce.
. If PCR > 1, very few nonconforming units will be produced.

. Percentage of tolerance band used by the process = (1/PCR) * 100.

AW N =

In the previous example,

(a) The PCR is greater than one. Therefore, very few nonconforming units will be
produced.

(b) Percentage of tolerance band used by the process = (1/PCR)*100 =
(1/4.254) * 100 = 23.51 % only.

The previous calculations were made based on the assumption that the process
centered (normal population). For the non-centered process, the PCR should be
calculated in the following way (Hines and Montgomery 1990).

Two PCRk need to be calculated, one based on the USL and the other based on
LSL. Note that in this case we are using the notation PCR,. See the following
calculations.

First (based on USL)

30
4090 — 29.90
T 3%3.0714
~40.90 —29.90

=1.194
3x3.0714
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Second (based on LCL)

~29.90 — 18.90
T 3x%3.0714
~29.90 — 18.90

=1.194
3x3.0714 ?

The minimum of the two is to be taken as PCR;. In this case both the PC;s are
equal. So accepted the PCR; = 1.194.

If PCR = PCR,, the process is centered. In this particular example, PCR # PCR;.
Therefore, the process is off centered. The percentage band may now be recalcu-
lated as follows:

Percentage band = (1/PCRy) * 100 = (1/1.194) * 100 = 83.75 %. This means that
the process is using 83.75 % of the tolerance band.

(c) Sampling based on Statistical Process Control

The principle for determining the sample size is for nonparametric tolerance
limits (Himes and Montgomery 1990). This is not the exact figure but is an
approximate one and alright for practical purposes.

The formula for determining the required sample size is

= *
2 1—-p 4

l+l+p @

Example 7
In our previous example, the following calculation is made for the sample size.

1 1+P 70{4

2 p 4

_1+1+090 13.28

"2 1-090 4
1.90 13.28

n—OSO-‘rm T

= 0.50 +63.08
= 63.58, say 64.

This means that if we want to see that 90 % of the process units will be within
the specified tolerance limits with 99 % probability, we need to select the sample
size of 64 to examine the validity.
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18.4.14 Summary of Control Chart Formulas

For easy reference, the control chart formulas are summarized here. However, the
user should study the details first before using these summary formulas. This is a
summary only and it does not cover many important details.

No. Chart type Mean/R UCL CL LCL
1 X-bar chart Mean X +A5R X X — AsR
Range D4R R D3R
2 I chart Mean X+Ex*R X X—Ex*R
Range D4R R D3R
3 p chart Mean p+3y/202) P p—3,/02)
¢ chart Mean c+3ve ¢ ¢ —3vc
u chart Mean i3 % u i—3 %
6 |npchar Ve a0 —p) | |mp -3 [ap(l D)
7 Tolerance Mean USL = X + ks LSL =X — kys
limits

The interrelationships of the control chart constants are given here.

A 3
=7
3
A =
2 dz\/ﬁ
D) = d, — 3ds;
D> = d, + 3d;
d3
Dy=1-32;
3 d27
d3
Dy=1+3-2
4 + A
3
E=—
d>

if negative,D; =0

if negative, D3 =0
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Problems

18.1

In a manufacturing process observations of a particular product were
recorded five times a day for 10 days. The observations are shown in the
following table.

Sample X1 X X3 X4 X5

1 6.00 7.00 6.00 5.50 5.90
2 6.30 6.90 7.00 8.00 8.50
3 5.50 7.20 6.90 8.10 7.80
4 5.90 6.50 6.90 6.30 7.00
5 7.80 7.00 5.80 8.00 6.50
6 8.00 9.00 7.00 6.20 7.10
7 8.00 9.00 6.90 7.50 8.10
8 6.70 6.80 7.50 7.70 8.20
9 7.20 7.10 7.80 6.80 8.10
10 6.90 7.50 7.20 6.50 6.80

18.2
18.3

18.4

(a) Calculate X ,R, and UCL, CL, and LCL for mean.
(b) Calculate UCL, CL. and LCL for Range.
(c) Plot the control chart for average and Range.

Is the process in 18.1 running within control?
Based on 20 days observations, each day five observations, in a manu-
facturing process, the process design engineer calculated the following:

> Tl
I

5.56
1.80

(a) Calculate the UCL, CL, and LCL for mean.
(b) Calculate UCL, CL, and LCL for Range.

In a fish culture pond, pH values were observed during a period of 20 days
in a month. The observations are shown hereafter.

Day 2 3 5 6 7 8 9 10
x value 6.2 6.0 5.9 5.5 6.0 5.8 6.1 6.5 7.0 7.1
Day 11 12 13 14 15 16 17 18 19 20

x value

6.5 6.1 7.0 7.4 7.0 5.5 6.6 6.8 7.1 7.4
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(a) Calculate the UCL, CL, and LCL for the average.
(b) Calculate the UCL, CL, and LCL for the moving range.
(c) Plot the control charts for average and moving range.

18.5 In a manufacturing process, the designer has calculated the following for
the average:

UCL = 23.55
LCL = 18.85

(a) What is CL?
(b) What is the control limit bandwidth?
(c) What is the value of X?

18.6 How an X chart differs from an I chart?

18.7 1In a process the number of nonconforming units was recorded during a
month of operation. The number of items checked and the corresponding
nonconforming units were recorded. The data are shown in the following
table.

Day | No. observed |No. nonconforming |Day |No. observed | No. nonconforming
1 25 6 16 29 4
2 30 8 17 30 5
3 26 9 18 31 6
4 25 7 19 25 6
5 29 6 20 27 9
6 19 6 21 19 7
7 22 5 22 22 6
8 27 9 23 28 5
9 28 6 24 25 6
10 23 5 25 22 8
11 26 7 26 26 9
12 23 8 27 23 7
13 28 7 28 24 5
14 22 6 29 25 4
15 25 5 30 22 4

(a) Calculate the p-bar.
(b) Calculate the UCL, CL, and LCL.
(c) Draw the control chart.
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18.8

In a process the process design engineer wanted to check whether the
number of defect items were within control. During one month, he counted
the number of defective units by using equal number of sample units every
day. The number of defective units was counted as shown in the following
table.

Sample No. of defective | Sample No. of defective | Sample No. of defective
no. units no. units no. units
1 8 11 7 21 9
2 7 12 8 22 10
3 9 13 9 23 11
4 10 14 5 24 8
5 12 15 6 25 7
6 12 16 7 26 11
7 14 17 3 27 8
8 11 18 4 28 9
9 10 19 7 29 6
10 9 20 6 30 5
(a) Calculate the average number of defective units counted.
(b) Calculate the control limits.
(c) Draw the control chart.
(d) Interpret the result.
18.9 In a process, the number of defects per unit was of interest to the man-

18.10

agement. Thirty samples were drawn in sequence of time during the pro-
cess was running in a month. The sample sizes and the number of defects
found are shown in the following table.

(a) Calculate the average number of defects per unit.
(b) Calculate the control limits.

(c) Draw the control chart.

(d) Interpret the result.

The management of a manufacturing process wants to study the total
number of nonconforming units being produced. A team was assigned to
study the situation. They took a sample of size 20 in each case every day
for 15 days. The number of nonconforming units was observed as shown
in the following table.

(a) Calculate the control limits.
(b) Draw the control chart.
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Sample | No. nonconforming | Sample | No. nonconforming | Sample | No. nonconforming

1 4 6 5 11 3

2 3 7 3 12 4

3 3 8 4 13 2

4 4 9 2 14 4

5 2 10 1 15 3

18.11 What is the main difference between control limits and tolerance limits?

18.12 In a manufacturing process the management wants to set the tolerance
limits in such a way that 90 % of the observations will fall within the
tolerance limits and the probability of this happening will be 99.00 %.
In an exercise, 15 samples were drawn sequentially from the process as per
days of months. The individual measurements as observed are shown in
the following table.
(a) Calculate the tolerance limits.
(b) Draw the tolerance limits chart.

Date x value Date x value Date x value

1 41 6 38 11 43

2 39 7 44 12 41

3 42 8 46 13 39

4 44 9 39 14 37

5 38 10 38 15 38

18.13 Use the data for problem 18.12 and assume that the process centers on the
normal population. Then,
(a) Calculate the PCR.
(b) Interpret the result.
(c) Find out the percentage of tolerance band used by the process.

18.14 In the problem 18.13, check the assumption made by calculating the PCR;.
And find out the new percentage band of the tolerance band used by the
process.

18.15 In a process, it is intended that 90 % of the observations should fall within

the tolerance limits with a probability of 95 % (see data in problem 18.12).
Calculate the sample size required.
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Answers

18.2
18.3

18.4

18.5

18.6

18.8

18.9

18.10
18.12
18.13

18.14

18.15

no
Mean

UCL = 8.80
CL = 5.56
LCL =2.32
Range

UCL = 2.855
CL = 1.80
LCL = 0.745
Average
UCL = 7.90
CL =6.52
LCL =5.14

(a) Range
UCL = 0.825
CL =0.52
LCL = 0.215

(a) 21.2

(b) 4.70

(c) 21.2

(a) 0.256

(b) UCL = 0.495
CL = 0.256
LCL =0.017

(a) c-bar = 8.267

(b) UCL = 16.893, CL = 8.267; LCL =0
(d) The process is running within control.

(a) 0.903

(b) UCL = 1.783; CL = 0.903; LCL = 0.023
(d) The process is not running within control.
(a) UCL = 8.021; CL =3.14; LCL =0

(a) USL = 47.360; LSL = 33.574

(a) 2.672

(b) PCR > 1, so very few nonconforming units will be produced.

(c) 37.43 %.

383

PCRk = 2.672. So assumption ok; Process centers around the normal

population.

% of t band = 37.43 %

n = 46.
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Chapter 19
Summary for Hypothesis Testing

Abstract Some topics in brief considered to be understood before testing of
hypotheses are explained. A summary table is attached. This table shows the relevant
type of data, tests, application for tests, and the hypotheses to serve as examples.

Keywords Variable - Hypothesis - Testing - Types of tests - Measurement of
data - Distributions - Probability - Data collection - Sample size - Parameter and
statistics - SPSS

19.1 Prerequisite

When we make an analysis of data, the researchers/users sometimes become confused
or do not know which type of analysis is to be done with the data available on their
hand. This chapter has been prepared to help them in this respect. But it should be kept
in mind that this chapter does not show everything necessary. This chapter should be
used only as guides. For detailed procedures the respective chapters should be read.

For analysis of data and working on the hypothesis some concepts are required
to be known. Read these concepts first unless you have already in the knowledge of
these concepts. The required concepts are in short explained in the following
sections.

19.1.1 Variable

Variable in simple language means the one that varies (not fixed). Actually, the
value of a variable is not the variable itself. In a formal language it may be said that
a variable is any factor, trait, or condition that can exist in differing amounts
or types.

On the basis of vales a variable is of two types: a continuous variable and a
categorical variable. On the basis of an experiment a variable may be of three kinds:
an independent variable, a dependent variable and a controlled variable. The
independent variable is the one that is changed by the scientist.

© Springer Science+Business Media Singapore 2016 385
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19.1.2 Hypothesis

A hypothesis may be termed in different ways based on its application. Our concern
is a statistical hypothesis. A statistical hypothesis is an assumption about a popu-
lation parameter. This assumption may or may not be true.

19.1.3 Hypothesis Testing

Testing refers to the formal procedures used by statisticians to accept or reject
statistical hypotheses. It is a method how statistical inference is drawn.

Two hypotheses are formulated—a null hypothesis and an alternative hypoth-
esis. Testing is concentrated on the null hypothesis. Based on the test result, we
either say the null hypothesis is rejected or we say the null hypothesis is not
rejected. Based on this we make the inference (conclusion). Remember, interpre-
tation of the result is a crucial point.

Testing of hypothesis is sometimes called confirmatory data analysis because the
tests confirm or disconfirm the preliminary findings.

19.1.4 Measurement of Data

For analysis purpose data are to be measured. How to measure data depends on the
purpose and the objectives. The level of measurement is of importance. Statisticians
categorize measurements according to levels. Each level corresponds to how this
measurement can be treated mathematically.

There are four levels of measurements: nominal, ordinal, interval, and ratio.
Each level is explained hereafter.

Nominal: Nominal level indicates namely of categories only, such as names of
cities, categories of industries, etc. There is no order.

Ordinal: Ordinal data have order. The interval between measurements is not
meaningful. Example is first, second, third, etc. There is no distance property.

Interval: In interval data there is interval property; distance between two suc-
cessive intervals is meaningful. There is no zero in the measurement.

Ratio: Ratio level of measurement is the highest level. This measurement has the
property of interval measurement and in addition there is defined zero.

19.1.5 Objective

Data should be accepted (secondary data) or collected. Only such data should be
collected as are useful to match the objective. The collection of data should be done
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in such a way that the objectives can be met by analyzing. A lot depends on the
possibility of analyzing the data and a lot of analysis depends on the type mea-
surements of the data.

19.1.6 Distributions

A good idea is required regarding the distributions commonly used in statistical
analysis. The following distributions have been explained in this book:

Discrete Probability Distribution

Binomial distribution
Multinomial distribution
Hypergeometric distribution
Poisson distribution.

Continuous Distribution

Normal distribution
Student ¢-distribution
F-distribution.

Other Distribution
Chi-square distribution

Test of hypotheses using chi-square distribution is very simple. It is easy to
understand and calculate. As such it is very popular in testing hypothesis. The
chi-square test makes very few assumptions about the underlying population. For
this reason, it is sometimes called a nonparametric test.

19.1.7 Sample Size

Data are collected based on samples. It would be best approach to collect from the
entire population not using samples. But due to time, budget and practicability it is
not feasible. Hence, we have to go for sample. Therefore, it is imperative to see that
the conclusions based on sample data are valid for the entire population.

Two items are important. One is sample size. Generally, larger the sample size,
better are the conclusions. The other is the method of sampling such as random
sampling. Usually, random sampling is adopted.
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19.1.8 Probability

In hypothesis testing the test is always associated with probability. The error
acceptable is also called significance level. Although it is not fixed, usually the
acceptable significance level (a) is taken to be 0.05 (5 %).

19.1.9 Data Collection

Data collection is the process of collecting and measuring the information on
targeted variables in an established systematic way, which then enables us to
answer relevant questions and evaluate outcomes. Data can be collected from
secondary sources and direct collection from the field.

Whatever method is used in collection of data some items must be kept in mind
when collection. The following is a guide:

1. Make a systematic design and planning of data collection. Data are to be col-
lected according to the need only. No information that is not necessary to
achieve the objectives will be collected. Otherwise, the purpose will be defeated.

2. Collect continuous measurable data whenever possible. For example, income
data can be collected using the actual amount. This is a continuous data. Income
can also be collected using group such as amount between $1000 and 5000. This
becomes categorical. If you collect categorical data, in analysis some very much
necessary information (such as mean, standard deviation) is lost and analysis is
restricted. It is important to note that continuous data, if wanted, can be con-
verted to categories later. The reverse is not true.

3. Before collection of data think what type of analysis you are going to use in data
analysis to match your objective.

19.1.10 Graph for Initial Idea

During analysis if you do not have a god of what type of analysis is to be done, it is
better for you to plot the data in graph such as scatter plot. Looking at the graph you
may have a good idea of what type of relationship seems to be between two or more
variables.

19.1.11 Type of Test

In one way, there are two types of tests—parametric test and nonparametric test.
In parametric test, distribution is associated such as normal distribution test (z test).
In nonparametric test, no assumption is necessary for distribution of population.
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Another type when some distribution is used, the tests are divided into two
types—one tail test and two tail test. If one tail of the distribution is involved, it is a
one tail test. If two tails of a distribution is involved, it is a two tail test.

Tests using chi-square distribution are called chi-square test. Tests using normal
distribution is called z test. Tests using t-distribution are called t test. Tests using
F-distribution are called F test. Tests using ANOVA are called ANOVA tests.

Yet in another type, hypotheses are null hypothesis and alternative hypothesis.

19.1.12 Parameter and Statistics

Parameter is a characteristic of population. Examples are population mean p,
population standard deviation G. A statistic is a characteristic of a sample. Examples
of statistics are sample mean X, sample standard deviation s.

19.1.13 Model Fitting

In Regression model (statistical and econometric model), fitting of the model is
important. If the model fitting is not good, it may hardly be possible to use it for
prediction/forecasting.

As a guide, R? value should be as high as possible, 0.90 or 90 % for example;
F-value should be as small as possible, say close to zero; significance level (o)
should be as small as possible, for example, o < 0.05.

19.1.14 Dummy Variable

Categorical data have limitations. One limitation is that these cannot generally be
used in the analyses that are applicable for continuous data. Regression is one
important analysis for continuous data. Fortunately, categorical data can be used in
the regression analysis by converting these into dummy variables. For this tech-
nique, see the chapter on multiple regression.

19.1.15 SPSS

SPSS means Statistical Package for Social Sciences. There are other few packages.
But SPSS is versatile and it is very useful. In examples in this book SPSS has been
used. So the analyses that have been used are according to SPSS.
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Data

Types of test

What is tested

Example of hypothesis

Cat-georgical

Chi-square

Goodness-of-fit
test

Comparing a set of observed
frequencies to a set of
expected frequencies

Null: two distributions are
Similar; alternative: two
distributions are different

Test of
independence

Testing the difference
between the observed
frequencies of several
classifications of two
variables

Null: the two variables are
independent (no
relationship).

Alternative: the two
variables are not
independence (related)

Continuous

Parametric test

(1) Z test; t test
for small sample
(n < 30)

Tests one population mean

Null: population mean has a
specific value; alternative:
population mean does not
have the same value

Tests equality of two
population means

Null: two population means
are same/equal; alternative:
the two population means
are not same.

Tests one population
proportion

Null: the population
proportion has a specific
value; alternative: the
population proportion does
not have the same value

Tests equality of two
population proportions

Null: two population
proportions are the same;
alternative: the two
population proportions are
not same

Power of test

Calculation of type I error
(o) and type II error (B).
Cannot do for open ended
hypothesis

Calculation of power

Nonparametric
test—the sign
test

Test the medians of a
continuous variable

Null: the median is a
specified value; alternative:
the median is not equal to
that specified value (greater
or less)

Nonparametric
test—the rank
test

(continued)
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(continued)
Data Types of test What is tested Example of hypothesis
(1) The Compare two population Null: incomes of two
wilcoxon means population groups are equal;

rank-sum test

alternative: incomes of the
same two population groups
are not equal (greater or less)

(2) Spearman
rank correlation

Measure the degree to which
two numerical variables are
monotonically related or
associated

Null: there is no spearman
correlation between the
populations; alternative:
spearman correlation
coefficient between the two
populations is not zero
(greater or less)

Kruskal-Wallis

Analysis of variance

Null: there is no difference

independent variables. Can
use categorical data also as
dummy variables

test (ANOVA) is carried out by | between groups (all group
this method. It is rank means are same);
nonparametric method and alternative: there is
does not assume normal difference between groups
population. It uses ranks (all group rank means are
not same)
Simple It uses the dependent Used in statistical estimation
regression variable and one and model building. Can be
independent variable used for prediction also.
Check the model fitting
Multiple It uses the dependent Used in statistical
regression variable and two or more estimation. Can be used for

prediction/forecasting also.
Check the model fitting
(R?, a value, F-value)




Statistical Tables

© Springer Science+Business Media Singapore 2016 393
A.Q. Miah, Applied Statistics for Social and Management Sciences,
DOI 10.1007/978-981-10-0401-8



.m (panunuod)

ﬂa 058600 92001°0 ¥0201°0 £8¢01°0 §9501°0 6¥7L01°0 Se601°0 €CIIro YICITO LOSTTO (4!
m COLTT0 00611°0 00121°0 c0ecIo L0STI'0 YILTTO ¥26C1°0 9¢Iel0 0Seer0 L9GET0 't
.m 98LET0 L00¥1°0 reeyrlo LSYYT°0 989%1°0 LT6¥1°0 0SIST°0 L8ECT0 SeosT0 998C1°0 01
2 60191°0 SE91°0 20991°0 £6891°0 90ILT0 19€LT°0 619L1°0 6L8LT°0 evI81°0 90¥81°0 60
€L981°0 £v681°0 S1cero 68¥61°0 99L61°0 S¥00T°0 LTE0T0 1190C°0 8680C°0 9811C0 80
9LY1T0 OLLTTO §902CT0 £9¢CCT0 £99CC0 §96CC°0 0LTET0 9LSETO C88ET0 961¥C°0 L0
01S¥C0 ST8YCT0 evIsTo £9vST0 G8LSTO 6019C°0 SEYOT0 €9L9T°0 €60LC0 9CYLT 0 90
6SLLTO 9608C°0 Y80 YLL8TO 911620 09¥6C°0 9086C°0 €510€°0 2050€°0 ¥$80¢°0 S0
LOTIE0 1961¢€°0 8161¢€°0 9LTTE0 9€9T¢’0 L66TE°0 09¢€€0 YTLEE 0 060¥7¢°0 LSYYE0 0
LT8YE0 L61SE0 696S€°0 [44332Y LT€9E0 £699¢0 0L0LE0 8YYLED 8C8LE0 60C8¢°0 €0
1658€°0 L68E0 86€6£°0 EvL6E0 6C10¥°0 LISO¥'0 S060¥°0 €6C1v'0 €891v°0 YLOTY 0 [4qY
Soveyo 8S8TY'0 54340 o0 8€0¥¥°0 €EVPY0 8C8YY'0 YTesyo 029¢1°0 L109%°0 10
1442540 18970 00CLY'0 809LY'0 9008%°0 SO¥81°0 £0881°0 0c6v°0 10961°0 0000¢°0 00
600 800 L00 900 c00 ¥0'0 €00 00 100 0 z
z+ 9612 0 2-

205200
M QAIND [RULIOU JY) Jopun sealy [V d[qe],



395

Statistical Tables

(panunuod)
§2000°0 ¥2000°0 §2000°0 92000°0 L2000°0 820000 820000 0€000°0 2€000°0 ¢€000°0 e
€000°0 9€000°0 9€000°0 8€000°0 0%7000°0 0%7000°0 ¢¥000°0 1000°0 91000°0 08+00°0 e
8¥000°0 050000 50000 0000 9£000°0 09000°0 9000°0 ¥9000°0 89000°0 890000 e
<L000°0 L0000 9L000°0 080000 80000 ¥8000°0 88000°0 ¢6000°0 260000 960000 e
00100°0 ¥0100°0 801000 CI100°0 91100°0 0C100°0 ¥C100°0 8C100°0 1000 9¢100°0 0¢
0%100°0 ¥100°0 S¥100°0 ¢S100°0 09100°0 ¥9100°0 891000 9L100°0 08100°0 881000 6C
61000 002000 ¥0200°0 C1c000 022000 ¥2200°0 €000 0%7200°0 8¥200°0 962000 8¢C
92000 L2000 082000 882000 00€00°0 80€00°0 91€00°0 8¢€00°0 9€€00°0 8¥£00°0 LC
96€00°0 89¢00°0 08€00°0 26£00°0 £0v00°0 SI¥00°0 LTy00'0 6£¥00°0 1S¥00°0 L9%00°0 9¢
6L¥00°0 S6¥00°0 L0S00°0 £¢s00°0 6£500°0 €6s000 1LS00°0 L8S00°0 €0900°0 £2900°0 ¢C
6£900°0 65900°0 $L900°0 §6900°0 S1L000 SE€L000 §SL000 SLLOOO 86L00°0 81800°0 '
¥800°0 99800°0 068000 16000 8€600°0 99600°0 066000 81010°0 9%010°0 ¥L010°0 €T
01100 0€110°0 I9110°0 681100 12¢10°0 €6C10°0 68C10°0 12€10°0 LSET00 68¢10°0 [
Serio0 SorI0°0 10S10°0 0vS10°0 8LST10°0 819100 6S910°0 00L10°0 evL100 L8LTO0 |4
1€810°0 9L810°0 €2610°0 0L610°0 81020°0 L9020°0 811200 691200 122200 SLTT00 0¢
0€€200 68¢20°0 o0 0s20°0 866200 81920°0 18920°0 1¥L20°0 €08¢0°0 €L870°0 6’1
9¢620°0 S00€0°0 CLOEO0 r1€0°0 912€0°0 88C€00 ¥9€€0°0 6£v7€0°0 SIS€00 §65¢0°0 8’1
1L9€0°0 GSLEDO P£8€0°0 6£0°0 900%0°0 607700 181+0°0 <Ley00 €9¢v0'0 9S¥¥0°0 L1
165v0°0 8¥9¥0°0 ILY00 9¥8¥0°0 Ly6¥0°0 1000 SSIS0°0 £€9¢S0°0 0LES00 8LYS00 91
065500 S0LSO0 128500 L£6S0°0 LS090°0 9L190°0 00€90°0 ¥Zr90°0 16590°0 6L990°0 Sl
11890°0 6900 8L0L00 €1¢L00 €6€L0°0 €6¥7L0°0 9€9L0°0 08LL0°0 8C6L0°0 SL080°0 'l
97C80°0 8L£80°0 £680°0 069800 6¥880°0 €1060°0 6L160°0 0¥€60°0 115600 6LL60°0 €1l
600 80°0 LO0 900 co'0 ¥0°0 €00 00 100 0 z

(ponunuod) TV AqeL,



Statistical Tables

396

£0000°0 ¥0000°0 ¥0000°0 00000 ¥0000°0 ¥0000°0 §0000°0 §0000°0 S0000°0 §0000°0 6'¢
900000 900000 900000 900000 900000 900000 L0000°0 L0000°0 L0000°0 L0000°0 8¢
80000°0 800000 80000°0 600000 600000 600000 600000 010000 110000 110000 Le
110000 10000 10000 £€1000°0 €1000°0 ¥1000°0 ¥1000°0 S1000°0 S1000°0 910000 9'¢
91000°0 L1000°0 L1000°0 81000°0 61000°0 02000°0 02000°0 12000°0 12000°0 20000 Se

600 80°0 LO0 900 co'0 ¥0°0 €00 00 100 0 z

(ponunuod) TV AqeL,



397

Statistical Tables

(panunuod)
L8L'E LL6'C 79T Syie 19L°1 Sre'l 9L0°T 8980 2690 4!
S8e cloe 089C 091°¢C ILL'T 0s¢’l 6L0°1 0L8°0 ¥69°0 €l
0€6'¢ §S0'e 189°C 6L1°C 8LT 96¢e’l £80°1 €L8°0 §69°0 4!
S0y 901°¢ 8ILC 10C°C 96L'1 £9¢'1 880°1 9L8°0 L69°0 11
124594 691°¢ Y9L'C 8CCC CI8l CLE'L €601 6L80 00L°0 01
L6TY SsCe 128°C TC £e8’l €8¢'T 0011 £88°0 €0L0 6
10S°y geee 968°C 90¢€'C 098°1 L6g'1 801°1 688°0 90L°0 8
S8LY 66v'¢ 866'C §9¢C S68°'1 Syl (! 968°0 11L°0 L
80T'S LOL'E evl'e Lyv'C £evo'l oyl yel'l 906°0 8IL0 9
£68°C (43074 So¢'e ILSC S10°¢ ILY'T 9Tl 0260 LTLO S
ELT'L Y09 LyL'e 9LL'C [4 AN €es’1 061°T 1760 1vL0 4
SICOI1 1v8'¢ vsv (4183 £6¢C 8¢9°L 0s¢C1 8L6°0 S9L°0 €
LTETT £6°6 €969 €0Ey 6'C 988’[ 98¢’l 190°T 9180 C
60¢'81¢ LS9'€9 128°1¢ 90LCl 148%°% 8L0°¢E €961 9LE'T 0001 I
100°0 S00°0 010°0 200 S00 01ro S0 0c0 §Cco
0 ElY
i+ S00 1) S00 *
500 =
[c1g1->1d
S00=
[eig1<ild
‘wopasy JO

$22139p (1=0 101

uonnquisip 7 oy} jo syurod a3ejuadied ¢V dqelL



Statistical Tables

398

(6002 1290100 80) VIN ‘93pHqUIE) ‘91em}jog [9I4D) woij Aemyos 9[quLeis Jo djoy oy yiim paje[nofe) 22.nog

091°¢ L19C 86¢C 0861 8691 68C'1 1701 S¥8°0 LL90 0CI
YLI'E 979°C ¥9¢€°¢C ¥86°1 099°1 06C'1 wo'l S¥8°0 LL90 001
€81°¢ (434 89¢€°C L86'1 w991 16C°1 w0l 9¥8°0 LL90 06
sol'e 6£9°C YLET 066'T ¥99°1 (4! evo'l 9180 8L9°0 08
11ce 8¥9°C 18€°C 661 L99°T ¥6C'1 Y01 L¥80 8L9°0 0L
e 099°C 06€°C 000°C 1L9°1 96C'1 90’1 8¥8°0 6L9°0 09
19¢°¢ 8L9C €0r'c 600C 9L9'1 66C'1 Ly0'1 6v8°0 6L9°0 0s
L0E'¢ Y0L'C €r'e 120C ¥89°1 €0¢'1 0801 168°0 189°0 or
g8¢e 0SLC LSY'C woc L69°T 01¢l SSO'T ¥68°0 £89°0 0¢
96¢°¢ 9SLC wr'e Sv0'C 6691 et SSO'l 7680 £89°0 6¢
80¥'¢ €9L'C Lov'C 8¥0'C 10L°T €re] 9601 §68°0 £89°0 8¢
Icre ILLT ELY'C s0C e0L'T 145 LSO'T 6680 ¥89°0 LT
Sev'e 6LLC 6LY'C 960C 90L'T SIET 8S0°1 9680 ¥89°0 9T
0sy'e L8LT S8¥'C 090°C 80L'T 9I¢’T 8501 9680 ¥89°0 Y4
Lov'e L6LT v ¥90°C TIL1 81¢'1 650°1 LS80 $89°0 ¥C
3189 L08C 00SC 690'C VIL'T 61¢'1 090°1 8680 $89°0 4
c0s'€ 618C 80SC ¥LOC LIL'T Icel 190°T 8680 9890 (44
LTS'e 1€8°C 8ISC 080°C 1Ll €ece’l €901 658°0 989°0 1Z
458> S¥8'C 8CST 980'C STL'l Seel ¥90°1 098°0 L89°0 0¢
6LS°¢ 198°C 6£SC £60°C 6CLT 8CC'l 990°T 198°0 8890 61
019°¢ 8L8C 143X 101°C YeL'l €e’l L90°1 2980 889°0 81
9Y9°¢ 868°C L9SC 0I1T'e L1 €ee’l 6901 €980 689°0 L1
989°¢ 126'C €86°C 0cIe ovL'1 LEET 1L0°1 $98°0 0690 91
eeL’e LY6'C 09T 1€1°¢ eSLT el VLO'T 998°0 1690 9!
100°0 S00°0 0100 §20°0 S0'0 0ro S1'o 020 §co
LY p

(Ponunuoo) 7V dIqeL



399

Statistical Tables

(panunuod)
LOE0T 6676 LyS'8 69¢°L 19T°L 2929 G86'C 6CC’S 80¥'C ST
L9Y'6 9698 06L"L el 1LS9 629°¢ 89¢°¢ 099'v 190°C 4!
7€9'8 106'L oL ¥¢s9 °68°S 600°S SOLY LOT'y veL'l €l
LOS'L vIT'L 0€9 8I8°¢ 9CT’S YOv'y 8LV ILS°¢ Lyl Cl
8869 9¢€9 8LS'S yers SLSY 918'¢ 609°¢ £50°¢ SvI'l 11
6L1°9 0LS°S 98y o'y 0v6'c LyTe 650°¢ 86¢C 688°0 01
08¢’S 9181 81y C8LE geee 00LC [43%4 880°C 199°0 6
Y6SY 8LOV 061'¢ 1248 €ELT 08I°¢ (4304 9’1 €90 8
(4423 86E°¢ £€8'C 8CSC 91T 0691 Y9C°1 6¢C’1 00€°0 L
0L0°¢ 199C ¥0T'C 1761 Se9'1 LETT vel'l L0 ¢LT0 9
£€ve'e ¥66'1 0191 Y6¢°1 94! 1€8°0 Lo 660 800 S
6v9°1 99¢'1 ¥90°1 L68°0 11L°0 ¥8¥°0 6CY°0 L6T0 8200 4
S00°'T 0080 ¥86°0 L0 cse0 91T0 G81°0 SIT°0 S00°0 €
o0 §Ce0 1120 9¢1°0 €010 1S0°0 000 0200 20000 [4
¥90°0 9¢0°0 9100 6000 ¥00°0 100°0 9000°0 <0000 0000 I
080 $8°0 060 §T6°0 $6°0 SL6'0 860 660 6666'0
0 p

Te2T13aD

urod

@Hu

siutod [eonid (X) arenbs-14) (DEV dIqeL



Statistical Tables

400

(600 10quIda(q 67) “xdse gyores/oreojelsjwo)y odosoruep mmmy//:dny :10je[nofes auruo jo djoy yiim paje[nofe)) 24nos

SY6'L8 168 86EC8 4840 6C6°LL CCTYL [44 R 75 $90°0L SCL'SS 001
8YC'¢E8 €18°08 8I8LL 6C6'SL 0cs el §26'69 6L8'89 868°S9 6¥0'CS 6
86C"8L S61°9L 16ccL 09 1L 9C1°69 LY9'S9 SE9Y9 YSL19 80¥°81 06
8LYEL 68S° 1L LLL'89 S00°L9 6vL19 68¢°19 CIy'09 YE9'LS 90811 3]
LOT'69 ¥66'99 8LTY9 L9GC9 16€°09 €STLS €1c9s 0v9°€S 144914 08
LYS¥9 4844 S6L°6S 8¥1°8S ¥60°9¢ r6'Cs 6£0°CS SLY 6v 8CL'LE SL
868°6S Yr8°LS 6C¢°SS 8YL'ES 6EL'1S LSL'8Y €68'LY (424894 19Cv¢ 0L
9T SS £60°¢S £88°0S 0LE 6V 0sy'Ly €091 6LLEY 144444 8¥8°0¢ S9
179°08 6SL'8Y 65Y' oY 910°Sy 881ty (414414 669'6¢ S8Y'LE L6Y'LT 09
909 SYTvy 090y 169°0v 866'8¢ 86¢9¢ 659°6¢ 0LS€C 14594 Y
ovy 1y PSLEE 689°LE L6€°9¢ YOLvE LSETE ¥99°1¢ LOL'6C 600°1C 0s
¥88°9¢ 06C°SE 0seee oriece l19°0¢ 99¢°8¢ 0cL'Le 106°SC 68°L1 Sy
Syece 968°0¢ 150°6¢ 9C6'LT 605°9C €EVVC 8¢€8°€T ¥91°CC €881 or
9€8°LT 091°9C 008t¢ €9L°€EC Sovce 696°0C L20°0T 60S°81 96611 33
9¢°€C 0rree 665°0C 799°61 €618l 16L°91 90¢°91 €so'vl 8ST°6 0¢
0v6'81 8I8'LI ELY91 Svocl 119¥1 0cI el L69°C1 Yol LOL9 Y4
8LS VI Y09°¢l ey el CEL'TI 168°01 1656 LET6 09¢'8 6Ly 0C
9IL¢l ELLCI 16911 §96°01 LIT0L 9068 L9G°8 €E9'L L96°¢ 61
LS8TI 6’11 §98°01 S0c01 06€°6 1€T8 90s°L SI10°L gese 81
200°Cl1 SCI'TI G80°01 4940 CL98 Y9S°L SSTL 80%°9 9¢T'e L1
[4NA! 6001 (4544 LOL'8 796°'L 8069 199 (485 YLL'T 91
080 $8°0 06°0 §T6°0 S6°0 SL60 860 660 66660
0 p

(ponunuoo) (P)EV dAqeL



401

Statistical Tables

(panunuod)
YA} LTYE 00°Ce $8'8¢ 0€'9¢ 122 %4 6L'1C LY 0C LE6l 91
0L'LE 08°Ce 8¢°0¢ 6¥'LC 00°6¢ 1ece 09°0C Ie6l ST8l1 S1
c19¢ cele ¥1°6C [48°r4 89°¢C 90°1¢C 1761 SI'81 cr'LT 14!
€Sve 8°6¢ 69°LC YLV 9¢€'CC 18°61 081 8691 86°CI €l
167C¢ 0¢'8¢ 9T eee €0'1¢ G681 6691 1861 S8 vl cl
9T'1e 9L°9C LYC 61T 89°61 8CLI LLST (a4t oLel 1T
65°6C 61°6C 1¢¢eC 81°0¢ 1€°81 66°S1 €Syl el geel 0T
88°LT 65°¢C L91C 061 691 8971 6C¢cl YTl 6¢T1 6
[48°7¢ 96°'1¢ 60°0C €S°LT [EY! 9¢°el 00CI €011 ol 8
(4274 8C°0C 8¥'81 1091 LOVI c0Cl SLOT 086 ¥0°6 L
I'TC e8I 1891 Syl 65°Cl 79°01 Y6 9¢'8 8L 9
[4V14 SLOI 60°G1 €8°CI LOTT yvT'6 [4% 6C'L €99 S
LY'81 981 8Tl 14981 87°6 8L°L L9 66'S 6¢°S 14
LT91 ¥8°CI Yell Se'6 18°L §C9 w's 9y 1Ty €
el 0901 1T°6 8¢L 66'S 197 6L'¢ we LL'T 4
£8°01 88°'L €99 'S 8¢ 1LC L0C 791 (4! I

100°0 S00°0 010°0 §200 SO0 01°0 ST°0 0c0 S0

0 p

e

IUTOd I_

STITID

(€229

syutod [eont (%) axenbs-1y) (T)EV dIqeL



Statistical Tables

402

(600T 1290190 80) VIN

‘@8puque)) ‘Orem)jos [9IA) Wolj Aremos ‘2jquIvis jo dipy yim pare[nde)) 224nog

0s6v1 0corl 08°¢el 09°6CI1 0cvCl 0¢°8I1 9911 LOTTT 01601 001
yeevl STYel L6'6C1 98°¢Cl SL8II YO'€ll 67601 9¢°901 06°€01 $6
0T LET 0€"8CI orvet OI"8TT Orert 09°L0T 06°€01 SO’ 101 $9'86 06
YO'IEl eeecl Y811 6¢°CIT ¢S Lol 80701 15786 €L'S6 6£'¢o S8
08¥CI 0€9l1 0€CII 09901 08101 86796 I1°co 1°06 €188 08
09°811 6011 6£901 ¥8°001 96 90°16 69°L8 L098 98°C8 SL
0¢CIT 0T 0Tl 017001 06 £5°06 £6°C8 9C'C8 cL6L 8S°LL 0L
66'S01 11°86 4 81°68 878 L6'6L 18°9L SEVL 6CCL <9
19°66 S6'16 8¢'88 0€'e8 80°6L ov'yL YelL L6'89 86'99 09
LT°€6 SL'E8 608 8E°LL IeeL 0889 98°69 86°€9 L9'19 Y
9998 6v'6L ST'9L rIL 0S°L9 LT°€9 $E'09 91°8¢ £€°9¢ 0s
80°08 LT'EL 96'69 17°69 9919 IS°LS I8¢ €CLS 8605 Sy
or'eL LL99 69°¢9 €65 9L'SS 08¢ YT or LTLY [R%% or
2999 LT09 YeLS 0T'es 08'vy 90°9v Y9°ey 8L’y oy 33
0L°6S L9'eS 68°0S 8691 LLey 9T oY 66°LE §T9¢ 08¢ 0¢
79°Cs £6'9v 1evy 90y SO°LE 8EPE 8CCE 89°0¢ e'6C 4
(4294 00°0¥ LS'LE LT'VE e I8¢ 05°9¢ 0S¢ £8°¢C 0¢
(48974 86°8¢ 61'9¢ G8'CE y1I°0g 0C’Le £€°6C 06°€C cLee 61
1ecr 91°'LE I8¢ A L8'8C 66'SC 91'¥C 9LCC 09°1¢ 81
6L 0% (9% Iv'ce 61°0¢ 6S°LC LLYVC 86°CC 19°1¢ 6¥°'0C L1
100°0 S00°0 0100 §e00 SO0 (N0 ST°0 00 §To
0 p

(ponunuoo) ()EV dAqeL



403

Statistical Tables

(panunuod)
0681 6161 £56°1 S66°'1 LY0C SITC L0TC 6¢cC 6¥SC LE6'C €C
061 £e6'1 L96°1 800C 090°C 8CI'C 61CC 16€7¢C 19¢°C 616'C (44
0co’l 876'1 861 £€¢0C SLOT (444 €eTT G9¢C SLCT 196'C 1c
LEO'T S96°1 666'1 00" 160°C 861°C 61C’C 08¢€C 685°C SL6'C 0c
966°1 ¥86°1 L10C 860C 601°C 9LT'C 99¢C L6EC 909°C 066'C 61
LL6'T S00°¢C 8¢0C 6L0C 0€1'C 961°C 98¢ 91¥'C y29C L00’€ 81
100C 820C 190°C 01'¢ (43 4 81CTC 80¢€C LEV'C S¥Y9'C 920°¢ L1
820C 6s0C 880°C 8CI'C 8LI'C e €eeT wor'e 899°C 8¥0°¢ 91
650°C 980°C 611°C 8S1'C 80CC €LTT 19¢°C 06t°C $69°C €L0E Sl
§60°C e 12254 £61'C evee L0E'C S6£'C ST 9CLT wre 14!
8€1'C Yo1°¢C S61'C €T €8CC LYeT ey 09¢6°¢ €9L'C 9el'e €l
881°C y1¢¢ SYTe €8CC 1eee 76¢£°C 08%'¢C 909°C L08C LLT'E cl
8YCC YLTT Y0€'C wee 68¢C 1Sv'C 9¢6C 099°C 098°C SCCe 8!
€Cee Lye'e LLE'T vIiv'e 19%°C [44%¢ §09¢ 8CLC ¥26'C 8T’ 01
91v'C ory'¢ 697'C S0sC 166°¢C 119°¢ £69°C €18C 900°¢ 09¢°¢ 6
8¢CC 19¢°C 68¢°C ¥79°C 899°C 9CLT 908°C ¥26'C erre 86t'¢ 8
€0L'C SCLC SLT S8LC LT8T £88°C 196°C YLO'E LSTE 685°¢ L
LE6'T 866'C £86'C ¥10°¢ Gs0'e 801°¢ 181°¢ 68C'¢ eor'e ILL'E 9
L6TE 91¢’¢ 6cc’e 89¢°¢ Sov'e £Sre 0cs'e 619°¢ 08L°¢ 090t S
0c6'c 9¢6'c SS6'¢ 6L6'¢ 010'% IS0y LOT'¥y 161y ey SYey 4
0€T’s ores TS 99C°¢ G8C'¢ 60¢°S eves 16€°¢ (149 8¢€C°S €
6¢°6 18¢€°6 L9¢°6 6¥¢'6 9Te6 £6C°6 eveo 916 000°6 926’8 4
$61°09 868°6S 6EY'6S 906°8S Y0C'8S oveLS £€8°6S £65°¢S 005 6% £98°6¢ I

o1 6 8 L 9 S 14 € [ I

v P

(01°0 = 0 103 sanfea ) uONNQISIP 4 (DPV A9eL



Statistical Tables

404

(panunuod)
£€6v'¢C L6V'C 08T 16T Gese 9¢¢C 1LST S65°C 9T 899°C L
wL'e LT (474 LT 8LC 008C SI8C 9€8°C 1L8°C S06°C 9
€cre 9cl'e cele orle LST'E VLI L8T'E L0T'E 8ET'E 89C°¢ S
SLL'E 8LL'E aLe 06L'¢ 08°¢ L18'¢ 8C8'¢ 8¢ 0L8°¢ 968°¢ 4
evl's 14489 Lyl's IST°S 091°¢ 891°C SLT'S ¥81°¢ 00C’s 9ITS €
£81°6 (4340 6L1'6 SLY'6 997°6 8SY'6 1S1°6 8240 STr'6 80¥°6 [4
190°¢9 LO0'€9 LT6'C9 ¥6LC9 6CS'C9 §9C'C9 §S0C9 0vL'19 0cCc19 S0L'09 1

0ocI 001 08 09 or 0¢ S¢ 0C Sl Cl
'p &p
€991 S69°'1 (47! 8LL'T 122 2! 9061 c00'C 6¢1'C 9s¢C 9¢LC 001
0L9°T COL'T 6eL’1 S8L'1 1781 [4N! 800°C oIC £9¢°¢ LT 06
0891 1.1 VL'l oLl 6¥8'1 1261 910C 123%4 0LEC 69L°C 08
1691 €Ll 09L°1 08°1 098°1 1€6°1 LT0C ¥91°¢C 08¢'C 6LLC 0L
LOL'T 8eL'l SLL'T 618’1 SLY'T 6’1 170°C LLTC £6£°C 16L°C 09
6CL'1 09L°T 96L°1 08’1 S68'1 9961 190°C L61C (4844 608°C 0S
€oL'1 6Ll 6C8'l €L8'] LT6'L L66'1 160°C 9CT’C ori'c GE8'C (1%
618’1 6v8'1 ¥88°1 LT6'1 086'1 6v0°C (444 9LT'C 68¥°C 188°C 0¢
LT8'1 LS8'T 68’1 ge6'l 8861 LSOT 6v1'e £€8C°C Sev'c L88'C 6C
9¢8°1 G981 0061 evo'l 966’1 ¥90°C LSTC 16CC £0s°¢C ¥768°C 8¢
Sv8'l vL8'1 606°1 so’1 §00C €L0°C S91C 66C'C 11se 106°C LT
Ge8'l ¥88°'1 616°1 196°T ¥10°C 80°C YLI'C LOET 616C 606°C 9¢
9981 S68°'1 626’1 1L6°T 20C c60°C ¥81°C LIET 8CST 816C 4
LLY'T 906'l 176’1 €861 Ge0¢ €01°¢ S6l¢ LTET 8€SC LT6'C ¥C
01 6 8 L 9 S 14 € 4 I

p P

(ponunuoo) (PpV dqeL



405

Statistical Tables

(panunuod)
6611 LOS'T 6161 8¢Sl €LS'T L09'T o'l L99°T Ll ELL'T 0¢
60S°T LIST 6CS’1 LYS'1 €861 9191 091 9L91 1eL’'l 18L°1 6C
0cs'T 8CC'1 6€S°1 86C°1 €651 ST9'1 0891 G891 ovL'T 06L1 8¢C
1€S°T 6€S°1 08S°'T 6961 €091 9¢9°'1 099°1 S69°1 oLl 66L'1 LT
144! 1671 €961 18671 SI9°1 LY9'1 1L9°1 90L'T 09L'1 608’1 9T
LSS'T GoS'1 9LS'1 €651 LT9'T 659°1 £89°1 8IL'T ILL'T 028’1 S¢C
CLST 6LS°1 065°1 LO9'T 179°1 CL9'T 969°1 0€L’T €8L1 (420t e
L8ST Y651 S09°1 [44°Nt SOl 9891 OIL'T YyL' 1 96L'1 P81 €C
Y091 1191 'l 6€9°1 IL9°T [/} 9Ll 6SL'T 1181 658’1 (44
£€9'1 0€9°1 091 LSO'T 689°1 6IL1 L'l ILL'T LT8'1 SLY'T 1c
vl 0891 0991 LLO'T 80L'1 8¢L'T 19L°1T VoL’ T S¥8°'1 68’1 0c
999°1 €L9'] €891 6691 0eL’l 6SL'1 (47! YI8'1 G981 [4GN! 61
169°1 8691 LOL'T L'l YeL'1 €8L'1 SO8°'1 LEY'T L88'I £€6'1 81
6ILT 9CL'1 SEL'T IsL1 18L°1 608’1 1€8°1 981 cle’'l 8S6'L Ll
1SL°T LSL'T 9LT LT T18°T 6€8°'1 098°1T 168°1T ove6'l S86'1 91
L8L'T €6L'1 08’1 L1381 SY8°1 €L8'1 7681 26’1 CLO'T L10C ST
8T8l Pegl V8l LS8'T G881 4! £e6’l 96°1 010C ¥50°C 14!
9L8'1 88’1 0681 061 o'l 866'1 8L6'L L00C €60 L60C €l
430! 8¢6'1 6’1 096°T 9861 c10¢ 1€0C 090¢ S01'C LY1'C Cl
000C S00¢ €10°C 920C [430x¢ 9L0C S60°¢ €Cle L91°C 60CC I
80°C L80C $60°C LOT'C (43¢ SSI'e YLI'C 10C°C Yvee ¥8CC 01
¥81°C 681°C L61'C 60CC (454 §sTe ELTT 86C°C oree 6LET 6
91¢€¢ 1cee 8CETC 6€€C 19¢°¢C £8¢°C 00v'¢C STr'e Yov'¢ 0S¢ 8

(74! 001 08 09 ov 0¢ ¢ 0C S1 4!

v P

(ponunuoo) (PpV dqeL



Statistical Tables

(600T 10903100 7T ‘J=3s1p¢ ¢dyd-xapui/siojernores/ad£10jo1d/npa-os-yeiseisop) I0je[noed uonnqrisip Suisn paye[noe)) 22.1n0§
JOJRUTWOUIP ‘WOPI2IJ JO SIAUTP Ip ‘Iojerouwinu ‘WOPAAIY JO $aI3ap Ip

[4:1a! £€6C'1 oreT 9ee’l 8l €'l Sl or'l LSS'T 4! 001
€6C'1 P0¢'1 Icel i T6¢l oyl 19t°1 €051 9¢S'1 029°'1 06
LOC'T 8I¢'T ee'l 86¢'T e0v'1 A2 Lyl eIsT VLG'T 69l 08
Y4! SeC'l 0se’l YLE'T 8Vl LSY'1 981’1 9¢s’l L8S'T 1791 0L
Vel 8S¢1 CLE'T S6¢’1 LEY'T oLY'1 Y0S'T evs'l €09°'1 LS9'1 09
6LE'T 06¢'1 awor'l Yo'l SoOr'l 061 6¢S’1 89¢'1 LT9'1 0891 0S
vl el Lyl L9Y'T 90S°T vl 89¢°1 S09°'1 299°1 SIL'T or
0cl 001 08 09 oy 0€ Y4 0¢ SI Cl
p P

406

(ponunuoo) (PpV dqeL



407

Statistical Tables

(panunuod)
SLTC 0cee SLET (4444 8CCC 0r9C 96LC 870°¢ e 6LTY €C
L6TC wee L6EC Yor'C (2°%¢ 199°C LI8C 6¥0°¢c evye 10€v (44
1cec 99¢€C ocy'e 881'C €LST 689°C 0r8'¢ CLOE LOY'E ey 1c
81¢C £6¢°C Lyv'C Y16°C 665°C 11L¢ 998°¢C 860°¢ £ot'c 1€y 0¢
8LEC er'e LLY'C 144 X4 879°C 0rLe S68°C LTI'E (4432 I8¢y 61
(a8 44 9¢t'C 016C LLS'C 199°C ELLT 8C6'C 091°¢ gese Yiv'y 81
0y 61°C 8¥S°C 719C 669°C 018°C §96'C L61°¢ °65°¢ 159474 Ll
Yov'C 8€6°C 16S°C LS9C IvL'e [4%:%¢ L00'E 6€C’E 7e9°¢ vov'y 91
1449 886°C 19T LOL'C 06LC 106'C 9¢0°¢c L8TE 89°¢ ey Sl
209C 99°C 669°C YoL'C 8¥8°C 866'C 498 yree 6EL’E 009% 14!
1L9°C VILC L9LT [4%: 44 S16'¢C §C0'e 6L1°¢ 11¥'e 908°¢ L99v €l
€SLT 96L'C 6¥8°C €16'C 966'C 901°¢ 65C'E 06v'¢ G88°¢ LyLY cl
¥68°C 968°C 8¥6'C (41083 S60°¢ y0T'e LSEE L8SE 86'¢C 8y 8!
8L6'C 0c0'e CLOE Ser'e LITE 9Tee 8LY'E 80L'¢ €0’y 96’y 01
LET'E 6L1°¢ 0€C’e £6C°¢ YLEE (4143 £€€9°¢ £98°¢ 9¢TY LIT°S 6
LYEE 88¢'¢ 8EY'E 00S°¢ 186°¢ L89°¢E 8¢€8°¢E 990°% 65ty 8I¢S 8
LE'E LLI'E 9TLe L8L'E 998°'¢ CLO'E ocry LYey LeL'Y 16S°¢ L
090'% 660% Lyl'y LOTY 8T L8EY yesy LSLY (489 L86'S 9
SELY CLLY 818v L8V 0s6'v 050 418 607§ 98L'S 8099 S
96°S 666'S 109 ¥60'9 €919 9¢T9 88¢9 16579 76’9 60L'L 4
98L'8 188 S¥8'8 L88'8 1768 €106 LIT°6 LLT6 sS6 8CI°01 €
96¢£°61 g8eol 1LE°61 €561 ceol 9661 LYT 61 91761 0061 1681 4
88°11¢ 12374 88'8¢C LL'9ET 66'¢EC 91°0¢¢ 86T 1L°61CT 661 SYI91 I

01 6 8 L 9 S 14 € 4 1

v P

(S0°0 = 0 103 san[eA ) UODNQIISIP J (T)PV AAqeL



Statistical Tables

408

(panunuod)
89T'¢ SLTE 98C¢ Y0e'c oree 9LEC Yo' Shy'e 116°¢ SLSE L
SOLE CILe Le orLe VLL'E 808°¢ GE8’E VL8’ 8€6'¢ 000'¥ 9
66¢'Y sov'y SIv'y 1ev'y Yor'y 96" 16y 8SSY 619v 8L9Y S
869°¢ ¥99°¢ €L9°S 889°¢ LILS LS 69L°S £08°¢ 868°C 413 4
6vS'8 668 19678 LS8 765°8 L19°8 7£9°8 099'8 €0L'8 SvL'8 €
L8Y'61 6v'61 8v'61 6LY°61 ILy'61 or6l or'6l oy 6l 6CY'61 elv6l [4
£'¢6T 0°€st L'TsT st 1'1s¢ 1°0s¢ £'61c 0'8¥¢ 09rc 6'cre 1
0CI 001 08 09 or 0¢ 14 0C Sl 4!

'p &p

LTe'1 SL6'T (4304 €01'c Iel'c S0ET 3% 44 969°C L80'¢ 9¢6'¢ 001
8¢6'1 9861 €v0'C €Ire 10CC 91¢C ELY'C 90LC 860°¢ LY6'c 06
1561 666’1 960C 9CI'C y1TtC 62T 981°'C 61LC 11re 096'¢ 08
6961 L10C YL0C evie 1€T¢ IreT €0S°C 9¢LC 8Cl'e 8L6'C 0L
€661 0v0'¢C L60C Lo1'C ysCTe 89¢°C §esT 8SL'T (U3 100y 09
9¢0C €L0°C 0€1'C 661°C 98¢CC 00t'C LSCT 06LC e81°¢ 7e0y 0S
LLOC ¥ere 081°C 61C'C 9¢€eC 6vv'C 909°¢ 6£8°C e S80v (1%
So1'C 11ece 99C'C Yeee Icr'e 143K 069°C 6’ 9I¢e ILTY 0¢
LLTC €CCT 8LTT IveT wr'e 949%¢ 10L°C ¥€6'C 8CL'e €81y 6C
061°C 9¢CC 16CC 65¢C Sy 866°C VILT L¥6'C oree 961 8¢
¥0CT'C 05T'C S0€C €LET 65¥°C CLSC 8CLT 096'C eee 0Icy LT
0cee c9TC Icee 88¢€'C YLY'C L8ST VLT SL6'C 69¢°¢ Sy 9¢
9€T'C (414 LEET So¥'C 06¥'¢C €09°C 6SL'C 166C g8e'E Ty 4
§eCe 00€C geee €er'e 80S°C 129°C 9LLC 600°¢ e0v'e 09¢y ¥C

01 6 8 L 9 S 4 € [4 1
p P

(ponunuoo) (T)pV dlqel



409

Statistical Tables

(panunuod)
89°1 G691 CIL'T OvL'l oL1 1781 8L8'1 o'l S10¢ 60°C 0¢
869°1 01L'T 9CL’1 €SL'T 908’1 Y681 1681 SY6'1 L20C Y01°C 6C
VIL'T SCL'T L'l 69L°1 0c8'1 698°1 906'L 6S6'1 1v0C 8I1°C 8¢C
1€L°T (477! 8SL'1 G8L'I 9€8°1 7881 126°1 VLO'T 960°¢ (4% 4 LT
6vL'1 09L'1T 9LL'T €081 €681 1061 8¢€6'1 0661 C¢LOC 8¥1'C 9T
89L'1 6LL'T 96L’1 eyl CLY'L 6161 GS6'1 L00C 680°C go1'¢ SC
06L'T 008°T 9181 w8l 681 6€6'1 SL6'T L20C 801°C €81°C e
I8l €8l 6€8°'1 Go8'l 16°1 196'1 966°1 8¥0°C 8CI'C ¥0C'C €C
8¢8Il 6v8'1 98’1 688’1 8¢6'1 ¥86°1 020C 1L0C 1S1°C 9¢TC (44
9981 9L81 1681 L16'1 S96°1 010C SY0'C 960°C 9LT'T 08CC 1c
9681 LO6'T o'l 96l ¥66'1 6€0°C YLOC Yere €0CC 8LTC 0c
0€6°1 ove6’l SS6'1 0861 920°¢ 1L0°C 901°¢ SS1'C YeCe 80¢°C 61
896'1 8L6'L £66'1 L10C £90°C LOT'C Iv1c 161°C 69CC et 81
110°C 0c0C Se0C 860C 01T Ly1'C 181°C 0€CT 80¢C 18€°C Ll
690°C 890°C £€80°C 901°C IST°¢ ¥61°C LTCC 9LTC [43%4 STr'e 91
YI1'C €CcIe LETT 091°¢ Y0C'C LYT'T 008°C 8CLC €0v'¢ SLY'C Sl
8LI'C L8I'C 10T°C £€CCC 99CC 80¢'C 1veC 88¢'C (3514 12304 14!
°sTT 19¢°C SLTT L6T'C 6£€°C 08€C cIve 651'C £es’C ¥09°C €l
1vec 08€C £€9¢€°C 78¢€C 9Ty'¢ 99v°¢C 861°C 144 L19C L89C cl
8¥'C LSY'C 691°C 06t°'C 1€6°C ILST 109°C 99T 6ILC 88LC I
08¢ 886°C 109°C 129°C 199°C 00LC 0€LC VLL'C 924 €16'¢C 01
8YL'C 9¢LC 89LC L8L'C 98T ¥98°C £68°C 9€6'C 900°¢ €L0'E 6
L96'C SL6'C 986'C S00°€ £r0'e 6L0°¢ 801°¢ 0ST°¢ 81C¢ V8C'¢ 8

0cl 001 08 09 014 0¢ SC 0c Sl cl

v P

(ponunuoo) (T)pV dlqel



Statistical Tables

(600T 10903100 7T ‘J=3s1p¢ ¢dyd-xapui/siojernores/ad£10jo1d/npa-os-yeiseisop) I0je[noed uonnqrisip Suisn paye[noe)) 22.1n0§
JOJRUTWOUIP ‘WOPI2IJ JO SIAUTP Ip ‘Iojerouwinu ‘WOPAAIY JO $aI3ap Ip

9LE'T (411 Syl 0S¥l SIST €LST 919'1 9L9'1 89L'1 0581 001
T6c'l LOV'1 6Cy'1 Sov'1 8¢Sl 98¢°'1 609’1 8891 6LL'T 1981 06
111 o'l 8¥¥'L (434! SPS'l 2091 Y91 e0L'T oLl SL8'T 08
SeEV'l oSl ILY'1 SOS'T 99¢°1 'l ¥99°1 L'l CI8l €681 0L
Lov'1 1811 c0s°'T 123! Y6S°1 6¥9°1 069°1 8YL'1 9e8’1 L16'1 09
1161 gesl 122! 9LS'T PE9'1 6v9'1 LTL'T P8L'1 1L81 6’1 0S
LLS'T 68S°T 809°1 LEI'T €691 YLl €8L°1 6¢8’[ 26’1 £00¢ or
0Cl 001 08 09 oy 0¢ 4 0¢ Sl Cl
p P

410

(ponunuoo) (T)pV dlqel



411

Statistical Tables

(panunuod)

I1ce 66C°¢ 90¥°¢ 6£5°¢ OILE 6£6'¢ Y9CT'Y SoLv ¥99°¢ 188°L €C
8ST'E ovee esre L8S'E 8SL'E 886'¢ eley LI8V 6IL'S SY6'L [4¢
01ee 86¢£°¢ 905°¢ 0r9°c (423 oy 69¢Y VL8V 08L°G L10'8 1c
89¢°¢ LSY'E 796°¢ 669°¢ 1L8°¢ €0l'y lev'vy 8E6'Y 6¥8'S 960°8 0C
er'e £€Cs°e 1€9°¢ SoLe 6£6'¢ ILT'Y 00S'Y 010°¢ 926°S G818 61
80S°¢ L6S°E SoL'e 8¢ S10'v Yy 6LS'V c60°S €109 G8C'8 81
£65°¢ 89°¢ TeLe LTo'e a1y 9eey 699t S8I°¢ (488" 00’8 L1
169°¢ 08L°¢ 068°¢ 920y Ty LEY'Y ELLY c6CS 9¢C9 1678 91
S08'¢ S68°¢ Y00y Wiy 8IEY 9sSy £68'Y LIY'S 65¢°9 €898 Sl
6£6'¢c 00y orl'y 8LTY oYy 691 ge0’s ¥9¢°¢ SIS9 988 4!
001T¥ 161’y (4014 Ivv'y 029y 981 coTs 6EL’S 10L°9 YL0'6 €l
96’ Y 88¢Y 661 Y o9y 128y ¥90°¢ [114Y £56°S LT6'9 0ce6 Cl
6£SY [43°h 7 YLy 988'v 690°S 9I¢’S 899°¢ L1T9 90T'L 99°6 I
6v8'Y wo'y LSO'S 00T 98¢°¢ 9¢9°¢ ¥66°S SS9 6SS°L P¥0°01 01
LSTS Ise°¢ LOY'S €19°¢ 08's LSO9 w9 669 708 19601 6
18°¢ 116°¢ 6209 8L1'9 1LE9 €99 900°L 16S°L 6¥9'8 6SCI1 8
0299 61L9 0¥89 £66'9 161°L 09%°L Ly8'L 1s¥'8 LYS'6 ovecl L
VLY'L 9L6°L r's 09C'8 99¥'8 IvL'8 8v1'6 08L°6 §T6'01 SyLel 9
16001 86101 68C01 96101 CL901 L9601 co¢’ Tl 090°CI YL el 86T 91 S
Sl 6591 66L V1 9L6'V1 LOTST (142! LL6'ST 76991 000781 861°1C 4
6CC’LT SYe'LT 68V°LT cLY'Le 116'LC LET'8T 0IL8¢ LSY'6C 918°0¢ 9IT've €
66£°66 88£'66 YLE 66 96¢'66 ££€°66 00¢°66 6vC'66 99166 00066 0586 [4
66509 §Ce09 11865 £8C6S 0°658S L€9LS 9vC9s £eors $'666¥ esor I
01 6 8 L 9 S ¥ € [4 1
p P

(10°0 = 10§ SaN[RA ) UONNQUISIA 4 (E)PV AqBL



Statistical Tables

412

(panunuod)
LEL'S SSL'S 18L°¢ 1048 806°S 266°'S 8609 SST'9 Y1€9 6979 L
696’9 L86'9 el0’L LSO'L evl'L 6CC'L 96C'L 96¢°L 6SS°L 8IL'L 9
111°6 0€T'6 LST'6 w0T6 166 6LE°6 6v¥'6 £65°6 CCL'6 8886 S
86C°¢l 086°¢l 019°¢l coel SvLEl 8¢€8°El or6’cl 0c0¥1 86171 YLEY] 4
12T9¢ 0rcoc 0LT9¢ 91¢9¢ 11+°9¢ ¥05°9¢ 085°9¢ 069°9¢ CL8'9C s0'Le €
161°66 06766 06766 87°66 VLY 66 9966 09¥°66 6v7'66 Ev 66 9166 [4
7'6£€9 I'v€€9 (4] 0°€1e9 8'98C9 90929 8'6€C9 L'80C9 €'LST9 9019 1
(4! 001 08 09 ov 0¢ 4 0C Sl 4!

'p p

€0S'C 065°C 69°C £€C8'C 886'C 90T'¢ eIse ¥86°¢ 14 0% $68'9 001
¥ese 119C SILC S¥8'C 600°¢ 8CC'¢ gese L00¥ 6v8'Y §C69 06
166°C LE9C wL'c 1L8C 9¢0°¢ SeTe £9¢°¢ 9¢0v 188v €969 08
G8SC °L9C LLLT 906'C 1L0°E 16Te 009°¢ YLOY o'y 1oL 0L
°e9'C 8ILC £€78C £56'C 6I1'e 6£C’e 6v9'c 9Cl'y LL6'Y LLO'L 09
869°C S8LC 068°C 0c0°c 981°¢ 80¥°¢ 0cLe 6611 LSO'S ILT°L 0S
108°C 888°C £66°C yere 16C°¢ yise 8C8’¢ eIy 6LT'S vIeL (1%
6L6C L90°¢ ELTE Soge ELY'E 669°¢ 810V oISy 06¢°S ws’L 0¢
S00¢ c60°¢ 861'¢c 0eee 66v'¢ seLe Yo'y 8ESY ocy's 86S°L 6¢
ce0e 0cIe 9TCe 86¢°¢ 8CC¢ 14723 YLOV 89¢Y eSy's 9¢9°L 8¢
0°¢ ovie 9¢T’E 88¢°¢ 866°¢ S8L'E 901 109 88¥°C LLY'L LT
¥60°¢ (4] 83 88C°¢ Iere 166°¢ 818'¢ o'y LE9Y 9Ce’s 1cL’L 9¢
6cl'e L1TE yeee LSY'E LT9'e 9943 LLTY SLOY 89¢°¢ OLL'L Y4
891°¢ 9¢Te £9¢°¢ 961 L99°¢ S68°¢ 8ICTY 8ILY ¥19°¢ €C8’L ¥C

01 6 8 L 9 S 4 € [4 1
p P

(ponunuoo) (£)pV dqeL



413

Statistical Tables

(panunuod)
I1e 1e1'e 091°C 80C°C 66CC 98¢C eSy'e (2%¢ 00LC V8¢ 0¢
8¢I'C 8SI'C L8I'C yeTe geee (4844 8LY'C YLS'T 9CLT 898°C 6C
LI9T1C L8I'C 91¢CC £€9CC 1434 ory'e 906°¢ c09°¢ ESLT 968'C 8¢C
861°C 81CC LYTC ¥6C°C ¥8¢°C 0LY'C 9€6°C (43504 €8LC 9T6'C LT
£€eCe sTT 18CC LTET LIV'C €0S°C 69¢°C ¥99°C SI8¢ 866'C 9T
0LTC 68C°C LIEC y9¢€°C eSy'e 8€SC ¥09°C 669°C 088°C £66'C S¢
01€¢ 6C€C LSET €0r'e (4944 LLST €v9'C 8ELT 688°C ce0’e e
1434 €LET 10¥°C Lyv'C GeCe 0¢9°¢ 989C 18L°C 1€6C VLO'E €C
e0y'¢ e 0S¢ Sov'¢C £86°C L99°C €eL’e LT8'C 8L6'C Icre (44
LSY'C SLY'C £0S°¢C 8¥S'C 9¢9C 0cLe G8LC 088C 0€0'¢ eLT'E 1c
L1SC SeCC €96°C 809°C §69°C 6LL'C V8T 8€6'C 880°¢ 1€C°¢ 0c
¥86°C c09°¢ 0€9°¢ YL9'C 19L°¢C 8¢ 606'C £00°¢ es1e L6TE 61
099°C 8L9°C S0LC 6VL'C Ge8'C 616C £86°C LLOE LCTE ILEE 81
LT YOL'C 16L°C GE8'C 026'C £00°¢ 890°¢ wre cIee SSy'e L1
S¥8C £98°C 688°C £€6'C 810°¢ 1ore o1°¢ 65C°¢ 601°¢ £66°¢ 91
656'C LL6'C 00°¢ LYO'E cere yiTe 8LT'E CLEC (4432 999°¢ Sl
60°¢ cIre 8¢cl'e 181°¢ 99T'¢ 8Ye'e cIve S0s°¢ 969°¢ 008°¢ 14!
gsCe cLTe 86C°¢ 1vee Sy'e LOS'E 1LS°€ §99°¢ SI8'¢ 096'¢ €l
(443 LOY'E go1'c Gece 619°¢ 1oLe SoL'E 868°¢ 010 SSI'v Cl
069°¢ 80L°¢ veLe 9LL'E 098°¢ Iv6'c S00v 6601 IS¢y L6CY I
966'¢ Y10'v 60y 801 o1y YTy ey SOv'y 86CY 0Ly 01
86¢Y Siv'y 184474 e8Y'y LISV 6v9'v eILY 8081 °96'Y 111°6 6
6y €96t 686t [4308Y 495 861°C €9T'S 66¢°S SIS L99°S 8

(74! 001 08 09 ov 0¢ 94 0C SI 4!

v P

(ponunuoo) (£)pV dqeL



Statistical Tables

(600T 10903100 7T ‘J=3s1p¢ ¢dyd-xapui/siojernores/ad£10jo1d/npa-os-yeiseisop) I0je[noed uonnqrisip Suisn paye[noe)) 22.1n0§
JOJRUTWOUIP ‘WOPI2IJ JO SIAUTP Ip ‘Iojerouwinu ‘WOPAAIY JO $aI3ap Ip

CLS'T 8651 €91 69°'1 LeL'1 €681 S96°1 L90C €Cee 89¢C 001
8651 £€C9'1 6591 9IL'T 0C8'1 916’1 L86'1 880°C 1449 68¢°C 06
0€9°'1 SSO'T 0691 L'l 6¥8'[ Y61 S10¢ SITC 1L2C SIy'e 08
L9l S69°1 0Ll S8L'1 988°[ 0861 050°¢C 0sI'C 90€'C 0s¥'¢ 0L
9CL'1 6vL'1 €8L'1 9¢8°'1 9¢6'1 870C 860C 861°C [43¢ 96¥°C 09
€081 SC8'l LSY'T 606°'1 L00C 860°C L91°C §9C¢ 61¥'C 96T 0S
L16'T 8¢6'1 696’1 610C 14954 €0C'¢ 1LTT 69¢C [44°X4 §99°¢ or
0cl 001 08 09 oy 0¢ 44 0¢ SI cl
p P

414

(ponunuoo) (£)pV dqeL



415

Statistical Tables

(panunuod)

78 8 6L 9L L L9 LY (44 8¢ ce [43 0¢ Cl
08 8L 1L 1L 89 9 144 (4 LE 143 0¢ 8¢C 11
SL €L oL L9 9 09 [44 8¢ 93 43 6¢ LT 01
0L 89 <9 €9 09 9¢ or 9¢ €¢ 1£3 8¢C 9T 6
<9 €9 19 68 9¢ €S LE 143 1€ 6¢ LT SC 8
09 6S LS SS 49 6% e [43 6¢C LT ST e L
SS 14 49 0¢ 8 Sy €¢ 0¢ 8¢C 9C ¥C €C 9 9
69 L9 79 29 8¢ 163 9¢ 49 8¢C 9C €T 1C cl
<9 €9 19 8¢ 8 1< 123 0¢ LT 144 (44 0¢ 11
19 6S LS 145 49 87 [43 8¢C 9C €C 1C 61 01
LS ¢SS €S 16 8 Sy 0¢ LT ¢ (44 0¢ 81 6
€S 16 (94 Ly 974 (44 8¢C Y4 €C 1C 61 LT 8
6t LY 94 144 (44 6¢ 9C €C 1T 0cC 81 91 L
144 9374 w (4 8¢ 9¢ e (44 0¢ 81 Ll 91 9
or 6¢ 8¢ 9¢ 93 €€ (44 0¢ 61 LT 91 Sl S S
s¢ €S 5 6% 9 w 9C (44 61 L1 SI el Cl
49 0§ 14 514 934 oy 1 1c 81 91 14! Cl 11
14 LY 874 974 (4 LE €C 0¢ L1 ST €l cl 01
874 374 [44 (4 LE 93 1C 61 91 14! €l 11 6
v ov 8¢ LE 93 43 0c L1 Sl 14! cl 11 8
8¢ LE e 143 [43 0¢ 81 91 14! €l 11 0l L
143 13 43 1€ 6T LT Ll Sl €l 1! 11 01 9
0¢ 6C 8¢C 9C Y4 ST 14! cl 11 0T S
9C e £C (44 14! el 1T 0T 14 14
G000 100 620’0 00 01°0 0T’0 00 01°0 00 €00 100 100
Anqeqoad Trey seddny Aqeqoid Trey 1omo u Ty

J[qe) Wins-yuel UOX0J[IA, SV dqel



Statistical Tables

416

(600 Tequydag O¢) Jpd UOX0O[IM ()] YD/OULP[IM-/ZU I8 PUR[INEJBIS MMM 2ILNOS

Sol 161 S81 081 eLT 991 yel LTl (74} 98! 601 SOt cl cl
LI (VA SOl 091 S L1 LTT OrlT 01 66 6 06 cl
991 91 LST €Sl Ly1 184! (481 901 00T 96 16 L8 11 11
123! 161 14! |84} 9¢l 6¢C1 101 6 68 78 6L 9L cl
Lyl 341 6¢l yel 6¢C1 €Tl L6 16 98 18 LL €L 11
6¢l 9¢l cel 8¢l €Cl LT €6 L8 8 8L YL 1L oIl 0T
Sel (43! LTl eCl 811 [48! 98 08 SL 1L 99 €9 cl
8¢CI 9Cl 121 LT1 el LOT 8 9L L 89 €9 19 11
(44! 611 SIIT 111 LOT 01 8L €L 69 <9 19 8¢S (028
SIT Cll 601 SOt 101 96 SL 0oL 9 29 68 9¢ 6 6
LT1 SIT (1281 901 <01 96 L 99 9 8¢ €S 59 cl
111 601 SoT 101 L6 16 69 €9 6S cs s 6 11
S0 €01 66 96 6 L8 <9 09 9¢ €S (94 Ly (028
66 L6 €6 06 98 8 29 86 VS 16 Ly Sy 6
€6 16 L8 ¢8 18 LL 6S SS 16 6% 974 1974 8 8
00T 86 76 16 98 18 6S 145 (914 o (44 (4 cl
S6 €6 68 98 8 LL 9¢ 16 LY 144 oy 8¢ 11
68 L8 78 18 LL €L €S 6t 874 (44 6¢ LE 01
78 8 6L 9L €L 69 0s 14 (34 or LE 43 6
8L LL YL 1L 89 9 87 144 17 8¢ S¢ 143 8
€L 1L 69 99 9 09 94 1874 6¢ 9¢ 143 [43 L L
G000 100 620’0 00 01°0 0T’0 00 01°0 00 €00 100 100
Anqeqoad Trey seddny Aqeqoid Trey 1omo u Ty

(Ponunuod) §V IqeL


http://www.stat.aukland.ac.nz/-wildEnc/Ch10.wilcoxon.pdf

Statistical Tables 417

Table A6 Spearman rank correlation

Use t test for test of hypothesis related to Spearman Rank Correlation. This is
simpler and is valid. Percentage Points of the t distribution are provided in
Table A2.
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A

Advantages, 245, 255

Agreement, 286-288

ANOVA, 196, 325, 331, 332, 334-336,
338-340, 342, 344-350

Arithmetic mean, 30

Autoregressive model, 313, 314, 316, 317, 322

Axiom of probability, 61

B
Basic principle, 257
BCR IRR, 304, 307, 308
Bimodal, 40
Binomial
distribution, 70
experiment, 70

C
Central limit theorem, 104
Central tendency, 30, 38, 40, 43, 55, 58
Chart

bar, 17

pie, 17

pareto, 19

histogram, 19

frequency curve, 23

frequency polygon, 19

line diagram, 23
Chi-square

distribution, 86

properties, 86

test, 171, 174, 175, 177
Class

width, 14

number, 13

range, 14
Cluster, 249, 254, 255
Coefficient

of determination, 224, 226, 228
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of variation, 51
Combination, 65
Composite hypothesis, 128
Concept ANOVA, 335
Confidence interval, 107-124
difference of two normal populations, 110
difference of two population proportions,
114
mean of single population, 107
population proportion, 113
variance of a normal population, 112
Continuous data, 258
Consistency, 104
Contingency coefficient, 177
Contingency table, 175
Contrast, 327
Control Charts, 353, 355-357, 359-362,
364-366, 368, 370, 371, 378-381
C chart, 364
chart average, 321
control chart zones, 370
control limits, 356
guide, 372
I control chart, 360
moving average, 356
p chart, 362
process capability, 375
np chart, 369
special topics, 373
summary of formulas, 378
tolerance limit, 373
type of control charts, 356
type of data, 355
u chart, 367
x-bar and R, 357
Control limits, 355-359, 361-365, 367-371,
373, 375, 380-382
Control zones, 353, 371
Coordination schema, 246
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Correlation, 203-204
circular, 204
coefficient, 205
interpretation, 205
linear, 205
negative, 205
population, 204
positive, 205
sample, 206
spearman, 194
spearman rank, 194
test, 194
Cost of living, 292, 294-298
Cross tabulation, 14
Curve
F distribution, 84
normal distribution, 80
t distribution, 82
chi square distribution, 87

D
Data, 2-6, 10
categorical, 3
collection, 2, 388
grouping guidelines, 12
metric, 3
qualitative/quantitative, 247
primary, 3
ranked, 3
secondary, 3
summarization, 2
Data fitting to distributions, 91
Data transformation, 225, 226
Degrees of freedom, 83

Dependent and independent variables, 215, 216

Descriptive statistics, 29, 30
Design
balanced/unbalanced, 327
chart, 329
definition, 325
of experiment, 325, 327, 328
experimental, 325
factorial, 325
fractional factorial, 327
full factorial, 326
half factorial, 327
procedure, 327
randomized, 329
single factorial, 343
Deviation
mean, 47
standard, 48
Diagram, 336
line, 23
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stem and leaf, 51
Dispersion, 30, 43, 44, 47, 48, 51, 54, 56, 58
measures of, 43
types, 44
Distribution, 387, 390
binomial, 70
chi square, 86
continuous joint probability, 90
continuous probability, 78
continuous random variable, 78
data fitting, 91
discrete joint probability, 89
discrete probability, 70
discrete random variable, 69
hypergeometric probability, 75
important features, 78
joint probability, 89
multinomial, 72
skewed, 42
normal probability, 78
poisson probability, 76
probability, 69
sample, 102
student t, 82
symmetric, 42
Dummy variables, 236

E
Efficiency, 103
Error
standard, 263
type I/type 11, 130
Estimate, 102, 104, 106
interval, 107-109
point, 102
Estimation, 105
least square, 234
Estimator, 102, 103
pooled, 111
properties, 102
Event, 60
dependent, 63
independent, 62
mutually exclusive, 61
non-mutually exclusive, 63
probability, 63
Examples in probability, 59-63, 65

F

Factor action, 336

Factorial design, 325-327, 333, 335
Financial data, 303, 311, 313

Fisher’s ideal price, 292, 295, 297, 298, 302
Flow chart, 325, 329
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Flow chart of hypothesis testing, 157 present value, 303
Frequency future value, 303
cumulative, 12 NPVB, 306
curve, 23 NPVC, 306
distribution, 13 scale, 277
expected, 172 total cost, 298
observed, 172 Inference
polygon, 19 population mean, 101
relative, 12 statistical, 101
F distribution, 84 Inferential, 59
properties, 84 Inferential statistics, 29, 30
Finite population Inflation, 298
correction factor, 115 Interpretation, 235, 241
graph, 17
G tabular presentation, 12
Goodness-of-fit test, 171, 172, 174, 175 Interval estimate, 102, 107, 121-123
Graphical presentation, 17, 19 Interview
Growth rate, 36-38, 55, 56 standardized questionnaire, 2
H K
Histogram, 19 Kurtosis, 54
Hypothesis, 386-391
acceptance, 131 L
alternative, 128 Laspeyres, 291-295, 297, 300, 301
composite, 128 Linear relationship, 203, 205, 206
errors in hypothesis testing, 129 Line diagram, 23
flow chart in hypothesis testing, 157
formulation, 203, 208-210 M
null, 128 Manufacturing process, 353, 354, 358, 362,
power of hypothesis testing, 157 364, 375, 379, 380-382
rejection, 131 Mean
testing, 127-130, 132, 133, 135, 137, 141, arithmetic, 30
144, 157 classes, 39
simple, 128 comparison, 42
statistical, 127 deviation, 47
geometric, 35
I population, 102
Important features, 78 sample, 102
Index number, 298 short method, 33
agreement, 286 square error, 218
cost of living/standard of living, 295 square regression, 218
performance, 288 types, 30
price, 290 weighted, 31
priority, 278 Measurements, 2—6
quantity, 292 Median
satisfaction, 282 class, 39
laspeyres price, 289 comparison, 42
paasche price, 291 formula, 39
Fisher’s ideal price, 292 test, 166
total cost, 293 ungrouped observation, 38

inflation, 298 Measurement
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Measurement (cont.)
data, 3
direct, 2
interval, 5
level, 5
nominal, 5
ordinal, 5
qualitative, 6
quantitative, 6
ratio, 5
Measurement of data, 386
Mode, 40
bimodal, 40
comparison, 42
formula, 40
unimodal, 40
Multiple regression model, 233

N
Nonparametric test, 183, 189, 196, 198
Normal
curve, 79
distribution, 78
NPVB, 306, 307
NPVC, 306, 307
Null and alternative hypothesis, 128—137,
139-141, 143-145, 147-150,
152-156

(0]
Observation
paired, 188

One-tail test, 129, 131-134, 136-138, 141,
142, 151

Orthogonal, 327

Other regression model, 236

Outcome, 60

Out of control, 371

P
Paasche price, 291, 292, 295, 297
Parameter, 101, 102, 106, 107, 113, 114
definition, 101
estimation, 218, 221
population, 97
Parameter and statistics, 389
Performance, 288-290
Permutation, 65
Point estimate, 102, 106, 107, 123, 125
Population
finite population correction factor, 115

Index

definition, 59

growth rate calculation, 36
parameter, 101

proportion, 113

Power of test, 130, 157, 158, 169
Precision, 247, 257
Prediction/forecasting, 233, 235, 236
Presentation, 11, 12, 14, 15, 17-19

guidelines, 11
graphical, 17
tabular, 11

Price, 290-302
Price index

Fisher's ideal, 292
Laspeyres, 291
Paasche, 291

Priority, 278-281
Probability, 59-67, 387, 388

approaches, 60

a priori, 60

axioms, 61

binomial distribution, 70
calculus, 1
conditional/unconditional, 63
definition, 60

density function, 79

dependent events, 63

distribution, 69, 70, 72, 74, 75, 78, 89-92
empirical, 61

independent events, 62

mutually exclusive events, 61

no of possible samples, 64
non-mutually exclusive events, 63

Properties

chi square, 86

F distribution, 84
normal distribution, 78
t distribution, 82

Proportion, 260-262, 267, 268, 272-274

Q

population, 113
pooled, 154
sample, 149

Quality Control

Areas, 354

Control chart, 355
History, 353

Limits control charts, 356
Statistical, 353

Type of control chart, 355



Index

Variation, 354
Quantity, 291-295, 297, 298, 300-302
Quantity index, 292

Fisher's ideal, 292

Laspeyres, 293

Paasche, 293
Questionnaire

standardized, 2

pretesting, 247

R
Random, 249-256
number, 250
variable, 69
Randomized design, 325, 330, 344
Range, 44
interquartile, 44
Rank test, 183, 189, 190, 196, 198, 199
Rate of inflation, 298, 299, 301
Region
acceptance/rejection, 131
critical, 131
rejection region, 131
Regression
adequacy of model, 221
coefficient of determination, 224
data transformation, 225
dummy variable, 236
hypothesis testing, 127
interpretation, 227
lack of fit, 222
multiple, 233
multiple model, 233
other nonlinear model, 236
prediction, 235
residual analysis, 222
simple, 215
simple linear model, 215
Reliability, 257
Risk assessment, 309
Rule of 70, 300-302

S

Sample
definition, 59
random, 110
paired, 186
possible no, 64
probability of no of possible, 64
space, 60
variance, 86
Sample size, 86, 387
allocation, 262
basic principle, 257

cluster sampling, 270
continuous data, 257
determination, 257
proportion, 260
random sampling, 249
stratified sampling, 255
survey, 246

stratified sampling, 255
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Sampling, 245-249, 251, 253-256, 258, 260,

262-264, 267, 268, 270-274

advantage, 245
cost, 248
distribution, 108
methods, 249
prior consideration, 246
simple random, 249
stratified random, 255
survey, 246
systematic, 253
unit, 245
with replacement, 64
without replacement, 64
Satisfaction, 282-286
Significance level, 132
Sign test, 183—-186
Simple hypothesis, 128

Simple regression, 215, 216, 218, 226

Skewness, 54

Spearman rank correlation test, 183, 194, 199,

201

SPSS, 325, 331-335, 389
Standard

deviation, 48

error, 257

of living indices, 294-297
Statistic

definition, 101

t, 141

z, 131

Statistical estimation of IRR, 308, 309

Statistical quality control, 353, 354
Statistics, 1, 2, 6, 8
contents, 2
definition, 2
descriptive, 29
history, 1
inferential, 2
Stratified sampling, 249, 255
Stem and leaf diagram, 51
Sufficiency, 103
Summation notation, 8
Sum of squares
error, 218
regression, 218
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total, 218
Systematic, 249, 253

T
Table presentation, 12
Table r x ¢, 174
Test
chi square, 171
contingency table, 174
factor reversal, 294
goodness of fit, 171
non-parametric, 183
of homogeneity, 174
of independence, 171, 174
one tail, 137
power, 157
procedure, 131, 135, 137, 141, 149
rank, 189
relationship, 174
sign, 183
spearman rank correlation, 194
statistic, 132
two tail, 135
wilcoxon rank, 190
Testing, 386-388, 390
Tolerance limit, 373
Total cost, 291-295, 297, 298, 302
Two-tail test, 128, 129, 133, 135, 137, 139,
140, 143, 144, 146, 152, 155
Types of tests, 388
Types of presentation, 11
Types of sampling, 249

Index

U
Unbiasedness, 103
Unimodal, 40

\%

Variable, 5-10, 385, 388-391
categorical, 7
continuous, 7
continuous random, 69
definition, 7
dependent, 216
discrete, 7
discrete random, 69
independent, 216
numerical, 7
random, 69
rank, 7

Variance, 47
desirable, 263
maximum, 261
pooled estimate, 145
population, 84
sample, 84

Variation
coefficient of, 51

w
WECO rules, 353, 371
Wilcoxon rank-sum test, 190
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