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Preface 

We live in a world where the words big data have become buzzwords. They refer 
not only to the growing availability of data but also to the increasingly powerful 
methods for analysing this huge amount of data. The presence of data has always 
been important for decision-making in most management disciplines, and thus also 
for improving the decision-making process of managing projects. 

This book tells a story about the increasing importance of such data for project 
scheduling, risk analysis, and project control. It is a story about the importance 
of project data for researchers and professionals, and why collecting, processing, 
and using such data are not as easy as we often think. The book also aims to 
show the differences and similarities in project data needs between researchers and 
professionals. Because they both need data, albeit for slightly different purposes, the 
book is also about connecting two worlds (academic and professional) by sharing 
their project data, the algorithms, the statistical methodologies, and the results of 
their analyses. 

The theme of this book is known in the literature as dynamic scheduling or 
integrated project management and control and is now called data-driven project 
management. The first part of this book provides a brief overview of the basic 
components of data-driven project management, emphasising the type of data 
required for each component and providing an overview of the current state-of-the-
art methodologies available in the literature. 

The second part of this book emphasises the importance and relevance of 
artificial project data for academics and describes the specificities and requirements 
of such data for research purposes. It describes how academics deal with their need 
for project data to test new ideas and new methodologies, and how they generate and 
adapt these project data to their research purposes. This section mainly introduces 
the readers to the wonderful world of academic research in project control and shows 
that through a rich set of artificial project data, the research has taken a long and 
exciting journey. 

The third part of this book focuses on the availability of diverse project data from 
a professional point of view, describing how professionals have been able to collect 
a diverse set of empirical project data. Their data are often very case-specific and 
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tailored to specific needs, often sector or company dependent, not always complete, 
and often, if not always, confidential and therefore usually, unfortunately, not freely 
available to researchers. Despite these drawbacks, this part of the book emphasises 
the relevance and necessity of real project data for scientific research. It aims to 
convince researchers not only to rely on their own generated project data but also 
to look to the outside world and spend some time collecting data for real projects. 
This section introduces my readers to the exciting journey of research relevant to 
real project managers. 

The fourth part of this book takes a deep dive into the two forms of project data, 
(artificial and empirical), and presents an approach for collecting, generating, and 
analysing projects to create a database that is relevant to academic researchers and 
professional project managers. It presents a two-way approach, transferring project 
data from business to academia and back to business, to gain a better understanding 
of project scheduling and control methods by both researchers and professionals. 

Finally, in the fifth part, I close this book with a personal view of four important 
qualities that a good researcher must possess. Unlike the previous parts, it is not 
based on science at all, but simply a reflection of how I look at my wonderful job as 
a researcher. 

While I fully realise that this book is not the first, and probably not the last, 
written work on the relevance of data for decision-making in project management, 
it is primarily intended to explore these two different worlds (theoretical academia 
and professional business) and bring them closer together so that projects under 
risk can be better managed. This book therefore aims to shed some light on the 
often confusing relationship between academics and professionals when it comes to 
generating project data, implementing optimisation algorithms, and using statistical 
analysis to improve the decision-making process in project scheduling, risk analysis, 
and project control. 

Welcome to a data-driven journey through the world of project management. 

Lisbon, Portugal Mario Vanhoucke 
March 2023 
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Part I 
Data-Driven Project Management 

Without data, 
you are just another project manager with an opinion.



Chapter 1 
About This Book 

This introductory chapter is meant to explain why I have written a book about the 
gap between theory and practice in data-driven project management. It explains why 
I have written more than 300 pages on the use of algorithms and human intuition 
for decision making in project management and on the importance of project data 
for scientific research (the academic world) and in the business (the professional 
world). In this introduction, I want to convince my readers that there is a strong 
need for a book on project data and that the book’s theme is interesting for both the 
academic and the professional world. I will give a concise summary of the topics 
that will be discussed in the upcoming chapters of this book and explain why the 
chapters are divided into four different parts. It is important to know that I wrote 
every chapter from my own personal perspective, without having any ambition to 
give a full overview of the existing work published in the literature. Instead, I will 
take the readers on my personal journey in the research conducted over the last two 
decades, and while showing them most of the key findings of my research, I will 
also have them meet my key team members. Let me start at the beginning of my 
research career in project management and tell how my work has resulted in the 
decision to write a book about the theory/practice gap when using project data. 

1.1 Theory and Practice 

My research interest in data-driven project management started in 1996, when I 
just graduated from the University of Leuven (Belgium) as a Master in Business 
Engineering and decided to start an academic career as a PhD student in Operations 
Management. When I look back, I do not know whether this choice was a deliberate 
move into academia. I think it was nothing more than an obvious continuation of 
my interest in algorithms and programming that I developed during my Master 
Thesis, and it felt right to stay in this challenging domain for a while. In search 
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for a relevant PhD topic to further develop my interest in algorithms, I (randomly) 
chose the topic of project scheduling, which gave me the chance to become part of 
an excellent team of researchers with an unbelievable experience and amazing track 
record in this fascinating field. And so I became, without real ambition or specific 
goal, an academic researcher in data-driven project management, and up to today, 
I am glad and passionate about this research topic. As said, entering academia was 
not a carefully taken choice, and I even had no particular interest (no knowledge nor 
experience) in Project Management. It was the interest in computer algorithms and 
the passion for C++ programming that accidentally brought me to the exciting job 
of academic research in project management. I guess life is very different from a 
project, as it just comes as it goes, without having everything carefully planned. As 
far as I can predict my own future, I think (and hope) that I will stay in academia for 
the rest of my professional life, as I simply love this job too much to consider any 
significant change. Of course, many parts of the job have changed along the years, 
and also my research focus gradually shifted from a purely computer science focal 
point (using algorithms and data analysis) to a more management-oriented approach 
(searching for relevance and impact in reality). Today, I consider myself more 
of a project management researcher who only relies on computer algorithms and 
statistical data tools as supportive methodologies to improve decisions for projects, 
instead of a computer scientist with an interest in algorithms and software tools. 
Despite these gradual changes, I have never left my first research theme, and my 
passion for coding algorithms for project scheduling problems still resonates in 
many of my research endeavours, most notably in the work of many of my PhD 
students for whom algorithms and scheduling problems are the only things that 
matter. You never forget your first love. 

After my amazing time as a doctoral student,1 I wanted to stay in academia and 
was looking for a job as a young professor. A few months after my graduation, 
I had the chance to join Vlerick Business School (Belgium) as –at that time– the 
youngest professor of the school, and I chose to combine this appointment with a 
part-time assignment at Ghent University (Belgium). Almost ten years later, I joined 
the engineering department of University College London (UK), and five years later, 
I switched to the UCL School of Management, and I have worked at all those places 
up to today. The combination between being a university professor and a professor 
at two business schools has always been attractive to me since both institutes have 
a somewhat different way of teaching, doing their research and approaching their 
(theoretical and practical) problems. Thanks to this mixed appointment so early in 
my career, I constantly had (and still have) to balance between the university goals 
and the business schools’ ambitions, and although they are fundamentally not very 
different, I quickly learned that there is a sort of a gap, maybe a tension, between

1 When I recruit young PhD students, I honestly tell them that my PhD period was the best period 
(1996–2001) of my professional life. During interviews, I sometimes consider taking my electric 
guitar to sing the song “Summer of 96” (not 69!) and convince them to join my team, but so far, I 
never did. 
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the ambitions of the two institutes. While the academic research at the university 
could consist of any possible theme, I felt the pressure of the business schools 
to provide practical relevance and impact on society and business. I was not only 
forced to critically look at the relevance of my theoretical research for practice, 
but I also realised that practical relevance can only be reached when a profound 
underlying theory and sound methodology are used. The continuous interaction 
between the theoretical approach of universities and the practical orientation of 
business schools has been a life-changing experience which has had a significant 
impact on my research agenda in the past decades. Today, I look at academic 
research as a careful walk on the bridge between theory and practice. After all 
those years, it still feels like walking on eggshells at times, trying to satisfy the 
ambitions of both stakeholders (“researchers want new theories and publications, 
and do not care about the real world” while “professionals have no particular 
interest in academia and want practical results”) and aiming at bringing these two 
separate worlds closer together. This dialogue between these two worlds is the story 
of this book in which research meets practice. 

Thanks to the experiences and lessons learned as a young professor at the dawn 
of my career, I knew I had to expand my research horizon beyond my favourite 
project scheduling theme. Around the year 2004, I started an intense but fruitful 
collaboration with some prominent project management professionals in Belgium 
that pulled me out of my comfort zone of computer algorithms and C.++ coding. 
The goal was to extend my restricted focus of project scheduling to a broader theme, 
including risk management and project control. In my first research project with a 
professional project manager (Stephan Vandevoorde), the goal was to bring clarity 
in the often confusing state-of-the-art knowledge on Earned Value Management 
(EVM) and to compare and validate the existing methodologies using sound and 
proven principles from the literature. It resulted in the comparison article published 
in 2006 entitled “A comparison of different project duration forecasting methods 
using earned value metrics” (Vandevoorde and Vanhoucke, 2006).2 This work 
received an unexpectedly positive attention, not only from academic researchers 
but also mainly from professional project managers, and it was the first time that 
I realised that my research could be interesting to people outside academia. It 
was an amazing sensation I had never experienced before! Given the interest from 
the professional world, I decided to continue with this new research topic, which 
has eventually resulted in my first book on Earned Value Management entitled 
“Measuring Time” (Vanhoucke, 2010). As if my hunger for attention was not 
satisfied enough, the book was awarded by the renowned International Project 
Management Association (IPMA) in 2008 in Rome (Italy), and suddenly, I was no 
longer an academic with theoretical papers but someone with an interest in research 
with relevance for business. In the years after the award ceremony, everything 
changed for the better. The collaborations between academia and practice became

2 My co-author Stephan Vandevoorde has been a partner and friend in this search to practical 
relevance, and I will come back on our collaboration in Chaps. 3 and 4 of this book. 
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greater and more intense (resulting in periods that I was abroad for the better part 
of the year), I founded my own company OR-AS with my friend and business 
partner, Tom Van Acker, and we worked our way through many interesting projects 
at various companies in Europe. In 2007, we launched our commercial project 
management software tool ProTrack which was an extended version of our project 
management business game PSG that we introduced two years earlier (Vanhoucke 
et al., 2005). With little to no time left for academic research, I even doubted for a 
moment to leave the academic world, but I am glad I never did. The icing on the cake 
of this intense and sometimes crazy journey to practical relevance was the founding 
of the EVM Europe organisation (2009–2013), in which we brought together 
researchers and practitioners with five conferences in five consecutive years. After 
these conferences, I was somewhat stuck between academia and practice with no 
clear direction, and I thought it was time to explore other horizons. It eventually 
brought me back to the academic world, and I decided to start a research group of 
young PhD students and reduce the number of company projects to the absolute 
minimum to free enough time to guide my new academic team. Nevertheless, I 
still look back at this crazy period as a time of hard work, many travels, and new 
friendships, some of them discussed in this book. 

Building a new team of young and enthusiastic researchers is not as easy as 
it may sound. First and foremost, I had to rethink my research strategy, since I 
was no longer willing to focus only on project scheduling algorithms. Instead, I 
aimed at working further on the EVM study that attracted so much attention from 
the real world, but this time, I wanted to expand this well-known project control 
method to a new and better methodology.3 With this ambition in mind, I submitted 
a challenging research proposal, known as a Concerted Research Action, with the 
title “Searching for static and dynamic project drivers to predict and control the 
impact of management/contingency reserves on a project’s success”. With a total 
requested budget of e1.3 million and the promise of writing 8 doctoral theses in the 
next 6 years, it was the most ambitious project so far in my life. e1.3 million might 
sound like a reasonable amount of money to a professional, but for an academic 
researcher, it is similar to winning the jackpot for life. The research proposal passed 
the first phase and so I was admitted for an oral defence to a board of national and 
internationally recognised researchers, but – to my disappointment – the proposal 
was rejected. The reviewers’ comments were generally positive, but the mixed 
review reports indicated that some jury members considered the proposal as too 
academic (not enough practical relevance), while other said it was too practical (no 
sound academic methodology) and so I realised that I really was stuck in the middle 
of these two worlds, with no clear identity or direction anymore. After a deeper 
dive into the detailed comments of the reviewers, I noted that the criticised lack 
of a strong academic foundation that resulted in the rejection of the proposal was 
mainly due to the way I proposed to use project data in my research experiments.

3 This academic mission of translating existing methods into totally new and improved methodolo-
gies is the topic of Part II of this book. 
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Table 1.1 Stereotypes: 
academics versus 
professionals 

Academics Professionals 

Theory Practice 

Research Application 

University Business 

Artificial Empirical 

Ivory tower Real world 

Nerdy Cool 

Smart Handy 

. . . . . .  

As a matter of fact, I defended the use of a mix of artificial and empirical project 
data for all my computational experiments, but some reviewers felt I had to choose. 
The use of empirical data, some reviewers argued, would have no merit since 
any empirical dataset would be too small and, therefore, could never be used to 
generalise any result of computational experiments. Using empirical case study data, 
they continued, could be good for learning case-specific features of projects that 
hold only for the small set of data but would never provide the general insights 
necessary in academic studies. Other jury members, however, stated exactly the 
opposite and argued that the use of artificial data would cause major problems. They 
argued that artificial data is often generated in a random way and would therefore 
never fully capture the real characteristics that typify projects in real life. Hence, 
they argued that their use would make the results too theoretical, i.e., too far away 
from any practical relevance. Apparently, even the review team for an academic 
research proposal consisted of people of both worlds (academia and practice), each 
with their own desires and ideas of carrying out sound academic research. The gap 
between academia and practice was now a choice between artificial data generation 
and the collection of empirical projects. The reviews stated that I had to choose. 

However, I chose not to choose. Instead, I decided to fight and accept the struggle 
between academia and practice by considering the notorious gap between these 
two worlds as a challenge and strength of my research proposal, rather than an 
unavoidable downside of my job. A year after the failure, I completely redesigned 
the research strategy of my proposal, aiming to build bridges between academia 
and professionals by fully exploiting the gap between academia and practice (which 
often are referred to as stereotypes, as shown in Table 1.1). I submitted the updated 
proposal –still suggesting a well-balanced mix between artificial and empirical 
project data–4 and after some favourable review comments (for the second year in a 
row) and a positive oral defence to the board, the jury decided to grant the funding. 
I am grateful, up to today, to many colleagues at Ghent University who supported 
my proposal in different ways and helped me to get this amazingly high amount of 
money to carry out research between 2012 and 2020. This research project has been

4 The use of both artificial and empirical project data for academic research is the topic of Part IV 
of this book. 
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the start of the growth of my team, and without this funding, I would never have been 
able to do what I have done so far in my career. Today, I have the privilege to work 
with a fantastic team of people at my Operations Research and Scheduling (OR&S) 
group, including many young and ambitious PhD students from Belgium, China, 
Iran, and Turkey, two post-doctoral students helping me with the guidance of these 
students (Annelies Martens and Tom Servranckx), and a colleague professor and 
friend from Portugal (José Coelho).5 While writing this book, Annelies decided to 
explore other places after years of research, so I now continue with great enthusiasm 
with Tom as my right hand and partner in research crime and José as my research 
colleague whom I regularly visit when I need sun, light, and pastéis de nata. The 
results of this new funding were impressive. Twelve years after the first IPMA 
award, I was granted a second IPMA Research Award: Outstanding Contribution 
award for the research “Data-driven project management: Research by and for 
academics, students, and practitioners” by the International Project Management 
Association in Berlin (Germany). This award was very special, not only because it 
was given in the middle of the COVID-19 crisis (some good news in-between the 
continuous stream of negative news), but especially because it was the result of team 
work with Gaëtane Beernaert, Jordy Batselier, Annelies Martens, Tom Servranckx, 
and José Coelho (all names will appear in later chapters of this book). This book 
gives a summary of this awarded research and tells the story of my amazing team. 

1.2 Data and People 

Working at an academic institute is more than carrying out research, and teaching 
is one of the tasks I enjoy the most. I have never been a person who could 
teach a course module based on a student handbook written by someone else. I 
have to experience everything myself before I can talk about it, and carrying out 
research and working in companies as a consultant helped me a lot in defining 
my teaching agenda. Thanks to the mixed appointments, I had the privilege to 
teach project management and decision making course modules at universities 
(master students), business schools (MBA students), and commercial companies 
(professionals). Depending on the audience, I had (and still have) to balance 
between focusing on data-driven skills (using algorithms and statistical tools) and 
people skills (how to work in a project team). In the beginning of my (teaching) 
career, most courses focused on the people side of project management. It was a time 
in which most professionals considered project management primarily as a job of 
managing people, and I had a hard time explaining why scheduling algorithms and 
statistical risk analyses might be equally important for managing projects. Today, 
things have changed a lot, and most students no longer doubt about the relevance of 
a data-driven view on managing and controlling projects.

5 If you want to meet these fantastic people, go to Appendix A. 
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It is true, of course, that you cannot become an excellent project manager without 
the appropriate people skills, but recent research has shown that the decision making 
by people does not exclude the necessity of algorithms, statistics, and a sound data 
analysis. People have experience, have their own way of working, are often very 
talented and creative, and solve problems in ways no model can do. But people 
are strange too, often have their own agenda, their biases, the averseness for risk, 
and so many other (undesirable) traits that might have a (negative) impact on the 
decision making process for projects. People do not perform well under stress, 
often envy each other, and mostly avoid any possible change. So why would project 
management course modules focus only on people skills when it is known that they 
suffer from so many weaknesses? 

Data and algorithms obviously suffer less from these inherent people traits, 
and statistical analyses are less prone to subjectivity and misunderstanding. While 
personal opinions might be biased or even bluntly wrong, numbers never lie and 
might therefore be a useful secondary source to project managers for taking better 
decisions for their projects. Thanks to the increasing power of computer algorithms 
and statistical methodologies, and with the help of ever-faster software systems, 
many of us have now easy access to more and better data analysis tools than ever 
before. With the increasing availability of data-driven tools and methodologies, 
the growing importance of a thorough analysis of such project data has redefined 
many traditional project management courses into data-driven project management 
lectures. In my course modules, I focus on how to rely on project key data to 
make better decisions for projects in progress using both computer algorithms and 
statistical analyses and the experience and creativity of people. Project management 
no longer is a discipline defined solely by people skills but now requires the 
integration of data and experience in an integrated decision making methodology. I 
always start any project management course module with the words of the American 
engineer and professor William Edwards Deming who expressed the importance of 
data for business: 

Without data you are just another person with an opinion. 

The focus of this book will lie on the data-driven skills of project management 
and more specifically on the correct and sound analysis of data using algorithms 
and statistics to improve the decision making process for projects. Although this 
is not a book about the people skills necessary for managing projects, I will often 
refer to simple rules of thumb used by people to manage projects. The underlying 
assumption of this book is that most of, if not all, the methodologies and algorithms 
discussed in this book should not be used as a stand-alone decision making method, 
but rather as a decision support system to objectify opinions by people (project 
managers) before a final decision can and must be made. 

I will show at various places in this book that the importance of project data, 
algorithms, and statistics is often not well understood. Much of this discussion dates 
back to the previously discussed gap between the use of artificial data (by academic 
researchers) and empirical data (by professionals) as was noted in the review reports 
of my big research proposal and perfectly summarised in Fig. 1.1. It is known that
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Fig. 1.1 The gap between theory and practice (managing projects) 

academics primarily develop new (project scheduling) algorithms as a way to get 
publications in academic journals. They aim at extending the current state-of-the-
art knowledge with more and richer features, but due to the pressure of getting the 
work published, these extensions mostly contain new elements that seldom result 
in major improvements to solve real project problems. Many project management 
professionals (PMPs) are not able, nor willing, to digest the overwhelming overload 
of new findings in the academic literature and criticise them (often rightly so) 
for being too complex, too restrictive, and too difficult to be used in a practical 
setting. Much to the irritation of the professionals, the academic world counters this 
criticism by stating that business people are not open for new advanced algorithms 
and criticise the current software tools for being too generic and not project-
specific. The academics often argue (also rightly so) that every project is unique and, 
therefore, requires a tailor-made approach consisting of new algorithms or improved 
statistical analyses instead of a generic approach. Professionals then reply that these 
project-specific academic algorithms are only tested on artificial data, with no proof 
that they could also perform well on their (empirical) project data. This never-ending 
discussion between academia and business results in misunderstandings between 
researchers and practitioners in the requirements of proper project data and the 
necessary algorithms to analyse these project data. It eventually creates a tension 
between the two worlds, resulting into a growing gap and suboptimal knowledge 
sharing between academia and practice. I believe it is time to end discussions and 
talk to each other, and I hope this book will be a helpful guidance to join forces. 

1.3 Book Outline 

Writing a book is a very personal and intense process in which a thousand decisions 
about what to include and what not have to be made. There is so much to tell that 
I continuously change my mind about the book content, I keep thinking about the 
best book structure and specific writing style, and after each draft, I doubt whether 
I took the best decision. As a matter of fact, I have a love and hate relationship with
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the process of writing,6 and I always swear that it is going to be my last book ever. I 
swore that this book too would be my last one, but I do not doubt that I will change 
my mind, one day, and start all over again. For this book, I have chosen not to go too 
deep into the technical details, nor to give the readers a full overview of the existing 
project management methods in the literature. Instead, this book must be considered 
as a personal reflection of the work I have done with my research team in the past 
decades. You will see many references to my own research work and only a few 
references to other people’s work. This is a deliberate choice, not to express that 
other research is not relevant or important, but rather to tell my own personal story 
of research in data-driven project management. While I will mainly focus on results 
of research studies, I will also add some personal statements, use quotes from books 
or websites, and refer to people I have met throughout the years. This book not only 
tells the data-driven project management story of the OR&S group through my own 
eyes but also serves as a way of thanking everybody who helped me in this amazing 
journey to better understand project management. It is organised into four different 
parts, and a concise overview is given along the following paragraphs. 

In Part I of this book, a general introduction and book outline are given. It 
consists of the introductory Chap. 1 you are reading right now, followed by two 
other chapters. In Chap. 2, I will give a concise overview of other books I have 
written in the past about the same project management topic, albeit from a totally 
different perspective. Furthermore, Chap. 3 describes the three components of data-
driven project management, which will be referred to as project scheduling, risk 
analysis, and project control and constitute the central theme of all further chapters 
in this book. 

Part II provides a summary of my recent research studies in data-driven project 
management. I called this part “what academics do” since it describes the results of 
research studies from an academic point of view, sometimes inspired by practice, 
but often carried out in complete isolation from the real world. As a matter of 
fact, the research of this part started with a collaboration with some professional 
project managers that were in need of better understanding the existing project 
control methodologies. The positive results of this study quickly became a trigger 
for wanting more and resulted in many follow-up studies that primarily focused 
on getting results published in academic journals. During these studies, I was 
not always interested in developing new practical tools for business, but rather in 
understanding the tools and extending them to make them better. . . significantly 
better. This book part contains three chapters to explain the three important missions 
of academic research. Chapter 4 explains how academic research can bring structure 
into the often confusing literature. More specifically, it shows how the existing 
methods for project control can be compared and benchmarked with computational 
experiments, offering a better understanding of why these methods work well or fail

6 One of the most pleasant side effects of writing a book is that it forces you to bring the different 
pieces of research, published in separate papers, together in one manuscript such that you suddenly 
see the bigger picture. 
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miserably. Chapter 5 describes how such benchmarking study allows researchers 
to extend and modify the existing methods to new and better methodologies. It 
will be shown that proposing such improvements belongs to the core of academic 
research, regardless of whether or not these extensions have practical value. Finally, 
Chap. 6 describes how and why academic researchers sometimes go completely 
crazy in their search for improvements. Having the time and freedom to explore, 
they sometimes come up with totally new ideas that are far beyond the current needs 
of practice. It shows that academic research does not always have to lead to practical 
relevance and illustrates that topics that are not important now can become a crucial 
tool in tomorrow’s business world. Despite the academic nature of the research of 
these studies, they have become the foundation of Part III of this book in which I 
look at the research studies from a practical point of view. 

Part III elaborates on the research from a practical perspective. I called this 
part “what professionals want” since much of the research discussed in this part 
is inspired by numerous close contacts I had with professional project managers. 
Sometimes without realising, these professionals have profoundly defined and even 
completely changed my research agenda. Without these business contacts, Part III 
would have been much shorter, totally different, or even completely void. Now, 
it consists of four chapters. Chapter 7 explains how the theoretical results of the 
previous studies in Part II can be used to make project managers more efficient. 
The chapter compares two alternative ways of controlling projects (bottom-up 
and top-down control) and shows how they can be used by three different types 
of project managers. The chapter shows some empirical results and proposes an 
integrated project management and control approach as a best practice. Chapter 8 
goes deeper into the details of project control and compares three fundamentally 
different project control models, each analysing project data in a totally different 
way. The chapter ranks these three models from easy to hard and argues that the 
analytical project control method reaches almost the same results as the advanced 
statistical project control models but requires much less effort to implement. Finally, 
Chap. 9 introduces the readers to project forecasting and discusses the well-known 
reference class forecasting model. Based on three research studies, the chapter 
shows that data from historical projects is key to make better decisions for future 
projects in progress. 

Since the chapters of the previous Parts II and III will clearly show that the 
availability of project data is key for academic research and practical relevance, 
Part IV contains six chapters about project data. In this part “about project data”, 
it will be shown that data analysis should be treated with care, as these project 
data are not always clearly defined, readily available or easy to use. Chapter 10 
gives a brief summary of the current state in using project data by academics and 
professionals and introduces the readers to two types of project data. A first type, 
discussed in Chap. 11, consists of artificial project data. It will be shown that the 
generation and analysis of artificial projects is not as easy as it seems and requires a 
good understanding and knowledge of the best practices used in academic research. 
It will be shown that my team has proposed various artificial project databases, 
each serving a different (academic) research goal. Chapter 12 makes use of the
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artificial projects of the previous chapter and explains how additional data can be 
generated to imitate project progress. More specifically, the chapter presents three 
models to generate time and cost deviations from the project baseline schedule to 
imitate reality. A second type of project data is discussed in Chap. 13, which gives an 
overview of how my team collected and analysed a set of empirical projects in a time 
span of more than ten years. Chapter 14 presents a so-called data calibration method 
to define realistic probability distributions for activity durations and costs using 
empirical project data in order to use the progress models of Chap. 12 in a realistic 
setting. Finally, Chap. 15 serves as a summary chapter to show the different project 
datasets made available by my research team for research on project scheduling, risk 
analysis, and project control. 

In Chap. 16 of Part V, I conclude this book by giving my (humble) opinion on 
the necessary traits an academic needs to have to become a good researcher. Finally, 
technical details and background information can be found in the Appendix at the 
end of this book. 

1.4 Keep Reading 

Before I introduce you to the fascinating world of data-driven project management 
in Chap. 3, I want to invite you to the personal stories told in my previous 
books. More precisely, I will give an overview of my previous books on project 
management and decision making in Chap. 2. I will provide a brief summary of 
each book’s content (hoping that you are triggered for wanting to read more) and 
concisely tell you why I wrote each book. You can easily skip this chapter and 
immediately jump to Chap. 3 that outlines the main theme of this book used in all 
other chapters. 
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Chapter 2 
Each Book Tells a Story 

I was once asked by a colleague why I spend so much of my precious time on 
writing books on a topic that only interests a tiny little fraction of the people. “You 
will never write a best-seller”, he argued, not understanding that the joy of academic 
research lies in the process of experimenting, trying and failing, and writing your 
findings as if they will change the world, even if they do not. I guess what he really 
meant was that I should realise that my enthusiasm in my research topic (data-
driven project management) is not in line with the enthusiasm of most people, and 
therefore, sacrificing weekends and evenings on such a big endeavour with only a 
little amount of recognition is –according to my colleague– a total waste of time. 

I disagree. Of course, I know that there is not a huge Harry Potter-sized audience 
out there waiting for my next book, queuing in long lines the day before its release at 
their favourite book store. Writing books about data-driven project management is 
indeed not for the masses, but I can pretend it is. As a matter of fact, each book 
that I write tells a story for a specific audience, and even if only a few people 
can benefit from the new story, I feel the urge to tell it. Some books target my 
students and are used as supportive material for my lectures at the universities, 
business schools, and companies. Other books aim at summarising my research in 
an understandable language and target researchers and young doctoral students. The 
data-driven project management story can be told in various ways, and each book 
is written from the belief that its specific content could not be found in any other 
book available in the literature. And so the answer to my colleague’s question is that 
I write books because the American author, and Nobel Prize winner (in Literature) 
professor Toni Morrison, gave me the following reason to do so: 

If there’s a book that you want to read, but it hasn’t been written yet, then you must write it. 

As I already said in the previous chapter, the truth is that I have a love-and-
hate relationship with the act of writing. At times, I enjoy it a lot and consider it 
as the best part of the academic job, but at other times, I swear to never write a 
single chapter again. But most importantly, I truly think that I do not have much of a 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Vanhoucke, The Illusion of Control, Management for Professionals, 
https://doi.org/10.1007/978-3-031-31785-9_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31785-9protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2
https://doi.org/10.1007/978-3-031-31785-9_2


16 2 Each Book Tells a Story

choice, as writing is in my nature since I was a kid, and I am glad that I have found 
a job with an audience to which I have something to tell. 

Publishing books with your name on them has one other positive side effect: my 
books have brought me to places I would otherwise never have visited, and I have 
met people who first were work partners and later became (some of them) close 
friends. I have seen various places in China due to one of my most technical books, 
I travelled around in Brazil promoting a book for managers, and I have a very close 
relation with people from Lisbon thanks to research summaries in one of my other 
books. As a kid, I dreamt of becoming a rock star1 to travel around with a couple 
of friends and make music to perform on stage, but that dream (that I still have) 
never came true. Luckily, my books are the second best alternative to go on tour and 
perform (in the classroom, not on a stage). All of my books gave me the chance of 
wandering around, and I feel very much like the American novelist Roman Payne 
who wrote in his book “The Wanderer”: 

Just as a painter paints, 
and a ponderer ponders, 
a writer writes, 
and a wanderer wanders. 

I have no choice. I want to wander and so I have to write books. 

2.1 Bookstore 

Most of my Project Management books have been published by Springer. I had the 
privilege to work in close contact with Christian Rauscher. and then senior editor 
of Business, Operations Research & Information Systems at Springer Heidelberg, 
Germany. We had numerous interesting and joyful conversations during workshops 
in Europe and the USA about travelling, and we endlessly talked about our shared 
love for Portugal and – of course – about books. In 2021, Christian brought me 
in contact with Jialin Yan who took over Christian’s work for this current book. 
I am grateful to both Christian and Jialin for their support and suggestions for 
improvements. In this chapter, I will briefly discuss the underlying story of each 
book, why it was written, and the places it reminds me of. 

Measuring Time (2010) The book “Measuring Time: Improving Project Perfor-
mance Using Earned Value Management” is my first book ever, and it is the result 
of a very intense and inspiring research stay in London (UK). I still remember most 
of the places where I wrote the different chapters, and I keep good memories of the 
times I was away from my country (Belgium) trying to summarise my ideas into a

1 All of my friends wanted to become famous football players, but I have never been as interested 
in sports as they were and so travelling in a bus and performing on stage bringing music was my 
ultimate dream. 
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single manuscript. At that time, I was working with a colleague from London School 
of Economics on a research paper in the field of Management Accounting, spending 
hours in small, dark, and cheap hotel rooms in London, programming a simulation 
algorithm that was eventually published in two flagship journals (Management 
Science and The Accounting Review). Despite the nice collaboration with my co-
author and the challenging nature of management accounting research, I knew my 
(research) heart was somewhere else. As from the beginning of my career, I had 
worked on the project scheduling research theme, and I realised during these lonely 
rainy London evenings that this would always be the main subject of my interest. 

So I decided to split my London time in half, spending 50% of my time to the 
simulation experiments for the management accounting research and the other 50% 
to applying similar simulation models for project management (which was, without 
even realising it, the start of writing my first book). I was lucky to meet Stephan 
Vandevoorde during that period, who was (and still is) a project management 
professional with an engineering background and an interest in applying academic 
research into practical applications. He was particularly interested in the well-known 
methodology for project control called Earned Value Management (EVM), which 
consists of a set of metrics to measure the performance of projects in progress. While 
the methodology was, and still is, widely used by professional project managers 
(like Stephan), little to nothing was done in the academic world to investigate why it 
works for some projects and why if fails for others. He was interested to find out and 
suggested to work together on this fascinating topic. Suddenly, the simulation runs 
on artificial project data in cheap London hotel rooms changed into a collaboration 
with a professional project manager with access to real project data and so I accepted 
his offer with pleasure. 

I stayed in London for some extra months (still cheap hotels), trying to integrate 
risk analysis (understanding the risk of projects in progress) and project control 
(managing the project risk and take actions when problems occur) into my favourite 
project scheduling research theme. The insights that we got were that the use of 
algorithms (to construct a project schedule) and Monte Carlo simulations (to analyse 
the project risk) could be combined with project control methodologies (such as 
Earned Value Management), and this baseline schedule – risk analysis – project 
control focus became the foundation of all my research endeavours that followed 
afterwards. Accepting Stephan’s offer was the best decision in my academic career. 

I will mention the work with Stephan in several chapters of this current book. As 
a matter of fact, I already mentioned this in the previous chapter, as in 2006, Stephan 
and I published our first paper in the International Journal of Project Management 
(Vandevoorde and Vanhoucke, 2006), which has become our most referenced 
article. Our second paper consists of the simulation study carried out in London and 
compares three EVM models for project duration forecasting which will be outlined 
later in Chap. 4. This study was published in the Journal of Operational Research 
Society in 2007 (Vanhoucke and Vandevoorde, 2007). One year later, I decided to 
submit this and much more research work to the International Project Management 
Association for a research award, and they granted me the IPMA Research Award 
in Rome (Italy). When I had to present my research in Rome to a room full of
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professional project managers, I suddenly realised that this research had practical 
relevance, and so, while I was talking to that specific audience, I decided to write 
my very first book with a summary of all the work done. The book “Measuring 
Time” was published two years later by Springer (2010), and up to today, I believe 
much of the chapters are still highly relevant, as they are used as the foundation of 
the chapters of the current book. 

I tell this story to show that my initial search for practical relevance that initially 
brought me to management accounting research and then pushed me back to project 
management has been a search full of coincidences and random choices. I had no 
intention whatsoever to become a writer, but it just happened as a side effect of the 
intense London period. I remember the writing period as regular travels between 
Brussels and London at late hours (cheaper tickets) and dark and uncomfortable 
London hotel rooms, having discussions with people from everywhere in the world, 
and I somehow knew that it would define the future of my career. Above anything 
else, I remember it as a period where Stephan and I were looking enthusiastically 
to some topics to investigate, in which we turned from colleagues to friends for life. 
No wonder I will cherish this book forever. 

For those who are interested in reading the book, I have to warn them that it 
is not written for dummies. Instead, the readers are assumed to have a (relatively) 
strong background in project scheduling and control, with an affinity for algorithms, 
statistical data analysis, and Monte Carlo simulations. It is a book written for 
researchers with an interest in technical details, and it contains so many detailed 
descriptions of project forecasting formulas, project data generation methods, and 
simulation algorithms, which I do not advise to read it on a Sunday morning. Despite 
that, I still believe that – after all these years – the book is still worth reading if you 
like a challenge, and I am still proud of it. 

Dynamic Scheduling (2013, 2nd Edition) Unlike my other books, there is no 
particular time and place I can recall for writing my second book. For the book 
titled “Project Management with Dynamic Scheduling: Baseline Scheduling, Risk 
Analysis and Project Control”, I had a totally different audience in mind, and it 
took more than 10 years to finish it. After my PhD graduation, I had the privilege 
to immediately start teaching a Project Management course module at Ghent 
University (Belgium) for Business Engineering and Civil Engineering students. 
Initially, I had not much material of my own, and I had to fall back on short articles 
and easy-to-read academic papers as learning material for my students. As years 
passed by, I adapted and improved some of these articles and then wrote my own 
short articles and shared them with my students, until everything became a mess 
without much structure. I knew I needed a student handbook. 

I searched on the Internet for a good book, and despite the plenty of excellent 
books on Project Management, no book covered the topics the way I discussed 
them in my lectures. I decided to write my own student handbook focusing on the
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integration of scheduling, risk, and control.2 I referred to this integration as dynamic 
scheduling which I borrowed from a book with the same title by Uyttewaal (2005). 
Up to today, this book is still used as optional background material for my project 
management lectures, and I have the (nice) feeling that my students are happy with 
it. 

Ten years to write a book is ridiculously long, but it has been a gradual process 
with no apparent ambition but with a lot of implicit feedback from my students. The 
book started out as a collection of small articles for my students that gradually grew 
into longer chapters based on their comments and feedback. I made references to 
my course slides, augmented with exercises and countless examples, until I realised 
I was working on a book. The day I finally decided to put everything I have collected 
over the years in one book was when I saw a group of students in Lisbon (Portugal) 
reading some of these articles during one of my course modules. When I asked them 
where they had found this material, they told me that some Belgian students had sent 
it to them. Not realising that students from two countries interacted for my course 
modules, it was a great feeling to know that the course material was relevant to 
people with different backgrounds and aspirations. The first version of the book was 
published in 2012, and the updated second version was published in 2013, mainly 
correcting some errors and concerns of my students. I owe them a lot. 

Theory Meets Practice (2014) With my two project management books – one for 
researchers and another one for my master students (at the university) – I thought 
that was it. I had nothing more to say, but my MBA students (at the business school) 
thought differently. Any management course module leader has experienced the 
difference between university lecturing and MBA teaching. The (young) university 
students have no experience in management and therefore care more about the 
technical details (which are tested on the exam) and focus less on the practical 
relevance and implementation issues. MBA students are often not very interested in 
the theoretical foundation and underlying assumptions of the project management 
methodologies but are eager to learn how they can implement them for managing 
their own projects. 

I started teaching Project Management course modules at different business 
schools in 2010 (10 years after my first PM lectures at the university), and I quickly 
realised that my previous student handbook (Dynamic Scheduling) was good for 
university students, but not very relevant for people with practical experience and 
an interest in implementing PM methods in practice. Too many technical details and 
too little advice on how to implement them, that is what I thought. But I was wrong. 
As a matter of fact, many of my fantastic MBA students contacted me after my 
lectures with detailed questions about the PMmethodologies. They were working on 
self-made spreadsheets to monitor and follow up their projects, and as they wanted 
to use the course topics for their own projects, they needed more details. They

2 You might recall that this integration comes from the research I have done with Stephan in my 
first book “Measuring Time”. 
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told me that implementing the PM methodologies discussed in class could only 
be correctly implemented in their spreadsheets when they had a detailed knowledge 
about the specific formulas and underlying statistical assumptions. They told me 
that I convinced them during the course module that many of the PM methodologies 
were useful in practice by not focusing on the technical details, which is why they 
now needed these details for their spreadsheets. 

It came to a surprise to me, but although my previous student handbook contained 
the right level of technical details, they wanted more of a stepwise detailed 
description about how to implement these different formulas and methods into a 
spreadsheet to be used for managing real projects. “If we better understand the 
theory”, they argued “we can implement it much easier in our own spreadsheets”. 
And therefore, upon specific request of my MBA students, I decided to write a third 
book, focusing solely on the formulas and technical details, leaving every other topic 
untouched. 

The book does not tell much about the construction of a project baseline schedule 
and relies on the easy critical path method to schedule the project activities. Instead, 
the focus lies on the use of this baseline schedule for performing a schedule risk 
analysis and monitoring the project progress using Earned Value Management. This  
integration of baseline scheduling, risk analysis, and project control is of course 
identical to the theme discussed in my previous books, but this time, I referred 
to it as integrated project management and control to highlight the importance of 
integrating these three components. I used my students’ positive criticism as the 
subtitle of my book, i.e., first the theory and then the practice. 

It took me quite some time to write down all the detailed calculations without any 
error. I made use of three artificial projects with a totally different network structure 
to illustrate how all the calculations should be performed. To avoid errors (I had 
many in the early drafts of the book), I asked help from some of my university 
students at the Engineering Department of University College of London (UK). Our 
Friday afternoon discussions at the UCL Bloomsbury Campus became a weekly 
habit for some months, and I guess that 2010 was the end of a period where pen and 
paper discussions were considered more interesting than Facebook and Instagram 
distractions. I still look back with joy to our coffee breaks (only two pounds for a 
huge cup of delicious coffee) and discussions about every little step of calculating 
activity sensitivity metrics and earned value performance metrics by hand. 

Technical Sourcebook (2016) Input from my students has always been an impor-
tant inspiration for my books and so it was for this fourth book, albeit in a somewhat 
different way. This time, the student input was not coming from my students in the 
classroom, but rather from anonymous people (students? professionals? lecturers?) 
everywhere in the world. It all started with the increasing success of the online 
learning platform PM Knowledge Center (www.pmknowledgecenter.com) that I 
developed for my Project Management course modules. The website contains a 
series of small articles on project scheduling, risk analysis, and project control, 
which were massively visited by my students, sometimes reaching over 10,000 visits 
per month. I wondered where all these visitors came from (only from my students?)

www.pmknowledgecenter.com
www.pmknowledgecenter.com
www.pmknowledgecenter.com
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and so I decided to put my email address on the website, which suddenly resulted 
in an explosion of questions, comments, and remarks from everywhere. Among the 
many interesting comments, the one that kept coming back was the request to add 
sample questions to test the student’s knowledge and understanding for each article. 
That was easier said than done, but it was the trigger for another book. 

Each chapter of my fourth book consists of a set of short stand-alone articles, 
containing a summary of maximum three pages about one little relevant topic. 
Each article is linked with other articles of the book, such that it becomes an 
integrated piece of work on project scheduling, risk analysis, and project control. 
All articles are highly technical, contain lots of details to improve understanding, 
and are accompanied by a set of questions (open questions or multiple choice) and 
answers (do not look at them, try to solve the questions first). I have no idea whether 
this book is used a lot. All I know is that I see my own students using these questions 
to test their knowledge about my PM course. On a certain day, I even saw a group of 
students playing a Q&A quiz about project management, and the quiz master used 
the questions of the book to interrogate the student audience. How nice! 

This fourth book called “Integrated Project Management Sourcebook: A Techni-
cal Guide to Project Scheduling, Risk and Control” was the most difficult book to 
write. It took me a lot of effort to structure the book in a good way and to come up 
with questions for each article that can be solved as stand-alone questions without 
the need of having to read the other articles. It is not a book that you will read from 
start till end, but rather a reference book on project scheduling, risk, and control 
that can be used as a reference guide and supportive tool in the classroom. With the 
more than seventy articles and a huge number of short and to-the-point questions and 
exercises, I believe the book can be an interesting source for students (and maybe 
professionals) when studying the technical aspects of project management. Despite 
the sometimes frustrating process of finding good questions for each book article, I 
enjoyed the writing process because it was done at my all-time favourite place on 
the Earth. I wrote this book when I lived in Lisbon (Portugal) in 2015, and since I 
had been in love with Portugal’s city of light for decades, this is what I wrote in the 
book’s preface: 

This book has been written in the sunlight of Lisbon during my four months stay at the city 
of light. While artists say that light is all important to creating a masterpiece, I just think 
back on it as a period where I enjoyed writing in my apartment at Beco da Boavista, on the 
terraces of Jardim da Praça Dom Luis I (my favourite one, I called it the red terrace), Praça 
do Comércio and Portas do Sol but also on the Miradouro de Santa Catarina, the city beach 
of Cais do Sodré and of course at Universidade Aberta de Lisboa. In fact, it is my stay at 
the city that has become the masterpiece, while the book is simply the result of hard work 
in complete isolation from all Belgian distractions. 

Business Novel (2018) After four technical books about data-driven project man-
agement, I thought it was time for something else. A year after my summer in 
Lisbon in 2015, I decided to go back in 2016 and stay there for another summer of 
work. This time, I wrote a technical business novel titled “The data-driven project 
manager: A statistical battle against project obstacles”. Portugal’s city of light never
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disappoints. I was completely alone for a month (my wife had to go back for the 
exams of the kids) and so I woke up every morning before sunrise to start writing 
on the amazing sunny terrace of my apartment, with a cup of strong coffee (black, 
no sugar), some good music in the background, and my laptop in front of me. It was 
an amazing feeling not only because I was in the city of my dreams but also it felt 
like a dream coming true, almost being a real writer, inventing a story instead of 
summarising research results from the academic literature. 

I call the book a business novel since it is written as a narrative telling the story 
of a company that wants to install a data-driven methodology for managing its 
projects. It is a story not only about people who struggle with the new concepts but 
also about other people who cannot wait to implement the new system as soon as 
possible. It combines the explanation of the statistical methodologies (i.e., sound 
academic research) with the complexities and difficulties to use them in a real 
business environment (i.e., the practical relevance) in a single story of a fictitious 
company. More specifically, the company called GlobalConstruct is responsible for 
a tennis stadium construction project in Australia. The book tells the story of Emily 
Reed and her colleagues who are in charge of managing this tennis stadium project. 
The CEO of the company, Jacob Mitchell, dreams of planning to install a new data-
driven project management methodology as a decision support tool for all upcoming 
projects. He challenges Emily and her team to start a journey in exploring project 
data to fight against unexpected project obstacles. 

Storytelling may be trendy these days, and I believe that I added my own 
contribution to this emerging trend with this technical novel. While the book is 
not a real novel, it nevertheless tells the story of why some PM methodologies work 
for some projects and why they sometimes miserably fail for other projects. I think 
this storytelling works perfectly in the classroom, since most chapters of this book 
are used in my PM course modules at Vlerick Business School (Belgium) and UCL 
School of Management (UK) in a very intense five-day course, in which the students 
get one case study per day (coming from the book chapters) to solve a project 
management problem. Students have to work in teams on each day’s problem, and 
student evaluations tell me they love it, which illustrates that telling stories helps in 
teaching (complex) topics in a joyful way. Apart from the nice Lisbon experience 
while writing this book, it is also dedicated to Thierry, my wife’s brother, and 
Koen, my best friend, who are unfortunately no longer among us, which is another 
reason why these memories are so special to me. If you have a passion for project 
management, an appetite for decision making, and an affinity with numbers, then I 
invite you to read this book.
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2.2 Only a Click Away 

I feel very fortunate to have found a job I really like. My passion for research and 
love for teaching have brought me at places I have never seen before, and I have met 
students all over the world from which I learned as much as they learned (hopefully) 
from me. I could not choose, if I had to, between my passion for research and 
my love for teaching, and I consider my books as the best alternative to work on 
both (since the content is the result of my research written down for supporting my 
lectures for my students). However, at sometimes, I feel the urge to tell something 
more than just the content I always discuss. Instead, I believe that taking a look 
behind my research and teaching activities and writing about the endless passion I 
feel for my work might also be interesting. That is why I have written some books 
that try to do this, and they are completely free to download from www.or-as.be/ 
books. You can share my passion for Project Management by posting a reference 
on LinkedIn so that other people who follow you can get excited too. These books 
tell the same PM story as my other books, but from a completely different point of 
view, with many more stories and anecdotes than just focusing on the content. 

Work and Passion (2021, 6th Edition) Everybody knows it: life begins at 40! On 
14 March 2013, I introduced the first edition of “The Art of Project Management: 
A Story about Work and Passion” on the OR-AS website.3 On that day, it was my 
40th birthday, and after a keynote lecture at a PM workshop, someone asked why I 
always talk about the PM profession with great passion, without telling why I am so  
passionate about it. “You are so amazingly enthusiastic when you talk about your 
job”, she told me in front of the audience, “that I want to know what keeps driving 
you!” It was undoubtedly not only the strangest but also nicest remark I ever got 
after a presentation and so I decided, then and there, to write a book about it. 

The book contains stories about friendship, crazy ideas, hard work, and research 
results in the field of Project Management. It gives a look into the endeavours done 
in the past and the ideas that will be done in the future. It tells about the products 
and ideas of OR-AS and provides a brief overview of the most important people 
who inspired me in my research, consultancy, and teaching. It tells a story about the 
work, and the passion, that has brought me where I am. It is not a scientific book. 
It is not a managerial book either. It is just a story . . . . about work and passion. I 
regularly update the book when there is something more to tell. The . 6th edition of 
the book is now available for a free download, and I hope I will have to update the 
book for many more years to come.

3 OR-AS is an abbreviation for Operations Research—Application and Solutions and is the name 
of the company that I founded with my best friend Tom Van Acker in 2007. After 10 years of hard 
work and fun, we decided to shut down our activities to explore other, more interesting territories, 
but we stayed best friends until today. 

www.or-as.be/books
www.or-as.be/books
www.or-as.be/books
www.or-as.be/books
www.or-as.be/books
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Decision Making (2017, 2nd Edition) The book “Taking Sound Business Deci-
sions: From Rich Data to Better Solutions” is written for anyone with an interest 
in modelling and decision making. It is (so far) my only book outside the field of 
Project Management, although the topic of decision making is applicable in project 
management too. Since management is all about making sound decisions using a 
mix of data, models, experience, and intuition, this also holds for managing projects. 
I wrote this book especially for my MBA students at Vlerick Business School 
(Belgium) and Peking University (China) where I teach the course Decision Making 
for Business, but I have been using it also in other Operations Research course 
modules at Ghent University (Belgium). The book consists of three parts. The first 
part contains a technical summary of data-driven modelling techniques including 
linear and integer programming, decision tree analysis, and Monte Carlo and 
discrete event simulation. The second part shows some examples of real applications 
from my own consultancy experience to highlight the relevance and usefulness of 
the different modelling techniques. Finally, in a last part, references to non-technical 
and popular science books that inspired me a lot are added, including some of 
my all-time favourite authors such as Nicholas Taleb, Daniel Kahneman, Richard 
Dawkins, Jared Diamond, and manymore. Since I believe that reading books outside 
my expertise makes me richer (not financially of course), I thought that adding them 
could be inspiring for my students. As a matter of fact, I seldom trust anyone who 
does not carry a book, and my book is a call to the younger generation to put the 
smartphone aside at some times and consider reading books again. 

Software (2010) The book “Dynamic Scheduling on your Desktop: Using Pro-
Track 2.0 developed by OR-AS” written with co-author Tom Van Acker is not a book 
with research results on project management, but rather a software tutorial for our 
PM Tool ProTrack that we developed for OR-AS. The original idea of developing 
our own PM software tool dates back to a vacation in France in 2004 where Tom and 
I decided to start our own consultancy company aiming at convincing companies 
that data-driven project management is the way to go. Six years and thousands of 
lines of code later, we introduced ProTrack to the PM world. It has been the start of 
collaborations with different companies in Belgium, the Netherlands, and the UK, 
and despite the joy we had during the most intense period of my career, we also 
realised much later that maintaining a software tool (with requests from customers 
for updates and extensions) is not the path we both strived for. Today, ProTrack is 
no longer available as a commercial software package, but I believe the book is still 
relevant if you want to learn more about data-driven project management. You can 
judge yourself. Just download it.
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2.3 Keep Writing 

Each time I am writing a new book, I go through a process of enthusiasm and apathy. 
During the periods of enthusiasm, I surf on an endless stream of positive thoughts 
and write dozens of pages a day. During the periods of apathy, I throw away most 
of the writings realising that it does not make much sense, and then I lose interest, 
start doubting about the relevance of another book, and decide quitting the whole 
project to spend time on other, more interesting things. These alternating periods of 
creativity and lack of interest keep coming back during the whole writing process, 
and I consider myself lucky to not have a very good memory, since I mostly forget 
the bad periods, and only remember the good periods after the publication of each 
book. As a matter of fact, at the final stage of each book, I promise myself it will 
definitely be the last one, but I keep this promise only until I enter a new enthusiastic 
phase (I have many of these in my job) with too many ideas for another new book. 
And then I decide to write a new book, and the process starts all over again. 

It maybe has something to do with a lack of trust whether the new book will 
be different from my previous books. Indeed, all of my books are about the data-
driven project management topic (a research field I will formally introduce in the 
next chapter) and so they are – in a certain way – somewhat similar (cf. summary 
Fig. 2.1). Despite the same general theme, I still believe that each of my books 
has a specific reason for existing and tackles the topic from a different angle as I 
clarified in this chapter. I have been lucky to get numerous positive comments from 
my readers around the world who told me how some of my books changed their 
(academic) careers. A few people however could not resist to tell me that one book 
or another was not what they expected (and therefore, as they conclude, is not a 
good one). I should be happy with the positive comments and ignore the negative 
ones, but it is not in my nature, or in my capacity, to do so. Whenever I hesitate to 
continue writing, I think of Salman Rushdie’s famous quote and that is what drives 
me to do it anyway. The quote goes as follows: 

A book is a version of the world. 
If you do not like it, ignore it, or offer your own version in return. 

I have read myself many project management books, and while most of them 
were very well written and highly interesting, I could not find a book that discusses 
the project management topic the way it does in this current book. And that is why, 
my dear readers, I offer my version in return.
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Fig. 2.1 My data-driven project management bookstore
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Chapter 3 
The Data-Driven Project Manager 

If you have carefully read the previous chapters, then you should know by now 
that the main theme of this book is referred to as data-driven project management 
(DDPM). It is a general framework that consists of a collection of methodologies 
using project data, computer algorithms, and human intuition to manage and 
control projects under uncertainty. The framework can be used as an integrated 
decision making methodology to monitor the performance of projects in progress 
and to take actions to maximise the chances that they finish on time and within 
budget to successfully deliver them to happy clients. It will be shown that the 
framework consists of three major components, which will be referred to as baseline 
scheduling, schedule risk analysis, and project control. This chapter reviews the 
specific details for each of these components and discusses their place in the DDPM 
framework. This integrated framework is also known in the literature as dynamic 
scheduling or integrated project management and control. 

3.1 Three Components 

Students, professors, and managers are all sensitive to hypes and trends. Hypes come 
in various shapes and colours and often have profound effects, but mostly do not 
stick around very long. They often sound tempting, and if they work elsewhere, it 
is believed that they should work with us too. Some of them come with no good 
reason and go without leaving any trace. Others stay longer, eventually find their 
way in companies and universities all over the world, and fundamentally change the 
way courses are taught and business processes are managed. Some hypes indeed 
become trends and lead to lasting changes. It happens everywhere, and it happened 
in project management too: the data hype became a long-lasting trend. 

In the beginning of my career, I taught a project management course module at 
Ghent University (Belgium) for master students with an engineering background, 
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and I focused very much on a well-designed mix of people skills (the soft skills,1 

20% of the total time spent) and statistics and algorithms (the hard skills, 80% of 
the time spent). While most of my (engineering) students were very enthusiastic 
about this course module and really loved the lectures on statistics and algorithms 
for managing real projects, some of them were somewhat disappointed that I did 
not get deeper into the people skills of project management. I told them that I do 
not know much about leadership, communication, and teamwork topics, and they 
should follow a human resource management course module instead. 

In order to warn my students in advance that the importance of people skills 
does not constitute the main theme of my project management course module, 
I renamed it into “Project Management using Dynamic Scheduling” to highlight 
my focus on data-driven methodologies for management projects. I borrowed the 
term Dynamic Scheduling from a book written by Eric Uyttewaal (Uyttewaal, 2005) 
and used it in the title of my student handbook that I discussed in the previous 
chapter. This course is still running twice a year at two different universities and now 
attracts students from engineering, economics, pharmacy, biology, law, sociology, 
and communication sciences. It is surprising to see that most students – even the 
ones with no strong mathematical background – become very enthusiastic about 
using advanced statistical methodologies in project management, and it makes me 
happy that I can share my knowledge and passion with them, even though I realise 
that most topics are not easy to grasp. An Erasmus student of mine at my Project 
Management course posted a LinkedIn message that I must share, with pride and 
joy, in my book. Beatriz Seabra Pereira attended the course as part of the exchange 
Business Engineering programme at Ghent University (she comes originally from 
the Faculdade de Engenharia da Universidade do Porto (Portugal)) and she wrote: 

The Project Management world has fascinated me for some time and, luckily, this semester 
I had the unique opportunity to attend the Project Management course taught by Professor 
Mario Vanhoucke at Ghent University. It exceeded my expectations! I have learned how to 
apply many useful tools and techniques and, it also gave me a deep understanding of their 
limitations, which allowed me to gain sensitivity and critical spirit to make the best choices 
when managing projects. My interest in this world grew and I must say Professor Mario was 
highly responsible for that. It is rare to find someone so passionate about his work as the 
professor is about his. I am not able to express in words the emotion and the enthusiasm that 
the professor reveals when teaching this course. He engages every student in the audience 
and it’s impossible not to be dazzled by the world of project management! Thank you very 
much, professor! I wish some day I find my passion too! 

I immediately replied “This is why I teach. You’ve made my day!”.

1 On a conference on “skills for managing projects”, some human resource management 
researchers told me that I should never refer to people skills as soft skills. Apparently, for some 
(to me) unknown reason, people skills sound much better than soft skills. I feel a bit guilty, as I 
wrote a paper with co-author Tom Servranckx on people skills in project management in which we 
made a clear distinction between the hard and soft skills (Servranckx and Vanhoucke, 2021). I did 
not know any better. 
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Fig. 3.1 The three components of data-driven project management 

Thanks to the increasing attention on data science, the growing number of 
students, and their positive reviews, I was asked a few years later whether I could 
organise this course as a commercial training at business schools to students with at 
least three years of business experience. I was told not to call the course module 
dynamic scheduling, since no one knows what it really means, even though the 
programme director told me not to change the content (since, she argued, this course 
module focuses on quantitative skills that have become increasingly important in the 
past few years2 ). I teach this course for some years now, and it had different names 
(following the hypes of the times), ranging from “statistics in project management” 
(20 paying students, 1 edition per year) to “project risk management” (30 students, 
2 editions per year), and eventually now called “data-driven project management”, 
resulting in 40 students (maximum allowed) and three editions per year. Hypes and 
trends, they have an impact on how many people I see in my classroom. 

As said earlier, the data-driven project management concept is used to refer to 
the integration of three components necessary to manage projects. Such decision 
making framework involves taking timely decisions when projects in progress are 
in trouble in order to deliver them successfully, within the agreed time and cost, to 
the project client. The three components are known as baseline scheduling, schedule 
risk analysis, and project control as shown in Fig. 3.1. These three components will 
be used as the foundation of the whole book and will therefore be briefly explained 
along the following paragraphs.

2 It is strange how times change. 20 years ago, program directors warned me to spend a little more 
time on people skills, and now, 20 years later, I have to warn my students that algorithms and data 
have no value without the right people skills. The times they are a changin’, Bob Dylan would sing. 
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Baseline scheduling is the act of constructing a timetable that provides start and 
finish times for each activity of the project. The timetable must take the precedence 
relations between activities, the limited availability of resources as well as other 
project specific characteristics (such as activity constraints, due dates, etc.) into 
account and should aim at reaching a certain scheduling objective, such as the 
minimisation of the total project duration, the optimisation of the project cost, or 
any other possible objective. 

Risk analysis refers to the analysis of the strengths and weaknesses of the project 
baseline schedule in order to obtain information about the sensitivity of the project 
for schedule disruptions. It is often referred to as schedule risk analysis to recognise 
that the project baseline schedule is nothing more than a predictive model of the 
project progress assuming that nothing will go wrong. Risk analysis then uses this 
baseline schedule and incorporates possible unexpected events (assuming something 
will go wrong) into the project schedule and analyses the impact of these events on 
the project schedule objectives. 

Project control is the process of monitoring the project progress and measuring 
the (time and cost) performance of the project at different stages during its progress. 
These performance metrics act as signals that should warn the project manager 
whether the project progress is acceptable or not and serve as a trigger for making 
well-informed decisions. More specifically, when the project performance tends to 
go out of control, these warning signals act as triggers for taking corrective actions 
to bring the project in danger back on the right track. 

In the next section, it will be shown that the baseline schedule has a central place 
in the dynamic scheduling framework of Fig. 3.1, as it will act as a point of reference 
for the risk analysis and project control components. 

3.2 A Reference Point 

When I talk to professional project managers about new findings for my favourite 
research theme (“algorithms for project scheduling”), I seldom get the same 
enthusiasm as I got from Beatriz (not even close). Simply ask any professional 
project manager how much time they spend on the construction of a project baseline 
schedule, and you will hear words like “I waste too much time on it” or complaints 
like “the software is crap”. I have had many discussions with project managers 
who said they no longer want to lose time on the construction of a project plan, 
and almost no one is happy with the commercial project scheduling software tools 
they use (mostly MS Project). Professionals often consider the scheduling process 
as a huge waste of time and consider it a necessary evil and/or unrealistic exercise. 
In their mind, project scheduling is nothing but a mandatory, often useless part of 
the project life, and when they argue that “the real project progress will be totally 
different than the plan anyway”, I often fear that the algorithms I develop are totally 
useless in the real world. At least, that was the story before data science became the 
new trend in business.
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Ask these same professionals about the importance of risk analysis and project 
control, and you will hear a totally different story, this time full of enthusiasm and 
an eagerness to learn more. As a professional project manager, you understand 
that unexpected events (i.e., changes compared to the baseline schedule) pop up 
everyday, and some might bring the project in real danger. As they know that risk 
constitutes the biggest threat for the project’s success, they understand that the 
essence of project management is to cope with the continuous stream of changes 
in a timely way such that problems can be solved before they go completely out of 
control. Hence, understanding the main sources of potential risks and monitoring 
and controlling the deviations between the plan and reality define the real job of a 
project manager. 

It is true, of course, that the construction of a baseline schedule can never 
be a goal on itself, but that does not make it useless. The data-driven project 
management framework recognises the limited role of the baseline schedule and 
states that the construction of a baseline schedule does not necessarily have to be 
a perfect prediction of the possible project outcome. Instead, the baseline schedule 
can and should only be used as a well-defined point of reference for understanding 
the impact of sources of risk and monitoring the differences between the schedule 
and the real progress of the project. Consequently, the baseline schedule acts as a  
reference point for the two other components, risk analysis and project control, of  
Fig. 3.1. The need for a reference point is not new and is relevant in any area outside 
project management. In their amazing book “The art of possibility”, Benjamin 
Zander (conductor of the Boston Philharmonic) and co-author Rosamund Stone 
Zander state that the main reason atonal music (music with no home key) never 
developed into a universal art lies in the lack of a sense of destination, as they write 
the following: 

How can you know where you are unless you have a point of reference? 

A project is a journey with the schedule as your roadmap to find your desired 
destination. While the schedule only serves as a prediction for the expected project 
outcome (i.e., the point of reference), the schedule risk analysis and project control 
phases show you how to reach the best possible outcome (i.e., the destination). 
Without the schedule, you will never know where you are (current progress) or 
where you are going to (destination). In a similar often-cited but not-quite-accurate 
quote from Lewis Carroll’s classic children’s tale Alice in Wonderland, the following 
is stated: 

If you don’t know where you are going, any road will take you there. 

The data-driven project management framework does not only tell you where 
you are, or where you are going to, but also defines the best possible path to your 
destination. This path of the project journey can be best illustrated by the so-called 
project life cycle of Fig. 3.2, which displays the different phases of any project from 
start (the conceptual phase) to end (the termination phase, i.e., delivery to the client). 
The figure shows the three components of the proposed framework, classified into
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Fig. 3.2 The project life cycle (static and dynamic phases) 

two different categories (static or dynamic) which will be used in all other chapters 
of this book and briefly explained along the following lines: 

• The static phase is used to refer to all the preparatory work that should be done 
prior to the start of the project. The construction of the baseline schedule is 
considered as static since it must be done before anything else can start. The 
schedule risk analysis is also said to be static, as it consists of a quantitative 
analysis of all possible unexpected events that possibly change the project 
schedule before they actually happen. However, such risk analysis can and should 
be repeated along the project progress and can therefore also be classified as 
dynamic. Nevertheless, since such analysis is always done before the real risk 
happens, it is better to classify it as completely static. 

• The dynamic phase refers to all the work that must be done during the project’s 
progress. Since project control consists of periodic and repetitive measurements 
of the project progress at various stages of completion, it undoubtedly belongs 
to the dynamic phase. This phase is characterised by the repetitive nature of the 
work to be done. Indeed, unlike the construction of the baseline schedule, the 
project control phase is repeated at different stages of the project, each time 
updating the current performance with new information from the real project 
progress. This repetitive nature, as you will find out soon, has a huge impact on 
the analysis of the project data. 

The classification between static and dynamic might look like an artificial and 
purely semantic categorisation without much value, but the contrary is true. Recall 
that the static work consists of the preparatory work, which consists of all the work 
that must be done before the project starts. Experimental analysis has shown that 
this takes sometimes up to 40% of all the project work, and it must therefore 
be done in a very careful and peculiar way, paying attention to all the possible 
details without being afraid of spending some extra time on collecting, updating,
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and analysing additional data before going to the final baseline schedule approval. 
Since the basic schedule only acts as a reference point for the other two components, 
it must be created with care, trying to make it as realistic and accurate as possible. 
After all, once the project has started, no further changes are (ideally) made to 
this preparatory work. The dynamic phase, however, is different and consists of 
the collection, analysis, and interpretation of project data at regular time intervals. 
Thanks to its repetitive nature, scrutinising all the details is less important or simply 
too time-consuming. Besides, pin-pointing every little detail would make project 
control practically impossible since it would distract the project manager from the 
real work to be done (which is drawing conclusions from the project control data 
and take timely actions to solve the problems in the project). While this distinction 
between the desired level of detail in the project data analysis might look obvious, I 
will discuss in other chapters of this book that it has a huge impact on the way the 
project data will be collected, analysed, processed, interpret, and used for making 
decisions. A short sneak preview on the beauty and danger of too many/little details 
is given in the next section. 

3.3 The Beauty of Details 

In academic research, details matter the most. Academic research is working on 
the frontier of knowledge, trying to dive into the tiniest little details of a well-
defined topic and exploring possible areas for improvements, however small they 
are. When the aim is to gradually increase the current state-of-the-art knowledge 
in a stepwise fashion, the accomplishments are hidden in the details. With the 
pressure of publishing in high-ranked journals, academic research has become so 
highly competitive that it requires a certain drive and dedication that you also find 
in professional athletes. The analogy between academic research and sports has been 
made in different articles, and I think the analogy is true because of the importance 
of searching for marginal improvements by paying the utmost attention to all the 
details. The famous American basketball player and coach John Wooden clearly 
expressed that improvements can only be made in small steps, one by one, and that 
they can only be made by focusing on the details: 

It’s the little details that are vital. 
Little things make big things happen. 

For a professional (project) manager, details are often less important since they 
consume too much time or do not add enough value. Not seeing the bigger picture 
might be harmful and eventually might lead to poor decisions, missed opportunities, 
or even catastrophes. Professional project managers are prone to have a clear view 
on the bigger picture and often consider micro-management to have a negative 
connotation, showing too much attention to details, leading to a lack of freedom 
and trust in the workplace. The best managers – so it is often said – are the ones 
who make quick decisions by zooming out from the current situation and take a
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helicopter view on the project. With such a view on the project, these decisions 
are no longer obstructed by small unimportant issues and day-to-day tasks, which 
generally leads to a better problem solving approach. The benefits of setting the 
details apart to focus on the bigger parts is clearly expressed by the American 
biologist Leroy Hood who stated: 

If you just focus on the smallest details, you never get the big picture right. 

Setting the right level of detail clearly depends on the goals one wishes to 
reach, and this is also the case for managing projects with the three components 
of dynamic scheduling. More particularly, the difference between the static phase 
(project preparation) and dynamic phase (project in progress) of the project life 
cycle is defined by the required level of detail during the project analysis. Indeed, 
both phases make use of a different set of project data and require decisions to be 
made for different time horizons and under a different time pressure, and all these 
differences have an impact on the appropriate level of detail. Recall that the static 
phase is used to refer to the work that should be done prior to the start of the project 
and primarily consists of constructing a baseline schedule and analysing its risk. 
Since this preparation is done prior to the project start, it should be done in a careful 
and peculiar way, paying attention to all the possible details. One should not care 
too much about spending some extra time on collecting and updating data since 
the baseline schedule is made as the point of reference for the rest of the project 
phases. There is no real-time pressure, and you better think twice before you get 
your schedule approved. The dynamic phase, on the contrary, works under a much 
shorter time horizon, as it refers to the periodic and repetitive measurement done 
along the project progress. Since this phase consists of the collection, analysis, and 
interpretation of project data at regular intervals, less details are obviously desirable 
compared to the one-time preparatory static phase data analysis. Pin-pointing all 
details as is done in the static phase might be desirable from a theoretical point of 
view (staring at details probably provides more accurate data), but this is practically 
impossible due to the repetitive nature of project control. Often times, the project 
manager must make decisions under time pressure, and focusing on every little 
detail would lead the manager too far from the real task (i.e., making good and 
timely decisions when the project is in trouble). 

The distinction between a high level of detail at the static phase and a much lower 
level at the dynamic phase might seem obvious, but it is quite controversial in the 
professional project management literature. No one argues about the necessity of 
details for the baseline schedule construction, but there is no general agreement on 
the appropriate level of detail for the dynamic project control phase. Some believe 
that project control should focus on some basic project key performance metrics (no 
details), while others think a control system should consist of a detailed schedule 
control system. The Earned Value Management (EVM) methodology is a typical 
project control system that consists of a set of key performance indicators to provide 
project managers with easy-to-understand warning signals to tell whether the project 
is in danger or not. Ideally, this system only gives warning signals when project 
problems arise, which should then trigger the project manager to perform a detailed
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search to identify (and preferably fix) the cause of the problems. Consequently, 
EVM is a system that should be used as a top-down methodology, not spending 
too much time on detailed control to report problems, but going deeper into the 
activity network and resource efficiency details when problems must be solved. 
This top-down approach has been beautifully expressed in a paper published in the 
International Journal of Project Management (Lipke et al., 2009). The authors have 
drawn the attention to the crucial difference between a detailed schedule control and 
a general helicopter view on project management and control in their concluding 
remarks, and they expressed their preference for a less detailed control approach as 
follows: 

Some practitioners of Earned Value Management (i.e., project control) hold a belief 
that project duration forecasting can be made only through the analysis of the network 
schedule. They maintain the understanding and analysis of task precedence and float within 
the schedule cannot be accounted for by an indicator. Detailed schedule analysis is a 
burdensome activity and if performed often can have disrupting effects on the project team. 

Some authors disagree and criticise this general approach as overlooking the 
most crucial details. They argue that the EVM performance measures are true 
indicators for project performance as long as they are used on the activity level (i.e., 
at the detailed schedule level) and not on the higher levels of the so-called Work 
Breakdown Structure (as suggested in the previous quote). For example, Jacob and 
Kane (2004) illustrate this statement using a simple example with two activities, 
leading to wrong and misleading results. They show that a delay in a non-critical 
activity might give a warning signal that the project is in danger, while there is no 
problem at all since the activity only consumes part of its slack. If the performance 
measures are calculated on the project level (instead of on the level of this activity), 
this will lead to a false warning signal and hence possibly wrong corrective actions. 

This example shows a true danger of ignoring details, but I nevertheless tend to 
agree with the former approach that a detailed schedule control (i.e., monitoring 
every single activity of the project) might be a too burdensome task for a project 
manager. I must confess that I might have sowed confusion in my first four books 
(cf. Chap. 2), as all the example calculations on the EVM metrics were done on the 
detailed activity level. However, these books are written for researchers, and I chose 
for details only to illustrate how the formulas and calculations should be applied in 
an artificial setting. In my fifth book “The data-driven project manager: A statistical 
battle against project obstacles”, I wanted to reach a wider audience (researchers 
and professionals), which is why I referred to the so-called work package control as 
a less-detailed alternative of controlling projects by measuring the performance of 
a set of activities, rather than for each activity individually. In short, I believe that 
details matter the most for the static scheduling and risk analysis phases but are far 
less important or desirable for the dynamic control phase. 

The discussion and controversy on the right level of detail has become a central 
theme throughout this book, without often explicitly mentioning it. Since this 
book discusses the use of data-driven project management from both a research 
and a practical perspective, choosing the right level of detail will differ along the
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different chapters in the book. Part II discusses the three important missions of 
academic research and relates these missions to my own research on data-driven 
project management. It shows that academics should satisfy three specific needs 
(each chapter discusses one mission) to serve different audiences, ranging from 
colleague researchers who are really interested in the details of academic research to 
professionals who care less about details but want to translate these research findings 
into easy guidelines and best-practices. Hence, the level of detail will vary along the 
different chapters of Part II of this book. Part III shows that professional project 
managers have different ambitions than academics, with different and sometimes 
conflicting needs on how to use the data for managing projects. It will be shown 
that both academics and professionals share the common goal to improve the 
decision making process for managing projects, but they do it under a different 
level of detail. While academics care about every little detail in carrying out their 
research, professionals only want to use these academic methods when they can 
be adapted into easy guidelines and strong lessons-to-learn for professional use. 
Hence, a significant part of academic research will never reach the business world 
and is intended to increase the knowledge as a goal on itself. However, another part 
of the academic methodologies can – under the right circumstances – be applied 
in business on the condition that it keeps its best performing elements and gets 
rid of the unnecessary details. Part III discusses some simplifications of existing 
research and introduces the so-called control efficiency concept as a professional 
way to select the right level of detail in project management and control. Finally, 
a book about data-driven project management would not be complete without a 
detailed (no pun intended) discussion of project data. In Part  IV of this book, it will 
be shown that choosing the right level of detail in generating or collecting project 
data is key for academic research with practical relevance. It will be shown that 
both artificial data (researchers) and empirical data (professionals) can be used 
to improve the understanding in managing projects, and a so-called calibration 
procedure is presented to transform one into the other, aiming at narrowing the 
bridge between academia and the professional business. Part IV consists of six 
chapters which I consider as the biggest contribution of this book, not only because 
the OR&S team has spent most of its precious research time on this important 
research area but also primarily because I truly believe that using the project data 
in a correct way is key for improving the decision making process in project 
management. Remember that “without data you are just another person with an 
opinion”. 

The next section briefly reviews the academic literature of the three components 
of data-driven project management as the foundation of the upcoming chapters 
of this book. If you have already read some of my previous books or if you 
are a researcher familiar with the general theme of this book, I suggest to jump 
immediately to the next part of this book. If you, however, are interested in some 
specific details of the scheduling, risk, and control components, keep reading this 
chapter.
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3.4 Literature (in a Nutshell) 

I know that every (good) book written by an academic should start with a summary 
of the state-of-the-art literature on the topic under study, but this time, I will keep 
it very short. It is not that the current work in the literature is not good enough, 
but it would simply lead me too far from the book’s central theme. An impressive 
amount of work has been published in the last decades on data-driven project 
management, especially in the field of project baseline scheduling, and much of the 
work I present in this book finds its foundation in the work of others. Therefore, this 
section will only provide a short overview of the three components of data-driven 
project management with a basic summary on how the current academic knowledge 
has progressed from the early endeavours to its current impressive status. Without 
having the intention to give a full literature overview, some interesting references to 
research studies will be given that can be used as a base for a further search to other 
sources. The three components of the data-driven project management framework 
are shown in Fig. 3.3 and will be explained along the following paragraphs. It 
displays the necessary steps that must be followed for the construction of a baseline 
schedule, the analysis of its risk, and for project control. The figure clearly illustrates 
the importance of the baseline schedule as a point of reference for the risk analysis 
and project control components, which is the central idea behind the dynamic 
scheduling philosophy discussed earlier in this chapter. A good understanding of 
the four phases of each of the three components is crucial in the upcoming chapters 
of this book and will therefore be briefly discussed along the following lines. 

Schedule 
The research on project scheduling as a subfield of project management finds its 
roots in the field of Operations Research and mathematically determines the start 
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Fig. 3.3 The phases of the three components of data-driven project management
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and finish times of project activities subject to precedence and resource constraints 
while optimising a certain project scheduling objective. In a research handbook 
written by the advisor (Erik Demeulemeester) and co-advisor (Willy Herroelen) 
of my PhD (Demeulemeester and Herroelen, 2002), the construction of a baseline 
schedule of a project is defined as follows: 

Project scheduling involves the construction of a project base plan which specifies for each 
activity the precedence and resource feasible start and completion dates, the amounts of the 
various resource types that will be needed during each period, and as a result the budget. 

The literature on project scheduling is rich and diverse, and an overwhelming 
amount of research papers have been written on this challenging topic which 
makes it impossible to give a full overview without missing a few important 
ones. The initial research done in the late 50s mainly focused on network-based 
techniques, such as the Critical Path Method (CPM) and the Program Evaluation 
and Review Technique (PERT), which are still widely recognised as important 
project scheduling methods. Thanks to the development of the personal computer, 
project scheduling algorithms started to shift from solely activity scheduling to 
resource allocation models and an increasing number of software vendors have 
incorporated some of these resource allocation/scheduling models in their systems. 
The well-known resource-constrained project scheduling problem (RCPSP) has 
become the standard project scheduling problem in the academic literature which 
has resulted, due to its challenging nature, in numerous research studies and journal 
papers. These studies present a variety of methods to construct a resource-feasible 
schedule, including simple and fast priority rules, fast and efficient meta-heuristic 
solution approaches, and challenging exact algorithms. The list of publications in 
this challenging project scheduling field has become so overwhelmingly long that I 
have chosen to provide a short list of summary papers as well as some recent work 
done by my OR&S group in the next paragraphs, hoping that it can be used as a 
guide to explore new research directions. 

• Priority rules: The research on priority rules to solve the RCPSP has started 
several decades ago, and excellent summaries are provided by Kolisch (1996a,b) 
and later updated and extended by Hartmann and Kolisch (2000) and Kolisch and 
Hartmann (2006). Despite their simplicity and low quality, priority rules are still 
used in recent studies to further improve the construction of a baseline schedule 
for big projects. As a matter of fact, two of my team members started to work 
on the selection and/or design of priority rules for solving the RCPSP for huge 
projects (up to thousands of activities). More precisely, Guo et al. (2021) have  
designed a system to automatically detect the best performing existing priority 
rule in the literature, while Luo et al. (2022) proposed a genetic programming 
approach to design new and better priority rules for this challenging project 
scheduling problem with resources. While priority rules will never be able to 
compete with the more advanced methodologies, they will remain interesting for 
big projects due to their ability to generate a resource-feasible schedule in no 
time.
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• Exact algorithms: With the increasing power of computers and availability of 
efficient software tools, researchers began to develop exact algorithms to solve 
the RCPSP, which mainly consist of mixed integer programming (MIP) for-
mulations and branch-and-bound (BnB) procedures. These algorithms contain 
advanced features based on a mathematical formulation of the problem and often 
are too hard to implement in a commercial software system. However, a real 
researcher prefers the difficult algorithms over the easy priority rules, not only 
for the challenge and inherent complexity but also mainly because they are able 
to provide optimal solutions. Such solutions guarantee to have the best possible 
objective (e.g., the lowest duration), but they can only be obtained for relatively 
small projects after a long search, making these algorithms not easily usable in 
practice. An excellent overview of most of the MIP formulations for the RCPSP 
can be found in Artigues et al. (2015), while a summary of the most-widely used 
BnB procedures for this problem is given by Coelho and Vanhoucke (2018). In 
Chaps. 6 and 11, various branch-and-bound procedures from the literature will 
be used for machine learning and data generation, respectively. 

• Meta-heuristics: I might be wrong, but I have the impression that working on 
exact algorithms is out of fashion in academia. When I was working on branch-
and-bound procedures for solving the RCPSP with the net present value (npv) 
objective, one of the major challenges for coding these advanced algorithms 
consisted of making the best use of the limited resources of a personal computer 
(slow CPU time, no hard disk, limited memory). Almost 30 years later, my PhD 
students no longer care about limited computer memory and do not know what 
it means to use hash tables and bit programming to spare computer memory. 
Thanks to this increased availability of fast computers, an impressive number of 
new solution procedures have been developed that can be classified under the 
umbrella of meta-heuristics. These algorithms aim at constructing solutions for 
the RCPSP to near-optimality by searching the search space in a very intense way 
and providing a whole range of different solutions hoping that the best one (or 
close to the best) is found. Most of these algorithms found their origin in nature-
based processes (imitating cell division in the human body, the gravity of planets 
or the behaviour of ants, to name a few), and Pellerin et al. (2020) have given an 
impressive summary of the latest state-of-the-art results of most meta-heuristic 
solution approaches developed for the challenging scheduling problem. 

• Extended formulations: The basic RCPSP is formulated under strict assump-
tions for the activity network and resource use and aims at minimising the total 
project duration. However, thanks to its practical relevance, many extensions 
have been formulated in the literature, including other objectives (such as the 
previously mentioned npv), extensions of activity and resource assumptions, 
and much more. The paper by Hartmann and Briskorn (2021) reviews several 
interesting extensions of the basic formulation of the RCPSP and illustrates 
that the research on the RCPSP is certainly not at a dead end. Their paper 
is an updated version of an older paper by the same authors written a decade 
earlier (Hartmann and Briskorn, 2010) and presents an overview of variants and 
practical extensions for resource-constrained project scheduling. Someone once
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asked me if the research into this problem has not gradually solved everything. If 
you read these overview papers, then you know that this is certainly not the case. 
Researchers can certainly work on this problem for a few more decades, and I 
hope to see many new algorithms in the coming years that tackle this ancient 
problem from a completely new perspective. 

The focus of this book does not lie on the use of advanced algorithms to construct 
the baseline schedule of a project under limited resources. As a matter of fact, in 
most chapters, it will be assumed that the availability of the resources is unrestricted, 
in which case the critical path schedule will be used as the baseline schedule for the 
project.3 Consequently, in this book, it is more important to understand that the 
project baseline schedule must be used as the point of reference for the two other 
components of the data-driven project management methodology (risk and control, 
cf. Fig. 3.3), and the algorithm used to construct such schedule plays a secondary 
role. A brief summary of the literature for these two other components is given next. 

Risk 
While a lot of articles have been written on the importance of risk management for 
managing projects, much less attention has been spent on the so-called schedule 
risk analysis (SRA) methodology that focuses on the analysis of variability in the 
activities of the baseline schedule. I heard about the schedule risk analysis concept 
for the very first time in the non-academic paper of Hulett (1996), and it immediately 
got my attention due to its link with the project schedule. A deeper dive into the 
literature brought me to the paper of Williams (1995) who presented a classified 
bibliography of research related to project risk management and a follow-up study 
in Williams (1999) in which it is argued that the use of simulations in project 
management should be treated with care in order not to lose realism and reduce the 
concept to a theoretical exercise. Since an SRA study makes use of Monte Carlo 
simulation runs on the project baseline schedule, these papers have become the 
foundation of my own research in the analysis of the project schedule risk. Despite 
the fact that the SRA technique is not very complex, it took a while before I fully 
understood the relevance of this method. I started using the technique in 2006 during 
the aforementioned collaboration with Stephan, but only had a first publication in 
2010 where I really understood why the technique was so important to the project 
plan. Maybe I am just a little slow. 

The idea is simple though. A baseline schedule is nothing but a deterministic 
prediction of possible start and finish times for the activities without taking any 
possible variability into account. Since it only acts as a point of reference rather than 
a realistic prediction of the future project progress, it is known that the uncertainty 
during project progress will cause schedule disruptions which will lead to inevitable 
changes in the original project plan. A schedule risk analysis tries to predict the

3 Only occasionally, the critical-path schedule (no resources) will be replaced by the resource-
limited schedule of the RCPSP. In Chap. 11, some of the advanced BnB algorithms will be used to 
generate artificial project data. 
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impact of these disruptions in advance, prior to the project start and before the 
actual problems occur. Consequently, a schedule risk analysis puts the purpose of 
the baseline planning into perspective by adding uncertainty to the project activities. 
This uncertainty is expressed by probability distributions to model the variability in 
duration (or cost) and the model then analyses the potential impact of this variability 
on the final project objectives. This impact is measured by Monte Carlo simulations 
to imitate literally thousands of (artificial) dynamic project executions, and the 
output of such a simulation consists of so-called sensitivity metrics that analyse 
the relation between the variability in the activities of the project and the overall 
project objective. The four steps of an SRA (the second row of Fig. 3.3) are briefly 
summarised along the following lines (more details can be found in Vanhoucke 
(2015)): 

• Step 1. Schedule: The construction of the project baseline schedule has been 
discussed in the previous paragraphs and consists of a table with start and 
finishing times for each activity of the project. It provides deterministic data 
based on single-point estimates about the duration and cost of each activity and 
completely ignores variability in the activities. This schedule plays a central role 
and acts as a point of reference for all calculations and simulations of the SRA 
method. 

• Step 2. Uncertainty: While the time and cost estimates for the baseline schedule 
assume deterministic values, real project progress, however, is flavoured with 
uncertainty, leading to unexpected changes and problematic time and cost 
overruns. This behaviour must be mimicked in a Monte Carlo simulation by 
defining the uncertainty using probability distributions for the time/cost estimates 
used in Step 1. 

• Step 3. Analysis: During the Monte Carlo simulation runs, values are generated 
from the distributions of the previous step to model the variability in the 
original time and cost estimates of the baseline schedule. In each simulation 
run, all activities of the project get a new value for their duration (and cost), 
which changes the total project duration and the critical path. After thousands 
of simulation runs, the simulation engine has generated a huge number of 
different project runs, and all the generated data is stored to calculate the activity 
sensitivity metrics in the next step. 

• Step 4. Sensitivity: The data captured during the simulation runs are now 
ready to be processed, and sensitivity metrics for the time and cost behaviour 
of individual activities can be calculated. These metrics show the relative 
importance of an activity in the project network and measure the possible impact 
of activity variability on the project outcome. 

The sensitivity metrics of the fourth step measure how sensitive the activities 
are to deviations from the schedule’s original value, and these can be measured as 
deviations in time and cost estimates, as well as in the use of the project resources. In 
the next paragraphs, these three types of sensitivity metrics will be briefly discussed 
(for time, cost, and resources), and some of them will play a central role in the 
upcoming chapters of this book.
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• The time sensitivity metrics are used to measure the sensitivity of changes in the 
activity durations on the total project duration. They refine the black-and-white 
view of the critical path (which stipulates that an activity is either critical or not) 
to a degree of criticality expressed as a percentage between 0% and 100%. The 
four most well-known time sensitivity metrics for measuring the time sensitivity 
of project activities are as follows: 

– Criticality Index (CI): Measures the probability that an activity lies on the 
critical path. 

– Significance Index (SI): Measures the relative importance of an activity by 
predicting the impact of the changes in the activity durations on the total 
project duration. 

– Schedule Sensitivity Index (SSI): Measures the relative importance of an 
activity taking the CI into account. This sensitivity metric measures both the 
probability of criticality and the impact of activity duration variability and is 
therefore a more complete metric than the two previous metrics. 

– Cruciality Index (CRI): Measures the correlation between the activity dura-
tion and the total project duration. These correlations can be measured in 
three different ways, using Pearson’s product-moment correlation coefficient 
(CRI(r)), Spearman’s rank correlation coefficient (CRI(. ρ)), or Kendall’s tau 
rank correlation coefficient (CRI(. τ )). 

These time sensitivity metrics are obtained by applying the Monte Carlo simula-
tion runs on critical path based schedules without taking the limited availability 
of resources into account. However, recently, Song et al. (2022) have extended 
these sensitivity metrics for project schedules with limited resources and have 
redefined the three metrics to RCI, RSI, and RSSI, with R used to refer to the 
presence of scarce resources in the project baseline schedule (which replaces the 
critical path based schedule by a feasible resource-constrained project schedule). 
These metrics have the same interpretation as the critical-path based metrics but 
will not be used in the current book. 

• In many practical settings, the uncertainty in activity durations also has an 
influence on the variable cost of the activity, and therefore, the cost sensitivity 
metrics are used to measure the sensitivity of changes in the activity costs on the 
total project cost. While the time sensitivity metrics make use of the critical path 
schedule, the total cost of a project does not depend on the way the activities are 
scheduled but simply is equal to the sum of the costs of the activities. Therefore, 
three of the time sensitivity metrics (CI, SI, and SSI) that make use of the critical 
path data cannot be used for cost sensitivity. The Cruciality Index, however, does 
not make use of the critical path in its calculations and can easily be adapted 
to cost sensitivity by measuring the correlation between the cost variability in 
the activities and the variability in the total project cost. Consequently, the three 
time-based versions of the Cruciality Index, CRI(r), CRI(. ρ), and CRI(. τ ) are also 
used for cost sensitivity using the generated cost data obtained from the various 
runs in the simulation.
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• The resource sensitivity metrics are an extension of the cost sensitivity metrics 
but are used to measure the sensitivity of cost variability in the resources used by 
the activities (rather than treating the activity cost as a general cost). Activities 
require resources during the project progress and the total activity cost can consist 
of various components, including the fixed or variable costs for the renewable 
resources connected to these activities. Rather than measuring the general cost 
sensitivity of an activity, it is often interesting to see how sensitive each resource 
is with respect to the total project cost. Similar to the general activity cost 
sensitivity metrics, the resource cost sensitivity can be measured by the three 
versions of the Cruciality Index, CRI(r), CRI(. ρ), and CRI(. τ ), but they will now 
be calculated for each type of renewable resource rather than for each project 
activity. 

It should be noted that the use and importance of the schedule risk analysis 
methodology perfectly fits within the previous discussion of defining an appropriate 
level of detail when managing projects (Sect. 3.3). Since the sensitivity metrics are 
defined within the range between 0% (low sensitivity) and 100% (high sensitivity), 
the purpose of SRA is to determine which parts of the projects are important and 
which are not. Since the activities with low sensitivity values are far less important 
than the ones with high values for the metrics, SRA is a method for trying to get 
rid of less-important details and for paying attention to what really matters for 
the project. When unexpected disruptions occur during the project’s progress, the 
high-sensitive activities require more attention since their variability is more likely 
to have a bigger impact on the project objective. From this perspective, SRA is a 
methodology to improve the project manager’s focus on the most essential parts of 
the project, without losing too much time on the activities that do not matter much. 
It took me a while, but I finally understood that the real purpose of a static schedule 
risk analysis is to improve the dynamic project control phase of the project, as I 
wrote in my first SRA study (Vanhoucke, 2010) the following words: 

The interest in activity sensitivity from both the academics and the practitioners lies in the 
need to focus a project manager’s attention on those activities that influence the performance 
of the project. When management has a certain feeling of the relative sensitivity of the 
various parts (activities) on the project objective, a better management’s focus and a 
more accurate response during project tracking should positively contribute to the overall 
performance of the project. 

In this book, three time sensitivity metrics (CI, SI, and SSI) will be used in various 
chapters as a way to control a project with a better focus, and it will be referred to as 
a bottom-up control method to express that the project manager wishes to monitor 
the performance of a project in progress with the least possible effort (no details, 
just focus!) and the maximal possible impact (taking actions when necessary!). This 
project control phase constitutes the third and last component of data-driven project 
management and will be discussed next. 

Control 
Monitoring and controlling the progress of a project is key to the success of 
the project, and constitutes the third and most important component of data-
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driven project management. Project control is the periodic and repetitive act of 
collecting key data about the project progress that must be transformed into easy and 
understandable performance metrics and forecasts to enable the project manager to 
understand the current status of the project, and to invoke corrective actions when 
the project tends to run into the danger zone. The most well-known methodology 
used to monitor the dynamic progress of a project is known as Earned Value 
Management (EVM). The EVM methodology has been used since the 1960s, 
when the USA Department of Defense proposed a standard method to measure a 
project’s performance. It is a generally accepted methodology used to measure and 
communicate the real physical progress of a project and to integrate the three critical 
elements of project management (scope, time, and cost management). It takes into 
account the work completed, the time taken, and the costs incurred to complete 
the project and it helps to evaluate and control project risk by measuring project 
progress in monetary terms. The four steps of Fig. 3.3 (third row) will be briefly 
outlined along the following lines, and further details about the EVM metrics will 
be given in Chap. 4. 

• Step 1. Schedule: The project baseline schedule is (again) a necessary point of 
reference for measuring the progress of the project. The baseline schedule is no 
longer visualised as a well-known Gantt chart but expressed as the cumulative 
increase in the costs of the activities along their planned start times, and this 
cost curve is known as the planned value curve. This curve is the first of three 
key metrics that serve as periodic inputs for measuring the performance of the 
project. 

• Step 2. Measure: When the project is in progress, the project manager has 
to periodically measure its (time and cost) progress using two additional key 
metrics, known as actual costs and earned value. These two additional values 
must be calculated at each review period and will be used – together with the 
planned value of that period – to calculate the time and cost performance of the 
project at that time. 

• Step 3. Calculate: The EVM system automatically calculates time and cost 
performance indicators that express how much the project is delayed or ahead 
of schedule relative to the baseline schedule (or over or under budget relative to 
the planned project budget). These performance indicators give a general view on 
the health of the project at the current moment in time and act as warning signals 
for actions in case the progress is no longer satisfactory. 

• Step 4. Actions: The actions of the project manager taken after the warning 
signals reported a problem should enable the manager to solve the project 
problems and should (ideally) bring the project progress back on track. 

When I came into contact with the EVM methodology as a general and practical 
project management system at the beginning of my academic career, I was surprised 
how few scientists were interested in this widely used system. As a matter of fact, 
although the system was widely accepted by many professional project managers as 
a good control system, not many research papers were written to validate, critique,
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improve, or even replace this method with other, possibly better control methods. 
Despite this lack of interest from the academic world, many good books and white 
papers (mostly not peer reviewed) were written, and I have to mention the books by 
Quentin W. Fleming and Joel M. Koppelman who took the mystery out of the EVM 
methodology and made it easy to understand for everyone. In their book (Fleming 
and Koppelman, 2010), they reduce an EVM system to the essence as follows: 

Earned Value Management is an invaluable tool in the management of any project. In 
its simplest form, Earned Value Management represents nothing more than fundamental 
project management - managing a project with a resource-loaded schedule. 

Furthermore, these authors also recognised the importance of the baseline 
schedule as the point of reference for project control, as they stated the following in 
their books: 

In its most fundamental form, employing Earned Value Management requires nothing more 
than managing a project with a good schedule, a schedule with the authorised budget 
embedded task by task. 

Despite the lack of academic interest more than 20 years ago, today, a growing 
number of researchers rely on the EVM methodology to investigate and improve 
the methods to control projects, which has led to a growing number of academic 
peer-reviewed articles. I started working on this fascinating topic thanks to my 
collaboration with friend Stephan Vandevoorde around 2004, as I discussed in 
the previous chapters. After two peer-reviewed articles in academic journals co-
authored with Stephan, I decided to continue working on this topic, and it gradually 
became one of the main research themes at my growing OR&S group. We extended 
the EVM methodology in our project control studies to analytical and statistical 
project control methods (Chaps. 5 and 8), we integrated it in a machine learning 
framework (Chap. 6), and we even decided to collect empirical data with real 
progress reports to increase the realism of our research studies (Chap. 13). This 
challenging process of continuously improving and extending the EVM method-
ology to better alternative control methods is an important part of this book and 
is still ongoing. For an overview of the work done in the scientific literature up to 
2015, a reference is made to our article published in the International Journal of 
Project Management (Willems and Vanhoucke, 2015). This article is now old and 
out of date, so keep reading this book for a more detailed look at the various research 
efforts that have been made to date. 

References 

Artigues, C., Koné, O., Lopez, P., & Mongeau, M. (2015). Mixed-integer linear programming 
formulations. In C. Schwindt & J. Zimmermann (Eds.), Handbook on Project Management 
and Scheduling (pp. 17–41). Springer International Publishing AG. 

Coelho, J., & Vanhoucke, M. (2018). An exact composite lower bound strategy for the resource-
constrained project scheduling problem. Computers and Operations Research, 93, 135–150.



48 3 The Data-Driven Project Manager

Demeulemeester, E., & Herroelen, W. (2002). Project scheduling: A research handbook. Kluwer  
Academic Publishers. 

Fleming, Q., & Koppelman, J. (2010). Earned value project management (4th edn.). Project 
Management Institute, Newton Square, Pennsylvania. 

Guo, W., Vanhoucke, M., Coelho, J., & Luo, J. (2021). Automatic detection of the best performing 
priority rule for the resource-constrained project scheduling problem. Expert Systems with 
Applications, 167, 114116. 

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research, 207, 
1–15. 

Hartmann, S., & Briskorn, D. (2021). An updated survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research, 297(1), 
1–14. 

Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the 
resource-constrained project scheduling problem. European Journal of Operational Research, 
127, 394–407. 

Hulett, D. (1996). Schedule risk analysis simplified. Project Management Network, 10, 23–30. 
Jacob, D., & Kane, M. (2004). Forecasting schedule completion using earned value metrics? 

Revisited. The Measurable News, Summer: 1, 11–17. 
Kolisch, R. (1996a). Efficient priority rules for the resource-constrained project scheduling 

problem. Journal of Operations Management, 14, 179–192. 
Kolisch, R. (1996b). Serial and parallel resource-constrained project scheduling methods revisited: 

Theory and computation. European Journal of Operational Research, 90, 320–333. 
Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-

constrained project scheduling: An update. European Journal of Operational Research, 174, 
23–37. 

Lipke, W., Zwikael, O., Henderson, K., & Anbari, F. (2009). Prediction of project outcome: 
The application of statistical methods to earned value management and earned schedule 
performance indexes. International Journal of Project Management, 27, 400–407. 

Luo, J., Vanhoucke, M., Coelho, J., & Guo, W. (2022). An efficient genetic programming approach 
to design priority rules for resource-constrained project scheduling problem. Expert Systems 
with Applications, 198, 116753. 

Pellerin, R., Perrier, N., & Berthaut, F. (2020). A survey of hybrid metaheuristics for the resource-
constrained project scheduling problem. European Journal of Operational Research, 280(2), 
395–416. 

Servranckx, T., & Vanhoucke, M. (2021). Essential skills for data-driven project management: A 
classroom teaching experiment. Journal of Modern Project Management, 8(4), 123–139. 

Song, J., Martens, A., & Vanhoucke, M. (2022). Using earned value management and schedule 
risk analysis with resource constraints for project control. European Journal of Operational 
Research, 297, 451–466. 

Uyttewaal, E. (2005). Dynamic Scheduling With Microsoft Office Project 2003: The book by and 
for professionals. Co-published with International Institute for Learning, Inc. 

Vanhoucke, M. (2010). Using activity sensitivity and network topology information to monitor 
project time performance. Omega The International Journal of Management Science, 38, 359– 
370. 

Vanhoucke, M. (2015). On the use of schedule risk analysis for project management. Journal of 
Modern Project Management, 2(3), 108–117. 

Willems, L., & Vanhoucke, M. (2015). Classification of articles and journals on project control and 
earned value management. International Journal of Project Management, 33, 1610–1634. 

Williams, T. (1995). A classified bibliography of recent research relating to project risk manage-
ment. European Journal of Operational Research, 85, 18–38. 

Williams, T. (1999). Towards realism in network simulation. Omega The International Journal of 
Management Science, 27, 305–314.



Part II 
What Academics Do 

Academic freedom is a contested issue 
and, therefore, has limitations in practice. 

In the next two parts of this book, my Operations Research & Scheduling 
(OR&S) group’s dynamic scheduling research will be discussed to illustrate the 
similarities and differences between academic efforts and professional needs about 
better using data-driven methodologies in project management. Making a distinction 
between academic research and professional needs might be a bit artificial, but 
most of what I have written in Part II (this part, “what academics do”) and 
Part III (the next part, “what professionals want”) comes from the distinction 
between academia and business discussed in my keynote presentation at the Creative 
Construction Conference in Budapest (Hungary) in 2016 entitled The data-driven 
project manager: Academics like what they do, and professionals know what they 
want. 

Before I discuss the needs of professionals in the next part of this book, I will 
start this Part II from my own perspective as an academic researcher trying to 
explain what academics do with their precious time at the universities. Academic 
researchers who are active in the field of Project Management (PM) belong to a 
very strange species. They work on a research topic that is highly relevant to the 
professional manager and business practice, but they often have no primary interest 
in reality. As you will see, many research papers are filled with algorithms and 
data analyses written with the primary goal of getting a publication, or pushing the 
boundaries of knowledge, but not with the hope that managers will apply them in 
their daily practice. Whatever most researchers claim when they talk about their 
research output, what is going on in reality is almost always used as a secondary 
inspiration, and it is much more fun to investigate a problem from a theoretical 
perspective without caring too much about practicalities in business. The main 
purpose of Part II is to describe the real goals of academic research and discuss 
the ambitions academic researchers pursue in their search towards creating new 
knowledge. I hope this part will convince the readers that academic research plays
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a major role in improving the decision making process of managing projects in 
business, even if many research studies primarily focus on theoretical problems, 
advanced algorithms, and detailed data analyses. From this perspective, it will be 
shown that academic research not only has to provide a better understanding in 
today’s professional project management methodologies, but also has to improve 
these methodologies (for a better professional use) or even radically change them 
into new methods (even if that means that professionals will not adopt them at 
all). This triple ambition is described in this book part as three separate missions 
of academic research as briefly outlined in the next section. 

Three Missions 
Academic research is the careful study of a given problem or subject in a certain 
discipline, undertaken to discover facts or new principles. It should be carried 
out in a detailed and accurate manner, under strict and well-defined circumstances 
following the currently existing rules of science, and it should be directed towards 
increased knowledge and/or solutions for the problems under study. Since human 
beings like to categorise things, a distinction has been made in research too, 
classifying research projects as either fundamental research (at universities) or 
applied research (at business schools). The distinction between these two classes 
of research is of course a bit artificial, and a research project can often not 
easily be classified as either the one or the other. While both types of research 
aim at extending the current body of scientific knowledge, it is said that applied 
research aims at discovering a solution for a relevant practical problem (often in 
collaboration with a client/company), whereas basic research is directed towards 
finding solutions with a broad base of applications (and therefore not designed for a 
specific company). At my OR&S group, the distinction between these two types of 
research is not very important, but we classify our projects as fundamental research 
when it is funded by university money with no one else involved except my team 
members and a few very close friends with professional experience. However, when 
the research projects are funded by external resources, or when the research themes 
are inspired by a significant group of professional project managers who want to see 
their practical problems solved, the project is classified as applied research. In this 
case, we no longer carry out the research in isolation, but instead listen to wishes 
and desires from the outside world. I know it is an artificial distinction, but it works. 

Ideally, any research study in the field of data-driven project management should 
have a strong applied component and should aim at increasing knowledge about 
managing real projects, but that does not exclude the use of theoretical concepts and 
does not mean that any research study should always immediately lead to practical 
results and business relevance. I have had hundreds of interesting discussions with 
colleagues from both universities and business schools about the real purpose of 
academic research, and I learned that every person has a slightly different definition. 
I noticed that everybody more or less agrees on the nature of research and how 
it has to contribute to a better knowledge of the topics under study, but when it 
comes to the practical relevance for the real world, I saw different people with very 
different opinions. Some believe that academic research should maximise the impact
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Fig. 1 Three academic missions (understanding, wisdom, and learning) 

on managers and policy makers, while others believe academic curiosity is a goal 
on itself, regardless of the needs of society. In the next three chapters of this book, I 
will classify the purpose of academic research under three separate missions which I 
called understanding, wisdom, and learning. The titles of these three missions come 
from three different quotes from three different geniuses and are assembled in one 
quote that goes as follows:4 

Knowledge speaks, 
understanding explains, 
wisdom listens, 
and learning changes. 

A visual summary of the three academic missions is given in Fig. 1 that will 
be outlined in detail in the three upcoming chapters. It will be shown that the 
OR&S group has worked on each of these three missions separately, each with a 
totally different research agenda and end goal in mind. In Chap. 4, a  classification 
of existing project control methods will be provided in order to better understand 
why they work for some projects, and why they fail for others. Chapter 5 discusses 
how these existing methods can be extended to more advanced statistical methods 
to improve their performance and includes the extension of these project control 
methods to the so-called control points. Finally, Chap. 6 will develop totally new 
methodologies including machine learning algorithms to fundamentally change the

4 The original quotes come from Albert Einstein, Jimmy Hendrix, and William Deming and will 
be used in the three chapters of Part II. 
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way projects could be managed in the future. It has been a fantastic journey spanning 
almost two decades with the highs (when a paper is accepted for publication) and 
lows (another reviewer with a request for changes) that typify the nature of research. 
Welcome to the world of academic data-driven project management research.



Chapter 4 
Understanding 

The first mission of academic research is to create insight into existing method-
ologies used by professional project managers. This Mission #1 should focus on 
comparing, validating, and assessing the performance of existing project manage-
ment methodologies, rather than on developing new alternative methodologies to 
improve the management of projects. It should therefore aim at creating insights 
into why a given methodology works for some projects and why it sometimes fails 
so miserably for others, without making any changes or improvements. Translating 
the current knowledge into this “why” question will create a better understanding 
of the existing methodologies, and this is a fundamental and necessary step in the 
search for improvements (which will be discussed in the next chapter under the 
mission wisdom). It was Albert Einstein who highlighted the important difference 
between knowledge and understanding as follows: 

Any fool can know. 
The point is to understand. 

I am not stating here that professionals have only knowledge about how their 
methods work but no understanding why they use them, but rather, that it should be 
one of the primary goals of academics to look at today’s understanding with a critical 
eye. Professional project managers often use a specific methodology for managing 
their projects based on past experience and because it simply works. They have  
chosen a particular methodology for no good reason, just use it because others do. 
Apart from some fine-tuning towards the specific needs of their project, they have 
no real incentive to question its performance as long as it does the job accurately 
enough. They have, from their perspective, enough with what they have and feel no 
urge for creating a better understanding if these methodologies provide them with 
enough data to support their decisions. If it does the job, why should you criticise 
it? 

That is not to say that professional project managers are blind to the weaknesses 
and flaws of the existing methodologies, but when they fail, they often criticise 
them as being irrelevant for their projects, without even thinking deeply what 
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the root causes are that lead to their disappointing performance. Academics 
think differently and want to find out what the reasons are for such failures. 
While these academic researchers have obviously less experience in the practical 
implementation of existing methodologies, the search to understanding why a given 
methodology works or fails lies in the nature of their job. I believe that this lack 
of practical experience is exactly the point where academics can help increasing 
a professional’s understanding. A good and high-quality assessment of current 
methodologies should be done in a sound and rigorous way, far away from the 
practical problems and case-specific settings of the professional world. As a matter 
of fact, only academics have the luxury to stay away from the practical issues of 
the professional world, and with their experience in performing experiments under 
a controlled design, they can create a better understanding without being biased 
by numerous noisy inputs irrelevant for the research study. I therefore personally 
believe that the assessment of existing methodologies should be carried out with 
only a limited input from the professional world, leaving the academics in their ivory 
tower designing experiments that professionals would never have thought of. After 
my PhD graduation, I felt such an inexhaustible hunger to contribute to Mission #1 
of academic research that I started a project duration forecasting study with only 
one professional project manager involved. The results of this study will be briefly 
discussed in the next section. 

4.1 Measuring Time 

The importance of Mission #1 (creating understanding) has become extremely 
apparent in 2004 when I started to work on the research for my first book “Measur-
ing Time”. As I already briefly mentioned in Chap. 2, I almost accidentally entered 
the field of Earned Value Management (EVM) thanks to my close collaboration with 
Stephan Vandevoorde, a project manager with no research experience but with an 
endless interest in academia. He is one of those professionals who is never satisfied 
with the status quo, and he always has that critical look in his eyes when he talks 
about the way he manages his projects. Despite his rich experience with large and 
important projects, he always tried to critically scrutinise his own methodologies 
with which he was immensely familiar, and he did not hesitate to criticise or even 
change them altogether. With his academic mind and his professional experience, 
he was looking for someone who wanted to think along about the usefulness 
and importance of Earned Value Management. He could not have crossed my 
path at a better time, and we quickly became good friends for life after our first 
collaborations. 

In our first joint project, we were trying to implement several EVM methodolo-
gies for controlling and predicting the timing of projects, but we were not sure which 
method suited best for our challenging task. There were three basic EVM methods to 
monitor the timing of a project in progress, and each of them predicted the expected 
final duration of the project using progress data in a slightly different way. Two of
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Fig. 4.1 Earned Value Management methodologies in 2003 

these methods were well known in the professional control community as they both 
relied on the traditional three-level EVM system shown in Fig. 4.1, and we referred 
to them as the planned value method (Anbari, 2003) and the earned duration method 
(Jacob, 2003). The third method is slightly different from these traditional methods 
and was not well-known in the community since it relies on a new EVM key metric 
that no one understood at that time. This new method is referred to as the earned 
schedule method (Lipke, 2003). I could give here a full overview of the differences 
between these three methods by telling stories of how they have been used with 
variable success for different projects. These methods were criticised by some but 
praised by others, but since that has been the subject of most of my previous books, 
I will not repeat this story here in detail. Instead, I will just give a very succinct 
summary of the three levels of an Earned Value Management system as shown in 
Fig. 4.1 before continuing the story of my comparative study with Stephan. 

• Key metrics: Any EVM system makes use of three key metrics to measure 
the performance of a project in progress, known as the Planned Value (PV), 
the Actual Cost (AC), and the Earned Value (EV). These key metrics are input 
values provided by the project manager at each review period at which the project 
progress is monitored. The planned value is the time-phased budget baseline 
and is an immediate result of the schedule constructed from the project network. 
Since the baseline schedule is constructed in the static phase, this key metric is 
completely determined at the start of the project (i.e., for each possible review
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period in the future, the planned values are known). The planned value is often 
called the budgeted cost of work scheduled, but I prefer to call it planned value 
because it sounds so much better. The two other key metrics are dynamic metrics, 
which means that their values are only known for review periods of the past. For 
future review periods, these values are unknown and become only visible when 
the project progresses. The actual cost is often referred to as the actual cost 
of work performed and is the cumulative actual cost spent at a given review 
period. The earned value represents the amount budgeted for performing the 
work that was accomplished by a given period. It is often called the budgeted 
cost of work performed and is equal to the total activity (or project) budget at 
completion (BAC, the total planned cost of the baseline schedule) multiplied by 
the percentage activity (or project) completion (PC) at the period (.= PC ∗BAC). 

• Performance measures: The project’s time and cost performance at a certain 
point in time is determined by comparing the three key parameters PV, AC, and 
EV, resulting in four well-known performance measures. The Schedule Variance 
(.SV = EV−PV) and the Schedule Performance Index (.SPI = EV/PV) measure 
the time performance of a project. Similarly, the Cost Variance (.CV = EV−AC) 
and the Cost Performance Index (.CPI = EV/AC) measure the cost performance 
of a project in progress. Values for SPI and CPI lower than 100% indicate a lower-
than-expected performance (i.e., a late project or over budget), while values 
higher than 100% indicate a better-than-expected performance (a project ahead 
of schedule or under budget). These performance metrics can be used as warning 
signals for the project manager to indicate that something needs to be done to 
resolve the issues in the project progress and will be the subject of several future 
chapters. 

• Forecasting indicators: Predicting the final expected duration and cost of a 
project based on its current progress is done by forecasting indicators. The 
general formula for predicting a project’s final cost is given by the Estimate At 
Completion indicator (EAC or sometimes abbreviated as EAC(e) to highlight 
the cost aspect of the prediction). The EAC predictor estimates the total cost of 
a project based on the current actual cost (AC) increased with an estimate of the 
expected cost necessary to finish the remaining work of the project. Similarly, the 
time prediction is given by the EAC(t) indicator (the t is added to EAC to clarify 
it is a time prediction) that predicts the total project duration based on the current 
actual time of the project (often abbreviated as AT) increased with an estimate 
about the expected time necessary to finish the remaining work. Stephan and I 
have shown that the expected time and cost of the remaining project work can 
be calculated under different scenarios, resulting in different alternative formulas 
for EAC(e) and EAC(t) that are not relevant to the current chapter. However, 
in Sect. 9.3 of Chap. 9 (reference class forecasting), I will go slightly deeper 
into these different scenarios and provide more details on the EVM forecasting 
formulas. 

If you feel unconformable after seeing too many abbreviations used at each level 
of the EVM system, I advise the readers to stop here for a moment to consult a
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good EVM book (there are plenty out there) or read a few short articles at the 
PM Knowledge Center (www.pmknowledgecenter.com). You can also take a look 
at Appendix B that provides a glossary of the most well-known EVM concepts, 
with references to other interesting sources. The number of abbreviations can be 
indeed confusing at some times, certainly because not everybody uses the same 
terminology or symbols, leading to different formulas that basically measure the 
same thing. When I started working with Stephan, it had become almost impossible 
to find a common thread through the various articles on this interesting topic, let 
alone find any advice on which forecasting method would work best. It was time to 
bring some structure in the chaos. 

Figure 4.1 provides a clear and simple three-level structure of EVM and the 
careful readers have noticed that the figure is split into two separate classes. The 
first class consists of the traditional EVM approach and includes the two well-
known time forecasting methods (the planned value method and the earned duration 
method). This class is called traditional since these methods were very familiar 
to most professional project managers. The project performance is measured by 
the previously discussed cost performance index (CPI) and schedule performance 
index (SPI), and both indicators were implemented in most commercial software 
tools to monitor both the cost and time of projects in progress. The third method 
is classified as a new EVM approach and includes the third earned schedule (ES) 
method that was introduced in an article in 2003. This article proposed an alternative 
(and to some believed as a better) way of managing the time aspect of the projects. 
The ES method was totally unknown to most professional project managers and 
certainly not integrated in commercial software tools, and it was Stephan who drew 
my attention to this third method. The method had been proposed by Walt Lipke, a 
professional project manager at the Department of Defence (USA) who published 
his seminal paper “Schedule is different” in The Measurable News (Lipke, 2003). 
The article explains the possible error in the traditional SPI metric as it cannot 
predict the expected duration of a project in an accurate way. More precisely, he 
shows that the SPI always ends at 100% at the end of the project (denoting a project 
finishing on time), even when the project finishes dramatically late.1 To solve this 
problem, he proposed a simply yet elegant alternative to the earned value (EV) key 
metric, which he called the earned schedule (ES) metric, by simply translating the 
monetary value of EV into a time-based ES value. Based on this new ES metric, 
he replaced the flawed SPI performance metric by the new SPI(t) metric which 
he defined as SPI(t) . =ES/AT. The AT defines the actual time of the project at the 
current review period, which is equal to the number of days the project is in progress, 
and the ES is –as said – identical to the EV metric but expressed in time. Walt shows 
that his SPI(t) is therefore quite similar to the traditional SPI = EV/PV formula, but 
he argued in his article that this new performance measure is now reliable over 
the complete horizon of the project. As a matter of fact, when a project finishes

1 This error occurs for all projects due to the fact that the earned value (EV) metric is always equal 
to PV at the end of the project, and therefore, .SPI = EV/PV is always equal to 1. 

www.pmknowledgecenter.com
www.pmknowledgecenter.com
www.pmknowledgecenter.com
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late, the SPI(t) indicator will be lower than 100%, indicating the true status of the 
project. Some would argue that this new idea was not exactly a brilliant idea, but 
rather a logical consequence of a mistake in the previous formulas, but I think Walt 
did initiate something through his article that few others would have succeeded in 
doing. 

Neither Stephan nor I had heard about Walt in 2004, but once we got the article, 
we immediately decided to include this third method in our comparison study, and 
it changed our life. When I first heard about the ES method, it was so similar 
to the original EV method that I thought including it in the comparative study 
would not yield impressive results. The basic idea of the new ES method was 
very simple, as it proposed an improved version of the classic SPI metric which, 
according to Walt’s article, misrepresents a project’s progress (he called this “the 
quirky behaviour of the SPI”). Indeed, if the SPI always ends at 100%, even if the 
project ends dramatically late, it will likely lead to erroneous conclusions during 
project progress and therefore will also result in low accurate time predictions. 
Instead, as the alternative performance measure SPI(t) measures the actual project 
progress (early, on time, or late) at each stage of the project, this should obviously 
lead to much more reliable predictions. Perhaps it would be a little too simple to 
include this in an academic article, but many thought differently. 

Our article indeed showed on a small sample of three projects that the ES 
metric is a better time predictor than the traditional methods, but not everybody 
accepted this as easily as we did. I soon learned that for many professionals 
the earned schedule method was not just a simple extension of traditional EVM 
methods, but rather an attack to shut down the currently accepted EVM system. 
Indeed, you had two camps in the professional community of the newly suggested 
system, some were believers while others were opponents. Some project managers 
simply did not want to accept the findings of our article, arguing that this improved 
ES performance is just a coincidence (tested on only 3 projects) and cannot be 
generalised to other projects. Some even went so far as to call the new method 
controversial (no kidding!) that sparked tough and sometimes painful discussions 
between the traditional EVM and new ES believers. What struck me most was the 
(sometimes emotional) preference people had for the traditional EVM or the new ES 
methodology, without any rational arguments or solid data analysis. At a workshop 
where I had to give a keynote speech, the organisers even kindly asked me not to 
mention the new ES method and only talk about the EVM method so as not to hurt 
the audience too much. I completely ignored this request during my speech and was 
never invited to this workshop again. To make matters worse, the controversy was 
also present in academia. A few years after my ES study with Stephan, I submitted 
a paper to a scientific journal for which I received a review report recommending 
not to accept the manuscript. I normally never share review reports with others, but 
this one was so short and to the point that I can print it out in full in the following 
lines: 

I do not believe in Earned Schedule 
and therefore recommend to reject this paper.
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What? I had no idea that scientific research was a matter of faith and belief. I 
have never submitted another article to this journal, and I never will, but fortunately 
many of my later articles on the EVM/ES topic have been published in a high 
quality journal, such that I can conclude that the controversy is no longer a problem. 
Nevertheless, it shows that creating an understanding (i.e., Mission #1) of why some 
methods work and why others fail is an important mission for academia. Finally, our 
first collaborative paper titled “A Comparison of Different Methods for Predicting 
Project Duration Using Earned Value Metrics” was published in the recognised 
International Journal of Project Management (Vandevoorde and Vanhoucke, 2006) 
and many other publications followed. As I mentioned in a previous chapter, this 
study has the highest number of citations of all the articles that I have written 
with my team, and I think this is mainly because the ES method was initially not 
widely accepted. Stephan and I met Walt several times later in our careers, and I feel 
privileged to say that we have become friends for life, not only sharing our passion 
for project management but also our love for music and art.2 

4.2 Shedding New Light 

After our first publication, Stephan and I were pleasantly surprised by the positive 
response and the growing number of citations, but we were not completely satisfied 
with the achieved results, especially since our conclusions were drawn on only three 
projects from Stephan’s company. Rather than providing case-specific results, we 
wanted to draw general conclusions so that we could completely eliminate any last 
spark of doubt. To achieve this, we started a second comparison study, this time 
based not on real data from three projects, but on simulated data with thousands 
of artificial projects. Professional project managers do have real data, but they are 
often very case-specific and contain errors, and the conclusions drawn are often 
biased by their own experience and the way they collected the data. Academics 
have the freedom to generate artificial project data and rely on simulation studies 
to imitate any project progress under uncertainty, and this simulated reality can be 
created under a controlled design by including as many scenarios as possible. 

For this study, we designed a totally new simulation model focusing on the 
performance of critical and non-critical activities of the projects, and we steered the 
simulation in such a way to invoke problematic behaviour in the predictions. More 
precisely, we tested the accuracy of the warning signals provided by the traditional 
SPI and new SPI(t) performance metrics by simulating true and false warning 
signals. We tested the impact of correct warning signals (i.e., the SPI and SPI(t) 
represent a true project progress status) and unreliable warning signals (i.e., the SPI

2 The albums of the late singer J.J. Cale I have in my vinyl collection are recommended by Walt. 
Once he told me that J.J. Cale attended the same high school as Walt did, I bought some of these 
records. They are fantastic! 
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Accuracy 
Accuracy along the completion stage 

Reliability 
Quality of the warning signals 

Network 
Project network topology has an impact on the accuracy 

False signals 
EVM performs poorly, ES even worse 

True signals 
ES works better than EVM 

Parallel networks 
EVM/ES will not work well 

Serial networks 
EVM/ES performs well 

Early stages 
Low accuracy for all methods 

Middle/late stages 
ES method is the best 

Mistake starts from 
50% to 60% completion 

Fig. 4.2 Performance of EVM/ES methods for time forecasting 

and SPI(t) report a false project status, e.g., a warning for a project delay, while the 
true status is that the project is ahead of schedule) by simulating projects that finish 
ahead of schedule and projects that finish with a delay. The so-called scenario model 
that we developed for this study is explained in detail in Sect. 12.4 of Chap. 12 of this 
book, and the artificial project database, consisting of more than 4000 projects, is 
presented in Chap. 11. This study is published in the peer-reviewed “The Journal of 
Operational Research Society” (Vanhoucke and Vandevoorde, 2007) and the main 
results are summarised in Fig. 4.2. The next paragraphs provide a short summary of 
the achieved results, classified along three criteria (accuracy, reliability, and project 
network structure). 

Accuracy When making predictions, accuracy matters. Our simulation model 
measured the accuracy of the time predictions by periodically comparing the 
predicted duration with the final project durations (which is only known when 
the project simulation is finished) and then calculating the average absolute or 
relative deviations. These accuracy measures are known as the mean absolution 
percentage error (absolute) or mean percentage error (relative) and are used to
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validate the quality of each of the three time prediction methods. The results of 
the simulation experiments revealed that the accuracy of the three methods differs 
along the completion stage of the project. First and foremost, the results showed that 
the accuracy along the early stages of the project was low for all methods and no 
method was able to significantly outperform the other. Obviously, when the project 
is in the early stages, not a lot of project progress data are available yet, and none of 
the methods can rely on enough data to accurately predict the final project duration. 
However, the results also indicated that for the middle stages and certainly for the 
late stages, the new ES method outperforms the two other traditional EVM methods. 
As a matter of fact, these results confirmed the observations of Walt’s paper and the 
conclusions drawn in our first study based on the three projects, but this time, it 
was tested on a huge set with thousands of projects. Of course, we were not very 
surprised by these results, since it was known that the SPI – used by the traditional 
EVM methods – is seriously flawed, while the SPI(t) – used by the ES method – 
does not suffer from that problem and so the ES method should logically lead to 
a better forecasting quality. However, less straightforward was the observation that 
the mistake of the SPI already starts to have a negative impact on the accuracy of the 
predictions from 50% to 60% project completion. This means that the predictions 
are not accurate during the most crucial phases of the project progress and might 
lead to wrong decisions and a waste of time and money for the project manager and 
the stakeholders relatively early in the project. Like it or not, the simulation study 
showed once and for all that the ES method is a clear winner when it comes to 
predicting the timing of a project and is therefore preferable to the traditional EVM 
methods. 

Reliability Despite the clear advantage of using the ES method over the EVM 
method to predict the expected duration of the project, we also wanted to find out 
whether these predictions depended on the quality of the input data. More precisely, 
the predictions are made based on the input data (key metrics) and generated 
warning signals (performance metrics), and sometimes these metrics are not fully 
reliable. Consider, for example, a project with a lot of critical activities running on 
time, and only a few non-critical activities (i.e., activities with slack) with some 
minor delays. Any EVM/ES system will detect these activity delays and will report 
an SPI and/or SPI(t) value lower than the expected 100% performance, indicating 
that the project is suffering from a delay. This might look like a correct (true) 
warning signal (since some activities are indeed delayed), but since the delays are 
only for the non-critical activities, the delays could still be within their slack so 
that they will not have any impact on the total project duration. Consequently, the 
corresponding warning signals might be considered as unreliable since they measure 
a project delay while the project is perfectly on time. A similar but opposite example 
can be given for projects for which the SPI and SPI(t) metrics report a project ahead 
of schedule, while the true status is that the project will be delayed. Just think of 
many non-critical activities that are ahead of schedule and only one critical activity 
with a small delay, and you will probably predict an ahead-of-schedule project status
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while its true status will be delayed. Again, the warning signals might not be very 
reliable, and predictions might therefore be totally inaccurate. 

The results of these reliability experiments have shown that the ES method does 
indeed perform less well compared to the traditional methods when the warning 
signals are unreliable (i.e., false). Some people might conclude that this is an 
advantage of the traditional methods, but I believe the opposite is true. Since the 
results indicate that the ES method performs best when the warning signals are 
correct (true signals) but performs very poorly when the warning signals are wrong 
(false signals), this is a clear indication of the quality of the ES method. However, 
the traditional methods certainly do not perform as well as ES when the warning 
signals are correct but perform relatively well (and better than the ES method) when 
the warning signs are completely wrong. As a result, the traditional methods seem to 
perform almost randomly, regardless of the reliability of the warning signals, which 
is certainly not a sign of high quality. The ES method, on the other hand, is a clear 
winner provided the warning signals are reliable, and this garbage-in/garbage-out 
phenomenon is inherent in any good system: if you feed it with the right data, it 
performs well, but without good input data, you better do not trust its outcomes. 

Network Structure So far, it seems that the ES method is a clear winner and 
outperforms the traditional EVM method in all situations. However, if it sounds 
too good to be true, it probably is. There is indeed a catch: the ES method does not 
always work well, and the catch is in the structure of the project network. Despite 
the observation that the ES method outperforms the two others traditional methods 
along the whole project life cycle, the results were not always favourable. As a 
matter of fact, the main reason why we have tested these EVM/ES methods on 
more than 4000 projects was to make sure that we could span the full range of 
complexity, guaranteeing that any project that could possibly exist in reality was 
included in our project dataset (more on this full range of complexity concept will 
be explained in the artificial project data Chap. 11). The generated dataset with 
artificial projects contained projects with a variable network structure ranging from 
very parallel networks to completely serial networks, and our experiments revealed 
that the structure of the project network has a clear impact on the accuracy of the 
EVM/ES methods. We found that the serial/parallel indicator (SP), which measures 
the degree of how serial or parallel the project network is, was the main driver that 
determines the accuracy of all EVM/ES predictions. The results clearly showed that 
the EVM/ES methods performed best when projects are closer to a serial-structured 
network, with ES outperforming the EVM methods. However, for project networks 
closer to a completely parallel structure, none of the methods (neither EVM nor ES) 
performed well, and the accuracy was so low that it was better not to rely on their 
predictions at all. Consequently, the main conclusion of the simulation study was 
that EVM, and certainly ES, works well for serial networks but fails miserably for 
parallel networks. As I will discuss later in Chap. 7, this observation is (in hindsight) 
very straightforward, but I could never have come to this conclusion without the help 
of our simulation experiments. Mission #1 of academic research is accomplished.
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4.3 Thank You, Tony 

This chapter described my early efforts at forecasting the duration of projects with 
earned value methods in collaboration with Stephan and Walt who have shaped 
the future of my research in several ways. I have deliberately not gone into too 
much detail, as many of the results of these two studies will be discussed in several 
later chapters of this book. The two publications with Stephan were the spark of 
much more work, which eventually resulted in my award-winning book “Measuring 
Time” (Vanhoucke, 2010). I will never forget my fifteen minutes of fame when I 
presented my research during the award ceremony in Rome (Italy) at the World 
Congress of the International Project Management Association in 2008. Today I 
look back on these studies with nostalgia, remembering our regular trips to London 
(UK) and Geneva (Switzerland) and our thousands of emails trying to convince 
people of the power of the new ES methodology. Over time, my book has become 
my personal best seller and has given me the opportunity to present my research all 
over the world. 

A best-selling book should be taken with a pinch of salt in the project manage-
ment domain. I wish I could say it has sold more than a million copies worldwide, 
but I am happy with the several thousand copies and the positive attention the book 
has received. I am inclined to believe that the book has set a number of things 
in motion, as many academics now use the ES method in their studies, which 
was not the case at all before the book publication. I still experience academic 
research as a rewarding job which brings joy in my life, and although as a teenager I 
dreamed of becoming a rock star (preferred choice) or a very famous writer (second 
option), I am now happy with the positive feedback for my books on data-driven 
project management. One of the nicest complements I ever got for my research 
achievements came from Tony Barrett, an American Professional Engineer (PE), 
Earned Value Professional (EVP), and Project Management Professional (PMP) 
who wrote on the LinkedIn Earned Value Management discussion the following 
words: 

Professor Vanhoucke’s work is shedding a new light on using EVM for me. In retrospect, 
this has helped me understand better why EVM worked so well in some cases and failed so 
miserably in others. 

I am sure that Tony did not need any of my research experiments to fully realise 
what he was doing in his professional job, but I dare to think that the results 
have confirmed his gut feeling and therefore improved his understanding in his 
work. I think Tony’s comment is a good example of how academics can help 
professionals to better understand the methodologies they use. However, while a 
better understanding of existing techniques can be a noble goal of academic research 
(Mission #1), it is often insufficient and brings a lot of new ideas on the research 
agenda. The search to new and better methods is another phase in the story of 
academic research, and this new step is described in the next chapter as Mission 
#2 (wisdom).
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Chapter 5 
Wisdom 

After some crazy years of travelling and attending workshops, a successful collab-
oration with two published papers and an award-winning book on Earned Value 
Management (EVM), it was time to shift from Mission #1 (creating understanding) 
to Mission #2 (providing wisdom). I felt the need to extend my team with researchers 
who are as passionate as I am and who are able and willing to join my (then 
small) OR&S group to expand the work we had done so far. We had not developed 
any new methodologies for EVM yet, and all we had done so far was testing 
and comparing the existing EVM methodologies to improve our understanding for 
project time forecasting. The results, discussed in the previous chapter, not only 
provided us with more understanding, but also with new ideas to improve the 
quality of the predictions. Even from the professional field, I felt the willingness 
(from some project managers) to incorporate some changes in the current EVM 
methods, and they argued that their better understanding (especially in cases when 
the current methods failed (mostly for parallel projects)) made them think about 
possible improvements. I believe this is exactly the desired side effect of Mission #1 
of academic research: it makes us more ambitious and eager to learn more. 

Mission #2 is indeed much more ambitious, as it aims at extending the existing 
methodologies based on the lessons learned fromMission #1.While the first mission 
aimed at understanding why EVM/ES systems work or fail, the second mission 
focuses on how this understanding can be transformed into wisdom. Wisdom is 
used here as a collective term to go beyond the mere understanding by making the 
current methodologies richer and more complete, by adding additional features or 
integrating them into a broader framework, or by even completely replacing them 
by other, hopefully better alternative methodologies. Since it lies in the nature of 
academic research to shift boundaries and replace current understanding by new, 
alternative knowledge, I knew I needed a team, and so I submitted a big research 
proposal that eventually resulted in the fantastic team I have today. I doubt whether 
the American rock singer and guitarist Jimi Hendrix had an interest in data-driven 
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This chapter 

Fig. 5.1 The transition from understanding to wisdom 

project management, but I will nevertheless use his quote to introduce Mission #2 
of academic research in this chapter. It goes as follows: 

Knowledge speaks, but wisdom listens. 

The attentive readers will probably remember that in the introduction to Part II of 
this book I wrote down a four-line quote1 that would be repeated in bits in Chaps. 4 
to 6 (for example, Jimi Hendrix’s quote consists of lines 1 and 3 of the full four-
line quote). The full quote should not be taken too seriously, as the four lines served 
purely to represent the general framework of academic research as the three-mission 
process “understanding”, “wisdom”, and “ learning”. Nevertheless, I believe it is 
now time to come back to the full quote and explain its four lines in detail in the 
following paragraphs. This is best done by referring to Fig. 5.1 graphically depicting 
the true nature of academic research: 

• Knowledge speaks refers to the importance of knowing what the current state-
of-the-art is in the academic literature. Every PhD student knows that the first 
few months of an academic career path consist of reading, reading and nothing 
but reading. By exploring the relevant papers in the academic literature and 
trying to make sense of them, researchers get an idea of the current knowledge 
in academia, and I sometimes feel that young and enthusiastic researchers 
underestimate the importance of understanding the current state of knowledge 
early in their careers. You cannot become a good researcher if you do not know 
what others have done before you, which is why I think a literature review is one 
of the most important steps in starting an academic career. 

• Understanding explains refers to the process of investigating current ways of 
managing projects without adding new features or creating totally new method-
ologies. This Mission #1 was illustrated in Chap. 4 by the comparison study of 
the three existing forecasting methods on three sample projects. The published 
paper does not contain any novel idea nor any new methodology and focuses 
solely on the comparison of existing methods. In the current Chap. 5, a new

1 You may recall that the full quote sounded like this: Knowledge speaks, understanding explains, 
wisdom listens, and learning changes. 
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existing methodology will be introduced referred to as rules of thumb for project 
control that exists of simple and straightforward methods to interpret warning 
signals during the progress of the project. Again, these rules do not contain any 
new elements but are nevertheless widely used in practice by professional project 
managers. 

• Wisdom listens goes further, much further, than merely creating understanding. 
The nature of research is not only to provide a better understanding of the 
current existing methodologies, but primarily to shift the boundaries of our 
current knowledge and explore new territories by walking on untrodden paths 
and creating ideas no one else had before. This Mission #2 is the topic of the 
current chapter and will extend the simple rules of thumb to four types projects 
of control with statistical tolerance limits. This new approach of controlling 
projects will not fundamentally change the way projects are managed and still 
relies on the EVM/ESmethods discussed earlier, but aims at providing (marginal) 
improvements to create a statistical project control system with a higher accuracy 
and reliability. 

• Learning changes will be the theme of Chap. 6 and aims at exploring the 
very limits of our current understanding without caring about the practical 
implications or relevance. Rather than aiming for marginal improvements, 
Mission #3 searches for radical improvements by introducing totally new ideas 
and advanced algorithms that no one has used before in this research domain. 
It will be shown in the next chapter that machine learning algorithms can be 
used for the three components of the data-driven project management framework 
(baseline scheduling, risk analysis, and project control). 

The story of this chapter is the story of Jeroen Colin, a researcher who joined 
the OR&S group in 2009 and successfully defended his PhD thesis in 2015 with 
six published papers on statistical project control methods using tolerance limits. 
When he joined the team, he expressed his interest in statistical data analyses, 
and he quickly developed coding skills in R and Python and had heard about the 
supercomputer infrastructure that Ghent University would install in the next coming 
years.2 He told me that he had read the paper on the comparison study and believed 
that the earned value methodology could and should be used in a much better way 
than it is done now (in 2009). I warned him that not everybody is ready for accepting 
changes to EVM and told him about the difficulties I had when introducing the 
earned schedule method in the literature, but that could not stop him from starting 
his challenging (and sometimes very difficult) journey into the world of statistical 
project control. 

Jeroen’s story perfectly illustrates the challenging nature of the second mission 
of academic research, as it took him more than 4 years and an endless stream of 
suggestions for changes before his first paper was finally accepted in the flagship

2 Ghent University announced three years later (in 2012) the introduction of the first Flemish 
supercomputer as a High-Performance Computing (HPC) system with a price tag of about e4.2 
million. 
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journal Omega—The International Journal of Management Science (Colin and 
Vanhoucke, 2014). I think that not many reviewers were ready to accept the 
proposed changes in the existing EVM/ES systems, which is why they first objected 
and proposed to simplify the research study, but finally accepted because they had 
no other choice than admitting that this new statistical way of analysing EVM data 
made much sense. After his first publication, the ball started rolling, and Jeroen 
presented a wealth of advanced statistical project control methods, and his five 
subsequent papers were all accepted in a period of 2 years after the first acceptance. 
Once people accept the changes, they are no longer afraid for wanting more. Let us 
take a look at this new way of controlling projects in the next sections. 

5.1 Tolerance Limits 

The four different control methodologies presented in this chapter all rely on the 
EVM3 metrics discussed in the previous chapter, i.e., the key input metrics (planned 
value (PV), actual costs (AC), and earned value (EV)) and the schedule and cost 
performance measures (SPI, SPI(t), and CPI). Consequently, from a professional 
point of view, the project manager must not add anything to the currently used 
control system to measure the performance of the project in progress, and the new 
methods presented in the current chapter rely on the same system input metrics as 
before. However, the major difference with the traditional control systems lies in the 
fact that the EVM metrics are now used to construct the so-called control limits or 
tolerance limits to automatically warn the user when the project is out of control. 
The incorporation of control limits in EVM is an interesting feature to support the 
decision maker with warning signals to trigger actions when the project tends to 
run into the danger zone. Consequently, these control limits act as action thresholds 
and tell the user when it is time for action to bring the project back on track. The 
traditional EVM systems also used the schedule and cost performance metrics as 
warning signals, but they required interpretation and did only report the current 
project status (e.g., early, on time, or delay) without telling anything about the 
possible impact on the total project duration and the necessity for actions. Therefore, 
the professional manager had to fall back on some arbitrary action thresholds 
(e.g., when SPI(t) falls below 70%, it is time for action) using intuition and past 
experience. Instead, the new action thresholds of the four methods presented in this 
chapter rely on a statistical data analysis to automatically warn the manager to take 
actions, and this new control approach is therefore described as statistical project 
control.

3 I will from now on refer to an EVM system as a project control system with traditional EVM 
metrics and the new ES metric and will no longer make a distinction between the two by calling it 
an EVM/ES system as I did in the previous chapters. 
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The following paragraphs present a three-phased approach used in the statistical 
project control study to test the relevance of tolerance limits for predicting the 
necessity of corrective actions. An important difference will be made between 
two types of Monte Carlo simulations. A static simulation run will be used to 
construct the control limits, and a dynamic simulation run will be applied to test 
these control limits for real project control. Since this dual simulation approach 
(static and dynamic) will be used throughout many chapters of this book, it is worth 
spending some pages on it. 

Phase 1. Baseline Schedule The construction of a baseline schedule acts, as 
always, as the point of reference for constructing control limits and monitoring the 
project progress, as I have discussed earlier in Chap. 3. More precisely, the baseline 
schedule provides the planned value (PV) curve as the cumulative increase of the 
planned cost of the activities in the schedule. The PV curve is said to be a static 
key metric since it is known from the very beginning, prior to the project start. It 
will be used to monitor the performance of the project once it is in progress by 
calculating the earned value (EV) and earned schedule (ES) metrics to measure 
the project performance at periodic review periods. Figure 5.2 shows an example 
project Gantt chart (i.e., the baseline schedule) in ProTrack (the software tool I 
introduced in Chap. 1), and the line at the bottom of this picture titled “expected 
project duration” is the planned value line that shows the cumulative increase in the 
planned cost according to this Gantt chart. The two other EVM key metrics (AC and 
EV) are obviously not shown in the picture since they are unknown at the project 
start. 

Fig. 5.2 A baseline schedule (Gantt chart and planned value line)
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In the next two phases, two different types of Monte Carlo simulations are used 
to imitate the progress of the project, and it is important to understand the difference 
between these two types. The static simulation of Phase 2 imitates the project 
progress prior to the real project start and only serves as a simulation run to gather 
data to construct the tolerance limits. This simulation is identical to the simulation 
runs of a schedule risk analysis (Chap. 3) for obtaining the values for the activity 
sensitivity metrics, but it now gathers data for the schedule and cost performance 
metrics to construct the tolerance limits. The dynamic simulation of Phase 3 is 
different, as it is a way to imitate the real project progress and test the quality of 
the tolerance limits in a real-life setting. This second type of simulation therefore 
assumes that the project is now in progress and makes use of the tolerance limits of 
Phase 2 to find out whether they are indeed doing what they should do, i.e., warning 
the project manager when problems require actions. It is important to understand 
that this second simulation run is only relevant to academic researchers to test the 
control limits but will never be used in a real professional setting. Indeed, real 
projects are not dynamically simulated but are subject to the real project progress 
with its inevitable problems and necessary actions. Since the real world is not the 
ideal playground for academic researchers to test their ideas, they have to fall back 
on dynamic simulation runs to imitate this reality under uncertainty. These two types 
of simulations runs are discussed in detail in the following paragraphs. 

Phase 2. Construct Tolerance Limits (Static Simulation) The aim of running a 
static simulation is to create a wealth of data to construct the tolerance limits for 
project control. At each run of these static simulations, the two dynamic key metrics 
of EVM (actual cost (AC) and earned value (EV)) are periodically generated and 
compared with the static PV metric to calculate the schedule (SPI or SPI(t)) and cost 
(CPI) performance metrics. Since each simulation run imitates a slightly different 
project progress, the values of the performance metrics will differ in each run and 
each review period, and after a couple of thousands of runs, the static simulation run 
ends with a range of values for each review period of the project that will be used to 
create the tolerance limits. These tolerance limits can be calculated as simple . 1 − α

confidence intervals (e.g., a 95% interval for .α = 0.05), which results in lower and 
upper tolerance limits containing most of the simulated data (only . α2 percent of the 
simulated values fall under the lower tolerance limit and . α2 percent lie above the 
upper tolerance limit). 

Since these tolerance limits are calculated on the cost and schedule performance 
metrics (CPI, SPI, and SPI(t)), the static simulation simply simulates variability in 
the project by drawing random numbers from predefined probability distributions 
for the activity durations. It recognises that the baseline schedule is only a reference 
point that will be subject to natural variability during the project progress. The 
concept of natural variability comes from the quality control literature to accept 
that any process (including a project) is always subject to inherent uncertainty as the 
cumulative effect of several minor factors that cannot be predicted. Consequently, 
describing this natural variability as acceptable variation requires the definition of 
a desirable state of project progress expressed by the parameters of the probability
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Fig. 5.3 A project control chart (control limits and periodic measurements) 

distributions used in the static simulation run. Any variability coming from these 
distributions is considered as natural and should not require any actions, and all 
values within the tolerance limits will therefore contain acceptable values for the 
cost and schedule performance indicators for each review period of the project. 
Any value beyond these limits is assumed not to be acceptable and must have an 
unnatural cause of variability. 

Figure 5.3 displays an illustrative control chart with the lower tolerance limit 
(LTL) and upper tolerance limit (UTL) for one of the performance metrics (e.g., 
for SPI(t)). These tolerance limits are not set as straight lines but have an irregular 
shape since they are calculated for each review period from the simulated data. 
This irregularity illustrates the power of the static simulation runs and shows that 
the tolerance limits differ along the stages of the project (between start and end). 
At certain stages of the imitated project progress, a different number of activities 
can be in progress, each having a different duration and cost resulting in very 
different values for the cost and schedule performance metrics. Hence, choosing the 
right (i.e., most realistic) parameters for the probability distributions for defining 
the desirable project progress is of the utmost importance and should be done 
with care and knowledge about the expected behaviour of the project progress.4 

The dots within the control chart are periodic observations of the true status of 
the project progress and are the subject of Phase 3 (dynamic simulation or real 
project progress). It clearly shows that the static tolerance limits can serve as action 
thresholds in Phase 3, which means that exceeding these limits definitely indicates 
an abnormal project behaviour (a good one or a bad one) that should be carefully 
investigated, and when necessary, solved by corrective actions. In Jeroen’s first 
paper (Colin and Vanhoucke, 2014), two types of control charts were presented in 
line with the traditional quality control literature. A so-called X chart will be used 
to monitor the individual observations of the project performance indicators (e.g., 
the dots in the figure represent the CPI or SPI(t) values along the project progress), 
while an R chart monitors the difference between two adjacent observations of these

4 Chapter 14 presents a calibration procedure to find realistic values for the parameters of a log-
normal distribution to model variability in activity durations using empirical data of past projects. 
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project indicators. The tolerance limits of both charts can be calculated using the 
data generated by the static simulation runs. 

Despite the simplicity of running static simulations for creating the control 
charts with tolerance limits (from an academic point of view), not many project 
managers will easily take the step to this new approach for different reasons. First 
and foremost, they will argue that the parameters of the probability distributions to 
model activity duration variability can only be realistically estimated after analysing 
past projects similar to the new project. While I fully recognise that this is indeed 
not an easy task, I would argue that this should not be an excuse to not use this 
technique for controlling real projects. As will be shown in later chapters, a good 
analysis of past projects has multiple benefits and should be done regardless of 
whether you want to use Monte Carlo simulations or not. A second reason why 
project managers will not be inclined to embrace this new technique is the need for 
the Monte Carlo simulations to create these control charts. Nevertheless, I try again 
and again to convince project managers that running simulations has a lot of value 
and is not as difficult as they sometimes think. Moreover, many books have been 
written (outside the domain of project management) where the use of Monte Carlo 
simulation brought many advantages. One of the most enjoyable books I have ever 
read, and one that I definitely want to recommend to you is Nicholas Taleb’s book 
titled Fooled by Randomness (Taleb, 2012). Besides the fact that I am a huge fan of 
the author and his amazing writing style, after reading this book, you cannot help 
but conclude that the use of simulation is a necessity to better understand risk. I 
also want to add a last quote here to end this second phase of the static simulation 
runs from the American academic and computer scientist Nicholas Negroponte who 
perfectly summarised the value of simulations as follows: 

Learning by doing, peer-to-peer teaching, and computer simulation 
are all part of the same equation. 

I advise every project manager to try out the simulation tool for themselves. It is 
a small step for a manager but a giant leap for project management. 

Phase 3. Project Progress (Dynamic Simulation) In the third phase, the project 
manager is responsible for managing and controlling the progress of the project 
using periodic observations of the project’s status and comparing them with the 
tolerance limits of Phase 2. More specifically, the manager collects data for the EVM 
key metrics (PV, AC, EV, and its time-indexed version ES) at each review period to 
calculate the schedule and cost performance indicators. These periodic observations 
define the current project status and must be plotted in the control charts, as shown 
by the dots in Fig. 5.3. When these observed performance indicators exceed the 
tolerance limits, it is a clear indication that the project no longer is subject to 
acceptable variability and much more is going on. At that point, the project manager 
should be careful and use this indication as a warning that there is unacceptable 
variability in the project, requiring additional attention and possibly some actions. 
Consequently, control charts must be used as a data-driven project control system 
to report warning signals that serve as triggers for corrective actions. The system is
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based on a series of consecutive hypothesis tests using the following hypotheses at 
each review period (i.e., for each dot in the control chart): 

. H0: The project is executed as planned (acceptable variation). 

. Ha: The project is not executed as planned (unacceptable variation) 

When the observed performance (dots) falls within the tolerance limits, the 
null hypothesis is accepted and no real problems have occurred. In that case, it is 
assumed that so far the project is executed as planned with some acceptable variation 
(defined in Phase 2). However, when the observed dots exceed these tolerance limits, 
the alternative hypothesis must be accepted denoting that the project progress is 
no longer subject to acceptable variability. More precisely, when an observation 
falls below the lower control limit, the performance has likely dropped below an 
acceptable margin of variability compared to the baseline schedule, in which case 
the project manager should consider taking corrective actions. Likewise, when the 
observed performance indicator exceeds the upper control limit, it must be seen as a 
signal to exploit opportunities, as the performance is better than initially planned. In 
such case, the project manager might consider to re-baseline the project and exploit 
these opportunities to sharpen the future expected outcome of the project. 

As I have outlined earlier, the project monitoring process of real-life projects 
(Phase 3) does not make use of dynamic simulations, since the project manager is in 
charge of a project in progress and monitors its performance with the control charts 
until it is finished. However, academic researchers do not manage and control real 
projects but want to test the quality of control limits under a wide range of possible 
circumstances. Therefore, the project progress of Phase 3 must be dynamically 
simulated to imitate the real project progress. This dynamic simulation must be 
carried out under a wide range of settings (e.g., early projects and late projects 
with just a few or a lot of problems) to test whether these control charts indeed 
generate warning signals when they are really necessary. The specific design for 
this dynamic simulation is outside the scope of this chapter and will be outlined in 
detail in Chap. 12 in which three dynamic simulation models will be proposed. 

Practical Implementation Our research on project control using control charts 
with tolerance limits has received positive reviews from academia but also attracted 
the attention of some professional project managers with whom I was working at the 
time. Based on their request, we implemented these control charts in ProTrack to test 
them with real project data to find out whether they could add value in reality. Since 
the method works for every possible performance measure (not just the SPI or CPI), 
we had to make a choice during implementation for which performance measure 
we would calculate the tolerance limits to monitor project progress. As a matter of 
fact, the power of the static simulation runs specifically lies in the fact that they 
can generate an overwhelming wealth of project data for any performance metric 
without much additional effort. Consequently, any performance metric available in 
an EVM system can be used to construct the control charts. Figure 5.4 displays 
our control chart dashboard in ProTrack based on twelve different performance 
indicators. Each control chart represents another indicator coming from the same
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Fig. 5.4 Control charts for different performance measures 

static simulation runs, and despite their difference in interpretation, their use in a 
control chart remains exactly the same: When any of the thresholds are exceeded, 
the project manager must treat this as a warning signal for unacceptable problems 
that might require corrective actions. 

Apart from the choice of which performance metric to display, an additional 
choice had to be made. The different performance metrics in the control charts 
can be measured at various levels in the project network, ranging from individual 
activity control (constructing a chart for each activity) to general project control 
(constructing one control chart for the project). Both extremes are unlikely to lead 
to the best results, and the truth, as always, lies somewhere in between. I have 
already discussed in Sect. 3.3 of Chap. 3 that the right level of detail is an extremely 
important choice for an EVM system. Therefore, this choice should also be taken 
with some caution for the control charts, and this is why I will spend a detailed 
discussion on this topic in the next section. 

5.2 Control Points 

Recall that the control chart approach with statistical tolerance limits has been 
classified under the general umbrella of wisdom to refer to the fact that this 
method is an extension of the traditional EVM control method normally used 
by professional project managers (which were classified under the understanding 
mission of Chap. 4). There is no doubt that the use of control charts to generate 
warning signals for corrective actions does not belong to the current toolset of 
project managers for controlling projects, but that does not mean that the idea
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is completely new. As a matter of fact, any project manager implicitly relies on 
threshold limits to indicate whether actions are necessary, but they do not do it using 
the static simulation runs (Phase 2) discussed in the previous section. This section 
will review five different control methodologies, consisting of one well-known 
method in practice that everybody uses (understanding) and four implementations 
of the control chart methodology discussed in this chapter (wisdom). This section 
is a summary of a follow-up paper published in Colin and Vanhoucke (2015) to  
provide an answer to the controversy about the right level of detail for project 
control. 

The first method consists of the traditional use of EVM used by most professional 
projects managers and is briefly described in the following paragraph. 

Rules of Thumb (ROT)  Most project managers who use EVM for project control 
measure the project status by the classic performance indicators (SPI and CPI) and 
set some arbitrary values (thresholds) based on their intuition, experience or using 
simple rules of thumb (e.g., when SPI(t) falls below 70%, it is time for action). 
This straightforward way of controlling projects makes use of EVM data during 
project progress without any statistical analysis or simulation runs. Instead, these 
control limits are set manually by the project manager and will therefore look less 
irregular than the statistical tolerance limits of Fig. 5.3. In our study, we have defined 
three different control limits to imitate how project managers would define arbitrary 
rules of thumb to define their control thresholds. In a first method, the control limits 
are defined as straight horizontal lines, e.g., to express that the SPI cannot drop 
below a level of 70%. These so-called static control limits assume that the thresholds 
have fixed values along the project progress and will never be updated. Two other 
methods are referred to as narrowing control limits or widening control limits as they 
change the values for the thresholds during the project’s progress. The narrowing 
limits start with extreme values (e.g., 40%) to denote that schedule deviations are 
acceptable in the early stages of the project, but the values are narrowed towards 
the later stages (e.g., 90%) to denote that any slight deviation from the schedule 
requires immediate action. The widening limits work exactly in the opposite way 
and allow no major deviations early in the project but become more relaxed in the 
later stages of the project. This simple ROT method is the easiest way in which 
EVM can be used for project control without the need for statistical data (probability 
distributions) and static simulations and is therefore classified under Mission #1 
(understanding). Most project managers that I have met implicitly use this method, 
but they do not know how to define the best values for the thresholds. I have met 
people who argue that the performance should never drop below 90% during the 
early stages of a project, but no one could give me a reasonable argument as to 
why the 90% value is so important. I often feel that managers use a default value 
as some kind of proof that their system will detect any problem, but often no data 
analysis has preceded it. Too much trust in such a system results in a tendency to 
overestimate how much control someone has over the outcome of uncontrollable
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events and creates an illusion of control.5 When I had to choose an appropriate title 
for this book, I suddenly thought of a quote from the fiction writer Fred Bubbers 
that fits perfectly into the discussion of this first control method. The quote goes 
like this: 

Control is merely an illusion we construct 
to cope with the chaos that is reality. 

Illusions should be avoided at all costs, and the use of statistical tolerance limits 
instead of arbitrary rules of thumb can play an important role in this. Creating 
control charts using static simulation runs followed by a sequence of hypothesis 
tests to control projects is obviously a better and more objective method than using 
arbitrary rules. However, this method must, as mentioned earlier, be applied with 
the correct level of detail. The level of detail may vary according to the number 
of control charts used to monitor the performance of the different components 
(activities or groups of activities) of the project. In the remainder of the section, the 
number of control charts is defined by the number of control points in the project 
network. A control point is defined as a certain place in the project network that 
tracks the performance of a subset of the activities of the whole project. A separate 
control chart is then constructed for each control point, based on the statistical 
approach of the previous section, and each chart only monitors the progress of a 
subset of the project network. Consequently, the number of control points defines the 
level of detail in the project control process. Figure 5.5 displays an example project 
network to illustrate how four different control points can be defined in a project 
network. Since the activity durations are displayed above each activity (node) in 
the network, it is not difficult to see that the critical path of this project consists of 
activities Start - 2 - 5 - 8 - End. The four different control points are shown in the 
networks below the project network and discussed along the following paragraphs. 

Project Network Control (PNC) In the description of the previous section, it was 
implicitly assumed that only one control point was set at the end of the project 
such that the performance of the complete set of activities is monitored at each 
review period of the project (shown by the dots in Fig. 5.3). This system is the most 
straightforward implementation of statistical project control since the control chart 
monitors the progress of the project for all activities that are in progress. It requires 
only one control chart6 to periodically monitor the project performance from its start 
to end and is therefore the system with the lowest level of detail. Figure 5.5 displays 
this so-called project network control point at the end of the project network. 

Feeding Path Control (FPC) The concept of feeding path control is inspired by 
the critical chain/buffer management methodology of Goldratt (1997), in which

5 In case you have not figured it out yet, this is the title of the book you have now in your hands. 
6 I argued earlier that for any project performance indicator, one can use two control charts (X and 
R chart), and since EVM proposes several performance indicators (e.g., 12 in Fig. 5.4), a single 
control point can still result in multiple control charts. 
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Fig. 5.5 Control points to construct control charts 

feeding paths are defined as any path in the project network that enters the critical 
path. The feeding path control method calculates the tolerance limits for each 
feeding path separately, as well as for the critical path, and constructs several control 
charts to monitor the performance of the different paths in the project network. 
Figure 5.5 shows the four different control points for four different network chains. 
One control chart is displayed at the end of the project and monitors the progress of 
the activity on the critical path (project chart), while the others monitor the progress 
of the activities on the feeding chains (feeding charts) entering this critical path. 
This approach represents a more granular control method than the project network 
control method, as each control chart only monitors the performance of a subpart 
of the project network, requiring more observations and performance metrics to be 
measured. The number of control points can grow rapidly for large project networks, 
making it more difficult for this method to get an overview of the actual performance 
of the project due to the large number of control charts that must be checked during 
execution.
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Subnetwork Control (SNC) The subnetwork control method tries to find a middle 
ground between the two previous extreme methods by using more control charts 
than the single chart of the PNC method but less than the large number of charts in 
the FPC method (for the critical path and different feeding paths). More specifically, 
the method sets control points at each subnetwork instead of each feeding path, 
which will significantly reduce the number of charts. A subnetwork is defined 
as a collection of paths that enter the critical path and thus collectively form a 
subnetwork in the total project network. In the example of Fig. 5.5, the two feeding 
paths (path 3 - 6 - 7 - 9, and path 10) that get in the FPC method each a separate 
control chart are merged into one subnetwork with only one remaining chart. The 
figure displays three control points in total, one for the critical path (project chart), 
and two feeding charts for the two subnetworks entering the critical path. 

Longest Path Control (LPC) The longest path control method is a special case 
because it no longer monitors the entire project with several control points but only 
a part of the project with a single control point. However, the single control chart 
of the LPC is used in a different way than for the ROT and PNC methods. Indeed, 
these methods also only use one control point, but these were used to monitor the 
entire project (including all activities), while the FPC method only monitors the 
activities on the longest path, completely ignoring the other activities. The logic 
of the LPC method is inspired by the results of the research study discussed in 
Chap. 4 in which it was shown that the network structure has a major impact on the 
accuracy and reliability of EVM systems. Indeed, in Sect. 4.2, I stated that EVM-
based schedule control metrics are much more reliable for serial networks but have 
a poor performance for parallel networks. My friend Walt took this idea a step 
further in a new study (Lipke, 2012) and suggested to just look at the longest path 
in any network (critical path) by ignoring all the remaining (non-critical) activities. 
Since the critical path in a network is by definition always completely serial, the 
EVM methods should work much better on this serial part of the network. The other 
activities of the network are then superfluous because they make the network more 
parallel, and we know that a parallel network lowers the accuracy and reliability of 
the system. Figure 5.5 displays this control chart at the project network but only 
monitors the critical path activities. While the obvious advantage of this method is 
that it only uses one single control chart, the difficulty lies in the fact that the critical 
path continuously changes along the project progress. Therefore, this LPC method 
requires a continuous update of the critical path along the project progress, which 
gives the usability of this method a big blow. 

In the next section, the performance of these five project control methods will 
be tested using three well-known quality metrics from statistical hypothesis testing, 
and some comparative results are shown based on a computational experiment on a 
large set of artificial projects.
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5.3 Signal Quality 

In the comparative study of Chap. 4, the quality of an EVM system was validated 
using two straightforward metrics that measure the accuracy and reliability of 
predictions. The accuracy was defined as the average deviation between the 
predictions and the real project outcome (known once the project is over), while the 
reliability measured the impact of true or false warning signals on the quality of the 
predictions. These two metrics are easy to understand but are not well-defined and 
therefore not usable in the study discussed in this chapter. Since the study on control 
charts takes a statistical point of view, they should be validated with good and well-
defined metrics to measure the signal quality of the charts in an unambiguous way. 
This section presents three quality metrics to assess the performance of the different 
control charts of the previous section, along with some results of the performance 
of the five control chart methods. Since the use of control charts with statistical 
tolerance limit methods can be reduced to a sequence of hypothesis tests, the quality 
of their generated signals should be validated by the classic criteria used in this 
statistical field. It is known that the conclusions drawn from a hypothesis test can 
be subject to two errors (Type I and Type II) that will be used to evaluate the five 
control methods discussed in the previous section. A summary of the quality metrics 
is given in Fig. 5.6 and discussed along the following paragraphs. 

Probability of Overreactions The probability of overreaction is equal to the 
frequency that the control method generates a warning signal (because the tolerance 
limits have been exceeded) when in fact there is no problem at all and the project 
activities are still running according to plan (within the allowable variability). This 
probability is known in statistics as the Type I error or as the false positives and 
measures the probability that the null hypothesis is rejected when it should actually 
be accepted. Obviously, this Type I error should be as low as possible, since it 
creates a false warning signal to the project manager that actions are necessary while 
actually they are not. Since the control charts are set up for control points to monitor 
a group of activities (using 5 different versions as discussed earlier), each warning 
signal requires a search for the cause of the problem by looking for the activities 
that actually are in trouble, and actions should be taken to resolve the problem of 
these activities. But when there are actually no problems, the project manager has 

Fig. 5.6 Hypothesis testing for statistical project control
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needlessly carried out this search, which entails valuable time and effort, which 
should be avoided at all times.7 

Detection Performance The detection performance measures the frequency with 
which the control chart generates a warning signal to report a project problem 
(by exceeding the tolerance limits) that actually proves to be a correct signal 
because some activities are no longer performed according to the planned acceptable 
variability. This detection performance should be as high as possible, and ideally, 
each problem should be detected by the control charts. Of course, no system is 
perfect, and a number of problems sometimes remain under the radar and are not 
detected by the control charts. The detection performance is measured in statistics 
by the Type II error; more specifically, the performance is equal to 1—Type II error. 
The error is also referred to as the false negatives and measures the failure to reject 
the null hypothesis when the alternative hypothesis is actually true. 

Both types of errors are in conflict with each other, meaning that decreasing 
one error increases the second error. An increase or decrease in error can easily be 
achieved by narrowing or broadening the tolerance limits, but since they cannot both 
be improved at the same time, a difficult choice has to be made when composing the 
tolerance limits. Widening the tolerance limits will likely result in fewer warning 
signals being generated, which also means that real problems will be less easily 
detected. Thus, the Type II error will increase, but the Type I error will decrease. An 
inverse reasoning can be made for narrowing the boundaries. This trade-off between 
the two error types can be perfectly measured by a third quality metric that can be 
visualised as a curve showing the relation between the two errors, as explained in 
the next paragraph. 

The graph showing both errors is called the receiver operating characteristic 
(ROC) curve and is illustrated in Fig. 5.7. The curve shows the trade-off between 
the two errors that should be as high as possible. The perfect system is in the top left 
corner of the graph, where the detection performance is 100% (any error is detected) 
and the probability of overreactions is 0% (no signal is ever given if there is no actual 
error). A real system does not achieve this ideal situation, which is the reason why 
this curve can be used to measure the quality of the system. This quality is measured 
by the area under the curve (AUC), a metric that perfectly integrates both types 
of errors. As noted earlier, the perfect system has an AUC . = 100%. A completely 
random system has an AUC of 50%, which makes the system not better than flipping 
a coin as a warning signal (head gives you a signal, tail means everything under 
control). The quality of a sound warning system is thus measured by the AUC value, 
which must be greater than 50% and as close to the perfect 100% value as possible. 

The five control methods have been experimentally tested on a large set of artifi-
cial projects under different settings with different parameters for the probability 
distributions used for the two simulation runs (Phase 2 and Phase 3).8 In each 
experiment, the tolerance limits have been varied for the control charts to obtain

7 In Chap. 7, this search for problems will be called a top-down project control approach, and the 
effort taken to search for problems will be integrated in a new efficiency of control concept. 
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Fig. 5.7 An illustrative receiver operating characteristic (ROC) curve 

Fig. 5.8 Results of the statistical project control study 

many different values for the Type I and Type II errors. After a huge number of 
experimental runs, these errors can be used to draw the ROC curve and calculate 
the AUC metric. The results of these experiments are summarised in Fig. 5.8 for the 
five control methods of the previous section (displayed on the X-axis). 

These AUC values are displayed as box plots on the vertical axis and show 
the interquartile range (IQR) (the box) and the difference between the minimum 

8 The relevance of artificial projects for computational experiments will be explained later in 
Chap. 11, and the specific details of the simulation model will be the topic of Chap. 12.
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and maximum AUC values (the lines). The project network control (PNC) method 
shows results for both the X and R control charts, while the rules of thumb approach 
(ROT) shows the three types of straight lines. The methods working with feeding 
paths—the feeding path control (FPC) and subnetwork control (SNC) methods— 
show results for a different number of control points. This number depends on the 
structure of the project network and on the number of feeding paths in each network. 
The longest path method (LPC) only displays one value, since it only uses one 
control point to monitor the project performance. 

The graph clearly shows that the most basic version of statistical project control 
using only one project network control point (PNC) outperforms the rules of thumb 
(ROT) approach, certainly when the static thresholds are used for ROT. These results 
are, of course, as expected, as the statistical methods are much more powerful 
than the simple rules of thumb, but they indicate the relevance of using static 
simulations to set the correct values for the tolerance limits. The longest path 
method performs equally good as the best ROT methods and therefore should not 
be considered a worthy alternative as it takes too many changes along the project 
progress to continuously update the critical path. An interesting observation is that 
the subnetwork control (SNC) method performs better than the feeding path control 
approach (FPC) that uses up to 10 different control points (charts). These results 
indicate that setting a control chart on each linear path entering the critical path is 
not only too time-consuming (too many control points to monitor), but also results 
in a weaker performance, and the FPC method should therefore not be taken into 
account. The SNC method follows a similar logic as the FPC method but uses less 
control points (up to 5) and performs the best of all methods. This result indicates 
that the use of statistical control points with a relatively small number of control 
charts can significantly increase the quality of the warning signals generated during 
project progress. I therefore advise every researcher to investigate this SNC method 
in order to further improve the quality of the statistical project control by adding 
extra features and a richer data analysis. 

5.4 Mission Accomplished 

As I noted at the beginning of this chapter, this chapter builds the bridge between 
the first two missions of academic research. More specifically, it was argued that 
the ROT approach belongs to Mission #1 (understanding), in which the researchers 
examine the existing approach (based on rules of thumb) and validate it with com-
puter experiments. The four other methods went a step further and used statistical 
methods that are not yet (much) used in practice, and these methods were therefore 
classified under Mission #2 (wisdom). The ultimate goal of academic research is, 
of course, to convince practitioners to start using these new (statistical) methods, as 
the experiments have shown that they work a lot better. That is why Mission #2 is 
also defined as making small, sometimes even marginal improvements, so that the 
step towards practical use is not very high.
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But maybe I am just naive, and this step might never be taken. The results have 
shown that the SNC is the best method, which is not very difficult and only requires 
a maximum of 5 control charts. Why would not everyone start using this method? 
As a professional, it is probably much more relevant to give up some of the excellent 
performance for SNC and go for the second best option (LPC) to take advantage of 
the convenience of using only one control chart. In addition, the ROT method, the 
easiest method of all, does not perform too badly either and requires no statistical 
simulation at all. Perhaps this is the method that professionals will use now and 
forever, and the statistical extensions of project control may quietly disappear and 
never be used in professional settings. 

This is a possibility, but I am very hopeful that things will change. It may 
all be slow, but it will happen some day. I have already mentioned in Chap. 4 
that the earned schedule method was also accepted by almost no one in the 
beginning, but that gradually, partly thanks to the academic research, opinions were 
adjusted. Today, almost no one doubts that this method works much better for time 
management than the classic EVM method. Above all, I think that an academic 
researcher should never give up hope that research results will one day find their way 
into practice and researchers should therefore do everything they can to continue 
convincing the world of the power of statistical methods over intuition. Perhaps 
the step towards statistical project control is too big, and we should all look for 
intermediate forms between the two extreme missions (should I call it Mission #1.5 
then?), as is suggested in Fig. 5.9. In Chap. 8, I will look for such an intermediate 
form to facilitate access from research to practice. Nevertheless, I continue to defend 
Mission #2 as a fully fledged and important task of academic research. I would even 
like to go a step further and argue that sometimes it is not even necessary to try 
to convince the real world. Sometimes research can be an end in itself, in which 
the researcher goes completely wild in the search for the limits of our knowledge. 

Fig. 5.9 Mission #1.5 (academia meets practice)
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This quest can be challenging, sometimes leading to strange and incomprehensible 
results, and is presented as the third mission of academic research in the next 
chapter. Fasten your seatbelt . . . it will be a challenging ride! 
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Chapter 6 
Learning 

In the previous two chapters, the concepts understanding and wisdom were used to 
refer to the two research missions to investigate existing and new methodologies 
for managing projects, respectively. I have shown in the previous chapter how 
the currently existing and generally accepted EVM methods (understanding) have  
been extended to statistical methods (wisdom) that are—despite their simplicity— 
not (yet) widely used in professional environments. As a matter of fact, the five 
statistical control methods discussed in the previous chapter are not very easy 
and straightforward to implement in the current PM practices, and I have not met 
many project managers that were as enthusiastic as I am to use them in their 
project management systems. Nevertheless, despite this lack of implementation, the 
underlying idea of these statistical methods is not very complex and not new at all, 
since it is merely an extension of a generally accepted data-driven methodology used 
in quality management known as Statistical Process Control. Statistical process 
control is a method of quality control that employs statistical methods to monitor 
and control a process and has been used in many companies since its introduction 
by Walter Shewhart at Bell Laboratories in the early 1920s and later popularised by 
William Edwards Deming, first in the Japanese industry, and later all over the world. 
Statistical process control is appropriate to support any repetitive process, and as 
a project does not follow that definition (but is instead assumed to be a unique 
one-time endeavour), not much effort has been done to translate the statistical 
process control methodology into a statistical project control methodology. This 
translation lies in the core of research Mission #2 of the previous chapter. It 
aims at extending the current methodologies with new proven principles borrowed 
from other environments (e.g., manufacturing) and applied to another environment 
(project management) where it has not been used so far. While these methods are not 
yet widely used, it is—I hope and believe—only a matter of time before practical 
use cases will show their relevance in business as some use cases already exist. 

Despite the noble second research mission to develop new and not-so-complex 
methodologies that can be used by professionals without much additional effort, 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Vanhoucke, The Illusion of Control, Management for Professionals, 
https://doi.org/10.1007/978-3-031-31785-9_6

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31785-9protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6
https://doi.org/10.1007/978-3-031-31785-9_6


86 6 Learning

academic research should strive for more. Academic research should not only 
provide new insights and methodologies ready for immediate use, but should also 
aim at shifting boundaries, explore untrodden territories, and come up with totally 
new ideas, without thinking too much about the practicalities of implementation or 
the relevance for business. Instead, academic research should be defined, at some 
times, as the formalised search for new knowledge for the sake of the knowledge. 
It is the freedom to explore and search to the unknown, and it is the primary reason 
why I have chosen to stay in academia for the rest of my life. This exploration 
of new ideas is exactly the goal of the Mission #3 of academic research, which is 
referred to in this book as learning. While some people might say that such a type 
of research is totally irrelevant and a waste of time (and money), others would refer 
to the wise words of the African–American novelist Zora Neale Hurston who stated 
the following: 

Research is formalised curiosity. 
It is poking and prying with a purpose. 

This chapter extends the project management and control methods to advanced 
machine learning techniques to push boundaries and shift our knowledge, without 
aiming at reaching immediate practical relevance. The use of machine learning 
methods in computer science is to create a technology that allows computers and 
machines to function in an intelligent manner. This chapter applies these advanced 
statistical learning techniques to monitor and control projects in order to test whether 
they could potentially be useful in a project management environment. Of course, 
I fully realise that not many project managers will be able, or willing, to use such 
advanced methodologies in their projects, but that does not matter, and it does not 
make this research less interesting or exciting. The previously mentioned quality 
management guru William Edwards Deming also noted the following: 

Learning is not compulsory. . . . neither is survival. 

In this chapter, I will use the words artificial intelligence and machine learning 
to refer to advanced statistical techniques to access and process large amounts of 
data used by fast and efficient computers to improve the quality of the project 
control decision making process. To that respect, this section is not as exciting as 
the title suggests and I may disappoint my readers. It is not a chapter about robots 
with mechanic brains learning to imitate our behaviour, nor is it about science 
fiction stories as often told in artificial intelligence stories. Instead, it is a chapter 
about processing an overwhelming amount of project data using advanced analytical 
methods to improve our knowledge and bring it to new levels. In the next sections, 
these techniques will be used for the three components of the dynamic scheduling 
framework (schedule, risk, and control). Welcome to the power of data.
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Fig. 6.1 Summary of machine learning methods for the RCPSP 

6.1 Schedule 

Since baseline scheduling is the point of reference for risk analysis and project con-
trol, it might seem obvious to use machine learning algorithms for these challenging 
scheduling problems first. However, the scheduling problems are so challenging 
that most researchers developed an impressive amount of algorithms to solve 
these scheduling problems and no one really cared about extending them to more 
advanced machine learning methods. However, this changed when two international 
PhD students, Weikang Guo and Jingyu Liu from China, joined my team and 
expressed their desire to apply learning algorithms to my favourite research theme. 
Figure 6.1 summarises the work on using machine learning algorithms for the 
construction of a baseline schedule for projects with limited resources. We worked 
in three phases, each of them resulted in a publication in a peer-reviewed journal, 
and each phase will be briefly discussed along the following paragraphs. 

Design: Genetic Programming Genetic programming (GP) is a powerful and 
data-intensive method that can be used for the automated design of priority rule 
heuristics for the resource-constrained project scheduling problem (RCPSP). The 
RCPSP is a scheduling problem that is notoriously hard to solve (NP hard), and 
many researchers (and software tools) fall back on simple yet efficient priority 
rules to schedule these projects without aiming to find an optimal solution1 (which 
consists of a project schedule without resource over-allocations and a minimal total 
project duration). In the academic literature, the potential of applying a so-called 
genetic programming hyper-heuristic to design priority rules has only been scarcely 
explored in the domain of project scheduling, and there is plenty of room to improve 
its efficiency and performance. 

The term hyper-heuristic is used as a high-level approach that can select or 
generate low-level heuristic algorithms. The heuristic selection chooses or selects 
existing heuristics from the academic literature, and then the heuristic generation 
module generates new and better heuristics from the components of existing ones. 
The genetic programming is widely used as a heuristic generation methodology, 
and in recent years, this technology has attracted the attention of many researchers 
in the field of operations research. Instead of relying on human experts, researchers

1 I have briefly described the various solution methods to solve the RCPSP in Sect. 3.4 of this book. 
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can now resort to genetic programming to automate the process of heuristic design 
and discover efficient priority rules that may not be easy to construct manually. 
The use of priority rules fits perfectly in the approach, as there exist plenty of 
simple and effective rules to solve the RCPSP, and they can therefore be used to 
design new and better ones to solve this challenging scheduling problem. Jingyu 
Liu, one of my Chinese PhD students, accepted this challenge and wanted to design 
new improved priority rules to solve the RCPSP for large projects up to thousands 
of activities. For such projects, none of the advanced solution methods (such as 
meta-heuristics or exact branch-and-bound procedures) work very well, and so the 
priority rules are most likely the only algorithms to schedule these projects in a fast 
and relatively good way. Jingyu is an enthusiastic and hard-working researcher, but 
often underestimates how much computer effort is necessary to train and test new 
research ideas. It is known that GP requires intensive computing effort, carefully 
selected training and test data, and appropriate assessment criteria, and although he 
initially thought that this was all readily available, it took him quite some time to 
carry out all his experiments before his paper could be published. 

After struggles with an overwhelming amount of project data, limited computer 
memory, and too many computational experiments, he eventually published his first 
paper (Luo et al., 2022). He used 4320 project instances from well-known existing 
project datasets (which will be discussed further in Chap. 11) consisting mostly of 
projects with 30, 60, 90, and 120 activities, and the biggest ones up to 300 activities. 
He tested the new GP-based priority rules on a test set of projects and concluded that 
the newly designed priority rules outperformed the existing ones. Despite this good 
news, these new rules will never be used for such small projects, which is why he 
also trained and tested his GP approach on newly generated datasets with projects 
with more than 1000 activities. The GP-designed rules performed significantly 
better than the best traditional priority rules for these large projects, which clearly 
shows the benefits of using the data-intensive GP heuristic to improve the schedule 
quality of real-sized project instances. Happy with his first publication and with a 
renewed motivation due to the interest he got from some Belgian companies that 
wanted to schedule huge projects with up to 5000 projects, he extended his GP 
algorithm to a so-called surrogate-GP method, which he summarised in Luo et al. 
(2023). 

Rank: Regression Models Weikang Guo, another Chinese PhD student working 
in the same office as Jingyu, was more interested in finding (near-)optimal solutions 
for small projects instead of finding relatively good solutions for big projects. Rather 
than replacing the fast priority rules from the literature by better ones, she decided to 
rely on the exact and often complex branch-and-bound (BnB) methods available in 
the literature that can—for relatively small projects—solve the RCPSP to optimality. 

The development of branch-and-bound procedures for solving the RCPSP dates 
back to my own PhD period, in which working on exact algorithms was considered 
as an honour. The BnB method is an algorithmic approach that consists of a 
systematic enumeration of candidate solutions by exploring the search space in 
a systematic way. The algorithm constructs a tree, which initially starts with the
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full set of all possible solutions at its root node. It then explores branches of this 
tree, which represent subsets of the solution set, and each branch gets an estimated 
value for the optimal solution of the problem in the form of a lower bound. When 
the node in the tree has a bound value lower than any feasible schedule found so 
far, this tree must be branched further. However, the node is discarded if it cannot 
produce a better solution than the best one found so far. Any branch-and-bound 
algorithm consists of a number of different components that can be implemented 
in different ways. The number of possible settings for each component is given 
between brackets in the following description:

• Search strategy (2): The search in the branch-and-bound tree can be explored 
from two fundamentally different points of view. In the so-called upper bound 
strategy (U), the search aims at improving the solution of the schedule until no 
better solution can be found. It starts with a feasible schedule with a certain value 
for the total project duration and gradually aims at improving it (reducing the 
duration) until the best one is found. The lower bound strategy (L) works exactly 
the opposite way around and starts with a lower bound value on the total project 
duration (which does not represent a feasible schedule) and then gradually aims 
at increasing this lower bound value until it can be proven that it corresponds to 
a feasible project schedule with a minimum project duration.

• Branching scheme (3): This scheme determines the way the nodes are con-
structed at each level of the tree, i.e., it determines how the solution space is split 
into different parts at each level of the tree. Three well-known branching schemes 
are tested, known as the serial, parallel, and activity start time branching rules.

• Branching order (2): Once the branches are constructed at a new level of the tree, 
the algorithm has to decide the order in which the nodes are selected for further 
exploration. These nodes can be ordered according to the best lower bound 
value (which gives an estimate of the project duration of a feasible solution) 
or according to the ID of the activity.

• Lower bound (4): The algorithm depends on efficient estimation of the lower 
bound calculations, and if no bounds are available, the algorithm degenerates 
to an exhaustive search of the solution space that will—for large projects—take 
forever. The study has used 4 composite lower bounds as an assembly of 13 lower 
bounds from the literature. 

Any BnB algorithm must select one setting for each of the four components, and 
so it is not very difficult to see that in total, .2×3×2×4 = 48 different configurations 
are possible, which results in 48 slightly different BnB algorithms. 

My Portuguese friend José Coelho has programmed these BnB algorithms in 
2018 by implementing all possible configurations of the four components in a 
so-called composite lower bound branch-and-bound procedure, and this allowed 
Weikang to use this algorithm in her study (the development of this 48-component 
algorithm is discussed in detail in Sect. 11.5 of Chap. 11). However, not all of 
these 48 configurations had been presented in the academic literature yet, and 
between 1974 and 2000, only 12 high-performing BnB procedures were proposed
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to solve the RCPSP.2 Each algorithm makes use of only one or two settings for 
the four components described earlier, and in total, we could classify these 12 
algorithms in 9 different configurations, which cover less than 20% (9/48) of all 
possible configurations. Weikang used the solutions obtained from the 48 BnB 
algorithms to investigate which configuration performed best. To that purpose, she 
made use of two regression models to predict the ranking of the best performing 
configurations based on easy-to-calculate features of the project. More precisely, for 
each individual project instance, the regression methods must rank the performance 
of each of the 48 configurations based on project characteristics such as the number 
of activities, the network structure, or the use of resources by the project activities. 
Consequently, this ranking is very project-specific and can differ from one project 
to the other. Her ultimate goal was to automatically rank the configurations and then 
select the best ones to solve the RCPSP hoping that the solution would be better 
than the solutions found by the 12 existing algorithms in the literature. 

A detailed description of these ranking methods would lead me too far, and the 
readers are referred to her published paper (Guo et al., 2023b) for more details. 
The two regression models used are the kernel ridge regression (kRR) and k-
nearest neighbour (kNN) algorithms, which are well-known methods in the machine 
learning literature. She performed a computational experiment on a set of 3,143 
projects (80% for training and 20% for testing) under different stop criteria of 1 s, 
60 s, and 1 h, which took her months of hard work and a lot of CPU time. Results 
were impressive, though, showing that the regression models could predict the 
ranking of configurations pretty well. In one of her experiments, 490 hard instances 
were selected and solved by the two regression models (kNN and kRR) and the 
12 existing branch-and-bound procedures from the literature (using only 9 of the 
48 configurations). Figure 6.2 shows the results of the two regression models for 
the 12 branch-and-bound algorithms (no author names are mentioned, just the year 
of publication). Each method is truncated after 1 h of processing time, and the 
best project duration is reported. For the two machine learning methods, the 48 
configurations were automatically ranked, and then the first 10 configurations were 
sequentially called (running for 6 min) to report the best found solution after 1 h. The 
existing BnB procedures consist of only one specific configuration, which was run 
for 1 h to report their best solution. The figure clearly shows that the two regression 
models outperform the existing BnB procedures, which demonstrates that ranking 
the different configurations from the literature into one integrated prediction model 
is worth the effort. Despite the complexity of this ranking method, it nevertheless 
makes the use of machine learning algorithms an interesting future research avenue 
in the context of project scheduling. 

Select: Classification Models Academic research can be intense, stimulating, and 
rewarding. It requires an unsatisfying hunger for knowledge and a commitment to

2 After the year 2000, meta-heuristic solution methods became so popular and powerful that almost 
no one wanted to work on exact algorithms anymore. 
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Fig. 6.2 Performance of two learning models and nine existing BnB algorithms 

exploring the limits of our understanding in search of impossible improvements. 
Weikang has that spirit and did not stop after the impressive results of her previous 
study. She wanted more, and replaced, in a new study, the two ranking algorithms by 
a set of machine learning algorithms that automatically select the best performing 
configuration(s) instead of ranking them in decreasing order of performance. The 
rationale behind this new approach is that a prediction of the relative ranking 
between algorithms (configurations) does not really matter and an automatic project-
specific prediction that determines which configuration(s) could provide the best 
solution is sufficient. Such prediction can be provided by the classification models 
used in machine learning. 

Classification is a supervised learning task in which the computer learns from 
the labelled training data and uses this learned information to classify a new unseen 
object or sample of objects. With a given dataset, attributes that are used to describe 
each sample are referred to as features, and the category identifiers are referred 
to as labels. The features and labels are often used as the inputs and outputs of 
the model, respectively. The goal of the classification is to learn a function (or 
mapping) from inputs to outputs. The various machine learning techniques that 
implement the function are known as classifiers. Based on the number of labels 
to be predicted for each sample, the classification can be categorised into single-
label classification methods and multi-label classification methods. The single-label 
classification methods assign an object to exactly one class when there are two or 
more classes available, while multi-label classification deals with objects having 
multiple class labels simultaneously. In the context of project scheduling, an object 
will be represented by a project instance, a feature is represented by well-known 
project indicators (measuring the network structure and the resource use), and the 
labels are given by the solution of the 48 BnB configurations or by a set of priority 
rules. Since it is obvious that for each project instance there may be more than 
one BnB configuration or priority rule that can generate the best possible project
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duration among all the procedures, the learning task to be addressed is a typical 
multi-label classification task. 

Weikang tested the classification methods with both priority rules (Guo et al., 
2021) and the 48 branch-and-bound configurations (Guo et al., 2023a) and relied 
on six machine learning base classifiers (decision trees, random forests, neural 
networks, support vector machines, k-nearest neighbour search, and naive Bayes). 
The difference between single-label and multi-label classification is explained along 
the following lines using decision trees as a classifier (but the words “decision tree” 
can be easily replaced by the other five classifiers without changing the underlying 
classification model):

• Multi-label classification with binary classification. This method transforms 
the multi-label classification task into a set of single-label models, which can 
be done in two different ways. In the first model, the binary relevance (BR) 
method is used to decompose the multi-label classification task into multiple 
binary classification tasks, which means that for each label (priority rule or BnB 
configuration), a separate classifier (e.g., a decision tree) is built. For the BnB 
procedures, this approach results in exactly 48 decision trees during the training 
process, and the ultimate desire is that only a small number of these trees results 
in a positive prediction. If that is the case, each test instance is then solved by only 
this small number of solution algorithms, i.e., only with the BnB configurations 
or priority rules that return a positive prediction among the complete set of 
possible trees. A second method, known as the classifier chain method, works 
in a very similar way but adds correlations between the single-label models to 
better classify the data and make the different decision trees depending on each 
other.

• Single-label classification with multiple classes. This method transforms the 
multi-label classification into a single-label classification with multiple classes. 
More specifically, the multi-label classification task is converted into a single-
label multi-class classification task by treating a set of labels as a new class. 
Hence, if multiple labels (e.g., a set of priority rules or BnB algorithms) give 
the best possible makespan for a particular instance, then this instance is labelled 
with the newly defined class containing all these positive labels such that this 
instance gets a single newly defined class label. The obvious advantage is that this 
approach results in only one decision tree, but since the number of created classes 
during the model training is not known in advance, it can result in one enormous 
decision tree with many newly created classes. Nevertheless, each instance will 
make use of the single (huge) tree during the testing phase, and for each new 
project instance with known feature values, only one leaf node will be selected 
(which means that only one priority rule or BnB configuration will be used to 
schedule this project instance). 

The computational results showed that all classification models outperform the 
performance of using any single solution procedure (either priority rule or BnB 
configuration). Moreover, it was shown that the multi-label method with classifier 
chain (which incorporated correlation between the single-label models) works better
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than the multi-label with binary relevance method, which illustrates the importance 
of adding correlations between the different classifiers (decision trees). However, 
much to our surprise, the results also showed that this performance is (slightly) 
worse than the results of the ranking models discussed in the previous study (as 
shown in Fig. 6.2). 

Conclusion The results of the previously discussed machine learning studies 
illustrate that the machine learning framework can help select algorithms to solve 
this challenging problem, but also that much more research is necessary to put 
these insights into practical applications. As a matter of fact, this research should 
be read with a critical eye, since the algorithms used in this study require not 
only much implementation effort for incorporating all BnB strategies, but also 
rely on a learning process that consumes an enormous computational time. Not 
many professional project managers are ready to take this step to construct their 
project baseline schedule. However, the lack of immediate practical relevance 
should not be seen as a weakness of such research, as the summary of these 
research studies is written in the learning chapter that was defined as the third 
mission of academic research. As a matter of fact, every research study presented 
in this chapter consists of a search to the unknown, trying to extend knowledge 
for the sake of the knowledge. The academic freedom to explore gave Weikang 
the time and opportunity to test advanced machine learning methods without really 
knowing where she could and would end, and it brought us to new unknown but 
exciting territories. Nevertheless, her exploration has shown that combining the 
best components from the literature improves the solution quality for resource-
constrained project scheduling problems, and therefore, the study has shown that 
preference learning, in general, and label ranking predictions, in particular, are 
interesting research avenues in the context of project scheduling. Since the project 
schedule, the first of three components of the data-driven project management 
framework, serves as a point of reference for the other two components (risk and 
control), it might be worth the effort to rely on the advanced methods, not only in 
academia, but even—one day in the future—in practical situations. 

6.2 Risk 

For the use of machine learning methods to analyse project risk, I worked together 
with Izel Ünsal Altuncan, a PhD student from Turkey living in Brussels (Belgium) 
with her husband and child. She joined my team with an interest in risk networks and 
expressed her desire to work on project time and cost forecasting based on the papers 
I discussed in Chap. 4. I explained in that chapter that the research on project time 
forecasting began with a comparison between traditional Earned Value Management 
methods and the new Earned Schedule methods, and the performance of these 
methods to predict the final project duration was measured by their accuracy and 
reliability. Predicting the total duration and cost of a project in progress is important,
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Fig. 6.3 Stepwise approach for project predictions with Bayesian networks 

not only for academics, but also for professional project managers. However, none 
of the studies in academia made the link between time forecasting and schedule risk 
analysis, and so that became the focus of the new research study. She investigated 
the use of Bayesian networks (BN) to predict the expected total duration of a project 
based on known input parameters from the project scheduling and risk analysis 
literature. A Bayesian risk network model is said to provide a static prediction since 
it aims at forecasting the project’s time performance prior to the project start, which 
is different from the time predictions discussed in Chap. 4 that predict the duration 
of the project during its progress. As we have already referred to the differences 
between the static and dynamic phases, the BN method uses both a static simulation 
(to determine the sensitivity values for the activities) and a dynamic simulation (to 
simulate the real progress of projects). The design of the study consists of four 
phases that are summarised in Fig. 6.3 and briefly explained along the following 
paragraphs (Unsal-Altuncan & Vanhoucke, 2023). 

Phase 1. Theoretical Model In this first phase, a theoretical model has to be built 
in which relationships are established between the characteristics of projects and 
their possible impact on the quality of forecasts. The creation of such a theoretical 
model can only happen if there are pre-existing insights into such relationships, and 
this shows the beauty of academic research as a discipline where one researcher 
builds on the results of another. Specifically for this project, we could use the 
results and insights described in Sect. 4.2 of Chap. 4 that showed that the network 
topology of a project and the sensitivity of its activities have a major impact on 
the quality of time and cost forecasts. These results were published years before 
Izel’s arrival, but she used them to build a so-called theoretical risk model shown 
in Fig. 6.4. The circle nodes represent the risk variables, while the arcs between 
these nodes indicate the direction of causality between the risk variables. These 
risk variables can be independent or dependent, and a dependent risk variable is 
causally preceded by at least one other risk variable in the model. The figure shows 
that the network structure (NT), time sensitivity (TS), and cost sensitivity (CS) of 
activities are all independent risk variables, while the time performance (TP) and 
cost performance (CP) of a project are dependent risk variables. In the cases where 
risk variables cannot be directly measured, observable indicators must be used 
as measurements, represented by the rectangles. Two risk variables in the model 
are set as target variables, because they are the variables that the model wants to 
predict. In the study, both time performance (TP) and cost performance (CP) were 
set as target variables (represented by the grey nodes) because the research goal
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of this study is to ultimately predict the actual duration (RD) and cost (RC) of the 
project. This theoretical model gives a clear picture of how the total duration and 
cost estimates depend on a number of project-specific factors, and the model should 
now be validated through a data-intensive process using Bayesian network analysis 
to investigate whether this is indeed the case or not. 

Phase 2. Data Generation Since a Bayesian network analysis, like all machine 
learning methods, requires a lot of data, the second phase consists of generating a 
large heap of different values for the observable variables (rectangles) that define 
the values of the risk variables (circles). These values can be obtained by using a 
large database of artificial projects and by using static and dynamic simulation runs 
very similar to the simulation runs discussed earlier in Sect. 5.1. The generation of 
the data for the three classes of observable variables works as follows:

• Network topology (NT). The study makes use of a set of 900 artificial projects 
generated under a structured design to maximally vary the topology of the 
networks. The network structured is controlled during the generation by using 
the four so-called network topology metrics, known as the serial/parallel (SP) 
indicator, the activity distribution (AD) indicator, the length of arcs (LA) 
indicator, and the topological float (TF) indicator. The generation process of 
these networks, along with a brief presentation of the four indicators, is the topic 
of Chap. 11 (Table 11.1).

• Time (TS) and cost (CS) sensitivity: The values of the observable variables 
for the time/cost sensitivity are obtained by static simulations using a schedule 
risk analysis. This methodology is presented earlier in Sect. 3.4 and generates 
sensitivity metrics for the project activities based on Monte Carlo simulations. 
These metrics measure the sensitivity of variability in the duration and cost 
of the activities of a project as a percentage between 0% (not sensitive) and 
100% (highly sensitive). This sensitivity can be expressed by the criticality index 
(CI), significance index (SI), or schedule sensitivity index (SSI) to measure time 
sensitivity, and by three versions of the cruciality index (CRI) to measure time 
and cost sensitivity. Since these metrics provide a percentage for each activity 
individually, they should be integrated into one single percentage on the project 
level. Therefore, the average values of these metrics (TS(a) and CS(a)) as well 
as their standard deviation (TS(s) and CS(s)) are used as the two observable 
variables for each metric.

• Time (TP) and cost (CP) performance: The performance of the project is 
measured by the real duration (TP) and real cost (CP) of the project, and these 
values are only available when the projects are completed. Since the algorithm 
makes use of artificial projects, these two values must be determined using 
dynamic simulations to imitate artificial project progress.3 

3 As I have already mentioned earlier, the specific design of these dynamic simulations to imitate 
project progress will be discussed in Chap. 12.
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Phase 3. Training and Testing The third phase involves constructing multiple risk 
models by splitting the huge artificially created dataset from Phase 2 into several 
training and test sets and applying the BN algorithms to predict the time and cost of 
these projects. In model training, parameter learning algorithms are used to analyse 
whether the theoretical model of Phase 1 is consistent with the generated data 
of Phase 2. This training step results in an appropriate risk model with optimal 
model parameters. The so-called k-fold cross-validation approach is used to arrive 
at the optimal parameter set, as is common in machine learning, which sequentially 
divides the database into training and validation sets. This work is largely done as 
a black box analysis, which is one of the dangers of machine learning research, 
and the details of the BN algorithm are therefore beyond the scope of this book. In 
fact, the magic happened by using the package “bn.learn” in R, which—without 
giving details—works as follows: The parameter set for a Bayesian network is 
estimated using maximum likelihood estimation algorithms that take the form of 
local probability distributions expressed as Gaussian linear models consisting of 
regression coefficients. In the first step, the project data are entered into the model 
and the values for the variables are determined. In the second step, the initially 
estimated local probability distributions for the remaining variables are updated (re-
estimated) using Bayes’ theory, based on the fixed values for the evidence variables 
and the regression coefficients in the parameter set. After these runs, the estimates 
of the network risk parameters are available, which can be used to predict the time 
and cost performance of new unseen projects. In our testing phase, the model uses 
the fitted risk models for predicting the time and cost performance of a large set of 
projects under widely varying conditions. 

Phase 4. Forecasting Output Finally, in the fourth phase, the prediction accuracy 
is evaluated for the time and cost performance of the test predictions to verify 
whether the BN model does provide improvements over the traditional forecasting 
methods. This prediction accuracy is measured using the same criteria that we used 
in Sect. 4.2 (mean absolute percentage error) (MAPE) and is therefore not discussed 
further here. 

Figure 6.5 displays a summary of the results of the study using two time 
prediction models on a set of 19 empirical projects. The graphs show a comparison 
of the MAPE values (y-axis) for different percentages of project completion (x-
axis) ranging from 0% to 100%. The first forecasting model makes use of the 
static predictions with a Bayesian network algorithm (BN). The results are shown 
by a horizontal line since the forecast is made at the start of the project (and is 
never updated). The second method makes use of the nine dynamic EVM forecasts 
presented earlier in Chap. 4 that are updated along each growing percentage of 
project completion. The top graph shows the results of both forecasting models 
using the best obtained prediction, while the bottom graph displays average results 
for each model (using different versions). The graphs show the impressive behaviour 
of the risk models with BN and indicate that machine learning and data training 
using the model of Fig. 6.4 can provide better forecasts for most of the project 
phases. When average results are used, the nine EVM methods cannot provide better
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Fig. 6.5 Time accuracy of Bayesian networks and EVM predictions 

predictions, on average, for the first 80% of the project completion. When the best 
performing EVM method is used (which is, as explained in Chap. 4, the earned 
schedule method), then the best performing risk model (BN) still outperforms the 
EVM forecasts in the first 65% of the project. These results are a clear illustration of 
the power of machine learning and the importance of using network topology (NT) 
and risk sensitivity (TS and CS) metrics to predict a project’s time performance 
(TP). It is also an experimental proof that a composite forecasting approach 
(combining static risk models with dynamic progress data) can significantly improve 
the overall quality of project predictions, and future research should focus in 
developing and improving such composite methods. 

6.3 Control 

Since controlling projects constitutes the main theme of this book, it would be 
ridiculous not to test the machine learning methods on the project control research 
studies of the previous chapter that all rely on the Earned Value Management
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methodology. Much of the experimental work is done in collaboration with Mathieu 
Wauters, then a PhD student at my research group, and now a consultant in one of the 
biggest consultancy companies in Belgium. Our collaboration has resulted in three 
scientific publications on the use of different machine learning methods to control 
projects, and a brief summary is provided in this section. Figure 6.6 summarises the 
computational design used to test various machine learning project control methods 
and shows that it consists of a three-phase approach very similar to the project 
control study of the previous chapter. The inputs (Phase 1. Baseline schedule) and 
outputs (Phase 3. Dynamic simulations) are almost identical, but the second phase 
is completely different and relies on advanced machine learning methods trained 
on a large set of artificial project data. The aim of the research experiments was 
not to test control charts (as was the case in the study of Chap. 4), but to improve 
predictions of the total duration of a project. Such a study was already presented in 
Chap. 4 in which three basic methods of EVM were used. The current study uses 
the same methods but builds on them by applying machine learning algorithms to 
the data to significantly improve the accuracy of the predictions. It goes without 
saying that such algorithms probably will not be used by many companies, but it 
was nevertheless interesting to see to what extent improvements were possible at 
all. The most important components of Fig. 6.6 will briefly be discussed along the 
following paragraphs, followed by a brief description of the main results. 

Phase 1. Input Data The input data for the machine learning model of Phase 2 
consist of a large set of artificial projects and probability distributions to model the 
uncertainty of the activities in the baseline schedule. These inputs will be used for 
the three-step approach shown in Phase 2 of Fig. 6.6. 

Phase 2. Machine Learning Model The machine learning model consists of three 
steps as discussed along the following lines:

• Generating project data. Machine learning is a data-intense methodology that 
requires literally gigabytes of data for training and testing. The data consist of 
static project data as a large set of artificial project networks with activity time 
and cost estimates. The dynamic project data contain project progress data at 
regular time intervals to monitor the project performance. These project progress 
data can be obtained by the so-called static simulation runs that I discussed 
previously using the parameters for the predefined distributions. Consequently, 
for each project, literally hundreds of project tracking periods must be simulated 
under different settings of these parameters, each of them providing a wealth of 
data in the form of EVM performance metrics such as the schedule performance 
index (SPI) and cost performance index (CPI). These metrics are now called 
attributes to be in line with the terminology used in machine learning and will be 
used to construct control thresholds (similar to the ones of the previous chapter) 
and provide time and cost predictions. As should be clear by now, the generation 
of static and dynamic project data is key in most of the project control studies of 
this book, and special attention to these data generation processes will be given 
in Part IV of this book.
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• Statistical data analysis. Before the created data can be used for machine 
training, they should first be pre-processed. Typically, the overwhelming amount 
of data is first processed using different statistical techniques that aim at distin-
guishing between explanatory variation and noise. Using a principal components 
analysis, a traditional statistical technique to convert a set of data of possibly 
correlated variables into a set of values of linearly uncorrelated variables, the 
overwhelming amount of data is pre-processed and made ready for further 
analysis by the machine learning algorithms.

• Machine learning. The training of the data with various machine learning 
algorithms aims at finding relations in the data to improve the overall forecasting 
accuracy of EVM methods. Traditional, the discovery of such relations is done by 
dividing the generated data into two sets. In the training set, potential predictive 
relations are detected and used to fit the parameters of the machine learning 
algorithms and find their best possible values. In a validation set, it is tested  
whether these discovered relations are robust enough, and whether the quality 
of the forecasts, based on the found relations, is general and widely applicable 
under different settings (parameter tuning). Mathieu has tested different machine 
learning methodologies, including Support Vector Machines (Wauters & Van-
houcke, 2014), Decision Trees, and Random Forests (Wauters & Vanhoucke, 
2016) as well as the  Nearest Neighbour method (Wauters & Vanhoucke, 2017) 
for predicting the final expected duration and cost of a project in progress. 

Phase 3. Predict the Project Duration (Dynamic Simulations) Based on the 
trained relationships, the method should be tested on new unseen projects to inves-
tigate whether the models can indeed improve the accuracy of project predictions. 
As I mentioned earlier, the third phase is identical to Phase 3 of the previous chapter 
and simulates the progress of a new unseen test project using the dynamic simulation 
runs to predict its time and cost. The difference between the predictions and the 
real (i.e., simulated) time and cost of the project is measured by the mean absolute 
percentage error, which also has been presented earlier. 

The computational experiments in this study have shown that the machine 
learning methods could improve the forecasting accuracy of the traditional EVM 
methods discussed in Chap. 4, which is—given the intense use of data—not a 
surprise. Nevertheless, the study illustrates the power of machine learning and its 
ability to improve the current state-of-the-art knowledge of project time and cost 
forecasting. Despite the promising results of these studies, it was (and still is) not 
very clear why these methods performed so well (high accuracy), and no one of 
my team could really explain the differences in performance between the different 
machine learning techniques. However, one technique got my special attention, and 
I became increasingly interested in the nearest neighbour method. This method was 
not the best performing machine learning method in the list, but it is undoubtedly 
the easiest one as it “simply” compares the current status of a test project in progress 
with the huge amount of generated data to find the closest neighbours (i.e., the set 
of data points that most closely resemble the current status of the project). It then 
makes use of the prediction in the generated database of these neighbour projects to
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forecast the time and cost of the current project in progress, hoping that the accuracy 
will be high. The experimental results of the study showed that such an easy 
approach can lead to high-quality predictions, which has motivated other members 
of my team to start a new research study using a similar idea. More precisely, the 
well-known and widely used reference class forecasting approach relies on past 
project data and aims at finding similarities between a project in progress and these 
historical finished projects and then uses these similarities to predict the future of 
the current project. This interesting technique is discussed later in Chap. 9, and 
the current machine learning studies show that, although Mission #3 (learning = 
freedom to explore) does not always directly lead to easy results or methods used 
by professionals, it can nevertheless be inspiring to start new research studies that 
eventually could and will result in practical methods and business relevance. 

6.4 Torture 

A chapter about research in machine learning is not complete without a critical 
note on the danger of analysing data with learning algorithms. The use of machine 
learning algorithms in academic research has grown in the last decades and now 
finds applications in almost every management discipline. Implementing these 
advanced methodologies has become very easy these days, with free access to 
tools such as R or Python to give the user with some simple coding skills access 
to the most advanced methodologies. This simplicity comes at a price. It is the price 
of not knowing what you are doing. As a researcher, you are supposed to guide 
the readers of your paper in the complex world of machine learning algorithms 
and create a better understanding of your topic under study. However, with these 
advanced algorithms and easy access to tools, the researcher quickly enters a very 
dangerous territory in which one hardly understands what is going on behind the 
learning machine. Often times, defining the right inputs and interpreting the outputs 
are much more complex than the analysis of the data itself, reducing the learning 
process to a black box process that may result in better results but few new insights. 
The British economist Ronald Harry Coase already referred to this danger in the 
following quote: 

If you torture the data long enough, it will confess. 

I am not advocating that the application of machine learning algorithms should 
be discontinued, but I do think that researchers should be careful and always put 
the creation of new knowledge and insights first. Despite this potential danger, I 
strongly believe that the use of these black box algorithms offers many opportunities 
for academic researchers to provide more and better insights into the management 
of projects that can then lead, directly or indirectly, to applications and methods 
relevant to the real world. I have experienced the challenges that this kind of 
research entails, as well as the numerous opportunities it offers, when I created
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the new platform P2 Engine for my research group. I like to share in the following 
paragraphs this experience with my readers to conclude this chapter. 

When I was working on our commercial project scheduling software tool 
ProTrack with my friend Tom Van Acker (cf. Chap. 2), we saw some potential for 
using the algorithms of this software tool for academic research. While Tom was 
coding the graphical user interface, I was coding various algorithms for scheduling 
projects, analysing their risk, and controlling their performance (in C.++). It was 
a time where my research group was growing with young and enthusiastic PhD 
students, all of them very eager to test these algorithms on artificial project data in 
order to find improvements. Machine learning was becoming increasingly popular 
at these times, and so the algorithms could be interesting to generate a lot of static 
and dynamic data without re-coding them for every new study. For this reason, 
Tom and I decided to use the algorithms of ProTrack for research purposes, and 
we assembled all the coded algorithms in a new tool, tailor-made for researchers, 
and called it P2 Engine4 (www.p2engine.com, Vanhoucke (2014)). The tool is a 
command line utility tool based on the LUA scripting language (www.lua.org) to  
generate and analyse gigabytes of project data with a simple coding process to have 
access to the wide range of algorithms of ProTrack without using its graphical user 
interface. The tool is made in such a way that it is (relatively) easy to extend the 
algorithms with other features without much need for additional coding. Moreover, 
the tool is a platform-independent software tool that runs on Windows, Mac as well 
as on Linux, and most importantly, it also runs on the supercomputer of the Flemish 
Supercomputer Centre (VSC). In the fall of 2012, Ghent University announced the 
introduction of the first Flemish supercomputer as a High-Performance Computing 
(HPC) system with a price tag of about e4.2 million. It was, based on the ranking 
at number 118 in the Top500 list of June 2012, also the biggest supercomputer in 
Belgium. With a powerful supercomputer, a growing OR&S project database, many 
new and fast algorithms, and a young team of PhD students, it would have been 
stupid not to use our ProTrack algorithms for academic research purposes. 

By using simple LUA scripts, our researchers could now generate a lot of 
project data and solve difficult and critical dynamic project scheduling optimisation 
problems using the fast and intelligent algorithms of P2 Engine. Since then, it has 
been used by many students who had access to the supercomputer for constructing 
project baseline schedules, for performing schedule risk analyses as well as for 
creating dynamic project progress data to test and validate new research ideas. Most 
of the research presented in this book has been experimentally tested using the P2 
Engine tool, and I am still very proud of what Tom and I have done for my research 
team. More than 10 years after its introduction, P2 Engine is still widely used by 
some of my research members. I now realise that I would never have come up with 
the idea of making this tool if I had not experienced that most machine learning 
algorithms require so much data that it would be almost impossible for my PhD 
students to program all the algorithms themselves to generate these data.

4 P2, or two times P, is used to refer to  Project Planning. 

www.p2engine.com
www.p2engine.com
www.p2engine.com
www.lua.org
www.lua.org
www.lua.org
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Machine learning research has been an interesting journey so far, and I am sure 
my research group is not at the end of this journey yet. With more project data, 
powerful computers, and advanced machine learning methods, it will be relatively 
easy to test any new research idea, and I hope that some of these ideas will be 
challenging enough to start a new research project. Nevertheless, I will continue 
to be careful that we do not go in a very extreme direction in which we just 
rely on these advanced algorithms to yield new research results without providing 
new insights. I have therefore solemnly promised myself and my team members 
that I will repeatedly ask myself whether the research has, or can have, enough 
practical relevance. I have somewhat arbitrarily classified the research of the three 
chapters of Part II (what academics do) into separate missions of academic research, 
but the translation of this research into practice remains a necessary challenge. In 
the next Part III (what professionals want), I will describe in detail which studies 
have ultimately led to insights that are not only relevant for scientists, but also for 
professional project managers in their daily practice of managing projects. 
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Part III 
What Professionals Want 

Academics should be encouraged to conduct research 
relevant to the decisions faced by managers. 

In Part II of this book, I outlined the three missions of academic research 
and illustrated them by three different studies in project control. In the first 
study, a comparison of three different forecasting methods to predict the project 
duration was proposed, and the earned schedule method was selected as the most 
accurate method. The insights of this study were used to develop five project 
control methods using statistical tolerance limits, and two methods were said to 
outperform the other three based on two statistical criteria for hypothesis testing. 
Finally, it was shown that improvements are still possible by adding advanced 
machine learning techniques, leading to very advanced, but nevertheless very good 
methodologies to schedule projects, analyse their risk, and monitor and control their 
performance when they are in progress. This continuous and never-ending search for 
improvements lies in the nature of academic research and makes me think of a song 
by Daft Punk: 

Harder, Better, Faster, Stronger. 

Indeed, contrary to popular belief, things can and should move quickly for 
researchers. Better results, faster algorithms, and stronger methodologies lead to 
publications, new insights, and ideas for further research. 

Professionals do not always need these faster and stronger tools, are often 
unimpressed by the marginal improvements made in academia, and are usually 
happy with the tools they have. Every improvement comes with some costs (e.g., 
for implementing the new methodology), and it is often much easier (cheaper) to 
stick with the current methodologies, even if they do not work as well as the new 
alternative methodologies. However, even in the most impractical research, there 
are often hidden gems that, with some effort and persistence, can lead to practical 
improvements without entailing enormous cost or loss of time. The three chapters 
of Part III elaborate on a number of research projects that were based on theoretical
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academic research, but ultimately resulted in a number of insights from which 
professionals can draw conclusions to improve their project management approach. 

In the upcoming chapters, I will discuss the project management research 
themes from a practical point of view and put the academic improvements into 
the right perspective. Chapter 7 discusses a new project control concept called 
control efficiency that aims at measuring relative improvements seen through the 
eyes of a professional project manager. I will not focus only on project control 
with Earned Value Management but integrate the three components of Chap. 3 
(baseline scheduling, risk analysis, and project control) in one decision support 
system. Chapter 8 expands on the discussion of Chap. 5 and tries to combine the 
simple project control method (rules of thumb) with the four advanced statistical 
control methods to search for an ideal combination of both. By merging the best 
methods of both worlds (academia and practice), we can present a new way to 
control projects. This new method, called analytical project control, is almost as  
simple as the previously discussed rules of thumb but has similar performance to the 
statistical tolerance limits discussed earlier. Finally, Chap. 9 discusses a new study 
on project duration forecasting that is highly relevant and applicable in practice. It 
uses historical project data to predict the progress of future projects and is known as 
reference class forecasting.



Chapter 7 
Control Efficiency 

Open a dictionary or search for a definition of the word efficiency on the Internet, 
and you will easily find that it is defined as the ratio of the useful work performed 
in a process to the total effort (energy, time, . . . .) expended. Being efficient means 
paying the most attention to the most important things, while not wasting time on 
the minor details. Efficiency requires performing or functioning in the best possible 
way with the least waste of time and effort. The simplest and most elegant definition 
of efficiency is given by the American–Canadian psychologist Daniel Levitin: 

The obvious rule of efficiency is you don’t want to spend more time organising than it’s 
worth. 

Indeed, it is not always worth paying much attention to small details, and that is 
something that academics do not always understand. While presenting algorithms 
and new methodologies in the literature, they rarely think about the ease of use or 
the amount of work that these new methods entail. These new ways of managing 
projects may, at least according to their studies, perform better than the existing 
methods, but they do not necessarily make the project manager more efficient. 
However, efficiency is a more important goal in practice than being able to perform 
better. After all, no one wants to spend more time than necessary to use advanced 
data-driven methodologies. If the effort to collect, process, and analyse project 
data does not lead to better decisions, better actions, and ultimately higher project 
success, then using these new methodologies is certainly not worth it. While 
working on some studies on improving control methods (as discussed in the previous 
part of the book), I encountered quite a bit of opposition from the practical field 
because implementing and using these methods would simply require too much 
effort. This is why I decided to approach my research not only from a performance 
point of view, but also from an efficiency point of view, as will be discussed in this 
chapter. 

I should have known better and realised that the pursuit of efficiency is an 
important goal in practice. When I mentioned in Sect. 3.3, the controversy about 
the correct level of detail in an Earned Value Management (EVM) system, this was 
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actually already a discussion on how to use this system very efficiently. This chapter 
builds on this discussion by determining the appropriate level of project control, thus 
attempting to compare the methods for achieving the optimal level of efficiency. 
The idea of adding efficiency to project management is a simple one, but the way it 
should be brought into academic research was a little less obvious. In this chapter, 
a very general definition of control efficiency is used, balancing the time the project 
manager spends measuring the project performance to identify problems (effort of 
control) and the results achieved after taking actions to solve these problems (quality 
of actions), as follows: 

. control efficiency = quality of actions

effort of control
.

In the next two sections, the numerator (Sect. 7.1) and denominator (Sect. 7.2) of  
the control efficiency formula are explained in detail. Afterwards, some results of 
our computational studies on artificial and empirical project data will be discussed, 
in which not the performance is measured, but the efficiency as proposed in the 
previous formula. I will close the chapter with an integrated project control system 
that combines the three components of data-driven project management (baseline 
scheduling, risk analysis, and project control) into one integrated decision making 
system to improve the overall efficiency of project control. 

7.1 Effort of Control 

A central concept in defining the effort of control is the well-known work breakdown 
structure (WBS). The level chosen in the WBS defines the starting point of project 
control and can be used to assess the effort of control from two very different points 
of view. On the one hand, one can define the control point at a very low level of this 
WBS, which is not recommended for an EVM system as I argued earlier in Sect. 3.3. 
It would lead to too much detail and would make the EVM system hopelessly 
complicated. The control point can therefore best be put at higher WBS levels, so 
that the project control methods are carried out with a lesser degree of detail. These 
two extreme forms of control (low or high levels of the WBS) lead to two types of 
project control that can be implemented in two fundamentally different ways, each 
with its own underlying methodology, but both aiming to solve project problems at 
an early stage, finding the roots of the detected problems, and (hopefully) solving 
them so that the project can be put back on track. These two alternative project 
control methods are the subject of this section. 

The preparation of a WBS is an important step in managing and mastering 
the inherent complexity of the project. It involves the decomposition of major 
project deliverables into smaller, manageable components until the deliverables are 
defined in sufficient detail to support development of project activities (PMBOK, 
2004). The WBS is a tool that defines the project and groups the project’s discrete
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Fig. 7.1 The work breakdown structure 

work elements to help organise and define the total work scope of the project. It 
provides the necessary framework for detailed cost estimation and control along 
with providing guidance for schedule development and control. Each descending 
level of the WBS represents an increased level of detailed definition of the project 
work. The WBS is often displayed graphically as a hierarchical tree. Figure 7.1 
displays an illustrative WBS consisting of three levels and a root node, as follows: 

• Project objective: The project objective consists of a description of the scope 
of the project. A careful scope definition is of crucial importance in project 
management and contains a list of specific project goals and deliverables to 
satisfy the needs of the stakeholders. 

• Work item: The project is broken down into manageable pieces (items) to be 
able to cope with the project complexity. The work item level is often seen as 
the level where responsibilities are assigned by giving people the ability to act 
independently on one or more work items and take decisions to further subdivide 
the work items into the lower level components. 

• Work package: Work packages are the result of the subdivision of work items 
into smaller pieces and are important for project control. Ideally, the monitoring 
and collection of time and cost data occur at this level to indicate problems in 
groups of activities. 

• Activity: The lowest level of the WBS is the level where the accuracy of cost, 
duration and resource estimates as well as the precedence relations must be 
defined for the construction of the baseline schedule. 

The remainder of this section will explain the two previously mentioned alterna-
tive and opposing project control methods using two very extreme starting points 
of control in the WBS (one starting at the very top of the tree and working 
downwards, and another method starting at the bottom but gradually working 
upwards). These two methods are extreme ways of controlling projects, and the
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Fig. 7.2 Top-down and bottom-up project control (separate view) 

real practical implementation of a control system will, of course as always, be 
somewhere between these two extremes. Figure 7.2 graphically illustrates the two 
extreme ways of controlling projects on the WBS. The so-called top-down project 
control method works in a downward direction, while the bottom-up project control 
method starts at the activity level and works in the opposite, upward direction. Most 
of the discussion in the following sections of this chapter is based on two studies 
that I published in the journal Omega—The International Journal of Management 
Science (Vanhoucke, 2010b, 2011), and it is with some pride that I say that many of 
the studies subsequently conducted by my research team build upon the foundations 
of these two studies. 

Top-Down Project Control 

All control methodologies discussed in Part II make use of Earned Value Man-
agement metrics and belong to the class of top-down project control methods. 
They monitor the progress using three key metrics (planned value, actual cost, and 
earned value) and measure the overall performance of the project with schedule and 
cost performance indices (SPI, SPI(t), and CPI). The performance metrics do not 
include any information about the root cause of project problems since they are not 
calculated for each activity individually, but for a group of activities at higher levels 
of the WBS (e.g., for work packages, or even at the higher work item levels or at the 
root node of the WBS). Consequently, the performance of a project is measured by 
only a few (one for each work package) or only one (at the root node) performance 
metric to express the time and cost performance of the project, and it is up to the 
project manager to decide whether this performance metric indicates a problem or 
not. 

This top-down approach was presented earlier in Sect. 5.2 where control points 
were set at strategic places in the project network, and each control point measured
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the performance of only a set of activities (a feeding path, a subnetwork, etc.) to 
indicate project problems. In this view, EVM control is seen as a much simpler 
alternative to the detailed critical path based planning tools (which monitor each 
individual activity separately) and therefore provides a quick and easy helicopter 
view of project performance at the higher levels (or root node) of the WBS. When 
these metrics indicate a project problem, they act as warning signals to drill down to 
lower levels of the WBS, possibly to the detailed activity level, to find the root cause 
of the problem. The specific set-up of such system ensures that the project manager 
does not need to follow every small detail when managing the entire project. The 
fact that the performance metrics are measured at a higher general level, and a drill-
down to the level of activities is only necessary when the performance no longer 
meets the predefined requirements, gives the manager room to save time and costs 
and reduce the effort of control to the absolute minimum. After the drill-down, 
corrective actions should be taken on those activities that are in trouble (especially 
those tasks that are on the critical path). However, such a system also entails 
some dangers, since detailed project control is no longer performed. It is therefore 
perfectly possible that the control limits give a wrong signal, and so the drill-down 
is performed (requiring effort) without any real project problem (overreaction). The 
reverse situation can also occur, where the performance metrics do not indicate a 
problem, while problems are actually accumulating in the underlying levels. No 
system is perfect, which is why Sect. 5.3 discussed the probability of overreaction 
and the detection performance as metrics to measure the signal quality. 

In my research on top-down project control, the effort of control is measured 
in several ways, each time trying to evaluate how much time the project manager 
should spend finding activity problems after a drill-down due to a warning signal. 
More specifically, the effort depends on a number of characteristics such as (i) the  
number of control points in the system (more control points require more effort) 
and (ii) the number of times the system generates a warning signal (more warning 
signals mean more effort for drilling down). In order to keep the effort of control 
at an acceptably low level, it is therefore important to choose the number of control 
points very carefully, but also to set the control limits of the control charts at the 
correct level. Since the control limits now act as threshold values to drill down 
and search for problems (and take actions if necessary), a control chart should be 
prepared with the utmost care. Figure 7.3 displays an example control chart with a 
static lower control limit set at 60%.1 The graph shows the periodic performance 
measurements with the schedule performance index (SPI) and the cost performance 
index (CPI) to assess the time and cost performance of the project. When the 
threshold values are exceeded (below the acceptable threshold of 0.60), the charts 
give a warning signal to drill down to search for problems (requiring effort) and, if 
necessary, to take corrective actions. This graph perfectly illustrates how important

1 Such static threshold corresponds to the static control limits of the rules of thumb (ROT) approach 
in Chap. 5. Recall that these control limits can be variable along the planned project progress, as 
illustrated in Fig. 5.3. 
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Fig. 7.3 Example control chart (static thresholds) 

it is to put the threshold values at the best possible level. It is clear that if a project 
manager sets the threshold values too low (for example at a value of 0.40), no project 
problem will be detected. When problems arise, they will quickly escalate and put 
the project in very dangerous territory. If the system does not detect these problems, 
it will not trigger the project manager to take appropriate action, which could lead 
to catastrophic consequences. However, such an approach has the advantage that the 
control effort will be very low, since the project manager will only have to drill down 
into the WBS in very extreme situations when the project performance is extremely 
low. Most likely, this lack of effort will result in the project not being properly 
monitored and the chances of success are very slim. However, setting the threshold 
too high (e.g., to a value of 0.95) will lead to the opposite behaviour. In this case, 
a multitude of warning signals will be generated every time a minor delay or cost 
overrun is detected, and the project manager will have to continuously zoom in on 
issues that have little to no impact on the project objectives. Such a control system 
is a total waste of time and costs, and consequently too much effort for nothing. 

Bottom-up Project Control 

The top-down control method only looks for problems in activities after warnings 
have been generated and, of course, only requires actions if these activities actually 
endanger the project. An alternative approach is to start with the activities and only 
monitor those activities that could potentially have a major impact on the project 
should problems arise. The so-called schedule risk analysis methodology already 
discussed in Sect. 3.4 of Chap. 3 can be used to build such a control system, and 
we will refer to this method as a bottom-up project control method because it uses 
activity information (at the bottom level of the WBS) to control the project. 

A schedule risk analysis uses Monte Carlo simulations to measure the sensitivity 
of each activity of the project. Probability distributions are used to model activity 
duration variability, and the simulation runs generate different sensitivity values, 
expressed as values between 0% and 100%, such as the criticality index, the 
significance index, or the schedule sensitivity index, as discussed earlier in this 
book. These values can be plotted in a sensitivity graph, as illustrated in Fig. 7.4 for
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Fig. 7.4 Example sensitivity graph (10 activities) 

a project with 10 activities. Activities with high values for the metrics represent very 
sensitive activities, meaning that a problem in these activities can cause significant 
damage to the project. These activities must therefore be closely monitored as any 
small delay can have a major direct impact on the project. However, the activities 
with a low value for the sensitivity metrics are likely to have a smaller impact on the 
project should a problem arise, and so these activities are less important to monitor 
very closely. It is therefore very important to make a distinction between activities 
that require little follow-up and activities that must be followed up very closely. 
As is the case with control charts, a value for the action threshold must be chosen 
that reduces the effort of control to a minimum, without major problems going 
unnoticed. The threshold value is represented as a vertical line on the figure, where 
all activities on the left of the line should not be followed at all, while all other 
activities are closely monitored. The more the line is shifted to the left, the greater 
the number of activities that are monitored. This not only means that problems are 
detected faster, but also that the effort of control becomes much greater. This method 
is called a bottom-up control method because the project monitoring now starts from 
the activity level and only controls a part of the (most sensitive) activities. However, 
when such activities are in trouble, the project manager will have to take actions to 
prevent the total project from getting into trouble, and thus the actions must have a 
positive impact on the total project (represented at the root node of the WBS). So 
there is no drill-down looking for problems, but rather an upward movement in the 
WBS looking for a positive outcome of corrective actions.
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Setting the action threshold to the correct values is essential for the bottom-up 
control system, just as setting the correct tolerance limits is for a top-down control 
system, and this is best illustrated by introducing three types of project managers. 
I am sure everyone knows a person in their company or university who belongs to 
each of these three types. Figure 7.5 shows these three types of project managers, 
with each type taking a different approach in setting the thresholds for actions. Each 
type of project manager defines their desired effort level in a completely different 
way. 

The control freak puts the action threshold close to the left side of the graph and is 
not afraid to spend almost every hour of the day monitoring the performance of most 
activities. In the sample graph, the threshold is set to 15%, and therefore, 70% (7 out 
of 10) of the activities are classified as potentially hazardous with high sensitivity 
values exceeding the threshold. The control freak performs poorly on the control 
effort, as 7 out of 10 activities are under the control freak’s control (too high!). 
Controlling almost all activities during project progress is not very practical, and 
there will be little to no time left to focus on other aspects of managing the project. 
However, thanks to the control freaks’ desire for intensive control, this approach is 
likely to result in early detection of potential problems and corrective action may be 
taken the moment that problems occur. 

The lazy manager is not the control freak’s best friend and takes a completely 
opposite approach. Lazy as this manager is, the threshold is set to the far right 
of the graph (as shown in the right graph, the threshold is set to 88%). A lazy 
manager performs very well in terms of control effort (very low!), as almost no 
activity exceeds the threshold. In the example, only one activity requires intense 
monitoring, while the others can be ignored, leaving a lot of time to do things other 
than monitoring activity performance. Due to this little effort of control, not all 
activity problems will be detected in a timely manner, and therefore many of the 
project problems will remain hidden until they suddenly appear. Often, when they 
show up, it will be too late to fix them, leading to loss of time, money, and possible 
project failure. 

The efficient manager is a data-driven project manager who wants to combine 
data analysis and experience and strikes a balance between the intensity of a control 
freak and the relaxed feelings of the lazy manager. Ultimately, the efficient manager 
wants to be able to detect the problem in advance, just like the control freak, but at 
a much lower effort, closer to the effort level of the lazy manager. Such a manager 
does not want to concentrate on controlling almost every activity of the project, 
but only wants to concentrate on the most dangerous activities in order to keep the 
effort at a reasonable level. Therefore, the efficient project manager will set the 
action thresholds somewhere in the middle of the graph, between the thresholds set 
by the control freak and the lazy manager. Using this approach, the central question 
is whether this manager can achieve comparable project results to the control freak 
(i.e., detecting project problems in the early stages so that corrective actions can get 
the project back on track) with a much lower effort than the control freak, preferably 
as close as possible to the effort of the lazy manager. If so, this manager is much
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more efficient than the other two project managers. The research to answer that 
question is the subject of the next section. 

7.2 Quality of Actions 

The two control methods use action thresholds that determine how much and which 
activities will be monitored and thus determine the effort of control of the project 
manager. Minimizing this effort is of course not the primary goal, and these methods 
aim to detect project problems in a timely and correct manner in order to be able to 
take the right actions. The quality of these actions is discussed in this section and 
is in the denominator of the control efficiency formula. It is very important to note 
that the concept of quality of actions does not refer to very specific ways in which 
project managers solve problems such as shifting resources, working overtime, or 
changing the project scope. Instead, it does refer to the impact that the actions have 
on the performance of the project. In other words, it measures whether the actions 
have actually had a positive impact on the project leading to beneficial results and 
solved problems that brought the project back on the right track. Such corrective 
actions can only have a positive impact if (i) the problems are detected in a timely 
manner and (ii) if the actions are taken on the right activities, i.e., on the activities 
that caused the problems. Problems detected too late (because they did not generate 
a warning signal) or actions taken on the wrong activities (because they had a wrong 
value for the sensitivity metric) can have a major impact on the quality of the actions 
taken by the project manager and can put the project in a danger zone where it is 
impossible to recover. Consequently, the concept of “quality of actions” refers to 
the timely detection of a project problem for the activities in difficulty such that the 
positive impact of the actions is maximised. 

This particular definition of action quality cannot be properly understood without 
simultaneously considering the concept of the effort of control. Indeed, if one does 
not care about the level of effort, the highest quality will be easily obtained by 
setting the thresholds to very extreme values. For top-down project control, this 
means that the thresholds are simply set to 99.9%, so that every small deviation 
results in a drill-down to look for problems. For bottom-up project control, it means 
that the thresholds are set to 0.01% such that every activity is considered as very 
sensitive. In this case, every activity will be part of the control set (just like how the 
control freak would work), and every action will result in an improvement in project 
performance, which will likely lead to overall project success. Every problem will 
therefore be noticed in time, and the quality of actions will be very high. However, 
the effort will also be very high, so that the control efficiency will be too low. This is 
exactly what the efficient project manager wants to avoid. With lower effort levels, 
the manager can become more efficient, possibly with the risk that the quality of 
actions also decreases somewhat, but as long as the efficiency is high, the efficient 
manager is better than the control freak and the lazy manager. Accordingly, the 
best performing control system is the system that leads to the highest corrective
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Fig. 7.6 Simulation experiment for top-down and bottom-up control 

action value (numerator of the control efficiency formula) with the lowest possible 
effort (denominator of the formula). A system that can distinguish between real 
problems and false problems, so that the activities in difficulty can be detected in a 
timely manner, will probably lead to the highest efficiency, and this was precisely 
the subject of the study described in this chapter. 

In the following paragraphs, I will give a general overview of how this study was 
conducted, without going into technical details. The experiment was performed on 
a set of artificial projects. Static and dynamic simulation runs were used to construct 
the control charts and the sensitivity graphs (static) as well as to simulate the project 
progress (dynamic), which is very similar to Phases 2 and 3 of Sect. 5.1. Figure 7.6 
shows the design of the study and shows how the effort of control and the quality 
of corrective actions are measured during the simulated progress of the project. The 
experiment starts with the construction of a project baseline schedule (which, as 
always, is considered a reference point) and setting predefined action thresholds 
on the metrics (e.g., on the SPI(t) for top-down control and the SSI for bottom-up 
control). After that, the project progress is started, and the algorithm checks for 
each review period (t in the figure) whether or not these action thresholds have been 
exceeded. Whenever an action threshold is exceeded, a drill-down (for top-down
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project control) or a search for the expected impact of the sensitive activities (for 
bottom-up project control) is performed to solve the problems, and as this takes 
effort, the effort of control (initially set to 0) is increased each time. When actions 
are taken, the quality of the actions is also measured. For top-down project control, 
the corrective actions are automatically taken on the critical activities when they 
have too much delay, while bottom-up project control only takes actions on the 
activities with a delay that exceed the minimum value of the sensitivity metrics (i.e., 
the action threshold). Several runs are performed, each time with different levels 
of effort by changing the action thresholds set at the start. This results in different 
values for the quality of the corrective actions, and thus, different values for the 
efficiency of the control. The two alternative ways of project control are indicated 
in the two halves of the figure with the top-down project control method on the left 
side and the bottom-up project control method on the right side. This simulation 
process is repeated for each review period until the project is completed, and the 
control efficiency is reported and compared to previous runs that were performed 
with different values for the action thresholds. 

Since the simulation study of Fig. 7.6 is a fully automatic project control study, 
the algorithm must automatically choose between a series of possible actions when 
thresholds are exceeded. To this end, three different types of corrective actions have 
been implemented, each of which can be used under different settings: 

• Reducing activity durations: Shortening the activity duration is the most logical 
action to solve delays, but this results in an increasing cost. For this reason, the 
duration reduction should not be taken arbitrarily, but only if the cost increase 
is still within the allowable budget. Such an action is known in the project 
management community as activity crashing and refers to the allocation of 
additional resources to delayed activities to make up for the work. 

• Parallel execution of activities. The project network defines the logical sequence 
of activities and is used to construct the baseline schedule. Any precedence 
relation between two activities means that one cannot begin until the other is 
completed, but this logic is not always followed as the project progresses. Even 
the logic of the project network can be subject to unexpected changes, and 
activities that were previously thought to be performed in a sequence can be 
performed in parallel if necessary. These unexpected activity overlaps resolve 
delays, but can incur costs such as additional risk of rework or set-up time, and 
are known in the project management community as activity fast tracking. 

• Changing the baseline schedule: In some cases, the additional unexpected work 
or changes to the original project objective are so significant that the original 
project baseline schedule must be replaced or updated with a new plan to define 
a new reference point. Although I always advise not to change the baseline 
schedule too often, sometimes the new project reality is so different than initially 
thought that a project manager has no other choice. A re-baseline of the project 
means removing all planned and progress data from the past and includes the 
decision to start from scratch with the modified project. It is a drastic, but
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possible, action that should be avoided if possible and is known in the project 
management community as project re-baselining. 

The control efficiency algorithm was initially tested on 4400 artificial project 
instances, the main conclusions of which are discussed in Sect. 7.3 and published 
in Vanhoucke (2011). One year later, the results were validated on a series of 48 
empirical projects from 8 different companies in Belgium in 13 sectors, the results 
of which are presented in Sect. 7.4 and published in Vanhoucke (2012a). Since then, 
the use of both artificial and empirical project data has become a standard in my 
research team, and this will be further discussed in Part IV of this book. 

7.3 Accuracy Pays Off 

In a previous chapter, it was already shown that the network structure has a major 
impact on the accuracy of predictions, and the insights we gained from it even 
led to the best compliment I ever received about my research from Tony Barrett 
that I quoted on the end of Chap. 4. More specifically, it was shown in Fig. 4.2 of 
this chapter that the accuracy increases as the project becomes more serial. The 
closeness of a project network to either a completely serial or parallel network can 
be measured by the so-called serial/parallel (SP) indicator2 that ranges between 0% 
(completely parallel project) and 100% (completely serial project) and is calculated 
as follows: 

.SP =
{

1 if n = 1
m−1
n−1 if n > 1

(7.1) 

with n the number of activities in the project and m the number of activities on the 
longest path in the project network.3 

The study of the current chapter does not look at the accuracy of the predictions, 
but at the efficiency of control. Figure 7.7 displays the results of the control 
efficiency experiment on the large set of artificial projects and makes use of the SP 
indicator. The graph displays the control efficiency values (higher values are better) 
for different projects with different topologies of the network. More precisely, the 
projects are classified by their network structure, ranging from very parallel projects 
(where most activities can be scheduled and executed simultaneously) at the left to 
very serial projects (where activities mostly are executed sequentially) at the right, 
as measured by the SP indicator. The graph contains four different lines, labelled as

2 You might recall that I introduced this SP indicator already in Chap. 6 to model the network 
topology (NT) in the Bayesian network study. 
3 Note that this longest path is not the critical path (which is the path with the longest duration), 
but rather the path with the maximum number of activities. 
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Fig. 7.7 Control efficiency—Results of an experimental study 

benchmark, top-down control, bottom-up control, and integrated control. Each line 
expresses a different way of controlling projects, which is briefly outlined along the 
following paragraphs. 

Benchmark The line with the diamonds is referred to as the benchmark line as it 
represents the simple rules of thumb (ROT) approach of Chap. 5 using the traditional 
schedule performance index (SPI) to monitor the timing of projects. I have discussed 
before that this SPI performance measure is known to be flawed (because it always 
ends at 100% at the end of the project), but it is nevertheless implemented in most 
commercial software tools. In Chap. 4 of Part II of this book, I argued that the quirky 
behaviour of the SPI is a direct result of an error in the formula and therefore does 
not accurately measure the time performance of a project in the second half of the 
project’s progress. I thought this error was pretty straightforward, and I thought 
everyone knew it could lead to odd results, but I was surprised how many project 
managers blindly relied on it when using project planning and control software 
tools. What struck me most was that many of these project managers were aware 
of the flaw in the SPI formula, but thought it would have little effect on their 
control efficiency. However, the control efficiency graph shows the impact of the 
SPI mistake and shows that the ROT approach performs relatively weak compared 
to the other control methods (other lines). In addition, the project network structure, 
measured by the SP, has little to no impact on this low control efficiency. Fortunately, 
the chart contains three other lines. 

Top-down Control The line with the triangles is the control efficiency for the 
top-down project control approach using the improved version of the schedule 
performance index, the SPI(t), which is known to be reliable from the start to the 
finish of the project. Although the formula of SPI(t) is not fundamentally different
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from the SPI formula,4 it allows the project manager to reliably assess the time 
performance of the ongoing project at each stage of progress. The graph shows that 
the control efficiency is always higher for the SPI(t) top-down control method than 
for the SPI control method (benchmark line), and the difference between the two 
methods increases with increasing SP values. The finding that the top-down project 
control method with a reliable indicator (SPI(t)) outperforms the one with a flawed 
indicator (SPI) is not surprising, but the positive impact of the network structure, 
especially for serial projects, was unknown in the scientific literature. In Chap. 4, 
it was already shown that the earned schedule method (which relies on the SPI(t)) 
outperforms two other traditional methods that depend on the SPI (planned value 
method and earned duration method) for predicting the total duration of an ongoing 
project, but now the graph shows that the higher prediction accuracy also results in 
a higher control efficiency. Accuracy pays off! 

I have to admit that I did not quite expect this result during the research, but 
in retrospect I was actually not surprised that more serial projects were more 
manageable with a top-down project control method. That is how it often goes in 
research: Unexpected results seem quite logical in retrospect, and it works a bit like 
Julian Casablancas from The Strokes puts it: 

The best solutions are often simple, yet unexpected. 

Nevertheless, the outcome of this research is very special to me, as it has given me 
access to the practice of some very interesting UK consultancy projects, but also led 
to the aforementioned (in Chap. 1) more than one million Euro research project. This 
project was the start of my team’s significant growth and multiple collaborations 
with great people around the world. The icing on the cake was the keynote speech 
at the EVM World Congress in Florida in 2012 together with Stephan Vandevoorde 
with the title “When time is money, accuracy pays dividends!” 

Bottom-up Control The line with the circles represents the control efficiency for 
the bottom-up project control approach and shows the exact opposite behaviour. 
Indeed, the graph shows that for the projects with poor performance for top-down 
control (i.e., the low value SP projects), the bottom-up project control offers a 
valuable alternative. The bottom-up control approach performs best when SP values 
are low (i.e., for parallel structured projects), but the control efficiency gradually 
decreases when the project networks have a more serial structure. I previously 
explained that bottom-up project management relies on sensitivity metrics obtained 
through a schedule risk analysis, and the experiments showed that the best results 
could be obtained by relying on the schedule sensitivity index (SSI). Three other 
sensitivity measures (criticality index, significance index, and cruciality index) 
underperformed, sometimes even worse than the benchmark method, but the SSI

4 I argued in Chap. 4 that the calculation of the SPI(t) requires no additional input and is therefore 
nothing more than a corrected version of the SPI. 
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outperformed all existing metrics and is therefore the most reliable sensitivity 
measure for bottom-up control. 

Integrated Control The straight line at the top of the graph was initially not 
included in the original study and will therefore be discussed later in this chapter. 
The line represents the integrated project control approach, using top-down control 
(via SPI(t)) and bottom-up control (via SSI). Integrating both methods into one 
integrated control system increases the control efficiency considerably and is 
therefore the most recommended method. Before explaining this integrated control 
approach in Sect. 7.5, I first want to show some empirical results from a small series 
of real projects in the next section. 

7.4 Empirical Evidence 

Despite the unexpected enthusiasm and interest of professional project managers 
in corporate workshops and professional conferences, many project managers 
continued to question the usefulness and validity of the results due to the fact 
that they were obtained from experiments with artificial project data. It is true that 
the previous experiments were conducted on a set of artificial projects, where the 
values of the SP indicator were artificially controlled without any link to empirical 
project data. The advantage of artificial data is that researchers have full control 
over the project parameters (e.g., the network structure measured by the SP) to 
obtain general results, but the danger, of course, lies in the fact that little or no 
link is made with real project data. Partly because of this, many professional project 
managers wanted to see how this control efficiency study would perform on real 
projects, and I was almost obliged to use real project data for this study. While I 
have often tried to convince them that using real data would not provide additional 
insights, I have to agree that research should not just focus on delivering generic 
results (on a wide range of artificial projects), but that the results should also be 
applied to real data. It is interesting anyway to see which types of projects have a 
rather parallel structured network and which other projects are closer to a full serial 
network. I started collecting real project data early in my career, but I had initially 
very much underestimated the difficulty of collecting real project data. It took me 
a few years to collect a sample of just 48 projects from just 8 companies, which I 
used in the study. I quickly realised that collecting real project data needed a more 
structured approach, and I will introduce the readers to a formalised approach on 
how academics can collect and analyse empirical data later in Chap. 13 of this book. 

At the time of the control efficiency study, I could not use this formalised 
approach, and all I could do was visit several companies to get some data. I got 
some partial project data with a lot of unknowns, and I worked my way through 
the unstructured mess until I was able to present some results. I ended up with 13 
classes of projects with a similar network structure from 8 different companies, 
a total of 48 projects on which I tested the different control methods. Figure 7.8
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Fig. 7.8 Control efficiency: Results of empirical study (Source: Vanhoucke (2012a)) 

shows the 13 classes of projects with their corresponding SP values on the x-axis 
of the bottom image, ranging from projects with low SP values (almost completely 
parallel, e.g., IT projects) to projects close to a complete serial network (SP values 
high, e.g., construction projects). Fortunately, the results were completely in line 
with the theoretical results from the previous graph. The graph just below the text 
in Fig. 7.8 is almost identical to the graph in Fig. 7.7 and shows the two lines for 
top-down (SPI(t)) and bottom-up (SSI) project control as well as the integrated 
line at the top. Box plots are shown for each control method showing the results 
of the simulation study on the 13 classes of empirical data. Since simulations are 
performed under different settings (each time generating different values for the 
uncertainty about the duration of the activity and the possible corrective actions 
taken when thresholds are exceeded), different runs often show slightly different 
values for the efficiency of the control. The box plots show the mean values for each 
project as well as the minimum and maximum values and show that these values are 
surprisingly close to the theoretical results. The lines not only show that the results 
of the experimental study of the previous section are relevant for professionals who
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want to rely on these control methods, but also that the use of artificial data is often 
good enough to explain real phenomena. 

The results of this empirical validation study have helped me to convince 
professional project managers that artificial project data are just as good as 
empirical project data for academic research. In addition, this study was published 
in the International Journal of Project Management (Vanhoucke, 2012a), which 
is typically a journal that is widely read by practitioners. The final step to fully 
convince professional project managers that the experimental results make sense 
for their projects was to go one step further by merging the two alternative methods 
as one integrated project control system. This integrated project control system is 
represented by the solid line at the top of Figs. 7.7 and 7.8 and discussed in the next 
section. 

7.5 The Control Room 

As I wrote before, I had the opportunity and privilege to present these research 
results at workshops and conferences. I was also fortunate enough to have many 
professional project managers talk to me about these results that were now based on 
both artificial project data and empirical validation. However, there was one problem 
that still bothered me: I always presented the results of the control efficiency study 
as two separate control systems (bottom-up and top-down) and never offered the 
public an integrated view. I could easily tell professionals which of the two control 
methods would work best for them, depending on the structure of the project, but 
I never offered them an integrated project control approach that combined both 
methods into one decision support system. Of course, I knew the best approach 
was a combination of these two control methods, as the graphs showed that the 
solid line outperforms all other methods, but I could not really translate this 
integrated approach into a clear, easy-to-understand project control methodology. 
Nevertheless, the real practical way to control projects is not to choose one method 
or the other, but to combine both methods in a smart way to reach the highest 
possible values for the control efficiency. The only question: how do you do such a 
thing? 

Lisbon has never disappointed me, and I have lost my heart to this city not only 
because of the good food and sunny weather, but also because it is where I find the 
most inspiration for my research. After spending a year in Lisbon during which I 
could write a new book, I was finally able to come up with a suitable answer to 
the above question. As often, the answer was hidden in the methods, namely in 
the specific starting location in the work breakdown structure and the direction (up 
or down) in which these methods work. Keep in mind that the top-down control 
method starts from the root node of the WBS and generates warning signals to go to 
the lowest level looking for problems. This lowest activity level is then the starting 
level for the bottom-up method and distinguishes between low-sensitive and highly 
sensitive activities, the latter requiring more intensive monitoring. This sequential
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process of starting from a top-down approach (to reach the lowest WBS levels) and 
then moving to a bottom-up approach (by focusing on the most sensitive activities) 
offers a solution to integrate both methods as a single-project management method. 
I have called that approach the alarm–focus–shoot approach in my book “The data-
driven project manager: a statistical battle against project obstacles” (Vanhoucke, 
2018), which is graphically represented in Fig. 7.9. The approach consists of the 
following three phases: 

Phase 1: Alarm The top-down project control method merely acts as an alarm 
system to alert the project manager that problems have happened in the project. 
Indeed, the EVM performance metrics (CPI and SPI(t)) of the top-down control 
method are used to monitor the costs and time of the ongoing project at the project 
level and serve as a warning signal (the alarm) to identify project problems without 
giving any detail about the nature of the problem at the activity level. Their purpose 
is merely to provide quick and easy metrics to assess the health of the project, and 
thresholds can be set as simple rules of thumb or by using statistical tolerance limits 
(cf. Chap. 5) to move to the lower levels of the WBS. Consequently, the top-down 
approach is used as the first step in the integrated system to descend into the WBS. 

Phase 2: Focus After the alarm has gone off, this second phase requires a detailed 
examination of the activity level. Since the first phase clearly gave an indication 
that something went wrong, the project manager is now at the activity level of the 
WBS to look for the causes of this project problem. Such a search should begin 
immediately, aimed at finding the root causes of the problem as quickly as possible. 
However, investigating each individual activity can be tedious and takes too much 
effort, so this search should be optimised and limited to the most dangerous 
activities, which will most likely have the greatest impact on the project objectives if 
delayed. This is precisely the purpose of the bottom-up project management method 
that uses activity sensitivity metrics to enable the project manager to distinguish 
between high-sensitive and low-sensitive activities. These sensitivity values allow 
the project manager to limit the search and focus only on the activities with the 
highest values of the schedule sensitivity index (SSI) and pay less or no attention 
to the other activities that—in case of delay—will not have a big impact on the 
project anyway. Therefore, the second phase should consist of the bottom-up control 
method that can be used as a tool to focus on the most sensitive activities that require 
the project manager’s attention every time an alarm is given. 

Phase 3: Shoot Once the problems are detected in one or more activities, the 
project manager must decide when and how to respond to the project problems. 
The project manager must come up with an appropriate action to get the project 
back on track and decide how to use the limited resources (time, money, resources) 
to aim correctly and then shoot exactly where the problem lies. After this action, the 
project manager should see if the project recovers and continue with this integrated 
project control approach until the project is completed.
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Afterthought 

Before concluding this chapter, let me reiterate that this alarm–focus–shoot project 
management approach fits perfectly within the three components of data-driven 
project management and the dynamic planning methodology of Fig. 3.1 of Chap. 3. 
First of all, the approach requires the construction of a baseline schedule (first 
component) as a reference point for the other two phases. Additionally, the focus 
phase includes a schedule risk analysis (second component) to determine the 
sensitivity of activities, and the alarm phase consists of setting up a project 
control system with EVM (third component). I hope that the presentation of this 
new integrated system arouses the interest of professional project managers and 
convinces them that the three components should ideally be considered as one 
system for managing projects and making better decisions for corrective actions. 

The first phase of this integrated model (the alarm) is perhaps the most difficult 
phase to implement in a real project environment, since it requires designing control 
limits with statistical tolerance limits as action thresholds (discussed in Chap. 5). 
The statistical methods that use tolerance limits work much better than the arbitrary 
rules of thumb for setting the control limits, but they can be considered too complex 
to implement in a practical project environment. I fear that most professional project 
managers will stick to the easy (but less good) rules of thumb to generate project 
warning signals, and for most of them the research results of statistical project 
control will forever remain within academia and never be given practical translations 
to the business world. 

Unless we as academic researchers do our best to make the difficult methods a 
bit easier, and remove a number of basic components from the difficult methods 
in order to increase the implementability. What would happen if we looked for an 
intermediate solution that has the convenience of the simple rules of thumb, but 
achieves the performance of the difficult statistical project control methods? Such a 
middle ground is not easy to find, but it would undoubtedly open many doors to the 
practical world, making research not only attractive from a theoretical perspective, 
but also practically orienting it towards improvements in the real world. The search 
for methods that are both simple and powerful is the subject of the next chapter. 
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Chapter 8 
Analytical Project Control 

This chapter revisits the statistical control methods from Chap. 5 and attempts to link 
their way of working with the control efficiency concept discussed in the previous 
chapter. Recall that the control efficiency was defined as the division of the quality of 
actions by the effort of control. It is a very general and easy-to-understand definition 
of efficiency that compares the impact of the project manager’s decisions (quality of 
actions) with the effort required to achieve these decisions (effort of control). These 
decisions can only be made by continuously collecting, processing, and analysing 
project progress data to identify project problems in a timely manner. Consequently, 
this concept of control efficiency is a very general one that can be applied to all 
kinds of project control methods, from the very easy rules of thumb to the most 
advanced systems with all kinds of complex statistical calculations. The idea of 
comparing the necessary inputs (progress data, control limits, static simulation runs, 
etc.) with the desired outputs (warning signals and corrective actions) forms the 
basis of this chapter to evaluate and possibly simplify the statistical project control 
methodologies of Chap. 5 in order to increase their efficiency of control. 

In fact, I already gave a hint at the end of the previous chapter by pointing out 
that most statistical project control systems are often too difficult for practical use 
because they require so much data and statistical analyses leading to too much 
effort of control and thus a control efficiency that is too low. After all, the excellent 
manager from the previous chapter wants a system that makes it possible to achieve 
very good results (high quality of actions) with relatively simple systems (low 
effort of control) and so every researcher must ensure that the newly proposed 
systems are not being too hard for practical use. As I have already concluded in 
the previous chapter, I fear that the statistical control methods from Chap. 5 are too 
complex for practical use and so we have to look for a middle ground, a new way 
to make the advanced project control systems simpler without sacrificing power and 
performance. 

This new way of project control is presented in this chapter as analytical control 
methods and tries to make the statistical project control methods more user-friendly 
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without losing their power and ability to detect problems in a timely manner and 
take appropriate actions. In order to be able to properly explain these new methods, 
this chapter first revisits the use of statistics in project control in more detail. More 
specifically, the statistical project control methods introduced in Chap. 5 are once 
again critically examined and compared with other existing methods of statistical 
process control. Once the notion of statistics in project control is better understood, 
the chapter moves on to Sect. 8.2 and introduces a new analytical project control 
system that is a combination between the simple rules of thumb and the advanced 
statistical project management methods. Finally, this chapter will also show that the 
trade-off between ease of use (effort) and the quality of actions can be measured 
in different ways, very different from the simple control efficiency formula of the 
previous chapter, but with the same goal of making the project manager more 
efficient. 

8.1 Project Control Methods (Revisited) 

In Chap. 5, the use of control limits was introduced for the first time, and five 
different ways of controlling projects with these limits were proposed. Each of these 
methods aimed to build control charts with upper and lower control limits to indicate 
an out-of-control situation that serves as a warning signal and a trigger for actions. 
Four of these five methods use simulation runs to generate progress data to calculate 
tolerance limits as confidence intervals. The actual project control is then nothing 
more than a series of hypothesis tests aiming at determining whether the actual 
observations lie within or outside those tolerance limits. Therefore, these project 
control methods are no more than an application of the classical hypothesis testing 
theory from statistics and are therefore referred to as statistical project control 
methodologies. A fifth method consists of simple rules of thumb, without the use 
of statistics, but its use for controlling projects works in a very similar way. The 
only difference is that this method sets the control limits to arbitrary values based 
on the project controller’s experience without using confidence intervals, and this 
easy method is therefore further referred to as standard project control methods. 
In the current chapter, a third way of controlling projects is added, referred to as 
analytical project control methods, trying to combine the best features of these 
two previous project control methods in a new easy and powerful control system. 
A summary of these three methods is given in Fig. 8.1 and discussed along the 
following paragraphs. 

Standard Project Control The easiest and most straightforward way to use EVM 
progress data in a project control system is to set arbitrary values on the performance 
indicators without any statistical data analysis. These methods make use of so-called 
static control limits as thresholds on the project performance indicators based on 
simple rules of thumb using the project manager’s experience. I argued earlier in 
Chap. 5 that this way of managing projects is the standard way usually used by
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Fig. 8.1 Three types of project control methods using control limits 

Project progress 

UTL 

LTL 
Danger! 
Take corrective actions 

Opportunity! 
Re-baselining possible 

Central line 

Fig. 8.2 A project control chart with static control limits 

professional project managers. Since most professionals do use EVM metrics to 
measure the project performance but often do not take the next step to statistical data 
analysis, they use implicit rules of thumb to determine control limits. Using simple 
rules in project control makes sense but is not without danger. Rules such as “when 
the performance falls below x% it is time to act” are quickly seen as generally 
applicable rules, and the value for x is often set without any kind of analysis and 
eventually becomes a fixed value generally regarded as the standard for good project 
management.1 Figure 8.2 shows an illustrative control chart with static (upper and 
lower) control limits. It displays the progress of a project over time (on the X-
axis) and shows the upper and lower control or tolerance limits (UTL and LTL) to 
indicate if and when a drill-down is required. When the performance indicators for 
time and costs (e.g. SPI or SPI(t) for time control and CPI for cost control) exceed 
these thresholds, a warning is given that the project is at risk (under LTL) or that the 
project is progressing better than expected (above UTL). In either case, the out-of-

1 When I ask practitioners what the generally tolerable deviation of project progress from the 
project plan is, I often hear percentages as multiples of 5% (some swear by 10% as the maximum 
deviation, and others say their projects are sometimes allowed to have up to 20% or 25% deviation 
before actions are taken). I do not know why it always has to be this way, but I suspect it is because 
of our way of counting, using our five fingers and counting the number of hands. 
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control signal is an indication that the current project performance is significantly 
different from the expected performance (given by the central line) and that further 
research is needed to solve problems or seize opportunities. 

Of course, not every project manager makes very explicit use of such control 
charts and often very implicitly controls the project with arbitrary threshold values 
in mind. For such implicit control chart system, these control limits are mostly 
set as fixed values (horizontal lines), but they can vary, as described earlier in 
Chap. 5 to the ascending and descending values along the project progress. Despite 
these possible variations, the use of this method is still limited to the arbitrary 
determination of threshold values for the control limits and is never based on a 
proper statistical analysis, as is the case with the statistical project control systems 
discussed next. 

The best way to understand the difference between these two classes of project 
control methods (standard versus statistical) is to compare Fig. 8.2 with Fig. 5.3 
of Chap. 5. This last figure shows a control chart where the control limits vary 
according to the stage of the project and such control limits can never be determined 
on the basis of simple rules of thumb, but instead require a thorough statistical 
analysis that forms the basis of the statistical control methods. 

Statistical Project Control (Basic) The statistical project control methods use 
static simulation runs to determine control limits in advance. Based on a predefined 
desired state of progress, these simulations will generate normal variation to model 
that the future real project execution is allowed to have a certain degree of variation. 
As long as the real project progress is within these limits, the project does not appear 
to have a significant problem, and no action is necessary. The specific design of the 
control limits has already been discussed in detail in Chap. 5 and will therefore 
not be repeated here. In the previous chapters, I took the liberty of using the 
words tolerance limits and control limits interchangeably, but I should have been 
more careful. While they both serve as action thresholds to trigger actions, their 
differences are important for understanding how the project progress data can be 
used to construct these control charts. In the following paragraphs, I will therefore 
explain the important difference between control limits and tolerance limits and 
illustrate this difference using two completely different ways of data generation to 
track the project. The difference stems from the use of statistics to monitor and 
control processes (instead of projects), and the term “statistical project control” is  
therefore often used for two completely separate ways of monitoring projects. 

Statistical project control 
statistical tolerance limits . �= statistical control limits 

Statistical Project Control with Tolerance Limits (SPC-TL) This first class of 
control methods consists of the methods discussed so far in this book. These 
methods use control charts that are created in advance (prior to the project start) 
based on the predefined distributions (to model the desired state of progress) and 
the static simulation runs (to generate the fictitious progress data). This means 
that the central line and the upper and lower control limits are known in advance,



8.1 Project Control Methods (Revisited) 133

calculated as tolerance limits on the generated data. At the actual start of the project, 
the charts will remain immutable and are used to calculate the difference between 
allowable variation (within the thresholds) and unacceptable (outside the thresholds) 
variation in the project progress. Whenever the project enters a new phase, the 
project manager must measure the current status of the project, and this is then added 
into the control chart as a hypothesis test to see whether actions are necessary or not. 
Since these control charts consist of tolerance limits based on fully pre-generated 
data, this way of project monitoring is referred to as statistical project control with 
tolerance limits. 

Statistical Process Control with Control Limits (SPC-CL) The second class of 
statistical project control methods has not been discussed earlier in this book and 
is very similar to the classic view of statistical process control that is often used 
for monitoring production processes. The fundamental difference from the previous 
SPC-TL method is that the SPC-CL method assumes that the data will gradually 
become available over time. This means that no desired state of progress must be 
defined and no static simulation runs will be required, since the central line and the 
lower and upper control limits are calculated based on the gradually incoming data 
points during project execution. The SPC-CL methods measure the deviation from 
a normal project progress defined by the available data points and do not require 
an acceptable project progress defined in advance. It should also be noted that 
these classical statistical control methods often reject the idea that control charts 
are used as a form of hypothesis testing. Since these methods are based on the same 
underlying assumption of statistical process control, they are further referred to as 
statistical process control with control limits. 

The use of SPC-CL methods will not be discussed further in this book, but 
I would nevertheless like to give a brief overview in the following paragraphs 
of a number of studies that have proposed these methods, not only to draw the 
readers’ attention to their existence but also to show that their way of working 
is fundamentally different from the SPC-TL methods used throughout this book. 
A more detailed discussion is given in Vanhoucke (2019). To the best of my 
knowledge, not many statistical process control methods have been presented in the 
academic literature that perfectly fit into the SPC-CL framework. These methods 
have their origins in the use of traditional statistical process control (SPC) methods 
from manufacturing. Indeed, these traditional methods assume that they are trying 
to control an infinite process, and they measure deviations from normal progress 
as defined by the observed data. Such a model focuses on a process that “speaks 
for itself ”, which means that the control charts are constructed along the project 
progress. It is as if the control charts are listening to the voice of the process, 
which means that they gradually become more and more reliable as more and more 
progress data become available. Since a process is viewed as a continuous, never-
ending process, its control charts can actually be trusted on the data generated after 
a sufficiently long run-in period. But as projects are defined as unique efforts (rather 
than continuous processes), they often have no time enough to “listen to the voice” 
during their progress since not enough data will be generated. As a matter of fact,
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Table 8.1 Three methods to construct control charts (the voice of the project) 

Progress data Historical data Simulated data 

(SPC-CL) (SPC-CL) (SPC-TL) 

No data Some data Enough datab,c 

Same project Defining similaritya Same project 

Lipke and Vaughn (2000) Bauch and Chung (2001) Colin and Vanhoucke (2014) 

Wang et al. (2006) Leu and Lin (2008) Colin et al. (2015) 

Aliverdi et al. (2013) Vanhoucke and Colin (2016) 
a Reference class forecasting can help to define the similarity between projects (Chap. 9). 
b Simulated data for artificial project progress can be obtained with project progress models 
(Chap. 12). 

c Realistic distributions to model project uncertainty can be obtained with calibration procedures 
(Chap. 14). 

due to the uniqueness, collecting data on the progress of the project is difficult 
because there is no data at all at the beginning, and as the project progresses, the data 
are often unreliable at first. Thus, for a project, one must wait too long for sufficient 
or reliable data before the control process can be considered more or less ongoing 
(except if the project is extremely large and has a very long duration, then one could 
assume that the project resembles an ongoing process). Therefore, researchers have 
proposed the use of statistical process control methods for project control (SPC-
CL) that are the middle ground between the classical SPC view (ongoing infinite 
process, no data available at the beginning) and the unique project view modelled by 
the SPC-TL approach (unique project, all data simulated in advance). An overview 
of the different methods, along with some references to original studies, is given in 
Table 8.1. The table divides the control methods into three columns, depending on 
where they get their data from to construct the control limits (or tolerance limits) for 
the control charts (the voice of the project). 

• The first class retrieves the data in the traditional way while the process (in this 
case, the project) is running. This control method follows the classical view of 
statistical process control and assumes that the data come from the progression 
of the project and become more and more reliable as the project progresses. 
However, as mentioned earlier, these methods are often practically unusable 
because there is insufficient data present in the early stages of the project, and 
therefore they cannot construct reliable control limits for the control charts. 

• A second method attempts to solve this flaw by providing sufficient data at the 
beginning of the control process. More precisely, this method suggests extracting 
data from the early stages of similar past projects so that control limits can be 
determined very early in an accurate manner. This method is still considered a 
classical SPC-CL method because no tolerance limits are calculated before the 
start of the project, but these are determined as the project progresses. Despite the 
fact that this approach has the advantage of having sufficient data, the challenge 
lies mainly in defining project similarity, something that is not at all obvious. A
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subsequent chapter will delve deeper into how historical data can be obtained and 
how similarity between projects can be measured. 

• The last method belongs to the class of SPC-TL methods that use simulated data 
to construct the tolerance limits of the control chart. This method does not need 
to use (but does not exclude) historical data as it relies on the static simulation 
runs on a set of artificial projects. Moreover, this method can easily generate a 
lot of data since the static simulation runs are made to obtain these data in a very 
easy way. Of course, the challenge of this method lies in generating these data 
as close as possible to the expected real execution of the project. This requires 
the use of probability distributions that reflect the variability in the project, and 
these are preferably not set completely randomly. The best way to set these 
to realistic values is to analyse historical data, and a procedure that uses such 
data to determine distributions will be proposed in Chap. 14. Moreover, it is also 
necessary that the static simulation experiments are performed very accurately so 
that the artificial project progression is approximated as realistically as possible. 
For this purpose, one of the progress models that will be presented in Chap. 12 
can be used. 

As I mentioned earlier, I will not return to the SPC-CL methods in this book and 
will only use the SPC-TL methods. This is not to say that I want to rule out one 
method or another. Diversity in statistical methods to measure project progress is 
always a good thing. However, because of these fundamental differences, comparing 
and benchmarking these different methods is not an easy task, and I prefer to 
stay in the familiar realm of tolerance limits. In a study presented in Colin and 
Vanhoucke (2015b), Jeroen and I presented a possible framework to fairly compare 
these different methods and test their ability to detect project problems in early 
stages of control. The study showed that there is no agreed framework on how 
to validate the strength of the different methods, nor is there any consensus on 
how the required normality (or transformations to normality) is performed on the 
project data. Therefore, we presented a framework based on the statistical tolerance 
approach (SPC-TL) and concluded that the SPC-CL method of Leu and Lin (2008) 
is closest to the results obtained with the SPC-TL methods. For more details, I refer 
the readers to the original study. In the next section I will briefly discuss a number 
of extensions of the SPC-TL to show that a lot of further research can be done in 
this area by using more complex statistical techniques. 

Extended Statistical Methods (Extended) I have mentioned before that the SPC-
TL methods are probably too difficult for many project managers and therefore they 
are not going to be implemented very soon. However, these methods do not use 
the most advanced statistical techniques (hypothesis testing) and the control charts 
are limited to X charts (to measure the average performance of a particular project 
period) and R charts (to measure the performance of successive periods). However, 
it can all be made much more complex, and instead of measuring performance on 
control charts using a single metric (e.g., SPI or CPI), the generated data can first 
be manipulated by using more advanced statistical methods. These new advanced 
metrics can then be used as new schedule control metrics to construct tolerance
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limits, as discussed earlier. A brief summary of this so-called multivariate statistical 
project control approach is given as follows. 

Extension 1: Multivariate Statistics Colin et al. (2015) present a multivariate 
project control methodology using as much data as possible coming from the EVM 
system. More precisely, rather than only focusing on the schedule performance 
index (SPI) or cost performance index (CPI), this new control method also incor-
porates other EVM metrics such as the schedule variance (SV) and cost variance 
(CV) and can possibly be extended to metrics such as the p-factor (Lipke, 2004), 
the to-complete-index (Fleming & Koppelman, 2010), and many more EVM-related 
metrics if necessary. More formally, the project progress is now represented by a 
vector x of multiple EVM metrics measured along the lifetime of the project (i.e., 
at each percentage completion). The underlying idea is that incorporating more 
performance data will provide a more accurate view on the real performance of 
the project and will more accurately detect real problems in the project progress. 
However, the authors also warn that more data might be dangerous and might lead to 
problems such as data overload, redundancy, and even noise, which might decrease 
the reliability of this advanced control system. For these reasons, they propose to use 
the principal component analysis (PCA) methodology to reduce the dimensionality 
of data with many potentially interrelated variables. In doing so, they reduce the 
huge amount of metrics to a smaller set of so-called principal components that 
contain much of the information necessary for controlling the project. It is known 
that PCA is designed to reduce the dimensionality of a problem in a structured way 
with a minimal loss of valuable information. In the case of controlling projects, 
this means that the periodic observations of the current project performance can 
be projected onto a new set of coordinate axes, thereby removing the previously 
mentioned problem of redundancy and noise. This means that the performance 
metrics (SPI, CPI, SV, CV, etc.) will be transformed into new schedule metrics, 
unknown to any EVM system. The authors present two new schedule control 
metrics, known as the Hotelling’s T2 statistic and the squared prediction error (SPE) 
(Hotelling, 1951), which now serve as new modified schedule metrics that can be 
used for schedule control using tolerance limits in a similar way as explained before. 
Consequently, this extended approach is called a multivariate approach to denote 
that multiple EVM performance metrics are used as inputs for schedule control 
in contrast to the SPC-TL methodology, which is considered to be a univariate 
approach (since only a single performance metric is plotted on the X and R control 
charts). Computational experiments have shown that the multivariate approach has a 
superior ability to detect project problems compared to the univariate approach, but 
this improvement comes at the price of extra advanced statistical analyses needed to 
calculate the new schedule metrics. 

Extension 2: Multivariate Regression Thanks to the improved performance of 
the multivariate techniques for project control, Vanhoucke and Colin (2016) have  
extended this approach even further using multivariate regression methods. The 
authors compare four extensions of the original PCA model described earlier. 
The first two extensions embed the principal component analysis in a regression
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model (PCR) or extend this PCR approach with an additional matrix decomposition 
(PCR-PC). Two other extensions consider a kernel variant for PCR (kPCR) and a 
partial least squared regression (PLSR). It goes without saying that these extensions 
significantly increase the complexity of the project management methodologies and 
may no longer be accessible methods for professional users. However, the research 
was aimed at measuring the potential of these advanced statistical methods to predict 
the expected outcome of a project and to get the most out of an EVM system for 
better project control. A comprehensive overview of these multivariate regression 
methods and the parameters used for these methods is beyond the scope of this 
book, and the readers are referred to the original manuscripts for more details. 

8.2 Best of Both Worlds 

I hope that the readers have found the courage to work their way through the 
preceding paragraphs and have taken the opportunity to thoroughly review and 
compare the various statistical methods. The purpose of the previous section was 
mainly to show that such advanced methods are the subject of many research 
projects, but that their day-to-day use is not very likely. The difficulty of such 
methods was measured in the previous chapter by means of the effort of control. 
As we have seen, the concept of control efficiency is a simple concept to find a 
balance between the effort of control and the quality of actions, and it is a way to find 
the right balance between ease of use of control methods and the accuracy of their 
warning signals for taking actions. As mentioned, project control methodologies 
need to strike a balance between not too easy and not too complex, which is of 
course also applicable outside the field of project control. Finding the right balance 
applies in many facets of life, as Albert Einstein argued: 

Everything should be made as simple as possible, but not simpler. 

I particularly like the “but not simpler” in this quote, since otherwise, propos-
ing easy methods would be pretty straightforward. However, when simplifying 
advanced methods, the challenge lies in doing it in such a way that they do not 
lose much of their performance. 

One of the first serious research attempts to turn academic project control 
research into a new easy method without reducing the control efficiency started 
in 2014 with a Business Engineering student working on a Master’s thesis on 
statistical project control. Annelies Martens was applying the SPC-TL methods to 
practical projects, and during her graduation as a Master in Business Engineering 
she received a prize from the Project Management Institute (PMI Belgium) for 
her Master’s thesis. The ultimate goal of her thesis was to test the new statistical 
control tools that I discussed in Chap. 5 (and briefly summarised in the previous 
section). Her research revealed that not many project managers were ready to use 
static Monte Carlo simulation runs on their projects to calculate tolerance limits. So 
she decided to devote her research time to developing an alternative project control
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method that should be just as good as the statistical methods, but much simpler 
to use. And so she started a PhD in our research department and she received— 
4 years later—a second prize from PMI Belgium for the thesis entitled “Buffer 
management methods for project control”. The basic idea of her research project 
was very simple (it always is, in hindsight) as she went looking for the right balance 
between simplicity and complexity, and she came up with the proposal to work out 
so-called analytical project control methods. This new method should find a middle 
ground between the easy standard control methods and the complex statistical 
project control methods by simplifying the processing of the progress data. Instead 
of relying on the static simulations to generate data, she wanted to replace them with 
simple analytic calculations, as illustrated in Fig. 8.1. The underlying idea of using 
analytical tolerance limits is that they only require the construction of the project’s 
baseline schedule (reference point) and the calculation of only a few basic EVM 
metrics (SPI, SPI(t), or CPI) to monitor project progress and that is it. No additional 
data (historical data or simulated data) nor advanced statistical tools (such as Monte 
Carlo simulations or regression models) are required, making these methods much 
easier to use (i.e., less control effort). Consequently, the analytical models are very 
similar to the rules of thumb of the standard control method but differ in the way 
the control limits are constructed. Rather than just setting thresholds using arbitrary 
values, some simple analytical calculations will be used to determine the correct 
values for the control charts. 

The basis of the analytical project control method lies in the simple principle of 
using a buffer to protect the project from unacceptable delays. A project buffer adds 
an extra safety timemargin to the planned duration (PD) of the baseline schedule and 
acts as a simple project control tool to visually see whether delays are still acceptable 
or not. Figure 8.3 shows such a project buffer divided into three zones. Any delay of 
the project in the green zone is acceptable and indicates only minor deviations from 
the basic schedule. The orange zone indicates that delays are increasing and warns 
the project manager to be careful and not to relax too much. Finally, the red zone 
indicates that further delays could jeopardise the project and potentially consume 
the total project buffer and thus lead to an unacceptable delay if corrective actions 
are not taken. In that regard, a project buffer is nothing but a visual representation 
of a control chart, and when the project status enters the red zone, it is very much 
like exceeding the statistical tolerance limits as a call to action. Project buffers are 
widely used in the academic literature (and commercial software tools) but are often 

Everything is under control 
(only minor project delays) 

Watch out! 
(project delays expected) 

Action time! 
(project likely to be late) 

Real project problems 
(project is no longer under control) 

Fig. 8.3 The principle of a project buffer: detecting problems and taking actions
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Fig. 8.4 The three steps of analytical project control 

little more than dashboards to visually monitor buffer penetration (Goldratt, 1997; 
Hu et al., 2015). However, the analytical project control methods go one step further 
and define the different zones in the buffer based on project-specific characteristics 
using analytical calculations (instead of Monte Carlo simulations). The general 
approach consists of three distinct phases, which are visually summarised in Fig. 8.4 
and further discussed along the following lines. 

Step 1: Determine Allowable Buffer Consumption for Each Project Phase 
The first step of the proposed approach consists of determining the allowable 
buffer consumption for each stage of the project, such that the expected buffer 
consumption at project completion is less than or equal to 100%. The allowable 
buffer consumption defines the maximum amount of the project buffer that is 
allowed to be consumed at each project stage. Traditionally, the allowable buffer 
consumption is set linearly with the project progress, i.e., at x% of the project 
completion, and the allowable buffer consumption is set at x% of the total buffer 
size, as shown in Fig. 8.5. The buffer is shown vertically and displays that the 
percentage completion of the project (horizontal axis of the graph) grows linearly 
with the expected buffer consumption. However, this approach does not consider 
that the amount of work during the project life can vary along the different 
completion stages and does not take any project-specific characteristics into account. 

Therefore, Annelies has presented an allowable buffer assignment procedure 
to allocate a non-linear buffer consumption over the different project phases 
using EVM cost metrics (published in Martens and Vanhoucke (2017a)). More 
specifically, the buffer is allocated proportionally with the planned value of each 
phase in the project, which is expressed in a monetary unit as the cumulative 
increase in the total cost of all activities of the baseline schedule. When this 
allowable buffer consumption is known at each phase of the project, it can be 
used as a threshold denoting that overconsumption at any time in the project 
will likely result in a project duration overrun. Hence, the concept of allowable 
buffer consumption is nothing more than a tolerance limit but is now based on
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Fig. 8.5 A linear allowable buffer consumption 

Fig. 8.6 A non-linear allowable buffer consumption 

simple analytical calculations (i.e., the planned value curve of the baseline schedule) 
instead of Monte Carlo simulations. 

The graph of Fig. 8.6 depicts the allowable non-linear buffer consumption at 
each time t during the project duration. As shown in this figure, at time . t1, 25% 
of the planned project duration (PD) has passed, but only 5% of the total budget 
at completion (BAC)2 is planned to be earned at that time. As a result, only 5% of 
the total project buffer should be assigned to . t1, which is much lower than the 25%

2 Recall that the construction of the project baseline schedule results in two key metrics, known 
as the planned duration (PD) and the budget at completion (BAC or total planned cost) as briefly 
discussed in Sect. 4.1. 
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that normally would be assigned in a linear buffer method. This simple calculation 
can be made at any time in the project plan to ultimately allocate the entire buffer 
at the end of the project. More specifically, for each time t (from .t = 0, . . . , PD), 
the allowable buffer consumption .abt can be calculated as shown in the following 
equation: 

.abt = pb × %PVt (8.1) 

In this equation, pb is used to refer to the total size of the buffer and .%PVt is 
equal to . PVt

BAC
. The total buffer size pb must be defined as the difference between 

the planned duration (PD) of the project’s baseline schedule and the maximum 
allowable project duration, possibly defined by the deadline (DL) promised to 
the customer. The .abt formula does nothing but distributes the total buffer pb 
proportionally over the different periods as the proportion of the planned value at 
time t (.PVt ) over the maximum value of the planned value curve (which is equal to 
BAC). 

Step 2: Construct the Buffered Planned Progress 
With the obtained values for the allowable buffer consumption for each time t of 
the project’s base schedule, the new approach must now determine when each phase 
of the project must be completed at the latest. Therefore, in the second step, the 
buffered planned progress (BPP) is determined for each phase of the project, which 
represents the planned progress of a project taking into account the allowed buffer 
consumption in each phase. Therefore, the allowed buffer consumption must be 
added to the project phase, as shown in Fig. 8.7. Since the . abt reflects the project’s 
acceptable delay at time t during the project duration, the BPP for each time t can 
be determined analytically by adding . abt to time t , as follows: 

.BPPt = t + abt (8.2) 

Fig. 8.7 The buffered planned progress curve
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Step 3: Set the Tolerance Limits for the SPI(t) 
The BPP curve now represents for each stage of the project the allowable project 
delay, which can be used as control limits that cannot be exceeded. More specif-
ically, it is very easy to calculate what the minimum value of the schedule 
performance metrics (e.g., SPI(t)) must be to guarantee that the BPP curve is not 
exceeded at each time t . These minimum values for the schedule performance met-
rics can now act as control limits and serve, just like all previously discussed control 
methods, as warning signals for actions. During each project progress monitoring 
period, the SPI(t) values are monitored and compared to these minimum required 
threshold values for these schedule performance metrics. When the observed SPI(t) 
values fall below the minimum value at any given time t , this is an indication that 
the buffer consumption is too high, possibly indicating a high probability of large 
project delays. In that case, it is—as always—time for actions. 

Practical Implementation 
The three-step procedure to determine the non-linear buffer consumption as control 
limits for project control can of course be implemented in different ways. The 
previously discussed method uses EVM cost data (represented by the PV curve) 
to determine the allowable buffer consumption, but this curve can be replaced by 
any other non-linear curve describing the course of the project plan, as explained 
hereunder: 

Cost Data As argued earlier, the analytical project control method differs from 
traditional buffering methods since the buffered planned progress is calculated using 
EVM cost metrics (the planned value curve) and does not simply rely on linear or 
arbitrary buffer consumption rules as is often the case. Computational experiments 
have shown that these analytical control methods using non-linear buffers show 
a slightly improved performance for project control compared to the standard 
project control method (rules of thumb) for serial projects. However, the analytical 
buffer method improves the efficiency of project control a lot for projects with a 
more parallel structured network. Since it is known that the classic EVM methods 
traditionally perform poor on these parallel projects, the analytical project control 
method can therefore be considered as a good alternative for schedule control when 
the project is close to a completely parallel network. 

Resource Data Given these improvements for parallel projects, we could not resist 
the temptation to consider more project-specific characteristics than just cost data. 
The most logical (but also challenging) step was to integrate the use of scarce 
project resources into the control method, so that the BPP curve can be constructed 
from resource data instead of purely from cost data. While many algorithms exist
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to construct baseline schedules with scarce renewable resources,3 it is surprising 
that the scarce availability of resources has not been taken into account when 
studying EVM methodologies for project control. A new analytical project control 
method incorporates the shiftability reservation rate (SRR) into the allowable buffer 
consumption curve defined as the division of the absolute shiftability with the 
maximal shiftability. The absolute shiftability is based on right-shifting the activities 
in the project towards the expected deadline, without violating the project network 
(precedences between activities) and the limited availability of resources (resource 
constraints). The maximal shiftability is quite similar but ignores the precedence 
relations between activities and only takes the limited availability of resources into 
account when shifting activities. Since the SRR is the division of these two right-
shifts, the metric is expressed as a percentage between 0 and 1. The new method 
sizes the buffer in a similar way as the cost data method but defines the allowable 
buffer consumption based on the SRR values of the project. 

Risk Data It is in the nature of academic research to never give up, and any 
improvement is a sign to look for more. After the observation that adding more 
project-specific features helps improving the accuracy of the analytical control 
methods, we decided to extend the buffering approach once again, now incorporat-
ing a third source of data. It is quite obvious to set the allowable buffer consumption 
at each phase of the project according to the expected risk of this project phase. More 
specifically, when there is a much greater expected risk at certain project phases, it 
seems logical to allow more buffer consumption there and to slightly reduce the 
permitted consumption during safer project periods. The risk curve is constructed 
as the cumulative increase of the schedule sensitivity index (SSI) values for each 
activity obtained from a traditional schedule risk analysis, as briefly discussed in 
Sect. 3.4 of Chap. 3. In periods where many activities with a high value for the SSI 
are planned, the curve will therefore rise much steeper, so that the allowable buffer 
consumption is set to larger values. All other steps are identical to the previous 
methods, and this third approach results in only a slightly different version to set 
control limits using analytical calculations. 

In our study published in Martens and Vanhoucke (2018), we have compared 
the three analytical project control methods on 93 real-life projects of Batselier and 
Vanhoucke (2015a). The computational experiments have shown that all analytical 
project control methods perform better than the rules of thumb used by the standard 
project control method and almost perform as well as the complex statistical project 
control methods. The method with resource data was considered as the most 
promising method to increase the control efficiency of the project manager and 
is therefore recommended for further use. Table 8.2 provides an overview of the 
three different implementations of the analytical project control method using three 
different non-linear curves with different sources of project data (cost, resource, and

3 As you may recall, this scheduling problem is known as the resource-constrained project 
scheduling problem as discussed earlier in Chap. 6. 
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Table 8.2 A comparison of analytical control methods 

Project level and Tracking level 

Type of limits # (DP, PO, E, R) and (SD, SR, SE, SR) Reference 

Linear time limits 93 For regular cost curves, the 
linear time limits perform 
reasonably well 

Colin and Vanhoucke (2015a) 

Cost limits 93 For irregular cost curves, the 
cost limits outperform the linear 
time limits significantly 

Martens and Vanhoucke 
(2017a) 

Resource limits 21 The resource limits perform 
much better than the linear time 
and cost limits 

Martens and Vanhoucke 
(2017b) 

Risk limits 32 The risk limits perform slightly 
better than the linear time and 
cost limits 

Martens and Vanhoucke 
(2018) 

risk data). The table also displays results for the traditional buffering methods using 
a linear buffer consumption. For each method, the number of tested projects is given 
(#) and a reference to the original study is displayed in the last column. The middle 
columns display two times four quality metrics that assess the performance of each 
control method, which can be divided into two classes (project level and tracking 
level metrics). No specific values for the quality metrics are reported, but a general 
conclusion is drawn for each method. The interpretation and calculation of the two 
times four quality metrics are the subject of the next section. 

8.3 The Signal (Not the Noise) 

The performance of any project control system with tolerance limits can and should 
be assessed by the reliability of its warning signals, as well as by its ability to use 
these signals to detect and solve the problems of the project in progress. A reliable 
project control system should warn the project manager only when real project 
problems occur and should leave the project manager relaxed when no special 
problem occurs. This ability to generate true warning signals requires accurate 
forecasts of the impact of problems, and should be measured by statistical quality 
metrics, as will be discussed in this section. In his book “The signal and the noise: 
Why so many predictions fail — but some don’t”, Nate Silver (2012) describes the 
accuracy of a forecasting system as follows: 

The signal is the truth. 
The noise is what distracts us from the truth. 

The search for true signals for project control is not a new theme in this book 
and has been discussed in many different ways in previous chapters. Chapter 4 
introduced the accuracy of project duration predictions using three different fore-
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casting methods. These methods provided time predictions for projects in progress 
and thus did not use control charts with warning signals. Nevertheless, it was 
implicitly assumed that a higher accuracy would lead to a better control system, 
and so the accuracy was actually an indirect metric to evaluate the quality of 
predictions. In Chap. 7, the concept of control efficiency was introduced as a trade-
off between effort of control and quality of actions. Although this concept does not 
really use very precisely defined statistical measures, it comes a lot closer to how 
warning signals should be evaluated. Note that the effort of control is measured 
by the number of times the project manager drills down in the work breakdown 
structure to look for project problems (generated by the warning signals). Because 
it is known that these warning signals are not always correct (false signals), not 
every drill-down leads to finding a problem. Sometimes there is simply a signal 
without a real problem occurring, resulting in a waste of effort. The quality of 
actions is measured by the impact of the corrective action taken by the project 
manager when a problem was found. Thus, if the warning signal did not result 
in any detection of a real problem, the effort was high (waste of time) and the 
impact of actions low or non-existent (because there was no problem), so the control 
efficiency will be very low. Consequently, this control efficiency is just another 
way of measuring the performance of a project control system, but it is more 
encompassing than the accuracy metric of Chap. 7. However, it still does not use 
any statistical measurement as will be discussed in this section. The use of statistical 
performance measures to evaluate the warning signals was only introduced for the 
statistical project control systems of Chap. 5. In this chapter, the probability of 
overreaction (type I error) and detection performance (type II error) were presented 
and combined in the area under the curve metric. These statistical measures will be 
reviewed and refined in the current chapter by applying them to two levels of the 
project progress, as discussed next. 

The statistical signal metrics proposed in this chapter will focus on the quality 
of the signals (i.e., the reliability to generate true warning signals) and on the 
intensity of the signals (i.e., the number of signals generated during the progress 
of the project ) and will no longer include the corrective actions as was the case for 
the control efficiency concept. The two types of metrics—quality and intensity— 
correspond to two different levels of project progress and are both based on known 
metrics in Bayesian statistics. The first set of metrics measures the quality of the 
signals generated by the project control system at the project level. More precisely, 
the signal quality is expressed by the ability of the generated warning signals to 
give a correct signal or not (as a binary evaluation). The previously discussed 
detection performance and probability of overreactions belong to this class of signal 
quality metrics, but two additional metrics, known as efficiency and reliability for 
project control, are also included in Table 8.3. These quality metrics measure the 
performance of the control system at the project level, which means that they are 
not evaluating each individual tracking period, but only the signal quality as a 
whole after the project is finished. A second set of signal metrics evaluates the 
performance of a project control system at the tracking period level, i.e., at each 
period at which the performance of an ongoing project is measured. These metrics
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Table 8.3 Overview of quality metrics for project control 

Statistical signal metrics Range Desirable state 

Signal quality (Project level) 

Detection 
performance 

Probability of warning signals for late 
projects 

.[0, 1] High 

Probability of 
overreactions 

Probability of encountering warning signals 
for timely projects 

.[0, 1] Low 

Efficiency Probability that the project deadline is 
exceeded when a warning signal is generated 

.[0, 1] High 

Reliability Probability that the project is finished timely 
when no warning signals are generated 

.[0, 1] High 

Signal intensity (Tracking period level) 
Signal density Average number of signals generated for late 

projects 
.[0,K] High 

Signal redundancy Average number of signals generated for 
timely projects 

.[0,K] Low 

Signal efficiency Proportion of correct warning signals .[0, 1] High 

Signal reliability Proportion of correct absence of signals .[0, 1] High 

measure the signal intensity by counting the number of signals generated over the 
entire project progress. Instead of just measuring whether a signal is right or wrong 
(signal quality), it is also important to know when and how often these true or false 
signals are generated as the project progresses. This new set of metrics consists of 
metrics such as the signal density, the  signal redundancy, the  signal efficiency, and 
the signal reliability. 

The summary in Table 8.3 shows the eight signal metrics and the range for each 
metric. All signal quality metrics are expressed as a percentage (between 0 and 
1), but two of the four signal intensity metrics are expressed as a value between 0 
and K with K being the number of tracking periods during project progress. The 
desired status of each metric indicates the ideal value (high or low) for determining 
whether the project management system is of good quality. Each metric is explained 
in detail in the following sections, and due to its technical nature, a summary of the 
abbreviations can be found in Table 8.4. I would like to warn the readers who suffer 
from a math phobia and are afraid of statistics and numbers and advise them to drink 
a strong cup of coffee (black, no sugar) before proceeding with this section. If you 
do not have coffee nearby, consider taking a break or go immediately to the next 
chapter. 
Set 1: Quality of signals (measuring the performance at the project level) 

The quality metrics of a control system with tolerance limits should consist 
of two aspects at the project level. First of all, the tolerance limits must be able 
to detect problems that ultimately have a high probability to lead to a project 
duration exceeding the deadline (true signals). Second, these limits should not 
indicate that a project is expected to exceed the deadline, while the project will 
eventually be completed on time (false signals). In a statistical context, measuring
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Table 8.4 Symbols and 
abbreviations used for the 
signal metrics 

Abbreviations for the signal metrics 

.δN Project deadline 

RD Real duration of the project 

S A generated signal 

n Number of simulation runs 

.nL Number of late projects in the simulation 

.nO Number of timely completed projects in the simulation 

K Number of tracking periods 

Fig. 8.8 Hypothesis testing 
framework 

the performance of tolerance limits at the project level can be represented as a 
statistical hypothesis test with the null hypothesis H. 0 specified as “the project 
finishes on time” (which is defined as finishing before or at the deadline) and an 
alternative hypothesis H. a specified as “the project is late”. The null hypothesis 
is rejected when a performed test has a positive outcome, while a negative outcome 
implies that the null hypothesis cannot be rejected. In a project control context, 
the generation of a warning signal corresponds to a positive test outcome, while 
the lack of warning signals indicates a negative test outcome. In Fig. 8.8, the  
hypothesis testing framework used in the remainder of this section is outlined. The 
framework consists of four results (true positives, false positives, true negatives, 
and false negatives) and four statistical measures of performance (true positive rate, 
false positive rate, positive predictive value, and negative predictive value), which 
correspond to the four signal quality metrics of Table 8.3 (detection performance, 
probability of overreactions, efficiency, and reliability). 

First, true positives are positive outcomes that correctly reject the null hypothesis. 
False positives are positive outcomes that incorrectly reject the null hypothesis and 
are often referred to as type I errors. Similarly, true negatives occur when the null 
hypothesis is correctly not rejected. Finally, false negatives incorrectly fail to reject 
the null hypothesis and are considered type II errors. Consequently, the quality of the 
warning signals generated by the tolerance limits can be classified into two groups. 
A distinction is made between correct warning signals and false warning signals. 
The correct warning signals are generated during the project life cycle of a project 
that eventually exceeds its deadline and can hence be considered true positives. On 
the contrary, warning signals generated for projects that eventually finish on time 
are referred to as false warning signals and can be considered false positives.
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Moreover, the true positive rate and false positive rate measure the proportion 
of positives (i.e., late projects) and negatives (i.e., projects on time) that are 
identified as positive (i.e., warning signals are generated). Hence, these rates 
represent the conditional probabilities of receiving warning signals given that a 
project is late or on time, respectively. Furthermore, the positive predictive value 
and negative predictive value are the proportions of positive results (i.e., warning 
signals are generated) or negative results (i.e., no warning signals generated) that 
are true positives (i.e., for late projects) or true negatives (i.e., timely projects). 
The predictive values are thus the conditional probabilities of finishing late or on 
time given the presence or absence of warning signals. Moreover, these conditional 
probabilities are the inverse of the true positive and false positive rate. So much for 
the statistical theory which, in my humble opinion, is not very complex but still 
confuses me all the time. Let me therefore translate this theory into the four signal 
quality metrics of Table 8.3. 

As mentioned before, the signal quality metrics examine whether or not warning 
signals are generated, without considering the precise number of generated signals. 
The detection performance indicates the probability that warning signals are gener-
ated for late projects, which is equivalent to the true positive rate. It is calculated as 
the ratio of the sum of the late fictitious project executions that generated a warning 
signal to the number of late executions in the set of simulated fictitious executions, 
as  shown by Eq. (8.3): 

.P[S|RD > δN] =
∑n

i=1 1i (RD > δN)1i (Si)

nL

(8.3) 

with .nL = ∑n
i=1 1i (RD > δN) and . Si the logical disjunction over all review 

periods of run i: 

.Si =
K∨

k=1

Sik (8.4) 

with .Sik = 1 if a signal is generated at review period k of run i. As a result, Eq. (8.4) 
entails that . Si is 1 if one or more review periods of run i generate a warning signal. 

Furthermore, the probability of overreactions reflects the probability that warning 
signals are generated for projects that are completed before the deadline (i.e., the 
false positive rate). It is defined as the ratio of the sum of the timely fictitious project 
executions that generated a warning signal to the number of timely executions in the 
set of simulated fictitious executions (Eq. (8.5)). 

.P[S|RD ≤ δN] =
∑n

i=1 1i (RD ≤ δN)1i (Si)

nO

(8.5) 

with .nO = ∑n
i=1 1i (RD ≤ δN).
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In a real-life context, the final outcome of a project is unknown to the project 
manager during execution. However, the presence or absence of warning signals 
may provide valuable information to the project manager, based on which it can 
decided whether to take corrective actions or not. Therefore, it is of major impor-
tance that the provided information is as accurate as possible. More specifically, 
when warning signals are generated, the probability that the project will be late 
should be as high as possible. Correspondingly, when no signals are received, 
the probability that the project will finish on time should be as high as possible. 
Consequently, this implies that both the positive and the negative predictive value 
should be as high as possible. 

The positive predictive value can be used as a metric to evaluate the perfor-
mance of tolerance limits, and is referred to as the efficiency (Eq. (8.6)). Using 
Bayes’ theorem, the efficiency can be calculated from the detection performance 
(.P[S|RD > δN]), probability of overreactions (.P[S|RD ≤ δN]) and the prior 
probabilities of finishing on time (.P[RD ≤ SN]) or late (.P[RD > δN]): 

. P[RD > δN|S]

= P[S|RD > δN] × P[RD > δN]
P[S]

= P[S|RD > δN] × P[RD > δN]
P[S|RD > δN] × P[RD > δN] + P[S|RD ≤ δN] × P[RD ≤ SN]

(8.6) 

The negative predictive value can also be used to accurately assess the perfor-
mance of tolerance limits by introducing the reliability metric (Eq. (8.7)). Similar 
to the efficiency, the reliability can be calculated from the detection performance, 
probability of overreactions, and the prior probabilities of finishing on time using 
Bayes’ theorem: 

. P[RD ≤ δN|SC]

= P[SC |RD ≤ δN] × P[RD ≤ δN]
P[SC]

= (1 − P[S|RD ≤ δN]) × P[RD ≤ δN]
(1 − P[S|RD ≤ δN]) × P[RD ≤ δN] + (1 − P[S|RD > δN]) × P[RD > SN]

(8.7) 

with . SC the complement of S, namely the absence of a signal. 
Set 2: Intensity of signals (measuring the performance at each tracking period) 

At the tracking period level, the performance of tolerance limits is assessed 
in terms of the number of correct or false warning signals generated during the 
project life cycle. For projects that are late, tolerance limits should have generated 
as much correct warning signals as possible during project execution since each 
signal corresponds to an opportunity for taking corrective actions. Contrarily, timely
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projects should have generated as few warning signals as possible since each of 
these signals involved unnecessarily spent effort. Since the signal quality metrics at 
the project level are not able to assess the number of generated signals, four signal 
intensity metrics are proposed at the tracking period level. Similar to the project 
level metrics, two metrics consider the correct and false signals separately, namely 
the signal density and the signal redundancy. Two other metrics consider both the 
correct and the false signals, namely the signal efficiency and the signal reliability. 

The signal density reflects the average amount of signals generated during the 
project lifecycle of late projects and is defined by Eq. (8.8) as follows: 

.
#signals for late projects

#late projects
=

∑n
i=1

∑K
k=1 1i (RD > δN)Sik

nL

(8.8) 

Furthermore, the signal redundancy indicates the average amount of warning signals 
generated during the project lifecycle of timely finished projects and is represented 
in Eq. (8.9). 

.
#signals for timely projects

#timely projects
=

∑n
i=1

∑K
k=1 1i (RD ≤ δN)Sik

nO

(8.9) 

The signal efficiency combines correct and false warning signals and represents 
the relative number of correct warning signals generated by the tolerance limits 
(Eq. (8.10)). The number of correct warning signals is compared to the total number 
of generated warning signals as follows: 

.
#signals for late projects

#signals
=

∑n
i=1

∑K
k=1 1i (RD > δN)Sik

∑n
i=1

∑K
k=1 Sik

(8.10) 

Finally, the signal reliability represents the relative number of times that warning 
signals were not generated, rightly so, by the tolerance limits. This metric compares 
the number of times that warning signals were correctly absent to the total number 
of tracking periods for which no warning signal was generated (Eq. (8.11)). 

.
#absent signals for timely projects

#absent signals
=

∑n
i=1

∑K
k=1 1i (RD ≤ δN)SC

ik
∑n

i=1
∑K

k=1 SC
ik

(8.11) 

with . SC
ik the complement of . Sik . 

Conclusion 
The preceding technical discussion of signal metrics illustrates that the quality of 
control methods can be validated in different ways. Each perspective uses the control 
efficiency concept implicitly but approaches it differently. Whichever perspective is 
chosen, they all examine the quality and accuracy of control methods in a similar 
way and they all focus on measuring the trade-off between (1) the effort of control
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(the ease of use, or the number of control points in the system), (2) the accuracy of 
signals (correct or false signals, i.e., type I and type II errors), and (3) the quality 
of actions taken to resolve problems in a timely manner. None of the previously 
used concepts in the previous chapters fully integrated these three perspectives, and 
it is therefore necessary to study these signal metrics more deeply and measure 
them all simultaneously to evaluate a project control system from all sides. I must 
admit that I am also sometimes confused with the large number of metrics (8!) and 
they sometimes overwhelm me and prevent me from drawing clear conclusions. 
However, since there is currently no standardised definition available to evaluate 
project control systems, I think these eight metrics should all be used during the 
evaluation. It would be an interesting research path to integrate these metrics into 
one unified measure so that it would be much easier to evaluate a project control 
system. Consider it a call for further research. 

8.4 Hope and Dream 

This chapter proposed a new methodology to control projects in progress and new 
quality metrics to assess the performance of project control methods. The analytical 
control methods are intended to combine the simplicity of the standard control 
methods (which rely only on simple rules of thumb with simple EVM performance 
statistics) with the accuracy and quality of the statistical control methods (which 
make use of statistical tolerance limits but require more data and use advanced 
statistical methods). It is believed that these analytical methods are within the 
reach of any project manager who is able and willing to improve the current EVM 
methodology without much additional effort. These methods can thus perfectly 
bridge the gap between the simple rules of thumb and the advanced statistical 
techniques. Despite the belief that these analytical project control methods are 
easy to use or at least much easier than the advanced statistical project control 
methods, not much has changed in my experience and most professional project 
managers continue to stick to their easy rules of thumb (the standard methods) when 
controlling projects. Nevertheless, I keep trying to convince the project management 
community of the power of newer and better methods, and that is why I organise at 
least three times a year a 2-day workshop at Vlerick Business School (Belgium) 
in which Belgian project managers learn the benefits of using these (analytical and 
even statistical ) methods for their projects. The student ratings are excellent and the 
program is sold out every time, despite the relatively high registration fee. I often 
get requests after the training for further guidance and help in implementing these 
techniques, which indicates that the interest is there. Although I think that these easy 
analytical methods are still a bit too difficult for most project managers, it may also 
be a matter of time (and money) before the younger generation will adopt them to 
monitor their projects. Who is to say. . . .? 

However, I do see positive changes and notice that a number of techniques that do 
require some data and statistical analyses are becoming more and more accessible
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to a wider project manager audience. I therefore continue to see it as one of my 
important tasks to convince professional project managers to implement data-driven 
methods for managing their projects. I know this is a challenging task and progress 
may not be as fast as I would like, but I will stay positive and keep going. One of the 
most encouraging signs that change is on the way lies in the growing use of a data-
intensive technique for forecasting project durations and costs known as reference 
class forecasting, which will be discussed in detail in the next chapter. 
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Chapter 9 
Reference Class Forecasting 

In the previous chapter, several project control methods were discussed that generate 
warning signals to take corrective actions in a timely manner so that projects can be 
completed without problems. These warning signals act as alarms so that the project 
manager can search for potential problems. The nature of the problem obviously 
varies from case to case, and it is up to the project manager to estimate the impact 
of the problem on the project (time and cost) objectives and, if necessary, to compare 
the current performance against the expected future performance. The future project 
performance must therefore be accurately estimated, and this estimate uses the 
current state of progress (in the middle of the project progress) to predict the future. 
In Chap. 4, I have already suggested a number of ways to predict the expected total 
duration from EVM data, and you saw that these predictions (obviously) became 
more accurate as the project progressed. However, none of the proposed methods 
were able to accurately estimate the expected duration of the project during the 
early project phases because there was simply too little progress data available. 

This chapter presents an alternative method for estimating the expected time and 
costs of a project in its early phases. More specifically, this method tries to predict 
the total duration and total costs of the project based on project-specific character-
istics by using historically finished projects that display the same characteristics. 
Making use of similar projects from the past is quite normal since every project 
manager makes estimates about time and costs based on experience from previous 
projects. The danger of these estimates is, of course, that the project manager is not 
very objective and is often tempted to make unreasonable assumptions or even tends 
to change these estimates in some desired direction. This has been known for a long 
time, and as early as the seventeenth century, the Marquis of Halifax already knew 
that predictions based on human experience are prone to error, as he stated: 

The best qualification of a prophet is to have a good memory. 

People do not have very good memories (it gets worse for me with age) and 
some experiments even claim that the best estimate is often not much better than 
a random guess. The technique discussed in this chapter attempts to avoid this 
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arbitrariness by providing better estimates in a structured manner based on historical 
data. The technique is known as Reference Class Forecasting (RCF) and was 
first introduced by Daniel Kahneman and Amos Tversky, the founding fathers of 
behavioural economics. 

In this chapter, I will give an overview of three studies that we have performed for 
time and cost estimations based on this RCF technique. I must admit that I cannot 
call myself an expert in this field and that I was even a bit averse to research in this 
field at first. It is of course not because I found this technique inferior, but I found 
the methodology clear and simple and I thought that as a researcher I could add 
little to it. However, this changed after reading a book and a series of papers while 
looking for some good and exciting science literature.1 

The book can be found everywhere, and it is undoubtedly one of the best-selling 
books in the world because I have never been to an airport where it was not for sale. 
The book is titled “Thinking fast and slow” and was written by Daniel Kahneman 
(2011) after his friend and colleague Amos had already died. There are not many 
books that have had such an impact on my career like this one, and to this day, 
I recommend the book to my students in any Project Management or Decision 
Making for Business course module. The book shows in an incredibly original way 
how irrational people are, especially when making decisions under uncertainty. I 
therefore consider the book a valuable resource not only for my academic research 
but also in my day-to-day life. The book does not explicitly refer to the domain of 
project management, but it was immediately crystal clear that the presented theories, 
including reference class forecasting, could have many applications in my favourite 
field of research. One of the first persons who gained this insight was undoubtedly 
Bent Flyvbjerg. He has carried out an incredible series of studies on this project 
forecasting theme and has shown that the RCF technique is an extremely valuable 
technique in the field of project management. I would be happy to summarise his 
research, but this would lead me way too far. However, I advise every reader to 
look for his papers and get started with his numerous recommendations. I will make 
my own limited contribution in this chapter by providing an overview of my three 
studies in this field (Sects. 9.2–9.4). There is no doubt that everything that I did in 
these studies was heavily inspired by what I have read in Bent’s papers. Therefore, 
I will first explain the general principle of RCF in the next section (outside view) 
before moving on to the three OR&S research studies.

1 I must admit that I rarely read novels, because in the scientific literature, especially in the popular 
science literature, there can be so much excitement that it not only thoroughly improves my 
knowledge but also sometimes completely blows my imagination. 



9.1 Outside View 157

9.1 Outside View 

Before starting a project, project managers must estimate how long the project will 
take and how much it will cost. Traditionally, project managers focus on specific 
characteristics of the project under consideration to make these estimates, relying on 
their experience when trying to predict uncertain events that would affect the future 
course of the project. Such an approach is often referred to as an “inside view” 
forecasting approach because it is clearly based on human judgement taking into 
account specific characteristics of the project. More precisely, these forecasts are 
typically based on characteristics such as the project size, the estimated durations 
and costs for the activities, the network structure and/or available resources, and 
even the likelihood of project delays or cost overruns based on an estimated 
project risk profile. However, quite a number of studies have shown that human 
judgement is biased, as it is generally too optimistic because of overconfidence 
and insufficient regard to actual previous experiences (“optimism bias”). Moreover, 
project managers could also deliberately and strategically underestimate costs and 
durations to give the impression that they would surpass the competition (“strategic 
misinterpretation”). Therefore, Kahneman and Tversky (1979a,b) propose to take 
a so-called outside view forecasting approach that suggests not taking into account 
the specificities of the project to be estimated but make predictions based on a class 
of similar projects carried out in the past and for which the real durations and costs 
are therefore known. 

This idea may seem very logical, but the most important condition to be able to 
make an accurate prediction lies in the way in which projects are compared. Since 
the past projects must be similar to the new project, a so-called reference class of 
historical projects—containing similar characteristics to the current project—must 
be identified. Once this class is determined, the discrepancy between their initial 
estimated time and cost (from their baseline schedules) and the final actual time 
and cost (after their execution) can be calculated, and this discrepancy is called the 
forecast error. The general idea is that this error will probably also be made for the 
new project as it shows so many similarities with the previously executed projects in 
the reference class. Therefore, the RCF technique will slightly adjust the prediction 
of the new project and take this error into account. More specifically, once a forecast 
for the new project has been established using a traditional forecasting method, the 
distribution of the forecast errors will be used to adjust the initial budget, and such 
adjustment is called an uplift. 

The three phases of the RCF method (reference class, forecast error, and uplift) 
will be illustrated with a fictitious example to demonstrate the simplicity and 
elegance of the concept. The example considers a fictitious project with a budgeted 
cost of e100, and this budget must be validated (i.e., based on the budgeted 
costs, the actual expected costs must be predicted) with the RCF technique using 
only one illustrative property of similarity called “experience of the company”. 
The company experience is expressed in number of years of existence, and three 
classes are distinguished, namely, mature companies (.≥40 years), young companies
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Table 9.1 Actual and budgeted cost for historical projects in three reference classes 

Reference class “.≥40 P years” Reference class “]10,40[” Reference class “.≤10 years” 

ID Budget Actual .Fx ID Budget Actual .Fx ID Budget Actual . Fx

1 98 100 0.0204 11 98 105 0.0714 21 98 110 0.1224 

2 102 96 . −0.0588 12 102 103 0.0098 22 102 112 0.0980 

3 100 96 . −0.0400 13 100 105 0.0500 23 100 112 0.1200 

4 99 95 . −0.0404 14 99 106 0.0707 24 99 114 0.1515 

5 101 102 0.0099 15 101 100 . −0.0099 25 101 109 0.0792 

6 101 97 . −0.0396 16 101 100 . −0.0099 26 101 111 0.0990 

7 99 98 . −0.0101 17 99 105 0.0606 27 99 113 0.1414 

8 103 99 . −0.0388 18 103 104 0.0097 28 103 112 0.0874 

9 100 99 . −0.0100 19 100 105 0.0500 29 100 111 0.1100 

10 101 105 0.0396 20 101 104 0.0297 30 101 110 0.0891 

(.≤10 years), and a class in-between (]10,40[). A fictitious historical database of 30 
projects is shown in Table 9.1 to illustrate the three phases of predicting reference 
classes as discussed below. 

Phase 1: Identify a Relevant Class of Historical Projects (Reference Class) 
In this first step, the reference classes must be constructed that consist of projects 
with the same characteristics as the current project. The structure of these classes 
strongly depends on the choice of properties that will be used to categorise the 
projects. A property is an important project attribute, quality, or characteristic that— 
according to the project manager—is a good indicator of the similarity between 
projects. A reference class consists of projects that have the same value for one 
or more properties. In the case of categorical data, the assignment of projects to 
reference classes is relatively simple as projects belonging to the same category 
are assigned to the same reference class. However, when properties are measured 
using numerical data, intervals of the property values are used to assign projects 
to a reference class. In general, a reference class must be wide enough to ensure 
a significant number of projects in the class, but it must also be narrow enough 
to ensure that the projects in the class are sufficiently similar. Choosing the right 
properties is an art in itself and the identification of such properties is discussed 
later in Sect. 9.4. In the artificial example, only one property is used (“number of 
years of company existence”), which greatly simplifies the problem and is therefore 
not very realistic. The project database of Table 9.1 shows the budgeted costs, actual 
costs, and the forecast errors for 30 historical projects, of which 10 projects come 
from mature companies, 10 projects from young companies, and 10 projects from 
companies that exist between 10 and 40 years. A closer look at the values reveals 
that the budgeted costs of projects in the reference class “.≥40” are usually an 
overestimation of the actual project costs, while the opposite is true in the reference 
classes medium-experienced and young companies. Especially in this last reference 
class (“.≤10”), the projects are significantly and systematically underfunded. These 
three reference classes form the basis for predicting the total cost of a new project.



9.1 Outside View 159

Fig. 9.1 Distribution of 
forecast error (“.≤ 10” 
reference class) 

Suppose the new project is being done in partnership with a company that has been 
around for less than 10 years, and the budgeted cost of e100 needs to be validated 
using the historical project database. Since the new project belongs to the third 
reference class of Table 9.1, the data from these 10 projects with the same value for 
this property (i.e., projects 21–30) should be used as reference class. This reference 
class is used to compose the error in the second step of the procedure. 

Phase 2: Establish a Distribution for the Reference Class (Forecast Error) 
Once a desired reference class is chosen, a probability distribution of the forecast 
errors of the historical projects in this reference class must be determined. Table 9.1 
shows that the budgeted costs for these projects in the reference class are between 
e98 and e103, close to the budget of the new project, while the actual costs were 
significantly higher (between e109 and e114). The forecast error is measured as 
.Fx = Actual−Budget

Budget and shows that the errors vary from 7.92% (for project 25) to 
15.15% (for project 24). The distribution of these forecast errors is displayed in 
Fig. 9.1, which shows the frequency of the forecast errors between 7% and 17% in 
bins of 2.5 percentage points. This probability distribution will be used to determine 
the required uplift for the project in the third step. 

Phase 3: Compare the Project with the Error Distribution (Uplift) 
In order to adjust the initial budget of the new project to a more realistic cost 
estimate, the distribution of the reference class must be transformed to a cumulative 
probability distribution, which shows the cumulative frequency in function of the 
forecast error. This cumulative frequency of forecast errors is displayed in the left 
graph of Fig. 9.2 and shows that, for example, 5 out of 10 projects have a forecast 
error larger than 10%. Based on this curve, the inverse cumulative distribution 
must be constructed to understand the relation between the required uplift and the 
acceptable chance of cost overruns. This is shown in the right graph of Fig. 9.2, 
which displays the probability of cost overruns for different uplifts (i.e., for all 
values of the forecast errors). For example, it is known that an uplift of at least 
7.92% is necessary since this is the minimum error value for the 10 projects of the 
current reference class (cf. Table 9.1). Consequently, in order to obtain a realistic 
project budget for the new project, the original budget (e100) should be uplifted
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Fig. 9.2 Cumulate error frequency and required uplift 

to at least e107.92. Suppose that the budget is set to e107 (7% uplift), then the 
likelihood that the project will have a budget overrun is expected to be 100%. If the 
budget is increased to e115 (i.e., an uplift of 15%), this probability of cost overruns 
drops to only 10% as can be seen in the graph. Consequently, this right graph allows 
the decision makers to assess their willingness to accept risk for the new project and 
determine the corresponding uplift of the estimated costs of the original budget. 

I hope that this simple example has convinced the readers that the RCF technique 
is a relatively simple but very useful technique for forecasting project costs and 
durations. However, I should note that the method makes no attempt to predict 
very specific events that could affect the specific project. Instead, it focuses solely 
on predicting the expected time and costs of an unseen project based on previous 
projects where the actual time and costs are known. In the next paragraphs, I will 
summarise three studies using this technique on real data conducted together with 
some colleagues from my research team. 

9.2 Construction Project (Study 1) 

Our very first investigation into the use of the RCF technique for project duration 
and cost forecasting began with the collection of empirical project data (discussed 
in Chap. 13). Initially, we wanted to use the three forecasting techniques from 
Chap. 4 for empirical projects (instead of the artificial projects that we always used 
until then), but we soon realised that comparing these methods was not going to 
provide many additional insights. In contrast, we did feel that we would be better 
off using some completely different prediction techniques to properly understand 
how predictions work on real projects. After all, the three forecasts of Chap. 4 
are all based on Earned Value Management (EVM) metrics and so we decided to 
compare them with two other methods, namely the simplest forecasting method 
of all (namely, baseline schedule forecasting) and the more advanced forecasting 
methods that use Monte Carlo simulation runs. In addition, we had also decided to 
use the RCF method as the ultimate goal of the study was to find out whether the 
reference class forecasts would perform better than the more “classical” methods.
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Our ambition in this first study was not so much to conduct a full study on a broad 
set of empirical projects, but instead, we wanted to make the existing forecasting 
methods of our previous research studies a little more known to a bigger audience. 
Therefore, we decided to submit the study to the Project Management Journal,2 

a popular and high-quality journal that typically attracts a wider audience than 
just academics. Since we limited the predictions in this study to only one project, 
the results should of course be interpreted with caution. The project studied was 
C2013-17 from the empirical database, and both project duration and final cost 
were predicted using the four prediction methods mentioned earlier. Project C2013-
17 is a real construction project and involves the execution of finishing works in 
an office building consisting of the interior carpentry and installation of drywall, 
relocatable partitions (including acoustic), raised floors, suspended ceilings, and 
furniture. The work was carried out by a medium-sized finishing company with 
extensive experience in this field. Nevertheless, the considered project includes 
some smaller works that are rather unusual for the company, such as the installation 
of carpets and special glass walls. The project consists of a list of 23 activities, each 
with planned costs and durations to establish a baseline schedule for the project 
as well as known risk profiles for each individual activity, estimated by the project 
manager. The four prediction methods used in the study are summarised along the 
following lines: 

Method 1: Baseline Schedule Estimates (BSEs) The budget at completion (BAC) 
and planned duration (PD) represent the final cost and duration of the project, 
respectively, estimated by the project manager based on expectations of the future 
course of the project (i.e., the inside view). These two key metrics are the result 
of baseline planning and are thus defined before the start of the project. These 
estimates are collectively referred to as baseline estimates in this study and can 
thus be regarded as easy predictions for the project. 

Method 2: Earned Value Management (EVM) Of course, the baseline schedule 
estimates need to be adjusted and improved as more data become available. The 
baseline estimates from the baseline schedule are used as input for the EVM 
methodology during project execution. These periodic progress measurements can 
be used to predict the final expected duration and cost of the project, as was 
demonstrated in Chap. 4. Thus, unlike the BSE, the EVM methodology provides 
a set of forecasts during the project progress, and the average value for all the time 
and cost forecasts will be used as a basis of comparison for the other forecasting 
methods. 

Method 3: Monte Carlo Simulation (MCS) The periodic forecasts of the EVM 
method are based on progress data coming in gradually over the course of the 
project. At the beginning of the project, there is no data available and no forecasts 
can be made. However, this is not the case with the MCS method, which, like the

2 The study was published in Batselier and Vanhoucke (2016) and is a collaboration with Jordy 
Batselier, a PhD student at OR&S between 2012 and 2016 whom I will introduce in Chap. 10. 
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BSE method, tries to generate forecasts before the project has started. Monte Carlo 
simulation is therefore an approach to obtain more substantiated estimates of project 
cost and duration before the project is started, using risk distribution profiles for 
individual activities. The use of Monte Carlo simulation has already been explained 
in several places in this book (e.g., in Chap. 5 as the so-called static simulation runs) 
and it is used as a schedule risk analysis to obtain sensitivity metrics for each project 
activity. These same static simulation runs can now be used to obtain a probability 
distribution for the total time and cost of the project, which can then be used as 
probabilistic estimates. In this study, we applied easy-to-use triangular distribution 
profiles, which can be symmetric, skewed to the left or skewed to the right. It 
is important to mention that the assignment of these distribution profiles to the 
different activities of the considered project was carried out by the project manager 
based on experience with previous projects having similar activities. Because this 
process uses historical data, it is tempting to think that the MCS method is an 
outside view forecasting technique (like RCF). However, unlike RCF, Monte Carlo 
simulations still require distributional information for each activity, which will often 
require the project manager to make (arbitrary or unsupported) assumptions (e.g., 
for unusual activities), which in turn is a typical feature of the inside view similar to 
the BSE method. Therefore, the predictions of the MCS method are best described 
as a “semi-outside view” of project forecasting. 

Method 4: Reference Class Forecasting (RCF) To apply the outside view of 
the RCF technique, it is necessary to identify a reference class of projects that 
are similar to the project under consideration. This reference class must be wide 
enough to be meaningful, but narrow enough to be truly comparable to the project 
under consideration. As the C2013-17 project of this study is a construction project, 
24 other construction projects from the empirical database were selected as a 
basis for comparison to perform the three aforementioned stages of reference class 
prediction: 

Phase 1. Reference class: To identify the relevant classes, we considered four 
different compositions of reference classes, ranging from broad sector-oriented 
to company-specific categories. Because the construction industry is very broad, 
we therefore first divided our set of 24 empirical construction projects into three 
classes, referred to as general construction, building construction, and commercial 
building construction projects in order of increasing specificity and similarity to the 
considered project under study. Finally, a fourth class was defined as office finishing 
work, which is the most specific reference class with the highest degree of similarity 
with the original project, since it only includes finishing constructions carried out 
by the same company as the one who carried out the project under consideration. 
Phase 2. Forecast error: The second phase requires the preparation of a probability 
distribution for the selected reference class to determine the forecast error. Such a 
distribution is necessary for determining the required increase (uplift) of the original 
time/cost estimates (i.e., the budget increase relative to the initial BAC estimate and 
the time increase relative to the initial PD estimate) that corresponds to a certain 
acceptable probability of cost or time overrun. However, in this study, we did not
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explicitly look at the probability distributions for the selected reference classes as is 
usually done in this second phase. This is because our intention was to compare RCF 
to traditional forecasting approaches (BSE, EVM, and MCS) that mostly provide 
point estimates of the most likely project cost and duration. Therefore, we were only 
interested in getting the most likely outcome for the project under consideration (i.e., 
a point estimate) rather than the full probability distribution function. 
Phase 3. Uplift: To get a forecast for the final duration and cost of the project, the 
initial estimates of the baseline schedule (PD and BAC) must be increased (uplifted) 
by the most likely outcome of the previous phase. Since we are working with point 
estimates in our study, this corresponds to an increase needed for the 50th percentile 
of the probability function in the RCF procedure. These estimates are then compared 
with the estimates of the other methods (BSE, EVM, and MCS) to see which method 
generates the best predictions. 

The quality of the predictions of the four methods was assessed using the two 
performance measures discussed in Chap. 4, namely the accuracy and stability of 
the predictive values. The results can be summarised along the following lines: 

Cost Forecasting We saw that the Monte Carlo simulation (MCS) technique 
provides a more accurate cost prediction than the BAC estimate of the baseline 
schedule method (BSE), which is not very surprising, but the improvements were 
very modest. The RCF technique using the most specific reference class of projects 
(office finishing) was the most accurate cost forecasting method and even slightly 
outperformed EVM cost forecasting methods (with nearly similar results). This is 
quite remarkable, as the EVM methodology allows for continuous predictions that 
can be updated during project progress (based on current progress data). RCF, on 
the other hand, generates only one fixed forecast at the start of the project, so it 
remains unchanged throughout the project. The fact that the RCF technique makes 
this prediction quite accurate right away without the need to adjust it is remarkable 
and plays to the advantage of this technique to perform cost predictions. Since RCF 
provides constant predictions, the approach logically exhibits perfect prediction 
stability, which is obviously not the case with EVM. 

Time Forecasting When we used the baseline estimate PD as the reference value, 
we saw that the Monte Carlo simulation (MCS) technique now provided a much 
bigger improvement in accuracy than for the cost forecasts. This observation 
confirms the results in previous studies of this book that the project network 
structure—with critical and non-critical activities—has a major impact on the 
accuracy of a schedule risk analysis. For the RCF methodology, we saw that an 
increasing similarity between the original project and the four reference classes 
resulted in an increasing prediction accuracy. Moreover, when applying RCF with 
the most specific reference class of in-company projects (office finishing work), the 
EVM method was surpassed by the RCF method, which corresponds perfectly with 
the observations for cost forecasting. 

Despite the fact that this study was quite a simple one without presenting new 
methodologies and new algorithms, the results show that the RCF method indeed 
performs best, both for cost and time predictions. These observations therefore
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support the practical relevance of the technique and have convinced us to continue 
with this technique in our research group. It should be noted, however, that this 
study had a number of weaknesses and the results should therefore be put into 
perspective. Firstly, the forecasts were only performed on one case study project, 
and therefore the results cannot be generalised. A more significant weakness is 
that comparing these four forecasting methods was somewhat unfair. As mentioned, 
the BSE and RCF methods provide a single forecast that is available before the 
start of the project and is never adjusted. However, the EVM technique provides 
multiple forecasts, i.e., one value for each tracking period of the project from start to 
finish. For these forecasts, average values were therefore used to compare them with 
the point estimates from the previous methods. Finally, the MCS method normally 
provides a distribution of forecasts prior to the project start (such as BSE and RCF), 
but these forecasts can be easily updated as the project progresses, resulting in 
multiple forecast values similar to EVM. The fact that these four methods work 
so fundamentally different should be kept in mind when comparing the results. It 
was therefore an obvious step to integrate these different prediction methods into a 
hybrid approach, which is the subject of the next study. 

9.3 Hybrid Approach (Study 2) 

The starting point of the second study was to improve the EVM technique to make 
more reliable periodic time and cost predictions. The research in the previous section 
had shown that the stability of EVM forecasts is sometimes relatively low because 
they generate different prediction values for each follow-up period of the project. 
The RCF method obviously does not suffer from this drawback because it only 
generates a single prediction value (before the start of the project). It therefore 
seemed intuitively clear that a combination of these two methods could lead to 
possible improvements by adapting the periodic EVM methods to achieve both high 
accuracy and stability. 

The integration of these two methods consists of removing very extreme 
prediction values for the periodic forecasts of the EVM method by using the well-
known exponential smoothing methodology. Although the exponential smoothing 
technique is mainly used in financial and economic environments, it can in fact 
be applied to any individual set of repeated measures (i.e., to any time series). 
Since the tracking data collected during project progress forms a time series, 
exponential smoothing can also be applied to predict the project duration and project 
costs. Indeed, traditional EVM forecasts assign equal importance (or weight) to all 
previous observations, while the exponential smoothing approach allows the weight 
of older observations to be gradually reduced. This hybrid approach should thus 
combine the best components of these different methods to improve the quality 
of predictions, in terms of both accuracy and stability. It will be shown that the 
parameters for exponential smoothing are best determined using the RCF technique, 
which is why Study 2 is called a hybrid technique. To properly explain the hybrid
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form of EVM forecasting, I must first refer back to Chap. 4 where EVM methods 
were discussed and used as forecasting methods in three different ways (planned 
value method, earned duration method, and earned schedule method). However, I 
did not provide technical details on how these time/cost forecasts were made in this 
chapter, and I will therefore elaborate on that first in the following paragraphs. I will 
restrict myself to the earned schedule method (further abbreviated as ESM)—which 
is the time-based extension of the traditional earned value method—because it 
provides the most accurate project duration forecasts. I will use this ESM technique 
to forecast the project duration and extend it to cost forecasts. Later in this chapter, I 
will incorporate a smoothing parameter to smooth the time and cost predictions and 
integrate it with the RCF technique. 

EVM Forecasting 
The use of EVM methods to predict time and cost was already cited in Chap. 4, 
but the prediction formulas used were not explicitly mentioned. The general time 
forecasting formula for an EVM-based prediction can be formulated as follows: 

.EAC(t) = AT + PD − ES

PF
(9.1) 

with AT, ES, and PD being three metrics that have been used earlier in this book. 
More specifically, AT is the actual time of the project (i.e., the number of days the 
project is in progress up to today), and PD is the planned duration of the project 
in the baseline schedule and ES is the earned schedule metric at time AT, which is 
equal to the earned value (EV) metric but expressed in time instead of a monetary 
unit. 

The PF is new and known as the performance factor, which expresses how the 
future progress of the project will evolve given the current performance of today 
(at AT). In the previously mentioned study of Vandevoorde and Vanhoucke (2006), 
it is argued that the performance factor can have three different values, and the 
choice of this value depends on the nature of the problems (or opportunities) that 
happened during the project’s progress. Consider, for example, a project with a 
planned duration PD of 5 weeks for which 2 weeks have passed (AT = 2) and an 
ES value of 1.5 weeks (i.e., 0.5 weeks delay), and then the three PF versions can be 
explained as follows: 

• PF = 1: Past performance is not a good predictor of future performance. 
Problems/opportunities in the past will not affect the future, and the remaining 
work will be done according to plan. For the example project, the time prediction 
EAC(t) .= 2+ (5− 1.5) = 5.5 weeks meaning that the half-week delay has been 
lost and thus cannot be recovered, but no further delays are to be expected. 

• PF = SPI(t): Past performance is a good predictor of future performance (which 
is often more realistic). Problems/opportunities in the past will affect the future 
performance, and the remaining work will be corrected for the observed efficien-
cies or inefficiencies. Since the schedule performance index SPI(t) of the example 
project is equal to ES/AT = 75%, it updates the EAC(t) to .2+(5−1.5)/0.75 = 6.6
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weeks. The half-week delay at AT = 2 is likely to lead to further delays, and the 
total duration time will therefore be significantly higher than initially planned. 

• PF = CPI . × SPI(t): Not only the past time performance but also the past cost 
performance is a good indicator of future performance (i.e., cost and schedule 
management are inextricably linked). The PF = SPI(t) . × CPI is often called the 
critical ratio index (SCI). 

The generic formula for cost forecasting is very similar to Eq. (9.1) for time 
forecasting but replaces any time metric with a cost index, as follows: 

EAC(e) = AC + 
BAC − EV 

PF  
(9.2) 

with AC being the actual cost at the current time AT, BAC being the budget at 
completion of the baseline schedule, and EV being the earned value metric at 
time AT, which is identical to the ES metric but expressed in a monetary unit. 
The performance factor (PF) can be set at three different levels to express the 
expectations of the future project progress similar to the three versions discussed 
earlier. More specifically, PF can be equal to 1 (no further cost problems are to be 
expected), CPI (the current cost performance is a good indicator for the future cost 
performance), and CPI . × SPI(t) (both time and cost determine the future project 
performance). 

Performance Factor 
Selecting the right performance factor obviously depends on the project manager’s 
expectations about the further course of the project. In some previously mentioned 
studies that eventually were published in my book “Measuring Time”, I saw that 
the performance factor is best set to the SPI(t) value for time predictions. These 
results were obtained by using dynamic simulation runs to mimic project progress 
on a series of artificial projects and indicate that the past time performance is 
a good indicator of the expected future performance, ultimately leading to the 
highest forecasting accuracy. The advice to use the SPI(t) for time forecasting was 
already included in one of my first EVM publications with Stephan (Vanhoucke & 
Vandevoorde, 2007) and was thereafter often repeated and confirmed by additional 
experiments. This lasted until we suddenly conducted a study on empirical projects 
and were no longer able to show that the SPI(t) should be used as a performance 
factor. Indeed, in the empirical study of Batselier and Vanhoucke (2015b), we 
saw that the unweighted ESM technique (with PF = 1), further referred to as the 
ESM-1 method, rather than the ESM-SPI(t) method, clearly produced the most 
accurate time predictions. However, it could be argued that this method is intuitively 
unrealistic because it does not take into account current schedule performance, 
while the weighted ESM-SPI(t) method does take into account past performance. 
However, the SPI(t) reflects the cumulative time performance of all previous periods 
up to AT, which assumes that the performance of every past tracking period has an 
equal impact on future expectations. This implies that the SPI(t) cannot accurately
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account for the following two possible influences, which were not included in the 
simulation studies on our artificial project datasets: 

• The occurrence of natural performance improvement during the course of the 
project due to increasing experience levels of the resources (e.g., workers) 

• The effect of corrective management actions that were taken recently with the 
aim of improving future performance 

Because the SPI(t) gives equal weight to each period, the ESM-SPI(t) will 
always include the performance of the earliest project phases as well. To overcome 
these drawbacks, it seems appropriate to give more weight to the performance of 
the most recent project phases as they best reflect the effect of experience-based 
performance improvements and/or the effect of current management efforts. Unlike 
the ESM-SPI(t) method, the ESM-1 method more or less takes into account the 
effect of increasing levels of experience and corrective actions taken by assuming 
that future performance will proceed exactly as planned (i.e., according to the 
baseline schedule). Of course, an intuitive problem arises with this assumption 
through the use of the term “exactly”. First, there is no guarantee that experience 
will necessarily lead to a performance improvement (so that future productivity 
would increase by itself) or that corrective actions will lead to a project where the 
future goes according to plan. Moreover, if such occasions did arise, it is highly 
unlikely that they would lead to exact future compliance with the original plan, 
as the ESM-1 method does presume. Nevertheless, when resources begin to work 
more efficiently due to increased experience levels, the resource costs reduce as 
the tasks being performed take less time to complete and so the ESM-1 method 
might be closer to the expected performance than the ESM-SPI(t) method. The main 
conclusion that we could draw based on the above discussion and the observation 
that the empirical results differ from the simulated results was that we identified the 
need for a modified time forecasting method that lies somewhere between ESM-
1 and ESM-SPI(t) (and similarly, for cost forecasting between PF = 1 and PF = 
CPI). This new method should be able to give more weight to more recent tracking 
periods, taking into account the potential impact of increasing experience levels 
of resources and/or management corrective actions. Furthermore, we added the 
additional requirement that the adjusted method should be able to express changes in 
management attention through an adjustable parameter. Taking all these conditions 
into account, the technique of exponential smoothing quickly emerged as the ideal 
basis for developing the desired new time prediction method. 

Smoothing Parameter 
Exponential smoothing is a forecasting technique for time series data that solves 
the problem of equally weighted observations and uses exponential functions to 
assign exponentially decreasing weights over time with a smoothing parameter . β. 
Therefore, the performance factor PF is replaced by a more sophisticated expression
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using the smoothing parameter, which redefines the PF for time forecasting as 

.PF = Tt,ES

Tt,AT

= β(ESt − ESt−1) + (1 − β)Tt−1,ES

β(ATt − ATt−1) + (1 − β)Tt−1,AT

(9.3) 

The AT. t and ES. t metrics now contain the subscript t to refer to the value of these 
metrics at a certain tracking moment t . Adding a subscript t to refer to a certain 
tracking period can be confusing, which is why I mostly leave it out of the metrics. 
However, here it is necessary to clearly define the . β parameter. The current tracking 
moment is referred to as moment t and corresponds to an actual project duration 
of . ATt , and the previous tracking moment is equal to .t − 1 for which the actual 
project duration was equal to .ATt−1. For example, assume a project that started at 
week 0 and reviews the project progress every 2 weeks. Assume that the current 
time is equal to week 6. This is the third tracking moment (.t = 3) held at week 
6 (.AT3 = 6), while the previous tracking moment (.t − 1 = 2) was held at week 
.AT2 = 4. 

For cost forecasting, a similar PF function is defined in which ES is replaced by 
EV and AT is replaced by AC as follows: 

.PF = Tt,ES

Tt,AC

= β(EVt − EVt−1) + (1 − β)Tt−1,EV

β(ACt − ACt−1) + (1 − β)Tt−1,AC

(9.4) 

The newly derived performance factors of Eq. (9.3) (time) and Eq. (9.4) (cost) are  
influenced by the smoothing parameter . β, which can be explained by analysing two 
extreme cases (explained for time only). First, if .β = 1 (maximum responsiveness 
to the current schedule performance), then .PF = SPI (t)inst .3 In this case, the 
effect of a corrective management action performed during the current tracking 
interval would be integrally extrapolated to the remaining portion of the project. 
For example, consider a situation where management has assigned extra resources 
to a particular project during the last tracking interval. Assume that this has led to 
a considerable increase in schedule performance for this last interval, compared 
to the performance earlier in the project. In this case, a choice of . β = 1
(.PF = SPI (t)inst ) would imply that the recently achieved augmented schedule 
performance will be maintained for the rest of the project’s life (i.e., this would 
reflect a situation where the extra resources remain in service until the very end 
of the project and maintain the current performance level). On the other hand, 
if .β = 0 (no responsiveness to the current schedule performance), then . PF =
Tt−1,ES/Tt−1,AT = T0,ES/T0,AT = 1, producing the well-known .ESM−1method, 
which assumes that future progress will be exactly according to plan (i.e., according

3 .SP I (t)inst is the instantaneous .SP I (t), reflecting the schedule performance over the last tracking 
interval. More specifically, .SP I (t)inst is calculated by dividing the increase in ES during the 
last tracking interval by the corresponding increment of AT , or  .(ESt − ESt−1)/(ATt − ATt−1). 
Notice the difference between .SP I (t)inst and the standard cumulative .SP I (t), which represents 
the schedule performance over the entire project up to the current tracking period. 
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to the baseline schedule). Obviously, we are not limited to only using one of these 
two extreme . βs. There is an entire spectrum of . β values, ranging from 0 to 1, 
possible for selection. The general rule is that the closer . β is to 1, the more weight 
is assigned to the more recent tracking periods. The parameter . β of the proposed 
method thus provides the required possibility of adjusting the level of forecast 
responsiveness to the more recent schedule performance of the project. 

Computer Experiments 
To verify whether this new method, which we have called the XSM (an acronym 
for eXponential Smoothing-based Method) in Batselier and Vanhoucke (2017), 
can indeed generate better predictions, we selected 23 projects from the empirical 
project database of Batselier and Vanhoucke (2015a). All of these projects contain 
fully authentic baseline schedule and tracking data that were received directly 
from the actual project owners.4 21 of the projects can be situated within the 
broad construction sector, while the other two are IT projects. Furthermore, project 
durations range from only 2 months to more than 3 years and project budgets from 
less than e 200,000 to over e 60,000,000. When predicting the time and cost of a 
certain project in progress, the smoothing parameter . β can be set at various values 
as follows: 

• .βopt : The optimal value of . β for a certain project in the database. This optimal 
value can only be obtained when all progress data of the project are known for 
each tracking period, and the . β parameter is set in such a way that the accuracy is 
maximised. This is unrealistic since it assumes that the complete progress of the 
project is known in advance. However, the .βopt parameter is used as a benchmark 
to compare the accuracy of the predictions with the three other . β parameters 
discussed hereafter. 

• .βopt,oa : The optimal value of . β over all projects in the database (except the one 
for which the forecast is made). This approach assumes that historical projects 
are used to calculate the smoothing parameter. These completed projects can 
therefore be used to find the optimal value of the . β parameter, which will then be 
used as the smoothing parameter for the new project in progress. 

• .βopt,rc: The optimal value for . β over all projects within a same reference class, 
i.e., with similar characteristics w.r.t. sector, budget, duration, etc. This approach 
is similar to the previous approach since it assumes that past project data are 
available. However, rather than using all projects to determine the best . β value, 
only projects lying in the same reference class are now used to calculate the best 
value of the smoothing parameter. 

• .βdyn: The variable smoothing parameter value that is calculated for every 
tracking period based on the performance of the past tracking periods of the 
project in progress. Unlike the previous methods, this .βdyn can thus be different

4 For more information about the concepts of project authenticity and tracking authenticity for 
empirical project data, the readers are referred to Chap. 10. 
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for every tracking period and does not look at historical projects as for the . βopt,rc

(reference classes) and .βopt,oa (all projects) methods. 

In order to integrate the reference class forecasting (RCF) technique into the 
exponential smoothing-based EVM method (XSM), the .βopt,rc should yield more 
accurate forecasts than the .βopt,oa . The results on the 23 projects indeed confirmed 
this expectation, as the performance of the predictions could be improved through 
the consideration of reference classes. Indeed, when applying .βopt,rc for a reference 
class of similar projects from the database, the accuracy increased to 13.9% for time 
and 22.2% for cost. We saw that the new method performed better for cost than for 
time forecasting, although the improvements can be deemed considerable in both 
contexts. Despite these improvements when using RCF in time/cost forecasting, 
obtaining a pool of projects sufficiently similar to a certain project still remains a 
challenging task. I argued before that the highest degree of similarity is required to 
yield the highest forecasting accuracies. In the study of Sect. 9.2, the reference class 
consisted of similar projects from the same company, and this approach was also 
followed in this second study for the calculation of .βopt,rc. However, finding other 
criteria to define similarity between projects should increase the accuracy of the 
RCF methodology even further, and the search to more advanced similarity drivers 
is the topic of the third study discussed in the next section. 

9.4 Similarity Properties (Study 3) 

Since any reference class forecasting method to predict time and cost of projects is 
based on an outside view (i.e., characteristics of similar past projects) rather than an 
inside view (i.e., estimates of project managers), the usefulness of the methodology 
depends to a great extent on the ability to establish suitable reference classes. Hence, 
the definition and identification of similar projects is of the greatest importance. 
In the two previously discussed research studies, the reference classes are mainly 
constructed based on the size and the type of industry of the projects. This means 
that projects belong to the same reference class when they can be classified in 
the same sector, division, or company. This way of classifying projects can be 
explained by some pioneering studies that used the RCF technique for large-scale 
(i.e., based on project size) infrastructure and transportation (i.e., based on type of 
industry) projects. Table 9.2 displays an overview of the classification properties 
used in different research studies on RCF. Such a rudimentary classification of 
projects based on generic properties might be too simplistic and might result in a 
major problem. It is true that the historical data from the reference class should be 
highly similar to the new project, but every project faces its own problems based on 
individual circumstances (resources, technologies, management methods, etc.) in its 
own project environment, and the generic properties to define project classes might 
fall short detecting these project-specific features. The main challenge in RCF is 
how to define project similarity and how to create the appropriate reference class.
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Table 9.2 Properties of similarity used in different research studies 

Study Parameters # Projects This chapter 

Flyvbjerg et al. (2002) Type of project, geographical 
location 

258 – 

Flyvbjerg et al. (2004) Type of transportation project 
(group and subgroup) 

252 – 

Cantarelli et al. (2012a) Geographical location 78 – 

Cantarelli et al. (2012b) Project phases 78 – 

Cantarelli et al. (2012c) Project type, project phase, 
project size 

78 – 

Leleur et al. (2015) Type of project, size, economic 
situation 

262 – 

Cantarelli and Flyvbjerg (2015) Project ownership 183 – 

Batselier and Vanhoucke (2016) Sector, subsector, division, 
company 

24 Yes 

Batselier and Vanhoucke (2017) Company 23 Yes 

Walczak and Majchrzak (2018) Company-specific 222 – 

Servranckx et al. (2021) Type of deliverable, project 
complexity, experience of 

52 Yes 

company, project definition, 
governmental law, impact 
employees 

The search for similarities in projects that are—by definition—unique reminds me 
of a quote from the American cultural anthropologist Margaret Mead: 

Always remember that you are absolutely unique. 
Just like everyone else. 

In a third study published in Servranckx et al. (2021), we argued that there is a 
need to combine the RCF method with expert judgement in order to have an outside 
view based on more detailed and specific properties. The research was conducted 
with two of my closest colleagues and friends, Tom Servranckx and Tarik Aouam, in 
collaboration with many project managers from the field. I have already introduced 
you to Annelies Martens in Chap. 8 in my book, but I must also introduce you to Tom 
Servranckx.5 Tom was a PhD student between 2015 and 2019 and then decided to 
remain in my team as a postdoctoral researcher. Without him, the OR&S team would 
not be what it is today, and I am very grateful to have him around me as a colleague 
and a friend. Together we work with an endless passion on our many challenges 
that we face in our research. The paper also has a third author, Tarik Aouam, who 
is a fellow professor in our department and with whom I have an intense friendship

5 I should really pay more attention to Tom’s work, as I did in Chap. 8 to Annelies’ work, but his 
research topic (project scheduling with alternative technologies) is somewhat beyond the scope of 
this book. I am sure I will write another book 1 day where I will describe his results in more detail, 
and I will refer to Tom again in Chap. 15. 
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in addition to an occasional collaboration. Apart from these two co-authors, many 
project managers and field experts joined this third study and were asked to come up 
with more relevant properties of similarity than the existing properties we already 
saw in the project data. Instead, we asked them for identifying their own properties 
that typify the project data based on their experience in the field. For this reason, 
our approach to RCF can be distinguished from the existing approaches in literature 
in two ways. First, the projects in a reference class do not have to belong to the 
same company or industry as they can be considered similar even when they are 
collected from different companies and industries. Secondly, the reference classes 
will be constructed using multiple similarity properties. A limitation of RCF, often 
mentioned in literature, is the challenge of acquiring historical project data about 
finished projects that are sufficiently similar. This limitation is mainly caused by the 
fact that it is impossible or impractical to collect sufficient historical data within a 
single company. Even when sufficient historical data could be collected, increasing 
the number of similarity properties reduces the size of each individual reference 
class to a degree that (potentially) there are no longer enough projects to ensure 
a good comparison. As a result, only one similarity property is used in many 
applications of RCF in order to keep the technique workable in a practical setting. 
In our research, however, these limitations are countered by allowing historical 
project data of different companies/industries to be used for the construction of 
the reference classes. This allows us to consider multiple similarly properties, and 
thus by definition reducing the size of each reference class, while still having 
sufficiently large reference classes. In order to discover the drivers of similarity 
between projects to improve the accuracy of RCF, a three-step approach has been 
applied, as described along the following lines. 

Phase 1: Interviews Initially, we conducted a survey to identify properties that 
indicate project similarity. In the survey, we asked project managers to score 
different properties on their ability to measure the similarity between projects. 
A high score implies that the participants consider this property important for 
identifying similar projects, and hence it is a better property of similarity. All 
participants had a proven track record of relevant experience in project management 
and were approached by making use of the Alumni networks of Ghent University 
(Belgium) and the Polytechnic University of Milan (Italy). Initially, we started 
with a pool of over 65,000 people, afterwards narrowed down to 400 potential 
participants by deriving a filtered sample based on the years of experience, the 
function within the corporation and the specific job classification. In the end, 76 
project managers had accepted the invitation to complete the survey. A total of 44 
Italian project managers, with an average of 9.5 years (. σ = 5.31) of experience in the 
field, and 32 Belgian project managers, with an average working experience of 13.6 
years (. σ = 10.15), participated in the study. Almost half of the participants were 
employed in construction, consulting, energy, or IT, and however, other industries 
such as aerospace, confection, and gaming were also present in the study. The broad 
spectrum of participants, in terms of both horizontal and vertical diversities within 
the organisation, ensured significant variation in the data and information obtained
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from the project managers. In the initial survey, the participants were asked to score 
9 categories consisting of a total of 27 properties. These categories correspond with 
generic project features that can be used by project managers to identify similar 
projects. In order to increase the level of detail, we determined specific properties 
in these categories based on an extensive literature review. Since the identification 
of properties of similarity is a key aspect of this third study, the participants were 
also stimulated to add properties that were important in their opinion, but currently 
missing in the survey. This updated survey was subsequently redistributed to all 
participants in order to ensure that all participants could score all properties. This 
process of data collection was repeated over the course of 1 month and a conclusive 
survey with 60 properties was completed by 76 project managers. Since it would be 
impossible or impractical from a managerial point of view to consider 60 properties 
during RCF, we have limited them to the 10% best scoring properties and thus only 
the six most relevant properties were considered in the study. The six properties are 
mentioned in the last row of Table 9.2 and are briefly explained along the following 
lines. A full list of all 60 properties is given in Appendix C. 

• Type of deliverable: The project can be a product development, a service, or a 
combination of both. 

• Project complexity: The overall complexity of a project, independently of how 
often it is executed. 

• Experience of company: The experience that the executing company has in 
performing a certain kind of project. 

• Project definition: The project can be a straight redo, an expansion of an earlier 
executed project, or a totally new kind of project. 

• Governmental law: The government can impose certain rules that can affect the 
project duration, cost, or other factors in the project. 

• Impact on employees: The project can be mentally exhausting when there is a lot 
of pressure on employees. 

Each property can take different values using a nominal or ordinal measurement 
scale and the number of projects for each class are shown in Table 9.3. Further 
details are discussed in Phase 2. 

Phase 2: Project Analysis During the survey, project managers were requested to 
provide project data. In total, 52 projects in various industries and companies were 
collected, for which the estimated and actual cost were known. The estimated cost is 
defined as the budgeted or predicted cost determined at the time of formal decision 
to build, while the actual cost is defined as the real, accounted cost determined at 
the time of project completion. As a result, we could compute the forecast error for 
each specific project. An analysis of the forecast errors of the 52 projects showed 
that costs were underestimated in 63% of the projects and the actual costs were 
on average 16% (. σ = 42.5) higher than the estimated costs. If the negative and 
positive forecast errors were considered separately, we noticed that the absolute size 
of cost underestimation (30.5%) was significantly bigger than the absolute size of 
cost overestimation (9.2%). We compared these findings with results observed in
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Table 9.3 Absolute and relative number of projects per property value 

Property Scale Property values 

(A) Type of deliverable Nominal Product Service Combination 
Absolute (#) 7 9 36 

Relative (%) 13 17 69 

(B) Project complexity Ordinal High Average Low 
Absolute (#) 17 25 10 

Relative (%) 33 48 19 

(C) Experience of company Ordinal . � 10 . > 10, . < 40 . � 40 
Absolute (#) 17 18 17 

Relative (%) 33 35 33 

(D) Project definition Nominal New Modification Redo 
Absolute (#) 19 24 9 

Relative (%) 37 46 17 

(E) Governmental law Ordinal High Average Low 
Absolute (#) 14 23 15 

Relative (%) 27 44 29 

(F) Impact on the employees Ordinal High Average Low 
Absolute (#) 14 19 19 

Relative (%) 27 37 37 

earlier research by Flyvbjerg et al. (2002) and noticed that a similar average cost 
overrun (27.6%) and standard deviation (38.7) was observed, which validates the 
findings in this research study. The values for the standard deviations in our overall 
project dataset initially seemed relatively large to us, but their values were expected 
to decrease when the projects are subdivided into groups based on the different 
properties of similarity. As a matter of fact, such a decrease in standard deviation is 
part of the idea behind RCF as it indicates that more similar projects are grouped 
together, which is the topic of the third and final phases. 

Phase 3: Construct and Analyse Reference Classes We used the set of 52 
projects to analyse the accuracy of RCF in two phases. First, an appropriate 
framework of reference classes to apply RCF was constructed by making use of 
the two following concepts: 

• A reference class can be defined as a collection of projects that possess the same 
values for one or multiple properties. 

• A combination is defined as the grouping of reference classes that are based on 
the same properties. 

An example to clarify the previous concepts is visualised in Table 9.4. Suppose 
that there are three available properties A, B, and C that can, respectively, take 3, 
3, and 2 values. When the three properties are considered, we can conclude that 7 
combinations (.#CO = 7) are possible, taking 1, 2, or all 3 properties into account, 
resulting in 47 possible reference classes (.#RC = 47) corresponding to all cells 
visualised in the table. The table clearly shows that a reference class is specified by
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Table 9.4 Formation of reference classes 

the value it assumes for a distinct property, while the grouping of multiple reference 
classes represents a combination. Three combinations exist using only one property 
(either A, B, or C) or using two properties (AB, AC, or BC) and one combination 
exists using all three properties. 

In order to determine how many reference classes should be considered and how 
they must be combined, we used the six previously defined properties to obtain the 
best possible accuracy. Using a stepwise procedure where different combinations 
were tested based on a k-fold cross-validation approach, the projects in the dataset 
were randomly divided into different groups. Each group sequentially acts as the 
test set, while the remaining groups act as the training set. The training set is used 
to determine the accuracy of each reference class and then the test set is used to 
validate this accuracy by assigning these projects to the most relevant (i.e., most 
accurate) reference class and predict their costs. The accuracy of each individual 
reference class should therefore be determined first for the projects of the training 
set. It was defined as the improvement obtained in terms of the prediction error in 
case RCF was applied to a specific project compared to the initial prediction error 
(i.e., without using the RCF method). It was measured by two key metrics: 

• The intra-accuracy is the relative improvement in the time and cost forecasts of a 
project when the average forecast error of similar projects in the same reference 
class is used as an uplift for the time and cost forecasts of the specific project. 
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• The inter-accuracy is the relative improvement in the time and cost forecasts of 
a project when the average forecast error of projects in other reference classes in 
the same combination is used as an uplift for the time and cost forecasts of the 
specific project. 

The greater the intra-accuracy, the more significant the improvements in fore-
casting when applying the specific reference class. In contrast to the intra-accuracy, 
the inter-accuracy is expected to be very low as the correction of the initial cost 
estimate of the project is now adjusted using the uplift of an incorrect reference 
class. Since the intra-accuracy is presumed to be maximised for well-performing 
reference classes and the opposite applies to the inter-accuracy, the overall accuracy 
of a single reference class can be expressed by subtracting the inter-accuracy from 
the intra-accuracy. 

The next step was to group reference classes into combinations. Based on 
the six selected properties of similarity, it was possible to establish 63 different 
combinations of reference classes (i.e., six combinations with one property each, 
fifteen combinations with combinations of two properties, . . . ,  one  combination  
with all properties). The results indicated that the accuracy depends both on the 
number of reference classes and on the combination of properties. An average 
improvement in accuracy of 2.41 percentage points was obtained, and however, 
certain combinations of properties were able to provide improvements of up to 
5.47 percentage points due to positive interaction effects between the properties. We 
observed that the accuracy increased as more properties were added, and however, 
it slightly decreased when all six properties were used. More specifically, as 
more properties were added, the positive interaction effects between the properties 
increased as well. The corresponding reference classes were also narrowed down, 
sometimes containing not enough projects to draw valuable conclusions. We 
observed that combinations with five properties resulted in the highest accuracy. 
These experiments show that a careful selection of a relatively small number of 
properties (in our study, five properties were selected) may already lead to a better 
accuracy. The selection of a small number of properties is important since it reduces 
the effort that needs to be invested in the data collection. However, the experiments 
also revealed that this property selection should be carried out with utmost care 
since the performance of RCF might go down when the method is based on poor-
performing properties. Therefore, we can conclude that a correct and accurate 
formulation of project similarity is one of the most important steps in using the 
RCF technique to obtain accurate time and cost forecasts for projects. 

9.5 Thank You, Bent 

The three studies clearly illustrated that the RCF technique contains promising ideas 
that can be embedded in the “classical” forecasting methods traditionally used in 
project management. As I mentioned earlier, I had never really thought about this 
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RCF technique prior to these studies because it seemed such an obvious and easy 
technique to me. However, I must admit that after these three studies, my interest 
was only further sparked, and I am therefore very much considering studying this 
technique further and integrating it more into my current research. What intrigues 
me the most is the creation of similarity properties and more specifically the 
definition of additional criteria to split a database of projects into similarity classes. 
In Chap. 14, I will elaborate on this topic and will try to start splitting projects into 
subprojects based on empirical data, so that each subproject will have a similar risk 
profile and thus potentially a similar project progress. In this so-called calibration 
approach, the definition of similarity between (parts of) projects can be further 
refined and possibly extends the RCF technique to simulation techniques that have 
already proven to be very powerful in predicting time and costs. I must therefore 
admit that I am extremely proud of these three studies because they do approach 
my research in a very different way. I am therefore flattered that one of the pioneers 
in the field of reference class prediction for project forecasting, Bent Flyvbjerg,6 

scrutinised our research results, and wrote the following words of praise in one of 
his excellent papers: 

Evidence should decide truth claims. Today, a dozen independent evaluations exist with 
evidence that supports the accuracy of reference class forecasting over other estimation 
methods, for large and small projects alike. Here is the conclusion from one such evaluation, 
covering construction projects: 

“The conducted evaluation is entirely based on real-life project data and shows that 
RCF indeed performs best, for both cost and time forecasting, and therefore supports 
the practical relevance of the technique” (from Batselier and Vanhoucke (2016)). 
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Part IV 
About Project Data 

We had a lot of project data, 
but we just weren’t paying much attention to their quality. 

In the previous chapters of this book, I told my personal research story (and the 
story of my team) by distinguishing between the three main missions of academic 
research in project management (Part II) and the needs of the professional project 
managers responsible for managing projects (Part III). I wrote in several chapters 
about the different ways in which these two worlds—academia and practice—can be 
connected to improve the current knowledge about managing projects under uncer-
tainty. I argued that project data availability is essential for developing and testing 
new methodologies, translating complex techniques into practical guidelines, and 
comparing and benchmarking current methods using computational experiments. 
Indeed, you may have noticed that the proper use of project data played an important 
role in my research story. 

Part IV of this book explores this project data in more detail and aims to 
provide a comprehensive overview of the availability of project data, both relevant 
to academia and practice. I will discuss how my research team has worked for 
years to generate artificial data and collect empirical data, and how the search 
for useful project data has been more difficult than it often seems. A process for 
generating data (for artificial data), a process for collecting data (for empirical 
data), and a classification method (for both artificial and empirical project data) 
will be discussed, followed by a summary on how these two types of data can 
be connected in such a way that they become useful for academic experiments. 
Although it was not a conscious decision, project data generation and classification 
have become major themes of my research agenda and have become a quest 
with many difficulties, oppositions, failures, but also occasionally with some small 
successes that I owe to some key members of my team. Long before the words big 
data became a hype, I began generating an overwhelming amount of project data 
for my own academic research, not because I necessarily wanted them, but simply 
because I needed them for my computational experiments. The artificial generation 
of fictional project data began as early as the time of my PhD, but it took years
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before I realised that I also needed real empirical project data. Once I came to this 
realisation, I quickly learned that collecting empirical data is even more difficult 
than generating artificial data. This book part tells the story of this struggle and 
search for usable project data, with the goal of improving the quality of my research 
and trying to bring the two worlds—academia and practice—closer together. As 
always, it has become a challenging quest that I have undertaken together with my 
team. 

The structure of Part IV of this book is as follows. Chapter 10 provides a basic 
introduction to the need for project data for academia and practice and discusses 
the two different types of project data. The first type of project data, consisting 
of artificial projects, is discussed in Chap. 11. This chapter summarises the data 
generation process that I developed during the time that I was working on my own 
PhD. It elaborates on this process up to and including the recent studies that I am 
conducting to this day with many members of my research team. I will provide 
an overview of the various studies to generate artificial project data and to help 
the research community develop more and better algorithms to schedule projects 
with limited resources. Chapter 12 elaborates on the use of artificial project data 
but now focuses on the generation of dynamic project progress data using three 
different generation models. Chapter 13 will discuss the second type of project data, 
consisting of empirical project data to be collected from companies with the help of 
the project managers in charge of the project. It will be shown that such a collection 
process is more difficult than it seems, and a new data collection framework will be 
proposed. While the previous chapter discusses the artificial project data mainly 
from a static point of view (i.e., mainly for baseline scheduling), Chap. 13 will 
discuss how to obtain dynamic project data (i.e., extended to risk and control). This 
dynamic data consists of periodic summary reports that measure the performance of 
the project during its progress and includes a variety of deviations from the original 
baseline schedule. The chapter discusses three methods for generating project 
progress data that were used in the simulation studies of the previous chapters of this 
book. Chapter 14 introduces the readers to calibration methods that aim to make use 
of empirical progress data to construct probability distributions for the duration of 
activities. These methods aim to bridge the gap between academic research and 
practical relevance and take into account two types of human behaviour. Three 
different calibration methods will be presented, and it will be shown that they allow 
researchers to translate empirical project data into probability distributions with 
an impressive 97% accuracy. Finally, Chap. 15 provides a brief overview of other 
project databases generated by my research team, all of which are freely available 
on my website for further academic research purposes. 

You will discover that we now have a lot of project data and we are paying a lot 
of attention to their quality to ensure that they can be used for academic research.



Chapter 10 
Project Data 

Since the goal of the fourth part of this book is to provide a comprehensive overview 
of project data available in the project management literature, I think it is wise to 
begin with a brief introduction and a clear definition of what is meant by project 
data. To manage and control projects, project managers need data about their project 
to construct a baseline schedule, but they also need to collect progress data to 
measure the project performance during progress. Academics also need project data 
to test and validate their newly developed methods, and easy access to project data 
is crucial to any academic study. So both academics and practitioners need access 
to project data, but they often get this access each in their own way, without much 
exchange between the two worlds. The first type consists of artificial project data 
generated by researchers to conduct their research and computational experiments. 
These data often come from the researcher’s own imagination and often have no 
link to the reality of real projects. The second type consists of empirical project 
data, collected by the project manager to manage the project. These data are 
often unstructured and occasionally miss some data points, but they do reflect how 
projects are managed and controlled in the real world. The duality between these 
two worlds during project data collection is the subject of the first section of this 
chapter, and a more detailed comparison between these two types of data will be 
discussed in Sect. 10.2. 

10.1 Where Are We Now? 

Before entering the exciting world of project data in the following chapters, let 
me briefly discuss where I believe the greatest challenge lies in using project data 
for research in data-driven project management. Figure 10.1 provides a concise 
summary of the current state (“where we are right now”) of the use of project 
data for academic research and their link with practice. I created this picture for 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Vanhoucke, The Illusion of Control, Management for Professionals, 
https://doi.org/10.1007/978-3-031-31785-9_10

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31785-9protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10
https://doi.org/10.1007/978-3-031-31785-9_10


182 10 Project Data

Academics 
(universities) 

Professionals 
(business) 

Strong tools 
(Including machine learning) 

Generic tools 
(software systems) 

Artificial data 
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Academics like what they do 

Professionals know what they want 

?
Fig. 10.1 Today’s challenge in project management research 

the keynote presentation that I gave at the Creative Construction Conference in 
Budapest (Hungary) in 2016 under the title “Academics like what they do, and 
professionals know what they want”, and since then, I have received quite a lot of 
response, from both academics and professionals, as to why the search for project 
data seems to be such a challenge after all. The figure is simple and does not 
represent much in itself, but somehow it caught the attention of a few interested 
parties. 

The truth is that I never thought the discussion about the proper use of project 
data between academics and practitioners would attract so much attention, and it 
was during the Q&A session of this presentation that I decided to write a book 
about this interesting topic. I suspect that most of the attention was drawn by the 
fact that I insisted on the observation that academics do their best to collect project 
data from practice, but that these data are often not very well-structured and cannot 
be used for our research because they contain far too many shortcomings. “The 
bridge between academia and practice”, I argued, “is very wide, and both sides 
are often unwilling or unable to understand each other’s worlds”. Such words, of 
course, provoke some controversy and do not really help to narrow the gap between 
academia and practice. I think this is why they immediately caught the attention of 
everyone in the audience. 

I initially spoke about my own world, introducing the public to the academic 
research (as depicted in the left part of the picture). I talked about our research 
projects, and how academic researchers are developing new methodologies and new 
tools for data-driven project management (as I discussed in Part II of this book). I 
started with some studies on project control with Earned Value Management and
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slowly expanded to more advanced studies with statistical project control and even 
machine learning algorithms. I am always amazed at howmuch interest these studies 
arouse in the project management field, and I told the public that we need access to 
a lot of project data (more is better) to conduct our computational experiments in 
such research studies. Everything seemed very logical to everybody, until I talked 
about using artificial project data, and the advantage these data have because they 
can be easily generated with project-specific parameters that fit perfectly within the 
scope of the study. “We are not always interested”, I ended this part of my speech, 
“whether the data can actually be used in practice. As long as we can develop 
strong tools (algorithms, simulations, etc.), we (as researchers) are happy with these 
artificial data”. 

Then I moved to the professional world (as shown in the right part of the picture) 
and told the audience that I am aware that project managers are not always interested 
in our new academic methodologies and research results, and prefer to stick to the 
easy tools useful for their daily project management activities (as I discussed in 
Part III of this book). I expressed my appreciation for the professionals because they 
often manage to use the best parts of academic research in their everyday practice, 
and I strongly believe that most commercial software tools for project management 
originated from the algorithms developed at many universities. There is still a lot 
of room for improvement of course, but I believe that the translation from theory to 
practice is a process that is already running at full speed (as represented in the arrow 
pointing to the right on the figure). 

However, professionals have something that academics do not have, but want so 
badly: real project data! Professionals are responsible for managing real projects and 
therefore have access to a much richer set of project data, often with characteristics 
unknown to academia. As I mentioned, despite their great advantage, the empirical 
project data are often chaotic and not well-structured and therefore not really useful 
for academic research. It is not that academics have a lack of interest in using 
real data, but rather that they realise that the data are often simply inaccessible or 
unusable for their own experiments. I argued that because of all these problems, 
academics often do not even try to use empirical project data and therefore prefer 
to simplify reality by generating their own artificial project data under a well-
controlled design. It should not be like this, I argued, and I presented the audience 
with the greatest challenge in using project data for academia (as represented in 
the arrow pointing to the left of the figure). If we can translate the richness of 
the unstructured empirical data into useful project data for research purposes, the 
bridge between theory and practice will become so narrow that academic research 
not only finds easier access in practice, but practice can be an important source of 
inspiration for further academic studies. In the following chapters of this book, I 
will therefore elaborate on the challenging and difficult task of using empirical data 
for academic research as well as on how to generate artificial data that better reflect 
real-life characteristics. Before I dive into the challenging story of project data in the 
following chapters, the next section will explain the important difference between 
artificial and empirical project data.
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10.2 Two Types of Project Data 

The widespread use of artificial data for research purposes lies not only in the 
fact that it is quite easy to generate these data, but especially in the ability to 
generate these data with predefined parameters that can be very relevant to the 
research study. The main goal of academic research is to develop newmethodologies 
and test their performance on a wide range of project cases in order to look for 
causes of good or poor performance. Rather than presenting a methodology that 
can solve a problem for a specific project, the contribution of research often lies 
in demonstrating why the new methodology performs very well in some cases, but 
cannot compete with alternative methodologies in others.1 Therefore, researchers 
test their new methodologies on a large number of fictitious projects and present 
general results that can be applied to a wide range of projects, rather than offering 
very project-specific solutions. This search for drivers determining the performance 
of the new methodologies is crucial for academic research to provide insight into the 
characteristics of the newly presented ideas. Their research findings can encourage 
other researchers to search for new developments by adding improvements to 
existing methodologies in cases where they fail. Consequently, researchers want 
access to project data that fit perfectly within the specific needs of the research 
question being studied and often do not feel the need to use real company-specific 
project data. Over the past 30 years, an overwhelming amount of artificial project 
data has been generated and made accessible to the project management and 
planning community. Chapter 11 will tell the story of my team’s contribution, as 
well as that of some other researchers, to the generation of artificial project data for 
academic research. In addition, Chap. 15 will provide a complete overview of all 
available data for various challenging project scheduling problems. 

Apart from the ease of generating artificial data in a very controlled way, there 
are nevertheless numerous reasons why an academic researcher should also rely on 
empirical data. The main reason is that the results of studies with artificial data are 
not always applicable to real-life projects and the conclusions from the studies often 
differ from the observations from practice. However, demonstrating the relevance 
of a new method in a real-life setting is key for academics to convince professional 
project managers to use the new methods from academia. A professional project 
manager often does not have much interest in the results published in journals, 
but rather wants to test the new methods with company-specific data in order 
to tailor them to the unique and specific settings of the company culture and 
the needs of the specific projects. Instead of providing insight into the causes of 
good or poor performance of the new methods, the project manager’s focus is on 
adapting and modifying these academic methods so that they can be used optimally 
in a particular specific context. Without empirical project data, this translation 
process from theory (academic research with artificial data) to practice (professional

1 For example, in Chap. 4, it was  shown that the  earned schedule method works very well for serial 
projects but fails miserably for parallel projects. 
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experience with empirical data) remains without useful results, sometimes reducing 
academic research to a theoretical exercise with little or no practical relevance. 
Therefore, I found it necessary to use empirical project data as well, and Chap. 13 
provides an overview of the freely available database of empirical projects that I 
have collected with my research group over the past decade. 

It is tempting to favour the use of empirical data over the use of artificial data with 
arguments focusing on the realism of empirical data and the limitations inherent in 
generating artificial data. This argument is often made by professionals who rightly 
argue that research should support the real needs of project managers, not the other 
way around. Most professionals prefer research results obtained from real data, but 
academic researchers often disagree and are often convinced of the usefulness of 
artificial data while forgetting that there is a reality behind their ivory tower. While 
they obviously agree that empirical projects have more realistic characteristics, it 
should also be recognised that using artificial data has some important advantages 
over empirical data. In my (non-academic) article, “On the use of empirical or 
artificial project data” published in The Measurable News (Vanhoucke, 2016a), I 
tried to convince professionals that real data and artificial data can both add value 
for academics and professionals alike. Figure 10.2 shows the main advantages and 
disadvantages of artificial and empirical data, and a brief discussion is given along 
the following lines. 

I have already argued that the main advantage of using artificial data is the ability 
to generate the data according to the specific needs of the research. The use of 
artificial data is crucial for researchers to provide insight into the project drivers that 
determine the quality and accuracy of project schedules, risk sensitivity metrics, and 
control methodologies. It is my personal belief that the use of controlled experiments 
should be a key part of academic research, and these are best conducted on artificial 
project data generated under a well-controlled design. In this way, researchers have 
full control over all project parameters (controlling the network structure, time/cost 
structure, and resource scarceness) to obtain and present general results applicable 

Fig. 10.2 Pros and cons of artificial and empirical project data
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to a wide variety of projects. By using simulated computer experiments on artificial 
data, new relationships can be found between the generated project drivers and 
the simulated outputs that would not have been found when using empirical data, 
increasing the insight gained into the behaviour of planning and control techniques. 

However, I have experienced that it is often extremely difficult and a waste of 
time to convince (some) professionals of the relevance and benefits of artificial 
project data. The obvious advantage of using empirical data is that they represent 
the real world of project management better than artificial data. It is therefore often 
concluded that empirical data are always preferable to the use of artificial data. 
However, I believe that the use of empirical project data is not without danger 
for academic research. It should be remembered that the ultimate goal of research 
on integrated project management and control is to improve the decision making 
process during project progress. These studies focus on evaluating current methods 
and presenting new techniques for project control that can be used as triggers 
for corrective actions to get projects at risk back on track. These warning signal 
triggers should be used carefully and should allow the project manager to take 
actions only when they are really necessary (as discussed in Chaps. 5 and 8). Control 
methodologies should only provide warning signals when the project is highly likely 
to get out of control, not warning signals for every small change in the project with 
a small impact on the project objectives. Therefore, the main aim of these studies 
is to contribute (directly or indirectly) to this challenging objective by proposing 
methodologies to better monitor ongoing projects and improve the corrective action 
decisions. However, the major and inherent weakness of the empirical data lies in 
the fact that these project data already include many of these corrective actions, 
making it difficult to know whether the project was progressing with or without 
actions. If no explicit distinction can be made between project data and management 
actions, computer experiments cannot cleanly interpret the accuracy and quality 
of warning signals from control methods, and it is difficult to make unambiguous 
judgements about the quality of control systems. Therefore, I believe that simulation 
experiments on empirical data do not always provide the necessary insights into the 
relationship between project drivers and the performance of new project control 
methods. 

This is not to say that I think researchers should rely solely on artificial project 
data and be blind to real empirical projects. Including an empirical project dataset 
in research increases the likelihood of producing relevant results and reduces the 
risk of obtaining artificial results with little or no practical relevance. Therefore, 
I personally believe that academic research results should first be obtained from 
experiments on artificial datasets and then validated on empirical projects in a 
second phase to assess their realism and their potential use in practice. Ideally, such 
an approach leads to practical guidelines and insights relevant to real projects, but 
also to general insights from experiments on artificial data that can be easily used in 
new follow-up studies. Consequently, I believe that the main advantage of empirical 
data for academic research lie in the practical validation of artificial research results,
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rather than in the creation of new insights obtained only from empirical data.2 When 
the two types of data are both used in project management research, academic 
learning and professional relevance are brought together with the aim of closing 
the gap between theory and practice to support better decisions for projects. The 
proposed data approach seems to me to be the ideal way to satisfy the two worlds of 
project management. I therefore wish the readers an enjoyable and engaging journey 
into the world of artificial and empirical project data in the following chapters. 

Reference 

Vanhoucke, M. (2016a). On the use of empirical or artificial project data. The Measurable News, 
2, 25–29.

2 I am fully aware that many researchers do not share my view, and I am therefore not blind to 
their arguments as to why my approach is not the only possible way to conduct sound academic 
research. I just want to say that this approach (artificial results first, then empirical validation) 
works best for me and my team. 



Chapter 11 
Artificial Projects 

I have always experienced academic research as a very challenging search for new 
ideas, often not knowing the goal of the search in advance, but exploring all kinds of 
new avenues until I reach new insights. Research has never been an act of observing 
real business needs or existing phenomena, but rather a discovery of patterns in 
artificial data and seeing where it takes me. Of course, research is ideally inspired 
by real observations or conversations with professionals, but any idea that comes 
from my own imagination is also considered and often leads to an inspiring search. 
For this reason, generating artificial project data, rather than observing real data, 
has always been crucial in most of my research, and I have often gone very far in 
doing so: When I could not detect desired patterns in the artificial data, I mostly 
blamed it on the data (and rarely, if ever, on my own failure), and most of the time 
I decided I simply had not generated enough data to make a real breakthrough. In 
that case, I generate more project data and keep searching for something I do not 
yet understand. For me, research is and always will be exploring uncharted territory, 
and if I knew in advance that what I was doing made sense, I would no longer find 
research challenging at all. The American statistician and artist Edward Tufte once 
expressed the quest for clear results as follows:1 

To clarify, add data. 

Academics are obviously in a luxury position. They do not always have to take 
practical needs and requirements into account and can therefore simply generate 
more and more fictitious projects. To explore new research avenues, academics 
have generated an overwhelming amount of project data in the past, and it seems 
they just cannot get enough of it. In the last few decades, a huge number of project 
databases have been published in the literature, and it is becoming difficult to get 

1 I often refer to Edward Tufte in my classes and like to mention that, like Albert Einstein, he was 
born on the 14th of March. Then I tell my students—a fun fact—that I am born on the 14th of 
March too, by which I mean nothing of course:-). 
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Fig. 11.1 Artificial datasets in nine chapter sections 

a clear overview. I am certainly partly responsible for this, so in this chapter I 
want to tell the story of project data generation, so that the readers not only get 
an overview, but also understands the bigger picture. As I mentioned earlier, the 
luxury of an academic research job lies in the ease with which artificial project data 
can be obtained. However, generating artificial data is not as easy as some may 
think, and the generation and classification of artificial project data are a research 
project in itself. Since artificial data generation has always been a central theme in 
my research career, I like to tell the data story through the next nine sections of this 
chapter summarised in Fig. 11.1. 

The origin of artificial project data generation lies in the collection of random 
data and the additional generation of structured data by well-known researchers, 
and this process will be discussed in the first two sections of this chapter. I only came 
into the picture much later when, during my PhD research, I felt the need to generate 
my own project data that fitted my research better than the existing datasets. This 
search for different and better project data starts in Sect. 11.3 and is continued in all 
sections thereafter. It all started with the development of the project data generator 
RanGen together with my PhD supervisor (Erik Demeulemeester) and co-supervisor 
(Willy Herroelen). This data generator literally changed my academic life, because 
from then on I have been busy generating more and better project data. A year 
after my PhD, I came into contact with José Coelho from the Universidade Aberta 
(Lisbon, Portugal) at a workshop in Valencia (Spain), and when I found out that 
he too was working on a data generator (RiskNet), I proposed to him to extend 
my RanGen data generator together (which eventually became the RanGen2 data 
generator). Little did we both know then that this accidental collaboration would
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lead to years of work on project data and a close friendship that satisfies me to this 
day. Our initial research took us into the twilight zone between the various existing 
data generators, and we decided to compare them based on a number of criteria 
(Sect. 11.4). Afterwards, we continued our work by running exact branch-and-bound 
algorithms to optimally solve the resource-constrained project scheduling problem 
on all kinds of projects (Sect. 11.5). Since the results of that study were somewhat 
disappointing, we continued the search for new data that led to a new set of diverse 
projects (NetRes set in Sect. 11.6) and a set of very hard-to-schedule projects 
(CV set in Sect. 11.7). The idea of generating very difficult projects came to us 
because we wanted to challenge academia to look for the core of the complexity of 
project scheduling problems. This research was followed by splitting each existing 
dataset into three similar sets of equivalent projects, which suddenly tripled the 
already large number of available artificial projects (Sect. 11.8). Our final study 
involved generating a new artificial project dataset that could be used for testing 
meta-heuristic project scheduling algorithms (rather than exact algorithms), which 
resulted in the sD set discussed in Sect. 11.9. 

This collaboration with José has given me enormous pleasure, and so I am very 
proud to summarise our challenging quest in this chapter. As I mentioned earlier 
in this book, our collaboration has also given me the chance to live in Lisbon for 
two years (2015 and 2016) and has given José the opportunity to start as a visiting 
professor at Ghent University (Belgium). During this research, I completely lost my 
heart to this beautiful capital of Portugal, and in 2022, I even decided to settle there 
for a few months a year and bought my own modest apartment. Who knows what 
new research ideas we will develop that may be the subject of a new book sometime 
in the future. But now let us talk in the next eight paragraphs mainly about the 
research that has already been done on artificial project data. 

11.1 Random Data 

The majority of the project scheduling research has focused on the well-known and 
challenging resource-constrained project scheduling problem, abbreviated as the 
RCPSP, that I introduced earlier in Chap. 3 (solution methods) and Chap. 6 (machine 
learning) of this book. It is a very challenging project scheduling problem because 
it is difficult to find an optimal solution to this problem, and academics express 
this difficulty in mathematical language and say that this problem is NP hard. An  
optimal solution to this problem consists of a project schedule in which each activity 
has a start and end time, such that the total duration of the project (i.e., the project 
makespan) is minimised. These start times of activities should be allocated taking 
into account both the relations between activities (i.e., network logic) and the limited 
availability of resources (i.e., resource constraints). Since its introduction into the 
academic community, researchers have spent much time developing algorithms to 
solve this problem and along with better solution procedures came better and more 
diverse artificial datasets to test these algorithms. At the beginning of this research,
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not much project data were available, so researchers each created their own small 
project to test their algorithms. After a while, there were a lot of research papers 
showing a few projects until a researcher from the Indiana University Bloomington 
(US), James Patterson, had the brilliant idea of collecting these different projects 
into one set. This so-called Patterson dataset is thus a collection of fictitious project 
examples collected from various papers in the literature, consisting of 110 projects 
with limited resources. This set has no specific structure and was not designed with 
input parameters such as the number of activities or scarcity of resources, but it 
has nevertheless been the primary source for testing new procedures for a very 
long time. Most early algorithms to solve the RCPSP were tested on the Patterson 
instances, and researchers now often refer to the Patterson format2 as the text format 
used for project files. We, researchers, owe a lot to James’ efforts at the time as he 
is the father of artificial data generation! The Patterson format was, and still is, 
used by many academics, and even today many of the new artificial project data 
are generated in this widely known format. After a few years, the importance of 
the Patterson set declined, and researchers used the data less and less, until it was 
widely accepted that the 110 project instances could be treated as easy projects that 
could all be solved to optimality with today’s sophisticated algorithms. The time 
had come to replace this dataset with new and larger projects, which was exactly the 
idea of a young researcher from Germany, as discussed in the next section. 

11.2 Structured Data 

Rainer Kolisch of the TUM School of Management (Munich, Germany) was one 
of the first researchers to recognise the need for a larger dataset for research into 
project scheduling, and he was well-aware that a structured generation of such 
a set was better than simply collecting random data. His important contribution 
fundamentally changed the way many researchers test and compare algorithms, and 
his research on project data has been the start of much additional data research, as 
shown in Fig. 11.2. The figure shows a timeline of key milestones in research on 
data generation for the resource-constrained project scheduling problem. Of course, 
like many sections in this book, this figure does not contain a complete overview 
of all research but reflects my own contribution in (and thus biased view of) this 
fascinating field of research. Nevertheless, I have tried to add the main references 
in the literature on artificial data generation to give you an almost complete picture 
of this field. This figure is only the first part of two related figures, and an update is 
given in Fig. 15.1 of Chap. 15. 

The figure starts in the year 1995, the year in which Rainer proposed his new 
data generator ProGen to generate his well-known PSPLIB dataset (published two 
years later) that completely replaced the Patterson dataset in just a few years and

2 For further details, go to Appendix D. 
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is to this day the most commonly used dataset in project scheduling. As a young 
PhD student, he worked on fast heuristic algorithms that used simple priority rules 
to solve the RCPSP with the aim of constructing feasible, but not optimal, project 
schedules without over-allocation of resources. Such priority rule-based algorithms 
are fast and easy and generate a feasible schedule in fractions of seconds. They 
cannot compete with the much more sophisticated algorithms developed in recent 
decades to create project schedules, but many of today’s software tools (such as 
the well-known MS Project but also my own tool ProTrack) still rely on these 
algorithms to create project schedules for large projects in no time.3 Since priority 
rules are only relevant for scheduling very large projects, Rainer must have realised 
that the Patterson projects are far too small. I suspect he needed bigger projects 
to test his algorithms and so decided to generate a new artificial project dataset 
under a controlled design. In 1995, he published an article in the leading journal 
Management Science4 (Kolisch et al., 1995) in which he characterised and classified 
artificial project data based on a new network generator ProGen. Not much later, he 
used his generator to generate the new PSPLIB dataset (Project Scheduling Problem 
LIBrary) that I discussed in the beginning of this section. This set is up to today the 
most widely used artificial dataset in the project scheduling literature. The following 
sections explain his approach to generate and present new artificial project data 
using the following three keywords: 

. CLASSIFICATION → GENERATION → DATABASE

Data Classification In contrast to the collection of random artificial project data 
(like the Patterson projects) or empirical project data from the business field (as 
discussed in Chap. 13), the artificial data generation must be carefully designed 
to ultimately distinguish between different project types. Therefore, the generation 
of artificial data should not be random but should follow a so-called full factorial 
design methodology to control as many relevant input parameters as possible. Such 
an approach allows the researcher to generate the full range of complexity in the 
project data, which basically means that any project network that could possibly 
exist in reality must also be in the dataset. To achieve this goal, this generation 
process requires an a priori definition of project parameters to characterise the 
project and ultimately the hardness of the scheduling problem (i.e., the construction 
of a resource-feasible project schedule). In other words, the primary requirement 
of an artificial project dataset is that it is diverse enough such that researchers, 
who rely on the data to validate their project scheduling algorithms, are able to 
distinguish between easy and difficult project instances. As such, they can provide 
insight into how and why some projects are different (more complex) than other 
(easy) projects, and how to focus future research on the unsolved challenging

3 Recall that I used priority rules in the machine learning research project of Sect. 6.1. 
4 It is well-known that when you publish a paper in Management Science, your academic life will 
never be the same. It is like getting an Olympic medal for sports people: It changes everything. 



11.2 Structured Data 195

problems (by leaving the easy projects outside the scope of future research). For 
the research on algorithms to solve the resource-constrained project scheduling 
problem, a number of project indicators were proposed that can be divided into 
two clusters, as follows: 

• Network topology indicators: The topological structure of a project is determined 
by the specific set of activities and the precedence relations between them. 
The way the activities are linked by these precedence relations determines the 
logic and structure of the project network, which can vary from a fully serial 
network to a fully parallel network. To generate projects with different values 
for the serial/parallel structure, different network topology indicators have been 
proposed in the literature, such as the coefficient of network complexity (CNC), 
the order strength (OS), or the serial/parallel indicator (SP). Note that the SP 
indicator has been used earlier in this book to show that project control works 
better for serial projects (high values for SP) than for parallel projects (low SP 
values) (Chap. 4) and for Bayesian network forecasting models of Chap. 6. 

• Resource scarceness indicators: Since each activity of a project must be per-
formed by a set of renewable resources (people, machines, etc.) with limited 
availability, the projects must also be classified into clusters with similar activity 
resource requirements and availability of the renewable resources. This classifi-
cation is done using resource scarcity parameters for quantifying and controlling 
the relationship between these resource requirements and availability. Several 
resource indicators have been proposed in the literature, such as the resource 
factor (RF), the resource scarceness (RC), the resource strength (RS), and the 
resource use ( RU).  

I have deliberately chosen not to provide a discussion or technical details and 
formulas for these network and resource indicators, but I will give some additional 
details in the following chapters where necessary. The impatient readers can already 
find a brief summary in Appendix E where the most commonly used indicators are 
explained in detail. 

Data Generation The indicators for measuring the network topology and resource 
scarcity of projects are especially important to generate new artificial projects where 
the values of these indicators (which usually vary between 0 and 1) are set to 
different values. Some researchers have proposed project network generators to 
create artificial data using some of these network and resource parameters, but the 
number of articles presenting these generators is rather sparse. These generators 
are called network generators since each project consists of a sequence of activities 
with precedence relations between the activities to model the network topology. 
Most generators also add resource data to the project networks, but generating such 
data is much simpler than generating the network. Therefore, these generators are 
not called network and resource generators, although most generate both types of 
data. Most generators rely on the well-known activity-on-the-node network format 
in which each activity is a node and each precedence relation between a pair of 
activities is represented by an arc between these nodes. Ideally, a generator should
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be strongly random, meaning that every possible network with a certain number of 
nodes and arcs should have an equal chance of being generated from the space 
of all feasible networks. Unfortunately, most of the generators suggested in the 
literature do not have the ability to be strongly random and therefore just generate 
as many networks as possible in a limited time without guaranteeing that every 
possible network can be generated.5 The project network generator ProGen was 
one of the first generators for activity-on-the-node networks, developed by Rainer 
Kolisch and his co-authors. In this generator, the network structure is controlled 
by setting the previously mentioned coefficient of network complexity to predefined 
values. This CNC indicator simply measures the number of arcs divided by the 
number of nodes, and it is now known that this indicator is not a very good indicator 
for controlling the network complexity. In addition, a number of other parameters, 
such as the minimum and maximum number of successors and predecessors for 
each activity, were predefined in order to control the artificial process of generating 
project networks. Finally, the generator has also incorporated the resource scarcity 
indicators discussed earlier to include resource data in each project network using 
the resource factor and the resource strength. 

Project Database Two years after the introduction of the ProGen network gener-
ator, Rainer and his co-authors decided to generate a new set of projects under a 
well-controlled design with different values for their network and resource indica-
tors. It resulted in the well-known PSPLIB set that I discussed earlier, which quickly 
replaced the old Patterson set and became the standard dataset for testing algorithms 
for resource-constrained project scheduling problems. The artificial project dataset 
consists of four subsets (with projects of 30, 60, 90, and 120 activities) with different 
values for the CNC (equal to 1.5, 1.8, and 2.1) and the RF (equal to 0.25, 0.50, 
0.75, and 1). There is no doubt that this dataset paved the way for many researchers 
to develop and test new algorithms in an easy and standardised way, making 
comparisons with other algorithms much easier. The success of the PSPLIB dataset 
clearly demonstrates the relevance of artificial data to academic research, and I am 
convinced that research over the decades would not have made such great progress 
without the PSPLIB dataset. I mentioned earlier that the importance of artificial 
project data is often not well understood by professionals, but for academics it 
is their main source of data for their research. Comparing algorithms and new 
research results in a standardised and fair manner that helps elevate current state-
of-the-art knowledge and contributes to a better understanding of a vast amount 
of procedures and algorithms to schedule projects under different situations. It 
shows that—despite the importance and necessity of having access to empirical 
project data—nothing can compete with the vast availability of artificial project 
data generated under a controlled design. More than 25 years after its introduction, 
PSPLIB is still the standard set for most project scheduling researchers. Along with

5 As far as I know, only one network generator is strongly random, but it generates networks in 
the activity-on-the-arc format (Demeulemeester et al., 1993), which is less commonly used in the 
project scheduling community. 



11.3 Generating Data 197

this new set, Rainer and his co-authors also proposed some criteria to establish a 
fair evaluation between different project scheduling algorithms, such as using a 
5000 schedule stop criterion when population-based meta-heuristics are used. In 
addition, he also created a website with the best-known solutions for the PSPLIB 
instances, encouraging researchers to download the benchmark sets to evaluate their 
algorithms and upload their results to the library. To date, not all currently found 
solutions could be confirmed as the optimal ones, despite the rapid increase in 
computing speed over the years. It shows the impressive importance of Rainer’s 
work, and we should be as grateful to him as we should be to James’ work when he 
proposed the Patterson dataset. 

11.3 Generating Data 

Despite the importance and undeniable popularity of the PSPLIB set for academic 
research, it is in the nature of every researcher to question existing knowledge and 
look for possible improvements. I also had that need in 1996 when I started my 
PhD, and together with my advisors Erik Demeulemeester and Willy Herroelen, I 
jumped into the challenging research domain of artificial data generation with the 
aim of proposing better alternatives to the PSPLIB dataset and the ProGen network 
generator. The result was the new random network generator RanGen (published in 
2003 as shown in Fig. 11.2) and an improved version RanGen2 (published in 2008 
with José Coelho) that I used over the past two decades to generate much more 
artificial data. 

The first ideas to develop our own network generator RanGen came from some 
interesting research studies that revealed some weaknesses in current network and/or 
resource indicators. More specifically, some studies questioned the value of some of 
the most commonly used indicators as they were criticised for failing to properly 
distinguish between easy and difficult project instances. These studies therefore 
presented improved indicators to address the shortcomings in the existing indicators. 
For example, it has been independently shown by several researchers that the 
CNC network indicator cannot discriminate between easy and hard instances, and 
therefore, it is not appropriate to use this indicator as a good measure for describing 
the impact of the network topology on the hardness of a project scheduling problem. 
Similarly, it has been shown in the literature that the resource strength (RS) 
sometimes fails to distinguish between easy and hard project instances, while the 
alternative resource constrainedness (RC) continues to do so. Such studies brought 
us to the question of why and how one indicator should be called “better” than 
another indicator, and the answer could be found by explaining the concept of 
phase transitions. A phase transition is usually used to refer to a process in which 
something changes from one state (e.g., liquid) to another (e.g., solid), and the 
typical example is water turning into ice at zero degrees Celsius. This concept has 
been used in the project scheduling literature by Herroelen and De Reyck (1999) 
and refers to a sudden shift for a specific value of an indicator that transforms the
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problem from easy to difficult. In their research, the authors draw attention to the 
importance of indicators with sufficient distinctiveness to determine the complexity 
of project scheduling problems. More specifically, researchers need to know the 
values for the indicators for which a project instance moves from easy to difficult 
(or vice versa) similar to the temperature value of zero degrees Celsius for turning 
water into ice. 

Based on some interesting results from these studies, we decided to build 
our own network generator (RanGen) capable of generating thousands of project 
networks with different order strength (OS) values to maximise network diversity. 
In addition, resource data are added to the networks for given values of the resource 
constrainedness (RC), because both indicators (OS and RC) are known to be much 
more reliable than other existing network or resource indicators. A first version of 
this generator was published in 2003 in the Journal of Scheduling (Demeulemeester 
et al., 1993) in which we were able to show that the generator can generate a much 
wider spectrum of possible networks than the existing network generators at that 
time. Five years later, we extended the generator to a second version (RanGen2), 
which will be discussed in later sections. This network generator has led to many 
pleasant benefits within my OR&S team. First of all, it has given us the ability to 
generate a lot of project data for a wide range of project scheduling problems for 
which I will provide an overview in Chap. 15. Moreover, somewhat to my surprise, I 
experienced that the use of network generators itself received attention from the non-
academic field. More specifically, it attracted the attention of a Brazilian publisher 
who I met while I was on a teaching tour. 

Indeed, in 2016, I was in Brazil to teach project management to several 
companies in São Paulo, Rio de Janeiro, and Curitiba led by Osmar Zózimo De 
Souza. After the lectures, we took some time to drink some beers and do some 
sight-seeing, and he introduced me to a new concept that he called “a day in the 
life of Zózimo”.6 During such a day, I basically did everything Zózimo usually 
does on an ordinary Brazilian day, such as drinking a cup of coffee on his terrace, 
eating an ice cream when it gets too hot, and working in the office as a publisher 
of various magazines. I heard that he was the owner of MundoPM and an editor 
at the Project Design Management Magazine and the Journal of Modern Project 
Management, and he asked me if I was interested in publishing an article on 
artificial project data in the latter magazine. Since I had already generated a lot 
of data with the RanGen and RanGen2 generators, I immediately accepted the offer 
and started working with José Coelho on the article, which eventually resulted in 
the article published in Vanhoucke et al. (2016) and a TV interview in Portugal. 
The article contains a summary of 10 datasets available in the literature with over 
20,000 projects, but it quickly became obsolete. After all, after 2016, the number of 
generated projects continued to grow, leading to many more datasets with a variety 
of projects for different research purposes (cf. Chap. 15) and the end does not seem

6 We had such a good time together that I discussed my friendship with Zózimo in my book “The 
Art of Project  Management”. 
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to be in sight yet. In the remaining part of this chapter, I will provide an overview of 
this continuous growth of artificial project data, but first I want to take the readers 
into the study of the next section where we examined and compared the different 
network generators available at that time (RanGen and RanGen2, but also other 
existing generators). 

11.4 Twilight Zone 

I personally believe that the biggest advantage of the RanGen network generator 
is that it can generate a lot of different networks in a fairly short time. This is 
because the generator contains a fast and efficient procedure to check whether each 
newly generated network is different from a previously generated network, which 
ensures that the set of generated networks contains only unique networks. Despite 
this uniqueness check, it still does not guarantee that any possible network can 
be generated from the space of all networks. Such a guarantee can only be given 
theoretically when the network generation process is strongly random where every 
possible network is generated with equal probability (as discussed earlier). While 
this concept also cannot guarantee that every possible network will be generated 
(simply because the space of all possible networks is too large), it does give an 
idea of how big that space really is. Although I initially thought that I could make 
RanGen strongly random, I have to admit that it never worked. So I switched to 
a fast generation of networks to generate as many networks as possible in a short 
time to have a rough estimate of how big that space could be. And yet that feeling 
continued to gnaw, as I still did not know whether it could generate enough different 
networks. That was when I got to know José. I knew that José also wanted to know 
more about network generation because as a PhD student he had worked on his own 
network generator RiskNet together with his advisor Luis Valadares Tavares. He 
had developed six topological network indicators, named . I1 to . I6,7 to describe the 
detailed structure of a project network (Tavares et al., 1999). At that time, I was only 
familiar with the CNC (used in ProGen) and OS (used in RanGen) to classify the 
network topology for projects, and I had never heard of these six network topology 
indicators. When I met José for the very first time in Valencia, we decided to make 
a new version of RanGen including these six indicators. Our goal was to better 
understand how network generators could cover the entire space of all possible 
networks, even though neither of us had any idea how we would approach such 
a study. 

Initially, we used three different network generators to obtain a very large number 
of networks, and we decided to make a comparison between these generators based 
on all these networks. The ProGen data generator used the CNC as an indicator

7 The choice of names was a bit unfortunate and we later made the names more understandable, as 
can be seen, e.g., in Table 11.1 for 4 of these 6 indicators. 
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to measure the network topology, while the RanGen generator used the OS. José’s 
RiskNet generator made further use of the six indicators presented before (. I1 to 
. I6), yielding a total of eight different indicators to describe the topology of a 
network. And so it happened that we started thinking of plotting each network in 
eight dimensions, where it has a value for each one of the eight indicators. A small 
change in the value of one of these indicators already puts us in another place of 
this 8-dimensional space, giving us a new project network that is different than the 
first one. Thinking in multiple dimensions is not easy, and it has played tricks on 
us at times, but once you realise that multiple dimensions exist, you cannot go back 
to the early days of one dimensionality. It is just like Oliver Wendell Holmes, an 
American lawyer who served as a judge of the United States Supreme Court, said: 

A mind that is stretched by a new experience can never go back to its old dimensions. 

There was no way back. That is why we decided to incorporate these eight 
indicators into our updated version of the RanGen generator to get an improved 
version (RanGen2, Vanhoucke et al., 2008) that generates networks for given values 
of the . I2 indicator (instead of the OS for RanGen) and then automatically calculates 
all seven other network indicators for each network. The move from OS to . I2 was 
a very pragmatic choice, as we thought the latter could describe the serial/parallel 
structure of a network in a much simpler way than the OS. Apparently, it was not 
a bad choice because much later the . I2 indicator was renamed the SP indicator, 
which has already been used in several places in this book and has shown to be able 
to measure the performance of control methods in a very accurate way (as discussed 
in Part II of this book). With the four network generators at our disposal (RanGen, 
RanGen2, ProGen, and RiskNet), we generated as many 30-activity networks as 
possible to find out how many different networks each generator could create in 
order to get an idea of the full space of all possible networks. 

In order to define that one network is different from another one, we only used 
the 6 indicators of José and ignored the CNC and OS (and so worked in a 6-
dimensional space instead of an 8-dimensional space). Furthermore, since the . I1
indicator measures the number of activities in the project, we fixed it to a value of 30 
(which reduced the space to a 5-dimensional space). We defined a “new” network as 
a network with a different . I2 to . I6 combination than any previously found network, 
so we created a matrix of .30 × 1014 cells where we initially set each cell to zero. 
From the moment the network generator finds a network with known . I2 to . I6 values, 
the corresponding cell in this matrix is set to 1. The size of the multidimensional 
matrix of .30 × 1014 was of course not arbitrarily chosen. Given this . I1 value of 
30, the . I2 indicator can have only 30 possible values, ranging between 0 and 1, 
indicating the proximity of the project network to a fully parallel or serial network. 
The other . I3 to . I6 indicators can have any fractional value between 0 and 1, and 
we created 101 cells for each indicator (i.e., we worked in 0.01 increments). It is 
important to realise that the total number of cells in this multidimensional matrix 
is equal to .30 × 1014 = 3,121,812,030, but not every cell in this 5-dimensional 
matrix has an existing network. We could nevertheless use this number to see how 
many networks each network generator could generate. All we wanted to do was
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setting up a comparative study between the four network generators to see how 
the generated networks differ from each other in this multidimensional space. The 
computer started working and generated a huge amount of networks, and to prevent 
it from generating forever, we used the following two stop criteria for each network 
generator: 

• Maximum allowable CPU time of 1 network of 100 seconds: If no network could 
be found within this time, the generator was restarted with new input values to 
search for other networks. 

• Maximum of 1000 consecutive generations without finding a new network: If a 
network generator continued to generate networks with the same value for all 
. I2 to . I6 indicators, we suspected that it would not be very likely that other new 
networks would be found. 

After a long series of experimental runs on different computers8 (where one 
computer had heating problems, the other suddenly crashed, and my brand new 
laptop almost caught fire), we were finally able to generate a total of 19,105,294 
different networks. A total of 19,105,294 networks sounds like a lot, but it only 
covers 0.61% of the 3,121,812,030 cells in our multidimensional matrix, and this 
percentage would probably drop even more drastically if we took more than 5 
indicators into account. Indeed, creating such a multidimensional matrix to define 
similarities of project networks is like working in hyperspace, and strange things 
are known to happen in hyperspace beyond our intuition. In his book “The Master 
Algorithm” (Domingos, 2018), Pedro Domingos stated that hyperspace is like the 
Twilight Zone where the intuitions that we have of living in three dimensions no 
longer apply, and where weird things start happening. I really like the author’s 
reference to an orange, as he wrote: 

Consider an orange: a tasty ball of pulp surrounded by a thin shell of skin. Let’s say 90 
percent of the radius of an orange is occupied by pulp, and the remaining 10 percent by 
skin. That means 73 percent of the volume of the orange is pulp .(0.93). Now consider 
a hyperorange: still with 90 percent of the radium occupied by pulp, but in a hundred 
dimensions, say. The pulp has shrunk to only about three thousandths of a percent of 
the hyperorange’s volume .(0.9100). The hyperorange is all skin, and you’ll never be done 
peeling it! 

The number of projects generated was compared for each network generator and 
shown in Fig. 11.3 (omitting the RanGen generator because the RanGen2 generator 
gave better results). The results can be summarised as follows: RiskNet is not able 
to generate many networks (compared to the other two generators), but nearly 78% 
of the networks found by RiskNet were not found by any other network generator, 
which makes this generator special. However, this fraction only accounts for 8.97% 
of the total number of networks found. Our RanGen2 performs best both in the 
number of networks and in the number of networks not found by other generators.

8 At that time, we had no access yet to the supercomputer infrastructure at Ghent University that I 
introduced in a footnote in Chap. 5. 
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Fig. 11.3 Total number of 
generated networks 

ProGen is also a significant contributor to the total number of networks generated, 
and about 50% of the networks found by both generators were completely new 
(nearly 32% of all networks were generated only by RanGen2 and nearly 25% of all 
networks were generated only by ProGen). 

The number of generated projects were compared for each network generator 
and shown in Fig. 11.3. The results can be briefly summarised as follows: RiskNet is 
able to generate a large set of networks that were not found by any other generator. 
Indeed, almost 78% of the networks found by RiskNet were not found by any other 
network generator. However, this fraction counts only for 8.97% of the total amount 
of networks found. RanGen2 performs best, followed by ProGen, and both have a 
high contribution to the total amount of networks generated. Approximately 50% 
of the networks found by both generators were completely new. Almost 32% of 
all the networks have only been generated by RanGen2, and almost 25% of all the 
networks have only been generated by ProGen. 

This study was published in Vanhoucke et al. (2008), and this experiment shows 
that generating artificial networks to cover the full range of complexity is not an 
easy task. None of the network generators is capable of generating all the networks 
generated by the others, and it therefore seems impossible to capture the full space of 
all possible networks by a single network generator. Nevertheless, I believe that our 
focus on generating as much diversity as possible in the project networks is a good 
thing as it creates a broader set of project data and therefore increases the likelihood 
that every possible network is in the generated set. This is of utmost importance for 
researchers who want to develop and test new algorithms on project data and present 
general results. The more diverse the dataset, the more likely that some algorithms 
will not be able to solve some of the projects generated, which may incentivise 
other researchers to develop new alternative methods for solving project scheduling 
problems. Having access to project data and a tool to share obtained results with 
other researchers is therefore essential for academic research. I invite the readers 
to take a look at the next section where solutions are generated for a large set of 
projects using a branch-and-bound algorithm, and a new tool is proposed to share 
these solutions with other researchers.
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11.5 Data and Algorithms 

After a number of successful research projects with José, we felt that it was time 
to return to our roots. We had spent a lot of time generating artificial project 
data in the last few years and had developed all kinds of algorithms for various 
extensions of the resource-constrained project scheduling problem. Moreover, in 
the past years, I had shifted the focus with my OR&S team in Ghent (Belgium) 
somewhat from project scheduling to project control (discussed in the previous 
chapters) and was less and less concerned with developing algorithms for project 
scheduling. And yet, José and I never lost interest in the basic version of the 
resource-constrained project scheduling problem (without all kinds of extensions) 
and kept following the literature closely. We noticed that most research studies 
now mainly proposed meta-heuristic algorithms that were fast and efficient but 
were unable to find optimal solutions (project schedules with the minimum project 
duration). Despite the usefulness of such algorithms, we found that these studies 
often do not provide a deeper understanding of the complexity of the problem, which 
was the primary reason why we had generated so much artificial data. Therefore, we 
reviewed the literature on exact methods, which mainly consisted of branch-and-
bound algorithms that can optimally solve the RCPSP and decided to program them 
all in C++. The idea was to solve all PSPLIB projects (and the other projects from 
other datasets) to optimality, which did not look like a very difficult task as both José 
and myself had worked on that challenging problem during our PhD period many 
years earlier. Most branch-and-bound algorithms originated from that era (around 
2000 or earlier), so it should be quite easy to optimally solve all the projects in 2015, 
more than a decade and a half after these procedures had been developed. After all, 
we now had access to much faster computers and had built up a lot of experience to 
efficiently program the existing algorithms. I therefore quickly decided to move to 
Lisbon for a few years to code all existing branch-and-bound procedures available 
in the literature and then, in one run, optimally solve all project instances of the 
PSPLIB set, and that was it. Our enthusiasm was endless, and the motivation for 
this research project originated from a number of observations of the research results 
published over the decades: 

• All 110 Patterson instances as well as the PSPLIB instances with 30 activities 
(the so-called J30 instances) were once very difficult but could now be optimally 
solved with these existing branch-and-bound algorithms and are therefore now 
considered easy instances. 

• Since most branch-and-bound procedures were relatively old and thus tested 
on slow computers, a new test would generate much better solutions. We were 
therefore convinced that the larger projects from the PSPLIB set (J60, J90, and 
J120 instances) could now also be solved to optimality. 

• Each branch-and-bound procedure from the literature had tried individually to 
optimally solve as many projects as possible, but there had never been an attempt 
to combine the different components of each algorithm. Each algorithm had 
strengths and weaknesses, and the integration into one large hybrid algorithm
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would therefore magnify the individual strengths, which undoubtedly would 
generate much more optimal solutions. 

After an intense study to compare and better understand the existing branch-and-
bound algorithms, we started coding. José is a master at writing efficient programs 
and in less than a year had put all the procedures into one big algorithm that 
we called the composite lower bound branch-and-bound procedure (published in 
Coelho & Vanhoucke, 20189 ). This hybrid procedure not only contains the best-
functioning components from the various separate procedures, but also contains 
many lower bounds and a credit system that steers the search for optimal solutions as 
well as possible. This procedure was eventually used to solve all PSPLIB instances, 
and after a series of computer tests, sometimes allocating more than one day of 
computing time per project, we finally looked at the results in the hope that all 
projects would have been solved to optimality. 

And along with the results, came the disappointment. 
We were surprised to see that the newly developed composite algorithm could not 

solve many more projects to optimality, as we initially thought before the start of 
our research. The J30 instances were indeed easily solved, but a significant number 
of the J60 and J90 projects, and most of the J120 projects remained open instances 
(i.e., these instances could be solved, but we had no guarantee that the solution 
is optimal). Even when we repeated our computer experiments, this time with a 
total duration of several months on the supercomputing infrastructure of Ghent 
University, we did not get optimal solutions. And so, to our regret, we had to 
conclude that small projects with 30 activities (J30 instances) are easy, but larger 
projects (with 60 and more activities) are still, after all these years, very difficult to 
solve, despite the much faster computer speed. Size apparently does matter! 

Obviously, we were not going to give up just like that, and we decided to generate 
500 new projects with 30 activities using our RanGen2 generator to see why these 
“small” projects are so easily solvable. After another series of tests, we found (this 
time somewhat less to our surprise) that some of these 500 projects could not be 
solved to optimality, even though they were the same size as the easy J30 instances. 
The reason, of course, was that we generated the new projects in such a way that they 
were much more diverse than the J30 instances. After all, we had set the network 
and resource indicators to many different values to cover a wider spectrum of all 
possible projects with 30 activities than the J30 instances. Size matters less than we 
initially thought. It is diversity that matters! 

This experiment illustrates once again that the generation of artificial project 
data must be done with care and that a researcher must realise that the controlled 
design of artificial data can be both a strength and a weakness. Setting the network 
and resource indicator to specific values to generate data can be a dangerous task 
as algorithms evolve in such a way that difficult instances can suddenly become 
easy, leading to erroneous conclusions. I think this is what happened when the J30

9 This composite lower bound procedure is the procedure that was used in the machine learning 
study of Sect. 6.1 where 48 different configurations were discussed. 
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instances were generated in the 90s. With our knowledge of network and resource 
indicators and the current state-of-the-art algorithms, a set of project instances was 
generated that, as mentioned before, completely changed the research in project 
scheduling. However, when it suddenly appeared that the J30 instances could be 
optimally solved, this quickly led to the false belief that 30-activity projects can 
easily be optimally scheduled with the current state-of-the-art procedures. The new 
dataset of 500 projects proved otherwise and clearly indicated that even such small 
projects cannot be solved to optimality, even with the super-fast computers that we 
have at our disposal today. It appears that the J30 projects are simply too restrictive 
(i.e., not diverse enough in the network structure or resource scarceness). Perhaps 
nobody knew anymore how these projects were generated back then, and everyone 
just started testing the algorithms on larger projects (J60 and more) thinking that 
the project size is the only criterion for deciding whether a project is difficult or 
easy to solve. Our disappointment that we could not solve all J60, J90, and J120 
project instances became a challenge to extend the J30 instances to more diverse 
and more difficult projects. If we wanted to achieve a better marriage between data 
and algorithms, we needed to look for the right project data and not blindly use 
larger projects to test new algorithms. As Michael Schrage, author and research 
fellow at the MIT Sloan School’s Center for Digital Business, explained, using data 
and algorithms correctly remains a challenge: 

Instead of asking, “How can we get far more value from far more data?” successful big 
data overseers seek to answer, “What value matters most, and what marriage of data and 
algorithms gets us there?” 

Still with endless enthusiasm and an unsatisfied hunger for better insights, José 
and I went looking for diverse projects (Sect. 11.6) and difficult projects (Sect. 11.7) 
without increasing the size of these projects above 30 activities. And so I had to stay 
a little longer in Lisbon. 

11.6 Diverse Data 

Our first search for diverse project data was a fairly easy process and resulted 
in a new dataset (NetRes) and a new tool (SolutionsUpdate) to share solutions 
more easily with researchers. Although this research was published in the journal 
Computers and Industrial Engineering (Vanhoucke & Coelho, 2018), I have to 
admit that it has not become the paper of which I am most proud of. Not that I 
am dissatisfied with the result, but rather I see this paper as a preparation for the 
next study (from Chap. 11.7) that both José and myself are extremely proud of. The 
results of this preparatory study are briefly discussed in the following paragraphs. 

A New Diverse Dataset (Network and Resource Diversity) Since both network 
topology and resource scarcity are known to impact the solution quality of algo-
rithms for solving the RCPSP, researchers should have access to project data with 
very different values for these two parameters. We therefore decided to create two
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Fig. 11.4 The construction of the NetRes dataset 

Table 11.1 Four network topology indicators 

Network metric Minimum (. =0) Maximum (. =1) 

Serial/parallel (SP) Activity network has a 
completely parallel structure 

Activity network has a completely 
serial structure 

Activity distribution 
(AD) 

All network levels have an equal 
number of activities 

One network level has maximum 
activities, while other levels have 
one activity 

Length of arcs (LA) There are many levels between 
activities with precedence 
relations 

There is only one level between 
immediate successors of all 
activities 

Topological float (TF) Without increasing the SP level, 
none of the activities can be 
shifted 

Without increasing the SP level, all 
of the activities can be shifted 

separate databases, one containing 4100 networks with a very diverse network 
topology (clustered into 4 subsets), and another containing only resource data 
with 5100 different files (also clustered into 4 subsets). These two subsets can 
then be combined into a new project database which we have named NetRes, 
an abbreviation to refer to the combination of networks with resources. This 
new dataset could potentially result in . +20 million projects (using all possible 
combinations of these two sets) as shown in Fig. 11.4, but it is up to the researcher 
to select the appropriate combinations that are relevant to the research study. The 
two separate databases are generated in the following way: 

• Network topology: The network structure is controlled using five of the six . Ix

network parameters discussed earlier at various places in this book. The first 
indicator (. I1) measures the number of activities of the project that is set to 30 
(.I1 = 30), while the values for 4 of the 5 remaining indicators . I2, . I3, . I4, and . I6
(we did not use the . I5 indicator) were set at different values. As I mentioned ear-
lier, we no longer referred to these network topology indicators as . Ix as we did in 
Vanhoucke et al. (2008), but gave them an easier and more understandable name. 
More specifically, the network structure is controlled using the serial/parallel 
(SP) indicator (. I2), the activity distribution (AD) indicator (. I3), the topological 
float (TF) indicator (. I4), and the length of arcs (LA) indicator (. I6). A summary of 
these network topology metrics is given in Table 11.1. The generated networks 
were not generated specifically for this new study but were generated for the
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research of my book Measuring Time, which is why this network set is called 
the MT set. The projects do not contain any resource data, and the set consists of 
4100 projects with a high degree of network topology diversity (details are given 
in Appendix E). 

• Resource scarcity: The resource data were generated in separate resource files 
and can only be used in conjunction with the project networks of the MT set. 
The resource availability for each resource and the resource requirements of the 
activities were generated using the two well-known resource indicators resource 
constrainedness (RC) and resource use (RU). Since each resource file contains 
resource data for exactly 30 activities, they can be perfectly combined with the 
MT network instances, and the number of resources ranges from a minimum of 
2 to a maximum of 10. The resource database is divided into 4 subsets, each with 
a variable number of data instances, further referred to as the ResSet dataset. 

Of the 16 possible NetRes combinations of Fig. 11.4, we ultimately proposed 7 
subsets that can be used by researchers. These sets contain a total of 3810 projects, 
which is only a fraction of the .4100 × 5100 possible projects with resources. 
Researchers can quite easily put together other combinations, and we have also 
given advice on how to properly select new subsets that can be used for different 
research purposes. The ultimate choice rests with the researcher, but the NetRes 
dataset certainly offers enough flexibility to have access to the desired combinations 
of network and resource indicators to compile a new diverse dataset. Further details 
are beyond the scope of this book, and I refer the readers to a brief summary for 
both sets in Appendix F. 

A New Data Tool (Analysing and Sharing Solutions) Now that we were in full 
swing generating new projects, we thought it would be a good idea to simplify 
sharing this project data with researchers. We therefore proposed a new tool to 
easily download this project data, but also to upload obtained solutions for these 
projects so that researchers can easily obtain the current state-of-the-art results. The 
new tool called SolutionsUpdate has been developed to stimulate data and results 
sharing. The tool is intended to facilitate the testing and comparison of algorithms 
for the project scheduling problem with limited resources, and all project data 
that will be discussed in this chapter are available in this tool. The tool should 
also make it easier for researchers to download current solutions and upload new 
improved solutions and is accompanied by a website http://solutionsupdate.ugent. 
be. The specific details of how to use the tool, including command line syntax and 
formats for downloading and uploading the various files, are, of course, beyond the 
scope of this book, and the readers are referred to the published version of our article 
(Vanhoucke & Coelho, 2018). For those who prefer not to learn a new tool, we have 
also put the data available on our data website at www.projectmanagement.ugent. 
be/research/data.

http://solutionsupdate.ugent.be
http://solutionsupdate.ugent.be
http://solutionsupdate.ugent.be
http://solutionsupdate.ugent.be
www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
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11.7 Core Data 

The advantage of a large set with many diverse project instances such as the NetRes 
dataset is that it can be easily used to train advanced algorithms using the machine 
learning techniques from Chap. 6. After all, these algorithms require a fairly broad 
spectrum of different projects to optimally execute the training process, and it is 
not always very important whether these projects are difficult to solve or not. José 
and I quickly got to work with the NetRes dataset to verify whether this diverse set 
actually also contained difficult project instances, which was ultimately our main 
interest. Obviously, we could not test all instances (more than 20 million!), but after 
several thousands of runs we quickly realised that many instances were quite easy 
to solve, which made much sense. After all, if you generate a diverse set of projects, 
chances are high that for many of those projects, an optimal schedule with resources 
can be constructed very easily. For example, the projects with SP values close to 1 
mainly contain serial activities, and therefore, the search for an optimal schedule for 
the RCPSP is quite simple because the activities just have to be scheduled one after 
the other. So we had to run a more controlled experiment to find difficult project 
instances, which led us to the research project that we are both most proud of. 

I wrote earlier that the J30 instances were all very easy to solve, but that we 
also generated some other projects with the same amount of activities that could not 
be solved to optimality at all. We did not really understand which instances of the 
same size were easy or hard, so we had to find a better way for generating these 
difficult instances. It would, of course, have been very easy to simply conclude to 
generate projects with many parallel activities, as the construction of a schedule for 
these projects likely leads to many conflicts in the use of resources (because they 
cannot all be planned together with the limited availability of resources). However, 
this would lead to a new set of difficult projects with very little diversity (consisting 
of only very parallel projects). So the search for hard project instances promised not 
to be easy, something José and I love very much. 

In our search for difficult projects, a trade-off had to be made between project 
size and dataset diversity, as researchers rely on different types of algorithms to 
construct resource-feasible project schedules. The use of exact algorithms such as 
branch-and-bound procedures is primarily aimed at optimally solving instances, and 
it is unlikely that these (rather advanced) algorithms will ever be implemented in 
software tools to schedule real projects. Therefore, researchers do not use such 
algorithms to compete with the state-of-the-art algorithms for solving real-life 
instances, but rather to understand the search space exploration and find ways to 
improve the search direction to (unknown) optimal solutions. The focus of our 
research was mainly on these kinds of algorithms (using our composite lower bound 
branch-and-bound procedure), so we decided to search for hard projects that contain 
as few activities as possible, maximum 30 (like the J30 set) but preferably even less. 
This is not to say that larger projects, such as the J60, J90, and J120 instances, are 
no longer interesting for academic research. The meta-heuristic algorithms (such as 
genetic algorithms or scatter search procedures) are specifically aimed at finding
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near-optimal solutions in a relatively fast way without guaranteeing optimality, 
and therefore, larger projects are needed to test their performance. Because these 
algorithms often provide little insight into why a project instance is easy or difficult 
to solve, we did not focus on that type of procedures in our study.10 

If you think deeply about our idea of looking for difficult projects (as we 
have done many before), then it is actually a surprise that 20 years after their 
development, most branch-and-bound procedures are still unable to optimally solve 
project scheduling problems, despite much faster computers. It may mean that 
researchers still have no good understanding of which projects are difficult and thus 
develop the wrong algorithms, or it may simply be a logical consequence of the fact 
that most researchers have switched to meta-heuristic methods, and have stopped 
trying to solve the scheduling problem to optimality. That is why we thought that 
a new set of small but very difficult projects could improve the academic research 
by stimulating researchers to propose a completely new approach for solving these 
projects, potentially leading to new and better scheduling algorithms and new ideas 
for further research. 

The search for hard project instances is summarised in a new study that we called 
“going to the core of hard instances”, published in Coelho and Vanhoucke (2020). 
The paper presents not only the new dataset, which we eventually called the CV 
set,11 but also the process to generate this dataset. This process consisted of a 
very large experiment that we performed on the supercomputing infrastructure of 
Ghent University that took just under 40 years of computing time if it had to use a 
single core computer with a 2 GHz processor. The experiment started with 13,980 
projects from different existing databases that were gradually changed to smaller 
projects. Every time a project instance was changed, we checked whether the project 
was difficult to solve or not. If the change resulted in an easy project, it was 
removed from the database. If the project were difficult to solve, we made further 
changes in the hope that we could increase the difficulty. The project hardness was 
checked by trying to solve the project with our composite lower bound branch-and-
bound procedure (hereafter abbreviated as CBB), but we also used a mixed-integer 
programming model (MIP) (upon request of the reviewers of our paper) to make 
sure our results are not biased towards branch-and-bound procedures only. This hard 
instance search was performed in three phases, which are graphically depicted in 
Fig. 11.5 and briefly summarised in the following paragraphs. 

Phase 1. Reduce Project Size (Core Procedure) The 13,980 project instances used 
at the start of the procedure come from existing datasets (named PSPLIB, RG30, 
1kNetRes, and DC2, cf. Chap. 15) with various projects of different sizes. The CBB 
procedure tries to optimally solve all these projects. Whenever an optimal solution

10 Note that in a later study presented in Chap. 11.9, we shifted our focus to meta-heuristic 
algorithms and looked for project instances that are both large and difficult for such methods. 
11 I consider myself to have an endless imagination, which is very convenient as a researcher, but 
this time we were not so creative and just used our initials to give the dataset a name (CV . = Coelho 
and Vanhoucke). 
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Fig. 11.5 Searching for small but hard projects (going to the core) 

for a project can be found, the instance is said to be easy, and then the procedure 
tries to change this instance to make the project both smaller and more difficult. To 
do this, the procedure uses five elementary operators to gradually shrink the project 
instance. With each change, the newly modified project is solved, and if an optimal 
solution can be found, the project is again reduced by one of the 5 operators. From 
the moment that an optimal solution can no longer be found, the procedure decides 
that the project instance is difficult to solve, and this project is then transferred to 
Phase 2. However, when the increasingly smaller project can always be solved to 
optimality, it is not held back and the procedure continues with the next project. 

The five operators consist of: (i) removing activities from the project, (ii) 
removing the resources from the project, (iii) changing the availability of resources, 
(iv) changing the duration of the activity, and finally (v) changing the demand 
for resources. Any change by one of those operators results in a slightly different 
project instance, and the changes normally result in simpler instances. However, 
very occasionally (for unknown reasons), the hardness of the instances increases 
as a result and that is what we ultimately wanted to achieve. Since there are many 
possible changes for each of the instances, this process could easily lead to millions 
of project instances to be tested for their hardness, which would simply take too 
much computing time. 

To speed up this endless search for hard instances, the procedure does not solve 
every changed project instance with the CBB procedure, as this would consume all 
available computing time after several thousands of changes. Instead, we defined a 
so-called project hardness indicator that can be used as an estimate of the hardness 
of the modified project instance. Instead of experimentally verifying again and 
again whether a particular project instance is difficult to solve or not with the CBB 
procedure, this estimate is based on a number of quick and simple calculations. 
They calculate lower and upper bounds for the project duration to predict whether 
it is close to a possible optimal solution. This process of continuous changes and 
hardness predictions is repeated until the project is smaller than 30 activities. 
Therefore, it is important to realise that this process does not guarantee that the 
remaining projects, which are estimated to be very difficult to solve, are really 
difficult. The ultimate goal of Phase 1 is therefore to remove parts of projects very 
quickly and easily, while keeping the core of the hard parts, and each instance that 
meets the previous conditions is then transferred to Phase 2.
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Phase 2. Select Hard Instances (Hardness Check) The remaining batch of 
modified project instances that have passed Phase 1 are believed to be hard to solve, 
but of course that is no guarantee. Indeed, the project hardness indicator of Phase 
1 did not really solve the projects with the CBB procedure, but only acted as a 
hardness prediction. To verify whether the remaining instances are indeed difficult 
to solve, they must be solved to see if the obtained solution is optimal. We used the 
CBB procedure under different settings and performed it for 1 hour for each project 
instance. If, after such an intensive search, the instance could still not be optimally 
solved, the instance is transferred to Phase 3. Otherwise, the instance is considered 
too easy and discarded. 

Phase 3. Create New Set (Heavy Runs) After the previous two phases, just over 
1000 hard instances had been maintained in the database. In the third phase, we used 
the CBB algorithm again, but now we ran it under different settings for a long time 
(20 hours per setting), and if no optimality could be proven, the instance would be 
very difficult to solve. In addition, the remaining instances were also solved with 
the MIP formulations, again to check whether they could be solved to optimality. 
Ultimately, after many experiments, this search yielded a new set of 623 instances 
that could not be optimally solved with our set of algorithms. As mentioned before, 
these instances are in the so-called CV set, and it consists of all small (maximum 
30 activities) but hard (no optimal solution found yet) projects for which new 
algorithms have to be developed to optimally solve them. The challenge now lies 
with the researchers who have the time and courage to develop such algorithms. 

As I mentioned earlier, the article describing this experiment was published in the 
journal Computers and Operations Research, and both José and I consider it one of 
our best articles that we ever wrote together. Maybe it is the good time that we 
spent together in the basement of the university in Lisbon (staring at experiments) 
or maybe the positive comments that we got from the reviewers. Usually, such a 
review process consists of a long series of comments on why the article is not good 
enough, but this time the reviewers not only wrote that the paper was well-written 
and well-structured, but also that they really enjoyed this study. Wow! After only 1 
round with some significant changes, the editor of the magazine (Francisco Saldanha 
da Gama, also from Lisbon) decided to accept the paper and publish it in the 2020 
issue of this flagship journal. Afterwards I got to know Francisco better, and we have 
already agreed a few times to drink a few fresh cold beers (Super Bock preferably) 
in sunny Lisbon. For some reason, I always get on well with people from Portugal, 
and I think my ancestors must have been born there. I want to thank Francisco for 
how well he manages this excellent journal and how he manages to provide authors 
with very fair and astonishingly fast review processes. I am sure that we will meet 
again on a regular basis, now that I have bought my own place in this city, and I 
hope that we will meet many more times in joint jury meetings for PhD defences 
(as we did for the first time at the PhD defence of Jakob Snauwaert in 2022 in ice-
cold Belgium). I also hope that the CV set will be used by many researchers to 
generate better, hopefully optimal solutions. It may lead to a completely new way of 
building algorithms that solve project scheduling problems completely differently 
than before. Time will tell whether this will indeed be the case.
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11.8 Equivalent Data 

Now that we had generated a new set of hard instances, we thought to stop looking 
for new insights into artificial project data. We thought we had done just about 
everything we could and were now happy to leave the follow-up studies to other 
researchers. But the Portuguese sun and the inspiration we gained from our meetings 
decided otherwise. Somehow we felt like our story was not quite finished. After 
all, we kept thinking about how other researchers would manage to solve these 
difficult CV projects. We were very aware that such a quest to better scheduling 
algorithms would not be an easy task and that a better understanding of why 
some projects are difficult to solve, and others very easy, could make that quest 
somewhat easier. These insights would enable many researchers to devise better 
algorithms by tailoring the search of these new algorithms to specific characteristics 
of the projects. We therefore intuitively knew that the key to finding these project-
specific characteristics, measured by the network and resource indicators, lies in 
the previously discussed concept of phase transitions. More specifically, a better 
understanding of the specific values of the network and the resource indicators 
where a phase transition occurs (from easy to hard, or vice versa) should allow 
researchers to direct the search of their algorithms to complex zones of the project, 
hopefully leading to better solutions that would otherwise never be found. 

The importance of correct knowledge about the phase transitions for the RCPSP 
cannot be overstated. Many studies test algorithms on one of the benchmark datasets 
discussed in this chapter and often publish results as average values (for all projects 
in the dataset) without splitting them for different values of the network and resource 
indicators. Such studies thus provide few insights into the complexity of the problem 
and often create a limited understanding of the value ranges for the network and 
resource indicators that make the problem difficult. That is why we thought that 
too few studies look very specifically at ways to improve the project scheduling 
algorithms for these specific hard projects, and we felt it necessary to investigate 
it more deeply. In a new follow-up study (Vanhoucke & Coelho, 2021), we aimed 
at improving the knowledge and insights about the complexity patterns of these 
resource indicators for the RCPSP by analysing the resource characteristics of 
projects in depth. We came up with a new concept, called instance equivalence, and 
arrived at some surprising results, which I will briefly describe in this section. In 
fact, a few years earlier, I had already attempted to integrate the resource indicators 
into a project scheduling algorithm so that it can take into account the phase 
transitions during its search to a resource-feasible schedule. I developed a genetic 
algorithm in collaboration with a PhD student Vincent Van Peteghem12 for the 
multiple-mode extension of the RCPSP, and the title of this study clearly reflects our

12 Vincent investigated the multi-mode resource-constrained project scheduling problem as a PhD 
student between 2005 and 2011. Nine years later, he became the Minister of Finance in the Belgian 
government. Not only am I proud of how his hard work has enabled him to realise his political 
ambitions, but it also feels good to have a project planner at the head of our country. 
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ambition of this study as “Using resource scarcity characteristics to solve the multi-
mode RCPSP” (Van Peteghem & Vanhoucke, 2011). Indeed, this study explicitly 
took into account the presence of phase transitions by implementing different 
versions of local search algorithms. The genetic algorithm selects the specific local 
search procedure based on the specific values of the resource indicators of the 
project instance to be solved. The research shows that including such resource-
specific information leads to better solutions than a generic approach, illustrating the 
importance of a good understanding about phase transitions for project scheduling 
algorithms. 

It goes without saying that the success of incorporating information about phase 
transitions into algorithms is highly dependent on the ability of the network and 
resource indicators to detect phase transitions, and there is not always a clear agree-
ment in the literature as to whether such phase transitions actually can be predicted. 
The impact of the network structure on the complexity of the scheduling problem is 
well-known, but the ability of resource indicators to predict the complexity of the 
problem has been questioned in the literature for decades. For example, De Reyck 
and Herroelen (1996) have experimentally shown that the resource strength (RS) 
cannot distinguish between easy and difficult problem instances, while the resource 
constrainedness (RC) does, and therefore they implicitly claim that the RC has 
a clearer predictive power of the problem complexity than the RS. However, the 
question then remains what the correct values are for the RC indicator to see a 
transition from easy to difficult. Thus, in order to fully exploit the presence of phase 
transitions for developing new scheduling algorithms, the values of the resource 
indicators must be unambiguously defined. This makes it easier to predict whether a 
project instance falls in the right complexity class (easy or hard), and the scheduling 
procedure can take this into account for generating better solutions. 

The contribution of the follow-up study with José is that we have shown that the 
values for the resource indicators are not always clearly defined, sometimes leading 
to inaccurate or unreliable results about the presence of phase transitions. Indeed, we 
have found that you can easily find two project instances with different values for the 
resource indicators where all possible solutions (i.e., all possible resource-feasible 
schedules) for these two instances are exactly the same (and thus the projects have a 
similar complexity). In such a case, the values for the resource indicators should not 
differ, as one instance can be transformed into another without changing the number 
of possible schedules. Therefore, their complexity (to find the optimal schedule) is 
identical. This observation has been the starting point of a search for the true values 
of resource indicators that best describe the presence of phase transitions. More 
specifically, we developed an algorithm to transform each project instance into a 
different instance by iteratively changing the values for the resource parameters 
without changing the set of possible solutions. We show that the complexity of 
these two equivalent instances is exactly the same, even though they have different 
values for the resource indicators. When the transformations of projects involve few 
changes in the resource indicator value, this indicator is more reliable than when 
a transformation involves a large change in the value of a resource indicator. The 
transformation algorithm for changing the resource indicators of a project instance
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Fig. 11.6 Searching for equivalent projects 

without changing the set of possible schedules is graphically illustrated in Fig. 11.6 
and consists of four phases discussed along the following paragraphs. 

Phase 1. Instance Equivalence In a first phase, the necessary conditions for the 
new instance equivalence concept are introduced. A project instance . I 1 is equivalent 
to another project instance . I 2 if and only if the set of all possible solutions (resource-
feasible schedules) for both projects are the same. This new concept makes use of 
the set of all resource-feasible schedules for instance I , represented by Sol(I), and 
is formally defined as follows: 

Instance . I 1 is equivalent to instance . I 2 if and only if . Sol(I 1) = Sol(I 2)

In order to define . I 1 and . I 2 as two equivalent instances, they should satisfy the 
following three conditions: 

• Activity set: The set of activities for both instances should be the same. 
• Precedence relations: The set of precedence relations between the two instances 

should be the same. Logically, if a precedence relation between activity i and j 
in . I 1 does not exist in . I 2, then activity j can be scheduled before activity i for 
. I 2, which is obviously not a precedence feasible schedule for . I 1. 

• Activity durations: The duration of each activity must be the same. 

These necessary conditions imply that equivalent instances should have the same 
network structure, but not the same resource demand and availability. Hence, we 
focused in the next phase on changing the resource indicators (resource demand and 
resource availability) of the project instance, while keeping the network structure 
unchanged, hoping to find equivalent project instances. 

Phase 2. Changing Resources In this second phase, we developed a new algorithm 
to search for equivalent instances by changing the resource parameters of projects 
in a systematic and iterative way. The algorithm starts with any project instance and 
transforms it into two new equivalent instances. The algorithm relies on four new 
theorems that each change the resource demand and/or availability of the project 
without changing the set of possible solutions. More specifically, the theorems 
aim at reducing the resource demand (Theorems 1 to 3) or increasing the resource
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demand (Theorem 4), while keeping the set of all possible solutions unchanged (i.e., 
guaranteeing instance equivalence): 

• Irrelevant resource demand: The first theorem states that, under certain condi-
tions, the resource demand for some activities has no influence on the project 
schedule. If that is the case, this demand is set to zero without changing the set 
of all feasible schedules. 

• Dominated resource: The second theorem removes a resource from the project if 
it is dominated by other resources, which leaves the set of all feasible schedules 
unchanged. 

• Join resources: The third theorem connects two resources of the project and 
merges their data into a single resource. It searches for activities that use only 
one of the two resources and for which all precedence-compatible activities also 
use only the same resource. If such an activity can be found, the resources can be 
merged and the set of feasible schedules remains the same. 

• Resource waste: The fourth theorem is aimed at increasing the resource demand 
of a resource based on calculating the maximum possible utilisation of resources 
of a particular activity i and all other activities that can be scheduled in parallel 
with activity i. The difference between this maximum and the resource availabil-
ity is called resource waste, which expresses the unused resource capacity and 
leads to the possibility of increasing the resource demand without changing the 
set of feasible solutions. 

Phase 3. Saturate and Reduce Resources The four theorems were implemented 
in two transformation procedures to create two additional instances of each project 
instance. The first procedure saturates the resource demand by increasing the 
resource demand for each project activity as much as possible. The second 
procedure reduces resource usage by minimising the number of resources used by 
the project activities. Consequently, the search algorithm transforms each project 
instance into two new equivalent project instances with more compact resources, 
and thus very different values for the known resource indicators. These three project 
instances are called the base project, the highRD project, and the lowRU project. In 
the study, we used 10,793 base project instances from five known datasets, resulting 
in a total dataset of .3 × 10,793 = 32,379 instances. Each triplet of instances has 
an identical network structure, different values for the resource indicators, and the 
same set of feasible solutions (and thus the same optimal solution). 

Phase 4. Hardness Analysis To find out which resource indicator is the most 
reliable indicator to predict the hardness of the project, we performed a huge 
computational experiment using the composite lower bound branch-and-bound 
procedure of Sect. 11.5 to classify all 32,379 instances as easy (easy to solve) 
or hard instances (impossible to solve within a predetermined time). Next, we 
checked whether the hard instances were clustered around certain values of the 
resource indicators, both for the new (highRD and lowRU) and the original (base) 
instances. If the clusters of hard instances are around specific values for a particular 
resource indicator, the resource indicator is said to be reliable. Indeed, when a
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significantly higher percentage of hard instances is clustered around certain values 
for a particular resource indicator and other indicator values contain almost no 
hard instances, then the indicator may be able to better distinguish between easy 
and hard instances. Otherwise, if the cluster of hard instances has values for the 
resource indicator evenly distributed between the lowest and highest values, it 
means that this particular indicator cannot clearly distinguish between easy and 
hard instances. We learned from our experiments that the resource strength (RS), 
and not the resource constrainedness (RC), shows the highest discriminative power 
for the existing datasets. Despite the aforementioned criticism raised for the RS, its 
relatively high reliability did not come as a surprise. The RS is the only resource 
indicator that integrates both the network structure and the resource characteristics 
into one single number, and it is well-known in the literature that both must be 
used to predict the hardness of an RCPSP instance. In the study of 1996 by Bert De 
Reyck13 and Willy Herroelen (De Reyck & Herroelen, 1996), the authors concluded 
that both the network and the resource indicators should be used to predict the 
problem hardness of the RCPSP, as they wrote: 

It seems evident that the structure of the network, in whichever way it is measured, will not 
be sufficient to reflect the difficulty encountered in the resolution of such problems. 

I believe that this study has shown the importance of resource indicators in 
predicting the hardness of a project instance with limited resources and that these 
indicators can be biased due to the fact that different values do not always lead 
to different instances (instance equivalence). I hope and believe that this will 
encourage researchers to pay more attention to the existence of phase transitions 
to look for better resource indicators that are not subject to large changes in their 
values between equivalent instances. In fact, we should aim to find true resource 
indicator values that perfectly predict the difficulty of the problem and do not change 
the values between equivalent instances, but that does not seem like an easy task. 
We have already made a number of attempts at this in a number of follow-up 
studies, but we are certainly not yet at the point where we can perfectly predict 
the difficulty of the RCPSP. For example, we presented a theoretical framework in 
collaboration with Rob Van Eynde, a PhD student at the OR&S group, to better 
understand the complexity of the resource-constrained project planning problem 
(Van Eynde & Vanhoucke, 2022), and experimentally tested the newly proposed 
resource indicators in a second study in Van Eynde et al. (2023). It is my hope 
that through such studies the presence of phase transitions will be much better 
understood, hopefully leading to new and completely different algorithms for 
solving the challenging problem of project planning with limited resources. Time 
will, as always, tell.

13 It is a small world. Bert De Reyck was a PhD researcher under the supervision ofWilly Herroelen 
(my co-advisor) a few years before I started, and later became the director of the UCL School of 
Management in London where I currently work. 
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11.9 From a Distance 

The attentive readers may have (correctly) noticed that our previous studies on artifi-
cial data generation have mainly focused on better understanding the complexity of 
the RCPSP by using a branch-and-bound procedure to generate optimal solutions. 
This search for insights into the complexity of the problem is, from an academic 
point of view, very interesting, but of course does not ensure that large projects 
can be scheduled very quickly. For that, we cannot use the exact branch-and-bound 
procedures (as they are too slow for large projects), and we have to switch to other 
scheduling algorithms such as priority-rule-based scheduling techniques or meta-
heuristic methods (as briefly described in Sect. 3.4). However, the data instances of 
the CV set that we generated earlier were quite small (maximum 30 activities) and 
thus far too easy for these fast and efficient heuristic solution methods. Moreover, 
since the projects in the CV set were made to be difficult to be solved by exact 
methods, there was no indication that the same criteria would apply to describe 
the difficulty when a different kind of scheduling algorithms was used. And so our 
story of the quest for difficult projects began again, this time with meta-heuristic 
algorithms to solve the RCPSP in mind. Sometimes as a researcher you have to 
question yourself and look at your past research results from a distance. And this 
new perspective also brought new insights. 

I have mentioned before that the RCPSP is notoriously complex, and because 
of this known complexity, many researchers have abandoned the path of exact 
algorithms (which guarantee an optimal solution) and instead propose fast and 
efficient meta-heuristic solution procedures. These methods cannot guarantee opti-
mal solutions, but they nevertheless provide very good, sometimes near-optimal 
solutions. In recent decades, the research on such meta-heuristic algorithms has 
exploded, and the review article by Pellerin et al. (2020) provides an impressive 
overview of the performance of most of the meta-heuristic procedures available in 
the literature. Despite this impressive summary, what is most striking in this study 
are the marginal improvements made in recent years (often less than fractions of 
percentages). This may indicate: (i) that most project instances have been solved 
almost to optimally or (ii) that most meta-heuristics all rely on the same or similar 
building blocks and no more progress towards better solutions is made. And so we 
realised that the search for project complexity depends on the type of scheduling 
algorithms. In fact, our previous studies focused on “searching for small but hard 
project instances” (Sect. 11.7) and “searching for reliable resource indicators” 
(Sect. 11.8). However, since we had always used exact algorithms to solve the 
RCPSP, we never thought whether our research results would still be valid for 
other solution methods. We immediately started working on a new idea to generate 
projects that would be large and difficult for fast and efficient meta-heuristic 
algorithms. Time for another visit to Lisbon14 to start a series of experiments carried

14 It was at this moment that I started to realise that splitting my research time between Ghent 
(Belgium) and Lisbon (Portugal) not only gives me a lot of efficiency benefits, but also makes me 
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Fig. 11.7 Searching for hard and large projects 

out in three separate phases as shown in Fig. 11.7 and discussed in the following 
paragraphs. 

Phase 1. Computational Experiments To conduct our research, we needed to 
have access to a fast and high-performing meta-heuristic procedure that could solve 
the RCPSP to near-optimality and that could compete with the best performing 
algorithms in the literature. Luckily, I had the code of the decomposition-based 
genetic algorithm developed by Debels and Vanhoucke (2007). Dieter was my first 
PhD student ever15 , and his algorithm still ranks highly in the study of Pellerin 
et al. (2020) after all these years. Namely, this study shows that the algorithm 
can perfectly compete with the state-of-the-art algorithms in the literature, and 
it is even considered the fastest algorithm to generate a predefined number of 
solutions. We therefore solved the 10,793 previously discussed project instances 
using this procedure, and we aborted the search process only after 500,000 generated 
schedules to ensure the algorithm could not find better solutions. In addition, we also 
used the exact composite lower bound branch-and-bound algorithm of Sect. 11.5 
under very high stopping criteria (up to 20 hours per project instance), which of 
course does not mean that all instances could be optimally solved. However, the 
solutions of both algorithms were compared to each other so that the following 
conclusions could be drawn: 

Observation 1. 
“Meta-heuristics cannot find optimal solutions for hard instances” 

During the very intensive 20-hours search, the exact algorithm was sometimes 
able to find better solutions that were not found by the meta-heuristic, even if the 
latter procedure was used very intensively (up to 500,000 schedules). Of course, it 
comes as no surprise that meta-heuristics do not always provide optimal solutions 
even under high stopping criteria, but as hard as we tried, we could not find any 
value for a network or resource indicator that could explain why some projects 
were optimally solved by the meta-heuristic procedure, while for other projects 
this was not the case. This led us to the conclusion that the current network and 
resource indicators did not provide sufficient insight into the complexity of the 
project and therefore cannot be used to predict the hardness of a problem instance. 

very happy. My wife and I therefore decided to finally make our dream come true as we bought an 
apartment in Parque das Nações in Lisbon.
15 Your first PhD student is like your first love. Every researcher has a special place in my heart, but 
the first one touches you in a way that is inherently unique and determines your future life (career). 
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Consequently, further analysis of instance complexity for meta-heuristic searches 
was needed to solve the RCPSP, which became the subject of our new study. 

Observation 2. 
“Meta-heuristics cannot find optimal solutions for easy instances” 

In a second experiment, we tried to classify each of the instances in an easy or 
hard cluster for both algorithms. Surprisingly, 2008 of the 10,793 instances were 
not classified in the same cluster for both algorithms (what was difficult for one 
algorithm was easy for the other), resulting in a misclassification error between the 
two algorithms of almost 19%. This misclassification error further illustrated that 
defining and predicting the hardness of a problem instance depend on the procedure 
used and that more research was needed to better describe the problem hardness 
when using meta-heuristic search procedures. A further analysis of this experiment 
also showed that even the relatively easy projects could not always be optimally 
solved by the meta-heuristic search procedure. While we saw that the meta-heuristic 
could find optimal solutions for most of these easy instances, there were still some 
instances that were classified as easy by the exact algorithm (meaning an optimal 
solution could be found relatively quickly), but this solution could not be found 
by the meta-heuristic algorithm even after 500,000 schedules. Again, a closer look 
at the project instances did not tell us much and this once again illustrated that 
predicting the hardness of a problem instance for a meta-heuristic is no easy task. 
We therefore introduced a new concept to better understand the difficulty of projects 
for meta-heuristic solution methods, which is discussed in Phase 2 of this research. 

Phase 2. Sigma-Distance Concept To better understand the performance of meta-
heuristic search algorithms, we decided to introduce a way for describing the 
solution space of a project instance. A project instance’s solution space consists 
of all possible resource-feasible schedules that can be generated. Of course, such a 
space can grow quickly, even for medium-sized project instances, so two different 
procedures were used to generate the solution space: First, a full enumeration 
method was used that simply lists all possible schedules and reports the frequency 
of schedules for each makespan value found. Such a method can, of course, only be 
used for relatively small projects where the solution space is not very large. When 
the project instances get bigger, a sampling method (SM) was used that randomly 
generates a series of activity lists, then constructs a schedule using a schedule 
generation scheme, and stops after generating a pre-specified number of activity 
lists. Each schedule is constructed by one of four possible schedule generation 
methods to convert the generated activity list into a resource-feasible schedule. More 
specifically, both the serial schedule generation method and the parallel schedule 
generation method were used, and they were implemented as both a forward or 
backward planning method (resulting in four different ways to generate a project 
plan for a randomly generated activity list). When a huge number of activity lists 
are generated, the solution space can be described as best as possible, but not 
completely. We decided to use the sampling method (and not the enumeration 
method) to explore the solution space of the 10,793 project instances. The average
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Fig. 11.8 The sigma-distance concept (measuring the hardness of a project) 

makespan of all generated solutions is then compared to a very good solution for 
each project instance, and the closer the sampled solutions are to the good reference 
solution, the easier it seems to find this optimal solution for the project instance. 
This distance—which we called the sigma distance . σD—serves as a new hardness 
indicator and expresses the ease/hardness to find a very good, preferably optimal 
solution for the instance. The core idea of this method is shown in Fig. 11.8. The  
figure shows the frequency of solutions found by the sampling method for each 
possible makespan (x-axis), represented as a normal distribution with a known mean 
and standard deviation. This distribution is compared to a known reference point, 
and the distance between the two expresses the hardness of the instance. The main 
components for obtaining such a distribution to measure the hardness indicator are 
explained along the following lines: 

• Sampling method (. u0, . σ ): Using the sampling method to explore the search space 
generates a series of unique distributions for each of the four schedule generation 
methods. Each distribution is assumed to be symmetrically formed with a known 
average makespan . u0 and a standard deviation . σ . Since the distribution must 
represent the collection of all possible resource-feasible schedules, it is important 
that the sampling method is as “pure” as possible to ensure that it generates 
the entire solution space as complete as possible. This means that sophisticated 
elements normally included in an efficient solution procedure to guide the search 
for the promising regions of the solution space must be excluded in order to 
describe the solution space as completely random as possible. Therefore, we 
believe that our choice to use randomly generated activity lists with four schedule 
generation schemes is the purest way to generate solutions because they are very 
simple and do not contain advanced elements that favour good solutions over 
weak solutions. 

• Reference value (r): While the sampling method’s search space exploration 
reveals information about the size and spread of all feasible schedules, it says 
little to nothing about the quality of the generated solutions. For the latter, 
a reference point (REF) must be chosen, which consists of a very good or



11.9 From a Distance 221

preferably an optimal solution for the project instance, although the latter is 
not always known for each instance. The closer the sampled solutions are to 
the known reference point, the easier it seems that the optimal solution can be 
generated by a solution procedure that heuristically solves the instance. However, 
the choice of a reference point is not always easy. Ideally, we should use the 
optimal solution found by an exact algorithm, but this solution is not always 
known. Instead, we used as much information as possible to find a good reference 
point, including the best solution found after a long search, but also lower bound 
information for each project instance to estimate what could be a very good 
reference point. 

• Sigma-distance (. σD): Based on the average and standard deviation of the 
solution space generated by the sampling method, and the chosen reference point 
as discussed earlier, a new hardness indicator (. σD) is proposed that measures 
the distance between the reference point and the average makespan (. u0). This 
distance is expressed as the number of standard deviations and is measured as 
shown in Eq. (11.1), with higher .σD values indicating harder project instances. 

.σD = μ − r

σ
. (11.1) 

Phase 3. Create New Dataset The new .σD concept was used in a third phase to 
generate a new dataset with projects with low (easy) to high (difficult) .σD values. 
More specifically, we decided to generate a new dataset using a modified version of 
the “going to the core” algorithm from Sect. 11.7. The original procedure focused 
on creating the smallest possible instances that cannot be optimally solved with the 
currently available exact scheduling algorithms by transforming project instances 
into new, more difficult instances. Although the same logic was applied in the 
modified version, it no longer focused on searching for small instances, but instances 
with different values for the .σD metric. After a huge computational experiment, 
we were finally able to present the newly constructed dataset consisting of 390 
new hard project instances with .σD values ranging from 3 (easy projects) to 16 
(difficult projects). Several computational experiments were performed to show that 
the new dataset—referred to as the sD dataset—contains instances that are more 
difficult than the existing instances available in the literature (for meta-heuristic 
algorithms). The value of .σD was also shown to be positively correlated with 
instance complexity, which was the starting point of our study. Therefore, in the 
study, we also recommended researchers to test their new meta-heuristics on these 
new sD sets using different runs for each instance to report not only the quality of 
the solutions, but also the stability of the found solutions. We hope and believe, as 
for the research of the previous sections, that this new dataset can help improve 
our understanding of what makes a project instance difficult, but this time for 
constructing resource-feasible schedules by a meta-heuristic algorithm. The study 
has been published in Computers and Operations Research (Coelho & Vanhoucke, 
2023). You might have noticed, but many of our papers have been published in this 
excellent journal. I guess it has become our favourite outlet for our research.
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11.10 Final Words 

You have reached the end of this long chapter. I have spent quite a few pages of this 
book on the research story on artificial project data, and I have not even finished 
yet. Chances are that José and I have continued to work on creating new artificial 
project data to improve our understanding of the complexity of the challenging 
resource-constrained project planning problem (RCPSP) with hopefully promising 
new results that could not be presented at the time of publishing this book. In 
this chapter, I have mainly discussed project data for the RCPSP, but Chap. 15 
will present more project databases for extended versions of the RCPSP, including 
problem features such as human skills, the use of alternative technologies, and the 
presence of multiple projects in a portfolio. All project instances of all datasets 
discussed in this book can be downloaded from www.projectmanagement.ugent.be/ 
research/data. The main reason why I am not quite finished with the discussion about 
artificial project data is mainly because in the current chapter only static data were 
presented (in the form of project networks with resources). But since this book wants 
to go further, and expand static baseline scheduling with schedule risk analysis and 
project control, there must, of course, also be dynamic progress data available that 
fictitiously describe the execution of these artificial projects. The generation of these 
artificial progress data is mainly done on the basis of simulations (to imitate the real 
project progress), and three completely different models to obtain these data will be 
discussed in detail in the next chapter. 
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Chapter 12 
Progress Data 

The previous chapter gave a complete overview of generating artificial project data 
with network generators to design datasets with varying degrees of complexity, 
size, and diversity. The discussion about generating artificial project data was very 
clearly focused on generating static project data, consisting of project networks 
with resources to solve the well-known resource-constrained project planning 
problem. Therefore, the research discussed in Chap. 11 focused only on the baseline 
scheduling component and said nothing about the scheduling risk analysis or 
project control components. This is exactly why all project network generators 
use network topology and resource scarcity indicators to generate the projects, 
rather than include generation processes to generate dynamic risk and control data. 
This limited focus on baseline scheduling is somewhat at odds with a book that 
integrates the three general components (scheduling, risk, and control) into one 
dynamic scheduling system as shown in Fig. 3.1. In fact, most chapters of Parts II 
and III of this book mainly dealt with these two dynamic components (risk and 
control), starting with the basic schedule as a reference point. However, data on the 
(fictitious) progress of projects are not included in the generation of these artificial 
projects and had to be generated by the so-called static and dynamic simulation 
runs, as discussed earlier in Chap. 5. More specifically, I have shown that the static 
simulations were necessary to calculate the sensitivity metrics of activities (schedule 
risk analysis) as well as dynamic simulations to simulate fictitious project execution 
(project control). 

These static and dynamic simulation runs for generating progress data are not 
only powerful, but also quite easy to implement, so it is very tempting to use 
these techniques over and over again instead of collecting real progress data for 
real projects. Caution is advised, however, as these techniques require probability 
distributions to model uncertainty in activity durations, and the choice of these 
distributions (and the values for their parameters) depends on the researcher’s 
imagination. It is thus difficult to validate whether these choices actually generate 
progress data that are somewhat similar to the progress of real projects, and 
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therefore, these artificial simulation experiments must be performed with great care. 
The American novelist Tom Clancy expressed it in the following way: 

The difference between fiction and reality? 
Fiction has to make sense. 

This chapter proposes three completely different models for generating fictitious 
progress data in order to bring the fiction as close to reality as possible. When 
researchers follow the guidelines for the correct use of each of these three models, 
they can generate dynamic progress data in a structured way to improve the 
accuracy of dynamic risk and control studies on artificial projects. Of course, such 
an approach still does not guarantee that the generated progress data fully mimic 
reality, but they already enable the researcher to generate solid progress data that 
can be used for academic research. If the reality is to be fully imitated, then the 
progress data must, of course, come from an empirical project database, and a lot 
of attention will be paid to this in Chaps. 13 and 14. But before I switch to the real 
world, in the current chapter I want to step into the fictional world for a moment to 
discuss the different ways in which the artificial project progress data of the previous 
chapters were generated. 

12.1 Imagination 

I have discussed before that generating static project data amounts to generating 
project networks under a controlled design (by varying the network structure and 
the resource scarcity) to span the full range of complexity. This chapter focuses on 
the dynamic project data to imitate the progress of a project, and ideally, these data 
are also generated under a controlled design. Setting up a dynamic project execution 
study to imitate fictitious project progress therefore requires the simulation of 
activity delays, cost overruns as well as activities that sometimes finish earlier than 
expected or were cheaper than initially thought. Since these simulations require 
predefined probability distributions to generate variability in the project schedule, 
the correct selection of a specific probability distribution and its parameters is 
paramount. 

Since this selection must be made for artificial projects, it is impossible to take 
into account practical real-life features, and therefore, the researcher must above 
all have enough imagination when defining these distributions and parameters. I 
have always seen my job as a researcher as a way to turn my infinite imagination 
into research questions and therefore find generating progress data as imaginative as 
reading a thrilling book. Mimicking reality for projects does indeed require a certain 
amount of imagination, and choices have to be made since there are multiple ways 
in which the reality of a project can unfold. The central idea is that the researcher 
imitates a wide range of realities using a diverse set of possible scenarios, so that 
every possible way the project can be executed will be within the set of generated 
realities. This controlled approach to data generation is therefore very similar to
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the concept of spanning the full range of complexity used to generate static project 
network data, but it is now applied to generating dynamic progress data. Thus, the 
concept must ensure that it spans the full range of possible realities by relying on 
the researcher’s imagination of what the progress of a real project might look like. 
My favourite scientist Albert Einstein formulated the importance of fantasy much 
better and shorter than I did, as he said: 

Your imagination is your preview of life’s coming attractions. 

Of course, the use of fantasy is as dangerous as it is exciting and must always 
serve the ultimate research topic. Despite the fact that the researcher has enough 
freedom to define this fantasy in a personal way, there are a number of rules 
that must be followed. In order not to fantasise completely, this chapter proposes 
a general framework as shown in Fig. 12.1. The three models discussed in the 
following sections fit perfectly into this framework, providing an example of how to 
generate progress data for artificial project executions. The figure outlines the whole 
picture, starting with the artificial data generation of the previous chapter, followed 
by the dynamic progress data generation of this chapter and finally showing the 
research studies presented in the previous parts of this book. More specifically, 
the figure consists of five phases with Phase 2 being particularly important for this 
chapter. It is important for the readers to understand the logic of the figure as it is 
used not only to explain the generation of artificial project progress data (discussed 
in this chapter), but also to explain how the calibration procedures of Chap. 14 will 
be used (when using empirical project data). The five phases are now explained 
along the following lines. 

Phase 1: Static Data The figure starts by generating artificial project data (net-
works and resources) with network generators as explained earlier in Chap. 11 to 
span the full range of complexity. 

Phase 2: Dynamic Data In a second phase, each project network must be expanded 
with dynamic project progress data to mimic every possible reality. As mentioned, 
this simulated reality should not only be meaningful (as realistic as possible), but 
also should span all possible realities as good as possible. This second phase is the 
subject of this chapter where three different models for generating artificial project 
progress data will be presented. The first model is called the variation model and 
is the easiest way to generate artificial project progress data. It provides simple 
guidelines for selecting an appropriate probability distribution for variability in 
activity durations, as suggested in Sect. 12.2. The second so-called risk model is 
a bit more advanced because it models dependences between the project activities 
using a systematic, but elegant approach (Sect. 12.3). The last scenario model of 
Sect. 12.4 consists of nine fundamentally different building blocks that are used to 
imitate the duration variability of activities. These nine scenarios are specifically 
designed in such a way that they each have a specific goal and measure the progress
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Fig. 12.1 Generating artificial project progress data (using your imagination) 

of a project in a way that is completely different from the other scenarios. The latter 
model was the one that I used in the comparative study of prediction techniques as 
described in Chap. 4. 

Phase 3: Data Classification When both the static data (Phase 1) and the dynamic 
data (Phase 2) are generated, they can be combined together often resulting in a huge 
set of data that will, almost literally, blow up your hard drive. As a researcher, it is 
of course nice to have so much data available, but it is also one of the weaknesses 
of artificial data: sometimes there is simply too much data available so that they



12.2 Variation Model 229

all seem rather unstructured. In order to find good structure in this overwhelming 
amount of data, they must be classified into well-defined categories before they 
can be used for further research. The static project data are best classified by 
the static network and resource indicators discussed in the previous chapter (cf. 
Sect. 11.2). For the dynamic project data, a similar classification model can be used 
by classifying the progress of projects using the input values of the parameters used 
in the three models (variation, risk, or  scenario model) or the output values after the 
simulation has been run (early, on-time, or  late projects). 

Phase 4: New Research Once the data are available, the life of a researcher is 
one big challenging search for results with endless possibilities and enough freedom 
to explore them from different angles. Academic research is indeed a search for 
improvements in project management, and the rich set of project data can be used to 
conduct all kinds of new experiments. They can be used to validate existing concepts 
(cf. Chap. 4), to make improvements (cf. Chap. 5) or even to test totally new ideas 
(cf., Chap. 6). Academic research is the act of exploring new territories aiming at 
improving our understanding, creating wisdom, and enhancing learning, and static 
and dynamic project data play a crucial role in this search. 

Phase 5: Advancing Knowledge Exploring new territory and enjoying academic 
freedom without strict deadlines does not mean academic research is an easy job. 
We must not forget that the ultimate goal of academic research is to find new ways 
of managing projects. This quest for advancing the very latest knowledge is a never-
ending quest, and a good scientist is well-aware that it is a gradual quest for better 
knowledge that will never be completely finished. Advanced knowledge will be 
replaced by newer and better results, and every step, however small or insignificant, 
can be a good step in the right direction. It is a warning to any young researcher 
considering starting a career in academia: “Think before you start!” Increasing 
knowledge has a beginning, but it never has an end, and despite the fact that it is the 
most beautiful job in the world, every step on an untrodden path will be a beginning 
of a new journey with more data, new experiments, sleepless nights, and no end. 

The next three sections will discuss the three models to generate artificial project 
progress data. Despite the fact that they can be used as general models for various 
dynamic project risk and control studies, it is important to note that they are sprouted 
from my imagination and fantasy and are therefore not the only ways to generate 
these dynamic data. 

12.2 Variation Model 

Variability in the duration of activities is inherent in the actual project progress and 
can lead to delays of activities (behind schedule) or early delivery of activities 
(ahead of schedule). This variability in the activity durations can undoubtedly 
have a significant impact on the costs of these activities, and therefore examining 
the variability of the activity costs is just as important as the variability of their



230 12 Progress Data

durations. In the variation model, the variability of activity duration is modelled 
by a predefined statistical distribution, and the variability of costs follows from 
the variability in activity duration. More specifically, costs are assumed to follow 
a linear relationship with duration. This means that each day of delay brings a 
linear increase in costs, while each day that an activity is ahead of schedule, costs 
also decrease linearly. While such a situation may not always reflect reality, it is 
a reasonable assumption that a researcher can make when validating new methods 
of time and cost control. This is exactly what researchers mean when they write 
in their study that “without loss of generality we assume that. . . ”. This simply 
means that they have made an assumption that can be easily changed, although 
they do not expect the results of their studies to change if this assumption is not 
followed. For example, I am convinced that the linear relation between time and 
costs was a reasonable assumption in the study of Chap. 4 that, if changed, would not 
lead to fundamentally new insights. That does not mean, however, that researchers 
can simply define assumptions without thinking too much about whether they are 
reasonable or not. For example, it is generally accepted that the choice of the 
statistical distribution to model the duration variability is a crucial choice to be made 
by the researcher. It is said that this statistical distribution choice (using, e.g., the 
normal distribution, beta distribution, lognormal distribution, etc.) and its parameter 
values can have a major impact on the generated progress data for the simulations. 
Consequently, this choice also has an impact on the specific results of the study, 
which is why most believe that this choice must be taken with great care! 

But to be honest, I do not fully agree with that. 
Of course, I fully agree that researchers should choose a distribution that is as 

close as possible to the actual real-life behaviour of projects, but I think that the 
specific choice of the type of distribution is not as relevant as some researchers 
(and reviewers of our research) think. I believe that the parameters of the chosen 
distribution (mean values, standard deviations, skewness, etc.) are much more 
important, because through these parameters the progress data are generated as 
projects that finish early or late (depending on the skewness) with a low or high 
deviation from the baseline schedule (depending on the standard deviation). Despite 
this, I have personally experienced that most researchers consider the type of 
distribution to be (more) important than the parameters of the distribution, and I 
do not fully understand why. 

Let me give the example of my first paper on statistical project control, which I 
discussed in Chap. 5 and was eventually published in the highly respected journal 
Omega—The International Journal of Management Science (Vanhoucke, 2010). In 
the first version of this study, I simulated the variability of activity durations using 
the so-called triangular distribution, a very simple distribution requiring only three-
point estimates. I knew that this choice went a bit against the common practice of 
the academic community, but I thought keeping things simple would make the paper 
more readable. But this referee had a very different idea and could not accept my 
paper because of an unrealistic choice of statistical distribution. Fortunately, the 
referee was kind enough to offer some advice on how to improve the research study 
and told us (me and my co-author Jeroen Colin) to look at the literature and use a
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much better distribution to model the variability in durations. It was indeed known in 
the literature that activity duration variability can be best modelled by a distribution 
closely related to a beta distribution, with a mode (most common value) close to the 
deterministic estimate of the baseline schedule. The advantage of this distribution, 
according to the literature, lies not only in its realism, but also in the ease with 
which tails to the right (or left) allow a greater chance of delays (or earliness). Other 
studies in the literature give different recommendations and propose distributions 
such as the beta rectangular distribution (i.e., a mixture of a beta and a uniform 
distribution) (Hahn, 2008), the generalised beta distribution (Kuhl et al., 2007), 
and the lognormal distribution (Mohan et al., 2007). So it was not easy to follow the 
referee’s recommendations and choose the right type of distribution, as there was no 
unequivocal opinion in the literature. In any case, it was clear to the referee that the 
triangular distributions could not be used for academic research. So I had to choose 
a more common (i.e., more complex) distribution at all costs to model variability in 
the activity durations; otherwise, my research would have had no chance of success 
(getting published). 

I have learned from experience that listening to referees and taking their advice 
seriously is the best thing that you can do if you want to get your research published. 
In the end, I decided to use the so-called generalised beta distribution because it is 
much more manipulable than triangular distributions (and because the referee gave 
a slight hint in that direction). The problem, of course, was that I had to rerun all 
the experiments, so I went back to working on the supercomputing infrastructure 
at my university and ran all the experiments again. After the new experiments, I 
rewrote the paper with updated results and submitted a revised version and got 
an acceptance this time. Yes! In the published version of the article, I wrote the 
following comments, inspired by the reviewer’s comments: 

In this simulation study, the choice of using the generalised beta distribution has been based 
on the comments made in Kuhl et al. (2007). These authors motivate that the generalised 
beta distribution is generally a better choice than the triangular distribution in cases . c−a �
b−c or .c−a � b−c, that is, in situations in which there is a pronounced left or right-hand 
tail on the distribution of the stochastic variable (activity duration). 

Obviously, I was very happy with the publication of our research, but I honestly 
never really understood why the study was now so much better with those complex 
distributions than when we used the simple triangular distributions. In any case, the 
results were not fundamentally different, and I hardly had to change any conclusion 
except for some rounding of numbers. To a layman, the triangular distribution, the 
lognormal distribution, and the beta distribution are very similar in some forms, 
but a statistician will have a very different opinion. The statistician will argue that 
all positive values in the domain have a positive probability of occurrence in a 
lognormal distribution, while the beta distribution has the characteristic that positive 
probability values only exist for a limited range of values. The generalised beta 
distribution (the distribution we ended up using) is much more flexible and can 
take many different forms depending on the parameter values, including a skewed 
unimodal distribution that is very close to that of a lognormal distribution. I do not



232 12 Progress Data

want to go into detail, but the generalised beta distribution uses many parameters and 
the values of these parameters can be set to be very similar to any of the distributions 
discussed earlier. I once have made four graphs for the four distributions in R and 
plotted them side by side. I could easily set the parameter values so that you do not 
really see a big difference, which is why I do not quite understand why it all matters 
so much. 

I am not telling this story to complain about the journal’s review process, nor to 
say that the referee’s comments were useless. On the contrary! Besides, the referee is 
always right, even if the comments do not make much sense, because the publication 
depends on it. I am just telling this story to show that this is the life of a researcher: 
the quality of research is in the smallest details. What I have learned from this long 
review process is that some choices are more readily accepted than others, and it is 
often much better to follow the generally accepted guidelines provided by previous 
studies. I initially thought running the experiments with new distributions again was 
a huge waste of time, and when I saw that I could not draw any new conclusions, 
I was even more convinced of the futility of looking for the most appropriate 
statistical distribution. In retrospect, I had to refine that vision as it was perhaps 
the most interesting referee report that I have ever received. Indeed, the comparison 
between different distributions has made me think about how the distributions are 
best chosen, and this has piqued my interest in a new stream of research in which I 
wanted to look for the best parameter values to estimate variability. This new stream 
of research is presented in Chap. 14, which examines the most appropriate choice 
for a realistic activity duration distribution. It will be shown that the lognormal 
distribution is a good candidate for modelling variability in the duration of activities 
based on theoretical arguments and empirical evidence. I want to thank the referee 
for this great idea for future research. Indeed, the quality of the research often lies 
in the details (as requested by most referees). 

12.3 Risk Model 

In the variation model, statistical distributions were used to model variability in 
activity durations, and the assumption was made that costs were linearly dependent 
on them. However, what I have not explicitly stated is that an additional assumption 
presumes that the variability in the activities was generated independently from each 
other, meaning that a change in one activity (relative to the planned duration) does 
not necessarily involve a change in the other. This may be a realistic assumption in 
some cases, but it is easy to find examples where this is not true at all. The risk model 
omits this assumption and adds dependences between activities in a very simple, but 
elegant way. 

There are numerous reasons to believe that activities are correlated with each 
other, in which a problem in one activity causes a problem in the other activity. 
Just think of sharing the same resources between activities, where if one activity 
is delayed, the other simply cannot start because the resources are not available.
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Of course, assuming independence does not mean that there are no connections 
between activities in the variation model. The precedence relationships in the project 
network still mean that a delay in one activity can influence the successor activities 
and thus leads to a general delay of the project. But beyond this dependence in the 
network logic, the variation model assumes that there are no correlations between 
the variability of different activities. The dependence assumption used in the risk 
model stems from the observation that there exist very clear dependences between 
the durations of activities in practice. For example, it may be that there is bad 
weather for an entire period, which for an open-air project can affect all activities 
that are carried out during that particular period. However, if project management 
professionals want to specify correlations between activities to model these depen-
dences, they face a challenging task as there is no established methodology for 
estimating correlation coefficients between activities. Even researchers struggle to 
model these dependences in the variability between activities (and therefore often 
use the variation model as a simplification), as we wrote ourselves in our article 
(Colin & Vanhoucke, 2014): 

If researchers are required to specify correlations between activities, they face a challenging 
task since there is no established methodology for estimating correlation coefficients. 
In order to reject the independence assumption in our simulations, we employ the 
linear association technique, where a systemic error B provides objective information on 
correlations. 

So we had to look for a simple and easily implementable way to bring 
dependences into our progress data, and after a search in the literature, we came 
up with a very elegant, yet simple concept. The so-called linear association 
technique to model dependences between activities is a concept initially proposed 
by Trietsch and Baker (2012) to extend the variation model to the risk model. As 
with a linear relationship between two variables, where any given change in an 
independent variable will always cause a corresponding change in the dependent 
variable, the linear association approach assumes something similar happens with 
the durations of two or more random activities. The beauty of using the linear 
association approach to model activity dependences lies in its simplicity and ease of 
implementation as it does not require advanced statistics nor any additional features 
to very clearly distinguish activity variation and risk. Instead, it simply assumes 
that the activity risk (dependent variability) is added to the activity variation 
(independent variability) by drawing random numbers from two, rather than one, 
predefined distributions. More specifically, the first distribution is used to generate 
independent variability (as in the variation model), while the second distribution 
adds an extra dimension to this variability in order to imitate statistical dependences 
between activities. Implementing the risk model to generate progress data for 
activity durations is done using the following three steps: 

Step 1. Simulate variation: In a first step, a real duration . d̂i is simulated for 
each activity from a statistical distribution as discussed in the variation model 
(distribution 1). As discussed earlier, these actual activity durations are simulated 
separately for each activity and are assumed to be independent of each other.
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Nevertheless, these durations may differ from the initial duration estimates of the 
baseline schedule and thus may result in a project that is ahead of schedule or a 
delayed project, identical to the variation model. 
Step 2. Simulate risk: In a second step, a general systematic error B from a 
statistical distribution is simulated (distribution 2). The systematic error B should 
ideally provide objective information about correlations between activities and 
represents external events that can occur in the project and affect all activities. 
The example of bad weather mentioned above is such an external event and can 
therefore have a negative influence on the entire project. Another example that is 
often used is the systematic underestimation of duration estimates in the project 
schedule, where the real durations are a factor B higher due to the fact that the 
initial estimates were too optimistic. This bias term B should ideally be regressed 
from historical data (if real data are present), but can also be generated randomly 
from a probability distribution (e.g., the lognormal distribution is proposed by 
the “founders” of this technique). In the latter case, the inputs are, of course, 
largely dependent on subjective estimates for the parameters of these probability 
distributions, but this was also the case with the variation model. We will see 
later in Chap. 14 that calibrating the parameters to historical data should always 
be preferred. 
Step 3. Integrate variation and risk: In a third step, the independently generated 
durations of Step 1 and the systematic error of Step 2 are brought together. More 
specifically, each generated activity duration . d̂i is multiplied by the systematic 
error B to obtain a final activity duration .B × d̂i . If we want to put it a little more 
formally, then n positive random variables . Zi are linearly associated if . Zi =
B ×Xi where .{Xi} is a set of n independent positive random variables (variation 
model) and B is a positive random variable, independent of .{Xi} (systematic error 
of the risk model). The .{Xi} variables here represent the durations . d̂i that were 
generated by means of the variation model, where the B factor adds an extra 
form of uncertainty (risk) to the activities in order to model the dependences. 
Multiplying each generated activity duration by the B systematic error thus 
assumes that a portion of the activity delays comes from external sources that 
apply to all activities in the project (thus making the activities correlated). 

According to the authors Trietsch and Baker (2012), the lognormal distribution 
can be used when statistical dependence is modelled with linear association. In their 
paper, they defend this assumption using both theoretical and empirical arguments, 
and I recommend that readers take a close look at this paper to better understand the 
linear association concept. The practical implementation, however, is quite simple as 
it requires the generation of two values for uncertainty (which I called variation per 
activity and risk for the whole project), which makes the risk model in my opinion 
preferable to the simple variation model. I had the privilege of meeting Dan Trietsch, 
one of the authors of the article proposing the linear association concept, at my home 
university in Ghent (Belgium) in 2019. He gave an inspiring research workshop for 
the members of my team, and we had a lot of interesting discussions afterwards 
about statistical models to model variability in activities. It was pretty clear that Dan
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masters the matter to the core and since then I have been using the linear association 
model in most of my simulations to generate progress data. Some of his ideas will 
also be discussed later in this book (Chap. 14), and I am grateful to Dan for inspiring 
my research team with his new theories. 

12.4 Scenario Model 

The two models discussed earlier make use of statistical distributions to model the 
variability in activity duration (variation and risk models) and external sources of 
risk (risk model), and I have argued that their parameters must be chosen well to 
mimic the actual project progress. This is completely different for the scenario 
model that will be discussed in this section for which the correct use of the 
parameters in the distributions is much less important. The goal of this third model 
is to control the simulations so that different scenarios are generated, and some 
of these scenarios are so extreme that they may not occur very often in practice. 
Nevertheless, all the generated scenarios, realistic or not, are interesting to study 
because they serve to answer a number of specific research questions. 

To fully understand the scenario model, I have to take the readers back to 
the study in which different forecasting methods were compared using Earned 
Value Management (EVM, cf. Chap. 4). This comparative study used three methods 
(planned duration, earned duration, and earned schedule methods) to predict the 
duration of a project and led to our first joint paper with Stephan Vandevoorde in 
the International Journal of Project Management. You may recall that I wrote in 
this chapter that these results were presented at a number of workshops and that not 
everyone was equally pleased to see that the earned schedule method outperformed 
the traditional planned value and earned duration methods. I still do not quite 
understand why there was so much controversy about our research results, but I 
think it may have to do with the level of control in the work breakdown structure 
(WBS), a theme that was also discussed repeatedly in previous book chapters. I 
mentioned this issue for the very first time in Sect. 3.3 where I referred to a quote 
from Walt Lipke from his article in the same journal in which he argued that the 
proper level of control should not be done at the activity level because that would 
lead to too much detail. He argued that it is therefore much better to go to higher 
levels where an overview can be obtained more easily. Much later, in Chap. 7, I  
came back to that by introducing the WBS, and calling this form of EVM control 
top-down project control. The reason for this naming came from the observation 
that performance measures for time (schedule performance index) and cost (cost 
performance index) are best measured at the high WBS levels, and only when these 
indices show values representing problems, the project manager should descend to 
the activity level to find the causes of these problems. 

I know I am repeating myself, as these concepts were used continuously 
throughout the book. It should be noted, however, that using performance measures 
at high WBS levels (with the necessary drill-down when thresholds are exceeded)
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may be the only realistic option a project manager has to efficiently monitor ongoing 
projects, but that this choice also carries dangers. It is obviously much more accurate 
to measure the performance measures at the activity level (i.e., the detailed level at 
the bottom of the WBS) because then every small change will be measured, but such 
a detailed control of the project would take far too much work and time. However, 
not everyone agreed with the view that the level of control should be at higher levels, 
and I wrote the following words in my book “Measuring Time”: 

This concern has also been raised by other authors and has led to a discussion summarised in 
articles such as Book (2006a,b), Jacob (2006), and Lipke (2006). Although it is recognised 
that, at high WBS levels, effects (delays) of non-performing activities can be neutralised 
by well performing activities (ahead of schedule), which might result in masking potential 
problems, it is the only approach that can be taken by practitioners. Indeed, the earned 
value metrics are set up as early warning signals to detect problems and/or opportunities 
in an easy and efficient way (i.e., at the cost account level, or even higher), rather than a 
simple replacement of the critical path based scheduling tools. This early warning signal, 
if analysed properly, defines the need to eventually drill down into lower WBS levels. In 
conjunction with the project schedule, it allows to take corrective actions on those activities 
which are in trouble (especially those tasks which are on the critical path). Lipke et al. 
(2009) also note that detailed schedule analysis is a burdensome activity and if performed 
often can have disrupting effects on the project team. EVM offers calculation methods 
yielding reliable results on high WBS levels, which greatly simplify final duration and 
completion date forecasting. 

It was precisely this controversy and difference of opinion that prompted a 
second study with Stephan, in which the scenario model was proposed. We wanted 
to find out whether controlling projects at a higher level is much more error-prone 
than controlling them at the low activity level. It is indeed true that the higher-
level performance indicators (SPI(t)1 and CPI) can give incorrect warning signals 
(e.g., that a project is overdue, when in fact it is not), something that will not 
happen if each activity is monitored individually. Perhaps, this potential error is 
so large and so common that some could simply not accept the advice of the 
top-down methodology. I will not repeat the results of our second study because 
they were summarised in Sect. 4.2, but here I will take a closer look at the nine 
scenarios that we have defined in the scenario model to provide the best possible 
answer to this new interesting research question. The nine scenarios to model the 
variability of the duration of activities are shown in Fig. 12.2. For each scenario, 
a random duration per activity is simulated from statistical distributions. These 
distributions are not as tightly controlled as in the previous models, and sometimes 
those numbers come from distributions with very extreme values for the parameters 
(average and standard deviation) to steer the data generation in the desired direction. 
The following sections will show that these scenarios are specifically designed 
to extensively test the much-discussed margin of error of top-down control, and 
therefore we sometimes have had to simulate very extreme, perhaps not so common,

1 Remember that the SPI(t) abbreviation was used to represent the new schedule performance index 
of the earned schedule method, which is more reliable than the classic schedule performance index 
(SPI) because the SPI always ends at 100%, even for projects that finish late. 
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Fig. 12.2 Generating 
progress data with the 
scenario model 

Scenario 1. 

SPI(t) > 1 
RD < PD 

Scenario 4. 

SPI(t) > 1 
RD = PD 

Scenario 7. 

SPI(t) > 1 
RD > PD 

Scenario 2. 

SPI(t) > 1 
RD < PD 

Scenario 5. 

SPI(t) = 1 
RD = PD 

Scenario 8. 

SPI(t) < 1 
RD > PD 

Scenario 3. 

SPI(t) < 1 
RD < PD 

Scenario 6. 

SPI(t) < 1 
RD = PD 

Scenario 9. 

SPI(t) < 1 
RD > PD 

scenarios. The figure looks quite simple, but it is actually not. It contains a lot of 
data to properly understand the nine scenarios, which can be classified into three 
groups (activity criticality, warning signals, and project status) that must be well 
understood in order to understand the difference between the nine scenarios. 

Activity Criticality First of all, the figure distinguishes between the variability in 
the duration of critical and non-critical activities. Both a critical and non-critical 
activity can be ahead of schedule (early), have a duration exactly equal to the 
scheduled duration (on time), or suffer from a delay (late). The reason for this 
division is very important in order to answer our research question. It is quite clear 
that delays in critical activities are potentially more damaging to the project than 
delays in non-critical activities. After all, for the non-critical activities, delays can 
be (partially) offset by the activity slack, which eventually leads to a small (or even 
no) delay of the project. The three possibilities (early, on time, or late) for the two 
classes of activities result in the nine scenarios of the figure, and it will be shown 
that the generation of the progress data with statistical distributions is different for 
each scenario. 

Defining duration variability in critical and non-critical activities: 
Early : Activity ahead of schedule 
On time : Activity on time 
Late : Activity delay 

Warning Signals The generation of real durations for critical and non-critical 
activities leads to a project execution that deviates from the baseline schedule. 
During these simulation runs, the progress of the project is measured at regular 
time intervals (the so-called tracking periods), and the performance measure SPI(t) 
is measured periodically to monitor the time performance of the project. For each 
tracking period, the SPI(t) value can indicate a project that is ahead of schedule 
(SPI(t) . >1), on time (SPI(t) = 1), or delayed (SPI(t) . <1 ) and, as is known, is used
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as a warning signal to possibly take actions. At the end of the project, these SPI(t) 
values are averaged over all tracking periods, resulting in an average value . SPI(t)
for the time performance of the project. This average value gives an indication of 
the average state of the project during all tracking periods from its start till its end, 
which can also be lower than, equal to or higher than 1 (or 100% if expressed as 
a percentage) as shown in the nine blocks of the figure. The first three blocks in 
the first row contain projects where, on average, early project signals are measured 
(.SPI(t) > 1). The next three blocks in the second row show a different average 
project performance, depending on the scenario, ranging from early warning signals 
(Scenario 2), on-time signals (Scenario 5), and late warning signals (Scenario 
8). The last row consists of projects that, on average, show a signal of lateness 
(.SPI(t) < 1). 

Measuring the average schedule performance of the project (during progress): 
.SPI(t): average early warning performance signal 
. >1 : Average positive signal (ahead of schedule) 
=1 : Average on-time signal 
. <1 : Average negative signal (schedule delay) 

Project Status A third criterion that was carefully controlled in the simulation 
was the final actual status of the project after it was completed. For this reason, 
a distinction is made in the figure between the planned duration of the project in the 
baseline schedule, abbreviated by PD, and the actual real duration after the project 
has ended (i.e., after the simulation run), abbreviated by RD. The first column of the 
figure shows projects finishing earlier than expected (RD . < PD). The second and 
third columns represent projects that finish on time (RD . = PD) or late (RD . > PD). 

Getting the final project status (after finish): 
PD and RD: Planned and Real Duration of the project 
RD . < PD : Early project 
RD = PD : Project on time 
RD . > PD : Late project 

At this point, it should be clear that simulating this average project performance 
warning signal status, measured by .SPI(t), was not easy. In fact, for some scenarios, 
the simulations were a huge challenge. For example, in Scenario 3, the critical 
activities finish early, while the non-critical activities are late, and since the mean 
SPI(t) value indicates late project behaviour (.SPI(t) < 1), the lateness of the non-
critical activities far outweighs the earliness of the critical activities. However, as if 
that was not complex enough, Scenario 3 also consists of projects that eventually 
end too early (RD . < PD). This means that the much heavier lateness of the non-
critical activities should never fully consume the slack; otherwise, those activities 
would become critical and lead to a project that ends too late. Other scenarios were 
easier to simulate. For example, it is quite easy to get an average early SPI(t) statistic 
for projects with early critical activities and non-critical activities (Scenario 1), since 
in this case, the project will automatically finish early too (RD . < PD). My point of



12.4 Scenario Model 239

this description is that the simulation of activity durations could not be done simply 
using statistical distributions with known parameter values, but instead had to be 
carefully designed to lead to the desired values for .SPI (t) and RD. Since I had to 
push the random activity duration generation to the limit, it may sound like I was 
cheating to skew the results towards my desired outcome, but this was exactly the 
whole purpose of the study. I had to adjust the input parameters so that I could test 
exactly what I wanted to test, so I manipulated the input parameters to the limit to 
get these nine scenarios. 

Nine Scenarios Keep in mind that the ultimate goal of the study was to measure 
the reliability of the SPI(t) warning signals by looking for errors when used at the 
highest level of the WBS. A warning signal is reliable if it measures the correct 
project status. This means that the average SPI(t) values lower than 1 (indicating a 
project delay) must indeed lead to an eventual project duration overrun. Likewise, 
SPI(t) values higher than 1 indicate early progress and should result in early project 
delivery. In all other cases, the EVM system is unreliable and thus an error occurs. 
The nine scenarios in Fig. 12.2 were therefore specially designed to model these 
reliable (without an error) and unreliable (with an error) warning signals. The 
scenarios are classified into three categories as described below, each with a different 
meaning and purpose: 

True scenarios: Scenarios 1 and 2 report an average project “ahead of schedule” 
progress (.SPI(t) > 1), and the project finishes indeed earlier than planned (RD . <

PD). Scenarios 8 and 9 report an average “project delay” progress (.SPI(t) < 1), 
and the project finishes indeed later than planned (RD . > PD). Scenario 5 reports 
an average “on-time” progress (.SPI(t) = 1), and the project finishes indeed 
exactly on time (RD = PD). Consequently, these five scenarios report a true 
situation (i.e., what you measure is what you get) and are therefore completely 
reliable. 
Misleading scenarios: Scenario 4 reports an average project “ahead of schedule” 
progress (.SPI(t) > 1), but the project finishes exactly on time (RD = PD). 
Likewise, scenario 6 reports an average “project delay” progress (.SPI(t) < 1), 
but the project finishes exactly on time (RD = PD). Consequently, these two 
scenarios report a schedule deviation, but the projects finish exactly on schedule, 
and hence, they are called misleading simulation scenarios. 
False scenarios: Scenario 3 reports an average “project delay” progress 
(.SPI(t) < 1), but the opposite is true as the project finishes earlier than 
planned (RD . < PD). Scenario 7 reports an average project “ahead of schedule” 
progress (.SPI(t) > 1), but the project finishes later than planned (RD . > PD). 
Consequently, these two scenarios report a false warning signal, and hence, they 
are called false simulation scenarios (as they are completely unreliable). 

The results of this study were interesting, not only from an academic point 
of view, but also for professionals, as avoiding the potential error in the false 
scenarios was the exact reason why some did not believe in using EVM at high 
WBS levels. As I mentioned before, the main results were summarised in Fig. 4.2,
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and so I will not go over the results again in detail. However, I would like to 
remark that the study mainly showed that using EVM with the SPI(t) metric to 
measure project performance works well for the reliable scenarios (true scenarios) 
but fails miserably for the unreliable scenarios (false scenarios). While this sounds 
like an obvious result, I believe that it shows that using an EVM system as a top-
down control system works surprisingly well (and therefore there is no need to 
monitor every single activity of the project). Indeed, if the SPI(t) system works 
well when the input is reliable (true scenarios) and works poorly when the data are 
unreliable (false scenarios), that is a very clear indication that the system is simply 
working fine (garbage in, garbage out). In any case, this system is much better than 
any other system that delivers average performance, regardless of the reliability of 
the scenarios, which indicates an arbitrary system rather than a well-functioning 
system. This also explains why the results showed that an earned value/schedule 
system is more reliable for project control when the network structure is closer 
to a serial network than to a parallel network. Since serial networks have more 
critical activities, the chance of unreliable measurements decreases significantly 
because any delay in an activity almost automatically leads to a project delay. These 
research results have convinced myself, and many others, that the use of the earned 
schedule metrics for project control as a top-down control system (high WBS levels) 
can be classified as a reliable system. I hope that the controversy surrounding the 
appropriate level of detail for project control can therefore be closed. Until, of 
course, someone proves otherwise. 

12.5 Fiction 

In the last two chapters, the use of artificial project data was extensively discussed. 
The static data to create baseline schedules for the resource-constrained project 
scheduling problem were described in Chap. 11. The current chapter added dynamic 
project progress data to perform schedule risk analysis and project control studies as 
academic research. Both chapters thus showed that scientific research can count on 
a lot of project data, whereby the static artificial project data are generally available 
from the project data website, while the dynamic project progress data can be easily 
generated by one of the three simulation models from this chapter. 

Despite the widespread use of these static project data and the dynamic progress 
simulation models, everything remains completely fictitious with no link whatsoever 
to the real world. In fact, the static project data are generated by setting the network 
and resource indicators to as many different values as possible so that there is a good 
chance that any real project is somewhere in the generated data (spanning the full 
range of complexity). To simulate the project progress data, statistical distributions 
must be used to model the variability of the activity durations, whereby the values 
of their parameters can also be set to different values, again in the hope that real 
project executions are imitated (spanning the full range of possible realities). The 
three models to generate these progress data try to imitate reality in three different
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ways and were referred to as the variation model (independent variability of activity 
durations), the risk model (dependences between activities), and the scenario model 
(forced simulations to measure the reliability of project control systems). All this 
was proposed to make the academic research as realistic as possible, but still, no 
guarantee can be given that this is indeed the case. 

Nevertheless, I hope that after reading these two chapters, you are convinced 
of the importance of artificial data for academic research in project management. 
These data have steered the data-driven project management research into all sorts 
of interesting directions, and I am convinced that without such data the state of 
research would not be that far at all. However, if you are still not convinced of the 
usefulness of artificial project data, then I will not try to convince you further and 
refer you to the next chapter where we finally get into the real world. In Chap. 13, 
and also the subsequent chapter, I will mainly focus on the use of empirical project 
data for scientific research. 
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Chapter 13 
Empirical Projects 

In Chap. 11, an overview was given of artificial project data to allow researchers 
to test their models under a broad set of assumptions. The importance of such 
research was underlined as a way to develop scheduling algorithms that can 
perform well under as many settings as possible, where it is not always necessary 
to check whether all these settings can occur in practice. The results of such 
research could potentially motivate new researchers to develop other, completely 
different algorithms, which perform better for some projects and less well for others, 
ultimately to continuously improve the state-of-the-art in algorithmic developments 
in project scheduling. However, the research should not stop after these studies 
on artificial project data, and the theoretical results and insights obtained must 
continuously compete with observations from reality in order to make the research 
relevant for practice. 

Empirical research is research using empirical evidence, aimed at gaining 
insights through observations rather than through artificial well-controlled exper-
iments. An empirical study is based on practical experience to confirm or reject 
existing or new theories and is often considered superior by project management 
professionals. This is not surprising, of course, as the goal of all data-driven project 
management research is ultimately to increase our understanding of the key drivers 
that influence project performance. Therefore, empirical project data—rather than 
artificial data—are best used as a source of inspiration for academic research, since 
by definition they contain real sources of uncertainties and risks that are never fully 
replicated in artificial data studies. However, the best research results are obtained 
when both perspectives (general results with artificial data or specific observations 
based on empirical data) are well combined. In scientific circles, one often speaks 
of deduction and induction. In deduction, an inference is often made from the 
general to the particular, and the inference is thus a logical consequence of the 
assumptions. The inductive methods often work the other way around, whereby a 
general rule is defined from a number of specific observations (generalisation). The 
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greatest scientist among all scientists, Albert Einstein1 often started with thought 
experiments that later changed the way he thought about his experiments and 
summarised the true nature of research as follows: 

The grand aim of all science is to cover the greatest number of empirical facts by logical 
deduction from the smallest number of hypotheses or axioms. 

I have never really thought much about whether my research is deductive or 
inductive,2 but I have understood that both are best combined and that therefore 
both theoretical results (on artificial data) and real observations (on empirical data) 
can be an enrichment. I already mentioned in Chap. 10 that empirical project data 
are often preferred by project managers, simply because these data are much richer 
and therefore more realistic. I also argued in that chapter that artificial project data 
are more structured and thus can be more easily adapted to the specific subject of 
the study (which is why I paid so much attention to them in Chap. 11). This chapter 
tells the story of the collection of empirical project data by my OR&S group, which 
has led to what is, to my knowledge, the largest publicly available empirical project 
database for research purposes. 

13.1 Curiosity 

Regardless of the class your particular research topic belongs to, I believe that the 
true nature of research is curiosity, seeking answers to questions, or formulating 
questions that you do not fully understand at first. I have always really enjoyed 
discussions with fellow researchers where we came up with the most relevant and 
irrelevant questions, where we were only interested in the answers but certainly not 
in the practical implications. I suspect that this is the main reason why I mainly 
carried out research on artificial project data in the first decade of my academic 
career and felt absolutely no need to test my results in practice. Albert Einstein, he 
again, has put it this way: 

Curiosity has its own reason for existing.

1 I sometimes wonder if there is anyone who is not a fan of Albert Einstein. His theories are one of 
the most important chapters in scientific history and have contributed to the modern understanding 
of our universe. In my project management lectures, I cannot help but talk about this scientist, and 
I confide to my students that my Measuring Time book was actually inspired by his theories. This 
obviously does not make much sense, but I can then easily steer the class discussion to the fact 
that Einstein was born on the same day as me: .π -day. I already told you before (in Chap. 11) that I  
share the same birthday with my scientific superhero. 
2 There are a lot of articles to find out whether your research is inductive or deductive, and I still do 
not know to which class my research belongs. Some say that inductive research is an innovation, 
while deductive research is a discovery. Others claim that inductive research proposes a new theory 
(experimental study), and deductive research is to test the theories with data (empirical study). Let 
us not think too much about it. 
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That gradually changed when I started lecturing to people with professional 
experience. I suddenly realised that not everyone is as enthusiastic as I am about 
optimisation algorithms and automated methods, and I learned from my MBA 
students at Vlerick Business School that academic curiosity must be accompanied 
by practical relevance. Teaching these MBA students has literally opened my eyes as 
they have made me aware that I also have to look at the outside world. In particular, 
I learned from them that the interaction between my theoretical experiments and 
their practical experience can be enriching and that this interaction can improve the 
quality of my lectures, but also of my research. It is mainly thanks to them that I 
have decided to forgo the path of relying solely on artificial project data and started 
to collect empirical project data. 

The search for empirical project data started sometime in early 2003, but I 
quickly realised that collecting empirical project data is much more than receiving 
some MS Project files from professionals and merging them into a new empirical 
database. Despite the fact that most project managers claimed that they had a lot 
of data available, this was very disappointing when I finally wanted to collect their 
data. I gradually learned that collecting empirical project data requires a formal 
process and that it can therefore also be the job of an academic to define this formal 
process. In the next sections of this chapter, I will briefly describe the process that 
I developed, refined, and finally implemented with several members of my team, 
ultimately arriving at an empirical dataset of 181 projects. 

13.2 Classification 

I mentioned earlier in Chap. 11 that the classification of projects is key in the process 
of generating artificial project data to allow researchers to generate the data under 
a structured design in order to span the full range of complexity. However, project 
scheduling is only the first component of the dynamic scheduling framework of 
Fig. 3.1, and more and more researchers have expanded their research from project 
scheduling to the two other components schedule risk analysis and project control. 
They realised that the artificial project data do not contain data for assessing project 
risks or measuring project progress. Therefore, researchers had to fall back on 
simulation studies to create additional (artificial) project progress data to extend 
their project scheduling research into dynamic risk and control studies. In Chap. 5, 
I have shown that both static simulations were necessary to calculate the sensitivity 
metrics of activities (schedule risk analysis) as well as dynamic simulations to 
simulate fictitious project progress (project control). These static and dynamic 
simulation models have been discussed in more detail in Chap. 12 where fictitious 
risk and progress data were generated for artificial projects using three different 
models. 

Fortunately, empirical project data are much richer in nature. Since these data 
come from real-world observations, they contain not only known values for the 
static project characteristics (network topology and resource scarcity indicators),
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but also real dynamic progress data on how the projects were actually executed. The 
empirical project data can therefore not only be used to test algorithms for baseline 
scheduling, but are also very interesting for schedule risk analysis and project 
control studies. In that regard, empirical project data are better suited than artificial 
data and do not require simulations at all to generate progress data. However, this 
advantage comes at a price. First and foremost, the empirical project data come from 
people, usually project managers who do not have much interest in nicely structuring 
the data. Therefore, researchers analysing these empirical projects often struggle to 
understand exactly what all the numbers mean. Moreover, despite the empirical data 
being richer than the artificial data, the empirical data are often incomplete, missing 
some data points or containing unreliable or sometimes completely wrong numbers 
that require additional interpretation and assumptions for a better understanding. For 
these reasons, we decided to classify the empirical project data differently from the 
artificial data, proposing two new indicators—completeness and authenticity—to 
validate the quality of the data and to facilitate their use for academic research: 

• Completeness: Data completeness is measured as the extent to which each of 
the three dynamic scheduling components (schedule, risk, and control) is covered 
by the project data and is expressed by a three-level colour code based on the 
traffic light approach represented by Anbari (2003). A green, yellow, and orange 
colour indicates complete, moderate, and rather poor completeness of the data, 
respectively. The baseline schedule dimension is said to be complete when all 
details for the project network are included, as well as data for resources and costs 
used by the project activities. For example, projects that do not use resources 
can only be used for simple planning calculations for critical paths and are 
therefore not complete. The schedule risk analysis dimension is complete when 
non-standard risk distribution profiles for the duration of activities are defined. 
The default distribution used is the triangular distribution with symmetric tails 
to the left and right, but when these distributions are replaced by other (more 
detailed) distributions, these data are considered more complete. The project 
control dimension requires periodic data on actual durations and costs to generate 
performance data using the EVM methodology. In the most basic way (and also 
in many chapters of this book), these EVM progress data are generated using 
dynamic simulation runs, but when these progress data are fully available (for 
each review period during project execution), this part of the project data is also 
considered more complete. 

• Authenticity: In addition to an indication of whether the data are complete or 
not, the concept of authenticity reflects the source of the data and the degree 
of assumptions that were made when entering the data. Full authenticity is said 
to be achieved when the project data have all been obtained directly from the 
actual project owner without any necessary adaptations or modifications by the 
data collector. A distinction is made between project authenticity that is used for 
the static data parameters and the tracking authenticity that is relevant for the 
dynamic data parameters. The project authenticity is high if all static parameters, 
including activity, resource, and baseline cost data, are obtained directly from the
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actual project owner. Thus, full authenticity of such data implies that the project 
network is copied and pasted by the project owner without any modification and 
interpretation of the data collector. It should be noted that it is perfectly possible 
that no data are available for resources (resulting in a lower completeness value), 
while this could still be a completely authentic project if no assumptions were 
made for the other available static data. The tracking authenticity is used to assess 
whether the dynamic progress data are authentic or not. Full tracking authenticity 
is achieved when the progress data obtained from the project owner contain 
the actual start dates, durations, and costs of the activities for each tracking 
period, without any modification or assumption made by the project collector. 
Both project and tracking authenticity are evaluated using the same colour-coded 
approach presented for the completeness of the project. 

It is worth noting that these two classification criteria are only relevant for empir-
ical data and cannot be used for artificial project data. Since the artificial project 
data only contain static project data, they always result in 100% completeness 
and 0% project authenticity (for the baseline scheduling component). For the other 
two components (risk and control), the artificial projects are 0% complete and 0% 
authentic because the data just do not exist (except if they are artificially generated 
by the models discussed in the previous chapter, then they are 100% complete, 
but still 0% authentic). However, the opposite direction works much better, and 
the values for the project and resource indicators for the artificial project data can 
also be calculated for the empirical projects. As an example, consider the lower 
part of Fig. 7.8. This graph contains empirical project data collected from eight 
companies in Belgium and shows how close each project is to a fully parallel (left) 
or serial (right) project. We discussed earlier that this proximity is measured by the 
serial/parallel (SP) indicator, which is used to classify and generate artificial data. 

13.3 New Library 

Since the empirical data come from observations of reality (rather than the output 
of artificial data generators), the collection of these data is a time-consuming, 
cumbersome, and often frustrating task. Before I even thought of collecting 
empirical projects, I did not realise how spoiled I was when it comes to accessing 
project data. Generating a new database of artificial projects was just a click of 
a button on the data generator, and thousands of projects were generated in no 
time. Collecting my empirical database took several years, and it was a gradual 
process of trial and error, constantly adapting the way that I collected these data and 
changing the classification model discussed in the previous section. It started out as 
a fast and unstructured process without much thought, but gradually it turned into 
a standardised process that eventually resulted in a freely available project database 
of 181 projects (and still growing). This process spanned more than two decades 
in four phases, with all project data collected from the first two phases eventually
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being lost. It was not until Phase 3 that I decided to collect the empirical projects 
in a standard way. For each attempt during these phases, an article was published in 
the renowned International Journal of Project Management, which attracted interest 
from the field. It all started with a collaboration with a friend (Phase 1), followed 
by a collaboration with my master thesis students (Phase 2), then building further 
in collaboration with a PhD student (Phase 3) to finally end up where we are now 
with a database and a whole team contributing to this data collection (Phase 4). Let 
me give you a brief overview of two decades to build the empirical database that we 
ended up calling the DSLIB set (dynamic scheduling library). 

Phase 1. 2004–2006 The first attempts to collect real project data started during 
my previously discussed collaboration with Stephan Vandevoorde who worked for 
Fabricom Airport Systems at Brussels Airport (Belgium). Together we worked on a 
number of Earned Value Management studies that I described in Part II of this book 
where we decided to use data from three projects of his company. We collected 
the data from MS Excel files, analysed them, and sometimes modified them to 
meet the needs of our study. We did not use a structured approach for collecting 
and analysing the data, relying solely on observing and reporting what we saw. 
Despite this simple approach, our observations resulted in the study in which we 
compared different methods for project duration prediction (as described in Chap. 4) 
leading to our first joint publication (Vandevoorde & Vanhoucke, 2006). Despite 
the fact that we only used three projects, it has started a lot more research in that 
direction with the aforementioned collaborations with Walt Lipke (USA) and Kym 
Henderson (Australia) in our European organisation EVM Europe (2009–2017). 
These collaborations evoke fond memories to this day, and despite the fact that I 
somehow lost these three projects over the years, I consider this fledgling search for 
real data as the moment where I started thinking about a formal way of collecting 
empirical project data. 

Phase 2. 2007–2010 Driven by the initial success and interest in our research, I was 
looking for more empirical project data. In 2007, I started collaborating with my 
students Business Engineering at Ghent University. I gave them some fragmentary 
empirical project data from my own consulting activities and asked them to analyse 
the data for their master’s thesis. At that time, I had just introduced my new project 
management software tool ProTrack, which could be used by the students to more 
easily analyse the existing project data. Most of the data were collected through 
interviews and/or converted from existing MS Project files to ProTrack files, and we 
focused on cleaning up all the project data to build a new empirical database. Despite 
the more structured approach compared to the first data collection with Stephan, 
a lot of the data were not yet empirical enough because we had to make quite a 
lot of assumptions that we only defined afterwards, when the project was finished 
and the contact with the company was lost. For example, we interviewed project 
managers for the design of the project network, which contains the activities and the 
precedence relations between them, but it was not always easy to reach agreement 
on the best possible project network structure. We therefore decided to create the so-
called project network templates that all had roughly the same logical structure, and
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we used them to define the project networks in our database without any additional 
input (and endless discussions) from the project managers. The dynamic progress 
data reflecting the actual duration and cost of the activity were even more difficult 
to obtain, and they were often highly unreliable and inaccurate. We therefore used 
statistical curve-fitting techniques to analyse existing data and generate probability 
distributions that allowed us to simulate additional missing data. It was certainly 
not the most ideal way to obtain reliable data, but it was certainly better than 
the previous study, resulting in 48 new projects. The 48 projects were eventually 
classified into 13 classes of project templates from 8 different companies and were 
used in 2010 to compare our theoretical results from previous studies (using artificial 
data) with new empirical results. To my delight, the comparison showed very similar 
results between these two sources of project data (artificial and empirical) as shown  
in the top part of Fig. 7.8. This comparative study was published under the title 
“Measuring the efficiency of project control using fictitious and empirical project 
data” (Vanhoucke, 2012a). Unfortunately, only a few of these 48 projects were 
retained and most projects were lost (again). This time, the reason was that our 
software tool ProTrack was still in the development phase and most of the project 
data could no longer be read by the new releases of our software tool. We urgently 
needed a better approach to collect (and save) our empirical projects. 

Phase 3. 2011–2016 To avoid further data loss, we decided in 2011 (finally!) to  
work in a more formal way when collecting empirical project data. Learning from 
the mistakes of the previous years, and with the good fortune that Jordy Batselier 
joined my team as a PhD student, we decided to build an empirical project database 
that could last longer than one research study. It soon became clear that Jordy was 
the right man in the right place. With his everlasting smile and constant dedication to 
cleaning up the mess of our data, he gradually replaced our random data collection 
process with a formally structured methodology. With our new ambition in mind to 
build the largest publicly available empirical project database for academic research, 
we recruited our best Business Engineering and Civil Engineering students and 
asked them if they were willing to closely follow project managers from different 
companies for two years. We trained our students to become familiar with the 
concepts of data-driven project management and created a structured and detailed 
tutorial on how to collect project data. We gave every student free access to our 
software tool ProTrack and wrote a tutorial for it that I briefly described in Chap. 2 
(“Dynamic scheduling on your desktop”). This tutorial became mandatory reading 
material before the start of the two-year master’s thesis for every student. Soon after 
the first students started using it, Facebook group pages appeared where students 
asked all kinds of questions about our software, which created a dynamic interaction 
between students and professional project managers. It was impressive to see our 
young ambitious students sharing ideas and opinions to collaborate in ways I did not 
know existed. Their enthusiasm and hard-working spirit made the whole process a 
fantastic journey in search of real data, and it was one of the most joyous periods of 
my career so far with my university students.
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After the first graduations and successful master’s thesis projects, Jordy started 
analysing the data of the students and developed the so-called project card approach. 
More specifically, he compiled a project summary card for each individual project 
file to provide a tool that categorises and evaluates all project data. Each project card 
is split into three main parts, which summarise statistics for the three components 
of dynamic scheduling (baseline scheduling, risk analysis, and project control). 
The project cards facilitate the evaluation of the initial database according to 
the previously discussed criteria of completeness and authenticity. In this way, 
gaps in the database attributes could be easily identified. For example, Jordy 
detected an under-representation of projects with real tracking data (i.e., progress 
data) (which was also the biggest problem in the first two phases) and aimed to 
expand the database only further with fully authentic data. This particular need for 
fully authentic projects with full tracking information was communicated to the 
data providers (i.e., the master students) and translated into the more visual and 
understandable requirement that both project and tracking authenticity should be 
given a green colour on the project card. These project cards have undoubtedly 
made it easier for students to collect better and more complete project data.3 By 
following this approach, we ultimately presented an available set of empirical 
projects that exceeded all existing empirical databases in the project management 
literature in both size and diversity. On March 14, 2014, the day I turned 41, we had 
collected a total of 51 projects from 47 different companies from different sectors. 
The results of this study were published in—again—the International Journal of 
Project Management (Batselier & Vanhoucke, 2015a) under the title “construction 
and evaluation framework for a real-life project database”. After this publication, 
our search for real data did not stop, and the following two years a new cohort of 
students joined our program, ready to continue this process of data collection. It 
was not until 2016 that Jordy decided to leave the OR&S group in search of other 
challenges, leaving behind an empirical project database of a total of 125 projects. 
His legacy is very valuable to academic research in data-driven project management 
to this day. 

Phase 4. 2017–now After Jordy left, we decided to temporarily suspend the time-
consuming process of data collection in order to focus on other research projects, but 
that break did not last long. We eventually started all over again with the collection 
of new empirical project data together with PhD student Annelies Martens (in 2017). 
We started by cleaning up the existing database and created a summary Excel sheet 
of our existing data. Then, we decided to collect new projects in collaboration with 
new master students at our university. PhD student Tom Servranckx joined us and 
also started collecting additional data for projects with alternative technologies. 
PhD student Jakob Snauwaert even collected some empirical projects with skilled 
resources. The efforts paid off as more and more researchers started using the 
empirical dataset. In 2018, I collaborated with a new Chinese PhD student (Jie Song)

3 An example project card is given in Appendix G. 
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Fig. 13.1 The sectors of the empirical project database 

who used our empirical database to develop new project control methods. We also 
collaborated with Paulo Andrade, a retired professional from Brazil with an interest 
in scientific research who began to analyse our empirical data (see e.g., Andrade 
et al., 2019, 2023). These research studies have resulted in a number of publications 
that no longer only use artificial project data, but also contain empirical case studies 
to validate our artificial results. In recent years, we have expanded both our empirical 
database and our artificial project database with many other project data, and a brief 
summary of our latest developments is given in Chap. 15 of this book. At the time 
of writing this book (2023), our empirical database has grown to an impressive 
181 projects, all of which are available through the project data website that I 
mentioned earlier.4 Figure 13.1 shows the distribution of the 181 empirical projects 
over the different sectors. The figure shows that 68% of the projects come from the 
construction sector, which is why we have split up this sector into subsectors. The 
different sectors for the empirical project database are as follows: 

• Construction: The construction projects consist of construction works related 
to infrastructure (civil, e.g., bridges), projects for the private sector (commercial, 
e.g., offices, stores), house construction projects (residential, e.g., apartments), 
construction projects related to healthcare, education, recreation, or public 
works (institutional), and construction of specialised facilities (industrial, e.g., 
factories, warehouses). 

• Engineering: Design and construction of engines, machinery, or processes. 
• Mobility: Development of vehicle sharing platforms.

4 If you cannot find the link in Chap. 11, the data can be downloaded from www. 
projectmanagement.ugent.be/research/data. 

www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
www.projectmanagement.ugent.be/research/data
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• Event management: Creation and development of events. 
• Information Technology: Development of software and other IT technologies. 
• Education: Program development for educational purposes. 

Table 13.1 shows some important statistics for the empirical project database. 
It shows the average values and the range (minimum and maximum values) for 
the static planned project data, including the number of activities in each project, 
the planned project durations (PD, in days), the total planned budget (BAC, in e), 
and the number of resources. The table also shows that only 69 projects (38%) 
use renewable resources (ranging from 1 to 27 types of resources). The projects 
without resource data are scheduled using the critical path method, while the 
resource-constrained projects can be scheduled using the algorithms discussed in 
Chap. 11. Dynamic project data are not available for all projects, and 62% of the 
project database contains project time performance data (early (E) or late (L)), and 
60% contains cost performance data (either under budget (U) or over budget (O)). 
The table shows the minimum and maximum percentage of time performance and 
indicates that the best project is completed 33% faster than planned, while the worst 
project has an actual duration that is twice (100%) the planned duration. In terms 
of costs, these numbers are even more pronounced with the actual cost of the best 
project being 57% less than the planned budget, while the worst project has a real 
cost that is 143% higher than the planned budget. The table also shows how many 
projects finish sooner or later (under or above budget) in the last two rows. Finally, 
the values for the network topology indicators of Table 11.1 (average, minimum, 
and maximum values) are displayed in the last four columns of the table. 

13.4 Reality 

I closed the previous chapter with the remark that the artificial data, both static and 
dynamic data, have stimulated a lot of research, but nevertheless always lie outside 
the real world, and are therefore completely fictitious. This chapter has solved this 
problem since the empirical project data contain both static and dynamic data. I 
could therefore end this book with this chapter and the beautiful message that both 
artificial and real projects are now available for academic research. Unfortunately, 
that story is a little too good to be true. Despite the high level of reality, it is not 
so easy to use the empirical projects in academic research for carrying out project 
control studies. The problem lies not so much in the quality of the data, but in the 
fact that the database only covers a very limited spectrum of all possible projects. 
Not every study needs this, and it is perfectly possible to draw general conclusions 
from a small amount of real data, but sometimes a researcher simply wants more. 
For example, if someone wants to use the empirical project data for the various 
simulation studies discussed in the previous parts of this book, then it is much better 
to simulate the progress data with real probability distributions coming from these 
empirical projects. But since each empirical project has only a single execution, it



13.4 Reality 253

Ta
bl
e 
13
.1
 
K
ey
 s
ta
tis
tic

s 
fo
r 
th
e 
em

pi
ri
ca
l p

ro
je
ct
 d
at
ab
as
e 

Pl
an
ne
d 
da
ta

Pr
og
re
ss
 d
at
a

N
et
w
or
k 
to
po
lo
gy
 

#
A
ct

PD
 (
da
ys
)

B
A
C
 (
e
)

#
R
es

T
im

e 
(E
/L
)

B
ud
ge
t (
U
/O
)

SP
A
D

L
A

T
F 

A
ve
ra
ge

92
.4

27
9.
7

43
,3
89
,7
66

7.
3

11
.9
%

3.
3%

41
%

57
%

15
%

36
%
 

M
in
im

um
7

2
12
10

1
.−3

3.
2%

.−5
7.
8%

1%
17
%

0%
0%

 

M
ax
im

um
17
96

28
04

5 
bi
lli
on

27
10
0.
0%

14
3.
6%

95
%

10
0%

10
0%

10
0%

 

# 
Pr
oj
ec
ts

10
0%

10
0%

86
%

38
%

62
%

60
%

10
0%

10
0%

10
0%

10
0%

 

%
 U
nd
er

.−1
2.
9%

. −1
6.
4%

%
O
ve
r

20
.9
%

14
.0
%



254 13 Empirical Projects

Nothing is what it seems! 

Fig. 13.2 Using empirical project data for academic research is not as easy as it seems 

remains difficult to extract general distributions from that single sample, and the 
simulations remain dependent on the choice of the distributions (and its parameter 
values) as with the artificial progress models of Chap. 12. 

I once discussed this thorny issue in a previously mentioned workshop in Berlin 
(Germany) where I gave a keynote presentation on using data for research. During 
this discussion, I referred to Fig. 13.2 to demonstrate that using empirical data 
for academic research is not so easy as it might seem. I wanted to show that the 
use involves more than a simple copy/paste of the data from a software package 
into a researcher’s project database. After all, many people assume that making 
empirical project data available to researchers is a matter of signing a confidentiality 
agreement, then sending the data and that is it. However, before these data can be 
used, a lot of additional steps are needed, such as the classification described in this 
chapter (and many additional steps), and I strongly believe that more research is 
needed to perform those additional steps very accurately. 

In the next chapter, I want to elaborate on one specific preparatory step for 
analysing the dynamic progress data of the empirical project and preparing them 
for further simulation studies. This preparation step will consist of a series of 
calibration procedures that convert the real progress data from a number of projects 
into statistical distributions with realistic parameter values, so that they can be 
used to generate new realistic progress data with the models from Chap. 12. This  
new calibration methodology consists of a series of tests that are a combination 
of: (i) statistical hypothesis testing, (ii) analyses to filter out inaccuracies and 
human errors, and (iii) expert judgements of the project manager who collected 
the empirical data. The three different versions of this data calibration method can 
be very useful in bringing fiction and reality closer together, in order to ultimately 
prepare both forms of project data (artificial and empirical) for academic studies.
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Chapter 14 
Calibrating Data 

In Chap. 12, I showed that the selection of the appropriate probability distribution, 
with realistic values for its parameters, to model the variability of activity duration, 
can be done using different models. When academics rely on artificial projects to 
model project progress, the parameters of the statistical distributions are often set to 
a wide range of values to ensure that it covers the full range of possible realities. 
However, when these distributions are obtained with empirical project data, it 
should, in principle, be easy to choose the parameter values since the data with 
actual project progress are present. So it is tempting to think that the selection of 
the right statistical distributions and their parameters for imitating project progress 
is much easier when empirical project progress data are available. In fact, with the 
overwhelming amount of past project data available in companies, many think that it 
is super easy to predict the future progress after a straightforward statistical analysis 
of these data. In the world of big data, where data abound, the future is a matter of 
proper analysis. But it is not that easy at all. . . 

I concluded the previous chapter, where I discussed empirical data, with the 
remark that it can be useful to have a lot of data to perform statistical analyses, but 
that it is also a big misunderstanding that the use of empirical data for academic 
research is easy. I am very pleased that it is much easier to get project data 
from companies today than it was 15 years ago, but there is a feeling from some 
companies that the academics can just use that data without any modification or 
deeper analysis. Nothing could be further from the truth, and I would even argue 
that the growing availability of data has made it all a bit more difficult, or at 
least more challenging. The use of empirical project data for academic project 
management research has always fascinated me,1 so that I finally decided to start 
a number of studies that will be summarised in this chapter. It presents a number 
of statistical techniques for analysing project data in order to ultimately obtain 

1 The arrow in Fig. 10.1 pointing from the professional world to academia is “today’s challenge in 
project management” and the subject of the current chapter. 
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realistic values for the probability distributions of activity durations. When such 
distributions can be obtained from empirical data, the models from Chap. 12 can 
be used by professional project managers who want to investigate not so much the 
full range of possible realities, but one particular possible reality for their specific 
projects. The techniques in this chapter, which I will call calibration techniques 
from now on, will therefore draw up a number of classes of distributions that can 
be representative for the future on the basis of a set of empirical projects from the 
past. Thus, the calibration methods assume that past projects can be used for future 
projects, and while this assumption may raise eyebrows, several techniques rely on 
this assumption. Just think of the reference class forecasting technique discussed in 
Chap. 9 where the future time and costs of projects were estimated by an analysis 
of data from the past. The methods in the current chapter follow a similar approach, 
but now look at the data from a more statistical perspective, and try to use some 
hypothesis testing and expertise from the project manager to predict the future. 

I must confess that the studies in this chapter were met with mixed enthusiasm. 
During the submission of the papers to journals, referee reports were sometimes 
quite harsh and the belief in these techniques was sometimes low. However, other 
referees were very enthusiastic and clearly saw the potential of these techniques, 
which made me decide to continue with them. I think the reasons for these mixed 
reactions are twofold. First of all, the studies in this chapter are still in their infancy, 
and a lot of additional research is needed to improve them. Moreover, I think that 
the criticism also stems from the belief of many that past projects say little about 
future projects, and that therefore the whole idea of observations from the past to 
better understand the future is a meaningless task and certainly not an assignment for 
scientists. So, in my lectures on this subject, I often use the quote from Washington 
Post journalist Robert J. Samuelson who warned us to use the word science carefully 
in forecasting futures, as he quoted: 

Probably the only people left who think that economics deserves a Nobel Prize are 
economists. It confirms their conceit that they’re doing ‘science’ rather than the less tidy 
task of observing the world and trying to make sense of it. This, after all, is done by 
mere historians, political scientists, anthropologists, sociologists, and (heaven forbid) even 
journalists. Economists are loath to admit that they belong in such raffish company. 

Of course, I am pleased with the growing attention to the use of statistics in 
project data, and I do not mind at all that there is some opposition that makes 
some studies difficult to publish. Indeed, the different methods of data calibration 
described in the chapter are only the start of much more much-needed research, but I 
strongly believe that they can contribute to better project scheduling, better analysis 
of risk and better use of project control methods to measure project progress. I am 
particularly pleased that the calibration methods can be a first step towards replacing 
the imagination that I talked about in Sect. 12.1 by real data when designing project 
management and control studies. After all, that is why I wrote this book about data-
driven project management.
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14.1 Calibrating Data 

As is always the case in academic research, there are of course several ways to 
convert empirical progress data into statistical distributions, but this chapter will 
draw on the ideas originally proposed in an excellent paper written by Trietsch et al. 
(2012). You may recall that I mentioned Dan Trietsch earlier for the risk model of 
Chap. 12, and it is also he (and his co-authors) who came up with the original idea 
of data calibration. When I first read his article, I was intrigued by their ideas and 
immediately had the reflex to test these methods on our empirical project dataset. 
I will describe the results of these experiments in the current section and then 
expand on how we have further refined and improved this calibration technique 
in Sects. 14.2, 14.3 and 14.4. After all, that is how it always goes with academic 
research: if it has been proven that something works well, then it can and should be 
done better. 

The naming of the methodology—the odd term calibration procedure—is used to 
maintain consistency with the authors’ original article, and I believe the term pretty 
much reflects what it does. Indeed, the procedure involves “calibrating” empirical 
progress data for activity durations in various ways to make them suitable for further 
research by testing whether they correspond to a predefined statistical distribution. 
Since empirical data are now assumed to be available for the planning and execution 
of the project and the projects have already ended, a calibration method relies on the 
following two sources of data: 

• The planned duration of each activity i, abbreviated as .PDi , is known from the 
time a project schedule is drawn up and is a deterministic estimate made by the 
project manager prior to the start of the project. 

• The real duration of each activity i, abbreviated as .RDi , is only known after the 
project has ended. Real durations of activities may differ from planned durations 
due to random events, management interactions, and much more. This results in 
a set of early (.RDi < PDi), on-time (.RDi = PDi), and late (.RDi > PDi) 
activities in the empirical project database. 

The calibration procedures start with these two data sources. More specifically, 
the procedure assumes a priori a certain distribution for the duration of the activity, 
and using the .PDi and .RDi data, it will test whether this distribution can actually 
be used to extract the real data. If the calibration method shows that the empirical 
data do not fit the distribution, the calibration methods will sequentially remove 
some data points (activities) from the project and continue on the remaining part of 
the activities to test back whether it follows the predefined distribution. When it can 
finally be proven that the predefined distribution is valid for a part of the activities 
or projects, then the values for the parameters (mean and standard deviation) can be 
estimated, which gives the project manager a tool to predict the future of a project 
specifically on the basis of simulation. The distribution defined a priori to model 
activity duration times is called the Parkinson distribution with a lognormal core 
and explained in the following paragraphs.
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Parkinson distribution with a lognormal core 
(lognormal distribution + Parkinson’s law + rounding errors) 

The central hypothesis in the calibration procedure is that .RDi/PDi follows 
a lognormal distribution. The ratio of .RDi to .PDi for activity i is used by the 
calibration procedure as a test statistic for hypothesis testing and is easy to interpret: 
If .RDi/PDi < 1, the activity ended earlier than planned, if .RDi/PDi = 1, then 
the activity ended exactly on time, and if .RDi/PDi > 1, the activity ended later 
than planned. Several arguments have been made in the academic literature as to 
why the lognormal distribution is a good choice for modelling variability in activity 
duration. The choice of the lognormal distribution is consistent with the assumption 
that the natural logarithm of that ratio, .ln(RDi/PDi), is normally distributed, which 
is good news for our further analysis. In fact, the normal distribution is known, 
and even non-statisticians have heard of it. A wide variety of statistical methods 
exist for dealing with normal distributions, including hypothesis testing methods 
to test whether data follow such a distribution or not. And this is exactly what the 
calibration procedure will do. 

However, this does not mean that the calibration procedure is reduced to a 
simple lognormality test, which would reduce the calibration method to a traditional 
hypothesis test to check whether the actual data fit an a priori assumption. However, 
the calibration method is so much more than that: It acknowledges that the empirical 
data were collected by humans (the project manager), and since people are strange2 

when they collect data, the calibration method takes that into account. Indeed, when 
data on the duration of activities are collected during project progress, the input 
values are not necessarily exactly identical to the actually observed values. People 
often report figures that may differ from the real duration for various reasons. 
The calibration method includes two human biases in the analysis, known as the 
Parkinson effect and the rounding effect. By including these two strange effects, 
the statistical distribution is not simply called the lognormal distribution, but  the  
Parkinson distribution with a lognormal core, abbreviated as PDLC from now on. 
This distribution assumes that activity durations are indeed lognormally distributed, 
but the calibration procedure looks at these data from the human lens and tries 
to purify the data as best as possible from these human errors. These two effects 
of human behaviour—both of which cause activities to sometimes be incorrectly 
reported as being on time—are as follows: 

Parkinson’s law tells us that “work expands to fill the time available for comple-
tion” (Parkinson, 1957). In a project context, this means that employees are not 
always willing to report an activity as completed early. Indeed, they may benefit 
from labelling an activity as on time when they were actually completed earlier 
than expected because this would provide a safety buffer for similar activities in

2 I cannot help but think about the beautiful song by The Doors “People are strange” when writing 
these words. An amazing song! 
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the future (when estimated from comparable historical activities). This effect is 
called hidden earliness and thus reflects Parkinson’s law at the level of activity 
durations. When using empirical data, any calibration procedure must take this 
law into account to ensure that this human bias in the data is not simply carried 
over into the statistical analysis, leading to erroneous results. 

Rounding effects are a direct result of the coarseness of the timescale used to report 
activity performance, usually a single unit of time is used for this. For example, 
if most activities have a scheduled duration of at least several weeks, the chosen 
base time unit is likely to be one week (i.e., 5 business days). However, if there 
are some activities in the project that take 3–4 days instead of the planned week 
(5 days), they would—due to the coarseness of the timescale—be reported as on 
time because 3–4 days would be rounded to a week. 

Taking both human biases into account, the calibration procedure thus tests 
whether the relative empirical distributions .RDi/PDi follow a Parkinson’s distri-
bution with a lognormal core. Thus, the procedure will set up a series of statistical 
hypothesis tests to test whether these lognormal distributions can indeed be accepted 
or not. An overview of this procedure is presented in Fig. 14.1. The figure shows 
the four sequential steps described in the following paragraphs. As I mentioned 
before, the procedure will repeatedly remove a series of activities that do not meet 
the lognormal assumption (or that were subject to the human biases) until the 
remaining part of the project does. When sufficient activities remain, the procedure 
has shown that the lognormal distribution can be followed and these activities are 
then kept in the database for which its parameter values can then be estimated. The 
four sequential steps, including feedback loops, can be described as follows (pay 
attention to some technical descriptions, even if I tried to keep them as short and 
concise as possible): 

Step 1 (S1). Lognormal distribution test: In the initial step, the procedure assesses 
whether or not .ln(RDi/PDi) is normally distributed when considering all 
activities in a certain project (which corresponds to checking whether . RDi/PDi

is lognormally distributed). First, the Pearson’s linear correlation coefficient R 
needs to be calculated by performing a linear regression of the . ln(RDi/PDi)

values on the corresponding Blom scores (Blom, 1958). The Blom scores can be 
calculated as .φ−1[(i−3/8)/(n+1/4)], with i the index of each activity and n the 
number of activities in the project (.i = {1, ..., n}). This formula provides the z-
value for which the cumulative distribution function (cdf) of the standard normal 
distribution .N(0, 1) attains a probability of .(i−3/8)/(n+1/4). The calculated R 
can then be compared to the values tabulated by Looney and Gulledge Jr (1985), 
through which a p-value can be obtained. This p-value forms the basis for 
accepting or rejecting the hypothesis that the activity durations follow the PDLC. 
Given a significance level of 5%, the hypothesis is accepted when .p ≥ 0.05 and 
rejected when .p < 0.05. It is very important to mention that S1 will in fact 
also be executed at the end of any of the following steps, albeit on a reduced 
selection of activities (i.e., not on the complete project). This will become more 
clear during the explanation of those steps.
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Fig. 14.1 Calibrating empirical data using hypothesis testing 

Step 2 (S2). Parkinson’s test: Remove on-time points: To take the Parkinson 
effect into account, all timely activities are taken out of the project. That way, 
the activities that were falsely reported to have completed as planned can no 
longer skew the interpretation of the duration data and affect the acceptance of 
the lognormality hypothesis. Step 1 (S1) is then run for a limited set of activities 
again, which now includes only the early and late activities of the project. It 
should be noted that removing all on-time activities may be a bit extreme as some 
of those activities may have actually been on time. In an extended calibration 
procedure (cf. later sections), a solution is therefore proposed to remove only part 
of the on-time activities, so that it can be assumed that not all on-time activities 
were subject to the Parkinson effect. 

Step 3 (S3). Trimming: Remove x% tardy points: In this third step, a portion 
of strictly late activities is eliminated that is equal to the proportion of on-time 
activities in relation to the total initial number of activities. In other words, if we 
eliminated all on-time activities in S2, and this accounts for x% of all activities,
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then we now eliminate x% of the strictly late activities. In this way, we produce 
a trimmed dataset of activities that rebalances early and late activities. Note that 
S3 must always be run in conjunction with and after S2; otherwise, the ratio x 
would not be known. In addition, at the end of S3, it links back to S1 that again 
runs on a reduced selection of activities to test for lognormality. 

Step 4 (S4). Rounding: Remove ties: Finally, the remaining activity data can be 
further modified by removing data with the same .RDi/PDi values (the so-
called ties). Concretely, this means that the average Blom score is calculated 
for all clusters of the so-called tied activities that show identical RD to PD 
ratios. It should certainly be noted that these tied activities are not merged into a 
single point, but rather into a series of coincident points to maintain their correct 
composite weight, which is necessary to ensure the validity of later calculations. 
After all, it is assumed that the mentioned ties arise from the rounding effect 
due to the coarse timescale for reporting activity performance, which therefore 
consists of activities that were all rounded to the same value. Just like for these 
preceding steps, S1 needs to be executed on the adapted dataset at the end of S4. 

Aside from the technicalities that I have occasionally mentioned, I think that the 
procedure is understandable for everyone. The technical details are only important 
when coding the procedure, but it should be understood that the general idea behind 
the above calibration procedure is that the PDLC can be validated in any of the 
steps (S1 to S4) and that at each step a set of activities is removed from the project’s 
original activity set. Each time, after removal, it goes back to S1 and retests whether 
the remaining activities follow the lognormal distribution. As is customary in 
statistics, S1 is executed with a p-value of 0.05. As the activity duration data become 
increasingly “calibrated” during the steps to better fit the proposed distribution, 
the p-values—and thus the probability of validation—are expected to increase as 
the steps progress (i.e., from S1 to S4). The procedure eventually stops when the 
remaining set of activities follows the lognormal distribution (or when this set is 
empty). 

This calibration procedure was validated on 24 empirical projects from our 
database by Jeroen Colin (Colin & Vanhoucke, 2016), a PhD student that I 
mentioned earlier in this book for the tolerance limits research of Chap. 5. He  
achieved promising results, although he also saw a number of shortcomings that 
were later corrected in follow-up studies. For example, the original procedure 
requires S3 to remove some of the late activities but does not describe which 
activities to choose. The procedure only dictates that it must be x% and so several 
possible selections can be made, meaning the procedure can be run in different 
ways (with different results and different p-values each time). For some projects, it 
may even happen that the lognormality hypothesis is accepted after S3 in one run 
and rejected in the next. Obviously, this computational instability is not desirable, 
and thus the follow-up studies rightly resolved this issue. Some of the results of 
this calibration procedure will be briefly summarised in Sect. 14.5, but I will first 
move on to the more extensive calibration procedure that tries to solve some of the 
shortcomings of the initial calibration procedure as best as possible.
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14.2 Partitioning Heuristic 

Despite the promising results of the calibration method in the previous section, the 
procedure had one major drawback that we did not discover initially when we tested 
it on the 24 empirical projects but only discovered when we started using more data. 
When we used the procedure on a hundred projects, we saw that many data points 
(activities) were removed from the analysis (in steps S2, S3, and S4) and ultimately 
only a very small set of activities per project remained for which the lognormal 
distribution could be accepted. We initially assumed that this is mainly because the 
data were full of Parkinson effects and rounding errors, but after further analysis 
we saw that the calibration procedure makes an assumption that does not hold true. 
After all, it is assumed that all activities of the same project always follow the same 
lognormal distribution, as if they belong to one large class of comparable entities, 
which is of course not correct. Projects often consist of subprojects (phases), and 
the activities of one phase often have completely different characteristics than 
the activities of another phase. It therefore does not seem improbable that the 
probability distributions could also be different, and thus these activities are better 
treated separately. This observation inspired us to extend the calibration method to a 
partitioning method that first clusters project activities into subclasses and then uses 
the calibration procedure for each of the clusters individually. This new partitioning 
method is the subject of the next section. 

The central idea of partitioning project data lies in the observation that the project 
consists of a series of activities that can often be placed in clusters of activities. Each 
activity should closely resemble one cluster but should not have much in common 
with the remaining activities of other clusters of the same project. The fact that 
projects are often planned in separate phases means that project managers treat 
each phase as a separate entity, a sequence of mini-subprojects as it were. Project 
managers implicitly treat their projects as consisting of clusters of activities within 
a project that I will now call partitions. This idea of dividing activities into clusters 
is not entirely new as we already made a similar attempt in Sect. 9.4 when similarity 
properties were defined for the reference class method. When we thought about how 
we could implement the partitioning method in the data calibration procedure, we 
first had to answer the question of whether we were willing to greatly extend the 
calibration procedure to a very heavy statistical method. The previous method from 
Sect. 9.4 took a very different approach and tried to classify the projects based on 
a list of managerial characteristics (cf. Appendix C), but never went to the level 
of activities (only the project similarity was looked at) and also never used any 
statistical technique such as the hypothesis testing from the previous section. The 
use of statistical techniques obviously had a number of advantages, mainly that 
it could work without the input of human judgements. However, there was the 
danger that it would lead to a fully automatic method that works without anyone 
having a very good understanding of what is going on. This choice between full 
automation and human adjustment is of course a choice that has to be made for 
many systems, and I have the feeling that nobody is afraid of some statistics and
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automation these days. That was once different, at the beginning of my career, where 
I often had to justify why my project management lessons were so quantitative. 
At that time, nobody cared about algorithms and data, and the soft skills were the 
only thing people wanted to hear. Nowadays, data science has become so popular 
that I sometimes have to warn my data-enthusiastic students about the danger of 
overusing statistics because it can lead to procedures that do something that nobody 
understands anymore. Times are changing. My students too. 

Of course, the interaction between human intuition and data-driven algorithms 
is an old discussion, and as long as people made decisions, they relied on both 
(data and intuition) to make their decisions. Every decision, private or business, 
requires some form of data, and the more you have, the more likely you are to make 
better decisions. However, the amount of data has grown to such an extent that it is 
becoming difficult to distinguish between relevant data (the signal) and redundant 
data (the noise). While data were originally a supportive addition to human intuition, 
today it has often become a nuisance, and it cannot be ruled out that we may soon 
enter an era where we will look back with nostalgia for a time when data were not so 
abundant. In the book “The Master Algorithm” (Domingos, 2018), the author Pedro 
Domingos described the search for a master algorithm that will solve all problems 
for us based on data, and he wrote the following quote during this search: 

Data and intuition are like horse and rider, and you don’t try to outrun a horse; you ride it. 

The author assembled a blueprint for the future universal learner and introduced 
the readers to the master algorithm as the last ultimate thing humankind has to 
invent. From then on, this ultimate algorithm will take over all our problems and 
solve them spontaneously without human intervention. The author even goes as far 
as stating that data-driven tools with machine learning “might even help you to 
become a better person”. It is a wonderful book, and I recommend everyone to read 
this exciting story. 

During the development of the partitioning heuristic, we decided not to go 
that far, and rather work on an algorithm that can combine both statistical data 
analysis (the horse) and human intuition (the rider). Figure 14.2 shows the general 
framework of the partitioning heuristic to allocate a project’s activities into clusters 
(partitions). The figure shows that the heuristic consists of a manual partitioning 
step (left branch) and an automatic phase (right branch) to ensure that the rider 
(people with intuition) and the horse (data and algorithms) can work together. It 
will be shown that the so-called partitioning heuristic presented in the next two 
sections aims to unite the horse and rider in a single approach for improving the 
calibration procedure outlined earlier. It will be shown that the human partitioning 
branch focuses on characteristics of activities in the work breakdown structure, 
while the statistical phase will rely on a series of hypothesis tests to accept or 
reject the lognormal distribution assumption for early (E), on-time (O), or late (T) 
activities in each partition. Since some parts of the heuristic require human input and 
other parts can be fully automated using statistical methods, the extended calibration 
method should be better called the semi-automatic partitioning heuristic calibration 
procedure.
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Fig. 14.2 Partitioning empirical data: The rider and the horse 

14.3 Human Partitioning (the rider) 

The idea of dividing the project into clusters arose from a discussion with Dan 
Trietsch, he again, and a study of 83 empirical projects (mostly construction 
projects) comprising a total of 5134 activities. As I have already discussed, the 
main reason for splitting the project data into partitions (clusters) lies in the fact 
that within a given project not all activities are perfectly related to each other 
and can therefore be very different from each other. For example, both very long 
and labour-intensive programming tasks of high complexity and routine software 
training afternoons can be part of the same IT projects. Even though intuitively both 
types of activity seem fundamentally different, it is not difficult to see that both 
would have different risk profiles, and thus a different statistical distribution for 
activity duration. If this logical classification of activities could already take place 
prior to the actual calibration procedure, it is likely that the PDLC could be accepted 
for a larger part of the activities. Thus, instead of testing the calibration procedure 
on all project activities simultaneously, it will now be tested on the data of each 
partition separately, potentially resulting in a better PDLC fit and thus statistical 
distributions with different parameter values for each partition. We published our 
findings in Vanhoucke and Batselier (2019a) where the human partitioning heuristic 
is called the extended calibration procedure to indicate that it extends the original 
calibration procedure with human input. Indeed, in the analysis of the 83 projects, 
we found that the partitioning heuristic could accept the lognormality hypothesis for 
many activities from different clusters. Figure 14.3 shows a summary of the human
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Fig. 14.3 Human partitioning (the rider)
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partitioning heuristic, which consists of three different phases, as explained in the 
following paragraphs. 

Phase 1. Pre-processing In a first phase, two classes of activities are removed from 
the project before the actual partitioning can begin. First of all, milestone activities 
should be removed as they do not represent actual work to be performed, but rather 
represent some sort of interim deadline with both a planned and real durations 
always equal to zero. Second, activities that could be considered clear outliers 
should also be eliminated. A first type of outlier occurs when an activity that was 
not planned is executed anyway, representing additional work that was not originally 
included in the work breakdown structure. In the analysis on 83 projects, an activity 
is identified as this type of outlier only when the activity name explicitly states “extra 
work”, “additional work”, or something similar. The second type of outlier refers to 
activities that were planned, but never actually carried out. Obviously, these kinds 
of activities can have any name, whether or not they were carried out. Both types of 
outliers actually and effectively alter the scope of the project. During the analysis of 
the 83 projects, it was necessary to eliminate only 66 activities because they were 
clear outliers (coming from only 9 projects), which seems negligible compared to 
an initial 5134 activities in total. 

Phase 2. Manual Partitioning The remaining 5068 activities of the 83 projects 
are subject to manual distribution in a second phase, which relies entirely on human 
expertise (i.e., a rider, not a horse), indicated by S0 in Fig. 14.3. Because the set 
of empirical projects was collected over a time span of several years (cf. Chap. 10), 
contact with the project managers was lost and therefore easy and often pragmatic 
choices had to be made in the research study due to the inherent limitations of 
our real-life project database. More specifically, the criteria for human partitioning 
were limited to three criteria (planned durations, work packages, and risk profiles). 
Despite the decoupling of the data from the original project manager who collected 
the data for us, the empirical database contained project data rich enough to test the 
capability of human partitioning. Some details about the three partitioning criteria 
are given as follows:3 

• Planned durations: Using activity duration values from the plan to manually 
assign activities to clusters is an easy way to create partitions. While . PDi

reflects the expected duration of an activity according to the pre-project baseline 
schedule, the .RDi indicates the real duration of the activity after execution. 
Both measures are expressed in (working) hours and can be used as a separation 
criterion. However, in the study, we decided not to use the .RDi because this is 
only known after project completion and thus would not be suitable as input for a 
new project. The .PDi , however, is by definition available for any activity before 
the start of the project, as it reflects the plan (or baseline schedule) for the project

3 We could have used the criteria described in the third study of Chap. 9 (Sect. 9.4) to partition the 
data, but these data were not available for the 83 projects that we used in the current study, and 
therefore the analysis was limited to only 3 management criteria: 
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under consideration, and can easily be used to define the partition of activities of 
a new project yet to be started. We therefore decided to use the planned duration 
as a partition criterion, and we adhered to the (rather arbitrary) rule that the . PDi

of the longest activity in a partition should not be more than four or five times 
that of the shortest (in the same partition). 

• Work packages: The assignment of work to a particular work package (WP) 
in the work breakdown structure (e.g., a particular phase in a construction 
project, performed by one and the same subcontractor) was done by the project 
manager from whom the data were obtained. The project manager sometimes 
identified multiple WP levels. If this was the case, we considered the WPs only 
at one chosen level, i.e., with enough activities to get a decent partition. In our 
study, WPs were defined for 53 out of 83 projects, with an average number of 
approximately 8 WPs per project and a maximum of 26 WPs for project C2013-
02 from the empirical database. 

• Risk profiles: The classification of the risk profile (RP) may need some expla-
nation. First of all, an RP is actually an abbreviation for activity duration 
distribution profile. Such a distribution profile reflects the nature of the risk 
within a particular activity, hence the term “risk profile”. When collecting the 
project data, four default RPs were identified (being symmetrical, left skewed, 
right skewed, and no risk), and the project manager was asked to assign each 
activity to one of these profiles. The default 3-point estimate values (i.e., best 
case, most likely, and worst case) for the default RPs can be seen in Fig. 14.4. The  
no-risk profile, of course, simply consists of one peak at 100% of the expected 
(i.e., planned) duration and is therefore not included in Fig. 14.4. 

Phase 3. Automatic Calibration After the manual partitioning phase, the proce-
dure continues with the four steps S1 to S4 of the original calibration procedure 
of Fig. 14.1. This time, however, the four-step hypothesis testing approach is 
performed on each individual partition created in Phase 2 to determine which 
partition can accept the lognormal distribution (PDLC) (and add it to the database) 
or not (in which case the partition is removed from further analysis). The details of 

Fig. 14.4 Standard risk profiles used in the empirical database
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the four calibration steps have been discussed previously and will not be repeated 
here, except for two minor differences: 

• Improved removal of tardy points (Step 3): I have previously argued that in 
the original calibration procedure, a portion of .x% of late activity is randomly 
selected for removal, and this selection can significantly affect the accuracy of 
the method. In the extended calibration method, Step 3 performs 1000 iterations 
randomly selecting a portion . x% of late activities. The results are calculated for 
each iteration. After that, the average of the 1000 iterations for all outcomes 
(e.g., average p-value) is finally chosen to select the proportion of late activity 
to be removed. In this way, arbitrariness is circumvented, and the computational 
instability is thus solved. Moreover, 1000 iterations proved sufficient to make the 
variances in outcomes between different simulation runs negligible, while still 
maintaining an acceptable run time under the most complex procedure settings. 

• Direct rounding (Step 4): In the original calibration procedure, the rounding step 
S4 always includes performing both S2 and S3 first. In the extended calibration, 
the rounding step can be performed without performing S2 and S3 first. This 
change is only a minor procedural extension to test whether steps S2 (delete on-
time activities) and S3 (delete late activities) are really useful for calibrating the 
data, and will not be discussed further in this book. 

14.4 Automatic Partitioning (the horse) 

Given the promising results that we got with the human partitioning heuristic to treat 
project data as separate clusters rather than a single entity, we toyed with the idea 
of replacing the rider (human partitioning) with the horse (statistical partitioning) 
to find out which of the two has the most power for partitioning project data. In 
the aforementioned book “The Master Algorithm” by Domingos (2018), the author 
insinuated that the horse is perhaps the most powerful player, as he wrote: 

A frequently heard objection is ‘data can’t replace human intuition’ but in fact, it’s the other 
way around as ‘human intuition can’t replace data’. 

Since we ourselves had no idea which of the two would yield the best results, we 
decided to develop a new calibration algorithm that extends the human partitioning 
method (left branch of Fig. 14.2) to a statistical partitioning method (right branch 
of the figure) and tested the new algorithm on more than 100 empirical projects 
with and without human intervention (published in Vanhoucke & Batselier, 2019b). 
This so-called automatic partitioning heuristic extends the previous calibration 
methods to a new extended partitioning process by integrating the hypothesis testing 
approach of the original calibration method with the human partitioning method and 
then extending it further with statistical components to automate almost everything. 
Consequently, much of the process follows a similar methodology to the previous 
calibration procedures, but the statistical extension results in a number of significant
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Fig. 14.5 Automatic partitioning (the horse) 

changes, which are graphically summarised in Fig. 14.5. The figure consists of three 
separate phases, as discussed in the following paragraphs. I warn the readers that the 
following paragraphs contain quite a bit of detail, and should they not be easily 
digestible, I refer the readers directly to Sect. 14.5 where some conclusions are 
drawn. 

Phase 1. Human Partitioning (the rider) The procedure starts with a human 
partition step that is identical to the initialisation step (S0) of the human partitioning 
method of Sect. 14.3. This first phase is optional and must be performed prior to 
statistical testing and statistical calibration. 

Phase 2. Hypothesis Testing (the original calibration method) The hypothesis 
test of the statistical partitioning heuristic follows the same methodology as in 
the previously discussed calibration procedure of Sect. 14.1, and it incorporates 
the lognormal hypothesis test (S1) and the correction for rounding errors (S4). 
As mentioned earlier, the hypothesis test assesses whether or not . ln(RDij /PDij )

is normally distributed by employing Blom scores and the table of Looney 
and Gulledge, while the correction for rounding errors (S4) corresponds to the 
averaging of the Blom scores for all clusters of tied points. Since no changes are 
made on these two steps, it is not necessary to elaborate on each aspect of the S0 
and S4 procedures in detail again.
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Recall that the hypothesis (S1) was also tested in steps S2 and S3 of the 
calibration procedure, after the removal of all on-time points and a portion of tardy 
points to incorporate the effect of Parkinson. As a matter of fact, the major difference 
between the previous calibration procedures and the new statistical partitioning 
method lies exactly in the treatment of the data for the Parkinson’s effect (S2 or 
S3). The human partitioning method splits the project data into partitions (clusters) 
and then aims at removing data from the project partitions to be never used again 
(since it follows the Parkinson effect) and only continues the hypothesis testing 
on the remaining portion of the data. In contrast, the new statistical partitioning 
heuristic does not automatically remove data points from the clusters but aims at 
splitting each partition further into two smaller clusters (subpartitions) and then 
continues testing the same hypothesis on both subpartitions. This iterative process 
of splitting data and testing continues until a certain stop criterion is met and the 
data of all created subpartitions that pass the test are kept in the database. More 
precisely, each subpartition will be either accepted (i.e., the data follow a lognormal 
distribution) or rejected (i.e., the data do not follow a lognormal distribution or 
the sample size of the cluster has become too small) at a certain moment during 
the search. The way partitions are split into subpartitions is defined by two newly 
developed statistical strategies (referred to as the selection and stopping strategies), 
which will be discussed in the next phase. 

Phase 3. Statistical Partitioning (the horse) The statistical partitioning heuristic 
performs the steps S2 and S3 slightly different than the original calibration method. 
It iteratively creates clusters of data with similar characteristics ((sub)partitions) 
based on statistical testing, similar to the human partitioning approach that aims 
at creating data clusters based on human input. More precisely, the statistical 
partitioning heuristic iteratively selects data points from a current partition and 
splits them into two separate clusters, and this process is repeated for each created 
cluster until a created subpartition can be accepted for lognormality. The approach 
to split these partitions into subpartitions does now no longer require human input 
but will be done using two new statistical strategies as discussed along the following 
paragraphs. 

The so-called selection strategy defines the points of the current partition that 
should be selected for removal when splitting a partition. Each removed point will 
then be put in a first newly created subpartition, while the remaining non-removed 
points are put in a second new partition, now with less points than in the original 
partition. This process of removing data points from the original partition continues 
until a certain stopping criterion is met as defined by the so-called stopping strategy. 
Once the process stops, the original partition—which we will refer to as the base 
partition—has been split into two separate subpartitions that both will be subject 
to the hypothesis test again and—if still not accepted—will be further split into 
subpartitions. In the remainder of this manuscript, the term partition L will be used 
to indicate the subpartition with the set of activities that have not been removed 
from the base partition, while the set of activities that were eliminated from the 
partition and put in a newly created subpartition is now referred to as partition P.
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It should be noted that the naming of the two partitions P and L found its roots in 
the testing approach of the previously discussed calibration procedures. Recall that 
steps S2 and S3 remove all on-time points and a portion of the tardy point from a 
partition. These removed points are assumed to be subject of the Parkinson effect 
(hence, partition P ) and are thus removed from the database. The remaining data 
points in the partition were subject to further testing for the lognormal distribution 
(hence, partition L) and—if accepted—are kept in the database. A similar logic is 
followed for the statistical partitioning heuristic, although the treatment of the two 
partitions P and L now depends on the selection and stopping strategies that will be 
discussed hereafter. 

Both the selection strategy and the stopping strategy can be performed under two 
different settings (standard or advanced), which results in .2 × 2 = 4 different 
ways for performing the statistical partitioning heuristic. Of course, these two 
strategies cannot work in isolation but will nevertheless be explained separately in 
the following paragraphs. A summary is given in Fig. 14.6. 

Fig. 14.6 The selection and stopping criteria of automatic partitioning
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Selection Strategy 
Recall that the partitioning heuristic splits up a partition into two new subpartitions. 
Partition P contains all the points that are removed from the base partition, while 
partition L contains all the non-removed points (but now contains less data points 
compared to the base partition). The selection strategy defines which points will be 
removed from the base partition to be put in partition P , and which points will be 
kept to create partition L. This selection can be done in a standard or an advanced 
way. 

The standard selection strategy does not differ very much from the original 
calibration method and defines that only on-time points can be eliminated from 
the base partition. As a result, partition P with the removed activities will then 
obviously exhibit a pure Parkinson distribution (since all points are on time) and 
no further statistical partitioning will be performed for partition P . Partition L 
can still consist of early, on-time, and tardy points and will be further used by 
the partitioning heuristic. As shown in Fig. 14.6, no further partitioning will be 
performed for partition P , and its data are therefore thrown away (cf. STOP in 
Fig. 14.6). However, the specific treatment of partition L (ACCEPT or CONTINUE) 
depends on the setting of the stopping strategy, which will be discussed later when 
I explain the stopping strategy. 

In the advanced selection strategy, all activities (not only on-time activities) 
are potential candidates to be selected for removal, and thus both the resulting 
partitions L and P can now contain early, on-time, and tardy points. This approach 
is called advanced since it is fundamentally different from the approach taken by the 
calibration procedures (S2 and S3). The most important implication of the advanced 
setting is that partitions in which not all activities are on time can now be created 
automatically. Indeed, the base partition will be split by eliminating activities from 
it, put them in partition P , and keep the remaining activities in partition L until 
L attains (optimal) fit (this optimal fit will be defined by the stopping strategy 
discussed in the next section). The set of removed activities (partition P ), however, 
can now contain both on-time and early/tardy activities (just as partition L) and 
will thus most likely not exhibit a trivial pure Parkinson distribution (as was the 
case for the on-time activities of partition P under the standard selection strategy). 
Therefore, this partition P of removed activities should also undergo a hypothesis 
test and possibly a partitioning phase and so should all later partitions that are 
created as a result of this consecutive application of the partitioning heuristic. In 
that way, there is an automatic creation of partitions—hence the name statistical 
partitioning heuristic for the method—that should comprise activities that are 
similar to each other. Unlike the initial human partitioning method, no human 
judgement has interfered with this type of partitioning, which is the reason that 
it is called statistical partitioning. 

While the set of activities to be removed from the base partition differs between 
the standard (only on-time points) and advanced (all points) selection strategies, 
the partitioning heuristic still needs to determine the sequence in which these 
activities are removed until a stopping criterion is met. In contrast to the calibration 
procedures, the statistical partitioning heuristic needs to select the activity to be
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eliminated in every partitioning step. The term partitioning step is used for an 
iteration of the partitioning heuristic in which one activity is removed. So if 
there were 10 partitioning steps for a particular project or partition (under certain 
settings), then 10 activities were eliminated from that project or partition. For this 
purpose, the procedure calculates the residuals for all activities in the base partition. 
The residuals . ei are calculated as the deviations between the empirical values 
.ln(RDi/PDi) and the linear regression line of those values on the corresponding 
Blom scores. As a heuristic approach—hence the name statistical partitioning 
heuristic—the activity i with the biggest residual . ei in the base partition is selected 
for elimination (and put in partition P ) as it is expected that this would yield the 
strongest improvement in the goodness-of -fit (since the created partitions will be 
subject to a new hypothesis test again). 

Stopping Strategy 
The selection strategy defines how the base partition is split into two different 
partitions by iteratively removing data points (activities) to create partitions L and 
P . Despite the fact that this selection mechanism controls the sequence of points to 
be removed using the calculation of the residuals, it does not define any stopping 
criterion during this iterative removal process. To that purpose, the statistical 
partitioning heuristic also introduces two different versions for the stopping strategy. 
When the stopping criteria are satisfied, the removal of activities is stopped, and the 
resulting partitions (L and P ) are then subject to a new partitioning iteration (by 
going back to S1). 

The standard stopping strategy employs the p-value to define the stopping 
criterion. More specifically, the elimination of activities stops when p reaches or 
exceeds the significance threshold .α = 0.05 for partition L. Since the p-value is also 
the condition for accepting the lognormality hypothesis in S1, this implies that the 
lognormality test is automatically accepted for this partition L and all its activities 
are assumed to follow the lognormal distribution. In this case, no further partitioning 
is necessary for partition L and all its data points are added to the database (cf. 
ACCEPT in Fig. 14.6). The data points in partition P are treated differently, and 
the treatment depends on the option in the selection strategy. Since the partitioning 
heuristic is always applied anew to the newly created partitions, every partition 
P that is created should go back to S1 and should be tested for lognormality if 
the advanced selection strategy is chosen. Under the standard selection strategy, 
however, partition P only contains on-time points, and these points will obviously 
exhibit a pure Parkinson distribution. In this case, no further statistical partitioning 
will be performed and the data points are removed from the project (cf. STOP in 
Fig. 14.6). 

In the advanced stopping strategy, the statistical partitioning is no longer limited 
to the use of the p-value as the only measure for goodness-of-fit, but the activity 
removal halts when .SEY (or . R2

a as a secondary stopping criterion) does no longer 
improve. Indeed, it uses the standard error of the regression .SEY as the main basis
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for assessing the fit since .SEY is the preferred measure according to the literature. 
The formula for .SEY is given below. 

.SEY =
√∑n

i=1 e2i

n − 2
. (14.1) 

The denominator is the number of activities in the partition (n) minus two since 
there are two coefficients that need to be estimated in our case, namely the intercept 
and the slope of the regression line. .SEY is also chosen as the primary optimisation 
criterion, which means that the fit to the PDLC is improved when the removal of the 
selected activity has decreased the .SEY . Obviously, the lower the .SEY , the better 
the fit. A perfect fit is obtained when all data points are on the regression line, as all 
residuals are per definition zero, which implies that .SEY is also zero in Eq. (14.1) 
. However, in about 20% of the cases, the partitioning heuristic did not reach the 
optimal .SEy when only that .SEy was considered as optimisation criterion; it got 
stuck in a local optimum. To get out of this local optimum, we added the adjusted 
. R2 or . R2

a as a secondary stopping criterion, which—although a very straightforward 
approach—proved a highly effective solution to the problem. Indeed, after adding 
. R2

a as a secondary optimisation criterion, only 1% of the projects did not attain their 
optimal .SEy . For completeness, we mention the formula for . R2

a with respect to the 
standard coefficient of determination. 

.R2
a = 1 − n − 1

n − 2
(1 − R2). (14.2) 

Notice that, unless .R2 = 1, . R2
a is always smaller than . R2. In our context, we need 

to employ . R2
a instead of . R2 to allow comparison of regression models with different 

numbers of observations (activities indeed get removed from the original dataset). 
Just like for the p-value, the higher the . R2

a , the better the fit, with a maximum of 1 
to reflect a perfect fit. 

As mentioned before, the two settings for the stopping strategy should be used 
in combination with the two settings for the selection strategy, and it is important to 
draw the attention to the two fundamental differences with the original and human 
calibration procedures. First, the treatment of the Parkinson points is fundamentally 
different. Recall that all on-time points are removed in the calibration procedures 
since they are assumed to be the result of the Parkinson effect. In the standard 
selection strategy, the procedure also removes on-time points, but it is no longer 
true that the only possibility is to remove all on-time points from the project. The 
statistical partitioning heuristic allows the elimination of just a fraction of the on-
time points in order to get a better fit (defined by the stopping strategy, i.e., p-value 
or .SEY ). The rationale is that not all on-time points are necessarily the result of the 
Parkinson effect, as the calibration procedures implicitly assume. Some activities 
are actually on time and should thus effectively be part of partition L. Secondly, not 
only on-time points are removed, but also early and tardy points are now subject to
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removal. While the calibration procedures only remove a portion of tardy points to 
bring the number early, on-time and tardy points back to the original proportions, 
the statistical partitioning heuristic takes a different approach and removes early, on-
time as well as tardy points (under the advanced selection strategy) until the stopping 
criterion is satisfied. Such an approach creates partitions (L and P ) that contain 
all kinds of activities (early, on time, and tardy) that must be subject to further 
partitioning, if necessary, which is fundamentally different from the approach taken 
by the calibration procedures. 

14.5 Calibration Results 

The development of these different calibration methods was a hell of a ride as 
they were somewhat outside my traditional research comfort zone. Testing these 
methods was a trial-and-error process with many failed experiments and endless 
discussions with various people from academia and practice. I mentioned earlier 
that the original idea of calibrating data came from a paper by Trietsch et al. (2012), 
so we were lucky enough to use the original idea as a basis for incorporating 
human and statistical partitioning into the method. Each extension was therefore 
extensively tested on a growing body of empirical project data and ultimately 
resulted in a more versatile, understandable, and practically applicable method 
that partially overcomes the limitations of the original calibration procedure. It 
eventually resulted in the statistical calibration heuristic of Sect. 14.4 that is a 
combination of hypothesis testing, human expertise, and statistical partitioning. 
The main results of this trial-and-error process are summarised in the following 
paragraphs. 

Original Calibration Method When I came across the idea of calibrating project 
data, I only had 24 projects available in my empirical project database. I nevertheless 
decided to validate the calibration method on this relatively small sample of data, 
which led to the study of Colin & Vanhoucke (2016). The results showed that only 
one project passed the lognormality test after S1 of Fig. 14.1, and 11 projects after 
S2. However, 13 projects had passed the lognormality test by the end of S4. When 
S3 expanded to the 1000 iterations (instead of one iteration) as mentioned earlier, 
this grew to 18 projects. This indicates the advantage of simple technical extensions 
as the previously discussed multi-iteration approach in S3 significantly improves the 
performance over the single simulation run of the original procedure. In addition, 
the results also indicated that the Parkinson effect (S3) is significantly larger than 
the rounding effect (S4) when it comes to lognormal distribution fitting. All in all, 
the results were in my eyes impressive and well worth investigating further. 

Human Partitioning (The rider) The extension of the human partitioning 
approach was tested in Vanhoucke and Batselier (2019a) on a significantly larger 
database of 83 projects (instead of 24 in the original study). We started the analysis 
with 125 projects, but 28 projects did not contain authentic time registration data
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and so the true duration (RD) was not known. These projects were removed from 
the analysis (97 left). In addition, because 14 projects only included activities that 
ended exactly on time (which are believed to be subject to the Parkinson effect), 
these were also excluded from the analysis, ultimately using the 83 projects for 
further experimentation. The total number of activities of these projects amounted 
to no less than 5068 activities (or an average of 61 activities per project), which can 
be seen as a large database for partitioning. 

The experiments showed that adding human expertise (for partitioning) can 
significantly improve the calibration method and thus improve the acceptance rate 
of partitions. The experiments showed that the WP (work package) and RP (risk 
profile) are the superior partitioning criteria compared to PD (planned duration). 
This indicates that it is indeed relevant and valuable for project managers to define 
WPs and RPs for their projects as these can form the basis for a more realistic 
division of activities. And in turn, more realistic partitions—and their corresponding 
and specific distribution profiles—can lead to better risk assessments of activities, 
more tailor-made, and targeted project control methods (e.g., by focusing only 
on the most risky partitions), and more accurate project forecasts (based on, for 
example, Monte Carlo simulations). However, there is an essential requirement 
that the resulting partitions are realistic, which means that the project manager 
must correctly allocate the activities to the correct WPs and define the correct RPs 
for them. For the projects that we have used, the project managers have clearly 
succeeded in this task. But if they fail—intentionally or unintentionally—then the 
resulting partitions are not reliable, and it may be better to use the more certain PD 
as the partition criterion rather than the flawed WP and RP. It is clear that these 
results only illustrate that human partitioning adds value and that human expertise 
can significantly improve the calibration method, but more research is needed to 
find the best possible criteria for partitioning. Nevertheless, the experiments resulted 
in an impressive 97% acceptance rate of the partitions created, which is a clear 
indication that human expertise can add value to the calibration of project data. 

Automatic Partitioning Without Human Intervention (The horse) The auto-
matic partitioning heuristic was tested on the same 83 projects, but creating 
partitions was now left entirely to the statistical horse, rather than the human 
rider, as discussed in Sect. 14.4. While automatic partitioning has the advantage 
of eliminating any possible human bias, it carries the risk of creating too many 
partitions. In the worst case, each activity is placed in a single partition, rendering 
the partition heuristic completely useless. For this reason, the algorithm requires 
each partition to have at least 3 activities (otherwise, it will be removed from the 
database). Fortunately, our computational experiments have shown that the best fit 
can be obtained with a maximum number of partitions equal to five per project, 
which is not too much to become clumsy to work with. In addition, the results also 
showed the positive effect of rounding correction (S4), resulting in fewer partitions 
and a better fit (higher p-value). Finally, the positive impact of the selection strategy 
(resulting in an average of 2.6 partitions per project) and the stop strategy (resulting
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in the best goodness-of-fit) was a clear indication that automatic partitioning is a 
worthy calibration extension. 

Human and Automatic Partitioning (The rider and the horse) Our ultimate goal 
of the various studies was, of course, to show that the rider and horse should 
work in harmony, creating a relatively small number of partitions with a high 
acceptance rate. Our experiments revealed promising results and indeed indicated 
that both human and statistical partitioning work well, but their integration should 
be used with caution. In fact, the experiments showed that the so-called double 
partitioning effect can sometimes lead to too many partitions with too few activities. 
Indeed, the human partitioning method creates partitions based on PD, RP, and/or 
WP, and each of the partitions obtained from human partitions can be further 
divided into smaller partitions—therefore called subpartitions—using the statistical 
partitioning heuristic. This means that each project actually goes through two 
successive partitioning phases, which can lead to too many partitions in a project. 
We saw that when the WP criterion is used for human partitioning, the number 
of partitions even reaches 631 across 53 projects, which amounts to almost 12 
subpartitions per project. This is perhaps a bit much to be practical and less relevant 
as this implies an average of only 6 activities per subpartition. However, this was 
not a problem when one of the other management criteria (PD or RP) was applied, 
with an average of about 5 subpartitions per project. The main reason was that 
project managers apparently define far too many work packages, an average of 8 per 
project, with an exorbitant maximum of 26 WPs for one project. This problem could 
be solved by encouraging project managers to limit the number of WPs identified 
by considering higher-level classification criteria. Despite this potential problem, 
the results nevertheless showed that the absolute best fit can be obtained when the 
advanced selection and advanced stopping strategies are used in combination with 
human risk profile (RP) partitioning. The mean p-value of 0.811 was significantly 
higher than the maximum of all other calibration procedures tested under different 
settings. In addition, the percentage of accepted partitions was again very high 
(97%), and so we can conclude that the partitioning heuristic outperforms the other 
calibration procedures. This indicates that the application of human partitioning 
criteria is indeed relevant and useful, and thus their definition should be encouraged 
by project managers. 

It is worth mentioning that the obtained p-value of 0.811 was not exceedingly 
higher than that for the partitioning method under the basic selection/stopping 
strategies, combined with either of the other managerial criteria (p ranging from 
0.756 to 0.783) or even without human partitioning (.p = 0.731). The reason for 
this is that a combination of human and statistical partitioning should in fact be seen 
as a double optimisation. Both partitioning approaches already perform very well 
separately, but combining them takes the distribution fitting another (small) step 
closer to “optimal” partitioning. Furthermore, human and statistical partitioning do 
not only perform well on their own, but they are mutually also quite comparable. 
This observation is in fact hugely promising as it indicates that we can just perform 
the partitioning heuristic with inclusion of the statistical partitioning and still obtain
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very relevant partitions without requiring realistic input for managerial criteria (i.e., 
WPs or—even better—RPs accurately defined by the project manager). Statistical 
partitioning is no longer—or at least far less—prone to human judgement and 
bias than human partitioning. In the latter case, project managers indeed need to 
accurately define the WPs or RPs. Otherwise, the resulting partitions would be 
faulty and unrealistic anyhow. It might be beneficial to bypass this uncertain human 
factor and thus create a more solid and trustworthy methodology for categorising 
activities into risk classes and assigning specific distribution profiles to them. 
Consequently, the results seem to reveal that statistical partitioning is almost able 
to “replace” human partitioning, which reminds us of Domingos’ quote that human 
intuition cannot replace data. The experiments of the automatic partitioning method 
are published in Vanhoucke & Batselier (2019b). 

14.6 Conclusion 

This chapter told the story of empirical data analysis to construct statistical 
distributions that can be used in academic studies to perform simulations. It is 
a story that uses both statistical techniques and human experience to make these 
distributions realistic. It is also a story that only just started and I think that there 
is a lot of opportunity to expand this story further. In fact, I think that the use 
of calibration methods is still in its infancy, and I hope that the studies in this 
chapter can provide an impetus for further research. Current methods only take 
the Parkinson effect and rounding errors into account as human biases, and I think 
that there are a lot of other factors that can distort real data. I therefore call on 
researchers to further expand these methods and to include new confounding factors 
in the research so that the calibration methods become even more realistic (and 
therefore more useful). However, I would like to warn the researcher that getting 
the studies accepted was not an easy task. Many referees had a lot of comments 
on these studies, and despite the fact that many of these comments were included 
(sufficiently enough to allow the studies to be published), there were also a number 
of comments to which I could not formulate a proper answer. Apparently, innovative 
methods such as this are not very easy to understand, and reviewers comment a lot 
because—by definition—these calibration procedures still have a lot of gaps. 

Despite the opposition that I sometimes encountered, I also see many people 
(both from academia and practice) who believe in the practicality of this calibration. 
After all, I think these methods can build bridges between academia and the 
professional world. If project managers want to use the simulation techniques 
described in the academic studies of Part II, they can now rely on distributions 
with realistic parameter values, and so there are not many reasons why they should 
not do it. Of course, every technique remains subject to the garbage-in, garbage-
out phenomenon, and a wrong calibration can lead to wrong conclusions. In my 
opinion, however, this potential danger is drastically reduced when the distributions 
are calibrated for empirical data rather than when they are completely based on
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the imagination of the researcher. I therefore see this as an important task for the 
researcher to consider using empirical projects for calibration first, and to switch 
to artificial project data only after calibration (when the distributions are known). I 
know I have argued the opposite in previous chapters (artificial projects first, then 
empirical validation projects), but I am not ashamed to change my mind if I think 
the time is urgent. In particular, I think that both types of projects can be useful 
to improve the general knowledge of project management and control, and a close 
collaboration between the researcher (artificial data) and the practitioner (empirical 
data) will most likely lead to the most interesting and inspiring research results. 

In this and previous chapters, I have told the story of project data in great 
detail, and I am not even at the end (but almost). In the next chapter, I will 
tell one last closing story, without going into great detail like in the previous 
chapters. Chapter 15 contains an overview of artificial and empirical project data 
developed at the OR&S group. Much of these data have been covered extensively 
in previous chapters, but some are new and presented for extensions of the well-
known resource-constrained project scheduling problem. I will give only a few 
details about these extensions (as they are not within the scope of this book), but 
I chose to include this summary anyway since I know you are interested in project 
data (otherwise you would have never made it to the end of this chapter). After the 
next chapter, I will close Part IV about project data, even though I realise very well 
that this story will never be fully told. I am nevertheless happy and proud that I 
could contribute, and I hope that it can lead to more and better research in data-
driven project management. 

I cannot close this chapter without a final quote on the use and relevance of data, 
but with so many insightful quotes out there, I found it hard to pick just one. Finally, 
I decided to use a quote from Dan Heath, best-selling author and fellow at Duke 
University, who, like me, believes that using data is a never-ending story. After all, 
he wrote down the following quote (although I cannot remember where I ever found 
it): 

Data are just summaries of thousands of stories. 
Tell a few of those stories to help make the data meaningful. 

I hope my stories have given you some meaningful insights. 
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Chapter 15 
More Data 

The widespread availability of project data for researchers is good to help them 
develop better tools and more powerful algorithms to improve the state-of-the-
art solutions in scheduling and project control. In the previous chapters, I gave a 
full overview of the many research studies done by my Operations Research and 
Scheduling (OR&S) research group for the generation of artificial project data and 
the collection of empirical project data. This chapter gives a concise summary of the 
different datasets available for research, with a special focus on the datasets to solve 
the resource-constrained project scheduling problem and many of its extensions. 
Some of the datasets have been discussed in earlier chapters as summarised in 
Fig. 11.2. Other datasets are new and pay special attention to new research lines 
for this challenging project scheduling domain. Figure 15.1 displays the different 
datasets with references to the journals and is an update of Fig. 11.2. It serves as a  
guideline to the content of this chapter, and a summary of detailed features for each 
dataset is given in Appendix H. This chapter should be read as a stand-alone article 
to get a quick full overview of the sources of data available at our OR&S website. 
You can simply download them and start your own research journey. Just visit the 
following website: 

www.projectmanagement.ugent.be/research/data 

15.1 Resources 

The resource-constrained project scheduling problem has been discussed previously 
in Chap. 6 on machine learning and Chap. 11 on artificial project data. 

Researchers in the field of project management and scheduling develop tools 
and techniques to schedule projects under limited resources. The most well-
known problem in the project scheduling literature is the resource-constrained 
project scheduling problem (RCPSP) for which many different datasets have been 
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presented in the literature. The Operations Research and Scheduling (OR&S) group 
has also presented a project data generator to generate project data under a strict 
predefined design, and this generator is known as RanGen (Versions 1 and 2). The 
network generator is proposed in the following study: 

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., & Tavares, L. V. (2008). An 
evaluation of the adequacy of project network generators with systematically sampled 
networks. European Journal of Operational Research, 187(2), 511–524. (Vanhoucke et al., 
2008) 

OR&S was, of course, not the only research group to present network generators 
and new project datasets to the academic community. Therefore, in 2016, we 
decided to write a summary of the existing datasets that can be found in the 
following publication (ever since this 2016 publication, new datasets have been 
proposed, so this chapter does not contain all existing sets). In this publication, 
five datasets are made by OR&S known as the RG30, RG300, DC1, DC2, and MT 
datasets: 

Vanhoucke, M., Coelho, J., & Batselier, J. (2016). An overview of project data for integrated 
project management and control. Journal of Modern Project Management, 3(2), 6–21. 
(Vanhoucke et al., 2016) 

Although the previous datasets contained thousands of artificial projects, 
researchers often still do not understand why scheduling algorithms sometimes 
perform very well on some project instances and fail miserably on other project 
instances. Therefore, our most recent research aims at better understanding the 
complexity of project data. To that purpose, we have generated a dataset of 623 
project instances that are—at the time of generation—impossible to solve to 
optimality with the currently known state-of-the-art procedures. We called this 
set the CV dataset, which is an abbreviation of the authors’ names (C = Coelho and 
V = Vanhoucke) of the paper that proposed this new set to the literature: 

Coelho, J., & Vanhoucke, M. (2020). Going to the core of hard resource-constrained 
project scheduling instances. Computers and Operations Research, 121, 104976. (Coelho 
& Vanhoucke, 2020) 

While the CV set mainly focuses on solving the project instances to optimality, 
nothing is said about the complexity of these project instances for meta-heuristic 
solution procedures. Since these procedures work in a totally different way, aiming 
at providing near-optimal solutions, a new study has been set up that introduced a 
new concept called sigma distance. This concept is discussed earlier in this book 
and measures how easy the project instance can be solved to (near-)optimality by 
random sampling. The resulting dataset is called the sD dataset containing 390 
instances and is proposed in: 

Coelho, J., & Vanhoucke, M. (2020). New resource-constrained project scheduling 
instances for testing (meta-)heuristic scheduling algorithms. Computers and Operations 
Research, 153, 106165. (Coelho & Vanhoucke, 2023) 

Finally, for 10,793 instances coming from different sets, duplicate instances were 
made by changing their resource data, as proposed in Sect. 11.8. Each of the 10,793
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instances has two new instances, referred to as the lowRU and highRD sets, which 
are instance equivalent (meaning that their set of solutions is the same as for the 
original instances). This instance equivalence concept is proposed in: 

Vanhoucke, M., & Coelho, J. (2021). An analysis of network and resource indicators 
for resource-constrained project scheduling problem instances. Computers and Operations 
Research, 132, 105260. (Vanhoucke & Coelho, 2021) 

Given the previous summary with references, it should be clear by now that 
an overwhelming amount of artificial project data are available for the resource-
constrained project scheduling problem. Each set serves a different purpose, and 
researchers are invited to freely download and use the data for testing new and 
exciting project scheduling algorithms! Good luck! 

15.2 Modes 

A well-known extension of the classic RCPSP is the multi-mode resource-
constrained project scheduling problem (MRCPSP) in which each activity can 
be scheduled in different modes. For this challenging scheduling problem, various 
datasets have been presented in the literature. The OR&S group has proposed three 
different datasets for the MRCPSP problem, known as the multi-mode libraries 
MMLIB50, MMLIB100, and MMLIB+, in the following publication: 

Van Peteghem, V., & Vanhoucke, M. (2014). An experimental investigation of meta-
heuristics for the multi-mode resource-constrained project scheduling problem on new 
dataset instances. European Journal of Operational Research, 235(1), 62–72. (Van Peteghem 
and Vanhoucke, 2014) 

15.3 Subgraphs 

A recent extension of the classic RCPSP is the resource-constrained project 
scheduling problem with alternative subgraphs (RCPSP-AS) in which the 
network contains various alternative structures, and only one needs to be selected. 
Once these so-called alternative subgraphs are selected, the scheduling problem 
boils down to a classic RCPSP. Two new datasets ASLIB0 are proposed in: 

Servranckx, T., & Vanhoucke, M. (2019). A tabu search procedure for the resource-
constrained project scheduling problem with alternative subgraphs. European Journal of 
Operational Research, 273(3), 841–860. (Servranckx and Vanhoucke, 2019) 

The project data of the ASLIB0 dataset contain nested and linked subgraphs in 
the problem. However, some years later, we extended the RCPSP-AS with richer 
features (including multiple and split choices and caused and closed subgraphs) and 
therefore needed new extended data to test algorithms for these extended problems. 
To that purpose, we decided to generate five new datasets that can possibly replace
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the initial ASLIB0 datasets, and we labelled them as ASLIB1 to ASLIB5. A  
summary of the data is presented in: 

Servranckx, T., & Vanhoucke, M. (2023). New datasets for the resource-constrained 
project scheduling problem with alternative subgraphs. Working paper (under submission). 
(Servranckx and Vanhoucke, 2023) 

Finally, a set of empirical project data has been proposed (ASLIB6) in an  
unpublished study. The dataset is available on our website, and we plan to write 
a paper about these empirical projects in the near future. 

15.4 Skills 

A recent extension of the classic RCPSP is the multi-skilled resource-constrained 
project scheduling problem (MSRCPSP) in which activities require skills to be 
executed and the resources, i.e., the humans, possess a set of skills. The problem 
has been investigated in the literature under different settings, and four new datasets 
MSLIB1 to MSLIB4 with artificial projects to test existing and new procedures 
are proposed. Furthermore, a fifth dataset MSLIB5 with empirical projects is also 
included. These 5 datasets are proposed in: 

Snauwaert, J., & Vanhoucke, M. (2022). A classification and new benchmark instances 
for the multi-skilled resource-constrained project scheduling problem. European Journal of 
Operational Research, 307(1),1–19. (Snauwaert and Vanhoucke, 2023) 

In a follow-up study, the MSLIB datasets are extended in two different ways. 
First, the first four MSLIB sets are extended to hierarchical skill levels to model 
resource-constrained projects with skills in various ways. Furthermore, these 
MMLIB sets have also been converted into the SSLIB set (SSLIB1 to SSLIB4), 
which contains projects for the so-called software scheduling problem useful for 
agile project planning with human resources. These extensions are discussed in: 

Snauwaert, J., & Vanhoucke, M. (2022). Mathematical formulations for project scheduling 
problems with categorical and hierarchical skills. Computers and Industrial Engineering, 
169, 108147. (Snauwaert and Vanhoucke, 2022) 

15.5 Reality 

All the previously discussed project data are generated for researchers to test new 
algorithms for project planning, but until 2015, little was done to create an empirical 
dataset with real projects. In 2015, OR&S decided to collect and publish a set of 
real projects, initially consisting of 52 projects (but now (in 2023) contains already 
181 projects). These real project data can be used—just like the artificial data—for 
project scheduling, but since the empirical data are much richer than the artificial 
data, it can also be used for a schedule risk analysis and even for project control
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using Earned Value Management. Since these three components are the foundation 
for the dynamic scheduling (DS) framework, the library is referred to as DSLIB. A  
summary of the 52 projects in the empirical database is given in the following paper 
(the full database of all projects can be downloaded from our website): 

Batselier, J., & Vanhoucke, M. (2015). Construction and evaluation framework for a real-life 
project database. International Journal of Project Management, 33(3), 697–710. (Batselier 
& Vanhoucke, 2015a) 

As mentioned earlier, two other empirical project databases are available. The 
first database contains empirical projects for the multi-skilled problem and has been 
proposed earlier as the MSLIB5 set. The second set contains empirical projects 
with flexible network structures and has been proposed earlier as the ASLIB6 set. 
When researchers want to use both artificial ànd empirical project data, the OR&S 
advice is as follows: First test your algorithms on the artificial project data, and then 
validate your results on the empirical project data. 

15.6 Portfolio 

Planning and scheduling single projects assume that each project can be scheduled 
individually, and resources are fully dedicated to one project. While this might be 
true for very big projects, this is, of course, not always the case. Instead, most 
companies have a portfolio of projects where resources can be shared between 
them. In a portfolio of projects, shared resources have an impact on each project 
and a portfolio of projects is more than merely the sum of individual projects. 
Therefore, OR&S has generated project portfolio data for the so-called resource-
constrained multi-project scheduling problem (RCMPSP), which consists of 
more than merely an assembly of the single-project data. Instead, the generation 
process to construct the multi-project data libraries is fundamentally different 
from the generation mechanism used for single-project data libraries. The project 
portfolio data are available from our website, and the generation process is discussed 
in two papers. In a first paper, a first multi-project library (MPLIB1) is presented 
and compared with the existing project portfolio data from the literature. 

Van Eynde, R., & Vanhoucke, M. (2020). Resource-constrained multi-project scheduling: 
Benchmark datasets and decoupled scheduling. Journal of Scheduling, 23, 301–325. 
(Van Eynde and Vanhoucke, 2020) 

In a follow-up paper, a second multi-project library (MPLIB2) is presented that 
now better reflects the true characteristics of project portfolios. 

Van Eynde, R., & Vanhoucke, M. (2022). New summary measures and datasets for the 
multi-project scheduling problem. European Journal of Operational Research, 299(3), 853– 
868. (Van Eynde and Vanhoucke, 2022)
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Part V 
Afterword 

Fantasy is way more important than knowledge.



Chapter 16 
The Perfect Researcher 

You have now finished this book and I hope it has given you a good summary of what 
my research team has been doing for the data-driven project management discipline 
over the past few years. I loved writing a book about my own research, not only 
because it forced me to think about my own work from a different perspective but 
also because it allowed me to look back and see what a wonderful job and team I had 
(and still have). It was not all fun, of course. Writing such a book was a challenge 
with many periods of doubt whether I should continue or not. It all started with 
writing down fragmentary pieces from the past (that is the fun part) but soon needed 
a common theme in order to tell a story to an audience (and that is the part with 
doubts and continuous changes). After deliberation, I am nevertheless happy that 
I have continued writing because I am satisfied not only with the end result (the 
book you are holding in your hands) but also with the ideas that came to me for 
future research based on the shortcomings and weaknesses that I encountered while 
writing. I have no doubt that more research is needed (and will come, I am working 
on it) and I feel privileged once again to continue this fantastic research journey as 
a never-ending quest for improvements. 

And this brings me seamlessly to the two main topics of this book. 
First of all, I sincerely hope that the readers have clearly seen that the research 

discussed in this book is the result of teamwork. In 1996, I could never have 
imagined that I would do such an exciting job with a team of young, inspiring, and 
enthusiastic people. After more than two decades of academic research, I now love 
my research work mainly because of that: working with young people, eager to find 
new results, not knowing exactly what we are looking for, yet learning from each 
other while exploring the unexplored terrain. I wrote this book especially for them, 
for all members of my team, not just those who I mentioned in the references but 
also those I did not mention (because their research topic was not in the scope of this 
book). I would like to thank them all for wanting to be part of this fantastic OR&S 
journey. For the readers who want to meet these young enthusiastic people, you can 
find them at www.projectmanagement.ugent.be, learn more about them in my free 
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book “The Art of Project Management” (which I mentioned earlier in Chap. 21 ) or  
find them in Appendix A. 

Moreover, I also hope that this book may be an opportunity to attract young 
researchers in the wonderful domain of data-driven project management. I therefore 
want to invite new young people to start a career in academia. I hope that readers 
of this book—especially those who are not (yet) familiar with research—have 
clearly seen that research is a combination of hard work with not only a lot of 
failures but also a lot of fun in the search for the unknown. To anyone looking 
for a challenge, I highly recommend starting a career in scientific research. It is 
a fantastic job. You do not have to be super smart (thankfully). You do not have 
to be a computer expert, math genius, or someone with an extraordinary memory. 
All you need is an attitude of persistence and an endless passion to find something 
that you cannot even think of right now. Every year, I hire one or two new young 
graduates to start such an exciting career in academia, recruiting people from 
different universities, interviewing them, having them undergo psychological tests, 
and asking them challenging and sometimes unsolvable questions. Systems exist to 
guide you through such a time-consuming process, but they rarely lead to the perfect 
researcher. I usually start from my gut feeling (which sometimes disappoints me) 
and I am mainly looking for passion and persistence in a person. I have thought 
a lot about the characteristics of the perfect researcher, but after all these years 
I finally realise that such a person does not exist. I have learned that supervising 
young researchers is a process with ups and downs. Every person is different and 
every time it is a process that is guided by trial and error. And so I have learned, also 
through trial and error, that each researcher should be treated differently. Despite this 
uniqueness, I think that there are some typical qualities that a good researcher should 
have, and I will summarise them in the following paragraphs. These features are of 
course my own opinion, but they are all inspired by what I was reading while writing 
this book (novels, papers, and science books). That is because I really believe that 
one of the qualities you really need in order to do research is a love for reading 
books. I am not talking about books on project management and control, I am talking 
about books that interest you, go beyond your own research expertise, and stimulate 
your imagination. By the way, I rarely read books about my field of research, and 
I would not know why I would. I meet many researchers to talk about my field 
of research, I follow the literature closely, and I attend conferences regularly, so I 
think I am sufficiently informed. I like my field of research, but I am not going to 
spend my precious free time reading books about my work because then that little 
free time goes in the same direction again. I therefore advise every researcher not 
to read many books on project management (except the one you are reading now of 
course and the ones I discussed in Chap. 2 (I should put a smiley here)), but to get 
inspired by books from a different field, such as books on mathematics, philosophy, 
biology, space exploration, the hidden life of trees, and so much more. And so the 
forthcoming summary of the four important qualities of a good researcher is inspired

1 The download link for this free book can be found at www.or-as.be/books/wp. 
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by the books that I was reading at the time of writing. I will refer to these books, 
but I must admit that this list is a snapshot and I am sure that I would have referred 
to other books if I had written this book a year later. However, I believe that the 
four typical characteristics of the perfect researcher would be the same. If you think 
this list of traits typifies you, then I think doing research is something you should 
definitely consider. 

16.1 Doubt 

One of the most important requirements for doing research is being able to doubt. In 
the second chapter “Illusions of knowledge” of the book “Superforcasting”, Tetlock 
and Gardner (2015) write that “doubt is not something terrifying, but something 
of great value.” The authors refer to the Nobel Prize-winning physicist Richard 
Feynman (1998) who  said:  

When the scientist tells you he does not know the answer, he is an ignorant man. When 
he tells you he has a hunch about how it is going to work, he is uncertain about it. When 
he is pretty sure of how it is going to work, and he tells you, “This is the way it’s going 
to work, I’ll bet,” he still is in some doubt. And it is of paramount importance, in order to 
make progress, that we recognise this ignorance and this doubt. Because we have the doubt, 
we then propose looking in new directions for new ideas. The rate of the development of 
science is not the rate at which you make observations alone but, much more important, the 
rate at which you create new things to test. 

The authors of “Superforecasting” further state that good forecasting does not 
require powerful computers and sophisticated methodologies, but rather evidence 
from various sources, probabilistic thinking, working in teams, and a willingness to 
admit mistakes and change course. It seems that they want to say that if you want to 
know something for sure, you have to collect data, analyse it, draw conclusions 
and above all never stop doubting and that is exactly what I wanted to say in 
my book. Their book has been described as the most important book on decision 
making since Daniel Kahneman’s “Thinking, Fast and Slow”, which is the book 
that I mentioned in Chap. 9 as one of the most important books for my own career. 
That is the nice thing about reading books... good authors refer to each other all the 
time, sometimes they reject each other’s theories, while other times they confirm 
each other or add small changes to make them better. So, my dear readers, go read 
some books by these great minds, enjoy, learn from them, accept, or reject their 
theories, but never stop doubting (who knows if you will ever find a better theory?). 
I personally give these great authors the benefit of the doubt (no pun intended) and I 
am humble enough not to question such great minds, but as far as my own research 
is concerned, I know that doubt has often been the first step to a publication. So 
never stop doubting!
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16.2 Ignorance 

While doubt is a feeling of insecurity that leads you to question everything you know 
so far, ignorance is simply a lack of knowledge and information. Doubting about 
knowledge that you do not (yet) have is of course more difficult than questioning 
your existing knowledge, and therefore ignorance carries dangers. Researchers are 
constantly looking for answers or solutions that are often very difficult to find. 
Sometimes those answers just do not exist, and if you search for something that does 
not exist, you never stop looking and you will never be successful in your research. 
In the book “How emotions are made” (Barrett, 2018), the interesting (but often 
controversial) theory of constructed emotions is introduced as a scientific theory 
to explain the experience and perception of emotions. Although I think that the 
theory is interesting to understand how emotions are created, the book also tells 
that the human brain is a master of deception. What we—humans—experience 
as certainty, i.e., the feeling of knowing what is true about the world, is often 
an illusion. Ignorance is sometimes disguised as (false) knowledge, directing our 
quest to avoid the danger of endless searching for something that does not exist. 
The author of the book refers in the last chapter to the well-known proverb of an 
unknown author: 

It is very difficult to find a black cat in a dark room, especially when there is no cat. 

I really like that quote, although I am still not sure if I understand it correctly. 
To me, the dark cat represents false assumptions that people make to guide their 
search for answers and avoid the trap of looking for something that does not exist. 
When you look for the cat in a room, you have assumed that there is a cat, which 
means that you have not defined your problem well. It is ignoring your ignorance 
by hypothesising about unknown knowledge (in that case a cat) beforehand, but 
perhaps you should have thought further, assuming that perhaps there is no cat at 
all. Despite the danger of eternally searching for something that does not exist, I 
believe that ignorance is crucial to any research project. Sometimes it is just better 
to look for something, not knowing what, by not assuming a cat or anything else. 
Just looking for something, whatever it may be, should allow researchers to ask 
deeper questions, even if the answers do not exist. Since Lisa Barret writes that 
“progress in science isn’t always about finding the answers, it is about asking better 
questions”, I believe this is best done by being ignorant. In many Internet forums, the 
difference between philosophy and theology is explained as the fact that philosophy 
is scientific and open-minded, concerned with evidence, while theologians have 
“found their final truth” before starting to search. When the truth has already been 
found, you are no longer ignorant and that is why believers so rarely doubt, while 
philosophers do nothing else. 

Precisely, for this reason, I often advise my PhD students not to constantly read 
the latest state-of-the-art papers and just continue with each idea without knowledge 
of the existing paths to solve the problem. Explore each idea, dig into it, forget the 
existing assumptions, and think you are on the brink of a breakthrough, even though
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you may not be. It is the only way to find a new opening and explore untrodden 
paths. Admittedly, such an approach usually leads to nothing but sometimes forces 
you to think differently than you would otherwise have done. Ignorance has its own 
reason for being, and in some rare cases, it leads to the most beautiful results. Do 
not become a theologian, but a philosopher, and be ignorant in your search. 

16.3 Wildness 

I think that ignorance and uncertainty cannot be separated from each other. As I 
have argued before, a researcher’s lack of knowledge can lead to uncertainty in 
answering questions and so research requires dedication, the ability to deal with 
uncertainty, and a passion to search for the unknown. So it also requires an attitude 
of wildness. In the book “The illusion of separation”, Hutchins (2014) states that 
our modern way of thinking and learning is based on a world made up of separate 
blocks. It is an organised world, structured, carefully managed, and controlled, like 
a safe haven where everyone can find their way. But the author argues that such a 
world in separation does not exist as life is made up of strongly connected blocks 
where separation is only an illusion. The book has a broad scope that is interesting to 
read, but not very relevant to this book chapter. And yet I refer to the book because 
of chapter 13 titled “Indigenous wisdom” where the author writes about wildness. 
The author states that we are all on an all-consuming quest for control that limits 
our way of thinking about things such as organising things in business, politics, 
our daily lives, and beyond.2 By removing the essential need for wildness from our 
lives, we have all created phobias that have suppressed or even completely wiped 
out our wild, intuitive spontaneity. To overcome this, the author proposes to allow 
wildness back into our way of thinking. The author literally writes that “we should 
celebrate this wildness, not denigrate” and he refers to Catherine Keller who said: 

In the wild waters of the world, the fish does not go under. It is in its element. Amidst the 
unpredictable it swims in grace. 

This quote has been pivotal in the way that I guided my researchers. I try to 
give the researchers as much freedom as possible to think about any idea, wild or 
not, and give them the space to explore each idea from different angles. That is 
what makes research so fantastic. In that regard, I believe that research belongs to 
the class of antifragile things, defined by Taleb (2012) as things that benefit from 
shocks, thrive, and grow when exposed to volatility. The resilient withstands shock 
and stays the same, while the antifragile gets better. Research is clearly antifragile, 
and wildness often means going against the usual ways of working in academia. 
A retired professor who prefers to remain anonymous has put it this way when we

2 I feel a bit guilty now that I have a book written about project control, which might just be my 
irresistible quest for control in project management. 
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complained about the endless stream of changes necessary during a review process 
to get an article published: 

When I have an idea that I think is worth investigating, I explore it in great detail. If I see 
the results disappoint, I throw it away and regret being naive enough to think the idea was a 
good one. But when I see results that are promising, something happens in my head. I write 
them down because I want to let the world know about them. I do not care which journal 
publishes the results, and as long as there’s one that wants to publish them, I will go for it. I 
would never, and I repeat, never give up on my original idea and modify it just because the 
journal’s referees ask me to. No, I would never do that. I am just too stubborn to do that. I 
would even pick the lowest-ranked journal and still publish the results, even if it negatively 
impacts my academic career. As long as I can tell my story and show the results of my hard 
work to the public, I am a true researcher. I do not think I am a real academic, you better 
call me a wild man. 

Stay wild and free, my dear friends, and keep exploring the unexplored territory. 

16.4 Serendipity 

I can be touched by language (sometimes to tears to the delight of my children) 
and I like some words so much that they can compete with whole pieces of music 
(which can also touch me so much). One of these words is serendipity, a word that 
I came across while reading the fantastic book “Algorithms to live by” (Christian 
& Griffiths,  2016) (in chapter 9 titled “randomness”). I had come across the word 
before, but for some reason I thought it was time to look up the real meaning. I 
reached for my dictionary to translate the word into my native Dutch and I saw 
the translation serendipiteit (that is Dutch), which did not clarify much. As I read 
further into the book, I saw that the authors referred to the “Eureka” moment 
of Newton’s application and Archimedes’ bathtub, claiming that it is a common 
enough phenomenon that great discoveries are made thanks to the power of chance. 
Being in the right place at the right time and seeing the slot machine trigger a new 
idea is what happens so often. A word was invented to capture this phenomenon. 
The authors refer to Horace Walpole who coined the term serendipity based on the 
fail tale adventures of “The Three Princes of Serendip” who were always making 
discoveries, by accidents and sagacity, of things they were not in quest of. The word 
seemed to fit my current job as an academic researcher. 

Since then, I have been using it at the most inappropriate times in my lectures, 
simply because it is too good to not do. I believe that everyone should be 
open to such moments of serendipity because they can make life very beautiful. 
What it means to me as a researcher is that it is OK to just search based on 
wild ideas, ignorance, and doubt because there will be a moment of serendipity. 
Research cannot be captured in a well-defined step-by-step approach from problem 
formulation to publishable results. It cannot be planned perfectly (just like a project 
cannot), and progress cannot always be perfectly monitored and adjusted when 
needed. There must always be a certain degree of randomness to make unexpected
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discoveries, and that is all, as I understand it, in the word serendipity. I have 
argued before that research is hard work, trying and failing, experimenting, and 
throwing away results. Only suddenly you find something beautiful without looking 
specifically for it, and I keep wondering if that would also apply to projects. Perhaps, 
my dear readers, you should not pay too much attention to all those strict scheduling 
algorithms and risk and control techniques that I discussed in my book, and you 
would better hope for a little serendipity in managing your projects. The hope of 
serendipity sometimes brings results that you might never have obtained otherwise. 
It is as American actor Charlton Heston said: 

Sometimes life drops blessings in your lap without your lifting a finger. 

Serendipity is an unplanned fortunate discovery. It is the definition of academic 
research. It is the definition of how I (want to) live my life. 

Last Words 

It is time to say goodbye. 

I would like to close this book with a brief overview of the general message of 
this book. It turned out to be a very strange book. It did not end up being a technical 
book like most of my other books, even though I have provided technical details 
every now and then. Nor has it become a management book as I once attempted 
in my business novel. I would not really call it a student book either, because it 
does not fit into any course that I teach at universities or business schools. I think it 
has mainly become a book where I have written down my personal view of my own 
research career with a fantastic team over the last two decades. I discussed many new 
methodologies, showed the very latest results, and discussed project management 
issues that hopefully gave you new insights. But I very much hope that it has become 
clear that this was mainly a story of a research team, in which I mentioned some of 
my PhD students but forgot others who also did very nice work. I must first of all 
thank Tom Servranckx for being so willing to proofread my book for errors and 
inconsistencies. I also have to thank Gaëtane Beernaert, not only because she is the 
most beautiful and best woman in the world but also because she always manages 
to look at my books from a different perspective. She gives hints to improve each 
chapter and draws my attention to the many mistakes over and over again. I do not 
know how and why she does it, but she keeps reading (and criticising) my stuff. 
Finally, I also want to thank my entire team. I do not want to venture into names 
because the risk of forgetting someone is too great. I prefer to refer to the OR&S 
website to meet my team members.3 You will see that it is a fantastic team of young 
(and also less young) people. This is a book by and for them, and I want to thank 
them once again for that. You have also noticed that in between I have used a number 
of quotes from (mostly) famous people. I did this because I love it, and there is not

3 I have mentioned the website before, but I want to show you once more how you can get to know 
this fantastic group of people. You can see the people of the Operations Research & Scheduling 
group on www.projectmanagement.ugent.be (go to staff and then members). 
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much more to it. It has turned out to be a book that I am ultimately proud of, and it 
was a completely new way of writing for me to achieve this result. 

Therefore, I hope that you have enjoyed this book as much as I did writing it. 
I have received a lot of nice comments for my previous books (in my mailbox, 
or somewhere on the Internet), and I have to admit that it makes me happy every 
time again. I also occasionally saw some harsh criticism which, I must confess, 
sometimes keeps me up for a few nights. Of course, I accept all criticism (both 
positive and negative), but I try very hard to remember the positive and forget the 
negative. Usually the latter does not work very well, which is why any negative 
comment is actually the best way to do better next time. And yet, dear readers, 
I would like to ask you a favour: If you found this book enjoyable and inspiring 
to read, just let me know. You would do me a great favour with it, and I promise 
you, in return, that you will see that pleasure in my eyes when we really meet. 
This also brings me seamlessly to the last quote of this book. It comes from the 
song “Whistlin’ past the graveyard” from my favourite Tom Waits album “Blue 
Valentine”: 

What you think is the sunshine is just a twinkle in my eye. 
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Appendix A 
Operations Research & Scheduling 
Group 

In this appendix, I have the pleasure to introduce my readers to my fantastic 
Operations Research & Scheduling research group. You can find more about them 
at the www.projectmanagement.ugent.be website or stare at the nice pictures taken 
after three research meetings in Ghent. Figure A.1 shows the members of my team 
who won the IPMA Outstanding Research Contribution award for the research on 
“data-driven project management,” much of which is discussed in this book. You 
see from left to right Gaëtane Beernaert (my one and only), José Coelho, Annelies 
Martens, Mario Vanhoucke, Tom Servranckx, Jordy Batselier, and Sokko. 

Figure A.2 shows the people at that time in the research group, and you see, from 
left to right, José Coelho, Weikang Guo, Jingyu Luo, Xi Wu, Jakob Snauwaert, 
Wanjun Liu, Izel Unsal-Altuncan, Annelies Martens, Tom Servranckx, Fangfang 
Cao, Mario Vanhoucke, Forough Vaseghi, Dries Bredael, and Rojin Nekoueian. Not 
on the picture are Xin Guan and Jie Song, who also belong to our OR&S team but 
lived in China at that time (and still do). Rob Van Eynde is also not in the photo, as he 
had moved to Spain a few weeks before this photo was taken. Notice the menacing 
clouds in the sky on the second picture. This is what we call good weather. Now  
you know why I love Lisbon so much! 

Figure A.3 shows an updated version of the team in 2023, and you see, 
from left to right, Mario Vanhoucke, Guillaume Vermeire, Weikang Guo, Nathan 
Steyaert, Annelies Martens, Jakob Snauwaert, Tom Servranckx, Dries Bredael, 
Rojin Nekoueian, Forough Vaseghi, Ziyang Tang, Fangfang Cao, Wanjun Liu, 
Jingyu Luo and Yuxuan Song. Xin Guan and Jie Song are again not on the picture, 
but they are still OR&Smembers. Izel Ünsal Altuncan is neither on the picture as she 
could not join us on that beautiful day in Ghent. I am sure you will find much more 
research in the (near) future coming from these fantastic young (and less young) 
people. Stay tuned! 
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Fig. A.1 The OR&S members who received the IPMA research award (2020) 

Fig. A.2 OR&S team picture (2022)
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Fig. A.3 OR&S team picture (2023)



Appendix B 
Earned Value Management (Glossary) 

In this book, the Earned Value Management (EVM) methodology is used as a 
project control methodology in various ways. The provided metrics in the EVM 
system are used for project time forecasting (Chaps. 4 and 6), constructing control 
limits (Chap. 5) and are implemented in a so-called top-down project control system 
(Chap. 7) using  statistical or analytical control systems (Chap. 8). Giving a full 
overview of all the metrics used in an EVM system would lead us too far from 
the central theme of this book, and this appendix gives a basic summary of most 
of the EVM concepts. The summary shows the main components of an EVM 
analysis, divided into four different layers. It is taken from a short article “Earned 
Value Management: The EVM formulary” that is available on PM Knowledge 
Center (www.pmknowledgecenter.com) and in my book that I discussed in Chap. 2 
(Vanhoucke, 2016b). PM Knowledge Center is an online learning tool on Project 
Management and Dynamic Scheduling and includes technical articles on baseline 
scheduling, schedule risk analysis, and project control. The book contains several 
questions (and answers) to test your knowledge on these topics. I advise the readers 
to explore the short and to-the-point articles on this free website to get acquainted 
with the basic and advanced concepts of EVM. The summary below refers for each 
concept to the article title of this website. 

Key Parameters 
• S-curve: This graph displays the Planned Value (PV), the Actual Cost (AC), and 

Earned Value (EV) along the life of the project. 
(Article: “Earned Value Management: The three key metrics”) 

• PV curve: This graph displays the Planned Value (PV) as shown in the S-curve. 
Since the Planned Value curve is available at the construction of the baseline 
schedule (before the EVM tracking), this graph is accessible separately from the 
S-curve. 
(Article: “Earned Value Management: The project baseline schedule’s planned value”) 
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• Earned Schedule (ES): This graph displays the Earned Schedule (ES) calculated 
from the Earned Value and Planned Value graph along the life of the project. 
(Article: “Measuring Time: Earned value or earned schedule?”) 

Project Performance 
• EVM Performance Dashboard: This graph displays both the time and cost 

performance and divides the project performance into four regions showing time 
and cost performance. 

• Cost Variance (CV): This graph displays the Cost Variance (.CV = EV − AC) 
along the life of the project. 
(Article: “Earned Value Management: Measuring a project’s performance”) 

• Cost Performance (CPI): This graph displays the Cost Performance Index (CPI 
= EV / AC) along the life of the project. 
(Article: “Earned Value Management: Measuring a project’s performance”) 

• Schedule Variance (SV and SV(t)): This graph displays the Schedule Variance 
(SV or SV(t)) along the life of the project. Formulas used: .SV = EV − PV and 
.SV(t) = ES − AT. 
(Article: “Earned Value Management: Reliable time performance measurement”) 

• Schedule Performance (SPI and SPI(t)): This graph displays the Schedule 
Performance Index (SPI or SPI(t)) along the life of the project. Formulas used: 
SPI = EV / PV and SPI(t) = ES / AT. 
(Article: “Earned Value Management: Reliable time performance measurement”) 

• Schedule Adherence (p-factor): This graph displays how good the project 
progress follows the baseline schedule philosophy. This is known as schedule 
adherence and measured by the p-factor. Tip: p-factor = % schedule adherence 
(100% = perfect adherence). 
(Article: “Earned Value Management: Measuring schedule adherence”) 

Project Forecasting 
• Cost Estimate At Completion (EAC): This graph displays the estimated final 

cost at project completion (EAC) predicted along the life of the project. Eight 
forecasting versions are used, in line with research from literature. 
(Article: “Earned Value Management: Forecasting cost”) 

• Time Estimate At Completion (EAC(t)): This graph displays the estimated final 
duration at project completion (EAC(t)) predicted along the life of the project. 
Three methods are used (PVM, EDM, and ESM), each using three variants. 
(Article: “Earned Value Management: Forecasting time”) 

Forecast Accuracy 
• MAPE: This graph displays the Mean Absolute Percentage Error as a measure 

of the forecast accuracy of time or cost predictions. 
(Article: “Predicting project performance: Evaluating the forecasting accuracy”) 

• MPE: This graph displays the Mean Percentage Error as a measure of the 
forecast accuracy of time or cost predictions. 
(Article: “Predicting project performance: Evaluating the forecasting accuracy”)



Appendix C 
Properties of Similarity 

In Chap. 9, only 6 (out of 60) properties of similarity are taken into account to design 
the reference class forecasting system. The summary below provides a full summary 
of these 60 properties to give the readers an idea of possible criteria to define 
project similarity. The selected properties are highlighted in bold and summarised 
in Table 9.3 of Chap. 9. 

Class 1. Basic Info 
• Number of activities: The amount of activities a project contains. 
• Planned duration: The total time estimated to complete the project. 
• Budget at completion: The total anticipated spending to complete the project. 
• Number of resources: The concrete amount of renewable or non-renewable 

resources that are needed to complete the activities of the project. Examples of 
renewable resources include: machines, workers, tools, etc. Examples of non-
renewable resources include: money, raw materials, energy, etc. 

• Network structure: The activities of the project can be executed in a way that is 
more serial or more parallel. Serial means that the activities have to be executed 
sequentially. Parallel means that some activities can be executed simultaneously. 
A combination of both is possible too. 

Class 2. Risk Analysis 
• Risk analysis method: There are many methods available to analyse and simulate 

the probability that a certain event will occur. One of the most known methods is 
the Monte Carlo Simulation. It is also possible to analyse the risk by making use 
of intuition and experience. 

• Probability of event: The chance that certain events will occur. 
• Impact of event: In case a certain event occurs, the negative consequences can be 

high or low. 

Class 3. Project Control 
• Project control method: There are many methods available to control a project 

once it is being executed. Two examples of this are the bottom-up approach and 
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the top-down approach. Bottom-up approach: the level of performance is checked 
when there are troubles with an activity. Top-down approach: the performance of 
the project is monitored continuously. When the performance is decreasing, the 
responsible activity has to be determined. 

• Project structure: The way in which different phases of the project are structured 
and planned. 

Class 4. Specifications 
• Objective: Every project is optimised according to the objective. The objective 

can be time within a certain period, cost within a certain budget, net-present 
value to achieve the highest actual value, levelling an equal distribution of the 
resources, etc. 

• Frequency: The number of times a certain kind of project is executed. 
• Project definition: The project can be a straight redo, an expansion of an earlier 

executed project or a totally new kind of project. 
• Project complexity: The overall complexity of a project, independently of how 

often it is executed. 
• Number of subcontractors: The number of other subcontractors that are also 

working on the same project. 
• Materials used: The kind of material that is needed to execute the project. 
• Type of tender: There is a fixed total price or the client pays per hour for 

workforce or materials used. A combination of both is possible too. 
• New technologies: The amount of new or recent technologies used in a project. 
• Type of deliverable: The project can be a development of a product, a service, 

or a combination. 
• Type of activities: Similarity in the scope of the activities to be completed in the 

project. 
• Type of technology: The use of a specific technology, even if they have a different 

scope. 
• Internal/external project: The project can be executed for an external client or 

within the company itself. 
• Priority of the project: The relative importance of a project: for the client, project 

A could be more important than project B. In a similar way, for the executing 
company, a project for client 1 could be more important than a project for client 2. 

• Type of financing: There are different arrangements as to how the project is 
financed. The financial resources could be originating straight from the client, 
but an intermediary bank, institution or government could also be involved. The 
client for whom the project is executed is not always the one who is paying the 
compensation. 

• Automation of processes: The way processes are executed depends on the 
grade of automation. The process can be executed by people, machines or a 
combination of both. 

• Profitability: How profitable is a project and how much profit margin is taken 
into account.
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Class 5. Client 
• Elation to client: How well the relationship with the client is established. 
• Frequency of co-operations: Co-operations with a certain client can be frequent, 

occasionally or only once. 
• Industry of client: The sector in which the company of the client is located. 
• Cultural gap with client: A difference in geographical location between the 

executing company and the client could also imply a cultural difference. 
• Experience of client: It is possible that the client is new to the business industry 

or already has a well-structured system. 
• Interference of decision: The number and significance of different subjects that 

have to be agreed on in co-operation with the client during the execution of the 
project. 

• Activities executed by client: The number of activities that must be completed by 
the client themselves during the execution of the project. 

• Type of client: The client can be a private company or an institution government, 
school, etc. 

• Level of client within company: The person or unit within the clients company 
for whom the project is executed could be specified. It is possible that the project 
is executed for a lower business unit within the company or for the highest level 
of management. 

• Award criteria: Award criteria are qualitative criteria that serve to assess the 
entries. If candidates meet the selection criteria financial situation and technical 
competencies of a public tender, the client will review the award criteria. 

Class 6. Conditions 
• Location: The distance between your company and the location where the project 

has to be executed. 
• Weather: The forecast weather conditions during the execution of the project. 
• Governmental law: The government can impose certain rules which can affect 

the project duration, cost or other factors in the project. 
• Conjuncture: Does the conjuncture have an influence on the type of projects in 

the company? It could be that companies invest a lot during times of economic 
expansion, which can lead to the execution of similar projects. 

• Number of competitors: When there are many competitors in a particular 
industry, other types of projects can be executed more easily than in an industry 
where you have a mono- or oligopoly. 

Class 7. Team 
• Age project manager: The age of the person who is leading the project. 
• Experience project manager: The experience of the person who is leading the 

project. 
• Education project manager: The received education of the person who is leading 

the project. 
• Attitude project manager: The overall attitude of the person who is leading the 

project. Examples include: optimistic, realistic, pessimistic, organised, leading, 
etc.
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• Geographical location team: The distance between the people that are working 
on the project and the way they communicate. 

• Team composition: It is possible that more than one team is working on the same 
project. The teams can be composed in different ways. The teams can be variable 
or fixed during the execution of the project. 

• Background of project team: Teams can be formed by individuals with similar 
experience and education or by members with a completely different background. 

• Independence of project team: Is the project team capable of doing things on their 
own without having to be told what to do step by step? Some teams need a lot of 
control, others can be given more free reign. 

• Drive involved team members: Are the team members willing to go the extra mile 
to finish a project on time or are they just executing their nine-to-five job? 

Class 8. Company 
• Industry: The sector in which the executing company is located. 
• Experience of company: The experience the executing company has in perform-

ing a certain kind of project. 
• Country: The country in which the executing company is located. 
• Reason of assignment: The reason a client selects your company to execute the 

project can differ. Examples of reasons are: your company offers the lowest price, 
your company provides the best quality, your company has the most experience, 
etc. 

Class 9. Stakeholders 
• Relationship to suppliers: How well the relationship with the supplier is estab-

lished. In some cases, the completion of a project can depend on suppliers. They 
are needed for providing information, logistics, workforce, tools, etc. 

• Complexity of contractual chain: The complexity depends on the number of links 
in the chain. Complexity can increase if there are multiple clients/contractors for 
the same output/input. It is possible that the same project has to deliver two or 
more outcomes that have different requirements, timings and priorities. 

• Variety of stakeholders: The variety of stakeholders involved in the project. 
• Number of stakeholders: The number of stakeholders involved in the project. 
• Activities by contractors: The number of activities that must be completed by 

other contractors during the execution of the project. 
• Impact on employees: The project can be mentally exhausting when there is a 

lot of pressure on employees.



Appendix D 
Patterson Format 

The Patterson format discussed in Chap. 11 is a simple text file and its structure 
is explained on the illustrative project network of Fig. D.1. Each number above the 
node is assumed to be the activity duration. The network has two dummy activities, 
i.e., dummy start node 1 and dummy end node 14, and hence, the network contains 
14 activities in total, dummies included. The Patterson format also makes use of 
start and end dummy nodes and is structured as follows: 

Line 1 shown two numbers: 

• Number of activities (starting with node 1 and two dummy nodes inclusive) 
• Number of renewable resources 

Line 2 shows one number for each resource: 

• Availability for each renewable resource 

The next lines show one line for each activity, starting with a dummy start activity 
and ending with a dummy end activity: 

• Activity duration 
• Resource requirements for each resource type 
• Number of successors 
• Activity ID for each successor 
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Fig. D.1 An illustrative activity network (Source: Vanhoucke, 2012b) 

Suppose that the project network of Fig. D.1 needs four types of so-called 
renewable resources. Consequently, the Patterson text file for the network of the 
figure is as follows: 

14 4 
10 20 8 10 
0 0 0 0 0 1 2 3 4  
6 7 15 2 6 1 9  
5 1 8 4 8 3 5 6 7  
3 5 8 3 3 1 8  
1 6 15 2 6 1 10  
3 1 13 0 3 1 12  
2 2 16 2 0 1 11  
1 2 9 4 4 1 13  
4 8 12 5 5 1 14  
3 6 17 5 0 1 12  
1 2 10 2 5 1 12  
3 6 5 5 4 1 13  
5 8 10 3 7 1 14  
0 0 0 0 0 0  

As an example, activity 2 of Fig. D.1 needs 7, 15, 2, and 6 units of resource 1, 2, 
3, and 4, respectively. The availability of these resources is set at maximum 10, 20, 
8, and 10 units.
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Network and Resource Indicators 

Although most of the scheduling algorithms used in this book make use of the 
critical path scheduling method (and ignore the presence of limited resources), 
some chapters extend this scheduling problem to the resource-constrained project 
scheduling problem (RCPSP, Chaps. 6 and 11). This problem is well known in 
the academic literature and is denoted as .m, 1|cpm|Cmax using the classification 
scheme of Herroelen et al. (1999) or  .PS|prec|Cmax using the scheme of Brucker 
et al. (1999). The problem is defined by a set of activities N that must be scheduled 
without pre-emption on a set R of renewable resource types. The set N consists 
of .n = |N | non-dummy activities, starting at activity 1 to activity n. Traditionally, 
the network is extended with two dummy activities 0 and .n + 1.1 Each activity i 
has a deterministic duration . di and requires . rik units of resource type .k = 1, . . . R, 
which has a constant availability . ak throughout the project horizon. We assume that 
.rik ≤ ak(i ∈ N, k ∈ R). The dummy start and end activities 0 and .n + 1 have zero 
duration and do not make use of the renewable resources, while the other activities 
have a non-zero duration and a non-negative resource requirement. The set A is 
used to refer to the set of pairs of activities between which a finish-start precedence 
relationship with time lag 0 exists. We assume graph .G(N,A) to be acyclic. A 
schedule S is defined by an (.n + 2)-vector of start times .s = (s0, ..., sn+1), which 
implies an (.n + 2)-vector of finish times f (.fi = si + di). A schedule is said to be 
feasible if the precedence and resource constraints are satisfied. The objective of the 
RCPSP is to find a feasible schedule such that the schedule makespan is minimised. 

In the next paragraphs, the calculations for the network topology and resource 
parameter indicators are explained in detail. Each indicator only takes the non-
dummy activities .i = {1, . . . , n} into account and ignores the dummy activities 
0 and .n + 1. 

1 Note that the dummy start activity is sometimes activity 1 (instead of activity 0) as is, e.g., the 
case in Fig. D.1 of Appendix D. However, it is now assumed—without loss of generality—that 0 
and .n + 1 are used for the start and end dummy nodes. 
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Network Topology Parameters 
The network structure has a major impact on the performance of scheduling algo-
rithms, the analysis of risk metrics and the performance of project control methods, 
as discussed in most chapters of this book. Therefore, measuring the network 
topology should be done with care and different network topology indicators have 
been proposed in the literature. 

The coefficient of network complexity (CNC) is defined as the number of direct 
arcs divided by the number of nodes in the network. 

The order strength (OS) is measured by the number of precedence relations 
(including direct and indirect predecessors) divided by the theoretical maximum 
number of precedence relations (Mastor, 1970). 

The next network topology indicators have been originally proposed in Tavares 
et al. (2002)2 and later adapted by Vanhoucke et al. (2008) as the . I1 to . I6 indicators. 
To avoid confusion, four of these indicators (. I2, . I3, . I4 and . I6) have been renamed in 
my book Measuring Time as proposed in Table 11.1 of this book. The calculations 
of these indicators rest on a number of straightforward definitions that characterise 
the project network. The progressive and regressive level of activities in a project 
network have been defined by Elmaghraby (1977). The progressive level of an 
activity i in a project network is defined as: 

.PLi =
{

1 if Pi = ∅
maxj∈Pi

PLj + 1 if Pi �= ∅ (E.1) 

Similarly, the regressive level of an activity i in a project network is defined as: 

.RLi =
{

m if Si = ∅
minj∈Si

RLj − 1 if Si �= ∅ (E.2) 

with m the maximal progressive level, i.e., .m = maxi∈NPLi . 
Based on the definition of the progressive and regressive level in an activity 

network, the following definitions can be used: 

• Width: The width . wa of each progressive level .a = {1, . . . , m} is defined as the 
number of activities at that level. 

• Length of an arc: The length l of an arc .(i, j) is equal to the difference between 
the progressive level of the end node j and the start node i, i.e., .PLj − PLi . 

• Topological float: The topological float of an activity i is equal to the difference 
between the regressive level and the progressive level of activity i, i.e., . RLi −
PLi .

2 Luis Valadares Tavares was the advisor of José Coelho and we have met each other in 2001 for 
the very first time when José was working on his RiskNet generator. It was the start of the fruitful 
collaboration that I discussed in several pages of this book. 
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The size of the project network is measured by the number of activities in the 
project, which corresponds to the number of non-dummy nodes in the network (n 
or . |N | or . I1). 

The serial/parallel indicator (SP or . I2) measures the closeness of a network to a 
serial or parallel network. When SP = 0 then all activities are in parallel, and when 
SP = 1 then the project network is completely serial. Between these two extreme 
values, networks can have any topology close to either a serial or parallel network. 
The SP indicator determines the maximal number of levels of the network, defined 
as the longest chain (in terms of the number of serial activities) in the network. Its 
formula is given by the following equation: 

.SP =
{

1 if n = 1
m−1
n−1 if n > 1

(E.3) 

The activity distribution indicator (AD or . I3) measures the distribution of project 
activities along the levels of the project by taking the width of each progressive level 
into account. When AD = 0, all levels contain a similar number of activities, and 
hence, the number of activities is uniformly distributed over all levels. When AD = 
1, there is one level with a maximal number of activities, and all other levels contain 
a single activity. The indicator can be defined as follows: 

.AD =
{

0 if m ∈ {1, n}
αw

αmax
=

∑m
a=1 |wa−w̄|

2(m−1)(w̄−1) if m /∈ {1, n} (E.4) 

Consequently, this indicator measures the distribution of the activities over the 
progressive levels by calculating the total absolute deviations . αw and .αmax . . αw mea-
sures the total absolute deviation of the activity distribution . w = (w1, w2, . . . , wm)

from the average deviation .w̄ = n/m as .αw = ∑m
a=1 |wa − w̄|. .αmax determines 

the maximal value of . αw for a network with n activities and m progressive levels. 
.αmax corresponds to a network for which .m − 1 progressive levels have a width . wa

equal 1, and one progressive level has a width . wa equal .n − (m − 1). The  value  
of .αmax can be calculated as .αmax = (m − 1)(w̄ − 1) + (n − m + 1 − w̄). The  
first term calculates the absolute deviation between .wa = 1 and the average width 
. w̄ for .m − 1 progressive levels. The second term calculates the difference between 
.wa = n−(m−1) and . w̄ for the remaining progressive levels. The formula for . m �= 1
can be simplified to .αmax = 2(m − 1)(w̄ − 1), resulting in the AD indicator defined 
above. This indicator equals 1 when .αw = αmax . At the other extreme, the indicator 
has a value of 0 when the activities are uniformly distributed over the progressive 
levels, i.e., .wa = w̄ = n/m (for .a = {1, . . . , m}). 

The length of arcs indicator (LA or . I4) measures the length of each precedence 
relation (i, j ) in the network as the difference between the level of the end activity 
j and the level of the start activity i. When LA equals 0, the network has many 
precedence relations between two activities on levels far from each other. Hence, the 
activity can be shifted further in the network. When LA equals 1, many precedence
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relations have a length of one, resulting in activities with immediate successors on 
the next level of the network, and hence little freedom to shift. In order to define 
the LA indicator, a parameter . n′

l is defined as the number of arcs in the network 
with length l (note that the length l of an arc can vary between 1 (short) and . m − 1
(long)). Based on this parameter, the LA .∈ [0, 1] indicator measures the presence of 
short (i.e., with a length .l = 1) immediate precedence relations and can be defined 
as follows: 

.LA =
{

1 if D = n − w1
n′
1−n+w1

D−n+w1
if D > n − w1,

(E.5) 

where D stands for the maximal number of short (.l = 1) precedence relations in a 
network, given the width of each level, i.e., .D = ∑m−1

a=1 wa × wa+1. 
The next indicator does not occur in Table 11.1 and has not received a name other 

than the . I5 since it is very similar to the LA indicator but measures the presence of 
long arcs (instead of the short arcs) with a difference between the progressive level 
of the end node and the start node of each arc bigger than 1 (it should therefore be 
called the long arcs indicator). . I5 is equal to 0 for a network with .n − w1 arcs 
with a length of 1 and all other arcs a maximum length of .m − 1, while .I5 = 1 for 
networks where all arcs have a length equal to 1. It is defined as: 

.I5 =
{

1 if |A| = n − w1∑m−1
l=2 n′

l
m−l−1
m−2 n′

1−n+w1

|A|−n+w1
if |A| > n − w1

(E.6) 

with . |A| the number of direct precedence relations between the activities (excluding 
the relations with the dummy activities). 

The topological float indicator (TF or . I6) measures the topological float of a 
precedence relation as the number of levels each activity can shift without violating 
the maximal level of the network (as defined by SP). Hence, TF = 0 when the 
network structure is 100% dense and no activities can be shifted within its structure 
with a given SP value. A network with TF = 1 consists of one chain of activities 
without topological float (they define the maximal level and hence, the SP value), 
while the remaining activities have a maximal float value (which equals the maximal 
level, defined by SP, minus 1). 

.T F =
{

0 if m ∈ {1, n}∑n
i=1 RLi−PLi

(m−1)(n−m)
if m /∈ {1, n}. (E.7) 

Resource Parameters 
The first and most obvious resource parameter to measure the availability of 
resources in a project is the number of resources (. |R|) in the project. Each resource 
.k = {1, . . . , |R|} has a certain availability . ak and each activity i of the project 
makes use of an integer number .0 ≤ rik ≤ ak for each resource type k. The
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relation between the resource availability (. ak) and the resource requirements (. rik) is  
measured by four well-known resource parameters that have been implemented in 
the RanGen1 (Demeulemeester et al., 2003) and RanGen2 (Vanhoucke et al., 2008) 
network generators. They will be reviewed along the following lines. 

The resource factor (RF) measures the average portion of resource types 
requested per activity. This indicator is introduced by Pascoe (1966) and in later 
studies by Cooper (1976) and Alvarez-Valdes and Tamarit (1989) defined as: 

.RF = 1

nK

n∑
i=1

|R|∑
k=1

{
1 if rik > 0
0 otherwise,

(E.8) 

where—as defined earlier—n denotes the number of activities (excluding dummy 
activities), . |R| denotes the number of resource types and . rik denotes the amount of 
resource type k required by activity i. Since the resource factor reflects the average 
portion of resource types requested per activity, it measures the density of the matrix 
. rik . 

An alternative metric to measure this density is given by the resource use (RU), 
which measures for each activity the number of resource types. It is introduced by 
Demeulemeester et al. (2003) and varies between zero and the number of resource 
types available, defined as: 

.RUi =
|R|∑
k=1

{
1 if rik > 0
0 otherwise.

(E.9) 

In most project networks available in the literature, .RUi = RU to assure that 
each activity uses the same number of resources. 

The resource strength (RS) is a combined indicator since it uses both network 
topology information and resource demand in its calculations. It was first introduced 
by Cooper (1976) and later used by Alvarez-Valdes and Tamarit (1989). Inspired by 
their work, Kolisch et al. (1995) redefined the RS indicator as follows: 

.RSk = ak − rmin
k

rmax
k − rmin

k

, (E.10) 

where . ak denotes the total availability of renewable resource type k, .rmin
k equals 

.maxi∈N rik and .rmax
k denotes the peak demand of resource type k in the precedence 

preserving earliest start schedule. Since this indicator does not always lie in the 
interval between 0 and 1, Demeulemeester et al. (2003) has extended the indicator 
with an extra condition and is calculated as: 

.RS =
⎧⎨
⎩

1 if ak ≥ rmax
k or rmax

k = rmin
k

ak−rmin
k

rmax
k −rmin

k

otherwise
(E.11)
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The resource constrainedness (RC) measures the average resource requirement 
for all activities for a particular resource divided by the availability of that resource. 
It has been introduced by Patterson (1976) as follows: 

.RCk = rk

ak

, (E.12) 

where . ak is defined as above and . rk denotes the average quantity of resource type k 
demanded when required by an activity, calculated as: 

.rk =
∑n

i=1 rik

∑n
i=1

{
1 if rik > 0
0 otherwise.

(E.13)



Appendix F 
Network . × Resources . = NetRes 

This appendix briefly describes the settings for the new NetRes (i.e., network and 
resources) dataset, containing two separate sets. The first network set is proposed 
in Vanhoucke et al. (2008) and has been called the MT set in Vanhoucke et al. 
(2016). It contains four subsets with diverse settings for the network structure. The 
second set called ResSet is completely new and contains four subsets with only 
resource information. These ResSet instances should be combined with the MT 
set to construct the so-called NetRes data instances that can be used for solving 
resource-constrained project scheduling problems. 

Network Data 
In Vanhoucke et al. (2016), it has been shown that the MT set contains four subsets 
to diversify the network structure as much as possible. The set does not contain 
resources and has been used for project control studies in which the use of resources 
is completely ignored. The four subsets contain in total 4100 networks for which the 
network indicator settings are summarised along the following lines. Each network 
contains exactly 30 activities. 

Set 1: Network indicator: serial or parallel network (SP) 

SP = 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 and AD, LA and TF random from 
interval [0, 1] 

.→ Using 100 instances for each setting, 900 project network instances have 
been generated. 

Set 2: Activity indicator: activity distribution (AD) 

Set 2.1: AD = 0.2; 0.4; 0.6; 0.8, SP = 0.2 and LA and TF random from interval 
[0, 1] 
Set 2.2: AD = 0.2; 0.4; 0.6; 0.8, SP = 0.5 and LA and TF random from interval 
[0, 1] 

.→ Using 100 instances for each setting, 2 * 400 = 800 project network instances 
have been generated for this subset. 
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Set 3: Precedence relations indicator: length of arcs (LA) 

Set 3.1: LA = 0.2; 0.4; 0.6; 0.8, SP = 0.2 and AD and TF random from interval 
[0, 1] 
Set 3.2: LA = 0.2; 0.4; 0.6; 0.8, SP = 0.5 and AD and TF random from interval 
[0, 1] 
Set 3.3: LA = 0.2; 0.4; 0.6; 0.8, SP = 0.8 and AD and TF random from interval 
[0, 1] 

.→ Using 100 instances for each setting, 3 * 400 = 1200 project network 
instances have been generated for this subset. 

Set 4: Float indicator: topological float (TF) 

Set 4.1: TF = 0.2; 0.4; 0.6; 0.8, SP = 0.2 and AD and LA random from interval 
[0, 1] 
Set 4.2: TF = 0.2; 0.4; 0.6; 0.8, SP = 0.5 and AD and LA random from interval 
[0, 1] 
Set 4.3: TF = 0.2; 0.4; 0.6; 0.8, SP = 0.8 and AD and LA random from interval 
[0, 1] 

.→ Using 100 instances for each setting, 3 * 400 = 1200 project network 
instances have been generated for this subset. 

Resource Data 
The generation of resources to create the ResSet dataset has been done in such a 
way that enough data instances are available that can be combined with the network 
instances to test the impact of resources in detail. The set contains four subsets. 
The resource availability has been generated for a varying number of resources 
(NR). The resource demand has been generated for each activity, with a total of 30 
activities such that the resource data can be combined with the network instances of 
the MT set (which has 30 activities too). The demand has been generated to satisfy 
varying values for the resource use (RU) and the resource constrainedness (RC). 
The RC values are fixed values for each resource, except for the fourth set where 
the RC values differ for each resource (but the average RC value is controlled). 

Set 1: Basic R4 Set 

NR = 4  
RU = 2; 4 
RC = 0.25; 0.50; 0.75 (fixed values for each resource) 

.→ Using 100 instances for each setting, 600 resource files have been generated. 

Set 2: R4 Set with extended RC values 

NR = 4  
RU = 2; 4 
RC = 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 (fixed values for each resource) 

.→ Using 100 instances for each setting, 1800 resource files have been gener-
ated.
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Set 3: R10 Set with extended RU values 

NR = 10  
RU  = 2; 6; 10  
RC = 0.25; 0.50; 0.75 (fixed values for each resource) 

.→ Using 100 instances for each setting, 900 resource files have been generated. 

Set 4: R10 Set with variable RC values 

NR = 10  
RU  = 2; 6; 10  
RC = 0.25; 0.50; 0.75, varying for each resource in a predefined interval, as 
follows: 

Average RC = 0.25: [0.12, 0.63] or [0.10, 0.90] 
Average RC = 0.50: [0.25, 0.75] or [0.10, 0.90] 
Average RC = 0.75: [0.37, 0.88] or [0.10, 0.90] 

.→ Using 100 instances for each setting, 1800 resource files have been gener-
ated.



Appendix G 
Example Project Card 

In Chap. 13, an empirical project dataset of 181 real projects has been presented. 
With the aim of obtaining a clear overview of the projects in the database, the 
so-called project cards were introduced. A project card summarises the whole 
of the project data (i.e., general characteristics, risk information, and tracking 
data) for a certain project in an orderly and structured manner. Its main structure 
originates from the three dimensions of dynamic scheduling (baseline scheduling, 
risk analysis, and project control) as presented at different places in this book. 
The presentation of the project cards is logically constructed according to the three 
dynamic scheduling dimensions and preceded by an introductory subsection which 
describes the header of a project card. For illustration, an example project card is 
included in the next pages in Figs. G.1, G.2, and G.3. Moreover, the project cards 
for most projects in the database are available on the supporting website (www. 
projectmanagement.ugent.be/research/data). 
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Fig. G.1 Example project card (Part 1)
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Fig. G.2 Example project card (Part 2)
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Fig. G.3 Example project card (Part 3)



Appendix H 
OR&S Project Datasets 

This appendix provides some details for the different project data libraries presented 
in Chap. 15. All libraries can be downloaded from www.projectmanagement.ugent. 
be/research/data. 

Problem Type: RCPSP: 1 instance = 1 project, 1 activity mode 
Each dataset contains a number of projects (# instances), and for each project 
instance, the number of activities per project (# activities) is given in Table H.1. 

Problem Type: MMRCPSP: 1 instance = 1 project, multiple activity modes 
Each dataset contains a number of project instances (# instances). For each project 
instance, the number of activities is given (# activities). For each activity, the average 
number of modes (# modes) is also given in Table H.2. 

Problem Type: RCPSP-AS: 1 instance = 1 project, multiple network subgraphs 
Each dataset contains a number of instances (# instances). Each instance is a project 
and consists of a number of alternative subgraphs in the network under different 
settings (Subgraphs). Each alternative branch of the project contains a number of 
activities (# activities / branch). Since each project has multiple alternative branches 
(from which one or more must be selected), the total project can contain up to +700 
activities (but not all of them will be selected). Details are given in Table H.3. 

Problem Type: MSRCPSP: 1 instance = 1 project, resource skills, 1 activity 
mode 
Each dataset contains a number of projects (# instances) and the number of activities 
per project (# activities) and some typical characteristics are given for each project 
instance, as shown in Table H.4 for both the multi-skill problem and the software 
scheduling problem. 

Problem Type: RCMPSP: 1 instance = 1 portfolio, multiple projects, 1 activity 
mode 
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Table H.1 Various RCPSP libraries (RCLIB) 

# instances # activities Remark 

RG30 1800 30 

RG300 480 300 

DC1 1800 10–50 

DC2 720 25–100 

MT 4100 30 These projects contain no relevant resource data 

ResSet – – 4 files with only resource data 

1kNetRes 3810 30 1kNetRes is a subset of the full NetRes dataset. You can 
create the full NetRes dataset as NetRes = MT . × ResSet 
(3,810,000 instances) 

CV 623 . ≤ 30 This dataset contains small but very hard instances 

sD 390 50 This dataset contains instances with sigma-distance 
values from 3 to 16 

Table H.2 Multi mode 
library (MMLIB) 

# instances # activities # modes 

MMLIB50 540 50 3 

MMLIB100 540 100 3 

MMLIB+ 3240 50 or 100 3, 6 or 9 

Table H.3 Alternative 
subgraph library (ASLIB) 

# instances # activities / branch Subgraphs 

ASLIB0 72,000 10 Nested/linked 

ASLIB1 720 10 or 50 Basic problem 

ASLIB2 6480 10 or 50 Nested/linked 

ASLIB3 5760 10 or 50 Multiple/split 

ASLIB4 11,520 10 or 50 Caused/closed 

ASLIB5 19,440 10 or 50 All settings 

ASLIB6 14 [2, 18] Empirical data 

Table H.4 Multi-skilled libraries (MSLIB and SSLIB) 

# instances # activities Characteristic 

MSLIB1 6600 30 Basic workforce data 

MSLIB2 9000 30, 60, 90 Small and large projects 

MSLIB3 11,880 30 Extended workforce data 

MSLIB4 5000 30 Hard set 

MSLIB5 19 [13,95] Empirical data 

SSLIB1 6.6 30 Basic workforce data 

SSLIB2 9 30,60,90 Small and large projects 

SSLIB3 11.88 30 Extended workforce data 

SSLIB4 5 30 Hard set of instances 

Each dataset contains a number of instances (# instances). Each instance is now a 
project portfolio and consists of a number of projects (# projects). Each project in 
the portfolio contains a number of activities (# activities), shown in Table H.5.
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Table H.5 Multi-project 
library (MPLIB) 

# instances # projects # activities 

MPLIB1 4547 6, 12 or 24 60 

MPLIB2 35,085 10, 20 or 30 50 

Table H.6 Empirical 
database (DSLIB) 

# instances # activities # resources 

Construction 122 7–1796 0–27 

Engineering 11 7–31 2–4 

Mobility 6 19–41 2–8 

Event management 13 19–75 1–15 

IT 27 11–279 1–24 

Education 2 112–134 1–3 

Problem Type: Empirical projects: 1 instance = 1 project 
Each dataset contains a number of projects (# instances) from a certain sector, and 
for each project instance, the number of activities per project (# activities) and the 
number of renewable resources (# resources) is given in Table H.6 
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