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To my parents

Preface This book is based mainly on the lecture notes that I have been using
since 1993 for a course on applied probability for engineers that I teach at the
Icole Polytechnique de Montrral. This course is given to electrical, computer
and physics engineering students, and is normally taken during the second or
third year of their curriculum. Therefore, we assume that the reader has
acquired a basic knowledge of differential and integral calculus. The main
objective of this textbook is to provide a reference that covers the topics that
every student in pure or applied sciences, such as physics, computer science,
engineering, etc., should learn in probability theory, in addition to the basic
notions of stochastic processes and statistics. It is not easy to find a single
work on all these topics that is both succinct and also accessible to non-



mathematicians. Because the students, who for the most part have never taken a
course on prob- ability theory, must do a lot of exercises in order to master the
material presented, I included a very large number of problems in the book,
some of which are solved in detail. Most of the exercises proposed after each
chapter are problems written es- pecially for examinations over the years.
They are not, in general, routine problems, like the ones found in numerous
textbooks. The exercises that can be done after a given section is read are
listed in Appendix C. The reader will also find, in Appendix D, the answers to
all the multiple choice questions proposed in the manual. (Of course, the
student 1s recommended to first try to solve an exercise before looking at the
answer.) Appendix E provides the answers to selected supplementary
exercises included in Chapters 6 and 7. The book contains a few biographical
notes on nearly all the mathematicians mentioned in the text. The reader
interested in learning more about these great math- ematicians can consult the
various books or Web sites dedicated to the biographies of scientists. Most of
the figures in this book were realized with the help of a software program that
enables one to draw curves or diagrams. When the figures involved
mathematical functions, such as the exponential function, a mathematical
software was used, when possible, to obtain precise curves.

viii Preface I wish to express my gratitude to my colleagues who taught the
course on prob- ability theory for engineers with me during the last ten years.
They contributed in providing interesting exercises that are now part of this
manual. [ am also grateful to Jean-Luc Guilbault, who helped me by typing
most of the exercises found in the book. This was made possible by a grant
from the Service prdagogique of the Icole Polytechnique, which I thank as
well. Mario Lefebvre Montrral, August 2005
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1 Introduction 1.1 The Beginnings of Probability We often hear that the theory
of probability started in the seventeenth century, when a French nobleman, the
Chevalier de Mr, proposed the following problem in 1654 to his friend Pascal:
Why is one more likely to obtain a "6" in four throws of a die than to obtain a
double "6" in 24 throws of two dice? This problem is known as de Mir's
paradox. We use the word paradox, because, based on the fact that there are 6
possible results when we roll a die and 36 possible results when we roll two
dice, some people thought that the two events above should have the same
probability. Indeed, notice that the number of throws, divided by the number of
possible results, is equal to 2/3 in both cases (4/6 = 24/36 : 2/3). Nowadays,
we can easily compute the probability of each event. We find that the
probability of obtaining at least one "6" in four rolls of a (fair or non-biased)
dieis 1-(5/6) 4=671/1296 0.5177, while the probability of getting at least
a double "6" in throwing two dice 24 times is 1 - (35/36) 24 -- 0.4914. We can
deduce that the Chevalier de Mr must have spent a lot of time throwing dice to
discover such a small difference! According to some historians, this problem
was not proposed by de Mr. William Feller, who wrote two books on
probability theory which are considered as true classics, mentions that the
problem was in fact first treated by Cardano I in the preceding century.
Gerolamo Cardano, or Jerome Cardan as he is called in En- glish, was a



colorful character who, in addition to being a mathematician, was also a
doctor and an astrologer. He was an inveterate gambler, which caused him
many problems. He also analyzed dice games and a card game similar to
poker. Further- more, he made astrological predictions. It is said that he had
predicted the day of his death. Since he was in good health when the day in
question arrived, he would I Gerolamo Cardano, 1501-1576, was born and
died in Italy. He became interested in the do- main of probability to gain an
advantage over his opponents in card and dice games. He also worked on
algebraic equations. He gave the resolution method for third- and fourth-degree
equations. The formula for the solution of third-degree equations had been
previously ob- tained by the Italian mathematician Tartaglia.

2 1 Introduction certainly have committed suicide so as not to lose face! Note
that another version of the story says that he managed to die of hunger on that
day. Remark. In order to pay homage to the great mathematicians who left their
mark on the history of probability, we have included some biographical notes
on almost every one whose name appears in the book, for example, Poisson,
who gave his name to a random variable and an important stochastic process.
One thing 1s certain, Pascal 2 exchanged correspondence with Fermat 3
concerning the above-mentioned problem (see reference [5], p. 128, where an
excerpt of a letter is reproduced). They also exchanged letters about other
games of chance, including one known as the problem of points, which
contributed greatly to the development of the domain of probability. The first
complete treatise on the calculus of probabilities was written by Huy- gens 4
in the seventeenth century. It is however James (or Jacob) Bernoulli (see p.
70), in posthumous works published in 1713, who really founded the calculus
of probabilities. Afterward, Laplace (see p. 85), with his book Thorie
analytique des probabilitds written between the years 1812 and 1820,
developed the theory of prob- ability in a more rigorous way. Finally, in the
twentieth century, Kolmogorov (see p. 227) gave the domain of probability its
modern formulation. 1.2 Examples of Applications If the conditions under
which an experiment is carried out determine the result of this experiment, then
it is said to be deterministic. For example, suppose that we observe an object
moving in the sky along a decreasing exponential trajectory. Suppose also that
we can control this object from a distance. Let x be the height of the object
with respect to the ground at time 0. Then, if there are no perturbations, we can
use the following model to determine the value of x(t), the height of the object



at time t: 2 Blaise Pascal, 1623-1662, was born and died in France. His father,
Itienne, was his pro- fessor. He invented a calculating machine to help his
father with his work as a tax collector. Along with Fermat, he is one of the
founders of the theory of probability. He was also in- terested in geometry and
physics. From 1654 on, he became deeply religious and published books on
philosophy and theology. 3 Pierre de Fermat, 1601-1665, was born and died in
France. He is especially known for his work on number theory, in particular
his famous "last theorem:' He has been a precursor in the domains of
probability, differential calculus and analytic geometry. He was also a lawyer
and, in addition to doing his research in mathematics, he was a councillor for
the parliament at Toulouse. 4 Christiaan Huygens, 1629-1695, was born and
died in the Netherlands. He studied law and mathematics at the university of
Leiden. Descartes showed interest in his mathematical progress. He worked, in
particular, in astronomy, mechanics and optics. In 1655, using instruments he
had made himself, he discovered Titan, the largest satellite of Saturn. The
theory of pendulum motion is also due to him.

1.2 Examples of Applications Figure 1.1. Example of a system. dx(t) = -ax(t)
dt + bu(t) dt, (1.1) x(O) =x, where a (> 0) and b are constants and the variable
u(t) is called the control. Whittle (see [24]) and the author used the equations
above in research papers as a rudimentary model for the displacement of an
airplane that is preparing to land. When we cannot predict the result of an
experiment repeated under the same con- ditions, we say that it is a random
experiment. We can then make a list of all possible outcomes and try to
compute the probability of each of these possible outcomes. In this textbook,
we are only interested in random experiments. Probability is used in
practically every pure or applied science. Examples in en- gineering,
particularly in electrical engineering, where we must resort to the calculus of
probabilities are the following. a) Many systems may be represented by a
number of components placed in series or in parallel. For example, consider
the system described by the diagram in Fig. 1.1. In reliability, we must be able
to calculate the probability that such a system will function during a certain
period of time, or at a given instant. In the latter case, we must then know, for
each component, the probability that it functions at this instant and take into
account the fact that the components perhaps do not operate independently from
one another. In the case of reliability during a given period of time, we must
know the distribution of the lifetime of each component. b) In communication,



we must often take into account the "noise" present in a sys- tem. For example,
suppose that a system transmits either a O or a 1, and that there is a risk p that
the number transmitted will not be received correctly (see Fig. 1.2). We may
be interested in computing the probability that a 0 has been transmitted, given
that a 0 has been received, or that a transmission error has occurred, etc. ¢) In
automatic control, if we take the random perturbations into account, then the
model (1.1) above becomes dx(t) = -ax(t) dt + bu(t) dt + dW(t), (1.2) where
W(t) is called a Brownian motion (or a Wiener process). We also say that
dW(t)/dt 1s a Gaussian white noise. Equation (1.2) is an example of a
stochastic differential equation. d) In computer science, probability is used, in
particular, to help us make decisions in expert systems. We also make use of
probability in simulation and in artificial intelligence, as well as in the field of
queueing theory.

Introduction Transmission Reception 1-p 0 0 ------------- plP ----- 01-pl
Figure 1.2. Example of a communication system. e) In physics, the domain
known as statistical physics requires some knowledge of the theory of
probability, and so does that of quantum mechanics. In this last case, we must
be familiar with diffusion processes, such as the Wiener process. 1.3 Relative
Frequencies To obtain the probability of one of the possible outcomes when
we perform a random experiment, we repeat this experiment a large number of
times. Let Nk (n) fk(n) :=, (1.3) n where Nk (n) is the number of times that the
possible outcome k has occurred during n repetitions of the experiment. The
quantity f (n) is called the relative frequency of outcome k. If there are K
possible outcomes, which we denote by 1,2 ..... K, then we may write that O<
tk(n) <1 fork: 1,2 ..... K (1.4) and that K Z tk(n) : 1. k=1 Indeed we have, of
course: Nk(n) {0, 1 ..... n}, so that fk(n) [0, 1], and (1.5) x-. X Nl(n)+...+Nx(n)
n )(n)=-- -- 1. nn k=l Moreover, if A is a set that contains two possible
outcomes, j and k, then fa(n) = fj(n) + tk(n), (1.6) because j and k cannot occur
on the same repetition of the experiment.

1.3 Relative Frequencies 5 For instance, if we consider the random experiment
that consists in observing the outcome of the roll of a die, then there are K =6
possible results: 1,2 ..... 6. Let A be the set {1, 6}. Because we cannot obtain
both "1" and "6" on the same roll, we may write that fA(n) = f(n) + f6(n).
Finally, the probability of the outcome k is obtained by taking the limit of tk(n)
as the number n of repetitions tends to infinity: P[{k}] :=lim f(n). (1.7)



2 Elementary Probabilities 2.1 Basic Concepts Definition 2.1.1. An
experiment that can be repeated under the same conditions and whose outcome
cannot be predicted with certainty is called a random experiment. Example
2.1.1 Abox contains 10 brand A transistors and 10 brand B transistors. We
consider the following four random experiments: El: three transistors are
taken, at random and with replacement, and the number of brand A transistors
(among the three selected) 1s counted. Remark. Sampling with (respectively
without) replacement means that the object that has been selected is (resp. is
not) replaced in the box before taking the next one. Therefore, in the case of
sampling with (resp. without) replacement, the same object can (resp. cannot)
be selected more than once. E2: three transistors are taken, at random and with
replacement, and the brand of each transistor is noted. E3: transistors are taken
one at a time, at random and with replacement, until a brand A transistor has
been obtained; the number of brand B transistors taken before ob- taining a
brand A transistor is counted. E4: a transistor is taken at random and its
lifetime 1s measured (in hours). Definition 2.12. The set S of all possible
outcomes of a random experiment is called the sample space of this
experiment. Each possible outcome is also called an ele- mentary event. When
a repetition of a random experiment is performed, one and only one of the
elementary events occurs. That is, the elementary events are incompatible (or
mutually exclusive) and exhaustive. Example 2.1.1 (continued) Corresponding
to the random experiments above, we have the following sample spaces:

8 2 Elementary Probabilities S1 = {0, 1, 2, 3}. $2 = {AAA, AAB, ABA,
BAA, ABB, BAB, BBA, BBB}. $3=1{0, 1 .... }. 84 =[0, 0). The number of
elementary events in a sample space may be finite ($1 and $2), denumerably
infinite ($3), or non-denumerably infinite ($4). Remark. A set is called
denumerably (or countably) infinite if we can establish a one-to-one
relationship between its elements and the positivc integers. A sample space
that 1s finite or denumerably infinite is said to be discrete, whereas if S 1s non-
denumerably infinite, we say that it is continuous. Remark. In this chapter, we
will not consider the case when the sample space S would be the union of a
finite or denumerably infinite set of points and a non-denumerably infinite set
of points. For instance, let E be the following random experiment: first a coin
is tossed; if we get "tails," then the point 0 is chosen, otherwise a point is taken
at random in the interval [1, 2]. In this case, we would have S = {0} t[1,2]. An
example like this will be called a "mixed" type in Chapter 3. Definition 2.1.3.



An event is a subset of the sample space S. Thus, the empty set 0 and the
sample space S itself are events. Remarks. 1) The empty set 0 1s called the
impossible (or null) event and S is the certain event. i1) There are 2 n events
that can be defined with n elementary events. 111) We generally use capital
letters like A, B, etc., to denote events. Example 2.1.1 (continued) Events
defined with respect to the sample spaces asso- ciated with the random
experiments above are the following: A: exactly one brand A transistor is
obtained; thatis, A= {1 }. A2: one brand A transistor and two brand B
transistors are obtained; that is, A2 = {ABB, BAB, BBA}. A3: five or six
brand B transistors are picked before a (first) brand A transistor is obtained;
that 1s, A3 = {5, 6}. A4: the selected transistor lasts more than 200 hours; that
is, A4 = (200, 03). Operations with Sets (see Fig. 2.1, p. 9) Union: AUB
denotes the set of outcomes that belong to A or to B (or to both). Similarly, in
general, for n events we write: n A1 CIA2 CI.. .. CI An=U Ai. i=1

2.1 Basic Concepts 9 Union S Union A B Intersection Intersection A B
Incompatibility S Incompatibility S A'S Complement Inclusion Figure 2.1. Set
theory: Venn diagrams. Intersection: A fq B denotes the set of outcomes that
belong to both A and B. In general, we have: n Al fq A2 fq...fq An=[ Ai.
i=1 If two events are incompatible, then we write: A fq B = 0. Complement:
The complement of an event A is the set of outcomes that do not belong to A; it
is denoted by A c. Inclusion: If all the outcomes that belong to event A also
belong to event B, then we say that A is included in B and we write: A C B.
Equality: Two events are said to be equal if they contain the same outcomes;
we then write: A = B. We can easily show the following relationships: 1) AU
B=B UAand A fq B =B fq A (Commutativity). 2) AUBUC)=(AUB) U
C and A fq (B fq C) = (A fq B) fq C (Associativity).

10 2 Elementary Probabilities 3) AU(B7C) = (AUB) f{AC)andAf(BC) = (A f
B) (A7 C) (Distributivity). 4) (Af) B)c=AcBcand (AB)c=Acf)Bec¢
(De Morgan's laws). 2.2 Probability Definition 2.2.1. Let E be a random
experiment and S a sample space associated with E. To each event A in S we
assign a real number noted P[ A], called the prob- ability of A, so that the
following properties are satisfied: AxiomI: P[A] >0 € A C S; AxiomIh P[
S]=1:AxiomIIl: If A, A2 .... is a sequence of incompatible events, then
(2.1) Remarks. 1) We deduce from Axiom III that if A 7/B = 0, then P[A B] =
P[A] + P[B]. (2.2) Indeed, we only have to take A=A, A2 : Band A, =0 for k



>3, because P[0] -- 0 (see Proposition 2.2.1). i1) The function P is called a
probability measure; it is a function from S into the interval [0, 1]. With the
help of the three axioms above, we easily show the following proposi- tion.
Proposition 22.1. We have: 1) P[Ac] : 1 - P[A]. 2) P[A] <1.3) P[01 =0.4)
PIOAK]=P[ AKk]-ZP[ AjAk]+'"+(-I'ntIp[ AK]. k=1 k=1 j<k k=1 5) If A C B, then
P[A] <P[B].

A B AnB 2.2 Probability 11 Figure 2.2. Figures for the proof of parts 4) and 5)
of Proposition 2.2.1. Proof. 1) Since AcUA=Sand Ac AA---- 13, we
deduce from Axioms II and III that P[A cU A] I 1 and P[A cU A] P[A c]+ P[A]
- P[A @]=1-P[A]. 2) P[A] =1 - P[A c¢] <1 because P[A c] > 0 (by Axiom
I). 3) We have:S ¢ =13and P[S c]= 1- P[S]= 1-1=0. 4) For n= 2, let us write
Al=Aand A2 ----- B; we then have (see Fig. 2.2): PFAUB]=P[AAB c]+
P[AB]+ P[A cB], because the three events are incompatible. Moreover, P[AB
e |=P[A]-P[AB] and P[A cAB]=P[B]-P[AB]. So, we have: P[A U B] =P[A] +
P[B] - P[A B]. (2.3) Next, let D := B U C; then, we may write that P[A U B U
C]=P[AUD] =P[A] +P[D] - PIAD] =P[A] + P[B] + P[C] - P[B C] - P[A
A(BUC)]=P[A] +P[B] + P[C] - P[B C] - P[(AB) U (A C)]. Hence, we
obtain the following formula: P[A U B U C] =P[A] + P[B] + P[C] - P[A B] -
P[AC] - P[B C] + P[AB C]. (2.4) To prove the formula in the general case,
we proceed by induction (that is, we assume that the formula is true for the
case of n events and we try to show that it is then also valid for n 1 events). 5)
If A C B, we may write (see Fig. 2.2) that P[A] = P[B] - P[A ¢ B] = P[A] <
P[B]. []

12 2 Elementary Probabilities Discrete Sample Spaces If S i1s a discrete
sample space, we may write that S = {el, €2 .... }, where ek is a possible
outcome (or an elementary event). Let A C S; then the proba- bility of event A
can be obtained by making use of the following formula: P[A] = Z P[Iek} ].
(2.5) k:ekEA If the number n of elementary events ek is finite and if the ek's are
equiprobable (or equally likely), so that P[ {ek}] = 1/n Yk, then we may write
that P[A] =n(a)/n, (2.6) where n(A) is the number of elementary events in A.
Example 2.2.1 1) In the case of the sample space $1I in Example 2.1.1, the four
elementary events are not equiprobable. If we denote the probability P[{0}] by
p, then we may write that P[ {1} |=P[{2} ]=3p and P[{3}1=p. Moreover, Hence,
we find that 3 P[{k}]=1p=1/8. k=0 P[A]=P[{1}]----3/8 (# 1/4). On the
other hand, the ek's are equally likely in the case of $2 and we may write,



directly, that P[A2] : P[{ABB, BAB, BBA}] ---- 3/8. Note that the
probabilities P[Al] and P[A2 ] must be equal because the events A and A2
correspond to the same outcome of the three draws in the random experiments
El and E2. Thus, to calculate the probability of getting exactly one brand A
transistor in three draws at random and with replacement from a box
containing 10 brand A and 10 brand B transistors, it is simpler to consider the
sample space $2 for which the outcomes are equally likely. ii) Since the
sample space $3 is denumerably infinite, the ek's cannot be equiprobable. We
can show that P[A3] : P[{5, 6}]: P[{5}] + P[{6}] =(10/20)5(10/20) +
(1/2)6(1/2). The second equality above 1s obtained by incompatibility of the
events {5} and {6}, while the third equality results from the notion of
independence (which will be dis- cussed in Section 2.5).

2.3 Combinatorial Analysis 13 Continuous Sample Spaces When the number of
possible outcomes is non-denumerably infinite, each et has a zero probability
of occurring. We must then give a formula that enables us to calcu- late the
probability that the outcome of the random experiment will be located in any
interval [a, b]. Example 2.2.2 Suppose that P[(a, b]] : e -a/100 - e -b/100,
where 0 <a <b <x, is the probability that the lifetime of the transistor taken at
random in the random experiment E4, in Example 2.1.1, belongs to the interval
(a, b]. Then, we may write that P[A4] : P[(200, )] :e-2-¢e---0.1353.2.3
Combinatorial Analysis 1) Tree diagrams. In order to more easily make the list
of all possible outcomes when we perform a random experiment, we
sometimes use a tree diagram. For ex- ample, suppose that we perform the
experiment E2 in Section 2.1. The eight possible outcomes are obtained by
following each branch or path in the diagram of Fig. 2.3. 2) Principle of
multiplication. Suppose that we perform k consecutive random ex- periments
Ei. Suppose also that the outcome of a given random experiment does not
influence the subsequent experiments. Let ni be the number of possible
outcomes in the sample space Si of the experiment El, fori=1, 2 ..... k. Then
there are nl @n2 € ... @nk possible results in all. Indeed, this corresponds to
the number of ways of choosing an element from a set that contains n 1
elements, then an element from another set that contains n2 .... and finally an
element from a set that contains nt. 1Stdraw 2nddraw 3rddraw Figure 2.3.
Example of a tree diagram.

14 2 Elementary Probabilities 2 a T - Figure 2.4. Tree diagram drawn



compactly. For example, if we want to buy a computer system made up of three
components: the computer itself, a screen and a printer, and if we can choose
between three brands of computers, two brands of screens and four brands of
printers, then we can buy 3 x 2 x 4 = 24 different systems. Similarly, ifa
cafeteria is offering for lunch a choice of two soups, three main courses and
four desserts, then the person working at the cash register can come across 3 x
4 x 5 - 1 =159 different trays (since a customer does not have to buy a dessert,
for instance, but he or she must buy something). Remark. It is important that the
outcome of a given experiment does not influ- ence the subsequent
experiments. For example, consider the following random experiment: a die is
thrown, then a coin; if "tails" is obtained, then the die is thrown a second time.
In this case, the sample space of this experimentis S={ IH..... 6H, 1T 1 .....
6T6} (see Fig. 2.4). So, there are 6 + 36 =42 elementary events in S, and not 6
© 2 € 6 =72. The first six elementary events are equiprobable among
themselves if the die is non-biased, and so are the last 36. In fact, using the
notion of independence (see Section 2.5), we immediately find that the first six
ele- mentary events have a probability of 1/12, and the others have a
probability of 1/72 (if the coin also 1s non-biased). 3) Permutations. Suppose
that we possess n distinct objects and that we pick k at random. If the order in
which the objects are chosen matters and if the objects are taken with
replacement, then the number of different permutations (or arrangements) of
these objects that we can obtainis givenbyn X nx ... X nnk; (2.7) in the case
when the objects are taken without replacement, the number of different
permutations is n x (n-1) x... x [n- (k-1)] -- --n:=(n), := Pkn, (2.8) (n- k) !
where k 6 {(0, )1 ..... n}. Example 2.3.1 Suppose that we want to create access
codes, to a computer system, consisting of five letters taken among the 26
letters of the alphabet. Then, we can

2.3 Combinatorial Analysis 15 create 265 different codes if the same letter can
be used more than once. However, if repetitions are not allowed, the number of
different codes is given by 26 x 25 x 24 x 23 x 22 =7,893,600. Remarks. 1) If k
=n, we have: P=n!. i1) Stirling's formula: we can show that n! (27rn)l/2nne -
n. That is, the ratio n!/(2rn)l/2nne -n tends to 1 when n tends to infinity. 4)
Combinations. Suppose now that we take k objects, at random and without re-
placement, among n distinct objects and that the order in which the objects are
cho- sen does not matter. Then, the number of different combinations (or
samples) that we can obtain is given, for k6 {(0,) 1 ..... n}, bynx(n-1)



X..X[n-(k-1)] n! () -- "-- :=C;. (2.9) k! k!(n - k)! Remarks. 1) Each combination
of k objects enables us to form k! different permuta- tions. 11) We can easily
check that C=C k. ii1) We can show that if the objects are taken with
replacement, then the number of different combinations is C +k- 1. In this case,
there are no restrictions on k. iv) We have:C=0ifk >nork <0. Example 2.3.2
Suppose that we have ten diskettes in a box. If we pick three, at random and
without replacement, then there are C10 - 10! -- 120 3!(10 - 3)! different
groups of three diskettes that we can obtain. In practice, it is not easy to take
each diskette in a really random way, so that the first diskette that we pick had
1 chance 1n 10 of being chosen, the second one 1 chance in 9, and the third one
1 chance in 8. To do so, we can use a random numbers generator. For instance,
if we have access to a computer that generates random numbers between 0 and
1, we can generate three numbers (or more, if necessary) and take first diskette
no. 2 if the first number generated is located in the subinterval [1/10, 2/10),
etc. We can also use tables of random numbers. 5) Permutations of non-
distinguishable objects. Suppose finally that among the n objects that we have,
there are ni of type 1, where 1 ---- 1, 2,..., kand n1 g- n2 g-

16 2 Elementary Probabilities € € € + nk = n. Then, the number of different
permutations of the n objects taken all at once is given by n! (2.10) nl !n2!
...nk!" The numbers obtained for varying values ofni in this expression are
called the multi- nomial coefficients. Example 2.3.3 With the letters a, a, b, b,
b and ¢, we can form 6 -- - 60 2!3!1! different code words (or access words).
We will complete this section with other examples of combinatorial analysis
problems. Example 2.3.4 If a letter (or two) may be repeated (only once) in
Example 2.3.1, then there are P526 , C26C45!, C26C 35! @4 1.-32212!
=7,893,600+3,588,000+234,000=11,715,600 different codes. The first term
above corresponds to the case when there are no repe- titions, the second term
to the case when there is exactly one repetition and the third one to the case
when there are exactly two repetitions. Moreover, we may write that P526 =
C265 "5!" Example 2.3.5 With the letters in the word essays, the number of
distinct words containing four letters that we can formis given by C 34!
(with2s's) ' C 34! (with3s's) =24+36+12=72. 4! (with Is) + 22! + 3! Example
2.3.6 If we have one one-dollar coin, two quarters and three nickels, then we
canpay 2 € 3 € 4 - 1 =23 different sums exactly. Note that we can employ
the principle of multiplication here, because whatever the number of coins of a
certain type that we use to pay, the sum will always be different. The problem



would be more complicated if we also had a dime, for instance. Example 2.3.7
If there are n persons in a class, then the probability that at least two of these n
persons have the same birthday is given (disregarding leap years) by p365 1 -
nforn=2,3 ..... 365.365n

2.3 Combinatorial Analysis 17 Note that the term Pn 365 in the numerator
corresponds to the number of permutations of n objects taken at random and
without replacement among 365 distinct objects, while 365 n is the number of
permutations with replacement of n objects taken among 365 distinct objects.
We might think that this formula is equivalent to that obtained by computing the
number of combinations with and without replacement, that is, Cn 365 1 for n=
2,3 ... 365. Cn365+n- 1 However, this last formula is wrong, because the
combinations with replacement are not equally likely, so that we cannot simply
divide the number of favorable cases by the total number of cases, like we did
with the permutations. Example 2.3.8 We have 20 components of type I, 5 of
which are defective, and 30 components of type II, 15 of which are defective.
a) We want to build a system made up of ten components of type I and five
compo- nents of type Il placed in series. What is the probability that the system
functions if the components are taken at random? b) How many distinct systems
made up of four components placed in series, with at least two components of
type 1, can be constructed if the order of the components is taken into account?
Solution. a) The total number of distinct systems that can be built is given by
Cl120 @ € C5 €. The number of distinct systems that function is Co € € c2
€ Then, by equiprobability, we can write that the required probability is C€5
© C50.00034. € - b) The total number of distinct systems that we can
construct is P45€p; among those, there are P43€p that contain no components of
type 1, and 20 € 4 € P33 that contain exactly one. Then, the required
number is Pa so- Pa 3€- 80 € pO. Remark. If we assume that we cannot
distinguish between two components of the same type, then the number of
distinct systems that we can construct is given by 6 (with 2 components of type
) + 4 (with 3 components of type I) + 1 (with 4 components of type I) = 11.

18 2 Elementary Probabilities 2.4 Conditional Probability Let A and B be two
events defined with respect to a sample space S associated with a random
experiment E. Suppose that we perform the experiment E and that the event B
occurs. Then B becomes the new sample space, for this trial, and in order that
A too has occurred, A N B must now have occurred. Notation. The expression



P[AIB] denotes the probability of the event A, given that the event B has
occurred. Definition 2.4.1. We write: P[ A {3 B] PIAIB] -- P[B] i1fP1B] > 0.
(2.11) Remarks. 1) The conditional probabilities satisfy the three axioms in the
definition of probability (see p. 10). In fact, every probability is a conditional
probability since, for any A C S, PIA S] PIA] PIAIS]- -- -- PIAL PIS] 1 1t
follows that Proposition 2.2. 1 is still valid for conditional probabilities. For
exam- ple, we may write that PACI1 B] : 1 - P[AIB]. However, in general,
PIAIB"] 1 - PIAIBI. Moreover, PIA LJ BIG] = PIAIC] P[BIC] - P[A BICI, if
P[C] > 0, etc. i1) [fA B =0, then PIAIB] = O. ii1) If B C A, then P[AIB] = L.
Furthermore, if A C B, then P[A] P[AIB] -- P[B]" 1v) We may have: P[AIB] <
P[A], P[AIB] > P[A],or P[AIB] = P[A].That is, there is no relationship
between conditional probabilities and the corresponding marginal
probabilities. From Definition 2.4. 1, we deduce at once the following
proposition.

2.4 Conditional Probability Proposition 2.4.1. (Multiplication rule) We have:
P[ANB]= P[AIB] €@ P[B] ifP[B] >O, P[ANB]=P[BIA]€ P[A] ifP[A]>O. In
general, P[Al fq A2... fq An] =P[Al] @ P[A21A1] @ P[A31Al fq A2] @ -"
© P[AnlAl fq A2 fq... fq An-1] (2.13) if P[A1 fq A2 fq ... fq An-1] > O. 19
(2.12a) (2.12b) Example 2.4.1 Two components are taken at random and
without replacement in a box containing ten brand A and ten brand B
components. What is the probability of getting a) two brand A components? b)
two components of the same brand? c¢) two components of different brands?
Solution. Let Ak = a brand A component is obtained on the kth draw. a) We
want P[A1 fq A2] = P[A2IAT1]P[A1] =9/19 x 10/20 = 9/38. Note that,
according to the multiplication rule, we may also write that P[A1 fq A2] =
P[AllAz]P[A2]. However, this formula does not enable us to directly find the
probability P [A fq A2]. b) By symmetry (since there are as many brand A
components as brand B compo- nents), we deduce from the preceding result
that the required probability is given by 9/38 + 9/38 = 9/19. ¢) We now deduce
from b) that the required probability is 1 - 9/19 = 10/19. Proposition 2.4.2. Let
A and B be two events such that P[A] € P[B] > O. Then, P[BIA]P[A] P[AIB]
-- (2.14) P[B] Proof. We only have to make use of the definition of P[AI B]
and the multiplication rule. [] Remark. This result is sometimes called
Bayes'formula. 1 The Reverend Thomas Bayes, 1702-176l1, was born and died
in England. He was first educated by tutors. After his ordination, he worked
with his father, who was also a pastor. His works on probability theory were



published in a posthumous scientific article in 1764. He wanted to find a
method by which "we might judge concerning the probability that an event has
to happen, in given circumstances, upon supposition that we know nothing
concerning it but that, under the same circumstances, it has happened a certain
number of times, and failed a certain other number of times ?' Nowadays, a
statistical school of thought is called Bayesian.

20 2 Elementary Probabilities S B3 B 4 Figure 2.5. Example of a partition of a
sample space with n=4. Definition 2.4.2. Let B, B2 ..... Bn be events such
that i) Bi fq Bj = €1 #j; ii) I, ): Bk =S. We say that the events Bk form a
partition of the sample space S. Remarks. 1) In probability, it is natural to
impose in the preceding definition the additional condition: 1i1) P[Bk] > 0 fork
=1,2 ....n. 11) A and A c constitute a partition of S. Similarly, A fq B, A fq B",
A'" fq B and A c fq B c constitute a partition of S. Now, let A C S. We can split
up A into n disjoint and exhaustive parts as follows (see Fig. 2.5): A= (Afq
B)L) (AfqgB2) L)... L) (A fq B,,). Hence, using Axiom III in the definition of
P[A], we obtain the following proposi- tion. Proposition 2.4.3. (Total
probability rule) Let B1, B2 ..... Bn be a partition of S. Then,for any AC S we
have." P[A] = P[A {3 Bk] = € P[AIBKIP[BKI if P[Bkl > OVk. k=1 k=1 (2.15)
Remark. The second equality above follows from the multiplication rule.
Finally, making use of Proposition 2.4.2 and the total probability rule, we
obtain Bayes' rule. Proposition 2.4.4. (Bayes' rule) Let AC S and Bt, B2 .....
Bn be a partition of S such that P[Bk] > O fork=1, 2 ..... n. Then,
P[AIBj]P[Bj] P[BjlA] = =I p[AIBk]P[BK] for j=1,2,...,n. (2.16)

2.5 Independence 21 Example 2.4.2 We consider a communication system that
transmits either a 0 or a 1. Because of the "noise," the signal transmitted is
sometimes received incorrectly. We define the events Ei =1 1s transmitted and
Ri=11isreceived for 1 =0 and 1. We assume that P[RolEo] = 0.7, P[R1 [El] =
0.8 and that a 0 1s transmitted 60% of the time. a) Calculate P[Eo[R1]. b) Find
the probability of a transmission error. Solution. a) We have: P[Eo[R1] =
P[RI[Eo]P[Eo] P[RI[Eo]P[Eo] + P[RI[E1]P[E1] (! - 0.7)(0.6) = 0.36. (1 - 0.7)
(0.6) + (0.8)(0.4) b) P[Transmission error] = P[Eo fR1] + P[E1 {'l RO] =
P[R1 [Eo]P[Eo] + P[Ro[E1]P[E1] = (1 - 0.7)(0.6) (1 - 0.8)(0.4) =0.26.
Remark. The events EO and E1 constitute a partition of S, and so do RO and
R1. 2.5 Independence Definition 2..1. Let A and B be two events. We say that
A and B are independent if P[A fB] : P[A]P[B]. (2.17) Remarks. 1) Two



independent events may or may not be incompatible. However, if two events A
are B are incompatible and independent, then P[A] or P[B] (or both) must be
equal to zero. Indeed, we then have: P[A B] in-Sc' P[O] =0 and P[A B] ind.
P[A]P[B] =>P[A] = 0 or P[B] = 0. i1) We also define conditional
independence as follows: A and B are said to be conditionally independent
with respect to C if

22 2 Elementary Probabilities P[A fq BIC] = P[AICIP[BIC]. (2.18) Equation
(2.18) may be satisfied, whether the events A are B are independent or not.
Moreover, two independent events may be conditionally dependent with
respect to an event C. For instance, suppose that we throw a (non-biased) coin
twice, indepen- dently. Let us define the following events: A ="heads" is
obtained on the first throw, B = "heads" 1s obtained on the second throw, C =
exactly one "heads" is obtained in all. Then A and B (as well as A and B c) are
independent, but (0 =) P[A (q BIC] PIAICIPIBIC] > O. In fact, we have:
PIAIC] - PIAfqCI P[AfgB"I ind. (1/2)(1/2) PICI PICI (1/2) 2 +(1/2) 2 and
P[BIC] = PIAIC],by symmetry. = 1/2 Proposition 2.5.1. Two events, A and B,
such that PI A] x PI B] > O, are indepen- dent if and only if PIAIBI= PIA] or
PIBIAI= P[B]. (2.19) Proof. We have: P[A fq B] = P[AIB]P[B]. Then, if A and
B are independent, we obtain that P[A]PIB] = P[AIB]P[B] := PIAIB] = PIA].
Similarly, since P[A fq B] = P[BIA]P[A], we also have: P[BIA] = PIB].
Conversely, if P[ AIB ] =P[ A], then P[A fq B] P[A] -- := P[A]P[B] = P[A
fq B]. P[B] In a similar way, we show that if P[BI A] = P[B], then P[A fq B] =
PIA] P[B]. [] Proposition 2.5.2. If A and B are independent, then so are A"
and B. Proof. Let us consider the case when P[A] € P[B] > 0. We have:
p[ACIB] =1 - P[AIB] ind. 1 - P[A] = p[AC]. [] Remark. Likewise, we show
that A and B c, as well as A ¢ and B c, are independent events.

2.5 Independence 23 Definition 2.5.2. The events Al, A2 ..... An are said to be
pairwise independent if P[Ai 71 A j] : P[Ai]P[Aj] @1 7A ], (2.20) where i, j =
1,2 ... n. Remark. There are C conditions to check. Definition 2.5.3. The
events At, A2 ..... An are said to be (globally) independent if for any k <n,
whatever the events Ai(1) ..... Ai(k), we may write that P[Ai() 71Ai1(2) 71...
71 Ai(k)] = P[Aio)]P[Ai(2)]... P[Ai(k)], (2.21) where i(j) 7A i(m) if ] 7TA m.
Remarks. 1) This means that the events can be taken 2, 3, ..., nat a time and the
probability of the intersection is always equal to the product of the marginal
proba- bilities, that is, of the probabilities of the individual events. i1) This



time, the number of conditions that we must checkisC=C-C-C=2n-n-
1, k=2 k=0 by Newton's binomial theorem. 2 Example 2.5.1 We consider a
system made up of three components that operate independently from one
another. We suppose that the system functions if at least two of its components
are working. A system of this type may be represented by the diagram in Fig.
2.6, p. 24. Let the events be as follows: F = the system is functioning at time t
and F/ = the component 1 is functioning at time t, for 1 = 1,2 and 3. Then, if we
assume that P[F/] = 0.9 for all 1, we can write (by symmetry) that P[F] =3 x
P[F 71 F2 71 F] + P[F 71 F2 71 F3] ind. 3 X (0.9)(0.9)(0.1) + (0.9) 3 =
0.9720. 2 Sir Isaac Newton, 1643-1727, was born and died in England. He is
famous for his contri- butions to the fields of mechanics, optics and astronomy.
He and Leibniz (and, according to some, Fermat) invented differential
calculus. Actually there was a great controversy be- tween the two scientists
about that, each one claiming to be the inventor of infinitesimal calculus. He
also worked on alchemy and wrote theological books.

24 2 Elementary Probabilities Figure 2.6. Graphical representation of a two-
out-of-three system. Example 2.5.2 A box contains 10 brand A diodes and 20
brand B diodes. Ten diodes are taken, at random and with replacement, and the
brand of each one is noted. Com- pute the probability of getting at least one
brand A diode. Solution. Let the events be as follows: and F = at least one
brand A diode is obtained Ak = the kth diode selected is a brand A diode. We
want P[F]=PIAUA2 U... UAo] =1 -PIA'i fq A1q... f{q A'10]. Now, because
the diodes are taken with replacement, the events A are (globally) independent.
Moreover, P[AK] = 10/30 = 1/3 for any k. Then, we have: PIF] =1 - (2/3) € -
- 0.9827. Example 2.5.3 (see [14]) In a certain factory, 96% of the computers
manufactured conform to the norms. Each computer produced is subjected to
two independent quality control operations. We assume that each operation
classifies as "good" 98% of the computers that effectively conform to the
norms, and 6% of the computers that actually do not conform to the norms.
Calculate the probability that a computer sold effectively conforms to the
norms. Solution. Let the events be as follows: A = the computer has been
classified as "good" twice and B = the computer conforms to the norms. We
want

2.5 Independence P[AIB]P[B] P[BIA] = P[AIB]P[B] + P[AIBC]p[B c] ind.
(0.98) 2 (0.96) = -- 0.9998. (0.98)2(0.96) (0.06)2(0.04) 25 Remarks. i) We



know that Bs := B and B2 := B ¢ constitute a partition of S. 11) Let Ak = the
computer has been classified as "good" by the kth control operation; then, we
may write that A = As A2. Furthermore, As and A2 are conditionally
independent with respect to B (and Be), but are not independent. Example
2.5.4 ("The Monty Hall problem") A man takes part in a television game show.
At the end, he 1s presented with three doors and is asked to choose one among
them. The grand prize is hidden, at random, behind one of the doors, while
there 1s nothing behind the other two doors. The game show host knows where
the grand prize has been hidden. Suppose that the man has chosen door no. 1
and that the host tells him that he did well in not choosing door no. 3, because
there was nothing behind it. He then offers the man the opportunity to change
his choice and, therefore, to select door no. 2 instead. What is the probability
that the man will win the grand prize if he decides to stick with door no. 1 ?
Solution. Let Ak = the grand prize is hidden behind door no. k, for k=1, 2, 3,
and let F = the game show host has eliminated door no. 3. Assume, in all logic,
that 1f the man has chosen the right door, then the host will eliminate door no. 3
with probability 1/2. Inthis case, 1 1 1 1 P[F] =
P[FIAs]P[As]+P[FIA2]P[A2]+P[FIA3]P[A3] = -+1-+0 = and then
P[FIAs]P[As] 1/6 P[AsIF] = -- -- -- 1/3. P[F] 1/2 Therefore, the man has a
probability of 2/3 of winning the grand prize if he decides to switch doors. In
general, if there are n doors and if the host eliminates n - 2 among them (he
naturally cannot eliminate the door chosen by the participant), then the
probability that the grand prize is hidden behind the only remaining door,
among the n - 1 doors in play, is equal to (n - 1)In. Example 2.5.5 (The liars
problem) A says that B told him that C has lied. If the three persons tell the
truth and lie with probability p (0, 1), independently from one another, what is
the probability that C has indeed lied? Solution. Let the events be as follows: F
= A says that B told him that C has lied and

26 2 Elementary Probabilities lied, for [ = A, B, C. We want Now, we have:
P[FcIF] = P[FIFc]P[Fc] P[FIFc]P[Fc] + P[FIF]P[F] PIFIFc] = p[FCA F(B] -t-
P[FA 7) FB] ind. p2 -t- (1 -- p)2 and Hence, P[FIF] = P[F FB] + PIFA f F'l ind.
2p(1 - p). PIFcIFI=[p2 + (1 --p)21(1 --p) Ip 2 + (1 -- p)21(1 -- p) + 12p(1 --
P)IP Note that ifp =1/2,then P[FclF] = 1/2, which is logical. p2 -t- (1 -- p)2 3p
2+(1 --p)2" 2.6 Exercises, Problems, and Multiple Choice Questions Solved
Exercises Exercise no. 1 (2.3) 3 License plates are made up of three letters
followed by four digits. We assume that the letters I and O are never used and



that no license plates end with 0000. a) How many distinct license plates can
there be? b) What is the answer in a) if, in addition, no plates bear either three
identical letters or four identical digits? Solution a) The number of possible
distinct plates 1s (24 x 24 x 24) x (104- 1) : 138,226, 176. b) In this case, the
total number of possible plates is given by (243- 24) x (104- 10) = (13,800)
(9990)= 137, 862,000. Exercise no. 2 (2.3) How many distinct code words
made up of four letters can be formed by using (without replacement) the
letters of the word ESSAY? 3 The material that must have been read to be able
to solve each exercise is indicated in the parentheses.

2.6 Exercises, Problems, and Multiple Choice Questions 27 Solution If we
take a single s, then we can form 4! = 24 distinct code words. If we use the two
s's, then the number of distinct code words that can be formed is given by (3 4!
= 3- =36. Hence, the total number 1s 60 code words. 2] 2!1!1! Exercise no. 3
(2.3) A case holds two boxes containing ten objects each. a) Suppose that,
among the 20 objects, there are exactly five that are defective. What is the
probability that these five defective objects are all in the same box? b) If each
box is made up of two rows of five objects each and if the 20 objects (that are
distinguishable) are placed at random into the two boxes, how many distinct
arrangements of the ten objects inside a box are there? Solution a) P [All
defective objects in the same box] 15! 10!10! : 2 x ()(55) -- 2 x-- -- _ 0.0325.
(00) 5!'10! 20! 20 b) The number of distinct arrangements is given by () 10! =
Y6. € Exercise no. 4 (2.3) A certain computer language uses the 26 letters of
the alphabet and 10 special characters (S, #, etc.). We use these 36 characters
to generate (at random) access codes, to a computer, made up of four
characters. a) Let E be the random experiment that consists in counting the
number of special characters in a code taken at random. 1) Write the sample
space S for this experiment. 11) Compute the probability of each elementary
event. b) We consider a code taken at random. We define the events A = the
given code contains at least one letter and B = the given code contains exactly
one letter. Are the events A and B ¢ incompatible? Justify your answer.
Solutiona) 1) S={0, 1,2,3,4}. (26 411) P[{0}] =\36] " 0.2721; P[{1}] =-
\36] " 0.4186;

28 2 Elementary Probabilities Figure 2.7. System in Exercise no. 5. P[{2} 1=
\36]\36] -0'2415; (:) (10"3 (26) P[{3}]=\36] -0'0619: (104 P [{4}]=\36] -
0.0060. b) P[A71B c] =P[{0}L{I}L{2}1 > 0, which implies that A and B ¢



are not incompatible. Exercise no. 5 (2.5) We have 10 brand A components,
denoted by A ..... A0, and 20 brand B components, denoted by BI .... , B20. We
want to build a system made up of two subsystems: three brand B components
placed in series and two brand A components placed in parallel. Moreover,
the two subsystems are placed in parallel (see Fig. 2.7). a) How many distinct
systems can be built? Remark. The disposition of the components inside the
subsystems does not matter. b) Assume that two brand A components are
defective, while five brand B compo- nents are defective. What is the
probability that the system functions 1f the compo- nents are taken at random
and operate independently from one another? Solution a) There are (20) =
1140 possibilities for the first subsystem and (2 €p) = 45 pos- sibilities for the
second one. Then, by the principle of multiplication, there are 1140 x 45 =
51,300 distinct systems that can be built. b) We have: 15x14x 1391 P
[Subsystem B functions] -- 20 x 19 x 18 -- 228 and

2.6 Exercises, Problems, and Multiple Choice Questions Figure 2.8. Figure for
Exercise no. 6. 29 2xl 88 P [Subsystem A functions] =1 10x9 90 (137" (1) =
P [System functions] = 1 - \228] - - 0.9866. Exercise no. 6 (2.5) A network is
constituted of four terminals and four links, as shown in the diagram in Fig.
2.8. Thus, there are two paths that connect any pair of terminals. Moreover, a
terminal that transmits information to another terminal does so by sending this
information in both directions, independently. The transmission is considered
to be successful if the information is received along one path or the other (or
both). Finally, we assume that the links fail, independently from one another,
with probability 0.1. a) What is the probability that the information transmitted
by terminal A to terminal B will be successful? b) What is the probability that
the information transmitted by a given terminal to another terminal will be
successful? ¢) In how many different ways can the four terminals be disposed
inside the net- work if we suppose that two networks are identical when each
terminal has the same neighbors in both networks? Solution Let F = the
transmission 1s successful, and FAB= the information transmitted in the
direction AB is well received, etc. a) P [F] =P [FAB t FACDB] ind. p [FAB] -
'P [FACDB] -- P [FAB] P [FACDB] in _d. (0.9) +(0.9) 3 -- (0.9) 4 = 0.9729.
b) Let Dk = the minimum number of links between the two terminals is equal to
k. We have: k=1 or 2. Then, P[F] = P[F I DI|P[DI]+P[F I D2]P[D2] a )
(0.9729)()+P[FABDUFACD]()



30 2 Elementary Probabilities ind. (0.9729) () +[(0.9)2 +(0.9)2 (0.9)4] () =
0.9699. c) First we fix the position of one of the four terminals, and next we
move the other three terminals. There are then () = 3 different networks
(because the order of the neighbors does not matter): AB AB AC CD DC DB
Exercise no. 7 (2.5) A system is made up of three components that operate
independently from one another. For the system to function, at least two of its
components must function. We suppose that the reliability of component no. I is
equal to 0.95, that of component no. 2 to 0.9, and that of component no. 3 to
0.8. a) What is the probability that the system functions'? b) Given that the
system functions, what is the probability that exactly two compo- nents
function? c¢) Given that the system does not function, what is the probability
that no components function? d) Given that component no. I functions, what is
the probability that the system functions? a) Solution Let F = the system
functions, and F 1 = component 1 functions, fori=1, 2, 3. PIF] =P [F n F2 n F]
+P[FnFnF3]+P[FnF2nF3]+PIF nF2nF31"d' (0.95) (0.9) (0.2) +
(0.95) (0. 1) (0.8) +(0.05) (0.9) (0.8) +(0.95) (0.9) (0.8) =0.283 + 0.684 =
0.967. b) Let G = exactly two components function. P IF I G] P {GI ) 1(0.283)
P{G[ F]=-- -- P[F] 0.967 ¢) Let H=no components function. P[H[ F c]=P
[Fc [ HIP[HI ) 1(0.05)(0.1)(0.2) PIF ¢] 1-0.967 d) P[F [ F] ind. p [F 2
F3]=P[F21 -t- P[F31 - P[F2 N F31 ind. =0.9 + 0.8 -- (0.9) (0.8) =0.98.
0.2927. =0,03.

2.6 Exercises, Problems, and Multiple Choice Questions Unsolved Problems
31 Problemno. 1 Two dice are thrown simultaneously. If a sum equal to six or
ten is obtained, then a coin is tossed. a) How many elementary events (of the
form (die 1, die 2) or (die 1, die 2, coin)) are there in the sample space S? b)
Assume that the dice and the coin are non-biased (or well-balanced). Given
that the coin has been tossed, what is the probability that a "i" has been rolled
with the second die? Problem no. 2 LetAandBbeeventsforwhichP[ArB]=P[ A
crB]=P[ArBc]=p(see Fig. 2.9). Calculate a) P[Ac B'];b) P[AckJ
BC]. Problem no. 3 In a certain lottery, five balls are picked, at random and
without replacement, among 25 balls numbered from 1 to 25. We win the grand
prize if the five balls that we have chosen are selected in the same order as
they appear on our ticket. a) What is the probability of winning the grand
prize? b) What is the probability of not winning the grand prize because of a
single ball? Problem no. 4 We have nine electronic components, including two
defective ones. Four compo- nents are taken at random to construct a system in



series. a) What is the probability that the system does not function? b) If a fifth
component (taken among the remaining five) is placed in parallel with the first
four, what is the probability that the system will function? Problemno. 5 Let
P[A[ B] = €, P[B c] = @ and P[ArB c] = . Calculate a) P[A];b) p[ACT) B].
Problemno. 6 Let A and B be independent events such that P[A] <P [B] and A
B Figure 2.9. Figure for Problem no. 2.

32 2 Elementary Probabilities P[A 1 B]+ P[B I A]= 1. Sl Transmission $2 0.05
s3 0.02 a) Calculate P[A] ifP[A 71 B] =2" b) Calculate P [B] if P[A U B] :
3"19 Problemno. 7 A communication system transmits three signals: sl, s2 and
s3, with equal prob- ability. The reception is sometimes erroneous, because of
the "noise." It was found, experimentally, that the probability Pij of receiving
the signal s.1, given that the sig- nal si has been transmitted, is given by the
following table: Reception )0"115 $2 5"3 0.1 0.90 ( 0.08 0.901 a) Calculate
the probability that the signal s has been transmitted, given that the signal s2
has been received. b) If we assume that the transmissions are independent,
what is the probability of receiving two consecutive s3 signals? Problem no. 8
A box contains five brand A, three brand B and two brand C transistors. The
transistors are all distinguishable. In how many ways can we pick, at random
and without replacement, four transistors if we want to get at least one of each
brand? Remark. The order in which the transistors are selected does not
matter. Problem no. 9 According to the data collected, 40% of all human
beings have type A blood, 10% have type B, 45% type O and 5% type AB,
Moreover, we think that 90% of people who have type O blood are incorrectly
classified, whereas 3% of people with type B, 10% with type AB and 2% with
type A blood are classified as having type O blood. a) What is the probability
that a person classified as having type O blood really has this type of blood?
b) If we assume that each person is classified independently from the others,
what is the probability that two given persons classified with type O blood do
not have this type of blood? Problemno. 10 A diskette is taken at random from
a box containing 10 brand A, 15 brand B and 25 brand C diskettes. We assume
that, in general, 95% of the brand A diskettes are perfect. This percentage is
97% for the brand B diskettes and 99% for those of brand C.

2.6 Exercises, Problems, and Multiple Choice Questions 33 Figure 2.10.
System in Problem no. 12. a) Given that the diskette taken at random is not
perfect, what is the probability that it is of brand A? b) If we repeat the random



experiment described above ten times, with replacement (so that the trials are
independent), what is the probability of obtaining at least one imperfect
diskette? Problemno. 11 Four calls were directed at random to a telephone
central during a one-hour pe- riod. What is the probability that one call was
received during each quarter of an hour of the hour considered? Problem no.
12 A system is made up of subsystems A and B placed in parallel. The
subsystem A contains three components, A1, A2 and A3, placed in series,
while the components B1 and B2 placed in series constitute the subsystem B
(see Fig. 2.10). We suppose that the probability that the component A 1
functions at the end of one year is equal to 0.9, for 1 =1, 2, 3, independently of
the other components. We also suppose that the components B and B2 operate
independently of each other. Moreover, we assume that the probability that the
component Bk, k= 1,2, functions at the end of one year is equal to 0.95 if the
subsystem A functions at this moment, and to 0.80 otherwise. Let us define the
following events: F = the system functions at the end of one year and Fx = the
subsystem X functions at the end of one year, for X = A, B. Calculate a) e
[FB]; b) e [F];c) e [FB ] F]; d) e [F O F]. Problemno. 13 A person buying a
certain make of car can choose one or several of the following options: A = an
automatic transmission, C = air-conditioning, and M = a V6 engine. Based on
the data collected so far, 90% of the customers choose at least one of the three
options, 75% choose at least two and 45% choose the three options. Moreover,

34 2 Elementary Probabilities the three options taken individually are equally
popular. Finally, all possible groups of two options are also equally popular.
We define the event A = the customer chooses option A; similarly for C and M.
a) How many different versions of the car in question can be bought if at least
one of the three options is chosen? b) Are the events A, C and M
incompatible? Justify your answer. c) Are the events A, C and M (globally)
independent? Justify. d) Calculate the probability that a person buying this car
chooses exactly one option. e) Calculate the probability that a person buying
this car has chosen the three options, given that he/she has chosen at least one.
Hint. Use a Venn diagram. Problem no. 14 An electricity distribution network
is made up of three stations: A, B and C. We know, by experience, that during a
heat wave the probability that an overload occurs at station A is equal to 0.4;
this probability is equal to 0.3 for station B and to 0.2 for station C. Moreover,
we assume that an overload at station A causes a breakdown of the entire
network in 2% of the cases. An overload at station B brings about a



breakdown of the entire network 3% of the time, and an overload at station C
causes a breakdown of the network 4% of the time. We define the events: D =a
breakdown of the network occurred during a certain heat wave and A
(respectively B, C) = an overload occurred at station A (resp. B, C). Remark.
We assume that a network breakdown can only occur when there is an
overload at one of the three stations, and that two overloads cannot happen
exactly at the same moment (so that the events A, B and C are incompatible for
a given breakdown). Calculate a) P[D];b)P[A ] D];c) P[D] BtC]. d) Suppose
that the breakdowns are independent of one another. Compute the proba- bility
that two consecutive breakdowns have been caused by an overload at the same
station. Problem no. 15 A respirator used during surgical operations breaks
down with probability p (> 0). A breakdown of the respirator entails that the
patient will die, unless a monitor detects the breakdown and warns the
surgeon. In this case, there is an 80% chance that the surgeon will be able to
save the patient. The monitor fails with probability 0.005, independently of the
respirator. We define the events: F ----- a patient dies because of a breakdown
of the respirator, R -= the respirator fails

and 2.6 Exercises, Problems, and Multiple Choice Questions 35 M = the
monitor breaks down. a) The respirator is made up of three components placed
in parallel that operate independently from one another. If the reliability of
each component is equal to 0.9, what is the probability p that the respirator
will fail? b) The monitor is constituted of two brand A and two brand B
components. The four components are placed in series. We have 10 brand A
and 20 brand B components to build monitors. How many different devices can
we construct if we assume that the order of the four components placed in
series matters and that the 10 brand A com- ponents and the 20 brand B
components are not distinguishable among themselves? ¢) What is the answer
in b) if we assume that the 30 components that we have are numbered from 1 to
307 d) Are the events R and M incompatible? Justify your answer. Answer the
following questions assuming that p ----- 0.01. Calculate e) P [F]; f) P[M I F];
g) P[F IR t2 M]. h) We consider two patients that died because of respirator
failures. What is the probability that the monitor worked in one case but failed
in the other case? Remark. We assume that the monitor breakdowns are
independent. Problem no. 16 We divide the length of telephone calls into three
categories: those lasting less than one minute (1), those lasting between one and
three minutes (II), and the ones lasting more than three minutes (I1I). Moreover,



we suppose that 60% of all calls are personal and the rest are business calls.
Finally, we suppose that 10%, 20% and 70% of the personal calls are of
category I, Il and III, respectively. In the case of the business calls, these
percentages are equal to 20%, 40% and 40%, respectively. a) Two calls are
made during a certain period. If we record the total number of per- sonal calls
and the number of personal calls of each category, how many elementary
events (like 0000, for example) are there in the sample space S? b) We
consider three independent business calls. What is the probability that there is
one of each category? ¢) What is the probability that a given call lasts less than
one minute? Problem no. 17 You are waiting for a friend who entered a shop.
At the time of paying, he goes at random to one of the three cash registers: A, B
or C. The probability that the service is slow at A is equal to 0.7; this
probability is equal to 0.6 at B and to 0.5 at C. When he arrives, your friend
tells you that the service has been slow at the cash register. a) Calculate the
probability that your friend went to cash register C. b) Calculate the
probability that, on two other independent visits to this shop, your friend did
not go to cash register C, given that the service has been slow on each
occasion.

36 2 Elementary Probabilities Problem no. 18 In a certain city, 60% of the
calls to the emergency number require the help of the police department, 40%
that of the ambulance service, and 20% ask for the fire department. Moreover,
40%, 20% and 5% of the calls require only the help of the police department,
the ambulance service and the fire department, respectively. Finally, 5% of the
calls require the help of the three services and 10% do not ask for any of these
three services. a) Calculate the probability that a given call requires the help
of the police department and of the ambulance service, but not of the fire
department. Hint. Use a Venn diagram. b) Let the events be as follows: A=a
certain call requires the help of the police department and B = a certain call
requires the help of the ambulance service. Are the events A UB and A"U B"
incompatible (or mutually exclusive)? Justify your answer by a numerical
computation. ¢) We consider ten calls to the emergency number. Among these
calls, there are ex- actly seven that required the help of the police department.
If four calls are taken at random (and without replacement) among the ten calls
considered, what is the prob- ability that exactly two of these four calls
required the help of the police department? Problem no. 19 Computers A and B
exchange information within a network. The probability that the information



sent from A to B is incorrectly transmitted is equal to 0.01, while this
probability is equal to 0.005 in the case when the information is sent from B to
A. We consider 10 messages transmitted from A to B and 15 messages from B
to A. We assume that all transmissions are independent. a) What is the
probability that a message taken at random among the 25 messages considered
has been incorrectly transmitted? b) Two messages are taken at random and
without replacement among the 25 mes- sages considered. Given that both
messages have been incorrectly transmitted, what is the probability that they
were transmitted by the same computer? ¢) Suppose that exactly two of the 25
messages considered have been incorrectly transmitted. What is the probability
that the two erroneous messages were transmit- ted by the same computer?
Problem no. 20 An engineer responsible for the control of the quality in the
company where she works receives a batch of 200 parts used in the computers
that they build. She decides to pick 10, at random and without replacement, and
to test them. Let E be the random experiment that consists in counting the
number of defective parts among

2.6 Exercises, Problems, and Multiple Choice Questions 37 the 10 parts
tested. Answer the following questions by assuming that there are in fact two
defective parts among the 200 parts received. a) Write the sample space S. b)
Calculate the probability of all the elementary events. ¢c) We define the event
Ak = there are exactly k defective parts among the 10 parts tested, for k=0, 1
..... Calculate P[Ao U (AC V A2)]. Problemno. 21 A small company has two
telephone lines: a local number (line 1) and an 800 number for people outside
the city (line 2). We suppose that the probability that line 1 is busy during
working hours is equal to 0.1; this probability is equal to 0.05 in the case of
line 2. Moreover, we suppose that the probability that a customer who calls for
the first time (and finds the line busy) is lost is equal to 0.3 when the call 1s
local and to 0.4 when the call comes from outside the city. Finally, we estimate
that 60% of the calls are local. a) Calculate the probability that the next
customer who calls the company for the first time will be lost. b) Given that a
customer has been lost after having called only once, what is the probability
that this customer has called the 800 number? c) Among the next 10 customers
who will call for the first time to the local number, what is the probability that
at least two of them will be lost? Remark. We assume that the customers are
independent of one another. Problem no. 22 a) We consider four viruses (VI,
V2, V3 and V4) that can infect the computers of the computer network of a



certain institution. Let F1 = virus Vi has infected the network, for1=1,2, 3, 4.
We assume that the events F1 and F2 are independent, as well as the events F3
and F4. Moreover, the events F1 and F3 are incompatible, and so are the
events FI and F4, F2 and F3, and F2 and F4. Finally, we suppose that P[ Fi] =
P[ F2] =0.05 and that P[F3] = P[ F4] = 0.01. 1) Calculate the probability that
the network will be infected by any of the viruses. 11) Can we say that the event
FIis included in the event F27 Justify your answer. 1i1) Are the four
intersections of three distinct events equally likely7 Justify your answer. b) We
consider five other viruses that can infect the computers of another computer
network. How many conditions must we check (at most) to determine whether
the five viruses are (globally) independent? Justify your answer. Problem no.
23 A sample of five empty CDs is taken at random from a batch of 100 CDs.
We consider the random experiment E that consists in counting the number of
CDs that conform to the norms. Assume that the batch of 100 CDs contains in
fact exactly four defective CDs.

38 2 Elementary Probabilities a) Write the sample space for this random
experiment i1f 1) the CDs are taken one at a time and with replacement; 11) the
five CDs are taken all at once. b) Calculate the probability that the sample of
five CDs contains at least one defective in cases 1) and 11) above. c¢) Let the
events be as follows: A = there is at least one CD that conforms to the norms
among the five taken at random and B = there 1s at least one defective CD
among the five taken at random. In case 1) above, are the events A' and B'
incompatible? Are they independent? Justify your answers with numerical
calculations. Problem no. 24 A system is made up of three components placed
in parallel that operate simul- taneously. The probability that component no. 1
functions is equal to 0.9. In the case of component no. 2, this probability is
equal to 0.95 if component no. 1 functions, and to 0.8 otherwise. Finally, the
probability that component no. 3 functions is equal to (1.99 if components nos.
1 and 2 function, to (I.75 if components nos. 1 and 2 do not function, and to (1.8
otherwise. a) Calculate the probability that the system functions. b) Given that
the system functions, what is the probability that component no. 2 functions? ¢)
Calculate the probability that component no. 3 functions. Multiple Choice
Questions Question no. 1 A box contains 100 objects, namely 40 brand A and
60 brand B objects. We take 50 objects at random and without replacement and
we count the number of brand A objects obtained. Write the sample space
corresponding to this random experiment. a){0 ..... 40} b){0 ..... 50} ¢){10 .....



40} d){10 ..... 50} e) none of these answers Question no. 2 A certain store has
5 brand A, 10 brand B and 20 brand C items in stock. How many different
orders of these three brands can it satisfy? a) 35 b) 999 c¢) 1000 d) 1385 ¢)
6545

2.6 Exercises, Problems, and Multiple Choice Questions 39 Question no. 3 We
have 20 components, of which two are defective. Three components are taken
at random to construct a machine made up first of two components placed in
parallel, and then a component placed in series. We suppose that all the
components operate at the same time, and independently from one another.
Calculate the probability that the machine functions. a) 0.8895 b) 0.8947 ¢) 0.9
d) 0.9942 e) 1 Question no. 4 Let A and B be independent events such that
P[A] = 1/4 and P[B] = 1/2. More- over, let C be an event such that P[CI Ac f)
B] =1/2 and P[CIA ¢ f) B ¢] = 1. Finally, A and C are incompatible. Calculate
P[Acf)BcIC].a)0b) 1/3¢c) 1/2d) 2/3 e) 1 Question no. 5 A class is made
up of five female students and 45 male students. Among the five girls, four are
second-year students, while 30 out of the 45 boys are second- year students.
Two students are taken at random, and without replacement, among the 50
students in this class. Knowing that in both cases the person chosen was a
second-year student, what is the probability that a male and a female students
were chosen? a) 8/289 b) 30/289 ¢) 60/289 d) 229/289 ¢) 259/289 Question
no, tl Let E be the following random experiment: two dice are tossed; if the
two num- bers obtained are equal, then the two dice are tossed again (only
once). How many elementary events are there in the sample space S? a) 72 b)
216 c) 246 d) 252 e) 1296 Question no. 7 In a class, there are 20 students.
What is the probability that exactly two of them share the same birthday? a)
0.3232b) 0.4114 ¢) 0.5886 d) 0.6768 e) none of these answers Question no. 8
A number x is taken at random in the interval [0, 3] so that the probability that
the number chosen is in the interval [k, k 1] 1s equal to (k 1)p, for k=0, 1,2.
Calculate P[A], where A := {x [0, 3] :Ix--1>1}.a) 1/12b) 1/4¢) 1/3d) 1/2
e) 2/3 Question no, 9 In a certain factory, 80% of the parts fabricated conform
to the norms. Every part fabricated in this factory is subjected to three
independent quality control operations. We suppose that each of these
operations classifies as non-defective 95% of the parts that effectively
conform to the norms, and 10% of the parts that are in fact defective. Calculate
the probability that a part that has been sold conforms to the norms. a) 0.80 b)
0.9250 ¢) 0.95 d) 0.9744 ¢) 0.9997



40 2 Elementary Probabilities Figure 2.11. System in Multiple choice question
no. 10. Question no. 10 We consider a system constituted of five identical
components that operate inde- pendently from one another and that are
connected as in the diagram in Fig. 2.11. Knowing that exactly three of the five
components work, what is the probability that the system functions? a) 0.6 b)
0.7 ¢) 0.8 d) 0.9 e) we cannot compute it Question no. 11 The license plates in
a certain country bear six characters taken at random among the 26 letters of
the alphabet and the ten digits {0, 1 ..... 9}. What is the probability that a given
license plate bears at least one digit? a) 0.0546 b) 0.1419 ¢) 0.3275 d) 0.8581
e) 0.9995 Question no. 12 A student gets up at time X and goes to bed at time
Y, where 0 <X <Y <24. LetS={(x,y): 0<x<y <24}. Write in
mathematical form the event A = the student is up at least three hours more than
he lies inbed. a){(x,y)S:[y-x[ >3} b) {(x,y) S: [y - X[ <13.5} ¢){(x,y)6S:y-x
>13.5} d){(xy)6S:y-x < 15} €){(x,y)6S:y-x > 15} Questionno. 13 Let A, B
and C be events such that A C B, A and C are incompatible, P[(B U C) c] =
1/10, P[B C] =3/10, P[A c B] = 1/2 and P[C] = 13/20. Calculate P[ A]. a) 0
b) 0.05 ¢) 0.35 d) 0.5 e) 0.9 Question no. 14 Two men and two women sit at a
circular table. In how many different ways can they be seated if the two men
must be opposite each other? Remark. Two ways are equivalent if each person
has the same neighbors to his/her left and to his/her right. a) 2 b) 3 ¢) 4 d) 6 ¢)
24
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How many distinct license plates made up of three letters and three digits can
there be if the three letters appear either at the beginning or at the end of the
plate? a) 3F'l€@F'263 b) 2(C0C326) c) 103263 d) 2(103263) e) C36 103263
Questionno. 16 Let A, B and C be events such that P[A] =P[B] =1/2, and A
and B are independent. Calculate P[A a)0 b) 1/18 ¢) 1/6 d) 1/3 e) 1/2 Question
no. 17 The events A and B form a partition of the sample space S. Calculate
P[AI B] + P[AIBC]. a) 0b) 1/4 ¢) 1/2 d) 1 e) none of these answers Question
no. 18 In a certain computer store, a study revealed that the three most popular
options when people buy a new computer are the following: A = a faster
processor, B = a larger hard disk and C = a wider screen. According to the
data collected so far, 40% of the customers have chosen at least one of these
three options, and 10% chose only option C. Moreover, all the customers who
chose option A also chose option B, and vice versa. Finally, options A and B
taken together have been twice as popular as option C. In the following



questions, only the options A, B and C are considered. A) How many different
computers have been sold up to now by this computer store? a) 2b) 3c)4d) 6
¢) 8 B) How many different computers can be sold to future customers? a) 4 b)
5¢) 6d) 7 e) 8 C) What proportion of the customers have chosen the three
options so far? a) 0 b) 0.05 ¢) 0.1 d) 0.15 e) 0.2 D) Up to now, 30% of the
customers have been women. Moreover, 80% of these women have chosen
none of the options considered. What is the probability that a man taken at
random has chosen at least one of the three options? a) 2/5 b) 17/35 ¢) 18/35
d) 3/5 e) none of these answers E) Under the same hypotheses as in D), what is
the probability that a customer that has chosen none of the three options is a
woman? a) 0.2 b) 0.3 ¢) 0.4 d) 0.6 e) 0.8 F) We consider five persons who
each bought a computer. Assuming that the cus- tomers are independent, what
is the probability that at least two of them chose none of the three options? a)
0.0870 b) 0.2304 ¢) 0.7696 d) 0.9130 ¢) 0.9898

42 2 Elementary Probabilities Question no. 19 A transistor is taken at random
and its lifetime is measured. The sample space for this random experiment is
given by S = [0, cx). We consider the events A=[0, 1], B=[0,2] and C=1,
cx). Give the intervals that correspond to the following events: A) D=A U (B
0C);a)[0,11b)[0,21¢) [, 21d)[2,cx)e)]l cx) B) F=[AO(B cUC"I c. a)
[0,1] b)[0,2] ¢) 11,2] d) 12, ¢) e) ll,c) Question no. 20 Two dice are thrown
simultaneously. One of the dice has four red faces and two white faces,
whereas the other one has two red faces and lbur white faces. Let R = at least
one red face is obtained, and B = at least one white face 1s obtained. Calculate,
assuming that all faces have an equal probability of coming up (namely, one
chance in six) A) PIR]; a) I/3 b) 4/9 ¢) 5/9 d) 7/9 e) 8/9 B) PIR B]. a) I/3 b)
4/9 ¢) 5/9 d) 2/3 e) 7/9 Question no. 21 The combination of a padlock is made
up of three digits (taken in the set {0, I ..... 9}). How many possible
combinations are there if A) each digit cannot be chosen more than once? a)
360 b) 450 c) 495 d) 720 e) 990 B) each digit cannot be chosen more than
twice? a) 495 b) 720 c¢) 900 d) 950 e) 990 Question no. 22 An engineer
subscribes to two independent electronic mail services. The prob- ability that
service no. I does not function on a given day is equal to 1/20, while the
probability of a breakdown of service no. 2 is equal to only 1/100. Moreover,
when service no. 1 functions, the probability that a message sent is received by
its addressee 1s equal to 0.995. This probability is equal to 0.99 in the case of
service no. 2. To be safer, the engineer wants to send an important message



through both services. A) What is the probability that the addressee receives
this message? a) 0.94525 b) 0.9627 c¢) 0.9801 d) 0.9989 e) 0.9999 B) Given
that the addressee has received the message, what is the probability that only

the message that the engineer wants to send through service no. 1 arrived at its
destination? a) 0.01883 b) 0.03627 c¢) 0.04569 d) 0.05372 ¢) 0.07255

2.6 Exercises, Problems, and Multiple Choice Questions 43 Question no. 23 A
factory recycles defective car parts. Among the last 50 parts that it recycled,
five are still defective. A company buys 20 of these 50 parts. A) What is the
probability that the company receives at least one defective part? a) 0.1216 b)
0.2587 ¢) 0.2702 d) 0.8784 ¢) 0.9327 B) Given that the company has received
at least one defective part, what is the prob- ability that it received exactly
two? a) 0.3246 b) 0.3641 ¢) 0.3903 d) 0.6097 ¢) 0.6754 Question no. 24 Ten
candidates are interviewed to fill two posts in a company. In how many ways
can the company fill these posts, if A) both posts are identical? a) 45 b) 50 c)
55 d) 90 e) 100 B) one post is permanent and the other temporary? a) 50 b) 90
c) 100 d) 110 e) 200 Question no. 25 A) A system is made up of three
subsystems placed in series. Each subsystem com- prises two components
placed in parallel (see system A in Fig. 2.12, p. 43). We sup- pose that all the
components operate independently from one another and all have a 90%
probability of working at a given time. Calculate the reliability of the system at
that moment. a) 0.2710 b) 0.7290 ¢) 0.9266 d) 0.9703 ) 0.9991 B) Under the
same hypotheses as in A), what is the reliability of a system made up of two
subsystems placed in parallel, if each subsystem comprises three components
placed in series (see system B in Fig. 2.12)? a) 0.9266 b) 0.9703 c) 0.9797 d)
0.9980 ¢€) 0.9991 Question no. 26 Among the 100 passengers on board a plane
landing at an airport, 80 arrive at their destination, whereas the others are in
transit. Moreover, among those arriving at destination, 70% started their
journey inside the country. This percentage is equal to 40% in the case of the
passengers in transit. Finally, we assume that the probability that a given
passenger travels for business 1s equal to 10%, independently of what A B
Figure 2.12. Systems for Multiple choice question no. 25.

44 2 Elementary Probabilities precedes. A passenger traveling on board this

plane is taken at random. What is the probability that the passenger A) arrives
at destination or started his/her journey outside the country? a) 0.12 b) 0.24 ¢)
0.375 d) 0.56 e) 0.875 B) travels for business or started his/her journey inside



the country? a) 0.064 b) 0.424 ¢) 0.676 d) 0.74 ) 0.964 Question no. 27
Customers arrive at a store, at random and independently from one another,
from 9:00 a.m. A) Suppose that there have been two customers between 9:00
a.m. and 10:00 a.m. 1) Calculate the probability that the second customer
arrived before 9:30, given that the first one arrived at 9:15. a) 1/4 b) 1/3 ¢)
7/15 d) 29/60 e) 1/2 11) What is the probability that the two customers arrived
inside a 15-minute interval (that can be located anywhere inside the hour
considered)? a) 1/4 b) 1/3 ¢) 7/16 d) 1/2 e) 9/16 B) Suppose now that there
have been four customers between 10:00 a.m. and 11:00 1) What is the
probability that exactly three of these four customers arrived be- tween 10:00
and 10:30'? a) 1/16 b) 1/8 ¢) 1/4 d) 1/2 e) 3/4 i1) What is the probability that
there has been one customer in each quarter of an hour of the hour considered?
a) 0.00391 b) 0.00586 ¢) 0.04167 d) 0.06250 ¢) 0.09375 Question no. 28 A
maker of lasers estimates that 20% of the lasers the company produces are of
excellent quality, 75% are of acceptable quality, and 5% are defective.
Moreover, we assume that the quality of a given laser does not depend on the
other lasers. To improve the reliability of the lasers the company sells (those
they think are non- defective), they submit their products to a quality control
procedure. Suppose that this procedure classifies as excellent acceptable
excellent acceptable acceptable defective 90% of the lasers that are of
excellent quality, 10% of the lasers that are of excellent quality, 10% of the
lasers that are of acceptable quality, 85% of the lasers that are of acceptable
quality, 5% of the lasers that are defective, 95% of the lasers that are
defective.

2.6 Exercises, Problems, and Multiple Choice Questions 45 A) Answer the
following questions based on the maker's estimations. 1) What is the
probability that a batch of ten lasers contains at least one laser of excellent
quality or at least one defective laser? a) 0.9137 b) 0.9237 ¢) 0.9337 d)
0.9437 e) 0.9537 11) What is the probability that a batch of ten lasers contains
at least one laser of excellent quality and at least one defective laser? a)
0.3502 b) 0.3602 ¢) 0.3702 d) 0.3802 e) 0.3902 B) 1) Calculate the
probability that a given laser has been incorrectly classified by the procedure.
a) 0.135b) 0.15 ¢) 0.235 d) 0.25 e) 0.3 11) Calculate the probability that a
laser sold is defective. a) 0 b) 0.0017 ¢) 0.0027 d) 0.0037 ¢) 0.0047 Question
no. 29 We consider the 107 telephone numbers made up of seven digits. For
security reasons, the numbers starting with 0 or with 911, or ending with 911,



are not used. We define the events A = a number starts with 0, B = a number
starts with 911, and C = a number ends with 911. A) Which pairs of events are
incompatible? a) A and B only b) A and C only ¢) B and C only d) A and B,
and B and C only e) the three pairs of events B) Calculate the number of
telephone numbers that are not used. That is, calculate the number of
elementary events in D := AUB U C. a) 810,190 b) 998,190 ¢) 1,018,990 d)
1,431,190 ¢) 2,100,010 C) Let F := A (B C). How many elementary events are
there in F? Suggestion. Use a Venn diagram. a) 1,000,000 b) 1,000,010 c)
1,010,000 d) 1,100,000 ¢) 1,110,000 Question no. 30 In an interview for a job
as a computer analyst, first at most five questions are asked to every candidate.
As soon as the candidate has answered four questions cor- rectly, he (or she) is
hired. If the candidate does not succeed in this first stage of the interview, he is
asked a last question. In this case, he is hired if and only if he answers this
question correctly. Suppose that each time the candidate answers a question, he
has a probability of 1/2 of responding correctly, independently from a question
to another. A) What is the probability that the candidate is hired in the first
stage of the inter- view? a) 1/16 b) 3/32 ¢) 1/8 d) 5/32 ¢) 3/16

46 2 Flementary Probabilities B) Let p be the answer in A). What is the
probability that the candidate is hired? a) 21 P2 b) € +-¢) @+p d) l-pe) I P2
C) Suppose now that, in fact, the candidate has a probability of 1/2 of
responding correctly to the first question, but that his self-confidence increases
after a right an- swer, so that the probability of responding correctly after a
right answer is equal to 3/4. Conversely, the probability that the candidate
responds correctly after a wrong answer is equal to only 1/4. What is then the
probability that the candidate responds correctly to exactly one of the first two
questions? a) 1/4 b) 3/8 ¢) 1/2 d) 5/8 e) 3/4 Question no. 31 A box contains ten
components, of which two are defective. The components are taken one at a
time, at random and without replacement, and are tested until the two defective
components have been identified. A) What is the probability that the two
defective components are identified as early as after the second test'? a) 1/100
b) 1/95 ¢) 1/90 d) 1/50 e) 1/45 B) What is the probability that at least one
defective component has been identified after three tests (if necessary)? a)
0.4667 b) 0.4880 ¢) 0.5120 d) 0.5333 e) 0.5600 C) Calculate the probability
that more than eight components have to be tested in order to identify the two
defective ones. a) 4/15 b) 14/45 ¢) 16/45 d) 6/15 e) 4/9 Question no. 32 Let A,
B and C be three events. Write in mathematical form the event F = exactly one



of the events A, B, C does not occur. a) (ANB)U(BNC)UANC)b) (AN
BNCYUANB NC)UA"NBNC)c)(AcNBcNC)U(AcNBN
C"HYUANB'NCc)d)AcUBcUC"e) (AUB UC) ¢ Question no. 33 Let
A and B be two events such that P[A] -- 1/2 and P[B] = 3/10. Which of the
following statements can, under certain conditions, be true? 1) P[A U B] = 4/5;
1) P[A U B]-- 13/20; i11) P[A U B] -- 2/5. a) 1) only b) 1) and i1) only ¢) 1) and
i11) only d) 11) and 1i1) only e) all Question no. 34 Each of the tools O1 ..... 05
has a particular pocket in a certain tool belt. After use, you must replace each
tool in its proper pocket. Because of lack of time, you put at random
(equiprobability) a tool in each pocket.

2.6 Exercises, Problems, and Multiple Choice Questions 47 A) What is the
probability that the second tool that you put into the tool belt is actually in its
proper pocket? a) 1/20 b) 1/12 ¢) 1/10 d) 1/5 e) 1/4 B) Calculate the
probability that each of the tools O1, O2 and 03 are put into the right pockets?
a) 1/125b) 1/120 ¢) 1/60 d) 1/40 e) 1/20 Question no. 35 A company buys
electrical components in batches of ten components. Upon re- ception of each
batch, two components are taken at random and without replacement and are
then tested. The company accepts the batch if and only if the two components
tested are non-defective. Based on previous data, we estimate that the
probability that a batch of ten components contains no defectives is equal to
7/10, the probability that it contains exactly one defective is 1/5, and the
probability that it contains exactly two defectives is 1/10. We then find that the
probability that a batch is accepted is approximately equal to 0.9222. Use, if
needed, this result to calculate the probability that A) a batch contains no
defectives and is accepted; a) 0.3 b) 0.6222 ¢) 0.7 d) 0.7222 ¢) 0.9222 B) a
batch contains exactly two defectives or is accepted; a) 0.92 b) 0.93 ¢) 0.94 d)
0.95 e) 0.96 C) a batch contains exactly one defective, given that it has been
rejected; a) 0.5141 b) 0.5541 c) 0.6141 d) 0.6541 e) 0.7141 D) three
consecutive (independent) batches are rejected. a) 0.00047 b) 0.0014 ¢)
0.0778 d) 0.2157 e) 0.2333 Question no. 36 Let A, B and C be events such that
P[A] =P[B] =P[C] =1/4, ACB, and A and C are incompatible. A) Calculate
P[ AtABtAC].a) 1/4b) 3/8 ¢) 1/2 d) 5/8 e) 3/4 B) Calculate P[Ac N (B tA
C)].a) 1/4b) 3/8 ¢) 1/2 d) 5/8 e) 3/4 Question no. 37 In physics, many
systems, for example Einstein's and Debye's models for simple solids, are
made up of subsystems that are independent of one another. Consider a system
of this type, made up of three particles. Each particle, independently from the



other two particles, can have energy level 1, 2 or 3. The energy level of the
system 1s defined by the vector (nl, n2, n3), where ni is the number of particles
having energy level 1, for i : 1, 2, 3. A) How many distinct energy levels can
this system have? a) 6 b) 7¢) 8d) 9 e) 10

48 2 Elementary Probabilities B) In A), how many distinct arrangements of the
energy levels of the particles corre- spond to the energy level (2, 1,0) of the
systemor to level (1, 1,1) 2a)9b) 10c¢) 12d) 14 e) 15 C) 1) Let Pi be the
probability that a particle has energy level el, for 1 = 1,2, 3. Suppose that P1 =
1/4, P2 =1/2 and p = 1/4. What is the probability that the three particles all
have a different energy level? a) 1/16 b) 1/8 ¢) 3/16 d) 1/4 e) 3/8 i1) Given
that the three particles have the same energy level, what is the probabil- ity that
this energy level is e or €2? a) 2/3 b) 7/10 ¢) 4/5 d) 5/6 €) 9/10 Question no.
38 A) A number is taken at random in the set {1,2 ..... 8}, sothat P[{k}]=1/8
fork=1,2 ... 8. We define the events A={1,2,3,4}, B={2,3,4,5} and C=
{4,5,6,7}. Which pairs of events are independent? a) (A, B) only b) (B, C)
only ¢) (A, B) and (B, C) only d) no pairs e) all the pairs B) Suppose that in
A), we have: Pl{k} | =cifk: 1,3,5,7and P[{k}]: c2 ifk: 2, 4, 6, 8. For what
values of ¢ and c2 are the events D : { 1,2} and F : {2, 3} independent? a) ¢
=C2 -,- 1/16 b) ¢ =c2=3/16 C) C1 = 1/16;c2=3/16 d) Q =3/16;c2=1/16 e) no
values ofc andc2 Question no. 39 The probabilities of the events A, B and C
are P[A] =1/2, P[B] = 1/3 and P[C] = 1/4. Moreover, A and C are
incompatible, B and C are incompatible, and P[A (3 B} = PIAC (3 B]. A)
Calculate PPTAc N B"]. a) 1/12b) 1/6 ¢) 1/4 d) 1/3 e) 1/2 B) Calculate P[AI B
UC"].a) 1/4b) 1/3 ¢) 1/2 d) 7/12 e) 2/3 Question no. 40 A box contains five
brand A components, five components of brand B and five of brand C. Five
components are taken at random and without replacement. A) What is the
probability that the five components taken at random are of the same brand? 1

a)1b)c) 1d)e)

2.6 Exercises, Problems, and Multiple Choice Questions 49 B) What is the
probability that the five components are of the same brand, given that at least
four of the five components are of the same brand? 1 a) 1-b) 1 ¢) d)l e)
Question no. 41 We have three boxes containing only brand A and brand B
components. The first box comprises 10 brand A and 10 brand B components,
the second box contains 10 brand A and 20 brand B components, and the third
one has 20 brand A and 10 brand B components. Let E be the random



experiment that consists in taking first, independently, a component at random
in each of the first two boxes (starting with the first box). If the two
components are of the same brand, then the random experiment is over;
otherwise a component is taken at random from the third box. The brand of
each component taken at random in this random experiment is noted. We
consider the events Ak = a brand A component is obtained on the kth draw, for
k=1, 2, 3, Bk =a brand B component is obtained on the kth draw, for k=1, 2,
3, F = three components have to be taken at random to complete the random
experi- ment. A) How many elementary events are there in the sample space S
associated with E if we take the order into account? a) 5b) 6 ¢) 7d) 8 ¢) 9 B)
Which groups of events, among the following, are incompatible? 1) A1, B2 II)
Al, B11II) Al, A2, A31V) Al, A2, B3 V) Al, B2, B3 a) II, [l and IV only b)
[and IV only c) Il and Il only d) I, IV and V only e) Il only C) Calculate
P[B3].a) 1/18 b) 1/9 ¢) 1/6 d) 1/3 e) 1/2 D) Calculate P[A1 ( (A2 U A3)IF].
a) 1/9b) 2/9 ¢) 1/3 d) 4/9 e) 5/9 Question no. 42 A point is taken at random in
the interval [0, 1], so that the probability of the event F1 = the point chosen is
in the interval [ = [a, b] 1s given by P[FI] =b - a forany [ C [0, 1]. We
consider the events FA, FB, FC and FD, where A=[0,€], B=[€.], C=[,] and
D=[0,1]. A) Which are the only pairs of (distinct) events that are incompatible
(or mutually exclusive)? a) no pairs b) (FA, FB) ¢) (FA, Fc) d) (FA, F) and
(FA, Fc) e) (FA, F), (FA, Fo), (F, Fo) and (Fc, Fo)

50 2 Elementary Probabilities B) Which are the only pairs of (distinct) events
that are independent? a) no pairs b) (FA, Fn) c¢) (FA, Fc) d) (FA, Fn) and (FA,
Fc) e) (FA, Fn), (FA, FD), (Fn, FD) and (Fc, Fo) Question no. 43 A particle is
at the origin at the initial time and is then moving on the positive integers as
follows: at each time unit, a coin for which the probability of getting "tails" is
equal to 1/3 (and P[ {Heads} | = 2/3) is thrown (independently). If"tails" is
obtained, then the particle moves one integer to the right, whereas if "heads" is
obtained, the particle moves two integers to the right. A) What is the
probability that the particle does not visit the point 37 a) 2/9 b) 8/27 ¢) 10/27
d) 4/9 e) 14/27 B) In how many different ways can the particle go from 0 to 10
without visiting the point 2? a) 21 b) 22 ¢) 23 d) 24 e) 25 Question no. 44 Two
defective fuses have been mixed by mistake with three good fuses. The fuses
are taken one at a time, at random and without replacement, and tested until the
two defective fuses can be identified. A) What is the probability that the first
two fuses tested are two defective or two good fuses? a) 0.25 b) 0.3 ¢) 0.35 d)



0.4 e) 0.5 B) What is the probability that the last fuse that needs to be tested to
identify the two defective fuses is a good one? a) 0.25b) 0.3 ¢) 0.35d) 0.4 ¢)
0.5 Question no. 45 In a certain course, 45% of the students are in electrical
engineering, 40% are in computer engineering, and 15% are in physics
engineering. Furthermore, 60% of the electrical engineering students registered
in this course are fourth-term students. In the case of the computer engineering
students this percentage is equal to 70%, while it is equal to 90% in the case of
the physics engineering students. A) Two students are taken, at random and
with replacement, among the students in the course considered. What is the
probability that they are both fourth-term stu- dents? a) 0.4492 b) 0.4692 c)
0.4892 d) 0.5092 ¢) 0.5292 B) Let PA be the answer in A). Knowing that the
two students taken at random in A) are fourth-term students, what is the
probability that they are both in electrical engineering? 0.0729 0.27 0.5625 a)
--b) 0.0729 PA C) -- d) 0.5625 PA e) -- PA PA PA

2.6 Exercises, Problems, and Multiple Choice Questions 51 Question no. 46
The students in a certain department of a university must choose exactly two
courses among three optional courses: A, B and C. We find that the number of
students registered for course A is 150% greater than the number of students
reg- istered for course C. Moreover, the number of students registered for
course B 1s 50% greater than the number of students registered for course C. A
student in this department is taken at random. Let FA = the student taken at
random has chosen course A, etc. A) Calculate the probability P [(FAN FB) U
(FAFC) t.) (FB FC)].a) 0.6 b) 0.7 ¢) 0.8 d) 0.9 e) | B) What is the probability
that the student has chosen courses A and B? a) 0.4 b) 0.5¢) 0.6 d) 0.7 ¢) 0.8
Question no. 47 The probability that a certain person spends an amount of time
(in minutes) com- prised in the interval [a, b] surfing the Internet, on a
weekday, is given by b-a forl0<a <b<30. 20 We assume that the days are
independent. We consider a time period of five week- days, namely from
Monday to Friday. A) What is the probability that the shortest period of time
spent surfing the Internet, during that week, was that on Monday, and the
longest period that on Friday? a) 1/120 b) 1/20 ¢) 1/5 d) 1/4 e) 2/5 B) What is
the probability that the length of the surfing sessions has increased each day? a)
1/720 b) 1/120 ¢) 1/60 d) 1/40 e) 1/20 Question no. 48 We consider the system
shown in Fig. 2.13. Each component functions with prob- ability 1/2,
independently from the other three. O - Figure 2.13. System for Multiple
choice question no. 48.



52 2 Elementary Probabilities A) What is the probability that the system
functions? a) 7/16 b) 1/2 ¢) 9/16 d) 5/8 e) 11/16 B) Let p be the answer in A).
Given that the system functions, what is the probability that component no. 1
functions? a) b) Question no. 49 A hydroelectric station is subject to receive
three types of shocks. The probability of a shock of type I is equal to 30%, that
of a shock of type Il is equal to 50%, and that of a shock of type IIl is equal to
20%. Moreover, the various types of shocks are incompatible. The probability
that a shock of type I causes a power failure is equal to 40%. In the case of
type Il and type III shocks, this probability is equal to 20% and to 90%,
respectively. A) What is the probability that the station receives a type Il shock
before a type III shock, from a given time instant? a) 3/7 b) 1/2 ¢) 4/7 d) 5/7 e)
6/7 B) Given that a power failure (caused by a shock) has occurred, what is
the proba- bility that a type II shock has caused this failure? a) 1/7 b) 1/6 c)
1/5 d) 1/4 e) 1/3 Question no. 50 Manufactured objects are classified into
three categories: compliant with the norms (I), containing one or more minor
defects only (II), or containing one or more major defects (III). A) Four objects
will be taken, at random and with replacement, among those that will be
manufactured tomorrow. In how many different ways will it be possible to
classify them if 1) the order in which the objects will be taken matters? a) 64 b)
81 ¢) 100 d) 121 e) 196 i1) the order in which the objects will be taken does
not matter? a) 12 b) 13 ¢) 14 d) 15 e) 16 B) Suppose that in a batch of 100
objects, there are 70 objects that comply with the norms and 23 that have one
or more minor defects only. 1) A sample of three objects is taken, at random
and without replacement. What is the probability that the sample contains an
object of each category? a) 0.0697 b) 0.0797 ¢) 0,0897 d) 0,0997 ¢) 0.1097 11)
Four objects are taken, at random and without replacement. What is the prob-
ability that at least one object of each category is obtained? a) 0.0952 b)
0.1052 ¢) 0.1152 d) 0.1252 ¢) 0.1352

2.6 Exercises, Problems, and Multiple Choice Questions 53 Question no. 51
Two tests based on the DNA of an individual have been developed in order to
identify the culprits in criminal cases. The tests work by comparing two
samples: one taken on the victim and the other on the suspect. In the case of test
A, the proba- bility of concluding that the suspect is the person wanted, given
that he 1s effectively the culprit, is equal to 99.5%. Moreover, the probability
of arriving at the same con- clusion, given that he is not the person wanted, is
equal to 1.5%. In the case of test B, these probabilities are equal to 99.7% and



to 2%, respectively. Finally, we assume that the two tests are conditionally
independent with respect to the event C = the suspect is the culprit, and with
respect to C c. A) A suspect in a particular case has been arrested. Suppose
that the probability that he is the culprit is equal to 80%. 1) Given that test A
clears the suspect, what is the probability that he is in fact guilty? a) 0.0179 b)
0.0189 ¢) 0.0199 d) 0.0209 ¢) 0.0219 11) Given that the two tests concluded
that the suspect is guilty, what is the prob- ability that he 1s really guilty? a)
0.999914 b) 0.999924 ¢) 0.999934 d) 0.999944 e) 0.999954 iii) If the suspect
is the criminal wanted, what is the probability that one test concludes that he is
guilty and the other that he is innocent? a) 0.00497 b) 0.00597 ¢) 0.00697 d)
0.00797 ¢) 0.00897 B) Suppose that ten suspects have been arrested and that
one of them is the culprit. What is the probability that only the culprit is found
guilty by test A? Remark. We suppose that the tests are independent from one
person to another. a) 0.4685 b) 0.5685 c) 0.6685 d) 0.7685 e) 0.8685

3 Random Variables 3.1 Introduction Definition 3.1.1. Let S be a sample space
associated with a random experiment E. A function X that associates a real
number X(s) = x with each outcome s S is called a random variable. The set of
all possible values of X will be denoted by Sx (see Fig. 3.1). Example 3.1.1 1)
Let Ei be the following random experiment: a transistor is taken at random in a
box containing 10 brand A and 20 brand B transistors, and its brand is noted.
Then, S = {A, B}. Let X be the random variable that takes the value 1 if the
transistor is of brand A and the value 0 otherwise. We have: Sx= {0, 1 }.
Here, the random variable X is in fact the indicator function of the event F = a
brand A transistor is picked. i1) Let Eli be the random experiment that consists
in taking a number at random in the interval [0, 10). Let X be the random
variable that takes the value of the number obtained and Y be the random
variable that is equal to the integer part of the number obtained. We have: S=
[0,10), Sx=-S and Sy ={0,1 ..... 9}. In this case, the random variable X is the
identity function. Note that if the number 1s taken at random in the interval [0,
10], then we can write that S x(s) = x x Figure 3.1. Notion of random variable.

56 3 Random Variables Sy = {0, 1 ..... 10}. However, the probability that Y
takes on the value 10 is equal to zero, because the number taken at random in
the interval [0, 10] should be the number 10 (see Defini- tion 3.1.2 below),
and S =[0, 10] is a continuous sample space. Remark. Since a random
variable is a real-valued function defined on S, the set Sx cannot have more



elements than S. Therefore, if S is a discrete sample space, then Sx is discrete.
However, if S 1s continuous, then Sx can be either discrete or continuous (as in
Example 3.1.1 i1). Note that if Z is the random variable that is equal to twice
the number taken at random in the interval [0, 10) in the preceding example,
that 1s, if we define Z = 2X, then we have: Sz= [0, 20). However, S (= Sx) and
Sz are both non-denumerably infinite. Definition 3.1.2. An event with respect
to Sx is a subset of Sx. Moreover, let A C S and B C Sx. We say that A and B
are equivalent events if A= {s € S: X (s) € B}. (3.1) Then, we write that
P[BI= P[A]. Remark. We could denote the probability P[B] of the event B by
Px[B], or PIX € BI. Example 3.1.2 A box contains two brand MI, one brand
M2 and one brand M3 components. Two components are taken at random and
without replacement and the brand of the components is noted. Then, if' the
order in which the components are chosen does not matter, we can write that S
= {MIMI, MM2, MM3, M2M3}. Let X be the number of brand M components
obtained. We have: Sx= {0, 1,2}. Now, let B= { 1 }. The event equivalent to
Bis A ---- {M M2, MM3}. It follows (by symmetry) that P[X € {11]--=P[X
=1]=P[B] =P[A] =2 x(2)(2/4)(1/3)=2/3. Remarks. 1) If we identify the two
brand M1 components as M and MI2, then the sample space S can be rewritten
as follows:

3.2 The Distribution Function 57 S = {MIIMI2, MlIM2, MlzM2, MIIM3,
MizM3, M2M3}. In this case, we obtain: A= {MIIM2, MlzM2, MIIM3,
MIizM3} and, given that the elementary events are now equiprobable, we find
directly that P[X = 1] = P[B] = P[A] =4/6 = 2/3. i1) We can also define the
events F = exactly one brand M1 component is obtained, and F1 = a brand M1
component is obtained on the first draw. Then, by the total probability rule, we
canwrite that22 2 22 P[F] =P[FIF1]P[F1] +P[FIF]P[F']=€ +.=-, or
22 P[F]-- (1)(1) _2x2 2 () 6 3" 3.2 The Distribution Function Definition
3.2.1. The distribution function of the random variable X is defined,for any
real number x, by Fx(x) = P[X <x]. (3.2) Remark. More precisely, we may
write that Fx(x) =P [{s S: X(s) <x}]. (3.2a) Properties. 1) 0 5 Fx(x) <1
(since Fx(x) 1s a probability). i1) limx Fx(x) = 1 (since the event {X <z} is
certain). 1i1) limx_ Fx(x) = 0 (because the event {X < -z} is possible). iv) The
function Fx is non-decreasing; that is, if x0 < X1, then Fx(x0) < Fx(XI) (this
follows from the fact that the event {X < x0} is included in {X <xI }). v) We
can show that the function Fx is right-continuous; that is, Fx(x) = Fx(x+), where
Fx(x +) := limFx(x +3). $0 Proposition 3,2.1, We have: P[a < X <b] = Fx(b) -



Fx(a).

58 3 Random Variables Proof. We only have to notice that the event {X <b}
can be divided into two disjoint (and exhaustive) parts: {X <b}= {X <a}U{a
< X <b}. Since the two events in the right-hand member of the equation are
incompatible, it follows that Fx(b) = Fx(a) + P[a <X < _b]. [] Corollary 3.2.1.
We have: P[X = x] = Fx(x) - Fx(x-), where Fx(x-) :---- lim Fx(x - 8). ,$0
Proof. We choose a =x - 8 and b = x in the preceding proposition, and we take
the limit as 8 decreases to O. [] Remark. We deduce from the corollary that if
Fx is a continuous function, then the probability P[X = x] is equal to zero for
any real number x. It also follows that Pla <X <b]=Pla<X <b]=Pla<X <
b] = Pla < X <b] when the distribution function of X is continuous. Types of
Random Variables Definition 3.2.2. Let X be a random variable that can take,
at most, a denumerably infinite number of values. That is, Sx is of the form Sx
= {X, X2 .... }. Then, we say that X is a discrete random variable. Example
3.2.1 Suppose that we observe the lifetime of an electric light bulb that works.
Suppose also that the probability that the lifetime T (in hours) of a light bulb of
this type takes on a value in the interval [a, b) is givenby P[a_ <T <b]=e -
a/1p@ - ¢ -b/1€p€p, where 0 <a<b < Let X be the number of complete
periods of 100 hours that the light bulb lasts. Then, Sx = {0, 1,2 .... }.
Therefore, X is a discrete random variable. Now, since X only takes on non-
negative integer values, we have: Fx(x)=-- P[X < x]=0 Vx <0.

3.2 The Distribution Function 59 Remark. We may write that Fx(x) : P[X E {xk
Sx: xk <x}]. Since there is not a single element of Sx that is inferior to zero,
we have indeed: Fx(x) = 0 for all x <0. Next, for any real number in the
interval [0, 1), we can write that Fx(x) = P[X e {0}1 --=P[X=01=P[T <
1001 =1 - e -1. Remark. Since we assume that the light bulb is working, we
have: P[T <100] ---- P[0 <T <100] ---- P[0 _<T < 100], because P [T ----
0] ---- 0. Similarly, for any real number in the interval [1, 2), we obtain that
Fx(x) = P[X=0O]+P[X=1]= 1-e -I+P[100<T <200] = 1-e -+(e --e -z)=1-e¢ -2 In
general, for any x in the interval [n, n+ 1), where n {0, 1 .... }, we find that
Fx(x) --: P[X<x]=P[T<(n+1)100] =1 - e -n-. For example, Fx(2.5) =
Fx(2)=P[X {0, 1,2}]=P[T<300]=1-e-3=1-¢e-2-1. Thus, we can write
that 0 1fx <0, Fx(x) = 1 -- e -int(x)-I ifx >0, where int(x) denotes the integer
part ofx. We say that Fx is a staircase function (see Fig. 3.2). Definition 3.2.3.
Let X be a random variable that can take a non-denumerably in- finite number



of values. If Fx is a continuous function, then we say that X is a continuous
random variable. Example 3.2.2 In the preceding example, we can write that
ST : (0, cx) and that 0 ift <0, FT(t)=P[O< T <t]=P[0<T <t]= 1-¢ -t/ @@ift >0,
since P[T : 0] =0 (see above) and P[T = t] = 0 (because the sample space S =
(0, cx) associated with the random experiment that consists in observing the
lifetime of a light bulb that works is continuous). The function FT being
continuous (see Fig. 3.3), T is a continuous random variable. Remark. FT (t) is
differentiable everywhere, except at t = 0.

60 3 Random Variables F x (x) 1 0.2,0 00 0 1 2 3 x Figure 3.2. Distribution
function of the random variable X in Example 3.2.1. Definition 3.2.4. Let X be
a random variable that can take a non-denumerably in- finite number of values.
If Fx 1s not a continuous function, then we say that X is a random wtriable of
mixed type, Remark. A random variable of mixed type is in fact a function that
is defined at the same time on a finite or denumerably infinite set and on one or
more intervals, Moreover, we can write that Fx(x) = pF(x) + (1 - p)F2(x),
where 0 <p <1 is the probability that X is discrete and F (x) (respectively
F2(x)) is the distribution function of a discrete random variable X (resp. a
continuous ran- dom variable X2), In fact, we can also write that X =X [ {Xis
discrete} and X2=X [ {X is continuous}. Example 3.2.3 In Example 3.2,1,
suppose that the light bulb considered is taken at random and that the
probability that it works is equal to 0.9. Let Y be the lifetime 0.8 0.6 0.4 0.2
100 200 300 400 500 t Figure 33, Distribution function of the random variable
T in Example 3.2.2.

3.2 The Distribution Function 0.8 0.6 0.4 0.2- 0 100 200 300 400 500 Y Figure
3.4. Distribution function of the random variable Y in Example 3.2.3. 61 of the
light bulb and let us define the event F = the light bulb works. Then, we can
write, by the total probability rule, that Fy(y) =-- P[Y <y] =P[Y <y ] F]P[F]
+P[Y <y ] FC]p[F c] =P[T <y](0.9) + P[O <y](O.1) 'v'y > O. Remark. We
can write that Y | F =-- T and Y ] F ¢ =-- O. Furthermore, the probability P[0 <
y] is equal to 1 if y > 0. In fact, the event {0 <y} is deterministic, so that its
probability is either O or 1. Using the preceding example, we find that 0 ify <0,
Fr(y) =0.1 ify=0, 1 -0.9¢ -y/1€p€p ify > 0. Since Sr = [0, x) and Fr is a
discontinuous function (see Fig. 3.4), Y is of mixed type. Remarks. 1) We could
in fact include the point y = 0 in the second interval. 11) Here, we could write
that Fy(y) = O.1Fg(y) + 0.9Fr(y), where Fu(u) =" {0ifu <0, lifu> 0. Actually,



U is the constant 0 (a degenerate discrete random variable). ii1) Suppose, in
addition, that we replace a light bulb that 1s still working after 200 hours, for
preventive maintenance. Let W be the time that a light bulb is used. Then, we
find that (see Fig. 3.5) 0 ifw <0, Fw(w) =1 - 0.9¢ -w/€@€ if0 <w <200, 1 if
w > 200.

62 3 Random Variables 1: 0.8 0.6 0.4 0.2 50 100 150 200 250 300 350 w
Figure 3.5. Distribution function of the random variable W in Example 3.2.3.
In this case, we can write that Fw(w) = pFx(w) + (1 - p)Fx2(w), where p :=
P[W is discrete] =0.1 + 0.9PIT > 2001 =0.1+0,9¢ -2 (=1-p=0.9(1 - e-
2)), 0 ifw <0, Fx,(w) =;[ if() <w <200, 1 if w > 200 and 0 if w <0, FX(W)
=I-e-"/u), 1f0<w <200, 1 if w >200. Thus, we have: 0 with probability 0.
1/p, XTI =200 with probability 0.9e-Z/p and (see Section3.3) d [ ( I/ 100) e-
"/tt. --Fx2(10) = 1-e 2 1f0 <w <200, 1 X2(to) dw " 0 elsewhere. Finally, we
can also generalize the notion of distribution function as follows. Definition
3.2.5. Let X be a random variable and A an event. The conditional dis-
tribution function of X, given A, 1s defined by P[{X <x} ( A] Fx(x[ A) =
ifP[A] > 0. (3.3) P[A]

3.2 The Distribution Function 63 Example 3.2.4 In Example 3.2.2, let A = the
light bulb lasts less than to hours. Then, we have: P[{T <t} (3 {T <to}] Fr(t
[ A)=Fr(tIT <to)=PIT <to] FT{t ) ift<to,=Frto) ift > to (since T
is a continuous random variable). Using Example 3.2.2, we obtain that FT(t [ T
<to)= 0 ift <0, 1 - e -t/100 if0<t <to, 1 -- e -toll€p€ ! ift >to. Remark. Without
having to do any calculations, we could write, for instance, PIT <2001 T <
100]= 1. However, in the case of the probability P[T <100 I T <200], we
must make use of the formula above. Similarly, let B = the light bulb lasts more
than to hours. Then, Fz(t1 B) =Fz(t I T >to) = 0=P[to <T <t] PIT > to] P[{T
<t} 3 {T>to}l P[T > to] ift <to, [ 0 ift > to Fr(t) - Fr(to) I -- FT(tO) ift <to,
ift >to. Remark. In this case, we could write, directly, that P[T < 1001 T >
2001 = 0, while the probability P[T < 200 I T > 100] must be calculated.

64 3 Random Variables 3.3 The Probability Mass and Density Functions
Definition 3.3.1, Let X be a discrete random variable. Then, we have: Sx = {xl
, X2, ... }. The function px, defined by px(xk) = P[X =xk] (3.4) fork=1,2 .....
is called the probability mass function of X. Remarks. 1) The function Px has
the following properties: a) px(xk) > 0 Yk (since it is a probability); b) =



px(xk) = 1 (because PIX Sxl = PISI = 1). ii) If we assume that x <x2 < @ €
€, then we can write that px(x) = Fx(x) (3.5a) and Px (xk) = Fx (xk) - Fx (xk
)fork=2,3 .... (3.5b) We also have: px(x) = Fx(x) - Fx(x-) forany real
numberx. (3.6) ii1) Using Heaviside's function u(x), defined by [ 0 ifx <0, 1 ifx
>0, (3.7) we can express the distribution function of a discrete random
variable X as follows: = Z px(x)u(x - x). (3.8) Fx(x) k=1 This formula is
equivalent to Fx(x) = Z px(xk). (3.9) Example 3.3.1 We deduce from the
function Fx (x) in Example 3.2.1 that px(n)=Fx(n)- Fx(n-)=e-"-¢ -'-I forn=0,1
.... (see Fig. 3.6, p. 65). To be more complete, we can add that px(x) = 0 ifx is
not a positive integer or zero. Remarks. 1) When Sx 1s finite, the function Px is
often presented as a table. For example, if

3.3 The Probability Mass and Density Functions PX (x) 65001234 X
Figure 3.6. Probability mass function of the random variable X in Example
3.3.1. then we write: 1/4ifx=-1, px(x) = 1/2 ifx =0, 1/4 ifx =1, pxX(x) -1 0
114 1/4 1/2 Note that, in this particular case, we can also write the function Px
as a single for- mula as follows: px(x)= - forx=-1,0,1, x+1 4 which is not
always possible. Moreover, the function Fx can likewise be presented in the
formof a table: x -1 0 1 Fx(x) 1/4 3/4 1 However, we must be able to interpret
these tables correctly. For example, we deduce from these two tables that Px
(1/2) =0, while Fx (1/2) = 3/4. i1) Since px(X) is a probability, we can easily
generalize Definition 3.3.1 by con- sidering the conditional probability mass
function of X, given an event A, defined by P[ {X =x} A] px(x ] A) ---- if P[A]
> 0. (3.10) P[A] For example, let A := {X 0}. Then we find, using the
random variable X of part 1) above, that Indeed, we have: px(01 X > 0) P[{X =
O} f{X>0}]P[X=0]12P[X>0O]P[X>0] 1/2+1/4--2/3

66 3 Random Variables and px(1 [ X > O) =1 -px(O I X > 0) = 1/3. Note that
the relationship px(O I X > 0) =2px(1 I X> 0) follows from the fact that
px(0O) =2px(1). Now, let X be a continuous random variable and x be a point
where the function Fx is differentiable. Then, we can write that P[x < X <x
+6] = Fx(x +6) - Fx(x) Fx(x + 6) - Fx(x) fx(x), where > 0 is small and fx is the
derivative of Fx. Definition 3.3,2. Let X be a continuous random variable. The
function fx, defined d fx(x) = xx Fx(x) (3.11) (if the derivative exists), is called
the (probability) density function of X. Remark. The function fx (x) is
approximately equal to the probability that the ran- dom variable X takes a
value in a small interval of length around the point x (from x - (6/2) to x + (/2),



for instance), divided by the length of this interval; fx(x) is not the probability
that X takes on the value x (this probability is equal to zero, because X is a
continuous random variable). Properties. 1) fx(x) 0 (by the preceding remark,
or since Fx is a non-decreasing function). i1) Integrating Equation (3.11) from -
x to x, we obtain: fx(t)dt = -Fx(t)dt = Fx(t)Ix = Fx(x) -0= Fx(x). (3.12) It
follows that fS fx(x)dx = Fx(x) = (3.13) 1. Actually, any non-negative
piecewise continuous function that possesses the preced- ing property is a
density function. We also deduce from Equation (3.12) that Pla < X <bl =
Fx(b) - Fx(a) = fx(x)dx. (3.14) Thus, the probability that X takes on a value in
the interval (a, b] is given by the area under the curve fx(x) froma to b.
Remarks. 1) If, instead of Equation (3.13), we have:

3.3 The Probability Mass and Density Functions 0.01 0.008 0.006 € 0.004
0.002 - O 0 100 200 300 400 t Figure 3.7. Probability density function of the
random variable T in Example 3.3.2. 67 fx(x)dx = ¢, where 0 <c <1, we say
that the random variable X is defective or improper. In the general case when
the integral is equal to ¢ > 0, we only have to define gx (x) = fx (x)/c to obtain
a valid or proper random variable. Similarly, a discrete random variable can
be defective. 11) If Sx is an interval or a set of intervals, rather than the entire
real line, we write that the function fx is equal to zero outside Sx. Example
3.3.2 Since the distribution function of the random variable T in Example 3.2.1
is differentiable Yt -€ 0 (see Example 3.2.2), the density function of T is
given by {le -t/100 ift > 0, fT" (t) = 0 elsewhere (Fig. 3.7). Notice that the
function fT" (t) is continuous everywhere, except at t = 0. Now, as in the case
of the distribution function, we can generalize the definition of the density
function. Definition 3.3.3. Let X be a continuous random variable and A an
event. We define the conditional (probability) density function of X, given A,
by d fx(x I A) =xFx(x I A) (3.15) (when the derivative exists). Example 3.3.3
The conditional (probability) density function of the random variable T in
Example 3.2.1, given the event A= {T <to}, is given (see Example 3.2.4) by d
fTtIT <to)=-FT(tIT <to)

68 3 Random Variables fr(t) ift <to,le =to) =1 01f0 <t<to, ift>t0 0
elsewhere. Remark. It is not always necessary to calculate the function Fx(x I
A) to obtain fx (x t A). For example, let 1/2if-1 <x< 1, fx(x) = 0 elsewhere.
Then, we find that fx (x I X <0) can be obtained as follows: fx (x) fx(x Ix <0)-
if-] <x <0 PIX < O|=/2 =1 if-1 <x<O, 0 elsewhere. Finally, we would also



like to generalize the notion of density function to the discrete case. To this
end, we consider the Dirac delta function: (x)= { 0 ifx€0, ec ifx =0 (3.16)
(with f (x)dx=1). We have the following relationship between the functions
u(x) and (x): u(x) = (t)dt. (3.17) 0(3 Using this relationship and Equation (3.8),
we can define the density function of a discrete random variable by fx(x) =
px(xk)3(x - xk) Vx R. k=1 (3.18) Example 3.3.4 Let Then, we have: Fx (x) =0
ifx <0, 0.21fO <x < 1, 0.7ifl <x<2, 1 ifx >2. and x 0 1 2 2; px(x) 0.2 0.5 0.3 1
fx(x)=0.23(x-0)+0.53(x-1)+0.33(x-2) Vx6R.

3.3 The Probability Mass and Density Functions fx (x) 69 2(3 0 1 2 3 4 Figure
3.8. Probability density function of the random variable in Example 3.3.5.
Definition 3.3.4. Let X be a continuous random variable with Sx = [a, b]. The
number Xp for which Fx(xp) =p, (3.19) where 0 <p < 1, is called the quantile
of order p of X . In particular, X 1 /2 x m (or ) is called the median of X.
Remarks. 1) The number Xp is unique. However, if X is not a continuous
random vari- able defined on [a, b], then we must modify the foregoing
definition. For example, we define the median Xm, in the general case, as
follows: P[X <Xm] > 1/2 and P[X> Xm]> 1/2.(3.20) [f Xisnota
continuous random variable defined on a single interval [a, b], then the median
is not necessarily unique. i1) If 100p = k, an integer, Xp is also called the kth
percentile of X. The terms decile (if k is a multiple of 10) and quartile are
used as well. Example 3.3.5 Letcxif 0 <x <2, fx(x)=c(4-x) 1f2 <x<4,0
elsewhere, where ¢ > 0 (see Fig. 3.8). Calculate the constant c, the distribution
function, the median and the 99th percentile of X. Solution. We must have: 1 =
fx(x) dx = cx dx + c¢(4-x)dx =4c =c = 1/4.

70 3 Random Variables 0.8 0.6 0.4- 0.2 012 3 4 5 X Figure 3,9. Distribution
function of the random variable in Example 3.3.5. Or we can use the fact that
the graph of the function fx is a triangle of area equal to 4c, so that ¢ = 1/4.
Then, we can write that Fx (x) =0 1fx <0, f) fo x t X 2 Odt+ -dt =-- i1f0 <x <2,
048-fo2[,if2<x<4,X)2t1 (4dt+(4-t)dt=11 ifx >4 (see Fig. 3.9).
Making use of the function Fx, we find that Xm = 2 (because Fx(2) = 1/2) and,
solving the equation (4 - X0.99) 2 1 -- 0.99 (with 2 <x0.99 <4), that x0.99 '
3.71. 3A Important Discrete Random Variables Bernoulli distribution. Suppose
that we perform a random experiment E. We con- sider a particular event A.
Let X be the indicator variable of A; that is, 1 Jacob (or Jacques) Bernoulli,
1654-1705, was born and died in Switzerland, He was a member of a famous



family of mathematicians and physicists of Belgian origin that in- cluded his
brother Johann and his nephew Daniel (Johann's son). He first studied philos-
ophy and theology. He taught mathematics to his younger brother Johann, but
later they quarreled and ended their relationship. He contributed greatly to
algebra, infinitesimal cal- culus, mechanics and geometry. He solved what is
now known as the Bernoulli differential equation. His important book on
probability theory was published eight years after his death, In this book, we
also find the Bernoulli numbers.

3.4 Important Discrete Random Variables 71 1 if A occurs, (3.21) X=01ifAc
occurs. We say that X has a Bernoulli distribution with parameter p, where p
:=P[A] is called the probability of a success. We have: xO0 1 Epx(x) 1 -pp 1
This table can be replaced by px(x)=pXql-X forx=0andl, (3.22) where q :=1 -
p is the probability of a failure. Remark. A parameter is a constant (generally
unknown, in practice) that appears in a probability mass function or a density
function, and that can take any value in or in a subset of , like [0, 1], (0, x), etc.
We will see in Section 6.1 how to estimate unknown parameters. Bernoulli
trials. Suppose now that we repeat the random experiment E n times. We say
that the repetitions El, E2 ..... En constitute a sequence of Bernoulli trials 1f a)
the repetitions are independent; b) the probability of a success is the same for
each repetition. For example, suppose that a woman must cross n intersections
with traffic lights when she goes to work. Let Ek be the random experiment that
consists in observing if the woman must wait for the green light when she
arrives at the kth intersection, fork=1,2 ..... n. Then the trials E ..... En are
Bernoulli trials if and only if we may assume that the probability that the
woman can cross a given intersection without having to stop is the same for
each intersection and does not depend on what happened when she arrived at
the previous intersections. In practice, unless the traffic lights are distant
enough from one another, the assumption of independence of the trials is not
(exactly) satisfied. Similarly, for the assumption b) to be satisfied, the length of
the green light in the cycle of the traffic lights must be the same for each
intersection, which is not true in general. However, to be able to estimate the
probability that the woman has to stop at exactly five intersections in ten, for
instance, it s almost necessary to make such simplifying assumptions.
Binomial distribution. Let X be the number of successes in n Bernoulli trials.
We say that X has a binomial distribution with parameters n and p, where p is
the probability of a success. We have: Sx= {0, 1 ..... n}. We write: X B(n, p).



Proposition 3.4.1. The probability mass function of X B(n, p) is given by
px(k)=(n.)pkq n- fork=0, 1 ..... n. (3.23)

72 3 Random Variables Proof. Let E be the random experiment that consists in
observing, for each of the n Bernoulli trials, whether the event A occurred or
not. Then, we have: X=n X=0 S {3A...A, Aca ¢ n times n times There are 2 n
elementary events in all. Let s be one of the elementary events for which X = k.
In particular, there is AA...A A"AC...A". times (n-k) times By independence,
we can write that PI [sll = pkq,,-t. Furthermore, there are () dif- ferent
elementary events in S with exactly k successes and (n - k) failures. Equation
(3.23) then follows by equiprobability and incompatibility. [] Properties. 1)
The function Px defined in (3.23) is a proper probability mass func- tion,
because it is non-negative and Z px(k) = (17 +q)" = 1" =1, k=0 by Newton's
binomial theorem (see the example in Fig. 3.10). 11) We can show that the
function Px (k) reaches its maximum at kmax = int[(n + 1)p]. Moreover, if (n +
)p is an integer, then the maximum is also attained atkmax - 1. iii) The
distribution function of X, Fx(x), is obtained by summing of the function px(k),
for k from 0 to int(x): PX (x) 1/16 010 1 T ) 2 3 4 X Figure 3.10. Probability
mass function of a binomial random variable for whichn=4 and p = 1/2.

3.4 Important Discrete Random Variables 73 int(x) Fx(x) =y px(k). k=0 We
can use a pocket calculator to evaluate this function. There are also tables of
the functions px and Fx. Table 3.1 (p. 74) gives the value of the function Fx(x)
for a few values ofn6 {2,3 ..... 20} and of p 6 [0.05, 0.50]. Note that for
values of p greater than 0.50, we can use the following relationship: P[B(n,p)
<k]= 1-P[B(n,l-p) <n-k- 1] forké6 {0,1 ..... n}. Remark. Suppose that n
transistors are taken at random from a box containing m brand A and N - m
brand B transistors. Then, if the transistors are taken with re- placement, the
number X of brand A transistors obtained has a binomial distribution with
parameters n and p = m/N. However, if the transistors are taken without re-
placement, then the trials are not independent. We can show that, in this case,
we have: m N-m px(k) -- fork =max{0, n- N+m} ..... min{n, m}. We say that
X has a bypergeometric distribution with parameters N, n and m. We write: X
Hyp(N, n, m). Geometric distribution. Let X be the number of Bernoulli trials
needed to obtain a first success. Then, Sx={ 1, 2 .... }. We say that X has a
geometric distribution with parameter p. We write: X Geom(p) (or X Geo(p)).
Proposition 3.4.2. Let X Geom(p). We have: px(k) = gk-p fork=1, 2 .....



(3.24) Proof. Let E be the random experiment in which the results of the
Bernoulli trials are observed until event A occurs. We have: X=I X=2 X=3 S =
{ A, ACA, ACACA .... }. Then, we may write that px(k) := P[X =k] =
P[{,ACAC... ACA}] ind. gk-Ip. (k- 1) times Indeed, in order that X =k, there
must first be k - 1 consecutive failures, and then a success. The above result is
then obtained by independence. []| Properties. 1) The function Px is non-
negative and

74 3 Random Variables Table 3.1. Distribution function of the binomial
distribution. Pnx 0.05 0.10 0.20 0.25 0.40 0.50 2 0 0.9025 0.8100 0.6400
0.5625 0.3600 0.2500 1 0.9975 0.9900 0.9600 0.9375 0.8400 0.7500 3 0
0.8574 0.7290 0.5120 0.4219 0.2160 0.1250 1 0.9927 0.9720 0.8960 0.8438
0.6480 0.5000 2 0.9999 0.9990 0.9920 0.9844 0.9360 0.87504 0 0.8145
0.6561 0.4096 0.3164 0.1296 0.062510.9860 0.9477 0.8192 0.7383 0.4752
0.312520.9995 0.9963 0.9728 0.9493 0.8208 0.6875 3 1 .(X)(X) 0.9999
0.9984 0.9961 0.9744 0.9375 5 0 0.7738 0.5905 0.3277 0.2373 0.0778
0.031310.9774 0.9185 0.7373 0.6328 0.3370 0.1875 2 0.9988 0.9914 0.9421
0.8965 0.6826 0.5(XX) 3 I.(XXX) 0.9995 0.9933 0.9844 0.9130 0.81254 1.
(XXX) I.(X)(X) 0.9997 0.9990 0.9898 0.9688 10 0 0.5987 0.3487 0.1074
0.0563 0.(X)60 0.(X) 1010.9139 0.7361 0.3758 0.2440 0.0464 0.0107 2
0.9885 0.9298 0.6778 0.5256 0.1673 0.0547 3 0.9990 0.9872 0.8791 0.7759
0.3823 0.1719 4 0.9999 0.9984 0.9672 0.9219 0.6331 0.3770 5 1 .(X)(X)
0.9999 0.9936 0.9803 0.8338 0.6230 6 I .()(XX) 0.9991 0.9965 0.9452 0.828
170.9999 0.9996 0.9877 0.9453 8 1.0000 I.(X)00 0.9983 0.9893 9 0.9999
0.9990 15 0 0.4633 0.2059 0.0352 0.0134 0.0005 0.0000 1 0.8290 0.5490
0.1671 0.0802 0.0052 0.0005 2 0.9638 0.8159 0.3980 0.2361 0.0271 0.0037
30.9945 0.9444 0.6482 0.4613 0.0905 0.0176 4 0.9994 0.9873 0.8358
0.6865 0.2173 0.0592 5 0.9999 0.9977 0.9389 0.8516 0.4032 0.1509 6
1.0000 0.9997 0.9819 0.9434 0.6098 0.3036 7 1.0000 0.9958 0.9827 0.7869
0.5000 8 0.9992 0.9958 0.9050 0.6964 9 0.9999 0.9992 0.9662 0.849 110
1.0000 0.9999 0.9907 0.9408 11 1.0000 0.9981 0.9824 12 0.9997 0.9963 13
1.0000 0.9995 14 1.0000

3.4 Important Discrete Random Variables Table 3.1. Continued. P x 0.05 0.10
0.20 0.25 0.40 0.50 0 0.3585 0.1216 0.0115 0.0032 0.0000 1 0.7358 0.3917
0.0692 0.0243 0.0005 0.0000 2 0.9245 0.6769 0.2061 0.0913 0.0036 0.0002
30.9841 0.8670 0.4114 0.2252 0.0160 0.0013 4 0.9974 0.9568 0.6296 0.4148



0.0510 0.0059 5 0.9997 0.9887 0.8042 0.6172 0.1256 0.0207 6 1.0000
0.9976 0.9133 0.7858 0.2500 0.0577 7 0.9996 0.9679 0.8982 0.4159 0.1316
8 0.9999 0.9900 0.9591 0.5956 0.2517 9 1.0000 0.9974 0.9861 0.7553 0.4119
10 0.9994 0.9961 0.8725 0.5881 11 0.9999 0.9991 0.9435 0.7483 12 1.0000
0.9998 0.9790 0.8684 13 1.0000 0.9935 0.9423 14 0.9984 0.9793 15 0.9997
0.9941 16 1.0000 0.9987 17 0.9998 18 1.0000 75 Zpx(k)=pZqk-
[=p{l+q+q2+...}q<I P=1 =1 1 --q Hence, Px is a proper probability mass
function (see Fig. 3.11). 11) The distribution function of X 1s given, for any
integer n, by PX (x) 1/8 Figure 3.11. Probability mass function of a geometric
random variable for which p = 1/2.

76 3 Random Variables 1 -- qn=1 -- qn. (3.25) Fx(n)= px(k)=p{l +q +'"+qn-
1} =P1-q k=1 It follows that P[X >n] =qnfor n=1, 2 ..... Proposition 3.4.3.
Let X be a geometric random variable. Then, it possesses the following
memoryless property: P[X >k+j[X > j]=P[X >k] Yk, j6{1,2 .... }. (3.26)
Proof. We have: P[X>k+j [ X>j]=P{X>k+;} V{X>j}] PIX>j] P[X>k
+ 3] gkt ---- -- q=P[X>k]. P[X>]] qJ Remark. We also say that the
geometric distribution has the "no aging" or "lack of aging" property. In fact the
geometric distribution is the only discrete distribution that possesses this
property. Remarks. 1) The geometric distribution is sometimes defined as being
the number X of Bernoulli trials befire the first success. We then have: Sx =

{0, 1 .... } and the function px becomes px(k)=gkp fork=0,1 ..... If we denote
this variable by Y, then we can write that Y = X - 1. The choice of the random
variable used when we propose a stochastic model for a given variable
depends of course on the possible values of this variable. For example, if we
look for a stochastic model for the number of persons involved in a car
accident, then it is preferable to choose the random variable X for which S = {
1,2 .... }. On the other hand, if the variable X denotes the number of persons
injured in a car accident, we should choose the random variable X such that Sx
= {0, 1 .... }. 1) We can generalize the definition of the geometric random
variable as follows: let X be the number of Bernoulli trials necessary to obtain
r successes. Then, we have: Sx= {r,r 1 .... } and we find (the last trial being
necessarily a success) that Px (k) =1)pqfork=r,r+1 .... (3.27) We say that
X has a Pascal distribution (see p. 2), or a negative binomial distri- bution,
with parameters r and p. We write: X NB(r, p).

3.4 Important Discrete Random Variables 77 Poisson distribution 2 Poisson's



theorem. Let X B(n, p). Suppose that n-- xzand p $ 0 in such a way thatn x p
remains equal to . Then, we find that e-C k px(k) -+ -- fork =0, 1 ..... (3.28) k!
Proof. Let Pk := px(k). For k=0, we have: ( Po = qn=(1-p)n = 1- Next, we
consider the ratio Pk+l _ (k-1)pk+lq n-k-I _ (n- k)p 1- pk (n)pkqn-k (k+ 1)q k
+ 1 " Since the two factors inside the square brackets tend to 1 as n tends to
infinity, we can write that lim pk+1 n-- pk k+ 1" (3.29) Using this result
recurrently, we obtain Equation (3.28). Indeed, we have: lim Pl n -- -- - px(1)
e-,nPO0+121limP2limPln--1+1n--2"so that etc. [| Definition 3.4.1. If
X 1is a discrete random variable with Sx = {0, 1 .... } and for which e-C k
px(k) -- -- fork=0, 1 ..... (3.30) k! then we say that X has a Poisson
distribution with parameter t > O. We write: X Poi(). 2 Sim6on Denis Poisson,
1781-1840, was born and died in France. He first studied medicine and, from
1798, mathematics at the tcole Polytechnique de Paris, where he taught from
1802 to 1808. His professors at the Icole Polytechnique were, among others,
Laplace and Lagrange. In mathematics, his main results were his papers on
definite integrals and Fourier series. The Poisson distribution appeared in his
important book on probability theory pub- lished in 1837. He also published
works on mechanics, electricity, magnetism and astron- omy. His name is
associated with various mathematical results.

78 3 Random Variables PX (x) 0.1 2 3 """ X Figure 3.12. Probability mass
function of a Poisson random variable for which a = 1. Properties. 1) The
function Px above satisfies the two conditions required to be a proper
probability mass function: it is non-negative and V "cx e - [] otk px(k) ===
=0 =1 (see Fig. 3.12). i1) As in the case of the binomial random variables, we
can use a pocket calculator or a table to evaluate the distribution function or
the probability mass function of X. Table 3.2 (p. 79) gives the value of the
function Fx(x) tbr a few values of the parameter e. i11) We can show that px(x)
attains its maximum at x = 0 ife < 1 and at x = int(e) ife > 1. Finally, ife is an
integer, then the maximum is attained at both x = € and Poisson's approximation
to the binomial distribution. We deduce from Poisson's theorem that if n is
sufficiently large (> 20) and p small enough (< 0.05), then we can approximate
the distribution of a binomial random variable with parameters n and p by that
of'a Poisson random variable with parameter o =np. The approxima- tion is
generally better for the function Fx than for Px (see Example 3.4.1). Remark.
Before proceeding with Poisson's approximation, we must check whether the
parameter p of the binomial distribution is smaller than or equal to 1/2. For



example, suppose that X B(n= 20, p =0.9). We have: P[X = 15] -- 0.0319.
Now, if we replace X by a random variable Y that has a Poisson distribution
with parameter ot =20 x 0.9 = 18, we obtain: P[X =15] -- P[Y=15] _
0.0786,

3.4 Important Discrete Random Variables Table 3.2. Distribution function of
the Poisson distribution. 79 x 0.5 1 1.52 510 1520 0 0.6065 0.3679 0.2231
0.1353 0.0067 0.0000 1 0.9098 0.7358 0.5578 0.4060 0.0404 0.0005 2
0.9856 0.9197 0.8088 0.6767 0.1247 0.0028 0.0000 3 0.9982 0.9810 0.9344
0.8571 0.2650 0.0103 0.0002 4 0.9998 0.9963 0.9814 0.9473 0.4405 0.0293
0.0009 0.0000 5 1.0000 0.9994 0.9955 0.9834 0.6160 0.0671 0.0028 0.0001
6 0.9999 0.9991 0.9955 0.7622 0.1301 0.0076 0.0003 7 1.0000 0.9998
0.9989 0.8666 0.2202 0.0180 0.0008 8 1.0000 0.9998 0.9319 0.3328 0.0374
0.0021 9 1.0000 0.9682 0.4579 0.0699 0.0050 10 0.9863 0.5830 0.1185
0.0108 11 0.9945 0.6968 0.1848 0.0214 12 0.9980 0.7916 0.2676 0.0390 13
0.9993 0.8645 0.3632 0.0661 14 0.9998 0.9165 0.4657 0.1049 15 0.9999
0.9513 0.5681 0.1565 16 1.0000 0.9730 0.6641 0.2211 17 0.9857 0.7489
0.2970 18 0.9928 0.8195 0.3814 19 0.9965 0.8752 0.4703 20 0.9984 0.9170
0.5591 21 0.9993 0.9469 0.6437 22 0.9997 0.9673 0.7206 23 0.9999 0.9805
0.7875 24 1.0000 0.9888 0.8432 25 0.9938 0.8878 26 0.9967 0.9221 27
0.9983 0.9475 28 0.9991 0.9657 29 0.9996 0.9782 30 0.9998 0.9865 31
0.9999 0.9919 32 1.0000 0.9953 which is not a good approximation. On the
other hand, let X* be the number of fail- ures among the 20 Bernoulli trials. In
this case, we can approximate the distribution of X* by that of Z Poi(ot =20 x
0.1 =2) and write that P[X = 15] = P[X*=5] -- P[Z=5] -- 0.0361, which is a
much better approximation. Similarly, we have: P[X < 15] = P[X*> 5] --
0.0432 and P[Z> 5] -- 0.0527, while P1Y < 15] -- 0.2867.

80 3 Random Variables Example 3.4.1 Suppose that the number X of errors in
a computer program submit- ted for the first time to a mainframe computer, by
each student in a certain group, is a random variable that has a Poisson
distribution with parameter o = 3. Suppose also that all the computer programs
submitted are independent of one another. a) What is the probability that a
given program contains no errors? b) What is the probability that, among 20
programs submitted, there are at least three that contain no errors? c) Calculate
approximately the probability in b) with the help of a Poisson distribu- tion. d)
What is the probability that the mainframe computer receives less than five



pro- grams, from a given time instant, before it receives a first program that
contains no errors? Solution. a) We seek P[X = 0] ---- € -3 0.05. Remark. The
Poisson distribution as a model Ibr X is actually an approximation, since the
number of errors in a program cannot tend to infinity. b) Let Y be the number of
programs, among the 20 submitted, that contain no errors. a ) Then Y has a
binomial distribution with parameters n= 20 and p =P[X = 0] 0.05. We want
2P[Y>3]=1-P[Y<2] 1-())(0.05k(0.95)2€-kk=0"18]=1-[(0.95)
20 +20(0.05)(0.95) 9 + 190(0.05)'(0.95) " 1 - (0.3585 +0.3774+0.1887) =1 -
0.9246 ----- 0.0754. c) We can write that P[Y > 3] P[W > 3], where W Poi(c
=np-1)----- 1--1--1--e - I+1+ k=01 - (0.3679 + 0.3679 + 0.1839) =1 -
0.9197 =0.0803. Remark. If we replace p by 0.01, then we find that P[Y > 3]
0.0010 and P[W >_ 3] 0.0011. On the other hand, here if p = 0.1, we obtain
that P[Y >3] 0.3231 and P[W > 3] 0.3233, which is even better (in error
percentage). In general, for an n fixed, the approximation should improve when
the parameter p decreases. In fact, if we calculate P[Y --- 0] and the
approximations obtained with a Poisson distribution for n =20 and p = 1/100,
1/20 and 1/10, we obtain the following pairs:

3.4 Important Discrete Random Variables 81 (0.8179, 0.8187), (0.3585,
0.3679), (0.1216, 0.1353). We observe that the approximation deteriorates as
p increases, the error percentages being equal to about 0.1%, 2.6% and 11.3%,
respectively. But when we add many terms, the errors can cancel one another.
For example, comparing the numerical val- ues of the corresponding terms in
b) and c), we notice that the probability P [ W = k] sometimes overestimates
and sometimes underestimates the probability P['Y = k], so that the errors
partly cancel. That is why it is generally easier to approximate the distribution
function Fx than the probability mass function Px, as mentioned above. d) Let U
be the number bf programs required to obtain a first program that contains no
errors. We assume that there are at least five programs remaining to be
received from the time instant considered. We seek P[U <6] =P[V <6],
whereVGeom(p=P[X=0]0.05) =P[V < 5] -- 1 - (0.95) 5 -- 0.2262. Remark.
The random variable U itself does not have a geometric distribution, since the
group of students considered is not infinite. In fact, U is a defective random
variable, because, if there are 20 students in the group (and if nobody has
submitted his/her program yet), we can write that Example 3.4.2 In a certain
lottery, six balls are picked at random and without re- placement among 49
balls numbered from 1 to 49. We win a prize if the combination that we have



chosen contains at least three "good" numbers. A player decides to buy one
ticket per drawing until he wins a prize. What is the probability that he must
buy less than ten tickets? Solution. Let M be the number of good numbers in the
chosen combination, and let X be the number of tickets that the player will
have to buy to win a prize for the first time. We have: P[M > 3] = 1-P[M<2] 2
(k6)(&) =I-E (469) k=0 (1 . 6, 096,454) + (6. 962, 598) + (15 . 123,410) = 1-
13,983,816 13,723,192 --1  1-0.9814=0.0186. 13,983,816

82 3 Random Variables Next, by independence of the drawings, we may write
that X has a geometric distribution withp 0.0186. We want P[X < 10|=P[X
<9]"1-(1-0.0186)9 " 0.1555. Remark. The random variable M has in fact a
hypergeometric distribution with pa- rameters N =49, n=6 and m= 6. If the
sampling fraction /N is small (< 0.1), then we can approximate the
distribution of a hypergeometric random variable with parameters N, n and m
by that of a binomial random variable with parameters n and p = m/N. In our
case, we have: /N = 6/49 > (.1. The approximation to the probability P[M >
31 would give [ ( 6) >3] "1-0"9724=0"0276. P[M>31--P B 6, 3 Important
Continuous Random Variables Uniform distribution. Suppose that a number X
is taken at random in the interval [a, hi. In this case, the probability that X is in
an interval of length (small enough) around a point x, where t <x <b, must be
the same for any x. It follows that the probability density function of X must be
a constant. Using the condition I, fx(x)dx = 1, we deduce that we must have: 1
fx(x) -- fora <x <b. (3.31) b-a Definition 3.5.1. Let X be a continuous random
variable defined on the interval la, b] and whose probability density function
is given by Equation (3.31). We say that X has a uniform distribution on the
interval [a, bl atld we write that X U[a, b] (see Fig. 3.13, p. 83). Properties. 1)
The distribution function of X is given by (see Fig. 3.14, p. 83) Fx (x) =0 ifx
<a,fax1dt--x-aira<x<b,(3.32)b-ab-alifx>b.1i) Letlt, d] C[a, b],
Then, we have: dmc P[c <X <d] -- b-a

3.5 Important Continuous Random Variables fx (x) 83 (0, 1/(b-a)) Figure 3.13.
Probability density function of a random variable having a uniform distribution
on the interval [a, b]. Thus, the probability that X is in a given subinterval
depends only on the length of this subinterval. Example 3.5.1 Suppose that the
number of power failures in the interval [0, t], in a certain region, has a
Poisson distribution with parameter )t, where ) > 0. Then, given that exactly
one power failure occurred in the interval [a, b] C [0, t], we can show that the



moment at which this failure occurred is uniformly distributed on the interval
[a, b]. We can also show that the waiting time between two power failures has
an exponential distribution with parameter ) (see Definition 3.5.2).
Exponential distribution Definition 3..2. Let X be a continuous random
variable defined on the interval [0, x). If the density function of X is of the
form fx(x) = )e -zx for x> O, (3.33) then we say that X has an exponential
distribution with parameter ) > O. We write: X Exp()) (see Fig. 3.15, p. 84). F
x [x) I') Figure 3.14. Distribution function of a random variable uniformly
distributed on the interval [a, b].

84 3 Random Variables 1.5 1 0.5 X Figure 3.15. Density function of an
exponential random variable with parameter ,k = 2. Properties. 1) The function
fx above is a proper probability density function, since it is non-negative and

,»-X.,- -€ -X" 1. 11) The distribution function of X is given by Fx(x)--- .e -xtdt=
l-e -xx forx > 0 (3.34) and Fx(x) =0 for x <0 (see Fig. 3.16). We then obtain
that PIX > x] = e -xx forx > 0, (3.35) 1i1) Let Y := int(X)+1. Then, Sr = {1,2 ....
} and we can show (see Section 3.6) that Y Geom(p =1 - e-X), iv) The
exponential random variables are the only continuous random variables that
possess the following memoryless property: 1 0.8 0.6 0.4 0.2 1 2 3 X Figure
3.16. Distribution function of an exponential random variable with parameter k
= 2.

3.5 Important Continuous Random Variables 85 P[X >t+s1 X >t] = P[X > s]
Vs, t>0. (3.36) The demonstration of this property of the exponential
distribution is similar to that of Proposition 3.4.3, p. 76, for the geometric
distribution. This property is used in reliability and in queueing theory. v) The
exponential distribution can be considered on the entire real line by defining )e
-1x1 forx R, fx(x) = where ) is a positive parameter. This random variable,
called the double exponential distribution, is also known as the Laplace
distribution. 3 Example 3.5.2 Suppose that the lifetime X (in years) of a
machine has an exponential distribution with parameter k = 1/3. What is the
probability that a three-year-old machine will still work at the end of three
additional years? Solution. We want P[X >61X >3]=P[X >6-3]=e -1 0.3679.
Note that the answer would be the same if the machine were brand-new, or six
years old, etc. If we apply this property to the lifetime of a car, for instance, it
is clear that the assumption that we make 1s not entirely realistic. Indeed, the
probability that a new car lasts at least three years is surely larger than the



probability that a ten-year-old car lasts at least three additional years.
However, the assumption of an exponential lifetime can be acceptable for a
shorter period of time. For example, the probability that a one-year-old car
lasts at least two additional years should be almost equal to the probability that
a brand-new car lasts at least two years. Gamma distribution Definition 3.5.3.
The gamma function, denoted by F(.), is defined (for ¢ > O) by F(c0 =x-1 e -x
dx. (3.37) Doing the above integral by parts, we find that F(oe) = (oe - 1)F(oe
- 1) ifoe > 1. (3.38) 3 Pierre Simon (Marquis de) Laplace, 1749-1827, was
born and died in France. In addition to being a mathematician and an
astronomer, he was also a minister and a senator. He was made count by
Napol6on and marquis by Louis XVIII. He participated in the organization of
the Icole Polytechnique de Paris. His main works were on astronomy and on
the calculus of probabilities: the TraitO de mcanique cOleste, published in five
volumes, from 1799, and the Thdorie analytique des probabilitks, the first
edition of which appeared in 1812. Many mathematical formulas bear his
name.

86 3 Random Variables 1 2 3 4 5 x Figure 3.17. Probability density functions
of various random variables having a gamma dis- tribution with k =1. It
follows that ifoe =n € {2, 3 .... }, then F(0) =F(n) = (n- 1)F(n- 1) =(n- I)(n
-2)F(n-2) ..... (n- 1)(n-2),-, LE(1)=(n- 1)!. 1 =(n- 1)!. In addition, we can show
that F(1/2) = ,/-. Definition 3.5.4. Let X be a continuous non-negative random
variable. If its proba- bility density function is of the form (kx)- fx(x) = for x
> 0, (3.39) F(oe) then we say that X has a gamma distribution with
parameters ¢ > 0 and ) > O, We write: X Remarks. 1) The parameter oe is a
shape parameter, while . is a scale parameter (see Fig. 3.17), Because the
shape of the density function fx changes a lot when the parameter o takes on
various values, the gamma distribution is a very useful model for the
applications. i1) The gamma distribution generalizes the exponential
distribution since if we take = 1 in the function i1X, we obtain: fx (x) = ke-)'x
for x> 0. The gamma distribution is also used in reliability and it appears in
the stochastic process known as the Poisson process. iii) [f oe =n/2 and . =
1/2, the gamma distribution is also called the chi-square distribution with n
degrees of freedom, where n is a positive integer. This distribu- tion is used in
statistics, particularly in Pearson's goodness-of-fit test, which will be seen in
Chapter 6. 1v) Finally, if o 1s a positive integer, the gamma distribution is
sometimes called the Erlang distribution, 4 which is very important in the



theory of queues, 4 Agner Krarup Erlang, 1878-1929, was born and died in
Denmark. He was first educated by his father, who was a schoolmaster. He
studied mathematics and natural sciences at the

3.5 Important Continuous Random Variables 87 Properties. 1) Since F() 1s
positive (for > 0), the function fx is non-negative. Moreover, we have: XO€--
l e-xdxfx(x)dx--f0y=_ zx1ly le Ydy F(ot) 1. Thus, fx1is a proper
probability density function. 1) There is no simple formula that gives the
distribution function of X in the general case. However, if oe is an integer, then
we can show, integrating by parts repeatedly, that Fx (x) = 1 - € ¢ -zx (") for x
> 0. (3.40) k=0 That is, we have: P[X <x] =1-P[Y<-I] =P[Y >ot],
whereYPoi(.x). (3.41) Remark. We can also write that P[X <x] = P[Y > ot],
because X 1s a continuous random variable. However, since Y 1s a discrete
random variable, we have: P[X <x] P[Y > ot]. Note, additionally, that
Equation (3.41) is exact, and not only an approximation. We will see in
Chapter 5 that the time required for n events of a Poisson process to occur has
a gamma distribution, whereas the number of events that occur in a given
interval has a Poisson distribution, whence the above relationship between the
two distributions. Example 3.5.3 Suppose that the daily consumption of
electricity (in millions of kilowatt-hours) in a certain region is a random
variable X having a gamma distri- bution with parameters = 3 and ) = 1/2.
Suppose also that the production capacity is equal to 12 millions of kilowatt-
hours. Calculate the probability that the demand exceeds the capacity on a
given day. Solution. We can write that P[X > 12] = PIY < 3], where Y Poi(12/2
=6) =e¢ 6 1+6+ --0.0620. If we make the assumption (which is probably not
correct in practice) that the probability that the demand exceeds the capacity on
a given day does not depend University of Copenhagen and taught in schools
for several years. After meeting the chief engineer for the Copenhagen
telephone company, he joined this company in 1908. He then started to apply
his knowledge of probability theory to the resolution of problems related to
telephone calls. He was also interested in mathematical tables.

88 3 Random Variables on what happened previously, that is, the assumption
that the days are independent, then the probability that the demand exceeds the
capacity on two consecutive days is given by approximately (0.0620) 2 -
0.0038. Finally, let N be the number of days in a given week on which the
demand exceeds the production capacity. Under the pre- vious assumptions, we



can write that N has a binomial distribution with parameters n="7 and p _
0.0620. Remark. Another continuous random variable that generalizes the
exponential dis- tribution and that is useful in reliability is the Weibull
distribution 5 with parameters /4 >0, y R and , > 0, whose probability density
function is .[,(x)= - exp - forx > V- (3.42) Note that the exponential distribution
is the particular case when/4 =1, =0 and 3 = 1/). The parameter/4 is a shape
parameter, is a position parameter and , is a scale parameter. Gaussian
distribution Definition 3--. Let X be a random variable whose set of possible
values is" Sx = (-, ). [['the probability density fimction ([" X is (['the firm 1 {
("-")2} fir-<x<, (3.43) .1(x) - exp 2 then we say that X has a normal or
Gaussian distribution w#h parameters and 2, where > O. We write: X N(iz,
a2). Remark. This probability distribution is also sometimes called the place-
Gauss distributkn, 6 or the place distribution (name used for the double
exponential dis- tribution as well; see p. 85). Properties. 1) Since a is positive,
it is clear that the function fx is non-negative. To show that its integral on the
entire real line is equal to 1, we consider / 2, where 5 E. H. Wallodi Weibull,
1887-1979, was born in Sweden and died in France. His family originated
from Germany. He started his career in the Swedish Coast Guard. After com-
pleting his doctorate, he worked as an inventor and consulting engineer for
many companies in Sweden and in Germany. He published many papers on the
strength of materials, fatigue and reliability, in addition to his papers, from
1939, on the distribution that bears his name. The Weibull distribution is used
in many applications. 6 Carl Friedrich Gauss, 1777-1855, was born and died
in Germany. Considered as one of the greatest geniuses of all time, he carried
out many works on astronomy and physics, in addition to his impoant
mathematical discoveries. In the field of mathematics, he was interested, in
particular, in algebra and geometry He also discovered the method of least
squares, which he used to make astronomical predictions. It is in fact for this
method that he introduced the law of errors, that now bears his name, as a
model for the eors in astronomical obseations

3.5 Important Continuous Random Variables 89 0.3 0.2 0.1 -4 -2 0 2 4 6 Figure
3.18. Probability density functions of Gaussian random variables with# = 0.
{/f1(x--#)2 1 exp(--t2/2) dt, I :-- -r exp dx -- by making the change of
viable t = (x - #)/a. Then, using polar coordinates, we can write that 1 1

ff exp[-(t+s)/z],t,s: 1 =1 exp(-r/2) dOdr. 2 2 We easily find that 12 = 1. Then,
knowing that I 0 (because fx(x) 0), we deduce that I = 1. i1) The parameter # is



a position parameter, while a is a scale parameter. Fuaher- more, all Gaussian
distributions have the same general shape, namely that of a bell (see Fig. 3.18).
111) The function fx is symmetrical with respect to #; that is, ix (x + u) = ix (-x
+ Moreover, fx (X) attains its maximum at x = # and has two inflection points:
at x=#+r. 1v) If # =0 and r = 1, then we say that X has a standard Gaussian
distribution. Its probability density function is given by 1 exp(_z2/2) for-cx <z
<¢x (3.44) (z) := and its distribution function is denoted by Now, if X N(#,
12), we find that its distribution function can be expressed in terms of € as
follows: Fx(x)= € (--). (3.45) Thus, any probability involving a Gaussian
distribution can be obtained by using the N(0, 1) distribution. To evaluate the
function d, we can use a statistical software

90 3 Random Variables package or a table. Table 3.3 (p. 91) gives the value of
the function qS(z) for z=0.00... (0.01) ... 3.99 (by symmetry, we have: qs(-z)
=1-9gS(z)). Fromz=3.90, we can write that qs(z) _ 1.0000. We find, with
more precision, that € (4) 0.99997, (5) 0.9999997 and (6) 0.999999999.
Alternatively, we can make use of the following relationship: € (z) = 1 --
Q(2), (3.46) where Q(z) is given, approximately, by Q(z) - - exp(-z-/2) for,-. >
0. (3.47) (1r -- )c.+ (z:. 2 +2rr) /2 Moreover, we have: Q(O) = 1/2 and Q(-z)
=1-Q(c.). Finally, we also find tables of the function Q- (p) (the inverse
function of Q) IbrO <p <1 (see Table 3.4, p. 92). For instance, Q- (0.05)
1.645. Remark. The Gaussian distribution is often used as a model in situations
in which we know, for example, that the random variable X that we consider
cannot be neg- ative. This model can nevertheless be a good approximation to
the true (generally unknown) model, as long as 1* and a are such that Fx(x) - 0
ifx < O. In fact, the Gaussian distribution is useful mainly because of the
central limit theorem, which will be seen in Chapter 4. Example 3.5,4 Suppose
that the lifetime X of a microprocessor has a Gaussian dis- tribution with
parameters 1* and a 2. Calculate the probability P[T* - ka < X <
#+ka],wherek{l,2 .... }. Solution. We have: P[#-ka< X <I*+kcr]co n.
FX(# + ka) - Fx(# - ka) = (k) - (-k) = 2(k) - 1, which is independent of # and a.
For example, ifk =1, we find that (1 ) -- 0.8413, so that the probability that we
seek 1s approximately equal to 0.683. Remark. If X is a continuous random
variable such that Sx = (0, 00), and if Y := In X has a normal distribution with
parameters # and a 2, then we say that X has a lognormal distribution (with
parameters # and a2). We can show (see Theorem 3.6. 1, p. 94) that the
probability density function of X 1s given by 1 { (Inx--#) 2 } fx(x) -- V/-cr x



exp - forx > 0. (3.48) This random variable 1s important in many fields,
notably in reliability.

3.5 Important Continuous Random Variables Table 3.3. Values of the function
qb(z). 91 z+0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09
0.0' 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319
0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675
0.5714 0.5753 0.2! 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026
0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368
0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700
0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019
0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324
0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642
0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910
0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159
0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0
0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810
0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980
0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147
0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279
0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394
0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495
0.9505 0.9515 0.9525 0.9535 0.9545 1.7 09554 0.9564 0.9573 0.9582 0.9591
0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664
0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726
0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778
0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821
0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2
0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.30.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934
0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949
0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961
0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970
0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977
0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983



0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987
0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.1 0.9990 0.9991
0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.2 0.9993
0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3
0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997
0.9998 3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
0.9998 0.9998 3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 3.8 0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9999 3.9 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

92 3 Random Variables Table 3.4. Values of the function Q- 1 (p) for some
values of p. p 0.10 0.05 0.01 0.005 0.001 0.0001 0.00001 Q- 1 (p) 1.282
1.645 2.326 2.576 3.090 3.719 4.265 3.6 Transformations Let X be a random
variable and let Y := g(X), where g is a real-valued function defined on the
real line. Then Y is also a random variable, because the composition of two
functions is again a function. We want to obtain the functions Fr and fr (or Pr).
For example, the distribution of the random variable V representing the speed
of a particle may be known, but we might be interested in determining the
distribution of its energy E, which is given by E = m V2/2, where rn is the
mass of the particle. I) Discrete case. a) If X is a discrete random variable,
then Y is a discrete random variable as well. Let xk 1), xk2) .... be the values of
X for which glxj)l=y for j= 1,2 ..... Then, we can write that PY(Y,t) : px(x,j))
fork=1,2 ..... (3.49) j=I For example, let Sx = {-2, 0, 2} and x -2 0 2 px(X)
1/41/4 1/2 If Y := X 2, then the values -2 and 2 of X correspond to the same
value, 4, of Y, and we find that y 0 4 E 1 Pr(Y) 1/4 3/4 1 In the particular case
when the function g is bijective, we simply have: Pr(Yk) = px(xk), where yk =
g(xk) Vk. (3.50) For instance, if Z := -X 3 in the above example, then to the
values -2, 0 and 2 of X correspond respectively the values 8, 0 and -8 of Z,
and we have: z-8 0 8 E pz(z) 1/2 1/4 1/4 1

3.6 Transformations 93 Example 3.6.1 Let X Geom(1/2) and { if X is even, Y
:=1f X is odd. We have: py(1) = Z px(2k) = Z(1/2)2k-1(1/2) = 1/4 + (1/4) 2 +
... 1/3. k=TI k=11t follows that pr(O) =1 - (1/3) = 2/3. Therefore, we have: and
yO1Epr(y)2/31/31y01 Fr(y)2/31Now,letZ:=X- 1. Then, we have:



Sz={0, 1 .... } and pz(k)=px(k+1)=(1/2) (k+I-(1/2)=(1/2) k+I fork=0,1 ..... b)
If X is a continuous random variable, but g is a staircase function, that is, a
func- tion that takes at most a denumerably infinite number of values, then Y is
a discrete random variable. We have: PI'(Yk) := P[Y = Yk] = P[X A], where A
is the event equivalentto { Y =yk } in Sx. (3.51) Example 3.6.2 Let X Exp(.)
and Y := int(X)+ 1. We already mentioned in Section 3.5 that Y Geom(p =1 -
e-Z). Indeed, in this case, the event equivalent to {Y=k}is{k- 1 <X
<k}fork6{1,2 .... } ,sothat pr(k) :=PIY =k] =P[int(X) =k - 1] =P[k- 1 <X <
k] f[k =e)(1-e-))=q-p, =.e-)Xdx= e-)xk-),(k- k-Iwherep:=1-¢-)". II)
Continuous case. If X is a continuous random variable and g is a continuous
function, then Y is a continuous random variable as well. To obtain the
distribution function of Y, we must find the probability of the event A C Sx
which is equivalent to {Y <y}. Next, we differentiate Fr(y) to obtain fr(Y).
We can also make use of the following theorem.

94 3 Random Variables Theorem 3.6.1. Suppose that the equation y = g(x) has
n (real) solutions: xI, ... , xn. Then, the probability density function of Y is
given by fv (Y) = Z fx (xk) Idxk/dyl. (3.52) Remarks. 1) If n= 1, so that the
function g is bijective, then we have: .fv(y) = .1'x(g- (y) )ldg - (y) /dyl, (3.52a)
where g 1 1s the im,erse function of g. For example, ify=g(x) =er, thenx=g
(y)=Iny. 1 1) Moreover, if g (x) = x 2, then we can write, in general, that 1 fr(y)
=y Ux(-,/y) + fx(,/y)l. (3.52b) However, if X is always positive, lbr instance,
then fx (- Y) = 0. Proof (of Theorem 3.6.1). Consider the case when the
function g is bijective and increasing. Then, we have: Ply<

Y <y+dyl=Plx<X<x+dxl, where g(x) =y J'(y)ldyl =J'x(x)ldxl ./"(y) =
fx(x)1dx/dyl. The proof in the general case is similar. Example 3.6.3 Let X
N(0, 1 )and Y := X 2. Then, we have: Fr(y) =PIX 2 < .v]=-Pl-y 1/2 <X <
y/21 = gb(y I/2)-gb(-y /2) :=J'r(v) = y-1/2lgb(yl/2) q(-y/2)l =fory > 0. In
this example, the event { y/2 <X <y/2} is equivalent to {Y <y}, and the
equation y = x 2 has two solutions: xl = y/2 and x2 = y/2. Moreover, the
random variable Y has a G(€p, €) distribution or a chi-square distribution
with 1 degree of freedom. Example 3.6.4 Let X N(#, cr 2) and Y := (X - #)/or.
In this case, the transfor- mation is bijective. We have: f(Y) = fx(# + ry)ld(# +
ry)/dyl - -- exp(-y2/2) 11 = q(y). That is, Y has a standard Gaussian
distribution. In general, if Z := aX b, then Z has a Gaussian distribution with
parameters a# + b and a2r .



3.7 Mathematical Expectation and Variance 95 Example 3.6.5 Let X U(0, 1]
and Y :=-2 In X. Then, we find that Y has an exponential distribution with
parameter ) = 1/2. This kind of result is used in simu- lation. Remark. We must
always give the set of possible values of the new random variable Y, that is,
St. In the case when the function g is strictly increasing (respectively
decreasing), we can show that if Sx = [a, b], then Sr =[g(a), g(b)] (resp. [g(b),
g(a)]). 3.7 Mathematical Expectation and Variance Definition 3.7.1. The
mathematical expectation, or the mean, of a random vari- able X is denoted by
E[X] and 1s defined by E[X] =-- #x = Z XkPx(Xk) 1fX is discrete, k=1 xfx(x)
dx if X is continuous. (3.53) Remarks. 1) In general, we assume that the integral
converges absolutely. That is, we assume that the integral of the absolute value
of xfx (x) converges; similarly in the discrete case. Otherwise, the expected
value of X does not exist. However, we must distinguish between the case
when E[X] = x or -x, and that when E[X] = x - X. In the first case, we can
simply say that the mathematical expectation of X is infinite (in absolute
value), whereas in the second case it does not exist. 11) The mathematical
expectation of the random variable X is a weighted average of its possible
values, the weight associated with a given value being equal to its probability
(in the discrete case) or to the value of the probability density function of X at
this point (in the continuous case). ii1) The expected value of X corresponds to
the center of gravity of the distribution. 1v) In the case when X 1s a random
variable of mixed type, its expected value can be obtained by combining the
two formulas in the definition of E[X]. For example, let Sx= {-1} U[O0, 1].If
P[X =-1]=1/4 and fx(x)=3/4 forO<x < 1, then we can write that 1 fIx3 d x=
131E[X]=(-1).+J04-+8--8" We can also make use of the Dirac delta
function in the density function of X and employ the formula for continuous X
as follows:

96 3 Random Variables -143(0 ) ifx = --1, fx(x) = € ifx [0, 1], 0 elsewhere f
410-=1113dxE[X]=xfx(x)dx==(-1) + x4 8 Finally, another way of
expressing the density function of X is with the help of the indicator function
IA, defined by 1A(x) = otherwise. Then, we have: 1 3 fx(x) =3(x+ 1) + -llo,
11(x) Vx eR. v) The notion of mathematical expectation can be generalized by
defining E[ X T A], the conditional (mathematical) expectation of X, given an
event A. We only have to replace fx(x) by fx(x [ A) or px(x) by px(x [ A) in the
definition of E[X]. Proposition 3.7.1. The mathematical operator E is linear.
That is. ['ck is a constant and gk is a real-wlued function for k= 1,2 ..... n. then



k=1 k=1 Proof. This result follows directly from the fact that the integral is a
linear operator, and so 1s the summation. [] We deduce from the definition of
E[X] and the preceding proposition that E[c] =c and E[aX + b] = aE[X] + b
for any constants a, b and c. Remark. A (real) constant ¢ can be considered as a
degenerate random variable C whose probability mass function is 1 ifx =c,
pc(x) = 0 otherwise, or whose probability density function 1s fc(x)=3(x-c) for
allx 6R. Proposition 3.7.2. a) Let X be a non-negative continuous random
variable. Then, we have: E[X] =P[X > xldx =[] - Fx(x)ldx. (3.55) b) If X is a
discrete random variable whose possible values are included in the set {0, 1,
2 ...}, then 03 = P[X > E[X] k]. (3.56) k=0

3.7 Mathematical Expectation and Variance 97 Proof. a) We have: E[X] =
xfx(x) dx = fx(x) dtdx = x)dxdt = P[X > tldt. b) The proof is similar to the
previous one. Remark. We can also prove the result in a) as follows. By
integrating by parts, we find that I1 - Fx(x)ldx = x[1 - Fx(x)]l + xfx(x)dx = lim
x[1 - Fx(x)] + E[X]. Now, by I'Hospital's rule (H.R.), we have (assuming that
E[X 2] <limx[1 - Fx(x)] =1im 1-Fx(x) H.. R. lim x2fx(x)= O, 1/X x00 since
X2£x(X) must converge (toward 0) when x tends to infinity (otherwise the
integral ofx2fx (x) from O to infinity would diverge). Example 3.7.1 Let X "-
Poi(00. We have: Example 3.7.2 Let X "- Exp(). Making use of the preceding
proposition, we obtain (see Equation (3.35)): fo @€ fo @€ ¢-XX 1 E[X] =
P[X > xldx = e -zx dx -- = We can demonstrate the following proposition or
use it as a definition. Proposition 3.7.3. Let X be a random variable and let Y
:= g(X). Then, we have." oo Z g(x)px(x) ifX is discrete, E[Y] = = @ g(x)fX(x)
dx is continuous. ifx 00

98 3 Random Variables Remarks. 1) Let X be a continuous random variable
and g be the indicator function of the event {X € A}; that is, Il ifX@A, g(X) =
0 otherwise. We can write that E[g(X)] = 1. PIg(X) = 11 = PIX € Al = fx(x)dx
= g(x)fx(x)dx, which corresponds to the above formula. Note that here g(X)
has a Bernoulli distri- bution with parameter p =P[X € A[. ii) LetBI ..... B,
be a partition of a sample space S (for which P[Bil >0 fori=1 ..... n). We can
write that E[g(X)] = E[g(X) ] BiIP[Bi]. i=I For example, if X is a random
variable of discrete type, then px(Xk) := P[X =Xk [ =P[X =Xk ] Bi IP[B1 L.
i=I It follows that Elg(X)I = Zg(xk)px(xt)= Z Zg(xt)PIX--xk 1 BilelBil k=I k=I
1= = g(x-)P[ X ----xk I Oil P[Bi[= E[g(X) 101]P[O1]. i=I i=I Example 3.7.3 Let
X U[0, 21. Then the probability density function of Y := X 2 is given by fr(y) =



fx(x) dXdy = fx(,f-fi) -y=11_ 11f0<y<4,2 2.,/ 4,,/ - - because the
transformation y = x 2 is bijective here, since Sx = [0, 2]. It follows thatfo 1 1
y3/2 4 E[Y]= y-@ dy-- 4 -- 7" Now, we calculate (directly) fo 2 1 dx x220 4
E[X 2 ]=xZz= 6 ="T7"Thus, Proposition 3.7.3 enables us to obtain the mean of
the random variable Y much more easily.

3.7 Mathematical Expectation and Variance The Variance of a Random
Variable 99 Definition 3.7.2. The variance of a random variable X is defined
by VAR[X] =ax 2 ----- E[(X - E[X]) 21 (> 0). (3.57) Remarks. 1) The
variance is a measure of variability of the random variable about its mean. It is
the moment of inertia of the distribution. Moreover, the variance of a random
variable cannot be negative. In fact, the variance VAR[X] is strictly positive,
unless X is a constant. If X = ¢, then E[X] = E[c] ---- ¢ and VAR[X] = VAR|c]
=E[(c- ¢) 21 =0. i1) We also define the standard deviation of X by STD[X] =-
-cr x = (VAN[X]) 1/2. (3,58) The units of measure of X and of its standard
deviation are the same. 1i1) We generalize the notion of variance by
considering the conditional variance of X, given an event A, defined by
VAR[XTA]=E[(X-E[XTA])2TA]. (3.59) We can show (see Proposition
3.7.5, p. 100) that VAR[X TA] =E[X 2T A] - (E[X T A]) 2. In fact, to calculate
the conditional variance of a random variable X, given an event A, it is often
easier to first find the probability density (or mass) function of Y := X T A, and
then to use the definition of VAR[Y]. For example, if X U[- 1,1 ] and if A=
{X <0}, we find that Y := X T A U[-1,0] and it is then easy to calculate
VAR][Y] (see Example 3.7.5, p. 100). iv) We can calculate the variance of X as
follows: VAN[X] = E[(X - E[X]) 2 I Bi]P[Bi], i=1 where the events BI ..... Bn
form a partition of a sample space S and P[Bi] > 0 'i. However, in general n
VAR[X] - ZVAR[X I BilP[Bi], i=1 because E[(X - E[X]) 2 [ Bi] 7 A VAR[X I
Bi]. Proposition 3.7,4. We have: VAR[aX + b] = aZVAR[X].

100 3 Random Variables Proof. By definition, VAR[aX + b] ---- E[((aX + b) -
(aE[X] + b)) 2] =a2E[(X - E[X]) 2] = a2VAR[X]. [] Proposition 3.7.5. We
have: VAR[X] = E[X 2] - (E[X]) 2. Proof. We deduce from the definition of
VAR[X] that VAR[XI = E[X z] - 2E[XE[X]] E[(E[X]) z] = E[X z]- 2E[XIE[X]
(E[X]) z= E[X z]- (E[X]) z (since the fact that EIX] is a constant implies that
E[g(E[X])I = g(E[X]) for any function g). [] Example 3.7.4 Let X be a random
variable having a Bernoulli distribution with parameter p. We have: E[X hl=
Inp+Onqg = p for anyn > 1. It follows that VAR[X] = E[X 2] - (E[X]) 2=p -



p2 =p(l - p) =pqg. (3.60) Example 3.7.5 Let X --- U[a, b]. Then, by symmetry,
we can write that the mean of X is given by (a + b)/2. In addition, we have: b 1
b3-a3b2+ab+a2ElXz]=xzdx------b-a3(b-a)3 Making use of
Proposition 3.7.5, we find that (b - a) 2 VAR[X] -- -- (3.61) 12 Table 3.5 gives
the mean and the variance of the various probability distributions defined in
Sections 3.4 and 3.5. Definition 3.7.3. a) The kth moment (or order k moment)
of X about the origin is defined by #k = E[Xk]for k=0, 1,2, .... b) The kth
central moment or kth moment about the mean of X is given by #k = E[(X -
E[X]Dk]fork=0,1 ..... Particular cases. The mean is the first moment of X
about the origin, while the variance is the second central moment of X.
Moreover, # =#0 =1 and # : 0. Two other quantities, in addition to the mean
and the variance, that characterize the distribution of a random variable are the
skewness and the kurtosis coefficients.

3.7 Mathematical Expectation and Variance Table 3.5. Means and variances of
the main probability distributions. 101 Distribution Parameters Mean Variance
Bernoulli Binomial Hypergeometric Geometric Pascal Poisson Uniform
Exponential Laplace Gamma Weibull Gaussian Lognormal P n and p N, n and
mPrandp[a,b]Joecand )vF,andfl#andr2#andr2 Pnpmn. 1/pr/p (a +
b)/2 1/.0,/. F +F(I +-1) e##+€pc 2 pq npq m N-n q/p2 rq/p 2 (b - a)2/12 1/. 2
2/yv2o0e/),2 a2 [F(I+2 -I)- F21l cr 2 e2#+a2(ea2 -- 1) Definition 3.7,4. a)
The skewness, 1ll, of a random variable X is the quantity (with- out units of
measure)/z3/cr 3 . b) The kurtosis of X 1s given by/32 -- #4/0 "4. Remark. In
the case of the Gaussian distribution, we find that/31 = 0 (since it is
symmetrical) and/32 = 3. To complete this section, we give two results that
enable us to calculate upper bounds, in terms of the mean and the variance of
the random variable X, for the probabilities of events defined with respect to
Sx. We can of course use these results to obtain lower bounds for the
probabilities of the complements of the events in question. Theorem 3.7.1.
(Markov's inequality) 7 Let X be a random variable that can take only non-
negative values. Then, we have: E[X] P[X >a] <--'a>0, (3,62) a 7 Andrei1
Andreyevich Markov, 1856-1922, was born and died in Russia. He was a
profes- sor at St. Petersburg University. His first works were on number theory
and mathematical analysis. He proved the central limit theorem under quite
general conditions. His study of what is now called Markov chains initiated
the theory of stochastic processes. He was also interested in poetry.



102 3 Random Variables Proof. Suppose that X is a discrete random variable.
Then, we can write that x k <a Xk> a Xk> a > Z apx(xk) =aP[X > a]. xk >a
The proof'is similar in the case when X is a random variable of continuous
type, or of mixed type. [] The following inequality can in fact be considered as
a corollary to Markov's inequality. Theorem 3.7.2. (Bienaym-Chebyshev's
inequality) 8'9 Let X be a random vari- able whose mean El X] =t and whose
variance VAR[ X] =0 .2 exis't. Then for any a > O, we have." ,) 0.- PIIX - ul
>-al <-2"(3.63) Proof. Since (X - u) 2 is a non-negative random variable, we
deduce from Markov's inequality that P[(X - )2 > a2l < EI(X - u)2l VARIXI
:=>PIIX - ul al -- a2 a2 Example 3.7.6 Let X Exp(,k). We have already found
that E[X] = 1/,k. We can also show that VARI X1 =1/,k 2. It follows that .-2 1
P[1X-,-] >k] <k2--k2X2 fork=1,2 ..... Suppose that . = 1 and k= 2. Then,
we have: P[ ]X - 1] >2] < 1/4. Now, since we assumed that the distribution
of X is known, we can calculate directly 8 Irén6e-Jules Bienaym6, 1796-1878,
was born and died in France. He studied at the Icole Polytechnique de Paris
and taught in a military academy for two years. Next, he became Inspector
General of Finances. In 1848, he was named professor of probability at the
Sor- bonne. A friend of Chebyshev, he translated his works from Russian into
French. The work of Laplace, in particular the Thorie analytique des
probabilitds, had a great influence on his scientific thinking. 9 Pafnuty Lvovich
Chebyshev, 1821-1894, was born and died in Russia. Son of a Russian
nobleman, he was a professor at St. Petersburg University. He is considered
the founder of the great Russian school of mathematics of the twentieth century.
In addition to his contributions to number theory and to the theory of
approximation of functions, he was also very interested in mechanics. By using
the inequality that bears his name, he gave a simple proof of the law aflarge
numbers. Moreover, he worked intensively on the central limit theorem.

3.8 Transforms 103 P[IX - 11 >21 in=c. P[X >31 + P[X <-11 =P[X>31=¢
-3 0.0498. We notice that the value of the upper bound obtained with
Bienaym6-Chebyshev's inequality 1s about five times greater than the exact
value. However, we must re- member that the bound in question is valid for
any random variable whose mean and variance are both equal to 1. 3.8
Transforms Definition 3.8.1. The characteristic function of the random variable
X is defined by (bx (co) = E[eJ€X], (3.64) where j := and co E ]R.
Continuous case. In this case, we can write that X (co) = eJ@x fx (x) dx.
(3.65) Thus, g5 x (co) is the Fourier transform m of the density function fx (x).



It follows that fx(x) = e-JOXfbx(co) dco. (3.66) Hence, we can state that the
characteristic function of a random variable character- izes entirely the
distribution of this variable. Discrete case. By definition, we have: gbx (co) =
Z eJ@xk Px (x). k=1 In the particular case when the x's are integers, we can
write that gbx(co) = Z eJ@n px(n)" (3.67) (3.68) 10 Jean Baptiste Joseph
(Baron) Fourier, 1768-1830, was born and died in France. He first studied for
the priesthood, but he did not take his vows. Later, he taught at the CollEge de
France and then at the ccole Polytechnique. He took part in the French
Revolution and be- came friends with Napoldon. In 1822, he published his
main work, the ThOorie analytique de la chaleur, in which he made wide use
of the series that now bear his name. However, he is not the inventor of these
series.

104 3 Random Variables Thus, the right-hand member of the preceding
equation can be considered as the complex Fourier series of the function bx (o)
(which is periodic with period 2zr because € 2zrnj = 1 €n Z). Then, we have:
1 L2z € px(n) = e-JC@ngbx(o) do forn=0,1,2 ..... (3.69) Proposition 3.8.1.
Let X be a random variable for which all the moments about the origin exist
and are finite. Then the order n moment of X, about the origin, is given by El
X"I=(-]) x(w),,,=0" (3.70) Proof. We simply have to use the series
expansion of eJ'@X: x(w) E[e j@@X] = Eli +joX + (joX)2/2 + ... ]. Then, if
we assume that we can interchange the summation and the mathematical
expectation, we obtain: x(w) =1+ joE[X] + (Jo)2E[X 2] + .... Differentiating n
times the two members of the above equation, and evaluating at w = 0, we
obtain Equation (3.70). For instance, we have: x(O) = I EIX €] = x(0) Thus,
the formula is valid for n = 0. Note that x(0) = I for any random viable X,
which is also a consequence of the definition x (w) = E[e j'"x ]. Similarly, for n
=1, we have: ) (w) w=0jZ - =jE[XI + (20)E[X 2] +. (30Z2)E[X 3] +....
JE[X] d =0 etc. [] Example 3.8.1 Let X Poi(c). We have: , eJCOke eel=e¢ C
k=0 k=0 It follows that _e- exp(eJ€)c).

3.8 Transforms 105 E[X] = -J de - exp(eJ€)lo=0 = -Je- exp (¢j @ @t)cj @
©tj Io=0 ="' which corresponds to the result obtained in Example 3.7.1.
Likewise, we find that E[ X 2] =2qg-. Then, making use of Proposition 3.7.5, we
obtain: VAR[X] =E[X 2] - (E[X])2=2q__ ()2 =. So, in the case of the
Poisson distribution, the parameter is both the mean and the variance of the
distribution. A similar result is obtained with the exponential distribution, for



which the mean and the standard deviation are both equal to 1/.. Example 3.8,2
Let X N(#, 0'2). Then, 1 ¢ j@x exp dx {[x-(Jr-€0'2+#)12-2jr-€p0"2#+(r-
€©0'2)21d x -- v/-0" exp - -2- = exp < N(# + joo" 2, 0'2) <= exp Hence, we
can write that (jobt--020'2) x P[-- ( E[X n] = (-])n-7 exp ja# - g.oZo" 2 We
find, in particular, that E[X] = -j exp (jo# - €020'2) (j# - 00'2) 0=0 =# and
E[X2] =-exp (jr.o# - 1.0202) [(j# - 1.00'2)2 - 0'2] w=0 = #2 + 0'2, so that
VAR[X] = 0"2. Note that since we have used the symbols #x and 0'x 2 to denote
the mean and the variance of the random variable X, in general, then, to be
coherent, in the case of a Gaussian distribution with parameters # and o -2 the
constants # and o -2 had to represent the mean and the variance of this
Gaussian distribution, respectively. Remark. We have written above that the
integral in the computation of the character- istic function of X N(#, 0'z) can be
expressed in terms of the probability that a

106 3 Random Variables random variable Y N(# + jcoo. 2, 0 "2) takes a value
in the interval (-x, x). Of course, a Gaussian distribution cannot have a
complex mean, since we only consider real variables. However, from a purely
mathematical point of view, the fact that the constant # + jcoo. 2 is complex
does not change anything in the computation of the integral. Now, when X is a
discrete random variable whose possible values are positive integers or zero,
we work with its probability generating function. Definition 3.8.2. Let X be a
random variable taking its values in {0, | .... }. The (probability) generating
function of X 1s defined by Gx(z) = E[z x] =z px(k). k:0 (3.71) Remarks. 1)
The generating function of X is in fact the z-transform (with a different sign in
the exponent) of the sequence Po, PI ..... where Pk := px(k) Yk. i1) Since po +
pl + P2 at- .... 1, the radius of convergence of the power series is greater than
or equal to 1. iii) We can write that gSx(co) = Gx(cJ€p). It follows thatd ' ,,=o
"' E[XI=-.j-cox(ea") = -jG'x(ca@")e.l'] = G (]). (3.72) Likewise, we find
that E[X 2] = G(I) + G€(]). Hence, we have: VARIX] = G%(1)+ G€(])-
[G@(DI 2. (3.73) For example, let X be a discrete random variable whose
probability mass function is given by the following table: We have: Then, x 0 1
3Epx(x)1/21/31/6 101131z3z1x(z2=zz2 1 :=5=+=which
corresponds to the result obtained E[X] =0 + 1 by using the definition of
E[X]: 115

3.8 Transforms 107 iv) Proceeding as in Proposition 3.8.1, we show that 1 d k
Gx(z) z 0" px (k) -- k! dz Indeed, Gx(z) := E[z x] = px(O) + zpx(1) + zepx(2) +



... , which implies that Gx (0) = px (0), G(0) = px(1) + 2zpx(2) +... [z=0 =
px(1), G:(0) =2px(2) + 6zpx(3) +... [z70 = 2px(2), etc. We can also express
px (k) in terms of a complex integral as follows: 1 flz Gx(z) dz, wherer < 1
px(k) =j1=r zk4 -' - € (3.74) Example 3.8.3 Suppose that pz Gx(z)-- 1-qZ
where[z[< 1/q. We have: Px (0) = Gx (0) = 0. Moreover, since we can write
that Gx(z) = pz(1 + qz+ (qz) + ...), we find that 1 = g-ip ..... px(k) = -. p(k!q -I)
fork =1 2, That is, the function Gx (z) above is the generating function of the
geometric distri- bution with parameter p. We also deduce from the function
Gx that 1 1-p E[X]=- and VAR[X]---- p p2. Finally, another function that
enables us to obtain the moments of a random vari- able is the moment
generating function. Definition 3.8.3. Let X be a random variable. The moment
generating function of X is defined by Mx(s) = E[e-SX], (3.75) if the
mathematical expectation exists.

108 3 Random Variables Remarks. 1) If X is a non-negative continuous random
variable, then Mx(s) is the Laplace transform of the function fx (x). 11) We
have: gx (0) = Mx(-jw). It follows that dn qSx(o) w 0 dndndw n==1f'n
Mx(- jw) w=0 ---- (- J)n-- n Mx(w) w=0" Then, we deduce from Proposition
3.8. I'that E[X n] ---- (-]) n-dn (s) s=0O" ds n Mx (3.76) In fact, if we define the
moment generating function of X by E[e sx ] (as many authors do), then the
term (- I )" disappears in the previous formula. Example 3.8.4 If X ExpO.),
then we find that Mx(s) = e-SX;ke - dx -- --ifs > -.. +s " -(s+.)x--e .k +s 0
This formula enables us to check that E[ X] = I/,k and VAR[X] =1/. 2. Note that
the function Mx(s) does not exist (that is, the integral diverges) ifs <-.,
whereas the characteristic function of X, gx (o), exists for any real value o. 3.9
Reliability Definition 3.9.1. Let T be a non-negative continuous random
variable that repre- sents the lifetime of a system (or a machine, etc.). The
reliability function R(t) is defined by R(t) = PIT > t] (=1- Fr(t)). (3.77) The
mean lifetime of the system, E[T], can be obtained as follows (see Propo-
sition 3.7.2, p. 96): E[T] = R(t) dt. (3.78) Remark. The symbol MTTF (mean
time to failure) 1s sometimes used for the quantity E[T]. We can also define the
symbols MTBF and MTTR, that is, the mean time between failures and the
mean time to repair, respectively. We have: MTBF = MTTF + MTTR.
Definition 3.9.2. The failure rate function of the system is denoted by r(t) and
is given by r(t) = fr(t [ T > t). (3.79)

3.9 Reliability 109 Remark. The function r(t), multiplied by dt, is



approximately equal to the prob- ability that a machine, that is still working at
time t, breaks down in the interval (t, t + dt], because fr(t [T > t)dt-- P[t<T <t
+ dt ] T > t]. Now, the probability that the lifetime of the system is smaller than
or equal to s, given that the system is still functioning at time t, is P[T <s I T
>t]:=FT(s 0 ifs <t, T > t) -= FT(S) -- FT(t) ifs > t. 1 -- FT(t) It follows that d
fT(s) fT(sIT>t)=-FT(SIT>1) -- ifs > t. (3.80) 1 FT(t) Thus, since fT(t) = -
-R'(t), we can also write (taking the limit as s decreases to t) that fT(t) R'(t)
r(t) -- -- (3.81) 1 - FT(t) R(t) Example 3.9.1 If X Exp(.), then the failure rate
function is constant: .e-)t r(t) -- -- ). e-,kt Proposition 3.9.1. There is a
bijective relationship between the functions R(t) and r(t): R(t) = exp - r(s)ds .
(3.82) Proof. We have: fot fot R'(s) r(s)ds = - R(s) ds = -InR(t) + In R(0).
Now, R(0) =1, because T is a non-negative continuous random variable.
Hence, Equation (3.82) follows at once. [] Remark. We then deduce from
Example 3.9.1 that the exponential distribution is the only one for which the
failure rate function is constant.

' 10 3 Random Variables Reliability of Systems in Series and in Parallel a)
Systems in series. If a system is made up of n subsystems placed in series and
operating independently from one another, then the reliability function of the
system is given by R(t)= Rk(t)=exp - [rl(s)+.--+r,,(s)]ds , k=1 (3.83) where
Rk(t) is the reliability function of the subsystemk, fork=1 ..... n. This result
follows from the fact that T >t if and only if Tk > t for all values of k, where
Tk 1s the lifetime of the subsystem k. Example 3.9.2 If T has an Exp()k)
distribution VKk, then R(t) = exp[-() + --- +),,)t]. Thus, it is as if there were a
single component, whose lifetime has an exponential distribution with
parameter ) :=b) Systems in parallel. In the case when the system is made up
of n subsystems placed in parallel and operating independently from one
another, we have: T <t @# Tk <t'k. It follows that the reliability function
of the system is given by R(t) =1 - I-111 - Rk(t)]. k=1 (3.84) Remarks. 1) We
assume above that all the components begin to function at time t = 0. This is
called active redundancy. Suppose now that there are n components placed in
parallel, but only component no. 1 functions at first. When it fails, component
no. 2 takes over, and so on. This type of redundancy is called standby (or
passive) redundam3'. If the components operate independently from one
another, we can show (see Chapter 4) that E[T] = EIT] k=I and VARIT] ind. -=
VARITK]. k=1 In the particular case when T has an Exp(.) distribution Yk, we
can also show (see Chapter 4, again) that T has a gamma distribution with



parameters n and .. It follows that n-1 R(t) :=.PIT > t] = P[Poi()t) <n- 1] =
Ze-7tot)/k! k=0 fort > 0.

3.10 Exercises, Problems, and Multiple Choice Questions 111 i1) Suppose next
that a system is made up of n components, but that k (working) components are
sufficient for the system to function, where 0 <k <n. Then, if all the
components have the same reliability function R (t) and are all independent, the
reliability function of the system is given by R(t) = [R(?)]i[1 - R(t)] n-1=1 -,
[R(H]i[1 - R(t)] n-1. 1=k 1=0 1i1) Finally, we can of course consider systems
made up of a number of subsystems placed in series and others placed in
parallel. For instance, if there are two subsys- tems in parallel followed by
another subsystem placed in series, then we can write that R(t) = {1 - [1 -
RI(D)][1 - R2(t)]}R3(t). 3.10 Exercises, Problems, and Multiple Choice
Questions Solved Exercises Exercise no. 1 (3.3) Let X be the execution time
(in minutes) of a program submitted to a central computer. When a program
contains at least one "fatal error," it is not executed (exe- cution time is equal
to zero). Moreover, there is a one-minute time limit imposed on the execution
time (the execution will stop at the end of one minute, even if it is not finished).
Finally, we suppose that the distribution function of X, which is a random
variable of mixed type, is 0 1fx <0, 0.2 if x=0, Fx (x) =(3x+¢)/5 {0 <x <1,
1 ifx> 1. Calculate a) the constant c; b) the probability P [{X =0} U {X=1}];
c) the function fx (x I 0 <X < 1). Solution a) Since Fx is right-continuous, we
can write that 3.0+c P[X <0] =0.2-- -- :=c=1.5b) P[{X=0/u {X=1/] : P[X
:0]+P[X=1]--a) 02+ 1 3"1+1 35 :0.2+0.2:0.4.

3 Random Variables d fx(x 10< X <D)=rFx(x 10< X <1) a--[Fx (x) - Fx(0)] dx
P[0<X< 1] a) 3/5 0.8 --0.2 if) <x < 1 It follows that fx(xIO<X< 1)=1if0<x< 1,
0 elsewhere. Exercise no. 2 (3.3) Let Fx(x) =0 ifx <0, I/41f0 <x < 1, 1/2 if 1
<x<4, c ifx > 4. a) Find the constant c. Justify your answer. b) Calculate P[I <
X <5]. ¢) Find px(1) + px(2). d) Obtain fx(x I X < 1). Solution a) Since limx-
Fx (x) =1, we deduce that c = 1. b) P[1 <X <5] Fx(5-) Fx(I-) tal t3 =--=c--
=l--=. ¢) We calculate 1 1 1 px(I)=Fx(1)-Fx(l-)--24--4and 1 1 px (2) =Fx
(2) - Fx(2)----0.2 21 Thus, Px (1) +Px(2) =,.d) We have: x0 1 4 Px (x) 4
2XPx(x[X<1)oZII1l1 &x(xIXsl)=:(x)+z(x-) VxeR. Z Z

3.10 Exercises, Problems, and Multiple Choice Questions 113 Exercise no. 3
(3.6) A well-balanced (or non-biased) die is tossed until a "6" is obtained. a)



Given that the first three tosses produced a "1 ," what is the probability that the
die will have to be tossed more than five times in all? b) Let X be the number
of tosses required to obtain a first "6." We define Y = min {X, 5}. Thatis, Y is
the minimum between X and the number 5. Calculate Pr (Y). Solution a) We
seek PIX > 51X > 3], where X Geom(p = 1/6). We have: P[X >5 IX
>3]=P[X>2]==3--""b) We can write that P[Y=yl=P[X=y] ify = 1,2,3,4 and
Thus, we have: P[Y=5]=P[X>5]=P[X>4]=.y 1234 5PY(Y) ()O()2()
()3 ()( )4 Exercise no. 4 (3.7) Let fx(x) = { 2xe-X2 ifx > 0, 0 elsewhere. a)
We define Y =2 In X. Calculate fr (y). b) Let Z := 1/X. Calculate E [Z].
Solution a) deY/2 fv {y) =fx {x) =exp {y--e y } =2(eY/2) e-(eY/)2 eY/2
=eYe -ey ify R, since 21nO = -oc and 21nee =

114 3 Random Variables b) E [Z] = E = 2xe-X2dx = 2,f- e- dx =2.v/ (1/2)I/2
fo@ "v/'- (11/2)i/2 e 2(2/ dx Exercise no. 5 (3.7) Let X be the time (in hours)
a computer terminal is used during one workday. a) Suppose that X has
(approximately) a Gaussian N(4, 2) distribution. Find the number xo such that,
for 90% of the days, X is greater than xo. Hint. We have: Q- (0.10) - 1.28. b)
Suppose that X U[0, 8]. Calculate 1) the probability density function of Y :=e x
and 11) the mathematical expectation of y2. Solution a) We want b) 1) We
calculate dinv 1 +] I ife 0 <y<e 8 4* fY(Y)= {(8Y)o-' elsewhere.ifl-<y-<eS' 11)
We have: f8 E[ y2] = E[e2X] =e2X Idxdo 8e2x8e 16-1=T6-0-OrfYle
16-1=e8dy=--1E[y2]y2y2e

3.10 Exercises, Problems, and Multiple Choice Questions 115 Exercise no. 6
(3.7) Four calls are received at random, according to a uniform distribution, at
a central dispatch location during a one-hour period. What is the mathematical
expectation of the number of calls received during the first half hour of the hour
considered, knowing that at least one of the four calls was received during
these first 30 minutes? Solution Let X be the number of calls received during
the first half hour. Then, we can write that X B(n=4, p=1/2). We seek E [X ]
X>1]. We have: P[X > 1]=1- P[ X =0]=1I- -- 16 It follows that E[X [ X > ]
4164k=1kP[XklIX>1]=k=1116k=1]{1 @42 @63 @441}
=-- 2.13. k=1 15 Exercise no. 7 (3.7) Let X be the time (in minutes) required
by a technician to assemble a certain part. a) We define Y = e x . Calculate the
probability density function of Y if X U(0, 1). b) Suppose that X Exp(1).
Calculate PIX 2>41X 2 > 1]. ¢) Suppose that X N(1, crx2 ). 1) Calculate P
[IX -- T <1]iferx2 =0.25.11) Find crx2 if P [X <2] =0.99865. Hint. Q(1) -



1.59€10-1,Q(2)-2.28€ 10-2,Q3)-135€ 10-3and Q (4)-3.17 x
10 -5 . Solution dv dlny =-1 ifl <y <e (=0 a) fr(Y) =1fx(x)  =1dyy
elsewhere). P[X 2 >41X 2 > 1] =P[X >2IX > 1], becauseX>0 b) =P [ X > 2--
1]=e-l(1=¢e-1--0.3679. ¢)1)P[IS-11 < 1] =P[-1 <X-1 <1]=P---<Zo <
where Z0 N(0, 1) 0.5

116 3 Random Variables =qgb (2) --gb (--2) =2gb (2) -- 1 =2[1 --Q (2)1 - 1
-2(0.9772) - 1 =0.9544. i1) P[X <2]=gb(-x )2--1 =0.99865= Q(-)=1.35x_,.-
10.3 11 10x9 Exercise no. 8 (3.7) Let 6x fx(x) -- forx > 0 (=Oelsewhere). (1
"hi- X) 4 a) Calculate the probability density function of Y :=I/X. b) Use part
a) to compute E IX]. ¢) Calculate fx (x I X < 1). d) Calculate the median of X.
Solution d(l/y) _ 6) ,- -2 -- 6y if v > 0. a) fy(y)=tx(1/y) T (Int-V-I) 4 . (I+y) 4 "
b) We have: [], 6x (,+x,-3? EIX]a--)--E[YI=E .... 4dx=6 =2. x ( +x) --- fo' 6x
dx=6x(1+x)-3 1) fo'-3 ¢) P[ X< 1]=(1 + x)- + 2(1+x)-3dx2 (1 +x)-2nl1 11 0=
2--y+2-2422+1201fx<0, =fx(xIX<1)=12x(1+x)4i1f0<x<1,
0 ifx > 1. d) We deduce from part c¢) that Fx (1) = 1/2. It follows that x0.5 =
Xm= 1. Exercise no. 9 (3.7) Let X be the service time (in minutes) at a
counter. We suppose that E [X] = 3. a) Give a lower bound (> 0) for P [ X < 6].
Justify your answer. b) Suppose that X G(ot=3,.=1). Calculate P[ X >51X
> 3]. ¢) Suppose that X N(3, 1). Calculate 1) the 90th percentile of Y :=2X -
4;11) P[W=21 W 2=4],whereW:=X-3.

3.10 Exercises, Problems, and Multiple Choice Questions Hint. We have: Q
(1.2815) 0.1 and Q (2.3263) 0.01. a) We have, by Markov's inequality:
SolutionE [X] 1 1 1 P[X> 6] < ----P[X<6] >1....6222P[X>5]b)
P[X>5[X >3]-- P[X>_ 3] We have: and { 52] P[X< 5]=P[Poi(1.5)> 3]=l-e
5145+, {32] P[X <3]=P[Poi(3) >3]=1-e-3 1+3+.. 117 It follows that
cont. 18.5¢ -5 -2 18.5 P[X >5[X >3] -- ----e --0.2946. 8.5¢ -3 8.5 ¢)
1)YN(2x3-4,4x 1)=N(2,4) (Y0.9 - 2) (72) P[Y<Y@9]=0"9"@* -2- =0.9.* Q
yo. =0.1 .@*y0.9-21.2815.€,y0.9-4.563.2ii)) WN(0, 1) P[W=2[W
24]=P[W=2[{W=2} U{W=-2}]=1/2, by symmetry. Exercise no. 10
(3.7) We suppose that the length Tj (in minutes) of the telephone calls received
during the day at a certain emergency number has a U(0, 4] distribution,
whereas the length TN (in minutes) of those received during the night at the
same emergency number has (approximately) an Exp(1) distribution.
Moreover, 80% of the calls are received during the day (and 20% during the
night). a) Calculate the probability that a given call lasts more than one minute.



b) What is the average length of the calls received during the night and lasting
more than one minute? ¢) Calculate P[Tj=1[ {Tj =1} U {Ty=2}].

118 3 Random Variables Solution a) Let T be the length of a given call. We can
write that P[T > 1]=P[Tj >1] (0.8) -1- P[TN >1] (0.2) = (3/4) (0.8) + e -)
(0.2)=0.6+(0.2)e-"0.6736.b) Weseek EITNITN>11=1+EITN],
by the memoryless property of Tu=1 + 1 = 2 minutes. ¢) By symmetry (since
Ly (1) =Ly (2) = 1/4), we canwrite that 1 PIT) = 11Tj =} ulT) =2} 1=-.2
Exercise no. 11 (3.7) The input to a communication channel is a certain voltage
v and the output is a voltage X =v + B, where B has a standard Gaussian
distribution. We use this communication channel to send binary information as
follows: to send a 0, we input a voltage v =-2, while to send a 1, we input a
voltage v ---=+2. The receiver decides that a 0 has been sent if the voltage X
he receives 1s negative, and that a 1 has been sent 1f X is positive or zero. a)
Calculate P[X = v]. b) Let Y := e x. Obtain the probability density function of
Y. ¢) Calculate 1) VAR[X] and i1) VAR[X ] B = 0]. d) Find the probability that
the receiver makes a detection error, if the probability of sending a 0 is equal
to p. Solution a) P[X =v] =P[v+B=v] =P[B -=0] =0, because B is a
continuous random variable. b) Y:=e x,whereX= v+BN(v,l)=y >0and
fy(y)=tx(Iny) diny 1 [ ] 1 +. dy=exp - (Iny-v) 2 . fory6 c) 1) VAR[X] = VAR[v
+ B] = VARIB] =1.1i) VAR[XIB=0]=VAR[v+ 0IB=0]=VAR[v] =0. d)
Let F = the receiver makes a detection error, and Ek = a k is sent, for k=10, I.
We have: P[F] =P[F [ Eo|P[Eo] + P[F I E|P[E]

3.10 Exercises, Problems, and Multiple Choice Questions 119 = P[-2+B

> 0]p+P[2+B <0](1-p) = P[N(0, 1) > 2]p + P[N(0, 1) <-2](1 - p) Tab. 3.3 =
QR2)p +agb(-2)(1 -p)=1-gb(2)-1--0.9772 =0.0228. Remark. For this last
question, we could consider the constant v as a random variable V that takes
on the value -2 (respectively +2) with probability p (resp. 1 - p) and write that
P[F]:P[X> O[ V:-2]p+P[X <0[ V:+2](1-p). However, this formula will only
be given in Chapter 4 (on random vectors). Exercise no. 12 (3.8) Let X be a
discrete random variable whose set of possible values is Sx: {0, 1,2 .... } and
for which Mx (s) : exp {a (e -s - 1)}. Calculate a) Px (0); b) the standard
deviation of 2X. Solution a) We have: 1t/= We find (see Equation (3.74) and
also Example 3.8.1) that X Poi(), so that Px (0) = e -. b) Since X Poi(a), we
may write that STD [2X] = (VAR [2X]) /2 : (4a) /2 : 2. Exercise no. 13 (3.8)
Letx 013 px(x) 1/8 3/8 1/2 Use the generating function of X to calculate its



standard deviation. We have: Then, Solutiono 13113 z3 Gx(z) := E[zX]=z
g+zlg+ 2732 -- 8 + gz+ . VAR[X] = G(1) + G%(1) - (G@(1)) 2 = (3Z)1z1+
(+Z22) z=1-- (+) 2

120 3 Random Variables =3 4- - --  1.359. It follows that STD[XI -- 1.166.
Exercise no. 14 (3.8) The probability mass function of the discrete random
variable X is given by the following table: .r-10 1/2 1 Px(x) 1/8 1/8 1/4 1/2
a) Calculate P[X b) Let Y := X 2. Calculate 1) p,(y) and i1) the standard
deviation of Y. ¢) Calculate the characteristic function of X at (o = rr. Simplify
your answer as much as possible. d) Can we calculate the generating function
of X? Justify your answer. Solution a) We have: P [X = 3/4] =0, because 3/4
Sx. Moreover, Fx (3/4)=P[X < 3/4] =P[X < 1/2]=1/2. Thus, P [X =3/4] +
Fx (3/4)=1/2.b)1) We have: 1 1 I5PY (-') 84 g11i) We calculate 1 15 11
E[Y]=0+x+Ix8 16 Then,and ] 11541e¢ 2=0+IV@2+1 @ g=6411l1"]2
43'-J 0.4098. VAR[Y] -- 64 \16] -- 256 and STD[YI- 1 ¢) gbx(co) "= E[e j")x]
=-j')11 1 @1@4-1€@4-¢cjw/2 @ -4+eS@" -2 @bx(Tr)=-¢-j+1+2e
/2 +4ej={-1+1+2j-4} 12 4

3.10 Exercises, Problems, and Multiple Choice Questions 121 d) We cannot
calculate Gx (z), because this function is only defined when the ele- ments of
Sx are all positive integers or zero, which is not the case here. Remark. We can
calculate E[zX]. However, we cannot call this mathematical expec- tation the
generating function of the random variable X. Exercise no. 15 (3.8) Let X N(O,
1). We define Y =e x2 and Z=2X- 1. a) Obtain fy (y). b) Calculate E[ 1/ Y].
c¢) 1) Obtain the characteristic function of Z. i1) Use bz (co) to calculate E [Z2].
Hint. We have: bx (co) = e -€2/2. Solutiona) We have: y: e xX2 <:x: @ 1V',
wherey >1.Itfollowsthat 11 C2exp { (Iw/)2 }]=2.2y2 -- C2zr CInY ,y
L= exp - -- y-3/2(Iny)-1/2 fory> 1.f 1 x2/2dxf xe 3X2/2d xb)E[1/Y] =
Ele -x2]=e-X2x/e=f " {x2 } IN(O,)=1exp-dx=P2(1/3)=3-1/2
0.5774. ¢) i) bZ(co) := E[e y@z] = E[e jc@(2X-1)] = e-J@)E[e j2@)X] = ¢-
J@)qx(2co) = e-JO)e-(20))2/2 = e-J 0)-20)2. ii) We can write that " d {e-JCo-
202(_j_4co)} co=0 E[Z2] =-;bz (co) It€=0 -- dco = -¢ -jc@p-zc@z [(-] - 4¢c0)
2 -4] co=0 =-e@[(-))2 - 4] =5.

122 3 Random Variables Unsolved Problems Problemno. 1 Let 0 ifx <-1, 1/3
if-l <x <0, Fx(x)=3/41f0 <x <2, 112 <x. Calculate a) Px (0) + Px (1); b)
Fx (0] X>-1). Problemno. 2 Let 1/2 if()<x < 1, fx(x)=1/(2x) ifl <x <e.



Calculate a) PIX <11x<21;b)./'x(xI1 <X <e). Problemno. 3 Let X be a
random variable having a B(n =2, p = 1/4) distribution. Calculate a) P[X > 1
[ X <II:b) gIX TX Problemno. 4 Let X Exp(X = 2). a) Calculate P [X 2 <9].
b) Use Bienaym6-Chebyshev's to compute P [ X - € > 2]. Compare with the
exact value. inequality Problemno. 5 Let X G(o =3, X =1/2). Calculate a) P
[X < 5][: b) the standard deviation of Y :=2X -4. Problem no. 6 A machine
produces parts whose diameter X (in centimeters) has approximately a
Gaussian N(tt, ¢ 2 =(0.01 )2) distribution. a) What should the value ofit be so
that no more than 1% of the parts have a diameter greater than 3 cm? b)
Suppose that tt = 3. Calculate the probability density function of Y := IX - 3].
Problemno. 7 Let X be a discrete random variable such that px (0) =e -,
where X > 0, and px(x)-- -- forx ..... -2,-1, 1,2 ..... 2(IxI!) Calculate a) E [IXI];
b) EIX I X > 0] if) = 1. Problemno. 8 Let I,,x/2 ifx <0, fx (x) =e_X/2 - ifx >0.

3.10 Exercises, Problems, and Multiple Choice Questions Calculate a) E [X2];
b) the characteristic function Problemno. 9 Let X U[-1, 1]. Calculate a) the
kurtosis of the random variable X; b) VAR[X IX >0]. Problemno. 10 Let 123
Fx (x)=01ifx <-1, I/8 if-l <x<1, 3/8 ifl <x <2, 1 if2 > x. a) Calculate the
probability density function of X. b) Let A := {X > 1 }. Calculate Fx (x [ A).
Problemno. 11 Let Fx (x) = a) Calculate P[- 1 <X <1.5]. 0ifx <-1, 1/2 ifx =
-1, (x+4)/6 1f -1 <x <2, 1 if2 >x. b) Let A :---- {X > 1}. Calculate fx (x I A).
Problem no. 12 The number of power failures that occur in a certain region
during a one-year period has a Poisson distribution with parameter ct = 3. The
length (in hours) of a power failure has an exponential distribution with
parameter . = 1/2. a) Calculate the probability that a power failure that has
already lasted two hours will end within the next 30 minutes. b) Assuming
independence of the power failures from year to year, calculate the probability
that, during the next ten years, there will be at least one year during which
exactly one power failure will occur. Problemno. 13 Let X N (0, 1). We have:
bx (co) = e -€2/2. Calculate VAR IX2]. Problemno. 14 The time T (in
months) that elapses between two car accidents at a certain in- tersection has
an exponential distribution with parameter . = 1/4. The number of persons
involved in an accident has a geometric distribution with parameter p = 1/3. a)
Calculate the probability that a given accident involves at least four persons,
know- ing that more than two persons are involved. b) Let Ak = the time
elapsed between the (k - 1)st and kth accidents at this inter- section is greater
than one year, for k=2, 3,.... We assume that the events Ak are



124 3 Random Variables (globally) independent. What is the probability that,
among the events A2 ..... A21, exactly two will occur? Problemno. 15 Let X
be the lifetime (in months) of an electronic component. a) Suppose that X has
(approximately) a Gaussian N(20, 16) distribution. Calculate P [1X] < 24].
Hint. We have: Q ( 1) O. 159. b) Suppose that X G(ot : 2, k); that is, fx (x) :
)2xe-kX ifx > 0 (= 0 elsewhere). Calculate 1) the probability density function
of Y :: I/X and 11) the mathematical expectation of Y. Problem no. 16 A box
contains three transistors, denoted by A, B and C. Transistor A was made by a
machine that produces 3% detectives, transistor B by a machine that produces
5% detectives and transistor C by a machine that produces 7% defectives. Ten
tran- sistors are taken, at random and with replacement. Let N be the number of
detective transistors obtained. a) Calculate P [ N : 0]. b) Does N have a
binomial distribution'? If so, give its parameters. Otherwise,justify. ¢)
Calculate the mathematical expectation of N, given that N is less than or equal
to Problemno. 17 Let { kx(1-2x) 1f0 <x < 1/2, fx (x) = elsewhere, where k > 0.
a) Find the constant k. b) Calculate the distribution function of X. c¢) Calculate
the variance of X. d) Let Y :: I/X. Calculate 1) the probability density function
of Y and 11) its math- ematical expectation. Problemno. 18 a) Let fx(x) =K e -
x2 ifx €, where K > O. i) Find the constant K. ii) Calculate fx(x 1X > 0).

3.10 Exercises, Problems, and Multiple Choice Questions 125 b) Let [2e -2(y-
ify>1, fr (y) = 0 elsewhere. 1) Calculate the characteristic function of Y. 11)
Use the function calculated in 1) to obtain the mean of Y. Problemno. 19 A
crate holds two boxes that contain ten items each. All the items were made by
the same machine. Suppose that the probability that an item made by this
machine is defective is equal to 0.05, independently from one item to another.
a) What is the probability that there are less than three defective items among
the 20 items considered, knowing that there is at least one defective among
these 20 items? b) Use a Poisson distribution to compute (approximately) the
probability in a). Problemno. 20 Let X be the waiting time (in minutes) before
being served at a certain counter. We suppose that the distribution function of X
is given by 0 1fx <0, ifx =0, Fx(x) =3 1-ifx>0. a) Calculate P[X =01 X < 1]
b) Calculate the probability density function of X. ¢) Let Y := X 1 {X > 0}.
Calculate 1) fr(y) and 11) E [Y]. Problemno. 21 Let X be a discrete random
variable whose probability mass function is given by the following table: x 1 4
9151 px(x) ga) Calculate the variance of /-. b) Let Z := X T {X > 1}.
Calculate the probability density function of Z. ¢) 1) Calculate the moment



generating function of X. i1) Use the function computed in 1) to obtain E [ X2].
Problemno. 22 A discrete random variable X has the following probability
mass function: x-2-1011111PX(X) g8 2 a) Calculate Fx (0) + Fx (2).

126 3 Random Variables b) Let Y :=-2X. Obtain the standard deviation of Y.
c) Let Z := X 2. Find fz (z). d) Calculate E . e) Calculate E IX I X <0].
Problem no. 23 A small company has five telephone lines. We suppose that the
probability that a given line is free at 11:00 a.m. is equal to 0.5 for each line,
independently from one another. Moreover, this probability is the same for
each workday, that is, from Monday through Friday. a) We consider a period of
four weeks with five workdays each. Calculate the proba- bility that over this
time period there are at least two days during which not a single telephone line
is free at 11:00 a.m. b) Use a Poisson distribution to compute (approximately)
the probability in a). ¢) If a man calls every day, exactly at 11:00 a.m., what is
the average number of telephone calls that he will have to make to reach the
company, knowing that on his first trial all the lines were busy'? d) During a
given five-workday week, the lines were all busy at 11:00 a.m. on exactly two
days. What is the probability that these two days were the Monday and
Tuesday of that week? Problem no. 24 Let X be the length (in minutes) of a
telephone call received by a computer consultant. a) Suppose first that X U[],
51. Calculate P [X 2 <9]. b) Suppose next that X G(a =3, , = 1). Calculate P
IX > 4]. ¢) Suppose finally that X N(3, 1) (approximately). If ten independent
calls are received by the consultant during a certain period of time, what is the
probability that exactly one of these calls lasts more than three minutes? d) If
the characteristic function of X is given by k qSx (0) - 1 - 4jo' what is the value
of the constant k? Problemno. 25 Let Px (x) =Ix (x + 1)] -1 ifx=1,2 ....=0
otherwise. a) Calculate P [2 < X <4].

3.10 Exercises, Problems, and Multiple Choice Questions 127 b) Let Find Fr
(y). ¢) Calculate E [X [ X <4]. d) Calculate E [ X2]. Problem no. 26 1ifX<4,
Y:=0if X >4. Apoint X is taken in the interval [-1, 1] in such a way that it is
twice as likely that X is positive. We suppose that 1/3 if-1 <x<0, fx(x)=2/3
1f0<x < 1, 0 elsewhere. Calculate a) the probability density function fy (y),
where Y := X2; b) the variance VAR [-2X + 4]; c¢) the characteristic function
gx (co); d) the conditional probability density function fx (x I X <0). Problem
no. 27 A computer generates random numbers according to an exponential
distribution with parameter ) ---- 1/3. The numbers generated are independent



of one another. a) What is the probability that each of the first three numbers
generated 1s greater than 9? b) Let N be the number of random numbers greater
than 9 among the first 20 numbers generated. Calculate the variance of N. c)
Use a Poisson distribution to calculate (approximately) the probability that
exactly one of the first ten numbers generated is greater than 9. d) Knowing that
the first number generated is greater than 9, what is the probability that it is
greater than 12? Problem no. 28 A machine is made up of two types of parts: A
and B. The number X of parts of type A that fail during a given period has a
Poisson distribution with parameter a = 4. In the case of the type B parts, the
number Y of failures has the following probability mass function: pg(k)=
fork=0,1,2 ..... The failures of the type A and type B parts are independent. a)
Calculate the probability that there is one failure (in all) during the period
consid- ered. b) Calculate E [ X I X <3].

128 3 Random Variables ¢) We consider ten independent periods, each having
the same length as the period above. What is the probability that during at least
two of these periods there are no failures of the type B parts? Problem no. 29
The time T that a technician spends performing the periodical maintenance of a
certain machine is divided into two parts: a fixed period of 5 minutes made up
of customary checks, followed by a random period X (in minutes) which
depends on the repair work that the technician has to do. a) Suppose that X
U[0, 20]. Calculate the probability density function of T. b) Let X G(ot=35, ) =
1/2). Calculate E [T2]. ¢) Suppose that X N( 10, 4). 1) Calculate the
probability P 1IT - 151 > 6]. i1) Compare the answer in 1) with the bound given
by Bienaym6-Chebyshev's inequality. Hint. We have: Q (1.5) - 0.0668 and Q
(3) - 0.00135. Problemno. 30 Let x/kifO <x <k, fx (x) = 0 elsewhere, where k
> ( is a constant. a) Find the constant k. b) Calculate the distribution function
of X. c¢) Calculate the moment generating function of X. d) Let Y := I/X.
Calculate VARI/-I. Problemno. 31 An airline company has realized that, on
average, 4% of the people making reser- vations on a certain flight do not
show up for the flight. Consequently, the policy of this company is to accept 75
reservations for a flight that can only hold 73 passen- gers. What is the
probability that there is a seat available for each passenger who arrives for the
flight? (Make the necessary assumptions.) Problem no. 32 An exam grade, out
of 100 points, can be considered as having a Gaussian N(60, 100) distribution.
a) What is the average grade in this class? b) What is the proportion of
students whose grades are between 55% and 75%? c¢) Where should the



threshold for an A be placed, if we want 10% of the students to get an A?
Problem no. 33 In information theory, Hartley's formula expresses the quantity
I of information of a message as a function of the signal-to-noise ratio S/N as
follows:

3.10 Exercises, Problems, and Multiple Choice Questions 129 2I=1 + S N Let
us write that X =21 . a) Suppose that S = 1 and that N has a uniform
distribution on the interval (0, 1). Calculate 1) the probability density function
of X; 11) the expected value of X. b) Suppose that N = 1 and that S has a
uniform distribution on the interval [1,2]. Calculate the moment generating
function of X. Problem no. 34 Let X be the number of different versions of a
program that a computer science student has to write to obtain a program that
works. We suppose that X has a geo- metric distribution with parameter p =
1/4. We consider a class with 20 students, who must each write a program
individually. a) Calculate P[4 <X <6 [ X > 2]. b) Let N be the number of
students, among the 20, who have to write exactly two versions of their
programs to obtain a version that works. Calculate P [N < 1]. ¢) Use Poisson's
approximation to calculate the probability in b). Problem no. 35 In information
theory, the differential entropy of a continuous random variable X is defined by
H@ = -E[In f€@ (X)]. Moreover, the relative entropy of the continuous random
variables X and Y is given by H(f@; fr) := f@(x) In(f@(x)/fr(x)) dx. a)
Calculate Hx if X Exp()). b) Let Y := e x, where X U[O, 1]. Find 1) the
probability density function of the random variable Y; 11) Hr. ¢) Calculate H(fx;
fr) ifX U[O, 1] and Y Exp(1). Problemno. 36 a) Let X N(0, 1). We define Y =
fXf. 1) Calculate PIY < 2]. Hint. We have: Q(1) 0.159 and Q(2) - 0.0228. ii)
Calculate VAR[Y]. b) Let Z G(c =2, = 1). Obtain E[Z 3] by making use of the
characteristic function of Z. Hint. We have: bz(co) = (1 - jco) -2. Problem no.
37 Let X be the number of unsuccessful interviews that a graduating student
must have before getting a first job. According to the data collected, we accept
that E[X] =2.5.

130 3 Random Variables a) Calculate the maximum value of P[X > 5]. b) If we
assume that X =Y - I, where Y has a geometric distribution, what value of p
must we choose? Justify your answer. c¢) If we have found that VAR[X] -- 2.5,
is it better to use a geometric distribution as in b) or a Poisson distribution as a
model for X? Justify your answer. d) Suppose that X has a Poisson
distribution. Calculate P[X =0 I X < 1]. Problemno. 38 I,et X be the lifetime



(in years) of a certain machine. a) Calculate P[X 2 > 4] ifX U[0, 10]. b) If the
value of x that maximizes the probability density function of X is x = 4 years, is
it better to use an exponential distribution or a gamma distribution as a model
for X? Justify your answer. C) Suppose that X N(4, 1) (approximately). 1)
Calculate P[3 < X < 5]. 11) Find the number xo such that P[2X < xo0] = 0.9.
Hint. We have: Q-(0.1) 1.2815 and Q-(0.9) -1.2815. Problem no. 39 We have a
computer program that enables us to test whether a software program contains
bugs or not. We suppose that, each time the program is used, the probability
that 1t detects the presence of a given bug is equal to 0.95, independently from
time to time. Furthermore, we suppose that the number N of bugs that a given
software program contains has a Poisson distribution with parameter o : 0.5,
and that the bugs are independent. a) Calculate E[N [ N < 2]. b) What is the
probability that we must use the program less than three times to detect the
presence of a given bug'? c) Calculate the probability that the program does not
detect the presence of any bugs 1) in a software program that has in fact k bugs,
where k 6 {0, 1,2 .... }; 11) in any software program. Problem no. 40 Let x2/9
1f) <x <3, fx(x)= 0 elsewhere. We define Y = int(X), where int denotes the
integer part. Calculate a) the probability density function of Y; b) the
generating function of Y; ¢) VAR[ 1/X]; d) Fx(xIX < 1).
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a) The random variable X has a Gaussian N(0, 1) distribution. We define Y =
X 2. 1) Calculate the characteristic function of Y. i1) Give the distribution of Y,
as well as its parameters. b) Let Z be a random variable that has a G(c, .)
distribution. We define W = a Z +b, where a # 0 and b are constants. 1)
Calculate the characteristic function of W. 11) For what values of a and b does
the random variable W have a gamma distri- bution? /-/int. We have: Cz(co =
(1 - Problemno. 42 Let 0 i1fx <0, c ifO_<x<1, 2¢(2-x) ifl <x <2, ifx >2, fx(x) =
0 where c is a positive constant. Calculate a) the constant c; b) the distribution
function of X; c¢) the probability density function of X, given that X <1 ; d) the
median of X; e) the 95th percentile of X. Problem no. 43 A computer system
user works at home and connects to the network by modem. We suppose that
the probability that the user manages to connect to the network is equal to 0.95,
independently from one attempt to another. a) Let N be the number of
successful connection attempts among 50 attempts. Cal- culate PN =50 ] N >
48]. b) Use a Poisson distribution to calculate (approximately) the probability
P[N =49], where N is defined in a). ¢) Let M be the number of attempts



needed to manage to connect to the network. Calculate the variance of M,
knowing that the first attempt was unsuccessful. Problem no. 44 a) Let X U(0, 1
]. We define Y = in X. Calculate 1) the distribution function of Y; i1) the
moment generating function of Y. b) Let Z G(c =2, . = 1/2). Use the
characteristic function of Z to obtain VAR[Z2]. Hint. We have: qz (co) = (1 -
2jco)-2.

132 3 Random Variables Problem no. 45 The users of a certain computer
network can work at home with the help of a modem. Let T be the duration (in
minutes) of a given user's work session. We suppose that 0 ift <0, FT(t) = t/100
1f0 <t <90, 1 ift> 90. a) What is the probability that a given user reaches the
maximum duration of a work session? Justify your answer. b) Let S:=T ] {T <
60}. That is, S is the duration of a work session, given that it is less than 60
minutes. Calculate 1) the probability density function J,(s); 11) E[S2]. c) Let
0ifT <30, U:=11f30<T <60, 2 if T >_ 60. Calculate 1) Pu (u) and i1) the
generating function of U . Problem no. 46 Let X be a discrete random variable
whose set of possible values is Sx={-2,0,2},and let A= {X <0}. We
suppose that Fx(x1 A) =0 ifx <-2, 3/5 if -2<x <0, 1 1 fx> 0. Calculate a) P[X
2 <1TA]Lb)E[XA];c) fx(xIA);d) Fx(xT A"); e) px(2) if P[X=01 =
2P[X =21. Problemno. 47 Let p be the probability that an individual in a
population has a certain virus. To detect the presence of the virus, we analyze
blood samples taken from each of the N members of this population. We
assume that the N members of the population are independent. a) 1) Calculate
the mean and the variance of the number of persons who have the virus, given
that the first two blood tests performed were positive. i1) Use Poisson's
approximation to calculate the probability that at least three persons have the
virus, if N = 1000 and p = 0.01. b) Suppose now that instead of proceeding as
above, we rather decide to combine the samples taken from k persons before
analyzing them. If the test is negative, then the k persons do not have the virus.
On the other hand, if the test is positive, then the k persons must be tested again
individually. Calculate the average number of tests required with this method,
if we suppose that N =500, p=0.01 and k= 10.
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Choice Questions Question no. 1 We suppose that the probability that a
telephone call lasts more than five minutes is equal to 0.1, independently from
one call to another. A) Calculate the probability that, among 20 calls taken at



random, there are more than 18 calls that do not last more than five minutes. a)
0b) 0.3917 ¢) 0.6083 d) 0.6769 e) 1 B) Calculate approximately the
probability in A) using a Poisson distribution. a) 0 b) 0.3233 ¢) 0.4060 d)
0.6767 e) 1 C) Calculate the probability that it takes less than five calls to
obtain a first call that lasts more than five minutes. a) 0.0001 b) 0.3439 c)
0.4095 d) 0.6561 ¢) 0.9999 D) What is the probability that, among five calls
taken at random, the longest lasts less than five minutes? a) 0.00001 b) 0.1 ¢)
0.4095 d) 0.5905 ¢e) 0.9 Question no. 2 Let X be the time (in days) required to
repair a machine. We suppose that the average repair time 1s equal to four days
and the standard deviation to two days. A) What 1s, at most (and with as much
accuracy as possible), the probability that the repair time is smaller than one
day or greater than seven days? a) 4/9 b) 2/3 ¢) 1 d) we cannot calculate it ¢)
none of these answers B) Suppose that X has a uniform distribution on the
interval [a, hi. Find the con- stant a. a) 0 b) 2 ¢) 4 d) we cannot calculate it ¢)
none of these answers C) Suppose that X has a gamma distribution with
parameters ¢ : 4 and = 1. Calculate P [X <4]. a) 0.2381 b) 0.3528 ¢) 0.5665
d) 0.5768 ¢) 0.6288 D) Suppose that X has a Gaussian distribution. Find the
number xo such that P [IX - 41 <xo] =0.99. Hint. We have: Q-1 (0.01) - 2.326
and Q 1(0.005) - 2.576. a) 2.326 b) 2.576 Question no. 3 Let C) 4.652 d)
5.152 ¢€) 10.304 -e xx ifx <0, 2 -- Fx(x) = |1 @e -)x ifx > O, where L> 0.
Calculate FX(1 IX>0).a) @e-b)e-c)l-e-d) |-@e-¢)2-¢-x

134 3 Random Variables Question no. 4 Let Calculate Fx (0) + Fx ( 1/2). x -1
01px(x)1/83/8 1/2a)3/8b) 1/2 ¢) 3/4 d) 7/8 e) 1 Question no. 5 A computer
generates indcpcndent observations of a random variable that has a Poisson
distribution with parameter = 1. Let N be the number of observations, among
the first 100 observations, that are greater than 1. Calculate VAR[N]. a) 200(1
- 2e-)e - b) 100(1 - e-1)e -1 ¢) 100(1 - 2e-)e - d) 200( 1 - e- )e- €) none of
these answers Question no. 6 Let X be a random variable that has an
exponential distribution with parameter 2.. What is the value of 2. if the 90th
percentile of X isequal to 1 ?a) 0.1 b) 0.9 ¢) 1 d) Inl0 e) I1n90 Question no. 7
Suppose that X is a continuous non-negative random variable such that E[ X] =
1. We define p =P[X > 1 ]. Let p be the value of p if X has a uniform
distribution, and P2 be the value of p if X =y2, where Y N(0, 1). Calculate p +
P2.a) 0.318 b) 0.5¢) 0.659 d) 0.818 e) 1 Questionno. 8 Letx-1 0 1 px(x) 1/2
1/4 1/4 Calculate STD[X2]. a) 0.1875 b) 0.4330 ¢) 0.6875 d) 0.8292 ¢)
1.1456 Question no. 9 We define Y : IX I, where X N(0, 1). What is, according



to Markov's inequal- ity, the largest value that the probability P1Y > 2/x/--]
can take? a) 1/2 b) 0.5642 ¢) 0.7071 d) 0.8862 ¢) 1 Question no. 10 Let tpx(0)
=¢ -@?. We define Y : 2X - 1. Calculate a) ¢ -@? b) 2¢ -2 - 1¢) e -dwzd) e -
jw-2w2 e) e -jw-4wz Question no. 11 Let X N(0, 1). We define
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11f0_<X<l, 2ifX> 1. Calculate the generating function of Y. a) 0.341z+ 0.159z
2b)1+0.3412+0.159z2 c) € +0.341z+0.15922 d) @ + 0.841z+ Z2 e) 1
+0.841z+ Z 2 Question no. 12 A certain school bought 20 computers so that
its students can connect to the Internet. The school distributed access codes to
the 200 students registered in the computer science course. We estimate that
each student having an access code has a 0.2 probability of wishing to connect
to the Internet at noon on a given day, indepen- dently from one student to
another and from day to day. A) Use Poisson's approximation to calculate the
probability p that all the computers are occupied, at noon, on a given day. a)
0.9990 b) 0.9992 ¢) 0.9994 d) 0.9996 ¢) 0.9998 Hint. If M -- P0i(40), then
pM(20) -- 0.00019 and FM(20) -- 0.00037. Answer the following questions by
assuming that the answer in A) is p = 0.9. B) What is the probability that all the
computers are occupied, at noon, on at least two days among the five days of a
given school week? a) 0.00046 b) 0.00856 ¢) 0.99144 d) 0.99954 e) 0.99990
C) What is the probability that the first day, from the beginning of the term, on
which all the computers are occupied, at noon, is the second or third day of
this term? a) 0.009 b) 0.0099 c) 0.099 d) 0.1539 ¢) 0.171 Question no. 13 Let
X be the utilization time of a computer during an eight-hour workday. We
propose four models for the distribution of X: X1 " U[0, 8], X2 G(2, €)and
X4 =8e -X2. A) Among the above models, which are the only ones that can be
the true model? c) X2, X3 d) X1, X2, X3 e) all -- Exp(1/4). Calculate rn :=
E[XIX> 1] and v :=a) X1 b) X1, X4 B) Suppose that X VAR[X T X > 1]. a)
rn=4and v =4 d) rn=5andv= 16 b) m=4andv=>5 c¢) m=4andv= 16 e)
m=5andv= 17 C) Suppose that X "- G(2, €).Calculate P[X > 3.5]. a) 0.3041
b) 0.4779 ¢) 0.5578 d) 0.7440 ¢) 0.8088 Question no. 14 An information
source generates letters taken at random among the letters a, b, ¢, d and e. We
suppose that P[{a}]=1/2, P[{b}]=1/4, P[{c}] = 1/8 and

136 3 Random Variables P[{d} ] =P[{e}] = 1/16. Moreover, a data
compression system transforms the let- ters into binary strings as follows: a =
1,b=01,c=001,d=0001 and e = 0000. Let X be the length of a binary



string emitted by the data compression system. Calculate A) Fx(2-) + Fx(5-);
a) 1/2b) 3/4 B) E[XIX > 1]; a) 11/8 b) 15/8 ¢) 9/4 C) VAR[X2]. a) 71/64 b)
5041/4096 Questionno. 15 Letc) 1 d)3/2e) 7/4d) 5/2 ¢c) 11/4 FX (x) =¢)
11/4 d) 1615/64 ) 42 0 if x<I, V4 ifx =1, x2/4 if | <x < 2, 1 ifx >2. Calculate
P[X=1]+P[X<2].a)/4b) /2 ¢c)3/4d)1e)5/4 Questionno. 16 Let X be a
continuous random variable for which fx(x1X < I)=2x 1f0<x < I. Which of the
following functions can be the function fx (x)? 1)2x1f0<x <1 2)xi1f0<x < 3)x/4
if0 <x<2,€ 4)4xif0 <x <I/€p 5) xif0<x < landl/2ifl <x < 2 a) 1 and 2 only
c) all, except 4 ) none of these answers b) 1,2 and 3 only d) all Question no.
17 We suppose that the number Xof particles emitted by a radioactive source
during a one-hour period has a Poisson distribution with parameter ot = 1/2,
independently from hour to hour. Let N be the number of hours during which no
particles are emitted, among the 24 hours of a given day. What distribution
does N have? a) Poi(e -'/2 ) b) Poi(12) c) B(24, €) d) B(24, @< -'/2) ¢)
B(24, e -/2) Question no. 18 Boxes contain 20 objects each. We examine the
contents of the boxes until we find one that contains no defective objects. Let N
be the number of boxes that we
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end the random experiment. What distribution does N have if the probability
that an object is defective is equal to 1/10, independently from one object to
another? a) Geom(1/10) b) Geom((9/10) 2€) ¢) B(20, 1/10) d) B(20, (9/10)
2€p) ¢) none of these answers Question no. 19 Calculate P[X 2 < 9], where X
is a random variable that has a gamma distribu- tion with parameters a = 2 and
,=1.a)e-3b)de-3c)l-e-3d)1-4e-3¢)1-e-3Questionno. 20 The
lifetime (in months) of brand A components has (approximately) a Gaussian
N(50, 100) distribution and that of brand/3 components a Gaussian N(60, 100)
dis- tribution. A component is taken at random from a box containing 10 brand
A and 20 brand B components. Calculate the probability that the component
selected lasts at least 50 months. Hint. We have: Q(1) - 0.159 and Q(2) -
0.0228.a) 0.6705 b) 0.7273 ¢) 0.7386 d) 0.8181 e) none of these answers
Question no. 21 We define Y = 1/X 2, where X is a random variable having a
uniform distribu- tion on the interval [ 1, 3]. Calculate fr (y). a) €y-3/2 if 1/9
<y <1b)@y-32if1/9 <y <lc)@ifl <y <3d)-ifl/9 <y<1e)
2if-1 <y <1 Question no. 22 Let fx(x) = xe -x ifx >0. Calculate VAR[N]. a) 2
b) 8/3 ¢) 20/3 d) 28/3 e) none of these answers 1 12 14 GN(Z) =- q--Z q--Z
© Calculate E[X-2].a) 1/6 b) 1/4 ¢) 6 d) €) - Questionno. 23 Let X be a



random variable having a gamma distribution with parameters a =30 and ) =
20. According to Markov's inequality, what is the minimum value of P[X < 2]?

a) 1/6 b) 1/4 ¢) 1/2 d) 3/4 e) 5/6 Question no. 24 A discrete random variable N
has the following generating function:

138 3 Random Variables Question no. 25 Let ¢ J@- 1 Ox (0) =k, a) where k
is a constant. Calculate E[2X]. a) 1/In2 b) 2/In2 ¢) In2 d) 21n2 Question no. 26
Let e) none of these answers 0 ifx <1, (x- 1)/2 ifl <x <2, Fx(x) =x2/8 if2 <x <
2x/, 1 1fx > 2x/. ( 3 <X<2)forxE[ 2] A) Calculate Fx x .... a) x-1b) x -3 ¢)x-1 d)
2(x- 1) e) 2x-3 B) Calculate E[X]. a) 0.97 b) 1.47 ¢) 1.97 d) 2.00 e) 2.47 C)
Find the 90th percentile of X. a) 0.9 b) 1.8 ¢) 2.0 d) 2.8 €) none of these
answers D) Calculate VAR [X X< ].a) 1/96 b) 1/48 ¢) 1/12d) 1/4 e) 1/2 E)
Let Y :=1I/X. Obtain Fr(y) for @ <y<1.11 _ va)232ylb)(@ 1)c)--$d)
©(Y-1) e) none of these answers F) Let W := int(X). That is, W is the integer
part of X. Calculate the generating function Gw(z) of W. a) €(1 +2z) b) (1 +
z+22)c)€(zq-22)d) @(zq-z2 q- z3) ) (1 +z+z 2+z 3) Question no.
27 A certain city is supplied with electricity through a single high tension line.
The number X of failures, during a one-year period, has a Poisson distribution
with pa- rameter 3. Moreover, the duration Y (in hours) of a given failure has
an exponential distribution with mean 2. Finally, we assume that all the failures
are independent. A) Let N be the number of years, over a 25-year period,
during which there has been exactly one failure. Calculate the variance of N. a)
1.2b)2.0c)3.0d)3.2¢)4.0
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number of failures required, from now, to obtain a second failure that lasts
more than two hours. Calculate E[M]. a) 1/e b) 2/e ¢) e d) 2e e) none of these
answers C) Calculate E[XIX >1].a) 3 b) 3.16 ¢) 3.32 d) 3.48 ¢) 3.64 D) Let
Z =Y 1{Y <1}. Calculate the moment generating function Mz(s) of Zat s =
-1/2.a) 1/[2(1 - e-1/2)] b) 1/(1 -e-1/2)c) 1 -e -1/2d) 2(1 - e -1/2) e) none of
these answers E) Suppose that there have been exactly three failures during a
given year. We can show that the total duration T (in hours) of these failures
has a G(c = 3, = 1/2) distribution. Calculate P[T < 6.5]. a) 0.37 b) 0.41 ¢) 0.59
d) 0.63 e) 0.84 F) We consider 30 failures. We can show that the total duration
D (in hours) of these failures has approximately a Gaussian N(60, 120)
distribution. Find the number d such that P[D <d] = 0.1. Hint. Wehave: Q(1) _
0.159 and Q-1(0.1) 1.2815.a)46b) 74 ¢) 129 d) 154 e) 214 Question no. 28



A) Let T be the time (in minutes) that a customer waits before being served at a
counter when there 1s at least one customer in the queue when he/she arrives.
We suppose that P[T < t] =t/10 for0 <t <10. (,) 1) Let X =1 if the customer
waits more than two minutes and X = 0 otherwise. Calculate the function Px if
the queue 1s not empty when the customer arrives. 1/10if x=0, a) px(x) =9/10
ifx 1. 3/10 ifx =0, ¢) px(x) = 7/10 ifx 1. 7/10 ifx = 0, e) px(x) = 3/101fx 1.
2/10 ifx =0, b) px(x)= 8/10ifx 1. 1/2 ifx = 0, d) px(x)= 1/2ifx=l. ii) Calculate
fTtIT>2) for2<t<10.a) /8 b) t/7¢c)1/10d) 1/8 e) 1/7 B) Suppose now
that the probability that the queue is empty when the customer arrives is equal
to 1/5. Let Y be the waiting time of the customer. Calculate, making use of the
assumption (,) in A), the distribution function of Y for 0 <y <10. a) 0.08 y b)
0.1yc)0.2+0.08yd)0.1g-0.09ye) 1

140 3 Random Variables Question no. 29 A box contains ten transistors, of
which two are defective. Two transistors are taken at random and with
replacement. Let X be the number of defective transistors among the two
picked. We repeat this random experiment until the two transistors picked are
two defective transistors. Let N be the number of repetitions required to obtain
a first repetition for which the two transistors picked are defective. A) Give
the distribution of X, as well as its parameter(s). Likewise for N. a) X B(2,
©); N Geom(0.04) b) X B(10, @); N B(2, @) ¢c) X B(2, ©); NB(10, @) d)
X B(10, €); N Poi(2) ¢) X B(2, €); N Geom(0.2) B) Calculate PIN >4 I N >
I]. 2) 0.0784 b) 0. 1153 ¢) 0.8847 d) 0.9216 ¢) 0.9600 C) Give the distribution
of N, as well as its parameter(s), if the two transistors are taken without
replacement (but the transistors are put back into the box after the two draws if
they are not both defective). a) Geom() b)Geom() ¢)B( 10, ) d)B(10, €)
e)Poi(2) Question no. 30 Let X be a random variable having a G(ot,.)
distribution. A) Calculate P[X > I]Jifor=2and.=3.a)e-3b)4e -3 c) 8.5¢
-3d)I-4e-3¢e)l-e-3B) Suppose that ot =1 and . = 2. Calculate E [X 2 T X2
>1].a)lb)3/2¢c)2d)9/4e)5/2C) Let Z:=X2. Find fz(z) for z> 0, ifor =2
and . =1 a) @e-',/b)de-'/c)'e-",/d) 2e -2z €) Z2¢ -z- Question no. 31 Let
X be a standard Gaussian random variable. A) Find the number x0 for which P
[X 2 >x0] = 0.05. Hint. We have: Q- (0.05) - 1.645 and Q- (0.025) - 1.960. a)
1.645b) 1.960 ¢) 3.290 d) 3.842 ¢) 3.920 B) Calculate E [X2(X +1)]. a) 0 b)
1¢)2d)3e)5 C) Find the number(s) a for which the characteristic function of
Y :=aX + 11s given by exp(jco - 2092). a)-Ib) 1 c) g-1 d) 2 e)-1-2 Hint. We
have: gx (co) =e -w2/2 . D) Calculate the generating function of W, that is,



Gw(z) := E[zZW], where

a) @ b) @zc) (1 +z) Question no. 32 3.10 Exercises, Problems, and
Multiple Choice Questions 1ifX>0, W:---- 0i1fX <0. d) +z e) 1+z+z 2 141 Let
X be the utilization time (in months) of a laser printer until its first break-
down. A) Suppose that X -- Exp(1/3). Calculate E[[X - 3[]. a) 3e -1 b) 3(1-e
-1)c) 6e-1d)3e)6(1-e-1) B) Suppose that X -- G(t=2, ) =1). We define Y
=1/(X+1).Find f,(1/2). a) @ e- 1 b) e- 1 ¢) 2e- 1 d) 4e- 1 €) 8e- 1 C)
Suppose that the time Z (in months) required for the 25th breakdown to occur
has approximately a Gaussian N(75,225) distribution. Calculate P[Z<90 [ Z>
60]. Hint. We have: Q(1) - 0.159. a) 0.1891 b) 0.3180 ¢) 0.6820 d) 0.8109 ¢)
0.8410 Question no. 33 A) Let N be a random variable having a geometric
distribution with parameter p. Calculate FN (n[ N> 1) forn=2,3 ..... a) l -
qn-1b) 1 -qnc)1-gntld)1-pn-1e)1-pnB)Let X-- U0, 1].1) Obtain the
characteristic function of Y := In(X + 1). Hint. We have: q;(w) -- €J-. jco 2 j@
-12j@tH--12@2j@--12j€@--1a)-b)c).d)--e)--jwijw+ 1 jw+ 1
2jw jwin2 11) Let 1 ifX < 0.3, W:= 2if X>0.3. Calculate the generating function
of V:=2W. a) (0.3 +0.7z) b) 22(0.3 + 0.7z) ¢) 2z(0.3 + 1.4z) d) [z(0.3 +
0.72)] 2 e) 22(0.3 g- 0.7z 2) Question no. 34 A number N is taken at random in
the set {0, 1,2 ..... 9}. Calculate pN(5) g- FN(5.5).a) 0.6 b) 0.65 ¢) 0.7 d)
0.75 ) 0.8 Question no. 35 Let fx(x)=2x 1f0<x < 1. Find fx(1/4[X < 1/2). a)0.5
b)1c)1.5d)2e)2.5

142 3 Random Variables Question no. 36 Let 1/21f0<x < 1, fx(x)= kx ifl <x <2,
where k is a positive constant. Calculate the 60th percentile of X. a) 1.16 b)
1.26 ¢) 1.36 d) 1.46 e) 1.56 Question no. 37 Suppose that X B(n= 5, p=0.2).
Calculate P[X=11X<1].a) 1/2b) 5/9 ¢) 2/3 d) 7/9 e) 8/9 Question no. 38
We take independent observations of a random variable X having a Poisson
dis- tribution with parameter ¢ = 2 until we obtain "0". Let N be the number of
observa- tions required to end the random experiment. Calculate VAR[N - 1].
a) 43.21 b) 44.21 ¢) 45.21 d) 46.21 e) 47.21 Question no. 39 We consider a
random variable X having an exponential distribution with param- eter . = 1.
Calculate E[X [ 1 <X <2].a) 1.27b) 1.32¢) 1.37 d) 1.42 ¢) 1.47 Question
no. 40 Suppose that X G(c =3, .=1). We define Y = x/. Find fr(2). a) 32e¢ 4 b)
64e -4 ¢) 32e -2 d) 64e -2 ¢) 32e- Question no. 41 Find the number xo for
which PIX <-xo0] + PIX > x0] = 1/2, where X is a standard Gaussian random

variable. a) Q-(I/4) b) 1 - Q-(1/4) ¢c) @Q-(I/4) d) 2Q-(1/4) ) 1 - 2Q-(1/4)



Question no. 42 Let X be a random variable having a Bernoulli distribution
with parameter p = 3/4. Calculate bx (1 ). a) @€ jb) @l c) @(1 +eJ)d)
©(3 +ej)e) (1 +3el) Question no. 43 Suppose that the lifetime of a
system is a random variable T whose probability density function is given by f,
(t)=1/2 1fl <t < 3. Calculate the failure rate r(t) attime t=2.a) 1/4b) 1/2¢c) 1
d)3/2e)?2
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We consider a system made up of two components placed in parallel and a
third component placed in series. What is the reliability of the system at time t
= 3 if the three components function independently and all have the reliability
function R(t) = e -t for t > 0? a) 0.0038 b) 0.0048 Question no. 45 Let ¢)
0.0058 d) 0.0068 ¢) 0.0078 FX(x) =0 ifx < -1, (x+1)/4if-1 <x <1, 1/2 ifl
<x<2, 3/4 if2<x <3, 1 ifx > 3. A) Calculate Fx (0 ] X <2).a) 1/8 b) 1/4¢) 1/3
d) 1/2 e) 3/4 B) Calculate E[X]. a) 0 b) 3/4 ¢) 5/4 d) 7/4 ) 9/4 Question no.
46 An exam is made up of five multiple choice questions. For each question,
five answers are proposed. Every correct answer gives two points, while 1/2
point is deducted for each wrong answer, up to a maximum of - 1. Finally, the
exam is over 7 (that is, the maximum grade is 7) and the minimum grade is 0. A
student answers every question at random. Let X be the grade of this student.
A) Calculate E[X]. a) 1.327 b) 1.427 ¢) 1.527 d) 1.627 ¢) 1.727 B) What is
the mathematical expectation of X, given that the first three answers are
correct? a) 5.67 b) 5.72 ¢) 5.77 d) 5.82 e) 5.87 Question no. 47 We have a
random numbers generator for a random variable X having a uniform
distribution on the interval (0, 1). A) We want to use a transformation Y = g(X)
to obtain observations of a random variable having the following probability
density function: fy(y)=1/y2 ify > 1. What transformation g(X) can we use? a)
1/X 2 b) el/X--e+l ¢) 1--1nX d) /X e) 1-21nX B) We generate independent
observations of X until we have obtained two observa- tions greater than 0.9.
What is the probability that we have to generate exactly three observations ? a)
0.009 b) 0.018 ¢) 0.027 d) 0.036 ¢) 0.045

144 3 Random Variables Question no. 48 Let fx (X) = 2x/2x/x2e -x2/2 forx >0.
A) Use a linear interpolation, based on the fact that Q(1)  0.159 and Q(2) -
0.02275, to calculate approximately the median of X. a) 1.48 b) 1.52 ¢) 1.56
d) 1.60 e) 1.64 B) We find that E[I/X] = 2x/ . Calculate VAR[I/X]. a) 0.3234
b) 0.3334 ¢) 0.3434 d) 0.3534 ¢) 0.3634 Question no. 49 A) Let X N(I, I).



Calculate P[X 2 - 2X > 0]. a) Q(I) b) 2Q(I) c)I - Q(I) d) 1 - 2Q(T) e) 2(1 -
Q(I)) B) With the help of Bienaym6-Chebyshev's inequality, calculate an upper
bound for Q(,/). a) 1/4 b) 1/3 ¢) 1/2 d) 2/3 e) 3/4 Question no. 50 A) Let X be
a random variable having a Poisson distribution with parameter t = 1/3.
Calculate E[ X !]. 2e-1/3 e) -e -1/3 a) 1/3b) 2/3 ¢c) e -/3 d) 3 B) The
characteristic function of a random variable X having an exponential dis-
tribution with parameter . is given by gbx(w) = ./(. - JW)" Use this formula to
calculate E[-Y(Y 1)2/3], if Y has a gamma distribution with parameters o = 1
and . = 1. a)-11/3 b)-7/9 ¢)-3/4 d) 1/3 e) 3 Question no. 51 We suppose that the
lifetime X of every component of the system in Figure 3.19, has a probability
density function fx (x) = xe -x2/2 for x > 0. Moreover, we assume that the
components operate independently from one another. A) What is the failure
rate of a component at time x=2?a)e-2b)e2c)2e2d) 1/2e)2 B) Whatis
the value of the reliability function of the system at time x =27 a) e -2 - 2¢ -6
b)2e-2-e-4c)2e-6-e-8d)e-2¢e)e-4+e-6Figure 3.19. System in
Multiple choice question no. 51.

3.10 Exercises, Problems, and Multiple Choice Questions Question no. 52 Let
X be a random variable whose distribution function is 0 ifx <0, Fx(x) = @(x +
1)if0 <x<1, lifx>1.[0 <X < @]+P[X=1]. Calculate Pa) 1/2 b) 5/8 ¢)
11/16 d) 3/4 e) 7/8 Question no. 53 A continuous random variable X has the
probability density function fx(x)=le-1XI for- <x <. 2 Calculate P[-1 <X < 1]+
P[X=2].a)e-1b)2e-1c)l-e-1d)e-1+@e-2¢)l-e-1+@c-2
Question no. 54 by 145 We consider a random variable X whose probability
density function is defined 1 +xif-1 <x <0, fx(x) : 1 - x1f0 <x<1,0
elsewhere. A) Find Fx (3/4). a) 3/4 b) 13/16 ¢) 7/8 d) 5/6 €) 31/32 B)
Calculate E[XIX > 0].a) 1/6 b) 1/4 c) 1/3d) 1/2 e) 3/4 C)Let Y := IXI. Find f,
(y) for0 < y <1.a)lb)--yc) @+yd)2ye)2-2y Question no. 55 Let X be a
random variable having a uniform distribution on the interval [0, 1 ]. We define
Y = max {X, 1. A) Find Fy(y) for € <y < 1. What type of random variable
is Y? a) €; discrete b) y; continuous c) 2y - 1; continuous d) y; mixed e) 2y -
1; mixed B) Calculate E[Y]. a) 9/16 b) 5/8 ¢) 11/16 d) 3/4 e) 13/16 Question
no. 56 We want to find a model for the number N of cars crossing a certain
intersection during a one-minute period. According to the data collected, the
most frequent value

146 3 Random Variables of N is five cars. It also happens, although not



frequently, that the traffic is much heavier. Which of the following models
seems to be the most appropriate? Oecom() d) pN(n) = ()n() forn=0, 1 .... e)
pN(n)=0forn=1 ..... 10 Question no. 57 We look for a model, as realistic as
possible, for a continuous random variable X that represents the lifetime of a
machine, and whose mean and variance arc equal to 1 and 3, respectively.
Which of the following distributions can be acceptable? 1) uniform 2)
exponential 3) gamma 4) Gaussian 5) the square of a Gaussian N(1,3)
distribution a) all except 4) b) 2), 3) and 5) only ¢) 3) and 5) only d) 3) only ¢)
4) only Question no. 58 A fabrication process for producing one-inch diameter
screws 1s such that the diameter (in inches) of a screw can be considered as
being the value taken by a random variable X having (approximately) a
Gaussian N( 1,625 € 10 -4) distribution, independently from one screw to
another. A) What is the probability that a screw taken at random has a diameter
inaccurate by more than 0.05 inch'? Hint. We have: Q(0.1) - 0.4602 and Q(0.2)
- 0.4207. a) 0.8414 b) 0.8514 ¢) 0.8614 d) 0.8714 ¢) 0.8814 B) Let p be the
answer in A) and q := 1 - p, We take six screws at random (and without
replacement). What is the probability that less than two of these screws have a
diameter inaccurate by more than 0.05 inch? a) p6 q_ pSq b) p6 q_ 6pSq ¢) p6
q_5pSqd) g6 q pgs e) ge, + 6pgS Question no. 59 The average lifetime of a
certain type of tire 1s equal to three years, with a stan- dard deviation of 0.3
year. What can be said, with as much accuracy as possible, concerning the
probability p that a tire of this type lasts more than 54 months or less than 18
months? a) p <1/25b)p>1/25¢c)p>1/25d)p <24/25e)p=12/25
Question no. 60 The characteristic function of a discrete random variable X is
givenby 1 (1+eJ@+2e2]€p) x() = € Calculate P[X=1].a) 0 b) 1/4 ¢) 1/2 d)
3/8 e) 5/8

3.10 Exercises, Problems, and Multiple Choice Questions 147 Question no. 61
A certain system 1s made up of two components placed in parallel and operat-
ing independently. The lifetime of the first component has a uniform
distribution on the interval (0, 1), while the lifetime of the second component
has an exponen- tial distribution with parameter 2. Calculate the reliability
function of the system at time 1/2. a) 0.1839 b) 0.3161 ¢) 0.6839 d) 0.8161 e)
0.8679 Question no. 62 The electric current X (in amperes) that passes through
a resistance of r ohms i1s a random variable having the probability density
function @ifd<x<6, fx(x) = 0 elsewhere. Furthermore, the power Y (in watts)
is given by Y =1X 2. A) Find the value of the distribution function Fx (5 I X



> 4.5).a)1/6 b) 1/4c) 1/3 d) 1/2 e) 5/6 B) Calculate VAR[X T X >4.5]. a)
1/16 b) 1/12 ¢) 1/8 d) 3/16 e) 1/4 C) An observation of the random variable Y
is generated. In which interval, among the following, is the observation most
likely to be found ifr =257 a) (400, 401 ) b) (500, 501) ¢) (700, 701 ) d)
(899, 900) e) the four preceding intervals are equally likely D) Calculate
VAR[Y] ifr = 30. a) 30,040 b) 30,050 ¢) 30,060 d) 30,070 e) 30,080 Question
no. 63 Each day a student spends a random time T (in minutes) in front of her
computer to do some work. We estimate that E[T] = 40 and VAR[T] = 1600.
A) Let d be a duration that at least 90% of the work sessions do not exceed.
Accord- ing to Bienaym6-Chebyshev's inequality, what is the minimum value
of d? a) 50.98 b) 72.53 ¢) 102.45 d) 166.49 e) 227.68 B) Suppose that T has
an exponential distribution. 1) If the student has already spent 30 minutes in
front of her computer, what is the probability that the work session will last at
least 60 more minutes? a) 0.1245 b) 0.2231 ¢) 0.2548 d) 0.3679 ¢) 0.6321 11)
How many work sessions does it take, on average, to obtain a first session that
lasts more than 90 minutes? a) 9.19 b) 9.29 ¢) 9.39 d) 9.49 e) 9.59

148 3 Random Variables Question no. 64 A person subscribes to a service that
allows him to connect to the Internet for 30 hours per month. We suppose that
the time X (in hours) that this person spends surfing the Internet during a given
day has a gamma distribution with parameters ot = 3 and ) = 4, independently
from day to day. A) What is the probability that the person spends more than 90
minutes on the Inter- net during a given day? a) 0.022 b) 0.032 c) 0.042 d)
0.052 ¢) 0.062 B) Suppose that the answer in A), for other values of or and ),
is equal to 0.05. What is the probability that, during a given week, the person
spends more than 90 minutes on the Internet on at least three days? a) 0.0018 b)
0.0028 ¢) 0.0038 d) 0.0048 ¢) 0.0058 C) We can show that the total time (in
hours) during which the person wants to con- nect to the Internet, over a 30-day
month, has approximately a Gaussian distribution with parameters/ = 22.5 and
cr 2 =5.625. What is the probability that the person is disconnected because
he reached the time limit imposed? a) 0(-3.16) b) 0(3.16) ¢) 0(3.16) + @ d) @
-0(3.16) e) 2 exp{-(3.16)2/2} Question no. 65 Let x(x)=(ntl)x n for0 <x <1,
where n6 {1,2 .... }. A) Calculate the 50th percentile (that is, the median) of X
ifn=3.2a) 0.8209 b) 0.8309 ¢) 0.8409 d) 0.8509 e) 0.8609 B) We define Y =
X" Find fv(l).a) 1 b)n+1c)(n+1)nd)n/(n+1)e) (n+1)/nC) Calculate
the characteristic function bx (o) of X ato =2, ifn= 1. a) € [e2](1 - 2j) - 1]
b) @[c2](2j-1)-1]c) @[e2](1-2j))+1]d) @ [e2](2j+1)-1]e) &



[€2](2j) + 1)+ 1] D) Calculate the failure rate at time x = 1/2 of a machine
whose lifetime X has the above probability density function fx withn= 2. a)
5/7b) 6/7¢c) 1d)7/6 e) 7/5 Question no. 66 Let X be a random variable of
mixed type whose distribution function is 0 ifx <-1, Fx(x) 1 - x 2 = --if-1 <x
<b, 2 - 1 ifx >b.

3.10 Exercises, Problems, and Multiple Choice Questions A) What are the
possible values of the constant b? a)-1<b_<'1 b)-I <b<I ¢)-I <b <0 d)0<b<l
¢)0<b<l B) Calculate P[X=(b - 1)/2] + P[X>b].b2 b b2 d)!+b b 2 3b a)0 b)
© +-¢)-+2 8 2 8 ¢)+-+-U C) Calculate E[X I- 1 <X <b]. b3+l b3-1 2 /b3+l
b3+l b- 1 b)--- ¢)- d) e)--- a)-- 3 3 \b 2- 1J b 2+2 Question no. 67 149 A point
X 1s taken at random in the interval [0, 1]. Let D be the distance between X and
the endpoint of the interval closer to X. That is, X if0<X< 1 D= 1-Xif¢

<X <I. A) Find fx(1/4 1 X2 <1/4).a) 0 b) 1/4 ¢) 1/2 d) 1 ) 2 B) Calculate
E[X 1/2 - x-1/2]. a) 2/3 b) 4/3 ¢) 5/3 d) 8/3 e) ec C) Find FD(d) for0 <d <
1/2.a) b) 2d ¢) d€ d) 4d 2 e) 8d 3 D) What is the 25th percentile of D? a)
1/32b) 1/16 ¢) 1/8 d) 1/6 e) 1/4 Question no. 68 A machine is made up of four
components that operate independently from one another. The machine
functions if at least three of its components function. The state of the
components is checked at the end of each workday and the components that
failed are repaired. If the machine fails during the course of the day, it will
remain down until the end of that day. We estimate that a given component has
a 90% prob- ability of functioning during an entire workday, whether it is new
or not, and this independently from day to day. A) What is the probability that
the machine functions during an entire workday? a) 0.9077 b) 0.9177 ¢) 0.9277
d) 0.9377 ¢) 0.9477 B) What is the probability that the machine functions
during exactly four entire work- days over a given (seven-day) week? a)
0.0040 b) 0.0080 c) 0.0120 d) 0.0160 e) 0.0200 C) Calculate the probability
that the tenth day of a certain month is the third day during which a given
component failed. a) 0.0132 b) 0.0142 ¢) 0.0152 d) 0.0162 ¢) 0.0172

150 3 Random Variables D) Suppose that the number N of failures of the
machine that last more than a half day, over a six-month period, has
(approximately) a Poisson distribution with param- eter ¢ = 3. Calculate
VAR[NIN>1].a)2.33b)2.66 c)3d)3.33 e) 3.66 Question no. 69 A system
has n components connected in parallel and functioning independently from one
another. The components function one at a time, starting with component no. 1,



so that the system functions as long as there is at least one component that is not
down (standby redundancy). We suppose that the lifetime T. of component k
has an exponential distribution with parameter . =1 fork=1,2 ..... n. Let T be
the total lifetime of the system. A) Let S. :=In T,. Calculate the moment
generating function of Sk, defined by Ms (s) =E[e -ss |, at s =-2. a) In2 b) In4
c) 1/2d) 2 e) 4 B) If n=2, we can show that T has a gamma distribution with
parameters a =2 and . = 1. That is, fT'(t) = te -t for t > 0. Find the failure rate
r(t) of the system fort >0.t2 a) tb) 1 +c) d) e) t C) [f n=25, we can show that
T has approximately a Gaussian distribution with parameters # =25 and O "2 -
--- 25. Calculate P[T > 30 I T > 25]. a) 2Q(1) b) Q(1) ¢) Q(1)/2 d) I-Q(1) ¢) 1-
2Q(1) Question no. 70 Let X be a random variable whose probability density
function is Jaxtbifc <x <d, fx(x) / 0 elsewhere, where a, b, ¢ and d are
constants. A) What are all possible values of the constants a and b, ifc =-1 and
d=1?1 a)a >0;b=0 b)a= @;b= @ c)a=-€;b= B) What is the value of a that
maximizes the variance of X, ifc=-1landd=1?a)0 b) € c)-€ d)ag C)
Let Y :=aX +b. Find fy(y) ira>0,c=0and d = 1. 2y 2y a) 2yifyE[0,1] b)-
ifyE[0, a] ¢) --ify [0, alt+ae) Yd) yify[l 3']--ify[-] -,-1 +] D) Calculate
the characteristic functionof X, ifa=2,c=0andd=1.2)72b)j,(J-1)c) 2
'o-(J-1)d) (g52 egW 2 (eJW_1)e) g2 eJ]W J-2 elw
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A particular case of the Weibull distribution, which 1s often used in reliability,
is the one when the probability density function of the random variable T is
given by fT(t)={3t2eo0-t3 ift > 0, elsewhere. A) Calculate the failure rate r(t) of
a system whose lifetime T has the above proba- bility density function.  3t2e
-t3a)3te-t3b)3t2¢c)--d)3te)3t2 1 -e-t3 1 - e -t3 B) Find the median tm
of T, as well as the mode of T, that is, the value of t that maximizes the
probability density function fr (t). a) tm = (In2)1/3; mode = (2/3) 1/3 b) tm=
(In2)1/3; mode = (2/3) 2/3 ¢) tm = (In 2)2/3; mode = (2/3) 1/3 d) tm =
(In2)1/3; mode = (In2) 1/3 e) tm= (2/3)1/3; mode = (2/3) 1/3 C) Calculate E
[T-3/2]. a) rr/2 b) 11 ¢)-/2 d) e) D) A generalization of the probability density
function given above is the function fT(t)=Iflt/ e-tift>0, elsewhere, where fl is
a positive constant. We can show that E[T] =r 1 +. For what value(s) of fl is
the probability density function fT (t) symmetric with respect to the mean of T?
a) lonly b) 2onlyc) 1,3,5 .... d) 2,4,6 .... €) none Question no. 72 We suppose
that the number of calls received at a serwce counter during a one- hour period
has a Poisson distribution, and that 30 calls are received per hour, on average.



Moreover, we suppose that the number of calls received during a given hour is
independent of the number of calls received during the previous hours. A)
What is the probability that exactly 30 calls are received during a given hour,
and then at least 30 calls during the next hour? Hint. We have: Fx(30) -- 0.5484
and px(30) 0.0726 if X has a Poisson distribu- tion with parameter 30. a)
0.0281 b) 0.0381 ¢) 0.0481 d) 0.0581 ) 0.0681 B) What is the probability
that at most 30 calls are received during each of exactly 20 of the 24 hours of a
given day? a) 0.0017 b) 0.0027 ¢) 0.0037 d) 0.0047 e) 0.0057

152 3 Random Variables C) What is the average number of hours required to
obtain a first hour during which at most 30 calls are received, given that during
at least one of the first three hours considered at most 30 calls were received?
a) 1.32b) 1.42¢c) 1.52d) 1.62 e) 1.72 Question no. 73 A box holds 10 brand A
components and 20 brand B components. The lifetime XA (in years) of the
brand A components has an exponential distribution with pa- rameter , =1/2,
while the lifetime XB (in years) of those of brand B has a gamma distribution
with parameter o =3 and , = 2, so that 2e -2x ifx > 0, fx (x) ="' 0 elsewhere. A)
A component is taken at random from the box. Let X be its lifetime. 1)
Calculate E[X]. 1957 11 23 a)ib), c) d) -- e) 1- i1) What is the probability
that the component lasts more than one year? a) 0.5533 b) 0.6033 c) 0.6533 d)
0.7033 ) 0.7533 B) We can show that the total lifetime T of the 30
components has approximately a Gaussian N(50, 55) distribution. Let Z := (T -
50)/-. What is the value of z0 for which P [Z 2 < z0] 0.95? Hint. We have:
Q(1.645) 0.05 and Q(1.960) 0.025. a) 1.28 b) 1.40¢) 1.92d) 2.71 e) 3.84
Question no. 74 The distribution function of the random variable X is given by
0ifx <c, | Fx(x) =1 - --: ifx > C, x z where c is a constant. A) What is the set
of possible values of the constant c? a)(-,) b)(0,) ¢)[1,) d){1,2 .... } e)(-

-1t J[1,x) B) Let Y :---- I/X. Find Fy(1/4) ifc ---- 2. a) 1/16 b) 1/8 ¢) 1/4 d)
3/8 ¢) 1/2 C) Calculate E[X] ifc=2.a) 3/2b) 2 ¢) 5/2d) 3 ¢) 7/2 Question
no. 75 We say that a continuous random variable X has a beta distribution with
param- eters 0 > 0 and/3 > 0 if

3.10 Exercises, Problems, and Multiple Choice Questions 153 { F(c+fl) x-1(1-
x) -1 for0<x < 1, fx(x) = F(c)F(fl) 0 elsewhere. This distribution generalizes
the U(0, 1) distribution and is notably useful in reliabil- ity. A) Calculate Fx
(1/2),ifc =1 and fl=2.a) 9/16 b) 5/8 ¢) 3/4 d) 7/8 ¢) 15/16 B) Findfx(€ X <
©).ifc=3and/3=1.a) 3/4b) 1¢) 5/4d) 3/2¢) 2 C) Let Y := - In X. Obtain the



characteristic functionof Y, ifc=fl=1.11jo)jo)1a)--b)--c)--d)--e) 1
-jo) 1 +j0) 1 -jo) 1 +jo) (1 -jo)) 2 D) The lifetime X of a certain machine
has a beta distribution with parameters a = fl = 3. Calculate the failure rate of
this machine at time x=1/2. a) 7/2 b) 15/4 ¢) 4 d) 17/4 e) 9/2 Question no. 76
In a certain region, there are 1000 pylons (supporting an electric line),
numbered from 1 to 1000. We estimate that when a thunderstorm occurs, the
probability that a given pylon is hit by lightning is equal to 10 -4,
independently from one pylon to another. A) What is the probability that at
least two pylons are hit by lightning during a thunderstorm? a) 0.0027 b)
0.0037 ¢) 0.0047 d) 0.0057 e) 0.0067 B) Use a Poisson distribution to
calculate (approximately) the probability that exactly two pylons are hit by
lightning during a thunderstorm. a) 0.004524 b) 0.005524 ¢) 0.006524 d)
0.007524 ¢) 0.008524 C) What is the variance of the number of thunderstorms
until pylon no. 1 or pylon no. 2 is hit by lightning for the first time, from a
given time instant? a) 24,997,199.94 b) 24,997,299.94 ¢) 24,997,399.94 d)
24,997,499.94 ¢) 24,997,599.94 D) Suppose that the nu.mber of thunderstorms
that occur over a one-year period is a random variable having a Poisson
distribution with parameter ¢ = 50. What is the probability that a given pylon is
hit by lightning at least once during a certain year? a) 0.0030 b) 0.0035 c)
0.0040 d) 0.0045 ¢) 0.0050 Question no. 77 We are interested in the
temperature (in degrees Celsius) in a certain city over the months of July,
September and December.

154 3 Random Variables A) First, we suppose that in July, when the
temperature exceeds 30 €C, the number of degrees above 30 that the
temperature reaches has an exponential distribution with mean 3. What is the
probability that the temperature is higher than 35 degrees, knowing that it is
higher than 31 degrees? a) 0.2236 b) 0.2336 ¢) 0.2436 d) 0.2536 ¢) 0.2636 B)
Next, we suppose that, during the month of September, the temperature has a
Gaussian distribution with parameters/ = 15 and ¢ 2 = 25. What is the
temperature that is exceeded only 1% of the time (over a long period) in this
city in September? Hint. We have: Q-(0.02) 2.054, Q-(0.01) 2.326 and Q-
(0.005) 2.576.a)25.63 b) 26.63 ¢) 27.63 d) 28.63 ¢) 29.63 C) Finally, we
seek a model for the temperature T in December, as well as a model for T
when T > 0. We consider the following distributions: 1) U 10, 10]" 2) U [5 -
5,,/3,5+5,,/];3) Exp(1/5); 4) G(5, 1); 5)N(5, 25). Among these models,
which one seems the most appropriate for 1) T if E[T] =5 and STD[T] = 5? 11)



U:=T [{T >0}1f, instead, wehave:E[T IT >0]=STD| T IT >0]=5? a) 1)2;11) 1 b)
1)2;11)3 ¢) 1)3;11)5 d) 1)5;11)3 e) 1)5;11)4 Question no. 78 Let X be a continuous
random variable taking its values in the interval [0, x). We say that X has a
Pareto distribution with parameter 0 > 0 if its probability density function is of
the formifx >0, fx(x)= (1 +x) + 0 elsewhere, In economics, the Pareto
distribution is used to represent the (poor) distribution of wealth. Suppose that,
in a certain country, the wealth X of an individual (in thousands of dollars) has
a Pareto distribution with parameter 0 ----- 1.2. A) Calculate fx(2 [ 1 <X <3),
a) 0.3754 b) 0.3954 ¢) 0.4154 d) 0.4354 ¢) 0.4554 B) What is the median
wealth in this country? a) $781.80 b) $1781.80 ¢) $2781.80 d) $3781.80 ¢)
$4781.80 C) We find that about 11.65% of the population has a personal
fortune of at least $5000, which is the average wealth in this population. What
percentage of the total wealth of this country do these 11.65% of the population
own? a) 75.5% b) 77.5% c) 79.5% d) 81.5% e) 83.5%
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Let X be a discrete random variable with probability mass function given by 1
Px(k)= fork=0, 1 ..... 0 otherwise. A) Calculate the probability that X takes on
a value which is a multiple of the number 3, that is, a value in the set {3, 6, 9
... y.a) 1/14b) 1/12 ¢) 1/10 d) 1/8 ) 1/6 B) We generate (independent)
random numbers according to the distribution of the random variable X. Let M
be the number of random numbers that are greater than 1, among the first ten
numbers generated. 1) Calculate P[M = 2]. a) 0.2416 b) 0.2616 c¢) 0.2816 d)
0.3016 e) 0.3216 11) Suppose that we approximate the probability P[M = k] by
P[N=k], fork=0,1 ..... 10, where N 1s a random variable that has a Poisson
distribution with parameter ot = 2.5. What can we assert concerning P[N = k]
with respect to P[M = k] for any value k taken from the set {0, 1 ..... 10}? a)
PIN =k] 1s strictly less than P[M = k]; b) P[N = k] can only be less than or
equal to P[M = k]; ¢) PIN = k] is strictly greater than P[M = k]; d) P[N =k]
can only be greater than or equal to P[M =k]; ) we cannot assert anything,
Question no. 80 An electroluminescent diode emits light at a wavelength X (in
microns) that is a continuous random variable taking its values in the interval
(0, A) What is the distribution of X, if the quantile of order p of X is given by
the formula 1 Xp = (1 +p), whereO<p < 1? a) U(0, 1/2) b) U(0,1) c) U(1/2, 1)
d) U(1/2, 3/2) e) U(1, 3/2) B) Suppose that the probability density function of
X 1s strictly decreasing and is bounded (above) by a positive constant k.
Which one, among the models below, seems the most appropriate? a) 6(1/2,



1/2) b) G(1, 1/2) ¢) 6(3/2, 1/2) d) 6(3/2, 1) e) 6(2, 1) C) Suppose that X has a
Gaussian distribution, with parameters /x =1 and 2 = 1/16, to which its
negative part and the point 0 have been subtracted, so that ¢ {--8(x 1) 2} forx >
0, fx(x) = - exp - where c is a constant such that fx is a valid probability
density function.

156 3 Random Variables 1) Find the constant c. a) 1/gb(1) b) 2/gb(2) ¢)
4/gb(2) d) 2/qb(4) e) 4/gb(4) i1) Suppose that the diode is considered
defective if the value taken by the random variable X is such that IX - 1 [ >
1/4. Calculate, in terms of ¢, the probability that a diode is defective. Hint. We
have: gqb(1 ) 0.8413 and gb(2) 0.9772.a) 0.17cb) 0.24cc) 1-0.68cd) 1 -
0.24ce) 1 - 0.17¢ Question no. 81 Let X be a continuous random variable
having the probability density function fx(x)= exp -2 ifx >0, 0 elsewhere. We
say that X has a Rayleigh distribution with parameter 0 > 0. We can show that
E[X] =0 q%-/2 and VAR[X] =02 [2 - (z1/2)]. A) Let Y :---- In X, where X
has a Rayleigh distribution with parameter 0 = 1. 1) Find J'(1). a) 0.1637 b)
0.1837 ¢) 0.2037 d) 0.2237 e) 0.2437 i1) Calculate the mathematical
expectation E[e jc@Y] atw =-2j.a) 1/2b) 1 ¢) 3/2 d) 2 ¢) 5/2 B) We define Z
---- I/X. Calculate the mathematical expectation of Z, 1f0 ---- 1 as in A). a)/l/zr
b) ¢) d) e)x C) What is the value of the reliability function of a system, whose
lifetime has a Rayleigh distribution with parameter 0 ---- 2, at the moment that
corresponds to its average lifetime? a) e -r/8 b) e -r/ac) e -r/2d) e -re) e -2r

4 Random Vectors 4.1 Introduction Definition 4.1.1. A function X that assigns a
vector ( X1(s) ..... Xn (s ) ) of real num- bers to each outcome s in a sample
space S associated with a random experiment E is called a random vector of
dimension n. Each component of the random vector is a random variable. The
set of all possible values of X, denoted by Sx, 1s a subset of n (see Fig. 4.1).
Example 4.1.1 Let E be the random experiment that consists in observing the
length of a program submitted for execution to a computer, as well as the
execution time. Then, the elements of the sample space S are of the form s = (n,
t), where n can be the number of lines in the program and t the execution time
in seconds. Now, let X := (X1, X2), where X(s) =n and X2(s) =t. The
function X, which here S, .X(s) t sx X 1 Sx.s x, 1 -..,.x0s) Figure 4.1. Notion of
random vector.

158 4 Random Vectors is the identity function, is a random vector of dimension



2. In this example, Xl is a discrete random variable, whereas X2 is
(theoretically) continuous. In general, the components Xk of a random vector
are random variables of the same type. Next, let E* be the random experiment
that consists in observing the execution time only. Then, if's : t, where tis in
seconds, we can nevertheless define a ran- dom vector X = (XI(s) ..... Xn(s)).
For instance, we can have: XI(S) =s (=t), Xz(s) : s 2, X.(s) : min{s, 10},
X4(s) =--S 3, etc. Thus, there is no relation- ship between the dimension of
the elements s of S and the dimension of the random vector X. Remarks. 1) In
reality, the variable X2 above i1s a random variable of mixed type because the
execution time can be equal to zero (when there is a fatal error in the program,
for example), with a strictly positive probability, or it can take on any real
positive value. In practice, the execution time is rounded off, so that X2
becomes a random variable of discrete type. 11) For simplicity, we will not
consider in this book the case when one (or many) random variable(s) in the
random vector is (are) of mixed type. 4.2 Random Vectors of Dimension 2 I)
Discrete Case Definition 4,2.1. Let Z := (X, Y) be a random vector of
dimension 2. If Sz is a finite or denumerablv in.finite set of points in the plane,
that 1s, if we can write Sz in the form Sz={(xj,yk),j: 1,2 .... ;k= 1,2 .... }, then
we say that Z is a discrete random vector (of dimension 2). Remark. We may
also write that SZ : SX@y : {(xj, YK): xj E Sx, Yk Definition 4,22. Let ( X, Y)
be a discrete random vector. The joint probability mass function of(X, Y) is
defined by px.v(xj, YK) =P[{X: xj} {Y=Yk}]:- P[X=xj, Y: Yk] (4.1) forj,
k: 1,2 ..... Properties. 1) pX, y(xj, Yk) >-- 0 V(xj, Yk) (because itis a
probability). 11) Since the set of points (x j, Yk) constitutes a partition of Sz,
we have: Z Z px, r(x), Yk) : 1. (4.2) j:1 k:1

4.2 Random Vectors of Dimension 2 159 Let A be an event with respect to Sz.
That is, A C Sz. The probability of A is given by the formula P[A] = Z px,r(x),
Yk). (4.3) (x5,YK)EA Now, making use of the total probability rule, we can
write that pX(X)) =P[X=x]j]=ZP[{X:x} { Y-y }|=ZPx, " (x],V).
(4.4) k=1 k=1 Likewise, we have: p,(y) =p[y=y] =ZPt{X=x3} f) {Y =Yk}l
=7 p%,'(x], YK). (4.5) j=1 =1 Definition 42=3. The function obtained by
summing the function Px," over all pos- sible values of either of the two
random variables is called a marginal probability mass function. Example
4.2.1 A box contains six transistors, including one of brand A and one of brand
B. Two transistors are taken at random and without replacement. Let X (re-
spectively Y) be the number of brand A (resp. B) transistors among the two



picked. Then, the joint probability mass function Px,r of the random vector Z :=
(X, Y) can be given in the form of a table in two dimensions as follows: y\x 0
12016/368/361/3618/362/3602 1/36 00 For instance, we find that px#
(O, 0) = 16/36, because there are 4 chances in 6 that the first transistor picked
1s neither a brand A nor a brand B transistor, and the two draws are
independent. Moreover, there is 1 chance in 6 that the first transistor picked is
of brand A; it follows that px,,(1, 0) =2 x (1/6)(4/6) = 8/36 (by symmetry),

etc. We can check that Px,'(j, k) > 0 for j, k=0, 1,2, and that the sum of all the
fractions in the table is equal to 1. Note that the random variables X and Y both
have a binomial distribution with parameters n= 2 and p = 1/6. Next, let, for
example, A= {X+ Y >1}. We have then: P[A]=1-P[Ac]=1 - px,,(0, 0) =
1-16/36=20/36=15/9,

160 4 Random Vectors because there is a single element of Sz in A ¢, namely
(0, 0). Similarly, we find that 2 P[X = Y] = Zpx,r(j,j) = 16/36+2/36+0 = 1/2.
j=0 Finally, in such a case the marginal probability mass functions are obtained
by adding the elements of the lines and of the columns in the table. For
example, adding the three elements of each column in the table, we deduce that
1012 EPx()25/36 10/36 1/36 1 Furthermore, by symmetry, we can write
that pr(k) = px(k) for k=0, 1, 2. IT) Continuous Case Definition 4.2.4. Let Z :=
(X, Y) be a random vector of dimension 2. If Sz is a non-denumerably infinite
subset of the plane, we say that Z is a continuous random vector. (We assume
that X and Y are two continuous random variables.) Definition 4.2 g LetZ :=
(X, Y) be a continuous random vector, and let A C Sz. The probability of the
event A is given by the formula Plal= PlZeal=fftx, r(x,y)axay. (4.6) A where
fx, r(x, y) is called the joint (probability) density function of the pair (x, r').
For example, let fX'r(x'Y)={e- -vifx>0O'y>O'elsewhere. Then, we have (see
Fig. 4.2,p.161): P[Y>X]=¢ -x-ydxdy =¢ -x-y dydx JO do 2 =e -x-x2 dx =
e 1/4 e -(x+€)2 dx :el/4v/P[N(-€,€) > O] -- 0.55. Properties. i) We have:
fx, r(x, y) P[x< X <x+dx, y<Y <y+dy] dxdy (4.7)

4.2 Random Vectors of Dimension 2 161 Y >x2 / y=x 2 Figure 4.2. Example of
computation of probability in two dimensions. (the equality being obtained by
taking the limit as dx and dy decrease to 0). It follows that the function fx, Y (X,
y) 1s non-negative. i1) Since X and Y take on real values, we can write that

f f fx, y(x,y)dxdy=I. (4.8) Definition 4.2.6. Let ( X, Y) be a random vector.
The joint distribution function of the pair (X, Y) is defined by Fx, r(x, y) = P[X



< X Y< y].(49) If (X,Y) is a discrete random vector, then Fx,(x, y) = px,
(x1,Y), (4.10) xj< x yk < y while when (X, Y) is continuous, Fx, g(x, y) =
fx,g(u, v) dvdu. (4.11) Remark. We deduce from Equation (4.11) that 02Fx,y(x,
y) x,1(x, y) -- (4.12) OxOy for all pairs (X, y) where the second mixed partial
derivative exists. Properties. The function Fx, r has properties similar to those
of the function Fx. 1) Fx, r(-cX, y) = Fx,r(x, -cx) = 0 (impossible events); i1)
Fx,r(cx,cx) = 1 (certain event); 1i1) Fx,r(Xl, YI) <Fxr(x2, Y2)if Xl < x2
and Y1 < Y2 (because, in this case, {X < X, Y< YI} C{X <x2,Y<_
Y2}; see Fig. 4.3,p. 162).

162 4 Random Vectors Y (x,y) Figure 423. Non-decreasingness of the joint
distribution function. iv) We can show that lim Fx, y(x + 6, y) = lim Fx, y(x, y +
6) = Fx, r(x, y). Remark. We can also check, graphically, that Pla<X < b, ¢ <
Y < dl=Fxy(b, d) - Fx.y(b, ¢) - Fx.y(a, d) + Fx.y(a, (4.13) Now, we have:
Fx(x) =-- PIX <x] =P[X <x, Y <ec] =Fx, r(x, ec). (4.14) Likewise, we
obtain: Fr(y) = Fx.r(ec, y). Definition 4.2.7. The function obtained from F x.r (
X, y) by replacing y (respectively x) by infinity is called the marginal
distribution function of X (resp. Y ). Finally, we can write (see Remark 1)
below) thatd d fx(x) ="r fx(x)=-1r fx. y(x, ] =-- fx.y(u, v) dvdu = fx.y(x, v)
dv. That is, fx(x) = fx.y(x, y) dy. (4.15) Remarks. 1) In Equation (4.15), we
must actually integrate over all possible values of Y, given x, afixed value of
X. Similarly, the function fr (Y) is obtained by integrating fx.r (X, y) with
respect to x, from -cx to

112 4.2 Random Vectors of Dimension 2 [ 112 y=x Y | x<y an.d +y <1 --y=x
x+y=l ) X Figure 4.4. Figures for Example 4.2.2. 163 i1) Let Uz(y) I(y) :=
dul(y) g(x, y)dx. Then, under certain conditions, we have the following formula
(due to Leibniz): 1 dI(y)  fu2(y) Og(x, y) dx + g(u2(y), "du2(y) dul (y) dy
Jul(y) 0-'-'-y) y g(u(y), y) d--- Definition 4.2.8. The functions fs and fr
obtained from f's, r(X, y) as above are called the marginal (probability) density
functions of X and Y, respectively. Example 4.2.2 Let 2if0<x <y <1, fx,}'(X, y)
= 0 elsewhere (see Fig. 4.4). Since fx, " (X, y) ---- 2 and the area of the triangle
on which the function is positive is equal to 1/2, the double integral of fx, " (x,
y) over Sx x " 1s equal to 1, as required. We have: fx(x) =1l fr(y) =foy
2dy=2(1-x) 1fO<x < 1 (andfx(x)=Oelsewhere), 2dx=2y 1fO<y<'1 (and f, (y) ---
--- O elsewhere). t Gottfried Wilhelm von Leibniz, 1646-1716, was born and
died in Germany. He was at once mathematician, philosopher and theologian.



With Newton, he 1s the inventor of infinites- imal calculus. He introduced the
notation for the derivative and the integral. Among his great achievements in
mathematics, we count the development of the binary system and his work on
determinants. He also contributed to mechanics, more precisely to dynamics.
He corresponded with more than 600 European scientists. In the field of
religion, he set himself the objective of reuniting the various branches of the
Christian church.

164 4 Random Vectors Moreover, we can write (see Fig. 4.4, p. 163) that P[X
+Y < 1]=2dydx = 2(1 - 2x)dx =1/2. JO JO Remark. In this case, we could
have computed the area of the checkered region in Fig. 4.4 and multiplied it by
2 instead. Finally, we also find that Fx,r(x, y) = 0 ifx <Oory <0, 2xy-x 2ifO<x
<y <1, 2x-x 2 if0<x <landy> 1, y2 if0<y < landx >y, 1 ifx > 1 andy> 1.
Indeed, for any point (x0, Y0) in the region Sx € 1, the area of the checkered
region in Fig. 4.5, 1s given by I x 0 + (Yo - x0)xo0. Thus, we do have:
Fx.r(x,y)=2€p (xX2+(y-x)Xx) =2xy-x 2 if0<x<y< 1. The value of the function Fx, r
(X, y) can then be obtained by reasoning for any point (x,y) 6 N 2. First, if 0 <x
<1 buty > I, we only have to replace y by 1 in the above formula, Next, if0 <y
<1 but x >y, we replace x by its maximum value, namely y, in the above
formula, The other two cases are elementary. We will complete this section
with the notion of independence applied to random variables. Definition 4.2.9.
Let (X, Y) be a random vector. We say that X and Y are indepen- dent random
variables if Fx,r(x, y) = Fx(X)Fr(y) (X, y). (4.16) 112 "-- x<ymy=x ) 1/2 1 X
Figure 4.5. Joint distribution function in Example 4.2.2.

4.2 Random Vectors of Dimension 2 165 Equation (4.16) 1s equivalent to px,
y(xj, YK) px(x))pY(yk) if(X, Y) is a discrete random vector, fX,y(X, y) =
x(x)fy(y) if(X, Y) is a continuous random vector. Remark. We can say, more
generally, that X and Y are independent if P[X A, Y B] =P[X A]P[Y B],
where A (respectively B) is an arbitrary event that involves only X (resp. Y).
Defini- tion 4.2.9 then becomes a proposition that we can easily prove.
Proposition4.2.1. If X and Y are two independent random variables, then so
are g(X) = X* and h(Y) = Y*. Proof. We have: FX* y*(X*, y*) = P[X* < x*,
Y*< y*]=P[X A, YB], where {X 6 A} is the event in Sx that is equivalent
to {X* <x*},and {Y 6 B} C Sris equivalent to {Y* <y*}. Then, given that X
and Y are independent, we can write that Fx,,r,(x*, y*) = P[ X AIP[Y B] = P[X*
< x*IP[Y* <_y*].[] Example 4.2.3 The two random variables in Example



4.2.1 are not independent, because, in particular, px, r(2, 2) =0 € (1/36)
(1/36) = px(2)pr(2). Remark. In such a case, if there is one or more O's in the
table, then the random variables are not independent. We can also notice that
we must have: 0 <X 'Y <2, which directly implies that X and Y are not
independent since, for instance, X =2 =Y =0 (because Y >_0). Example
4.2.4 Consider once again the function fx, r in Example 4.2.2. We already
found that fx(x) = 2(1 - x), 0 <x <1, and fr(Y) =2y, 0 <y < 1. Since
x(O)fr(0)=2 @ 0=0:/: 2=1x,r(0, 0), X and Y are not independent random
variables. Remark. Given that there is a relationship between x and y in the
definition of Sxxr, namely x <y, X and Y could not be independent. We can
show the following proposition.

166 4 Random Vectors Proposition 4.2.2. Let (X, Y) be a continuous random
vector. Suppose that Sxx r is of the form Sxxr = {(x, y): a <x<b,c <y <d},
where a, b, ¢ and d are constants. Then, X and Y are independent random
variables if and only if (iff) we can write that fx, r(x, y) =-- g(X)h(y), (4.17)
where g(x) > O iffa <x<b and h(y) > O iff ¢ <y <d. Remark. An analogous
result exists in the discrete case. 4.3 Conditionals Conditional Distribution,
Probability Mass and Density Functions We discussed the notion of conditional
distribution function in Section 3.2. If Y is a discrete random variable, then we
can write, directly, that the conditional distribu- tion function of X, given that Y
=Yk, is PIX <x, Y =y:] xj< x Px,r(xj, yk) FxXIY(X [ yk) == 1f pr(yk) > O.
PIY =Y,] Pr(Y,) (4.18) Remark. Some authors use the notation Fx(x [ Y = yk),
as Fx(x [ A) in Chapter 3, rather than FxIr(x [ yk). Similarly, if (X, Y) is a
discrete random vector, we define the conditional prob- ability mass function
of X, given that Y = yk, by Px, r (X j, yk) PXIY(Xj I Yk) -- ifpr(yk) > O. (4.19)
Pr(Yk) Remark. This function has the same properties as the (marginal)
probability mass functions. Furthermore, the conditional probability mass
function of Y, given that X = x j, is defined in a similar way. If Y is a
continuous random variable, then P[Y = y] =0 Yy. We must therefore consider
the event {y <Y < ydy} in (4.18) and take the limit as dy decreases to zero.
If X also is a continuous random variable, we obtain the proposition that
follows. Proposition 4.3.1. Let ( X, Y) be a continuous random vector. The
conditional dis- tribution function of X, given that Y =y, is given by jx X, v(u,
y) du FxIr(x 1Y) = iffr(y) > O. (4.20) tv(Y)

4.3 Conditionals 167 Corollary 4.3.1. Let (X, Y) be a continuous random



vector. The conditional (prob- ability) density function of X, given that Y =y,
is obtained by differentiating the function Fxiy(x | y) above with respect to x:
fx,r(x, y) &XIr(x ] y) -- if fr(y) > 0, (4.21) fY(Y) for any point x where Fxlg(x ]
y) 1s differentiable. Proposition 4.3.2. Let (X, Y) be a random vector. X and Y
are independent random variables if and only if Fxly(x ] y) = Fx(x) € (X, y)
(or Frix(y ] x) = Fr(y)). (4.22) If (X, Y) is a discrete random vector, this
condition is equivalent to PXIy(Xj ] Yk) = px(Xj) V(X ], y), (4.23) while
Equation (4.22) is equivalent to fXlr(x ] y) = fx(x) € (X, y) (4.24) when (X, Y)
is a continuous random vector. Proof. This follows directly from Equations
(4.18)-(4.21), and from the definition of independence. [] Example 4.3.1
Consider once again the function fx,r in Example 4.2.2: fx,y(x,y)=2 if0<x <y< 1
(=Oelsewhere). The conditional probability density function of X, given that Y
=y, is X, r(x,y) 2 1 &Xly(x]y) -- - - if0 <x<y (5 1). fr(Y) 2y y That is, X ]
{Y =y} has a U0, y] distribution, where y E [0, 1]. Conditional Expectation
As we mentioned in Section 3.7, the concept of mathematical expectation can
be generalized by considering the conditional expectation of a random
variable. Definition 4.3.1. Let (X, Y) be a pair of random variables. The
conditional expec- tation of X, given that Y =Yy, is given by -xjpxIr(Jcj | y)
if(X, Y) is discrete, E[X] Y----y] =j=1 (4.25) S xfxly(x ] y)if(X, Y) dx is
continuous.

168 4 Random Vectors Now, let E[X [ Y] be a function of the random variable
Y that takes on the value E[X [ Y=y] when Y =y. Then, E[X [ Y] alsois a
random variable. We could denote this random variable by g(Y), so that g(y) =
E[X [ Y =y], as in Section 3.6 (p. 92). The following result is important in
probability. Proposition 4.3.3. Let ( X, Y) be a pair of random variables. We
have: E[X] : E [E[X [Y]]. (4.26) Proof. Consider the case when (X, Y) is a
continuous random vector. We have: E[E[X [ rll = E[X]r = y]fr(y)dy = xfxlr(x
[y)dx fr(y)dy. Now, fxlr(x [ Y)fr(Y) = fx,r(X, y). Thus, we can write (changing
the order of integration) that 1 E[E[X [ YI]: fx.r(x, y)dy dx = xfx(x)dx : E[X].
The proof in the other cases 1s analogous. [| Remarks. 1) The previous
proposition is also true when we replace X by a function h(X). That is,
E[E[h(X) 1Y]] = E[h(X)]. (4.27) 11) In the case when Y is a discrete random
variable, Equation (4.26) becomes oo E[X] =E[E[X [ Y]]=ZE[X[ Y=
yk]PY(Yk). (4.28) kl 111) We can also write that VAR[X] = E[X 2] - (E[X]) 2 =
E[E[X2 [ Y]I- (E[E[XTy]])2. (4.29) Finally, let A be an event and W be the
indicator variable of the event {X E A}. That is, {lifXEA, W = 0 otherwise.



(4.30) Since E[W] = P[X A], we deduce from Proposition 4.3.3 the following
result, which is the equivalent of the total probability rule for random

variables. Corollary 4.3.2. a) Let Y be a discrete random variable. Then, we
can write that P[X A]=ZP[X a[ Y : YK]PY(Yk). (4.31) k=1

4.3 Conditionals 169 b) If Y is continuous, Equation (4.31) becomes P[X A] =
P[X ATY =y]fr(y)dy. 0(3 (4.32) Remark. We also define the conditional
variance of X, given the random variable Y,by VAR[X 1 Y] ---- E[(X -- E[X ]
yD21Y]=E[ X21Y] - (E[X1y])2.(4.33) We can show that VAR[X] =
E[VAR[X 1Y]] + VAR[E[X 1Y]]. (4.34) Example 4.3.2 Consider one last time
the function fx,r in Example 4.2.2: fx,r(x,y)=2 1f0<x <y5 1 (=0Oelsewhere).
Making use of Example 4.3.1, we can write that the conditional expectation of
X, giventhat Y ---- y, is E[X ] Y =y]=y/2, because X I {Y =Y} " U[O0, y].
Moreover, we have: fo 'y E[E[X1Y]] = E[Y/2] = € 2ydy = 1/3, which is
indeed equal to e[x] =x .2(1 -x)d = 1/3. 3 10 Example 4.3.3 Suppose that the
number X of customers who visit a car dealer during a one-day period has a
Poisson distribution with parameter o = 20. Furthermore, suppose that the
probability that a customer buys a car (on a given visit) is equal to 1/10,
independently from one person to another. Let Y be the number of cars sold
during one day. We can write that Y I X -- B(n= X, p=0.1). It follows that
E[Y] =E[E[Y1X]]=E[0.1X] =0.1 € 20 =2. Moreover, since VAR[Y I X] =
X (0.1)(0.9), we deduce from Equation (4.34) that VAR[Y] = E[(O.0g)X] +
VAR[(0.1)X] = (0.09)(20) + (0.01)(20) = 2. Finally, we can calculate P[Y> 1]
= 1-P[Y=0]= 1-P[Y=0 X=kIP[X=k] k=O =1 -- P[B(n=k, p =0.1) = O]px(k)
k=0

170 4 Random Vectors =1-- ¢ -20 Z 18k =1-- ¢ -2 -- 0.8647. k! k=0 Example
4,3.4 Anumber X i1s taken at random in the interval [0, 1 ], then a number Y is
taken at random in the interval [0, X]. Thus, we can write that X U[0, I] and Y I
X U[0, X]. Then, we obtain that E1Y] = EIE[Y | XI] = E[X/2] = (1/2)(1/2) =
I/4. Next, in this case we have: VAR[Y [ X] =X 2, so that1 f0 1 x 2 VAR[X]
VAR[r]=El X2/121 + VAR [X2I=@ 1 dx+11117=123412 144
Finally, we compute P1Y > 1/21=PlY > 1/21 X=x]fx(x)dx = P1Y >
1/21X:x]0dx 11 X2 1 Inx [ = .1dx=x-- -- /2x2 /2 1 In2 0.1534. 2 2 Remark.
We have: 1 1 fx, r(x,y)=frlx(ylx)fx(x)=-.1 =- if0_<y<x < 1. X X 4.4 Random
Vectors of Dimension n > 2 All the definitions that we have seen in the case of
pairs of random variables can easily be generalized to the case of random



vectors of dimension n, where n> 2. For instance, the joint probability density
function of a continuous random vector X = (XI ..... Xn) is a non-negative
function fx(xl ..... Xn) defined on a non- denumerably infinite subset Sx of R n,
such that ff... f, ..... xn)dXl ...dxn=1. X

4.4 Random Vectors of Dimensionn> 2 171 The marginal probability density
function of Xk is obtained by integrating the function fx with respect to all
variables, except Xk, fork=1 ..... n: fxk (XK) .... fx(xl ..... Xn) dxl ... dXk-
1dXk+] ... dxn. (n-- 1) times Likewise, we have: £X, X2 (X1, X2) .... £X(XI .....
Xn) dx3.., dxn, (n--2) times etc. That is, we integrate the function fx with
respect to all the variables that we want to remove from the random vector X.
Finally, we say that the random variables X1 ..... Xn are (globally) indepen-
dent if and only if P[X1 E Al ..... Xn An] =-1 P[XT Al], k=1 (4.35) where A is
an event that involves only X, fork=1 ..... nIfX=(XT1 ... Xn) is a
continuous random vector, this condition implies that £X(X1 ..... Xn) I Xk
(Xk). k=1 Moreover, as in the case of (random) events, some variables in a
random vector may be independent and others not, as in the following example.
Example 4.4.1 Let Ik(x +y)e -z1f0 <x<1,0<y<2,z>0, fw(x,y,2) [ 0
elsewhere be the joint probability density function of the continuous random
vector W = (X, Y, Z). Using the fact that the triple integral of fw over Sw must
be equal to 1, we find that the constant k is equal to 1/3. In addition, we can
calculate, for instance, the probability f€ [fO1 x2 (x] 5" 0.3066. P[X <Y,Z
> 1]=+y) dydx e -zdz= e -1 6 Remark. Here, if we integrate with respect to the
variable x before the variable y, then we must divide the double integral into
two parts:

172 4 Random Vectors flIfolfo yl 201 1 P[X <Y, Z> 1] = -(x+y)dxdy+ -
(xt+y)dxdy e-Zdz. Furthermore, we can assert that the random variable Z is in
fact independent of the variables X and Y (or, equivalently, of the random
vector (X, Y)). Example 4.4.2 Let S be a sample space associated with a
random experiment E, and let B1 ..... B4 be a partition of S. Suppose that we
perform m independent repetitions of the experiment E and that the probability
Pk :---- P[BK] is constant from one repetition to another. Then, if Xk denotes
the number of times that the event Bk has occurred among the m repetitions, for
k=1.....4, we can write that P[XI =x, X 2 =x2, X3 =x3] := pX(XI'X2'X3) =
XI'X2!X3!(m)1 --x2--x3)! P1 P2 P3P4 where x, x2,x3 {0.1..... m } and x +x2
+x3 <m. This three-dimensional prob- ability distribution, called the



quadrinomial distribution with parameters p .... , P4, can easily be generalized
to the case when the partition of S is made up of n events. In this case, we say
that the random vector (X1 ..... X,,) has a multinomial distri- bution with
parameters p ..... Pn (where 0 <Pk <IYkandp + ... + Pn=1I). It is actually a
distribution of dimension n - I (because the sum of the Xk's is fixed). The
binomial distribution is thus the particular case when n is equal to 2. Remark.
The term m! X1 !XZ!X3!(m - XI - x2 - x3)! in the function px(x, x2, x3) above
i1s what we called the multinomial coefficients in Chapter 2. In the case of the
binomial distribution, the corresponding term is ex- pressed in terms of the
combinations of k objects taken (without replacement) among n distinct
objects. Note, however, that if we have n objects, of which k are of type I and
n - k of type II, then the number of permutations of the n objects taken all at
once is given by n! k!(n - k)! -- C. Thus, the number of permutations of n
objects of two types, of which k are of type 1, is the same as the number of
combinations of k objects taken (without replacement) among n distinct
objects. An n-dimensional probability distribution that is very important for the
applica- tions is the multinormal distribution, which will be seen in Section
4.7 (p. 179). 4.5 Transformations of Random Vectors In the case when X is a
discrete random vector, we can proceed as in Section 3.6 to find the joint
probability mass function of the new random vector Y := g(X). That

4.5 Transformations of Random Vectors 173 is, we apply the transformation g
to each vector in Sx and we add the probabilities of the vectors (xl,... , xn) that
correspond to the same vector (yl .... , Ym). Note that the dimension of the
random vector Y is not necessarily the same as that of X. For example,
consider the random vector (X, X2) in Example 4.2.1, p. 159. Let Y = (Y, Y2)
= (X+ X2, X - X2). Then, we find that the joint probability mass function of
(Y1, Y2) is given by the following table: y2\y012-2001/36-108/36 00
16/36 02/36 1 0 8/36 02 00 1/36 Indeed, in this case the six pairs in Sx €@x2
are transformed as follows: (0, 0) -- (0, 0), (0, 1) -- (1, -1), (0, 2) -- (2, -2),
(1,0) -- (1, 1), (1, 1) -- (2, 0), (2, 0) -- (2, 2). Thus, here the transformation g is
bijective. Now, suppose that X is a continuous random vector. To obtain the
distribu- tion function of Z := g(X ..... Xn), we can find the event A = {(X .....
X,): gX ..... X,,) <z} C Sxwhich is equivalent to the event {Z <z}. Then, we
write: Fz(z)=ff ... fafX(x, ..... xn) dXI"'dxn. (4.36) Similarly, if Zk := gk(X1
..... X) for k=1 ..... n, then to obtain the joint distribution function of the new
random vector (Z1 ..... Zn), we can find the event in Sx that is equivalent to



{71 <71 ..... Z,,<z,} and integrate the function fx over this event. We can also
show the following proposition. Proposition 4.5.1. Let X and Y be two
continuous random variables, and let V := gl(X, Y) and W := 22(X, Y).
Suppose that 1) the system v = gl(X, y), w = g2(Xx, y) has a unique solution x =
h(v, w), y = hz(v, w); 2) the functions g and g2 have continuous partial
derivatives €(X, y), and the Jaco- bian of the transformation: Ogl/OX Ogl/Oy
J(xy):= 0g2/0Ox Og2/Oy

174 4 Random Vectors is different from zero 'v'(x, y). Then, we can write that
v, w(v, w) =1x, y(x, y) 1 J(x, y) [-1, where x = hi(v, to) and y =h2 ( v, to).
(4.37) Remarks. 1) In the particular case when v =x+ y and to =x - y, we find
that x = (v + w)/2 and y = (v - w)/2. Moreover, in the case of such a linear
transformation, the partial derivatives of the functions gl and g2 are constants.
Consequently, they are continuous for any pair (x, y) R 2. 11) The Jacobian of
the inverse transformation is given by Ohl/OV Ohl/Oto J*(v, to) := Oh2/Ov
Oh2/to " We can show that [J*(v, w)[ = [J(hl (v, to), h2(v, w))[ -1 . Then, we
can also write that fv.w(v, w) = J'x.y(hl (v, to), hz(v, w))[J*(v, w)[, (4.38)
provided that J*(v, w) is not identical to zero. 1i11) When the system v = gl (x,
y), W = g2(X, y) does not have a unique solution, we could apply the
proposition on disjoint parts of the plane (where the solution is unique) and
add all the terms obtained, as in Section 3.6. iv) The result in Proposition 4.5.
I can easily be generalized to the case ofn functions of n continuous random
variables X 1 ..... v) In the case when gk is a linear transformation 'v'k, we can
write that Z := (gl(X) ..... gn(X)) = XA, where A is an n € n matrix. If A is
invertible, we find that fz(zl ..... zn) = fx(xl ..... xn) I detA 1-1, (4.39) where
(X1 ..... Xn) =(Zl ..... zn)A -1 . Note that we consider, in what precedes, that X
(and thus Z) is a row vector. Example 4.5.1 Let X ExpO.) and Y ExpO.) be
two independent random vari- ables, and let V := X + Y. To obtain the
probability density function of V, we can make use of Proposition 4.5.1. We
define an auxiliary variable: W = X. Then, the system v=x+y, to X has the
unique solution x = w, y =v - w. Moreover, the partial derivatives of the
functions gl and g2 are continuous 'v'(X, y) 6 2, and the Jacobian 11 J(x, y) =1
0:-1

4.5 Transformations of Random Vectors 175 is different from zero €(x, y).
Then, we can write that fg,w(v, w) = fx,y(w, v - w) I -1 I -lind" fx(w)fy(v - w)
=1v, w(v, w) =)e-ZW)e -z(v-w) = )2e-ZV,if w > 0 and v_> w. Finally, we



have: fv(v) =)2e-X dw = )2ve-X if v > 0. Remarks. 1) We have, in fact: V :=
X+ Y 11) Since the transformation considered is linear, we could have used
(4.39) to obtain fv, w(v, w). 111) We must not forget to give the set of possible
values of the new random vector (V, W), that is, Sv € w. For instance, if SxxY
={(X,y): O<x<y<1} and if we consider the transformation then we find
(see Fig. 4.6) that Sv@w = {(v, w): -v <w <0,0<v < lorv-2<w <0,1 <v <2}.
Indeed, we simply have to consider each of the three line segments that define
Sx€p and find out what they become in the (v, w)-plane. For example, the line
segment defined by x =0, 0 <y <1 becomes the line segment v=y,w=-y e* v=-
w in the (v, w)-plane. 1/2 ' forO<v<IW 1 211) W=-V 1/2 1 X Figure 4.6.
Example of transformation of a random vector.

176 4 Random Vectors x+y<z " x+y=z Figure 4.7. Distribution function of the
sum of two random variables. Remark. Let X and Y be two independent
random variables, and let Z := X Y. Then, if X and Y are continuous, we can
write (see Fig, 4.7) that FZ(Z) = P[X + Y <_ z] = fx(u) fr(v)dvdu. It follows
that {2(z) = fx(u)fr(z - u)du. (4.40) Thus, we can state that the probability
density function of the sum of two independent continuous random variables, X
and Y, 1s the convolution product of the probability density functions of X and
Y. We can use this result to calculate the probability density function of V in
Example 4.5.1. We have: fv(v) = fx(u)fr(v - u)du = )e-U)e-(v-U) du=X 2 e -xv
du= X2ve -xv ifv >0. We will see yet another way of obtaining this same
result (and its generalization) in Section 4.9 (p. 187). 4.6 Covariance and
Correlation Definition 4.6.1. Let (X, Y) be a random vector and Z := g(X, Y).
The mathemat- ical expectation of Z is defined by E[Z] = Z Z g(xj, yk)pX, y(X],
Yk) j=1 k=1 /£ (X, Y) is discrete, £ { g(x, y)fx, y(Xx, y) dxdy if(X, Y) is
continuous. (4.41)

4.6 Covariance and Correlation 177 Remarks. 1) The above definition of the
expected value of Z is actually a theorem that we could prove. 11) We find, in
particular, that E[aX + bY] = aE[X] + bE[ Y] (4.42) for all constants a and b
and for all random variables X and Y, and that E[gl (X)g2(Y)] = E[gl
(X)]E[g2(Y)] (4.43) if X and Y are independent random variables. ii1) The
mathematical expectation E[XY] is called the correlation of X and Y. If E[ XY]
=0, we say that X and Y are orthogonal. Definition 4.6.2. Let (X, Y) be a
random vector. The covariance of X and Y is de- fined by COV[X, Y] crs, r =
E[(X - E[X])(Y - E[Y])]. (4.44) Remarks. 1) We have: COV[X, X] = VAR[X].



Thus, the covariance generalizes the variance. However, the covariance
COVI[X, Y] can be negative. 11) We easily show that COV[X, Y] = E[XY] -
E[X]E[Y]. (4.45) It follows that if X and Y are independent, then COV[X, Y]
= 0. Definition 4.6.3. Let (X, Y) be a random vector. The correlation
coefficient of X and Y is defined by COV[X, Y] CORR[X, Y] ---- Px,Y =
STD[X]STD[Y] (4.46) Remarks. 1) To avoid any confusion between the
correlation and the correlation coef- ficient, we will generally use the symbol
Px,Y, rather than the operator CORR[X, Y]. i1) The correlation coefficient is a
unitless (or dimensionless) measure of the linear relationship between X and
Y. We can show that -1 < Px, Y <1. Moreover, if Y=aX+b, thenPx, Y=1
ifa>0and Px,Y=--11ifa<0. 1i1) If X and Y are independent, then Px, Y = 0.
However, the converse is not always true. If Px, r =0, but X and Y are not
independent, we say that they are simply uncorrelated. For example, let X
Ul[-1, 1] and Y := X 2. We have then: E[XY] - E[X]E[Y] E[X 3] - 0. (1/3) x/(0
-0) Px, Y=STD[X]STD[Y] x/1/3. STD[Y] STD[Y] because all odd moments
of X are equal to zero, and the standard deviation STD[Y] is strictly positive
(actually, STD[Y] = 2/V/). However, X and Y are certainly not

178 4 Random Vectors independent, since the variable Y is expressed in terms
of X: Y =g(X) =X 2. Inparticular, we can write that X =0 =Y = 0. Likewise,
we can show that if X N(0, 1), then Px,x 2 = O. Note that Px,y = 0 is the only
case that does not allow us to conclude about the independence (or not) of X
and Y, since, if Px,y O, then we can state that X and Y are not independent. 1v)
An important particular case is the one when X and Y both have a Gaussian
distribution and Px,r = 0. Indeed, we can then show (see Section 4.7, p. 179)
that this implies that X and Y are independent. Thus, in the case when X and Y
have Gaussian distributions, the random variables are independent if and only
'Px,r = O. In practice, we compute the point estimate (see Chapter 6, p. 253)
rx, of Px. . If rxy, called the sample correlation coefficient, is very small (in
absolute value), and if the assumption of normality of the random variables
seems reasonable, then we can assume the independence of X and Y when we
analyze data, for example. We will see in Chapter 6 how to test, in particular,
the hypothesis that a given random variable has (approximately) a Gaussian
distribution. Example 4.6.1 Let [ [ if-y <x <y,0O<y <1, fx, r(x, y) =0
elsewhere. We lind (see Fig. 4.8) that fx(x)= ldy=1-Ixl if-I <x < 1, fr(y) =
1dx=2y 1f0<y < 1. y Since fx(x) is symmetric with respect to 0 (and Sx = (- 1,
1), which is finite), we can write that E[ X] = 0. Moreover, we have: E[XY] =



xy . 1 dxdy = O. Figure 4.8. Figures for Example 4.6.1.

4.7 Multinormal Distribution 179 Then, given that IE[Y]I <o (because Sr = (0,
1)) and STD[X]STD[Y] > 0 (because X and Y are not degenerate random
variables), we can write that Px,r = O. However, X and Y are not independent,
since fx(x)fy(y) = (1 - Ix])2y 1 = 1x, y(x, y) for almost all pairs (X, y). In fact,
we could have stated from the outset that X and Y are not independent random
variables, since there is the relationship -y < x <y between x and y in Sx € .
Remark. To obtain the correlation coefficient of the random variables X and Y,
we must theoretically calculate five mathematical expectations: E[X], E[Y],
E[X2], E[Y ] and E[XY]. However, as can be seen in the above example, it is
preferable to start by calculating the mean of XY and that of X or of Y. Indeed,
if the mean E[XY] is equal to zero, as well as E[X] or E[Y], then it is not
necessary to calcu- late the means of the squared variables (in the case when
all expected values are real numbers and the random variables are not
degenerate). 4.7 Multinormal Distribution Definition 4.7.1. Let (X, Y) be a
continuous random vector. We say that the random variables X and Y have a
bivariate normal distribution (or binormal distribu- tion) tf their joint
probability density function is of the form { fx, r(x, y) = C exp 2(1 - p2) -2p(x-
X)(Y-)]}x, (4.47) for - <x<,-<y<,wherex,Y,X>0,y>0,-1<p<
l,and (see Ng. 4.9, p. 180). We write: (X, g) N( x, 1;, ; ). Remarks. 1) We can
show that the pameter in the function fx, r above is (indeed) the correlation
coecient of X and 11) We find, integrating the function fx, r(x, y) with respect to
y, that X has a Gaus- sian distribution with pameters gx and . Likewise, we
have: g N(gr, ). We then easily obtain that X [{g=,} N (,x + (x/r)(, -,1),(1-)).
(4.49) We see that if = 0, then fxIr(x I Y) fx(x), from which we deduce the fol-
lowing impoant result (see Section 4.6, p. 176): in the case of bivariate normal

180 4 Random Vectors Figure 4.9. Joint probability density function of a
random vector having a bivariate normal distribution with kt X =kty =0, ax =
ay = and p = 0. distributions, if the correlation coefficient of X and Y is equal
to zero, then X and Y are independent random variables. 111) We also deduce
from (4.49) that E[ X ] Y =y] is of the form ay +b, where a and b are constants.
We will see in Section 4.8 (p. 182) that this implies that, in the case of the
bivariate normal distribution, the best linear estimator and the best non-linear
estimator of X in terms of Y, namely E[X 1 Y], are identical. Example 4.7.1
Suppose that the lifetime X (in kilometers) and the thickness Y (in millimeters)



of the disc brakes of a certain company have a bivariate normal distri- bution
with parameters #x = 20,000, # r =10, cx = 1000, cr =1 and p = 0.85. The
engineer responsible for quality control wants to determine the lifetime of the
brakes by measuring the thickness of the discs. If the thickness of a disc is
equal to 9 mm, what is the probability that the brake will last at least 19,500
km? Solution. We seek P[X > 19, 500 1Y =9] =P[Z> 19, 500], where Z
N(19,150;277,500) Tab. 3.3 -- Q(0.66) =1 - gb(0.66) _ 0.25. Note that the
probability of the event {Y ---- 9} is zero, because Y is a continu- ous random
variable. Therefore, we must not try to compute the above probability by
making use of the definition of the conditional probability P[A I B] given in
Chapter 2. Definition 4.7.2. We say that the random variables X i, X2 ..... Xn
have a mul- tinormal distribution if they are a linear combination of the
independent N(O, 1) random variables Z 1 ..... Zm, that is, if m Xk = #k -t-
ckjZj fork=1 ..... n, (4.50) where Iz k is a real constant for all values of'k.

4.7 Multinormal Distribution 181 Now, we can show that the joint probability
density function of the vector X = (X1 ..... Xn) 1s completely determined by the
vector of means m and the covariance matrix K, where tn := (#1 ..... #n) and
VAR[X1] COV[X1,X2] ... COV[X]1, Xn] 1 K :=COV[X2, X1] VAR[X2]
COV[X2, Xn] . (4.51) COV(, X1] COVing, X2] VA[n] Remark. The matrix K 1s
symmetric, because COV[X, Y] = COV[Y, X]. Moreover, it is non-negative
definite. That is, CickCOV[Xi,Xk] 0 Ci,Ck . 1=1 k=l In fact, we can also show
that 1f K 1s a non-singul matrix, then fx(x) = (2)-/2(det K)-/2 exp [(- 1/2)(x -
m)K - (xr - mr)] (4.52) for xk 6 k, where x := (Xl ..... Xn) and T denotes the
transpose of the vector (or the matrix). Notation. We write: X N(m, K). The
joint chacteristic function of the vector X, that is, X(WI ..... Wn) :=E
[exp[j(WIXIT +"" + wX)]], (4.53) is given by exp j Nioi -- ffikOiOk . 1=1 i=1
k=1 We may write that X(WI ..... wn) =exp [jmw T -(1/2)wKw T] , (4.54)
where w := (w ..... w). Remark. To show this result, we can use the fact (see
Section 4.9, p. 187) that Z := X + ... + Xn N(z,a), where n Z : Oii i=1 d 1 k ik,
1=1 k=1 and that ifX N(, a2), then E[e jX] =x(1) = exp(j - (1/2)a2).

182 4 Random Vectors Properties. 1) If the random vector X has a multinormal
distribution and if Oik : 0 €i € k, then the random variables X, ... , Xn are
independent. 11) If the random variables X ..... Xn have a multinormal
distribution, then any set Y ..... Yk of random variables formed by linear
combinations of the Xi's also has a multinormal distribution. More precisely, if



Y : XAr, where A is a k € n matrix of rank k < n (that is, the k rows of A are
linearly independent), then Y N(mA , AKAr). i11) IfX N(m, K), where K is of
rank n, then there exists a matrix D such that X = YD + m, where Y N(0, In)
(4.55) (In being the identity matrix of order n). Example 4.7.2 Let X = (X .....
X,) be a random vector having a multinormal dis- tribution N(0, In). Then, the
mathematical expectation of the square of the distance of the vector X from the
originis given by EIX + X +... + X,]] = F.IXI € I = n because all the random
variables Xk have a standard Gaussian distribution. In addi- tion, they are
(globally) independent, since (Tij -= O €pi j. Then, given that Xk 2 has a chi-
square distribution with 1 degree of freedom (see Example 3.6.3, p. 94), we
can show (see Section 4.9, p. 187) that the squared distance :=+ +... + also
has a chi-square distribution, with n degrees of freedom. Thatis, D2 ( Go = 3'
"= It follows that if n is even, then P[D >n] = P[D 2 > n 2]=PIY <n/2],
where Y Poi(€n z) (see Section 3.5, p. 87). For example, ifn= 4, we have:
P[D > 4] =P[Poi(8) <2] =9¢ -8 -- 0.0030. 4.8 Estimation of a Random
Variable We will consider in Chapter 6 the problem of estimating the unknown
parameters of a probability density (or mass) function. For example, we will
see how to estimate the parameter k of a random variable X having an Exp(k)
distribution, based on observations of this variable. Here, we are interested in
a different type of estimation problem: let Y be a random variable. Suppose
that we seek to estimate Y by a function g(X) of the

4.8 Estimation of a Random Variable 183 random variable X. We will
consider three cases for the type of function g(X) that is admissible. 1) Case
When g(X) Is Constant If we suppose first that g(X) is a constant, we easily
find that the constant a that minimizes the mean square error e(a) := E[(Y- a) ¢]
(4.56) 1s fi = E[Y], so that the minimum error emin is equal to VAR[Y].
Indeed, we have: E[(Y--a) 2] = E[Y 2]-2aE[Y]+a 2. Differentiating with
respect to a and setting the derivative equal to 0, we obtain that a = E1Y] does
minimize the error e(a): d ae(a) = -2E[Y] +2a=0 €, a=E[Y] and d e dae(a)
=2>0. Thus, emin= E[(Y - E[r']) €] -- VAR[Y]. 2) Linear Case We now
suppose that we look for a function g of the form g(X) =aX b to estimate Y.
Proposition 4.8.1. The constants a and b that minimize the mean square error
e(a, b) ;== E[(Y - (aX b)) 2] (4.57) are given by STD[Y] fi=Px,'-- and /=E[Y]-
fiE[X]. STD[X] Moreover, we find that the minimum error emi n is emin =
VAR[Y](1 - pzx,y). (Idea of the) Proof. Let Z :=Y - aX. Then, e(a, b) := E[(Y-
(aX + b)) 2] = E[(Z- b)2]. Making use of the result in Case 1, we can write that



) = E[Z] = E[Y] - aB[X]. (4.58) (4.59)

184 4 Random Vectors We then find fi by solving the equation d --EI(Y - E[Y]
- a(X - E[X])) 2] ---- 0. da Finally, replacing a and b by fi and/ in e(a, b), and
computing the mathematical expectation, we obtain Equation (4.59). [] 3)
General Case Finally, in the general case when g(X) is any random variable,
we can show the following proposition. Proposition 4.8.2. The
(general)function g( X) that minimizes the mean square er- ror e(g(X)) := E[(Y
- g(X)) 2] (4.60) 1s given by g(X) = EIY I X]. Particular cases, 1) If Y = h(X),
then we have: g(X) = E1Y I X] = EIh(X) I X] = h(X), and it follows that the
minimum error emin is equal to 0. 11) If X and Y are independent random
variables, then EIY I X] = EIY]. In this case, we have: emin = VARIY.
Remarks. 1) The function fiX / is the best linear estimator of Y in terms of X,
while g(X) = EIY I X] is the best non-linear estimator of Y in terms of X. Note
however that the best "non-linear" estimator of Y in terms of X may be linear,
as in the next remark. Therefore, EIY I X] is in fact (simply) the best estimator
of Y in terms of X. 11) If X and Y have Gaussian distributions, then the two
estimators of Y in terms of X coincide. Indeed, we then have (see Section 4.7,
p. 179): E[YI X =x] =1Zy + Px.Y (X - #x) := a*x + b*, which is linear in x.
Furthermore, VARIY I X = x] = cry2(1 - p2x.y), which corresponds to emin in
Equation (4.59). i11) We find, differentiating the mean square error e(a, b)
defined in (4.57) with re- spect to a and setting Oe/Oa equal to 0, that E[(Y -
fX - [)X] = O. This equation is known as the orthogonality condition. This
condition can be stated as follows: the best estimator of the formaX b of Y is
such that the estimation error Y - (aX b) and the observation X are orthogonal.

4.9 Linear Combinations 185 Example 4.8.1 If X N(0, 1) and Y := X 2, then
the best non-linear estimator of Y in terms of X is directly g(X) = X 2, while
the best linear estimator of Y in terms of X is given by hX with (see Section
4.6, p. 178) and / = E[Y] = E[X 2] = 1. Thus, the best linear estimator of Y in
terms of X is simply the constant 1. 4.9 Linear Combinations An important
particular case of transformation of random vectors is the one when Z := g(X1
..... Xn) is a linear combination of the random variables X1 .... , Xn. That is,
we can write that Z := ao g-alX1 g- .." g-anXn, (4.61) where the a's are real
constants Yk. Then, making use of the (generalized) definition of E[g(X)] (see
Section 4.6, p. 176), we easily show that n E[Z] = ao + -a,E[X,]. k=1 (4.62)
Next, let Z := alX1 + a2X2. We have: VAR[Z] = E[Z 2] - (E[Z]) 2 = E[a21X21



+2ala2X1X2 +aX] - (alE[X1] +a2E[X2]) 222 2 : -al@{E[X]I€] - (E[XK])
2} -k 2ala2 {E[X1X2] - E[X1]E[X2]}. k=] That is, VAR[Z] : al2VAR[XI] +
a22VAR[X2] + 2alazCOV[ X1, X2]. Using mathematical induction, we obtain
the following proposition. (4.63) Proposition 4.9.1. Let X1 ..... Xn be random
variables, and let Z be a linear com- bination of the XI's: Z=ao - Zk:1n alXI.
Then, we can write thatnn _ VAR[Z] = - a2VAR[X,] + 2- aial COV[Xi, XI1].
k=1 1=1 k=1 i<k (4.64)

186 4 Random Vectors Remarks. 1) The constant a0 does not affect the
variance of Z. i1) We can also write Equation (4.64) in the following form:
VAR[Z] = Z 7 aiakCOV[Xi, Xk]. 1=1 k=1 Particular cases, 1) If the random
variables are independent, Equation (4.64) be- comes VAR| ZI -- a2VAR[ XXKkl.
(4.65) k=1 i1) Suppose that the random variables Xk are independent and
identically distributed (that is, they have the same distribution function). We
write that the Xk's are i.1.d. variables. Then, if Sn := X1 -t- """ -t- Xn, (4.66)
we can write that E[ Sn ] =n E[ X 1] and VAR[ Sn | =nVAR[ X1 ]. Remark. In
summary, if the mathematical expectations of X and Y exist, we can write that
E[X + gl = E[XI + EIYL If, in addition, the random variables X and Y are
independent, then E[XYI = E[XIEIYI. Likewise, VAR[X + Y] ind. VARIXI +
VAR[Y] and VAR[XY] = EIX2y 21 - (E[XY]) 2 ind. EIX2]E[y2] _
(E[X]E[y])2. Note that STD[X + Y] € STD[X] + STDJ[ Y] (in general), even
if X and Y are independent, because the square root of a sum is not equal to the
sum of the square roots. Reproductive Properties To obtain the probability
density function of the sum of two independent continuous random variables, X
and Y, we can consider the characteristic function of their sum Z: qz(og) := E[e
jwz] = E[e jw(x+Y)] in2' E[eJWX]E[e jwY] = x(0))y(0)). (4.67)

4.9 Linear Combinations 187 Hence, we deduce the result that we have
already mentioned in Section 4.5 (p. 176): the probability density function of Z
is given by the convolution product of the density functions of X and Y. That is,
fz(z) = F-1{q3x(c0)q3r(co)} = fx(x) * fr(Y), (4.68) where F -1 denotes the
inverse Fourier transform. The result (4.67) can be directly generalized to the
case when we add n inde- pendent random variables. Making use of this
generalization, we easily show the following reproductive properties. a) If Z 1s
a linear combination of independent Gaussian distributions, then Z has a
Gaussian distribution whose mean and variance are given by (4.62) and (4.65),
re- spectively (actually, if the random variables are not independent, Z still has



a Gaus- sian distribution, whose variance is given by Equation (4.64)). b) The
sum of n independent exponential distributions with the same parameter ),
(thus, the sum of n independent gamma distributions with parameters 1 and ),)
has a gamma distribution with parameters o =n and ),. Indeed, the
characteristic function of X Exp00 is given by 4)x (o) =; -jco Then, for
instance, if X I Exp(X) and X2 Exp(X) are independent, we can write that )XI
~ X2 (0)) ind. )X1 (0)))X2 (0)) =, Now, if Y G(0 =2, ),), we have: ),2 4r (0) -
(,k - jog) 2" Thus, by uniqueness, we may conclude that X1 + X2 G(a ---- 2, ;).
More generally, the sum of n independent gamma distributions with parame-
ters ak, for k=1, 2,... , n, and ; has a gamma distribution with parameters a :=
= ak and ;. In particular, since a gamma G(, €p) distribution is a chi- square
distribution with m degrees of freedom (see Section 3.5, p. 86), the sum of n
independent chi-square distributions with m degrees of freedom, for k=1 ....,
n, also has a chi-square distribution, with ml + € € € + mn degrees of
freedom. ¢) The sum of independent Poisson distributions with parameters a,
fork=1..... n, also has a Poisson distribution, whose parameter is given by a
:---- al +d) If X1 B(nl, p) and X2 B(n2, p) are independent, then X1 + X2 B(nl
+n2, p), which actually follows directly from the definition of a binomial
distribution. Remark. Since the generating function Gx and the moment
generating function Mx can be expressed in terms of the characteristic function
bx, Equation (4.67) above, and its generalization, are valid for Gx and Mx as
well:

188 4 Random Vectors GXI+X2(Z ) ind.= GXI1 (z)Gxz(Z) and Mxl+x2(s ) ind.=
MXI1 (s)Mx2(s). Example 4.9.1 If X N(0, 1) and Y N(- 1, 2) are independent
random variables, then the random variable Z := X - 2Y has a Gaussian
distribution with parameters Ixz=0-2 x (-1) =2 and cr22 =1+ 4 x(2) =9. We
must not forget to square the coefficients of the random variables when we
calculate the variance. Note that otherwise here we would obtain a negative
variance! 4.10 The Laws of Large Numbers We can show the two limit
theorems that follow. Theorem 4.10.1 (Weak law of large numbers). Let X, X2
.... be an infinite se- quence of i.1.d, random variables such that E[XI] = IX E .
Let Sn be the sum of the first n variables in the sequence: Sn :=-=1 Xk.
Then,for any constant ¢ > O, we have: --- <c = 1. (4.69) Remark. In statistics,
we say that Ix is the mean of the population, while Sn/n is the mean of a
random sample (of size n) of the population. We deduce from this theorem that
the sample mean converges toward the population mean. In practice, if the



mean Ix 1s unknown, we can therefore estimate it by using the mean of a sample
of the population. The larger the size of the sample 1s, the more accurate the
approximation of IX by the numerical value taken by Sn/n should be. Theorem
4.10.2 (Strong law of large numbers). Let X 1, X2 .... be an infinite se- quence
of'1.1.d, random variables such that E[X] = Ix and VAR[X] < and let Sn :=n=l
Xk. Then, P[lim Sn ] --=Ix = 1. (4.70) Remarks. 1) We must talk about measure
theory to explain the difference between the two laws. The weak law of large
numbers was first proved by Khintchin 2 in 1929. 2 Aleksandr Yakovlevich
Khintchin, 1894-1959, was born and died in Russia. His father was an
engineer. His first mathematical works were on number theory and probability.
He was a professor at Moscow University. This is where he contributed in a
very important way to the development of the theory of stochastic processes.
Next, he became interested in statistical mechanics and in information theory.
In addition to his mathematical research, he had a passion for theater and
poetry.

4.11 The Central Limit Theorem 189 11) We say that Sn/n converges in
probability (respectively almost everywhere) to/z in the case of the weak
(resp. strong) law of large numbers. ii1) If we apply the strong law of large
numbers to relative frequencies (see Chapter 1, p. 4), we find that the relative
frequency of an event A converges to the probability of A with probability 1.
This follows from the fact that the relative frequency of an event A is actually
the mean of a sequence of independent Bernoulli random variables with
parameter p, where p is at once the probability of A and the mean of the
Bernoulli distributions. Example 4,10,1 Let X, X2 .... be independent random
variables, all having an exponential distribution with parameter . = 1. We
define the indicator variable 11 1f X > 1, I = 0 otherwise for all k. Since I has a
Bernoulli distribution with parameter p = P[X > 1] = e- 5, we deduce from the
strong law of large numbers that n Ik lim '--=E[l]=p=e¢ -s, k=1 with probability
1. 4.11 The Central Limit Theorem Theorem 4.11.1 (Central limit theorem).
LetX ..... Xn be n1.1.d, random vari- ables with finite mean I and finite
variance cr 2 (cr > 0). Let Sn be the sum of the n random variables and Sn - nlz
7/n .-- -- (4.71) n1 /2ty Then, the distribution function of Zn tends toward that
of a Gaussian N(O, 1) distri- bution. Remarks. 1) We can also write the
following result: Sn " N(n/z, na 2) if nis large. (4.72) Similarly, S?1 -- N(/z,
crYC) ifnis large. (4.73) nii) In general, if n> 30 we can use the Gaussian
distribution to approximate the exact distribution of Zn. However, if the



distribution of the X's is symmetric, then fewer variables are needed in the sum
Sn to obtain a good approximation (and vice versa).

190 4 Random Vectors ii1) To prove the central limit theorem as stated above,
we can use characteristic func- tions. We show that the characteristic function
of Zn tends toward that of a standard Gaussian distribution, namely e -
c€2/2.Then, since there is a bijective relationship between probability
density functions and characteristic functions, we obtain the re- sult we seek.
The theorem was first proved by J. W. Lindeberg in 1922. It had been
demonstrated previously, among others by Lyapunov, 3 but under more
stringent re- strictions. The theorem is sometimes called the Lindeberg-Feller
4 central limit the- orem, or the L6vy 5 central limit theorem. We can
nowadays prove it in a few steps by making use of advanced methods (see
reference [13]). 1v) We can generalize the central limit theorem to the
following case: let XI ..... Xn be n independent random variables. Then, under
some conditions, S,,/n has approx- imately (when n is large enough) a
Gaussian distribution with parameters #=- EIXk] and o 2 VARIXK]. (4.74) /'/
2k= 1 k=1 So, the random variables X do not need to be identically distributed.
Note that the expressions for the mean and the variance of S,/n follow at once
from Equations (4.62) and (4.65) of Section 4.9. What is difficult to prove is
the fact that the distri- bution of S,/n is approximately Gaussian. Example
411.1 Let X ..... X,, be independent random variables distributed as the
discrete random variable X, whose probability mass function is given by the 3
Aleksandr Mikhailovich Lyapunov, 1857-1918, was born and died in Russia.
He was a mathematician and mechanical engineer. He was a school friend of
Markov and a student of Chebyshev. He worked, in particular, in the field of
differential equations, his methods enabling us to determine the stability of
systems of ordinary differential equations, and on probability theory.
Moreover, he invented important approximation methods. His doctoral thesis
on the stability of motion, which was of great scientific value, was published
in English in 1966. He met a violent death (he shot himself when his wile died)
soon after the October Revolution of 1917. 4 William Feller, 1906-1970, was
born in Croatia and died in the United States. After having been educated by
tutors, he obtained university degrees in Croatia and in Germany. He taught at
many renowned universities in the United States. Although he made important
contributions to the field of diffusion processes in general, and to the theory of
Brownian motion in particular, he is most famous for his book An Introduction



to Probability Theory and its Applications, published in two volumes, which is
a real classic. The first volume is cited by almost all authors of books on
probability theory. The second volume is of a higher mathematical level. 5
Paul Pierre Ldvy, 1886-1971, was born and died in France. Many members of
his family were mathematicians. He studied at the 1cole Polytechnique de
Paris, where he gradu- ated first in his class. Next, he obtained his doctorate
from the 1cole des Mines de Paris. His thesis was on functional analysis. He
taught at the 1cole des Mines and at the Icole Polytechnique. In addition to
functional analysis, he was interested in probability theory, as well as in
partial differential equations and in geometry. He is considered as one of the
founders of the rigorous theory of probability, because he published many
important papers and books on this subject.

px (x) 4.11 The Central Limit Theorem 191 )x 'l 2 Figure 4.10. Probability
mass function of the random variable in Example 4.11.1. following table: x -1
02 EPx(X)1/21/8 3/8 1 (see Fig. 4.10). The exact distribution of Sn can be
obtained by performing what is sometimes called the "convolution summation"
of X1, € € € , Xn. For instance, the distribution of $2 is the following: x -2
-10124EPs2(x) 1/4 1/8 1/64 3/8 3/32 9/64 1 Indeed, there is a single pair
in Sx €x2 that corresponds to -2, namely (-1, -1), and we have: ind. P[XI -=
-1, X2 =-1] = P[XI=-1]P[X2 =-1] =(1/2) 2 = 1/4, etc. Figures 4.11 and
4.12 (p. 192) present the probability mass function of Sn for n= 16 and n=32.
We see that when n is equal to 32, the curve looks a lot like that of a Gaussian
distribution. 0.07 : 0.06 0.05 0.04 0.03 0.02 0.01 : 0!-10 0 10 20 Figure 4.11.
Probability mass function of the random variable obtained by adding 16 inde-
pendent copies of the random variable in Example 4.11.1.

192 4 Random Vectors 0.05 0.04 0.03 0.02 0.01 0 -20 -10 0 10 20 30 40
Figure 4.12. Probability mass function of the random variable obtained by
adding 32 inde- pendent copies of the random variable in Example 4. I LI
Example 4.11.2 A computer, in adding numbers, rounds each number to the
nearest integer. Suppose that the rounding errors are independent and have a
uniform distri- bution on the interval (-1, I)" If 1500 numbers are added, what
is the probability that the total error, in absolute value, exceeds 15? Solution.
Let ET be the total error caused by rounding the 1500 numbers. We can write
that ET =E + E2 +. € € + E500, where E is the error committed in rounding
the kth number Yk. Since E, U(-€p, I) Yk and the E.'s are independent, we



have: Er N(1500(0), 1500(1/12)) (appr.). Indeed, we have: EIEI =0 and
VARIEI = - (-I) 12 Yk. We seek Tab. 3.3 PII Er I> 151-2[1-q(1.34)1 -- 2(1
-0.91)=0.18. Remark. If we had made the error of believing that Er
U(-750,750), we would have obtained: 30 PIl Er > 15]=1-P[-15 <Er<_
15]=1 ----0.98, 1500 which is very far from 0.18, a vialue which here can be
considered as the exact (but rounded) answer. Actually, the sum of two
independent uniform random variables does not have a uniform distribution.
Furthermore, the sum of 10 independent uni- form distributions already has
approximately a Gaussian distribution. Thus, the sum of 1500 independent
uniform distributions is practically a Gaussian random variable. Application:
Approximation of a Binomial Distribution by a Gaussian Distribution Let X
B(n, p). Since we can represent X as the sum of ni.1.d. Bernoulli random

variables, we can use the central limit theorem to approximate the distribution
of X.

4.11 The Central Limit Theorem 193 Indeed, we can write that X = Yk=In Xk,
where Xk is equal to 1 if the kth trial is a success and to 0 otherwise. That is,
the binomial distribution counts the number of 1 's obtained in n Bernoulli
trials. De Moivre-Laplace Approximation. 6 Let X B(n, p). If n is large enough
and p sufficiently close to 1/2, then we can write that px(k) - fz(k), (4.75)
where Z N(np, npq), since E[X] =np and VAR[X] = npq. Note that px(k) is a
probability, whereas fz (k) is not. Validity condition: the approximation should
be good if min{np, nq } 1s greater than or equal to 5. Thus, i1f p is equal to 1/2,
then n = 10 is sufficient to obtain a good approximation, whereas if p = 1/100,
then n must be at least equal to 500. Actually, if p is very small, or close to 1,
we should use the Poisson approximation instead. Remark. We can also use the
distribution function of Z to approximate Fx (k) (or px(k)). In fact, we
generally get more accuracy when we seek to approximate the distribution
function, as we already mentioned in Chapter 3 (when we saw Poisson's
approximation). In that case, we suggest making a continuity correction.
Continuity corrections. To improve the approximation, we generally use the
fol- lowing corrections (where k,aandb 6 {0, 1 ..... n}): a) P[X=kl=P[k - @
<X<k+ @l P[k- @ <Z<kt+@l(necessaryifwe want to make use of the
distribution function of Z to approximate Px (k)); b) Pla<X <b] =P[a - @ <
X<b+€]--Pla-€<Z<b+ @] This correction stems from the fact that
we replace a discrete random variable by a continuous random variable (see
Fig. 4.13, p. 194). Remarks. 1) If we do not have a closed interval [a, b], we



can simply transform the given interval into an interval of this type before
making the continuity correction. For instance, we have: + 1 : 1- 6 Abraham de
Moivre, 1667-1754, was born in France and died in England. A mathemati-
cian of French origin, he emigrated to England in 1685 and made his career
there. He was a friend of Newton. His most important works were on analytic
geometry and on probability, of which he is one of the pioneers. In 1718, he
published his book entitled The Doctrine of Chance, in which the definition of
statistical independence can be found. The formula at- tributed to Stirling
appeared in a book that he published in 1730. He later used this formula to
prove the Gaussian approximation to the binomial distribution. An important
formula in complex analysis is also due to him. It is said that, like Cardano, he
predicted the day on which he would die.

194 4 Random Vectors 114 Figure 4.13. Approximation of a binomial
distribution by a Gaussian distribution. 11) When we want to get an
approximation for a probability like P[X < b] or P[X > a], adding the
minimum value that X can take, namely 0, or the maximum value, namely n,
generally does not change much the numerical value obtained (if the validity
condition is respected). 1i1) We could also approximate the distribution of a
Poisson random variable, with parameter oe large enough, by that of a
Gaussian random variable with parameters = O "2 = Ot (see Section 4.9, p.
187). Example 4.11.3 If 20% of the diodes manufactured by a certain machine
are de- fective, what is the probability that in a batch of 100 (independent)
diodes taken at random (and without replacement) among those produced by
this machine, there are exactly 15 defectives? Solution. Let X be the number of
defective diodes, among the 100 examined. Then, X has a binomial distribution
with parameters n= 100 and p = 0.2. We seek P[X =15] =P[14.5 <X <
15.5]-- P[14.5 <Z <15.5], where Z N(20, 16) Tab. 3.3 =q(1.375) -
q(1.125) 0.9155 - 0.8697 = 0.0458. Remarks. 1) We obtain practically the
same answer by making use of Equation (4.75): L exp{ 1 (15- 20)2] fz(15) -- . 2
]-( _0.0457. In fact, it is clearly more efficient to use Equation (4.75) when
we seek to approxi- mate the value of the probability mass function of X. i)
The answer obtained by using the binomial distribution is (about) 0.0481.
Moreover, if we make use of the Poisson approximation instead, we find that
P[X=15] 0.0516. The probability of a "success," p =0.2, is too large here
to obtain a good approximation with a Poisson distribution.



4.12 Exercises, Problems, and Multiple Choice Questions 195 iii) In the
preceding example, the validity condition is respected, since we have: min{np,
nq} = min{20, 80} =20 > 5. Therefore, we were expecting to get a good
approximation with a Gaussian distribution. Note, however, that the percentage
of er- ror obtained by using the Gaussian approximation is about 5%, while it
is about 7.3% with the Poisson approximation. Thus, here the quality of the
two approximations is in fact comparable. 4.12 Exercises, Problems, and
Multiple Choice Questions Solved Exercises Exercise no. 1 (4.4) Three
companies, X, Y and Z, have a probability equal to 0.4, 0.3 and 0.3, re-
spectively, of securing an order for a certain product. If three independent
orders are placed, what is the probability that each company receives exactly
one order? Solution Let W := (X, Y, Z), where X is the number of orders
received by the company X, etc. Then, W has a multinomial (trinomial)
distribution with parameters Px = 0.4, py = 0.3 and Pz=0.3. We seek P[X=
LY=L7Z=1]---- 3! 111111 (0.4) 1 (0.3) 1 (0.3) 1 : 6 (0.036) = 0.216. Exercise
no. 2 (4.6) Let X be a random variable such that E [Xn] =€ forn=1,2.....
We define Y = X 2. Calculate Px,r. Solution We calculate PX,Y : E [XY] - E
[X] E[Y]STD [X] STD [Y] STD [X] STD [X 2] because and 1 1 STD[X 2] :
E[X4]-E[X2]: :--

196 4 Random Vectors Exercise no. 3 (4.6) We define Z= X +Y, where X and
Y are two independent random variables uniformly distributed on the interval
[a, b]. a) Find the probability density function of Z, ifa=0and b=1.b)
Calculate the correlation coefficient of X and Z, ifa=- 1 and b= 1. Hint. We
have: VAR [X] =1/3 ifa=-1 and b = 1. Solution a) We can write, by
independence, that fz (z) = fx (u) fr (z - u) du= fr (z - u) du. Now, we have: Sz
= [0, 2] and It follows that 1 if0<z-u<1 @z- 1 <u<z, fr (z-u) --- 0
elsewhere. {z (z) = : | du= z1f0<z<l, fz ldu=2-zifl <z<2. -1 Equivalently, if Z =
X+ Y and W = X, then we find that fzw(z,w)=1 ifO<w< 1, O<z<2, w<z<w-l.
Next, we integrate fz,w (z, w) with respect to w to obtain fz (z). b) We have:
PX.Z:because E [XZ] - E[X] E[Z] (}) - (0)(0)a------ 0.7071,2 and E
[XZ] =E[X 2]+ E[XYIind. VAR [X] +(E[X]) 2 .q- E[X]E[Y] 1=
VAR[X] +(0)2-}-0€ 0=VAR[X]=-311i'1"'d" 1 () STD[Z]=(VAR[Z]): =
(2VAR[X]): =.

4.12 Exercises, Problems, and Multiple Choice Questions 197 Exercise no. 4
(4.6) Let fX'Y(X'Y): {2-Xo0-YifO<x <1'0O<y < Calculate a) Fx,r (X, y); b) fx



(x); ¢) COV[X, Y]; d) PIX+Y <1]. Solution a) We calculate fOf0 y Fx,r (X, y)
=(2-u-v)dvdux2yxy 2 =2xy if0<x < 1,0<y < 1. 2 2 Hence, we deduce that
Fx,r (%, y) = 0 ifx <Oory <0, 2xy -- @x2y -- @xY 2if0 <x<1,0<y<1, y_
@22ifx>1,0<y<l, -x--@x 2 if0<x < 1,y> 1, 1 ifx > landy> 1. b) We have:
13 fx (x) : (2-x-y)dy= - x 1f0<x<l. ¢) First, we calculate E[XY] = xy(2- X - y)
dxdy=y x x My = --. 12 Since, by symmetry, E[Y] = E IX], we can write that
cov[x,r]=E[xr]-E[x][r]=- - 3 1 -0.0069. 144 d) We can write (see Fig. 4.14, p.
198) that P[X+Y < 1]= (2-x-y) dydx

198 4 Random Vectors 1/2 + y =1 Figure 4.14. Figure for part d) of Exercise
no. 4. 2(1 -x)--x (1 --x) - 2x +dx=-.3 (1 - x)2 / " dx 2 Exercise no. 5 (4.9)
Let X Poi(1 ) and Y Poi(2) be two independent random variables. Calculate
Solution We have: P 3<(X+Y)<5 =P 4<X+Y<-- = P[4<Poi(3)<6] { 343536 }
=e-3.+.+. 0.3193. Exercise no. 6 (4.11 ) Let X ..... Xso be independent
random variables having a Gaussian N(0, 1) K 50 X 2 distribution. We define
Y =,,,=. a) Calculate the mean of Y. b) Use the central limit theorem to
calculate P [Y < 60]. Hint. We have: E[Y 2] =2600. Solution a) We have:
E[X]=VAR [X]+(E[Xk])2=1q-02=1

4.12 Exercises, Problems, and Multiple Choice Questions 199 50 50 ET'1 : Z
Elxl = Z 1= 50. k=1 k=1 b) We can write that V N(50, r 2) (approximately),
where r 2 =E[Y 2] - (E [y])2 =2600 - (50) 2 =100. Then, 60 501 Tab. 3.3
P[Y <60]--P N(0,1) <10 ] =gb(1) -- 0.8413. Exercise no. 7 (4.11) Let (X1 .....
Xn) be a random vector having a multinormal distribution. We sup- pose that E
[Xg] =0and VAR [Xg]=1fork=1 ..... n, and that COV[Xj, Xg] =01fj - k.
We define Y = X1 + X2 and Z = X3 - X4. a) What is the characteristic function
of Y? Hint. If X N(#, a2), then gx (co)= exp (j#w - €0-2c02). b) Does the
random vector (Y, Z) have a bivariate normal distribution? If so, give its five
parameters; if not, justify. ¢) Suppose that n=50. We take an observation of
each random variable X ..... Xs0. Use the central limit theorem to calculate
(approximately) the probability that exactly 25 observations are positive. Hint.
We have: gb (0.14) -- 0.5557. Solution a) COV[X1, X2] =0 B e X1 and X2
are independent. Then, we can write that Y N(0 + 0, 1 + 1), so that by (co) :
exp (j (O)m- (1/2)20) 2) : \ b) Since Y and Z are linear combinations of
independent N(0, 1) random variables, the random vector (Y, Z) has a
bivariate normal distribution. Its parameters are: #Y =#z=0,1r2=122=2
and PY, z= 0 (because Y and Z are independent random variables). ¢) Let N



be the number of positive observations. We can write that N B(n= 50, p =
1/2). We want P IN = 25] C_LT {z (25), where Z has a Gaussian N(25, 12.5)
distribution. Therefore, 1 { (25-25)2 } 1 PIN=25] -- -- 4'--x/]- exp -(i-2.
0.1128. Remark. Or: P [N =25] -- 2gb (0.14) -- 1 -- 0.1114.

200 4 Random Vectors Exercise no. 8 (4.1 I) The average lifetime of certain
electronic components is equal to six months and the standard deviation of the
lifetime 1s equal to two months. a) We consider two components of this type.
Let T1 and T2 be their respective lifetimes. We suppose that T1 and T2 have
(approximately) a Gaussian distribu- tion and that their correlation coefficient
is equal to 1/2. Calculate the probability P [T2 > 8.5 I T1 =4]. b) Suppose
now that the components are independent, but that the distribution of their
lifetime 1s unknown (we only know the mean and the standard deviation of the
lifetime). We consider a machine made up of n components of this type placed
in parallel. Furthermore, only one component is active at a time (standby
redundancy). Use the central limit theorem to find the smallest value ofn for
which the probability that the machine functions during at least 15 years is
greater than 90%. Hint. We have: Q- (0.1) 1.2815 and Q-1 (0.9) - 1.2815.
Solution a) We can write that T2I{T 1 =4} N [ZZ+pT2.T, -1 (4--//.1) 022 1
_p2=N(5,3), Tz.TI " Tab. 3.3 Then, P[T2 > 8.5]T1 =4] = P[N(5,3) > 8.5]
Q(2.02) 1 -0.9783 0.022.b) Let S,, :=T1 € € € T,,. If nis large enough,
then by the central limit theorem we can write that S,, N (n € 6, n € 4). We
seek nmin such that P [Sn> 180] > 0.90 € P [N(6n,4n) > 180] > 0.90 ( 18 O -
_6n180-6n=Q 2,v/.,] >0.90 =2-- <-1.2815. We consider the equation 6n -
2.563,,/ - 180 = 0. We find that -- -5.27 or 5.69. It follows that n -- 32.4. Thus,
we must take n = 33. Exercise no. 9 (4.11) Suppose that X1 ..... Xn are
independent random variables that are all uni- formly distributed on the
interval [0, I]. a) Calculate P[] X1 - X2 1< 1/2]. b) 1) Find the characteristic
function of Y := al X1 + azX2, where al and a2 are real constants (5 0). i1)
Making use of part 1), can we assert that Y has a uniform distribution? If so, on
what interval. If not, justify your answer. eJb_eJ)a Hint. We have: 4)x(w) --
jodb-) "if X U[a, b]. c) Use the central limit theorem to find the smallest value
of n for which P[XI+'""+Xn <]< 10 -5. Hint. We have: Q-1(10-5) - 4.2649.

4.12 Exercises, Problems, and Multiple Choice Questions x2 , , / x2-x 1=1/2
Figure 4.15. Figure for part a) of Exercise no. 9. 201 Solution a) We have: fx
I'X2(X1,X2)ind. 1 X1=1for0 <x1 <1,0<x2<1.Then, we can write



(see Fig. 4.15) that = X1 (al) X 2 (a2) =jwal ja2 (eja' - 1)(eja: - 1) --ala2 2
ii) Since € (W) Cx (w) for any unifo random variable X, the random vari-
able Y does not have a unifo distribution. ¢) XI+"'+Xn N nx,nx P X+'"+Xn< P
N, <=PN(O, 1)< g It follows that n 24.25, whence we deduce that nmin = 25.

202 4 Random Vectors Unsolved Problems Problemno. 1 Find fx (x) if fx, Y
(%, y) Problemno. 2 Let fx,r (X, Y) :- 4 Calculate P[2X 2 > Y]. Problem no. 3
Suppose that and 1 PxIv (x [y) =.ifx 2 +y2 <2 (=0 elsewhere). if0 <x <2,
0 <y <2 (=0 elsewhere). ifx :-0, 1,2andy : 1,2, 1 Pv (Y)=1ify=1 or 2. Find
Pz (z), where Z := XY, assuming that X and Y are independent random vari-
ables, Problem no. 6 Calculate VAR [XY] if X -- N(-1, 1) and Y N(2, 4) are
two independent random variables. Problem no. 7 Let X1 N(0, 0 -2) and X 2
N(0, 0 "2) be two independent random variables, and let Y := X1 + X2. X Px
(x)andy-101111pv(y) Find Px,v (X, y). Problemno. 4 Let X1 N(/,a 2)
and X2 " N(/, a 2) be two independent random variables. We define Y : X +
X2 and Y2 ----- X + 2X2. Find the joint probability density function ;2 (Y, y2)
€ Problemno. 5 Let

4.12 Exercises, Problems, and Multiple Choice Questions 203 a) Find the best
estimator of Y, based on XI. b) Find the best estimator of X1, based on Y.
Problemno. 8 Calculate P [2X - Y < 8], where X N(0, 1) and Y N(1, 5) are
two inde- pendent random variables. Problemno. 9 Let X, Y and Z be
independent random variables such that VAR [X] =1, VAR [Y] =4 and VAR
[Z] = 11. We define W =3X +2Y - Z. Calculate STD[W]. Problem no. 10
Suppose that X 1s a random variable such that E [ X] = VAR [X] = 1. Use the p
r-,36 central limit theorem to calculate (approximately) the probability t/k= Xk
<42], where X1 ..... X36 are independent random variables having the same
distribution function as X. Problemno. 11 Let X B(n= 25, p = 1/2). Use the
Gaussian approximation to the binomial distribution to calculate P [X < 12].
Problemno. 12 Let Jxifl <x <y<2, fx,y(x,y) ! 0 elsewhere. a) Find the marginal
density functions fx and ft. b) Calculate the probability P [X 2 <Y]. Problem
no. 13 Let X ..... Xs0 be random variables having a geometric distribution with
pa- rameter p = 1/4, and let S := X +. . + Xs0. a) Calculate VAR [S] if
Pxj,xk=1/2 Y 7 k. b) Suppose now that the Xk's are globally independent.
Use the central limit theorem to calculate P [S <201]. Remark. Do not use a
continuity correction. Problemno. 14 Let 1 fx,r(x,Y)= (4xy)-7 ifO<y <x <1, 0
elsewhere. Calculate a) fx (x) and fr (Y); b)) E[Y1X];¢c) P[X> @, Y > @1.



Problemno. 15 The input to a communication channel is a random variable X
having a standard Gaussian distribution. The output Y is givenby Y = X + N,
where N, the noise, has

204 4 Random Vectors a Gaussian distribution with zero mean and variance
aN 2 . Furthermore, X and N are independent. a) Calculate P[Y=01X =0]. b)
Calculate the correlation coefficient, Px,', of X and Y. ¢) IfaN 2 =8, we find
that Px, Y = 1/3. Moreover, the vector (X, Y) has a bivariate normal
distribution. What is the best estimator of Y in terms of X? Problem no. 16 The
joint probability mass function of the discrete random vector (X, Y) is given
by the following table: yx-10101/92/91/911/92/91/92 0 1/9 0 a) Find
Prix (Y 10). b) Calculate Fx. r (2, 0). ¢) 1) Calculate the correlation coefficient
of X and Y. 11) Are X and Y independent random variables? Justify your
answer. d) Let Z := X + Y. Find Pz (z). Problemno. 17 A computer generates
random numbers X according to a Gaussian distribution with parameters 0 and
a 2. Let { {XifX <0, XifX>0, and Z:= 0 otherwise. Y := 0 otherwise a) Does
the sum Y Z have a Gaussian distribution? Justify your answer. b) Does the
pair (Y, Z) have a bivariate normal distribution? Justify. ¢) Calculate E[Y [ X
2 1]. Problem no. 18 In a quality control operation, we examine the paint ofn
brand-new cars taken at random among those produced by a certain company.
Let Xk ---- 1 if the paint of the kth car examined has at least one flaw, and Xk =
0 otherwise, fork=1,2 ..... n. We assume that the random variables Xk are
independent and that the probability that the paint of a brand-new car is
flawless is equal to 0.75. Therefore, Xk has a Bernoulli distribution with
parameter p = 0.25 for all k. a) Calculate imn P [1-=1X/-1> ].b) LetY :=
X1+ X2 and Z := X1 - X2. Calculate COV[Y, Z]. n 10], ifn 40. C) Use the
central limit theorem to calculate P [-k=I Xk == Hint. We have: gb (0.18) --
0.5714.

4.12 Exercises, Problems, and Multiple Choice Questions 205 Problemno. 19
Let (X, F) be a discrete random vector whose probability mass function is
given by the following table: y\x012-11/301/3001/60101/60 a) Are
X and Y independent random variables? Justify your answer. b) Calculate E IX
]Y=-1].c)LetU:=X+Yand V:=X-Y. Findpu, v (u, v). Problem no. 20
Let (X, Y) be a random vector having a bivariate normal distribution with pa-
rameters #x =0, #r=1,ax2 =1, arz2 =5 and Px,r. 1 a) Calculate VAR [2X -
Y], if Px, r =2" b) Calculate P [2X- Y > 2], ifpx,r = O. Hint. We have: Q (1) -



1.59x10-1and Q (2) - 2.28 x 10 -2. ¢) Find the best estimator of X in terms
of Y, if Px,;r =- 1. Problemno. 21 Lete y if) <x <y <fx, r(x,y) =0
elsewhere. Calculate a) the marginal probability density functions of X and Y;
b) the covariance of X and Y; c) the best estimator of X in terms of Y; d) P IX
=Y]. Hint. We have: fya-1 e-Ydy Problem no. 22 The joint probability mass
function of the discrete random vector (X, Y) 1s given by the following table:
ywx-10101/91/91/921/91/91/6 4 1/9 1/18 1/9 a) Calculate 1) Px (x); i1)
P[X+Y <2];11) Pxlr (x ] 2); 1v) Pz (z), where Z := XY; v) COV[X, Y]. b)
Are X and Y independent random variables? Justify your answer.

206 4 Random Vectors Problem no. 23 A source transmits a signal X uniformly
distributed on the interval (0, 2zr). Be- cause of the presence of additive
Gaussian noise, the signal received, Y, is a random variable whose conditional
probability density function is given by 1 [ 1(y-x)2} forxE(O, 2zQ yE]. fvlx (Y
Ix) -- 4- exp 2 r ' a) Calculate 1) fx,v (X, y); i1) the best non-linear estimator of
Y in terms of X; i11) E [Y]; 1v) Fx,v (zr, X). b) We consider 48 signals Xk,
where k= 1,2 ..... 48, transmitted by the source. What is (approximately)the
probability that the average signal M48 := & y-28 Xk 3 9 i1) equalto is 1)
smaller than Hint. We have: Q (1) - 0.159 and Q (2) - 0.0228. Problem no. 24
Let X and Y be two independent random variables having, respectively, a
bino- mial distribution with parameters n= 2 and p ---- 1/2, and a uniform
distribution on the interval [0, 1 ]. Calculate a) E [X2y2]; b) P[X+ Y < 11;¢)
the joint distribution function of the pair (X, Y) at the point (2' 2); d) the
correlation coefficient of the pair (X, Z), where Z := X + 1. Problemno. 25 Let
1121f0<x <2, 0<y < 1, fx,v(X, y) 0 elsewhere. a) Find fx(x) and fv(Y). b)
Calculate the correlation coefficient of X and Y. ¢) Calculate Fx, v(-1, 1) +
Fx,v(l,2).d) LetU: =X+ Yand V:=X- Y; 1) find fi, v (u, v) and draw the
region where ft, v (u, v) > 0; 11) calculate E[UV]. Problemno. 26 a) Let X, Y
and Z be random variables such that VAR[X] =1, VAR[Y] =4, VAR[Z] =9,
COVIX, Y] =1/2,COV[X, Z] =0 and COV]Y, Z] =-1/2. Calcu- late VAR[X-
©Y + @Z]. b) We take 40 independent observations of the random variable X.
Let N be the num- ber of observations that are greater than 1. Use the central
limit theorem to calculate (approximately) the probability P[N < 5], if X N(O,
1). Hint. We have: Q(0.8) - 0.212, Q(1) - 0.159 and Q(1.2) - 0.115.

4.12 Exercises, Problems, and Multiple Choice Questions 207 Problem no. 27
The joint conditional probability mass function PxIY (x ] y) of the random



vector (X, Y) is given by the following table: yx 012 -11/41/41/202/3 0
1/3 So, we have: 1/4 =PSIY(O I-1), etc. Furthermore, we suppose that Pr(Y)
=1/2 ify=-1 or0. a) Are the random variables X and Y independent? Justify
your answer. Calculate b) the function px, r(x, y); ¢) the function Px (x); d)
COVI[X, Y]. Problemno. 28 Let [ke -xz-y if-c <x<c,y> 0O, X, Y(X,y) =0
elsewhere, where k> 0 is a constant. a) Find the constant k. Hint. We have: fe
-(x2 +ax) dx=e a2 /4 Q(a/ v/). b) Calculate P[X > Y]. Hint. We have:
Q(0.7071) 0.24. ¢) Calculate VAR[2X - Y]. d) Let Z := XY. Find the joint
probability density function of the random vector (Z, Y). Problemno. 29 Let 7r
7r fx,1,(x,y)=kcos(x+y) for0 <x < -, 0 <y <-. a) Calculate 1) the constant k; 1)
the joint distribution function of the random vector (X, Y); 1i1) the marginal
probability density functions of X and Y; iv) the probability P[X < Y]. b) Are
the random variables X and Y orthogonal? Justify.

208 4 Random Vectors Multiple Choice Questions Question no. 1 Let 0 ifx
<Oory <0, xy/21fO <x <2and0 <y < 1, Fxr(x,y) =x2 if0 <x<2andy> 1,y
ifx >2and0<y < 1, 1 ifx >2andy > 1 be the joint distribution function of the pair
(X, Y) of continuous random variables. A) Calculate Fx(3) + Fr(1/2). a) 3/2
b)2 ¢)Y+€ d)+y e) @+ B) Are the random variables X and Y orthogonal and
independent? a) not orthogonal and dependent b) not orthogonal, but
independent ¢) orthogonal and dependent d) orthogonal and independent €) not
orthogonal and we cannot tell whether they are independent C) Calculate P[X
>Y].a)0b)1/4c) 1/2d) 3/4e) 1 D) Calculate VAR[ X Y ].a) 0 b) 1/36 c)
7/36 d) 4/9 e) 1/2 E) Let V:= X 2 and W :=2Y. Calculate fv.w(v, w). a)
1/(84") b)+1/(44") c) 1/(44") d)44' e) 84' Question no. 2 Let X, X2,... be
independent and identically distributed random variables such that E[X] = 0
and VAR[X] = 3. A) Suppose that the Xi's have a Gaussian distribution. Let Y
;=X Xzand Z := X - Xz. Are the random variables Y and Z orthogonal and
independent? a) not orthogonal and dependent b) not orthogonal, but
independent ¢) orthogonal and dependent d) orthogonal and independent €) not
orthogonal and we cannot tell whether they are independent B) Under the same
assumptions as in A), what is the best estimator of Y in terms of Z? a) 0 b) Y ¢)
7 d) - e) we cannot calculate it C) Suppose that the Xi's have a uniform
distribution on the interval [-3, 3]. What is the approximate distribution of X 2
+ .-- + X520 ? a) U[-150, 150] b) U[0,450] c) N(0, 1) d) N(3, ) e) N(150,360)

4.12 Exercises, Problems, and Multiple Choice Questions 209 Question no. 3



Let (X, Y) be a continuous random vector with joint distribution function Fx,
y(x,y)=(1-e-X)(1-e -y) ifx >0, y >0. Calculate P[X>1].a)e-2b)e-1c¢) (I -
e-)2d)1-e-1¢e)1-e-2Questionno. 4 Adiscrete random vector (X, Y)
has the joint probability mass function given by the following table: y\»x 0 1 2 0
1/8 P1 1/4 1 1/8 1/8 p2 What values can the constants Pl and P2 take if X and
Y are independent? a) Pl =1/4, P2 =1/8 b) P1=3/8, P2=0c¢c) PI=1/8, P2 -:
1/4 d) P1=13/16, P2 ---- 3/16 e) none of these answers Question no. 5 Let X "-
N(0, 1). Calculate the correlation coefficient of X and Y := X 4. Hint. We
have: <Px (w) = ¢ -€2/2 . a)-Ib) 0 ¢) 1/2 d) 1/x/ €) 1 Question no. 6 A random
vector (X, Y) has a bivariate normal distribution with parameters /x = 0,/r =0,
crx2 =1, cr2 =4 and p =0. Calculate P[XY <0].a) 1/16 b) 1/8 ¢) 1/4 d) 1/2
e) 3/4 Question no. 7 Let X and Y be two independent random variables, both
having a Poisson distri- bution with parameter ¢ = 1.5. Calculate P[ X + Y >
1.5]. a) 0.05b) 0.20 ¢) 0.58 d) 0.80 e) 0.95 Question no. 8 If 10% of the
diodes manufactured by a certain machine are defective, what is the
probability that in a lot of 100 diodes taken at random (and without
replacement) among those produced by this machine, there are less than 15
defectives? a) Q(1.67) b) Q(1.5) ¢) Q(0.05)d) 1 -Q(1.67)e) 1 - Q(1.5)
Question no. 9 The joint probability mass function of a discrete random vector
(X, Y)i1s givenby () e-1 forx :0, 1,2;y=0, 1,2, px, r(X, y) = 4y! .... Calculate
P[X=2Y].a)0b)@e-1C)@e-1d)e-l¢)l

210 4 Random Vectors Question no. 10 Let (X, Y) be a continuous random
vector for which the conditional probability density function of X, given that Y
=Yy, 1s given by fxiy(x ] y) = 1-e-X/Y forx > 0,0 <y < 1. Y Calculate E[X], if
E[Y]=1/2.a) 1/4b) /2 c) 2 d) ye) o Questionno. 11 A point (X, Y, Z) is
taken at random inside the unit sphere, so that 3 J'x.r.Z(x, y, z) =-- ifx 2+y2+z 2
< 1. 4Jr - Calculate the probability that the distance between the chosen point
and the origin 1s smaller than 1/2. a) 1/64 b) 1/8 ¢) 1/4 d) Jr/8 e) 1/2 Question
no. 12 Let fx.r(x,y)=l if0<x< 1,0<y<1 be the joint probability density function
of the continuous random vector (X, Y). We define U= X 2 and V =y2. Find
fuv(u, v) for0 <u<1,0<v<ILa)1b)x2y2c) @uv)-1d) @up) 1/2¢)]
(uv) 1/2 Question no. 13 Let (X, Y) be a random vector having a bivariate
normal distribution with pa- rameters #x =0, #r =0, Cx=1, cr=1and p = 0.
Calculate the best estimator of X 2 interms of Y. a) 0 b) X2 ¢c) Yd) Y2 e)
none of these answers Question no. 14 Let X ..... X0o be a set of independent
random variables such that E[Xk] =0 and VAR[Xk] =1fork=1,2 ..... 100.



Use the central limit theorem to calculate the probability P[I 00 Xk I> 10].
a) Q1) b)2Q(Mc) 1-Q(1)d) I-2Q(1)e) 2(1 - Q(1)) Question no. 15
Suppose that X B(n= 100, p). What is the value of p (smaller than or equal to
1/2), if P[X = 100p] -- 0.13307 a) 1/10 b) 1/5 ¢) 3/10 d) 2/5 e) 1/2 Question
no. 16 Let X, X2 and X3 be N(0, 1) random variables such that Px,x2 = O,
Px,x3 =0 and Px2, x3 =-- 1.

4.12 Exercises, Problems, and Multiple Choice Questions 211 a) 11 =0, 12 =
0d)li=1,12=1 Questionno. 17 A) Let Y := XI + X2. Calculate PY, X3. a)-
1/2 b)-1/,,/ ¢) 0 d) 1/,,/ e) 1/2 B) Calculate ml := E[X3 I X2] and m2 := E[X ]
X2l.aml =0, m2=1b)m =-X2, m2=1c)ml =-X2, m2 = X d) ml = X2,m2
=1le)ml=X2,m2 =X C) Let XII ..... Xn be n independent random variables
distributed like XI. We define 1 ifX1 >0, / = 0 otherwise, fork=1 ..... n.
According to the strong law of large numbers, what is, with prob- ability 1, the
value of the limits 11 :=1im Tand 12:=1lim'b) li=1/2,12=1/4¢c) li=1/2,
12=1/2 ¢) 1l =cx), 12 =00 Calculate P[X 2 +y2 >2 In4] if X and Y are two
independent random variables having a Gaussian N(0, 1) distribution. a) 1/8 b)
1/4 ¢) 1/2 d) 3/4 e) 7/8 Question no. 18 Find the characteristic function of Z :=
X +2Y, where X and Y are indepen- dent random variables having an
exponential distribution with parameter a and with parameter , respectively.
Hint. If X Exp()), then cx(w) =)/ () - a) (7:7-) +2(_-) b) ' 2/3 € (2e--:v) d)
(_-)(gw) 2e) 2(_--) (j) Questionno. 19 Let XI, X2, ... be independent
random variables that are all distributed as X U(-€p, €), and let Sn := =i X.
Use the central limit theorem to calculate P[S2500 < 125].a) Q(1) b) 2Q(1)
c)1-2Q(1)d)2(1-Q(1))e)(1-Q(1)) 2 Questionno. 20 A number X is
taken at random in the interval (0, 1], and then a number Y is taken at random
in the interval (0, X]. We can show that 1 fx,r(x,y)=- 1f0<y<x <I. X Calculate
P[Y<1/2].a)-T--In2b)12c)In2d) 1 gn 2 e) none of these answers

212 4 Random Vectors Question no. 21 Let FX, Y(X, Y) = 1 Calculate Fx(1/2)
+ Fx(3/2). a) 1/2b) 3/2 ¢) @Y d) | +€y Question no. 22 0 ifx <Oory <0,
xyifO<x < 1,0 <y <1, xif0<x<L,y> 1, yifx> 1,0<y< 1, ifx> L,y> 1. e) -y
Calculate ELY], if Y ] X N(X, 1) and X Exp(2).a) 1/2b) 2 ¢) X/2d) Xe) 2X
Question no. 23 Suppose that X has a uniform distribution on the interval (-1,
1), We define Y = X 2. Are the random variables X and Y orthogonal and
independent? a) not orthogonal and not independent b) not orthogonal, but
independent ¢) orthogonal and correlated d) orthogonal and independent ¢)



orthogonal, uncorrelated but not independent Question no. 24 We consider a
random vector (X, Y) having a bivariate normal distribution with parameters
#x=1,#y=2,x2=1,y2=4and p = 1/2. Calculate E[XY].a)Ib)2c)3d) 4
e) 5 Question no. 25 Use the central limit theorem to calculate P[(XI + - - - +
Xn) 2 > c], where the random variables XI ..... Xn are independent and all
have an exponential distribu- tion with parameter 2, and ¢ is a positive
constant, a) n-ze7 e) 1 - 2Q(------- ) Question no. 26 Let px, y(j,k) = k! for j,k
=0, 1,2 ..... Calculate P[ X =Y]. a)0 b) @¢ -Ic) @c -1/2d)e-Ie) e -1/2
Question no. 27 Calculate E[ X Y] if we suppose that Y has a uniform
distribution on the interval (0, 1) and that

a) 2/9b) 1/3 Question no. 28 Let 4.12 Exercises, Problems, and Multiple
Choice Questions 2x fxig(xly)=- 1f0<x <y. ¢) 2/3 d) cx e) does not exist 213 1
X, y(x,y)=- 1f0<x <2,0<y <2. 4 Find fv,w(v, w), where V ;= X - 2 and W :=-Y.
a) @ if-2<v <0,-2 <w <0 b) @ if0<v<2,-2<w<0 c) @vw if-Z<v<0,-Z<w<0
d)-4 I- if-Z<v<0,0<w<2 e) none of these answers Question no. 29 Suppose that
px(x)= 1/2 ifx=lor2. We consider n independent random variables, XI ..... Xn,
such that Pxi (x) =- Px (x) for1=1, 2 ..... n. Calculate the generating function
Gsn (z) of the random variable Sn := XI+"" + Xn. a) €(z +z2) b)[@(z +
72)] Unc)[€@(z+ 22)] nd) n(z+z2) €) (z+ z2) Question no. 30 Suppose that
XN(0, 1), YN(1,4) and Px,Y =-1/2. Calculate the best estimator of X 2 in
terms of Y. a)] b) L- ¢) g- [-- - d) (Y-)216 e) g- (Y-I)2 16 Question no. 31
Calculate P[X 2 +y2 < 1], 1f 21fO <x <y_< 1, fx,y(x, y) = 0 elsewhere. a):r/16
b):r/8 ¢):r/4 d) 1/2 Question no. 32 Let Calculate Fx, €25, 5). a) 0 b) 0.03125
c) 0.05 d) 0.95 Question no. 33 e) 3/4 forx=0, 1 ..... 20;y=1,2 ..... ) 0.96875
The joint probability mass function pxA,(x, y) of a discrete random vector is
given by

214 4 Random Vectors 1/5 if (x, y) = (0, 0), (2,1), px,v(x,y)= 1/10if(x,y)=(O,-
1),(0,1),(1,0),(1,1),(2,-1),(2,0), 0 otherwise. Calculate EIX 1Y =0]. a) 0 b)
3/10 ¢) 2/5 d) 3/4 e) 4/5 Question no. 34 Suppose that X U(0, 1) and Y U(O0, 2)
are independent random variables. Find the function .f'v.v(v, y), where V:= X
+Y. a) @ ify<v<y+l,0<y<2 b) if0<v<3,0<y<2 c) @ ify<v<3,0<y<2 d) @
if0<v< 1,0<y<2 e) € ifO<v<y+l,0<y<2 Question no. 35 Let X U(-2, 2). We
define Y =X 2 and Z = X 3. Are the random variables Y and Z correlated'?
independent? orthogonal? a) orthogonal and independent b) orthogonal and
uncorrelated, but not independent c) not orthogonal, but independent d) not



orthogonal, uncorrelated, but not independent e) orthogonal, uncorrelated, but
we cannot conclude regarding independence Question no. 36 The random
variables X, X2 and X3 have a Gaussian N(0, 2) distribution. We suppose that
COV[X, X2] =0 and COVIX, X3] =-2. Calculate the variance VARIX + X2 +
X3].a)2b)4c)6d) 8e) 10 Question no. 37 We define SO = o Xk, where the
Xk's are independent random variables, all having a Poisson distribution with
parameter ot = 1. 1) Calculate PISo > 2]. 11) Use the central limit theorem to
calculate P[So > 2]. a) 1) 0.9972; 11) q(0.8) b) 1) 0.9972; i1) q(2.53) ¢) 1)
0.9995; 11) q(0.7) d) 1) 0.9995; 11) qb(0.8) €) 1) 0.9995; i1) gb(2.53) Question
no. 38 Let 3 fx, v(x, y) =-1f0 <y <1, X2 <y. 4 A) Find fx(x) and fv(Y). a)
fx(x) =@(1 -x2) if xI< 1;iv(Y) = y/2 if0 <y <1 b) fx(x)=-](1 -x 2) if Ix I<
Lfv(Y)=1if0<y<1

4.12 Exercises, Problems, and Multiple Choice Questions 215 c) fx(x) = 2 if]
xI<Lf(y)=yl2if0<y<1d)fx(x)=2f x I<1;f(y)=-1fx2<y<l1e)
fx(x) =21 x 1< 1; f(y) =1 if0 <y <1 B) Calculate PIY > X]. a) 1/8 b) 1/4
¢) 1/2 d) 3/4 ¢) 7/8 C) Calculate Fx,,(€, 3)"a) 0b) 1/27 ¢) 1/9 d) 1/3 €) 1 D)
Are the random variables X and Y independent and orthogonal? a) correlated,
therefore dependent, and not orthogonal b) dependent, but orthogonal ¢)
independent, but not orthogonal d) independent and orthogonal e) uncorrelated,
but dependent, and not orthogonal E) Find the best linear estimator of Y in
terms of X. a) 0 b) 1/2 ¢) 3/5 d) X e) [+x2 2 F) We take ten independent
observations of the pair (X, Y). 1) What is the probability p that they are all
located in the first quadrant? i1) What is the approximate value of p, according
to the central limit theorem? I e-5 ¢) i) (€)10;ii) v' e-5 a) i) (€)0;ii) 1 e-2. b)
i) (@)10;ii) Ie-5d) i) (€)0.ii)1e-2.¢)1) (@)10. ii) Question no. 39 Let
Ix+xy if0 <x < 1,-1 <y <1, fx, r(x,y) / 0 elsewhere. A) Calculate fx (€p). a)
©b)lc)-d)2e) (1 +y) B) Calculate PIXY <0].a) @ b) @ c) @ 6) 3 2.¢)
€ C) Are the random variables X and Y orthogonal? correlated? independent?
a) orthogonal and independent b) orthogonal and correlated c) not orthogonal,
but independent d) not orthogonal, but correlated e) not orthogonal and
uncorrelated, but not independent D) Let Z := 1IX. What is the best linear
estimator of X interms of Z? a) 1/Zb) Z ¢)-6Z+6d) 2/3¢) 2 E) Let Y, Y2 ....
be independent random variables having the same distribution function as Y.
We define Snn

216 4 Random Vectors 1) By the weak law of large numbers, toward what



value does Sn tend as n -- [ d) x e) none of these answers a)-x b) 0 ¢).x 11)
According to the central limit theorem, what 1s (approximately) the character-
istic function of Sn? Hint. If X N(#, r2), then (px(w) = exp{j#co - @1r2co2}.
Ico2} b) exp{@njw-nw 2} ¢) exp{.jco- co 2} a) exp{ jw d) exp{ jw - co 2
} e) exp{- €co 2 } Questionno. 411 A point X I is taken in the interval [0, 1]
according to a uniform distribution. Let xI be the value taken by XI. Next, a
point X2 is taken uniformly in the interval [xl, 11. We consider the random
vector (XI, X2). A) What is the joint probability density function of (X 1, X2)?
a) 1 ifO <xI <1,0<x2<1Db)@if0 <XI-x2 <2¢)if0<xl<x2<1d)
1f0<xl <x2 <1 e) [if{) <XI <x <1 (21n2- I)(1+XI) B) Calculate E[X2 [ XI =3
b) c) d) 1+xfe)a) 22 C) Calculate E[X]. 5b) lIc)2d) 13e)7a) 13
Question no. 41 A) Let X be a random variable having a uniform distribution
on the interval [- 1, 1 ]. We define Y : X 3. Calculate VAR[X - Y]. a) 0.0762
b) 0.1905 ¢) 0.2762 d) 0.4762 ¢) 0.8762 B) Let XI ..... X36 be independent
random variables such that 1 fxk(x)=-ill <x <e, X fork=1 ..... 36. Use the
central limit theorem to calculate the probability 36 P[I-1k:]1 Xk > elg]. a)
Q(0.38) b) Q(0.48) ¢) Q(0.58) d) Q(0.68) e) Q(0.78) Question no. 42 Let
(@) 0 1fx<-lory<0, Fx,,(x,y) = (1 -e -y) if-1 < x<1andy>0, 1-e Y ifx>
landy>0 be the joint distribution function of the continuous random vector (X,
Y).

4.12 Exercises, Problems, and Multiple Choice Questions 217 A) Calculate Fx
(1/2).a) 1/8 b) 1/4 ¢) 1/2 d) 3/4 e) 7/8 B) Calculate P[X +Y > 0]. a) 0.8161
b) 0.8261 ¢) 0.8361 d) 0.8461 ¢) 0.8561 C) Are the random variables X and Y
independent (or simply uncorrelated)? orthog- onal? a) independent and
orthogonal b) uncorrelated, but not independent, and orthogonal c) correlated,
therefore not independent, but orthogonal d) independent, but not orthogonal ¢)
uncorrelated, but not independent, and not orthogonal Question no. 43 Let X1
..... X36 be independent random variables having an exponential distri- bution
with parameter 2. A) We define Y =2X1 + X2. Calculate the covariance of Y
and X1.a)0b) 1/4 c) 1/2 d) 3/4 e) 1 B) According to the central limit theorem,
what is the approximate distribution of s := XI +... + x36? Hint. We have: I'(x)
=fyx-1e-ydy. a) N(O, 1) b) N(18, 9) ¢) N(18, 18) d) N(18, 36) e) N(18, 45)
Question no. 44 Let (X, Y) be a random vector with joint probability density
function Jx+yifO<x < 1, 0<y < 1, X, I(x,y) 1 0 elsewhere. A) Calculate Fx#(p,
@)+ Fx, 1(@,)-a) 1/16 b) 1/8 ¢) 1/4 d) 3/8 ¢) 1/2 B) Calculate P[-} < €]. a)
5/24 b) 1/4 ¢) 7/24 d) 1/3 e) 3/8 C) Calculate E[X [ Y=@]. a) 11/18 b) 2/3



c) 13/18 d) 7/9 e) 5/6 D) We define the random variables U= X +Y and V=
XY. We can show that U2 if0 <u<1,/2-2vif0<v<I1,f(u)=2u--U2if1 <
u<2,and fv (v) =| 0 elsewhere. 0 elsewhere Calculate COV[U, V]. a)-1/18
b)0c) 1/18d) 1/12e) 1/9

218 4 Random Vectors E) Let V, V2 ..... V36 be independent random variables
having the same probability density function as the random variable V = XY. 1)
Let W :=V -2V2 + 3V3. Find the characteristic function 4,w(w) of W in terms
of that of V. a) 24'v (w) b) 4'v (w) +4'v (-2w) +4'v (3w) ¢) q} v (r..0) nt- q}2
(r.o)nt-q}3 V(r..0) d) qv()q2((0)q() e) gSv(w)qSv(-2w)qSv(3w) 36 i1) Use
the central limit theorem to calculate P[-= Vk> 11]. a) 1 - Q(0.707) b)
Q(0.707)¢) 1 - Q(I/2) d) Q(I/2) e) 1/2 Question no. 45 We consider the
random variables V'.=aX+(I-a)Y and W:=(I-a)X+aY, where X N(0, 1 ) and Y
N(- 1, 1) arc independent random variables, and where a 1s a constant taken
from the interval [0, 1 ]. A) For what value(s) of a are the random variables V
and W orthogonal? a) Oonly b) 1/2 only ¢) lonly d)()and lonly ¢) 0,1/2and
lonly B) For what value(s) of a are the random variables V and W completely
correlated (that is, Pw =1)? a) 0 only b) 1/2 only c) 1 only d) 0 and 1 only e)
0, 1/2 and 1 only C) What is the best linear estimator of V in terms W, ifa =
1/4?3b) 33333()a)-aatsWc).gWd) W+e)-+5 W+ D) Find the
characteristic function of W, ifa =1/2. 1 2 2. Hint. If X N(/z, or2), then qx(w)
=exp(j/zw - cr w ). €) exp(- @w 2) E) Suppose that X ..... X30and Y ..... Y30
are independent random variables distributed like X and like Y, respectively.
We define Di=Xi-Yifori=1.... 30. Let M be the number of Di's that will
take on a positive value. Use a Gaussian distribution to calculate
(approximately) P[M = 28]. Hint. We have: qb(0.7071) -- 0.7602 and
qb(0.8071) -- 0.7902. a) 0.00045 b) 0.0045 c¢) 0.0145 d) 0.0245 ¢) 0.0445
Question no. 46 The joint probability density function of the continuous random
vector (X, Y) is given by |@x2(2+3y 2) if-1 <x<1,0<y <1, fxr(x,y) ! 0
elsewhere.

We can show that E[X] =0, 4.12 Exercises, Problems, and Multiple Choice
Questions 219 19 E[X2 | =3 7 and EIY 2] =--. 5' E['] = 1-5 45 A) Are the
random variables X and Y independent, or simply uncorrelated, and or-
thogonal? a) independent and orthogonal b) uncorrelated, but not independent,
and orthogonal c¢) independent, but not orthogonal d) uncorrelated, but not
independent, and not orthogonal e) not independent and not orthogonal B)



Calculate P[X>0,Y<@]. 1 a)6b) @c) d) @ ¢) C) Let Z := XY. What is the
best estimator of Z in terms of X? a) 0 b) X ¢) @X d)2X e) XY D) Let W :=
2X+3Y, and let W1 ..... W25 be independent random variables having the same
distribution function as W. According to the central limit theorem, what is the
approximate distribution of the sum W1 + ... + W25?7 a) N(41.75, 78.4375) b)
N(41.75, 79.4375) c) N(42.75, 77.4375) d) N(43.75, 79.4375) e) N(43.75,
78.4375) Question no. 47 The joint probability density function of the
continuous random vector (X, Y) is given by k i1f0<x<y< 1, fx,y(x, y) =0
elsewhere. A) Find the constant k. a) 1/16 b) 1/8 ¢) 1/4d) 1/2 e) 1 B)
Calculate fx (1/4). a) k/2 b) k ¢) 2k d) 4k e) 8k C) Find the best (non-linear)
estimator of Y in terms of X. a) 1-x3/2 b) -x3/2 ¢) d) - e) X 3(1--XU2) 3 3(1-
XU2) Question no. 48 Suppose that X ..... X30 are independent random
variables having a U(- 1, 1) distribution. We define S="2€ 1 X. A)
Calculate the mean of S. a) 5 b) 10 ¢) 15 d) 20 e) 30 B) Use the central limit
theorem to calculate (approximately) P [S > 12.5]. Hint. We have: E[S 2] =

924/9. a) Q(1.13) b) Q(1.23) ¢) Q(1.33) d) Q(1.43) ¢) Q(1.53)

5 Stochastic Processes 5.1 Introduction Definition 5.1.1. Let E be a random
experiment and let S be a sample space associ- ated with E. A stochastic
process (or random process) is a set of random variables {X(t, s), t E T}.
Thus, with each result s S, we associate a function X (t, s). The domain oft is a
set T of real numbers. Remarks. 1) As in the case of random variables, we
often suppress the argument s, and we denote the stochastic process (sp) by
{X(t), t T}. In fact, many authors simply denote the stochastic process by X(t),
without specifying the set T. This notation is generally sufficiently clear,
because in most cases that are of interest to us the set T is the interval [0, x).
However, there can be some confusion between the stochastic process itself
and the value taken by the process at a (fixed) time t. Consequently, we will
use the more complete notation. i1) The graph of X(t, s) as a function of't, for a
fixed s, is called a realization or a trajectory (or a sample path) of the
stochastic process. 1i1) If T is a denumerably infinite set, then we say that
{X(t), t T} is a discrete- time stochastic process. Generally, we take T = {0, 1
.... }. We then have a sequence of random variables that we denote by X0, X1
..... If T is an interval, or a set of intervals, {X(t), t T} is called a continuous-
time stochastic process. Actually, we sometimes encounter the case when the
set T 1s finite. However, this case is much less important in practice. 1v)
Moreover, we say that {X(t), t T} is a discrete-state (respectively continuous-



state) stochastic process if the set of possible values of the X(t)'s, called the
state space, 1s finite or denumerably infinite (resp. non-denumerably infinite).
Now, if t is fixed, then X(t, s) =-- X(t) is a random variable. We define the
following functions. 1) First-order distribution function: F(x; t) = P[X(t) <x] =
P[{s S: X(t, s) <x/]. (5.1)

222 5 Stochastic Processes Remark. Note that the function F(x; t) 1s in fact the
distribution function of the random variable X(t), so that F(x; t) = Fx(t)(x).
Therefore, it is not a new concept. 2) First-order density function (for
continuous-state sp's): f(x; t) = x F(x; t) '€@x where F(x; t) is differentiable.
(5.2) 3) Second-order distribution and density functions: F(x, x2; t, t2) =
P[X(t) <x, X(t2) <x21 and 02 .f(x. x2; tl, t2) -- --F(X1, x2: tl, t2) 'Ox Ox2
"V'(x, x2) where the second mixed partial derivative exists. 4) nth-order
distribution function: (5.3) (5.4) F(xl ...... n;tl. t,,) = P[X(tl) <xlI ..... X(tn)
<xnl. (5.5) Example 5.1.1 A Bernoulli process is a sequence X, X2 .... of
random variables associated with Bernoulli trials. It is therefore a discrete-
time and discrete-state stochastic process, since T={ 1,2 .... } and Sxk = {0, 1
+ 'v'k. Then, by indepen- dence, we may write, for instance, that p(x, y; tl = 1,
t2=2)=P[XI:x, X2 :y]=pX(l - p)l-xpY(l - p)l-y=pX+Y( _p)2-x-y,
where x and y 6 {0, 1 }. Furthermore, if we say that an arrival corresponds to
a success, then the number N of trials between two arrivals (including the trial
on which a success occurred) has a geometric distribution. 5.2 Characteristics
of Stochastic Processes In order to establish the properties of a stochastic
process, we must theoretically know its nth-order distribution function.
However, we can also (partially) character- ize a stochastic process by its
moments, with the help of the following functions. 1 ) Mean of a stochastic
process: mx(t) = E[ X(t)[ = xf(x; t)dx (continuous case). (5.6)

5.2 Characteristics of Stochastic Processes 223 2) Autocorrelation function:
it Rx(tl, t2) = E[X(t)X(t2)] = XIX21(xl, x2; tl, t2) dxIdX2. (5.7) Remark. The
value of Rx (t, t) = E[X2(t)] 1s sometimes called the average power of the
stochastic process {X(t), t T}. 3) Autocovariance function: Cx(tl, t2) = Rx(tl,
t2) - m x(t))mx(t2). (5.8) In particular, the variance of X (t) is given by
VAR[X(t)] = Cx (t, t). (5.9) 4) Correlation coefficient: PX(tl, t2) = Cx (tl, t2)
[Cx (tl, t] )Cx (12, t2)] 1/2" (5.10) We have: -1 < px(tl, t2) < 1 and px(t, t) =
1. Remark. The functions Rx (tl, t2), Cx (q, t2) and Px (tl, t2) are non-negative
definite. Indeed, we have, for example: aiakRx(ti, tk) = E aiX(t1 > 0 Vai G .



i=1 k=1 1=1 Definition 5.2.1. If mx(t) is a constant and Rx(tl, t2) = Rx(12 - q)
Vi, t2 T, we say that the stochastic process {X(t), t T} is wide-sense
stationary (WSS). Remarks. 1) We could replace the function Rx by the function
Cx in the definition, since if mx (t) = c, then the functions Rx and Cx only differ
by the constant ¢ 2. i1) It would be more rigorous to write in the definition that
we must have Rx (tl, 2) = R] (12 - t), where R] is a function of a single
variable. However, the formulation used above is classic. 1i1) The concept of
stationarity will be seen in detail in Section 5.6 (p. 235). Definition 5.2.2. If
the increments X(t4) - X(t3) and X(t2) - X(q) of the sp {X(t), t T} are
independent (respectively uncorrelated) Vt <t2 < t3 <t4, we say that {X (t), t
T} is a stochastic process with independent increments (resp. uncorrelated
increments).

224 5 Stochastic Processes Definition 5.2.3. If the distribution of X (t2 +1) -
X (tl g- r ) and that of X (t2) - X (tl) are identical Yr, we say that {X(t), t E T}
is a stochastic process with stationary increments. Remark. If two random
variables are identically distributed, this means that they have the same
distribution function. However, this does not mean that they are equal. Suppose
now that we consider two stochastic processes: {X(t),t E T} and {Y(t), t6
T2}. We then define the following functions. 1) Cross-correlation function:
Rx.y(tl, t2) = EIX(t])Y(t2)] = Ry, x(t2, t). (5.11) 2) Cross-covariance function:
Cx.y(tl, t2) = Rx,y(tl, t2) - mx(tl)mr(t2). (5.12) Definition 5.2.4. The stochastic
processes {X(t),t TI} and { Y (t), t T2} are said to be a) orthogonal if Rx. r
(t1, tz) =0 Ytl, t2; b) uncorrelated if Cx, r (t 1, t2) = 0 Ytl, tz. Definition 5.2.5.
The stochastic processes {X(t), t TI} and {Y(t), t E T2} are called
independent if the random variables X (tl) ..... X (tn) and Y (r]) ..... Y (rm)
are (globally) independent Yn, me { 1,2 .... }. Example 5.2.1 Let {X(t), t>0}
be the random process defined by X (t) = y2t fort >0, where Y 1s a random
variable having a uniform distribution on the interval (0, 1). a) Calculate 1) the
first-order density function of the process; i1) the mean E[X(t)] of the process
for t> 0; 111) the autocovariance function Cx(t, t s) of the process for s, t> 0. b)
Is the process WSS? Solution. a) 1) We can write (see Section 3.6, p. 94) that
f(x; t) =- fx(t)(x) = fy(y) dx, where y=11 =1 - 2v/ if x6 (0, t).

5.3 Markov Chains 225 11) We have: fo [ t fort O. E[X(t)] =y2t. 1 dy=- We
can also use part 1) and write that t ex(tl = xdx = dx -- = fort >0. 1i1) Since
X)X(t+s)=y2ty2 (t+s)=y4 t(t +s), we first calculate E[X(t)X(t + s)] =



E[y4t(t + s)] -- t(t)s.+ 5 for s, t > 0. It follows that Cx(t, t s) = E[X(t)X(t s)] -
E[X(®)]E[X(ts)] 11) t(t+s) t(t +s) 4t(t + s) .... for s, t>0. 5 9 45 b) Since the
mean of X(t) depends on t (see part ii) of a)), the stochastic process {X(t), t >
0} 1s not WSS. Note that the condition Cx(t, t + s) = Cx(s) is not fulfilled
either. Therefore, even if the mean E [X (t)] were constant, the process would
not be WSS. 5.3 Markov Chains The most important discrete-time stochastic
process 1s known as a Markov chain. Definition 5.3.1. A stochastic process
{Xn,n=0, 1 .... } whose state space is either finite or denumerably infinite is
called a Markov chain if P[Xn+I=j I Xn=1, Xn-I=1in-I ..... XO =10] (=1)
P[Xn+tl=j1Xn=1] (2) =Pij (5.13) for all states 10 ..... in-1, 1, j and for all n
> 0. Remarks. 1) The equation (1) is called Markov's property. It means that
the future, given the past and the present, is independent of the past and thus
depends only on the present. i1) If the equation (2) is satisfied, we actually
have a stationary (or time-homogeneous) Markov chain, because P[Xn+t=j |
Xn = 1] does not depend on n. In the general

226 5 Stochastic Processes case, we can denote this probability by Pij (n). We
can also write Pij as follows: pi,j. In fact, it is sometimes necessary to
separate the states 1 and j by a comma to avoid any confusion (between the
states 1 and 11, for instance). iii) We generally use the set N @ := {0, 1 .... }
as the state space. Now, we deduce from the definition of the Pij's that Pij >0
'@1,j (5.14) and E PiJ =1j=0 Vi. (5.15) Definition 5.3.2. The matrix P defined
by r P() Pol @ € € "] (5.6) is called the one-step transition probability
matrix (or simply the transition ma- trix) of the Markov chain. Remark. The
matrix P is called a stochastic matrix. If, in addition, we have: EPiJ=11=0V
J, (5.17) the matrix P is said to be doubly stochastic. Definition 5.3.3. The set
{Pi,1=0, 1 .... }, where P1i is defined by Pi = P[Xo =1], (5.18) is called the
initial distribution of the Markov chain. Finally, let Pij := P[Xmtn=) [ Xm =
1], where m, n, 1, ] > 0. (5.19) That is, Pij denotes the probability of moving
from state 1 to state j in n steps. Then, if p(n) denotes the matrix of the Pij s, we
can show that p(n) = pn. (5.20) It follows that p(nt+m) = pnpm. (5.21)

5.3 Markov Chains 227 The various equations obtained from Equation (5.21)
are known as the Chapman- Kolmogorov 1 equations. Particular cases 1) A
Markov chain whose state space is the set Z of all integers is called a random
walk if Pi,i+l=P=1 - Pi,i-1 fori=0, €1, @2 .... (5.22) for a certainp 6 (0,
1). So, we have (withq:=1-p): p=q0p qO0p " If the state space is {0, 1 .....



N} and Poo = PNN = 1, the states 0 and N are said to be absorbing. If PO1 =1,
the state 0 is called reflecting. 2) Let { Yn,n=0, 1 .... } be a set of i.1.d,
random variables whose possible values are integers. Let ak := P[Yn =k]
Then, if we define Xn=-Yk forn=0,1 ..... k=0 we find that {Xn,n=0,1 ... } is
a Markov chain and that Pij = aj-1. We then say that the chain is homogeneous
with respect to the state variable. Example 5.3.1 Suppose that a particle moves
on the set of all integers and that, when it is in state 1, the probability that it
jumps from that state to state j depends also on the state it visited before 1.
More precisely, suppose that 1 Andrei Nikolaevich Kolmogorov, 1903-1987,
was born and died in Russia. He was a great mathematician who, before
getting his Ph.D., had already published 18 scientific papers, many of which
were written during his undergraduate studies. His work on Markov pro-
cesses in continuous time and with continuous state space is the basis of the
theory of diffusion processes. His book on theoretical probability, published in
1933, marks the be- ginning of modern probability theory. He also contributed
in an important way to many other domains of mathematics, notably to the
theory of dynamical systems.

228 5 Stochastic Processes P[Xn+:j I Xn=1, Xn- : k, Xn-2 : in-2 ..... Xo :10]
ce[Xntl =JIxn:1, Xn- 1 =k] for all states io ..... in-2,1,j, k6 Zand forn=1,
2,.... If the state space of the stochastic process {Xn,n=0, 1 .... }, where Xn
denotes the position of the particle after n transitions, is the set Z of all
integers, then the process is not a Markov chain. However, it is possible to
satisfy Markov's property by defining a state of the process as the vector (k, 1)
consisting of the last two states visited by the particle (after at least one
transition). For example, a generalization of the random walk is obtained by
writing that the probability of going from (il, jl ) to (12, j2) is given by P1 1fj2
=jl+ 1,2 =j andil =jl - 1, q ifj2:j-1,i2=jandi :j- 1, P(il,j1),(12,j2) : P2 ifj2 :
+ 1,12 =jand 1l =jl +1, q2 1fj2=J- 1,i2=jandi = +1, 0 otherwise, where p + q
+p2 + g2 = 1. Similarly, i1f we must keep track of the last three states visited by
the particle, then the states of the Markov chain will be triplets, etc. Thus, even
if Markov's property is not satisfied with a given state space, it may be
satisfied with another state space. 5.4 The Poisson Process One of the most
important stochastic processes in applied sciences is the Poisson process. This
process counts the number of events that occur in an interval. It is therefore a
particular counting process, which we define first. Definition 5.4.1. A
stochastic process {N(t), t> 0} is called a counting process if N (t) denotes



the total number of events that occurred up to time t. Properties. 1) N(t) > 0 Yt
> 0. 11) N(t) is a random variable whose possible values are 0, 1 ..... 111) N(t)
is non-decreasing. iv) Ift <t2, then N(t2) - N (t) is the number of events that
occurred in the interval (t, t2], Definition 5.4.2. A counting process {N(t), t >
0} 1s called a Poisson process with rate (> O) if1) N(0) = 0; 11) {N(t), t> 0}
has independent increments; iii) N(t + z) - N(z) PoiOt) €, t > O.

5.4 The Poisson Process 229 Remarks. 1) The condition iii) implies that a
Poisson process has stationary incre- ments. Moreover, we can write that N(t)
=N(t O) - N(O) = N(t) Poi(.t) Yt> O. 11) We can in fact replace the condition
111) by the following condition: the sp {N(t), t> 0} has stationary increments
and where 0(6) is such that P[N(6) =11 =.6 + 0(6), P[N(6) =0]=1- .6 +
0(6), (5.23) 0(6) lim -- = 0. (5.24) $0 6 This means that, in a short interval, the
probability of two or more events occurring is negligible. Now, we have:
E[N(t)] = .t (because N(t) Poi(.t)), 1 (5.25) E[N2(t)] = VAR[N(t)] + (E[N(t)])
2 =.t+.2t2. Hence, if tl <t2, we can write (making use of the fact that the
increments of a Poisson process are independent) that RN(tl, t2) :=
E[N(t)HN(t2)] = E[N(t1)(N(t2) - N(tl))] + E[N2(t])] in. E[N(t))]JE[N(t2) - N(tl)]
+ E[N2(q)] =)t (12 -- t) + Otl +)2t12) =)2t1t2 + )tl. Since RN(tl, t2) = RN(t2,
tl), it follows that [)tl g- )2tl £2 RN(tl, t2) = )t2 g- )2tlt2 if tl _ t2, (5.26) if tl >
t2. Finally, we deduce from Equation (5.26) that CN(tl, t2) ---- RN(tl, t2) --
OtHOt2) =) min{tl, t2}. (5.27) Properties. 1) Let T1 be the arrival time of the
first event, and Tn be the interarrival time between the (n - 1)st and the nth
event, forn=2,3 ..... We can show that the Tk's are independent random
variables for k> 1 and that Tk Exp(.) Yk. Indeed, we have: P[T1 > t] =
P[N(t) =0] =e -zt.

230 5 Stochastic Processes x(t) Figure 5.1. Example of trajectory of a
telegraph signal process. It follows that the time required for n events to occur,
from any time instant, has a gamma distribution with parameters ot =n and )
(see Section 4.9, p. 187). If we denote the arrival times of the events by S, $2
..... we have: S,, = Y'= Tk for n=1,2 ..... i1) Given that a single event occurred
in the interval (0, t], the time T, at which it happened has a uniform distribution
on the interval (0, t], Remark. The Poisson process is a special case of what is
known as birth and death processes, which themselves are particular
continuous-time Markov chains. It is also a particular renewal process. Now,
from a Poisson process, we can define a stochastic process called the tele-



graph signal process, as follows: T1fN(t) is even, (5.28) X(t)= -1 i1fN(t) isodd
(see Fig. 5. I), We have: ()t)2k P[X(t) = I I = PIN(t) = 2k] = e -t -- e-tcosh()t),
(5,29) =0 =0 (2k) ! where "cosh" denotes the hyperbolic cosine. Then, we find
that P[X(t) =-1] =1 - e-Ztcosh()t) = e-Ztsinh()t). (5.30) It follows that E[ X (t)]
=1. [e-Ztcosh()t)] + (-I) - [e-Ztsinh()t)] = e -2)t. (5,31) Finally, we also find
that Rx(t, t s) = e -2Isl. (5.32) Indeed, if s > 0, we can write that

5.4 The Poisson Process 231 Rx(t, t g- s) := E[X(t)X(t g- s)] = E[(--1)N(t)(-
-1) N(t+s)] = E[(--1)2N(t)(--1) N(t+s)-N()] .= E[(--1) N(s)] = E[X(s)] = ¢
-2)s. Remark. {X (t), t> 0} is actually called a semi-random telegraph signal
process. A random telegraph signal process is defined by Y(t) = Z. X(t), (5.33)
where Z is a random variable independent of X(t) for all t and such that P[Z =
1]=P[Z=-1]=1/2. We have: E[Y(t)] ind. E[Z]E[X (t)] =O . E[X (t)] =0
and Rr(t, t +s) = E[ZX(t) € ZX(t + s)] ind. E[Z2]Rx(t,t+s)=1¢e-2"s.
Thus, {Y(t), t> 0} is a WSS stochastic process. Note that Z 2 is actually
equal to the constant 1. Example 5.4.1 Telephone calls arrive at an exchange
according to a Poisson process, at the (average) rate of one call per minute. a)
What is the probability that (at least) five minutes have elapsed since 1) the last
call arrived? i1) the penultimate call arrived? b) Calculate the probability that
no calls arrive during the next two minutes, knowing that at least one call was
received over the last two minutes. Solution. Let N(t) be the number of calls in
the interval [0, t]. We have: N(t) Poi(1 € t), where t is in minutes. a) i) We
seek P[N(5)=0]=P[Y=0], whereYPoi(5) =¢ -5 -- 0.0067. 11) We now seek
PIN(5)<1]=P[Y< 1]=e-5(5+1) 0.0404. b) Since the Poisson process
has independent increments, we simply have to calcu- late P[N(2) = O] =e¢ -2
-- 0.1353.

232 5 Stochastic Processes 5.5 The Wiener Process The most important
continuous-time and continuous-state stochastic process is the Wiener 2
process, also known as Brownian motion. It is a particular case of the pro-
cesses called Gaussian, which we define first. Definition 5.5.1. A stochastic
process {X(t),t> 0} is called a Gaussian process if the random variables X
(tl) ..... X (tn) have a multinormal distribution for all n and @tl ..... tn .
Remark. Under some conditions, continuous-time and continuous-state
stochastic processes are called diffusion processes. Consider a particle
moving at random on the set of all integers. More precisely, consider the
symmetric random walk, that is, the (discrete-time) Markov chain for which



pt.i+l :Pi.i-1: I/2 for/ =0,+1,+2 ..... (5.34) Suppose that we modify the process
as follows: instead of moving one unit to the left or to the right at each time
unit, the particle moves unit to the left or to the right at each 3 time unit, where
and 3 are very small positive quantities. So, we speed up the process: the
particle moves very often, but covers very little distance at each displacement.
Let X(t) be the position of the particle at time t. Suppose that it is at the origin
at time t = 0. Then, the position of the particle after the first n displacements is
given by X (n3) = (2N - n), (5.35) where N is the number of steps to the right
made in the course of these n displace- ments. Since N has a binomial
distribution with parameters n and p = I/2, we can write that E[X(n3)] =
(2(n/2) -n) =0, 1 (5.36) VAR[X (n3)] =42VAR[N] =42(n/4) =n 2. Suppose
now that we let 3 decrease to 0 in the random walk. We then obtain a
continuous-time process. Since VAR[X(t)] =t2/3 (5.37) if t=n3, we must
express in terms of 3. Let 2 = 0.23. (5.38) 2 Norbert Wiener, 1894-1964, was
born in the United States and died in Sweden. He obtained his Ph.D. in
philosophy from Harvard University at the age of 18. His research subject was
mathematical logic. After a stay in Europe to study mathematics, he started
working at the Massachusetts Institute of Technology, where he did some
research on Brownian motion. He contributed, in particular, to communication
theory and to control. In fact, he is the inventor of cybernetics, which is the
"science of communication and control in the animal and the machine."

5.5 The Wiener Process 233 Then, when decreases to zero, the process
obtained is also a continuous-state stochastic process and we have: E[X(t)] =
0, 1(5.39) VAR[X(t)] cr2t as 4, 0. In fact, the variance of X(t) is equal to c2t
for any positive value of . The stochastic process {W(t), t> 0} defined by
W(t) = lim X(t) (5.40) $0 is called the Wiener process or, as mentioned above,
a Brownian motion, named in honor of the English botanist Robert Brown, 3
who observed in 1827 the movement of microscopic particles suspended in a
fluid. This motion seems completely irregu- lar, because of the molecular
collisions that occur continuously. The process is also known as the Wiener-
Einstein process or the Wiener-Bachelier process. Using the Gaussian
approximation to the binomial distribution, we can write that P[W(t) <w]=q
. (5.41) That is, W(t) N(0, cNt). Remark. If we start with a non-symmetric
random walk, then we obtain (under some conditions) a Wiener process with
non-zero drift coefficient , so that W(t) N(/xt, 02t). We now give a more formal
definition of a Wiener process. Definition S.82. A stochastic process {W(t), t



>0} 1is called a Wiener process i1f1) W(0) = 0; 11) {W(t), t> 0} 1s a process
with independent and stationary increments; 111) W(t) N(O, cr2t) Yt> O.
Remarks. 1) When ¢ = 1, the process is called the standard Brownian motion.
Since the variance of W(t)/cr is equal to t, we can always transform an
arbitrary Wiener process into a standard Brownian motion. 11) We can
generalize the definition by letting W(0) take on any real value w0 and then by
replacing condition ii1) by W(t) N(wO0, c2t) 'it > 0. Note that the process {W*
(t), t> 0} defined by W*(t) = W(t) - wo then satisfies the preceding definition
(if w0 1s a constant). Actually, we could consider the case when W(0) is a
random variable WO independent of W (t) Yt > O. 111) We can show that W(t)
is a continuous function of t with probability 1 (see Fig. 5.2, p. 234). 3 Robert
Brown, 1773-1858, was born in Scotland and died in England. He is
considered the greatest British botanist of the nineteenth century. He took part
in an expedition to Aus- tralia, from which he brought many unknown species
to Europe. In 1810, he was elected to the Fellowship of the Royal Society.

234 5 Stochastic Processes w(t) Figure 5.2. Example of trajectory of a Wiener
process. To obtain the nth-order density function of {W(t), t> 0}, we use the
fact that the Wiener process has independent and stationary increments. Then,
ift<t2 < @ @ @ <tn, we can write that f{WI1 ..... Wn; tl ..... tn) = f{WI; tl) IEI
flwk - U/k-1; tk - tk-1), (5.42) k=2 where f(w; t) is the probability density
function of a Gaussian N(0, 0-2t) distribu- tion. Finally, if t <r, we have: Cw(t,
1) -= COV[W(t), W(r)] = COV[W(t), W(t) + W(r) - W(t)] = COV[W(t), W(1)]
+ COV[W(t), W(r) - W(1)] in. COV[W(t), W(t)] = VAR[W(t)] = 0-2t, where
we used the fact that COV[X, Y Z] = E[X(Y Z)] - E[X]E[Y Z] = {E[XY] -
E[X]E[Y]} + {E[XZ] - E[X]E[Z]} = COV[X, Y] + COV[X, Z]. In the general
case, we obtain: Cw(t, r) = 0 -2 min{t, r}. (5.43) Example 5.5.1 What is the
distribution of W(t) + W(r), where t <r? Solution. We can write that W(t) +
W(r) =2W(t) + [W(r) - W(t)] :=Y + Z, where Y and Z are independent
random variables having Gaussian distributions with zero means and variances
given by

5.6 Stationarity VAR[Y] = 4VAR[W(t)] = 4ret and VAR[Z] = re(r -- t), 235
because the Wiener process has stationary increments. It follows that W(t) +
W(r) N(O, r2(3t +r)). Remark. It is important not to forget that the random
variables Z := W(r) -- W(t) and W(r - t) have the same distribution, but are not
identical. For example, suppose thatt=1 and r = 2. [f W(2- 1) = 0, then this



does not imply that Z = W(2) - W(1) =0, since P[W(2) = 0] = 0. Remark. Let
{W(t), t> 0} be a standard Brownian motion, and let f be a func- tion whose
derivative exists and is continuous in the interval [a, b]. We define the
stochastic integral f{(t) dW(t). = f(b)W(b) -- f(a)W(a) -- W(t) df(t). (5.44) Note
that this formula is the one that we obtain by integrating by parts. Moreover, if
f(t) =t 2, for example, then we have: W(t) df(t) = 2t W(t) dr. The process
{dW(t), t> 0} is called a (Gaussian) white noise. In engineering, people often
write: dW(t)/dt = (= (t)). We can show that the integral defined in (5.44) has a
Gaussian distribution with zero mean and variance b f2(t) dt. 5.6 Stationarity
Definition 5.6.1. A stochastic process {X(t), t T} is said to be stationary, or
strict-sense stationary (SSS), if F(X1 ..... Xn; tl .....tn) = F(X1 ..... Xn; tl g- r
..... tng-r1) (5.45) 'r,nand tl ..... tn. If the process starts at t = O, for instance,
then t + r must be non-negative €k in Equation (5.45). Likewise, the sp's
{X(t), t6 TI} and {Y(t), t 6 T2} are jointly stationary if the joint distribution
function of the processes remains unchanged if we add the constant r to every
value oft in the function.

236 5 Stochastic Processes We deduce from the definition that if {X(t), t E T}
1s a continuous SSS process, then f(x;t) = f(x;t+r) Yt, r, f(x1,x2;t,t2) = f(x1,x2;tl
+r, 12+1) Ytl,t2, 1, so that f(x; t) = f(x) Yt, 1 (5.46) f(x1,x2;tl,t2)= f(x1,x2;t2-tl)
Ytl,t2. These equations lead to the definition of WSS processes, introduced in
Section 5.2. Definition 5.t1.2. A stochastic process {X (t), t T} is said to be
wide-sense sta- tionary (WSS) if E[X(t)] = m (a constant), 1 (5.47) E[X(t)X(t
+1)] = Rx(r) (= Rx(-r)). We deduce from (5.47) that E[X2(t)] = Rx(O), (5.48)
so that the average power of a WSS stochastic process is independent of t.
Further- more, we can write that and Cx(t, t + r) = Cx(r) = Rx(r) - m 2 (5.49)
px(t, t H- r) = px(r) = Cx(r)/Cx(0O). (5.50) Finally, the sp's {X(t),t6 T} and
{Y(t), t 6 T2} are said to be jointly WSS if {X(t), t 6 T} and {Y(t),t6 T2} are
WSS and Rx,y(t + 1, t) = E[X(t + 1) Y(t)] = Rx,y(r) (5 Rx, y(-r), in general).
(5.51) Similarly, we will have: Cx, y(t + 1, t) = Cx, y(r) = Rx, y(r) - mxmy.
(5.52) Remark. An SSS stochastic process is also WSS, but the converse is not
always true. Proposition 5.ti.1. If a Gaussian process {X (t), t T} is WSS, then
itis also SSS. Proof. This follows from the fact that a Gaussian process is
completely determined by its mean and its autocovariance function. Indeed, the
nth-order characteristic

5.6 Stationarity 237 function of the process {X(t), t6 T} is given by exp jmx -



ok - Cx(t1 -- tk)09109 k . (5.53) k=1 i=1 k=1 Note that this function is invariant
under any change of origin. [] Example 5.6.1 The Poisson process is not
stationary. Indeed, we have: E[N(t)] = )t. Since the mean of N(t) is not
constant, {N(t), t> 0} is not WSS. Consequently, {N(t), t> 0} is not stationary.
However, the random telegraph signal {Y(t),t> 0} is WSS because (see p.
231) E[Y(t)] = 0 and Ry(t, t + 1) = e -2zr, where we assume that r > 0.
Actually, we can show that the random telegraph signal is (strict-sense)
stationary. However, the semi-random telegraph signal is not stationary, not
even WSS. Example 5.6.2 The Wiener process has a mean equal to zero.
However, its autoco- variance function is given by CW(11,/2) = 0"2 min{tl,
t2}. (5.54) Since this function does not depend only on the difference between t
2 and tl, {W(t),t>_ 0} is not a stationary process. In fact, we can show that 1
min{tl, 2} = (/1 g- 12 -- Itl - t2I). Remark. Given that a Gaussian process is
completely determined by its mean and its autocovariancefunction, and that the
Brownian motion is Gaussian, we can also define a Wiener process as a
Gaussian process, with zero mean and autocovariance function given by
Equation (5.54). In addition, the process must start at the origin. Example 5.6.3
Let {Z(t), t> 0} be the process defined by Z(0) = 0 and Z(t):tW(1/t) ift >0,
where {W(t), t> 0} is a Brownian motion. We have: E[Z(t)] =tE[W(1/t)] =t.
0=0

238 5 Stochastic Processes and Cz(tl, t2) = E[Z(t])Z(t2)] - 02 =
E[tIW(/t)22W(1/12)] = tI2Cw(I/tl, 1/t2) = tit20- 2 min{t-,t-2 } =0 -2
min{tl, £2}. Since {Z(t), t> 0} is a Gaussian process (because it is a linear
transformation of a Gaussian process) that starts at the origin and whose mean
and autocovariance function are identical to those of {W(t), t> 0}, we can
state that it is a Brownian motion. 5.7 Ergodicity To estimate the mean m x (t)
of a stochastic process {X (t), t T} at time t, we must take a large number of
observations X(t, sk) of the process. We write: mx(t) -- - X(t, sk). (5.55) nk=l
That is, we estimate the mean of the sp at time t by the mean of a random
sample taken at this time instant. Suppose, however, that we only have a single
observation, X(t, s), of X(t). Can we then use the temporal mean X(t, s) dt
(5.56) Ix(t))s:= s to estimate mx (t)? A necessary condition is that mx (t) be a
constant. Remark. In (5.56), we can also integrate over the interval [0, 2S] (for
example if T = [0, x]). Definition 5.7.1. A stochastic process {X(t), t T} is
said to be ergodic if, with probability 1, every characteristic of {X(t), t T} can
be obtained from a single realization X (t, s) of X (t). There exist many types



of ergodicity. Here, we will limit ourselves to the case when the sp {X(t), t T}
1s mean ergodic. Definition 5.7.2. A stochastic process { X (t),tT }, whose
mean is a constant m, is said to be mean ergodic/f, with probability 1, we
have: lira (X(t))s =m. (5.57) Now, (X(t))s is a random variable whose mean
is given by if , E[X (t, s)]dt=m dt=m. (5.58) F[<X(t))s]=s s

5.7 Ergodicity 239 Hence, we deduce that the sp {X(t), t E T}, for which mx(t)
=-- m, is mean ergodic if and only if the variance of the random variable
(X(t))s decreases to 0 as S tends to infinity. Remark. For example, if X has a
Gaussian N(#, r 2) distribution, then the mean of a random sample of size n of
X has a Gaussian N(#, 0'Z/n) distribution. Since VAR])] . 0 as n tends to
infinity, we can conclude that limn- = . We can show the following proposition.
Proposition 5.7.1. Let {X(t), t T} be a WSS process. Then, {X(t),t T} is mean
ergodic if and only VAR[(X(t))s] =2s Cx(r) 1 -dr $ 0 as S . (5.59) Remarks.
1) In the general case when the stochastic process {X(t), t E T} is not
necessarily WSS, the criterion (5.59) becomes lim VAR[(X(t))s] = lim Cx(tl,
t2)dtldt2 = O. (5.60) S-- ec S-- ec ' S S 11) There exist other (mean) ergodicity
criteria. For instance, a WSS process {X(t), t 6 T} is mean ergodic if Cx(O) <
cxz and lim Cx(r) = 0. (5.61) Example 5.7.1 Consider once again the random
telegraph signal, denoted by {Y(t), t> 0} in Section 5.4. We already saw that
Rr(r) =e -2)Il. Since {Y(t), t> 0} is a process with zero mean, we can write
that It follows that Cy(r) = e -2)Irl. ¢ 2)r r VAR[(Y(t))s] =- 1 - dr. Given that
the expression between the square brackets is bounded by 0 and 1 (when r
varies from 0 to 2S), we can replace this term by 1, and we then find that 1 -- €
-4)S VAR[(Y(t))s] < 2)S It is now easy to see that the variance of (Y(t))s
decreases to 0 as S tends to infinity. Thus, by the previous proposition, the
random telegraph signal is mean ergodic. Finally, we could have used the
criterion (5.61) above. Indeed, we obtain: Cx(O) =1 < cxz and lim Cx(r) = lim
e -2)Irl ---- 0. Note, however, that this criterion is a sufficient, but not a
necessary condition.

240 5 Stochastic Processes 5.8 Exercises, Problems, and Multiple Choice
Questions Solved Exercises Exercise no. 1 (5.3) We suppose that the
probability that a certain machine functions without failure today is equal to
0.7 1f the machine functioned without failure yesterday and the day before
yesterday (state 0); 0.5 1f the machine functioned without failure yesterday, but
not the day before yes- terday (state 1); 0.4 if the machine functioned without



failure the day before yesterday, but not yes- terday (state 2); 0.2 if the machine
did not function without failure, neither yesterday nor the day before yesterday
(state 3). a) Find the one-step transition probability matrix of the Markov chain
associated with the functioning state of the machine. b) Calculate p0 2.1, that
is, the probability of moving from state 0 to state 1 in two steps. ¢) Calculate
the average number of days without failure of the machine over the next two
days, given that the Markov chain is presently in state 0. Solution a) We have,
for example: p0,2 : P[At least one failure today { state 0] =1 - 0.7 = 0.3, etc.
We find that 0.7 00.3 00.500.500.2 0 0.8 b) We seek p2 ol =Po,oPo.1 +
po, 1P1 + p0,zP21 + po,3P31 =0 +0 + (0.3)(0.4) +0 = 0.12. ¢) Let N be the
number of days without failure over the two-day period. We have: 2 if the
Markov chain moves from 0 to 0 to 0, 1 1f the Markov chain moves from 0 to 2
to 1 or from 0 to 0 to 2, 0 if the Markov chain moves from 0 to 2 to 3. It
follows that

5.8 Exercises, Problems, and Multiple Choice Questions E [N] =2 x Po,oPo,0
+ 1 x (Po,2P2,1 + Po,0P0,2) +0 x P0,2P2,3 =2 (0.7) 2 + (0.3) (0.4) + (0.7)
(0.3) +0=1.31. 241 Exercise no. 2 (5.4) Let N (t) be the number of failures of
a computer system in the interval [0, t]. We suppose that {N(t), t> 0} is a
Poisson process with rate . = 1 per week. a) Calculate the probability that 1)
the system functions without failure during two consecutive weeks; i1) the
system has exactly two failures during a given week, knowing that it has
functioned without failure during the previous two weeks; 1i1) less than two
weeks elapse before the third failure occurs. b) Let Z (t) :=e -N(t) fort > 0.
Is the stochastic process {Z(t), t > 0} wide-sense stationary? Justify your
answer. Hint. We have: E[e -sx] =exp lot (e -s - 1)], if X Poi(ot). Solution a)
1) We seek PIN (2) =0] =P [Poi (2) =0] =e -2 -- 0.1353. i1) Since the
increments of a Poisson process are independent, we look for 12 P IN (1) = 2]
=P [Poi(1) =2] =¢ -1- 0.1839. 2! iii) Let $3 be the time when the third failure
occurs. We have: $3 <2 €:> N (2-) > 3. We then calculate P[S3 <2]=P[N(2)
>3]=1-P[N(2) <2]=1-P[Poi(2)<2] Ie 2 2. 1 = 1-- e -2+e-22+ - = 1--5¢ -2 -
0.3233. Or: $3 G(o =3, ;k=1), so that fo 2x2e-x 2 f02 P[S3 <2]=dx=--e¢ -x +
xe-xdx 002 -x2=--2e-2-xe-X]te-xdx=--4e-2-¢10=1-5¢-2.b) We
have: N(t) Poi(t), so that E [Z (t)] =exp [t (e -1 - 1)]. Since E [Z (t)] is not a
constant, the stochastic process {Z(t), t> 0} is not WSS.

242 5 Stochastic Processes Unsolved Problems Problemno. 1 Let {N(t), t >



0} be a Poisson process with rate . We define the stochastic process {X(t), 0 <
t <1} by X(t):N(t)-tN(1) forO<t < 1. a) Calculate the mean of X (t). b)
Calculate the autocovariance function of the process {X (t), 0 <t <1}. Hint.
We have: RN (tl, t2) =)2tlt2 + ) min{tl, t2}. c¢) Is the process {X(t), 0 <t<1}
WSS? Justify. Problemno. 2 Let {W(t),t >0} be a standard Brownian
motion. We define X (t) = W 2 (t) for t> 0. a) Is the stochastic process {X (1), t
>0} a Wiener process? Justify. b) Is {X (t), t> 0} 1) WSS? i1) mean ergodic?
Justify your answers. Problem no. 3 The stochastic process {X(t), t> 0} is
defined by X(t)=e -rt fort >0. We suppose that Y has a uniform distribution on
the interval (0, 1 ). a) Calculate E [X (t)]. b) Calculate Cx (t, t +s), where s, t
> 0. ¢) Is the stochastic process {X(t), t >0} WSS? Justify your answer. d)
Find the first-order density function of the process {X (t), t> 0}. Problem no.
4 We suppose that customers arrive at a counter in a bank according to a
Poisson process with rate ) = 10 per hour. Let N (t) be the number of customers
in the interval [0, t]. a) What is the probability that no customers arrive during
a 15-minute period? b) Knowing that eight customers arrived during a given
hour, what is the probability that at most two customers arrive during the
following hour? ¢) Knowing that a customer arrived during a 15-minute
period, what is the probability that he arrived during the first five minutes of
the period considered? d) Let X (t) := N (t). Is the stochastic process {X(t), t>
0} WSS? Justify your answer. Hint. We have: RN (tl, t2) = 10 min{q, 2} +
100qt2.

5.8 Exercises, Problems, and Multiple Choice Questions 243 Problem no. 5
Let {W(t), t process {X(t),t> 0} by X(t)=e -tw(e 2t) fort >0, where ot is a
positive constant. a) Calculate the mean of X (t). b) Calculate the
autocovariance function of the process {X (t), t>0}. Hint. We have: Cw (t, r)
---- rain{t, r}. c) Is the stochastic process {X(t),t> 0} 1) a Brownian
motion? i1) stationary? ii1) mean ergodic? Justify your answers. Problem no. 6
Let {N(t), t> 0} be a Poisson process with rate . > 0. We define the stochastic
process {X (t),t>0} by N(t+ 32 ) - N (t) X(t)=fort> 0, where 3>01sa
constant. a) Is the process {X (t), t> 0} a Poisson process? Justify. b)
Calculate the mean of X (t). ¢) Calculate the autocovariance function of the
process {X(t),t>0} for tl =1, t2:2and3: 1. Hint. We have: RN (tl, t2) : )
min{tl, t2} + .2t1t2. d) We consider the process {Y(t), t> 0} defined from
{X(t), t> 0} by taking the limit as 3 decreases toward zero. We can show that
E [Y (t)] ---- 0 and that -t2:0, Cy (t1,t2) = 0 otherwise. Is the process {Y(t), t



> 0} 1) WSS? 11) mean ergodic? Justify your answers. €) Let Zn :: N (n) for n
:0,1,2 ... 1) The stochastic process {Zn,n: 0, I .... } 1s a Markov chain.
Justify this as- sertion. i1) Calculate Pi,j for1,j E {0, 1,2 .... }. Problemno. 7
Let {W(t),t>_ 0} be a standard Brownian motion. We define the stochastic
process {X(t),t> 0} by X(t) : W(t) W(t) fort > 0. a) Calculate the mean of
X (t). b) Calculate COV[X(t), X(t )] for r > O. Hint. We have: COV[W(tl),
W(t2)] = min{tl, t2}. > 0} be a standard Brownian motion. We define the
stochastic

244 5 Stochastic Processes c) Is the stochastic process {X(t),t> 0} 1)
Gaussian? 1) stationary? ii1) a Brownian motion? Justify your answers. d)
Calculate the correlation coefficient of W(t) and W(t 2) for t > 0. Problem no.
8 Let {Xn,n=0, 1 .... } be a Markov chain whose state space is the set {0, 1 }
and whose one-step transition probability matrix P is given by p 1-p whereO <
p_<L a) Suppose that p =1 and that X0 = O. Calculate E[X2]. b) Suppose that
p=1/2 and that P[ Xo = 0]= PIXo = I1=1/2. We define the continuous-time
stochastic process {Y(t), t> O} by Y(t) = tXit for t > O, where [t] denotes the
integer part of t. 1) Calculate Cr(t, t + I). 11) Is the stochastic process {Y(t), t >
O} WSS? Justify your answer. 1i1) Calculate limn--.ec P[Xn = 0]. Multiple
Choice Questions Question no. 1 A man plays independent repetitions of the
following game: at each repetition, he throws a dart onto a circular target.
Suppose that the distance D (in centimeters) between the impact point of the
dart and the center of the target has a U[0, 30] dis- tribution. If D <5, the
player wins $1 ; if 5 <D < 25, the player neither wins nor loses anything; if D
> 25, the player loses $1. The player's initial fortune is equal to $I and he will
stop playing when either he is ruined or his fortune reaches $3. Let Xn be the
fortune of the player after n repetitions. Then, the stochastic process {Xn, n=
0,1 .... } is a Markov chain. A) Find the one-step transition probability matrix
of the chain. a) 1/62/3 /6 0 I/31/31/300 1/62/31/6 b) 0 /3 1/31/3 0 1/62/3
/6 000dt/62/3/60/62/3/6 001/62/31/6¢)|01/62/31/60001010 B)
Calculate E[X].a) I/3b) I¢) 11/18 d) 4/3 €) 29/18 /3 /3 /3 0c¢c) 1/31/31/3 00
/3/3/30/3/3/3

5.8 Exercises, Problems, and Multiple Choice Questions 245 Suppose now
that the man never stops playing, so that the state space of the Markov chain is
the set {0, + 1, +2 .... }. Suppose also that the duration T (in sec- onds) of a
repetition of the game has an exponential distribution with mean 30. Then, the



stochastic process {N(t), t> 0}, where N(t) denotes the number of repetitions
played in the interval [0, t], is a Poisson process with rate ) = 2 per minute. C)
Calculate the probability that the player has completed at least three repetitions
in less than two minutes. a) 5e -4 b) 13e-4c¢)1-5¢-4d)1-13e-4e)1-¢-4
D) Calculate (approximately) the probability P[N(25) <50]. a)"0 b) 1/4¢) 1/2
d) 3/4 )" 1 Questionno. 2 Let {Xn,n=1, 2 .... } be a Bernoulli process. That
is, the random variables XI, X2 .... are independent and all have a Bernoulli
distribution with parameter p. Calculate the autocorrelation function Rx(n, m)
of the process, ifp=1/2 and n,mE {1,2 .... }. a) 1/4 for all n, mb) 1/2 for all
n,mc) 1/4 ifn-J: m; 1/2 ifn ---- rn d) 1/2 ifn -J: m; 1/4 ifn ---- rn €) none of
these answers Question no. 3 The one-step transition probability matrix P of a
Markov chain whose state space is {0, 1 } is given by 0 " Calculate E[X2], if
P[Xo=0]=1/3.2) 1/12b) 1/4 ¢) 1/3 d) 1/2 e) 11/12 Question no. 4 Let N(t)
be the number of telephone calls received at an exchange in the interval [0, t].
We suppose that {N(t), t >0} 1s a Poisson process with rate ) = 10 per hour.
Calculate the probability that no calls are received during each of two
consecutive 15-minute periods. a) e -5b) e -2"5¢c) 2e -2'5d) e -0"25 ¢) 2e
-0"25 Question no. 5 Calculate the variance of W(t) - 2W(z) for t <z, where
{W(t), t>0} is a standard Brownian motion. a) t +2zb) t+4zc) 3t +4 d) 5t
+ 4 e) 9t + 2 Question no. 6 Let {X(t), t> 0} be the stochastic process
defined by X(t) =tU + 1, where U is a random variable having a U(0, 1)
distribution. Find the first-order den- sity function of the process.

246 5 Stochastic Processes 1 11f0<x<ta) 1if0<x <1b) 1if0 <t <1 ¢) 2if0<t <x
d) 71 ifl <x<t+l e) 7 Question no. 7 The customers of a newspaper salesman
arrive according to a Poisson process with rate . = 2 per minute. Calculate the
probability that at least one customer arrives in the interval (to, t0 + 2], given
that there has been exactly one customer in the interval (to - 1, tO +1]. a) e-2/2
b)e2c)(l-e-2)2d)1-e-2¢)1-(e-2/2) Questionno. 8 Let {W(t),t> 0}
be a standard Brownian motion. We define X(t) = IW(t)l for t> 0. Is the
stochastic process {X(t), t> 0} Gaussian and stationary'? a) Gaussian and
SSS b) Gaussian, but not stationary ¢) not Gaussian, but SSS d) not Gaussian
and not stationary e) not Gaussian, but WSS (only) Question no. 9 Let {X(t), t
> (0} be a stochastic process whose autocorrelation function is Rx(tl, t2) = e -
It-t-1 + 1 and autocovariance function is Cx(t, t2) = e -Iq-t'-1. Is the stochastic
process {X(t),t> 0} WSS and mean ergodic? a) WSS and ergodic b) not
stationary, but ergodic ¢) WSS, but not ergodic d) not stationary and not



ergodic ) we cannot conclude Question no. 10 Let {X(t), t> 0} be the
stochastic process defined by X(t)=W(t+)-W(I) for t >0, where {W(t), t>_
0} 1s a standard Brownian motion. A) Calculate the autocovariance function of
the process {X (t), t> 0}.a) min{tl, t2} - I b) min{t, t2} ¢) min{t, 2} +1d)
2min{q,t2} e) none of these answers B) Is the process {X(t), t> 0} Gaussian
and a standard Brownian motion? a) Gaussian and a standard Brownian motion
b) Gaussian and a non-standard Brownian motion ¢) Gaussian, but not a
Brownian motion d) not Gaussian and not a standard Brownian motion ) not
Gaussian and not a non-standard Brownian motion C) Is the process {X(t),t>
0} stationary and mean ergodic? a) WSS only, and ergodic b) SSS and ergodic
c¢) SSS and not ergodic d) not stationary, but ergodic €) not stationary and not
ergodic
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Let {Yk, k=1,2.... } be a set of independent random variables having a
Bernoulli distribution with parameter p = 1/3. We define Xn = -]=1 Yk for n=
1, 2 ..... Then, the stochastic process {Xn,n=1, 2 .... } 1s a Markov chain.
Calculate p03,2. a) 1/27 b) 2/27 ¢) 1/9 d) 2/9 e) 4/9 Question no. 12 We
consider a standard Brownian motion { W (t),t > 0}. Calculate VAR[W(4) -
2W(1)].a) 0b) 2 c) 4 d) 6 e) 8 Questionno. 13 Let {X(t),t >0} be a WSS
stochastic process, with zero mean and with an autocorrelation function given
by Rx () =e-Irl. Let Y(t) :: tX2(1/t) for t > 0. Is the stochastic process {Y(t), t
>0} WSS and mean ergodic? a) not WSS and not ergodic b) not WSS, but
ergodic ¢) WSS, but not ergodic d) WSS and ergodic e) not WSS and,
consequently, we cannot conclude about the ergodicity Question no. 14 Let
{Xn,n:0,1.... } be arandom walk for which 2 1 pi,i+l : and pi,i-1 ---- for 1
{0, @1, @2 ... }. Calculate E[X2 I Xo --- 0].2) 0 b) 1/9 ¢) 1/3 d) 4/9 €) 2/3
Question no. 15 We consider a stochastic process {X(t), t> 0} for which 1 1
Cx(tl, t2) -- and Rx(t, t2) -- It2 -- tl 1 It2 -- tl 1 Is the process stationary and
mean ergodic? a) not WSS and not ergodic b) not WSS, but ergodic c) SSS,
but not ergodic d) WSS and ergodic ) WSS (only), but not ergodic 4.

248 5 Stochastic Processes Question no. 16 We define the stochastic process
{X(t), t> 0} by X(t) =t/Y for t > 0, where Y has a uniform distribution on the
interval (0, 2). Find f(x; t) forx >t/2. tttt1 a) - b) ¢) d) €) Questionno. 17
The stochastic process {X(t), t> 0} 1s defined by X(t)=N(t+1)-N(I) fort >0,
where {N(t), t> 0} is a Poisson process with rate )* > 0. Calculate Cx(s, t) for



0<s<t. Hint. We have: Cu(s, t) = Ks,if0 <s<t.a) )(s--1)b)Ksc) )'(t-s)d)
),st €) Question no. 18 Let {W(t), t> OI be a standard Brownian motion. We
detine X(t)=-W(t) fort >0. Is the stochastic process {X(t), t> 0} Gaussian? Is
it a Brownian motion? a) not Gaussian and not a Brownian motion b) not
Gaussian, but a Brownian motion ¢) Gaussian, but not a Brownian motion d)
Gaussian and a standard Brownian motion €) Gaussian and a non-standard
Brownian motion Questionno. 19 Let {Xn,n=0, 1, 2 .... } be a Bernoulli
process. That is, the random variables X,, are independent and all have a
Bernoulli distribution with parameter p. Calculate the particular case p(0, 1; nl
=0, n2 = 1) of the second-order probability mass function of the process. a) 0
b) p2 c) p(1-p)d) 2p(l-p)e)(1-p)2 Questionno. 20 We define Y(t) =/ 0 if
N(t) 1s odd, 1 if N(t) 1s even, where {N(t),t >0} is a Poisson process with
rate ), = 1. We can show that P1Y(t) = 1] = (1 + e-2t)/2 for t>_ 0. Next, let Xn
=Y() forn=0,1 ..... Then, {Xn,n=0, 1 .... } is a Markov chain. Calculate
its one-step transition proba- bility matrix. [ 1/2 -] [ 10 [] [ 1g-e 22 1-e-2 12 e)
[-e22 1g-e-2 121/2.¢c)d) l-e -2 +e 21-e2a) 1/21/2Jb) 1 1+e-22222
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Let {X(t), t> 0} be a Gaussian process such that X(0) =0, E[X(t)] = Izt for t >
0, where/z 0, and Rx(t,t+r)=2t+122t(t+r) fort, r >0. Is the stochastic process
{Y(t), t> 0}, where Y(t) := X (t)-/zt, a Brownian motion? Is it stationary? a)
not a Brownian motion and not stationary b) not a Brownian motion, but
stationary c) a standard Brownian motion, but not stationary d) a non-standard
Brownian motion, but not stationary ) a non-standard Brownian motion and
stationary Question no. 22 Suppose that {X(t), t> 0} is a Gaussian process,
with zero mean, whose auto- covariance function is given by Cx(t,t+r)=e -t
fort, r > 0. We define Y(t) = X2(t). Is the stochastic process {Y(t), t> 0}
stationary? Is it mean ergodic? a) not stationary and not ergodic b) not
stationary, but ergodic ¢) WSS only, but not ergodic d) SSS, but not ergodic e)
WSS only, and ergodic Question no. 23 Let {Xn,n=0, 1 .... } be a Markov
chain whose state space i.s the set {0, 1 } and whose one-step transition
probability matrix is given by A) Calculate Cx(t=0,1t2=1), if P[Xo=0] =
P[Xo=1]=1/2.a)-1/4b)-1/8 ¢c) 0 d) 1/4 ) 1/2 B) Calculate limn_ P[X =01
X0=0].a)0b) 1/2 ¢) 1 d) does not exist €) none of these answers Question
no. 24 The failures of a certain machine happen according to a Poisson process
withrate ) = 1 per week. A) What is the probability that the machine has at
least one failure during each of the first two weeks considered? a) e -2 b) 1 -



2e-c)(l-e)2d)2e-Ie)l-e-2B) Suppose that exactly five failures have
occurred during the first four weeks con- sidered. Let M be the number of
failures during the fourth of these four weeks. Calculate EIMI M > 0]. a) 1.24
b) 1.34c¢) 1.44d) 1.54 ¢) 1.64

250 5 Stochastic Processes Question no. 25 A) Let X, X 2 .... be an infinite
sequence of independent random variables having a Poisson distribution with
parameter ot = 1. We define Yn=) Xk forn=1,2 ..... k=14 Then, {Yn,n=1,2
.... } 1s a Markov chain. Calculate P1.3, that is, the probability of moving from
state 1 to state 3 in four steps. a) 0.1065 b) 0.1165 ¢) 0.1265 d) 0.1365 e)
0.1465 B) Let {N(t), t> 0} be a Poisson process with rate . > 0. We define M
(t) = N(). Mz(t) = N(2t), M3(t) = N(t + 2) - N(2). Which of the {Mk (t), t> 0}
stochastic processes is (are) also a Poisson process? a) M2(t) only b) M3(t)
only ¢) Mz(t) and M3(t) only d) none e) all Question no. 26 The power failures
in a certain region occur according to a Poisson process with rate . = 1/5 per
week. Moreover, the duration X (in hours) of a given power failure has an
exponential distribution with parameter -2 = 1/2. Finally, we assume that the
durations of the various power failures are independent random variables. A)
What is the probability that the longest, among the first three power failures
ob- served, lasts more than four hours? a) 0.3435 b) 0.3535 ¢) 0.3635 d)
0.3735 ¢) 0.3835 B) Suppose that there has been exactly one power failure
during the first week con- sidered. What is the probability that the failure had
still not been repaired at the end of the week in question? a) 0.0019 b) 0.0119
¢) 0.0219 d) 0.0319 ¢) 0.0419 Question no. 27 The flow of a certain river can
be in one of the following three states: 0: low flow, 1: average flow, 2: high
flow. We suppose that the stochastic process {Xn,n=0, 1 .... }, where Xn
represents the state of the river flow on the nth day, 1s a Markov chain.
Furthermore, we estimate that the probability that the flow moves from state 1
to state j in one day is given by the formula 1 - - - 1i - jlzri, P1,j -- 2 where 0 <
'i<1,fori,j=0,1,2.

5.8 Exercises, Problems, and Multiple Choice Questions 251 A) Calculate the
probability that the river flow moves from state 0 to state 1 in one day. a) 1/6
b) 1/4 ¢) 1/3 d) 5/12 e) 1/2 B) Calculate the probability that the river flow
moves from state 0 to state 2 in two days. a) 1/6 b) 1/4 ¢) 1/3 d) 5/12 ¢) 1/2
Question no. 28 A machine 1s made up of two components that operate
independently. The life- time Ti (in days) of component 1 has an exponential



distribution with parameter for/ = 1,2. A) Suppose that the two components are
placed in parallel, and that ,kl =2 = In 2. When the machine breaks down, the
two components are replaced by new ones at the beginning of the following
day. Let Xn be the number of components that function at the end of n days.
Then, the stochastic process {Xn,n=0, 1 .... } is a Markov chain. Calculate
its one-step transition probability matrix. a) | 1/20 1/2b) 1/21/20¢) 1/2 1/2
11/41/41/21/41/41/21/21/41/4..1d)01/21/2e)1/21/201/41/41/2 1/4
1/2 1/4 B) Suppose that the two components are placed in series and that as
soon as a com- ponent fails, it is replaced by a new one. Let N(t) be the
number of replacements in the interval [0, t]. We can show that the stochastic
process {N(t), t>0} is a Poisson process. Give its rate Hint. If To is the time
between two replacements, then we can write that To min{T1, T2}. a) €1
+2) b))l +2 ¢) @12 d) )1)2 ) min{,kl,.k2} Questionno. 29 Let {Xn,n=0, 1
.... } be a Markov chain whose state space is the set {0, 1, 2, 3, 4}, and whose
one-step transition probability matrixis100000.50.20300P=001000
01 0 1 00 A) Calculate the probability that the process moves from state 1 to
state 2 in four steps. a) 0.2824 b) 0.2924 c) 0.3024 d) 0.3124 ¢) 0.3224

252 5 Stochastic Processes B) Suppose that X0 = 1. Let N be the number of
times that state 1 will be visited, including the initial state. Calculate E[N]. a)
1.25b) 1.5¢) 1.75 d) 2 e) 2.5 Question no. 30 We define the stochastic
process {X(t), 0 <t <1} by X(t)=N(t 2)-t2N(1) for0<t < 1, where {N(t), t>
0} is a Poisson process with rate . > 0. A) Calculate the autocorrelation
function Rx(tl, t2) of {X(t), 0 <t<1 } attl =1/4 and t2 = 1/2. Hint. We have:
RN (11, t2) =)2tlt2 + ) min{tl, t2}. a) ./64 b) ./32 ¢) 3./64 d) ./16 ) 5./64 B)
Calculate P[X(t) >0 IN(1)=1] for0 <t<1.a)1/2b)tc)l-td) te) I-t

6 Estimation and Testing 6.1 Point Estimation Definition 6.1.1. A random
sample of size n of a random variable X is a set XI ..... Xn of independent
random variables whose distribution is identical to that of X. That is, Xg has
the same distribution function as X, fork=1 ..... n. The random variable X is
also called the population and each Xg is an observation of X. Definition
6.1.2. A statistic is a function, that does not depend on any unknown parameter,
of the observations in a random sample. The distribution of a statistic is called
a sampling distribution. Example 6.1.1 The sample mean: :=- (6.1) nk=l1s a
statistic. Similarly, the sample variance: S 2 :=. (Xk 2)2 (6.2) n-1 k=l is a
statistic. However, the quantity (Xk /)2 n 1 k=1 is a statistic only if/, := E[X]



1s known. If the population X is Gaussian, then the sampling distribution of is
also Gaus- sian. Finally, if X does not have a Gaussian distribution, but n is
large enough, then the sampling distribution of is approximately Gaussian, by
the central limit theo- rem.

254 6 Estimation and Testing Definition 6.1.3. A point estimate of an unknown
parameter, O, of a population is a real number that corresponds to this
parameter. Definition 6.1.4. An estimator of an unknown parameter, O, of a
population is a statistic T = g(Xi ..... Xn) that corresponds to this parameter.
Remarks. 1) An estimator T is a random variable, since it is a function of a
random sample. 11) The quantity O can, actually, be a vector: 0 = (01 ..... Ore).
Example 6.1.2 The sample mean, ,, is an estimator of the (unknown) population
mean #. Likewise, S 2 is an estimator ofo. 2 := VAR[ X]. Moreover, numerical
values obtained with a particular random sample, that is, € and s 2, are point
estimates of # and 0.2, respectively. Properties Definition 6.1.5. An estimator
T of an unknown parameter O is said to be unbiased if E[ T [ = O. Furthermore,
the bias $'T is defined by Bias[ Tl = E[T][ - O. (6.3) Remark. The estimator T
(=T(n)) is said to be asymptotically unbiased if lim E[T] = O. Example 6.1.3
The sample mean is an unbiased estimator of #, because Likewise, S 2 is an
unbiased estimator ofo. 2. Indeed, we can show that $2 :: I-(Xk--)2 1 '-

X2 n.21k € k=n- 1 n-- 1 k=1 Moreover (see Chapter 4, p. 185), VAR[,]
ind. € VAR[Xk]n 2 i.d. n21 no.2 : --.@2nk:1 Then, making use of the formula
(6.4)

6.1 Point Estimation 255 E[X 2] = VAR[X] + (E[X]) 2, we find that E[S 2] =0
"2. Indeed, we have: Definition 6.1.6. The mean square error of the estimator
T of an unknown popula- tion parameter 0 is given by MSE[T] = E[(T - 0)2].
(6.5) Remarks. 1) Expanding the squared expression in the above definition,
we find that MSE[T] = VAR[T] + (Bias[T]) 2. (6.6) Thus, if T is an unbiased
estimator of 0, then MSE[T] = VAR[T]. ii1) Let T1 and T2 be two estimators of
0. We say that T1 is relatively more efficient (or simply better) than T2 if
MSE[T] < MSE[T2]. (6.7) Example 6.1.4 Let X1 ..... Xn be a random sample
ofa Gaussian population X with mean # and variance 0.2, where # and 0 .2 are
unknown parameters. Then, making use of Equation (6.4), we can write that O-
2 MSE[] = VAR][] = --. (6.8) n Moreover, we can show that MSE[S2 ] 2 0.4.
(6.9) n-1 Actually, we find that the (biased) estimator of 0 .2 obtained by
dividing by n rather than by n - 1 in (6.2) is relatively more efficient than S 2.



Definition 6.1."I. Let T be an estimator of O based on a random sample of size
n. We say that T is a consistent estimator of O if T converges in probability to
O, that is, if lim P[IT-OI <]=1 'v' >0. (6.10) Example 6.1.5 The sample mean, ,
is a consistent estimator of #, because, by Bienaym6-Chebyshev's inequality,
we can write that VAR[] 0 2 P[[ - #[ <] >162--1---n62"1asn-+x
'@¢ > 0. Note that we can also use the weak law of large numbers to show that
" 1s a consis- tent estimator of #.

256 6 Estimation and Testing The Method of Maximum Likelihood Definition
6.1.8. Let X ..... Xn be a random sample of a population X whose prob- ability
density (or mass)function f x (x; 0) depends on an unknown parameter 0. The
likelihood function of the sample 1s L(O) = fi fx(Xk; 0). k=1 (6.11) Definition
6.1.9. The maximum likelihood estimator, OM L, of the parameter O ts the
value of O that maximizes the likelihood function. Remark. We can have: 0 =
(0 ..... Om). Example 6.1.6 a) Let X ..... X. be a random sample of X Exp(X).
Then, we have: I(X) : -1 Xe-XX = Xne-Xnf ifXk > 0 Vk. k=1 Since )
maximizes LOQ if and only if) maximizes In LOQ, we can consider In LOQ =
n InX - Xn2. Finally, we find, by differentiating In LOQ (with respect to )) and
setting this deriva- tive equal to zero, that XtL= 1/2. We can check that itis a
maximum. Indeed, we have: d 2 n dX InLOQ=- <0. b) If X Poi(a), we have: i
e-ax e-nat n'f{ L(ot) =--nif Xk {0, 1, .. } k= Xk ! 1-Ik= Xk ! " = InL(eO=--
ne+n21ne--InXk! k=1 d n2 = --Inl() =-n+-- =00 =2. da Since d 2 n2 da 2 In
L(a) -- a2 (at least for n large enough), we can write that Yk

6.1 Point Estimation 257 Remarks. 1) Method of moments. We set, in the case
when X Exp(X), 1 E[X]=2€>- =2. It follows that the estimator of the
parameter X by the method of moments, ,M, is also given by 1/.. Similarly,
when X Poi(), proceeding as above, we find at once that 4 = (= 4L). In general,
we set- XmE[Xm]=kform=1,2 ... k=1 (6.12) We use j (helpful)
equations to estimate the j unknown parameters of the function fx(x; 0). For
example, if X U[-0, 0], then we use the equation obtained with m ---- 2
(because the equation for m= 1 does not enable us to estimate 0): F/ " k=l That
1s, (20) 2 n2 [ -- X 2-11/2 12 k=1 n k=1 Actually, some authors instead use the
equation VAR[X] =3 2 "0- VAR[X] ---- (Xk -- .)2 n-- k=1 to estimate the
parameter 0, which yields a different estimator: k=] However, since E[X] =0,
if n is large enough, then should be approximately equal to zero, so that the two
estimators will produce almost equal point estimates. 1) Let X U[0, 0]. Then,



1 L(O)=-- ifXk [0,0]@k. O n We find that OML = max{XI ..... Xn}, while
OM = 2R. For example, if we have the following particular observations: 1, 2
and 9, then OM ---- 9 and 04 =2 € 4 = 8 (which is impossible).

258 6 Estimation and Testing 6.2 Estimation by Confidence Intervals
Definition 6.2.1. An interval [ LC, U C] is called a (two-sided) confidence
interval at 100(1 - ot)%forO if P[LC(X1 ..... Xn) <0 <UCXI..... Xn)] =1 - a.
(6.13) Remarks. 1) 0 is a parameter, whereas LC and UC are random variables.
1) We call LC and UC the lower confidence and upper confidence limits,
respec- tively. Moreover, 1 - is called the confidence coefficient. ii1) One-
sided confidence intervals with a lower bound and an upper bound are given
respectively by [LC, ) and (-, UC], where now P[LC <O]=P[O<UCI =1 -.
(6.14) a) Confidence interval for/z; r known Let X, ..., Xn be a random sample
ofa Gaussian population X whose mean is unknown, but whose variance r 2 is
known. Then, we can write that It follows that " N(#, cr2/n) :=-- N(0, 1).
(6.15) where z/2 is defined by (see Fig. 6.1) @ (z2)=1--=1-,(6.16) or
Q(zc/2) 2 ="(6.17) -Z/2 Z ct/2 " Figure 6.1. Definition of the quantity z/2.

6.2 Estimation by Confidence Intervals Table 6.1. Values of zc for various
values of a. 259 0.25 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 0.674 1.282
1.645 1.960 2.326 2.576 3.090 3.291 That s, z, is the 100(1 - oe)th percentile
of the standard Gaussian distribution (if 100(1 - oe) is an integer). We deduce
from Equation (6.16) that P [f{( - z,/2(ct/x/") <lz <f( + z,/2(ct/x/")] =1 - oe.
(6.18) Therefore, the interval [ f( - z,/2(cr / x/"), f( + z/2(cr / x/') ] (6.19) 1s a
100(1 - 00% confidence interval for Remarks. 1) One-sided 100(1 - 00%
confidence intervals for/z are given by [J - z,(cr/x/"), X) and (-x, J z,(ct/x/")].
(6.20) 11) The confidence intervals given by expressions (6.19) and (6.20) are
still valid (ap- proximately), even if the population X is not Gaussian, as long
as n is large enough (by the central limit theorem). 1i1) The values of z, can be
obtained using a statistical software package or found in a table. The most
useful values are given in Table 6.1. Furthermore, by symmetry, we have: z- =
-z. Finally, there are also formulas that give good approximations to z,.
Example 6.2.1 Let xl ..... X0 be a particular random sample of a population X
N(/z, cr 2 =0.04). Suppose that € = 10.5. Then, a confidence interval for/z
with confidence coefficient equal to 1 - oe =0.95 1s given by 10.5 -t-
1.960(0.2/x/q-d) ==[10.38, 10.62] (approximately). Remark. We cannot write
that P[/z6 [10.38, 10.62]] _ 0.95, because /z is not a random variable. Once



the data have been collected, we calculate a deterministic interval. Then, the
parameter/z is or is not in this interval. There 1s no probability left. b)
Confidence interval for/; tr unknown If the variance cr 2 of the population X is
unknown, but n is sufficiently large, then we can still use expressions (6.19)
and (6.20). We only have to replace cr by its estimator S. However, if nis
small (< 30), these expressions are no longer valid. In this case, X must have a
Gaussian distribution. We consider T .-- S/x/-d -- {[(n- 1)(S/cr)2]/(n- 1)}
1/2' (6.21)

260 6 Estimation and Testing 0.4 0.3 0.2 0.1 0 finity (N(0,1 )) ribution) 4 -2 0
2 4 Figure 6.2. Examples of Student's tk distributions. We can show that " and
S are independent random variables and that (n-- 1) $2 2 (7 2 Xn-I" (6.22)
That is, (n - 1)($2/(7 2) has a chi-square distribution withn - 1 degrees
offreedom. Since the numerator on the right-hand term of Equation (6.2) has a
Gaussian N(0, 1) distribution, then, by definition, T has a Student's t
distribution with n - I degrees of freedom. We write: T tn-1 (see Fig. 6.2).
Proceeding as in Case a) above, we find that [2 -- tc/2,n-1 (S/q/'), 2 + tc/2,n-1
(S/q/)] (6.23) 1s a 100( 1 -oe)% confidence interval for p, where tc/Z.n-1 is
defined by (see Fig. 6.3) PIT <tc/Zn-1] =1- - ifT tn-1. (6.24) Remarks. 1)
The formulas for the one-sided confidence intervals are easily deduced from
(6.23). We obtain: [2-t,n (S/v),ec) and (-ec, 2+t,n (S/v)]. (6.25) {T (1) tou2, n-
1 Figure 6.3. Definition of the quantity tct/2,n 1.

6.2 Estimation by Confidence Intervals Table 62. Values of t0.025, n and
t0.05,n for various values ofn. 261 n1234567 81t0.025,n12.706 4.303
3.1822.776 2.571 2.447 2.365 2.306 t0.05,n 6.314 2.920 2.353 2.132 2.015
1.943 1.8951.860n9 10 1520 25 30 40 x.025,n2.262 2.228 2.131 2.086
2.060 2.042 2.021 1.960 N.05,n 1.833 1.812 1.753 1.725 1.708 1.697 1.684
1.645 11) The values of t,,n are obtained using a statistical software package or
found in a table. The values of t0.025,n and of t0.05,n for many values of n are
given in Table 6.2. Furthermore, by symmetry, as in the case of the standard
Gaussian distribution, we have: tl_a, n=-ta, n. 111) Student is the pseudonym of
W. S. Gosset. 1 The probability density function of a Student distribution with
k degrees of freedom is given by I[(k+ 1)/2] 1 fT(t) =4,i(k/2 ) [1 + (2/k)]
(k+1)/2 for-x <t <x. (6.26) Its mean is equal to zero (for k> 1) and its
variance to k/(k - 2) (for k> 2). Moreover, the Student distribution with 1
degree of freedom is a particular case of the Cauchy 2 distribution, whose



probability density function is given by 1 fx(x)=[ (-) 2]rfl 1+ for-x <x <x,
(6.27) where 6 and fl > 0 are parameters. The tl distribution corresponds to the
case when = 0 and fl = 1. We can show that this Cauchy distribution can also
be obtained from two independent N(O, cr 2) random variables, X and Y, by
defining Z = XWY. Note that the mathematical expectation of this random
variable does not exist, because 1 William Sealy Gosset, 1876-1937, was born
and died in England. He studied chemistry and mathematics at Oxford
University. Next, he worked as a chemist for the Guinness brewery, in Ireland,
where he invented a statistical test for the control of the quality of the beer.
This test uses the distribution that bears his name. He published many papers
on statistics. His research was motivated by practical problems. 2 (Baron)
Augustin Louis Cauchy, 1789-1857, was born and died in France. He is
considered the father of mathematical analysis and the inventor of the theory of
functions of a complex variable. He studied at the Jcole Polytechnique de Paris
and at the Jcole des Ponts et Chauss6es. He was professor at the Jcole
Polytechnique and at the Collge de France. His political ideas and his
religious convictions caused him a lot of trouble. He wrote 789 scientific
papers on mathematics, mechanics, optics, etc. His contributions to
mathematical physics are very important. Many formulas or mathematical
results bear his name.

262 6 Estimation and Testing 1 E[X] = x dx 7r(x + 1) and this improper
integral does not converge. However, if we consider the Cauchy principal
value of the integral, defined by limx 2 dx, ,',. 7r(x + 1) then we can write that
E[X] = 0. Finally, given that E[X 2] = 0, the variance of X is infinite (or does
not exist). Example 6.2.2 If cr is unknown in Example 6.2.1 and if the standard
deviation of the sample is equal to 0.25, then the confidence interval becomes
10.5 +2.262(0.25//")y =[10.32, 10.681 (approximately). Remark. Since tn> z
foranynE { 1,2 .... }, the confidence interval obtained when the population
standard deviation is unknown should generally be wider than the
corresponding confidence interval calculated with cr known, which is logical.
However, it can happen in practice that the estimator S of cr considerably
underes- timates the true value of the population standard deviation, so that the
confidence interval in the case when cr is unknown i1s narrower. For instance,
if we had obtained a value of s equal to 0.15 rather than 0.25 above, then the
confidence interval would have been [10.39, 10.61] (approximately), which is
a slightly narrower interval than the one calculated in Example 6.2.1. 6.3



(Pearson's) Chi-Square Goodness-of-Fit Test Let X be a random variable
whose probability density (or mass) function fx(x; O) is unknown. We want to
test the null hypothesis HO: fx = fo (6.28) against the alternative hypothesis H:
fx gk fo, (6.29) where 10 1s a given function. The procedure, proposed by K.
Pearson, 3 is the follow- ing: 3 Karl Pearson, 1857-1936, was born and died
in England. He studied at Cambridge Univer- sity and then made his career in
London. His most important works were on applications of statistics to
biological problems. His contributions to statistics, in particular his goodness-
of-fit test published in 1900, are contained in his papers on the theory of
evolution. He also contributed to regression analysis. The term "standard
deviation" is due to him. He and Fisher totally disagreed about the statistical
techniques they were using. Moreover, he studied, in Germany, medieval
German literature. He was even offered a post in this field at Cambridge
University.

x(X) 6.3 (Pearson's) Chi-Square Goodness-of-Fit Test 263 2 Figure 6.4.
Definition of the quantities X2/2,n-ce 1 and X1 1" 1) we divide the set Sx of
possible values of X into k disjoint and exhaustive classes (or intervals); i1)
we take a random sample of size n from the population X; 111) we calculate k
D2 :=7Z(nj - mj) 2 j=1 mj (6.30) where nj is the number of observations in the
jth class (the observed frequency) and my denotes the expected frequency under
Ho, that is, the number of observations that the jth class should count, on
average, if the hypothesis HO is true; iv) we can show that if HO is true and if
the number n of observations is large enough, then D 2 X2 r ]. Thatis, D 2 has
(approximately) a chi-square distribution with k - r - 1 degrees of freedom,
where r is the number of unknown parameters of the function f0 that we must
estimate. We reject HO at the significance level ot if and only if where (see
Fig. 6.4) 2 (6.31) 02 > Xce,k-r-1 , P[X<x,n]=l-ot ifXXn . (6.32) Remarks. 1) In
general, it is preferable that mj > 5 Yj. If this is not the case, we can combine
(adjacent) classes and therefore reduce k. i1) The k intervals (or classes) are
not necessarily of equal width. Likewise, it is not necessary that the
corresponding probabilities be equal. ii1) Before drawing the random sample,
we can state that if the null hypothesis HO is true, then the number Nj of
observations that will fall in the jth class is a random variable having a
binomial distribution with parameters n and p j, where pj is the

264 6 Estimation and Testing Table 6.3. Values of X,n for various values ofc



and n. n X02.025,n 2 X0.05,n X(.95,n2 X0.975,n1234567895.027.38
9.3511.14 12.83 14.45 16.01 17.53 19.02 3.84 5.99 7.81 9.49 11.07 12.59
14.07 15.5116.920+0.10 0.350.71 1.15 1.64 2.17 2.73 3.33 0 + 0.05 0.22
0.48 0.831.241.692.18 2.70 10 15 20 25 30 40 50 100 20.48 27.49 34.17
40.65 46.98 59.34 71.42 129.56 18.31 25.00 31.41 37.65 43.77 55.76 67.50
124.343.94 7.26 10.85 14.61 18.49 26.51 34.76 77.93 3.25 6.27 9.59 13.12
16.79 24.43 32.36 74.22 2 X0.025,n Xg.05,n X02.95,n X02.975,n probability
that the variable X takes a value in the jth class (if Ho is true). We have: myj -
npj. Furthermore, we know that the binomial distribution tends to a Gaussian
distribution. Finally, the square of a standard Gaussian distribution is a chi-
square distribution with one degree of freedom. iv) The values of X2,n are
obtained using a statistical software package or a table. There are also
formulas that give excellent approximations, in particular: 2 Xc,n-nZc +1 - -
n (Wilson-Hilferty's approximation) (6.33) and X2 1 [Zc, +2n/Z- 1] 2
(Fisher's approximation). (6.34) The values of X,n for various values of ot and
n are given in Table 6.3, p. 264. Contrary to z, and tc.n, we cannot write that
X-,n=-X,n2 (because the chi-square distribution is non-negative). Example
6.3.1 We want to test the hypothesis that the lifetime X (in months) of an
electronic component has an exponential distribution. We collected the
following observations: j [0, 10) [10, 20) [20, 30) [30, 40) [40, nj 3520 18 8
19 100 Moreover, the mean of the observations is equal to 25. Thus, we want
to test HO: X Exp())

6.3 (Pearson's) Chi-Square Goodness-of-Fit Test 265 against HI: X does not
have an exponential distribution. Suppose that = 0.05. First, we must estimate
the unknown parameter ,. We al- ready saw, in Section 6.1, p. 256, that the
maximum likelihood estimator of, is given by 1/). Then, we set fx(x) = le-x/25
forx > 0. 25 Next, we find that P[a <X <b] =e -a/25 - ¢ -1'/25 for0<a <b,
whence we deduce the following table: j [0, 10) [10, 20) [20, 30) [30, 40) [40,
x) Enj 352018 8 19n=100 () pj 0.330.22 0.150.10 0.20 1 (npj =) my 33 22
1510 20 100 Now, given that mj > 5 Y j, we calculate D2 (35 - 33) 2 (19 -
20) 2 -- +...+ 1.35.33 20 Remark. We could use d 2 to distinguish between
the test statistic D 2 and the value taken by this statistic. 2 Since X0.05,5-1-1 -
7.81, we accept the exponential model, with , = 1/25, at significance level =
0.05. Remarks. 1) If we wanted to test, for instance, the hypothesis that the
random variable X has a Gaussian distribution, then we would have to add the
interval (-, 0) (in which there are of course no observations). i11) The parameter



is actually defined by = P[Error of type 1] = P[Reject HO [ HO is true]. (6.35)
Here, the notation for conditional probability given in Chapter 2 has been used.
How- ever, we will never have to calculate the probability of the event {HO is
true}. It is merely a statement that we assume to be true in the calculation of the
type I error riskl We also define the parameter/3 by the formula /3 = P[Error of
type II] = P[Accept HO [ HO 1s false]. (6.36) The quantity 1 -/3 is called the
power of the test. A test generally more powerful than that of Pearson is the
Kolmogorov-Smirnov test. To test normality, the Shapiro-Wilk test (for n < 50)
is considered by many people to be the best.

266 6 Estimation and Testing Note that, contrary to , the value of fl is not
unique in a given problem, but rather depends on the particular alternative
hypothesis Hi that we assume to be true. There are actually an infinite number
of particular alternative hypotheses Hi, whereas HO is unique. For example,
above if the hypothesis Hi is true, then the random variable X can have any
distribution, except the exponential distribution. 6.4 Tests of Hypotheses on the
Parameters I) Comparisons between a parameter and a constant a) Test of a
theoretical mean/z; €y known Let X1 ..... X,, be a random sample of size nof a
random variable X with un- known mean #, but known variance cr . We want
to test against H: It -€p/zo. (6.37) Remark. A hypothesis of the form Ho:/z -----
/z0 1s called simple, whereas HI:/z :/zo is a multiple or composite hypothesis.
Moreover, the test in (6.37) 1s said to be two- tailed. A right-tailed or upper-
tailed (respectively left-tailed or lower-tailed) test is given by Ho: /z =/z0
against Hi: /z> /zo (resp./z </zo). (6.38) In this case, we may write the null
hypothesis Ho as follows: HO:/z </zo (resp./z> /zo0). (6.39) To perform the
test in (6.37), we use the statistic Zo .- (6.40) /v' " When HO is true, has (at
least approximately if n is large enough) a Gaussian distribution with
parameters/zo and a2/n. It follows that Zo N(0, 1). (6.41) We reject HO at
significance level if and only if IZol > z/z, (6.42) where z/e is such that (z/e) :
1 - a/2 (see Section 6.2, p. 258). Remarks. 1) We have, indeed: P[Reject HO I
HO 1s true] = P[1Z01 > z/e I/z :/Z0] : 2(a/2) : a. (6.43)

6.4 Tests of Hypotheses on the Parameters 267 i1) In the case of the one-tailed
tests, we reject HO if and only if Z0>z if Hi:#>#0, (6.44) Z0 <--zif HI: # <
#0. Example 6.4.1 Let xI ..... x25 be a particular random sample of a Gaussian
popula- tion with variance cr 2 = 4. Suppose that 2 = 2.8. To test HO:#=2
against HL:##2, we calculate 2.8 -2 --2. zo- 2/v We then choose or, the



significance level of the test. Let ot = 0.02; then z,/2 = zo.0l -- 2.326. Since

121 <2.326, we do not reject the null hypothesis. On the other hand, if we
choose oe = 0.05, we obtain: z,/2 = z0.025 -- 1.960. Since 121 > 1.960, we
reject the hypothesis Ho: # ---- 2 at significance level oe ---- 0.05. Remarks. 1)
Statistical software programs generally give the value of oe that corre- sponds
to the observed statistic z0. This value is called the P-value. In the preceding
example, we find that z/2 = 2 ifand only if oe _ 0.0455. Thus, if we choose oe
smaller than 0.0455, then we cannot reject HO. In general, it is difficult to give
an exact formula for the P-value. However, in the case of the hypothesis test on
a mean with cr known, it is easy to show that 2[1 - (Izol)] ifH: # #o, P=1-
qb(zo) ifH: # > #o, qb (zo) if HI : # <#o. (6.45) i1) In the case of the tests
(especially the one-tailed tests) on the parameters of a random variable, the
null hypothesis is usually the one that we think is false, or at least that we put
in doubt. Consequently, we try to reject it. For this reason, we prefer to say that
we cannot reject HO, rather than saying that we accept Ho. Type H error If the
hypothesis HI is true, that is, if # = #1 = #0 A, where A 0, then J N(#1, cr2/n)
and it follows that Therefore, (6.46) fl (= fl(A)) = P[Accept Ho I Ho is false]
=P[-z/2< Zo< z/21#=%#0+A]

268 6 Estimation and Testing =P - Zc/ - -- <N(O,1) <Zc/ (6.47) Remark. In
the case of the one-tailed tests, we find that € z, if HI: # > #0, € z if H: <0.
(6.48) Example 6.4.1 (continued) If the true value of the population mean is #
=#l=2.6=20.6, and ifa = 0.05, we calculate /3(0.6) (1.96- (0.6)(5/2)) -
(-1.96- (0.6)(5/2)) Tab. 3.3 =(0.46) - (-3.46) -- 0.6772 - (1 - 0.9997) =
0.6769. Thus, the power of the test, when # = 2.6, is given by 1 -/3(0.6) "
0.3231, which is weak. If we wish to increase this power, we can take more
observations. Indeed, the value of/3 decreases as n increases (see (6.47)). For
instance, if we take n = 100, then we obtain that/3(0.6) _ 0.1492, so that 1 -
/3(0.6) -- 0.8508. In practice, we would like 1 -/3(A) to be greater than or
equal to 0.8 for a difference A that we deem significant between #0 and the
true population mean. Sample size We can make use of Equation (6.47) to
calculate the value ofn required to get a certain/3, given a and A. Indeed, if A >
0 we have: so that This last equation implies that (6.49) /3- (z/2 A/-ff). (6.50)
z- -- 7/2 -- -- (6.51) O" Since zl- = -z, we obtain the following formula: (z/ +
z) n-- (6.52) A2 ' where A =# - #o.

Remarks. 1) If A <0, then 6.4 Tests of Hypotheses on the Parameters 269



(Zc€p/2 A/) - 1 (6.53) and we obtain the same formula as above for n. ii) In the
case of the one-tailed tests, we find the following exact result: (z, + zt)2r 2 n --
(6.54) A 2 Example 6.4.2 Suppose that we test Ho:#=2 against Hi:#5 2 with ot
=0.05. Then, if # =2.5 and cr 2 = 1, to obtain a value of/3 smaller than or
equal to 0.10, we must take (z0.025 +z0.02 € 1 (1.960 + 1.282) 2 n42. (2.5 -
2) 2 0.25 Remark. Here, we have: q(-1.960 - (0.5),/) -- q(-5.20) _ 0. b) Test
of a theoretical mean ; a unknown Let X ..... Xn be a random sample of a
random variable X having a Gaussian distribution with mean # and variance cr
2 unknown. To test Ho: # = #o, (6.55) we use the statistic To .-- -- (6.56) s / ,{'
where S is the sample standard deviation. We' can write (see p. 260) that To
tn-1. (6.57) We reject Ho at significance level ot if and only if ITol > tot/2,n-1
ifHi: # 5 & #o, TO > tt,n-1 if ill: # > #0, TO < -ta,n-1 if HL:# < #0. (6.58)

270 6 Estimation and Testing Remark. If the sample size is large enough (>
30), we can use the test in Case a) above; we simply replace a by its estimator
S. Moreover, in this case, the assumption of a Gaussian distribution for X is
not essential. Example 6.4.3 Let 5, 15, 14, 12,4, 8,9, 12,10, 17,12, 11 be a
particular random sample of a Gaussian population with mean/ and variance a
2 unknown. We choose = 0.05 and we want to test Ho:z= 15 against H:z€p 15.
We first find that 2 = 10.75 and s -- 3.84. Next, we calculate 10.75-15- -
-3.83. 3.84//-1- Finally, since t0.025.11 2.201, we have: Ito] > t0.025.11 and
we can reject the null hypothesis Ho at level = 0.05. Remark. Actually, we
must set the hypotheses Ho and H prior to taking the random sample. Type H
error and sample size By definition, in the two-tailed case, fl = P[Accept Ho |
Ho is false] = P[17b] <t/2,n-1 1/ =/0 -t- A], (6.59) where A € 0. Now, if z=
zo + A, we find that -- , (6.60) To.-- S/V/- xY W2/(n_ 1) where Y N(Ax/-d/a, 1)
and W 2 Xn2_are independent random variables. We say that To has a non-
central t distribution with n - 1 degrees of freedom and non- centrality
parameter A x/-d/a. Consequently, it is not easy to calculate the exact value of
ft. There exist approximation formulas for ft. For example, we can show that (
tn--[-V/- + (t2a,n_,/2n) flI() -- gb ,, 1 1fH:/ >/0, (6.61) where ft -- {t 0 .-- --
(6.62)

6.4 Tests of Hypotheses on the Parameters 271 Since 0. is unknown, we must

replace it by its point estimate s (if the random sample has already been taken)
to calculate , or we can express the difference # - #0 in terms of 0.. There also
exist curves, called operating characteristic curves, that give the value of/3 in



terms of a parameter like above for a fixed ¢ and many values of n. More-
over, we can use these curves to (approximately) calculate the size n of the
random sample that we must take to obtain a given value of/3. Finally, we also
find tables that give the value of n that corresponds to/3, when ¢ and are fixed.
In this book, as far as the computation of/3 or n is concerned, we will
generally simply consider the case when the size of the random sample (taken
or that must be taken) is large. The problem is then reduced to the preceding
one where 0. is known and we can use the formulas already obtained. We must
however replace 0. by s (if the data have been gathered). ¢) Test of a
theoretical variance 2 Let X1, ..., X nbe a random sample of a Gaussian
random variable X, with mean # and variance 0.2 unknown. To test the null
hypothesis Ho: 0.2 = 0.0 2, we use the statistic W02 .-- (n- 1)S 2 0.02 (6.63)
When Ho is true, W02 has a chi-square distribution withn - 1 degrees of
freedom. We reject Ho at significance level a if and only if2 2 if HI: 0 .2 0.0 2
, Wg>Xot/Zn_1or W02 <Xl (ot/Z),n_1Wd2>2 Xc,n 11fHI: 0.e >0.02,
(6.64) W,2 <.2ifnl: 0.2<0.02.0," 1 -or,n- 1 Remark. As in the case of the
test of a theoretical mean # with 0. known, we could consider the problem of
testing HO:0.2 = 0.g when this time (we assume that) the population mean 1s
known. However, in practice this case is much less important. Example 6.4A
(See [4].) Let 10.2,9.9,9.8, 10.1, 10.1, 9.9, 10.0, 9.7, 10.1, 10.3 be a
particular random sample of a random variable X that represents the weight of
soap boxes. We assume that X has (approximately) a Gaussian N(#, 0.2)
distribution and we want to test Ho: 0.2 = 0.04 against H1 : 0.2 > 0.04 at level
¢ = 0.05. We find that 2 = 10.01 and Z]€l x/2 = 1002.31. It follows that

272 6 Estimation and Testing 10 s2 = (xi - .)2 10- 1 i=1 ---- x/2-10€2 " 9 ' so
that 0.31 w " =7.75. 0.04 Finally, since 2 X0.05,9 " 16.92, we cannot reject
the null hypothesis HO at significance level a = 0.05. Remark. Here, since s 2 "
0.034 is smaller than 0.04, we certainly could not reject Ho with a small a.
Type II error and sample size Suppose that the alternative hypothesis is H: r 2
<ro2 and that the true value of r 2 is r 2 < %?2. We have: =p[(n-1) $2 2 0? - 1-
(n-I10"=PIx.-2> )XI2 .n 1], (6.65) where 0-2 € 0 (6.66) Similarly, we
find that 2 plz2 < ZZ,,. 1ifH: r2>102, Z2 72 P1Zz-(a/2).,-1 < Xn2-1 <
Xa/2.n-11 if HI: # a02. (6.67) Now, if n is large, we may write that Xn 2 N(n,
2n). (6.68) Hence, we can approximately calculate fl(Z) with the help of the
preceding formulas. To determine the size of the random sample needed to
obtain a fl smaller than or equal to a given value, we can use the following



formulas: 3 1 Io-0z + 0'IZ/5 ]2 (one-tailed cases), 3
_1,07,/+,,Zl(two_tailedcase), +2L -0 J (6.69) where r 2 is the true variance of
the populationgp

6.4 Tests of Hypotheses on the Parameters 273 Example 6.4.4 (continued)
Suppose that we gathered 51 observations rather than 10 in the preceding
example. If 0.1 = 0.06, then ;k = 2/3 and we calculate 8(, = 2/3) = P[;(520 <
(2/3);(02.05,501 Tab. 3.3 Tab/.,,6.3 P[N(50, 100) <45]=qb(-0.5) 0.31.1If
we want to be able to detect, with a probability of at least 0.90, that 0.2 is
greater than 0.04, when the population variance is in fact equal to 0.06, we
must take 3 ! F0.2 Z0.05 "-b Z0.10 ] 2n--+2 L,/g-hZ- 0.2 J - 103.83. Thus,
we must take at least 104 observations. Remark. We can show that if n is large
enough, then we may write that S N(0., ). (6.70) It follows that S - 0.0 N(O, 1).
(6.71) z0 .- 0.0/,/ - Therefore, when n 1s large, we can also reject Ho if and
only if ]Zo] > zooC if HI: 0 .2 50.g, Zo>z1f HI: 0.2 > 0.0 2, (6.72) Z0 < -z, if
HI: 0.2 <0.g II) Comparisons between two parameters a) Test of two
theoretical means; variances known Let X1 ..... Xm be a random sample of a
random variable X with unknown mean/zx and known variance 0.x 2 , and Y1
..... Yn be a random sample of a random variable Y with unknown mean /zr and
known variance 0.r 2. We assume that the random variables Xi and Y]j are
independent €1, j. To test HO:/zx -/zr = A, (6.73) we use the statistic z€p - v/-
+ Since J and I ? are independent, we have: )-17--N(/zX-/ZY'0.A+ -)m (6.74)
(6.75)

274 6 Estimation and Testing (at least approximately if m and n are large
enough). It follows that Zo N(0, 1). (6.76) We reject HO at significance level
oe if and only if 1 1Zol > z/2 if H,:/zx -/zr - A,/ Zo > z, ifH:/zx /zr > A.
(6.77) Remark. In the case of the tests comparing two parameters, we can limit
ourselves to the two alternative hypotheses above, since we want to determine
whether the two parameters differ by a constant A (HO) or not (H), or whether
the difference between one parameter and the other is smaller than or equal to
A (Ho) or greater than A (H). Example 6.4.5 Let x ..... xm be a particular
random sample of X N(/zx, 2) and Y ..... Y5 be a particular random sample of
Y N(/zr, 3). We assume that the samples are independent and we want to test
Ho: /zx =/zy against H: /zy > /zx. We simply have to take A = 0 and reverse the
role of X and Y in the above formulas. We choose = 0.05. Suppose that 2 =4
and . = 5. Then we calculate 5-4 1.58. zo- 2-- 3 nt- 0 Since z0.05 - 1.645, we



cannot reject the null hypothesis Ho:/zx =/zr at level = 0.05. Remark. If we had
obtained zo = 1.68, for instance, then we could have rejected HO and accepted
H: /zx </zr. However, we could not reject Ho with zo = 1.68 if the alternative
hypothesis were rather H: /zx -€p /zr, since 11.681 -- 1.68 is not greater than
70.025 -- 1.960. Type H error and sample size Proceeding as in the case of the
test of a theoretical mean with cr known, we find that fi(6)={ (zc/2-6)-(-
zc/-6)ifH:x-r> A'(zc-6) ifH:x r A, (6.78) where X -- Y --t 6 .-- (6.79)

6.4 Tests of Hypotheses on the Parameters 275 Similarly, we find that to obtain
a given fl, we must draw random samples of size (z/2 ++ m=n" (6.80) (#X --
#r -- A) 2 when the alternative hypothesis is Hi: #x -- gr € A. In the case of
the one-tailed test, we replace /2 by in the preceding foula, and the result 1s
now exact, rather than approximate. Remark. In theory, it is not necessary to
take m=n (= c). We can choose m, for instance, and then e value of n that
coesponds to a given is 2¢ - m. We can proceed in that manner, in paicular,
when it is more expensive to draw a random sample from one random variable
than from the other. b) Test of two theoretical means; variances unknown Let
XI ... Xmand Y1 ..... Yn be random samples of a random variable X and of
a random variable Y, respectively. We assume that all the parameters are
unknown and that X and Y have independent Gaussian distributions. We want
to test HO: #x - #" = A. (6.81) Case 1:crx2 = err.2 We first assume that the
variances are unknown, but equal. In practice, we per- form a test of equality
of variances (which will be seen further on) to make sure that this hypothesis 1is
reasonable. We define 2 (m-- 1)S2x + (n- 1)S2y (6.82) Sp= m+n-2 ' where
sZx and sZr are the sample variances, and we consider the statistic To .--
(6.83) S pm- + We may write that Ho To tm+n-2. It follows that we reject HO
at significance level ¢ if and only if ITO1 > t/2,m+n-2 ifH: #x -- #" A, TO >
t,n-2 if H1 #x #, > A. (6.84) (6.85)

276 6 Estimation and Testing Case 2: ax € ar If we cannot assume that Crx =
crr, then we must use the statistic 2-- To* .-- , (6.86) x which, when Ho is true,
has approximately a t distribution with v degrees of freedom, where (a +b) 2 v
--(687)a2b2-"S-1-"1-n-1withS2S2€@xandb"Ya.=-- =--.to.l m
n We then replace To by TO* and m+ n - 2 by v in the preceding case.
Remarks€p i) We also find in several books the formula (a +b) 2 v -- 2. (6.89)
a2 b2 mtl +ntl i1) We can show that min{m - 1,n-1} < v <mtn-2. ii1) When
the sample sizes are large enough, we can use the standard Gaussian dis-



tribution as an approximate distribution (under HO) for 7b or To*. ¢) Test of
two means with paired observations Suppose that we gather pairs (X, Y) .....
(Xn, Yn) of observations of the ran- dom variables X N(/x, ax 2) and Y N(/y,
ay2), and that the conditions under which the observations are taken vary (or
may vary) from one pair to the other. In this case, the observations Xk and Yk
are not independent. To test Ho:/x -/ Y = A, we define the variable D=X-Y
and we calculate the differences D :==X-Y fork=1 ..... n. The problem of
testing HO 1s then reduced to that of testing a theoretical mean/) with a)
unknown, and we can use the formulas in Case I) b), p. 269. Example 6.4.6
(See [11].) In a test of hardness of materials, a steel ball is pressed into each
material and the diameter of the indentation is measured. This diameter is
related to the hardness. We have two types of steel balls, which we use with
ten different materials. We want to determine whether the two types of steel
produce equivalent results. We collected the following data:

6.4 Tests of Hypotheses on the Parameters 277 Material 123456789 10
Steell 75 46 57 43 58 32 61 56 34 65 Steel2 52 41 43 47 32 49 52 44 57 60
Let X be the indentation diameter obtained with steel 1 and Y be the
indentation diameter with steel 2. We define D = X - Y and we want to test HO:
/Z0 = 0 against H1: /Z0 - 0. Let = 0.05. We calculate the differences dk for k
=1.... 10: Material 12345678910dk23514--426--17912--235
We find that d = 5 and SD 15.85. We calculate next to- so/v'- 15.8 - 1. Since
t0.025,10-1 " 2.262, we do not reject Ho at level oe = 0.05. d) Test of the
equality of two variances Let X N(/zx, ax 2) and Y N(/zr, a2) be two
independent random variables, and let S and S, be the variances of a random
sample of size m of X and of a random sample of size n of Y, respectively. We
assume that all the parameters are unknown. To test the null hypothesis HO: ox
2=02,(6.90) we use the statistic S 2 . x FO .= -- (6.91) We can show that if
HO is true, then FO has a (Fisher) 4 F distribution withm- 1 and n- 1 degrees
of freedom. We write: Fo Fm-1,n-. We reject HO at significance level a if and
only 1f 4 Sir Ronald Fisher, 1890-1962, was born in England and died in
Australia. He studied as- tronomy at Cambridge University, but he worked as a
biologist in a research center, where he made contributions to genetics and
statistics. He is considered a founder of the mod- ern theory of statistics
because of his numerous contributions to this field. In particular, he invented
the analysis of variance and the concept of maximum likelihood, in addition to
giving the exact sampling distributions of many statistics. Like Gosset's



methods, the sta- tistical methods that Fisher developed are valid for small
samples, whereas Pearson worked with large samples. From 1933, he became
a professor, first in London and then in Cam- bridge.

278 6 Estimation and Testing Table 6.4. Values of Fo.025,n, n and Fo.os,n,n for
several valuesofnn1234567 8 Fo0.025,n,n647.8 39.00 15.44 9.60 7.15
5.824.99 4.43 Fo.05,n,n 161.4 19.00 9.28 6.39 5.054.28 3.793.44n9 10 15
203060 120 Fo.025,n,n4.03 3.72 2.86 2.46 2.07 1.67 1.43 1.00 F0.05, n, n
3.182.982.402.12 1.84 1.53 1.35 1.00 {F0> Fe/2,m-1,n-I or Fo <F (e/2),m-
,n-1 if HI: tTi t7 , FO > Fc,,,,- ,n-1 if H: 0" > @'r" (6.92) Remarks. i) The
critical values F,m-,n- are defined in the same manner as the other critical
values (z, t,,,,, and 2 (6.93) i1) We find For,m-I,n-I with the help of a statistical
software package or in a statistical table. Several values of Fo.0z.s.m,n and
Fo.o.s,m,,are given in Table 6.4 278, in the case when m = n. The values of
Fo.oz.s,n.,, and Fo.05.,,, fornand n2 E {1,2 ..... 12} can be found in Appendix
B, p. 342. Moreover, we have the following relationship: 1 Fl-,nl,n2 -- --
(6.94) Fe,n2,n t Finally, for values of n and n2 large enough, we can use the
approximation formula Fo,n,2 -- exp - -- + z, +. (6.95) nl ii1) As in the case of
the test of a theoretical variance 0 "2, an approximate test, valid when the
sample sizes are large, can be constructed based on the Gaussian distribu- tion.
Indeed, if m and n are large enough, then we may write that Sx N 0.x, 2mJ and
Sy N 0.,, , (6.96) so that Sx - Sy Ho Zo :=N(O0, 1), (6.97)

6.5 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 279 2 1s defined in (6.82). We then reject HO: ax 2 = ar 2 at
significance level cz if where Sp and only if [Z0[ > ;a/2 if Hi: ax 2 :flay 2, Z0
>z1f Hi ax 2 > ar 2. (6.98) 1v) The probability density function of a random
variable having a Fisher distribution with rn and n degrees of freedom is given
by F[(m + n)/2]Jmm/2n n/2 X (m/2)-t £x(x) = F(nvV2)F(n/2) (mx -1- n) (m+n)/2
for x> 0. (6.99) We find that n 2n2(m+ n - 2) E[X]-- ifn>2 and VAR[X]=ifn
>4.n-2m(n-2)2(n-4)(6.100) Example 6.4.7 We consider two
manufacturing processes for bottles. Let X N(/xx, ax 2) be the capacity of the
bottles made with the manufacturing process cur- rently in use, and let Y N(txr,
2 r) be the capacity of the bottles made with a new manufacturing process. All
the parameters are unknown, but we think that/xx We want to test at level ¢ =
0.05 Ho:a2x=a2r against Hl:a2x >a2r. We take at random 20 bottles made with
the current process and 25 fabricated with the new process. We find that s2x



0.0144 and s2g -- 0.0064. We calculate f0 := -- s2x0.0144 =2.25. 52}, --
0.0064 Now, we find in a statistical table that F0.05,19,24 " 2.04 (2.02
according to (6.95)). Consequently, we can reject HO at level ¢ = 0.05. 6
Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises Solved Exercises Exercise no. 1 (6.1) Let 1 x'O fx(x;0) = -xe- / forx
>0, where 0 > 0 is an unknown parameter. We have: E[X] = 20 and VAR[X] =
202. a) Find the maximum likelihood estimator of 0. b) Calculate the mean
square error of the estimator OML obtained in a). ¢c) What is the approximate
distribution of OML? Justify your answer.

280 6 Estimation and Testing Solution a) We calculate L(O) -I-2Xke x/€ 0-2n
12Ixk ex p Xk/O k=1 k=1 k=1 == InL (0) = -2nln0 + InX: - k=1 k=1 odd In L (O)
=02n0'- -- Xk21"1 k=1 k=1 2 2 In L (0) = 2n 2 n Remark. Note that -- - Zk=1
Xk <00 <2. We have indeed: OML = @2 < 2. b) E[OMLI a= E[2/2]1 =
QE[X] == 0 MSE[OMLI = VAR [OML] = VAR[2/2]- VAR[X] 202 02 4n 4n
2n c) By the central limit theorem, we can write that 2 has approximately a
Gaussian - b) 02 N(E IX], @ VAR [X]) distribution. Then, OML €X . N(0, N).
Exercise no. 2 (6.3) An engineer responsible for the control of the quality in a
company that man- ufactures modems picks, at the end of each workday, two
modems at random (and without replacement) among those manufactured on
that day. Let X be the number of defective modems among the two examined.
We suppose that X B(n= 2, p). a) We can show that the maximum likelihood
estimator of p, based on m observa- tions, 1s given by PML = 2/2, where 2 is
the mean of a random sample (of size m) of X. Calculate the mean square error
of PML. b) We gathered the following data over a 30-day period: j 0 1 2 nj 20
8 2 where j 1s the number of defective modems in the sample of size 2 and nj is
the number of days on which we observed j defectives in the sample. Test the
hypothesis that X B (n=2, p = 1/5). Use oe = 0.05. 2 2 Hint. We have:
X0.05,1 - 3.84, X0.05,2 - 5.99 and 2 X0.05,3 - 7.81.

6.5 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 281 Solution a) We first calculate 1 - 1 2p E [pMI.] = E[J/2] ----- -
E[X] ----- -E [X] -- 2 -- p It follows that Bias[pML] = 0, and then MSE [PMIL.]
= VAR [PML.] =-- VAR[J/2] -- 1 VAR [X] p (1 - p) 4 rn 2m b) Since PO = (4/5)
2 =16/25 and P2 = (1/5) 2 = 1/25, we can construct the following table: j 0 1
2nj 2082 pj 16/25 8/25 1/25 30pj =mj 19.29.6 1.2 30 1 30 Given that m2 =
1.2 <5, we combine the last two classes. We obtain: j 0 1 or 2 nj 20 10 30 pj



16/25 9/25 1 m] 19.2 10.8 30 Next, we calculate D2 (20- 19.2) 2 (10- 10.8) 2
--+--0.0926.19.2 10.8 2 Since D2 0.0926 is smaller than Xo0.05,2-0-1 -
3.84, we can accept the model X B(n= 2, p =1/5), with=0.05. Exercise no. 3
(6.3) Let X be the number of flaws in the paint of new cars. We suppose that X
P0100. We constructed the following table with the help of a random sample of
100 CarS Number of flaws 0 1 2 3 Number of cars 40 36 20 4 a) Calculate the
maximum likelihood estimator of the parameter ), based on the above data. b)
Test the fit of the model X Poi0 = 1) to the data. Use = 0.05. Hint. We have: 2 2
X0.05,2 " 5.99 and Xo0.05,3 - 7.81.

282 6 Estimation and Testing Solution a) We have (see Section 6. 1, p. 256):
Next, we calculate Y=(O€@40-+] €@36+2€20+3€4)-- 1 =0.88. 100 Thus, ML
: 0.88.b) We have: X HPoi1 () =1) =Pk :=PX (k) =e-IF Yk> 0. We then
complete the table as follows: k012 3 +nk4036204 100 =n(--) p 0.368
0.368 0.184 0.080 1 (100p =) m36.8 36.8 18.4 8 100 Since m> 5 Yk, next we
calculate D2 (40 - 36.8) 2 (36-36.8)2(20-18.4)2(4-8)2 36.836.8 18.4
8 2.44.2 " 7.81 we accept the proposed model at significance Given that D 2
<X0.05,4 0 1, level 0 =0.05. Exercise no. 4 (6.4) We believe that the
courier service of company A is faster than that of company B. Independent
observations of the delivery times (in days) of the two courier ser- vices
yielded: nA: 5, 2A=1.2; n= 10, 2,= 1.5. Moreover, we assume that the
standard deviations of the delivery times are 0 A= Q" B =0.2. a) What
additional assumptions must we make to be able to perform the comparison?
Set also the hypotheses HO and H. b) What is the smallest value of ot for which
we can reject HO if z0 = -2.74?

6.5 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 283 Solution a) Let XA (respectively XB) be the delivery time with
company A (resp. B). We assume that XA and XB have a Gaussian
distribution, so that XA N(/ZA, aA 2 = 0.04) and XB N(/ZB, aB 2 = 0.04).
Furthermore, we assume that XA and XB are independent random variables.
Finally, we set: n0: 13, A --- 13, B and H1: b) We reject HO if and only 1f z0 <
-zc Q" -2.74 < -zc. We have: Tab. 3.3 (2.74) 0.9969. Therefore, we can write
that Otmi n' (1 -- 0.9969) +=0.0031 + Exercise no. 5 (6.4) A manufacturer of
synthetic rubber asserts that the average hardness of its rubber is equal to 64.3
degrees Shore. Previous experiments show that the standard devia- tion of the
hardness is equal to two degrees Shore. We believe that the manufacturer's



assertion either underestimates or overestimates the average rubber hardness.
There- fore, we perform a test of hypotheses. If the true mean (/) is indeed 64.3
degrees, the probability of reaching this conclusion must be equal to 0.95.
Moreover, if the difference between/ and 64.3 1s -4- 1 degree, the test
performed should conclude, with a probability of at least 0.9, that/z is not
equal to 64.3. We assume that the rubber hardness has (approximately) a
Gaussian distribution. a) How many observations must we take? b) If 2 = 65
and n is the value computed in a), what is the conclusion of the test? c)
Calculate the probability of concluding that the average rubber hardness is
equal to 64.3, if the true average hardness is 65 degrees Shore and if we use
the sample size computed in a). d) How many observations must we draw if
we want to reject HO with a type I error risk of 0.05 when 2 = 65?

284 6 Estimation and Testing Solution a) We have: ot = 0.05 and fl (1# - 64.31
=1)=1-0.9=0.1. Therefore, we must take (Z0.025 q'- Z0.10) 2 (2) 2 Tab.
6.1n"" (1.960+1.282)24 (# 64.3)2 -- - "" 42.04. Thus, we must draw n=
43 (or 42) observations. b) We want to test Ho: # = 64.3 against Hi: #-€ 64.3
at significance level a = 0.05. We reject Ho if and only if2 2 <l :=64.3 -
70.025 - 643-0.6=63.7/430r22>C2:64.3+1.960 "" 64.3 + 0.6 = 64.9.
Since 2 = 65 > 64.9, we reject the null hypothesis Ho at level ot = 0.05.
Remark. 12 = 65 with n =42 (rather than 43), then C2 "" 64.9 still and the
conclu- sion is the same. ¢) We want to calculate/4 (/z= 65). We can write that
19) 65] f1 (=65) P[63.7 2 64.9 [ ==P[63.7N(65,)564.9] P[-4.26 5 N(0,1) 5
-0.33] Tab. 3.3 PIN(0, 1) 5-0.33] 0.37. Remark. We could have used Equation
(6.47) (p. 268) instead. d) We seek n (minimal) such that 2 65 > 64.3 + z0.025-
1: g/ > 5.6 € n>31.3. Thus, we must take at least 32 observations. Exercise
no. 6 (6.4) We study the thermal efficiency X (in %) of Diesel engines made by
a major car maker. We assume that X has (approximately) a Gaussian
distribution with standard deviation equal to 2. Tests performed on 25 engines
yielded the following results: 2 =31.4 and s = 1.6.

6.5 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 285 a) Test the hypothesis HO:/z = 32.3 against Hi:/z -fi 32.3. Use a
-- 0.05. b) Compute the probability of making a type II error in a) if the
average thermal efficiency is in fact 31.3%. ¢) Based on the data collected, can
we conclude that the standard deviation of X is actually smaller than 2%7
Perform a test of hypotheses at significance level a = 0.01. Hint. We have: 2



X0.99,24 10.86. Solution a) We want to test Ho:/z=32.3 against HI: /z €
32.3 at significance level a = 0.05. We reject Ho if and only if 2 € < C1 :=
32.3 -20.025--31.516 V25 or 2 - > C2 :=32.3 + 1.960 -- 33.084. Since € =
31.4<31.516, we reject Ho at level oe = 0.05. b) We seek /3 (/z=31.3) e
[31.516 <2 <33.0841/z=31.3] P[31.516< N(31.3, zAS) <33.084]=P
[0.54 <N(0,1) <4.46] Tab.3.3 1-0.7054 =0.2946. c) We want to test Ho:
0 -2 =4 against at level ot = 0.01. We reject Ho if and only if Since Hi:o- 2 <4
(25-1)S2<41-0.01,25-1 - 10.86. S2=(1.6) 2=2.56 :=> 6s2=15.36 >
10.86, we cannot reject Ho at level ot =0.01.

286 6 Estimation and Testing Unsolved Problems Problemno. 1 Let X ..... Xn
be a random sample of the random variable X whose probability density
function is fx (x) = 202. 1f 0 <x <20 (= 0 elsewhere). We have: VAR[X] =
202/9. a) We propose the following estimator of the parameter 0: T ="
Calculate the mean square error of T. b) Calculate the maximum likelihood
estimator of 0. Problemno. 2 Let 1.1,1.3, 1.9, 2.1,2.5 and 3.4 be a particular
random sample of X N(/, 0"2). Calculate a) a one-sided 95% confidence
interval with an upper bound for b) a one-sided 90% confidence interval with
a lower bound for/, if we suppose that 0 .2:0.5. Problem no. 3 We collected the
following observations of a random variable X: j 12 3 4 nj 24 16 6 4 Test the
hypothesis HO: X Geom(p =I/2). Use a = 0.05. Problemno. 4 Let X ..... Xn be
a random sample of size n of a discrete random variable X whose probability
mass function is given by px (k; O) = O (1 -O) k- fork=1,2 ..... where 0 6 (0, 1)
is an unknown parameter. a) Find the maximum likelihood estimator of the
parameter 0. b) We collected the following observations of the random
variable X: 12 3 20 15 15 Test the hypothesis Ho:Px(k)=(1/2) k fork=1,2 ....
Usea=0.10.22.706,,2.0,2 - 4.605 and 2 Hint. We have: X0.0, - ,0.10,3 -
6.251. against H" px (k) 7 (1/2) .

6.5 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 287 Problemno. 5 Let X1 ..... Xn be a random sample of size n of a
random variable X having a Gaussian N(0, 4) distribution, where 0 is an
unknown parameter. a) Suppose thatn: 25 and I Xk =2.5. Find a constant ¢
such that the interval (-x, c] 1s a 95% confidence interval for 0. b) We propose
the following two estimators of the unknown parameter 0: T1 =--Xk and T2 :
d Xk, n k=I k=I where d 1s a positive constant. 1) Calculate the mean square
error of T2. i1) Find for what values of d the estimator T2 is relatively more



efficient than TI, ifn=4and0= 1. Problemno. 6 Let [ ifx 1, fx (x; 0) =0
elsewhere, where 0 > 0. a) Find OML, that is, the maximum likelihood
estimator of the parameter b) Calculate the mean square error of Hint. We
have: EIX] =0+ 1 and VAR IX] =0 2. ¢) Let T := ¢) be an estimator of 0,
where X* is the mean of a random sample of size n of X. Find the value of the
constant ¢ that minimizes the mean square error of T. Problemno. 7 Let X1 .....
Xn be a random sample of size n of a random variable X whose probability
density function is 1 -x/O fx(x;0)=Re - forx >0. We can show that the
maximum likelihood estimator of the unknown parameter O (> 0) is given by
OMC = 2. a) Calculate the mean square error of OMC. b) A particular random
sample of size n = 80 of X has been drawn. The mean and the variance of the
sample are equal to 2 and 5, respectively. Calculate an approximate 95%
confidence interval for the parameter 0. ¢) Give an approximate 95%
confidence interval for O, if in b) the sample variance is unknown. Justify your
answer.

288 6 Estimation and Testing Problem no. 8 Let X be a random variable of
continuous type whose probability density func- tion is given by 1.-x3e -x/ ifx >
0, fx (x;/) =0 ifx <0, where/ > 0 is a parameter. a) Given a random sample of
size n, X ..... X,,, find the maximum likelihood esti- mator of/. b) Consider a
random sample of size four (n=4): X, X2, X3, X4, and the following two
estimators for/: 1) the estimator obtained in a) (withn=4); 11)/ ;= 0(X +2X2 +
3X3 + 4X4). Compare these two estimators with regard to their bias and their
mean square error, and determine which one is preferable. Hint. For the
random variable X considered, we have: E [X] =4/ and VAR [X] =4/ 2.
Problemno. 9 Let (1 - 0)/3 ifx =0, px(x; 0) = 1/3 ifx =1, (1 + 0)/3 ifx =2,
where - 1 <0 <1 is an unknown parameter. A random sample of size n= 30 of
X has enabled us to construct the following table: 10 1 2 ni 10 12 8 a) We
propose the following estimator of the parameter 0: := (" - 1). Calculate the
mean square error of . Hint. We have: E[X] =1 + 20 and VAR[X] =--0.b)
Test the hypothesis 1 HO: px(x; O) = px(x; 0 =0) = -z forx =0, 1, 2. Use ot =
0.05. Problemno. 10 A particular random sample of nine cigarettes of a
certain brand contains an av- erage of 4.2 mg of nicotine per cigarette. The
cigarette maker claims that the content X of nicotine in its cigarettes is not, on
average, greater than 3.5 mg. We assume that X N(#; 1.96). a) Can we put the
cigarette maker's assertion in doubt? Use t = 0.05.
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Exercises 289 b) What 1s the probability of concluding, in a), that the cigarette
maker is wrong if # = 3.8? ¢) What is the smallest number of cigarettes that we
should examine if we want the probability computed in b) to be greater than or
equal to 90%? d) To better protect the consumer, is it preferable to perform the
test in a) with oe = 0.05 or oe =0.01 ? Justify your answer. Problemno. 11 We
want to compare the compressive forces (in kilograms per square centimeter)
of two types of concrete. We want to show that the second type of concrete has
a greater compressive force, on average, than the first one. Measurements
made with two specimens are given below: Concrete 1 295 319 304 302
Concrete2 318 316 312 318 a) Define the variables and specify the necessary
basic assumptions. b) Compare, at significance level ot = 0.05, the average
compressive forces, assuming that 0'12 o'. ¢) Show, using a test of hypotheses,
that the variances are actually not significantly different at level ot = 0.05. d)
Perform again the test of comparison of the population means in b) with 0'12 =
0'22. Problemno. 12 Let X -- N(#, 0'2). A particular random sample of size n
=25 of X yielded € = 0.2 and s = 0.5. a) We want to test HO: # = 0 against
Hi: # € 0 at significance level ot = 0.05. Calculate the value of the statistic
used to perform the test. b) We also want to test HO:0'2 = 0.2 against Hi: 0'2 >
0.2 at significance level ot = 0.05. What is the value of the percentile used to
make the decision (that is, the critical value)? Problemno. 13 We are
interested in the lifetime X (in tens of thousands of kilometers) of tires of a
certain brand. We wish to test the hypothesis HO: #x = 50 against HI: #x < 50
at significance level ot = 0.05. We assume that X -- N(#x, 25) (approximately).
a) What 1s the value of/3 if n =9 and #x = 45? b) What is the smallest value
ofn for which/3 <0.10 if#x =45? Problemno. 14 Let X -- N(#, 0'12) and X2 "
N(#2, 0'22) be two independent random variables. Particular random samples
of X and X2 yielded: n=9, @1 =5,s1=2;n2=10,-2=3,$2=1.

290 6 Estimation and Testing a) Is the variance r 2 significantly greater than
1227 Use ot = 0.05. b) If we assume that the theoretical variances are equal,
can we then state that the theoretical means are significantly different? Use t =
0.05. Problemno. 15 We assume that all the students taking a certain course
are equally gifted. We also assume that the mark obtained by a student on the
final exam has (approximately) a Gaussian distribution. The results obtained
on this exam, by the students of two groups with different teachers, are the
following: Groupn2s 149 10.54.12 35 9.3 3.8 Let Xi be the mark that a



student taking the course with teacher 1 will have on the final exam, for1=1,2.
We assume that XI N(#1, r() and X2 N(#2, r22) are independent random
variables. a) Can we conclude that the difference between the variations in the
marks is signif- icant if we use a significance level ot = 0.10? Specify the null
hypothesis Ho and the alternative hypothesis H. Hint. Use the fact that
F0.05.,8,3, > b) Can we postulate that the teacher has a significant effect on the
results of his students? Use t = 0.05 and specify HO and H. ¢) What is the
smallest number of observations that we need to be able to detect, with a
probability of at least 90%, an actual one-mark difference between the means
and #2? d) What 1s, approximately, the value of/4 for the test performed in b)
if# - #2 ---- 2? Problemno. 16 The ohmic resistance of a certain electronic
component must be equal, on aver- age, to 400 ohms. A random sample of 16
components, drawn from a large batch of components, yielded the following
observations: 392 396 386 389 388 387 403 397 401 391 400 402 394 406
406 400 We assume that the ohmic resistance has approximately a Gaussian
distribution. a) Can we affirm, at significance level t = 0.05, that the batch
meets the norm of 400 ohms? b) Calculate the probability of making a type 11
error with the test performed in a) (that is, with the rejection constants for 2
computed in a)) if the ohmic resistance has actually a Gaussian N(405, 49)
distribution. ¢) Under the same assumptions as in b), how many observations
must we take if the probability of making a type II error must be smaller than or
equal to 0.05?
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Exercises 291 Problemno. 17 We use two identical machines to manufacture a
certain part. We wish to deter- mine whether the two machines have the same
variability with respect to an impor- tant characteristic of this part. Particular
random samples, drawn from the production of each machine, yielded the
following results: Machine A 140 135 140 138 135 138 140 Machine B 135
138 136 140 138 135 139 We have: XA =138, SA--2.24, @B =137.29 and
sB -- 1.98. a) Specify the assumptions that we must make to be able to perform
the test. b) Perform the appropriate statistical test, using a significance level
equal to 0.10. What is the conclusion? c¢) Test the hypothesis that the 14
observations collected come from a uniform dis- tribution over the interval
[135, 140]. Use the significance level a = 0.05 and the following intervals:
[135, 137.5) and [137.5, 140]. Problem no. 18 We are interested in the
breaking strength of metal rods made by two companies. We have a batch of



rods manufactured by each company. We draw at random ten rods from each
batch and we measure the strength needed to break each one of them. We obtain
the following results: Batch 1 53.2 53.9 53.1 50.9 42.2 52.9 55.8 41.9 50.0
49.0 Batch2 55.0 64.5 53.0 57.8 56.1 58.0 55.8 50.8 54.0 52.2 We assume that
the breaking strength of the metal rods has approximately a Gaussian
distribution. a) Test the hypothesis that the average breaking strength is the
same in the two batches, at significance level a = 0.05. Hint. We have:
t0.025,18 " 2.101. b) Test, assuming that the 20 rods actually come from the
same company, the hy- pothesis that 1) the average breaking strength of a metal
rod 1s equal to 55 and i1) the variance of the breaking strength of a metal rod is
20. Use = 0.05. Hint. We have: t0.025,19 " 2.093, X02.025,19 32.85 and
X0.975,2 19 -- 8.91. Problem no. 19 Measurements of percentages of
elongation have been made on ten steel parts. Five of these parts were treated
with method A (aluminum only) and the other five with method B (aluminum
plus calcium), yielding the following results: MethodA(%) 28 29 31 33 30
MethodB(%) 34 27 30 36 33 a) Test the equality of variances. Use a = 0.10. b)
Can we conclude that the two methods give, on average, the same results? Use
=0.05.

292 6 Estimation and Testing Multiple Choice Questions Question no. 1 Let X
..... Xn be a random sample of a random variable X having a Bernoulli
distribution with parameter p. A) Find the maximum likelihood estimator PML
of the parameter p. a) I/(n') b) n" ¢) 1/" d) /n e) B) Give the exact and the
approximate distribution of n'. a) B( I, p) and Poi(np) b) B( I, p) and N(np,
npq) ¢) B( L, p) and N(0, I) d) B(n, p) and N(p, pg/n) ¢) B(n, p) and N(np, npq)
C) Give a formula for an approximate 100(I - 00% confidence interval for p.
a) ptzc/2[P-2]1 1/2 b)" +Zc/2[] I/2 ¢)" +za/212'12)] I/2 d) p + za/2 P(In-P) ¢) )
+ za/2 1€p€-Yr)n Question no. 2 Let X1 ..... Xn be a random sample of a
random variable X having a uniform distribution on the interval [0, 0]. We
propose the following estimator of the un- known parameter 0: = 2'. Calculate
the mean square error of . Hint. We have: VARIXI =02/12.02 02 02 a) 0 b) ¢)
T d) - ¢) €- Question no. 3 Let X be a random variable having a Gaussian
distribution with unknown pa- rameters. A particular random sample xi ..... X25
of X has yielded the following results: 25 25 2 1550. z-,xk= 175 and z-,xk =
k=1 k=1 Calculate a two-sided 95% confidence interval for E[X]. a) 7 +
0.7360 t0.025.24 b) 7 + 0.7360 t0.025.25 ¢) 7+ 0.7360 z0.25 d) 7 + 0.5417
t0.025.24 €) 7+ 0.5417 z0.025 Question no. 4 We can show that a theoretical



confidence interval at approximately 95% for the parameter ot of a random
variable having a Poisson distribution is given by + 1.96 STD[], where " 1s the
mean of a random sample of size n of X. A par- ticular random sample of size
n= 1000 has yielded a sample mean of 0.4. Calculate (approximately) the
confidence interval for or, based on this particular sample. a) 0.4 + 0.02 b) 0.4
+0.03 ¢) 0.4 +0.04 d) 0.4 + 0.05 e) we cannot calculate it Question no. 5 We
want to test the hypothesis that a random variable X has a Gaussian N(0, 1)
distribution. A (particular) random sample of size n= 100 of X has enabled us
to construct the following table:
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Exercises 293 j (-x, -0.674) [-0.674,0) [0, 0.674) [0.674, X) nj 20 25 25 30
Calculate the statistic D 2 used to carry out the test. Hint. We have: Q(0.674) -
0.25.a) 0 b) 4/25¢) 1 d) 2 e) 4 Questionno. 6 Let 1 fx(x;0)=-- 1f-0 <x <0, 20
where 0 > 0 is an unknown parameter. We have: E[X 2] =02/3 and E[X 4] =
04/5. A) TO estimate the unknown parameter/ := 02, we propose the following
estimator: /:: -- Xk, n k=1 where XI ..... Xn is a random sample of size n of X.
Calculate the mean square error of /32 4/32 5@ a) - b)4 c) d) e) B) We
collected the following observations of the random variable X: j (-2, -1) [-1,
0) [0, 1) [1,2)n 27 28 32 33 We want to test the hypothesis 1 HO:
X(x;0)=tx(x;0=2)=- if -2<x <2. 4 Calculate the statistic D 2 used to carry out
the test and give the number d of degrees of freedom of D 2 (under HO). a) D 2
"0.8667;d=2b)D2"0.8667;d=3¢c)D2--0.8739;d=2d) D2 --0.8739;
d =3 e) none of these answers Question no. 7 Let XI ..... Xn be a random
sample of a random variable X having an exponen- tial distribution with
parameter ,. We define 0 =/. Find the maximum likelihood estimator of the
parameter 0. a) 1/"-b) 1/ c) 1/ 2 d) e) Question no. 8 The following data have
been collected by tossing a die 90 times:

294 6 Estimation and Testingj 1234 56n 13 12 16 18 15 16 Let X be the
number obtained by tossing the die. We want to test the hypothesis HO: P[X is
even] = P[X is odd]. Calculate the statistic D 2 used to perform the test and
give the number d of degrees of freedom of D 2 under the null hypothesis Ho.
a) D 2=0;d=0 b) D 2=0.05,;d=1 ¢) D 2=0.05,;d=2 d) D 2=1.6;d----4 ¢) D 2=
1.6;d=5 Question no. 9 A particular 95% confidence interval for the mean # of
a population X , -t- 3 N(#, 9) calculated from a random sample of size n= 99,
is given by 10 zo0.02.s . A 100th observation, xo00, is taken. Calculate the new



confidence interval, if xo0 = 11. a) 10 4- z0.025(0.3) b) 10.01 4- z0.025(0.3)
c) 10 4- z0.025(0.299) d) 10.01 4- z0.02.5(0.299) €) none of these answers
Question no. 10 We want to test the hypothesis that the following data come
from a B(3, €) dis- tribution: j 0 1 2 nj 6 18 16 Calculate the statistic D 2
used to make the decision and give the number d of degrees of freedom of D 2
under the null hypothesis. a) D2 1.87;d=2b) D2 1.87;d=3¢)D23.87;d=
3d)D25.87;d=2 e) none of these answers Question no. 11 Suppose that X
has a uniform distribution on the interval [0, 0]. To estimate the unknown
parameter 0, we propose the estimator = 2, where 2 is the mean of a random
sample of size n of X. Calculate the mean square error ofg. 0202020202
0202a)-b)-+-c)d) Te);+ Questionno. 12 Let X be a random variable
having a Poisson distribution with unknown parame- ter 0 > 0. We consider a
random sample of size n (> 30) of X. Use the central limit theorem to obtain an
approximate 100(1 - 00% confidence interval for 0. a) 2 4- zot/201/2 b) 2 4-
zot/2(0/n)1/2 ¢) .J 4- zot/2(f(/n) d) ) 4- zo/2(f(/n 1/2) e) f( 4- zo/2(f(/n) 1/2
Question no. 13 Suppose that X N(0, 0), where 0 is an unknown parameter.
Find the estimator of 0 by the method of maximum likelihood.

interval for/. a) 2 + za/2() d) 2 2 -+- zot/2(121/n 1/2) Question no. 15 Let 6.5
Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 295 n1nlna)j2b)b Y-k=l X2 c) Y-k=1 X2 d) Y-k=1(Xk -- })2 ¢)
_1E nk=l (Xk -- 2)2 Question no. 14 Let X N(/x,/xa). Obtain a formula for an
approximate 100(1 -00% confidence b) 2 :t: zo/2(1/n 1/2) c) zt: zo/2(121/n) ¢)
+ zot/z(11/n 1/2) 1 fx(x; O) = -de -Ixl1€p forx 6 N, where 0 is a positive
parameter. We can show that VAR[X] =202. A) Find the maximum likelihood
estimator of 0. I n 1 n1n1na)0b)Y-k=1Xk ¢)Y-k=11Xkl d)(Y-k=1X2) 1/2 e)
(k=1 X) 1/2 B) We consider the following estimator of the pameter fl := 02: k=1
Calculate the bias of/. a) 0 b) fl ¢) nn_--fl d) 5- 11l e) €1l Questionno. 16
Two makers of batteries for laptop computers claim that with their batteries the
computers can be used for at least three hours before the batteries have to be
recharged. Batteries from these two makers have been tested with ten different
com- puters. The data are the following: Computer 1 234567 89102.92.8
29323.03.12.7292.7293.13.23.33.02.92.93.13.22.83.2 where Ti
is the functioning time (in hours) obtained with a brand 1 battery, for 1 = 1,2.
We assume that has (approximately) a Gaussian distribution. A) We believe
that the standard deviation of the random variable TI is greater than 0.2.
Calculate the statistic w02 needed to perform the test. a) 0.636 b) 1.145 c)



5.725 d) 10.305 e) 11.450 B) Next, we want to test the hypothesis that there is
not a significant difference between the mean of TI and that of T2. Calculate
the appropriate statistic. a)-2.21 b)-2.06 ¢)-1.96 d) 2.21 ¢) 7.00

296 6 Estimation and Testing C) We find that the standard deviation of the
random sample of T2 is (about) 0.1636. How many observations should we
take (approximately) in order that fl -- 0.10, if #r2 ---- 2.9, when we perform
the test of HO:#r2 ---- 3 against H" #r2 < 3 at significance level = 0.05? a) 23
b) 25 ¢) 28 d) 31 e) 34 Question no. 17 A company has invented a device that
is supposed to reduce fuel consumption by at least 10%. A) Let R be the
reduction in fuel consumption obtained with the device in question. We
suppose that R has a gamma distribution with parameters and .. 1) If =1, we
find that the maximum likelihood estimator of the parameter 0 := 1/. is Ot/. =/,
where / 1s the mean of a random sample of size n of R. Calculate the mean
square error of OMIL.. Hint. We have: EIR] =/. and VAR[RI=/.2.0¢) 02 1 b)
0 ¢) d) - a) -N 11) Estimate the parameter by the method of moments, if=.. nn
I nR2a)/ b)l/c) [(@ Yk=Rk2) --1] - d)[@Yk=Rk2] -' ¢)Yk=k B) The
device has been installed on ten cars of the same make and their fuel con-
sumption has been measured over a 200-km distance. The results are given in
the table below: Car 123456789 10X 17.518.319.116.418.9 17.8 20.2
19.4 17.6 18.4 where X is the fuel consumption with the device installed. We
assume that X has (approximately) a Gaussian distribution. Knowing that the
average fuel consumption of this make of car, without the device, is equal to 10
liters/100 km, we wish to test at significance level = 0.025 Ho:#x= 18 against
H:#x > 18. 1) Give the value of the statistic and of the percentile used to make
the decision. a) 1.04; 2.262 b) 1.14; 2.262 ¢) 3.29; 2.262 d) -0.95; 1.960 e)
0.95; 1.960 11) Use a linear interpolation, based on the fact thatgb( 1) _
0.8413 and gb(1.5)  0.9332, to compute approximately the value of fl if the
true value of the mean of X is#x = 19andifcrx= 1. a) 0.092 b) 0.102 ¢) 0.112 d)
0.122 e) 0.132 i11) What is the smallest number of observations that must be
taken to be able to detect, with a probability of at least 0.95, that #x 1s greater
than 18 if we suppose that the true value of #x 1s 19 and that crx=1 7 a) 12 b)
13¢c)14d)15¢) 16
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Exercises 297 Question no. 18 Let X1 ..... Xn be a random sample of a random
variable X whose probability density function is defined by fx(x; 0) = Ox 0-1



1f0 <x <1, where 0 > 0 is an unknown parameter. A) Find the estimator of 0
by the method of moments. a) 2 b) 1-2 ¢) 2(1-2) d)(1-2)/2 e) 2/(1-2) B) In
order to check whether the model fx(x; O) proposed above is adequate for a
certain random variable X, we perform a (Pearson's) goodness-of-fit test. We
gather 162 observations of X and we group them into three intervals. We
obtain the follow- ing table: Interval (0, €) [3' ) [' 1) Number of observations
14 62 86 Moreover, we find that the value of the maximum likelihood
estimator of the param- eter 0 calculated from these 162 observations is OMI =
2. Calculate the statistic D 2 used to carry out the test and give the number d of
degrees of freedom associated with D 2 . a) D 22.25;d=1b) D 23.25;d=1 ¢)
D 24.25;d=1d) D 22.25;d=2 e) D 23.25;d=2 Question no. 19 A maker of
electronic chips asserts that the average size # (in micrometers) of certain
components of its chips does not exceed 2. In order to check this assertion, we
decide to perform a test of hypotheses. The test used should be such that there
is a 0.05 probability of rejecting the maker's assertion if # is equal to 2. This
probability should be 0.9 if # is equal to 2.5. We assume that the size of the
components in question has (approximately) a Gaussian N(#, 0.16)
distribution. A) Give the hypotheses that we want to test. a) Ho: # =2; Hi:/z=
25b)Ho: #=2;Hi:/z5& 2 ¢c) HO: #=2; Hi: # <2 d) HO: #=2; Hi: #>2 ¢)
Ho: #=12.5; Hi:/z> 2.5 B) What is the smallest size of the random sample that
must be drawn? a) 2b) 6 ¢) 15d) 18 ¢) 35 C) If/z=2.4 and n= 10, what is the
probability of rejecting the maker's assertion? a) qb(1.1) b) gb(1.2) ¢) gb(1.3)
d) gb(1.4) e) gb(1.5) Question no. 20 The lifetime X of the transistors
produced by a certain company has a Gaussian distribution with a standard
deviation of 30 days. The company aims at an average lifetime of 210 days. In
order to estimate the mean # of X, the engineer responsible

298 6 Estimation and Testing for the control of the quality examines 36
transistors taken at random and obtains a sample mean of 225 days. A 95%
confidence interval for p is then given by [215.2, 234.8]. A) We want to reduce
by half the width of the confidence interval for p by increasing the size of the
sample. What value of n must be used? a) 54 b) 72 ¢) 90 d) 108 ¢) 144 B) We
now want to reduce by half the width of the confidence interval for , while
keeping the sample size equal to n=36. What value of ot must then be chosen?
a) €Q(0.98) b) Q(0.98) ¢) 2Q(0.98) d) @Q(1.96) ) 2Q(1.96) C) Next, the
engineer wants to test, at level 0.025, whether the data indicate that the average
lifetime 1s greater than 210 days. 1) Give the hypotheses that we want to test. a)



HO:/=210; H:/ <210 b) Ho:/ =210; H:/ # 210 ¢) HO:/=210:H:/>210 d)
HO:/=210;H:1>225 e) HO:/ =225; H:/ <210 11) With the test used in 1), what
is the probability of concluding that the average lifetime is not greater than 210
days, when it is actually 220 days? a) Q(0.04) b) Q(-0.04) ¢) Q(0.14) d)
Q(-0.14) e) Q(0.24) D) Suppose that the population variance is unknown.
What is the value of the statistic used to test the hypothesis that the mean of X
is greater than 210 days, if the sum of the squares of the 36 observations is
equal to 1,875,0007 a) 2.02 b) 2.12 ¢) 2.22 d) 2.32 ¢) 2.42 Question no. 21 Let
X be a random variable having the following probability density function: I
20xe-@X2 ifx > 0, fx(x; O) 0 ifx <0, where 0 > 0 is an unknown parameter. A)
Find the maximum likelihood estimator of the unknown parameter 0. a) .- b)
(..)2 C) (..)-2d) '=' X2 e) n B) We collected 30 observations of the random
variable X, with which the following frequency table was constructed: 12 8 10
We want to test, at significance level ot = 0.05, the hypothesis HO: fx(x; O) :
fx(x; O : 1) : 2xe -x2 against Hi: fx(x) : 2xe -x2

6.5 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 299 for x > 0. Give the value of the statistic used to perform the test,
as well as the number d of degrees of freedom associated with this statistic
(under HO). a) 0.20;d=1b) 0.20;d=2¢) 0.40;d=14d) 0.40;d=2¢) 0.60; d
=1 Question no. 22 A tire manufacturer claims that the average braking
distance for a car equipped with its brand Z tires is not greater than the
average braking distance obtained with the more expensive brand W tires. We
believe that this statement is false and we decide to test it by measuring the
braking distance (in meters) from 100 km/h to a complete stop. The data are
the following: Brand Z tires 40 41 39 44 45 Brand W tires 38 40 38 41 45 Let
Z be the braking distance obtained with the brand Z tires, and W the braking
distance obtained with those of brand W. We assume that Z N(#z, az 2) and W
N(#w, av) (approximately). A) Suppose that the measurements have been made
with five different makes of cars, the first time using the brand Z tires, and the
second time using the brand W tires. Give the value of the statistic used to test,
at level x = 0.05, the hypothesis HO: #z = #w. Give also the value of the
percentile ¢ to which the statistic in question is compared. a)0.81;c 1.860 b)
0.81;c 2.306 ¢) 2.75;c 1.860 d) 2.75; ¢ 2.132¢) 2.75; ¢ _2.776 B) Suppose
that the ten braking distance measurements have been made with the same car,
on ten different days. Calculate, assuming that az = aw = 2.5, the value of the
appropriate statistic to test at level u= 0.05 the hypothesis HO : #z = #w, and



give the value of the percentile ¢ to which this statistic is compared. a) 0.81;¢c
_1.645b)0.81;c -- 1.860 ¢) 0.89; c -- 1.645 d) 0.89; c -- 1.860 ¢) 0.89; ¢ -
2.306 C) Under the same assumptions as in B), what is the probability of
detecting that the average braking distance #z is greater than the mean #w
when, in fact, #z - #w = 1.257 a) Q(0.791) b) Q(0.854) c) Q(2.436) d)
qb(0.791) e) gb(0.854) Question no. 23 Suppose that X N(-0, 0), where 0 >0
is an unknown parameter. A) We propose the following estimator of the
parameter 0: := -){. Calculate the mean square error of . 0 ¢) 0 d) @2 a) 02 b)
02 +-¢) 02 0 B) Use the estimator = -) to obtain a formula giving an
approximate 100( 1 -) % confidence interval for 0, based on a random sample
of size n= 100, if we assume that ) <O.

300 6 Estimation and Testing a) -," zlz-- Z (--2)1/2" b) -," 4- z¢,/2(0 ) ¢) -," 4-
c,/2- (-2)/2rg 01/2 01/2 d) -" 4- Zo/2T6- ) -Y( 4- z, 1o Question no. 24 The
speed X of the microchips of a certain company is supposed to be 2 GHz. We
assume that X has (approximately) a Gaussian N(#, a2) distribution. A) We
take a random sample of size n=9 of X and we compute the average speed €
of the microchips. If the sample standard deviation s is equal to 0.2, for what
values of€p can we conclude that the average speed of the microchips is
smaller than 2 GHz? Use = 0.025. a)Y<1.85b)Y> 1.85¢)Y<1.95d) J>1.95
e)[@-2[<0.15 B) Suppose that the average speed of the microchips is actually
equal to 2.1 GHz, and that a = 0.25. What is the probability of rejecting the
hypothesis HO: # =2 (accepting H : # <2 instead) at level a =0.05, if we
draw a random sample of size n=16? a) (2.2) b) (3.2) ¢) Q(2.2) d) Q(3.2) e) 2
(2.2) - 1 C) What is the value of the statistic used to test the hypothesis Ho: a2
=(0.02 against H: r 2 > 0.02 if a random sample of size n= 10 yielded 10 10 xk
=20.17 and xk 2=40.775? k=1 k=1 What is the conclusion of the test ifa ----
0.05?7 a) 4.6; we reject HO b) 4.6; we accept HO ¢) 9.2; we reject Ho d) 9.2;
we accept HO e) 18.4; we reject HO Question no. 25 Suppose that X is a
random variable having a Weibull distribution with parame- ters 15 >0,y 6 R
anda = 1. That is, fx(x; 15, ) = 15(x - )/- exp{-(x- )/} forx>. A) Let ?/ = 0.
Give the value of the estimator of the unknown parameter 15 by the method of
moments, if a random sample of X yielded € = 6. Hint. Set y = x in the
calculation of the mathematical expectation of X and use the fact that f0 = F().
xa-le-X dxa) 1/5b) 1/4 ¢) 1/3 d) 1/2 e) 1 B) Let 15 = 2. Estimate the
parameter y by the method of maximum likelihood with the help of a single
observation, X, of X. 1 a) X1-€ b) X1-4 ¢) X1 d) XI+4 ¢) Xl+
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Exercises 301 C) Test, at significance level oe = 0.05, the hypothesis HO that
x(x;,/)=tx(x;=1,/=0)=e -x forx > 0, if we collected the following data: j [0, 1)
[1,2)[2,3)][3,n 8040 20 10 Give the value of the statistic D 2 and the
conclusion of the test. a) 5.94; we accept HO b) 6.94; we accept HO c) 6.94;
we reject HO d) 7.94; we accept HO e) 7.94; we reject HO Question no. 26 A
car maker, in its publicity, claims that the power X (in horsepower) of the
engines of its cars of brand A 1s 200 hp. Tests made with 16 independent
vehicles gave an average power of 196 hp and a sample standard deviation s
of 5 hp. We assume that X has approximately a Gaussian N(#, r 2) distribution.
A) We can state, with a risk oe of type I error equal to 0.05, that the average
power of the engines is in fact smaller than 200 hp. Give the values of the
statistic and the percentile that were both used to make the decision.
a)-3.2;-2.131 b)-3.2;-1.753 ¢)-3.2;-1.645 d) 3.2; 1.753 e) 3.2; 2.131 B) Based
on the data collected, can we conclude, if ot = 0.05, that r x > 4? Give the
value of the statistic used and the conclusion of the test. a) 4.69; we accept HO
b) 18.75; we accept HO ¢) 18.75; we reject HO d) 23.44; we accept HO e)
23.44; we reject HO C) What 1s the smallest number of observations that
should be taken in B) to be able to state, with a probability of at least 0.9, that
rx >4 if, in fact, rx =67 a) 23 b) 24 ¢) 25 d) 26 €) 27 Question no. 27 The
random variable X has the probability density function 3 x2 fx(x; 0) =2 if-0 <
x <0, where 0 (> 0) is an unknown parameter. A) Find the estimator of the
parameter 0 by the method of moments. nn 2 \1/2 a)0 b)) c¢)(35-))) 1/2 d) 3 k=1
X2 ke) (n k=1 Xk) B) We constructed the frequency table below from a
random sample of size 80 of X: j [-2,-1) [--1, O) [0, 1) [1,2] nj 324 5 39

302 6 Estimation and Testing Give the value of the statistic D 2 used to test
HO: fx(x;0)= fx(x;0=2)= ]-6 x2 1f -2<x <2. How many degrees of freedom does
the statistic D have (under HO)? a) D =27/35;d=2 b) D =-32/35;d=2 ¢) D
=32/35;d=3 d) D 2=37/35;d=3 ¢) D =-37/35;d=4 Question no. 28 We wish to
compare the fuel consumption (in liters per 100 km) of two makes of cars, A
and B. We believe that the cars of brand B use less fuel, on average, than those
of brand A. Let XA (respectively XB) be the fuel consumption of the cars of
brand A (resp. B). We assume that X A N(/A, aA 2) and XB N(/B, a 2) are
independent random variables. Random samples of XA and XB have been
taken. The data are the following: X A 10.510.9 9.8 10.2 11.9 9.9 10.7 10.1
10.6 XB9.710.0 10.3 9.4 9.6 9.8 10.2 10.0 A) We must first test the equality



of variances. We find that if ¢ = 0.05, then we conclude that aA2 =a 2 . What
is the value of the statistic used to test, at significance level ¢ = 0.05, the
hypothesis that the average fuel consumption of the brand B cars is smaller
than that of the brand A cars? What is the alternative hypothesis H ? a) 2.46; H:
p.A>P-Bb)2.56; H: p. A>P-BC) 2.46; H: p.Ad) 2.56; H: A<Be) 2.66; H:
A > B B) If we choose ¢ =0.10 instead, then we must conclude thataA2:a 2.
What 1s, in this case, the value of the statistic used to test, at level ¢ = 0.10, the
hypothesis in A)? What is the conclusion of the test? a) 2.56; we accept HO b)
2.66; we accept HO c) 2.56; we reject HO d) 2.66; we reject HO ) 2.56; we
cannot conclude C) Suppose that we exclude the observation 11.9 from the
random sample of XA, because this observation is doubtful. What is then the
value of the statistic that we use to test the hypothesis Ho: aA 2 = a 2 against
H: aA 2 :fi a 2 ? What is the conclusion of the test if or =0.05? a) 1.68; we
accept Ho b) 1.78; we accept Ho ¢) 2.68; we accept Ho d) 2.78; we reject Ho
e) 3.68; we reject Ho Supplementary Exercises Question no. 1 Obtain the
maximum likelihood estimator of the parameter O in the probability density
function fx(x; O) = ¢ -@lxl forx Z

6.5 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 303 Question no. 2 Suppose that the random variable X has the
following probability density func- tion: fx(x; , 6) = Le -x/ forx > 0, where >
0 and/3 > 0 are unknown constants. Find the estimator of the parameter by the
method of maximum likelihood. Question no. 3 Suppose that X1 N(#XI, 1) and
X2 N(#x2, rx22) are independent random variables. Random samples from X1
and X2 yielded the following table: n.s X 1 100.1 0.9 X2 100 -0.2 1.1 a)
Test the hypothesis HO: Lx I =/Lx 2 against HI: Lx [ > tZX 2 at significance
level = 0.05. b) What is (approximately) the probability of making a type II
error in a) if, in fact, #X 1 -- #X 2 = 0.5? Question no. 4 A random variable
having a generalized Pareto distribution is such that fx(x;a, f1)----a(/3-2)(1+ax)
-@+1 forx >0, where > 0 and/3 > 2 are unknown parameters. Estimate and/3
by the method of moments, if we assume that/3 > 4. Question no. 5 The tensile
strength X (in kN/m 2) of a certain synthetic fiber has a Gaussian N(#, 100)
distribution. The company that makes this fiber claims that the average tensile
strength 1s greater than or equal to 240 kN/m 2. In order to check the assertion,
we perform a statistical test. A random sample of size n= 18 yielded 2 =237
kN/m 2 . a) What is the alternative hypothesis H 1 for this test? b) What is the
value of the statistic Z0 used to perform the test? ¢) Calculate the value of/3 if



#=235,n= 18 and = 0.05. d) What is the smallest number of observations that
must be taken if the probability of rejecting the company's assertion must be of
at least 0.975 when # = 236 and = 0.05? Question no. 6 In order to compare
heat loss from steel pipes and from glass pipes, we consider seven pairs of
pipes (made up of a steel pipe and a glass pipe). The pipes in a given pair
have the same diameter, but diameters differ from one pair to another. Water is

304 6 Estimation and Testing passed through the pipes at the same initial
temperature and the heat loss (in €C) is measured over a 50-meter distance.
The results obtained are the following: Pair number 1 2 3 4 5 6 7 Steel pipe
4.63.74.21.94.86.14.7 Glass pipe 2.54.22.0 1.8 2.7 3.2 3.0 We assume
that the heat loss has approximately a Gaussian distribution. a) What is the
value of the statistic used to test the hypothesis that the heat loss is, on average,
greater in steel pipes than in glass pipes? b) What is the number of degrees of
freedom associated with the test statistic in a)? Question no. 7 Let fx(x; 0) =
1/0 for 0 <x < 0. We want to test HO:0 = 1 against H: 0 > 1. To do so, we take
a single observation, X, of X and we reject HO if and only if X >0.9. a) What
is the type I error risk, or, of the test'? b) What is the value of if0 = 1.5?
Question no. 8 The precision of the manufacturing process of bolts is under
statistical control as long as the standard deviation of the diameter of the bolts
does not exceed 1.5 mm. We want to test, at significance level ot = 0.05, the
hypothesis that the manu- facturing process is under control. We assume that the
diameter X of the bolts has approximately a Gaussian N(z, cr 2) distribution.
a) What is the conclusion of the test if the sum of 20 measurements of the
diameter is equal to 109.8 and the sum of the squares of the measurements is
655.67 2 Hint. We have: X0.05. 9 30.144. b) What is the type II error risk of
the test performed in a) if the standard deviation of X is actually equal to 2.2
mm? ¢) Determine the (smallest) size of the random sample needed to obtain a
type Il error risk of 0.05 when the standard deviation of X is equal to 2.2 mm.
Question no. 9 The strength level of material A (respectively B) has
approximately a Gaussian distribution: X A N(/A, ffA 2) (resp. XB N(zB,
cry)). To test the hypothesis HO: /A A=/A B against H:/A A ;) /A B, we took
two independent random samples: XA 2.08 3.77 2.46 2.20 2.58 3.35 3.52 Xn
3.133.07 3.66 3.51 3.22 We compute -A =2.85, s -- 0.464; @n=3.32, a)
Perform the test with a type I error risk ot of 0.10. b) Perform the test at
significance level ot =0.05. s -- 0.065.



6.5 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 305 Remark. In a) and b), we must first test the equality of variances
with the same type I error risk (10% and 5%, respectively). Question no. 10
(See [1113 The average percentage of waste produced by a certain
manufacturing operation is supposed to be smaller than or equal to 7%. We
took several days at random and we calculated the percentages of waste:
6.5151, 7.4970, 7.4601, 6.3723, 8.3257, 9.8199, 9.5618. We assume that the
percentage X of waste has (approximately) a Gaussian N(#, cr 2) distribution.
a) Based on the data, can we conclude that # is significantly greater than 7%?
Use a=0.01. Hint. We have: t0.01,6 " 3.143. b) If it is important to detect a
ratio (# - 0.07)/or of 0.5 with a probability of at least 95%, what is the
smallest number of observations that must be taken? c¢) For a ratio (# - 0.07)/or
of 2, what is the power of the test performed in a)? Question no. 11 (See [11].)
The diameter of a steel ball has been measured by 12 individuals, using two
types of pairs of calipers. The following data, where for instance 5 represents
0.265 and 4 represents 0.264, have been collected: Individual 123456789
10 11 12 Calipersl 556775775885 Calipers2454678455789a)
Is there a significant difference between the means of the populations from
which the two samples come? Use a = 0.05 and specify the basic assumptions
that we must make to perform the test. Hint. We have: t0.025,11 -- 2.201. b) Is
the standard deviation of the first population significantly greater than 0.001 ?
Uset=0.10.2 17.28. Hint. We have:

7 Simple Linear Regression 7.1 Introduction: The Model We saw in Chapter 6
how to test the hypothesis that the data we collected come from a given
distribution, such as a Gaussian distribution. When the random variable of
interest is a function of a deterministic variable (that we can control),
regression can help us find the form of the relationship between the random
and deterministic variables. In this chapter, we will treat in detail the basic
problem, namely that of finding the best linear relationship between the random
variable and the deterministic variable. We will also briefly consider the case
when the relationship between the two variables is assumed to be non-linear.
Let Y be a random variable and x a deterministic variable (that is, non-
random). We have a random sample (xI, YT) ..... (Xn, Yn) and we want to find
a mathematical relationship that expresses Y in terms of x. The variable x 1s
called the independent variable and Y is called the dependent or response
variable. In the case of simple linear regression, the model that we propose is



of the form (7.1) where e is an error term. We assume that each observation Y/
of Y satisfies the equation Y/ =0-1Xi -61, (7.2) where 1 "" N(0, 0 "2) for1=1

..... n, and that the random variables ei are indepen- dent. Note that we take for
granted that the variance of ei is the same for all values of 1. We can thus write

that Y/ N(/30 + fl1Xi, 0.2) fori=1 ..... n, (7.3) because/30 and/31 are
parameters (that is, constants).

308 7 Simple Linear Regression Remark. The model is known as the simple
linear regression model, because there is a single independent variable, and
the model is linear with respect to the parameters. The model Yi = flo g- fl1Xi
g- flzx21 g- 61 (7.4) is linear with respect to the parameters and is a
polynomial of degree two, while Yi =/0Oe xi + 1 (7.5) 1s a non-linear model
with respect to the parameters. The best estimators of the parameters/30
and/31, that is, the minimum variance unbiased estimators of f10 and/I, are
obtained using the method of least squares. We define the sumnn SS=72i=,
(Y1 - flo- flIxi) 2. (7.6) i=1 i=I The estimators/} o and/I of {10 and fll by the
method of least squares are the values of 10 and fll that minimize the sum SS.
We set and naSS _ 27(Y/ --/O--/IXi) -0 0/0 i=InaSS 2 Zxi(Yi -/o--/ix1)
Otl The solution of these two equations, called the normal equations, is (7.7) 1
=inl(xi--)(Yi-)=in=1xiYi - n. in=1 (Xi -- .)2 --1 Xi 2 -- n'2 (7.8) Remarks.
1) In the case when we assume that the errors :1 are independent and all have a
Gaussian N(0, cr 2) distribution, as above, we find that the estimators given by
the method of least squares and those obtained with the method of maximum
likelihood are the same. 1) The 61'S are called the (theoretical) residuals. The
quantity 61 represents the dif- ference between the observation Yi and the value
calculated from the proposed model Yi = 1O g- flI1Xi. To predict the value of
Y when x = x1, we then use the equation and /o = 1? -/i. (7.9)

7.1 Introduction: The Model 309 iii1) The prediction equation should
(theoretically) be used only for values ofx in the interval Ix(1), x(,,)], where
X(1) :==min{x ..... x,} and x(,) := max{X..... X,}. (7.11) 1iv) Even if we know
that Y = 0 when x = 0, we do not set/0 -- 0. We generally obtain better results
with/0 in the model. However, if we indeed wish to propose the regression
model through the origin: Y = fix +e, (7.12) where e N(0, 02), we easily find
that the estimator of the parameter/ obtained from the method of least squares,
based on a random sample (X1, Y) ..... (xn, Y,), is (7.13) Example 7.1.1 (See [
17].) We want to determine how the tensile strength of a certain alloy depends



on the percentage of zinc it contains. We have the following data: %of zinc 4.7
4.84.95.0 5.1 Tensile strength 1.2 1.4 1.5 1.5 1.7 We obtain the graph in Fig.
7.1. We consider the simple linear regression model: Y =/30 +/3ix +, where x
is the percentage of zinc and Y is the tensile strength. Remark. It is important to
correctly identify the random variable and the determinis- tic variable in the
problem. Tensile strength 1.7- 1.6. 1.5- 1.4- 1.3" 1.2.5.1,1.68) @, . 4) 11111
4.74.84.95.05.1 % of zinc Figure 7.1. Graph in Example 7.1.1.

310 7 Simple Linear Regression We find that € = 4.9, Then, we have: and 5 5
1.46, Zxi2 = 120.15 and Z xiYi = 35.88. i=1 i=1 Y-,=xiYi - 5€. =35.88 -
5(4.9)(1.46)=1.1y-=xi2-522120.15-5(49)2/o=.-/€@=1.46-(1.1)
(4.9) = -3.93. Thus, the prediction equation is given by =-3.93 + L.1x. 7.2 Tests
of Hypotheses Since the estimators /o and / are linear combinations of
independent Gaussian random variables, they also have a Gaussian
distribution. Moreover, we can show that/0 and/ are unbiased estimators of/30
and , and that VARIol = 0.2 and VARIetal where O-2 (7.14) SSs ' SS x ..:
Z(Xi_ )2:ZX-n2:Zx2t(-,1:1x1) 2n1:11=11:1(7.15) Remark. The
estimators/o and are generally not independent. In fact, we can show that 0.2.
COVJ[/o,/1] -- (7.16) SSx" Since two Gaussian random variables are
independent if and only if their covariance (or their correlation coefficient) is
equal to zero (see p. 180), we can state that/0 and /3 are independent random
variables if and only if€ = 0. However, let/ :/0 +/€- (7.17) We find that
COV[/,/, 1= 0, so that/6 and/, are independent estimators. Next, we define the
sum of the squares of the errors (or of the residuals) SSE = Z(Y1i - ]1)2. (7.18)
i=1

7.2 Tests of Hypotheses 311 We can show that E[SSE] =(n-2)a 2. (7.19) It
follows that an unbiased estimator of the variance cr 2 is given by (the mean
square of the errors) SSE r = MSE :=. (7.20) n-2 a) To test the null hypothesis
Ho: rio =/300, (7.21 ) we use the statistic to - rioo no TO :=" tn-. (7.22) MSE
;q-x We then reject Ho at significance level c if and only if [Zol > t/2,n-2 ifH:
r0 € 1100, TO > tc,n-2 if HL:riO > floo, TO < -t,n-2 if H:riO < riO0. (7.23) b)
Similarly, to test Ho: ri = rico, we use the statistic / -rico /40 TO .-- " tn-2
/MSe/SSx and we reject Ho at significance level ¢ if and only if [Tol > tc/2,n-2
ifill: ril 110, TO > tc,n-2 if HI: r1l > ril0, TO < -tc,n-2 if 1ll: fl <{f10. (7.24)
(7.25) (7.26) Particular Case: Test of the (Global) Significance of Regression
The test of Ho: fll =0 against Hi: fl € 0 (7.27) is very important, because if



we cannot reject the null hypothesis Ho, then we must conclude that there 1s no
linear relationship between x and Y (or, at least, we cannot conclude that there
is a significant linear relationship between x and Y). To perform

312 7 Simple Linear Regression the test, we can proceed as above. In practice,
we perform instead, equivalently, an analysis of the variance. Note first that
when we choose fl0 = 0, we have: T- MSe/SSr" (7.28) We can show that = ss,
=12(9, - 2. (7.29) i=1 We say that the sum of squares SSR 1is the sum of
squares due to regression. It can be shown that the sums SSR and SSF. are
independent random variables having chi-square distributions with 1 and n - 2
degrees of freedom, respectively. It follows that FO := T02 = SSI, FL,,,-2.
(7.30) MSF. Remarks. 1) Actually, by definition, the square of a random
variable having a Student distribution with n degrees of freedom is a random
variable having a Fisher distribu- tion with 1 and n degrees of freedom.
Therefore. we could have written directly that T -. Fl,n-2, when the null
hypothesis HO is true. 11) Since SSR has a single degree of freedom, the mean
square MS8 and the sum of squares SSR are equal. Finally, we can show that
E[SS] =c¢*2 +fISSx"' ¢* 2. (7.31) Since E[MSt | = ¢, 2, the larger the value of
the statistic Fo, the smaller the proba- bility that the null hypothesis Ho is true.
We reject Ho at significance level ¢ if and only if Fo > Fa,.n-2. (7.32) The
procedure to test the global significance of regression can be summarized using
an analysis of variance table (see Table 7. I, p. 313), in which the total sum of
squares SSr 1s defined by SST=Y(Y1-]7.)2=Y12-n2.(7.33)1=1 i=1 In
practice, we first calculate the sum of squares SSr. Next, we have: SS =-- =
where SSxr := (xi -@)(Yi-") =xiYi -n€'. (7.34) i=1 i=1 We can then
complete the analysis of variance table.

7.3 Confidence Intervals and Ellipses Table 7.1. Analysis of variance. Source
Sum Degrees Mean of variation of squares of freedom squares F 0 MSR
Regression SSR 1 MSR MSE Error SSE n -2 MSE Total SSTn- 1313
Example 7.2.1 We found in Example 7.1.1 that =-3.93 + 1.1x. We now want to
test Ho:fl =0 against HI:fl 5 0. We have: 5 SSr =Zy- 5y 2 =10.79- 5(1.46) 2 =
0.132 i=I and ssR =1iSSxv = (1.1) ("-xiYi- 5Y) = (1.1)(35.88- 35.77)=0.121.
i=I Thus, SSE = SST - SSR -- 0.011 and MSR 0.121 fo -- MSe -- 0.011/3 --33.
We find in the table giving the values of Fo.os,nl,,2, Appendix A, p. 343, that
Fo.05,1,3 -- 10.1. Since 33 > 10.1, we can reject Ho at significance level o =
0.05. Note that in fact we have: Fo.05,1,3 = t02.025,3 € Therefore, we can



also use Table 6.2, p. 261, to obtain the critical values Fo.os, [,n-2. 7.3
Confidence Intervals and Ellipses Using the following results: 6/S x tn 2 and
11 tn-2, (7.35) y2 6 / +S where 6 ==/SSe/(n - 2), we can calculate confidence
intervals for the parameters fl0 and 11l. We find that the two-sided confidence
intervals at 100(1 -0)%

314 7 Simple Linear Regression are given (in compact form) respectively by
rio+t/, e+--and f1[31 € ta/2,n-2'8 SSx" 2 (7.36) s& (7.37) Similarly, we
can show that a 100(1 - 00% confidence interval for the average value of the
random variable Y when x =" IxlIl ), x(n)], that is, for fl0 + fll ', is Oq-1 g-
ta/2"n-2'8 -q- SS----- (7.38) We see that the width of the interval is a minimum
when = . Now, the preceding formula is valid when we wish to compute a
confidence interval for fl0 + fil, based on the n observations collected. In the
case when we wish to compute a confidence interval for a new observation
(that 1s, for a prediction) of Y at x : instead, the term a 2 is added to the
variance and the formula becomes /1 (_ ))20-t- 1 @ t/Zn-2'8 1 + - + --
(7.39) n SS- Remark. If we want a confidence interval for the mean of m new
observations of Y at 1 x =s e, we only have to replace the term I (added in
front of -) by in the preceding formula. Finally, we can show that the interior of
the ellipse defined by n(flo --/)2 + 2n(flo -- 0)(ill -- 1ll) + (ill -- fi, )2 Z xi2 =
2'82 Fm2'n-2 1=1 (7.40) is a 100(1 - 0)% confidence region for the pair (rio,
ill). Example 7.3.1 A two-sided 95% confidence interval for a new
observation of Y when x ==4.9, in Example 7.1.1, 1s given by / 1 -3.93 + 1.1
(4.9) -t- 10.025,3'8 1 ++ 0 _ 1.46 -t- 0.21, because we have: Tab. 6.2 t0.025,3
" 3.182. (see Example 7.2.1, p. 313) and

7.5 The Analysis of Residuals 315 7.4 The Coefficient of Determination
Definition 7.4.1. The coefficient of determination, R 2, is obtained by dividing
the sum of squares SSR by the sum of squares SST : R2 - SSR. (7.41) SSr The
coefficient R 2, also called the squared correlation coefficient, enables us to
measure the fit of the model to the data. If all the data points fall on the
regression line, then we have: R 2 : 1. In general, R 2 takes on a value in the
interval [0, 1] and gives us the percentage of the total variation SST that is
explained by the regression model. It follows that 1 - R 2 -- SSE (7.42) SST is
the proportion of SS that is not explained by the model. Remarks. 1) The
expression correlation coefficient is in fact not correct, because x is not a
random variable. Indeed, a correlation coefficient is only defined for two



random variables, X and Y. i1) The quantity R : .v is called the fit index. It 1s
often used to measure the quality of the regression model. However, it is
important to know that if the value of R is large, this does not necessarily mean
that the (simple) linear regression model is the right one. Similarly, if the value
of R is small, we should not conclude that the model must be rejected. The
index fit is actually a measure of the improvement to the fit obtained by
including the term fllx in the model, in comparison to the regression model Y :
flo + e. Example 7.4.1 Using the results of Example 7.2.1, we find that R2 _
0.121 0.917 0.132 with the data in Example 7.1.1. 7.5 The Analysis of
Residuals We already called the quantities e 1 = Yi -- flO -- flIXi the
(theoretical) residuals. We define the sample residuals by ei : Y1 --i. (7.43) The
analysis of the residuals, which is generally carried out with the help of a
statis- tical software program, enables us to check, in particular, the validity of
the assump- tion made at the beginning of this chapter, namely that the error
terms ei all have a

316 7 Simple Linear Regression Gaussian distribution (with zero mean and
common variance (72). If this assumption is true, then the quantities ei Zi : -,
(7.44) (7 called the standardized residuals, should be particular observations
of a random variable Z having approximately a standard Gaussian distribution.
Since P[-2<Z <2]--0.95 and P[-3 <Z < 3] -- 0.997, (7.45) there should not be
more than (about) 5% of the zi's such that Izl 2, and almost no zi's such that Izil
> 3. Remark. If the size of the random sample 1s small, then we must use the
Student distribution. That is, we must compare the zi's to the values taken by a
random variable having a tn-2 distribution. Example 7.5.1 The regression
equation obtained with the data provided in Example 7.1.1 is . =-3.93 + 1.1x,
and we have: 6" ---- 0x/0--.011/3. Making use of these results, we can build
the following table: xi Yiieizi 4.7 1.2 1.24 -0.04 -0.67 4.8 1.4 1.35 0.05 0.83
49151.460.040.675.01.51.57-0.07-1.175.1 1.7 1.68 0.02 0.33 We see
that all the standardized residuals are small. Therefore, the normality assump-
tion of the random variables 1 seems reasonable. Remark. Since n= 5, we
should compare the residuals to the values taken by a t3 distribution. Now, we
have: P[-3.182 <T <3.182] " 0.05 if T t3. Therefore, the residuals could have
been located in the interval [-3.182, 3.182]. However, the size of the particular
random sample is a little small here to carry out an analysis of residuals. The
analysis of the residuals also enables us to check the other basic assumptions
made in simple linear regression: a) the model is of the form Y = flo + flx; b)



the errors €1 are independent and all have the same variance (72.

7.5 The Analysis of Residuals 317e i x X X X X X X X X XXX XXX X X
X X X Xi@r Yi Figure 7.2. Residuals forming a uniform band. To do so, we
plot the graphs of the residuals ei against the x 1's and the 1 'S. In all cases, the
points in these graphs should form a uniform band, as in Fig. 7.2. Figure 7.3, p.
318, shows cases when we can conclude that 1) the model 1s not linear in x
(graphs (a) and (b)); 11) the variance of the errors is not constant (graphs (c)
and (d)); 111) both at the same time (graphs (e) and (f)). Remark. If there exists
at least one value of the independent variable x for which we have at least two
observations of the dependent variable Y (and if there are at least three
different values of x in all), then we can perform the following test of the fit of
the model to the data: let Y/,1 ...., Yi,m be n1 observations of the random
variable Y whenx =xi, fori=1 ..... k. We define the sum of the squares due to
pure error: SSpE =7 7 (Y1'] -- Ip1)2' (7.46) 1=1 j=1 where 1 m /'li .= (7.47)
and we set SSE = SSpE + SSL, (7.48) where SSL is the sum of squares due to
the lack of fit of the model. Next, we consider the statistic SS/(k - 2) FO :=
SSpe/(n - k)' (7.49) k where n := Y-4=1 ni is the total number of observations
in the random sample. We reject, at significance level oe, the hypothesis that
the model is adequate for the data when FO > Fk-Z,,,-k.

318 ¢ 7 Simple Linear Regression X X X X X X X X X X X ......... x x X (a) = Xi@r i
EIXXXXXX X  X.u. X X  XXXXXXXXXX(b)Xioriei
XXXXXXXXXXX(C)X10rieiXXXXXXxxXxxxxxxxxxx(d)Xioriei
XXXxXX X XXXXX.o.. e XXXXXX10riXxXxXXXXXXXxxx
x x x x (e) (f) Figure 7.3. Residuals showing at least one assumption not
satisfied. 7.6 Curvilinear Regression Sometimes, a non-linear regression
model can be reduced to a linear regression model by transforming the Y
variable or the x variable (or both at the same time). For example, if we
propose the model (without an error term) Y =/30e/x, (7.50) then it suffices to
take the (natural) logarithm on each side of the equation, and next to set Y' = In

Y and/3( = In/30. We thus obtain the model

Similarly, the model becomes if we define yt=_In Y. 7.6 Curvilinear
Regression319 yt=; 1X.(7.51) 1 r =(7.52) exp(flo + 1 X) Y'=fl0+11X
(7.53) Remarks. 1) If we assume in (7.51) that Y[ = 6 + 61xi + 61, (7.54) where
61 N(0,0"2) fori=1 ..... n, then this implies that the original model is Y/ = {10



e/hxi+i. (7.55) An error term of the form e e1 may not be realistic in many
situations. On the other hand, assuming that the error term has a lognormal
distribution can be interesting in some cases. i1) The non-linear models that
can be linearized are called intrinsically linear. 111) We realize that the
relationship between x and Y is not linear by looking at the graph of the Yi's
against the xi 's, or at the graph of the ei's against the 1 'S. Example 7.6.1 We
have the following data: x 1237 Y 13.0 21.9 29.8 30.4 11.8 24.7 24.1 35.7
where x is the time (in days) elapsed after the setting of a cement and Y is the
tensile strength (in kilograms per square centimeter) of the cement. We propose
the curvilinear regression model Y = oe- x. a) Transform the variables to
obtain a linear model. b) Estimate the parameters fl0 and fll by the method of
least squares. ¢) Calculate a 95% prediction interval for Y when x =5 and 10.
Remark. When there is more than one value of Y for a given value of x, we
should specify in the problem whether all the observations are independent
(actually, we should always specify in the problem that the observations are
independent). Here, we assume that we indeed have eight values taken by
independent observations.

320 7 Simple Linear Regression Solution. a) We have: Y =/30e -x @ InY =
In/30 -/3x. Therefore, we simply have to set Y' =InY,/3 =In/30 and/3t= /3
to obtain y' =/3 +/3'1 x. Remark. We could also have set x' = -x, rather than/3'
=-/3. b) We must first transform the data. We obtain: x 123 7" Yt 2.565
3.086 3.395 3.414 2.468 3.207 3.182 3.575 Next, we calculate fi and fi'l using
the formulas in Section 7.1. We find that fi) " 2.69 and fi'l " 0.13. It follows
that 14.74 and fil = -1 -0.13. c¢) The 95% prediction interval for Y', when x =,
is givenby /1 (_.)2 2.447 We find that € = 3.25, SSx =41.5 and (with the
transformed data) SSr - 1.114. It follows that SSE = SSr - (fit])2 SSx " 0.413,
and then Thus, we obtain (O'1 3) 1/2 6" " " 0.262. =5=€»,3.340.70 and =
10=€,3.990.96. Finally, in terms of the variable Y, the prediction intervals
become Y1{x=5} 6114.0, 56.8] and YI {x= 10} 6120.7,141.2]. Remarks. 1)
Looking at the data, we see that Y increases when x increases. Therefore, the
fact that fi is negative is logical.

7.7 Correlation 321 i1) Since/1 is a real parameter, the model considered is

equivalent to the model Y = floe fllx. 111) If we had proposed the model Y =/0
/1 In x, for instance, then it would have been sufficient to set X' = In X to obtain
the simple linear regression model. Moreover, if we assume that where e1 N(0,



(r2)fori=1.... n, then we have: Yi =/30 +/31 In xi + el. That is, if we only
transform the independent variable x, then the error term ei in the model is
unchanged. 7.7 Correlation When x is not a deterministic variable, but rather a
random variable X, we as- sume that (X1, Y1) ..... (X, Y. is a random sample
of size n of the random vector If we assume further that X has a Gaussian N(#x,
rx ) distribution and Y (x, Y). 1), then we can show that the expected value
and the variance of N(#y, Y, given that X = x, are given by (see p. 179) E[Y [
X =x] =#y -+- tox,y--(x - #x) (7.56) x and VAR[Y [ X = x] = Cry(1 - Px,y).
(7.57) It follows that we can write that E[Y [ X =x] = 1o lIx, (7.58) where o'y
O'y0:=Y -- PX,Y--#X and /31 := Px,Y--. (7.59) o- X 0- X We can show that
the maximum likelihood estimators of the parameters/0 and/1 are given by 1 =
1=1 (Xi-2)(I-1f)=1=1 Yi(Xi - 2) (7.60) zin=] (X1 -- 2) 2 zin=] (Xi - 2) 2 and
0=1? - @12. (7.61) Note that these estimators are of the same form as those
obtained by the method of least squares in Section 7.1.

322 7 Simple Linear Regression Now, the estimator fix, r of the theoretical
correlation coefficient Px, r is the sam- ple correlation coefficient Rx,r,
defined by n X i=(1- 2)(Y1 - f) SSxyRX'y=nXn"-- (7.62) [Zi=] (1 --
,)21=1(Y1 -- ')2] 1/2 Remark. We find that the square of the sample correlation
coefficient, rx.y, of the observations in a particular random sample of a pair
(X, Y) is equal to the coefficient of determination: r 2 ---- R 2. However, the
coefficient of determination was defined X.Y for a deterministic variable x
(and a random variable Y). As we already mentioned, it is not rigorous to state
that the coefficient of determination is the square of the sample correlation
coefficient of the variables x and Y. Test of Hypotheses To test the hypothesis
Ho: Px.Y = 0 against H: Px.Y # O, (7.63) we use the statistic To:=/n2 Rx, y
no -- tn-2. (7.64) /1 -- R 2 X, Y We reject Ho at significance level oe if and
only i1f Remarks. 1) Since SSr = SSr and fi = SSxr/SSx, we can write that (
SSx'] '/2 RX'y =/ \-'"T J (7.65) Therefore, testing Ho: Px,Y = 0 is equivalent,
from a mathematical point of view, to testing H0:/4 = 0. i1) To test the more
general hypothesis Ho: Px, Y = P0, we can use the statistic v/ _{-3 [

(I+Rx.Y) In(I+P€]I Z0.-- In 1--Rx.y \1--00/3' (7.66) which has approximately
a standard Gaussian distribution if the hypothesis HO is true and if the size n of
the random sample is large enough. We reject HO at significance level ot if and
only if [Z0] > zw/2. Example 7.7.1 The following data are the maximum and
minimum temperatures (in degrees Fahrenheit) registered during a winter week
in an American city:



7.7 Correlation 323 Sun. Mon. Tue. Wed. Thu. Fri. Sat. Maximum 6 11 14 12 5
--2 --9 Minimum --22 --17 --15 --9 --24 --29 --35 Let Y be the maximum
temperature and X be the minimum temperature. We compute Y --21.57 and -
- 5.29. Moreover, 7 SSx=x--7.2463.71;1=1 7SSr=y2 1-- 72 411.43; i=1
7 SSx, y -- xiY1 -- 7Y5; -- 414.14. i=1 It follows that --SSx'Y .89 and /o=-
/Y _24.55, SSx so that we estimate/*'1x := E[Y [ X =x] by /2gqx -- 24.55 +
0.89x. Remark. We could also compute *Xly - --26.89 + 1.01y. The sample
correlation coefficient rx, is given by SSx, 0.9482. rx,, -- Since R2 =1 2
0.8990, we say that the model explains about 89.9% of the x,Y variation in the
data. Finally, to test Ho: Px, =0 against H" Px, 0, we calculate the statistic to :=
rx,, 6.67. /1 --r 2 x,Y Tab. 6.2 Given that t0.025,5 " 2.571, we can reject Ho at
significance level e = 0.05 and conclude that the correlation coefficient ,0x, is
not equal to zero.

324 7 Simple Linear Regression 7.8 Exercises, Problems, and Multiple Choice
Questions, Supplementary Exercises Solved Exercises Exercise no. 1 (7.2)
Researchers think that there 1s a relationship between the strength Y (in tens of
kilograms) of a certain metal part and the time x (in minutes) allowed for its
cooling after its fabrication. They measured the strength of ten parts cooled
over different time periods and obtained the results that are summarized
below: 10 I(1 I(1 2:40.9, .:74.4, Zx/:17,077, Zy/:55,504, Zx1Y1:30,436. i=1 1:1
1=1 We propose the simple linear regression model: Y =/40 +/4ix + e, where e
N (0, 0"2). a) Estimate the parameters/o and/ by the method of least squares. b)
Estimate the parameter c¢) Test the hypothesis Ho:/I =0 against H:/ :/: 0. Use a
=0.05. a) We have: IO /1 =1:IxiY1-- 102. EI' _/, X/2 --1022 and Solution
30,436 - (10) (40.9) (74.4) 6.4 17,077 - (10) (40.9) 23489 /o=.-/2 --74.4
-(0.0183) (40.9) 73.6498. b) We calculate and IO SSr = Zy1 - 10. 2 =
55,504 - (10)(74.4)2=150.41=1 SSR=x21_ 1022 a)/(348.9) -- 0.117.
Then, we can write that SSr - SSR ) I/2 3" = gO----- -- 4.33.0.0183
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Exercises 325 ¢) We reject HO:/31 =0 ifand only if SSR b) 0.117 62 --
(4.33)2 -- 0.0062 > Fo.os, 1,10-2. p. 343 SinceF0.05,1,8 -- 5.32, we cannot
reject HO if ¢ = 0.05. Exercise no. 2 (7.4) We study the tensile strength Y of a
certain alloy as a function of the percentages Xl and x2 of two of its
components. We took ten specimens of this alloy, that were produced under
different conditions, and we obtained the following data: Y 213 220 216 225



235218239243233240X113151418192022171618x22.12.32.22.5
3224344.14.043=-10X2=3028, Y.O 1X2i =30.5 and Remark. We
have: y.]€ 1Xli 172, /-i=11i ..01Xi =99.65. a) We first propose the simple
linear regression models: Y =/30 +/3ixi + e, where e N (0, or2), fori=1,2.
Test, at significance level a = 0.05, the null hypothesis Ho: /31 = 0 against
Hi:/31 0, for i1 = 1,2. b) Based on the quantities R 2 and 6 "2, which variable,
Xl or x2, seems to better explain the tensile strength of the alloy? Remark. The
smaller the value of 62 is, the more adequate the model seems to be for the
data. c) We also consider the model Y =exp (/31X1 g- E), where e N (0, O'2).
Use the data collected to estimate the parameter/31 by the method of least
squares. Solution a) We first calculate SS, = 1105.6. In the case of the simple
linear regression model with the variable X1, we have: SSR =21 Xi -- 10€p :
69.6/12.\i=1 We find that/1 ' 2.221. It follows that SSR - 343.33 and SSE -
762.27=2 76227  953=fo  343'338953

326 7 Simple Linear Regression p. 343 Wereject Ho:/3 = Oat
significancelevelot = 0.05 if and only if fo > Fo.05,,0-2 5.32. Thus, we cannot
reject Ho. When we consider the model with the variable x2, we obtain that
SSR - 942.11, so that SSE - 163.49:3-2 204 :=fo  942"11 46.1.20.4
Therefore, here we can reject Ho:/32 = 0 at significance level ot = 0.05, since
46.1 > 5.32. b) In the case of the variable x, we have: 6 .2 a) -- 95.3 and R2
SSR a) =-- 0.31, SSr while for the variable x2, we obtain that c3 "2 20.4 and
R2 a) 942.11 -- --  0.85. 1105.6 Given that R 2 is larger and that the value of
2 is smaller with the variable x2, it is x2 that better explains the tensile
strength. ¢) We have: InY=flx + e. We set 10 SS (1) = (Inyi - 1XIi) 2 . i=1 Then,
we have: d 1o -@=1Xli Inyi d-SS (/1) =0 ,€ 2 Zi=I (Inyi - 1Xii) (-X1i) =01
-- 701 X211 We find that 10 10 Z XIi In yi 934.5 and '-X21i = 3028. i=1 i=1 It
follows that 934.5 " 0.31. 3028
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Exercises 327 Unsolved Problems Problemno. 1 The following (independent)
data have been collected: 12345678910x121210101032202030Y
2040 30 80 50 50 90 30 40 40 We find that 10 10 10 xi 129, Zyi=470' Zx/2
i=11=1 i=1 10 -xiYi = 5250, SST =4410. i=1 =2301, 10 Z y/2 =26, 500, i=1
We consider the model Y = flo+{l1X +€p, where € N(0, a2). a) What
percentage of the total variation in the values of Y can be explained by a linear
relationship between the variables Y and x? b) Can we reject the hypothesis



HO: fll -= 0 (against Hi: fl # 0) if we choose = 0.05? Problemno. 2 On a
Monday, a pisciculturist scatters a large quantity of baby fish into a fish pond.
Each subsequent Monday, he catches at random 500 fish, marks them with a
number (different every week), and then puts them back into the water. After a
few hours, he throws a net, counts the total number of fish that he caught and
the number of those marked with the number of the current week, before putting
the fish back into the water. He obtains the following chronological table
giving the number of marked fish and the total number of fish caught: Week 1 2
345678 No.marked 17 19 18 23 24 26 27 29 No. caught 1004 1011 1008
1015 1003 1017 1003 1013 Remark. The precision of the calculations is
important in this problem. a) Let P be the proportion of marked fish in the fish
pond. The breeder considers the following model, from the fourth week: P =
ore t for t [4, 8]. Estimate the parameters and fl by the method of least squares.

328 7 Simple Linear Regression b) By extrapolating theproposed model, what
is the expected number of fish in the fish pond after 40 weeks? c) Assuming
that the fish remain edible and that they gain 7% in weight every week, from
the fourth week until maturity after 50 weeks, should the pisciculturist harvest
the fish after eight weeks or wait for maturity? Remark. The value of the fish is
proportional to the weight times the number of fish. Problem no. 3 (See [22].)
An industrial engineer proposed the model T = y/4 -k for the time T (in
seconds) needed to accomplish a simple manual task, as a function of the
number k of times the task has been practiced, where/4 and y are parameters
that depend on the task and on the individual. We have the following data: T
224213197156!52!3913.7k01 23456 a) Transform the proposed
model into a linear model and estimate the parameters and g by the method of
least squares. b) We suppose that T = y/4-ke , where e N (0, 0"2). 1) Estimate
the parameter 0". i1) Test the hypothesis H0:/4 = 1 against Hi: /4 1 with a type |
error risk oe equal to 0.05. 1i1) Calculate an approximate 95% confidence
interval for g. Problem no. 4 We study the production Y (in cubic meters per
second) of a manufacturing pro- cess, as a function of the temperature x (in
degrees Celsius). For temperatures in- creasing by 100 degrees from 100 to
600 €C, the production increased from 49 to 68. We have: 6 6 6 Zyi =369, Z
y2 =22,947 and Zx1Y1=135,400. i=1 i=1 i=1 a) We propose the simple linear
regression model: Y =/0 +/41x + e, where e N (0, 0"2). 1) Estimate the
parameters/0 and/41 by the method of least squares. i1) Calculate the
percentage of variation explained by the model.
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Exercises 329 iii1) Test, at significance level ot = 0.01, the hypothesis HO:,61 =
0 against 1 €0. Hint. We have: t0.005,4 -- 4.604. b) We also propose the
following curvilinear regression model: Y=a0+al/+e, whereeN(0, a2). We then
find that /6=1 Yi " 6847.934. 1) Calculate the point estimates of the parameters
or( and oq by the method of least squares. i1) Calculate the percentage of
variation explained by the model. Problem no. 5 A trucking company wishes to
determine the relationship between the age of a truck and the number of days
per year it spends being repaired. To do so, it took six tracks at random and
obtained the followingdata: x8 163 52Y9 16140 10 where x is the age of
the truck (in years) and Y is the number of days it spent being repaired over a
one-year period. a) Without doing any calculations, explain why, among the
three models that follow, model (2) seems the most appropriate: (1) (2) (3)
where e N (0, O2). b) Based only on the coefficient of determination R 2,
which model, between models (1) and (3) above, is the better one? Y = flo +
fllx+e, Y=1flo+1ll x2-6,Y =10 + fll e-x+ e, Multiple Choice Questions
Question no. 1 We study the relationship between the number x of years
elapsed since receiving their first degree and the annual salary Y (in thousands
of dollars) of engineers. The values taken by the observations in a random
sample of size n = 10 yielded the following table: x 1 234 5Y 28 30 40 55 45
3135364060

330 7 Simple Linear Regression We propose the model Y =/0 +/1x 2 + e,
where e N (0, r2). We then have: SSr=1016 and 6 2 -- 33.5. A) Estimate the
parameter/0 by the method of least squares. a) 0 b) 1 ¢) 6.1 d) 21.7 ¢) 29 B)
Calculate the percentage of variation explained by the proposed model. a)
54.2% b) 73.2% c) 73.6% d) 85.6% e) 85.8% C) Estimate the annual salary of
an engineer having ten years experience, according to the proposed model. a)
100,000 b) 104,000 c) 105,000 d) 121,700 e) 129,000 Question no. 2 The real
speed of three makes of cars, when their speedometers indicate 100 knmv/h, has
been measured for four cars of each make: Make 1 Make 2 Make 3 105 103
108 101 101 97 99 104 102 96 98 103 We propose the model V =tio + fllx +,
where V is the real speed, x 1s the speed indicated by the speedometer and e
N(O0, r2). Estimate the parameter fl by the method of least squares. a) 0 b) 1 ¢)
1.1 d) e) indeterminate Question no. 3 We are interested in the relationship
between two random variables, X and Y. We collected five pairs (x1, Y1) of
particular observations of (X, Y). The results are summarized below: 55555



Zxi =5, Zyi: 15, 7x7:55, Zy/2=51, Zxiyi=51. 1:1 i=1 1:1 1:1 i=1 A) Calculate
the sample correlation coefficient, rx, y. a) 0 b) 0.194 ¢) 0.4 d) 0.775 ¢) 0.8 B)
Suppose that X N(#x, rx22 ) and Y N(#1', 1122). Estimate the mean of Y, given
that X =0.a)-3b)0c) 1.2d) 3 e) 4.8 C) If, with other data, we obtained R 2 =
0.04 and/ > 0, what 1s then the value of the statistic used to test the hypothesis
HO: p=0against H: p - 0 7 2)-0.577 b)-0.069 c) 0.069 d) 0.354 ¢) 0.577

7.8 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 331 Question no. 4 We consider the following data: x 1 1.52 2.5 3
Y 13 16 18 18 19 We propose the curvilinear regression model Y = 10 +/1 Inx
+ s, where s N(0, a2). We calculate /5=1InX 1-3.1135, Z=1Yi=84, Z=lYilnxi -
-56.3309,-/5  1In2xi--2.6914, -=1Y] = 1434. A) Estimate the parameter
fll by the method of least squares. a) 2.80 b) 5.35¢) 11.20d) 13.47 ¢) 17.12
B) Calculate the value of the statistic FO used to test the null hypothesis HO: fll
=0.a)4.11 b) 16.92 ¢) 50.77 d) 72.30 e) 75.20 C) What is the percentage of
variation explained by the model? a) 5.58% b) 12.62% c) 80.0% d) 88.22% e¢)
94.42% Supplementary Exercises Question no. 1 Preliminary calculations
made with a series of particular observations (xi, Y1),1=1 ..... 100, of a
random variable Y and a deterministic variable x yielded 100 z]O01Y1 = .di=l
11=1 x1 =500, 1000, 100 x 2 =24, 775, =1 (Y1 -)2 =39,600, rx,r = 0.9, where
rx,r 1s the sample "correlation coefficient" defined by 001 (Xi -- -)(Y1 -- f) rX,
Y 2.2-,100.y)2] 1/2" []001(Xi-- )2 ,i=ItY1- A first look at the graph of these
data points suggest a simple linear regression model: Y =flo +/1X nt- 6,
where e N (0, a2).

332 7 Simple Linear Regression a) Calculate y] (xi - €) (Yi - ). b) Estimate
all the parameters in the model. c¢) Perform an analysis of the variance and test
the null hypothesis HO:/31 = 0 at significance level ot = 0.05. Hint. We have:
F0.05,1,98 -- 3.94. Question no. 2 We have the following table showing the
progression of an epidemic over time: t 10 12 15 20 23 25 27 30 N 40 35 30
252020 15 10 where t denotes the number of weeks elapsed since the
outbreak of the epidemic and N is the number (in tens) of persons infected. We
wish to forecast the value of N after 40 weeks. We propose the following
model: N=flO+/31t+e, where e " N (0, or2). We find thatn= 8, Y8i=ti = 162,
Y=1t/2=3652, Y=Ini =195, Y/8=I n/2 = 5475, y/8=I tini = 3435. a) Estimate
all the parameters in the model and calculate the table of analysis of variance.
b) Give the forecasted value of N after 40 weeks. ¢) Reminder. We define a



100(1 - or) % one-sided confidence interval with an upper bound for a
parameter 0 by the determination of a statistic UC such that P[t9 < UC]= 1-or.
Calculate a 99% one-sided confidence interval with an upper bound for the
value of N after 40 weeks. Hint. We have: t0.0,6 -- 3.143. Question no. 3 We
are interested in the relationship between the speed x (in kilometers per hour)
reached in 10 seconds by 15 luxury cars and the braking distance Y (in meters)
until a complete stop. The following data have been collected: x 104.2 106.1
105.6 106.3 101.7 104.4 102.0 103.8 Y 39.8 40.4 39.9 40.8 33.7 39.5 33.0
37.0x 104.0 101.5 101.9 100.6 104.9 106.2 103.1 Y 37.0 33.2 33.929.9 39.5
40.6 35.1

7.8 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises a) Estimate the parameters in the model Y =/30 +/31 x +, where --
N(0, a2). 333 b) Calculate the table of analysis of variance and test the null
hypothesis HO:/31 = 0 at significance level t = 0.05. ¢) Calculate 95%
confidence intervals for the coefficients fl0 and ill. d) Perform an analysis of
the residuals to check whether the basic assumptions are satisfied. ¢) Calculate
a 95% prediction interval for Y when x = 100,103 and 106. Hint. We have:
t0.025,13 " 2.160. Question no. 4 The data that follow show the effect of time
on the content of hydrogen for two (independent) steel specimens stored at 20
QC:t1261730H7.77.56.15.74.28.48.16.85.3 4.5 where t denotes the
time (in hours) and H is the content of hydrogen (in parts per million). We
propose the model H=o+/311nt+e, where € " N (0, r2). a) Estimate all the
parameters in the model. b) Calculate the table of analysis of variance and test
the null hypothesis HO:/3 = 0 at significance level o = 0.05. Question no. 5 We
seek to establish a relationship between the diameter x (in centimeters) of the
filament of an electric light bulb and its lifetime Y (in hours). We have the
following data: x 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.60 Y 120 165 204 238
296 373 410 403 x 0.60 0.70 0.70 0.80 0.80 0.80 0.90 1.00 Y 420 462 455
520 518 525 580 600 a) Estimate the parameters of the simple linear
regression model. b) Calculate the analysis of variance table and test the null
hypothesis H0:/31 = 0 at significance level ot = 0.05. ¢) Perform an analysis of
the residuals to check whether the basic assumptions are satisfied.

334 7 Simple Linear Regression Question no. 6 The law of perfect gases
relating the pressure P (in kilograms per square cen- timeter) and the volume v
(in cubic centimeters): Pv € = ¢ can be written, after transformation, in the



formY ---- ¢ - Fx, where Y :=In P, x := In v and ¢ := In c. Particular
observations of v and P yielded (v, P) ----(50,64.7), (60,51.3), (70,40.5), (90,
25.9), (100,7.8). Remark. Useful calculations: -'1 x1 21.35984, z [(X) i= Yi --
17.11712, [x/2 291.57317, E] y/2 61.40147. 1 .,ciYi -- 72.26249, a) Estimate
the parameters a and F by the method of least squares. b) Calculate the analysis
of variance table of the model Y = a - gx, as well as the percentage of variation
explained. ¢) Calculate a confidence interval at 95% for the average value of P
when v = 80. Question no. 7 The regression model through the origin is given
by Y=flx+, whereN(0, cr2). a) Find the estimator of the parameter fl by the
method of least squares, if we have n observations of the pair (X, Y). b) We
suppose that a recently built structure sinks into the ground according to the
model Z= 10 - 10e-Cx, where x is the age (in months) of the structure and Z is
the sinking (in centimeters). Find a transformation that reduces the above
model to the regression model through the origin. Question no. 8 To evaluate a
measurement process, an operator who knows the measuring in- strument well
obtains two measurements, X and Y, of 15 parts in a batch. A mea- surement
process is said to have a good repeatability if the correlation coefficient, rx, v,
of the random sample of the pair (X, Y) is greater than 0.80. The data are the
following;
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Exercises 335 X 34 56 6 50 33 43 49 17 54 243546 10 51 25 Y 4544 19 55
17323755418 2643 16 55 11 Remark. Useful calculations: Y = 35.53, =
31.8,sx--16.20 and s- _17.01. a) Does the measurement process have a good
repeatability? b) Calculate the covariance sx,v :=5=1 (xi - Y) (Y1 -- 3) of the
particular obser- vations of X and Y. ¢) We consider the pairs (X1, Y1) .....
(X15,Y15), (Y1, X1) ..... (Y1, They constitute a random sample of size n = 30
of a pair of random variables that we denote by (U, V). 1) Explain why the
standard deviation Su of the observations of U and that of the observations of
V are equal. 11) We assume that U and V have a Gaussian distribution, so that
E[VIU=u] =130+ 131 u. Estimate, using the 30 particular observations of
(U, V), the parameters 130 and 131 by the method of maximum likelihood.
Question no. 9 During the 1840s, the physicist J. Forbes measured in 17
places, in the Alps and in Scotland, the barometric pressure Y (in inches of
mercury) and the boiling temperature x (in degrees Fahrenheit) of water. At the
time, barometers were fragile and it was much easier to determine the boiling
temperature of water in mountainous regions than to use a barometer. From this



temperature, the barometric pressure could be determined. The data collected
by Forbes are presented below: x 194.5 194.3 197.0 198.4 199.4 199.9 Y
20.79 20.79 22.40 22.67 23.15 23.35 x200.9 201.1 201.4 201.3 203.6 204.6
Y 23.89 23.99 24.02 24.01 25.14 26.57 x209.5 208.6 210.7 211.9 212.2 Y
28.49 27.76 29.04 29.88 30.06 a) Draw the graph of the data points (xi, Y1)
and that of the data points (xi, In Y1). Which graph looks more like a straight
line? b) Perform a regression analysis according to the simple linear
regression model. That is, estimate the parameters in the model, calculate the
analysis of variance table and perform an analysis of the residuals.

336 7 Simple Linear Regression c¢) Perform a regression analysis of the model
InY="0+qx+, where N(0, r2). d) Which model is superior, based on the
percentage of variation explained by the model and on the behavior of the
residuals? Question no. 10 Let (x, y) ..... (xm, yo) be ten particular
observations of a pair of random variables (X, Y) We have: K-'1€ x. = z]OI
Yi=155,SX=Sy=3.03 and € /4=1tz]O Ixi yi=380. a) Calculate the
sample correlation coefficient, rx, r. b) Calculate -.]€ 1 x/2 - 1022. Question
no. 11 An experiment similar to that of Forbes, described in no. 9, was
realized by J. Hooker in the Himalayas. His data are the following: x Y x Y x
Y 210.8 29.211 210.2 28.559 208.4 27.972 202.5 24.697 200.6 23.726 200.1
23.369 199.5 23.030 197.0 21.892 196.4 21.928 196.3 21.654 195.6 21.605
a) Perform a regression 193.6 21.212 193.4 20.480 191.4 19.758 191.1
19.490 190.6 19.386 189.5 18.869 188.8 18.356 188.5 18.507 186.0 17.221
185.7 17.267 analysis of the model 185.6 17.062 184.6 16.881 184.1 16.959
184.1 16.817 183.2 16.385 182.4 16.235 181.9 16.106 181.9 15.928 181.0
15.919 180.6 15376 In Y = go + )/1 x nt- 5, where N(0, r2). b) Compare the
results to those in part ¢) of exercise no. 9. c) Perform a regression analysis of
the model in a), using the 48 data of Hooker and Forbes together. Question no.
12 In a simple linear regression problem, we find that the parameter fll is not
signif- icantly different from zero. a) We then propose the model Y =/30 + e,
where e N (0, r2). Estimate/30 by the method of least squares.

7.8 Exercises, Problems, and Multiple Choice Questions, Supplementary
Exercises 337 b) We also propose the model Y =/50 +/51x 2 + 6:. Find the
value/o 0f/50 that minimizes the function SS(flo,/1) := in=1(Y1 -/50 -/1Xi2) 2.
Question no. 13 The voltage U (in volts) of a capacitor, with initial charge uo,
is, after t seconds, given by the equation U = uo e-t. An experiment yielded the



followingresults: t0 123456789 10U 1007555403020 15101055
a) Make a transformation to obtain a linear model with respect to the
parameters. b) Fit the new model by the method of least squares. c¢) Calculate
95% confidence intervals for u0 and ft. Question no. 14 We propose the model
Y =flo +/51X + 6:, where 6: N (0, a2), relating the variables x and Y. We have
the following results: --=1Yi = 10, --=1Y/ = 50 and the sum of squares SSn is
equal to 25. a) Calculate the coefficient of determination, R 2. b) Calculate 9a.
Question no. 15 Boyle's law relates the pressure P of a gas to the volume v it
occupies, according to the equation Pv a =fl, where a and/5 are two constants.
Fit the model using the following data: v0.2 1.00.8 1.0 1.6 0.4 P0.6 1.0 1.5
2.0 2.5 3.5 Question no. 16 We consider the model Y =/50x 0 . a) Make a
transformation to linearize the model. Express the new variables yl and x I, as
well as the new parameters/56 and/511, in terms of the old ones. b) An
analysis of variance table yielded a statistic fo equal to 12. Can we then reject,
at significance level a = 0.01, the hypothesis Ho:/51 1 = 0, if we have ten
particular observations of (x, Y)? Give the value of the percentile used to
perform the test. Hint. We have: t0.005,8 -- 3.355.

338 7 Simple Linear Regression Question no. 17 (See [2].) A screw
manufacturer wishes to inform its customers about the relationship be- tween
the nominal length x and the actual length Y of its screws (in inches). The
following values, taken by independent observations of Y, have been collected:
x1/4 1/41/4 1/2 1/2 1/2° Y 0.262 0.262 0.245 0.496 0.512 0.490 x 3/4 3/4 3/4
111Y0.743 0.744 0.751 0.976 1.010 1.004 x 5/4 5/4 5/4 3/23/23/2' Y
1.265 1.254 1.252 1.498 1.518 1.504 x7/47/47/4222Y 1.738 1.759 1.750
2.005 1.992 1.992 We propose the simple linear regressionmodel Y = 1o +ill x
+, where N(O, a2). a) Estimate all the parameters in the model. b) Obtain a
95% confidence interval for the average value of Y when x = 1, using only the
three particular observations of Y for this value of x. ¢) Obtain a 95%
confidence interval for the average value of Y when x = I, using all the data
available. d) Calculate the "correlation coefficient" (see no. 1 above) of the
pairs of data (x, y).

Appendix A: Mathematical Formulas Logarithms Inab=lna+Inb; Ina/b=Ina-Inb;
Ina b=blna Geometric Series If [r[ <1, we find that Zark a.Zakr kar k=0
lrk=o(1 -)2'=ar ;Zark a(l-rntl)Zark1r1 -rk:!k=0 Limits
L'Hospital's rule. Suppose that limxxo f(x) = limxxo g(x) = 0, or that limxxo



f{x) = limxxo g(x) = @xz. Then, under some conditions, we can write that f(x)

f(x) lim -- lim -0 g(x) xxo g'(x)" If the functions if(x) and gt(x) satisfy the same
conditions as f(x) and g(x), we can repeat the process. Moreover, the constant

x0 may be equal to Derivatives Derivative of a quotient: d f(x) dx g(x)

gf (x) -- {(x)g(x) g2(x) if g(x) : 0.

340 Appendix A: Mathematical Formulas Remark. This formula can also be
obtained by differentiating the product f(x)h(x), where h(x) := 1/g(x). Chain
rule. Ifu= g(x), then we have: d d du -x f{u) =-u f(u)" -x =f'(v)g'(x) =
f[g(x)]g'(x). For example, ifu=x 2 , we calculate d-exp(u 2) exp(uZ)2u 2x 4x
" exp(x4). Integrals Integration by parts: fudv =uv - f vdu. Integration by
substitution. If the inverse function g-1 exists, then we can write that f(x) dx =
flg(y)1g(y) dy, where a = g(c) e* ¢ = g-(a) andb = g(d) e* d = g-(b). For
example, dx " =2ye y dy = 2yeYl- 2 e y dy = 2e 2+2. In this example, y = g-(x)
=x /2 andx = g(y) = y2.

Appendix B: Quantiles of the Sampling Distributions Gaussian distribution ot
0.25 0. 10 0.05 0.025 0.01 0.005 0.001 0.0005 z0.674 1.282 1.645 1.960
2.326 2.576 3.090 3.291 Student distributionn1 23456 7 8 t0.025,n 12.706
4.303 3.182 2.776 2.571 2.447 2.365 2.306 to.0os,n 6.314 2.920 2.353 2.132
2.0151.943 1.8951.8601n9 10 1520 25 30 40 t0.025,n2.262 2.228 2.131
2.086 2.060 2.042 2.021 1.960 to.os,n 1.833 1.812 1.753 1.725 1.708 1.697
1.684 1.645 Chi-square distributionn12345678925.027.389.3511.14
12.83 14.45 16.01 17.53 19.02 X0O.025,n2 3.84 5.99 7.81 9.49 11.07 12.59
14.07 15.51 16.92 XO0.05,n2 0+ 0.100.350.71 1.151.64 2.17 2.73 3.33
X0.95n2 0+ 0.050.22 0.48 0.83 1.24 1.69 2.18 2.70 X0O.975,n

342 Appendix B: Quantiles of the Sampling Distributions Cbi-square
distribution (continued) n 10 15 20 25 30 40 50 100 2 20.48 27.49 34.17
40.65 46.98 59.34 71.42 129.56 X0.025,n 2 Xo.0s,n 18.31 25.00 31.41 37.65
43.77 55.76 67.50 124.34 2 3.94 7.26 10.85 14.61 18.49 26.51 34.76 77.93
X0.95,n23.256.27 9.59 13.12 16.79 24.43 32.36 74.22 X0O.975,n Fisher
distributionn 123456 7 8 Fo.025a. 647.8 39.00 15.44 9.60 7.15 5.82 4.99
4.43 Fo.05.,., 161.4 19.00 9.28 6.39 5.054.28 3.793.441n9 10 15 20 30 60
120 ¢ F0.025.nm 4.03 3.72 2.86 2.46 2.07 1.67 1.43 1.00 Fo.oS.n., 3.18 2.98
2.402.12 1.84 1.53 1.35 1.00 Values of F0.025,nl.n2 n2\nl 12345678910
11 12 648 800 864 900 922 937 948 957 963 969 973 977 2 38.539.0 39.2



39.239.339.339.439.439.439439.439.4317.416.015.415.1 14.9 14.7
14.6 14.514.514.414.414.3412.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90
8.84 8.79 8.75510.0 8.437.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.57 6.52
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.41 5.37 7 8.07 6.54
5.895.525.295.124.994.904.824.76 4.71 4.67 8 7.57 6.06 5.42 5.05 4.82
4.654.534.434.364.304.244.2097.215.71 5.08 4.72 4.48 4.32 4.20 4.10
4.03 3.96 3.91 3.87 10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.66
3.62116.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.47 3.43 12 6.55
5.104.474.123.893.73 3.61 3.51 3.44 3.37 3.32 3.28

Appendix B: Quantiles of the Sampling Distributions Values of fo.05,ni,n2 343
n2\nl 1234567891011 121 161200216225 230234237239 241 242
2432442 18.519.019.219.219.319.319.419.419.419.419.419.43 10.1
9.559.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 4 7.71 6.94 6.59 6.39
6.26 6.16 6.09 6.04 6.00 5.96 5.94 591 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88
4.824.774.744.70 4.68 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
4.034.0075.594.744.354.123.973.873.793.73 3.68 3.64 3.60 3.57 8
5.324.46 4.07 3.84 3.69 3.58 3.50 3.44 3.393.353.31 3.28 9 5.12 4.26 3.86
3.633.483.373.293.233.183.143.103.07 104.96 4.10 3.71 3.48 3.33 3.22
3.143.07 3.022.98 2.94 2.91 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
2.852.822.79124.753.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69

Appendix C: Classification of the Exercises The list of exercises (among the
multiple choice questions, problems or supplemen- tary exercises) that can be
done after having read each section is given below. The symbol 1 m
(respectively 1 s), for example, denotes the multiple choice question (resp.
supplementary exercise) no. 1 of the chapter in question. Chapter 2 2.1: Im,
6m, 12m, 19m, 32m2.2: 2; 8m, 13m, 36m, 46m 2.3: 3, 8, 11, 18, 20; 2m, 7m, 1
Im, 14m, 15m, 21m, 24m, 29m, 34m 2.4: 1,5, 24; 17m, 23m, 31m, 39m, 40m,
44m, 48m, 50m 2.5: all the others Chapter 3 3.1: -- 3.2: 3m, 15m, 52m 3.3:
1,2, 10, 11,42; 4m, 16m, 28m, 34m, 35m, 36m, 53m 3.4: 12, 19, 31,34; Im,
12m, 17m, 18m, 29m, 37m, 56m, 79m 3.5: 14, 27, 38; 6m, 19m, 20m, 41m,
58m, 64m, 80m 3.6: 6, 35; 21m, 40m, 47m3.7: 3,4,5,7,9, 15, 16, 17, 20, 22,
23,25, 28,29, 32,37, 39, 43, 46, 47; 2m, Sm, 22m, 23m, 30m, 32m, 38m,
39m, 45m, 46m, 48m, 49m, 54m, 55m, 57m, 59m, 66m, 67m, 68m, 72m, 73m,
74m, 76m, 77m, 78m 3.8: 8, 13, 18, 21,24, 26, 30, 33, 36, 40, 41,44, 45; Tm,
8m, 9m, 10m, Ilm, 13m, 14m, 24m, 25m, 26m, 27m, 31m, 33m, 42m, 50m,



60m, 62m, 63m, 70m 3.9: 43m, 44m, 51m, 61m, 65m, 69m, 71m, 75m, 81m
Chapter 4 4.1: --4.2: 1,2, 12; 3m, 4m, 9m, 17m, 20m, 21m, 26m, 31m, 32m
4.3:3,14; 10m, 22m, 33m, 40m

346 Appendix C: Classification of the Exercises 4.4: 11 m4.5: 4, 5, 19; 12m,
28m, 34m4.6: 6, 16, 22, 24, 25,27,29; I m, Sm, 23m, 27m, 35m, 42m4.7: 15,
17; 6m,24m4.8: 7,20,21; 13m, 30m,47m4.9: 8, 9, 28; 7m, 18m, 29m, 36m
4.10:16m4.11: 10, 11, 12, 13, 18, 23, 26; 2m, 8m, 14m, 15m, 19m, 25m, 37m,
38m, 39m, 41 m, 43m, 44m, 45m, 46m, 48m Chapter 5 7.1: 2m 7.2: Is 7.3: 2s,
17s 7A: 1; 145 7.5: 3s, 5s 706: 2, 3, 4, 5; Im, 4m; 4s, 6s, 7s, 9s, 1 Is, 12s, 13s,
15s, 16s 7,7: 3m; 8s, 10s Chapter 7 5.1: -- 5.2: 3; 2m, 6m, 16m, 19m 5.3: §;
3m, 1 Im, 14m,23m,27m,29m 5A: 1,4; I m, 4m, 7m. 17m, 20m. 24m, 25m, 26m,
28m, 30m 5.5: 7; 5Sm, 12m, 18m 5.6: 8m, 21 m 5.7: 2,5,6; 9m, 10m, 13m, 15m,
22m Chapter 6 6.1: 1,6,8; 2m, Tm, llm, 13m, 15m 6.: 2,5,7; Im,3m,4m,gm,
12m, 14m, 23m; Is, 2s,4s 6.3: 3,4, 9; Sm, 6m, 8m, 10m, 18m, 21 m, 25m, 27m
6A: 10-19; 16m, 17m, 19m,20m,22m,24m,26m,28m; 3s,5s-1 Is

Appendix D: Answers to the Multiple Choice Questions Chapter 2
la;2d;3b;4d;5¢;6¢;7a;8¢c;9¢;10c¢;l1d;12¢;13b;14a;15d;16¢;17d; 18 ¢c ,e ,b ,b ,c .d
;19 b,e; 20d,c; 21 d,e; 22 d.a; 23 e,c; 24 a,b; 25 d,a; 26 b,c; 27 b,c,c.e; 28
d,a,a,c; 29 a,c,b; 30 e,b,a; 31 e,d,c; 32 b; 33 b; 34 d,c; 35 c,e,a,a; 36 c,a; 37
e,a,c.e; 38 b,d; 39 d,e; 40 c,b; 41 b,a,c,d; 42 c.e; 43 e,a; 44 d,d; 45 b.,a; 46 e.c;
47 b,b; 48 d,d; 49 e,a; 50 b,d,a,e; 51 c,b,d,e. Chapter 3 1 b,c,b,d; 2 a,e,c,d; 3 c;
4e;5a;6d;7d;8b;9c;10e;11¢c;12e,d,c;13b,d,b; 14d,e.d; 15¢;16¢c; 17
e; 18 b;19d;20b; 21 a;22d;23b;24¢;25a;26¢e,c.e,b,a,c;27 d,d,b,a,d,a;
28 b,d,c; 29 a,d,a; 30 b,e,a; 31 d,b.e,c; 32 c,d,d; 33 a,b,e; 34 ¢; 35 d; 36 b; 37
b;38¢;39d;40a;41 a;42¢e;43 c;44 b; 45 d,c; 46 a,b; 47 d,b; 48 c,e; 49 b,a;
50e,a;51 e,c;52b;53¢c;54e,c.e;55d,b;56a;57d;58a,e;59a;60Db; 61 c;
62 c,d,a,e; 63 d,b,d; 64 e,c,b; 65 c,e,a,b; 66 c,b,d; 67 e,d,b,c; 68 e,a,e,b; 69
d,a,a; 70 d,a,d,c; 71 e,a,d,e; 72 b,b,c; 73 b,c.e; 74 c,a,c; 75 c,d.,a,b; 76 c,a,d,e;
77 e,b,d; 78 d,a,d; 79 a,c,e; 80 c,b,e,e; 81 b,d,c,b. Chapter 4 1 a,b,d,c,a; 2
da,e;3b;4c¢;5b;6d;7d;8¢;9c¢c;10b; 11 b;12d;13e;14b;15a;16
b,c,c; 17b; 18 ¢;19¢;20d;21 b;22a;23e;24c;25a;26c¢;27 a;28 a;29c;
30e;31¢c;32e;33d;34a;35b;36a;37b;38a,e,b,b,c,e; 39 b,a,c,d,d,b; 40
d,d,b; 41 a,c;42 d,a,a; 43 c,e; 44 e,a,a,d.e,a; 45 d,b,e,a,c; 46 a,c,d.e; 47 d,c,a;
48 b,e. Chapter 5 1 d,e,d,c;2¢c;3e;4a;5d;6¢e;7¢;8d;9a;10b,a,e; 11 d;
12c;13a;14e;15d;16d;17b;18d; 19¢;20d; 21 d; 22 a;23 a,d; 24 c.e;



25e,c;26 b,b; 27 ¢,b; 28 e,b; 29 c,a; 30 c,d.

348 Appendix D: Answers to the Multiple Choice Questions Chapter 6 1 e,e,c;
2e;3a;4c;5d;6e,b;7a;8b;9b;10e;11b;12¢;13¢c;14¢e;15¢.,d; 16
c,b,a; 17 e,c,a,d,b; 18 e,a; 19 d,b,e; 20 e,c,c,a.d; 21 e,b; 22 d,c,b; 23 c,c; 24
a,d,b; 25 c,b,e; 26 b,d,e; 27 e,c; 28 b,d,a. Chapter 7 1 e,c,e; 2 e; 3 d,c,d; 4
b,c.e.

Appendix E: Answers to Selected Supplementary Exercises Chapter 6 5. a) H1
i #<240;b) - 1.27; ¢) 0.32; d) 82. 6. a) Test with paired observations; to --
3.23;b) 6.7.a) 0.1; b) 0.6. 2 do not reject Ho: 0-2 > (1.5)2; b) 0.21; c) 40. 8.
a) Wo 2 -- 23.5 <Xo0.05,19 :=we 9. a) fo --7.14=weacceptHl:0-a 2 7¢ 2. @
0-¢, td -- --1.67 := we do not reject Ho; b) we do not reject Ho: 0-a 2 = 0-2; to
-- -- 1.46 := we do not reject Ho. 10. a) to - 1.81 <to.ol,6 := we do not reject
Ho: #=0.07; b) the formula with known o- gives 63 or 64 (exact answer =
66); c) the formula with known o- gives 0.9985 (more precise answer = 0.95).
11. a) Xi = diameter measured with calipers 1; we assume that Xi N(#1, 0'/2);
we perform a test with paired observations; to -- 0.43 := we do not reject Ho:
#1 =#2;2.b) Wo 2 16.24 < Xo.lo,11 := we do not reject Ho: 0'2 = (0.001)2
Chapter 7 2. a) /o - 52.38; /1 - -1.383; 62 1.89; fo - 375.93;b) (40) -2.94<
0 0;c) [0, 3.43] (approximately). 4. a)]o - 8.31;/1 - -1.08; 6 "2 0.166; b)fo -
113.55 > 5.32; we reject Ho. 6. a) -- 14.76; 2.65; b) fo -- 13.4; R 2 -- 0.81; ¢)
[12.3, 44.3] (approximately). 8. a) rx,y 0.83 =: yes; b) 230; ¢) 1) the
observations of U and of V are the same, only the order of the observations is
different; i1)/0 -- 6.4;/1 -- 0.81. 10. a) 0.94; b) 82.6. 12. a) 1;b) 17" -/1 X/2 Ft
"1=1 14. a) 0.83;b) 1.5. 16. a) Y' =1nY; X' = Inx; =1no; tl = 0; b) 12 > F0.0A,8
=102.005,8 -- 11.26; we reject Ho.
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Index Absorbing state, 227 Autocorrelation function, 223 Autocovariance
function, 223 Average power, 223 Bayes, 19 Bayes' formula, 19 rule, 20
Bernoulli, 70 Bernoulli trials, 71 Best estimator linear, 184 non-linear, 184
Bias, 254 Bienaym6, 102 Bienaym6-Chebyshev's inequality, 102 Brown, 233



Brownian motion, 233 standard, 233 Cardano, 1 Cauchy, 261 Central limit
theorem, 189 Chapman-Kolmogorov equations, 227 Characteristic function,
103 joint, 181 Chebychev, 102 Coefficient of determination, 315 Combination,
15 Confidence coefficient, 258 interval, 258 one-sided, 258 limit, 258
Continuity correction, 193 Correlation, 177 Correlation coefficient, 177 of a
stochastic process, 223 sample, 322 Covariance, 177 Critical value, 278
Cross-correlation function, 224 Cross-covariance function, 224 De Moivre-
Laplace approximation, 193 Dependent variable, 307 Distribution Bernoulli,
71 beta, 152 binomial, 71 Cauchy, 261 chi-square, 86 double exponential, 85
Erlang, 86 exponential, 83 Fisher, 279 gamma, 86 Gaussian, 88 standard, 89
generalized Pareto, 303 geometric, 73

354 Index hypergeometric, 73 Laplace, 85 lognormal, 90 multinomial, 172
multinormal, 179 negative binomial, 76 Pareto, 154 Pascal, 76 Poisson, 77
Rayleigh, 156 sampling, 253 Student, 260 uniform, 82 Weibull, 88 Distribution
function, 57 conditional, 63, 166 first-order, 222 joint, 161 marginal, 162 nth-
order, 222 second-order, 222 Erlang, 86 Error of type I, 265 of type 11, 265
Estimation, 182 Estimator, 254 consistent, 255 maximum likelihood, 256
relatively more efficient, 255 unbiased, 254 Event(s), 8, 56 elementary, 7
equiprobable, 12 equivalent, 56 incompatible, 7 independent, 21 Expectation,
95,176 conditional, 96, 168 Failure rate, 109 Feller, 190 Fermat, 2 Fisher, 277
Fit index, 315 Fourier, 103 Gamma function, 85 Gauss, 88 Gaussian white
noise, 235 Generating function, 106 Goodness-of-fit test, 262 Gosset, 261
Huygens, 2 Independence, 21 conditional, 21 of random variables, 165 by
pairs, 23 global, 23 Initial distribution, 226 Khintchin, 188 Kolmogorov, 227
Kurtosis coefficient, 101 Laplace, 85 Law of large numbers strong, 188 weak,
188 Leibniz, 163 Lovy, 190 Likelihood function, 256 Linear combination, 185
Lyapunov, 190 Markov, 101 Markov chain, 225 stationary, 225 Markov's
inequality, 101 property, 225 Matrix doubly stochastic, 226 stochastic, 226
transition, 226 Mean, 95 of a stochastic process, 223 sample, 253 temporal,
238

Index 355 Mean square error, 183,255 Median, 69 Memoryless property, 76,
85 Method of least squares, 308 Method of maximum likelihood, 256 Method
of moments, 257 Mode, 151 Moivre, 193 Moment generating function, 108
Moments with respect to the mean, 100 with respect to the origin, 100
Multiplication rule, 19 Newton, 23 P-value, 267 Partition, 20 Pascal, 2



Pearson, 262 Percentile, 69 Permutation, 14 of non-distinguishable objects, 15
Point estimation, 254 Poisson, 77 Poisson's theorem, 77 Prediction, 314
Principle of multiplication, 13 Probability, 10 conditional, 18 Probability
density function, 66 conditional, 67, 167 first-order, 222 joint, 160 marginal,
163 second-order,222 Probability mass function, 64 conditional, 65, 166 joint,
158 marginal, 159 Quantile, 69 Random experiment, 7 sample, 253 Random
variable(s), 55 1.1.d., 186 of continuous type, 59 of discrete type, 58 of mixed
type, 60 orthogonal, 177 Random vector, 157 continuous, 160 discrete, 158
Random walk, 227 Reflecting state, 227 Regression curvilinear, 318 simple
linear, 307 through the origin, 309 Relative frequency, 4 Reliability function,
108 Residuals sample, 315 standardized, 316 theoretical, 308 Response
variable, 307 Sample space, 7 Skewness coefficient, 101 Standard deviation,
99 Statistic, 253 Stochastic integral, 235 Stochastic process(es), 221
Bernoulli, 222 continuous-state, 221 continuous-time, 221 counting, 228
diffusion, 232 discrete-state, 221 discrete-time, 221 ergodic, 238 mean, 238
Gaussian, 232 independent, 224 orthogonal, 224 Poisson, 228 stationary, 235
strict-sense, 235 wide-sense, 223,236

356 Index uncorrelated, 224 Wiener, 233 with independent increments, 223
with stationary increments, 224 Sum of squares due to regression, 312 of the
errors, 310 total, 312 Telegraph signal, 230 random, 231 semi-random, 231
Test(s), 266 of a mean g a known, 266 a unknown, 269 of a variance cr 2 , 271
of the equality of two means known variances, 273 paired observations, 276
unknown variances, 275 of the equality of two variances, 277 of the
significance of regression, 311 Total probability rule, 20 Trajectory, 221
Transformations of random variables, 92 of random vectors, 172 Tree
diagram, 13 Unbiased estimator, 254 Variance, 99 conditional, 99,169 of a
stochastic process, 223 sample, 253 Weibull, 88 Wiener, 232



