
M A N F R E D F Ü L L S A C K

FROM DATA
TO INTELLIGENCE
An Introduction to Machine
Learning and Artificial Intelligence

Graz University
Library Publishing

Manfred Füllsack

From Data to Intelligence: An Introduction to Machine Learning and Artificial Intelligence

M A N F R E D F Ü L L S A C K

FROM DATA
TO INTELLIGENCE
An Introduction to
Machine Learning and
Artificial Intelligence

Graz University Library Publishing

Zitiervorschlag:
Manfred Füllsack, From Data to Intelligence. An Introduction to Machine Learning and Artificial Intelligence. Graz
University Library Publishing 2024.

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibli-
ografische Daten sind im Internet über https://portal.dnb.de abrufbar.

© 2024 bei Manfred Füllsack

CC BY 4.0 2024 by Manfred Füllsack
Manfred Füllsack ORCID 0000-0002-7772-4061
Dieses Werk ist lizenziert unter der Creative Commons Attribution 4.0 Lizenz (BY). Diese Lizenz erlaubt unter Voraus-
setzung der Namensnennung der Urheberin die Bearbeitung, Vervielfältigung und Verbreitung des Materials in jedem
Format oder Medium für beliebige Zwecke, auch kommerziell. (Lizenztext: https://creativecommons.org/licen-
ses/by/4.0/deed.de)
Die Bedingungen der Creative-Commons-Lizenz gelten nur für Originalmaterial. Die Wiederverwendung von Material
aus anderen Quellen (gekennzeichnet mit Quellenangabe) wie z.B. Schaubilder, Abbildungen, Fotos und Textauszüge
erfordert ggf. weitere Nutzungsgenehmigungen durch den jeweiligen Rechteinhaber.

Graz University Library Publishing
Universitätsplatz 3a
8010 Graz
https://library-publishing.uni-graz.at
Grafische Grundkonzeption: Roman Klug, Presse und Kommunikation, Universität Graz

Coverbild: Generated with Stable diffusion
Typografie: Source Serif Pro und Roboto

eISBN 978-3-903374-31-7
DOI 10.25364/9783903374317

https://orcid.org/0000-0002-7772-4061
https://creativecommons.org/licenses/by/4.0/deed.de
https://creativecommons.org/licenses/by/4.0/deed.de
https://doi.org/10.25364/9783903374317
https://creativecommons.org/licenses/by/4.0/deed.de

Contents

Introduction .. 7

1 The use of models in nature – Anticipatory systems 12

1.1 Reinforcement-learning .. 14
1.2 Evolutionary Computation .. 20
1.3 The Free energy principle ... 22
1.4 Empowerment ... 25
1.5 Causal Entropy ... 30

2 Machine-based modeling – aka Machine learning ... 34

2.1 Analytical modeling – Linear regression ... 35
2.2 Linear and non-linear data discrimination ... 38
2.3 Data preparation .. 41
2.4 Supervised learning and Information gain .. 43
2.5 Applying a Decision Tree Classifier .. 45
2.6 Obtaining and evaluating results .. 48
2.7 Improving results ... 51
2.8 The bias-variance tradeoff, generalization and overfitting 53
2.9 Data augmentation ... 55
2.10 Feature reduction ... 56

3 Common Machine Learning tools ... 59

3.1 Support Vector Machine ... 59
3.2 k-Nearest-Neighbor .. 62
3.3 Naïve Bayes ... 63

4 Artificial Neural Networks ... 66

4.1 The Perceptron .. 66
4.2 Back propagation – the fundament of Deep learning 70
4.3 Gradient Descent .. 73
4.4 The MNIST-digits-example .. 76
4.5 Neural Network types ... 79

4.5.1 Long Short Term Memory (LSTM) Neural Networks 80

6 Contents

4.5.2 Recurrent Neural Networks .. 82
4.5.3 Convolutional Neural Networks (CNNs) 83

4.6 Unsupervised Learners ... 87
4.6.1 Self-organizing Maps (SOMs, aka Kohonen-networks) 87
4.6.2 Autoencoders .. 89

5 Natural Language Processing ... 93
5.1 Mining in unstructured and analog texts .. 97
5.2 Latent Semantic Analysis .. 98
5.3 Vector representations ... 103

5.3.1 Assessing similarities by vector representation 104
5.3.2 Vector Space Representation of Words – Word2Vec 106
5.3.3 Vectorization examples ... 108

5.3.3.1 Vector arithmetics ... 111
5.3.3.2 Sentence similarity .. 111

5.3.4 Document similarity – Doc2Vec .. 112
5.3.5 Vectorization beyond textual contexts 117

5.4 Sentiment analysis ... 118
5.5 Transformers, or: Attention is all you need 122

6 ChatGPT et al. ... 124

7 Epilogue: Data ethics ... 130

References .. 134

Introduction

This book introduces and explains essential prerequisites for understanding, apply-
ing, researching, and further developing the tools currently debated under the
terms Machine Learning (ML) and Artificial Intelligence (AI). It strives to be an in-
troductory and comprehensive guide for readers with little prior knowledge, while
also offering deeper insights for those interested in advanced aspects and methods
beyond the core of the research thread. Overall, this book is intended for anyone
seeking a comprehensive understanding of the methods and computer-based ap-
plications underlying AI-technology. While digital literacy is beneficial, it is not a
prerequisite for understanding the content.

A few years ago, I would have been very reluctant to call a book on machine learn-
ing “From Data to Intelligence”. The term “intelligence” seemed to me both too
vaguely defined and far too ambitious to be used in the context of learning com-
puter systems; especially as the history of this research thread is riddled with
highly-hyped expectations and promises of machines becoming intelligent, with
equally prominent retractions of these promises. The term “artificial intelligence”
was coined back in the 1950s and the first “AI winter”, a period of widespread skep-
ticism and reduced funding, was experienced in the 1970ies. However, the intro-
duction of the Transformer technology in 2017 (Vaswani et al. 2017), and in partic-
ular its application in Large Language Models (LLMs), has entailed such an amazing
boost in performance that anyone querying ChatGPT or any of the other now nu-
merous LLMs would probably not hesitate to associate a notion of intelligence with
these systems. Also in science, it is now assumed that some of the performances,
such as maintaining context, thinking by analogy, following instructions or break-
ing down complex relations, correspond to behavior that we would call intelligent
in humans. As a consequence, it is speculated that Alan Turing’s famous test, in
which artificial intelligence is given if a human questioner cannot distinguish the
answers of a computer program from those of a human, has been passed by GPT-4
(Biever 2023; Jones and Bergen 2024).

Nevertheless, as we will see in much more detail, the core of the technology cur-
rently used is to train artificial neural networks to calculate probabilities that certain

 Introduction 8

tokens, such as the letters of a word, the words of a sentence or the sentences in a
text, will be followed by other letters/words/sentences. These probabilities are cal-
culated from an enormous amount of training data, e.g., almost all texts available
on the internet, with such high precision that human users can receive largely sat-
isfactory responses to their queries. Nevertheless, these responses, such as the an-
swer of an LLM to a question, build on nothing more than aggregated probabilities.
LLMs and similar tools are therefore often referred to as “statistical parrots”, mak-
ing it more than questionable whether human-like intelligence is at stake. If we
consider however, that humans, for their part, also depend on being confronted
with large amounts of data in order to learn what makes them who they are, and
that our knowledge and assumptions on which our daily decisions are based often
look like mere probabilities themselves, then the difference between the way ma-
chine and human intelligence work might not be as huge as is often emphasized. I
wouldn’t want to call humans “statistical parrots,” but given the fact that throughout
our history we have liked to describe ourselves as unique and central, only to often
learn that we are not so unique after all, I would be willing to forgo reserving char-
acteristics such as intelligence for humans. That aside, books usually do well to
have a somewhat bold title anyway. I therefore accept the term here at least as a
telos of the research field being discussed.

Speaking of books: it should be mentioned that books are slow media. The rapid
pace of digital development, particularly in AI research, presents a significant chal-
lenge for writing a book that commonly is expected to be comprehensive and up-
to-date. The field’s growing interest and the increasing number of researchers
working worldwide on new methods and insights have created enormous dynamics
and particular conditions. Information is usually disseminated online first in this
field and, due to time pressure, sometimes not peer-reviewed, let alone printed on
paper. Additionally, many methodological details are not published due to fears of
losing a competitive edge in the global market. Writing a ‘slow’ book about ML and
AI thus faces several challenges, making it prudent to pursue a specific focus that
faster media might lack.

One of these foci emphasizes the fundamentals and prerequisite technologies on
which current methods are based, aiming to provide a comprehensive foundation
for understanding the latest developments through self-study. The book covers the
state of the art provided by platforms such as ChatGPT-4o, Gemini 1.5 or Claude 3.5.
However, new versions and add-ons are introduced almost weekly. The book will
not manage to cover all of the latest developments in a timely manner. It is an in-
troduction to a highly dynamic and rapidly developing field. You will have to up-
grade and update your knowledge from additional sources.

 Introduction 9

In other respects, this book may have a unique character due to the author’s profes-
sion as a systems scientist, specialized in analyzing and coding computer-based
models of complex systems. It bases on the assumption that most ML methods and
models are complex systems, such as in particular the core technology of today’s
AI-tools, neural networks. This asks for an explanation about what systems sciences
can offer to help understanding how AI-tools are working.

Let me briefly elaborate on this, since it may introductorily clarify some core fea-
tures. Systems sciences is a unique scientific discipline that fundamentally believes
that interacting components can aggregate into phenomena that cannot be under-
stood by analyzing the components in isolation. For example, consider the particles
of a gas. Their movement and interaction generate pressure and temperature,
which are observable features of the gas. However, these features cannot be ob-
served or measured on an individual particle. A gas particle on its own does not
have pressure. Pressure arises through interaction. Systems scientists say that pres-
sure emerges.

A systems scientist thus would emphasize that the ability of neural networks to
identify patterns in large datasets, along with the intelligence-like abilities of Gen-
erative Pretrained Transformers (GPTs), emerges from the interaction of their com-
ponents—the neurons in the network. In other words, intelligence, whether human
or artificial, is believed to be a result of interaction. It cannot be understood by ex-
amining components, such as neurons, in isolation. This provides an initial clue as
to why the functioning of neural networks is so difficult to analyze and to under-
stand. Neural networks cannot be disassembled to understand their operations, as
one would do with a mechanical machine. Analyzing components in isolation will
not reveal the effects we are interested in.

Another concept of systems sciences that may help to understand the workings of
AI-tools is the attractor. The interactions from which a system with specific qualities
or abilities may emerge often start out as a jumble of components interacting with
each other’s dynamics. In this state, components may chaotically bump into each
other and influence other components in various unordered ways, until, after some
jumble, they find a kind of relationship to each other in which opposing forces are
balanced. These relationships are called equilibria, often illustrated as a marble roll-
ing in a bowl until it finds balance at the lowest point. Physicists refer to this as a
potential well. When the marble is slightly displaced from this lowest point, such
as by shaking the bowl, it will follow gravity and return to the lowest point. In this
regard, the equilibrium, or lowest point, acts as an attractor. It attracts the marble,
guiding its movements within the bowl.

 Introduction 10

Such equilibria are found in manyfold contexts. Systems scientists even tend to
think that our world, or more accurately, everything that we perceive as somehow
stable in our world, is affected by such equilibria. The movement of the planets in
our solar system and their relationships are the result of an equilibrium reached
after millions of years of chaotic motion. On another scale, our social order can be
viewed as an equilibrium maintained and continuously regenerated by interacting
individuals with their conflicting wishes and plans. The key point is that once such
an equilibrium is established, it acts as an attractor. Deviations do not necessarily
cause the system to reorganize completely; instead, they are smoothed out as the
marble returns to the lowest point of the bowl. We describe equilibria as being re-
silient to a certain extent.

Similar is true for neural networks. Have you ever looked at the sky on a summer
day and suddenly noticed a cloud that resembled an animal? And once you perceive
this animal, your interpretation seems to retain form, even as the cloud changes
with the wind. Or have you been impressed by your ability to briefly glimpse a tiny
fraction of something, like a word on an advertising board while driving by, and
still clearly understand what was written despite not being interested? Sometimes,
you might suddenly think of an odd word and not know where it came from, only
to realize later that you saw it somewhere without consciously reading it. These in-
terpretations occur because our perception is driven by equilibria that neurons (or,
more technically, the weights of their connections, as discussed in the chapter on
neural networks) have established through training on numerous pictures of ani-
mals and words. Training in this regard means that the components of the neural
network together with the data on which it is to be trained have been made to inter-
act. They were exposed to each other, initially ‘chaotically’ (we will later see that
there is indeed an arbitrary aspect to this), and made to find a viable relation to each
other, an equilibrium that in the course of training got engraved into the network.
Once the equilibrium is found, it acts as an attractor, attracting perception towards
learned concepts, allowing us to see animals in clouds and recognize words even
when only partially viewed for a brief moment. In other words, our brains, trained
to differentiate things like animal shapes or words, attract these interpretations
even when data is missing or erroneous. The marble is running to the lowest point
in the bowl and lets these concepts be reproduced easily, which is advantageous for
survival.

Keep in mind, these equilibria are established in interaction, with no chance to sep-
arate components without ruining the equilibrium. Neural networks cannot be dis-
assembled to examine them in detail, as one might do with the parts of a car to un-
derstand why it is fast. This is why the capabilities and potentials of AI tools are

 Introduction 11

often surprising and difficult to understand (Castelvecchi 2016; Adadi and Berrada
2018). In particular their latest manifestations, the so-called Large Language Mod-
els, seem on the way to shake the fundaments of the way we think about thinking,
including the way we conduct science. Their use and further development pose a
range of difficult questions for the near future (Ribeiro, Singh, and Guestrin 2016;
Barredo Arrieta et al. 2020; Mitchell and Krakauer 2023; Butlin et al. 2023). It has
been reported that even the software developers and engineers who themselves de-
signed and trained these AI-tools were amazed by their unexpected performance.
In some instances, scientists known for their sobriety and level-headedness have
fallen to the impression that these tools possess properties such as sentience, self-
awareness, or an irrepressible drive for independence.

Yet a third peculiarity in the specific approach of systems sciences may be helpful
in understanding the workings of machine learning tools. This is the conviction that
many of the special characteristics of complex systems have to do with mapping or
modeling of facts. System Scientists assume that complex systems such as our brain
are modeling the world in order to perceive it as such. What we experience as “the
world” is a model generated and continuously adapted by our brain throughout our
daily lives. And since our brain itself is part of this world, it is modeled as a model
itself. We therefore refer to the output of such systems as models, and we call the
systems themselves models as well. Computer-based ML-tools and in general the
methods of AI are seen as a sort of algorithmic models generated in respect to reg-
ularities and patterns found in large data sets. We start this book therefore with
some rather basic and general reflections about the preconditions and effects of
using models.

1 The use of models in
nature – Anticipatory
systems

Picture a population of very simple organisms on a search hunt for nutrients. In a
most basic scenario, these organisms move and distribute randomly in their envi-
ronment and, if lucky, find food by coincident. Gradually, they will distribute
evenly in their possibility space, that is, in the space they can reach in principle, with
all states in this space being equally likely, implying that after some time, their dis-
tribution will not allow deducing their initial state. In other words, their distribution
is not based on history. No kind of memory is involved. In physics, such systems
are called ergodic.

In a slightly more complex scenario these organisms could have some kind of sen-
sors for distinguishing lower and higher concentrations of a scent the nutrient dif-
fuses and thus are able to follow a gradient of thinning scent uphill to find the food
source. Note that this implies some kind of a temporal concept, that is, a notion of
now – without food but a scent that can be followed – and then – when the food
source is found. This anticipation hence seems to imply the emergence of time. In
a still more complex scenario such organisms may even dispose of a sort of memory
to remember the direction to a prolific food source. In this scenario, these organ-
isms will focus their movement actively on the food source and thus will not dis-
tribute evenly over the possibility space. In physics, this is called a non-ergodic sys-
tem. It is governed by history. What is more, to remember a food source is useless
without having an idea about where you yourself are in relation to this location. To
re-find a food source hence implies the maintenance of some sort of map, which as
a minimum includes the position of the food source plus your own position relative
to it. Such a map could be seen as a self-model – a simple model at first, but after all
a model that changes a lot in regard to survival strategies. While the randomly mov-
ing organism needs luck to find food, the model-using organism can pre-test its ac-

 The use of models 13

tivities in the virtual space of its model, thus being able to anticipate auspicious op-
tions (for a more comprehensive explanation about the use of models in the context
of intelligence see: Hawkins 2021).

Systems that use such a model conception have been called anticipatory systems
(Rosen 2009). They are able to deploy an internal representation of their external
world to maintain homeostasis, or in other words, to maintain dynamical equilibria
(e.g., body temperature, blood pressure etc.) against the overall drive towards en-
tropy. Note however that a model is not to be had for free. To evolve it1 and to main-
tain and update it, is costly, which for a metabolism means supplying an extra por-
tion of energy: the energy that is needed to survive without model plus the energy
needed for maintaining the model. The model’s complexity hence is subject to a
trade-off: the more detailed the model the better the chance to survive, but the
higher the costs of maintenance.

So how do models emerge? In an attempt to insinuate an answer to this question,
one might maybe regard a population of bacteria or similar simple organisms as
something like a proto-model incorporated by evolution. The argument for this
would be that such a population consists of individua which – initially maybe just
by chance – live and act in a way that successfully supports their existence and pro-
vides them with high reproduction probability, while other individua act less ad-
vantageous and thus do not obtain high evolutionary fitness. This population thus
could be seen as representing a distribution of “ways to live and to act”, of which
some are rewarded by evolution through high fitness, and of which others, who act
less advantageous, are penalized. One may say that nature “rewards” and “penalizes”
ways to live and “memorizes” these outcomes in form of fitness distributions incor-
porated in a population. Nature evolves a “model” by following the principle of re-
warding actions, which reach a goal, and penalizing the ones, which do not. This is
the principle of so-called Reinforcement Learning.

1 To evolve a model can be seen as anticipation itself. Models can start covering their costs only once
they exist. Evolving a model thus may appear like taking a loan on future survival that will be more
successful once a model is at hand. See for this seeming inconsistency the chapter on irreducible com-
plexity at: http://systems-sciences.uni-graz.at/etextbook/sw1/evolution.html

http://systems-sciences.uni-graz.at/etextbook/sw1/evolution.html

 The use of models 14

1.1 Reinforcement-learning

Reinforcement-learning (RL) is a widely applied machine learning method that in
its basics is simple and easy to understand, but in its more advanced variants is a
very powerful and flexible method for artificial intelligence research. Among oth-
ers, it is a component of the Alpha-Zero algorithm, which in 2017 in just a few days
of training defeated Alpha-Go, the AI algorithm that beat Lee Zedol, one of the
world’s best Go players (Silver et al. 2018; Schrittwieser et al. 2020).

The objective of RL is simply to automatically generate a model, which tells an agent
what action to take under what circumstances. The model is generated by repeat-
edly trying to reach a goal and collecting (digital) rewards for those actions which
help bringing the agent closer to its goal and getting (digital) penalties for those ac-
tions which distance it from its goal. Basically, this works without any supervision
by simply applying brute computational force, meaning that the agent has to be
made reaching its goal a large number of times. We will explain the basics of this
method on a very simple example task, in which a software agent – the red dot in
the image below – has to find the shortest path from each possible position on a 2-
dimensional grid – the grey patches – to its goal – the small green house in the cen-
ter of the grid.

Fig. 1: Agent (red) navigates a 2D grid to reach a goal (green) (own

illustration).

The agent starts out by randomly moving on the grid in regard to its Von-Neumann-
neighborhood, which means that its movements are restricted to one move each
timestep to the North, to the East, to the South or to the West within the limits of the
grid. Consequently, the agent has a maximum of 4 options on each position it can
be on. This means the so-called state space of this agent is of size 4 per movement.
With a grid-size of 11x11 this sums up to an overall state space of 484 options and
thus to rather limited complexity. Note that the game of Tic-Tac-Toe for instance
has an overall state space of 103, the game of Chess has one of 1075, the game of Go

 The use of models 15

has 10171, while the estimation for the number of atoms in the observable universe
runs up from 1078 to 1082. It should be conceivable that the very complex task to
win in Chess or in Go necessitates a completely different kind of RL-model than the
one to solve the simple task in our example. Nevertheless, algorithms for solving
these tasks are based on similar principles.

The model in our example manifests in the form of a so-called Q-table containing Q-
(for quality) values, depicted to the right of the display in the above image. Such Q-
tables consist of vectors for each state 𝑠, with each entry in these vectors indicating
the quality for each action 𝑎 that is possible in this state. Since possible actions in
our example are only [go North, go East, go South, go West], each vector holds the
entries [N, E, S, W], always in that same order. An entry in the Q-table thus corre-
sponds to a state-action-tuple (𝑠, 𝑎) and tells the agent: “if you are in state s and take
action a, your reward (penalty) will be x”.

Initially, the Q-table is filled with zeros, as shown in the depiction above. Only the
state that represents the attained goal (the green house) is filled with the reward
value (1 in this case). When the learning process is started, the agent is made to
perform a random walk, or more correctly, to check the Q-table and to decide in
each step for the action with the highest Q (entry) in the given situation. Since all
entries are zero initially, however, the agent practically performs a random walk at
this stage. If it should (coincidentally) run into a forbidden option – as for example
to move over the edge of the grid –, it records a penalty of -1 into the corresponding
entry in the Q-table. All other values are kept the same (i.e., zero at this point) until
the agent (coincidentally) finds the goal for the first time. At this point, it can report
Q-values for the last action that preceded the goal, that is, the last state-action tuple
before reaching the goal. If adhering to the Bellman Optimality Equation (Bellman
1957) – which provides one commonly applied reward function –, the agent calcu-
lates theses values and replaces the corresponding Q-table entry according to the
formula:

𝑄𝑡+1(𝑠, 𝑎) = (1 − 𝛼) ∗ 𝑄𝑡(𝑠, 𝑎) + 𝛼 ∗ (𝑟 + 𝛾 ∗ 𝑚𝑎𝑥(𝑄𝑡(𝑠𝑡+1, 𝑎))

with 𝑄 indicating the quality (the entry), (𝑠, 𝑎) the state-action-tuple, 𝑟 the reward
for attaining the goal, 𝛼 a learning rate, 𝛾 a discounting rate for 𝑟 and
𝑚𝑎𝑥(𝑄𝑡(𝑠𝑡+1, 𝑎)) is the maximum value of the Q-vector found for the next position,
in this case the attained goal.

Note, that 𝛼 determines how much of the already available knowledge and how
much of the currently newly gained knowledge will be considered in calculating the
new Q-value. And 𝛾 determines a discount rate for considering the reward found in

 The use of models 16

a certain state. The further the agent is from its final learning target, the more the
Q-values will be discounted, thus generating a gradient towards the target.

This discounting of Q-values is necessary to overcome the so-called credit assignment
problem, which centers around the question of how to know what is advantageous
in an action if the reward (like winning a chess game) is several game-moves away?
In short, the solution for this problem consists of the three steps:

▪ Accumulate rewards backwards from repeatedly attaining the learning
goal.

▪ Do this by assessing the quality (the Q-value) of each possible decision in
each state in the state-space (for example with the Bellman Optimality
Equation)

▪ Write state-action- (or Q-) values into a Q-table

Accordingly, the Q-table after first time attaining the goal will look like depicted
below. Obviously, the agent has reached the goal coming from the West of the goal
by deciding to go East. The corresponding entry changed into 𝑄𝑡+1(𝑠, 𝑎) = 0.48
(with 𝛼 = 0.5, 𝛾 = 0.95).

Fig. 2: Q-table after the agent first reaches the goal (own illustration).

All the other values remain the same and the agent is placed on a (randomly chosen)
new starting position, again made to select a path according to highest Q-values, but
practically still performing a random walk until it hits the goal or, this time, another
state with an entry higher than zero. At this point it again updates the quality (the
Q) of the action that preceded this move according to the above formula.

In this way, the agent by and by fills all entries of the Q-table with values, which can
be read as rewards for respective actions. Actions that bring the agent closer to its
goal will have higher Q-values (higher quality) than disadvantageous actions. See
below an example of an accordingly filled Q-table.

 The use of models 17

Fig. 3: Clipping of an updated Q-table (own illustration).

A completely filled Q-table can be used by the agent to deterministically follow the
gradient of increasing Q-values uphill to its goal, which, in a static environment,
means to possess an efficient model for reliantly reaching the goal. The learning
process would be over at this point. In an evolving world however, goals, or the path
to these goals, may change over time. What has been learned so far, may become
suboptimal and necessitate re-learning. The model needs to be updated.

In such situation, it makes sense to consider a possibility to not just exploit what has
been learned so far, but also to explore new options to a certain extent. For consid-
ering such an exploitation/exploration-ratio, a parameter 𝜀 can be introduced into
the Bellman equation that determines the probability of considering the Q-value
with regard to the probability 1 − 𝜀 of choosing a random action. In this simple
way, the model can be held flexible and adaptive to new circumstances, and can be
applied to a wide range of interesting and complex tasks. As one example in this
regard, have a look at this project: https://blog.einstein.ai/the-ai-economist/, where
RL is used to optimize tax policies on the background of the contradicting goals of
improving equality and increasing productivity.

Other currently quite prominent examples of applying RL are the manifold amal-
gamations with other machine learning methods, before all with artificial neural
networks (see chapter 4) in order to solve complex game winning tasks. These ex-
periments are often addressed as Deep-Q-Learning and have produced such impres-
sive results as for example AlphaGo’s 2016 victory over Go-grandmaster Lee Sedol,
AlphaZero’s 2017 victory over AlphaGo (Silver et al. 2018) and 2019 MuZero’s victory
over AlphaZero (Schrittwieser et al. 2020). All these algorithms are advanced AI-
systems trained to win board games like Go, Chess or Shogi based on RL, with the
difference that Q-values are not calculated like in the Bellman equation but “found”
by deep neural networks, which in the later versions of these algorithms are initi-
ated even without any pre-learning from human games. Instead, these algorithms
are made to play large numbers of games against copies of themselves, in the course
of which they accumulate the necessary knowledge. One version, MuZero (10-2021),

https://blog.einstein.ai/the-ai-economist/

 The use of models 18

even learns without being taught the rules of the games. It is, as one of its develop-
ers put it “really discovering for itself how to build a model and understand it just
from first principles.”

Another achievement of DeepMind, the Google-firm that developed these algo-
rithms, is AlphaFold, a deep learning artificial intelligence neural network system
that is able to uncover the complex 3D-structure of proteins. The model made head-
lines when it was placed first in the overall rankings of the 13th Critical Assessment
of Techniques for Protein Structure Prediction (CASP) in December 2018 and could
repeat the success two years later at CASP 14 achieving a level of accuracy much
higher than any other competitor2.

We will talk about neural networks, which are the core of these algorithms, later in
this book. For now, please note that reinforcement learning is a simple, though po-
tentially powerful method for making machines learn to accomplish complex tasks.
However, as natural learning by reward and penalty may seem, there is one funda-
mental drawback. Reinforcement learning, in principle, acts like a teacher grading
you after an exam and not providing any information about where you performed
good and where you could still improve. In other words, the basic variant of RL (as
explained in the example above) does not provide any information “about the road”
to accomplishment (which is less a problem in so-called symmetric zero-sum games,
such as Chess and Go, but is of more concern with complex tasks). Rewards and
penalties are only assigned once a goal is reached, which with the learning of com-
plex tasks may either take a very long time or is not feasible at all.

A simple example in this regard provides the task to reach an uphill goal by making
the learning agent swing forth and back to gather speed for the uphill move. Each
time in this swinging when the agent does not gain enough speed it will be penal-
ized, thus making failure much more consequential than success. A common
method to overcome this problem is reward engineering (aka reward shaping), that
is in this example, to not only reward the actual goal reaching swing, but also the
swinging itself. However, this requires to know ahead that swinging is beneficial in
this task. In other words, it requires domain knowledge, which is not always at hand
and often tricky to apply.

Another way of overcoming the problem of sparse rewards is to make RL learn from
the details of failed attempts, for example from how far and in what direction a
failed attempt missed the goal. For this, failed attempts are stored in a kind of buffer

2 See among others: https://www.technologyreview.com/2020/11/30/1012712/deepmind-protein-folding-
ai-solved-biology-science-drugs-disease/

https://www.technologyreview.com/2020/11/30/1012712/deepmind-protein-folding-ai-solved-biology-science-drugs-disease/
https://www.technologyreview.com/2020/11/30/1012712/deepmind-protein-folding-ai-solved-biology-science-drugs-disease/

 The use of models 19

of past experiences, which can serve as a database for so-called off-policy learning.
In the framework of our picture of model-based actions, this means that RL gener-
ates a much more general model than the above-mentioned Q-table, from which it
then can infer the relevance of its actions in order to finally generate the actual
model needed for reliably attaining the goal. This method is called Hindsight Expe-
rience Replay (HER), and has a bit of the flavor of adding some fictious data to a
world model by imagining what would happen if the circumstances were different.
Andrychowicz et al. (2018) show that HER can improve the performance of RL sig-
nificantly. The principle is an extended, more complex way of model generation by
simply trial-and-error exploring an environment (see also
https://www.youtube.com/watch?v=Dvd1jQe3pq0).

This trial-and-error exploring of the state space, that is, the space of all possible ac-
tions in a given situation, is one of the core problems of RL though. Even relatively
simple tasks, which humans master with ease, can have vast state spaces. Just con-
sider driving a car. How many actions could be performed in each moment of driv-
ing? And how many of them would be completely ill-suited, such as e.g., reading a
book, drinking or sending phone-messages while driving. To explore these vast
state spaces and filter all at least somehow suitable actions would be beyond the
capabilities of even the most powerful computers.

Therefore, great efforts are being made to pre-reduce this space to manageable
sizes. One method that is investigated in the framework of RL has been suggested
under the term Inverse Reinforcement Learning (Ng and Russell 2000). It builds on the
idea of extracting a preliminary reward function from the observed behavior of an
agent, possibly a human. Consider the task of autonomous driving. The conven-
tional way of defining a reward function would be to picture a correct way of driving
a car, such as stopping at red lights, avoiding pedestrians, etc., and engineer a re-
ward function from this conception. This however, requires an exhaustive list of all
the “correct” actions of driving and a list of weights describing how important each
of them is (pedestrians more than red lights, etc.). Inverse RL in contrast, derives
an approximated reward-function from a set of human-generated driving data,
which, depending on the size of this data, initially will provide a rather simplified
model of driving. Ng and Russell (2000) showed, that such an approximate quanti-
fication of how good or bad certain actions are can reduce the option space dramat-
ically and thus can serve as a base from which standard RL methods can go on fine-
tuning the model.

https://www.youtube.com/watch?v=Dvd1jQe3pq0

 The use of models 20

1.2 Evolutionary Computation

In the previous section, we mentioned the possibility of considering populations of
organisms as manifestations of evolutionary emerged models. The very fact that
such populations can exist over periods of time suggests that they have found a way
to adapt to their particular environment and thus mirror it in some way, or “model”
it in their own manifestation.

In natural systems this is usually done through the evolutionary principles of vari-
ation, inheritance and selection, which have proven to be very efficient means of
adaptation. No wonder, these principles early on have been used in machine learn-
ing implementations for finding optimal solutions for complex problems (Mitchell
2011). In order to briefly explain these principles in this context, think about the
problem of finding an optimal strategy for competing in a Prisoner’s Dilemma (PD)
situation3. In this situation, betrayal (aka defection or non-cooperation) is the dom-
inant strategy, since betrayal is your best choice if your opponent cooperates (re-
mains silent), and it still yields a higher payoff than any other option (i.e. less years
in prison) if your opponent should defect (i.e. betray too). The dilemma however,
is that if both of you defect, each of you is worse off than if you both would cooper-
ate. However, you do not know what the other will do. It is thus highly unlikely to
change overall behavior from individually beneficial defection to communally ben-
eficial cooperation (for more details see among others Axelrod 1984).

In the beginning of the 1980ies, the problem of this unlikely change from defection
to cooperation was famously tackled with the help of a genetic algorithm and thus
became one of the first better-known examples of evolutionary computation. The
political scientist Robert Axelrod (1984, 1987) endowed a population of software
agents with a “chromosome”, basically just a vector consisting of zeros and ones
defining the behavior, that is, the PD-strategy of an agent. This vector codified the
outcome of the last three confrontations of an agent in the PD (“memory three-strat-
egy”) and therewith provided information for deciding whether to cooperate or to
defect in the next confrontation.

Axelrod’s experiment started out with an initial population of 20 agents with ran-
domly generated 70-bit chromosomes (i.e., chromosomes with 70 genes) playing a
virtual PD against each other, thereby developing a “fitness”, which was deter-

3 See http://systems-sciences.uni-graz.at/etextbook/gametheory/prisonersdilemma.html

http://systems-sciences.uni-graz.at/etextbook/gametheory/prisonersdilemma.html
http://systems-sciences.uni-graz.at/etextbook/gametheory/prisonersdilemma.html

 The use of models 21

mined by the average success in about 150 PD-confrontations. The agents could re-
produce in respect to their “fitness”, with their chromosomes being inherited via
“crossover” and “mutation”, two technologies commonly deployed in computa-
tional evolution.

In crossover, two parent chromosomes are cut at the same position and combined
with each other to yield two new, genetically different chromosomes, thus be-
queathing part of the mother’s and part of the father’s chromosome to the offspring
agent, which is nothing but a simplified version of biological recombination of
genes. Thereafter, a small part of the chromosome (one or a few genes) is altered
via mutation, i.e. random variation. The resulting chromosomes then are repeatedly
exposed to “natural selection”, in which the “survival of the fittest”, that is the
higher reproductive chances of the ones that perform best, drive adaptation.

When running this evolutionary algorithm, the PD-agents initially tend to drift away
from cooperative behavior. Less cooperative strategies fare better, because early
on there are only few other cooperative strategies they can score with. After 10 to
20 generations however, some strategies develop chromosome-patterns, with
which they react reciprocally to other cooperative agents. The more these patterns
stabilize, the better cooperation performs. And with better performance, coopera-
tors gain more reproductive success and thus more chance in spreading their strat-
egy.

Today, evolutionary computation is a wide and dynamically developing sub-domain
of machine learning, with applications ranging from biologically inspired experi-
ments in replicating the evolution of mobility in soft robots (see among others
https://www.youtube.com/watch?v=z9ptOeByLA4) up to classification and predic-
tion tasks such as the prediction of weather or protein structure (Pedersen and
Moult 1996). Genetic algorithms are even used to evolve aspects of particular ma-
chine-learning systems, such as weights for neural networks, rules for learning
classifier systems or symbolic production systems, and sensors for robots. The pic-
ture below (found in Wikipedia) shows an antenna used in the 2006 NASA ST5 space-
craft. The complicated shape was generated in evolutionary computation designed
to create the best radiation pattern. It is known as an evolved antenna.

https://www.youtube.com/watch?v=z9ptOeByLA4

 The use of models 22

Fig. 4: Evolved antenna, taken from Lohn et al. (2004).

1.3 The Free energy principle

Regarding populations that maintain homeostasis as manifesting a model of their
environment conveys a rather abstract notion of a model. Probably closer to the
idea of a model as we use it, would be a sort of individual internalization of our
environment to create a virtual image of the world in which we have to find our
way. This kind of model is subject of a famous conception with interesting implica-
tions for machine learning discussed under the term free energy principle. Karl Fris-
ton (2006, 2009, 2010) suggested this principle for the functioning of brains, with
brains being (individual) physical manifestations of models that holders of brains
use to maintain their homeostasis. The brain is the physical expression of an inter-
nally maintained model of the external world as perceived through senses. The ac-
tions of the holder of the brain can be seen as permanently trying to maximize
model evidence, that is, to maximize the probability that what is modeled corre-
sponds to what is perceived through senses (expressed as 𝑝(𝑠|𝑚), with 𝑝 being the
probability, 𝑠 expressing a sensory input and 𝑚 expressing a corresponding model
prediction. The sign | stands for “given that”). Maximizing model evidence can also
be expressed as the attempt to minimize the surprise that an incorrect prediction
from the model would mean to the holder of the brain.

The concept of surprise can be formalized in the framework of information theory
as suggested by Claude E. Shannon (1948). To understand this, consider the distri-
bution of letters in written text. The letter e for instance appears far more frequent

 The use of models 23

than the letter h. To encounter an h in texts thus is more surprising than to encoun-
ter an e. Of course, this surprise depends also on context. In English to encounter
an h after a t or after an s is less surprising than to encounter it on its own.

In his research, Shannon was interested in the lossless transfer of information be-
tween a sender and a receiver. Considering symbols with which information can be
transferred – the letters of the alphabet for example –, Shannon suggested to meas-
ure the expectation of a symbol being chosen from a given set of possible symbols.
The certainty or uncertainty about a symbol being chosen, that is the Shannon en-
tropy, then depends on the size of the set of different symbols and on the infor-
mation that determines a choice. Formulated in terms of observations, this infor-
mation corresponds to the question about how many single observations are neces-
sary to unambiguously determine a symbol in a given set of symbols. For example,
to select the letter h unambiguously from an alphabet with 26 letters, it needs 5 con-
secutive observations of the form “the letter is in the first half of the alphabet”, “the
letter is in the second half of the first half of the alphabet”, “the letter is in the first
half of the second half of the first half of the alphabet”, and so on.

Fig. 5: Selecting the letter ‘h’ from an alphabet of 26 letters (own

illustration).

Assuming that all letters in this alphabet have equal probabilities of occurring in a
message (which of course is not the case in natural languages), one of them would
have the occurrence probability 𝑝 =

1

26
. To unambiguously distinguish 26 letters

hence, one needs a minimum set of 5 observations corresponding to a set of 5 bi-
nary choices (i.e. “yes / no”, respectively “1 / 0”) expressed in the relation 25 =

32. (Note that 32 > 26. This set provides more selection possibilities than needed,
it is redundant, but is the minimum set for unambiguously identifying 26 letters.
The ASCII-code for example uses binary numbers with seven digits and therefore
allows capturing 27 = 128 different symbols).

 The use of models 24

The corresponding formula for the set size is 2𝐼 = 𝑁, with 𝐼 indicating the number
of observations and 𝑁 indicating the number of letters in the alphabet. With 𝐼 being
the binary logarithm, this allows expressing the number of needed observations
as 𝐼 = 𝑙𝑜𝑔2𝑁. As said, in alphabets with equally likely letters the occurrence proba-
bility 𝑝 of a letter would be 1

𝑁
 , implying 𝐼 = 𝑙𝑜𝑔2

1

𝑝
, with 𝐼 now expressing the infor-

mation content of the single letter, or alternatively formulated, its surprise value. It
expresses the fact that the more often a letter or a sign occurs in a message, the
lower is its surprise value, and vice versa. Rare signs hence have high surprise val-
ues. Based on this insight, Shannon was able to express the information content of
a message with 𝑛 letters in terms of entropy, that is, in terms of the average uncer-
tainty with which a letter would be chosen: 𝐼 = − ∑ 𝑝𝑖

𝑛
𝑖=0 𝑙𝑜𝑔2𝑝𝑖

In respect to the free energy principle, Karl Friston used this formalization to ex-
press the surprise of a sensory input on the base of a model prediction as
−𝑙𝑜𝑔2𝑝(𝑠|𝑚). He suggested that, in general, the actions of brain users, that is, of
anticipatory systems are always directed towards minimizing this surprise, or at
least to keep it beneath a maximal variational bound. This bound is called free en-
ergy. The suggestion rests upon the fact that self-organizing biological agents resist
a tendency to disorder by minimizing the entropy of their sensory states in relation
to their model predictions. In analogy to Shannon’s formula, Friston expresses en-
tropy as [𝑝(𝑠|𝑚)] = lim

𝑇→∞

1

𝑇
∫ −𝑙𝑛

𝑇

0
𝑝(𝑠|𝑚)𝑑𝑡 , implying that minimizing entropy cor-

responds to suppressing surprise over time. To give an example, consider a fish in
water (Friston 2009). In comparison to what states a fish theoretically could be in
(out of the water, in mid-air, at the moon …) the number of states a fish usually is
in is relatively small. The distribution of fish states thus has low entropy, implying
that fish avoid surprising states (e.g., being out of the water). However, the fish can-
not evaluate surprise directly, because this would necessitate knowing all possible
states it could be in. For knowing its world, the fish uses a model, and this model
cannot hold all these states. The model is an evolutionary evolved abstraction, and
as said, the extent to which it abstracts from the world is related to the extra re-
sources that can be procured through its use.

So, what the fish actually assesses is not the surprise of a divergence between its
sensory inputs and any possible state in its world, but just the divergence between
sensory inputs and the representation of its world as generated by its model. It hence
is the model’s prediction error that Friston describes as free energy. The fish tries to
minimize it either by changing the representation, i.e., adjusting the model (aka
learning), or by action, that is, by bringing itself or its environment into a state that
corresponds to the model prediction (e.g., getting back into water). In summary,

 The use of models 25

the fish resists a natural tendency to disorder by minimizing a free-energy bound
on surprise, which entails either adjusting its model or acting on the environment
to avoid surprises.

Mathematically, the states as foreseen in the model as well as the states as mediated
through sensory inputs can be expressed as probabilistic distributions, which cor-
responds to the assumption of the so called Bayesian Brain Hypothesis, the notion
that the brain is an inference or Helmholtz machine (Dayan et al. 1995). The diver-
gence between these distributions can then be grasped with statistical means – the
Kullback-Leibler-divergence for instance – and its minimization can be formulated
as a gradient descent on free-energy to furnish differential equations (Buckley et al.
2017). We will discuss gradient descent in section 4.3.

1.4 Empowerment

The free energy principle explains the alignment of model predictions and sensory
inputs. It does not, however, say anything about the purpose of this alignment or
the purpose for which surprise needs to be minimized. On a most general level of
course, such purpose would be the survival of the holder of the model. Sensory in-
puts however, are rarely directly related to survival. Touching a hot stove for in-
stance, may be painful, but it is not always lethal. The pain you feel is just an indirect
signal that hot items can be detrimental for survival. In regard to evolutionary se-
lection it does not provide a clear signal for picking the fittest. For some perverted
reason you may like to touch stoves, but still be fit to survive.

In general, it could be argued that life provides rather sparse direct signals for evo-
lutionary selection. It therefore has been suggested that evolution is complemented
with additional basic principles that provide more local but also more universal sig-
nals for directing actions or maintaining homeostasis of complex systems. One
such basic principle has been proposed in the realm of robotics and artificial agents
under the term empowerment (Klyubin/Polani/Nehaniv 2005, Klyubin/Polani 2005,
Salge/ Glackin/Polani 2013, 2014). In a nutshell, the principle is a suggestion for
quantifying the degrees of freedom (or options) an agent (e.g. an organism) has in
controlling its environment based on its current world model. More precisely, the
concept distinguishes between a specific empowerment value for an agent’s current
state according to its world model (that is, the agent’s current control over its world
as seen with its model), and respective values of all possible states as perceivable
with this model, weighted by their probability (i.e. the agent’s possible control), and

 The use of models 26

it uses this difference for directing the agent’s actions towards states that, compared
to the current state, would enlarge its empowerment. To put it very simple, the organ-
ism or the agent simply screens all current options that are perceivable with its on-
board means, compares their empowerment values, and then goes for the option
that enlarges its empowerment, or in other words, that promises more control, with
control here meaning possibilities for further actions. By striving to enlarge its em-
powerment, the agent simply selects actions that increase its space of possibilities,
thereby following a very simple, but universal principle that bases solely on local
and therefore dense signals which are directly perceivable by the agent.

Empowerment hence stands for the possibilities that an organism has to act on its
world, or in other words, for the control it has over its world, as seen from its own
subjective (i.e. its model’s) perspective. If you are aware to have options – to stand
up, to walk, to talk, to sing, to learn, even to leave the room, etc. – you are empow-
ered, if you have no options or you are not aware of them, you are not. The crucial
point is that this amount of empowerment again can be expressed in terms of in-
formation theory and thus be used for simulations. It is grasped as the maximal po-
tential causal flow (Ay/Polani 2008) from an agent’s actuators (the means it has for
performing some action) to its sensors (the means it has for sensing the state of its
world). In terms of information theory, this has been formalized as channel capacity
(Shannon 1948), that is, as the maximum mutual information, measured in bits, that
a probability distribution of received signals on average contains about the probabil-
ity distribution of the signals that originally were sent. In this case, it would be the
conditional probability distribution of observed actuations and sensor dates, that
is, the channel capacity between an agent’s actions at a certain time and its sensoric
stimuli at a later time. It can also be interpreted as the amount of information an
agent could potentially “inject” into its world via its actuators and later capture via
its sensors.

Consider this in terms of a so called perception-action-loop (Powers 2005). In this loop
an agent chooses an action based on its sensor inputs from the preceding time step,
with the effect that this action will influence the state of the world and thus also the
next sensor input of the agent, with this cycle repeating and thus defining an infor-
mation flow from the agent’s actuators to the agent`s sensors at a later time step.
The maximum of this mutual information, measured as the capacity of the channel
between actuators and sensors, here is called empowerment, that is, the number of
options for actions given the world as perceived through the sensors.

Note that empowerment defines a possibility space for action, from which then, if
following the empowerment principle, the action that promises the largest next-

 The use of models 27

step-empowerment is chosen. The next step can be just one, or it can be a whole
range of next steps, thus defining a horizon of possibilities. How large this horizon
is, depends on how many next-steps an agent can look into the future, or in other
words, as we said, how complex the model is that the agent is able to maintain.

All this may become clearer, if we consider the following example of an agent being
positioned on a 2-dimensional finite grid world, in which five kinds of actions are
possible: to go North, to go East, to go South, to go West or to stay where you are.
An agent with a horizon of just one time step will be able to check these five possi-
bilities in respect to the neighboring patches around him. Positioned in the center
of this world, it will perceive that it has these five possibilities. Positioned at one of
the edges of this world however, it will perceive that it has one possibility less. Po-
sitioned in a corner, it even has two options less. If this agent is made to follow the
empowerment principle, it thus will move away from the corners and edges, be-
cause avoiding edges means higher empowerment. The picture below shows such
an agent as it moved two steps according to the empowerment principle, with the
one-step-horizon empowerment values indicated. The first step drove the agent to
the South, away from the corner where its empowerment-value was only 1.58. On
the patch to the South however, with a value of 2, it found that it can still sense a
better empowerment value on the western patch. There, with a value of 2.32, no
higher empowerment can be found.

Fig. 6: Agent with one-step empowerment (own illustration).

Now consider the same agent with a larger horizon, that is, with the ability to look
further into the future, that is, further into its space of options. This agent may

 The use of models 28

sense the empowerment constraints of the world’s edges even further away. It thus
will move towards the center of the world, because there its perceived empower-
ment is largest. The picture below shows the path of an agent with a 4-step empow-
erment, again with the empowerment values indicated as perceived by this agent.
Note that the values are different to the ones of the 1-step agent above, since they
depend on the number of steps an agent can look into the future. In this case, the
empowerment is calculated as the base-2 logarithm of visible actions, that is 𝛦 =

𝑙𝑜𝑔 2(2𝑛2 + 2𝑛 + 1) for patches without constraints, with 𝑛 indicating the number
of steps the agent can look into the future.

Fig. 7: Agent with 4-step empowerment (own illustration).

The nice feature of the empowerment principle is that it can be applied to a wide
range of problems, where not more than just local information about the current
situation is needed to drive an agent towards a higher-level goal. In other words, no
historical experience is needed. The example below for instance shows an agent
trying to find a way out of a compartmented part of the grid (yellow) through a rel-
atively long bottleneck by simply following the empowerment gradient uphill. Note
that the agent at each step of its path has no other information than the empower-
ment value of the adjacent free cells as calculated by looking 𝑛 steps into the future.

 The use of models 29

𝑛 = 3 𝑛 = 12

Fig. 8: Agents with 3-step (left) and 12-step (right) empowerment (own
illustration).

In the shown examples, the horizon of the agent is still too small to escape from the
compartment. In the left case, with a horizon of 𝑛 = 3, the agent considers the cen-
ter of the compartment as providing the largest empowerment and consequently,
as in the preceding example, moves there. In the right case, the horizon of 𝑛 = 12
suffices to let the agent find the bottleneck as possibility to enlarge its empower-
ment but then, being there, does not perceive the still higher empowerment at the
end of the tunnel.

In the following two examples, with 𝑛 = 13 and 𝑛 = 20, the agent succeeds to flee
the compartment and to traverse the bottleneck. In the left case, with 𝑛 = 13, it is
able to perceive the center of the open space to the left of the compartment as en-
larging empowerment and consequently moves there. In the right case however,
with 𝑛 = 20, its horizon appears to be too large for this open space. It obviously can
compare the empowerment of nearly all cells on the grid, including the ones in the
compartment, and finds that the largest empowerment is to be found to the south
of the center. To assess the perception of the agent, the cells in this case are colored
in respect to the empowerment that is perceived (the darker, the higher the empow-
erment relative to the horizon).

 The use of models 30

𝑛 = 13 𝑛 = 20

Fig. 9: Agents with 13-step (left) and 20-step (right) empowerment (own
illustration).

1.5 Causal Entropy

A concept that is very similar to the empowerment principle is the proposal to con-
sider Causal Entropic Forces (CEF) as the driving principle for orientating model-
based actions (Wissner-Gross/Freer 2013, Cerezo/Ballester 2018).

The concept of CEF connects the idea of the free energy and the empowerment
principle. Similar to empowerment, a central aspect of CEF is the horizon that an
agent can screen with the help of its model. In most cases this will be a temporal
horizon, conceived as a so called causal cone (below image), which comprises the
set of all paths the actions of an agent can possibly take, starting from an initial state
𝑥(0) and allowed to act continuously over a time interval of length 𝜏. Within this
cone, causal slices (blue) can be conceived, which consist of the consequences of the
agent’s actions at time 𝑡. Time 𝑡 is chosen so that it is possible to score these conse-
quences, or more precisely the actions that led to these consequences. In the em-
powerment concept a similar scoring was done by the empowerment value. Here
the authors, quite generally at first, suggest a reward function – for instance a score
of 1 for a state when the agent is still alive due to its actions, and 0 when it is dead –
and relate this function to a policy that scans all consequences at time 𝑡 for deciding
on the next action in time 𝑡 + 1.

 The use of models 31

Fig. 10: Temporal horizon as causal cone (own illustration).

Remember that, like in the empowerment concept, scoring is done virtually in the
model of the agent, not in regard to real actions. The idea again is to have a set of
virtual test pilots – here called walkers – prescreening the possibility space. We
could say, these walkers simulate actions in the model and the scanning policy then
determines the distribution of the consequences of these actions.

Fig. 11: Density distribution of walkers (own illustration).

One important parameter in this is the distribution of walkers and hence their den-
sity 𝐷 in different parts of the slice. In the image to the right and the left-most image
below the density of walkers is higher in the right than in the left half of the slice (4
green walkers to 3 red walkers). As said, each slice corresponds to the outcome of
(virtually tested) actions at a time 𝑡 in the future, at which the potential reward of
each simulated action can be assessed with a reward function. Imagine a scenario,
in which the density of these rewards is higher in the left half of the slice, whereas

 The use of models 32

the density of walkers is higher in the right half (second-left image below). In order
to orientate the screening process of possible futures, it would be good to make the
density of walkers proportional to the density of rewards in the slice. To achieve
this, walkers are assigned a probability in respect to the level of their reward and
the density of walkers at their position in the slice, which then determines whether
they are cloned from a low-reward to the high-reward area. In this way, it is guar-
anteed that walkers prevalently screen promising futures while not completely ig-
noring the less promising ones which could proof advantageous in another moment
of time.

Fig. 12: Probability distribution based on walker density (own illustration).

This relatively simple concept can be applied to a wide range of tasks, which all
focus on the one principle of maximizing the number of possible futures. Wissner-
Gross/Freer (2013) for instance show that it easily solves the classical problem of
balancing a rod upright on a moving cart. Cerezo/Ballester (2018) show impressive
examples of steering a simulated spaceship with a hook on a rubber band forming
a chaotic oscillator that is highly sensitive to small changes in initial conditions. The
hook is meant to catch and deliver a rock into a special zone in a closed environ-
ment (see left image and https://youtu.be/HLbThk624jI), thus providing a tough
goal for the experiment. In another setting Cerezo et al. (2018) apply the principle
to 55 Atari 2600 games from OpenAI Gym (https://gym.openai.com/), a feat that
lately has become a widely used benchmark for AI methods.

https://youtu.be/HLbThk624jI
https://gym.openai.com/

 The use of models 33

Fig. 13: Chaotic oscillator spaceship, taken from Cerezo/Ballester (2018).

They show that the Causal Entropic Forces principle, or more precisely their fractal
version of it, can play these games faster and more efficiently than human players
and some of the most advanced deep learning methods can. In their explanations,
the central principle of maximizing the entropy of a system (or trying to capture as
many future histories as possible) is ambitiously linked to a general theory of intel-
ligence unifying so diverse fields as cosmology, computer science, animal and hu-
man behavior and thermodynamics.

In the context at hand, the essential point is the effect of deploying a model. Gener-
ating and using a model internalizes the Darwinian evolutionary principle of de-
ploying a large number of instances for selecting the few options among them,
which promise to maintain the homeostasis of a dynamic system. Other than in nat-
ural evolution, where a great number of instances have to be sacrificed to find the
few fittest, these anticipatory systems do not waste real but just virtual instances for
pre-testing their options.

2 Machine-based modeling
– aka Machine learning

In general, one could say that modeling is a process of reducing the complexity of
a phenomenon in a virtual setting to a degree that then, in a given real context, can
be handled. Despite this complexity reduction however, a model should always re-
main complex enough to reproduce all important and characteristic traits of the
phenomenon. A model should not over-simplify. Modeling thus consists of reduc-
ing complexity on the one hand, while keeping those aspects in focus that are
thought to be most relevant or most descriptive for the phenomenon. Since usually,
many traits that are thought to be characteristic for one phenomenon can be found
in others as well, this implies a good portion of generalization.

To give an example: say you talk to ten people about the environmental situation of
our planet and observe that the ones who think that we might run into a problem
seem to have obtained higher education than the ones who rather are indifferent to
the situation. You assume environmental awareness and education to be corre-
lated. Consequently, you assign your observations a nominal value between 1 and
10, arrange everything in a table and then draw the values in their relation to each
other onto a scatterplot, as shown below.

Fig. 14: Higher education and environmental awareness (own illustration).

 Machine learning 35

The distribution of the observed data looks as if you are right. Environmental
awareness seems to rise with education. So, you decide to derive a model that can
give you a general idea about how much environmental awareness rises with in-
creasing education. A simple way to do this is to draw a linear regression line through
your observations.

2.1 Analytical modeling – Linear regression

A linear regression line can be defined as the line that is obtained when minimizing
the distances of the data points to the line. In figure 15 these distances are repre-
sented as the length of the short black lines that connect the red line to the blue data
points. The red line is the linear regression line.

Fig. 15: Linear regression line and distances to data points (own

illustration).

As you can see, the red line has a slope that is increasing from the left to the right.
This slope represents the relationship that environmental awareness has to educa-
tion in our example. According to this model, when education increases by one
unit, environmental awareness seems to increase by an amount that is represented
by the slope.

Mathematically, lines can be expressed by their slope and an interception point,
which usually is the intercept with the y-axes. A formula for a line could be 𝑦 = 𝑚 ∗

 Machine learning 36

𝑥 + 𝑘, with 𝑚 indicating the slope and 𝑘 the intercept on the y-axes. In order to
obtain a linear regression model hence, you have to find the two parameters slope
and intercept. Analytically, these parameters can be calculated with the following
formulas:

𝑚 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

and

𝑘 = 𝑦̅ − 𝑚𝑥̅

where 𝑥 would be the observations of the educational state, 𝑦 the instances of the
environmental awareness state and 𝑥̅ and 𝑦̅ the means of both respectively.

Fortunately, with a computer at your disposal you don’t have to calculate linear re-
gression yourself. In Python, there are several specialized packages for doing this,
with one of the most comfortable maybe being the linear regression module in the
statistical package scipy (www.scipy.org), which uses the so called least square
method. The code below draws the data, calculates a linear regression and draws the
line through it, as shown in figure 15.

Fig. 16: Python code for computing a linear regression.

http://www.scipy.org/

 Machine learning 37

The model that is generated in this way is both, an abstraction of the observed data
since it does not account for the specifics of the individual data points. And at the
same time, if the regression line is determined correctly, it also may allow for a
generalization of the correlation of education and environmental awareness. The
model, if correct, could be applied to other observations of which, for example,
only the state of education is known. Having a set of educational states plus the
model would then allow deriving a notion of the corresponding states of environ-
mental awareness from it.

In many cases, the parameters of a model can be found analytically. In the example
above for instance, slope and interception of a linear regression line were found
with the help of well-known mathematical formulas. Not for all phenomena how-
ever, mathematical methods will be at hand. Although it is no problem to derive
even highly complex multivariate correlations mathematically4, it is usually quite
difficult to find appropriate parameter values mathematically. However, – and this
is where the realm of machine learning begins –, model parameters can also be found
and tweaked iteratively with the help of a computer algorithm. In our example
above for instance, the slope and intercept parameters of the linear regression
model can be found by iteratively adjusting the squared distances of the data points
to the line so that their overall distance is minimized. The code-example below does
this by using the fit-function of the linear regression module of Python’s machine
learning library scikit-learn (http://scikit-learn.org). The model parameters in this
case are considered as weights that are changed with regard to a cost function5, that
is, to a function that indicates in each iterative step how bad the intermediate line
as suggested by the current state of the weights fits the average least square dis-
tance. This “bad” fit is called the least square error and is tried to be minimized by
successively (i.e., iteratively) adjusting the weights. In simple cases this adjustment
could be done just by hand, but with more complex models of course it makes sense
to have this efficiently done by a computer. In such cases we speak of machine
learning. The model used for expressing the relation between education and envi-
ronmental awareness is generated by the machine.

4 This fact led John von Neumann to the famous formulation: “With four parameters I can fit an ele-
phant, and with five I can make him wiggle his trunk”, see: https://www.youtube.com/watch?v=KfNPAX-
plLbc

5 Note: the alternative of a cost function is an utility function that indicates how good a models’ prediction
fits the data.

http://scikit-learn.org/
https://www.youtube.com/watch?v=KfNPAXplLbc
https://www.youtube.com/watch?v=KfNPAXplLbc

 Machine learning 38

Fig. 17: Code-example, using the scikit-learn machine learning library.

Note that, as with natural evolution, the iterative adjustment of parameter values
usually does not yield exact solutions as in mathematical analysis. Most often solu-
tions found by machine learning methods are approximations – approximations
however, which in many cases are good enough to be useful.

2.2 Linear and non-linear data discrimination

Note also that it is a crude simplification to assume that education is correlated with
environmental awareness in a simple linear way. Whereas education, in terms of
acquisition of knowledge, theoretically could be increased infinitely, environmen-
tal awareness rather seems to run up to a level at which either you have it or you
don’t, but you are not going to increase it any further – at least not linearly. Its de-
velopment rather appears to saturate at a certain level at which it does not make
sense to conceive further increases.

 Machine learning 39

Linear Regression is, as the name indicates, a linear data discrimination method. It
models data with a straight line. A little bit more complex is the non-linear data dis-
crimination method Polynomial regression. Using a simple quadratic equation and
some added Gaussian noise to model the education/awareness-relation as just de-
scribed, we can fit data distributions in such cases with the PolynomialFeatures mod-
ule of scikit-learn. The result may look similar to the plot in figure 18.

Fig. 18: Data distribution fitted using the Polynomial Features module (own

illustration).

This module allows the adjustment of a so-called hyper-parameter which is called
degree (see sklearn.preprocessing.PolynomialFeatures), letting you indicate the degree
of the polynomial that is considered for fitting the data. If you would assume a more
complex relation of environmental awareness and education, with maybe a couple
of more influencing factors, you could try to use higher degree polynomials by set-
ting this hyper-parameter accordingly. A polynomial regression of the same data
with degree 10 is shown in figure 19. Note however, that in principle you can fit
nearly every data distribution by using high enough polynomials. So, if the distri-
bution of your data points is caused by simple relations plus pure noise (as in the
example at hand) and not by any hidden extra influences, then using higher order
polynomials will cause your model to overfit, meaning that it approaches an accu-
rate representation of this one particular data set, but does not generalize to similar
cases anymore. We will come back to this important problem of overfitting a little
bit further down the line. For now, keep in mind that learning implies the ability to

 Machine learning 40

generalize. You will not want to learn to drive your car just on the handful of roads
that you use for training.

Fig. 19: Polynomial regression, fitted with degree 10 (own illustration).

So, environmental awareness and education may relate non-linearly to each other.
But of course, there is more to it. Environmental awareness does not depend on
education alone. There may be a lot more aspects responsible for whether a person
considers the state of the environment at risk or whether she is not able to see any
problems at all. In terms of modeling, the number of aspects (aka features) consid-
ered in such a setting increases the complexity (the dimensionality) of the model and
may lessen its accuracy and its predictive power. Basically however, the principle
remains the same, just the number of parameters needed for defining a valid model
may change when considering non-linear relationships and/or more than two fea-
tures in a machine learning quest. Fortunately, due to today’s powerful digital
means, the dimensionality of a problem does not inhibit machine-based modeling
attempts. Contemporary machine learning makes it possible to consider large
amounts of features that are interrelated in complex non-linear ways for determin-
ing aspects like a person’s environmental attitude. Modeling in this respect is no
longer an activity done by humans but by powerful digital devices.

 Machine learning 41

2.3 Data preparation

A higher dimensional problem from a similar background that can be tackled with
machine learning is the question whether particular characteristics and attitudes
(i.e., features) of people can be interrelated in a model so that a general inclination
for adopting a photovoltaic system can be derived. The data set for this investigation
was obtained in a sociological survey undertaken in Austria in the year 2015 in a
range of communities that installed communal photovoltaic systems and were won-
dering what kind of people participate in this cooperative activity. (Reinsberger et
al. 2015). People in these communities were asked to indicate the strength of their
attitudes towards aspects like environmental protection, financial assets, believe in
technical progress, energy autarky etc. on a graphical scale which than was trans-
lated into a Likert-scale with nominal values ranging from one to five. We take this
data as an example for how data needs to be pre-processed in a machine learning
investigation. An excerpt of the data set is shown below in the form of a so-called
DataFrame-object generated with the Python data analysis module pandas
(https://pandas.pydata.org/). The rows in this DataFrame indicate individual in-
stances of the data set, in this case the people questioned. The columns hold the fea-
tures used for characterizing the instances, and the entries in each cell are the at-
tributes of each person’s features.

Fig. 20: Glipse of survey data on PV-attitudes (own illustration).

The data set is small and could be easily scrutinized with common statistical means.
But its size and its characteristics make it a good introductory example on which
fundamental methods of machine learning can be explained.

As you can see, the first column is called ‘target’. It holds information about the final
decision of the respondent whether to adopt or not adopt the photovoltaic system.

https://pandas.pydata.org/

 Machine learning 42

Sociologists used the numbers 1 for indicating adopters and 2 for non-adopters,
which is un-common in machine learning context. For Boolean values usually 1 and
0 would be used respectively.

Also, you probably noticed numbers like -999.000000 in the data excerpt. Obviously,
these numbers are not in the range between 1 and 5. Sociologists used these num-
bers for indicating cases where they did not get clear answers in the range of the
Likert-scale. Usually, knowing that -999.0 is not a valid answer, does not impede to
proceed with interpreting the data. In a machine learning context however, expos-
ing such numbers to an algorithm would be highly misleading. To get rid of such
numbers or to exchange them for others is typically done in the course of data pre-
processing.

Fig. 21: Example code, treating misleading numbers.

The code in figure 21 gives an example of how such misleading numbers can be
treated. It changes the target-values 2 to 0 and it replaces the sociologists’ codifica-
tion of unusable answers at first with so-called ‘NaNs’, which stand for “Not a Num-
ber”, and then replaces the ‘NaNs’ with the mean of the column fractions with equal
targets in which they are found. Finally, it provides us with information about the
size of the data set and the number of adopters in it and reprints the below data
excerpt to show the applied changes.

 Machine learning 43

Fig. 22: Modified data (own illustration).

2.4 Supervised learning and Information gain

In the case of this survey, people were asked about their attitudes towards photo-
voltaics after they had decided whether to participate in the communal system or
not. Their decision is known and thus can be related to the other surveyed features
in order to build a model for generalizing the information it contains. A typical ma-
chine learning task with regard to this example would be to analyze the relation of
feature values to the target values and to use it for adjusting (fitting) the parameters
of a model so that this model then can predict the decisions of people of which just
the features but not the target values are known. The task hence consists in making
an algorithm find and learn the regularities in the relation of features to targets so
that it can be applied to cases where features but no targets are known. To make
this still clearer, consider a bank collecting information on clients in order to find
out who of them is not going to pay back credit loans. The bank will try to derive the
regularities in the features of those who paid back in the past, and it will also inves-
tigate the feature patterns of those who did not pay back. It will use the paid/not
paid target values in relation with the features for learning. This kind of ML-learn-
ing is called supervised learning.

Obviously, some of the analyzed features will be more indicative than others.
Therefore, a first step in machine learning often is to find out which parts of the
data hold most information in respect to the target. This is done by a methodology
called information gain, using concepts like the Gini-coefficient or the Shannon-en-
tropy for determining the correlation of features to targets.

 Machine learning 44

Consider a slightly different and dramatically downsized dataset for the PV-adop-
tion example. It has just five instances, three features and a target value that is
named “Adopt”.

Fig. 23: Downsized dataset for the PV-adoption example (own illustration).

Looking at the set may give you a quick idea about which features are more indica-
tive than others. Obviously, the feature “Account balance” holds three people
whose balance is above 70.000, Alfred, Chris and Edgar, of which only Alfred and
Edgar adopted a PV-system. Similarly, the employed feature indicates the same
three people as having a job (and thus a regular income), but again only two of them
adopted the PV-system. The age-feature however, unambiguously indicates older
people, Alfred and Edgar who are both above 40, as having an inclination towards
PV-adoption. Obviously, age, when split for example at 40, is the most informative
feature in this set.

In huge data sets of course, with hundreds of features and several thousand in-
stances, this kind of correlation is usually not so easily detected. In the larger ex-
ample of the communal PV-adoption above other methods to derive feature/target
correlations are needed.

Two measures that can be used for this are Gini-impurity and Shannon-entropy. The
Gini-coefficient is used in inequality research. It indicates the distribution of re-
sources, with a Gini of 0 indicating that all resources are evenly spread (all have the
same) and a Gini of 1 indicating an utmost uneven distribution (one has all). Analo-
gously, a feature with a Gini-impurity of 0 (when split appropriately, as in the age-
feature with a split of 40) corresponds well with the target values and a Gini-impu-
rity of 1 does not give any information for classification. Similarly, entropy, which
originates in thermodynamics as a measure of disorder, ranges from 0 to 1, with 0
indicating a pure feature set corresponding in all cases to the target value and 1
indicating maximal impurity and thus providing no information for classification.

 Machine learning 45

Fig. 24: A decision tree constructed using feature ranking indices (own

illustration).

These indices can be used to rank the features of a data set and to construct a so-
called decision tree, as shown in figure 24. By following its branches downward, the
tree, once generated, can be used like a filter for classifying instances of which no
target value is known.

Of course, this example provides a very simple tree comprising just three features.
Our data set of the PV-adoption decisions will generate a much richer tree. To
obtain it, we can again use the scikit-learn module of Python, which fortunately
offers tools for all the steps needed in an investigation of this kind. In the following
we will go through these steps one by one in order to provide a general overview of
the possibilities that this methodology offers.

2.5 Applying a Decision Tree Classifier

Once we have cleaned and arranged our PV-adoption data as described above, we
have to separate the features from the target by putting them into different files. In
pandas this can be done with the small code snippet below, where df indicates the
DataFrame-object in which the data is stored. The variables X and y will hold the
feature and target values respectively.

 Machine learning 46

Fig. 25: Code snippet for separtating feature (X) and target (y) values.

Once this is done, the data in X (the feature values) should be transformed to a
common scale. In the case of the dataset on PV-adoption this may be of less
importance since all features range between 1 and 5 anyway. In the small example
data set above however, features like “Age” with a range from 25 to 51 are
considered together with features like “Account balance” ranging from 29.000 to
450.000, that is, a couple of orders of magnitude larger than “Age”. Such differences
in scale can “irritate” machine learning estimators and thus shoud be avoided. The
module scikit-learn offers various scalers that can be used to transform data
accordingly. In this case, we use the module’s StandardScaler to arrange the values
around a mean of zero with unit variance. Do not forget to save the scaler once it is
fitted to the data. You’ll need it again when you want to apply your trained estimator
to unseen data (that is, data that was not used for training). Unseen data has to be
brought into the same scale before it can be classified with the trained estimator.
Scaling and saving can be done with the small code snippet below.

Fig. 26: Code snippet for scaling and saving.

The next step is an important one. As said, scikit-learn offers a specialized module
for generating a decision tree model, which after being trained can be used to
classify data of which no target value is known. Training works analogously to our
initial example about education and environmental awareness. The branches and
the split values in the tree can be seen as the model’s parameters, which in this case
again are not mathematically defined, but iteratively tweaked with regard to a best-

 Machine learning 47

fit function. In most cases, the result of this iterative adjustment process will be a
model that is not absolutely perfect in reproducing your data. However, this is no
problem, but to some extent even necessary, since, as we said, you want your model
to be able to generalize what it learned to other instances. If your model reproduces
your data 100%, chances are high that it has learned to replicate just this one
particular data constellation and is not able to recognize any comparable
regularities in any other data set. This is called overfitting and can be seen as a kind
of one-track specialism. The model is useless in all but this one particular case. We
will come back to this troublesome problem a little bit later.

So your model will (hopefully) not be perfect. But of course it should do better than
guessing. For being able to find out how well your model performs, a first common
procedure is to split your data set into a training set and a test set. The former will be
used for actually adjusting the parameters of your model so that it reproduces the
essential regularities in the data. And the latter will then be used to test the quality
of this adjustment. Since training and test sets are both taken from the original data
set for which all target values are known, this provides a simple methode for
checking the results of the learning process. The so-called train-test-split can be
done in the following way, where we separate a fraction of 75% of the data for
training and keep another 25% (test_size= 0.25) for testing.

Fig. 27: Train-test-split with 75% training data and 25% testing data.

Now, that everything is prepared, we can define the machine learning-tool we want
to use, in this case a decision tree classifier, and apply it to the training set of the
data. For this, we need just three lines of code, as shown below. All machine learn-
ing-tools of the scikit-learn module (and of comparable other modules) can be ac-
cessed in this way, so that once the preparation of your data is done, you can try a
broad range of methods simply by changing the name of the tool.

 Machine learning 48

Fig. 28: Defining and applying a decision tree classifier.

As mentioned in the annotation of the code, we applied the decision tree classifier
to the data in its default state. This means, we use the tool as it comes out of the box
of the scikit-learn toolkit. Most of these tools however, have so-called hyper-parame-
ters for fine-tuning their mode of internal operations. The use of the Gini- or the
Entropy-measure for the purity of features for example are determined by such hy-
per-parameters. Gini-impurity is the default criterion for the scikit-learn decision
tree. Changing it to entropy needs the insertion of criterion = ‘entropy’ into the pa-
renthesis after the classifier name, like so:

Fig. 29: Changing the hyperparameter to ‘entropy’.

2.6 Obtaining and evaluating results

Having the model trained, we want to know how well it performs. For this, we ex-
pose it to the test features that we separated with the test-train-split in the file X-test
and safe the result in a file called clf_prediction. This can then be evaluated with a
couple of tools, again in this case provided by scikit-learn. The code snippet below
yields the following output. We can see four different standard performance
measures often used in evaluations of machine learning results: accuracy, precision,
recall and f1-score.

 Machine learning 49

Fig. 30: Code snippet outputting standard performance measures.

Fig. 31: Output of above code.

Accuracy indicates the degree of closeness of a classification to the actual (true) val-
ues. 60% is not an overwhelming result, but after all it is better than guessing, and
it is just our first result. Precision is the accuracy of positive predictions. It gives an
idea of the degree to which repeated classifications under unchanged conditions
would show the same results. We can see that when our decision tree classifier
claims that an instance is a non-adopter (= 0) it is correct only in 71% of the cases.
And when it claims an adopter (=1) it is even less accurate. It is correct only in 38%
of the cases. Truly, not a fantastic result.

Precision is rarely used on its own. In the above shown classification report it comes
together with a measure that is called recall (aka sensitivity), which indicates the
fraction of instances that are detected. We can see that only 72% of the non-adopters
and 36% of the adopters are classified correctly.

Precision and recall stand in a tradeoff-relation to each other. Increasing precision
decreases recall, and vice versa. When you try to improve the accuracy of adopter
detections (the percentage of correctly classified adopters), you lose out on the per-
centage of adopters that are detected at all. It depends on what you are up to. You
may want to be correct in all adopter detections – then improve precision. Or you
may want not to miss any adopters – then improve recall. In the case at hand, we
have precision and recall values at similar levels, but for cases where there would

 Machine learning 50

be different levels, scikit-learn provides yet another performance measure: the f1-
score, which is the harmonic mean of precision and recall. Other than the regular
mean, the harmonic mean emphasizes the weight of low values. Therefore, the f1-
score increases only when both, precision and recall, increase together. In order to
optimize your results, you should thus try to improve the f1-score.

Accuracy, precision, recall and hence also f1-score can be calculated from values
that often are presented in the form of a so-called confusion matrix. These values are
called True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives
(FN) and are used to represent the ratio of correctly to incorrectly classified in-
stances.

Fig. 32: Code for generating a confusion matrix.

Applying the trained decision tree classifier with the code that is shown above to
the separated test data yields the confusion matrix below. It shows that of 156 non-
adopters in the test data set 113 were correctly classified, but 43 were falsely classi-
fied as adopters. And of 73 adopters only 26 were correctly recognized as adopters
and 47 were misclassified. In this case (coincidentally, since the algorithm has no
sense for semantics), the 113 correctly classified non-adopters would stand for the
True Positives and the 26 adopters for the True Negatives. The 47 predicted non-
adopters are the False Positives and the 43 predicted adopters are the False Nega-
tives. Note that the main diagonal holds the correctly classified instances.

Fig. 33: Confusion matrix as generated from of above code.

 Machine learning 51

The following shows how the mentioned performance measures are calculated
from these values.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

2.7 Improving results

Applying the train-test-split as shown above, we separated our data set into 75%
training data and 25% test data. Since having more examples usually provides more
information for the classifier, training on only 75% of the data means forgoing some
possibilities.

A common remedy for this shortcoming is cross validation, which separates the data
set repeatedly into different chunks for evaluation. The following code for example
evaluates our decision tree classifier five times on different randomly generated
subsets of the data by repeatedly applying the train-test-split, evaluating the accu-
racy of the separate runs and finally printing the mean and the standard deviation
of the results. As you can see, scikit-learn again holds a specialized modul to
implement this possibility in a simple way.

Fig. 34: Code for applying cross-validation.

A somehow similar method for getting better results from machine learning
investigations is to use ensemble methods for training. So called voting classifiers for

 Machine learning 52

example aggregate the predictions from several estimators and then use the result
that was predicted most frequently. Surprisingly, due to the law of large numbers,
this may produce a more accurate result than even the best of these classifiers could
produce on its own. You can use different classifier methods for such an ensemble
technique, or you can use the same method on different subsets of the data as above
in cross validation. If you allow for a replacement of the sampled subsets for
training, this is called bagging (short for bootstrap aggregating), and if you use
training instances only one time per classifier, this is called pasting. scikit-learn once
again holds a modul for these options, which, when applied in the bagging mode,
as shown below, yields a slightly better result than the decision tree trained on a
single 75%-training set (see the table below).

Fig. 35: Code for using an ensemble method.

Fig. 36: Output of above code.

 Machine learning 53

A particular bagging-method that is very popular with decision trees is called Ran-
dom Forest Classifier. It differs slightly from the above shown bagging classifier in
that it searches for the best feature (the one with least Gini-impurity) not among all
features, but repeatedly only in a random subset of them. This usually yields a bet-
ter model with less variance, but maybe slightly higher bias.

2.8 The bias-variance tradeoff, generalization and overfitting

Bias and variance are two important terms in the evaluation of results from super-
vised machine learning. Both are sources of error that, similar to the precision-re-
call-tradeoff, demand opposed improvements. Bias stems from an erroneous as-
sumption in the learning algorithm, for example the assumption that the data is
linearly separable although it is not, that is, that it can be classified for example
with linear regression as we have seen in our first example in the beginning of this
chapter. Bias errors result in so-called underfitting (the yellow line in figure 37),
indicating that the generated model does not mirror all characteristics of the data,
for example the fact that the true separation line is curved (black line in figure 37).
Variance on the other hand, indicates high sensitivity to small fluctuations in the
training data. The model overfits the data by accounting for small details which are
characteristic only for the training set at hand and not for any other data (the green
curve in figure 37). As mentioned earlier, this reduces or thwarts the generalizabil-
ity of the model. The model reproduces just the data at hand.

Fig. 37: Underfitting (yellow), overfitting (green), and optimal separation

(black), taken from Haake (2022), p. 24.

 Machine learning 54

Apart from bias and variance a third source of error in data is the irreducible error,
resulting from noise in the problem itself. This error should be accepted, since it
does not reduce the generalizability of the model.

As in our example of PV-adoption, usually, when training an estimator, a first per-
formance indicator to consider is accuracy, the ratio of true classifications. Of
course, it is fine to get high accuracy values since this means that the data holds
regularities that can be used for classification in principle. However, high accuracy
can also indicate an overfitting model. As indicated by the green line in the image
above, all data points can be classified correctly, accuracy is high thus, but the
model is useless since it will hardly be applicable to any other data. Therefore, in
all regularity, overfitting is the worse of the two problems. It is less easily detected,
but can render your model worthless.

So, what to do to avoid overfitting? There are several possibilities. A first one is
simply to start investigating your data with rather simple estimators (as for example
the linear regression estimator), use the results as benchmark and gradually step
up with the complexity of your tool to see if the additional complexity is worth it.
Increasing a model’s complexity will increase its variance and reduce its bias. If you
should happen to run into two models with comparable performance, then, accord-
ing to the rule of Occam’s razor, pick the simpler one. This will also benefit your
algorithm’s runtime.

Another possibility is to constrain your models’ weights. Remember that the free
parameters of a model – slope and intercept in the case of linear regression for ex-
ample – are seen as weights that are iteratively adjusted in the course of training.
These weights determine a model’s complexity. If there are many of them (and Ar-
tificial Neural Networks, which we will discuss later on, can have hundreds of thou-
sands), they are capable, when moving freely, to account for nearly every small de-
tail of a data set. Constraining them thus, means to impair their adjustability so that
rather the broad characteristics are considered and not every irrelevant detail in
data. scikit-learn holds several easily implementable methods for constraining the
weights of a classifier (see for example: Ridge-, Tikhonov-, or Lasso-regularization
or Elastic Nets, https://scikit-learn.org/stable/modules/linear_model.html). How-
ever, they do not apply to a decision tree or a random forest classifier.

https://scikit-learn.org/stable/modules/linear_model.html

 Machine learning 55

2.9 Data augmentation

An obvious way to keep a model from overfitting is to use more data to train it.
Surely, a larger data set will provide more chance to find its relevant characteristics
– if there are any. But what if – like in the case of the PV-adoption – there is simply
no more data at hand. Your data set is small but you still think that it holds the es-
sential characteristics for training a model. In this case you could just blow up your
data by varying it slightly according to statistical considerations. The code below for
example, doubles the original PV-adoption data by taking the mean and the stand-
ard deviation of all features in regard to whether the target value is 0 or 1 and uses
these for generating new normally (around the same mean with same standard de-
viation) distributed instances and concatenates them with the original data.

Fig. 38: Code for doubling the PV-adoption data.

 Machine learning 56

To assume that all feature values are likewise normally distributed is a strong as-
sumption of course. However, with a little bit of patience one could work out the
statistical properties of the features in more details and then simply use them to
create additional synthetic data for training.

2.10 Feature reduction

Yet another way to avoid overfitting is feature reduction. As we have seen, features
contribute in varying degrees to the predictability of data. Depending on their pu-
rity in respect to the target, they provide more or less information for classification
– and hence are ranked accordingly in the decision tree. While the small example
decision tree in figure 24 was easy to screen for feature importance, the PV-adop-
tion example is more difficult to comprehend. However, it too can be visualized
with the help of an online-tool called graphviz (https://www.graphviz.org/). The
code below generates and saves a .dot-file to your computer that has to be inserted
at http://www.webgraphviz.com/ in order to generate a tree like the one in figure
40 below.

Fig. 39: Code snippet for visualization at http://www.webgraphviz.com/.

In principle, if you zoom in deep enough into this tree, you could screen the leaves
for important features and split-values in the same way as in the small example tree
above. However, there are better ways to do this than by optical selection.

https://www.graphviz.org/
http://www.webgraphviz.com/
http://www.webgraphviz.com/

 Machine learning 57

Fig. 40: Decision tree generated with above code (own illustration).

An alternative way to find out about the importance of features is Gini-importance.
It is computed as the (normalized) total reduction of impurity brought by a feature.
scikit-learn offers a simple function to rank features according to Gini-importance.
It can be plotted with the code snippet below.

Fig. 41: Calculating and visualizing Gini-Importance (own illustration).

Other options offered by scikit-learn are Recursive Feature Elimination (RFE) for in-
stance, or the SelectFromModel meta-transformer (see http://scikit-learn.org/sta-
ble/modules/feature_selection.html). While the first one recursively considers
smaller and smaller sets of features and checks how much a performance indicator
loses out by dropping a feature, the second allows removing features from trained
models if indicators like feature importance are beneath a certain threshold. Both
allow to determine an optimal number of features to be considered.

Yet another often deployed method for determining the optimal number of features
to consider is Principal Component Analysis (PCA). This is an unsupervised method,

http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html

 Machine learning 58

meaning there are no target values with which an optimal result can be compared.
It uses the mathematical technique of Singular Value Decomposition (SVD) to de-
compose a multivariate dataset into the set of successive orthogonal components,
which is responsible for the most variance in the dataset. Its idea is to identify di-
mensions along which the variance in the dataset enfolds and to keep just those
dimensions which explain a large enough fraction of the variance. Often it can be
shown for example that 95% of the variance in a dataset can be obtained with a
number of components that is much smaller than the number of features. Consid-
ering fewer features, as said, prevents overfitting and saves computer runtime.

3 Common Machine
Learning tools

Apart from Decision Trees and their ensemble mode, the Random Forest classifier,
there is a great variety of other machine learning tools in use, of which the lately
most dynamically developing ones are Artificial Neural Networks. In this book we
will not be able to cover all these tools in detail, but will introduce Neural Networks
in the next chapter. Before that, we should at least briefly mention three very pow-
erful and versatile methods that due to their effectiveness are in wide use. They are
the so-called Support Vector Machine, the k-Nearest Neighbor classifier and the Na-
ïve Bayes method.

3.1 Support Vector Machine

The Support Vector Machine (SVM) can be used for linear and non-linear classifica-
tion as well as for regression tasks. It is well-suited for complex but not too large
data sets, since its computational costs in terms of runtime are rather high. In a
nutshell, a SVM works by trying to separate classes of data with the widest possible
street that can be built between them. The following two plots may explain this
principle.

Fig. 42: Left: Three different linear classifiers (red, green, and black).

Right: SVM classification (own illustration).

 Common tools 60

Both plots show classifications in two dimensions of the data. In the left plot we see
three different linear classifiers (red, green and black), all separating the red and
the blue classes. Although being 100 percent correct in each case, the three classi-
fiers draw completely different classification lines. If you apply these models to un-
seen data (i.e., data not used in training), it would depend very much on the orien-
tation of this data whether one of the classifiers would predict class membership
correctly. As a contrast, the right picture above shows the working principle of an
SVM. The solid black line in the middle is the actual separation line drawn by the
classifier so that the two dotted lines to the left and the right define the widest pos-
sible street between the red and the blue class. In this case, no alternative separa-
tion seems possible. The classification will be the same in each case.

Fig. 43: SVM classification with hinge loss (own illustration).

An SVM thus tries to find the line, plane or hyperplane between classes of data that
represents the largest separation, or margin, between them. This separation is cho-
sen so that the distance from it to the nearest data point on each side is maximized,
thus defining a channel. When applied to real data however, such a channel cannot
always be found. The margin thus is considered a soft margin indicating the best so-
lution that can be obtained. The SVM-algorithm looks for this soft margin by penal-
izing its solutions for misclassified data points and then chooses the separation
which yields least penalty, or loss, as the error penalty in the context of SVMs is
called. A common loss-function used in SVMs is hinge loss indicating that the penalty
for an incorrectly classified data-point increases linearly with the distance from the

 Common tools 61

separation. A simpler form of loss is zero-one-loss, assigning a penalty of zero to cor-
rectly classified points and a loss of one to incorrectly classified points. The plot in
figure 43 shows an SVM-classification with hinge-loss.

As many other machine learning-methods introduced in this chapter, SVMs can be
used for regression tasks. So far, we discussed only classification tasks, that is, prob-
lems where instances with particular features have to be sorted into different clas-
ses, for example into the classes of PV-adopters and non-PV-adopters. Machine
learning can also be used for problems in which you want to predict a value instead
of a class, for example the price of a car given its mileage, its engine, its brand, its
age, etc.

The code in figure 44 shows a regression example. It generates random data around
a cosine-function and uses an SVM with a non-linear polynomial kernel to fit the
data values. The result is shown in the plot to the right.

Fig. 44: Left: Code snippet for SVM regression example. Right: Plot

displaying SVM-regression results (own illustration).

import numpy as np

from sklearn.svm import SVR

import matplotlib.pyplot as plt

%matplotlib inline

generate data

X = np.sort(5 * np.random.rand(40, 1),

axis=0)

y = np.cos(X).ravel()

add noise to targets

y[::5] += 5 * (0.5 - np.random.rand(8))

SVM regression

svr_rbf = SVR(kernel=‘rbf’, C=1e3,

gamma=0.1)

y_rbf = svr_rbf.fit(X, y).predict(X)

plt.scatter(X, y, color=‘red’, la-

bel=‘data’)

plt.plot(X, y_rbf, ‘b’, lw = 2, label=‘mo-

del’)

plt.xlabel(‘data’)

plt.ylabel(‘target’)

plt.xlim(0, 5)

plt.title(‘Support Vector Regression’)

plt.legend()

plt.grid()

 Common tools 62

3.2 k-Nearest-Neighbor

Another way to consider linearly not-separatable data is to build on the principle of
similarity of data points, or more precisely, the similarity of feature vectors. The
reasoning behind this is the simple assumption that data instances inhabiting the
same region in data space have more in common than data instances from different
regions. Since feature vectors have the mathematical form of coordinates, albeit in
a higher dimensional space, one common way to compute similarity is Euclidian
distance.

According to the Pythagorean theorem, in two dimensions, the Euclidian distance
of two points A and B with vectors (𝑥𝐴 , 𝑦𝐴) and (𝑥𝐵 , 𝑦𝐵) can be calculated with the
formula √(𝑥𝐵 − 𝑥𝐴)

2 + (𝑦𝐵 − 𝑦𝐴)2, with calculations in higher dimensions analo-
gously. The distance of data points hence can be compared and used to differentiate
data points in respect to their distance from each other. So, in the case of predictive
modeling, that is, in the case of an attempt to predict the behavior of a so far un-
known data instance from data on which an algorithm was trained, one could look
at (already assessed) close-by data points, so called neighbors, and orientate predic-
tion on the behavior of these “nearest neighbors”. If a person’s feature vector is
close (in terms of Euclidian distance for instance) to other people who adopted PV,
chances are high that this someone will also adopt.

A question concerning this method is how many neighbors shall best be considered.
In order to prevent ties, it is often suggested that the number of neighbors – usually
denoted with 𝑘 (that’s why the method is called k-Nearest Neighbors) – should be
an odd number and the prediction is then orientated on the majority rule. Another
often used possibility however is to weigh neighbors in respect to their distance.
Intuitively, one would agree that the closer ones of the 𝑘 neighbors should have
more predictive power than the ones further away.

The k-Nearest Neighbors algorithm can be used for non-linear classification as well
as for regression tasks. It can be used in a supervised and in an unsupervised way.
The latter is providing a foundation for many other learning methods, notably spec-
tral clustering (sklearn.cluster.SpectralClustering.html).

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html

 Common tools 63

Fig. 45: Classification with k-Nearest Neighbor (own illustration).

3.3 Naïve Bayes

Another effective method for non-linear data discrimination is Naïve Bayes, which
builds on the famous rule of the English statistician Thomas Bayes (1701-1761) for
deriving joint probabilities. The algorithm is often used in email-spam-filters to sep-
arate mails from spam. In order to understand its working principle, consider the
probability of someone investing in a photo voltaic system given some kind of evi-
dence 𝐸, for example the evidence of having high environmental awareness. This
could be indicated as 𝑝(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∣ 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒) , reading “the probability of invest-
ment given that evidence”.

In general, if there are two events, 𝐴 and 𝐵, with the probabilities 𝑝(𝐴) and 𝑝(𝐵),
the so-called joint probability of 𝑝(𝐴𝐵), that is, the probability that both events oc-
cur, can be calculated as 𝑝(𝐴𝐵) = 𝑝(𝐴) ∗ 𝑝(𝐵 ∣ 𝐴) or alternatively 𝑝(𝐴𝐵) = 𝑝(𝐵) ∗

𝑝(𝐴 ∣ 𝐵). This implies that 𝑝(𝐴) ∗ 𝑝(𝐵 ∣ 𝐴) = 𝑝(𝐵) ∗ 𝑝(𝐴 ∣ 𝐵) and so, if both sides are
divided by 𝑝(𝐴), one gets

𝑝(𝐵 ∣ 𝐴) =
𝑝(𝐴 ∣ 𝐵) ∗ 𝑝(𝐵)

𝑝(𝐴)

the famous Bayes’ Rule.

To comprehend this more clearly, let’s assume that 𝐵 is some kind of Hypothesis 𝐻,
for example the hypothesis that someone will invest in a PV-installation, and 𝐸 is
evidence, for example the high environmental awareness of this person. Renaming
Bayes’ rule gives

 Common tools 64

𝑝(𝐻 ∣ 𝐸) =
𝑝(𝐸 ∣ 𝐻) ∗ 𝑝(𝐻)

𝑝(𝐸)

The advantage of this transformation is that all three terms in it are more easily
assessable than the probability of someone investing in PV given high environmen-
tal awareness. In many cases, the probability of high environmental awareness
given that someone owns a PV-installation, as well as the probabilities of PV-instal-
lations and of high environmental awareness in general, that is, its occurrence in
the overall population, can be empirically observed.

Now let’s call the event that a target variable will take on a particular value 𝐶 = 𝑐,
for example that a person indeed adopts a PV-installation (or that an incoming
email is spam). Rewriting Bayes’ rule gives

 (𝐶 = 𝑐 ∣ 𝐸) =
𝑝(𝐸∣𝐶=𝑐)∗𝑝(𝐶=𝑐)

𝑝(𝐸)

In the data set, the evidence 𝐸 is the feature vector of this person (that is, the vector
containing all known characteristics of this person). 𝑝(𝐶 = 𝑐 ∣ 𝐸) is called the pos-
terior probability. 𝑝(𝐶 = 𝑐) , the so-called prior probability, can be taken as the “base
rate” of 𝑐, that is, the prevalence of 𝑐 in the whole population. The term 𝑝(𝐸 ∣ 𝐶 =

𝑐), which is the so-called likelihood of seeing the evidence 𝐸 when 𝐶 = 𝑐, can be
computed from the data as the percentage of examples of class 𝑐 that have feature
vector 𝐸. Finally, 𝑝(𝐸) is the likelihood of 𝐸 in general, calculated as the percentage
occurrence of 𝐸 among all examples.

One problem with this calculation however, is the fact that the feature vectors in
the data can be very specific. Usually, they get more specific the larger the vector
is. Large feature vectors hence may not allow estimating their probability of occur-
rence with any confidence, since hardly any vectors will be exactly the same. To
overcome this, it is often assumed that the features are conditionally independent
given that 𝐶 = 𝑐, meaning that a probability 𝑝(𝑒𝑖) does not say anything about the
probability 𝑝(𝑒𝑗) and therefore (if we write 𝑐 instead of 𝐶 = 𝑐 for the sake of sim-
plicity) Bayes’ rule can be regarded as

 𝑝(𝑐 ∣ 𝐸) =
𝑝(𝑒1∣𝑐)∗𝑝(𝑒2∣𝑐)∗...∗𝑝(𝑒𝑛∣𝑐)∗𝑝(𝑐)

𝑝(𝐸)

Each of the 𝑝(𝑒𝑖 ∣ 𝑐) terms can be computed directly from the data. Instead of look-
ing for the match of entire feature vectors, it can be derived from the proportion of
an individual feature 𝑒 in the fraction of 𝐶 = 𝑐, that is for example in the fraction of
PV-adopters.

 Common tools 65

Fig. 46: Classification using Naive Bayes algorithm (own illustration).

An advantage of the Naive Bayes algorithm is that it can be used as an incremental
learner, meaning that it updates its “knowledge” in real time with every single new
instance added to the data set. It does not have to be started anew. Each new adopter
or non-adopter, or each new mail or spam-mail adds more information to the sys-
tem. The plot in figure 46 shows a classification of the PV-adoption data, done with
the GaussianNB Naive Bayes-algorithm as provided by scikit.learn.

4 Artificial Neural
Networks

Artificial Neural Networks (ANNs) are computer-generated adaptive systems be-
lieved to work similar to biological neural networks, in particular to the human
brain. Like other machine learning tools as well, they are used to find structures
and regularities in complex data sets. Nowadays, due to their efficiency, they are
deployed in a wide range of every-day gadgets, from smart phones to car carbure-
tors or washing machines. Most spectacular of course is their application in the
context of Artificial Intelligence (AI).

ANNs consist of a large number of identical or very similar components, neurons,
which interact with each other on the principle of a rather simple mechanism, a so-
called threshold function. In other words, they operate on the basis of a distributed
representation of their knowledge. Crucial for their performance is not so much a
specialization of individual components but a complex reference structure of many
similar and surprisingly simple components with collective, aggregated perfor-
mance. In this regard, they are prime examples of complex systems.

4.1 The Perceptron

The essential aspect of the operation of a neural network is the state of excitement
of its neurons, or more exactly, the transmission of these states of excitement trig-
gering excitements in other neurons, which amplifies or weakens the connections
between these neurons. This transmission can be explained on the example of the
operation mode of the so-called perceptron, a predecessor-ANN that was suggested
by Frank Rosenblatt in 1958 in order to simulate the receptors of the retina.

This perceptron is a computer generated “virtual” network consisting of two so-
called input neurons, a hidden neuron, and one output neuron (see figure 47). The
two input neurons have connections to the hidden neuron which in its turn is con-
nected to the output neuron. The connections of all these neurons are weighted

 Artificial neural networks 67

with an initially randomly assigned numeric value, often simply between -1 and +1.
Note, that the connections in any network can be represented with the entries in a
symmetric matrix, with row- and column-titles holding the designations of neurons
and the corresponding matrix-entries holding information on whether a connec-
tion exists or not (1 or 0), or a numerical value for the strength, i.e., the weight, of a
connection. In this way, the transmission of excitements in ANNs can be calculated
by way of matrix-calculations. ANNs basically exist in the form of large matrices,
stored on computers or servers, and being processed with specialized hardware like
graphical- (GPUs) or tensor processing units (TPUs). More on this later on.

Fig. 47: Perceptron (own illustration).

In order to comprehend the basic working principle of ANNs in more details, con-
sider the task of learning the correct outputs of a logical operation, let’s say the in-
clusive OR-function. This function is meant to answer two Boolean inputs of which
either one of them or both of them are true (represented by a 1) with a true (1) out-
put, and of which both are false (represented as 0) with a false (0) output (see the
input-output-table below). Our machine – in this case a perceptron like the one in
figure 47 will do – has to learn to provide these outputs when confronted with the
inputs 𝐼1 and 𝐼2.

 Artificial neural networks 68

Fig. 48: Input-output table illustrating the logical OR-function.

In a first step, the information [0, 0] is put into the network via the input neurons
and is then processed from there to the hidden neuron by multiplying it with the
weight of the connections. The hidden neuron then sums the weighted input values
as 𝑛𝑒𝑡 = 𝑤1 ∗ 𝐼1 + 𝑤2 ∗ 𝐼2 and rounds this sum on a threshold value, which here for
example could be 0.5 in order to determine the actual output value for this first step
of learning. In this case, the results from 𝑛𝑒𝑡 larger than or equal to the threshold
can be rounded to 1 and the results smaller are rounded to 0, which is possible in
this case since there are only binary outputs in the example.

While learning, this generated output value is compared to the expected target,
which is 0 in the case of two 0-inputs. The actual learning process now consists in
iteratively applying the four possible inputs and increasing or decreasing the – ini-
tially randomly assigned – connection weights with regard to a learning rate so that
the generated output in each of the four possible cases coincides with the expected
output, i.e., the target.

So, if, for example, the initial connection weights were assigned as 𝑤1 = 0.1 and
𝑤2 = 0.3 to the network and the learning rate would be 0.2, the learning process
would proceed in the following way:

▪ In the first step, according to the above table, the two values 0 and 0 are
introduced to the input neurons and forwarded to the hidden neuron.
Weighted with 0.1 and 0.3 (i.e., multiplied with these values) this produces
the 𝑛𝑒𝑡 value of 0 + 0 = 0 and thus, even without being rounded on the
threshold 0.5, the expected result. Hence, the weights are not changed in
this step.

▪ In the next step, the next two values in the table, 0 and 1, are introduced
and passed into the input neurons. With the set weights, this now yields
𝑛𝑒𝑡 = 0 + 0.3 and thus, rounded on the threshold 0.5, a 𝑛𝑒𝑡 value of 0,
which in this case is not the desired result. In consequence, a weight will
have to be changed. Usually, this is the weight with the value that has

 Artificial neural networks 69

changed in comparison with the previous case. It will be increased by a
learning rate of, say, 0.2 to 𝑤2 = 0.5. Rounding the 𝑛𝑒𝑡 value now on the
threshold yields 1, which corresponds to the target.

▪ With the next row’s entry of 1 and 0 the weighting results in 0.1 and 0, and
thus, rounded on the threshold value 0.5, yields a 𝑛𝑒𝑡 value of 0, which in
this case too is not the desired result. Once again, the weight for the new
value, now for 𝐼1, is increased by the learning rate 0.2 to 𝑤1 = 0.3. The 𝑛𝑒𝑡
value now is 𝑟𝑜𝑢𝑛𝑑(0.3 ∗ 1 + 0.5 ∗ 0) = 0, which does not yet meet the ex-
pected result, but is accepted for the moment.

▪ With the last entry of 1 and 1 in this first training round the weighting yields
𝑤1 = 0.3 and 𝑤2 = 0.5 and thus rounded on the threshold 0.5 a 𝑛𝑒𝑡 value of
1, which in this case corresponds to the expected result. The weight must
not be changed.

The learning process has now completed one pass through all possible cases of the
data and thus starts over again at the first row of the above table.

▪ Again, the input values 0 and 0 are passed to the input neurons and now,
with a weighting of 0.3 and 0.5 yield a 𝑛𝑒𝑡 value of 0, the expected result.
The weights are not changed.

▪ With the next entry of 0 and 1 the weighting yields 0 and 0.5, and thus,
rounded on the threshold, a 𝑛𝑒𝑡 value of 1, which corresponds to the de-
sired result. The weights are not changed.

▪ With the entry 1 and 0 the weighting yields 0.3 and 0, and thus, rounded on
the threshold, a 𝑛𝑒𝑡 value of 0, which does not correspond to the expected
result. The weight corresponding to the changed value, i.e., the weight to
𝐼1, is increased by the learning rate of 0.2 to 𝑤1 = 0.5. The 𝑛𝑒𝑡 value now,
with 𝑟𝑜𝑢𝑛𝑑(0.5 ∗ 0.5 ∗ 1 + 0), is 1, the desired result.

▪ The last inputs of this round are 1 and 1. This yields a weighting of 0.5 + 0.5,
which corresponds (even without rounding) to the expected result.

Again, the learning process has completed one pass through all possible cases and
starts over again. As it turns out however, with the current weighting all generated
outputs correspond to the expected outputs of the inclusive OR-function. In other
words, the difference between generated and expected output, also known as the Er-
ror, is zero. The learning process thus is complete in this case. The weighting of the
network connections is “fine-tuned” so that each time one of the possible binary
combinations is introduced to the input neurons the output corresponds to the ex-
pected result.

 Artificial neural networks 70

This iterative approach to coherent weightings describes the basic working princi-
ple of neural networks. It works analogously with much more complex problems,
even though more hidden neurons and, depending on the size of the input and out-
put, more input and output neurons are used. In cases where the deviation from the
desired result is not always 1 as in our example, the error can be multiplied with the
learning rate (In our example, a multiplication of 1 would not affect the learning
rate) with connection weights being changed accordingly.

4.2 Back propagation – the fundament of Deep learning

Compared to the power of today’s ANNs, the example of the logical OR operation of
course is very simple. Back in the 1960ies however, a similar simple logical opera-
tion, the so-called XOR (or exclusive OR) operation6, caused temporary irritations
in the development of artificial neural networks. In a much-discussed book on Per-
ceptrons, Marvin Minsky and Seymore Papert (1972) pointed out that the solutions
to the XOR function cannot be separated by means of a simple straight line in a two-
dimensional space and thus cannot be learned in the form described above. Their
objection cooled the euphoria about the possibilities of neural networks in the field
of artificial intelligence research.

Only a short time later, however, proposals were made to connect several layers of
hidden neurons in order to gain higher resolution in so called Multi-layer Percep-
trons (MLPs). These layered network types, where information propagates through
several layers of neurons into considerable processing depths, are responsible for
the fact that the corresponding research and application today is discussed under
the name Deep learning. In such “deep” neural networks each internal layer of hid-
den neurons serves as a new input for the next layer, which necessitates a different
method for adjusting the connection weights when training the network.

6 In contrast to the inclusive OR, the XOR-operator yields the output 0 for the inputs 1 and 1.

 Artificial neural networks 71

Fig. 49: Multi-layer Perceptron (MLP), taken from Bill et al. (2021)

In simple single-layer Perceptrons, the adjustment of the weights is done immedi-
ately in response to the difference of expected and generated output. The adjust-
ment, so to speak, is an immediate reaction of the network to its input data. This
process is called forward-propagation.

In complex Multi-layer (or “deep”) neural networks, however, weight adjustments
can only be done when the information has passed through all the layers of hidden
neurons, since only then the calculated output can be compared with the expected
output. The process of forward-propagation therefore is complemented with a sec-
ond process called back-propagation, in the course of which the weights are adjusted
“from back to front”. This process starts from the connections of the output neurons
to the neurons of the last hidden layer and “distributes” the error backwards
through the network to all connection weights of all layers. In some details ex-
plained: if the generated output as rounded on the threshold is called the activation
𝐴 of a neuron, then the error of an output neuron 𝐸𝑂 is determined by multiplying
the activation with its complement and with the difference of the activation and the
expected output 𝑂, that is: 𝐸𝑂 = (𝑂 − 𝐴) ∗ 𝐴 ∗ (1 − 𝐴). Analogously, the error 𝐸𝑉
of a hidden neuron is determined by multiplying the sum of the products of the
errors of the preceding neurons 𝐸𝑂 (or 𝐸𝑣) with the weights of the connections lead-
ing to them and with the activation and its complement: 𝐸𝑣 = ∑ (𝐸𝑂𝑗 ∗ 𝑊𝑗) ∗ 𝐴𝑗 ∗𝑛

𝑗=1

 (1 − 𝐴𝑗). The corresponding weights 𝑤𝑗 then are adjusted in respect to the learning
rate 𝑑 multiplied with the error of the preceding neuron 𝐸𝑂 (or 𝐸𝑣) and the activa-
tion of the neuron to which the connection leads back: 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝑑 ∗ 𝐸 ∗

 Artificial neural networks 72

 𝐴. If all goes well, the network, by iterating these adjustments, approaches a state
that captures the regularities of the data to be learned.

In the single-layer Perceptron example, we used a simple threshold function for
rounding the output values. In more complex data landscapes however, more com-
plex functions are used to determine the activation of a neuron. Quite common for
example is the deployment of a so-called sigmoid function7, which “forces” the in-
put values into the interval between 0 and 1 according to their proximity to the
threshold value. Usually, also so-called bias-neurons are added to the layers of an
ANN. Since, as in the example above, relevant inputs to the network may consist of
zeros at times and, multiplied by the connection weights, would then result in zero
information for the network, these bias neurons guarantee to generate constant
“neutral inputs” in dependence of the weights of their connections.

It should be mentioned at this point that multi-layer ANNs exhibit remarkable char-
acteristics apart from their ability to learn complex matters. Interesting for instance
is the fact that two trained ANNs can perform equally well on a problem, but still
show completely different internal structures. The actual weighing of their connec-
tions may differ at large but still solve the same task. This may suggest the assump-
tion that the internal structure of human brains also differs even though they ac-
complish same tasks with comparable quality. Another interesting feature is the
ability of artificial neural networks to learn incrementally in actu, that is, while be-
ing used. Unlike hard-wired circuits, they are never fixed for good in their function.
They adapt permanently to new inputs and thus can be deployed under very dy-
namic conditions, as for example in the case of autonomous driving on public
streets. This circumstance is responsible for the fact that neural networks function
relatively fail-safe. While in hard-wired circuits the failure of a single, often even
irrelevant component can lead to total failure of the entire system, neural networks
are surprisingly resistant to perturbations or partial losses. Probably the most obvi-
ous examples are stroke patients with severe brain damages, who sometimes, after
appropriate therapy, can find their way back to behaviors that can be seen as rela-
tively “normal” in view of their injuries. In these cases, the non-destroyed parts of
their brains are able to relearn the lost functions and thus compensate for the dam-
age. This characteristic of networks is called graceful degradation and often is imple-
mented intentionally in technical systems where individual partial failures should
not result in total failure, as for example in the supply of electricity in power grids
or of information in the internet. An accepted redundancy of connections makes

7 For example, of the form 𝑠 =
1

1+ 𝑒−𝑥

 Artificial neural networks 73

the network resilient. If a part of it fails, other connections take over, often without
the consumer noticing.

4.3 Gradient Descent

As mentioned, the difference between generated and expected output is called the
error of the classifier model. This error can be expressed in terms of a cost function.
Minimizing a cost function (or an error) is often done with an algorithm called gra-
dient descent, which is a very generic optimization method that can be usefully ap-
plied to every-day problems as well. Imagine for instance you are on top of a grass
mountain and suddenly fog is coming up. You can’t see anything, but you want to
get back down to the valley quickly and safely. What are your options? At first, this
seems easy. You simply follow the path that goes down the steepest from where you
are until the ground becomes flat. If the grass mountain has a simple topology, the
flattening subsoil will announce that you are approaching the valley.

Fig. 50: Descending the steepest path until reaching flat ground (own

illustration).

However, your stride length could be an important parameter in this. If you take
very small steps, it will take you quite a long time to come down to the valley. On
the other hand, if you take too large steps (– imagine much larger steps than you
could do in reality –) you may overshoot the deepest point and climb up the other
side of the valley again.

 Artificial neural networks 74

Fig. 51: Overshooting the deepest point of a valley (own illustration).

If the mountain additionally has a complex structure, with pre-summits, local val-
leys and narrow descents, too large steps could make you miss a narrow descent
that leads to the global valley and lets you end up on a suboptimal plateau, a local
minimum.

Fig. 52: Risk of settling on a suboptimal plateau, aka local minimum (own

illustration).

An obvious method to prevent this could therefore be to adjust your stride length to
the steepness of the terrain, for example, to reduce the stride length when the ter-
rain becomes flatter, or to consider an additional momentum in order to keep you
going for some time even so the path, after reaching a local minimum, leads uphill
again. The momentum then could help you overcome local valleys and lead you to
the global minimum.

 Artificial neural networks 75

Fig. 53: Adapting stride length to terrain steepness (own illustration).

Mathematically going downhill in this way means following the negative gradient
of the cost (or error) function for each dimension. The gradient, mathematically
denoted with the Nabla-operator ∇, is a vector pointing at the steepest ascent of a
position in the cost-landscape and indicating the slope at this point with its length.
The slope is found as the partial derivative of the cost-function for each dimension.
This is like asking, what is the slope of the hill under my feet if I face East? And then
asking the same question for North, South and all other dimensions. The gradient
vector points uphill. Following the negative gradient thus defines an iterative pro-
cedure 𝑎𝑛+1 = 𝑎𝑛 − 𝛾∇𝑓(𝑎𝑛), with 𝑎 being a model parameter that is slightly
changed in each step, and 𝛾 expressing the stride length (or error-decreasing-rate,
respectively learning rate). If the stride length is adjustable, 𝛾 is changed in each
iteration, with a multitude of specialized methods being available to govern this
change. In practice, gradient descent is often started from random values (called
random initialization) and iterated until the cost (or error) is reduced to a level,
which may be not the absolute (mathematical) minimum, but which is small
enough to be acceptable.

If the cost function is convex and continuous, as is mostly the case with MLPs, gra-
dient descent should converge to the global minimum. A factor that could impede
this is when the features in your data set have different scales, like in the case of
“Account balance” and “Age” in the toy example above. In such cases, convergence
could be misdirected at first and thus take a long time to find the minimum. To
prevent this, data should be scaled before training an ANN on it.

While learning, gradient descent can be calculated in each iteration for each feature
in each instance of the training data. This is called batch gradient descent and can be
computationally very expensive. A cheaper variant therefore is suggested under the
name stochastic gradient descent, which picks a random instance in the training set
at every step and computes the gradients based only on this instance. This makes
learning much faster but a bit erratic in respect to finding the global minimum. Its

 Artificial neural networks 76

final parameter values may be good, but not optimal. On the other hand, the erratic
bouncing of the stochastic gradient descent can help the procedure to leave local
minima and eventually find the global ones, if, for example by decreasing the learn-
ing rate (the stride length), the to-and-fro-bouncing of the descent can be con-
trolled. Starting out with long steps and gradually decreasing the step size for allow-
ing the algorithm to settle to the local minimum is called simulated annealing. It re-
sembles the process of annealing in metallurgy where molten metal is slowly cooled
down.8

4.4 The MNIST-digits-example

To further illustrate the working principles of artificial neural networks let’s take a
brief look at the task of teaching an ANN to read and distinguish handwritten digits
from “0” to “9”. This is a common introductory task in machine learning, which
usually is done with the so called MNIST database of handwritten digits (see
http://yann.lecun.com/exdb/mnist/). The database contains a set of 50.000 digital
images for training and a separate 10.000 image-set for validation purposes. Six ex-
amples from this data set are shown in figure 54. The pixelization is intended to
illustrate that each pixel is an input for a neuron.

Fig. 54: Six examples of handwritten digits (pixelization intended), taken from
http://yann.lecun.com/exdb/mnist/.

As can be seen, the scanned hand-writings have a rather low resolution of 28 x 28 =
784 pixels, which in most cases suffices to clearly distinguish the digits. In some
cases, however, – see examples below – even humans will have difficulties to dis-
tinguish the digits.

8 Besides batch and stochastic gradient descent, where either all or just one instance are chosen for gra-
dient calculation per iteration, there is also a method called mini-batch gradient descent, which allows
defining the size of random sets of instances used for calculations.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

 Artificial neural networks 77

Fig. 55: Examples of unclear digits (pixelization intended), taken from

http://yann.lecun.com/exdb/mnist/.

The MNIST-digit images are black and white only. The information in them can be
transmitted according to the principle shown in the stylized matrix below. Pixels
that are not affected by the hand-writing are considered zero-entries in the matrix,
and pixels that are touched by the A are considered one-entries. Respectively, if
there is color in an image, entries in the matrix would consist of corresponding val-
ues. The information in this matrix then is provided to the input-layer of the ANN,
which in this case would need to have 784 input neurons.

Fig 56: Handwriting and corresponding pixel matrix (own illustration).

The ten digits from “0” to “9” are uniformly distributed among the 60.000 instances
in the dataset so that each “5” for example could be applied approximately 6000
times in different variations to the neural network. To resolve this variety, an ANN
with more than just one layer of hidden neurons is needed. The Multi-layer Percep-
tron (MLP) as provided by scikit-learn can be trained on the data using the kind of
coding, which we have seen in the applications before. The code snippet below im-
ports the data (from a zipped file), prepares training and test data sets, defines pa-
rameters for the MLP (for details see sklearn.neural_network.MLPClassifier.html),

http://yann.lecun.com/exdb/mnist/

 Artificial neural networks 78

trains it (via the fit-method), plots a curve that shows the iterative loss of the error,
tests the trained MLP on the test data and prints a classification report and a confu-
sion matrix.

Fig. 57: Python code for MLP training and evaluation.

Error loss curve, classification report and confusion matrix are shown in figure 58.
As can be seen, the results are not bad. Precision, recall and f1-score are at 98%,
which is quite impressive given that some of the digits are hard to read even for
human interpreters. The main diagonal of the confusion matrix holds the correctly
classified instances and we can see from the off-diagonal entries that only very few
cases were miss-classified.

Fig. 58: MLP-error loss curve, classification report, and confusion matrix
(own illustration).

import gzip

import cPickle

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

%matplotlib inline

import data

f = gzip.open(‘<path_to_data>\\mnist.pkl.gz’, ‘rb’)

trainings_data, validation_data, test_data = cPickle.load(f)

f.close()

separate data from target value

X, y = trainings_data[0], trainings_data[1]

define parameters for Multi-layer Perceptron (mlp)

param = {‘solver’: ‘sgd’, ‘learning_rate’: ‘constant’, ‘momentum’:

0, ‘learning_rate_init’: 0.2}

label = "constant learning-rate"

mlp = MLPClassifier(verbose=0, random_state=0, max_iter = 150,

**param)

mlp.fit(X, y)

show the loss of error

plt.plot(mlp.loss_curve_)

plt.title(‘Error loss curve’)

test on test_data and show performance

y_test = test_data[1]

mlp_prediction = mlp.predict(test_data[0])

print ‘\nClassification report:\n’, classification_report(y_test,

mlp_prediction)

print ‘\nConfussion matrix:\n’,confusion_matrix(y_test, mlp_predic-

tion)

 Artificial neural networks 79

For comparison, classification report and confusion matrix of the results of a Sup-
port Vector Classifier trained on the same data set are shown below. In this case,
the Support Vector Machine took a factor of 20 longer to learn and to be tested, and
the results are by far not as impressive as the ones of the MLP.

Fig. 59: SVM-classification report and confusion matrix (own illustration).

A good place to delve deeper into how artificial neural networks work, and espe-
cially to try out the effect of different neuron constellations, is the “Neural Network
Playground” on Google’s platform tensorflow at https://playground.tensorflow.org/.

4.5 Neural Network types

The efficiency of multi-layer neural networks has led to a hype about the possibili-
ties of deep learning in recent years. Since about 2012 in particular, new types of
ANNs have been proposed on an almost monthly basis, which have skyrocketed in
their efficiency in many regards. It seems that deep learning is bringing the long-
standing dream of artificial intelligence within reach. The following provides a
brief, condensed overview of some of these ANN-types specialized on various tasks.
More detailed information and good introductions can easily be found online, for
example on the tutorial site of tensorflow: https://www.tensorflow.org/tutorials

https://playground.tensorflow.org/
https://www.tensorflow.org/tutorials

 Artificial neural networks 80

4.5.1 Long Short Term Memory (LSTM) Neural Networks

One issue of using gradient descent for back propagation in multi-layer Neural Net-
works is the so-called vanishing or exploding gradient problem. This problem arises
from the process of minimizing the difference of generated and expected output by
determining the error signal through the derivative of the activation function (see
section 4.2. and 4.3.). In this derivation, the slope and direction of the descent is
defined by multiplying the scaling factor with the error term. If however, scaling
factor and error are both less than 1 already, their multiplication makes the signal
vanish when being propagated through several layers. As a consequence, the error
does not propagate back far enough to the layers close to the input layer. These
layers are not appropriately trained. On the other hand, if scaling factor and error
are both larger than 1, their multiplication can make the error term explode while
being propagated backwards. Both possibilities prove suboptimal for the training
of multi-layer neural networks.

To account for this problem, two pioneers of neural network research, Sepp
Hochreiter and Jürgen Schmidhuber, proposed a network architecture that guaran-
teed a constant and thus applicable error flow into the network layers
(Hochreiter/Schmidhuber 1997). This architecture foresees additional components
in the neural network, a so-called “cell” and three “gates”, which regulate the flow
of information from layer to layer. The “cell” is made to remember values over ar-
bitrary time intervals and the three “gates” – called “input”, “output” and “forget
gate” – regulate the flow of information into and out of the cell (see figure 61). An
effect of these additional components is that such Long-Short-Term-Memory Neu-
ral Networks (LSTMs) are able to consider a sort of context knowledge when being
trained on new data. They do not classify by accounting for each instance anew, but
can consider experiences from earlier phases in their training, just as humans un-
derstand words based on their understanding of previous words, or as they under-
stand scenes in a movie from earlier scenes in the same movie.

With this ability, LSTMs turned out to be great learners in the context of long-term
patterns in time series, audio recordings or texts, and an important precursor of the
transformer technology. With regard to text processing, an experiment conducted
at Stanford University in 2015 gives an impressive example of the learning power of
LSTMs. Andrej Karpathy and his colleagues (2015) trained an LSTM on various
texts, among them the famous novel “War and Peace” by Leo Tolstoi consisting of
3.258.246 characters of English text (see: http://karpathy.github.io/2015/05/21/rnn-
effectiveness/). As a direct predecessor of the Generative Pre-trained Transformers

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

 Artificial neural networks 81

(GPTs, see chapter 6), the LSTM simply was made to model the probability distribu-
tion of the next character in a sequence (e.g., a word or a sentence) given a sequence
of previous characters. In this way, it learned to generate new text from existing
one. Exemplified on a very simple example, the task hence was to derive the prob-
ability of the four possible letters “h”, “e”, “l” and “o” by being trained on the se-
quence “hello”, or in more details, the probability of “e” given the context of “h”,
the probability of “l” given the context of “he”, the probability of another “l” given
the context of “hel”, and finally the probability “o” given the context of “hell”. In
order to demonstrate its learning progress, the LSTM, while being trained on the
entire corpus of the “War and Peace”-text, was made to generate samples every 100
iterations of training. Some exemplary output is shown below:

After 100 iterations of training, the LSTM produced texts like the following:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne
‘nhthnee e plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns
lng

After 300 iterations:

“Tmont thithey” fomesscerliund Keushey. Thom here sheulke, anmerenith
ol sivh I lalterthend Bleipile shuwy fil on aseterlome coaniogennc Phe lism
thond hon at. MeiDimorotion in ther thize.”

500 iterations

we counter. He stutn co des. His stanted out one ofler that concossions and
was to gearang reay Jotrets and with fre colt otf paitt thin wall. Which das
stimn

700 iterations

Aftair fall unsuch that the hall for Prince Velzonski’s that me of her hearly,
and behs to so arwage fiving were to it beloge, pavu say falling misfort how,
and Gogition is so overelical and ofter.

1200 iterations

“Kite vouch!” he repeated by her door. “But I would be done and quarts,
feeling, then, son is people....”

2000 iterations

“Why do what that day,” replied Natasha, and wishing to himself the fact
the princess, Princess Mary was easier, fed in had oftened him. Pierre aking
his soul came to the packs and drove up his father-in-law women.

 Artificial neural networks 82

4.5.2 Recurrent Neural Networks

LSTMs are instances of so called Recurrent Neural Networks (RNNs), which have
the nice feature of being open to input and output sequences of arbitrary length,
opposite to the Perceptron-like networks we encountered so far, which need to be
fixed in regard to input and output. With this, RNNs are widely used for transcrib-
ing-speech-to-text tasks, for machine translation, for generating handwritten texts,
for predicting stock market prices, next notes in melodies (https://magenta.tensor-
flow.org/)9 or the trajectories of oncoming cars in autonomous driving. They are
also applied in computer vision, as for example in video classification or image cap-
tioning, which consists of the task to describe a classified image with words (see the
examples below, taken from Vinyals et al. 2014).

Fig. 60: Examples of image captioning, taken from Vinyals et al. (2014).

The most striking feature of Recurrent Neural Networks are loops in their structure
that allow information to persist. They are designed to recognize patterns in se-
quences of data, such as text, genomes, handwriting, spoken words or numerical
time series data emanating from sensors or other kinds of monitoring. In general,

9 See https://cdn2.vox-cdn.com/uploads/chorus_asset/file/6577761/Google_-_Magenta_music_sam-
ple.0.mp3

 Artificial neural networks 83

they can be applied whenever it is necessary to take time and sequence into ac-
count. In other words, RNNs have a temporal dimension. They use a kind of
memory to present information from previous learning steps to current ones as an
addition, thereby being able to find correlations between events separated by time.
These correlations are called “long-term dependencies” causing RNNs to share
once found weights over time.

Fig. 61: Backpropagation through time, taken from Mai (2019).

Remember that backpropagation in feedforward networks moves backward from
the final error through the outputs, weights and inputs of each hidden layer, assign-
ing those weights responsibility for a portion of the error by calculating their partial
derivatives. These derivatives are then used by the learning rule (e.g. stochastic gra-
dient descent) to adjust the weights up- or downwards to reduce the error. In con-
trast to this, RNNs rely on an extension of backpropagation called backpropagation
through time (BPTT). Time, in this case, is expressed by an ordered series of calcu-
lations linking one time step to the next. This simply extends the series of nested
composite functions (e.g. (𝑔(ℎ(𝑥)))) that all neural networks consist of by an addi-
tional time component.

4.5.3 Convolutional Neural Networks (CNNs)

A far-reaching area for the application of ANNs is pattern recognition as it is used
in image classification or image capturing. A special class of so called Deep Neural
Networks (DNNs), called Convolutional Neural Networks (CNN), recently is being

 Artificial neural networks 84

applied to these tasks with great success. The connectivity patterns of these net-
works too are inspired by biological processes. They resemble the organization of
the visual cortex in animals, with certain highly interconnected layers of neurons
specialized on dissolving particular structures like for instance horizontal or verti-
cal lines or rounded objects of particular colors etc. Their working principle, which
is a sort of division of perception labor, is derived from infamous experiments on
young animals, which during infancy were exposed to reduced environments of for
example only horizontal structures and then, in their adult life, never regained the
possibility to perceive vertical structures. From this it was concluded that the visual
cortex consists of various areas able to specialize differently and thus is in need of
appropriate training. Obviously, once trained, these parts respond primarily to cer-
tain structures, while other parts may specialize on different ones, with these re-
ceptive fields overlapping partially so that an entire visual field can be covered.

Fig. 62: Pattern recognition as used in image capturing, taken from

Ibrahim, Saab, and Sbeity (2019).

Within the so-called convolutional layers of these networks, the information of, for
example, pixels in an image gets compressed in a process that samples the data with
rolling windows of certain sizes. To do this, neurons in a convolutional layer are not
connected to all neurons in the next layer (as in the MLP), but are only connected
to those neurons located within a small rectangle in this layer (figure 63). The rec-
tangles then are rolled with a certain stride length s over the information of the
lower layer.

 Artificial neural networks 85

Fig. 63: Neurons in a convolutional layer, taken from Géron (2017), p. 364.

In this way, the network can focus on particular features, horizontal structures for
instance, and assemble their information into higher level features in the next
layer, and so on. The adjusted network connections, which contain the information
of these features, thus work as filters, which ignore everything in their receptive
field except for the structures on which they were trained. Figure 64 shows the re-
sult of the interaction of two such filters (taken from Géron 2017).

Fig. 64: Applying two CNN-filters, taken from Géron (2017), p. 365.

Convolutional layers can be composed of several such feature maps, which them-
selves are stacked together to rich layers of interconnected neurons. Usually, net-
work parameters are kept the same within a stack but can vary over different stacks.
Stacked convolutional layers than are interconnected to other layers with so-called

 Artificial neural networks 86

pooling layers, which serve the task to subsample (or shrink) the input information
in order to reduce the computational load, thereby usually also reducing the risk of
overfitting. The pooling layers are connected in the same way as the convolutional
layers, but their connections do not have weights in the usual sense, but aggregate
inputs using an aggregation function such as the max or the mean. In this way, only
the max (respectively mean) input values of these layers make it to the next layer,
which obviously can reduce information dramatically. Processed images thus get
smaller and smaller by passing several pooling layers, but they also get deeper and
deeper by passing different convolutional layers, implying greater depth of focus
for different features. In this way, convolutional and pooling layers thus are actu-
ally just extracting the features, for instance of an image. The final classification is
done by a conventional fully connected multi-layer perceptron that is added to the
end of the stack for assembling the actual predictions of the CNN (see the scheme
below).

Fig. 65: CNN with fully connected MLP added to the end, taken from Géron

(2017), p. 371.

The simultaneous application of multiple filters together with pooling in CNNs can
produce impressive results of image capturing, implying rapid progress in ma-
chine-based pattern recognition and learning tasks. This progress in designing
more and more powerful architectures of CNNs can be followed on the example of
the drop of the error rate in competitions such as the ILSVRC-ImageNet Challenge
(http://image-net.org/challenges/LSVRC/), where year to year new milestones in
image recognition are reported.

http://image-net.org/challenges/LSVRC/

 Artificial neural networks 87

4.6 Unsupervised Learners

What we discussed so far have mainly been supervised learning algorithms, which
base on the idea of learning on a labeled data set containing a target-value to which
the output-values generated by an ML-tool can be compared while training. The
difference between generated and expected output (i.e., the target), can then be
used to adjust the internal structure (i.e., the weights) of the tool. Labeled data is
not always at hand though, or it needs to be produced at great expense, which often
is done by cheap labor in third world countries. Besides supervised learning how-
ever, there is also a range of unsupervised methods, which are able to find structures
in data by themselves, without being fitted to target values. Often these methods are
used for clustering and compression of data or for dimensionality reduction tasks.

4.6.1 Self-organizing Maps (SOMs, aka Kohonen-networks)

An instance of an unsupervised learning artificial neural network is the so-called
Self-Organizing Map (SOM) or, as named after its inventor Teuvo Kohonen, the Ko-
honen network. This ANN belongs to the class of unsupervised learners, implying
that they are not trained in respect to any expected output, but adapt themselves to
regularities in the data landscape. Unlike backpropagation networks, SOMs are not
built on the distinction of input, hidden and output neurons. Instead, they can be
seen as an adaptive network structure that clings to input data by stepwise rap-
prochement of network areas around certain neurons. The details of this process
can be illustrated on the example of the yellow net as shown in the images below.

Fig. 66: SOM training in four stages (own illustration).

 Artificial neural networks 88

The input for this SOM consists of the two-dimensional coordinates of grid points
on the black background square. At the beginning of training, the yellow net shown
in the figures is crumpled together (left image). All connection weights are ran-
domly set to a small value so that the net is folded around the zero-zero-coordinates
in the center of the background square. The 𝑥𝑦-coordinates of a randomly selected
grid point of the black background square then are used as a first input signal and
compared with the coordinates of the nodes of the yellow network. These nodes
represent the neurons of the network. The node with the smallest Euclidean dis-
tance to the input date is considered the Best matching unit (BMU) for the first cal-
culation step, implying that the BMU is seen as the current center of an approxima-
tion process, in the course of which the connection weights of the neurons within a
certain radius (i.e., in this case the coordinates of the nodes of the yellow net) are
adjusted with a learning rate to bring them closer to the input. In this process, the
larger the distance of the neurons from the BMU, the smaller will be the intensity
of the rapprochement. As a consequence, the weights of the neurons directly con-
nected to the BMU are changed more and the weights of the neurons further away
are changed less intensely. The reduction (here called 𝑟𝑒𝑑𝑢) of the change impact
follows the formula

𝑟𝑒𝑑𝑢 = 𝑒𝑥𝑝(
− 𝑑2

2𝑙
),

where 𝑑 is the distance of a neuron to the BMU within the radius and 𝑙 is the learn-
ing rate.

After each learning step, a consecutive input date, here the coordinates of another
grid point, is randomly chosen and subjected to the same calculation. This is re-
peated for all input data and then iterated with a slightly lower learning rate and a
slightly reduced radius. The reduction of radius and learning rate follow the for-
mula

𝑟𝑒𝑑𝑢2 = 𝑖 ∗ 𝑒𝑥𝑝(
− 𝑡

(
𝑛

log 𝑟2)
),

where 𝑖 denotes the initial radius or initial learning rate, 𝑡 the number of learning
steps already performed, 𝑛 a value of 1000, which is reduced by a certain amount
after each calculation round, and 𝑟 is the radius as it currently applies.

Note that the parameters in this type of network are not absolute values, but are
themselves subject to subsequent adjustment processes that depend on the type of
data to be explored. In some cases, for example, higher learning rates can pay off
because the network learns faster. In other cases, similar to the mentioned prob-
lems in the gradient descent, they may counteract the convergence of the network,

 Artificial neural networks 89

because the weights’ oscillations are too large to allow for a suitable adaptation. Un-
fortunately, there are hardly any general rules for fine-tuning such networks. How-
ever, they often manage to self-adjust to very complex data landscapes effectively
and surprisingly quick. As in the example of the folded network, SOMs are often
used for dimensionality reduction and similar compression tasks. They are also
able to solve combinatorial problems that can hardly be calculated in a conven-
tional way, such as the Travelling Salesman Problem, in which an agent has to find a
Hamiltonian cycle, that is, a shortest path through a number of cities (white dots in
the following images) without visiting one of the cities twice. This task is known to
be NP-hard, implying, briefly said, that computational brute-force searches can
take astronomical times to come up with results. The images below show the SOM
in four different iterations of its training. As with similar learners, the solutions
found are never absolute optimal, but generally represent sufficiently good approx-
imations.

Fig. 67: Travelling Salesman: Hamiltonian cycle through multiple cities

(own illustration).

4.6.2 Autoencoders

Another interesting kind of unsupervised learning algorithms are so called Autoen-
coders. These ANNs are capable of learning efficient representations of input data,
called codings. Typically, codings have much lower dimensionality than the input
data, making autoencoders useful for dimensionality reduction and for the detec-
tion of relevant features. With this property, autoencoders can be used for unsu-
pervised pre-training of deep neural networks. Additionally, they can be used for
generating synthetic data, that is, data that is statistically very similar to a set of train-
ing data for example if this data should be subject to privacy issues.

 Artificial neural networks 90

Surprisingly, the working principle of Autoencoders is quite simple. Basically, they
learn by just copying input data to the output neurons. In this, they are severely
constrained by the network structure, so that the network is prevented from trivi-
ally copying input to output. Constraints can consist of limitations to the size of the
internal representations of the network (see figure 68), or of an addition of noise to
the input data and the task to recover the original input. These restrictions force the
network to learn efficient ways to represent the data after all. The codings then are
byproducts of the Autoencoder’s attempt to learn to reproduce data under con-
straints.

Fig. 68: Autoencoder, reducing input data dimensionality (own

illustration).

A simple explanation why Autoencoders are good learners draws on a similarity to
human needs for learning. If we would be good in memorizing long sequences, for
example the first 1000 digits of the Fibonacci-Sequence, it would maybe not be nec-
essary to think about a rule that generates this sequence. Since our memory capac-
ities are limited however, it makes sense to look for general rules. The same applies
to Autoencoders. They are efficient in pattern recognition because they are con-
strained in representing the Whole directly as such. Their restriction pushes them
to try to discover and exploit patterns – similar to trained chess players who are able
to remember all positions on a game board by looking at it just for 5 seconds when
the positions are part of an actual game. When these positions are randomly as-
signed however (i.e., not part of a real game), implying that there are no patterns
resulting from rules, their memories fail just as the ones of average people.

 Artificial neural networks 91

Autoencoders are always composed of two parts, an encoder part converting the in-
formation to an internal representation, and a decoder part that converts the internal
representation to the output (see figure 68). The decoder is sometimes also called
reconstruction, with the loss function having a reconstruction loss that penalizes the
model when its’ reconstructions are different from the inputs. The output layer al-
ways has the same number of neurons as the input layer. The hidden layers though
are of lower dimension, which is sometimes called undercomplete, thus forcing the
model to learn the most important features in the input data and ignore the unim-
portant ones. Figure 69 shows an example result of applying an undercomplete au-
toencoder to the digits of the MNIST-dataset, with leaving just as much information
as needed for classifying the digits.

Fig. 69: Applying undercomplete autoencoder to MNIST-digits (pixelation

intended, own illustration).

Autoencoders can have multiple hidden layers, making the ANN a stacked (or deep)
autoencoder, usually with a symmetric structure. With additional layers the learn-
ing capacity of the ANN increases. But too many hidden layers can make the auto-
encoder perform similar to regular ANNs, meaning that in consequence – since it
has the same number of outputs and inputs and no target values to compare its
learning progress to – it just learns to reconstruct the training data perfectly, thus
overfitting and not being able to generalize to new data. The fine tuning of an auto-
encoder therefore often consists of finding the right number of layers.

When training the autoencoder, it is often useful to train different parts of it (or
actually, different simpler autoencoders) separately and then stack the pre-trained
parts together. This can be done by simply copying the adjusted weights and biases
to a new instance of the stacked ANN. Also, it is quite common to use autoencoders
for the pre-training of ANNs on unlabeled data, which often is easy to obtain. Just
download a couple of thousand pictures containing for example animals from the
internet. To label them, i.e., to determine a target value in identifying the animals
and putting the name into a separate column, can be time-consuming and costly.
In such cases, the dataset can be pre-classified with an Autoencoder, which groups

 Artificial neural networks 92

the pictures into separate (unnamed) categories in respect to the similarities it rec-
ognizes in them. The weights of the layers that are responsible for these classifica-
tions can then be transferred to another ANN where this (often frozen) pre-trained
information is used as a sort of target value for learning to further classify the pic-
tures.

One interesting variant of the autoencoder is the Variational Autoencoder. As men-
tioned earlier, this type of neural network can be deployed to generate synthetic
data, for example in cases where the real data cannot be used freely for privacy
reasons, such as sensible health data for instance. Instead of directly producing a
coding for a given input, the Variational Autoencoder generates several of them and
takes their mean and their standard deviation. This mean coding then is applied to
the decoder as usual to generate an output which is statistically very similar to the
input, but still not identical. The images below show synthetic “hand-written” digits
that were artificially generated in this way. Some of them could perhaps pass as
indeed handwritten by humans.

Fig. 70: Synthetic “hand-written” digits, taken from Géron (2017), p. 431.

In 2017, a very powerful type of ANNs called Transformer Neural Networks has
been introduced and consequently has taken ML-methods to a new level of effi-
ciency. Transformer applications range from Natural Language Processing (NLP)
as in the case of GPTs via artificial music generation up to possibilities for increas-
ing the safety of autonomous driving. Since these ANNs emerged in the course of
NLP-research and base on some of its core concepts, we will first discuss some of
the prerequisites of this technique. To some extent, some of the methods explained
below have become obsolete in the course of these developments. Or differently
put, the possibilities offered by transformers provide more efficient solutions for
some of the problems. However, to fully understand how these types of neural net-
works work and what they can do, it is still extremely helpful to know and under-
stand the underlying problems and their previous attempts to solve them. Only with
this, the implications of the current methods can be grasped with sufficient critical
awareness.

5 Natural Language
Processing

Natural Language Processing (NLP) includes a multitude of methods and tech-
niques which circle around the tasks of understanding and generating human-un-
derstandable texts with digital machines. One of its core methods that offers a start-
ing point for gaining insights into its methods is text mining.

Text mining – sometimes also known as text analytics – refers to the (often auto-
mated) process of deriving structured information and meaningful numeric indices
from (mostly) unstructured textual information (often from the internet) in order
to access and analyze this information with statistical and machine learning meth-
ods. Text mining involves several steps of natural language processing, including
tokenizing, stop words exclusion, stemming, parsing, categorization, text cluster-
ing, word frequency analysis, part-of-speech identification, and many more.

The following examples from a text mining survey in a scientific journal (Schober
et al. 2018) may give a brief overview on some of the possibilities associated with
text mining.

In a first data retrieval step, the complete collection of publications of an open ac-
cess journal for ecological conservation was downloaded from the internet. The
gathered text corpus comprised 475 pdf-formatted scientific papers – the first one
from Oct 2002 and the last one from July 2014, with a data volume of 345 MB. In this
case, the papers were readily available in pdf-format. Very often however, web-
scraping techniques have to be applied to retrieve such text corpuses, in particular
if texts need to be read-out from html-pages and similar sources. We will not go into
the subtleties of web-scraping here, but refer to the broad range of specialized soft-
ware that is available online for this purpose. Useful Python-libraries include scrapy
(https://scrapy.org), urllib (https://docs.python.org/3/library/urllib.html), requests
(https://docs.python-requests.org/en/latest/), BeautifulSoup (https://pypi.org/pro-
ject/beautifulsoup4/) and others.

https://scrapy.org/
https://docs.python.org/3/library/urllib.html
https://docs.python-requests.org/en/latest/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/

 Natural Language Processing 94

In our case, for preprocessing the papers, a Python-script, essentially drawing on
the Natural Language Toolkit – Python’s NLTK module (www.nltk.org) – was used to
transform the publications into txt-files of about 22 MB. By extracting and dropping
stop words, that is, short words like articles or propositions which contain little to
no relevant information, and some special words that, like the journal’s name, re-
peat in each paper, the text corpus was further reduced. Finally, after converting
the texts into NLTK’s specific text format, it contains 1.798.948 words.

With that, a first analytical step can be applied, which creates a frequency distribu-
tion of the 30 most frequent words in the journal (figure 71).

Fig. 71: Frequency distribution of 30 most frequent words (own

illustration).

Frequency distributions are not confined to one-word frequencies. The plot in fig-
ure 72 shows a distribution of the most frequent two-word combinations.

http://www.nltk.org/

 Natural Language Processing 95

Fig. 72: Distribution of the most frequent two-word combinations (own

illustration).

The analytical tools of the NLTK allow for a wide variety of interesting text explora-
tions. An example provides the NLTK-function 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒() which allows to in-
vestigate the context a word appears in. The function generates the output below –
in this case for the word “species”. (Have in mind that stop words were removed in
the example).

Fig. 73: Results of applying the NLTK-function 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒().

 Natural Language Processing 96

The results of this step can be used to generate frequency distributions of the con-
texts a word appears in, in this case again the word “species”, considering only the
words before and after the concordanced word.

Fig. 74: Frequency distributions of the contexts a word appears in (own

illustration).

Iterating through contexts and finding contexts of context words, allows generating
rich networks of word-context usages, which can be visualized either directly with
the help of the Python-module networkx (https://networkx.github.io/) (left image
below), or with specialized graph-visualization tools like Gephi (https://gephi.org/)
(right image below).

Fig. 75: Network-visualization of context words (own illustration).

https://networkx.github.io/
https://gephi.org/

 Natural Language Processing 97

5.1 Mining in unstructured and analog texts

A particular tricky feat is the extraction of computer-readable texts from unstruc-
tured or analog text sources. The image below shows the example of job advertis-
ings being extracted from an old printed newspaper page stored in pdf-format (for
more details see: Schober/Kittel/Füllsack 2016). With the help of the Python mod-
ules pdfminer (https://github.com/euske/pdfminer) and opencv (http://opencv.org/),
which among others are able to separate text columns and apply Optical Character
Recognition (OCR), parts of the texts can be readily extracted (see table on the right
of in figure 76).

Fig. 76: Example of text extraction and OCR capabilities (own illustration).

Note that after extraction several words show incorrect spellings, due to the quality
of the original newspaper printing. Many words (e.g. “Laudniaedchen”, which
should read “Landmädchen”, i.e., “country girl”) cannot be identified by the OCR.
While such inaccuracies hardly pose difficulties to human readers, computer pro-
grams need preparation for these cases. One particularly helpful method in this

https://github.com/euske/pdfminer
http://opencv.org/

 Natural Language Processing 98

context is the so-called Levenshtein similarity (or L-ratio, Levenshtein 1966), which
also provides a good example of how computational power is used for processing
such kind of information. The Levenshtein similarity quantifies the similarity of
two words by the number of letter exchange operations (insertions, deletions, or
replacements of characters) on one of the two words that are necessary to obtain
the other word. These operations are defined as having different costs, for example
insertions and deletions may have costs of 1, replacements costs of 2, etc. The sum
of the costs per operation defines a distance between words, called the Levenshtein
distance. The Levenshtein similarity itself then is calculated as the sum of the
length of the strings minus the Levenshtein distance 𝐿𝑑𝑖𝑠𝑡, divided by the sum of the
length of the strings.

𝐿𝑟𝑎𝑡𝑖𝑜(𝑎, 𝑏) =
∑(𝑙𝑒𝑛(𝑎), 𝑙𝑒𝑛(𝑏)) − 𝐿𝑑𝑖𝑠𝑡

∑(𝑙𝑒𝑛(𝑎), 𝑙𝑒𝑛(𝑏))

To give an example, the string lengths of the term “productive” equals 10 and the
string lengths of the German term “produktiv”, which is just a translation, equals 9,
so the sum of the string lengths is 19 and their Levenshtein distance is 2, operatively
corresponding to one replacement (costs of 2) and one deletion (costs of 1). Conse-
quently, the Levenshtein similarity is calculated as (19 − 3)

19
, i.e. approximately 0.84.

In this way, words in a text corpus can be compared with the words for example in
an online-dictionary. After defining a threshold similarity (e.g. 0.8), a part of the
misspellings can be corrected by exchanging words in the job-ads for words in the
dictionary if their Levenshtein similarity is above threshold.

5.2 Latent Semantic Analysis

Apart from statistical methods for processing and analyzing large text corpuses,
more involved methods exist, which to some extents are capable of extracting se-
mantic aspects (i.e., “meaning”) from texts. One of these methods is Latent Semantic
Analysis (LSA), sometimes also known as Latent Semantic Indexing (LSI)
(Deerwester et al. 1990). LSA is a mathematical method for revealing latent relation-
ships within a collection of documents. It assumes that words close in meaning will
occur in similar pieces of text. Rather than looking at each document by itself, LSA
looks at a corpus of documents as a whole and analyses the correlation and context
of terms within this corpus in order to identify relationships. A typical result of an
LSA would be a search engine search for the term “sand” which among others also

 Natural Language Processing 99

returns documents that do not contain the term “sand” but contain terms like
“beach” or “shore”. LSA would have shown that the term “sand” is semantically
close to the term “beach” in this case.

LSA starts out from the fact that the words of our language do not just unambigu-
ously refer to one concept of meaning (left in figure 77), but can have multiple
meanings (right in figure 77).

Fig. 77: Ambiguity of language (own illustration).

In natural language, these ambiguities are solved by the context in which words are
used. While the word “bank” for instance, when used in the context of terms like
“mortgage”, “loans” or “rates”, probably refers to a financial institution, it could re-
fer to a river bank when used together with “lures”, “casting”, and “fish”. In order
to find the meanings or concepts behind the words hence, LSA attempts to map
both words and their contexts into a “concept space” in which different meanings
can be compared. For this, it filters out some of the noise that arises when different
authors use different words to express the same meaning. Basically thus, LSA is a
statistical method, which builds on the following simplifications:

▪ Word contexts (which usually are called documents, with the size of a doc-
ument ranging from a sentence to a paragraph to whole articles) are repre-
sented as „bags of words”, where the order of the words is not important.
What counts however, is how many times each word occurs.

▪ Concepts are represented as patterns of words that usually appear together
in a document, such as “leash”, “treat”, and “obey” may appear together in
a document about dog training.

 Natural Language Processing 100

▪ Words are treated as having just one meaning, although this is clearly not
the case (as mentioned above).

▪ Usually, a set of words called “stop words” is excluded from the analysis.
These words, like “and”, “or”, “for”, “in”, “of”, “the”, “to” etc. do not con-
tribute much (if any) meaning to a context.

▪ Words are stemmed, meaning that they are reduced to their word stem, like
“measure” in “measurement”, “measuring” or “measure” etc.

The first step of an LSA consists of creating a term-document matrix, in which each
row represents a word and each column a document. The cells of the matrix contain
the frequencies with which the term occurs in the document. Terms are reduced to
their stem and stop words are excluded.

As an example, consider the following nine sentences (documents D1 - D9) contain-
ing definitions of productivity:

▪ D1: “A measure of the efficiency of a person, machine, factory, system, etc.,
in converting inputs into useful outputs. “

▪ D2: “Productivity is computed by dividing average output per period by the
total costs incurred or resources consumed in that period. “

▪ D3: “Productivity is a critical determinant of cost efficiency. “
▪ D4: “An economic measure of output per unit of input. Inputs include labor

and capital, while output is typically measured in revenues and other GDP
components. “

▪ D5: “Productivity is measured and tracked by many economists as a clue for
predicting future levels of GDP growth."

▪ D6: “Productivity gains are vital to the economy because they allow us to
accomplish more with less. “

▪ D7: “Productivity is the ratio of output to inputs in production; it is an aver-
age measure of the efficiency of production. “

▪ D8: “The rate at which radiant energy is used by producers to form organic
substances as food for consumers. “

▪ D9: “Productivity is commonly defined as a ratio between the output vol-
ume and the volume of inputs. “

We do not consider all words in these documents, but focus on the following list of
already stemmed terms:

 Natural Language Processing 101

[‘measur’, ‘effici’, ‘machin’, ‘factori’, ‘system’, ‘input’, ‘output’, ‘averag’,
‘cost’, ‘resourc’, ‘consum’, ‘econom’, ‘labor’, ‘revenu’, ‘gdp’, ‘predict’, ‘futur’,
‘growth’, ‘gain’, ‘accomplish’, ‘energi’, ‘produc’, ‘food’]

Fig. 78: Term-document matrix as generated from documents D1 – D9.

In the next step, the raw matrix counts are modified so that rare words are weighted
more heavily than often used words. In this way, a word that occurs only in a small
number of documents is weighted more heavily than a word that occurs in most of
the documents. A common weighting method is called TFIDF (Term Frequency –
Inverse Document Frequency), which replaces the count in each cell according to
the following formula:

 Natural Language Processing 102

𝐹𝐼𝐷𝐹 =
𝑁𝑖,𝑗

𝑁∗,𝑗
∗ 𝑙𝑜𝑔

𝐷

𝐷𝑖
 ,

where

▪ 𝑁𝑖,𝑗 = the number of times word 𝑖 appears in document 𝑗 (the original cell
count).

▪ 𝑁∗,𝑗 = the number of total words in document 𝑗 (sum of the entries in column
𝑗).

▪ 𝐷 = the number of documents (the number of columns).
▪ 𝐷𝑖 = the number of documents in which word 𝑖 appears (number of non-

zero columns in row 𝑖).

The 𝑆𝑘 matrix of singular values can provide information about how many dimen-
sions or “concepts” should be considered. One way to do this, is to plot the squared
singular values, as shown to the right, indicating that the first value seems to add
significantly more information to the analysis than the others. However, this first
dimension provides an absolute value. For documents, it corresponds to the length
of the document, for words, it corresponds to the number of times a word is used
in all documents. To get more meaningful information, it can make sense to ignore
the first dimension and consider some of the following ones.

Fig. 79: Squared singular values (own illustration).

In the case of this example, the focus is on the second and third dimension. With
the SVD done for 𝑘 = 3 hence and ignoring the first values in each matrix, the sec-
ond and third values of the 𝑇𝑘 matrix provide the coordinates of each word in a con-
cept space and the second and third values in the 𝑃𝑘 matrix provide the coordinates

 Natural Language Processing 103

of each document in the concept space. Plotting this concept space, as shown be-
low, provides information as to which words are clustered in the vicinity of which
documents (sentences), and vice versa, which documents are indicative for which
words.

Fig. 80: Concept space illustrating word and document clustering (own

illustration).

5.3 Vector representations

Although LSA and its derivatives like Latent Dirichlet Allocation (LDA) or stochastic
LDA are interesting and powerful tools for text analyses where the meaning of
words need to be considered through analyzing the context of these words, the real
breakthrough in assessing semantics was achieved by representing the use of words
in language in the form of vectors. With vector representation it became possible
to consider complex linguistic concepts like e.g., synonyms or antonyms or refer-
ences to information from preceding sentences etc. Most current translation soft-
ware (https://translate.google.at, https://www.deepl.com/translator) builds on this
possibility.

https://translate.google.at/
https://www.deepl.com/translator

 Natural Language Processing 104

5.3.1 Assessing similarities by vector representation

For understanding the principles of this methodology, it is necessary to know how
similarities can be mathematically assessed. To see how this is done, consider the
following example.

The table below shows the 2019 ratio of population to Gross Domestic Product (GDP)
for certain countries, according to the IMF World Economic Outlook database10. If
we plot this data with population on the 𝑥-axes and GDP on the 𝑦-axes, we can
clearly see that some countries – Japan, Germany, Italy, UK – appear to be more
similar in these two aspects than, say, the United States and India.

Fig. 81: Ratio of population to GDP for selected countries (own
illustration).

One way to mathematically assess this similarity between data points would be to
calculate the Euclidian distance, which gives the length of the path connecting the
data points (the green line). This can be done with the formula 𝐸𝐷 =

√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2, if we consider the population values as the 𝑥-part and the
GDP-values as the 𝑦-part of two-dimensional coordinate-vectors. This formula
yields an 𝐸𝐷 = 1 039 804 659,40 for the distance between the USA and India and an
𝐸𝐷 = 44 426 166,73 for the distance between Germany and Japan.

10 https://www.imf.org/external/pubs/ft/weo/2018/01/weodata/download.aspx

https://www.imf.org/external/pubs/ft/weo/2018/01/weodata/download.aspx

 Natural Language Processing 105

Another, and more common way of comparing data point similarities is to calculate
the cosine similarity of the vectors 𝐴 and 𝐵 pointing to the data points (red lines). The
formula for this is

𝑆 =
∑ 𝐴𝐵𝑖

𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

The vectors are given by the coordinates of the above plot, that is, by the values for
population and GDP for each country. The cosine is defined by the angle between
the vectors. If the vectors are identical – with an angle of 0° between them –, then
the cosine is 1. If they are orthogonal to each other (90°), the cosine equals 0, and if
they are exactly opposed – with an angle of 180° – then the cosine is -1, as can be
easily derived from the unit circle as shown below.

Fig. 82: Two vectors on the unit circle (own illustration).

For getting results in correspondence to the unit circle example from calculating
the cosine similarity of the countries in our database, we have to normalize the val-
ues prior to calculation. We can do this, as shown in the code box, with the
MinMaxScaler of the scikit-learn Python module, which also offers a function for the
cosine similarity. Executing the code yields a 𝐶𝑆 = 0.24182053 for USA and India
and a 𝐶𝑆 = 0.98916326 for Japan and Germany.

Fig. 83: Code for calculating cosine similarity.

normalize before applying cosine similarity

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics.pairwise import cosine_similarity

sc_prod = MinMaxScaler().fit(prod).transform(prod)

print(cosine_similarity([sc_prod[0], sc_prod[4]])) # US/India

print(cosine_similarity([sc_prod[2], sc_prod[3]])) # Japan/Germany

 Natural Language Processing 106

There are several more methods to consider the similarity of vectors11. The im-
portant aspect for text mining however is that words as well as sentences as well as
whole documents can be vectorized too. In other words, they can be represented as
vectors in a multi-dimensional vector space and consequently can be compared anal-
ogously to how here a couple of countries is compared.

5.3.2 Vector Space Representation of Words – Word2Vec

How can words be vectorized? And may be even more important: why should we
want to do this in the first place?

As is obvious, words have a “physical” appearance in the letters of which they con-
sist. Additionally, however, words also have a semantic aspect, which makes them
carriers of meaning. The physical appearance of a word does not convey this mean-
ing by itself. Looking at the word “bank”, as said, does not tell us whether it indi-
cates a financial institution or something to sit on. The letters on their own do not
reveal the meaning of a word. Rather, it is the context, in which words are used.
Context mediates semantics. If we want computers to process natural language
thus, it is necessary to make the computer attentive to the context in which words
are used. This can be done through vectorization.

To understand how, consider for an example the first sentence of Dickens’ novel “A
Tale of Two Cities”. The sentence reads:

“It was the best of times, it was the worst of times.”

Context in this case can be seen as the words surrounding a particular word in a
certain radius (or window). The word “best” for example in this sentence is sur-
rounded by the words “the” and “of” in radius = 1, or by “was the” and “of times” in
radius = 2, and so on. If for simplicity we consider just a radius of 1 for each of the
words in this sentence, we can derive the following table:

11 See e.g.: http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-
in-python/

http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/
http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/

 Natural Language Processing 107

Fig. 84: Possible contexts within a radius of 1 word.

The header of this table holds the contexts that are possible in radius = 1. The table
entries hold the numbers of word-occurrences in these contexts. Note that the con-
texts “it _ the” and “the _ of” appear two times in the example sentence. The corre-
sponding entries in the table therefore represent the word “was” as two times oc-
curring, and the words “best” and “worst” as two 1-entries for the context “the _ of”.
The rows of the table thus give the radius-1-vectors of the words in the left-most
column, representing the semantic aspect of these words as they have it in this par-
ticular sentence (and only there). These vectors can be used for vector calculations,
as we have applied them above, with the – mathematically irrelevant – difference
that these vectors now have ten dimensions and not just two.

As you can see from the table, the vectors for the words “best” and “worst” - [0, 0, 0,
1, 0, 0, 0, 0, 0, 0] - are identical, implying that these words are “the most similar
words” in this case, which of course does not correspond to what we would expect.
“Best” and “worst” are antonyms, not synonyms in English language. Obviously, our
small toy example misleads the attempt to derive meaning from it. Therefore, in
realistic settings word vectors never are generated from a single sentence. Usually,
huge collections of texts are used, of which it is expected that in their comprehen-
siveness they represent a complete picture of how words are used in natural lan-
guage. These text collections then are analyzed iteratively analogously to the exam-
ple above, albeit with larger and different radii considered and computation thus
being much more intensive. However, other than in the count-based methods of
Latent Semantic Analysis and corresponding matrix transformations (see section
5.2), such word embeddings can be produced with specialized neural networks, for
example the so-called Word2Vec models, as developed by Tomas Mikolov at Google
in 2013 (Mikolov et al. 2013)12. These models are shallow, two-layer neural networks

12 See also https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

 Natural Language Processing 108

taking a large corpus of text as input and producing a vector space, typically of sev-
eral hundred dimensions, with each unique word in the corpus being assigned a
corresponding vector in the space.

Fortunately, we do not have to create such high dimensional word vector spaces by
ourselves. At the time being, several pre-trained collections of word embedding da-
tabases exist on the internet. Often, they are downloadable for free, or they come
included into specialized modules for natural language processing, such as for in-
stance13 the Global Vectors for Word Representation (GloVe)14 by the Stanford Uni-
versity included in the Python module spaCy (https://spacy.io/), trained on the text
corpus of the complete English-language Wikipedia.

However, in more specialized cases – such as particular scientific contexts for in-
stance – you may get better results when training Word2Vec models on your own.
For this, different methods exist, distinguished by the way the distributed represen-
tation of words is considered (Mikolov et al. 2013). One such method is the so-called
continuous bag-of-words (CBOW) architecture, meant to predict a word from a win-
dow of surrounding context words with the order of context words not influencing
prediction. Another method is the skip-gram architecture where words are meant to
predict the surrounding window of context words and nearby context words are
weighted more heavily than more distant context words. According to the devel-
oper of the methods, CBOW is faster while skip-gram is slower but does a better job
for infrequent words (Mikolov et al. 2013).

5.3.3 Vectorization examples15

In order to illustrate the use of such word embeddings, we can compare word vec-
tors on the background of the above-mentioned GloVe database from Stanford,
which, as said, is included in the Python module spaCy. The database can be ac-
cessed with the following code:

13 For others see: https://research.fb.com/fasttext/ or https://code.google.com/archive/p/word2vec/
trained on roughly 100 billion words from the Google News dataset

14 https://nlp.stanford.edu/projects/glove/

15 Note that the given examples are toy examples, made up to illustrate the use of the methods and not
meant to procure scientifically relevant insights. Nevertheless, results at times are impressive.

https://spacy.io/
https://research.fb.com/fasttext/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/

 Natural Language Processing 109

Fig. 85: Code for accessing the database with the Python module spaCy.

Once we have the pre-trained database on our computer, we can perform queries
against this collection of word vectors. For example, we can ask for the cosine sim-
ilarity of certain terms to the word “sustainable”. The following code executes a
query for the words ‘renewable’, ‘viable’, ‘environment’, ‘climate’, ‘economy’, ‘Nor-
way’, ‘Germany’ and ‘USA’.

Fig. 86: Code for calculating Cosine Simularity.

The query yields the following cosine similarities to the term “sustainable”:

▪ renewable: 0.6980572
▪ viable: 0.56681484
▪ environment: 0.5673896
▪ climate: 0.5098402
▪ economy: 0.513057
▪ Norway: 0.1233881
▪ Germany: 0.12099999
▪ USA: 0.1176934

from __future__ import unicode_literals

import spacy

spacy.prefer_gpu()

nlp = spacy.load(‘en’)

import numpy as np

from numpy import dot

from numpy.linalg import norm

generating vector

def vec(s):

 return nlp.vocab[s].vector

cosine similarity

def cosine(vec1, vec2):

 if norm(vec1) > 0 and norm(vec2) > 0:

 return dot(vec1, vec2) / (norm(vec1) * norm(vec2))

 else:

 return 0

T = [‘renewable’, ‘viable’, ‘environment’, ‘climate’, ‘economy’,

‘Norway’, ‘Germany’, ‘USA’]

for t in T:

 print(t + ‘: ‘, cosine(vec(‘sustainability’), vec(t)))

 Natural Language Processing 110

Next, we can load a text of interest and query it for the terms in it that are most
similar (in terms of cosine similarity) to a given word. The piece of code in figure
87 loads the 1987 Brundtland-report of Our Common Future16.

Fig. 87: Code for loading the 1987 Brundtland-report.

It tokenizes it and investigates it for the most similar words to „sustainability”. As
result, we get the following list:

[‘environmentally’, ‘livelihoods’, ‘biomass’, ‘renewable’, ‘biogas’, ‘cogenera-
tion’, ‘renewables’, ‘geothermal’, ‘bioenergy’, ‘hydropower’, ‘environmen-
tal’, ‘ecological’, ‘conservancy’, ‘biodiversity’, ‘fisheries’, ‘reforestation’,
‘conservation’]

If we do the same for the 2018 Sustainable Development Goals Report17 we get a very
similar list, however with terms like “ecology” or “cogeneration” replaced by “inno-
vation”, “irrigation”, “cropland” etc.:

[‘environmentally’, ‘livelihoods’, ‘geothermal’, ‘bioenergy’, ‘renewables’,
‘biomass’, ‘hydropower’, ‘renewable’, ‘environmental’, ‘biodiversity’, ‘con-
servation’, ‘agriculture’, ‘innovations’, ‘innovation’, ‘irrigation’, ‘agricul-
tural’, ‘cropland’]

16 http://www.un-documents.net/our-common-future.pdf

17 https://unstats.un.org/sdgs/files/report/2018/TheSustainableDevelopmentGoalsReport2018-EN.pdf

datei = ‘Brundtlandreport’

doc = nlp(open(‘C:\\temp\\Text-mining\\’ + datei + ‘.txt’).read())

take only words with letters (alphabet = is_alpha)

tokens = list(set([w.text.lower() for w in doc if w.is_alpha]))

def spacy_closest(token_list, vec_to_check, n=20):

 return sorted(token_list,

 key=lambda x: cosine(vec_to_check, vec(x)),

 reverse=True)[:n]

closest = spacy_closest(tokens, vec("sustainability"))

closest_cleaned = [x for x in closest if ‘sustain’ not in x.lower()]

print(closest_cleaned)

http://www.un-documents.net/our-common-future.pdf
https://unstats.un.org/sdgs/files/report/2018/TheSustainableDevelopmentGoalsReport2018-EN.pdf

 Natural Language Processing 111

5.3.3.1 Vector arithmetics

Interestingly, we can perform vector arithmetic with these word vectors, and in
some cases, they seem to yield quite reasonable results. Mathematically adding for
example the vectors of “livable” and “planet” together yields other vectors for the
words in the following list:

[‘sustainability’, ‘livelihoods’, ‘environmentally’, ‘earth’, ‘ecological’]

And subtracting the vector for “sustainable” from the one for “economy” yields:

[‘inflation’, ‘slowdown’, ‘recession’, ‘unemployment’, ‘collapse’, ‘shortfall’]

5.3.3.2 Sentence similarity

From word vectors, sentence vectors can be generated, for example by taking the av-
erage of the word vectors for the vector of a sentence. These sentence vectors then
can be compared as well. What is more, by making up new sentences, we can check
what similar sentences a query in a document would produce. For example, if we
query the Brundlandt-report with the sentence:

Will the human race survive?

the algorithm “answers” with the following suggestions, identified as the five sen-
tences in the Brundtland-report that are most (cosine) similar to our question:

It will depend most of all upon humanity’s ability to prevent an arms race
in space.

Will it not be fatal to our civilization, to the ecosystem of our planet?

Perhaps the greatest threat to the Earth’s environment, to sustainable hu-
man progress, and indeed to survival is the possibility of nuclear war, in-
creased daily by the continuing arms race and its spread to outer space.

Nations must not become prisoners of their own arms race.

 Natural Language Processing 112

It would be grim irony indeed if just as new genetic engineering techniques
begin to let us peer into life’s diversity and use genes more effectively to
better the human condition, we looked and found this treasure sadly de-
pleted.

Note that there is not yet a full transformer technology involved in these example
queries, like we now know its effects from the use of ChatGPT. The resulting an-
swers however seem similar to certain extent, indicating that vectorization is one
of the methods at the core of Generative Pre-trained Transformers.

5.3.4 Document similarity – Doc2Vec

Analogously to generating sentence vectors from word vectors, we can generate
document vectors from sentence vectors. However, there are better methods for this
than just taking the average of vectors. And fortunately, these methods too are pro-
vided for free, for example in the form of the Python module gensim (https://radim-
rehurek.com/gensim/), developed by Radim Řehůřek (Rehurek/Sojka 2010).

In section 5.2. of this book, we analyzed a set of definitions of the economic term
“productivity” with the help of Latent Semantic Analysis (LSA). We plotted the
thereby found term similarities on a two-dimensional graph.

As in this example, we consider each of these productivity definitions (consisting
most of the time of just one sentence) as a (small) document in the following18. Sub-
sequently, we apply these documents to vectorization with a gensim Doc2Vec-
model. As a reminder, the definitions, taken from various economics textbooks,
were:

▪ “A measure of the efficiency of a person, machine, factory, system, etc., in
converting inputs into useful outputs.”

▪ “Productivity is computed by dividing average output per period by the total
costs incurred or resources consumed in that period.”

▪ “Productivity is a critical determinant of cost efficiency.”

18 Note that each of these definitions could be a paragraph, a scientific paper or even a complete book
instead.

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/

 Natural Language Processing 113

▪ “An economic measure of output per unit of input. Inputs include labor and
capital, while output is typically measured in revenues and other GDP com-
ponents.”

▪ “Productivity is measured and tracked by many economists as a clue for
predicting future levels of GDP growth.”

▪ “Productivity gains are vital to the economy because they allow us to ac-
complish more with less.”

▪ “Productivity is the ratio of output to inputs in production; it is an average
measure of the efficiency of production.”

▪ “The rate at which radiant energy is used by producers to form organic sub-
stances as food for consumers.”

▪ “Productivity isnt everything, but in the long run it is almost everything.”
▪ “Productivity is commonly defined as a ratio between the output volume

and the volume of inputs.”

Let’s see which of these productivity definitions are most similar. For this, we first
tokenize them and bring them into a particular form, called TaggedDocument in
the context of gensim, which for the first definition looks like the following19:

TaggedDocument(words=[‘a’, ‘measure’, ‘of’, ‘the’, ‘efficiency’, ‘of’, ‘a’, ‘per-
son’, ‘machine’, ‘factory’, ‘system’, ‘etc’, ‘in’, ‘converting’, ‘inputs’, ‘into’,
‘useful’, ‘outputs’], tags=[‘0’])

With this preparation, we can train a Doc2Vec-model on the given definitions. The
difference to LSA is that the contexts of the words in these documents are “learned”
by a neural network, which iterates many times over the training data (i.e., the set
of definitions) and by and by adjusts its weights to optimally represent the found
word contexts. This means that the resulting document vectors are subject to pa-
rameter variations such as training intensity (epochs trained), learning rate, con-
sidered window and vector size, and several more, and will need some experimen-
tation to yield optimal results. Nevertheless, many text miners believe that the
method produces better results than LSA and related methods. The code shown be-
low defines and trains such a neural network.

19 Note that the first definition is tagged with the number zero [‘0’], the second with one [‘1’], and so on.

 Natural Language Processing 114

Fig. 88: Code for defining and training a Doc2Vec model.

After training, we can query the model for instance for the five definitions that are
most similar to the first definition in our training set. This yields the following
ranked list, showing the cosine similarity at the end of each definition.

▪ productivity is a critical determinant of cost efficiency 0.758
▪ productivity is the ratio of output to inputs in production; it is an average

measure of the efficiency of production 0.58
▪ productivity is commonly defined as a ratio between the output volume and

the volume of inputs 0.526
▪ productivity isnt everything but in the long run it is almost everything 0.447
▪ an economic measure of output per unit of input inputs include labor and

capital while output is typically measured in revenues and other gdp com-
ponents 0.332

More interestingly again may be a query with a new sentence that is not in the train-
ing set of productivity definitions. The code below compares the sentence “Does it
make sense to constantly strive for more?” with the definitions in the training set
and again lists the five most similar sentences as a sort of answer to our question.

define and train Doc2Vec model

from gensim.models.doc2vec import Doc2Vec

max_epochs = 100 # training epochs

vec_size = 60 # dimensions considered

alpha = 0.025 # initial learning rate

model = Doc2Vec(vector_size = vec_size,

 alpha = alpha,

 min_alpha = 0.00025,

 min_count = 1, # Ignores all words with total frequency lower than this

 window = 3, # size of context considered

 workers = 4, # how many CPUs?

 dm = 1) # dm defines the training algorithm. dm=1 means ‘distributed memory’

(PV-DM)

 # dm =0 means ‘distributed bag of words’ (PV-DBOW).

Distributed Memory model preserves the word order in a document

whereas Distributed Bag of words just uses the bag of words approach, which doesn’t preserve any

word order.

model.build_vocab(tagged_data)

for epoch in range(max_epochs):

 #print(‘iteration {0}’.format(epoch))

 model.train(tagged_data,

 total_examples = model.corpus_count,

 epochs = model.epochs)

 # decrease the learning rate

 model.alpha -= 0.0002

 # fix learning rate, no decay

 model.min_alpha = model.alpha

#model.save(‘C:\\temp\\Text-mining\\d2v_2.model’)

print(‘Model trained’)

 Natural Language Processing 115

Fig. 89: Comparing a sentence with the definitions in the training set.

▪ Productivity isn’t everything, but in the long run it is almost everything. 0.63
▪ Productivity gains are vital to the economy because they allow us to accom-

plish more with less. 0.61
▪ Productivity is a critical determinant of cost efficiency 0.6
▪ The rate at which radiant energy is used by producers to form organic sub-

stances as food for consumers 0.55
▪ Productivity is the ratio of output to inputs in production; it is an average

measure of the efficiency of production. 0.49

Finally, we can use a clustering method called t-Distributed Stochastic Neighbor
Embedding (Maaten/Hinton 2008) (tSNE, included in sklearn.manifold20) to bring
our 60-features vectors down to just two dimension so that we can plot it as a graph.
As you can see, the term productivity is pretty much centered in this depiction, and
the ten documents (each colored differently) are somehow star-like clustered
around this center. The algorithm however, does not well account for the readabil-
ity of the data labels. One would need to apply additional means to draw data points
further apart.

20 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

new_text = ‘Does it make sense to constantly strive for more?’

new_vector = model.infer_vector(new_text.lower().split())

sims = model.docvecs.most_similar([new_vector])

for s in sims[:5]:

 print(data[int(s[0])], round(s[1], 2))

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

 Natural Language Processing 116

Fig. 90: Result of t-Distributed Stochastic Neighbor Embedding (tSNE) (own

illustration).

In this example, the analytical unit to be considered as a vector is a word. Such un-
divided units are also called unigrams. A bigram in contrast, is a concatenation of
two consecutive tokens or words. Often in this context however, the term n-gram is
used to refer to the concatenation of any n consecutive tokens. Even single syllables
can be n-grams and considered in the same way as words in vector representations.
The Python library fastText (https://fasttext.cc/) for instance, allows to consider n-
grams and is said to yield much better results on the level of considering syllables.

https://fasttext.cc/

 Natural Language Processing 117

fastText was created by Facebook’s AI Research (FAIR) lab. It uses a neural network
for word embedding, i.e., vectorization.21

5.3.5 Vectorization beyond textual contexts

There is yet another interesting aspect of the methodology that lays at the core of
these techniques. A couple of internet companies like Yahoo, Spotify or AirBNB
have applied the vector representation approach to recommender systems and ad-
vertising22. The idea behind this is simple but intriguing. If the meaning of a word
can be inferred from its context – that is, from the words around a word –, then the
habitual action of people might be derivable from actions these people undertake
in the context of an action. Thus, large internet companies with access to recorded
consumer behavior, e.g., in the form of clicks on online-products, have reasoned
that the time series of online user activity offer them the same opportunity for in-
ferring meaning from context as context words do it in texts. Users who are brows-
ing around and interacting with different content on the internet, thus, allow it to
infer the abstract qualities of this content from what content they are interacting
with before and after. The companies, which adopted this method, report that they
could lift their click-through-rate (CTR) at times quite impressively with this
method.

If you reconsider the approach under this perspective, vectorization (i.e., word-em-
bedding or Word2Vec) appears to have a much broader scope than NLP alone. It
offers a potentially comprehensive way to make things (such as words) that resist
quantification fit for being processed on a computer. It does this by directing atten-
tion away from the things themselves to their context. Conditions for application
are simply that things are separable clearly enough, that they are finite in a given
context and that you have the possibility to observe (and record) a sufficiently large
amount of them.

21 A gensim-implementation is available at https://radimrehurek.com/gensim/auto_examples/tutori-
als/run_fasttext.html Additionally, the facebook-lab provides for a Python library itself:
https://fasttext.cc/docs/en/supervised-tutorial.html

22 See for example: https://towardsdatascience.com/using-word2vec-for-music-recommendations-
bb9649ac2484 or https://erikbern.com/2013/11/02/model-benchmarks.html or https://me-
dium.com/airbnb-engineering/listing-embeddings-for-similar-listing-recommendations-and-real-time-
personalization-in-search-601172f7603e

https://radimrehurek.com/gensim/auto_examples/tutorials/run_fasttext.html
https://radimrehurek.com/gensim/auto_examples/tutorials/run_fasttext.html
https://fasttext.cc/docs/en/supervised-tutorial.html
https://towardsdatascience.com/using-word2vec-for-music-recommendations-bb9649ac2484
https://towardsdatascience.com/using-word2vec-for-music-recommendations-bb9649ac2484
https://erikbern.com/2013/11/02/model-benchmarks.html
https://medium.com/airbnb-engineering/listing-embeddings-for-similar-listing-recommendations-and-real-time-personalization-in-search-601172f7603e
https://medium.com/airbnb-engineering/listing-embeddings-for-similar-listing-recommendations-and-real-time-personalization-in-search-601172f7603e
https://medium.com/airbnb-engineering/listing-embeddings-for-similar-listing-recommendations-and-real-time-personalization-in-search-601172f7603e

 Natural Language Processing 118

5.4 Sentiment analysis

Another commonly applied automated text analyses technique is Sentiment Analy-
sis (aka Sentiment Detection or Opinion Mining), which tries to infer people’s sen-
timents as expressed in text documents. To illustrate this technique, the following
refers to an example, provided by (Liu 2010), of an “opinionated” document (i.e. a
document that expresses the opinion of its author):

(1) I bought an iPhone a few days ago. (2) It was such a nice phone. (3) The
touch screen was really cool. (4) The voice quality was clear too. (5) Alt-
hough the battery life was not long, that is ok for me. (6) However, my
mother was mad with me as I did not tell her before I bought it. (7) She also
thought the phone was too expensive, and wanted me to return it to the
shop.

As can easily be seen, there are several opinions expressed in this review. Sentences
(2), (3) and (4) express positive opinions, while sentences (5), (6) and (7) express
negative ones. All opinions have some targets or objects on which sentiments are
expressed. The opinion in sentence (2) is on the iPhone as a whole, and the opinions
in sentences (3), (4) and (5) are on the “touch screen”, “voice quality” and “battery
life” respectively. The opinion in sentence (7) is on the price of the iPhone, but the
opinion/emotion in sentence (6) is on “me”, not the iPhone. This can be important,
since users often may be interested in opinions on certain targets or objects, but not
on all. Finally, the source or holder of the opinions in sentences (2), (3), (4) and (5)
is the author of the review (“I”), but in sentences (6) and (7) it is “my mother”. Good
sentiment analysis would have to be able to distinguish all these cases. However,
what for a human reader seems intuitive and easily done, can be an arduous task
for a machine. For being able to comprehend the difficulty, consider the following
terminology:

▪ object: iPhone
▪ component (can be an object in its turn): battery
▪ feature (or topic): battery life
▪ general opinion: I like iPhone”
▪ specific opinion: “The touch screen of iPhone is really cool”
▪ explicit feature: “The battery life of this phone is too short”
▪ implicit feature: “This phone is too large”
▪ feature indicator: “large” is not a synonym of size. It is just an indicator.
▪ opinion holder or source: the holder of an opinion
▪ orientation of an opinion on a feature: positive, negative or neutral.

 Natural Language Processing 119

▪ explicit opinion: “The phone is great”
▪ implicit opinion: “The phone broke in two days”
▪ strength of opinion, can be scaled: e.g., strong (“This phone is a piece of

junk”), weak (“I think this phone is fine”).
▪ direct opinion: a quintuple (𝑜𝑗, 𝑓𝑗𝑘, 𝑜𝑜𝑖𝑗𝑘𝑙, ℎ𝑖, 𝑡𝑙), where 𝑜𝑗is an object, 𝑓𝑗𝑘 is

a feature of the object 𝑜𝑗, 𝑜𝑜𝑖𝑗𝑘𝑙 is the orientation or polarity of the opinion
on feature 𝑓𝑗𝑘 of object 𝑜𝑗, ℎ𝑖 is the opinion holder and 𝑡𝑙 is the time when
the opinion is expressed by ℎ𝑖. The opinion orientation 𝑜𝑜𝑖𝑗𝑘𝑙 can be posi-
tive, negative or neutral

▪ comparative opinion: a relation of similarities or differences between two
or more objects, and/or object preferences of the opinion holder based on
some of the shared features of the objects. usually expressed using the com-
parative or superlative form of an adjective or adverb

The extraction of direct opinions thus would consist of the following steps, given an
opinionated document 𝑑,

1. discover all opinion quintuples (𝑜𝑗, 𝑓𝑗𝑘, 𝑜𝑜𝑖𝑗𝑘𝑙, ℎ𝑖, 𝑡𝑙) in 𝑑, and

2. identify all the synonyms (𝑊𝑗𝑘) and feature indicators 𝐼𝑗𝑘 of each feature 𝑓𝑗𝑘 in 𝑑.

3. then generate a feature-based summary of the opinions, which could look like
follows:

Fig. 91: Buzz summary showing frequencies of mentions of different

competing objects, taken from Liu (2010), p. 636.

 Natural Language Processing 120

Alternatively, a buzz summary would show the frequency of mentions of different
competing objects and thus would inform about the popularity of objects (products
or brands) in a market place.

A related method is Trend tracking, which monitors the time a product needs to be
opinionated and how opinions change over time. The related concept of Named En-
tity Recognition (NER) comprises the tasks to identify opinion holders, object
names and time of postings, and to consider aspects like the frequency of terms,
adjectives as important indicators of subjectivities and opinions, or so-called opin-
ion words (or opinion phrases and idioms) like “beautiful”, “wonderful”, “good”,
“amazing” as indicating positive sentiments, and “bad”, “poor”, or “terrible” as in-
dicating negatives ones. A special focus thereby is often put on negations since they
may change the opinion orientation in a sentence, like for example in the sentence
“I don’t like this camera”, where the phrase “I like” indicates positive sentiment,
while “don’t” changes its orientation.

Before the introduction of the transformer technology and tools like ChatGPT (see
next chapter), these methods needed to be laboriously prepared individually for
specific computer-based text examinations with lots of efforts and good coding
skills. Now they have been incorporated as prerequisites in the further develop-
ment of the so-called Large Language Models (LLMs). These LLMs are able to ana-
lyze any text within seconds with regard to the sentiments expressed in it. As an
example, figure 92 shows a sentiment analysis of a part of a song text, analyzed with
ChatGPT-4o.

Even quantifying the sentiments and visualizing them, for example as a trajectory
in correlation to the text, is no problem for the technology. The same applies to
other scientific analysis methods, which previously required time-consuming re-
search work and collaboration of often large interdisciplinary research teams to ex-
ecute them. It seems predictable that the advent of this technology is on the way to
fundamentally change several aspects of sciences as we know it – and with them
every other aspect of our existence that is affected by the processing of knowledge.

 Natural Language Processing 121

Fig. 92: ChatGPT-4o sentiment analysis of a part of a song text.

 Natural Language Processing 122

5.5 Transformers, or: Attention is all you need

The comprehension of qualities in texts like opinions and sentiments, is, as we have
seen, very dependent on a clear understanding of the meaning of words in their
context, that is, on the semantics of a text. A tricky problem in this regard, closely
related to the difficulty of understanding context, is the comprehension of refer-
ences. Consider the following two sentences:

The trophy does not fit into the bag because it is too large.

The trophy does not fit into the bag because it is too small.

While it is no problem for a human to understand that the word “it” in the first sen-
tence refers to the trophy and in the second sentence to the bag, this poses a diffi-
culty for digital machines. This kind of non-comprehensions is a well-known prob-
lem in AI-research commonly attributed to missing “world knowledge”, i.e., the
knowledge we humans have about many things but are not aware that we have it,
such as e.g., knowing that an apple, when loosing connection to the tree, due to
gravity will fall to the ground and not rise to the sky. In the context of research in
natural-language understanding (NLU) comprehension as needed for the trophy-
example above can be achieved with the help of a type of neural network that, when
embedding (or vectorizing) words, uses a kind of specialized internal memory to
consider contexts from earlier phases of its learning process. In section 4.5.1. we
spoke about LSTM neural networks, which have an architecture that allows them
to consider information distributions over long sequences if they are trained on
them. Theoretically, such LSTMs could pass information even over infinitely long
sequences. In practice, however, there capacity is limited due to the vanishing gra-
dient problem. Eventually, LSTMs too tend to forget earlier tokens.

To tackle this problem, a different network architecture under the term Trans-
former has been suggested (Vaswani et al. 2017) that is able to maintain direct con-
nections to all previous timestamps it encounters, allowing information to be
passed on over much longer sequences, with the cost however, that the ANN is now
directly connected to an exploding amount of input. Transformers thus need a pos-
sibility to separate important from unimportant input. For this, they use an algo-
rithm called attention.

Attention is used to focus the processing activity of a neural network on those con-
texts of inputs – words or sequences of words – which, according to the so far pro-
cessed information, seem more important than others. Encoder-Decoder networks
for example (see section 4.6.2) are, in their undercompleteness, able to generate

 Natural Language Processing 123

compressed vector representations of the context of a word, which, when applied
in an attention-based variant, are in each step assembled together and compared to
each other. This comparison is exposed to a softmax function, which normalizes
the vector so that each of its components lies in the interval [0,1] and the compo-
nents add up to 1 making it possible to interpret them as probabilities. Larger input
components thus correspond to larger probabilities implying higher chances to at-
tract the network’s attention. The relevant contexts then are used to e.g., translate
words from one language to another. With this, the German translation of the
phrase “to book a flight” can correctly be “einen Flug buchen”, instead of (as in ear-
lier translation programs) “zu Buch ein Flug”.

Such transformer NNs were with impressive success applied to a wide variety of
tasks, many of which until recently are considered beyond the meaningful use of
ANNs. Language translation is just one example. One of these language representa-
tion models has made headlines under the name of BERT, which stands for Bidirec-
tional Encoder Representations from Transformers (Devlin et al. 2019) and has
been used to create state-of-the-art models for tasks like question answering or lan-
guage inference. It has pushed a range of benchmarks, which have been proposed
to test the performance of such language models, such as GLUE (Wang et al., 2018)
and decaNLP (McCann et al., 2018). Other attention-grabbing results have been
achieved with contextualized word representations like ELMo (Peters et al. 2018)
and in particular with the Generative Pre-trained Transformer, short GPT, which
we will discuss in the next chapter. Early impressive examples of human-like text
generation with autoregressive language models can be seen at
https://deepai.org/machine-learning-model/text-generator. Similar impressive has
been the Google-project LaMDA , short for “Language Model for Dialogue Applica-
tions”, which as the name says, can engage in a sort of free-flowing conversation
about a seemingly endless number of topics (see https://blog.google/technol-
ogy/ai/lamda/). More details on techniques like these are provided at sites like
https://ai.stanford.edu/blog/contextual/

https://deepai.org/machine-learning-model/text-generator
https://blog.google/technology/ai/lamda/
https://blog.google/technology/ai/lamda/
https://ai.stanford.edu/blog/contextual/

6 ChatGPT et al.

In December 2022, the formerly open-source oriented startup OpenAI
(https://openai.com/) enabled free Internet access to ChatGPT version 3.5. spark-
ing tremendous public interest in the prospects for Artificial General Intelligence
(AGI), that is, in the prospects of a kind of AI that does not solely focus on specific
functions or solving specific problems like the gaming DNNs AlphaGo or Al-
phaZero, but instead strives towards a kind of human or even super-human general
problem-solving intelligence. The explicitly AGI-oriented activities of OpenAI
sparked a wide range of debates about the prospects, risks and consequences of
machines reaching or exceeding human cognitive capabilities (Mitchell and Kra-
kauer 2023) or even sentience (Butlin et al. 2023).

Indeed, meanwhile many of the utterances elicited by ChatGPT and Co led even
problem-savvy experts familiar with ML methods to interpret more than just ma-
chine logic into the probability-generated AI-chats. To give a sense for the capabil-
ities of this evolution of the transformer technology, I asked ChatGPT-4
(https://chat.openai.com/) to briefly introduce itself and its development history.
See the answer on the next page in figure 91.

One of the cornerstones of this technology’s capabilities is the upscaling of data re-
sources used to train the Transformer Neural Network. A highly diverse and very
large data set with several terabytes of text data from the internet, from books, ar-
ticles, websites and other sources is used. Some even say it encompasses already
most of the texts currently available in digital form, which is the reason why these
neural networks are called Large Language Models (LLMs). Their training involves
running computations on large-scale clusters of GPUs (Graphics Processing Units)
and TPUs (Tensor Processing Units), and it took a significant amount of time (re-
portedly several weeks), the exact duration of which as well as the exact size of the
data set is kept secret by OpenAI. The need for computation required enormous
financial resources, which forced OpenAI among others into an agreement with
Microsoft using their Azure supercomputing infrastructure, powered by Nvidia
GPUs, that allegedly was built specifically for OpenAI and that reportedly costed
“hundreds of millions of dollars”. As a result of this support by a proprietary com-
pany, OpenAI’s initially explicitly highlighted open-source ideology was put aside

https://openai.com/
https://chat.openai.com/

 ChatGPT et al. 125

and key information about the exact size and architecture of data and code is with-
held.

Fig. 93: Answer of ChatGPT-4o to request of briefly introducing itself.

 ChatGPT et al. 126

In response to this loss of openness, meanwhile numerous other ventures formed
as an alternative on an allegedly open-source basis to train and specialize LLMs.
Unfortunately, many of these too are not as open as the original open-source ideol-
ogy would suggest it. The hype around AI that ChatGPT has triggered, but above all
the technical and financial effort involved in training, obviously puts business first
for many, so that most projects are still characterized by a great lack of transpar-
ency and verifiability. Nevertheless, there are now a large number of highly spe-
cialized projects based on the transformer architecture and on the fact that already
trained neural networks can be further trained for specific knowledge domains
with additional data (see for a list: https://huggingface.co/docs/transformers/in-
dex).

Additionally, to the initial unsupervised training step on a massive corpus of text
data – a process referred to as pre-training and meant to obtain the principal ability
to understand the structure of language and generate human-like text-output –
GPTs are finetuned in several regards. One of these adjustment steps involves in-
struction training, which enables the model to understand and follow user instruc-
tions accurately. With this, GPTs become able to answer questions and to engage in
dialogues. Fine-tuning is done with supervised methods on curated datasets, com-
prising examples with instructions and corresponding desired outputs, covering a
wide range of tasks and topics. Additionally, Reinforcement Learning from Human
Feedback (RLHF) is employed, using human feedback on responses and reward
models trained to predict the quality of the responses. Finally, extensive evalua-
tions try to ensure the models perform well across different tasks and scenarios,
involving benchmarking (i.e., comparing the model’s performance against estab-
lished benchmarks and other models) and real-world testing (deploying the model
in controlled real-world settings).

With these fine-tunings, GPTs have become quite powerful tools for supporting sci-
entific investigations. A wide range of tools is offered, particularly specialized on
doing and aiding scientific research work. Currently it seems that this will put sci-
entific research on a completely new footing. Some examples of these GPT-based
tools are listed in the following:

▪ Consensus (https://consensus.app/) gives research-backed answers to yes-
or-no questions

▪ Semantic Scholar (https://www.semanticscholar.org/) and Elicit
(https://elicit.org/) act as digital assistants — tidying up bibliographies, sug-
gesting new papers and generating research summaries.

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://consensus.app/
https://www.semanticscholar.org/
https://elicit.org/

 ChatGPT et al. 127

▪ Research Rabbit (https://www.researchrabbit.ai/), LitMaps
(https://www.litmaps.com/) identify sources and Scite
(https://scite.ai/home) — which tells a user not only how often papers are
cited, but in what context — tracks academic discourse.

▪ Iris (https://iris.ai/) creates map-like visualizations that connect papers
around themes. Feeding a ‘seed paper’ into Iris generates a nested map of
related publications, which resembles a map of the world.

In addition, web browsers such as the Google Chrome browser offer the possibility
to have GPTs quickly summarize documents in pdf format, as they are usually avail-
able in scientific repositories23, which may dramatically reduce the reading efforts
of scientists.

Another game changer for many scientific tasks is the fact that LLMs were not
trained on plane texts alone, but also on large amounts of computer code. The mod-
els are therefore able to generate code, seemingly effortlessly, in almost all com-
mon programming languages. More specialized versions of such coder-tools as for
example the Github Copilot (https://github.com/features/copilot, not to be con-
fused with Microsoft’s Copilot platform) are comprehensive AI-based developer
tools, including debugging and security remediation assistance. Scientists, who of-
ten are not trained in writing computer code themselves, are no longer dependent
on seeking aid from software engineers and developers when in need of doing some
more complex computation or of simply generating a correct and meaningful plot.
The tools thus can save an enormous amount of time, which previously used to be
spent on fine-tuning and making code snippets effective instead of on creative re-
search work. Another example of supporting former tedious research work may
offer the tool Whisper (https://github.com/openai/whisper), a machine learning
model for speech recognition and transcription, also created by OpenAI, which
makes it possible to convert spoken audio directly into text transcriptions. Other,
maybe not that scientifically relevant tools are text-to-image or text-to-video GPTs,
like the massively popular models Midjourney, Stable Diffuson, DALL-E or Sora (for
more details on this see https://huggingface.co/blog/text-to-video).

One aspect that can affect scientific research, but has become particularly apparent
with the introduction of text-to-image or text-to-video tools, is the tendency of LLMs
to present misinformation in a quite convincing way. This is due to the fact that, on
the one hand, the tools are efficiently trained to provide expected answers and

23 Less relevant for scientific purposes Youtube movies can be summarized too.

https://www.researchrabbit.ai/
https://www.litmaps.com/
https://scite.ai/home
https://iris.ai/
https://github.com/features/copilot
https://github.com/openai/whisper
https://huggingface.co/blog/text-to-video

 ChatGPT et al. 128

hardly ever point out that certain knowledge is not available to them24. On the other
hand, as described, the technology is based on the rather simple principle of calcu-
lating probabilities for a token following certain other tokens. Even though these
probabilities are calculated in great detail, they of course impart no certainties. Es-
pecially when topics are concerned for which the training data holds little or no
data at all, the answers of the tools can be incorrect. The models then tend to make
up answers and hence should always be treated with caution. OpenAI for instance
warns that ChatGPT “sometimes writes plausible-sounding but incorrect or nonsen-
sical responses.” This behavior is commonly referred to as “hallucination”. (Al-
kaissi et al. 2023).

A well-known example of such hallucinations could initially be achieved by asking
the tools to multiply large numbers. The result, when compared with that of an
electronic calculator, often turned out to be wrong because the probability that par-
ticular this very multiplication occurred somewhere in the training data was very
low. The tool however, trained to provide an answer in any case, hallucinated one.
Such fairly simple errors have now been eliminated by connecting GPTs to a variety
of external applications, such as calculators, but also databases or other reposito-
ries such as Wikipedia. If the GPT recognizes that it may provide an incorrect an-
swer, it is designed to obtain the information from external sources. The question,
however, is whether the tool recognizes that its answer may be flawed.

Beyond NLP, the transformer technology is applied to a wide range of tasks nowa-
days. Examples include time series forecasting (see among others https://me-
dium.com/mlearning-ai/transformer-implementation-for-time-series-forecasting-
a9db2db5c820), the artificial generation of music (https://magenta.tensor-
flow.org/music-transformer), or protein structure prediction (Jumper et al. 2021,
Rives et al. 2021), a field said to revolutionize medical treatment. Each of these re-
search threads is said to be lifted to completely new levels through the application
of these powerful ANNs.

The GPT technology appears to represent a quantum leap on the way to General
Artificial Intelligence (AGI), which even optimists would not have imagined in this
form just a few years ago. The intensity with which further development is now
being worked on worldwide25 suggests that even the most stringent benchmark tests

24 One of the exceptions concerned the initial indication by GPT-3.5 that it had only been trained with
data up to the year 2021.

25 For a probably non-exhaustive list, see, among others: https://en.wikipedia.org/wiki/List_of_artifi-
cial_intelligence_projects

https://medium.com/mlearning-ai/transformer-implementation-for-time-series-forecasting-a9db2db5c820
https://medium.com/mlearning-ai/transformer-implementation-for-time-series-forecasting-a9db2db5c820
https://medium.com/mlearning-ai/transformer-implementation-for-time-series-forecasting-a9db2db5c820
https://magenta.tensorflow.org/music-transformer
https://magenta.tensorflow.org/music-transformer
https://en.wikipedia.org/wiki/List_of_artificial_intelligence_projects
https://en.wikipedia.org/wiki/List_of_artificial_intelligence_projects

 ChatGPT et al. 129

will soon no longer be sufficient to reliably distinguish human from artificial intel-
ligence. As already mentioned, some consider the Turing test to have been passed.
The fact that the existing tools are increasingly being used to make successor tools
even more efficient, and that even this is largely automated already, evokes associ-
ations with the prophesied Singularity, the point where AI exceeds human intelli-
gence (Kurzweil 2006), and certainly casts a disconcerting light on statements like
Sam Altmann’s according to which his company OpenAI is working on the “last
great invention of humanity”.

7 Epilogue: Data ethics

We have seen that the scope of data sciences is vast and that Machine learning com-
prises a wide range of interesting tools for automatically detecting regularities and
structure in data. The research activities in this area are likely to be of great rele-
vance for our immediate future. However, the methods developed in this process,
in addition to their certainly positive aspects, harbor a number of dangers and risks
for misuse. In concluding therefore, we should at least briefly address some ethical
aspects that are inevitably associated with the topic.

Data collection and automated decision making about individuals is ubiquitous and
pervasive today, making this a highly contentious topic. In particular with the in-
troduction of ChatGPT by OpenAI in late 2022, the density of debates has skyrock-
eted. Countless discussions are led, from discipline-specific academic debates to
international policy dialogs on AI governance and regulation. An armada of books
and papers, both academic and activist, is being published, and the concerns and
warnings are numerous. Debates on misuse of machine learning methods cover
manipulated political campaigning, the spread of fake news, the emergence of filter
bubbles and discriminating decisions in credit access or parole granting and mani-
fold kinds of invasion in privacy. To exemplify the sorts of problems that can be
expected from these methods and at the same time to point out possibilities for im-
provement and their limitations, we end this book with briefly discussing two sen-
sible issues in this regard: the reintroduction of socially unwanted biases and dis-
criminatory decision-making into governance procedures, and the efforts for align-
ing AI with human values.

Around 2017, a case made headlines when a commercial tool used by a governance
agency for assessing a criminal defendant’s likelihood of becoming a recidivist – a
term used to describe criminals who re-offend – was tested for its underlying accu-
racy and whether the algorithm was biased against certain social groups26. The test
found out that black defendants were far more likely than white defendants to be
incorrectly judged to be at a higher risk of recidivism, while white defendants were

26 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

 Epilogue 131

more likely than black defendants to be incorrectly flagged as low risk27. The testers
thus argued that the deployed algorithmic system produces a racial bias. The com-
pany which developed the system answered with a counter-report that showed that
the system was treating black and white populations in a similar way, implying that
no discrimination was taking place.

As it turned out, both tests were statistically sound, but were attacking the problem
from different angles. The one was looking at the system’s overall performance and
found no difference between black and white subgroups (see left plot below). The
other looked for whether comparable (low-risk and high-risk) classes across black
and white subgroups were treated in the same way and found a difference (right
plot below).28

Fig. 94: Left: overall performance analysis. Right: Analysis of comparable

classes, taken from Kittel (2019), p. 4.

Both approaches thus seemed correct, but their results incompatible. The question
about which treatment is the fair one will have to be met on a social and political
level. The European General Data Protection Regulation (GDPR) holds several regula-
tions for such issues, aimed at bringing more transparency into the use of data and
automated decision-making, including for instance a “right to explanation” of how
one’s data is used.

Unfortunately, as we have seen, in many cases the “right to explanation” may be
counteracted by the opacity of the “inner thinking” of machine learning algorithms,
above all of contemporary ANNs. Although several attempts are currently being
made to increase the transparency and interpretability of models through statistics

27 https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

28 Note that mathematically it seems impossible to achieve fairness from both angles at the same time
(Kleinberg/Mullainathan/Raghavan 2016). A condition for this would be that both classes have the same
distributions across subgroups, which will be rarely met by reality.

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

 Epilogue 132

and visualization (Ribeiro/Singh/Guestrin 2016, Alicioglu and Sun 2022) and to pro-
pose analytical frameworks for reducing the complexity of algorithmic decision
making (Zarsky 2016, Doshi-Velez/Kim 2017, Krafft, Zweig, and König 2022), in all
likelyhood the problem will persist. The digital machine, as a powerful problem
solver, is a complex system. It will not stop creating new problems on its own.

As in the example above, a crucial effort in mitigating possibilities of misuse, gen-
erating incorrect information or privacy invasions lies on aligning the workings of
machine learning tools with behaviors and decisions that we, humans, would want
to experience from other humans. The scope of these expectations is huge, since
people and cultures are divers. But we still seem to have a general idea of an ac-
ceptable scope, which we like to address as human values. Since the introduction of
GPTs, the alignment of these tools with human values has become a critical focus
in the field of machine learning. The process involves several key steps to ensure
that these models operate within ethical boundaries and produce outputs that are
safe and reliable. Here is an overview in a nutshell: an emphasis, as in the example
above, is of course on data curation and preprocessing, where diverse and repre-
sentative datasets are compiled, and harmful content is filtered out to minimize bi-
ases inherent in the training data. If this is done, supervised fine-tuning and rein-
forcement learning from human feedback (RLHF) can be employed to guide a
model’s training process towards human acceptable behavior. In this, human an-
notators can provide labels and corrections, helping the model learn context and
appropriateness. The iterative nature of RLHF, where models are rewarded for pro-
ducing aligned responses, further refines their outputs.

Usually, to enhance these alignments Human-in-the-Loop (HITL) processes and
regular ethical and bias audits are deployed. HITL involves continuous human
oversight, allowing for real-time corrections and feedback that improve model per-
formance. Ethical and bias audits, employing both automated tools and expert re-
views, help identify and mitigate potential issues. Furthermore, advancements in
explainability and transparency, such as attention mechanisms and transparency
reports, contribute to the ethical deployment of GPT models. The goal are dynamic
and context-aware tools, where continuous learning and contextual understanding
enable them to adapt to new situations and user intents without extensive retrain-
ing, so that AI systems do not only excel in performance but also align with societal
values and ethical standards. The road is still rocky though, and the goal is far from
being reached in every regard. But the progress made so far is undeniably huge and
is definitely set to make our world a different place. In order to cope with these new
conditions, it seems essential to understand the basic principles and functionality

 Epilogue 133

of the tools that will shape our world’s future. This is what this book strives to sup-
port.

References

Adadi, Amina, and Mohammed Berrada. 2018. “Peeking Inside the Black-Box: A Survey on
Explainable Artificial Intelligence (XAI).” IEEE Access 6:52138–60.
https://doi.org/10.1109/ACCESS.2018.2870052.

Alicioglu, Gulsum, and Bo Sun. 2022. “A Survey of Visual Analytics for Explainable Artificial
Intelligence Methods.” Computers & Graphics 102 (February):502–20.
https://doi.org/10.1016/j.cag.2021.09.002.

Alkaissi, Hussam, Samy I. McFarlane, Hussam Alkaissi, and Samy I. McFarlane. 2023. “Arti-
ficial Hallucinations in ChatGPT: Implications in Scientific Writing.” Cureus 15 (2).
https://doi.org/10.7759/cureus.35179.

Andrychowicz, Marcin, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Wel-
inder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. 2018. “Hindsight
Experience Replay.” arXiv:1707.01495 [Cs], February. http://arxiv.org/abs/1707.01495.

Axelrod, Robert. 1984. The Evolution of Cooperation. New York: Basic Books.

———. 1987. “The Evolution of Strategies in the Iterated Prisoner’s Dilemma.” In Genetic Algo-
rithms and Simulated Annealing. Research Notes in Artificial Intelligence. Morgan Kauf-
mann, Los Altos, CA.

Ay, Nihat, and Daniel Polani. 2008. “Information Flows in Causal Networks.” Advances in
Complex Systems 11 (01): 17–41. https://doi.org/10.1142/S0219525908001465.

Barredo Arrieta, Alejandro, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador Garcia, et al. 2020. “Explainable Artificial Intelligence
(XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI.” In-
formation Fusion 58 (June):82–115. https://doi.org/10.1016/j.inffus.2019.12.012.

Bellman, Richard. 1957. Dynamic Programming. Princeton University Press.

Biever, Celeste. 2023. “ChatGPT Broke the Turing Test — the Race Is on for New Ways to As-
sess AI.” Nature 619 (7971): 686–89. https://doi.org/10.1038/d41586-023-02361-7.

Bill, Jeremiah, Lance Champagne, Bruce Cox, and Trevor Bihl. 2021. “Meta-Heuristic Opti-
mization Methods for Quaternion-Valued Neural Networks.” Mathematics 9 (9): 938.
https://doi.org/10.3390/math9090938.

Buckley, Christopher L., Chang Sub Kim, Simon McGregor, and Anil K. Seth. 2017. “The Free
Energy Principle for Action and Perception: A Mathematical Review.” arXiv:1705.09156
[q-Bio], May. http://arxiv.org/abs/1705.09156.

Butlin, Patrick, Robert Long, Eric Elmoznino, Yoshua Bengio, Jonathan Birch, Axel Constant,
George Deane, et al. 2023. “Consciousness in Artificial Intelligence: Insights from the Sci-
ence of Consciousness.” arXiv. http://arxiv.org/abs/2308.08708.

Castelvecchi, Davide. 2016. “Can We Open the Black Box of AI?” Nature 538 (7623): 20–23.
https://doi.org/10.1038/538020a.

Cerezo, Sergio Hernandez, and Guillem Duran Ballester. 2018. “Fractal AI: A Fragile Theory
of Intelligence.” arXiv:1803.05049 [Cs], March. http://arxiv.org/abs/1803.05049.

 References 135

Cerezo, Sergio Hernandez, Guillem Duran Ballester, and Spiros Baxevanakis. 2018. “Solving
Atari Games Using Fractals And Entropy.” arXiv:1807.01081 [Cs], July. http://ar-
xiv.org/abs/1807.01081.

Dayan, Peter, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. 1995. “The Helm-
holtz Machine.” Neural Computation 7 (5): 889–904.

Deerwester, Scott, and And Others. 1990. “Indexing by Latent Semantic Analysis.” Journal of
the American Society for Information Science 41 (6): 391–407.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. “BERT: Pre-
Training of Deep Bidirectional Transformers for Language Understanding.”
arXiv:1810.04805 [Cs], May. http://arxiv.org/abs/1810.04805.

Doshi-Velez, Finale, and Been Kim. 2017. “Towards A Rigorous Science of Interpretable Ma-
chine Learning.” arXiv:1702.08608 [Cs, Stat], February. http://arxiv.org/abs/1702.08608.

Friston, Karl. 2009. “The Free-Energy Principle: A Rough Guide to the Brain?” Trends in Cog-
nitive Sciences 13 (7): 293–301. https://doi.org/10.1016/j.tics.2009.04.005.

———. 2010. “The Free-Energy Principle: A Unified Brain Theory?” Nature Reviews Neurosci-
ence 11 (2): 127–38. https://doi.org/10.1038/nrn2787.

Friston, Karl, James Kilner, and Lee Harrison. 2006. “A Free Energy Principle for the Brain.”
Journal of Physiology-Paris 100 (1–3): 70–87.
https://doi.org/10.1016/j.jphysparis.2006.10.001.

Géron, Aurélien. 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,
Tools, and Techniques for Building Intelligent Systems. Beijing Boston Farnham Sebastopol
Tokyo: O’Reilly UK Ltd.

Haake, Daniel. 2022. “Theoretische Grundlagen des Maschinellen Lernens.” In Prognose von
Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen, edited by Daniel Haake,
13–40. Wiesbaden: Springer Fachmedien. https://doi.org/10.1007/978-3-658-37660-4_2.

Hawkins, Jeff. 2021. A Thousand Brains: A New Theory of Intelligence. New York: Basic Books.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural Com-
putation 9 (8): 1735–80.

Ibrahim, Zein Al Abidin, Marwa Saab, and Ihab Sbeity. 2019. “VideoToVecs: A New Video
Representation Based on Deep Learning Techniques for Video Classification and Cluster-
ing.” SN Applied Sciences 1 (6): 560. https://doi.org/10.1007/s42452-019-0573-6.

Jones, Cameron R., and Benjamin K. Bergen. 2024. “Does GPT-4 Pass the Turing Test?” arXiv.
http://arxiv.org/abs/2310.20216.

Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf
Ronneberger, Kathryn Tunyasuvunakool, et al. 2021. “Highly Accurate Protein Structure
Prediction with AlphaFold.” Nature 596 (7873): 583–89. https://doi.org/10.1038/s41586-
021-03819-2.

Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. 2015. “Visualizing and Understanding Re-
current Networks.” arXiv:1506.02078 [Cs], June. http://arxiv.org/abs/1506.02078.

http://arxiv.org/abs/1807.01081

 References 136

Kittel, Christopher. 2019. Ensuring Fairness and Accountability in Opaque, Algorithmic Decision-
Making Systems. An Evaluation of Consistency, Comprehensiveness and Comparability across
Individual-Level and Group-Level Metrics. MA. University of Graz.

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. 2016. “Inherent Trade-Offs in
the Fair Determination of Risk Scores.” arXiv:1609.05807 [Cs, Stat], September.
http://arxiv.org/abs/1609.05807.

Klyubin, Alexander S., Daniel Polani, and Chrystopher L. Nehaniv. 2005. “All Else Being
Equal Be Empowered.” https://doi.org/10.1007/11553090_75.

Klyubin, Alexander S, and Daniel Polani. 2005. “Empowerment: A Universal Agent-Centric
Measure of Control” Evolutionary Computation, 2005. The 2005 IEEE Congress (1): 128–
35.

Krafft, Tobias D., Katharina A. Zweig, and Pascal D. König. 2022. “How to Regulate Algorith-
mic Decision-Making: A Framework of Regulatory Requirements for Different Applica-
tions.” Regulation & Governance 16 (1): 119–36. https://doi.org/10.1111/rego.12369.

Kurzweil, Ray. 2006. The Singularity Is Near: When Humans Transcend Biology. New York: Pen-
guin Books.

Levenshtein, Vladimir I. 1966. “Binary Codes Capable of Correcting Deletions, Insertions and
Reversals.” Soviet Physics Doklady 10 (February):707.

Liu, Bing. 2010. “Sentiment Analysis and Subjectivity.” In Handbook of Natural Language Pro-
cessing, Second Edition. Taylor and Francis Group, Boca.

Lohn, Jason D., Derek S. Linden, Gregory S. Hornby, and William F. Kraus. 2004. “Evolution-
ary Design of an X-Band Antenna for NASA’s Space Technology 5 Mission.” In IEEE An-
tennas and Propagation Society Symposium, 2004., 3:2313-2316 Vol.3.
https://doi.org/10.1109/APS.2004.1331834.

Maaten, Laurens van der, and Geoffrey Hinton. 2008. “Visualizing Data Using T-SNE.” Journal
of Machine Learning Research 9 (Nov): 2579–2605.

Mai, Xiaodong. 2019. “Efficient Multimedia Information Mining Framework Based on Deep
Learning and Self-Organizing Model.” Multimedia Tools and Applications 78 (4): 4605–22.
https://doi.org/10.1007/s11042-018-6406-6.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. “Efficient Estimation of
Word Representations in Vector Space.” arXiv:1301.3781 [Cs], January.
http://arxiv.org/abs/1301.3781.

Minsky, Marvin Lee, and Seymour Papert. 1972. Perceptrons: An Introduction to Computational
Geometry. Mit Press.

Mitchell, Melanie. 2011. Complexity: A Guided Tour. 1 edition. Oxford England; New York:
Oxford University Press.

Mitchell, Melanie, and David C. Krakauer. 2023. “The Debate Over Understanding in AI’s
Large Language Models.” arXiv. http://arxiv.org/abs/2210.13966.

Ng, Andrew Y., and Stuart Russell. 2000. “Algorithms for Inverse Reinforcement Learning.”
In In Proc. 17th International Conf. on Machine Learning, 663–70. Morgan Kaufmann.

 References 137

Pedersen, Jan T, and John Moult. 1996. “Genetic Algorithms for Protein Structure Predic-
tion.” Current Opinion in Structural Biology 6 (2): 227–31. https://doi.org/10.1016/S0959-
440X(96)80079-0.

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. 2018. “Deep Contextualized Word Representations.”
arXiv:1802.05365 [Cs], March. http://arxiv.org/abs/1802.05365.

Powers, William T. 2005. Behavior: The Control Of Perception. Revised, Expanded. New Ca-
naan, Conn: Benchmark Pubns Inc.

Rehurek, Radim, and Petr Sojka. 2010. “Software Framework for Topic Modelling with Large
Corpora.” In Proceedings of LREC 2010 Workshop New Challenges for NLP.

Reinsberger, Kathrin, Thomas Brudermann, Stefanie Hatzl, Eva Fleiß, and Alfred Posch.
2015. “Photovoltaic Diffusion from the Bottom-up: Analytical Investigation of Critical
Factors.” Applied Energy 159 (C): 178–87.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “‘Why Should I Trust You?’:
Explaining the Predictions of Any Classifier.” arXiv:1602.04938 [Cs, Stat], February.
http://arxiv.org/abs/1602.04938.

Rives, Alexander, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi
Guo, et al. 2021. “Biological Structure and Function Emerge from Scaling Unsupervised
Learning to 250 Million Protein Sequences.” Proceedings of the National Academy of Sciences
118 (15). https://doi.org/10.1073/pnas.2016239118.

Rosen, Judith. 2009. “Robert Rosen’s Anticipatory Systems Theory: The Art and Science of
Thinking Ahead.” In Proceedings of the 53rd Annual Meeting of the ISSS-2009, Brisbane, Aus-
tralia. Vol. 1. http://journals.isss.org/index.php/proceedings53rd/article/view/1249.

Salge, Christoph, Cornelius Glackin, and Daniel Polani. 2013. “Empowerment -- an Introduc-
tion.” arXiv:1310.1863 [Nlin], October. http://arxiv.org/abs/1310.1863.

———. 2014. “Changing the Environment Based on Empowerment as Intrinsic Motivation.”
Entropy 16 (5): 2789–2819. https://doi.org/10.3390/e16052789.

Schober, Andreas, Christopher Kittel, Rupert J. Baumgartner, and Manfred Füllsack. 2018.
“Identifying Dominant Topics Appearing in the Journal of Cleaner Production.” Journal
of Cleaner Production 190 (July):160–68. https://doi.org/10.1016/j.jclepro.2018.04.124.

Schober, Andreas, Christopher Kittel, and Manfred Füllsack. 2016. “Die Digitale Rationalisie-
rung im Spiegel von Stellenanzeigen. Automatisierte Textanalyse zu Annahmen des
„Task-Based Approach“.” SOZIOLOGIE IN ÖSTERREICH - INTERNATIONALE VERFLECH-
TUNGEN (Hg. Helmut Staubmann) 0 (0). https://webapp.uibk.ac.at/ojs2/index.php/oegs-
publikation/article/view/19.

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, et al. 2020. “Mastering Atari, Go, Chess and Shogi by Plan-
ning with a Learned Model.” Nature 588 (7839): 604–9. https://doi.org/10.1038/s41586-020-
03051-4.

Shannon, Claude E. 1948. “A Mathematical Theory of Communication.” The Bell System Tech-
nical Journal 27 (3): 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

https://doi.org/10.1016/S0959-440X(96)80079-0

 References 138

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Ar-
thur Guez, Marc Lanctot, et al. 2018. “A General Reinforcement Learning Algorithm That
Masters Chess, Shogi, and Go through Self-Play.” Science 362 (6419): 1140–44.
https://doi.org/10.1126/science.aar6404.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.” arXiv:1706.03762
[Cs], December. http://arxiv.org/abs/1706.03762.

Vinyals, Oriol, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2014. “Show and Tell: A
Neural Image Caption Generator.” arXiv:1411.4555 [Cs], November.
http://arxiv.org/abs/1411.4555.

Wissner-Gross, Alexander D., and Cameron E. Freer. 2013. “Causal Entropic Forces.” Physical
Review Letters 110 (16). https://doi.org/10.1103/PhysRevLett.110.168702.

Zarsky, Tal. 2016. “The Trouble with Algorithmic Decisions: An Analytic Road Map to Exam-
ine Efficiency and Fairness in Automated and Opaque Decision Making.” Science, Technol-
ogy, & Human Values 41 (1): 118–32. https://doi.org/10.1177/0162243915605575.

This book introduces and explains essential prere-
quisites for understanding, apply-ing, researching,
and further developing the tools currently debated
under the terms Machine Learning (ML) and Ar-
tificial Intelligence (AI). It strives to be an in-tro-
ductory and comprehensive guide for readers with
little prior knowledge, while also offering deeper in-
sights for those interested in advanced aspects and
methods beyond the core of the research thread.
Overall, this book is intended for anyone seeking a
comprehensive understanding of the methods and
computer-based ap-plications underlying AI-tech-
nology. While digital literacy is beneficial, it is not a
prerequisite for understanding the content.

	Titelei_2024-09-05.pdf
	From Data to Intelligence
	An Introduction to Machine Learning and Artificial Intelligence

	Contents_2024-09-05.pdf
	Contents
	1.1 Reinforcement-learning 14
	1.2 Evolutionary Computation 20
	1.3 The Free energy principle 22
	1.4 Empowerment 25
	1.5 Causal Entropy 30
	2.1 Analytical modeling – Linear regression 35
	2.2 Linear and non-linear data discrimination 38
	2.3 Data preparation 41
	2.4 Supervised learning and Information gain 43
	2.5 Applying a Decision Tree Classifier 45
	2.6 Obtaining and evaluating results 48
	2.7 Improving results 51
	2.8 The bias-variance tradeoff, generalization and overfitting 53
	2.9 Data augmentation 55
	2.10 Feature reduction 56
	3.1 Support Vector Machine 59
	3.2 k-Nearest-Neighbor 62
	3.3 Naïve Bayes 63
	4.1 The Perceptron 66
	4.2 Back propagation – the fundament of Deep learning 70
	4.3 Gradient Descent 73
	4.4 The MNIST-digits-example 76
	4.5 Neural Network types 79
	4.5.1 Long Short Term Memory (LSTM) Neural Networks 80
	4.5.2 Recurrent Neural Networks 82
	4.5.3 Convolutional Neural Networks (CNNs) 83
	4.6 Unsupervised Learners 87
	4.6.1 Self-organizing Maps (SOMs, aka Kohonen-networks) 87
	4.6.2 Autoencoders 89
	5.1 Mining in unstructured and analog texts 97
	5.2 Latent Semantic Analysis 98
	5.3 Vector representations 103
	5.3.1 Assessing similarities by vector representation 104
	5.3.2 Vector Space Representation of Words – Word2Vec 106
	5.3.3 Vectorization examples 108
	5.3.3.1 Vector arithmetics 111
	5.3.3.2 Sentence similarity 111
	5.3.4 Document similarity – Doc2Vec 112
	5.3.5 Vectorization beyond textual contexts 117
	5.4 Sentiment analysis 118
	5.5 Transformers, or: Attention is all you need 122

