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Abstract—Because pruritus is often overlooked and 
undertreated in the clinical setting, a major unmet need is 
objective measures of behaviors associated with scratching in 
order to quantify itch severity and frequency since scratch 
directly correlates to itch. Such methods to measure itch and 
how itch severity changes over time are needed to objectively 
study and understand pruritus, develop and assess the efficacy 
of new medications, quantify disease severity in patients, and 
monitor treatment response. Wearable sensors in the form of 
wrist actigraphy, which detects wrist movements over time 
using micro-accelerometers, are the most studied and tested 
method to detect scratching events. To address these issues, 7 
deep learning models will be used to train and test for scratch 
detection, including:Convolutional Neural Network (CNN), 
Recurrent Neural Network (RNN) – Gated Recurrent Unit 
(GRU), RNN – Long Short-Term Memory (LSTM), CNN & 
RNN – GRU (end-to-end), CNN & RNN – LSTM (end-to-end), 
CNN & RNN – GRU (parallel) and CNN & RNN – LSTM 
(parallel). The final results show accurately detect scratching 
using deep learning (CNN achieved a high accuracy of 0.996) in 
various situations and can provide useful information (time, 
frequency, scratched body part, etc.) regarding the scratching 
behavior in day and nighttime in order to better quantify 
pruritus for use in the medical field.  

Keywords—scratch detection, triaxle acceleration, wearable 
sensor, deep learning, CNN, RNN 

I. INTRODUCTION

A. Pruritus
Pruritus (itch) is a primary symptom of various medical

conditions including Atopic Dermatitis [1]. The primary 
reaction to pruritus is to constantly scratch the affected area [2, 
3], leading to constant distraction, cardinal pain, and 
breakdown of the skin [4], greatly troubling pruritic 
individuals, as shown in Fig.1. 

Fig. 1. Skin Deterioration from Scratching Due to Pruritus [4] 

B. Demand
Because pruritus is often overlooked and undertreated in

the clinical setting [5], in AD and other conditions that cause 
itch, a major unmet need is objective measures of behaviors 
associated with scratching in order to quantify itch severity 
and frequency since scratch directly correlates to itch. Such 
methods to measure itch and how itch severity changes over 
time are needed to objectively study and understand pruritus, 
develop and assess the efficacy of new medications, quantify 
disease severity in patients, and monitor treatment response, 
possibly benefiting millions of people suffering from pruritic 
conditions.  

Fortunately, advances in wearable sensor technology have 
already led to more objective measures of health, both within 
and outside of healthcare settings. Wearable sensors in the 
form of wrist actigraphy, which detects wrist movements over 
time using micro-accelerometers, are the most studied and 
tested method to detect scratching events. They are able to 
record longitudinally over several days, giving a more 
accurate representation of chronic itch. However, the output 
from actigraphic devices is not specific to scratching motions: 
they detect any movement the subject makes. As a result, 
several researchers have attempted to develop machine 
learning algorithms to distinguish scratch from other 
actigraphic movements recorded.  

C. Related Work
For example, Feuerstein et al. utilized four signal features

derived from accelerometer data obtained from wrist 
actigraphy with a k-means clustering technique to segment 
simulated scratching movements (scratching performed on 
command in a clinic setting) from walking and restless 
movements during sleep. Petersen et al. built on this approach 
by leveraging the same four signal features with logistic 
regression to also classify simulated scratching movements 
from walking and restless movements during sleep, as shown 
in Fig.2. 

Fig. 2. Wrist Accelerometer Device Used by Peterson et al. (Philips 
Respironics PAM-RL) 
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Later research by Moreau et al. trained Recurrent Neural 
Networks (RNNs) using annotated scratch events during an 
overnight clinic visit to classify nighttime scratch directly 
from sample-level accelerometer data.  

However, the mainstream approaches listed above have 
noticeable imperfections: 

a) False Positives: Wrist actigraphy have inherent 
difficulties in distinguishing between non-scratching wrist 
movements from scratching resulting in false positives in 
everyday activities with similar waveforms, such as walking 
and waving. 

b) Suboptimality: These approaches by nature offers 
suboptimal accuracy because wrist actigraphy struggles to 
identify finger-dominant scratching movements, when 
primarily the fingers move back and forth, instead only having 
the ability to detect wrist-dominant ones, when primarily the 
wrist moves back and forth. 

c) Weak Algorithms: Deep learning is a subset of machine 
learning, which is essentially a neural network with three or 
more layers. These neural networks attempt to simulate the 
behavior of the human brain — albeit far from matching its 
ability — allowing it to “learn” from large amounts of data. 
Classical machine learning algorithms leverage structured, 
labeled data to make predictions—meaning that specific 
features are defined from the input data for the model and 
organized into tables. Deep learning eliminates some of data 
pre-processing that is typically involved with machine 
learning. These algorithms can ingest and process 
unstructured data, like text and images, and it automates 
feature extraction, removing some of the dependency on 
human experts. Despite the advantages of deep learning, 
accurate deep learning implementations of scratch detection 
algorithms are rare in these approaches, though deep learning 
have proven to be highly successful in similar applications, 
much better than many non-deep learning methods such as 
classical machine learning algorithms. For instance, a deep 
learning model using Convolutional Neural Network (CNN) 
outperformed conventional machine learning algorithms such 
as SVM and LDA when employed for activity recognition 
based on wrist worn accelerometer data. In addition, in a sleep 
staging study using heart rate and wrist actigraphy, a deep 
learning model using bidirectional Long-Short Term Memory 
(LSTM) based Recursive Neural Network (RNN) 
outperformed classic classifiers such as Support Vector 
Machine (SVM) and Random Forest (RF). While Moreau et 
al. utilized deep learning by using the RNN – LSTM 
architecture, they achieved a relatively low f1 score, a measure 
of a test’s accuracy, of 0.68. Their model also only employed 
one deep learning architecture, namely RNN – LSTM, which 
provided limited insight into the potential of other deep 
learning architectures for the purpose of scratch detection. 

d) Usage Limitations: Current approaches are only 
designed to detect nighttime scratch, likely due to accuracy 
concerns, since these movements during sleep generally 
involves a noticeable amount of involuntary wrist movement 
and have limited non-scratching cases (most notably 
occasional turnings due to restless sleep). 

e) Over-simplified Feedback: The feedback given by the 
devices and algorithms of these approaches are extremely 
simple (namely whether or not the current action is scratching). 

Thus, this investigation aims address the limitations of 

previous approaches to scratch detection and find a deep 
learning models can be used to perform more effective scratch 
detection. 

II. METHODS AND MATERIALS 
This investigation proposes a new accelerometer sensor 

layout design and utilization method. Instead of only placing 
an accelerometer on the wrist, accelerometers are also placed 
on each individual finger. Thus, there will be 6 sensors on each 
device for each hand. By capturing the movement of each 
finger in addition to the wrist, the data collected could be 
processed by the algorithms to more reliably distinguish 
between scratching wrist action and similar non-scratching 
wrist actions. The new category of finger data input also 
allows the algorithm to accurately recognize finger-dominant 
scratching activity as scratching, whereas previously since 
only wrist action is recorded, there is inherent difficulty in 
detecting these finger-dominant scratching movements. This 
design is low cost, lightweight, ye more comprehensive than 
previous devices (wrist actigraphy with only one wrist 
accelerometer), as shown in Fig.3. 

 
Fig. 3. Sensor Layout on Hand 

A layout of the sensors on the hand is displayed in Figure 
3. As seen, sensor #4 is placed on the wrist and sensors #1-3, 
#5-6 are placed near the tip of each finger since the it is the tip 
that is closest in contact with the skin during scratching. 

Since both hands have the ability to scratch and the relative 
directions and accelerations of each hand’s scratching 
behavior may be slightly different, the above data needs to be 
collected for each hand in order to ensure accurate predictions 
for both hands when engaged in scratching activity.Thus, 
according to the specifications above, 42 total groups of data 
will need to be obtained:  

However, the data is split into the 42 groups listed for 
collection purposes only; when training the models, there will 
only be 8 classes of data for prediction: 

1) face: groups 1-3, 22-24; those that scratch the face. 

2) neck: groups 4-6, 25-27; those that scratch the nape of 
the neck. 

3) left_knee: groups 7-9, 28-30; those that scratch the 
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inside crease of the left knee. 

4) right_knee: groups 10-12, 31-33; those that scratch the 
inside crease of the right knee. 

5) left_elbow: groups 34-36; those that scratch the inside 
crease of the left elbow. 

6) right_elbow: groups 13-15; those that scratch the inside 
crease of the right elbow. 

7) others: groups 16-18, 37-39; those that scratch other 
parts of the body, such as the back and chest 

8) none: groups 19-21, 40-42; those that perform non-
scratching activities 

That is, when raw acceleration data is inputted into the 
models, the movement will be classified into one of the 8 
classes listed above. Since each of the 2 participants provided 
42 groups of data, and each data contains 60 seconds of hand 
movements, there will be a total of 5040 seconds or 84 
minutes of data overall for training and testing the models.  

A. Data Preprocessing 
The acquired data accelerometer raw data consists of 3-

dimensional (x-y-z) acceleration data of each finger and wrist. 
In order to train and test machine learning models on the data, 
it is split into windows of a given length and stride using the 
sliding window technique. Then, once all of the data is 
processed in this manner, the data is further split 80%-20% 
into training and testing datasets, respectively, by randomly 
selecting 20% of the data from each group and inserting it into 
the test dataset while the remaining 80% is inserted into the 
training dataset.  

The optimal length and stride of the sliding window for 
scratch detection will be determined in the following 
experiment by simply trying many different combinations and 
selecting the best one.  

B. Algorithms (Models) 
To address accuracy concerns c (weak algorithms), 7 deep 

learning models will be used to train and test for scratch 
detection, including: Convolutional Neural Network (CNN), 
Recurrent Neural Network (RNN) – Gated Recurrent Unit 
(GRU), RNN – Long Short-Term Memory (LSTM), CNN & 
RNN – GRU (end-to-end), CNN & RNN – LSTM (end-to-
end), CNN & RNN – GRU (parallel) and CNN & RNN – 
LSTM (parallel). 

1) Convolutional Neural Network (CNN) 
CNN is a deep learning neural network designed for 

processing structured arrays of data and is particularly 
successful at learning patterns in the input arrays. Structurally, 
CNN is a feed-forward neural network, though what makes it 
unique is the hidden convolution layers within the network, 
which are stacked on top of each other and is able to 
progressively recognize more sophisticated patterns in the 
data. Convolutional layers are typically followed by a pooling 
layer, allowing the model to summarize the features generated 
by the convolutional layers and decreased the size of 
convolved feature map to reduce computational costs. 
Ultimately, these layers lead to a fully connected classification 
layer that utilizes the output from the convolution feature 
extraction process to predict the class of the original input 
based on the features extracted in previous layers, as shown in 
Fig.4. 

 
Fig. 4. Basic CNN Architecture 

2) Recurrent Neural Network (RNN) – Gated Recurrent 
Unit (GRU) 

RNN is a type of neural network that contains loops, 
allowing information to be stored within the network. Thus, 
RNNs have the ability to use reasoning from previous 
information along with those currently being processed to 
predict certain structures or upcoming events. Because of this, 
RNN is also most effective in processing sequential data for 
prediction.  

Its structure is different from the traditional feed-forward 
neural network (which has an input layer, hidden layers, and 
output layer) in that an additional loop is added to the neural 
network to pass prior information forward. Such a looping 
mechanism in RNN is what allows information to flow from 
one step in the data to the next. This information is known as 
the hidden state, as shown in Fig.5. 

 
Fig. 5. Basic Feed-Forward Neural Network and RNN Structure 

An RNN unit takes information from previous steps and 
the current input, as shown in Fig.6. 

 
Fig. 6. Basic RNN Unit Architecture with a tanh Activation Function 

To train an RNN network it is backpropagated through 
time, and at each step, the gradient is calculated, which 
updates the weights in the network. If the effect of the previous 
layer on the current layer is small then the gradient value will 
also be small. However, this makes the gradients shrink 
exponentially as backpropagation occurs, which might be too 
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such that it will have essentially no effect on weight updates. 
Due to this, the network would have difficulty learning from 
the effects of earlier inputs, causing what is referred to as the 
vanishing gradient problem. GRU is a specialized version of 
RNN to overcome this problem, making use of memory cells 
to store the activation value of previous information in a long 
sequence. Gates thus are used to control the flow of 
information in the network by learning which inputs in the 
sequence are important and storing their information in the 
memory unit. Therefore, they can pass information in long 
sequences and the network can use them to make predictions.  

Specifically, there are 2 gates inside a GRU unit: the reset 
gate (rₜ) and the update gate (zₜ). The reset gate is used to 
decide whether the previous cell state is important or not, and 
the update gate decides if a cell state should be updated with 
the candidate state (cₜ). The candidate state is simply the 
activation value from the current input in the sequence. The 
final state (cᵗ) is thus dependent on the update gate as it may 
or may not be updated with the candidate state, as shown in 
Fig.7. 

 
Fig. 7. Basic GRU Unit Architecture 

3) RNN – Long Short-Term Memory (LSTM) 
LSTM is another approach for RNN to solve the vanishing 

gradient problem. It has the same workflow as GRU but the 
difference is the operations performed in the unit. Each LSTM 
unit contains 2 gates: the forget gate (fₜ) and output gate (oₜ) 
instead of the reset gate. The forget gate controls what is being 
kept or forgotten from all previous cell states, and the output 
gate controls which parts of the cell are outputted to the hidden 
state, which determines the next hidden state, as shown in 
Fig.8. 

 
Fig. 8. Basic LSTM Unit Architecture 

4)  CNN & RNN – GRU (end-to-end) 
An RNN – GRU is connected end-to-end with a CNN 

network. First, the CNN extracts patterns through the data, 
then the GRU network predicts the final output using the 
sequential patterns in the input data.  

5) CNN & RNN – LSTM (end-to-end) 
The same as the above, except that the GRU network is 

replaced by the RNN – LSTM network. 

6) CNN & RNN – GRU (parallel) 
The input is processed by CNN, extracting major patterns 

within the data. At the same time, the input is also processed 
by RNN – GRU, analyzing the data sequentially. These 
outputs of these two networks are concatenated together and 
pass through a fully connected layer to determine the final 
prediction.  

7) CNN & RNN – LSTM (parallel) 
The same as the above, except that the GRU network is 

replaced by the RNN – LSTM network. 

C. Training and Testing Models 
The training and evaluation of the various models is 

performed using the PyTorch v1.10 machine learning 
framework built by Meta AI, and the entirety of the code is 
written and tested in the Python programming language using 
the PyCharm IDE. In addition, all of the processing, training, 
and evaluation of the machine learning models are run on an 
Nvidia GeForce RTX 3080 GPU using cloud GPUs hosted by 
Featurize.  

Repeat the following steps for each of the 7 models listed 
above and record the best results for each: 

a) Input and process the raw tri-axial acceleration data into 
sliding windows of a specified window length and stride 

b) Split the data into 80% - 20% for training and testing, 
respectively, as well as generate the relevant datasets 

c) Initialize and train the model using the training data and 
test for performance after each epoch and output the accuracy 
to the console for a total of 50-200 epochs 

d) Vary model properties including the kernel, kernel size, 
dropout rate, presence of batch normalization, hidden size, 
number of layers, whether or not bidirectional, and repeat step 
3 until the a relatively good combination for each model is 
found 

e) Record the maximum accuracy for each model  

Note: Through various testing, the optimal window length 
is determined to be 5 seconds and the window stride is 1 
second. This equates to 3864 training and 924 testing samples. 
The batch size is also set to be 256 samples. In addition, the 
best-performing optimizer and loss function is Adam and 
cross-entropy loss, respectively. For the optimizer, the 
learning rate is set to be 0.001. These properties will remain 
the same for all models trained and tested. 

III. RESULTS 

A. Scratch Detection 
Through continuously varying model properties and 

following the steps listed above, the model results were 
steadily improved until a relatively stable and good one was 
reached. The best performance of each model is measured by 
the accuracy of the model on a randomized test dataset, where 
accuracy is the number of correct classifications made by the 
model over all the test samples. 

Not only was each model tested on an overall randomized 
dataset with samples from each hand, each body part, each 
type of wrist-finger movement, the models were also tested on 
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their accuracy in specifically classifying different movements 
in terms of wrist-dominant, finger-dominant, or wrist & finger. 
Such test samples were generated by selecting the relevant 

samples (say, wrist-dominant movements) within the overall 
test dataset and testing them on the model again, but separately 
as a smaller test subset, as shown in Table I. 

TABLE I.  EACH MODEL’S OVERALL ACCURACY AND ACCURACY FOR EACH SPECIFIC MOVEMENT TYPE (MODEL IS TRAINED ON DATA COLLECTED FROM 
THIS INVESTIGATION’S DEVICE, CONTAINING EACH FINGER AND WRIST’S ACCELERATION DATA) 

Models Overall Accuracy 
Wrist-Dominant 

Movement 
Accuracy 

Finger-Dominant 
Movement 
Accuracy 

Wrist & Finger 
Movement 
Accuracy 

CNN 0.996 1 1 0.996 
RNN – GRU 0.702 0.473 0.371 0.367 

RNN – LSTM 0.694 0.303 0.25 0.292 
CNN & RNN – GRU (end-to-end) 0.54 0.25 0.208 0.212 

CNN & RNN – LSTM (end-to-end) 0.404 0.174 0.186 0.193 
CNN & RNN – GRU (parallel) 0.868 0.652 0.591 0.735 

CNN & RNN – LSTM (parallel) 0.839 0.792 0.777 0.864 

To further demonstrate the advantage of the method this 
investigation proposed over previous research utilizing wrist 
actigraphy, wrist acceleration was specifically isolated from 
the data collected previously and all the models were trained 

and tested on solely wrist acceleration data to perform scratch 
detection, simulating previous mainstream wrist actigraphy 
approaches, as shown in Table II. 

TABLE II.  EACH MODEL’S OVERALL ACCURACY AND ACCURACY FOR EACH SPECIFIC MOVEMENT TYPE (MODEL IS TRAINED ONLY ON WRIST DATA 
COLLECTED) 

Models Overall 
Accuracy 

Wrist-
Dominant 
Movement 
Accuracy 

Finger-
Dominant 
Movement 
Accuracy 

Wrist & Finger 
Movement 
Accuracy 

CNN 0.767 0.882 0.614 0.712 
RNN – GRU 0.484 0.235 0.186 0.242 

RNN – LSTM 0.413 0.299 0.189 0.227 
CNN & RNN – GRU (end-to-end) 0.26 0.186 0.152 0.152 

CNN & RNN – LSTM (end-to-end) 0.332 0.261 0.152 0.152 
CNN & RNN – GRU (parallel) 0.621 0.409 0.333 0.39 

CNN & RNN – LSTM (parallel) 0.66 0.617 0.326 0.557 

This investigation utilized various deep learning 
architectures to perform scratch detection. When the models 
are trained on finger and wrist acceleration data that is 
collected by this investigation’s device, overall accuracies 
were immediately improved for all models and accuracies for 
specific movements mostly improved. CNN, for example, saw 
its overall accuracy increase from 0.767 previously to 0.996 
after training on finger and wrist acceleration (table I, II), 
becoming the most accurate model in this investigation and 
this investigation’s final result. Its accuracies for detecting all 
movements (wrist-dominant, finger-dominant, wrist & finger) 
all increased significantly as well.  

IV. CONCLUSION

This investigation utilized various deep learning 
architectures to perform scratch detection. Overall, deep 
learning models proved to be significantly better than non-
deep learning models, such as SVM and RF, similar to those 
employed by most mainstream approaches. When the models 
are trained using this investigation’s device, the most accurate 
deep learning model, CNN, reached an overall accuracy of 
0.996 surpassing others, by a wide margin (Table I). CNN’s 
high accuracy might have resulted from the advantage of 
constantly learning patterns in the data and obtaining higher 
level information related to scratching movements. This 
observation is also true when the models are only trained on 
wrist acceleration data (simulating previous approaches), as 
CNN obtained an overall accuracy of 0.767, noticeably better 
than others (Table II), proving the potential of deep learning 
in scratch detection applications, especially CNN, which was 

not even explored in previous research. Hopefully, this project 
is able to provide more insights into the task of scratch 
detection, demonstrating the potential of deep learning models 
(including CNN, which had not been used before), usage of 
finger movement data alongside wrist movement acceleration, 
and new objective metrics to quantify scratch and itch severity. 
By identifying imperfections of previous research, this 
investigation is able to address them and propose a better 
method that allows medical professionals to accurately detect 
and monitor patient scratching activity; in doing they can not 
only appropriately assess patient condition and provide more 
effective treatments, but also to develop and test new therapies 
for pruritus-related diseases that will benefit millions of young 
children and adults. 
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