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Preface

In 2021, the third edition of our introductory book A Primer on Partial Least 
Squares Structural Equation Modeling (PLS-SEM) was published (Hair, Hult, 
Ringle, & Sarstedt, 2022). The book covers the latest developments in the field, 
including recent advances in model evaluation (e.g., inference testing in discrimi-
nant validity assessment, predictive power assessments using PLSpredict, and model 
comparisons), improved guidelines for minimum sample sizes, and new comple-
mentary methods and concepts such as necessary condition analysis and endoge-
neity. The book has been highly successful as evidenced in its citation count of 
more than 24,000 times according to Google Scholar (as of August 2021), and the 
translations into seven other languages, including in German (Hair et al., 2017), 
Italian (Hair et al., 2020), and Spanish (Hair et al., 2019). One of the book’s fea-
tures that has likely contributed to its popularity is our strong focus on pedagogical 
elements, most notably our reliance on a single running case study and the com-
mercial SmartPLS 3 software (Ringle, Wende, & Becker, 2015), which stands out 
due to its frictionless design, allowing novice researchers to quickly specify and 
estimate PLS path models (Memon et al., 2021; Sarstedt & Cheah, 2019).

While SmartPLS constitutes the most frequently used software to conduct PLS-
SEM analyses (Ghasemy, Teeroovengadum, Becker, & Ringle, 2020; Hair, Holling-
sworth, Randolph, & Chong. 2017; Usakli & Kucukergin 2018), research has brought 
forward several packages for the R environment such as csem (Rademaker et al., 
2020), SEMinR (Ray et al., 2021), and semPLS (Monecke & Leisch, 2012; Monecke 
& Leisch, 2013), whose use has recently gained traction. Among the R packages 
available on CRAN, Ray et  al.’s (2021) SEMinR package brings a particularly 
friendly syntax to creating and estimating structural equation models using func-
tions named appropriately for the facets of PLS path models that applied research-
ers are familiar with: “multi-item” versus “single-item,” “constructs,” “paths,” and so 
on. The package also gives users intuitive functions for generating higher-order con-
structs and interaction terms, the flexibility to quickly implement and insert their 
own extensions such as missing data imputation methods or visualizations, and gen-
erate reports and figures for research output. It was logical, therefore, to prepare a 
version of the book that shares the methodological concepts and also features the R 
software as a method for estimating PLS path models. This book caters this aim.

We designed the text as a workbook for readers who have already been exposed 
to PLS-SEM by reading textbooks (e.g., Hair et al., 2022; Henseler, 2021; Ramayah, 
Cheah, Chuah, Ting, & Memon, 2016; Mehmetoglu & Venturini, 2021; Wong, 
2019) or seminal articles (e.g., Chin, 1998; Hair, Ringle, & Sarstedt, 2011; Hair, 
Risher, Ringle, & Sarstedt, 2019; Henseler, Ringle, & Sinkovics, 2009; Sarstedt, 
Ringle, & Hair, 2022; Tenenhaus, Esposito Vinzi, Chatelin, & Lauro, 2005) on the 
method. Nevertheless, to enable readers with little background in PLS-SEM to 
quickly grasp the concepts, each chapter offers a concise overview of relevant top-
ics and metrics relevant for executing PLS-SEM and interpreting the results. 
Accompanied by a rich set of references for further reading, rules of thumb in 
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every chapter provide guidelines on best practices in the application of PLS-
SEM. The focus, however, is on the in-depth description of the case study, which 
gives readers the “how-tos” of using SEMinR to obtain solutions and to report 
their results. Correspondingly, the workbook puts less emphasis on aspects related 
to model design and measurement model specification but, instead, introduces the 
R environment and particularly the SEMinR package in detail.

Nevertheless, the workbook incorporates many of the new features that have 
been introduced in the third edition of the Primer on Partial Least Squares Struc-
tural Equation Modeling (PLS-SEM) (Hair et al., 2022) and offers unique con-
tents tailored to the SEMinR package. These include the following:

 5 An overview of the latest research on the nature of composite-based modeling, 
which is the conceptual foundation for PLS-SEM

 5 Details on the distinction between PLS-SEM and CB-SEM as well as the 
research goals and the model constellations, which are favorable toward the use 
of PLS-SEM

 5 Application of PLS-SEM with secondary (archival) data
 5 Guidelines for determining minimum sample sizes using the inverse square root 

method
 5 Detailed coverage of internal consistency reliability using rhoA and inference 

testing in discriminant validity assessment
 5 Latest research on bootstrapping settings and assessment
 5 Analyzing a model’s out-of-sample predictive power using the PLSpredict 

 procedure
 5 Metrics for model comparisons (e.g., the Bayesian information criterion)
 5 Coverage of the latest literature on PLS-SEM

All examples in the edition apply to the newest version of the SEMinR package, 
which is available free of charge in CRAN (7 https://CRAN. R- project. org/
package=seminr; see also 7 Chap. 3). The book chapters and learning support 
supplements are organized around the learning outcomes shown at the beginning 
of each chapter. Moreover, each chapter includes a single concise summary for the 
learning outcomes. The website 7 https://www. pls- sem. com includes a series of 
support materials to facilitate learning and applying the PLS-SEM method and 
using the SEMinR package.

Visit 7 https://www. pls- sem. com for access to R markdown documents, which 
weave together descriptions and code that can be easily copied into the R console.

Additionally, the PLS-SEM Academy (7 https://www. pls- sem- academy. com) 
offers video-based online courses based on this book. The courses include basic 
contents such as model specification and evaluation as well as advanced topics, 
including mediation, higher-order constructs, moderation, measurement invari-
ance, multigroup analysis, and nonlinear effects.

Besides several hours of online video material presented by world-renowned 
instructors, the PLS-SEM Academy provides comprehensive lecturing slides that 
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illustrate all analyses step-by-step. While the case study descriptions draw on the 
SmartPLS software, the concepts are fully applicable to the R software-based anal-
yses using the SEMinR package. Registered users can claim course certificates after 
successful completion of each end of section exam.

Discounted PLS-SEM Academy Access

The PLS-SEM Academy offers all owners of  this book a 15% discount on the 
purchase of  access to its course offerings. All you have to do is send a photo of 
yourself  with the book in your hand, your name and address to the e-mail address 
support@pls- sem- academy.com. A short time later you will receive a 15% discount 
code which you can use on the website 7 https://www. pls- sem- academy. com. We 
hope you enjoy perfecting your PLS-SEM skills with the help of  these courses and 
wish you every success in obtaining the certificates.

We would like to acknowledge the many insights and suggestions provided by the 
colleagues, students, and PLS-SEM users worldwide. Most notably, we thank 
Nicole Beachum (University of Alabama, Birmingham), Jan-Michael Becker (BI 
Norwegian Business School), Zakariya Belkhamza (Ahmed Bin Mohammed Mili-
tary College), Charla Brown (Troy University), Roger Calantone (Michigan State 
University), Fabio Cassia (University of Verona), Gabriel Cepeda Carrión (Uni-
versity of Seville), Jacky Jun Hwa Cheah (Universiti Putra Malaysia), Adamantios 
Diamantopoulos (University of Vienna), Markus Eberl (Kantar), George Franke 
(University of Alabama), Anne Gottfried (University of Texas, Arlington), Sieg-
fried P. Gudergan (University of Waikato), Saurabh Gupta (Kennesaw State Uni-
versity), Karl-Werner Hansmann (University of Hamburg), Dana Harrison (East 
Tennessee State University), Sven Hauff (Helmut Schmidt University), Mike Hol-
lingsworth (Old Dominion University), Philip Holmes (Pensacola Christian Col-
lege), Chris Hopkins (Auburn University), Lucas Hopkins (Florida State 
University), Maxwell K.  Hsu (University of Wisconsin), Heungsun Hwang 
(McGill University), Ida Rosnita Ismail (Universiti Kebangsaan Malaysia), April 
Kemp (Southeastern Louisiana University), David Ketchen (Auburn University), 
Ned Kock (Texas A&M University), Marcel Lichters (TU Chemnitz), Benjamin 
Liengaard (Aarhus University), Chein-Hsin Lin (Da-Yeh University), Yide Liu 
(Macau University of Science and Technology), Francesca Magno (University of 
Bergamo), Lucy Matthews (Middle Tennessee State University), Jay Memmott 
(University of South Dakota), Mumtaz Ali Memon (NUST Business School), 
Adam Merkle (University of South Alabama), Ovidiu I. Moisescu (Babeş-Bolyai 
University), Zach Moore (University of Louisiana at Monroe), Arthur Money 
(Henley Business School), Christian Nitzl (Universität der Bundeswehr München), 
Torsten Pieper (University of North Carolina), Dorian Proksch (University of 
Twente), Lacramioara Radomir (Babeş-Bolyai University), Arun Rai (Georgia 
State University), Sascha Raithel (Freie Universität Berlin), S. Mostafa Rasooli-
manesh (Taylor’s University), Lauren Rich (University of West Florida), Nicole 

Preface

support@pls-sem-academy.com
https://www.pls-sem-academy.com


VIII

Richter (University of Southern Denmark), Edward E.  Rigdon (Georgia State 
University), Jeff  Risher (Southeastern Oklahoma University), José Luis Roldán 
(University of Seville), Amit Saini (University of Nebraska-Lincoln), Phillip 
Samouel (University of Kingston), Francesco Scafarto (University of Rome “Tor 
Vergata”), Bruno Schivinski (University of London), Rainer Schlittgen (Univer-
sity of Hamburg), Manfred Schwaiger (Ludwig-Maximillians University), 
 Pratyush N. Sharma (University of Alabama), Wen-Lung Shiau (Zhejiang Univer-
sity of Technology), Galit Shmueli (National Tsing Hua University), Donna Smith 
(Ryerson University), Toni M. Somers (Wayne State University), Detmar W. Straub 
(Georgia State University), Ramayah Thurasamy (Universiti Sains Malaysia), 
Hiram Ting (UCSI University), Ron Tsang (Agnes Scott College), Huiwen Wang 
(Beihang University), Sven Wende (SmartPLS GmbH), Anita Whiting (Clayton 
State University), David Williams (Dalton State University), and Lea Witta (Uni-
versity of Central Florida) for their helpful remarks.

Also, we thank the team of doctoral student and research fellows at Hamburg 
University of Technology and Otto-von-Guericke University Magdeburg—
namely, Michael Canty, Svenja Damberg, Lena Frömbling, Frauke Kühn, Benja-
min Maas, Mandy Pick, and Martina Schöniger—for their kind support. In 
particular, we would like to thank Susanne Adler who translated the book contents 
into R markdown documents, available on 7 https://www.pls-sem.net. In addition, 
at Springer we thank Ruth Milewski and Prashanth Mahagaonkar for their sup-
port and great work. We hope the R software version of our book will expand 
knowledge of the capabilities and benefits of PLS-SEM to a much broader group 
of researchers and practitioners. Lastly, if  you have any remarks, suggestions, or 
ideas to improve this book, please get in touch with us. We appreciate any feedback 
on the book’s concept and contents!

Visit the companion site for this book at 7 https://www. pls- sem. com.

Joseph F. Hair Jr.
Mobile, AL, USA

G. Tomas M. Hult
East Lansing, MI, USA

Christian M. Ringle
Hamburg, Germany

Marko Sarstedt
Magdeburg, Germany
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Learning Objectives
After reading this chapter, you should:
 1. Understand the principles of structural equation modeling (SEM)
 2. Describe the basic elements of a structural equation model
 3. Comprehend the basic concepts of partial least squares structural equation 

modeling (PLS-SEM)
 4. Explain the differences between covariance-based structural equation modeling 

(CB-SEM) and PLS-SEM and when to use each of the approaches

1.1  What Is Structural Equation Modeling?

First-generation multivariate data analysis techniques, such as multiple regression, 
logistic regression, and analysis of variance, belong to the core set of statistical 
methods employed by researchers to empirically test hypothesized relationships 
between variables of interest. Numerous researchers in various scientific disciplines 
have applied these methods to generate findings that have significantly shaped the 
way we see the world today. These techniques have three important limitations in 
common, namely (1) the postulation of a simple model structure, (2) requiring that 
all variables can be considered observable, and (3) the assumption that all variables 
are measured without error (Haenlein & Kaplan, 2004).

With regard to the first limitation, multiple regression analysis and its exten-
sions postulate a simple model structure involving one layer of dependent and 
independent variables. Causal chains, such as “A leads to B leads to C” or more 
complex nomological networks involving a large number of intervening variables, 
can only be estimated piecewise with these methods rather than simultaneously, 
which can have severe consequences for the quality of the results (Sarstedt, Hair, 
Nitzl, Ringle, & Howard, 2020).

With regard to the second limitation, regression-type methods are restricted to 
processing observable variables, such as age or sales (in units or dollars). Theoretical 
concepts, which are “abstract, unobservable properties or attributes of a social unit 
of entity” (Bagozzi & Philipps, 1982, p. 465), can only be considered after prior 
stand-alone validation by means of, for example, a confirmatory factor analysis 
(CFA). The ex post inclusion of measures of theoretical concepts, however, comes 
with various shortcomings.

With regard to the third limitation and related to the previous point, one has to 
bear in mind that each observation of the real world is accompanied by a certain 
degree of measurement error, which can be systematic or random. First-generation 
techniques are, strictly speaking, only applicable when measured variables contain 
neither systematic nor random error. This situation is, however, rarely encountered 
in reality, particularly when the aim is to estimate relationships among measures of 
theoretical concepts. Since the social sciences, and many other fields of scientific 
inquiry, routinely deal with theoretical concepts, such as perceptions, attitudes, and 
intentions, these limitations of first-generation techniques are fundamental.

1.1 · What Is Structural Equation Modeling?
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To overcome these limitations, researchers have increasingly been turning to 

second-generation techniques. These methods, referred to as structural equation 
modeling (SEM), enable researchers to simultaneously model and estimate com-
plex relationships among multiple dependent and independent variables. The con-
cepts under consideration are typically unobservable and measured indirectly by 
multiple indicators. In estimating the relationships, SEM accounts for measure-
ment error in observed variables. As a result, the method obtains a more precise 
measurement of the theoretical concepts of interest (Cole & Preacher, 2014). We 
will discuss these aspects in the following sections in greater detail.

Two popular methods dominate SEM in practice: covariance-based SEM (CB- 
SEM) and partial least squares SEM (PLS-SEM, also called PLS path modeling). 
CB-SEM is primarily used to confirm (or reject) theories and their underlying 
hypotheses. This approach confirms/rejects hypotheses by determining how closely 
a proposed theoretical model can reproduce the covariance matrix for an observed 
sample dataset. In contrast, PLS has been introduced as a “causal–predictive” 
approach to SEM (Jöreskog & Wold, 1982, p. 270), which focuses on explaining the 
variance in the model’s dependent variables (Chin et al., 2020).

PLS-SEM is evolving rapidly as a statistical modeling technique. Over the last 
few decades, there have been numerous introductory articles on this methodology 
(e.g., Chin, 1998; Haenlein & Kaplan, 2004; Hair et al., 2020; Hair, Howard, & 
Nitzl, 2020; Hair, Risher, Sarstedt, & Ringle, 2019; Nitzl & Chin, 2017; Rigdon, 
2013; Roldán & Sánchez-Franco, 2012; Tenenhaus, Esposito Vinzi, Chatelin, & 
Lauro, 2005; Wold, 1985) as well as review articles examining how researchers 
across different disciplines have used the method (. Table  1.1). In light of the 
increasing maturation of the field, researchers have also started exploring the 
knowledge infrastructure of methodological research on PLS-SEM by analyzing 
the structures of authors, countries, and co-citation networks (Hwang, Sarstedt, 
Cheah, & Ringle, 2020; Khan et al., 2019).

The remainder of this chapter first provides a brief  introduction of measure-
ment and structural theory as a basis for presenting the PLS-SEM method. In 
describing the PLS-SEM method’s characteristics, we also discuss distinguishing 
features vis-à-vis CB-SEM.  Finally, we outline considerations when using PLS- 
SEM and highlight situations that favor its use compared to CB-SEM.

1.2  Principles of Structural Equation Modeling

1.2.1  Path Models with Latent Variables

Path models are diagrams used to visually display the hypotheses and variable rela-
tionships that are examined when SEM is applied (Hair, Page, & Brunsveld, 2020; 
Hair, Ringle, & Sarstedt, 2011). An example of a path model is shown in . Fig. 1.1.

Constructs (i.e., variables that are not directly measurable), also referred to as 
latent variables, are represented in path models as circles or ovals (Y1 to Y4). The 
indicators, also called items or manifest variables, are the directly measured vari-

 Chapter 1 · An Introduction to Structural Equation Modeling
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       . Table 1.1 Review articles on the use of  PLS-SEM

Disciplines References

Accounting Lee, Petter, Fayard, and Robinson (2011)
Nitzl (2016)

Construction management Zeng, Liu, Gong, Hertogh, and König (2021)

Entrepreneurship Manley, Hair, Williams, and McDowell (2020)

Family business Sarstedt, Ringle, Smith, Reams, and Hair (2014)

Higher education Ghasemy, Teeroovengadum, Becker, & Ringle, (2020)

Hospitality and tourism Ali, Rasoolimanesh, Sarstedt, Ringle, and Ryu (2018)
do Valle, P. O.,, and Assaker, G. (2016)
Usakli and Kucukergin (2018)

Human resource management Ringle et al. (2020)

International business research Richter, Sinkovics, Ringle, and Schlägel (2016)

Knowledge management Cepeda Carrión, Cegarra-Navarro, and Cillo (2019)

Management Hair, Sarstedt, Pieper, and Ringle (2012)

Marketing Hair, Sarstedt, Ringle, and Mena (2012)

Management information systems Hair, Hollingsworth, Randolph, and Chong (2017)
Ringle et al. (2012)

Operations management Bayonne, Marin-Garcia, and Alfalla-Luque (2020)
Peng and Lai (2012)

Psychology Willaby, Costa, Burns, MacCann, and Roberts (2015)

Software engineering Russo and Stol (2021)

Supply chain management Kaufmann and Gaeckler (2015)

Source: Hair, Hult, Ringle, & Sarstedt (2022), Chap. 1; used with permission by Sage

ables that contain the raw data. They are represented in path models as rectangles 
(x1 to x10). Relationships between constructs, as well as between constructs and 
their assigned indicators, are depicted as arrows. In PLS-SEM, the arrows are 
always single headed, thus representing directional relationships. Single-headed 
arrows are considered predictive relationships and, with strong theoretical support, 
can be interpreted as causal relationships.

A PLS path model consists of two elements. First, there is a structural model 
(also called the inner model in the context of PLS-SEM) that links together the 
constructs (circles or ovals). The structural model also displays the relationships 
(paths) between the constructs. Second, there are the measurement models (also 
referred to as the outer models in PLS-SEM) of the constructs that display the 
relationships between the constructs and the indicator variables (rectangles). In 
. Fig.  1.1, there are two types of measurement models: one for the exogenous 
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Y 1

Y 2

Y 3x2

x3

x1

x5

x6

x4

Measurement model/outer model
of exogenous latent variables

Measurement model/outer model
of endogenous latent variables

Structural model/inner model 

x8

x9

x7

Y 4 x10

z 3

z 4

e7

e8

e9

       . Fig. 1.1 A simple path model. (Source: Hair et al., 2022, Chap. 1; used with permission by Sage)

latent variables (i.e., those constructs that only explain other constructs in the 
model) and one for the endogenous latent variables (i.e., those constructs that are 
being explained in the model). Rather than referring to measurement models of 
exogenous and endogenous latent variables, researchers often refer to the measure-
ment model of one specific latent variable. For example, x1 to x3 are the indicators 
used in the measurement model of Y1, while Y4 only includes the x10 indicator in 
the measurement model.

The error terms (e.g., e7 or e8; . Fig. 1.1) are connected to the (endogenous) 
constructs and (reflectively) measured variables by single-headed arrows. Error 
terms represent the unexplained variance when path models are estimated (i.e., the 
difference between the model’s in-sample prediction of a value and an observed 
value of a manifest or latent variable). Error terms e7 to e9 in . Fig. 1.1 are con-
nected to those indicators whose relationships point from the construct (Y3) to the 
indicators (i.e., reflectively measured indicators).

In contrast, the formatively measured indicators x1 to x6, where the relationship 
goes from the indicator to the construct (Y1 and Y2), do not have error terms 
(Sarstedt, Hair, Ringle, Thiele, & Gudergan, 2016). Finally, for the single-item con-
struct Y4, the direction of the relationships between the construct and the indicator 
is not relevant, as construct and item are equivalent. For the same reason, there is 
no error term connected to x10. The structural model also contains error terms. In 
. Fig. 1.1, z3 and z4 are associated with the endogenous latent variables Y3 and Y4 
(note that error terms on constructs and measured variables are labeled differ-
ently). In contrast, the exogenous latent variables (Y1 and Y2) that only explain 
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other latent variables in the structural model do not have an error term, regardless 
of whether they are specified reflectively or formatively.

1.2.2  Testing Theoretical Relationships

Path models are developed based on theory and are often used to test theoretical 
relationships. Theory is a set of systematically related hypotheses developed fol-
lowing the scientific method that can be used to explain and predict outcomes. 
Thus, hypotheses are individual conjectures, whereas theories are multiple hypoth-
eses that are logically linked together and can be tested empirically. Two types of 
theory are required to develop path models: measurement theory and structural 
theory. Measurement theory specifies which indicators and how these are used to 
measure a certain theoretical concept. In contrast, structural theory specifies how 
the constructs are related to one another in the structural model.

Testing theory using PLS-SEM follows a two-step process (Hair, Black, Babin, 
& Anderson, 2019). We first test the measurement theory to confirm the reliability 
and validity of the measurement models. After the measurement models are con-
firmed, we move on to testing the structural theory. The logic is that we must first 
confirm the measurement theory before testing the structural theory, because 
structural theory cannot be confirmed if  the measures are unreliable or invalid.

1.2.3  Measurement Theory

Measurement theory specifies how the latent variables (constructs) are measured. 
Generally, there are two different ways to measure unobservable variables. One 
approach is referred to as reflective measurement, and the other is formative mea-
surement. Constructs Y1 and Y2 in . Fig.1.1 are modeled based on a formative 
measurement model. Note that the directional arrows are pointing from the indica-
tor variables (x1 to x3 for Y1 and x4 to x6 for Y2) to the construct, indicating a pre-
dictive (causal) relationship in that direction.

In contrast, Y3 in . Fig.  1.1 is modeled based on a reflective measurement 
model. With reflective indicators, the direction of the arrows is from the construct 
to the indicator variables, indicating the assumption that the construct “causes” the 
measurement (more precisely, the covariation) of the indicator variables. As indi-
cated in . Fig. 1.1, reflective measures have an error term associated with each 
indicator, which is not the case with formative measures. The latter are assumed to 
be error- free (Diamantopoulos, 2006). Finally, note that Y4 is measured using a 
single item rather than multi-item measures. Therefore, the relationship between 
construct and indicator is undirected.

Deciding whether to measure the constructs reflectively versus formatively and 
whether to use multiple items or a single-item measure is fundamental when devel-
oping path models. Hair, Hult, Ringle, and Sarstedt (2022; Chap. 2) explain these 
approaches to modeling constructs in more detail.

1.2 · Principles of Structural Equation Modeling
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1.2.4  Structural Theory

Structural theory shows how the latent variables are related to one another (i.e., it 
shows the constructs and their path relationships in the structural model). The 
location and sequence of the constructs are either based on theory or the research-
er’s experience and accumulated knowledge or both. When path models are devel-
oped, the sequence is from left to right. The variables on the left side of the path 
model are independent variables, and any variable on the right side is a dependent 
variable. Moreover, variables on the left are shown as sequentially preceding and 
predicting the variables on the right. However, when variables are in the middle of 
the path model (between the variables that serve only as independent or dependent 
variables – Y3; . Fig. 1.1), they serve as both independent and dependent variables 
in the structural model.

When latent variables only serve as independent variables, they are called exog-
enous latent variables (Y1 and Y2). When latent variables only serve as dependent 
variables (Y4) or as both independent and dependent variables (Y3), they are called 
endogenous latent variables (. Fig. 1.1). Any latent variable that has only single-
headed arrows going out of it is an exogenous latent variable. In contrast, endog-
enous latent variables can have either single-headed arrows going both into and out 
of them (Y3) or only going into them (Y4). Note that the exogenous latent variables 
Y1 and Y2 do not have error terms, since these constructs are the entities (indepen-
dent variables) that are explaining the dependent variables in the path model.

1.3  PLS-SEM and CB-SEM

There are two main approaches to estimating the relationships in a structural equa-
tion model (Hair et al., 2011; Hair, Black, et al., 2019). One is CB-SEM, and the 
other is PLS-SEM, the latter being the focus of this book. Each is appropriate for 
a different research context, and researchers need to understand the differences in 
order to apply the correct method (Marcoulides & Chin, 2013; Rigdon, Sarstedt, 
& Ringle, 2017). Finally, some researchers have argued for using regressions based 
on sum scores, instead of some type of indicator weighting as is done by PLS- 
SEM. The sum scores approach offers practically no value compared to the PLS- 
SEM weighted approach and in fact can produce erroneous results (Hair et al., 
2017). For this reason, in the following sections, we only briefly discuss sum scores 
and instead focus on the PLS-SEM and CB-SEM methods.

A crucial conceptual difference between PLS-SEM and CB-SEM relates to the 
way each method treats the latent variables included in the model. CB-SEM repre-
sents a common factor-based SEM method that considers the constructs as com-
mon factors that explain the covariation between its associated indicators. This 
approach is consistent with the measurement philosophy underlying reflective 
measurement, in which the indicators and their covariations are regarded as mani-
festations of the underlying construct. In principle, CB-SEM can also accommo-
date formative measurement models, even though the method follows a common 
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factor model estimation approach. To estimate this model type, however, research-
ers must follow rules that require specific constraints on the model to ensure model 
identification (Bollen & Davies, 2009; Diamantopoulos & Riefler, 2011), which 
means that the method can calculate estimates for all model parameters. As Hair, 
Sarstedt, Ringle, and Mena (2012, p. 420) note, “[t]hese constraints often contra-
dict theoretical considerations, and the question arises whether model design 
should guide theory or vice versa.”

PLS-SEM, on the other hand, assumes the concepts of interest can be mea-
sured as composites (Jöreskog & Wold, 1982), which is why PLS is considered a 
composite-based SEM method (Hwang et  al., 2020). Model estimation in PLS-
SEM involves linearly combining the indicators of a measurement model to form 
composite variables. The composite variables are assumed to be comprehensive 
representations of the constructs, and, therefore, valid proxies of the conceptual 
variables being examined (e.g., Hair & Sarstedt, 2019). The composite-based 
approach is consistent with the measurement philosophy underlying formative 
measurement, but this does not imply that PLS-SEM is only capable of estimating 
formatively specified constructs. The reason is that the estimation perspective (i.e., 
forming composites to represent conceptual variables) should not be confused with 
the measurement theory perspective (i.e., specifying measurement models as reflec-
tive or formative). The way a method like PLS-SEM estimates the model parame-
ters needs to be clearly distinguished from any measurement theoretical 
considerations on how to operationalize constructs (Sarstedt et  al., 2016). 
 Researchers can include reflectively and formatively specified measurement models 
that PLS-SEM can straightforwardly estimate.

In following a composite-based approach to SEM, PLS relaxes the strong 
assumption of CB-SEM that all of the covariation between the sets of indicators is 
explained by a common factor (Henseler et al., 2014; Rigdon, 2012; Rigdon et al., 
2014). At the same time, using weighted composites of indicator variables facili-
tates accounting for measurement error, thus making PLS-SEM superior com-
pared to multiple regression using sum scores, where each indicator is weighted 
equally.

It is important to note that the composites produced by PLS-SEM are not 
assumed to be identical to the theoretical concepts, which they represent. They are 
explicitly recognized as approximations (Rigdon, 2012). As a consequence, some 
scholars view CB-SEM as a more direct and precise method to empirically measure 
theoretical concepts (e.g., Rönkkö, McIntosh, & Antonakis, 2015), while PLS- 
SEM provides approximations. Other scholars contend, however, that such a view 
is quite shortsighted, since common factors derived in CB-SEM are also not neces-
sarily equivalent to the theoretical concepts that are the focus of the research 
(Rigdon, 2012; Rigdon et al., 2017; Rossiter, 2011; Sarstedt et al., 2016). Rigdon, 
Becker, and Sarstedt (2019a) show that common factor models can be subject to 
considerable degrees of metrological uncertainty. Metrological uncertainty refers 
to the dispersion of the measurement values that can be attributed to the object or 
concept being measured (JCGM/WG1, 2008). Numerous sources contribute to 
metrological uncertainty such as definitional uncertainty or limitations related to 
the measurement scale design, which go well beyond the simple standard errors 
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produced by CB-SEM analyses (Hair & Sarstedt, 2019). As such, uncertainty is a 
validity threat to measurement and has adverse consequences for the replicability 
of study findings (Rigdon, Sarstedt, & Becker, 2020). While uncertainty also 
applies to composite-based SEM, the way researchers treat models in CB-SEM 
analyses typically leads to a pronounced increase in uncertainty (Rigdon & 
Sarstedt, 2021). More precisely, in an effort to improve model fit, researchers typi-
cally reduce the number of indicators per construct, which in turn increases uncer-
tainty (Hair, Matthews, Matthews, & Sarstedt, 2017; Rigdon et al., 2019a). These 
issues do not necessarily imply that composite models are superior, but they cast 
considerable doubt on the assumption of some researchers that CB-SEM consti-
tutes the gold standard when measuring unobservable concepts. In fact, research-
ers in various fields of science show increasing appreciation that common factors 
may not always be the right approach to measure concepts (e.g., Rhemtulla, van 
Bork, & Borsboom, 2020; Rigdon, 2016). Similarly, Rigdon, Becker, and Sarstedt 
(2019b) show that using sum scores can significantly increase the degree of metro-
logical uncertainty, which questions this measurement practice.

Apart from differences in the philosophy of measurement, the differing treat-
ment of latent variables and, more specifically, the availability of construct scores 
also have consequences for the methods’ areas of application. Specifically, while it 
is possible to estimate latent variable scores within a CB-SEM framework, these 
estimated scores are not unique. That is, an infinite number of different sets of 
latent variable scores that will fit the model equally well are possible. A crucial 
consequence of this factor (score) indeterminacy is that the correlations between a 
common factor and any variable outside the factor model are themselves indeter-
minate (Guttman, 1955). That is, they may be high or low, depending on which set 
of factor scores one chooses. As a result, this limitation makes CB-SEM grossly 
unsuitable for prediction (e.g., Dijkstra, 2014; Hair & Sarstedt, 2021). In contrast, 
a major advantage of PLS-SEM is that it always produces a single specific (i.e., 
determinate) score for each composite of each observation, once the indicator 
weights/loadings are established. These determinate scores are proxies of the theo-
retical concepts being measured, just as factors are proxies for the conceptual vari-
ables in CB-SEM (Rigdon et al., 2017; Sarstedt et al., 2016).

Using these proxies as input, PLS-SEM applies ordinary least squares regres-
sion with the objective of minimizing the error terms (i.e., the residual variance) of 
the endogenous constructs. In short, PLS-SEM estimates coefficients (i.e., path 
model relationships) with the goal of maximizing the R2 values of the endogenous 
(target) constructs. This feature achieves the (in-sample) prediction objective of 
PLS-SEM (Hair & Sarstedt, 2021), which is therefore the preferred method when 
the research objective is theory development and explanation of variance (predic-
tion of the constructs). For this reason, PLS-SEM is also regarded a variance-
based SEM approach. Specifically, the logic of the PLS-SEM approach is that all 
of the indicators’ variance should be used to estimate the model relationships, with 
particular focus on prediction of the dependent variables (e.g., McDonald, 1996). 
In contrast, CB- SEM divides the total variance into three types – common, unique, 
and error variance – but utilizes only common variance (i.e., the variance shared 
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with other indicators in the same measurement model) for the model estimation 
(Hair, Black, et al., 2019). That is, CB-SEM only explains the covariation between 
measurement and structural model indicators (Jöreskog, 1973) and does not focus 
on predicting dependent variables (Hair, Matthews, et al., 2017).

 ! Attention
PLS-SEM is similar but not equivalent to PLS regression, another popular multi-
variate data analysis technique (Abdi, 2010; Wold, Sjöström, & Eriksson, 2001). 
PLS regression is a regression-based approach that explores the linear relation-
ships between multiple independent variables and a single or multiple dependent 
variable(s). PLS regression differs from regular regression, however, because, in 
developing the regression model, the method derives composite factors from the 
multiple independent variables by means of  principal component analysis. PLS- 
SEM, on the other hand, relies on prespecified networks of  relationships between 
constructs as well as between constructs and their measures (see Mateos-Aparicio, 
2011, for a more detailed comparison between PLS-SEM and PLS regression).

1.4  Considerations When Applying PLS-SEM

1.4.1  Key Characteristics of the PLS-SEM Method

Several considerations are important when deciding whether or not to apply PLS- 
SEM. These considerations also have their roots in the method’s characteristics. 
The statistical properties of the PLS-SEM algorithm have important features asso-
ciated with the characteristics of the data and model used. Moreover, the proper-
ties of the PLS-SEM method affect the evaluation of the results. Four critical 
issues are relevant to the application of PLS-SEM (Hair et al., 2011; Hair, Risher, 
et al., 2019): (1) data characteristics, (2) model characteristics, (3) model estima-
tion, and (4) model evaluation. . Table 1.2 summarizes the key characteristics of 
the PLS-SEM method. An initial overview of these issues is provided in this chap-
ter. For a more detailed explanation, see Hair et al. (2022).

PLS-SEM works efficiently with small sample sizes and complex models 
(Cassel, Hackl, & Westlund, 1999; Hair, Sarstedt, & Ringle, 2019). In addition, 
different from maximum likelihood-based CB-SEM, which requires normally dis-
tributed data, PLS-SEM makes no distributional assumptions (i.e., it is nonpara-
metric). PLS-SEM can easily handle reflective and formative measurement models, 
as well as single-item constructs, with no identification problems. It can therefore 
be applied in a wide variety of research situations. When applying PLS-SEM, 
researchers also benefit from high efficiency in parameter estimation, which is 
manifested in the method’s greater statistical power in comparison to that of 
CB-SEM. Greater statistical power means that PLS-SEM is more likely to render 
a specific relationship significant when it is in fact present in the population. The 
same holds for the comparison with regression using sum score data, which is also 
characterized by lower statistical power than PLS-SEM (Hair, Hollingsworth, 
et al., 2017).
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1        . Table 1.2 Key characteristics of  PLS-SEM

Data characteristics

Sample size    No identification issues with small sample sizes
   Achieves high levels of statistical power with small sample sizes
   Larger sample sizes increase the precision (i.e., consistency) of 

PLS-SEM estimations

Distribution    No distributional assumptions; PLS-SEM is a nonparametric method
   Influential outliers and collinearity may influence the results

Missing values    Highly robust as long as missing values are below a reasonable level 
(less than 5%)

Scale of measure-
ment

   Works with metric data and quasi-metric (ordinal) scaled variables
   The standard PLS-SEM algorithm accommodates binary-coded 

variables, but additional considerations are required when they are 
used as control variables and moderators and in the analysis of data 
from discrete choice experiments

Model characteristics

Number of items in 
each construct’s 
measurement model

   Handles constructs measured with single- and multi-item measures

Relationships 
between constructs 
and their indicators

   Easily incorporates reflective and formative measurement models

Model complexity    Handles complex models with many structural model relationships

Model setup    No causal loops (no circular relationships) are allowed in the 
structural model

Model estimation

Objective    Aims at maximizing the amount of unexplained variance in the 
dependent measures (i.e., the R2 values)

Efficiency    Converges after a few iterations (even in situations with complex 
models and/or large sets of data) to the optimum solution (i.e., the 
algorithm is very efficient)

Nature of 
constructs

   Viewed as proxies of the latent concept under investigation, 
represented by composites

Construct scores    Estimated as linear combinations of their indicators (i.e., they are 
determinate)

   Used for predictive purposes
   Can be used as input for subsequent analyses
   Not affected by data limitations and inadequacies

Parameter estimates    Structural model relationships are generally underestimated, and 
measurement model relationships are generally overestimated compared 
to solutions obtained using data from common factor models

   Unbiased and consistent when estimating data from composite models
   High levels of statistical power compared to alternative methods, such 

as CB-SEM and multiple regression with sum scores
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       . Table 1.2 (continued)

Model evaluation

Evaluation of the 
overall model

   The concept of fit – as defined in CB-SEM – does not apply to 
PLS-SEM. Efforts to introduce model fit measures have generally 
proven unsuccessful

Evaluation of the 
measurement 
models

   Reflective measurement models are assessed on the grounds of 
indicator reliability, internal consistency reliability, convergent 
validity, and discriminant validity

   Formative measurement models are assessed on the grounds of 
convergent validity, indicator collinearity, and the significance and 
relevance of indicator weights

Evaluation of the 
structural model

   Collinearity among sets of predictor constructs
   Significance and relevance of path coefficients
   Criteria available to assess the model’s in-sample (i.e., explanatory) 

power and out-of-sample predictive power (PLSpredict)

Additional analyses Methodological research has substantially extended the original 
PLS-SEM method by introducing advanced modeling, assessment, and 
analysis procedures. Some examples include:
   Confirmatory tetrad analysis
   Confirmatory composite analysis
   Discrete choice modeling
   Endogeneity assessment
   Higher-order constructs
   Latent class analysis
   Measurement model invariance
   Mediation analysis
   Model selection
   Moderating effects, including moderated mediation
   Multigroup analysis
   Necessary condition analysis
   Nonlinear effects

Source: Adapted and extended from Hair et al. (2011). Copyright © 2011 by M.E. Sharpe, 
Inc. Reprinted by permission of  the publisher (Taylor & Francis Ltd., 7 http://www. 
tandfonline. com)

There are, however, several limitations of PLS-SEM. In its basic form, the tech-
nique cannot be applied when structural models contain causal loops or circular 
relationships between the latent variables (i.e., non-recursive models). Early exten-
sions of the basic PLS-SEM algorithm that have not yet been implemented in stan-
dard PLS-SEM software packages, however, enable the handling of circular 
relationships (Lohmöller, 1989). Furthermore, since PLS-SEM does not have an 
established global goodness-of-fit measure, its use for theory testing and confirma-
tion is more limited in certain situations. Recent research has attempted to promote 
common goodness-of-fit measures within a PLS-SEM framework (Schuberth, 
Henseler, & Dijkstra, 2018) but with very limited success. The concept of model 
fit – as defined in CB-SEM – is not applicable to PLS-SEM because of the methods’ 
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different functioning principles (Hair, Sarstedt, & Ringle, 2019). Instead, PLS- 
SEM- based model estimation and assessment follow a causal–predictive paradigm, 
in which the objective is to test the predictive power of a model, derived from the-
ory and logic. As such, the method strikes a balance between machine learning 
methods, which are fully predictive in nature and CB-SEM, which focuses on 
 confirmation and model fit (Richter, Cepeda Carrión, Roldán, & Ringle, 2016). Its 
causal–predictive nature makes PLS-SEM particularly appealing for research in 
fields that aim to derive recommendations for practice. For example, recommenda-
tions in managerial implication sections in business research journals always include 
predictive statements (“our results suggest that managers should…”). Making such 
statements requires a prediction focus on model estimation and evaluation (Sarstedt 
& Danks, 2021). PLS-SEM perfectly emphasizes this need as the method sheds 
light on the mechanisms (i.e., the structural model relationships) through which the 
predictions are generated (Hair, 2020; Hair & Sarstedt, 2019, 2021).

In early writing, researchers noted that PLS estimation is “deliberately approx-
imate” to factor-based SEM (Hui & Wold, 1982, p. 127), a characteristic previously 
referred to as the PLS-SEM bias (e.g., Chin, Marcolin, & Newsted, 2003). A num-
ber of studies have used simulations to demonstrate the alleged PLS-SEM bias 
(e.g., Goodhue, Lewis, & Thompson, 2012; McDonald, 1996; Rönkkö & Evermann, 
2013). According to prior research on the PLS-SEM bias, measurement model 
estimates are biased upward, whereas structural model estimates are biased down-
ward compared to CB-SEM results. The studies conclude that parameter estimates 
will approach what has been labeled the “true” parameter values when both the 
number of indicators per construct and sample size increase (Hui & Wold, 1982). 
However, all the abovementioned simulation studies used CB-SEM as the bench-
mark against which the PLS-SEM estimates were evaluated with the assumption 
that they should be the same. Because PLS-SEM is a composite-based approach, 
which uses the total variance to estimate parameters, differences can be expected in 
such an assessment (Lohmöller, 1989; Schneeweiß, 1991). Not surprisingly, the 
very same issues apply when composite models are used to estimate CB- SEM 
results. In fact, Sarstedt et al. (2016) show that the bias produced by CB-SEM is far 
more severe than that of PLS-SEM, when applying the method to the wrong type 
of model (i.e., estimating composite models with CB-SEM versus estimating com-
mon factor models with PLS-SEM). Apart from these conceptual concerns, simu-
lation studies show that the differences between PLS-SEM and CB-SEM estimates, 
when assuming the latter as a standard of comparison, are very small, provided 
that measurement models meet minimum recommended standards in terms of 
measurement quality (i.e., reliability and validity). Specifically, when the measure-
ment models have four or more indicators and indicator loadings meet the com-
mon standards (≥ 0.70), there are practically no differences between the two 
methods in terms of parameter accuracy (e.g., Reinartz, Haenlein, & Henseler, 
2009; Sarstedt et al., 2016). Thus, the extensively discussed PLS-SEM bias is of no 
practical relevance for the vast majority of applications (e.g., Binz Astrachan, 
Patel, & Wanzenried, 2014).

Finally, methodological research has substantially extended the original PLS- 
SEM method by introducing advanced modeling, assessment, and analysis proce-

 Chapter 1 · An Introduction to Structural Equation Modeling



15 1

dures. Examples include different types of robustness checks (Sarstedt et al., 2020), 
higher-order constructs (Sarstedt, Hair, Cheah, Becker, & Ringle, 2019), discrete 
choice modeling (Hair, Sarstedt, & Ringle, 2019), necessary condition analysis and 
related methods (Rasoolimanesh, Ringle, Sarstedt, & Olya, 2021; Richter, 
Schubring, Hauff, Ringle, & Sarstedt, 2020), and out-of-sample prediction metrics 
(Hair, 2020). Hair, Sarstedt, Ringle, and Gudergan (2018) offer an introduction 
into several of these advanced topics.

In the following, we discuss aspects related to data characteristics (e.g., mini-
mum sample size requirements) and model characteristics (e.g., model complexity).

1.4.2  Data Characteristics

Data characteristics, such as minimum sample size requirements, non-normal data, 
and scales of measurement (i.e., the use of different scale types), are among the 
most often stated reasons for applying PLS-SEM across numerous disciplines (e.g., 
Ghasemy, Teeroovengadum, Becker, & Ringle, 2020; Hair, Sarstedt, Ringle, & 
Mena, 2012; Ringle et al., 2020). While some of the arguments are consistent with 
the method’s capabilities, others are not. In the following sections, we discuss these 
and also aspects related data characteristics.

1.4.2.1  Minimum Sample Size Requirements
Small sample size is likely the most often abused reason stated for using PLS-SEM, 
with some researchers obtaining model solutions with unacceptably low sample 
sizes (Goodhue et  al., 2012; Marcoulides & Saunders, 2006). These researchers 
oftentimes believe there is some “magic” in the PLS-SEM approach that allows 
them to use a very small sample to obtain results representing the effects that exist 
in large populations of several million elements or individuals. No multivariate 
analysis technique, including PLS-SEM, has this kind of “magic” inferential capa-
bility (Petter, 2018).

PLS-SEM can certainly obtain solutions with smaller samples, but the popula-
tion’s nature determines the situations in which small sample sizes are acceptable 
(Rigdon, 2016). For example, in business-to-business research, populations are 
often restricted in size. Assuming that other situational characteristics are equal, 
the more heterogeneous the population, the larger the sample size needed to achieve 
an acceptable accuracy (Cochran, 1977). If  basic sampling theory guidelines are 
not considered (Sarstedt, Bengart, Shaltoni, & Lehmann, 2018), questionable 
results are produced.

In addition, when applying multivariate analysis techniques, the technical 
dimension of the sample size becomes relevant. Adhering to the minimum sample 
size guidelines ensures the results of a statistical method, such as PLS-SEM, have 
adequate statistical power. In these regards, an analysis based on an insufficient 
sample size may not reveal an effect that exists in the underlying population (which 
results in committing a type II error). Moreover, executing statistical analyses 
based on minimum sample size guidelines will ensure the results of the statistical 
method are robust and the model is generalizable to another sample from that 
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same population. Thus, an insufficient sample size may lead to PLS-SEM results 
that differ from those of another larger sample. In the following, we focus on the 
PLS-SEM method and its technical requirements of the minimum sample size.

The overall complexity of a structural model has little influence on the mini-
mum sample size requirements for PLS-SEM.  The reason is the PLS-SEM 
 algorithm does not compute all relationships in the structural model at the same 
time. Instead, it uses ordinary least squares regressions to estimate the model’s 
partial regression relationships. Two early studies systematically evaluated the per-
formance of PLS-SEM with small sample sizes and concluded that the method 
performed well (e.g., Chin & Newsted, 1999; Hui & Wold, 1982). More recently, 
simulation studies by Hair et  al. (2017) and Reinartz et  al. (2009) indicate that 
PLS- SEM is the method of choice when the sample size is small. Moreover, com-
pared with its covariance-based counterpart, PLS-SEM has higher levels of  statis-
tical power in situations with complex model structures and smaller sample sizes. 
Similarly, Henseler et al. (2014) show that results can be obtained with PLS-SEM 
when other methods do not converge or provide inadmissible solutions. For exam-
ple, problems often are encountered when using CB-SEM on complex models, 
especially when the sample size is limited. Finally, CB-SEM encounters identifica-
tion and convergence issues when formative measures are involved (e.g., 
Diamantopoulos & Riefler, 2011).

Unfortunately, some researchers believe sample size considerations do not play 
a role in the application of PLS-SEM. This idea has been fostered by the often- 
cited 10-time rule (Barclay, Higgins, & Thompson, 1995), which suggests the sam-
ple size should be equal to 10 times the number of independent variables in the 
most complex regression in the PLS path model (i.e., considering both measure-
ment and structural models). This rule of thumb is equivalent to saying the mini-
mum sample size should be 10 times the maximum number of arrowheads pointing 
at a latent variable anywhere in the PLS path model. While this rule offers a rough 
guideline, the minimum sample size requirement should consider the statistical 
power of the estimates. To assess statistical power, researchers can consider power 
tables (Cohen, 1992) or power analyses using programs, such as G*Power (Faul, 
Erdfelder, Buchner, & Lang, 2009), which is available free of charge at 7 http://
www. gpower. hhu. de/. These approaches do not explicitly consider the entire model 
but instead use the most complex regression in the (formative) measurement mod-
els and structural model of a PLS path model as a point of reference for assessing 
the statistical power. In doing so, researchers typically aim at achieving a power 
level of 80%. However, the minimum sample size resulting from these calculations 
may still be too small (Kock & Hadaya, 2018).

Addressing these concerns, Kock and Hadaya (2018) proposed the inverse 
square root method, which considers the probability that the ratio of a path coef-
ficient and its standard error will be greater than the critical value of a test statistic 
for a specific significance level. The results depend, therefore, on only one path 
coefficient and are dependent neither on the size of the most complex regression in 
the (formative) models nor on the size of the overall model. Assuming a common 
power level of 80% and significance levels of 1%, 5%, and 10%, the minimum sam-
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ple size (nmin) is given by the following equations, respectively, where pmin is the 
value of the path coefficient with the minimum magnitude in the PLS path model:

Significance level = 1%: n
pmin
min

.
>










3 168
2

.

Significance level = 5%: n
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>




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2
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Significance level = 10%: n
pmin
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>
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2

.

For example, assuming a significance level of 5% and a minimum path coeffi-
cient of 0.2, the minimum sample size is given by

nmin
.
.

. .> 





 =

2 486
0 2

154 505
2

This result needs to be rounded to the next integer, so the minimum sample size 
is 155.

The inverse square root method is rather conservative, in that it slightly overes-
timates the sample size required to render an effect significant at a given power 
level. Most importantly, the method is characterized by its ease of use, since it can 
be readily implemented.

Nevertheless, two considerations are important when using the inverse square 
root method. First, by using the smallest statistical path coefficient as the point of 
reference, the method can be misleading as researchers will not expect marginal 
effects to be significant. For example, assuming a 5% significance level and a mini-
mum path coefficient of 0.01 would require a sample size of 61,802! Hence, 
researchers should choose a higher path coefficient as input, depending on whether 
the model produces either overall weak or strong effects or the smallest relevant (to 
be detected) effect.

Second, by relying on model estimates, the inverse square root method follows 
a retrospective approach. As a result, this assessment approach can be used as a 
basis for additional data collection or adjustments in the model. If  possible, how-
ever, researchers should follow a prospective approach by trying to derive the min-
imum expected effect size prior to data analysis. To do so, researchers can draw on 
prior research involving a comparable conceptual background or models with 
similar complexity or, preferably, the results of a pilot study, which tested the 
hypothesized model using a smaller sample of respondents from the same popula-
tion. For example, if  the pilot study produced a minimum path coefficient of 0.15, 
this value should be chosen as input for computing the required sample size for the 
main study.
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1        . Table 1.3 Minimum sample sizes for different levels of  minimum path coefficients (pmin) 
and a power of  80%

pmin Significance level

1% 5% 10%

0.05–0.1 1004 619 451

0.11–0.2 251 155 113

0.21–0.3 112 69 51

0.31–0.4 63 39 29

0.41–0.5 41 25 19

Source: Hair et al. (2022), Chap. 1; used with permission by Sage

In most cases, however, researchers have only limited information regarding the 
expected effect sizes, even if  a pilot study has been conducted. Hence, it is reason-
able to consider ranges of effect sizes rather than specific values to determine the 
sample size required for a specific study. . Table 1.3 shows the minimum sample 
size requirement for different significance levels and varying ranges of pmin. In 
deriving the minimum sample size, it is reasonable to consider the upper boundary 
of the effect range as reference, since the inverse square root method is rather con-
servative. For example, when assuming that the minimum path coefficient expected 
to be significant is between 0.11 and 0.20, one would need approximately 155 
observations to render the corresponding effect significant at 5%. Similarly, if  the 
minimum path coefficient expected to be significant is between 0.31 and 0.40, then 
the recommended sample size would be 39.

1.4.2.2  Missing Value Treatment
As with other statistical analyses, missing values should be dealt with when using 
PLS-SEM. For reasonable limits (i.e., less than 5% values missing per indicator), 
missing value treatment options, such as mean replacement, the EM (expectation–
maximization) algorithm, and nearest neighbor (e.g., Hair, Black, et  al., 2019), 
generally result in only slightly different PLS-SEM estimates (Grimm & Wagner, 
2020). Alternatively, researchers can opt for deleting all observations with missing 
values, which decreases variation in the data and may introduce biases when cer-
tain groups of observations have been deleted systematically.

1.4.2.3  Non-normal Data
The use of PLS-SEM has two other key advantages associated with data character-
istics (i.e., distribution and scales). In situations where it is difficult or impossible to 
meet the stricter requirements of more traditional multivariate techniques (e.g., 
normal data distribution), PLS-SEM is always the preferred method. PLS-SEM’s 
greater flexibility is described by the label “soft modeling,” coined by Wold (1982), 
who developed the method. It should be noted, however, that “soft” is attributed 
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only to the distributional assumptions and not to the concepts, models, or estima-
tion techniques (Lohmöller, 1989). PLS-SEM’s statistical properties provide very 
robust model estimations with data that have normal as well as extremely non-
normal (i.e., skewness and/or kurtosis) distributional properties (Hair, 
Hollingsworth, et al., 2017; Hair, Matthews, et al., 2017; Reinartz et al., 2009). It 
must be remembered, however, that influential observations, outliers, and collin-
earity do influence the ordinary least squares regressions in PLS-SEM and research-
ers should evaluate the data and results for these issues (Hair, Black, et al., 2019).

1.4.2.4  Scales of Measurement
The PLS-SEM algorithm generally requires variables to be measured on a metric 
scale (ratio scale or interval scale) for the measurement model indicators. But the 
method also works well with ordinal scales with equidistant data points (i.e., quasi-
metric scales; Sarstedt & Mooi, 2019; Chap. 3.6) and with binary-coded data. The 
use of binary-coded data is often a means of including categorical control vari-
ables (Hair et al., 2022) or moderators in PLS-SEM models. In short, binary indi-
cators can be included in PLS-SEM models but require special attention. For 
example, using PLS-SEM in discrete choice experiments, where the aim is to 
explain or to predict a binary dependent variable, requires specific designs and 
estimation routines (Hair, Ringle, Gudergan, Fischer, Nitzl, & Menictas, 2019).

1.4.2.5  Secondary Data
Secondary data are data that have already been gathered, often for a different 
research purpose some time ago (Sarstedt & Mooi, 2019; Chap. 3.2.1). Secondary 
data are increasingly available to explore real-world phenomena. Research based 
on secondary data typically focuses on a different objective than in a standard CB- 
SEM analysis, which is strictly confirmatory in nature. More precisely, secondary 
data are mainly used in exploratory research to propose causal–predictive relation-
ships in situations that have little clearly defined theory (Hair, Matthews, et al.,  
2017; Hair, Hollingsworth, et al., 2017). Such settings require researchers to place 
greater emphasis on examining all possible relationships rather than achieving 
model fit (Nitzl, 2016). By its nature, this process creates large, complex models 
that can hardly be analyzed with the CB-SEM method. In contrast, due to its less 
stringent data requirements, PLS-SEM offers the flexibility needed for the inter-
play between theory and data (Nitzl, 2016). Or, as Wold (1982, p. 29) notes, “soft 
modeling is primarily designed for research contexts that are simultaneously data-
rich and theory-skeletal.” Furthermore, the increasing popularity of secondary 
data analysis (e.g., by using data that stem from company databases, social media, 
customer tracking, national statistical bureaus, or publicly available survey data) 
shifts the research focus from strictly confirmatory to predictive and causal–predic-
tive modeling. Such research settings are a perfect fit for the prediction-oriented 
PLS-SEM approach and even more so when assessing out-of-sample prediction 
(Shmueli, et al., 2019).

PLS-SEM also proves valuable for analyzing secondary data from a measure-
ment theory perspective. First, unlike survey measures, which are usually crafted to 
confirm a well-developed theory, measures used in secondary data sources are typ-
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. Table 1.4 Data considerations when applying PLS-SEM 

• The 10-time rule is not a reliable indication of sample size requirements in PLS-SEM. While 
statistical power analyses provide a more reliable minimum sample size estimate, researchers 
should primarily draw on the inverse square root method, which is superior in terms of 
precision and ease of use 

• When the construct measures meet recommended guidelines in terms of reliability and 
validity, results from CB-SEM and PLS-SEM are generally similar 

• PLS-SEM can handle extremely non-normal data (e.g., data with high levels of skewness) 
• Most missing value treatment procedures (e.g., mean replacement, pairwise deletion, EM, and 

nearest neighbor) can be used for reasonable levels of missing data (less than 5% missing per 
indicator) with limited effect on the analysis results 

• PLS-SEM works with metric, quasi-metric, and categorical (i.e., dummy-coded) scaled data, 
although there are certain limitations. Processing of data from discrete choice experiments 
requires specific designs and estimation routines 

• Due to its flexibility in handling different data and measurement types, PLS-SEM is the 
method of choice when analyzing secondary data 

Source: Hair et al. (2022), Chap. 1; used with permission by Sage 

ically not created and refined over time for confirmatory analyses. Thus, achieving 
model fit is very unlikely with secondary data measures in most research situations 
when using CB-SEM. Second, researchers who use secondary data do not have the 
opportunity to revise or refine the measurement model to achieve fit. Third, a 
major advantage of PLS-SEM when using secondary data is that it permits the 
unrestricted use of single-item and formative measures. This is extremely valuable 
for research involving secondary data, because many measures included in corpo-
rate databases are artifacts, such as financial ratios and other firm-fixed factors 
(Henseler, 2017). Such artifacts typically are reported in the form of formative 
indices whose estimation dictates the use of PLS-SEM. 

. Table 1.4 summarizes key considerations related to data characteristics. 

1.4.3 Model Characteristics 

PLS-SEM is very flexible in its modeling properties. In its basic form, the PLS-
SEM algorithm requires all models to not include circular relationships or loops 
of relationships between the latent variables in the structural model. Although 
causal loops are sometimes specified in business research, this characteristic does 
not limit the applicability of PLS-SEM, if  such models are required as Lohmöller’s 
(1989) extensions of the basic PLS-SEM algorithm allow for handling such model 
types. Other model specification requirements that constrain the use of CB-SEM, 
such as distribution and identification assumptions, are generally not relevant with 
PLS-SEM. 

Measurement model difficulties are one of the major obstacles to obtaining a 
solution with CB-SEM. For instance, estimation of complex models with many 
latent variables and/or indicators is often impossible with CB-SEM. In contrast, 
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PLS-SEM can easily be applied in such situations, since this method is not con-
strained by identification and other technical issues. Consideration of reflective 
and formative measurement models is a key issue in the application of SEM (Bollen 
& Diamantopoulos, 2017). PLS-SEM can easily handle both formative and reflec-
tive measurement models and is (therefore) considered the primary approach when 
the hypothesized model incorporates formative measures. CB-SEM can accom-
modate formative indicators, but to ensure model identification, they must follow 
distinct specification rules (Diamantopoulos & Riefler, 2011). In fact, the require-
ments often prevent running the analysis as originally planned. In contrast, PLS-
SEM does not have such requirements and handles formative measurement models 
without any limitation. This also applies to model settings in which endogenous 
constructs are measured formatively. The applicability of CB-SEM to such model 
settings has been subject to considerable debate (Cadogan & Lee, 2013; Rigdon, 
2014), but due to PLS-SEM’s multistage estimation process (Tenenhaus et  al., 
2005), which separates measurement from structural model estimation, the inclu-
sion of formatively measured endogenous constructs is not an issue in PLS-SEM 
(Rigdon et al., 2014). The only problematic issue is when high levels of collinearity 
exist between the indicator variables of a formative measurement model. 

Different from CB-SEM, PLS-SEM facilitates easy specification of interaction 
terms to map moderation effects in a path model. This makes PLS-SEM the 
method of choice in simple moderation models and more complex conditional 
process models, which combine moderation and mediation effects (Sarstedt, Hair, 
et al., 2020). Similarly, higher-order constructs, which allow specifying a construct 
simultaneously on different levels of abstraction (Sarstedt et al., 2019), can readily 
be implemented in PLS-SEM. 

Finally, PLS-SEM is capable of estimating very complex models. For example, 
if  theoretical or conceptual assumptions support large models and sufficient data 
are available (i.e., meeting minimum sample size requirements), PLS-SEM can 
handle models of almost any size, including those with dozens of constructs and 
hundreds of indicator variables. As noted by Wold (1985), PLS-SEM is virtually 
without competition when path models with latent variables are complex in their 
structural relationships. . Table  1.5 summarizes rules of thumb for PLS-SEM 
model considerations. 

. Table 1.5 Model considerations when choosing PLS-SEM 

• PLS-SEM offers much flexibility in handling different measurement model setups. For 
example, PLS-SEM can handle reflective and formative measurement models as well as 
single-item measures without additional requirements or constraints 

• The method allows for the specification of advanced model elements, such as interaction 
terms and higher-order constructs 

• Model complexity is generally not an issue for PLS-SEM. As long as appropriate data meet 
minimum sample size requirements, the complexity of the structural model is virtually 
unrestricted 

Source: Hair et al. (2022), Chap. 1; used with permission by Sage) 
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1.5 Guidelines for Choosing Between PLS-SEM and CB-SEM 

Summarizing the previous discussions and drawing on Hair, Risher, et al. (2019), 
. Table 1.6 displays the rules of thumb applied when deciding whether to use CB-
SEM or PLS-SEM. As can be seen, PLS-SEM is not recommended as a universal 
alternative to CB-SEM. Both methods differ from a statistical point of view, are 
designed to achieve different objectives, and rely on different measurement philos-
ophies. Neither of the techniques is generally superior to the other, and neither of 
them is appropriate for all situations (Petter, 2018). Hence, to answer the question 
of when to use PLS-SEM versus CB-SEM, researchers should focus on the charac-
teristics and objectives that distinguish the two methods (Hair, Sarstedt, Ringle, & 
Mena, 2012). Broadly speaking, with its strong focus on model fit and in light of its 
extensive data requirements, CB-SEM is particularly suitable for testing a theory in 
the confinement of a concise theoretical model. However, if  the primary research 
objective is prediction and explanation of target constructs (Rigdon, 2012), PLS-
SEM should be given preference (Hair, Sarstedt, & Ringle, 2019; Hair, Holling-
sworth, Randolph, & Chong, 2017). 

In general, the strengths of PLS-SEM are CB-SEM’s limitations and vice versa, 
although PLS-SEM is increasingly being applied for scale development and confir-

. Table 1.6 Rules of  thumb for choosing between PLS-SEM and CB-SEM 

Use PLS-SEM when 
The analysis is concerned with testing a theoretical framework from a prediction perspective, 
particularly out-of-sample prediction 
The structural model is complex and includes many constructs, indicators, and/or model 
relationships 
The research objective is to better understand increasing complexity by exploring theoretical 
extensions of established theories (exploratory research for theory development) 
The path model includes one or more formatively measured constructs 
The research consists of financial ratios or similar types of artifacts 
The research is based on secondary data, which may lack a comprehensive substantiation on 
the grounds of measurement theory 
A small population restricts the sample size (e.g., business-to-business research), but note that 
PLS-SEM also works very well with large sample sizes 
Distribution issues are a concern, such as lack of normality 
The research requires latent variable scores for follow-up analyses 

Use CB-SEM when 
The goal is theory testing and confirmation 
Error terms require additional specification, such as the covariation 
The structural model has circular relationships 
The research requires a global goodness-of-fit criterion 

Source: Adapted from Hair, Risher, et al. (2019). Copyright © 2019 by Emerald Publishing. 
Reprinted by permission of  the publisher (Emerald Publishing; 7 https://www. 
emeraldgrouppublishing.com) 
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mation (Hair, Howard, & Nitzl, 2020). It is important that researchers understand 
the different applications each approach was developed for and use them accord-
ingly. Researchers need to apply the SEM technique that best suits their research 
objective, data characteristics, and model setup (Roldán & Sánchez-Franco, 2012).

Summary
SEM is a second-generation multivariate data analysis method, which facilitates 
analyzing the relationships among constructs, each measured by one or more indica-
tor variables. The primary advantage of SEM is its ability to measure complex model 
relationships while accounting for measurement error inherent in the indicators. 
There are two types of SEM methods – CB-SEM and PLS-SEM. The two method 
types differ in the way they estimate the model parameters and their assumptions 
regarding the nature of measurement. Compared to CB-SEM, PLS-SEM empha-
sizes prediction, while simultaneously relaxing the demands regarding the data and 
specification of relationships. PLS-SEM aims at maximizing the endogenous latent 
variables’ explained variance by estimating partial model relationships in an iterative 
sequence of ordinary least squares regressions. In contrast, CB-SEM estimates 
model parameters, such that the discrepancy between the estimated and sample 
covariance matrices is minimized. Instead of following a common factor model logic 
in estimating concept proxies as CB-SEM does, PLS-SEM calculates composites of 
indicators that serve as proxies for the concepts under research. The method is not 
constrained by identification issues, even if  the model becomes complex – a situation 
that typically restricts CB-SEM use – and does not rely on distributional assump-
tions. Moreover, PLS-SEM can better handle formative measurement models and 
has advantages when sample sizes are relatively small as well as when  analyzing sec-
ondary data. Researchers should consider the two SEM approaches as complemen-
tary and apply the SEM technique that best suits their research objective, data 
characteristics, and model setup.

 ? Exercise
Please answer the following questions:
 1. When would SEM methods be more advantageous than first- generation tech-

niques in understanding relationships between variables?
 2. Why should social science researchers consider using SEM instead of multiple 

regression?
 3. What are the most important considerations in deciding whether to use CB-SEM 

or PLS-SEM?
 4. Under what circumstances is PLS-SEM the preferred method over CB-SEM?
 5. Why is an understanding of theory important when deciding whether to use 

PLS-SEM or CB-SEM?
 6. Why is PLS-SEM’s prediction focus a major advantage of the method?

1.5 · Guidelines for Choosing Between PLS-SEM and CB-SEM
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Learning Objectives 
After reading this chapter, you will understand: 
1. The syntax and formatting for code used throughout this textbook. 
2. Why computational statistical languages are so powerful and useful. 
3. The layout and interface of R and RStudio. 
4. How to manage R scripts and projects. 
5. How to install and use packages. 
6. How to seek help when bugs or errors are encountered. 

2.1 Introduction 

This chapter introduces the two software packages that will be used throughout 
this textbook. Software packages are a series of software functions and features 
with a similar purpose bundled into a single set. First, we introduce the R statistical 
computing language (R Core Team, 2021), which is the software language we will 
use to import and clean data as well as create and analyze PLS path models. We 
will then introduce the RStudio (RStudio Team, 2021) application, which is an 
integrated development environment that enables you to easily and productively 
conduct computational analyses using the R language. We will explain how to 
download and install the software required, how to interact with the software, and 
how to store your data and code. 

We then offer a basic introduction to writing analytic scripts in R. This text-
book will not serve as a comprehensive resource for learning R, so we will share 
further resources for learning this programming language and helpful documenta-
tion on the Internet. Additionally, we will provide examples of R code throughout 
this textbook, so we start by looking at the syntax and formatting that we will use 
to distinguish code from regular text. 

2.2 Explaining Our Syntax 

Throughout this textbook, it will be necessary to discuss various elements of the 
code when explaining how to perform analytic operations using R. For the sake of 
clarity, we will use a distinguishable formatting and syntax of code in either code 
blocks or embedded in the text. Code in the R language will be formatted as fol-
lows: vector <- c(1, 2, 3, 4, 5). To distinguish code embedded in the text 
from regular text, the code will be bolded; and to distinguish arguments from regu-
lar code, the arguments will be italicized (weights =, data =). Furthermore, 
construct and variable names in the text will be italicized to distinguish them (e.g., 
QUAL and qual_1). We will use a similar format when code is used in a larger 
block. . Table 2.1 provides a summary of the syntax and format of code that we 
use in this textbook. You may want to refer back to it when we show larger blocks 
of code. 
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. Table 2.1 Syntax conventions used in this textbook (source: authors’ own table) 

Syntax Example 

Code, objects, and functions in text summary(), vector <- c(1, 2, 3, 4, 5) 

Arguments in text weights =, data = 

Construct and variable names in text QUAL and qual_1 

Comments in code block # Estimating the model 

Code, variables, functions, construct, and 
indicator names in code block 

summary(), corp_rep_data, QUAL, and 
qual_1 

Arguments in code block weights =, data = 

The code block below also includes comments that describe the purpose of the 
following line of code. Comments are not run by the programming language and 
only serve as communication to other users of the code about the purpose. 
Comments in the R language begin with a pound symbol (“#”), and we will display 
them in gray (again, see the code block below). 

# Create a vector of integers 
vector <- c(1, 2, 3, 4, 5) 

2.3 Computational Statistics Using Programming 

Data analytics using computationally intensive methods is becoming an increas-
ingly important, strategic capability for companies to transform the data collected 
during business activities into information that can assist effective decision-making 
and policy creation. Similarly, academic research is rapidly adopting computa-
tional methods, involving the implementation of analytic techniques for inferential 
analysis and machine learning into computer programs (Hair & Sarstedt, 2021). 
Thus, researchers who learn and adopt computational methods will have the 
advantage of being able to apply and adapt the latest techniques to their research, 
while also being competent and conversant with industry trends. 

We expect that many quantitative researchers are already familiar with certain 
types of software to analyze data: spreadsheet software, such as Apache OpenOffce 
Calc (7 https://www.openoffce.org/product/calc.html) or Microsoft Excel 
(7 https://www.microsoft.com/microsoft-365/excel), and more graphical, menu-
driven software like IBM SPSS (7 https://www.ibm.com/products/spss-statistics) 
and Statistica (7 https://www.statsoft.de/de/software/statistica). Spreadsheet 
software has long been of value to business researchers, since a familiar ledger or 
balance book metaphor is adopted that predates computers. Spreadsheets are 
advantageous for smaller datasets, since they make it easy for users to manipulate 
data in tabular form and obtain quick results in the same interface as their data. 

https://www.openoffice.org/product/calc.html
https://www.microsoft.com/microsoft-365/excel
https://www.ibm.com/products/spss-statistics
https://www.statsoft.de/de/software/statistica
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Graphical, menu-driven software has also become popular during recent decades, 
since it is easier to learn and process for many users and provides rich visualiza-
tions. Both of these advantages allow software like SPSS and Tableau (7 https:// 
www.tableau.com) to facilitate communication between stakeholders and conduct 2 
data exploration interactively in meetings. 

Computational analytics using programming syntax has been present since the 
earliest days of computing, but has recently gained new popularity from the advent 
of big data analytics, artifcial intelligence, and the larger data science movement. 
By programming in a syntactic language, such as R or Python (Van Rossum & 
Drake, 1995), analysts can apply complex methods that are not easy to parameter-
ize with spreadsheet or graphical, menu-driven software. Computation offers ana-
lysts the ability to run simulations that test particular scenarios and create novel 
solutions and custom visualizations, which were not considered by others, or are 
rather specifc to one’s own use case. Moreover, the code that analysts generate 
serves as a manifest – or recipe – of their workfow that can be shared with other 
analysts or even deployed into online products and platforms. Finally, having code 
allows others to test, repeat, or replicate analyses in perfect detail – steps that are 
vital to modern applications of the scientifc process (Rigdon, Sarstedt, & Becker, 
2020). It is not surprising, therefore, that computational methods have become an 
integral component of the data science revolution in both industry and academia. 

2.4 Introducing R and RStudio 

R is a free, open-source software, which enables users to write and execute code 
that analyzes data. Readers should note that the name “R” can refer to both the 
programming language and the primary software that runs code written in this 
language. However, unless otherwise specifed, in this book, R refers to the lan-
guage. Further, open source refers to the kind of software whose underlying code is 
made freely available and is generally open to suggested improvements or new fea-
tures built by others. The open-source nature of the R software makes code written 
in the R language highly reproducible, shareable, testable, scalable, and deployable 
to larger automated applications. An ever-expanding community of R users sup-
ports, tests, documents, and provides add-on resources for each other. 

R (R Core Team, 2021) is an alternate implementation of the earlier S program-
ming language, which was frst developed by Ross Ihaka and Robert Gentleman in 
1991 (Hornik & Leisch, 2002). The R language had been developed for several 
years, became free and open source in 1995, and started to gain attention with the 
frst stable release on the Comprehensive R Archive Network (CRAN; 7 http:// 
www.r-project.org) in February 2000. CRAN serves as a vetted repository where 
reliable add-on packages of R code libraries can be freely contributed to or down-
loaded by R users around the world (packages are discussed in more detail in 
7 Sect. 2.6). The SEMinR package for PLS-SEM (Ray, Danks, & Valdez, 2021) 
we use in this book is also available on CRAN. 

The R language was designed with computational statistics in mind. In its sim-
plest form, it can be run from your operating system’s command line or from the R 

https://www.tableau.com
https://www.tableau.com
http://www.r-project.org
http://www.r-project.org
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. Fig. 2.1 The R console. (Source: authors’ screenshot from R) 

console (. Fig. 2.1). However, we recommend using R from the convenience of an 
integrated development environment (IDE), such as RStudio. An IDE is a 
programming environment that offers tools such as project management, tabs for 
easily managing multiple script fles, and additional developer tools. We discuss the 
layout of the RStudio IDE in more detail in the next section. Throughout this 
book, we will demonstrate the use of R from within the RStudio IDE. 

2.4.1 Installing R and RStudio 

Before installing RStudio, the R software for executing code in the programming 
language must be installed on your operating system. The latest version of the R 
software for your operating system is available from the CRAN archive at the 
7 http://www.r-project.org website. Once you visit that website, click on the 
Download R link, select the mirror website closest to your location, and then 

http://www.r-project.org
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choose the download fle made for your operating system. Execute the download 
fle and follow the instructions; the R software will then install on your computer. 

Next, you will need to install RStudio from this website (7 http://www.rstudio. 
com/). To do so, hover your mouse pointer over the Products menu and select 
RStudio from the dropdown menu. On the next page, click on the Download 
RStudio Desktop button, and once again click Download RStudio Desktop. The 
website will offer you the relevant version for your operating system. Execute the 
download fle and follow the instructions. The RStudio IDE will then install on 
your computer. With both the R software and RStudio software installed on your 
computer, you can proceed to become familiar with the RStudio layout and 
interface. 

2.4.2 Layout of RStudio 

The RStudio desktop in its standard form comes with a layout of four primary 
windows: (1) In the upper-left corner is the source window; (2) in the upper right 
are the environment, history, connections, build, and git windows; (3) in the bot-
tom left are the console and terminal windows; and (4) in the bottom right are the 
fles, plots, packages, help, and viewer windows (. Fig. 2.2). Note that the source 
window only shows when data have been loaded. We will discuss this step in 
7 Chap. 3. Some of these windows are only available when settings have been 
enabled. For example, the git tab is only available when version control has been 
enabled and the build tab is only available when a package is being built. . Table 2.2 
describes the various windows and their uses in more detail. 

. Fig. 2.2 The RStudio IDE desktop layout. (Source: authors’ screenshot from RStudio) 

http://www.rstudio.com/
http://www.rstudio.com/
https://doi.org/10.1007/978-3-030-80519-7_3
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. Table 2.2 Table of  the RStudio IDE desktop tabs, layout, and purpose 

Tab Window Purpose 

Connections, 
build, and git 

Upper 
right 

These tabs are beyond the scope of this textbook 

Console Lower 
left 

The console tab provides a R console for entering commands and 
printing output 

Environment Upper 
right 

The environment contains all objects created and saved to the 
local R workspace. These objects are interactive and can be 
loaded into the source window 

Files Lower 
right 

The fles tab provides a fle explorer to navigate, duplicate, move, 
and copy fles 

Help Lower 
right 

The help tab provides help on packages, functions, and topics. 
Help can be searched using the search option, or specifc help fles 
can be accessed using the ? operator 

History records all keystrokes and commands entered into the 
console. Command history can be copied from here to the source 
or console tab 

The packages tab provides a list of available packages, their 
version number, and whether they have been sourced into the 
environment 

The plots tab provides an output location for plots, which can be 
navigated using the left and right arrows 

The active source code fles are displayed in the source window. 
Files can be edited and saved. Data objects can also be inspected 
in the source window 

History Upper 
right 

Packages Lower 
right 

Plots Lower 
right 

Source Upper 
left 

Terminal Lower 
left 

The terminal tab provides a console for entering commands to the 
operating system 

Viewer Lower 
right 

The viewer tab is used to view local web content 

Source: authors’ own table 

2.5 Organizing Your Projects 

Organizing projects is much like organizing your documents in regular folders on 
your computer. The only major difference is you will need to remember where fles 
are stored when loading fles into or saving fles out of the R environment. That is, 
you need to know the address of the fle relative to the fle you are editing. Often, 
users of R will create a catchall project (named workspace), in which they store 
their R script fles, data fles, and output fles for multiple analyses or projects. This 
approach can quickly lead to chaos – the mixing of projects and the overwriting of 
crucial code and data fles. Instead, we recommend you create separate projects and 
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. Fig. 2.3 Creating a new project in RStudio. (Source: authors’ screenshot from RStudio) 

organize them carefully, so that you keep the contents of each project separately 
and provide some order to your workfow. 

To begin a new project in RStudio, click on the File dropdown menu, and select 
New Project… (. Fig. 2.3). The Create Project window will then open and guide 
you through creating a new project. When you create your frst project, you need to 
set up a New Directory which stores all your project fles. Next, click on New 
Project. In the dialog box that follows, specify a project name under Directory 
name and choose a folder in which the project fles should be stored. Finally, click 
on Create Project. 

An important feature of an R project is that the working directory, in which the 
project will be conducted, is specifed. If  at any time you wish to change the work-
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. Fig. 2.4 Changing the working directory. (Source: authors’ screenshot from RStudio) 

ing directory, this can be done by clicking on the Session dropdown menu, selecting 
Set Working Directory, and then specifying the correct location (. Fig. 2.4). 

R project details are stored in an .Rproj fle in the project directory. In addition, 
the environment containing any objects saved to memory is stored in the .Rdata 
fle, and the history of keystrokes and commands run in the console is stored in an 
.Rhistory fle. Thus, a snapshot is kept of your activity in the project, which is 
reloaded every time you reopen the project. Note, however, that the packages 
required to run your code need to be reloaded every time you reopen a project and 
are not stored in the snapshot. 

2.6 Packages 

R includes a lot of preinstalled packages containing many of the standard func-
tions and algorithms you will use in your statistical computations. Examples of 
such standard functions are mean() and sd() for calculating the mean and stan-
dard deviation of a vector, respectively, or lm() for generating linear regression 
models. While you should be able to fulfll much of your computational needs with 
the standard packages bundled in R, you might need to install further software 
libraries containing newer or more complicated algorithms. Such software libraries 
are bundled as packages that, when installed, add a new range of functions and 
operations. Examples of popular packages are dplyr, ggplot, and, of course, the 
package used in this book, seminr. 
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. Fig. 2.5 Installing packages from the RStudio IDE. (Source: authors’ screenshot from RStudio) 

A majority of packages are hosted on CRAN. The packages hosted on CRAN 
have met certain criteria to qualify for being published in the CRAN archive, such 
as having documentation, being tested, and kept up to date with the latest versions 
of R. These packages can be installed from the command line or from the packages 
tab (. Fig. 2.1 and . Table 2.2). Note that you will need internet access to install 
packages from CRAN.  To install new packages, select the Packages tab in the 
lower right window of the RStudio IDE, click the Install button, set Install from to 
Repository (CRAN), and enter the package name in the Packages feld: “seminr” 
(. Fig. 2.5). Next, click on Install. 

Packages can also be installed from the command line using the install. 
packages() function. In this case, we wish to install the swirl package, which 
teaches you R programming (see 7 Sect. 2.7 for more details on the swirl pack-
age). We therefore set the pkgs parameter equal to “swirl”. 

# Install the Swirl package 
install.packages(pkgs = “swirl”) 

Note that packages are installed to the local software library on your computer but 
are not loaded into the RStudio local environment. Once a package is installed, it 
will be available for computation in R but has to be loaded using the library() 
function prior to use. Packages must be loaded in each session if  you wish to use 
the functions in this library. If the package is not loaded in a new session (i.e., after 
opening and rerunning R), the features will not be available in your session until 
you load the package by using the library() function. 
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# Load the Swirl package into the environment 
library(swirl) 

2.7 Writing R Scripts 

Computational analyses are conducted by writing a series of instructions to the 
computer on how to import data, modify data, run algorithms for analyzing the 
data, and then report the results of those analyses. These instructions take the form 
of R scripts that are typically entered into a fle, which contains all the scripts 
related to a single analysis or computation. These R script fles have the suffx .R 
and are stored in your project directory. 

To successfully conduct such analyses, you need to learn the form and function of 
the scripts that R can process. As indicated above, a key reason for using a free, open-
source software, like R, is the community support and resources typically found for 
such software. A simple Internet search with keywords “R coding lesson” should pro-
vide hundreds of high-quality resources. We recommend swirl (7 https://swirlstats. 
com/), which teaches you R programming by offering simple and useful lessons. This 
package helps the user become experienced at working with R’s command-based 
interface and can be downloaded and used from the R console command line. 

# Begin learning with Swirl 
swirl() 

In addition to online tutorials and code lessons, there are many free e-books 
describing both introductory and advanced usage of R and RStudio. A good 
archive for textbooks is available at the CRAN website (7 https://www.r-project. 
org/other-docs.html). We highly recommend the book R for Data Science (Wick-
ham & Grolemund, 2016). As we continue with this chapter and the textbook, we 
assume that you have studied the basics of using R and are comfortable with the 
language. We now turn our attention to overcoming the various challenges you 
might encounter, while writing R scripts and when using the SEMinR package. 

2.8 How to Find Help in RStudio 

Due to the complexity of a programming language – and the almost endless number of 
software libraries that can be installed adding to the functions and resources available to 
you – it can become diffcult to keep track of how functions are called, what arguments 
they take, and what output they provide. Packages have a range of fles that are designed 
to document and demonstrate the use of the functions they provide. These fles take the 
form of R documentation, vignettes, and demonstration fles. In this section, we discuss 
how to access information on using a function by inspecting these documents. 

All packages submitted to CRAN are required to have suffcient documenta-
tion to describe the functions they add to your software library. For each function, 

https://swirlstats.com/
https://swirlstats.com/
https://www.r-project.org/other-docs.html
https://www.r-project.org/other-docs.html
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there should be a matching R documentation fle that can be accessed. R documen-
tation describes the purpose, input, implementation, and output of a function and 
provides examples applying the syntax. The contents of an R document are 
described in . Table 2.3. This documentation can be accessed in the help tab in 
the lower right window of the RStudio IDE. Help topics and functions can be 

. Table 2.3 Excerpt of  contents of  the R documentation for read.csv() 

Section Description Example 

Descrip-
tion 

A brief  description 
of the function’s 
purpose 

Reads a fle in table format and creates a data frame from it, 
which includes cases corresponding to lines and variables to 
felds 

Usage 

Argu-
ments 

Exam-
ples 

The usage of the 
function 

The arguments 
that must be 
assigned to the 
function to execute 
and their 
corresponding 
description 

An example for 
executing the 
function 

read.csv(file, header = TRUE, sep =“,”, quote 
=“\””, 
dec =“.”, fill = TRUE, comment.char =“”,...) 

File 

header 

Sep 

quote 

Dec 

… 

The name of the fle, which the data are 
to be read from 

A logical value indicating whether the 
fle contains the names of the variables 
as its frst line. If  missing, the value is 
determined from the fle format: 
header is set to TRUE if, and only if, 
the frst row contains one fewer feld 
than the number of columns 

The feld separator character. Values 
on each line of the fle are separated by 
this character. If sep = “” (the 
default for read.table), the 
separator is “white space” that is one 
or more spaces, tabs, new lines, or 
carriage returns 

The set of quoting characters. To 
disable quoting altogether, use quote 
= “” 

The character used in the fle for 
decimal points 

Further arguments to be passed to read 
table 

## using count.fields to handle unknown 
maximum number of fields 
## when fill = TRUE 
test1 <- c(1:5, “6,7”, “8,9,10”) 
tf <- tempfile() 
writeLines(test1, tf) 
read.csv(tf, fill = TRUE) # 1 column 

Source: authors’ own table 
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searched for in the search feld of the help window or from the command line in 
the console window using the ? operator. For example, we can search for help on 
the read.csv() function by typing the following into the console window in 
RStudio: 

# Searching for help using the ? operator 
?read.csv 

In . Fig. 2.6, we can see an excerpt of the contents of the R documentation for 
read.csv(). This information will be displayed in the help tab in the lower right 
window of the RStudio IDE and provides us with details on the purpose, argu-
ments, and usage of the function and a demonstration example. When encounter-
ing a new function or an error, the R documentation is the frst place to look in. 
For a full list of available R documentation topics for a package, click on the Pack-

. Fig. 2.6 R documentation for the read.csv() function. (Source: authors’ screenshot from RStudio) 
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. Fig. 2.7 The SEMinR vignette. (Source: authors’ screenshot from RStudio) 

ages tab in the bottom right window and select the package name (highlighted in 
blue). The Help tab will then open with the full list of  documentation available for 
that package. 

Another very important document to consult for help using a package or func-
tion is the vignette. Vignettes are designed as an all-purpose user’s guide for the 
package – they describe the problem that the package seeks to solve and how it is 
used. This document usually describes the functioning of the package in detail and 
provides examples and demonstrations of the problems and solutions. You can 
access a list of vignettes installed by calling the vignette() function. This will 
output a list of available vignettes to an R vignette tab in the top left window of 
RStudio. You can then run vignette(“SEMinR”) to access a particular vignette – 
in this case, the vignette for the package SEMinR (. Fig. 2.7). 

# Check all vignettes available in R 
vignette() 

# Load the SEMinR vignette 
vignette(“SEMinR”) 
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. Fig. 2.8 Finding help online using Stack Overfow. (Source: authors’ screenshot from 7 https:// 
stackoverfow.com/) 

Another source of help is using the demonstration code that comes bundled with 
most R packages. These demonstration fles typically include an example dataset 
and model to demonstrate the purpose of the package’s functions. To check all 
available demonstration fles, use the demo() function. For the specifc demonstra-
tion of the European Customer Satisfaction Index (ECSI) model (Eklöf & West-
lund, 2002) in the SEMinR package, as originally presented by Tenenhaus, Esposito 
Vinzi, Chatelin, and Lauro (2005), use demo(“seminr-pls-ecsi”). 

# Check all demos available in R 
demo() 

# Load the SEMinR ECSI demo 
demo(“seminr-pls-ecsi”) 

A fnal invaluable source of help can be found by accessing the greater R commu-
nity on platforms such as Stack Overfow (7 https://stackoverfow.com/). These 
ask-and-answer forums put you in touch with seasoned veterans who can provide 
useful tips and other options for executing all your favorite R packages and func-
tions. Members of these communities typically respond quickly and can provide 
excellent advice and solutions (. Fig. 2.8). 

https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
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Summary 
In this chapter, we introduced the R statistical programming language and its popu-
lar development environment, RStudio. You should now be familiar with the layout 
and functionality of RStudio, creating, downloading, and managing projects and 
RScript fles. If  you encounter a bug or a function that is unfamiliar, you should now 
have the requisite tools (and knowledge) for seeking out appropriate help. We 
strongly recommend the careful study of an introductory program to learning the R 
language. We also recommend the swirl package for learning R and provide some 
ideas to assist you in fnding supplementary resources and gaining access to useful 

material. 

? Exercise 
In this chapter, we recommend the use of the swirl package to learn basic coding 
concepts and become familiar with the popular functions in R (see 7 Sects. 2.6 and 
2.7 on installing and loading swirl). Please complete the following lessons in the 
swirl package: 
1. Basic building blocks 
2. Workspaces and fles 
3. Sequences of numbers 
4. Vectors 
5. Missing values 
6. Subsetting vectors 
7. Matrices and data frames 
8. Logic 

9. Functions 
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Learning Objectives
After reading this chapter, you should understand:
 1. Loading and cleaning data for use in model estimation
 2. Specifying measurement models in SEMinR syntax
 3. Specifying the structural model in SEMinR syntax
 4. Estimating a PLS path model using SEMinR syntax
 5. Summarizing a PLS path model in SEMinR
 6. Bootstrapping a PLS path model in SEMinR
 7. Accessing the contents of the summary objects
 8. Exporting the PLS-SEM results for reporting

SEMinR is a software package developed for the R statistical environment (R Core 
Team, 2021) that brings a user-friendly syntax to creating and estimating structural 
equation models. SEMinR is open source, which means that anyone can inspect, 
modify, and enhance the source code. SEMinR is distributed under a GNU General 
Public License version 3 (GPL-3), implying it is completely free for personal, aca-
demic, and commercial use – as long as any changes made to it, or applications 
built using it, are also open source.

SEMinR is hosted on GitHub (7 https://github. com/sem- in- r/seminr). We 
encourage users to follow the GitHub page for SEMinR and contribute to this 
project or use the issues feature to report bugs or problems. Users of SEMinR can 
also interact with the developers and each other at the Facebook group (7 https://
www. facebook. com/groups/seminr). Participants regularly discuss recent develop-
ments, best practices, and tutorials on basic functionality of SEMinR.  We also 
encourage you to follow this Facebook group for updates on bugs, issues, and new 
features.

The SEMinR syntax enables applied practitioners of PLS-SEM to use termi-
nology that is very close to their familiar modeling terms (e.g., reflective, compos-
ite, and interactions), instead of specifying underlying matrices and covariances. 
Specifically, the syntax was designed to:

 5 Provide a domain-specific language to build and estimate PLS path models in R
 5 Use both variance-based PLS-SEM and covariance-based SEM (CB-SEM) to 

estimate composite and common factor models (7 Chap. 1)
 5 Simply and quickly specify model relationships and more complex model ele-

ments, such as interaction terms (see 7 Chap. 8) and higher-order constructs 
(Sarstedt, Hair Jr, Cheah, Becker, & Ringle, 2019)

SEMinR uses its own PLS-SEM estimation engine and integrates with the 
lavaan package (Rosseel, 2012) for CB-SEM estimation. SEMinR supports the 
state of the art of PLS-SEM and beyond. The development team regularly improves 
the program, incorporates new methods, and supports the users with useful report-
ing options in their analyses.

In 7 Chap. 2, we introduced R and RStudio. After reading that chapter, you 
should now be familiar with writing scripts, creating objects, and installing pack-
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ages. In this chapter, we discuss how to use the SEMinR package. The first step is 
to install the SEMinR package and load it into the RStudio environment 
(. Fig. 3.1). SEMinR was built using R version 4.0.3 – depending on how recently 
you installed R and RStudio, you might need to update these software files to the 
latest version before installing SEMinR. Refer to 7 Chap. 2 for instructions on 
installing the latest versions of R and RStudio.

# Download and install the SEMinR package 
# You only need to do this once to equip
# Rstudio on your computer with SEMinR
install.packages(“seminr”)

# Make the SEMinR library ready to use 
# You must do this every time you restart Rstudio and wish to 
use SEMinR
library(seminr)

       . Fig. 3.1 Installing and loading the SEMinR package. (Source: authors’ screenshot from RStudio)

The SEMinR Package

https://doi.org/10.1007/978-3-030-80519-7_2
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3.1  The Corporate Reputation Model

With the SEMinR package installed and loaded to the environment, we now intro-
duce the example dataset and model that will be used throughout this textbook. We 
draw on Eberl’s (2010) corporate reputation model, which is also used in A Primer 
on Partial Least Squares Structural Equation Modeling (PLS-SEM) (Hair, Hult, 
Ringle, & Sarstedt, 2022). The goal of the model is to explain the effects of corpo-
rate reputation on customer satisfaction (CUSA) and, ultimately, customer loyalty 
(CUSL). Corporate reputation represents a company’s overall evaluation by its 
stakeholders (Helm, Eggert, & Garnefeld, 2010). This construct is measured using 
two dimensions. One dimension represents cognitive evaluations of the company, 
which is the company’s competence (COMP). The second dimension captures 
affective judgments, which determine the company’s likeability (LIKE). Research 
has shown that the model performs favorably (in terms of convergent validity and 
predictive validity) compared to alternative reputation measures (Sarstedt, 
Wilczynski, & Melewar, 2013).

In summary, the simple corporate reputation model has two main theoretical 
components: (1) the target constructs of interest  – namely, CUSA and CUSL 
(endogenous constructs) – and (2) the two corporate reputation dimensions COMP 
and LIKE (exogenous constructs), which are key determinants of the target con-
structs. . Figure 3.2 shows the constructs and their relationships.

Each of these constructs is measured by means of multiple indicators, except 
satisfaction. For instance, the endogenous construct COMP is reflectively mea-
sured by three indicator variables, comp_1, comp_2, and comp_3. Respondents 
answered on a scale from 1 (totally disagree) to 7 (completely agree) to evaluate the 
statements that these three items represent (. Table 3.1). Two other constructs in 
the simple model (CUSL and LIKE) can be described in a similar manner, and the 
third (CUSA) has only a single indicator. . Table 3.1 summarizes the indicator 
wordings for the four constructs considered in this simple corporate reputation 

like_1

like_2

like_3

LIKE

cusl_1

cusl_2

cusl_3

CUSLcusa CUSA

comp_1

comp_2

comp_3

COMP

       . Fig. 3.2 Simple corporate reputation model. (Source: authors’ own figure)
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       . Table 3.1 Indicators for the reflectively measured constructs of  corporate reputation 
model

Competence (COMP)

comp_1 [The company] is a top competitor in its market

comp_2 As far as I know, [the company] is recognized worldwide

comp_3 I believe [the company] performs at a premium level

Likeability (LIKE)

like_1 [The company] is a company I can better identify with than other companies

like_2 [The company] is a company I would regret more not having if  it no longer existed 
than I would other companies

like_3 I regard [the company] as a likeable company

Customer satisfaction (CUSA)

cusa I am satisfied with [the company]

Customer loyalty (CUSL)

cusl_1 I would recommend [company] to friends and relatives

cusl_2 If  I had to choose again, I would choose [company] as my mobile phone service 
provider

cusl_3 I will remain a customer of [company] in the future

Source: Hair et al. (2022), Chap. 2; used with permission by Sage

model. In 7 Chap. 5, we will extend the simple model by adding four formatively 
measured constructs.

Now that you are familiar with the reputation model, we will demonstrate the 
syntax used by SEMinR.  Briefly, there are four steps to specify and estimate a 
structural equation model using SEMinR:
 1. Loading and cleaning the data
 2. Specifying the measurement models
 3. Specifying the structural model
 4. Estimating, bootstrapping, and summarizing the model

3.2  Loading and Cleaning the Data

When estimating a PLS-SEM model, SEMinR expects you to have already loaded 
your data into an object. This data object is usually a data.frame class object, but 
SEMinR will also accept a matrix class object. For more information about these 
objects, you can access the R documentation using the ? operator (e.g., ?matrix). 
The read.csv() function allows you to load data into R if  the data file is in a .csv 
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(comma-separated value) or .txt (text) format. Note that there are other packages 
that can be used to load data in Microsoft Excel’s .xlsx format or other popular 
data formats.

Comma-separated value (CSV) files are a type of text file, whose lines contain 
the data of each subject or case of your dataset. The values in each line correspond 
to the different variables of interest (e.g., the first, second, or third value of a line 
corresponds with the first, second, or third variable in the dataset, from left to 
right). These values are typically separated by commas but can also be separated by 
other special characters (e.g., semicolons). The first line of the file typically consists 
of variable names, called the header line, and is also separated by commas or other 
special characters. Thus, a variable will have its name in the first row at a certain 
position (e.g., fifth data entry), and its values will be in all the following lines of 
data at the same position (e.g., also at the fifth data entry position). Files in a .csv 
format are a popular way of storing datasets, and we will use it as an example in 
this chapter. Many software packages, such as Microsoft Excel and SPSS, can 
export data into a .csv format.

We can load data from a .csv file using the read.csv() function. Remember 
that you can use the ? operator to find help about a function in R (e.g., use ?read.
csv) at any time. . Table 3.2 shows several arguments for the read.csv() func-
tion as included in the help file.

In this section, we will demonstrate how to load a .csv file into the RStudio 
global environment. The file we will use is called Corporate Reputation Data.csv 
and can be downloaded from the book’s website at 7 https://www. pls- sem. net/
downloads/. Once you have downloaded the Corporate Reputation Data.csv file, 
transfer it to your R project working directory as discussed in 7 Chap. 2. If  you 
inspect the Corporate Reputation Data.csv file in a text editor, it should appear as 
in the screenshot in . Fig. 3.3. Note that this .csv file uses semicolons instead of 
commas to separate variable names and values.

In . Fig. 3.3, we see that this sample data has a header row consisting of the 
variable names (columns). In addition, the semicolon (;) is used as a separator 

.       Table 3.2 A (shortened) list of  arguments for the read.csv() function

Argument Value

file The name of the file to be uploaded from the working directory

header A logical value indicating whether the file contains column headers as the first 
line. Default is “TRUE”

sep The character used as a separator between fields in the data file. Default is a 
comma “,”

dec The character used in the file for decimal points. Default is a period “.”

Note: Use ?read.csv() for the full documentation
Source: authors’ own table
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       . Fig. 3.3 The Corporate Reputation Data.csv file viewed in a text editor. (Source: authors’ screen-
shot from R)

character, and the missing values are coded as −99. If  you wish to import this file 
to the global environment, you can use the read.csv() function, specifying the 
arguments file = “Corporate Reputation Data.csv”, header = TRUE, and 
sep = “;” and assigning the output to the corp_rep_data variable:

# Load the corporate reputation data
corp_rep_data <- read.csv(file = “Corporate Reputation Data.
csv”, header = TRUE, sep = “;”)

When clicking on the corp_rep_data object in the environment panel of 
RStudio, the source window opens at the top left of the screen (. Fig. 3.4).

 > Important
Inspect the loaded data to ensure that the correct numbers of columns (indicators), 
rows (observations or cases), and column headers (indicator names) appear in the 
loaded data. Note that SEMinR uses the asterisk (“*”) character when naming 
interaction terms as used in, for example, moderation analysis, so please ensure that 
asterisks are not present in the indicator names. Duplicate indicator names will also 
cause errors in SEMinR. Finally, missing values should be represented with a miss-
ing value indicator (such as −99, which is commonly used), so they can be appropri-
ately identified and treated as missing values.

We encourage you to follow the above steps to download and read a dataset. 
Alternatively, you can also access that particular dataset directly from SEMinR. To 
help demonstrate its features, SEMinR comes bundled with two datasets, the cor-
porate reputation dataset (Hair et al., 2022; corp_rep_data) and the European 
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       . Fig. 3.4 Inspecting the corp_rep_data object. (Source: authors’ screenshot from RStudio)

Customer Satisfaction Index (ECSI) dataset (Tenenhaus, Esposito Vinzi, Chatelin, 
& Lauro, 2005; mobi). When the SEMinR library has been loaded to the global 
environment (library(seminr)), the data are accessible by simply calling the 
object names (corp_rep_data or mobi).

Whichever way you have loaded the corp_rep_data, we can now inspect the 
dataset by using the head() function. head() is a useful function that outputs the 
first few fields of an object:

# Show the first several rows of the corporate reputation data
head(corp_rep_data)

It is clear from inspecting the head of the corp_rep_data object (. Fig. 3.5) that 
the file has been loaded correctly and has the value “-99” set for the missing values. 
With the data loaded correctly, we now turn to the measurement model specifica-
tion.

3.3  Specifying the Measurement Models

Path models are made up of two elements: (1) the measurement models (also called 
outer models in PLS-SEM), which describe the relationships between the latent 
variables and their measures (i.e., their indicators), and (2) the structural model 
(also called the inner model in PLS-SEM), which describes the relationships 
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       . Fig. 3.5 The head of  the corporate reputation dataset. (Source: authors’ screenshot from 
 RStudio)

between the latent variables. We begin with describing how to specify the measure-
ment models.

The basis for determining the relationships between constructs and their cor-
responding indicator variables is measurement theory. A sound measurement the-
ory is a necessary condition to obtain useful results from any PLS-SEM analysis. 
Hypothesis tests involving the structural relationships among constructs will only 
be as reliable or valid as the construct measures.

SEMinR uses the constructs() function to specify the list of all construct 
measurement models. Within this list, we can then define various constructs:

 5 composite() specifies the measurement of individual constructs.
 5 interaction_term() specifies interaction terms.
 5 higher_composite() specifies hierarchical component models (higher-order 

constructs; Sarstedt et al., 2019).
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       . Table 3.3 The arguments for the composite() function

Argument Value

construct_
name

The name of the construct to be created

item_names A vector of the item names, usually created by the multi_items() or 
single_item() functions

weights Defines the estimation mode for each measurement model. Mode_A or 
correlation_weights for reflectively specified measurement models 
and mode_B or regression_weights for formatively specified 
measurement models
Mode_A is the default value if  weights are not specified.
7 Sect. 3.4 contains explanations of mode A and mode B

Source: authors’ own table

The constructs() function compiles the list of constructs and their respec-
tive measurement model definitions. We must supply it with any number of indi-
vidual composite(), interaction_term(), or higher_composite() 
constructs using their respective functions. Note that neither a dataset nor a struc-
tural model is specified in the measurement model stage, so we can reuse the mea-
surement model object across different datasets and structural models.

The composite() function describes the measurement model of a single con-
struct and takes the arguments shown in . Table 3.3.

SEMinR strives to make specification of measurement items shorter and cleaner 
using multi_items(), which creates a vector of multiple measurement items with 
similar names or single_item() that describes a single measurement item. For 
example, we can use composite() for PLS path models to describe the reflectively 
measured COMP construct with its indicator variables comp_1, comp_2, and comp_3: 
composite(“COMP”, multi_items(“comp_”, 1:3), weights  = mode_A); 
7 Sect. 3.5 contains explanations of mode A and mode B. When no measurement 
weighting scheme is specified, the argument default is set to mode_A. Similarly, we 
can use composite() to define the single-item measurement model of CUSA as 
composite(“CUSA”, single_item(“cusa”)). Combining the four measure-
ment models within the constructs() function, we can define the measurement 
model for the simple model in . Fig. 3.2. Note: If an error occurs, make sure you 
used the library(seminr) command in R to load the SEMinR package before 
executing the program code.

# Create measurement model
simple_mm <- constructs(
  composite(“COMP”, multi_items(“comp_”, 1:3)),
  composite(“LIKE”, multi_items(“like_”, 1:3)),
  composite(“CUSA”, single_item(“cusa”)),
  composite(“CUSL”, multi_items(“cusl_”, 1:3)))
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The program code above facilitates the specification of standard measurement 
models. However, the constructs() function also allows specifying more com-
plex models, such as interaction terms (Memon et al., 2019) and higher-order con-
structs (Sarstedt et al., 2019). We will discuss the interaction_term() function 
for specifying interactions in more detail in 7 Chap. 8.

3.4  Specifying the Structural Model

With our measurement model specified, we now specify the structural model. When 
a structural model is being developed, two primary issues need to be considered: 
the sequence of the constructs and the relationships between them. Both issues are 
critical to the concept of modeling because they represent the hypotheses and their 
relationships to the theory being tested.

In most cases, researchers examine linear independent–dependent relationships 
between two or more constructs in the path model. Theory may suggest, however, 
that model relationships are more complex and involve mediation or moderation 
relationships. In the following section, we briefly introduce these different relation-
ship types. In 7 Chaps. 7 and 8, we explain how they can be estimated and inter-
preted using SEMinR.

SEMinR makes structural model specification more human readable, domain 
relevant, and explicit by using these functions:

 5 relationships() specifies all the structural relationships between all con-
structs.

 5 paths() specifies relationships between sets of antecedents and outcomes.

The simple model in . Fig. 3.2 has five relationships. For example, to specify 
the relationships from COMP and LIKE to CUSA and CUSL, we use the from and 
to arguments in the path function: paths(from = c(“COMP”, “LIKE”), 
to = c(“CUSA”, “CUSL”)).

# Create structural model
simple_sm <- relationships(
  paths(from = c(“COMP”, “LIKE”), to = c(“CUSA”, “CUSL”)),
  paths(from = c(“CUSA”), to = c(“CUSL”)))

Note that neither a dataset nor a measurement model is specified in the structural 
model stage, so we can reuse the structural model object simple_sm across differ-
ent datasets and measurement models.

3.5  Estimating the Model

After having specified the measurement and structural models, the next step is the 
model estimation using the PLS-SEM algorithm. For this task, the algorithm 
needs to determine the scores of the constructs that are used as input for (single 
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and multiple) partial regression models within the path model. After the algorithm 
has calculated the construct scores, the scores are used to estimate each partial 
regression model in the path model. As a result, we obtain the estimates for all 
relationships in the measurement models (i.e., the indicator weights/loadings) and 
the structural model (i.e., the path coefficients).

The setup of the measurement models depends on whether the construct under 
consideration is modeled as reflective or formative. When a reflective measurement 
model is assumed for a construct, the indicator loadings are typically estimated 
through mode A. It estimates the relationship from the construct to each indicator 
based on a reflective measurement model that uses bivariate regressions (i.e., a sin-
gle indicator variable represents the dependent variable, while the construct score 
represents the independent variable). As a result, we obtain correlations between 
the construct and each of its indicators (i.e., correlation weights), which become 
the indicator loadings. In contrast, when a formative measurement model is assumed 
for a construct, the indicator weights are typically estimated using multiple regres-
sion. More specifically, the measurement model estimation applies PLS-SEM’s 
mode B, in which the construct represents a dependent variable and its associated 
indicator variables are the multiple independent variables. As a result, we obtain 
regression weights for the relationships from the indicators to the construct, which 
represent the indicator weights. While the use of mode A (i.e., correlation weights) 
for reflective measurement models and mode B (i.e., regression weights) for forma-
tive measurement models represents the standard approach to estimate the rela-
tionships between the constructs and their indicators in PLS-SEM, researchers 
may choose a different mode per type of measurement model in special situations 
(see also Hair et al., 2022; Rigdon, 2012).

Structural model calculations are executed as follows. The partial regressions 
for the structural model specify an endogenous construct as the dependent variable 
in a regression model. This endogenous construct’s direct predecessors (i.e., latent 
variables with a direct relationship leading to the specific endogenous construct) 
are the independent variables in a regression used to estimate the path coefficients. 
Hence, there is a partial regression model for every endogenous construct to esti-
mate all the path coefficients in the structural model.

All partial regression models are estimated by the PLS-SEM algorithm’s itera-
tive procedures, which comprise two stages. In the first stage, the construct scores 
are estimated. Then, in the second stage, the final estimates of the indicator weights 
and loadings are calculated, as well as the structural model’s path coefficients and 
the resulting R2 values of the endogenous latent variables. Appendix A of this 
textbook provides a detailed description of the PLS-SEM algorithm’s stages (see 
also Lohmöller, 1989).

To estimate a PLS path model, algorithmic options and argument settings must 
be selected. The algorithmic options and argument settings include selecting the 
structural model path weighting scheme. SEMinR allows the user to apply two 
structural model weighting schemes: (1) the factor weighting scheme and (2) the 
path weighting scheme. While the results differ little across the alternative weight-
ing schemes, path weighting is the most popular and recommended approach. This 
weighting scheme provides the highest R2 value for endogenous latent variables 
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       . Table 3.4 Arguments for the estimate_pls() function

Argument Value

data The dataset containing the indicator data

measurement_
model

The measurement model described by the constructs() function

structural_
model

The structural model described by the paths() function

inner_weights The weighting scheme for path estimation. Use either path_
weighting for path weighting (default) or path_factorial 
for factor weighting (see also Chin, 1998; Lohmöller, 1989)

missing An argument declaring which missing value scheme should be used to 
replace the missing values. mean_replacement is used by default

missing_value An argument declaring which value to be used to indicate missing 
values in the data. NA is used by default

maxIt The maximum number of iterations to attempt when estimating the 
PLS path model. 300 is used by default

stopCriterion The minimum change in the indicator weights/loadings between two 
consecutive iterations must be smaller than this threshold (or the 
maximum number of iterations is reached). 7 is used by default and 
represents 10−7 or 0.0000001

Source: authors’ own table

and is generally applicable for all kinds of PLS path model specifications and esti-
mations. Chin (1989) provides further details on the different weighting schemes 
available in PLS-SEM.

SEMinR uses the estimate_pls() function to estimate the PLS-SEM model. 
This function applies the arguments shown in . Table 3.4. Please note that argu-
ments with default values do not need to be specified but will revert to the default 
value when not specified.

We now estimate the PLS-SEM model by using the estimate_pls() function 
with arguments data = corp_rep_data, measurement_model = simple_mm, 
structural_model = simple_sm, inner_weights = path_weighting, miss-
ing = mean_replacement, and missing_value = “-99” and assign the output 
to corp_rep_simple_model.

# Estimate the model
corp_rep_simple_model <- estimate_pls(data = corp_rep_data,
  measurement_model = simple_mm,
  structural_model = simple_sm,
  inner_weights = path_weighting,
  missing = mean_replacement,
  missing_value = “-99”)

3.5 · Estimating the Model
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       . Fig. 3.6 The estimated simple corporate reputation model. (Source: authors’ screenshot from 
RStudio)

Note that the arguments for inner_weights, missing, and missing_value can be 
omitted if  the default arguments are used. This is equivalent to the previous code 
block:

# Estimate the model with default settings
corp_rep_simple_model <- estimate_pls(data = corp_rep_data,
  measurement_model = simple_mm,
  structural_model = simple_sm,
  missing_value = “-99”)

When the PLS-SEM algorithm has converged, the message “Generating the seminr 
model. All 344 observations are valid” will be shown in the console window 
(. Fig. 3.6).

3.6  Summarizing the Model

Once the model has been estimated, we can summarize the model and generate a 
report of the results using the summary() function, which is used to extract the 
output and parameters of importance from an estimated model. SEMinR sup-
ports the use of summary() for the estimate_pls(), bootstrap_model(), and 
predict_pls() functions.

The summary() function applied to a SEMinR model object produces a sum-
mary.seminr_model class object, which can be stored in a variable and contains 
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       . Table 3.5 Elements of  the summary.seminr_model object

Sub-object Contains

$meta The estimation function and version information

$iterations The number of iterations for the PLS-SEM algorithm to converge

$paths The model’s path coefficients and (adjusted) R2 values

$total_effects The model’s total effects

$total_indi-
rect_effects

The model’s total indirect effects

$loadings The indicator loadings for all constructs

$weights The indicator weights for all constructs

$validity The metrics necessary to evaluate the construct measures’ validity

$reliability The metrics necessary to evaluate the construct measures’ reliability

$composite_
scores

The estimated scores for constructs

$vif_anteced-
ents

The metrics used to evaluate structural model collinearity

$fSquare The f2 metric for all structural model relationships

$descriptives The descriptive statistics of the indicator data

$it_criteria The information theoretic model selection criteria for the estimated 
model

Source: authors’ own table

the sub-objects shown in . Table 3.5 that can be inspected using the $ operator 
(e.g., summary_simple_corp_rep$meta). These sub-objects relate to model esti-
mates, which serve as a basis for the assessment of the measurement and structural 
models (Hair, Risher, Sarstedt, & Ringle, 2019).

# Summarize the model results
summary_simple_corp_rep <- summary(corp_rep_simple_model)

# Inspect the model’s path coefficients and the R^2 values
summary_simple_corp_rep$paths

# Inspect the construct reliability metrics
summary_simple_corp_rep$reliability

3.6 · Summarizing the Model
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       . Fig. 3.7 Inspecting the summary report elements. (Source: authors’ screenshot from RStudio)

. Figure 3.7 shows the results stored in the summary_simple_corp_rep$paths 
and summary_simple_corp_rep$reliability sub-objects.

3.7  Bootstrapping the Model

PLS-SEM is a nonparametric method – thus, we need to perform bootstrapping to 
estimate standard errors and compute confidence intervals. Bootstrapping will be 
discussed in more detail in 7 Chaps. 5 and 6, but for now, we introduce the func-
tion and arguments.

SEMinR conducts high-performance bootstrapping using parallel processing, 
which utilizes the full performance of the central processing unit (CPU). The 
bootstrap_model() function is used to bootstrap a previously estimated 
SEMinR model. This function applies the arguments shown in . Table 3.6.

In our example, we use the bootstrap_model() function and specify the 
arguments seminr_model  = corp_rep_simple_model, nboot  = 1000, 
cores = NULL, seed = 123. In this example, we use 1,000 bootstrap subsamples. 
However, the final result computations should draw on 10,000 subsamples 
(Streukens & Leroi- Werelds, 2016). These computations may take a short while 
(i.e., the R program remains idle). We first assign the output of the bootstrapping 
to the boot_simple_corp_rep variable. We then summarize this variable, assign-
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       . Table 3.6 Arguments for the bootstrap_model() function

Argument Value

seminr_
model

A SEMinR model produced by estimate_pls()

nboot The number of bootstrap subsamples to be generated. The number of subsamples 
must be at least equal to the number of valid observations in the dataset. 
Streukens and Leroi-Werelds (2016) suggest drawing at least 10,000 subsamples 
(see also Hair et al., 2022). For intermediary analyses, the number of subsamples 
can be considerably smaller (e.g., 1,000) to save computational time

cores The number of CPU cores to use when performing parallel processing. Default is 
set to NULL which utilizes the max number of cores available on your computer

seed The starting seed to use to make the random process replicable. Default is set to 
123

Source: authors’ own table

       . Table 3.7 Elements of  the summary.bootstrap_model object

Sub-object Contains

$nboot The number of bootstrap subsamples generated during bootstrapping

$bootstrapped_
paths

The bootstrap-estimated standard error, t-statistic, and confidence 
intervals for the path coefficients

$bootstrapped_
weights

The bootstrap-estimated standard error, t-statistic, and confidence 
intervals for the indicator weights

$bootstrapped_
loadings

The bootstrap-estimated standard error, t-statistic, and confidence 
intervals for the indicator loadings

$bootstrapped_
HTMT

The bootstrap-estimated standard error, t-statistic, and confidence 
intervals for the HTMT values

$bootstrapped_
total_paths

The bootstrap-estimated standard error, t-statistic, and confidence 
intervals for the model’s total effects

Source: authors’ own table

ing the output of  summary() to the sum_boot_simple_corp_rep variable. The 
summarized bootstrap model object (i.e., sum_boot_simple_corp_rep) con-
tains the elements shown in . Table  3.7, which can be inspected using the $ 
 operator.
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# Bootstrap the model
boot_simple_corp_rep <- bootstrap_model(seminr_model = corp_
rep_simple_model,
  nboot = 1000,
  cores = NULL,
  seed = 123)

# Store the summary of the bootstrapped model
sum_boot_simple_corp_rep <- summary(boot_simple_corp_rep)

# Inspect the bootstrapped structural paths
sum_boot_simple_corp_rep$bootstrapped_paths

# Inspect the bootstrapped indicator loadings
sum_boot_simple_corp_rep$bootstrapped_loadings

. Figure 3.8 shows the results of the bootstrap procedure for the path coeffi-
cients and indicator loadings. Note that bootstrapping is a random process, and 
your results might be slightly different from those presented here.

3.8  Plotting, Printing, and Exporting Results to Articles

When model estimation, evaluation, and analysis have been completed, it is 
often necessary to export the results generated in R to a report, such as an 
Apache OpenOffice writer document (.odt) or Microsoft PowerPoint presen-
tation (.ppt or .pptx). Throughout this book, we provide screenshots for dem-
onstrating the code outputs to the console in RStudio. However, we do not 
recommend this method to be used for copying and pasting results to research 
reports or articles. Instead, we recommend exporting tables and matrices to 
.csv files, which can be imported into documents or presentations, and that 
figures are exported to .pdf  files to ensure the best print quality. In this sec-
tion, we demonstrate how to best export results for high print quality and 
readability.

The write.csv() function takes an object from the global environment 
and writes it into a .csv file in the working directory of  the project. This func-
tion applies two arguments: x is the name of  the object to be written to file, 
and file is the name of  the file to be created and written to. Thus, if  we wish 
to report the bootstrapped paths from the previously discussed simple model, 
we would use the write.csv() function with argument x = sum_boot_sim-
ple_corp_rep$bootstrapped_loadings and file  = “boot_loadings.
csv”.
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       . Fig. 3.8 Bootstrapped structural paths and indicator loadings. (Source: authors’ screenshot from 
RStudio)

# Write the bootstrapped paths object to csv file
write.csv(x = sum_boot_simple_corp_rep$bootstrapped_loadings,
  file = “boot_loadings.csv”)

Once the boot_loadings.csv file has been saved into the working directory, we 
can open it with Apache OpenOffice Calc, Microsoft Excel, or other spreadsheet 
software. These spreadsheet software applications enable formatting and editing 
the table to produce high-quality tables in reports. We followed this procedure to 
create . Table  3.8 of bootstrapped indicator loadings for the simple corporate 
reputation model.

Next, we discuss how to generate high-quality figures from the SEMinR results. 
First, we generate a sample plot for export from RStudio. To do this, we use a sub- 
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       . Table 3.8 Export of  bootstrapped indicator loadings from SEMinR

Paths Original 
est.

Bootstrap 
mean

Bootstrap 
SD

T stat. 2.5% 
CI

97.5% 
CI

comp_1  ->  COMP 0.858 0.858 0.021 41.366 0.813 0.895

comp_2  ->  COMP 0.798 0.797 0.029 27.709 0.730 0.843

comp_3  ->   COMP 0.818 0.814 0.031 26.246 0.746 0.866

like_1  ->   LIKE 0.879 0.880 0.017 51.088 0.843 0.910

like_2  ->   LIKE 0.870 0.869 0.018 47.428 0.830 0.900

like_3  ->   LIKE 0.843 0.842 0.020 41.417 0.799 0.879

cusa  ->   CUSA 1 1 0 NA 1 1

cusl_1  ->   CUSL 0.833 0.832 0.024 35.331 0.780 0.874

cusl_2  -> CUSL 0.917 0.917 0.010 88.874 0.894 0.935

cusl_3  ->   CUSL 0.843 0.842 0.023 37.134 0.793 0.881

Source: authors’ own table

object of summary_simple_corp_rep and plot the constructs’ internal consis-
tency reliabilities (i.e., Cronbach’s alpha, rhoA, and rhoC) with 
plot(summary_simple_corp_rep$reliability). Once this plot displays in 
the plots tab in RStudio (. Fig. 3.9), click the Export dropdown list and select 
Save as PDF to bring up the save plot as a .pdf window. Select the size and output 
name and save the document. Note that the size will affect the rendering of the plot 
and might need to be adjusted several times before the ideal format is found. These 
.pdf images can be imported directly into documents and reports at very high print 
quality. Alternatively, we can save the plot as an image file in .png, .jpeg, .eps, and 
many other formats. To do so, click the Export dropdown list in the plots tab and 
select Save as Image.
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       . Fig. 3.9 Exporting the plot from RStudio using Save as PDF. (Source: authors’ screenshot from 
RStudio)

Summary
In this chapter, we introduced the SEMinR syntax necessary for loading data, speci-
fying and estimating a PLS path model, and reporting the results. Unlike popular 
graphical user interface software that uses menus and buttons, using a programming 
language, such as R, creates many opportunities for errors and bugs to be introduced. 
It is crucial that you are well versed in the SEMinR syntax, functions, and arguments 
before you proceed to the next few chapters. For this reason, we strongly recommend 
reviewing this chapter several times and attempting to complete the exercises before 
moving onto subsequent chapters. The upside of the programming approach is that 
every step and parameter of your analysis are explicitly defined for others to repeat 
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or replicate. In addition, more experienced users can draw on a large number of 
supplementary R packages that extend the analyses supported by SEMinR.

The SEMinR syntax for PLS-SEM is broadly divided into four stages: (1) load-
ing and cleaning the data, (2) specifying the measurement models, (3) specifying the 
structural model, and (4) estimating, bootstrapping, and summarizing the model. 
When loading data, it is important that the format of the file to be imported is well 
understood to prevent later errors. Special attention should be paid to the column 
headers, the separator and decimal characters used, and the missing value indicator. 
The raw data file can be inspected using a text editor prior to importing it into the 
RStudio environment. The imported data should also be compared to the raw data 
file to ensure no errors occurred in the process.

The measurement model is specified using the SEMinR functions con-
structs(), composite(), interaction_term(), and multi_items() 
or single_item(). The measurement model can be specified and reused 
across different datasets and structural model configurations. The structural 
model is specified using relationships(), paths(), and intuitive argu-
ments from and to for specific paths. The PLS path model is estimated using 
the estimate_pls() function, which allows for specification of  the inner 
model weighting scheme, as path weighting or factorial. The bootstrap_
model() function is used to bootstrap a previously estimated SEMinR model. 
Reports are generated using the summarize(), plot(), and print() func-
tions, and high-quality figures and tables can be exported to reports and pre-
sentations.

 ? Exercise
The SEMinR package comes bundled with a model (i.e., the influencer model), 
which analyzes if  consumers are likely to follow social media influencers’ purchase 
recommendations and whether they feel connected with the influencer. Specifically, 
the model examines the impact of self-influencer connection (i.e., the level of own 
identification with the influencer presenting a specific product, SIC) on product 
liking (PL), perceived quality (PQ), and purchase intention (PI). That is, product 
liking and perceived quality act as potential mediators in the relationship between 
self- influencer connection and purchase intention. Finally, the model hypothesizes a 
direct effect from purchase intention to willingness to pay (WTP). Pick (2020) pro-
vides the theoretical background on a similar influencer model.

The data were collected as part of a larger study on social media influencer mar-
keting (Pick, 2020) via an online survey between January and April 2019. The final 
dataset consists of N = 222 observations. The dataset is bundled with the SEMinR 
package and is named influencer_data. Participants saw either a “real” influencer 
called Franklin who presented a fitness shake (N = 100) or a “fake” influencer called 
Emma who presented a hand blender (N = 122) (indicator, influencer_group). After 
seeing the real or fake influencer, participants provided information about their self- 
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influencer connection on a 7-point Likert scale (1 = completely disagree, 7 = com-
pletely agree). Different from Pick (2020), we consider self-influencer connection as a 
formative measure using the set of items shown in . Table 3.9. To assess the forma-
tive construct’s convergent validity, a single item was included in the survey (indica-
tor, sic_global), which serves as the criterion measure for a redundancy analysis.

In the next step, respondents stated their perceived influencer competence (used 
in 7 Chap. 8), perceived quality, product liking, and purchase intention, all of which 
are measured reflectively on a 7-point Likert scale (1 = completely disagree, 7 = com-
pletely agree). Finally, willingness to pay is measured using a single question, asking 
respondents for their willingness to pay (in Euro) for the presented product. See 
. Table 3.10 for a complete list of item wordings. The table also includes items for 
an additional construct (perceived influencer competence), which we will introduce 
in 7 Chap. 8.

The influencer model is illustrated in . Fig. 3.10. If  you need help or hints, con-
sult the SEMinR demo topic file for the influencer model:

# Access the demo file for the ECSI dataset
demo(topic = “seminr-pls-influencer”, package = “seminr”)

 1. Reproduce the influencer measurement models in SEMinR syntax.
 2. Reproduce the influencer structural model in SEMinR syntax.
 3. Estimate the influencer model using the standard settings. Remember to specify 

the influencer_data dataset.
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       . Table 3.9 Indicators for the formatively measured construct of  the influencer model

Self-influencer connection (SIC)

sic_1 The influencer reflects who I am

sic_2 I can identify with the influencer

sic_3 I feel a personal connection to the influencer

sic_4 I (can) use the influencer to communicate who I am to other people

sic_5 I think the influencer helps (could help) me become the type of person I want to 
be

sic_6 I consider the influencer to be “me”

sic_7 The influencer suits me well

sic_global My personality and the personality of the influencer relate to one another

Source: authors’ own table

https://doi.org/10.1007/978-3-030-80519-7_8
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       . Table 3.10 Indicators for the reflectively measured construct of  the influencer model

Perceived Influencer Competence (PIC)

pic_1 The influencer is qualified

pic_2 The influencer is competent

pic_3 The influencer is an expert

pic_4 The influencer is experienced

pic_5 The influencer is knowledgeable

Perceived Quality (PQ)

pq_1 The product has excellent quality

pq_2 The product looks reliable and durable

pq_3 The product will have fewer problems

pq_4 The product has excellent quality features

Product Liking (PL)

pl_1 I dislike the product

pl_2 The product is appealing to me

pl_3 The presented product raises a positive feeling in me

pl_4 The product is interesting to me

Purchase Intention (PI)

pi_1 It is very likely that I will purchase this product

pi_2 I will purchase this product the next time I need it

pi_3 I would definitely try out the products

pi_4 I would recommend this product to my friends

pi_5 I am willing to purchase this product

Willingness to Pay (WTP)

wtp Please state your willingness to pay (in Euro) for the presented product

Source: authors’ own table
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       . Fig. 3.10 Influencer model. (Source: authors’ own figure)
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Learning Objectives
After reading this chapter, you should understand:
 1. The concept of indicator reliability
 2. The different metrics for assessing internal consistency reliability
 3. How to interpret the average variance extracted (AVE) as a measure of conver-

gent validity
 4. How to evaluate discriminant validity using the HTMT criterion
 5. How to use SEMinR to assess reflectively measured constructs in the corporate 

reputation example

4.1  Introduction

This chapter describes how to evaluate the quality of reflective measurement mod-
els estimated by PLS-SEM, both in in terms of reliability and validity. Assessing 
reflective measurement models includes evaluating the reliability of measures, on 
both an indicator level (indicator reliability) and a construct level (internal consis-
tency reliability). Validity assessment focuses on each measure’s convergent validity 
using the average variance extracted (AVE). Moreover, the heterotrait–monotrait 
(HTMT) ratio of correlations allows to assess a reflectively measured construct’s 
discriminant validity in comparison with other construct measures in the same 
model. . Figure 4.1 illustrates the reflective measurement model evaluation pro-
cess. In the following sections, we address each criterion for the evaluation of 
reflective measurement models and offer rules of thumb for their use. In the second 
part of this chapter, we explain how to apply the metrics to our corporate reputa-
tion example using SEMinR.

Assess the indicator reliability

Assess the internal
consistency reliability

Step 1

Step 2

Step 3

Assess the discriminant validityStep 4

Assess the convergent validity

       . Fig. 4.1 Reflective measure-
ment model assessment 
procedure. (Source: authors’  
own figure)
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4.2  Indicator Reliability

The first step in reflective measurement model assessment involves examining how 
much of each indicator’s variance is explained by its construct, which is indicative 
of indicator reliability. To compute an indicator’s explained variance, we need to 
square the indicator loading, which is the bivariate correlation between indicator 
and construct. As such, the indicator reliability indicates the communality of  an 
indicator. Indicator loadings above 0.708 are recommended, since they indicate 
that the construct explains more than 50 percent of the indicator’s variance, thus 
providing acceptable indicator reliability.

Researchers frequently obtain weaker indicator loadings (< 0.708) for their 
measurement models in social science studies, especially when newly developed 
scales are used (Hulland, 1999). Rather than automatically eliminating indicators 
when their loading is below 0.70, researchers should carefully examine the effects 
of indicator removal on other reliability and validity measures. Generally, indica-
tors with loadings between 0.40 and 0.708 should be considered for removal only 
when deleting the indicator leads to an increase in the internal consistency reliabil-
ity or convergent validity (discussed in the next sections) above the suggested 
threshold value. Another consideration in the decision of whether to delete an indi-
cator is the extent to which its removal affects content validity, which refers to the 
extent to which a measure represents all facets of a given construct. As a conse-
quence, indicators with weaker loadings are sometimes retained. Indicators with 
very low loadings (below 0.40) should, however, always be eliminated from the 
measurement model (Hair, Hult, Ringle, & Sarstedt, 2022).

4.3  Internal Consistency Reliability

The second step in reflective measurement model assessment involves examining 
internal consistency reliability. Internal consistency reliability is the extent to 
which indicators measuring the same construct are associated with each other. One 
of the primary measures used in PLS-SEM is Jöreskog’s (1971) composite reliabil-
ity rhoc. Higher values indicate higher levels of reliability. For example, reliability 
values between 0.60 and 0.70 are considered “acceptable in exploratory research,” 
whereas values between 0.70 and 0.90 range from “satisfactory to good.” Values 
above 0.90 (and definitely above 0.95) are problematic, since they indicate that the 
indicators are redundant, thereby reducing construct validity (Diamantopoulos, 
Sarstedt, Fuchs, Wilczynski, & Kaiser, 2012). Reliability values of 0.95 and above 
also suggest the possibility of undesirable response patterns (e.g., straight-lining), 
thereby triggering inflated correlations among the error terms of the indicators.

Cronbach’s alpha is another measure of internal consistency reliability, which 
assumes the same thresholds as the composite reliability (rhoc). A major limitation 
of Cronbach’s alpha, however, is that it assumes all indicator loadings are the same 
in the population (also referred to as tau-equivalence). The violation of this 
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assumption manifests itself  in lower reliability values than those produced by rhoc. 
Nevertheless, researchers have shown that even in the absence of tau-equivalence, 
Cronbach’s alpha is an acceptable lower-bound approximation of the true internal 
consistency reliability (Trizano-Hermosilla & Alvarado, 2016).

While Cronbach’s alpha is rather conservative, the composite reliability rhoc 
may be too liberal, and the construct’s true reliability is typically viewed as within 
these two extreme values. As an alternative and building on Dijkstra (2010), subse-
quent research has proposed the exact (or consistent) reliability coefficient rhoA 
(Dijkstra, 2014; Dijkstra & Henseler, 2015). The reliability coefficient rhoA usually 
lies between the conservative Cronbach’s alpha and the liberal composite reliability 
and is therefore considered and acceptable compromise between these two 
 measures.

4.4  Convergent Validity

The third step is to assess (the) convergent validity of  each construct. Convergent 
validity is the extent to which the construct converges in order to explain the vari-
ance of its indicators. The metric used for evaluating a construct’s convergent 
validity is the average variance extracted (AVE) for all indicators on each con-
struct. The AVE is defined as the grand mean value of the squared loadings of the 
indicators associated with the construct (i.e., the sum of the squared loadings 
divided by the number of indicators). Therefore, the AVE is equivalent to the com-
munality of  a construct. The minimum acceptable AVE is 0.50 – an AVE of 0.50 or 
higher indicates the construct explains 50 percent or more of the indicators’ vari-
ance that make up the construct (Hair et al., 2022).

4.5  Discriminant Validity

The fourth step is to assess discriminant validity. This metric measures the extent 
to which a construct is empirically distinct from other constructs in the structural 
model. Fornell and Larcker (1981) proposed the traditional metric and suggested 
that each construct’s AVE (squared variance within) should be compared to the 
squared inter-construct correlation (as a measure of shared variance between con-
structs) of that same construct and all other reflectively measured constructs in the 
structural model – the shared variance between all model constructs should not be 
larger than their AVEs. Recent research indicates, however, that this metric is not 
suitable for discriminant validity assessment. For example, Henseler, Ringle, and 
Sarstedt (2015) show that the Fornell–Larcker criterion (i.e., FL in SEMinR) does 
not perform well, particularly when the indicator loadings on a construct differ 
only slightly (e.g., all the indicator loadings are between 0.65 and 0.85). Hence, in 
empirical applications, the Fornell–Larcker criterion often fails to reliably identify 
discriminant validity problems (Radomir & Moisescu, 2019) and should therefore 
be avoided. Nonetheless, we include this criterion in our discussion, as many 
researchers are familiar with it.
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       . Fig. 4.2 Discriminant 
validity assessment using the 
HTMT. (Source: authors’ own 
figure)

As a better alternative, we recommend the heterotrait–monotrait ratio (HTMT) 
of  correlations (Henseler et al., 2015) to assess discriminant validity. The HTMT is 
defined as the mean value of the indicator correlations across constructs (i.e., the 
heterotrait–heteromethod correlations) relative to the (geometric) mean of the 
average correlations for the indicators measuring the same construct (i.e., the 
monotrait–heteromethod correlations). . Figure 4.2 illustrates this concept. The 
arrows connecting indicators of different constructs represent the heterotrait–het-
eromethod correlations, which should be as small as possible. On the contrary, the 
monotrait–heteromethod correlations – represented by the dashed arrows – repre-
sent the correlations among indicators measuring the same concept, which should 
be as high as possible.

Discriminant validity problems are present when HTMT values are high. 
Henseler et al. (2015) propose a threshold value of 0.90 for structural models with 
constructs that are conceptually very similar, such as cognitive satisfaction, affec-
tive satisfaction, and loyalty. In such a setting, an HTMT value above 0.90 would 
suggest that discriminant validity is not present. But when constructs are conceptu-
ally more distinct, a lower, more conservative, threshold value is suggested, such as 
0.85 (Henseler et al., 2015).

In addition, bootstrap confidence intervals can be used to test if  the HTMT is 
significantly different from 1.0 (Henseler et al., 2015) or a lower threshold value, 
such as 0.9 or 0.85, which should be defined based on the study context (Franke & 
Sarstedt, 2019). To do so, we need to assess whether the upper bound of the 95% 
confidence interval (assuming a significance level of 5%) is lower than 0.90 or 0.85. 
Hence, we have to consider a 95% one-sided bootstrap confidence interval, whose 
upper boundary is identical to the one produced when computing a 90% two-sided 
bootstrap confidence interval. To obtain the bootstrap confidence intervals, in line 
with Aguirre-Urreta and Rönkkö (2018), researchers should generally use the 
 percentile method. In addition, researchers should always use 10,000 bootstrap 
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       . Table 4.1 Summary of  the criteria and rules of  thumb for their use

Criterion Metrics and thresholds

Reflective 
indicator 
loadings

≥ 0.708

Internal 
consistency 
reliability

Cronbach’s alpha is the lower bound, and the composite reliability rhoc is 
the upper bound for internal consistency reliability. The reliability 
coefficient rhoA usually lies between these bounds and may serve as a good 
representation of a construct’s internal consistency reliability
Minimum 0.70 (or 0.60 in exploratory research)
Maximum of 0.95 to avoid indicator redundancy, which would compro-
mise content validity
Recommended 0.80 to 0.90

Convergent 
validity

AVE ≥ 0.50

Discriminant 
validity

For conceptually similar constructs, HTMT <0.90
For conceptually different constructs, HTMT <0.85
Test if  the HTMT is significantly lower than the threshold value

Source: authors’ own table

samples (Streukens & Leroi-Werelds, 2016). See 7 Chap. 5 for details on boot-
strapping and confidence intervals.

. Table 4.1 summarizes all the metrics that need to be applied when assessing 
reflective measurement models.

4.6  Case Study Illustration: Reflective Measurement Models

We continue analyzing the simple corporate reputation PLS path model introduced 
in the previous chapter. In 7 Chap. 3, we explained and demonstrated how to load 
the data, create the structural model and measurement model objects, and estimate 
the PLS path model using the SEMinR syntax. In the following, we discuss how to 
evaluate reflective measurement models, using the simple corporate reputation 
model (7 Fig. 3.2 in 7 Chap. 3) as an example.

Recall that to specify and estimate the model, we must first load the data and 
specify the measurement model and structural model. The model is then estimated 
by using the estimate_pls() command, and the output is assigned to an object. 
In our case study, we name this object corp_rep_pls_model. Once the PLS path 
model has been estimated, we can access the reports and analysis results by run-
ning the summary() function. To be able to view different parts of the analysis in 
greater detail, we suggest assigning the output to a newly created object that we call 
summary_corp_rep in our example (. Fig. 4.3).
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       . Fig. 4.3 Recap on loading data, specifying and summarizing the model, and inspecting iterations. 
(Source: authors’ screenshot from RStudio)

# Load the SEMinR library
library(seminr)

# Load the data
corp_rep_data <- corp_rep_data

# Create measurement model
corp_rep_mm <- constructs(
  composite(“COMP”, multi_items(“comp_”, 1:3)),
  composite(“LIKE”, multi_items(“like_”, 1:3)),
  composite(“CUSA”, single_item(“cusa”)),
  composite(“CUSL”, multi_items(“cusl_”, 1:3)))

# Create structural model
corp_rep_sm <- relationships(
  paths(from = c(“COMP”, “LIKE”), to = c(“CUSA”, “CUSL”)),
  paths(from = c(“CUSA”), to = c(“CUSL”)))

# Estimating the model
corp_rep_pls_model <- estimate_pls(

4.6 · Case Study Illustration: Reflective Measurement Models
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  data = corp_rep_data,
  measurement_model = corp_rep_mm,
  structural_model = corp_rep_sm,
  missing = mean_replacement,
  missing_value = “-99”)

# Summarize the model results
summary_corp_rep <- summary(corp_rep_pls_model)

Note that the results are not automatically shown but can be extracted as needed 
from the summary_corp_rep object. For a reminder on what is returned from the 
summary() function applied to a SEMinR model and stored in the summary_
corp_rep object, refer to 7 Table 3.5. Before analyzing the results, we advise to 
first check if  the algorithm converged (i.e., the stop criterion of the algorithm was 
reached and not the maximum number of iterations – see 7 Table 3.4 for setting 
these arguments in the estimate_pls() function). To do so, it is necessary to 
inspect the iterations element within the summary_corp_rep object by using 
the $ operator.

# Iterations to converge
summary_corp_rep$iterations

The upper part of . Fig. 4.3 shows the code for loading the model, estimating the 
object corp_rep_pls_model, and summarizing the model to the summary_
corp_rep object. The lower part of the figure shows the number of iterations 
that the PLS-SEM algorithm needed to converge. This number should be lower 
than the maximum number of iterations (e.g., 300). The bottom of . Fig. 4.3 indi-
cates that the algorithm converged after iteration 4.

If the PLS-SEM algorithm does not converge in fewer than 300 iterations, which 
is the default setting in most PLS-SEM software, the algorithm could not find a 
stable solution. This kind of situation almost never occurs. But if  it does occur, 
there are two possible causes: (1) The selected stop criterion is set at a very small 
level (e.g., 1.0E-10 as opposed to the standard of 1.0E-7), so that small changes in 
the coefficients of the measurement models prevent the PLS-SEM algorithm from 
stopping, or (2) there are problems with the data and it needs to be checked care-
fully. For example, data problems may occur if  the sample size is too small or if  the 
responses to an indicator include many identical values (i.e., the same data points, 
which results in insufficient variability, error message is singular matrix).

In the following, we inspect the summary_corp_rep object to obtain statistics 
relevant for assessing the construct measures’ internal consistency reliability, con-
vergent validity, and discriminant validity. The simple corporate reputation model 
contains three constructs with reflective measurement models (i.e., COMP, CUSL, 
and LIKE) as well as a single-item construct (CUSA). For the reflective measure-

 Chapter 4 · Evaluation of Reflective Measurement Models

https://doi.org/10.1007/978-3-030-80519-7_3#Tab5
https://doi.org/10.1007/978-3-030-80519-7_3#Tab4


83 4

       . Fig. 4.4 Indicator loadings and indicator reliability. (Source: authors’ screenshot from RStudio)

ment model, we need to estimate the relationships between the reflectively mea-
sured constructs and their indicators (i.e., loadings). . Figure  4.4 displays the 
results for the indicator loadings, which can be found by using the $ operator when 
inspecting the summary_corp_rep object. The calculation of indicator reliability 
(. Fig. 4.4) can be automated by squaring the values in the indicator loading table 
by using the ^ operator to square all values (i.e., ^2):

# Inspect the indicator loadings
summary_corp_rep$loadings
# Inspect the indicator reliability
summary_corp_rep$loadings^2

All indicator loadings of the reflectively measured constructs COMP, CUSL, and 
LIKE are well above the threshold value of 0.708 (Hair, Risher, Sarstedt, & Ringle, 
2019), which suggests sufficient levels of indicator reliability. The indicator comp_2 
(loading, 0.798) has the smallest indicator-explained variance with a value of 0.638 
(= 0.7982), while the indicator cusl_2 (loading, 0.917) has the highest explained 
variance, with a value of 0.841 (= 0.9172) – both values are well above the threshold 
value of 0.5.
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       . Fig. 4.5 Construct reliability and convergent validity table. (Source: authors’ screenshot from 
RStudio)

To evaluate the composite reliability of the construct measures, once again 
inspect the summary_corp_rep object by using $reliability:

# Inspect the composite reliability
summary_corp_rep$reliability

The internal consistency reliability values are displayed in a matrix format 
(. Fig.  4.5). With rhoA values of 0.832 (COMP), 0.839 (CUSL), and 0.836 
(LIKE), all three reflectively measured constructs have high levels of internal con-
sistency reliability. Similarly, the results for Cronbach’s alpha (0.776 for COMP, 
0.831 for CUSL, and 0.831 for LIKE) and the composite reliability rhoc (0.865 for 
COMP, 0.899 for CUSL, and 0.899 for LIKE) are above the 0.70 threshold (Hair 
et al., 2019), indicating that all construct measures are reliable. Note that the inter-
nal consistency reliability values of CUSA (1.000) must not be interpreted as an 
indication of perfect reliability – since CUSA is measured with a single item and its 
internal consistency reliability is by definition 1.

The results can also be visualized using a bar chart, requested by the plot() 
function on the summary_corp_rep$reliability object. This plot visualizes 
the reliability in terms of Cronbach’s alpha, rhoA, and rhoC for all constructs. Note 
that the plots will be outputted to the plots panel window in RStudio (. Fig. 4.6):

# Plot the reliabilities of constructs
plot(summary_corp_rep$reliability)

The horizontal dashed blue line indicates the common minimum threshold level for 
the three reliability measures (i.e., 0.70). As indicated in . Fig. 4.6, all Cronbach’s 
alpha, rhoA, and rhoC values exceed the threshold.
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       . Fig. 4.6 Reliability charts. (Source: authors’ screenshot from R)

Convergent validity assessment is based on the average variance extracted 
(AVE) values (Hair et al., 2019), which can also be accessed by summary_corp_
rep$reliability. . Figure 4.5 shows the AVE values along with the internal 
 consistency reliability values. In this example, the AVE values of COMP (0.681), 
CUSL (0.748), and LIKE (0.747) are well above the required minimum level of 
0.50 (Hair et al., 2019). Thus, the measures of the three reflectively measured con-
structs have high levels of convergent validity.

Finally, SEMinR offers several approaches to assess whether the construct 
measures empirically demonstrate discriminant validity. According to the Fornell–
Larcker criterion (Fornell & Larcker, 1981), the square root of the AVE of each 
construct should be higher than the construct’s highest correlation with any other 
construct in the model (this notion is identical to comparing the AVE with the 
squared correlations between the constructs). These results can be outputted by 
inspecting the summary_corp_rep object and validity element for the fl_cri-
teria:

# Table of the FL criteria
summary_corp_rep$validity$fl_criteria

. Figure 4.7 shows the results of the Fornell–Larcker criterion assessment with 
the square root of the reflectively measured constructs’ AVE on the diagonal and 
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       . Fig. 4.7 Fornell–Larcker criterion table. (Source: authors’ screenshot from RStudio)

       . Fig. 4.8 HTMT result table. (Source: authors’ screenshot from RStudio)

the correlations between the constructs in the off-diagonal position. For example, 
the reflectively measured construct COMP has a value of 0.825 for the square root 
of its AVE, which needs to be compared with all correlation values in the column 
of COMP (i.e., 0.645, 0.436, and 0.450). Note that for CUSA, the comparison 
makes no sense, as the AVE of a single-item construct is 1.000 by design. Overall, 
the square roots of the AVEs for the reflectively measured constructs COMP 
(0.825), CUSL (0.865), and LIKE (0.864) are all higher than the correlations of 
these constructs with other latent variables in the PLS path model.

Note that while frequently used in the past, the Fornell–Larcker criterion does 
not allow for reliably detecting discriminant validity issues. Specifically, in light of 
the Fornell–Larcker criterion’s poor performance in detecting discriminant validity 
problems (Franke & Sarstedt, 2019; Henseler et al., 2015), any violation indicated 
by the criterion should be considered a severe issue. The primary criterion for dis-
criminant validity assessment is the HTMT criterion, which can be accessed by 
inspecting the summary_corp_rep() object and validity element for the $htmt.

# HTMT criterion
summary_corp_rep$validity$htmt
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       . Fig. 4.9 Bootstrapping processing. (Source: authors’ screenshot from RStudio)

. Figure 4.8 shows the HTMT values for all pairs of  constructs in a matrix for-
mat. As can be seen, all HTMT values are clearly lower than the more conservative 
threshold value of 0.85 (Henseler et al., 2015), even for CUSA and CUSL, which, 
from a conceptual viewpoint, are very similar. Recall that the threshold value for 
conceptually similar constructs, such as CUSA and CUSL or COMP and LIKE, 
is 0.90.

In addition to examining the HTMT values, researchers should test whether 
the HTMT values are significantly different from 1 or a lower threshold, such as 
0.9 or even 0.85. This analysis requires computing bootstrap confidence inter-
vals obtained by running the bootstrapping procedure. To do so, use the boot-
strap_model() function and assign the output to an object, such as 
boot_corp_rep. Then, run the summary() function on the boot_corp_rep 
object and assign it to another object, such as sum_boot_corp_rep. In doing 
so, we need to set the significance level from 0.05 (default setting) to 0.10 using 
the alpha argument. In this way, we obtain 90% two-sided bootstrap confidence 
intervals for the HTMT values, which is equivalent to running a one-tailed test 
at 5%.

# Bootstrap the model
boot_corp_rep <- bootstrap_model(seminr_model = corp_rep_pls_
model, nboot = 1000)
sum_boot_corp_rep <- summary(boot_corp_rep, alpha = 0.10)

7 Chapter 5 includes a more detailed introduction to the bootstrapping proce-
dure and the argument settings. Bootstrapping should take a few seconds, since it 
is a processing-intensive operation. As the bootstrap computation is being per-
formed, a red STOP indicator should show in the top-right corner of  the console 
(. Fig.  4.9). This indicator will automatically disappear when computation is 
complete, and the console will display “SEMinR Model successfully boot-
strapped.”
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       . Fig. 4.10 Bootstrapped results and confidence intervals for HTMT. (Source: authors’ screenshot 
from RStudio)

After running bootstrapping, access the bootstrapping confidence intervals of 
the HTMT by inspecting the $bootstrapped_HTMT of  the sum_boot_corp_rep 
variable:

# Extract the bootstrapped HTMT
sum_boot_corp_rep$bootstrapped_HTMT

The output in . Fig. 4.10 displays the original ratio estimates (column: Original 
Est.), bootstrapped mean ratio estimates (column: Bootstrap Mean), bootstrap 
standard deviation (column: Bootstrap SD), bootstrap t- statistic (column: T Stat.), 
and 90% confidence interval (columns: 5% CI and 95% CI, respectively) as pro-
duced by the percentile method. Note that the results in . Fig. 4.10 might differ 
slightly from your results due to the random nature of the bootstrapping proce-
dure. The differences in the overall bootstrapping results should be marginal if  you 
use a sufficiently large number of bootstrap subsamples (e.g., 10,000). The columns 
labeled 5% CI and 95% CI show the lower and upper boundaries of the 90% con-
fidence interval (percentile method). As can be seen, the confidence intervals’ upper 
boundaries, in our example, are always lower than the threshold value of 0.90. For 
example, the lower and upper boundaries of the confidence interval of HTMT for 
the relationship between COMP and CUSA are 0.366 and 0.554, respectively 
(again, your values might look slightly different because bootstrapping is a random 
process). To summarize, the bootstrap confidence interval results of the HTMT 
criterion clearly demonstrate the discriminant validity of the constructs and should 
be favored above the inferior Fornell–Larcker criterion.
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Summary
The goal of reflective measurement model assessment is to ensure the reliability and 
validity of the construct measures and therefore provides support for the suitability 
of their inclusion in the path model. The key criteria include indicator reliability, 
internal consistency reliability (Cronbach’s alpha, reliability rhoA, and composite 
reliability rhoC), convergent validity, and discriminant validity. Convergent validity 
implies that a construct includes more than 50% of the indicator’s variance and is 
being evaluated using the AVE statistic. Another fundamental element of validity 
assessment concerns establishing discriminant validity, which ensures that each con-
struct is empirically unique and captures a phenomenon not represented by other 
constructs in a statistical model. While the Fornell–Larcker criterion has long been 
the primary criterion for discriminant validity assessment, more recent research 
highlights that the HTMT criterion should be the preferred choice. Researchers 
using the HTMT should use bootstrapping to derive confidence intervals that allow 
assessing whether the values significantly differ from a specific threshold. Reflective 
measurement models are appropriate for further PLS-SEM analyses if  they meet all 

these requirements.

 ? Exercise
In this exercise, we once again call upon the influencer model and dataset described 
in the exercise section of 7 Chap. 3. The data is called influencer_data and 
consists of 222 observations of 28 variables. The influencer model is illustrated in 
7 Fig. 3.10, and the indicators are described in 7 Tables 3.9 and 3.10.
 1. Load the influencer data, reproduce the influencer model in SEMinR syntax, 

and estimate the model.
 2. Focus your attention on the three reflectively measured constructs product liking 

(PL), perceived quality (PQ), and purchase intention (PI). Evaluate the con-
struct measures’ reliability and validity as follows:
 (a) Do all three constructs meet the criteria for indicator reliability?
 (b) Do all three constructs meet the criteria for internal consistency reliability?
 (c) Do these three constructs display sufficient convergent validity?
 (d) Do these three constructs display sufficient discriminant validity?
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Learning Objectives
After reading this chapter, you should understand:
 1. The concept of redundancy analysis and how to apply it to evaluate convergent 

validity
 2. Collinearity, its implications, and how to assess it
 3. Significance testing using bootstrapping and bootstrap confidence intervals
 4. How to assess formative measurement models using SEMinR

PLS-SEM is the preferred approach when formatively specified constructs are 
included in the PLS path model (Hair, Risher, Sarstedt, & Ringle, 2019). In this 
chapter, we discuss the key steps for evaluating formative measurement models 
(. Fig. 5.1). Relevant criteria include the assessment of (1) convergent validity, (2) 
indicator collinearity, and (3) statistical significance and relevance of the indicator 
weights. In the following, we introduce key criteria and their thresholds and illus-
trate their use with an extended version of the corporate reputation model.

5.1  Convergent Validity

In formative measurement model evaluation, convergent validity refers to the 
degree to which the formatively specified construct correlates with an alternative 
reflectively measured variable(s) of the same concept. Originally proposed by Chin 
(1998), the procedure is referred to as redundancy analysis. To execute this proce-
dure for determining convergent validity, researchers must plan ahead in the 
research design stage by including an alternative measure of the formatively mea-
sured construct in their questionnaire. Cheah, Sarstedt, Ringle, Ramayah, and 
Ting (2018) show that a global single item, which captures the essence of the con-
struct under consideration, is generally sufficient as an alternative measure – despite 
limitations with regard to criterion validity (Diamantopoulos, Sarstedt, Fuchs, 
Wilczynski, & Kaiser, 2012; Sarstedt, Diamantopoulos, Salzberger, & Baumgartner, 
2016). When the model is based on secondary data, a variable measuring a similar 

Assess convergent validity of 
formative measurement models

Assess formative measurement models
for collinearity issues

Assess the significance and
relevance of the formative indicators

Step 1

Step 2

Step 3

       . Fig. 5.1 Formative  
measurement model  
assessment procedure. (Source: 
Hair, Hult, Ringle, & Sarstedt, 
2022, Chap. 5; used with 
permission by Sage)
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concept would be used (Houston, 2004). Hair et al. (2022) suggest the correlation 
of the formatively measured construct with the reflectively measured item(s) should 
be 0.708 or higher, which implies that the construct explains (more than) 50% of 
the alternative measure’s variance.

5.2  Indicator Collinearity

Collinearity occurs when two or more indicators in a formative measurement 
model are highly correlated. High correlation increases the standard error of  the 
indicator weights, thereby triggering type II errors (i.e., false negatives). More pro-
nounced levels of collinearity can even trigger sign changes in the indicator weights, 
which leads to interpretational confounding. For example, a collinearity-induced 
sign change might lead to a negative weight in an indicator measuring an aspect of 
corporate performance such as “[the company] is a very well-managed company.” 
Such a sign change would imply the better the respondents’ assessment of the com-
pany’s management, the lower its perceived performance. This type of result is 
inconsistent with a priori assumptions and is particularly counterintuitive when 
the correlation between the construct and the indicator is in fact positive. The stan-
dard metric for assessing indicator collinearity is the variance inflation factor 
(VIF). When VIF values are higher, the level of collinearity is greater. VIF values 
of 5 or above indicate collinearity problems. In this case, researchers should take 
adequate measures to reduce the collinearity level, for example, by eliminating or 
merging indicators or establishing a higher-order construct – see Hair et al. (2022, 
Chap. 5). However, collinearity issues can also occur at lower VIF values of 3 
(Becker, Ringle, Sarstedt, & Völckner, 2015; Mason & Perreault, 1991). Hence, 
when the analysis produces unexpected sign changes in the indicator weights, the 
initial step is to compare the sign of the relationship using bivariate correlation. If  
the relationship sign differs from the correlation sign, researchers should revise the 
model setup, also by eliminating or merging indicators or establishing a higher- 
order construct.

5.3  Statistical Significance and Relevance  
of the Indicator Weights

The third step in assessing formatively measured constructs is examining the statis-
tical significance and relevance (i.e., size) of the indicator weights. The indicator 
weights result from regressing each formatively measured construct on its associ-
ated indicators. As such, they represent each indicator’s relative importance for 
forming the construct. Significance testing of  the indicator weights relies on the 
bootstrapping procedure, which facilitates deriving standard errors from the data 
without relying on any distributional assumptions (Hair, Sarstedt, Hopkins, & 
Kuppelwieser, 2014).
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 Excurse

The bootstrapping procedure yields t-values for the indicator weights (and other 
model parameters). We need to compare these t-values with the critical  values from 
the standard normal distribution to decide whether the coefficients are significantly 
different from zero. Assuming a significance level of 5%, a t-value above 1.96 (two-
tailed test) suggests that the indicator weight is statistically significant. The critical 
values for significance levels of 1% (α = 0.01) and 10% (α = 0.10) probability of 
error are 2.576 and 1.645 (two tailed), respectively.

Confidence intervals are an alternative way to test for the significance of indica-
tor weights. They represent the range within which the population parameter will 
fall assuming a certain level of confidence (e.g., 95%). In the PLS-SEM context, we 
also refer to bootstrap confidence intervals because the construction of the confi-
dence interval is inferred from the estimates generated by the bootstrapping pro-
cess (Henseler, Ringle, & Sinkovics, 2009). Several types of confidence intervals 
have been proposed in the context of PLS-SEM – see Hair et al. (2022, Chap. 5) for 
an overview. Results from Aguirre-Urreta and Rönkkö (2018) indicate the  percentile 
method is preferred, as it exceeds other methods in terms of coverage and balance, 
producing comparably narrow confidence intervals. If  a confidence interval does 
not include the value zero, the weight can be considered statistically significant, 
and the indicator can be retained. On the contrary, if  the confidence interval of an 
indicator weight includes zero, this indicates the weight is not statistically signifi-
cant (assuming the given significance level, e.g., 5%). In such a situation, the indica-
tor should be considered for removal from the measurement model.

However, if an indicator weight is not significant, it is not necessarily interpreted 
as evidence of poor measurement model quality. We recommend you also consider the 
absolute contribution of a formative indicator to the construct (Cenfetelli & Bassellier, 
2009), which is determined by the formative indicator’s loading. At a minimum, a 
formative indicator’s loading should be statistically significant. Indicator loadings of 
0.5 and higher suggest the indicator makes a sufficient absolute contribution to form-
ing the construct, even if it lacks a significant relative contribution. . Figure  5.2 
shows the decision-making process for testing formative indicator weights.

In bootstrapping, a large number of sam-
ples (i.e., bootstrap samples) are drawn 
from the original sample, with replace-
ment (Davison & Hinkley, 1997). The 
number of bootstrap samples should be 
high but must be at least equal to the 
number of valid observations in the data-
set. Reviewing prior research on boot-
strapping implementations, Streukens 
and Leroi-Werelds (2016) recommend 
that PLS-SEM applications should be 
based on at least 10,000 bootstrap sam-
ples. The bootstrap samples are used 

to estimate the PLS path model 10,000 
times. The resulting parameter estimates, 
such as the indicator weights or path 
coefficients, form a bootstrap distribu-
tion that can be viewed as an approxi-
mation of the sampling distribution. 
Based on this distribution, it is possible 
to calculate the standard error, which is 
the standard deviation of the estimated 
coefficients across bootstrap samples. 
Using the standard error as input, we can 
evaluate the statistical significance of the 
model parameters.

 Chapter 5 · Evaluation of Formative Measurement Models



95 5

       . Fig. 5.2 Decision-making process for keeping or deleting formative indicators. (Source: Hair 
et al., 2022, Chap. 5; used with permission by Sage)
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When deciding whether to delete formative indicators based on statistical out-
comes, researchers need to be cautious for the following reasons. First, formative 
indicator weights are a function of the number of indicators used to measure a 
construct. The greater the number of indicators, the lower their average weight. 
Formative measurement models are inherently limited in the number of indicator 
weights that can be statistically significant (e.g., Cenfetelli & Bassellier, 2009). 
Second, indicators should seldom be removed from formative measurement mod-
els since formative measurement requires the indicators to fully capture the entire 
domain of a construct, as defined by the researcher in the conceptualization stage. 
In contrast to reflective measurement models, formative indicators are not inter-
changeable, and removing even one indicator can therefore reduce the measure-
ment model’s content validity (Bollen & Diamantopoulos, 2017).

 > Important
Formative indicators with nonsignificant weights should not automatically be 
removed from the measurement model, since this step may compromise the content 
validity of the construct.

After the statistical significance of the formative indicator weights has been 
assessed, the final step is to examine each indicator’s relevance. With regard to rel-
evance, indicator weights are standardized to values between −1 and +1. Thus, 
indicator weights closer to +1 (or −1) indicate strong positive (or negative) rela-
tionships, and weights closer to 0 indicate relatively weak relationships. . Table 5.1 
summarizes the rules of thumb for formative measurement model assessment.

       . Table 5.1 Rules of  thumb for formative measurement model assessment

Criterion Metrics and thresholds

Convergent validity 
(redundancy analysis)

≥ 0.708 correlation between the formative construct and a 
reflective (or single-item) measurement of the same concept

Collinearity Critical collinearity issues likely occur if  VIF ≥ 5
Collinearity issues are usually uncritical if  VIF = 3–5
Collinearity is not a problematic issue if  VIF < 3

Statistical significance of 
indicator weights

t-values are greater than 2.576 (α = 0.01), 1.960 (α = 0.05), or 
1.645 (α = 0.10), respectively (two tailed)
The 95% percentile confidence interval (α = 0.05) does not 
include zero

Relevance of indicators with 
a significant weight

Larger significant indicator weights indicate a higher relative 
contribution of the indicator to the construct

Relevance of indicators with 
nonsignificant weights

Indicators with loadings of ≥0.50 that are statistically 
significant are considered relevant

Source: authors’ own table
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5.4  Case Study Illustration: Formative Measurement Models

5.4.1  Model Setup and Estimation

The simple corporate reputation model introduced in 7 Chap. 3 (7 Fig. 3.2) and 
evaluated in 7 Chap. 4 describes the relationships between the two dimensions of 
corporate reputation (i.e., competence and likeability) as well as the two key target 
constructs (i.e., customer satisfaction and loyalty). While the simple model is useful 
to explain how corporate reputation affects customer satisfaction and customer 
loyalty, it does not indicate how companies can effectively manage (i.e., improve) 
their corporate reputation. Schwaiger (2004) identified four driver constructs of 
corporate reputation that companies can manage by means of corporate-level 
 marketing activities. . Table 5.2 lists and defines the four driver constructs of cor-
porate reputation.

All four driver constructs are (positively) related to the competence and like-
ability dimensions of corporate reputation in the path model. . Figure 5.3 shows 

       . Table 5.2 The driver constructs of  corporate reputation

Construct 
name

Construct definition

QUAL The quality of a company’s products and services as well as its quality of 
customer orientation

PERF The company’s economic and managerial performance

CSOR The company’s corporate social responsibility

ATTR The company’s attractiveness as an employer

Source: authors’ own table

CUSLCUSA

COMP

LIKE

QUAL

PERF

CSOR

ATTR

       . Fig. 5.3 The extended 
corporate reputation model. 
(Source: Hair et al., 2022, Chap. 
5; used with permission by Sage)
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the constructs and their relationships, which represent the extended structural 
model for our PLS-SEM example in the remaining chapters of the book. To sum-
marize, the extended corporate reputation model has three main conceptual/theo-
retical components:
 1. The target constructs of interest (CUSA and CUSL)
 2. The two corporate reputation dimensions, COMP and LIKE, that represent 

key determinants of the target constructs
 3. The four exogenous driver constructs (i.e., ATTR, CSOR, PERF, and QUAL) 

of the two corporate reputation dimensions

The endogenous constructs on the right-hand side in . Fig. 5.3 include a single- 
item construct (i.e., CUSA) and three reflectively measured constructs (i.e., COMP, 
CUSL, and LIKE). In contrast, the four new driver constructs (i.e., exogenous latent 
variables) on the left-hand side of . Fig. 5.3 (i.e., ATTR, CSOR, PERF, and QUAL) 
have formative measurement models in accordance with their role in the reputation 
model (Schwaiger, 2004). Specifically, the four new constructs are measured by a 
total of 21 formative indicators (detailed in . Table  5.3) that have been derived 
from literature, qualitative studies, and quantitative pretests (for more details, see 
Schwaiger, 2004). . Table 5.3 also lists the single-item reflective global measures for 
validating the formative driver constructs when executing the redundancy analysis.

We continue to use the corp_rep_data dataset with 344 observations intro-
duced in 7 Chap. 3 for our PLS-SEM analyses. Unlike in the simple model that was 
used in the previous chapter, we now also have to consider the formative measure-
ment models when deciding on the minimum sample size required to estimate the 
model. The maximum number of arrowheads pointing at a particular construct 
occurs in the measurement model of QUAL. All other formatively measured con-
structs have fewer indicators. Similarly, there are fewer arrows pointing at each of 
the endogenous constructs in the structural model. Therefore, when building on the 
10-time rule of thumb, we would need 8 · 10 = 80 observations. Alternatively, fol-
lowing Cohen’s (1992) recommendations for multiple ordinary least squares regres-
sion analysis or running a power analysis using the G*Power program (Faul, 
Erdfelder, Buchner, & Lang, 2009), we would need only 54 observations to detect R2 
values of around 0.25, assuming a significance level of 5% and a statistical power of 
80%. When considering the more conservative approach suggested by Kock and 
Hadaya (2018), we obtain a higher minimum sample size. Considering prior research 
on the corporate reputation model, we expect a minimum path coefficient of 0.15 in 
the structural model. Assuming a significance level of 5% and statistical power of 
80%, the inverse square root method yields a minimum sample size of approxi-
mately 155 (see 7 Chap. 1 for a discussion of sample size and power considerations).

The corporate reputation data can be accessed by the object name corp_rep_data:

# Load the SEMinR library
library(seminr)
# Load the corporate reputation data
corp_rep_data <- corp_rep_data
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https://doi.org/10.1007/978-3-030-80519-7_3
https://doi.org/10.1007/978-3-030-80519-7_1


99 5

       . Table 5.3 The indicators of  the formatively measured constructs

Quality (QUAL)

qual_1 The products/services offered by [the company] are of high quality

qual_2 [The company] is an innovator, rather than an imitator with respect to [industry]

qual_3 [The company]’s products/services offer good value for money

qual_4 The products/services offered by [the company] are good

qual_5 Customer concerns are held in high regard at [the company]

qual_6 [The company] is a reliable partner for customers

qual_7 [The company] is a trustworthy company

qual_8 I have a lot of respect for [the company]

Performance (PERF)

perf_1 [The company] is a very well-managed company

perf_2 [The company] is an economically stable company

perf_3 The business risk for [the company] is modest compared to its competitors

perf_4 [The company] has growth potential

perf_5 [The company] has a clear vision about the future of the company

Corporate social responsibility (CSOR)

csor_1 [The company] behaves in a socially conscious way

csor_2 [The company] is forthright in giving information to the public

csor_3 [The company] has a fair attitude toward competitors

csor_4 [The company] is concerned about the preservation of the environment

csor_5 [The company] is not only concerned about profits

Attractiveness (ATTR)

attr_1 [The company] is successful in attracting high-quality employees

attr_2 I could see myself  working at [the company]

attr_3 I like the physical appearance of [the company] (company, buildings, shops, etc.)

Single-item measures of QUAL, PERF, CSOR, and ATTR for the redundancy analysis

qual_global Please assess the overall quality of [the company’s] activities

perf_global Please assess [the company’s] overall performance

csor_global Please assess the extent to which [the company] acts in socially conscious ways

attr_global [The company] has a high overall attractiveness

Source: Hair et al., 2022, Chap. 5; used with permission by Sage
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 Excurse

The corporate reputation data file and project are also bundled with SEMinR. Once 
the SEMinR library has been loaded, we can access the demonstration code for 
7 Chap. 5 by using the demo() function on the object “seminr-primer-
chap5”.

5

The extended corporate reputation model’s structural and measurement models 
will have to be specified using the SEMinR syntax. Remember that the four drivers 
are formative constructs, estimated with mode_B, while COMP, CUSL and LIKE 
are reflective constructs, estimated with mode_A. The weights parameter of the 
composite() function is set by default to mode_A. Thus, when no weights are 
specified, the construct is estimated as being reflective. Alternatively, we can explic-
itly specify the mode_A setting for reflectively measured constructs or the mode_B 
setting for formatively measured constructs. Once the model is set up, we use the 
estimate_pls() function to estimate the model, this time specifying the mea-
surement_model and structural_model parameters to the extended corporate 
reputation model objects (corp_rep_mm_ext, corp_rep_sm_ext). Finally, we 
apply the summary() function to the estimated SEMinR model object corp_rep_
pls_model_ext and store the output in the summary_corp_rep_ext object:

# Create measurement model
corp_rep_mm_ext <- constructs(
  composite(“QUAL”, multi_items(“qual_”, 1:8), weights = 
mode_B),
  composite(“PERF”, multi_items(“perf_”, 1:5), weights = 
mode_B),
  composite(“CSOR”, multi_items(“csor_”, 1:5), weights = 
mode_B),
  composite(“ATTR”, multi_items(“attr_”, 1:3), weights = 
mode_B),
  composite(“COMP”, multi_items(“comp_”, 1:3)),
  composite(“LIKE”, multi_items(“like_”, 1:3)),
  composite(“CUSA”, single_item(“cusa”)),
  composite(“CUSL”, multi_items(“cusl_”, 1:3))
)
# Create structural model
corp_rep_sm_ext <- relationships(
  paths(from = c(“QUAL”, “PERF”, “CSOR”, “ATTR”), to = 
c(“COMP”, “LIKE”)),
  paths(from = c(“COMP”, “LIKE”), to = c(“CUSA”, “CUSL”)),
  paths(from = c(“CUSA”), to = c(“CUSL”))
)
# Estimate the model
corp_rep_pls_model_ext <- estimate_pls(
  data = corp_rep_data,
  measurement_model = corp_rep_mm_ext,
  structural_model = corp_rep_sm_ext,
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  missing = mean_replacement,
  missing_value = “-99”)
# Summarize the model results
summary_corp_rep_ext <- summary(corp_rep_pls_model_ext)

Just like the indicator data that we used in previous chapters, the corp_rep_data 
dataset has very few missing values. The number of missing observations is reported 
in the descriptive statistic object nested within the summary return object. This 
report can be accessed by inspecting the summary_corp_rep_
ext$descriptives$statistics object. Only the indicators cusl_1 (three miss-
ing values, 0.87% of all responses on this indicator), cusl_2 (four missing values, 
1.16% of all responses on this indicator), cusl_3 (three missing values, 0.87% of all 
responses on this indicator), and cusa (one missing value, 0.29% of all responses on 
this indicator) include missing values. Since the number of missing values is rela-
tively small (i.e., less than 5% missing values per indicator; Hair et al., 2022, Chap. 
2), we use mean value replacement to deal with missing data when running the 
PLS-SEM algorithm (see also Grimm & Wagner, 2020).

When the PLS-SEM algorithm stops running, check whether the algorithm 
converged (Hair et al., 2022, Chap. 3). For this example, the PLS-SEM algorithm 
will stop when the maximum number of 300 iterations or the stop criterion of 
1.0E-7 (i.e., 0.0000001) is reached. To do so, it is necessary to inspect the corp_
rep_pls_model object by using the $ operator:

# Iterations to converge
summary_corp_rep_ext$iterations

The results show that the model estimation converged after eight iterations. Next, 
the model must be bootstrapped to assess the indicator weights’ significance. For 
now, we run a simple bootstrap as conducted in 7 Chap. 4. But in this chapter, we 
discuss the bootstrap function in further detail when assessing the formative indi-
cator weights’ significance. To run the bootstrapping procedure in SEMinR, we use 
the bootstrap_model() function and assign the output to a variable; we call our 
variable boot_corp_rep_ext. Then, we run the summary()  function on the 
boot_corp_rep object and assign it to another variable, such as  sum_boot_
corp_rep_ext.

# Bootstrap the model
boot_corp_rep_ext <- bootstrap_model(
seminr_model = corp_rep_pls_model_ext, nboot = 1000)
# Store the summary of the bootstrapped model
sum_boot_corp_rep_ext <- summary(boot_corp_rep_ext, 
alpha = 0.10)

5.4 · Case Study Illustration: Formative Measurement Models
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5.4.2  Reflective Measurement Model Evaluation

An important characteristic of PLS-SEM is that the model estimates will change when 
any of the model relationships or variables are changed. We thus need to reassess the 
reflective measurement models to ensure that this portion of the model remains valid 
and reliable before continuing to evaluate the four new exogenous formative constructs. 
We then follow the reflective measurement model assessment procedure in 7 Fig. 4.1 
(for a refresher on this topic, return to 7 Chap. 4). The reflectively measured con-
structs meet all criteria as discussed in 7 Chap. 4 – for a detailed discussion of the 
assessment of reflectively measured constructs for this model, see Appendix B.

5.4.3  Formative Measurement Model Evaluation

To evaluate the formatively measured constructs of the extended corporate reputa-
tion model, we follow the formative measurement model assessment procedure 
(. Fig. 5.1). First, we need to examine whether the formatively measured constructs 
exhibit convergent validity. To do so, we need to carry out a separate redundancy 
analysis for each construct. The original survey contained global single-item mea-
sures with generic assessments of the four concepts – attractiveness, corporate social 
responsibility, performance, and quality – that we can use as measures of the depen-
dent construct in the redundancy analyses (attr_global, csor_global, perf_global, and 
qual_global) (. Table 5.3). Note that when designing a research study that includes 
formatively measured constructs, you need to include this type of global measure in 
the survey. . Figure 5.4 shows the model set-ups for the redundancy analyses of the 
four formatively measured constructs in the extended corporate reputation model.

# Redundancy analysis 
# ATTR
# Create measurement model
ATTR_redundancy_mm <- constructs(
  composite(“ATTR_F”, multi_items(“attr_”, 1:3), weights = 
mode_B),
  composite(“ATTR_G”, single_item(“attr_global”))
)
# Create structural model
ATTR_redundancy_sm <- relationships(
  paths(from = c(“ATTR_F”), to = c(“ATTR_G”))
)
# Estimate the model
ATTR_redundancy_pls_model <- estimate_pls(
  data = corp_rep_data,
  measurement_model = ATTR_redundancy_mm,
  structural_model = ATTR_redundancy_sm,
  missing = mean_replacement,
  missing_value = “-99”)
# Summarize the model
sum_ATTR_red_model <- summary(ATTR_redundancy_pls_model)
# CSOR
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# Create measurement model
CSOR_redundancy_mm <- constructs(
  composite(“CSOR_F”, multi_items(“csor_”, 1:5), weights = 
mode_B),
  composite(“CSOR_G”, single_item(“csor_global”))
)
# Create structural model
CSOR_redundancy_sm <- relationships(
  paths(from = c(“CSOR_F”), to = c(“CSOR_G”))
)
# Estimate the model
CSOR_redundancy_pls_model <- estimate_pls(
  data = corp_rep_data,
  measurement_model = CSOR_redundancy_mm,
  structural_model = CSOR_redundancy_sm,
  missing = mean_replacement,
  missing_value = “-99”)
# Summarize the model
sum_CSOR_red_model <- summary(CSOR_redundancy_pls_model)
# PERF
# Create measurement model
PERF_redundancy_mm <- constructs(
  composite(“PERF_F”, multi_items(“perf_”, 1:5), weights = 
mode_B),
  composite(“PERF_G”, single_item(“perf_global”))
)
# Create structural model
PERF_redundancy_sm <- relationships(
  paths(from = c(“PERF_F”), to = c(“PERF_G”))
)
# Estimate the model
PERF_redundancy_pls_model <- estimate_pls(
  data = corp_rep_data,
  measurement_model = PERF_redundancy_mm,
  structural_model  = PERF_redundancy_sm,
  missing = mean_replacement,
  missing_value = “-99”)
# Summarize the model
sum_PERF_red_model <- summary(PERF_redundancy_pls_model)

# QUAL
# Create measurement model
QUAL_redundancy_mm <- constructs(
  composite(“QUAL_F”, multi_items(“qual_”, 1:8), weights = 
mode_B),
  composite(“QUAL_G”, single_item(“qual_global”))
)
# Create structural model
QUAL_redundancy_sm <- relationships(
  paths(from = c(“QUAL_F”), to = c(“QUAL_G”))
)
# Estimate the model
QUAL_redundancy_pls_model <- estimate_pls(
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  data = corp_rep_data,
  measurement_model = QUAL_redundancy_mm,
  structural_model  = QUAL_redundancy_sm,
  missing = mean_replacement,
  missing_value = “-99”)
# Summarize the model
sum_QUAL_red_model <- summary(QUAL_redundancy_pls_model)
# Check the path coefficients for convergent validity
sum_ATTR_red_model$paths
sum_CSOR_red_model$paths
sum_PERF_red_model$paths
sum_QUAL_red_model$paths

       . Fig. 5.4 Redundancy 
analysis of  formatively  
measured constructs.  
(Source: authors’ own figure)
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In order to run the redundancy analysis for a formatively measured construct, it 
must be linked with an alternative measure of the same concept. When considering 
the formatively measured construct ATTR, the measurement model for the redun-
dancy analysis consists of two constructs: (1) ATTR_F, which is measured by three 
formative indicators attr_1, attr_2, and attr_3, and (2) ATTR_G, which is mea-
sured by the single item attr_global. The structural model consists of a single path 
from ATTR_F to ATTR_G. We then estimate this model using the corp_rep_
data dataset and assign the output to the ATTR_redundancy_pls_model object. 
Finally, to identify the path between the two constructs, we need to inspect the 
sum_ATTR_red_model$paths.

 ! Each redundancy analysis model is included in the SEMinR demo file accessible 
at demo (“seminr-primer-chap5”), so that the code can easily be replica-
ted. Alternatively, we can create these four models for the convergent validity 
 assessment manually using the code outlined above. Following the steps descri-
bed in previous chapters, a new structural and measurement model must be crea-
ted using the SEMinR syntax for each redundancy analysis, and the subsequently 
estimated model object needs to be inspected for the path coefficients.

. Figure 5.5 shows the results for the redundancy analysis of the four formatively 
measured constructs. For the ATTR construct, this analysis yields a path coeffi-
cient of 0.874, which is above the recommended threshold of 0.708 (. Table 5.1), 

       . Fig. 5.5 Output of  the redundancy analysis for formative measurement models. (Source: authors’ 
screenshot from R)
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thus providing support for the formatively measured construct’s convergent valid-
ity. The redundancy analyses of CSOR, PERF, and QUAL yield estimates of 0.857, 
0.811, and 0.805, respectively. Thus, all formatively measured constructs exhibit 
convergent validity.

In the second step of the assessment procedure (. Fig. 5.1), we check the for-
mative measurement models for collinearity by looking at the formative indicators’ 
VIF values. The summary_corp_rep_ext object can be inspected for the indicator 
VIF values by considering the validity element for vif_items; summary_corp_rep_
ext$validity$vif_items.

# Collinearity analysis
summary_corp_rep_ext$validity$vif_items

Note that SEMinR also provides VIF values for reflective indicators. However, 
since we expect high correlations among reflective indicators, we do not interpret 
these results but focus on the formative indicators’ VIF values.

According to the results in . Fig. 5.6, qual_3 has the highest VIF value (2.269). 
Hence, all VIF values are uniformly below the conservative threshold value of 3 
(. Table 5.1). We therefore conclude that collinearity does not reach critical levels 
in any of the formative measurement models and is not an issue for the estimation 
of the extended corporate reputation model.

Next, we need to analyze the indicator weights for their significance and rele-
vance (. Fig. 5.1). We first consider the significance of the indicator weights by 
means of bootstrapping. To run the bootstrapping procedure, we use the boot-
strap_model() function. The first parameter (i.e., seminr_model) allows speci-
fying the model on which we apply bootstrapping. The second parameter nboot 
allows us to select the number of bootstrap samples to use. Per default, we should 
use 10,000 bootstrap samples (Streukens & Leroi-Werelds, 2016). Since using such 
a great number of samples requires much computational time, we may choose a 
smaller number of samples (e.g., 1,000) for the initial model estimation. For the 
final result reporting, however, we should use the recommended number of 10,000 
bootstrap samples.

The cores parameter enables us to use multiple cores of your computer’s cen-
tral processing unit (CPU). We recommend using this option since it makes boot-
strapping much faster. As you might not know the number of cores in your device, 
we recommend using the parallel::detectCores() function to automatically 
detect the number of cores and use the maximum cores available. By default, cores 
will be set to the maximum value and as such, if  you do not specify this parameter, 
your bootstrap will default to using the maximum computing power of your 
CPU. Finally, seed allows reproducing the results of a specific bootstrap run while 
maintaining the random nature of the process. Assign the output of the boot-
strap_model() function to the boot_corp_rep_ext object. Finally, we need to 
run the summary() function on the boot_corp_rep_ext object and set the alpha 
parameter. The alpha parameter allows selecting the significance level (the default 
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       . Fig. 5.6 VIF values. (Source: authors’ screenshot from R)

is 0.05) for two-tailed testing. When testing indicator weights, we follow general 
convention and apply two-tailed testing at a significance level of 5%.

# Bootstrap the model
# seminr_model is the SEMinR model to be bootstrapped
# nboot is the number of bootstrap iterations to run
# cores is the number of cpu cores to use
# in multicore bootstrapping
# parallel::detectCores() allows for using
# the maximum cores on your device
# seed is the seed to be used for making bootstrap replicable

5.4 · Case Study Illustration: Formative Measurement Models
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boot_corp_rep_ext <- bootstrap_model(
  seminr_model = corp_rep_pls_model_ext,
  nboot = 1000,
  cores = parallel::detectCores(),
  seed = 123)
# Summarize the results of the bootstrap
# alpha sets the specified level for significance, i.e. 0.05
sum_boot_corp_rep_ext <- summary(boot_corp_rep_ext, alpha = 
0.05)
# Inspect the bootstrapping results for indicator weights
sum_boot_corp_rep_ext$bootstrapped_weights

At this point in the analysis, we are only interested in the significance of the indica-
tor weights and therefore consider only the measurement model. We thus inspect 
the sum_boot_corp_rep_ext$bootstrapped_weights object to obtain the 
results in . Fig. 5.7.

. Figure 5.7 shows t-values for the measurement model relationships produced 
by the bootstrapping procedure. Note that bootstrapped values are generated for 
all measurement model weights, but we only consider the indicators of the forma-
tive constructs. The original estimate of an indicator weight (shown in the second 
column, Original Est.; . Fig. 5.7) divided by the bootstrap standard error, which 
equals the bootstrap standard deviation (column: Bootstrap SD), for that indicator 
weight results in its empirical t-value as displayed in the third-to-last column in 
. Fig. 5.7 (column: T Stat.). Recall that the critical values for significance levels of 
1% (α = 0.01), 5% (α = 0.05), and 10% (α = 0.10) probability of error are 2.576, 
1.960, and 1.645 (two tailed), respectively.

 ! Attention
The bootstrapping results shown in . Fig. 5.7 will differ from your results. A seed 
is used in random computational processes to make the random process reproduc-
ible. However, note that for the same seed, different hardware and software combi-
nations will generate different results. The important feature of  the seed is that it 
ensures that the results are replicable on your computer or on computers with a 
similar hardware and software setup. Recall that bootstrapping builds on ran-
domly drawn samples, so each time you run the bootstrapping routine with a dif-
ferent seed, different samples will be drawn. The differences become very small, 
however, if  the number of  bootstrapping samples is sufficiently large (e.g., 10,000).

The bootstrapping result report also provides bootstrap confidence intervals using 
the percentile method (Hair et al., 2022; Chap. 5). The lower boundary of the 95% 
confidence interval (2.5% CI) is displayed in the second-to-last column, whereas 
the upper boundary of the confidence interval (97.5% CI) is shown in the last col-
umn. We can readily use these confidence intervals for significance testing. 
Specifically, a null hypothesis H0 that a certain parameter, such as an indicator 
weight w1, equals zero (i.e., H0: w1 = 0) in the population is rejected at a given level 
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       . Fig. 5.7 Bootstrapped indicator weights. (Source: authors’ screenshot from R)

α, if  the corresponding (1 – α)% bootstrap confidence interval does not include 
zero. In other words, if  a confidence interval for an estimated coefficient, such as an 
indicator weight w1, does not include zero, the hypothesis that w1 equals zero is 
rejected, and we assume a significant effect.

Looking at the significance levels, we find that all formative indicators are sig-
nificant at a 5% level, except csor_2, csor_4, qual_2, qual_3, and qual_4. For these 
indicators, the 95% confidence intervals include the value zero. For example, for 
csor_2, our analysis produced a lower boundary of −0.097 and an upper boundary 
of 0.173. Similarly, these indicators’ t-values are clearly lower than 1.960, providing 
support for their lack of statistical significance.

To assess these indicators’ absolute importance, we examine the indicator load-
ings by running sum_boot_corp_rep_ext$bootstrapped_loadings. The 
output in . Fig. 5.8 (column: Original Est.) shows that the lowest indicator load-
ing of  these five formative indicators occurs for qual_2 (0.570). Furthermore, 
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       . Fig. 5.8 Bootstrapped indicator loadings. (Source: authors’ screenshot from R)

results from bootstrapping show that the t-values of  the five indicator loadings 
(i.e., csor_2, csor_4, qual_2, qual_3, and qual_4) are clearly above 2.576, suggesting 
that all indicator loadings are significant at a level of  1% (. Fig. 5.8). Moreover, 
prior research and theory also provide support for the relevance of  these indica-
tors for capturing the corporate social responsibility and quality dimensions of 
corporate reputation (Eberl, 2010; Sarstedt, Wilczynski, & Melewar, 2013; 
Schwaiger, 2004; Schwaiger, Sarstedt, & Taylor, 2010). Thus, we retain all indica-
tors in the formatively measured constructs, even though not every indicator 
weight is significant.

The analysis of  indicator weights concludes the evaluation of the formative 
measurement models. Considering the results from 7 Chaps. 4 and 5 jointly, all 
reflective and formative constructs exhibit satisfactory levels of  measurement 
quality. Thus, we can now proceed with the evaluation of the structural model 
(7 Chap. 6).
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Summary
The evaluation of formative measurement models starts with convergent validity to 
ensure that the entire domain of the construct and all of its relevant facets have been 
covered by the indicators. In the next step, researchers assess whether pronounced 
levels of collinearity among indicators exist, which would inflate standard errors and 
potentially lead to sign changes in the indicator weights. The final step involves exam-
ining each indicator’s relative contribution to forming the construct. Hence, the sig-
nificance and relevance of the indicator weights must be assessed. It is valuable to 
also report the bootstrap confidence interval that provides additional information on 
the stability of the coefficient estimates. Nonsignificant indicator weights should not 
automatically be interpreted as indicating poor measurement model quality. Rather, 
researchers should also consider a formative indicator’s absolute contribution to its 
construct (i.e., its loading). Only if  both indicator weights and loadings are low or 
even nonsignificant should researchers consider deleting a formative indicator.

 ? Exercise
We continue with the analysis of the influencer model as introduced in 7 Chaps. 3 
and 4. The dataset is called influencer_data and consists of 222 observations of 
28 variables. 7 Figure 3.10 illustrates the PLS path model; 7 Tables 3.9 and 3.10 
describe the indicators. Note that the indicator sic_global serves as global single item 
in the redundancy analysis of the SIC construct.

Load the influencer data, reproduce the influencer model in the SEMinR syntax, 
and estimate the PLS path model. As we have already assessed the reliability and valid-
ity of the reflective measures, we focus on the analysis of the SIC construct as follows:
 1. Does the SIC construct display convergent validity?
 2. Do the construct indicators suffer from collinearity issues?
 3. Are all indicator weights statistically significant and relevant?
 4. If  not, based on the indicator loadings and their significance, would you consider 

deleting one or more of the indicators?
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Learning Objectives
After reading this chapter, you should understand:
 1. The steps involved in structural model assessment
 2. The concept of explanatory power and how to evaluate it
 3. How to use PLSpredict to assess a model’s predictive power
 4. The concept of model comparison and metrics for selecting the best model
 5. How to assess structural models using SEMinR

Once you have confirmed that the measurement of constructs is reliable and valid, the 
next step addresses the assessment of the structural model results. . Figure 6.1 shows 
a systematic approach to the structural model assessment. In the first step, you need 
to examine the structural model for potential collinearity issues. The reason is that the 
estimation of path coefficients in the structural models is based on ordinary least 
squares (OLS) regressions of each endogenous construct on its corresponding predic-
tor constructs. Just as in an OLS regression, the path coefficients might be biased if the 
estimation involves high levels of collinearity among predictor constructs. Once you 
have ensured that collinearity is not a problem, you will evaluate the significance and 
relevance of the structural model relationships (i.e., the path coefficients). Steps 3 and 
4 of the procedure involve examining the model’s explanatory power and predictive 
power. In addition, some research situations involve the computation and comparison 
of alternative models, which can emerge from different theories or contexts. PLS-
SEM facilitates the comparison of alternative models using established criteria, which 
are well known from the regression literature. As model comparisons are not relevant 
for every PLS-SEM analysis, Step 5 should be considered optional.

Assess collinearity issues the 
structural model

Assess the significance and relevance 
of the structural model relationships

Assess the model’s explanatory power

Step 1

Step 2

Step 3

Assess the model’s predictive powerStep 4

Model comparisonsStep 5

       . Fig. 6.1 Structural model 
assessment procedure. (Source: 
Hair, Hult, Ringle, & Sarstedt, 
2022, Chap. 6; used with 
permission by Sage)
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Model fit indices enable judging how well a hypothesized model structure fits the 
empirical data and are an integral part of  any CB-SEM analysis. However, the 
notion of  model fit as known from CB-SEM is not transferrable to PLS-SEM as 
the method follows a different aim when estimating model parameters (i.e., with 
the aim of  maximizing the explained variance instead of  minimizing the divergence 
between covariance matrices) – see Hair, Sarstedt, and Ringle (2019). Nevertheless, 
research has brought forward several PLS-SEM-based model fit measures such as 
SRMR, RMStheta, and the exact fit test (Henseler et  al., 2014; Lohmöller, 1989, 
Chap. 2), which, however, have proven ineffective in detecting model misspecifi-
cations in settings commonly encountered in applied research. Instead, structural 
model assessment in PLS-SEM focuses on evaluating the model’s explanatory and 
predictive power. For a detailed discussion of  model fit in PLS-SEM, see Chap. 6 in 
Hair et al. (2022).
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6.1  Assess Collinearity Issues of the Structural Model

Structural model coefficients for the relationships between constructs are derived 
from estimating a series of regression equations. As the point estimates and stan-
dard errors can be biased by strong correlations of each set of predictor constructs 
(Sarstedt & Mooi, 2019; Chap. 7), the structural model regressions must be exam-
ined for potential collinearity issues. This process is similar to assessing formative 
measurement models, but in this case, the construct scores of the predictor con-
structs in each regression in the structural model are used to calculate the variance 
inflation factor (VIF) values. VIF values above 5 are indicative of probable collin-
earity issues among predictor constructs, but collinearity can also occur at lower 
VIF values of 3–5 (Becker, Ringle, Sarstedt, & Völckner, 2015; Mason & Perreault, 
1991). If  collinearity is a problem, a frequently used option is to create higher- 
order constructs (Hair, Risher, Sarstedt, & Ringle, 2019; Hair, Sarstedt, Ringle, & 
Gudergan, 2018; Chap. 2; Sarstedt et al., 2019).

6.2  Assess the Significance and Relevance of the Structural 
Model Relationships

In the next step, the significance of the path coefficients and relevance of the path coef-
ficients are evaluated. Analogous to the assessment of formative indicator weights 
(7 Chap. 5), the significance assessment builds on bootstrapping standard errors as 
a basis for calculating t-values of path coefficients or alternatively confidence inter-
vals (Streukens & Leroi-Werelds, 2016). A path coefficient is significant at the 5% 
level if  the value zero does not fall into the 95% confidence interval. In general, the 
percentile method should be used to construct the confidence intervals (Aguirre-
Urreta & Rönkkö, 2018). For a recap on bootstrapping, return to 7 Chap. 5.

6.2 · Assess the Significance and Relevance of the Structural Model…
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In terms of relevance, path coefficients are usually between −1 and +1, with 
coefficients closer to −1 representing strong negative relationships and those closer 
to +1 indicating strong positive relationships. Note that values below −1 and 
above +1 may technically occur, for instance, when collinearity is at very high lev-
els. Path coefficients larger than +/−1 are not acceptable, and multicollinearity 
reduction methods must be implemented. As PLS-SEM processes standardized 
data, the path coefficients indicate the changes in an endogenous construct’s val-
ues that are associated with standard deviation unit changes in a certain predictor 
construct, holding all other predictor constructs constant. For example, a path 
coefficient of  0.505 indicates that when the predictor construct increases by one 
standard deviation unit, the endogenous construct will increase by 0.505 standard 
deviation units.

The research context is important when determining whether the size of a path 
coefficient is meaningful. Thus, when examining structural model results, research-
ers should also interpret total effects, defined as the sum of the direct effect (if  any) 
and all indirect effects linking one construct to another in the model. The examina-
tion of total effects between constructs, including all their indirect effects, provides 
a more comprehensive picture of the structural model relationships (Nitzl, Roldán, 
& Cepeda Carrión, 2016).

6.3  Assess the Model’s Explanatory Power

The next step involves examining the coefficient of determination (R2) of  the 
endogenous construct(s). The R2 represents the variance explained in each of  the 
endogenous constructs and is a measure of  the model’s explanatory power 
(Shmueli & Koppius, 2011), also referred to as in-sample predictive power (Rigdon, 
2012). The R2 ranges from 0 to 1, with higher values indicating a greater explana-
tory power. As a general guideline, R2 values of  0.75, 0.50, and 0.25 can be con-
sidered substantial, moderate, and weak, respectively, in many social science 
disciplines (Hair, Ringle, & Sarstedt, 2011). But acceptable R2 values are based on 
the research context, and in some disciplines, an R2 value as low as 0.10 is consid-
ered satisfactory, as for example, in predicting stock returns (e.g., Raithel, Sarstedt, 
Scharf, & Schwaiger, 2012).

Researchers should also be aware that R2 is a function of  the number of  pre-
dictor constructs – the greater the number of  predictor constructs, the higher the 
R2. Therefore, the R2 should always be interpreted relative to the context of  the 
study, based on the R2 values from related studies as well as models of  similar 
complexity. R2 values can also be too high when the model overfits the data. In 
case of  model overfit, the (partial regression) model is too complex, which results 
in fitting the random noise inherent in the sample rather than reflecting the overall 
population. The same model would likely not fit on another sample drawn from 
the same population (Sharma, Sarstedt, Shmueli, Kim, & Thiele, 2019). When 
measuring a concept that is inherently predictable, such as physical processes, R2 
values of  (up to) 0.90 might be plausible. However, similar R2 value levels in a 
model that predicts human attitudes, perceptions, and intentions would likely 
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indicate model overfit (Hair, Risher, et al., 2019). A limitation of  R2 is that the 
metric will tend to increase as more explanatory variables are introduced to a 
model. The adjusted R2 metric accounts for this by adjusting the R2 value based 
upon the number of  explanatory variables in relation to the data size and is seen 
as a more conservative estimate of  R2 (Theil, 1961). But because of  the correction 
factor introduced to account for data and model size, the adjusted R2 is not a 
precise indication of  an endogenous construct’s explained variance (Sarstedt & 
Mooi, 2019; Chap. 7).

Researchers can also assess how the removal of a selected predictor construct 
affects an endogenous construct’s R2 value. This metric is the f2 effect size and is 
similar to the size of the path coefficients. More precisely, the rank order of the 
relevance of the predictor constructs in explaining a dependent construct in the 
structural model is often the same when comparing the size of the path coefficients 
and the f2 effect sizes. In such situations, the f2 effect size is typically only reported 
if  requested by editors or reviewers. Otherwise (i.e., if  the rank order of constructs’ 
relevance in explaining a dependent construct in the structural model differs when 
comparing the size of the path coefficients and the f2 effect sizes), the researcher 
may report the f2 effect size to offer an alternative perspective on the results. In 
addition, some other research settings call for the reporting of effect sizes, such as 
in moderation analysis (Memon et al., 2019; see Chap. 7).

6.4  Assess the Model’s Predictive Power

Many researchers interpret the R2 statistic as a measure of their model’s predictive 
power (Sarstedt & Danks, 2021; Shmueli & Koppius, 2011). This interpretation is 
not entirely correct, however, since the R2 only indicates the model’s in-sample 
explanatory power – it says nothing about the model’s predictive power (Chin et al., 
2020; Hair & Sarstedt, 2021), also referred to as out-of-sample predictive power, 
which indicates a model’s ability to predict new or future observations. Addressing 
this concern, Shmueli, Ray, Estrada, and Chatla (2016) introduced PLSpredict, a pro-
cedure for out-of- sample prediction. Execution of PLSpredict involves estimating the 
model on a training sample and evaluating its predictive performance on a holdout 
sample (Shmueli et al., 2019). Note that the holdout sample is separated from the 
total sample before executing the initial analysis on the training sample data, so it 
includes data that were not used in the model estimation.

 > Important
The R2 is a measure of a model’s explanatory power. It does not, however, indicate a 
model’s out-of-sample predictive power.

PLSpredict executes k-fold cross-validation. A fold is a subgroup of the total sample, 
while k is the number of subgroups. That is, the total dataset is randomly split into 
k equally sized subsets of data. For example, a cross-validation based on k = 5 folds 
splits the sample into five equally sized data subsets (i.e., groups of data). PLSpredict 
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       . Fig. 6.2 k-fold cross- 
validation procedure. (Source: 
authors’ own figure)

then combines k-1 subsets (i.e., four groups of data) into a single training sample 
that is used to predict the remaining fifth subset. The fifth subset is the holdout 
sample for the first cross-validation run. This cross-validation process is then 
repeated k times (i.e., five times), with each of the five subsets used once as the 
holdout sample and the remaining cases being combined into the training sample. 
Thus, each case in every holdout sample has a predicted value estimated with the 
respective training sample in which that case was not used to estimate the model 
parameters. Leave-one-out cross-validation (LOOCV) is a subset of k-fold cross- 
validation where only one observation is included in the holdout sample. 
. Figure 6.2 visualizes the cross-validation process. Shmueli et al. (2019) recom-
mend setting k = 10, but researchers need to make sure that the training sample for 
each fold meets minimum sample size guidelines (e.g., by following the inverse 
square root method, see also 7 Chap. 1).

The generation of the k subsets of data is a random process and can therefore 
result in extreme partitions that potentially lead to abnormal solutions. To avoid 
such abnormal solutions, researchers should run PLSpredict multiple times. Shmueli 
et al. (2019) generally recommend running the procedure ten times. However, when 
the aim is to mimic how the PLS model will eventually be used to predict a new 
observation using a single model (estimated from the entire dataset), PLSpredict 
should be run only once (i.e., without repetitions).

To assess a model’s predictive power, researchers can draw on several prediction 
statistics that quantify the amount of prediction error in the indicators of a par-
ticular endogenous construct. When analyzing the prediction errors, the focus 
should be on the model’s key endogenous construct – and not on examining the 
prediction errors for the indicators of all endogenous constructs. The most popular 
metric to quantify the degree of prediction error is the root-mean-square error 
(RMSE). This metric is the square root of the average of the squared differences 
between the predictions and the actual observations. Note that the RMSE squares 
the errors before averaging, so the statistic assigns a greater weight to larger errors, 
which makes it particularly useful when large errors are undesirable – as it is com-
mon in predictive analyses. Another popular metric is the mean absolute error 
(MAE). This metric measures the average magnitude of the errors in a set of pre-
dictions without considering their direction (over- or underestimation). The MAE 
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thus is the average absolute difference between the predictions and the actual 
observations, with all the individual differences having equal weight.

In most instances, researchers should use the RMSE to examine a model’s pre-
dictive power. But if  the prediction error distribution is highly nonsymmetric, as 
evidenced in a long left or right tail in the distribution of prediction errors (Danks 
& Ray, 2018), the MAE is the more appropriate prediction statistic (Shmueli et al., 
2019). These prediction statistics depend on the indicators’ measurement scales, so 
the absolute size of their raw values does not have much meaning.

To interpret these metrics, researchers need to compare each indicator’s 
RMSE (or MAE) values with a naïve linear regression model (LM) benchmark. 
The LM benchmark values are obtained by running a linear regression of  each 
of  the dependent construct’s indicators on the indicators of  the exogenous con-
structs in the PLS path model (Danks & Ray, 2018). In comparing the RMSE 
(or MAE) values with the LM values, the following guidelines apply (Shmueli 
et al., 2019):
 1. If  all indicators in the PLS-SEM analysis have lower RMSE (or MAE) values 

compared to the naïve LM benchmark, the model has high predictive power.
 2. If  the majority (or the same number) of indicators in the PLS- SEM analysis 

yields smaller prediction errors compared to the LM, this indicates a medium 
predictive power.

 3. If  a minority of  the dependent construct’s indicators produce lower PLS-SEM 
prediction errors compared to the naïve LM benchmark, this indicates the 
model has low predictive power.

 4. If  the PLS-SEM analysis (compared to the LM) yields lower prediction errors 
in terms of the RMSE (or the MAE) for none of  the indicators, this indicates 
the model lacks predictive power.

An important decision when using PLSpredict is how to generate the predictions 
when the PLS path model includes a mediator construct (mediation is discussed 
further in 7 Chap. 7), which is both a predictor to the outcome and itself  the out-
come of an antecedent. SEMinR offers two alternatives to generate predictions in 
such a model setup (Shmueli et al., 2016). Researchers can choose to generate pre-
dictions using either the direct antecedents (DAs) or the earliest antecedents (EAs). 
In the DA approach, PLSpredict would consider both the antecedent and the media-
tor as predictors of outcome constructs, whereas in the EA approach, the mediator 
would be excluded from the analysis. Danks (2021) presents simulation evidence 
that the DA approach generates predictions with the highest accuracy. We there-
fore recommend using this approach.

6.5  Model Comparisons

In a final, optional step, researchers may be interested in conducting model com-
parisons. Models are compared across different model configurations resulting 
from different theories or research contexts and are evaluated for predictive power. 
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Sharma et al. (2019, 2021) recently compared the efficacy of various metrics for 
model comparison tasks and found that Schwarz’s (1978) Bayesian information cri-
terion (BIC) and Geweke and Meese’s (1981) criterion (GM) achieve a sound trade-
off  between model fit and predictive power in the estimation of PLS path models. 
These (information theoretic) model selection criteria facilitate the comparison of 
models in terms of model fit and predictive power without having to use a holdout 
sample, which is particularly useful for PLS-SEM analyses that often draw on 
small sample sizes. In applying these metrics, researchers should estimate each 
model separately and select the model that minimizes the value in BIC or GM for 
a certain target construct. That is, the model that produces the lowest value in BIC 
or GM is to be selected. While BIC and GM exhibit practically the same perfor-
mance in model selection tasks, BIC is considerably easier to compute. Hence, our 
illustrations will focus on this criterion.

 > Important
When comparing different models, researchers should select the one that minimizes 
the BIC value for a certain target construct.

One issue in the application of  the BIC is that – in its simple form (i.e., raw val-
ues) – the criterion does not offer any insights regarding the relative weights of 
evidence in favor of  models under consideration (Burnham & Anderson, 2004; 
Chap. 2.9). More precisely, while the differences in BIC and GM values are useful 
in ranking and selecting models, such differences can often be small in practice, 
leading to model selection uncertainty. To resolve this issue, researchers can use 
the BIC (and GM) values to compute Akaike weights. These weights determine a 
model’s relative likelihood of  being the data generation model, given the data 
and a set of  competing models (Danks, Sharma, & Sarstedt, 2020) – see Wagen-
makers and Farrell (2004) for a sample application. The higher the Akaike 
weights, the more likely that the selected model better represents the data genera-
tion model.

 Excurse

A further development of the prediction-oriented model comparisons in PLS-SEM 
is the cross-validated predictive ability test (CVPAT; Liengaard et al., 2021). This 
approach offers a statistical test to decide whether an alternative model offers signifi-
cantly higher out-of-sample predictive power than an established model. A statistical 
test is particularly advantageous if  the differences in BIC values for deciding for one 
or the other model are relatively small. In addition, the test statistic of the CVPAT 
is suitable for prediction-oriented model comparison in the context of the develop-
ment and validation of theories. As such, CVPAT offers researchers an important 
tool for selecting a model on which they can base, for example, strategic management 
and policy decisions. Future extensions of CVPAT will also support a test for the 
predictive power assessment of a single model (Hair, 2021).
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       . Table 6.1 Rules of  thumb for structural model assessment (Source: authors’ own table)

Criterion Metrics and thresholds

Collinearity Critical collinearity issues likely occur if  VIF ≥ 5
Collinearity issues are usually uncritical if  VIF = 3–5
Collinearity is not a problematic issue if  VIF < 3

Significance 
and relevance 
of the path 
coefficients

Apply bootstrapping to assess the significance of the path coefficients on the 
ground of t-values or confidence intervals
Assess the magnitude of path coefficients
Assess the f2 values for each path and check that they follow the same rank 
order as the path coefficient magnitude

R2 value R2 values of 0.75, 0.50, and 0.25 are considered substantial, moderate, and 
weak. However, R2 values have to be interpreted in the context of the model 
and its complexity. Excessive R2 values indicate that the model overfits the data

PLSpredict Focus on one key target construct in the analysis
Set k = 10, assuming each subgroup meets the minimum required sample size
Use ten repetitions
Compare the RMSE (or the MAE) values produced by PLS-SEM with those 
produced by the LM for each indicator. Check if  the PLS-SEM analysis 
(compared to the LM) yields lower prediction errors in terms of RMSE (or 
MAE) for all (high predictive power), the majority or the same number 
(medium predictive power), the minority (low predictive power), or none of 
the indicators (no predictive power)
Use the DA approach to generate predictions in mediation models

Model 
comparisons

Select the model that minimizes the value in BIC or GM compared to other 
models in the set
Compute Akaike weights for additional evidence for a model’s relative likelihood

. Table 6.1 summarizes the metrics that need to be applied when evaluating 
the structural model.

6.6  Case Study Illustration: Structural Model Evaluation

We continue evaluating the extended corporate reputation model introduced in 
7 Chap. 5. In the prior chapters, we focused on the evaluation of the measurement 
models. We now turn our attention to the structural model, which describes the 
relationships between constructs.

# Load the SEMinR library
library(seminr)
# Load the data
corp_rep_data <- corp_rep_data
# Create measurement model
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corp_rep_mm_ext <- constructs(
  composite(“QUAL”, multi_items(“qual_”, 1:8), weights = mode_B),
  composite(“PERF”, multi_items(“perf_”, 1:5), weights = mode_B),
  composite(“CSOR”, multi_items(“csor_”, 1:5), weights = mode_B),
  composite(“ATTR”, multi_items(“attr_”, 1:3), weights = mode_B),
  composite(“COMP”, multi_items(“comp_”, 1:3)),
  composite(“LIKE”, multi_items(“like_”, 1:3)),
  composite(“CUSA”, single_item(“cusa”)),
  composite(“CUSL”, multi_items(“cusl_”, 1:3))
)
# Create structural model
corp_rep_sm_ext <- relationships(
  paths(from = c(“QUAL”, “PERF”, “CSOR”, “ATTR”), to = c(“COMP”, 
“LIKE”)),
  paths(from = c(“COMP”, “LIKE”), to = c(“CUSA”, “CUSL”)),
  paths(from = c(“CUSA”), to = c(“CUSL”))
)
# Estimate the model
corp_rep_pls_model_ext <- estimate_pls(
  data = corp_rep_data,                            
  measurement_model = corp_rep_mm_ext,
  structural_model = corp_rep_sm_ext,
  missing = mean_replacement,
  missing_value = “-99”)
# Summarize the results of the model estimation
summary_corp_rep_ext <- summary(corp_rep_pls_model_ext)
# Bootstrap the model
boot_corp_rep_ext <- bootstrap_model(
  seminr_model = corp_rep_pls_model_ext,
  nboot = 1000,
  cores = parallel::detectCores(),
  seed = 123)
# Summarize the results of the bootstrap
summary_boot_corp_rep_ext <- summary(boot_corp_rep_ext,
                                     alpha = 0.05)

We follow the structural model assessment procedure (Step 1 in . Fig. 6.1) and 
begin with an evaluation of the collinearity of predictor constructs in relation to 
each endogenous construct. The corporate reputation model has four endogenous 
constructs (. Fig. 6.3), namely, COMP, LIKE, CUSA, and CUSL. We examine 
the VIF values for the predictor constructs by inspecting the vif_antecedents 
element within the summary_corp_rep_ext object:

# Inspect the structural model collinearity VIF
summary_corp_rep_ext$vif_antecedents

As can be seen in . Fig. 6.4, all VIF values are clearly below the threshold of 
5. However, QUAL’s VIF value (3.487) is above 3, suggesting the possibility of 
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       . Fig. 6.3 The extended 
corporate reputation model. 
(Source: Hair et al., 2022, Chap. 
5; used with permission by Sage)

       . Fig. 6.4 VIF values for structural model. (Source: authors’ screenshot from RStudio)

collinearity problems. Since the one exception is close to 3, we can conclude 
that collinearity among predictor constructs is likely not a critical issue in the 
structural model, and we can continue examining the result report.

Next, in the structural model assessment procedure (Step 2 in . Fig. 6.1), we 
need to evaluate the relevance and significance of  the structural paths. The 
results of  the bootstrapping of  structural paths can be accessed by inspecting 
the bootstrapped_paths element nested in the summary_boot_corp_
ext object (. Fig. 6.5).

6.6 · Case Study Illustration: Structural Model Evaluation
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       . Fig. 6.5 Path coefficient estimates, significance, and confidence intervals. (Source: authors’ 
screenshot from RStudio)

# Inspect the structural paths
summary_boot_corp_rep_ext$bootstrapped_paths
# Inspect the total effects
summary_boot_corp_rep_ext$bootstrapped_total_paths
# Inspect the model RSquares
summary_corp_rep_ext$paths
# Inspect the effect sizes
summary_corp_rep_ext$fSquare

First, let’s consider the original path coefficient estimates (column: Original Est., 
. Fig. 6.5) for the exogenous driver constructs. For example, we find that QUAL 
has a strong positive impact on both COMP (0.430) and LIKE (0.380). A similar 
pattern of relationships emerges for PERF, but with lower effect sizes. On the con-
trary, CSOR exerts a much lower impact on these two constructs as evidenced in 
path coefficient estimates of 0.059 for COMP and 0.178 for LIKE. Similarly, 
ATTR has only a low impact on COMP and LIKE. Further analyzing the path 
coefficient estimates, we find that LIKE is the primary driver of both CUSA (0.436) 
and CUSL (0.344), as demonstrated by the larger path coefficients compared with 
those of COMP.

Let’s now review the results for statistical significance. Assuming a 5% signifi-
cance level (as specified with the parameter alpha = 0.05 in the bootstrap_
model() function), the t-values (T Stat. column, . Fig. 6.5) estimated from the 
bootstrapping should exceed the value of 1.960. We find that several relationships 
are significant, including five of the exogenous driver construct relationships (QUAL 
→ COMP, t = 6.603; QUAL → LIKE, t = 5.699; PERF → COMP, t = 4.611; CSOR 
→ LIKE, t = 3.205; ATTR → LIKE, t = 2.573). At the same time, however, three of 
the exogenous driver relationships are not statistically significant (PERF → LIKE, 
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t = 1.613; CSOR → COMP, t = 1.084; ATTR → COMP, t = 1.565). Reviewing the 
statistical significance of the path coefficients for the endogenous construct rela-
tionships, we see that four of the five paths are statistically significant. The one path 
that is not significant is from COMP to CUSL (t = 0.104). These results suggest that 
companies should concentrate their marketing efforts on enhancing their likeability 
(by strengthening customers’ quality perceptions) rather than their perceived com-
petence to maximize customer loyalty. This is not surprising, considering that cus-
tomers rated mobile network operators. Since their services (provision of network 
capabilities) are intangible, affective judgments play a much more important role 
than cognitive judgments for establishing customer loyalty.

 > Note that, although a seed is set, the random results generated might differ across 
software and hardware combinations. Hence, your results will likely look slightly 
different from those in . Fig. 6.5.

It is also important to consider the total effects to gain an idea of the impact of the 
four exogenous driver constructs on the outcome constructs CUSA and CUSL. To 
evaluate the total effects, we need to inspect the bootstrapped_total_paths 
element of summary_boot_corp_rep_ext (. Fig. 6.6).

Of the four driver constructs, QUAL has the strongest total effect on CUSL 
(0.248), followed by CSOR (0.105), ATTR (0.101), and PERF (0.089). Therefore, 

       . Fig. 6.6 Total effect estimates, significance, and confidence intervals. (Source: authors’ screenshot 
from RStudio)
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it is advisable for companies to focus on marketing activities that positively influ-
ence the customers’ perception of the quality of their products and services 
(QUAL). As can be seen, all of QUAL’s total effects are significant at a 5% level.

In Step 3 of the structural model assessment procedure (. Fig. 6.1), we need to 
consider the model’s explanatory power by analyzing the R2 of the endogenous 
constructs and the f2 effect size of the predictor constructs. To start with, we need 
to examine the R2 values of the endogenous constructs. The R2 values of COMP 
(0.631), CUSL (0.562), and LIKE (0.558) can be considered moderate, whereas the 
R2 value of CUSA (0.292) is weak (. Fig. 6.7). The weak R2 value of CUSA may 
be the result of this construct being measured as a single item. We recommend 
customer satisfaction always be measured as a multi-item construct.

. Figure  6.8 shows the f 2 values for all combinations of endogenous con-
structs (represented by the columns) and corresponding exogenous (i.e., predictor) 
constructs (represented by the rows). For example, LIKE has a medium effect size 
of 0.159 on CUSA and of 0.138 on CUSL. On the contrary, COMP has no effect 

       . Fig. 6.7 Path coefficient estimates, R2, and adjusted R2 values. (Source: authors’ screenshot from 
RStudio)
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       . Fig. 6.8 f 2 effect sizes. (Source: authors’ screenshot from RStudio)
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       . Table 6.2 A list of  arguments for the predict_pls() function

Argument Value

model The PLS model, which contains the structural and measurement models used 
to generate predictions

technique The predict_DA option for direct antecedent (DA) approach or pre-
dict_EA for the earliest antecedent (EA) approach (predict_DA is set as 
default)

noFolds Number of folds to employ in the k-fold process, NULL is default whereby 
leave-one-out cross-validation (LOOCV) is performed

reps Number of replications to run (NULL is default whereby the k-fold cross- 
validation is performed once)

cores The number of cores to use for parallel processing

Source: authors’ own table

on CUSA (0.018) or CUSL (0.000). The rank order of effect sizes is identical to the 
rank order on the grounds of the path coefficients.

Step 4 in the structural model assessment procedure (. Fig. 6.1) is the evaluation 
of the model’s predictive power. To do so, we first have to generate the predictions 
using the predict_pls() function. . Table 6.2 lists this function’s arguments.

We run the PLSpredict procedure with k = 10 folds and ten repetitions and thus set 
noFolds = 10, and reps = 10. In addition, we use the predict_DA approach. 
Finally, we summarize the PLSpredict model and assign the output to the sum_pre-
dict_corp_rep_ext object:

# Generate the model predictions
predict_corp_rep_ext <- predict_pls(
  model = corp_rep_pls_model_ext,
  technique = predict_DA,
  noFolds = 10,
  reps = 10)
# Summarize the prediction results
sum_predict_corp_rep_ext <- summary(predict_corp_rep_ext)

The distributions of the prediction errors need to be assessed to decide the best 
metric for evaluating predictive power. If  the prediction error is highly skewed, the 
MAE is a more appropriate metric than the RMSE. In order to assess the distribu-
tion of predictive error, we use the plot() function on the object sum_pre-
dict_corp_rep_ext and specify the indicator argument to the indicators 
of interest. We should focus on the key outcome construct CUSL and evaluate the 
indicators cusl_1, cusl_2, and cusl_3. First, we set the number of plots to display in 
the output to three plots arranged horizontally using the par(mfrow=c(1,3)) 
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command. Remember to set par(mfrow=c(1,1)) after outputting the plots; 
otherwise, all future plots will be arranged horizontally in a sequence of three:

# Analyze the distribution of prediction error
par(mfrow=c(1,3))
plot(sum_predict_corp_rep_ext,
  indicator = “cusl_1”)
plot(sum_predict_corp_rep_ext,
  indicator = “cusl_2”)
plot(sum_predict_corp_rep_ext,
  indicator = “cusl_3”)
par(mfrow=c(1,1))

The results in . Fig. 6.9 show that while all three plots have a left tail and are 
mildly skewed to the right, the prediction error distributions are rather symmetric. 
We should therefore use the RMSE for our assessment of prediction errors.

We can investigate the RMSE and MAE values by calling the sum_predict_
corp_rep_ext object.

# Compute the prediction statistics
sum_predict_corp_rep_ext

Analyzing the CUSL construct’s indicators (. Fig.  6.10), we find that the PLS 
path model has lower out-of-sample predictive error (RMSE) compared to the 
naïve LM model benchmark for all three indicators (sections: PLS out-of-sample 
metrics and LM out-of-sample metrics): cusl_1 (PLS, 1.192; LM, 1.228), cusl_2 
(PLS, 1.239; LM, 1.312), and cusl_3 (PLS, 1.312; LM, 1.380). Accordingly, we 
conclude that the model has a high predictive power.

In Step 5 of the structural model assessment procedure (. Fig. 6.1), we will 
perform model comparisons. First, we set up three theoretically justifiable compet-
ing models (Model 1, Model 2, and Model 3, shown in . Fig. 6.11). Specifically, 
we compare the original model that serves as the basis for our prior analyses 
(Model 1), with two more complex versions, in which the four driver constructs 
also relate to CUSA (Model 2) and CUSL (Model 3). As the models share the same 
measurement models, we need to specify them only once. Since each model has a 
unique structural model, we must specify three structural models according to 
. Fig. 6.11. To begin, we assign the outputs to structural_model1, struc-
tural_model2, and structural_model3. We can then estimate three sepa-
rate PLS path models and summarize the results.
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       . Fig. 6.9 Distribution of  prediction error for indicators cusl_1, cusl_2, and cusl_3. (Source: 
authors’ screenshot from RStudio)

# Estimate alternative models
# Create measurement model
measurement_model <- constructs(
  composite(“QUAL”, multi_items(“qual_”, 1:8), weights = mode_B),
  composite(“PERF”, multi_items(“perf_”, 1:5), weights = mode_B),
  composite(“CSOR”, multi_items(“csor_”, 1:5), weights = mode_B),
  composite(“ATTR”, multi_items(“attr_”, 1:3), weights = mode_B),
  composite(“COMP”, multi_items(“comp_”, 1:3)),
  composite(“LIKE”, multi_items(“like_”, 1:3)),
  composite(“CUSA”, single_item(“cusa”)),
  composite(“CUSL”, multi_items(“cusl_”, 1:3))
)
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# Create structural models
# Model 1
structural_model1 <- relationships(
  paths(from = c(“QUAL”,“PERF”,“CSOR”,“ATTR”), to = c(“COMP”, 
“LIKE”)),
  paths(from = c(“COMP”,“LIKE”),  to = c(“CUSA”, “CUSL”)),
  paths(from = “CUSA”, to = c(“CUSL”))
)
# Model 2
structural_model2 <- relationships(
  paths(from = c(“QUAL”,“PERF”,“CSOR”,“ATTR”), to = c(“COMP”, 
“LIKE”, “CUSA”)),
  paths(from = c(“COMP”,“LIKE”),  to = c(“CUSA”, “CUSL”)),
  paths(from = “CUSA”, to = c(“CUSL”))
)
# Model 3
structural_model3 <- relationships(
  paths(from = c(“QUAL”,“PERF”,“CSOR”,“ATTR”), 
        to = c(“COMP”, “LIKE”, “CUSA”, “CUSL”)),
  paths(from = c(“COMP”,“LIKE”),  to = c(“CUSA”, “CUSL”)),
  paths(from = “CUSA”, to = c(“CUSL”))
)

# Estimate and summarize the models
pls_model1 <- estimate_pls(
  data  = corp_rep_data,
  measurement_model = measurement_model,
  structural_model  = structural_model1,
  missing_value = “-99”
)
sum_model1 <- summary(pls_model1)

pls_model2 <- estimate_pls(
  data  = corp_rep_data,
  measurement_model = measurement_model,
  structural_model  = structural_model2,
  missing_value = “-99”
)
sum_model2 <- summary(pls_model2)

pls_model3 <- estimate_pls(
  data  = corp_rep_data,
  measurement_model = measurement_model,
  structural_model  = structural_model3,
  missing_value = “-99”
)
sum_model3 <- summary(pls_model3)

 Chapter 6 · Evaluation of the Structural Model
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       . Fig. 6.10 Prediction metrics for outcome construct items. (Source: authors’ screenshot from 
RStudio)

We focus our analysis on the CUSA construct as the immediate consequence of the 
two dimensions of corporate reputation (LIKE and COMP). In order to compare 
the models, we must first inspect each model for the estimated BIC value for the 
outcome construct of interest (i.e., CUSA). The matrix of the model’s information 
criteria can be accessed by inspecting the it_criteria element in the sum_
model1 object, sum_model1$it_criteria. This matrix reports the BIC value 
for each outcome construct along with the Akaike information criterion (AIC), 
which is known to favor too complex models (Sharma et al., 2019, 2021). We can 
subset this matrix to return only the BIC row of the CUSA column by entering 
sum_model1$it_criteria[“BIC”, “CUSA”]. To compare the BIC for the 

6.6 · Case Study Illustration: Structural Model Evaluation
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       . Fig. 6.11 Three competing models for predictive model comparison. (Source: Hair et al., 2022, 
Chap. 6; used with permission by Sage)

three models, we need to assign the BIC for CUSΑ for each model to a vector. We 
then name the vector using the names() function and inspect the itcriteria_
vector. In a final step, we request the BIC Akaike weights for the three models 
under consideration using the compute_it_criteria_weights() function.

# Inspect the IT Criteria matrix of Model1
sum_model1$it_criteria
# Subset the matrix to only return the BIC row and CUSL column
sum_model1$it_criteria[“BIC”, “CUSA”]
# Collect the vector of BIC values for CUSL
itcriteria_vector <- c(sum_model1$it_criteria[“BIC”,“CUSA”],
                       sum_model2$it_criteria[“BIC”,“CUSA”],
                       sum_model3$it_criteria[“BIC”,“CUSA”])
# Assign the model names to IT Criteria vector
names(itcriteria_vector) <- c(“Model1”, “Model2”, “Model3”)
# Inspect the IT Criteria vector for competing models
itcriteria_vector
# Calculate the model BIC Akaike weights
compute_itcriteria_weights(itcriteria_vector)

We can now compare the BIC values (. Fig. 6.12) of Model 1 (-102.206), Model 
2 (-93.965), and Model 3 (-97.401). The results suggest that Model 1 is superior in 
terms of model fit. To learn about the models’ relative likelihoods, we can consult 
the BIC-based Akaike weights for Model 1 (0.904), Model 2 (0.015), and Model 3 
(0.082). It is clear that Model 1 has a very strong weighting, so we conclude the 
model comparison indicates Model 1 is the superior model.

 Chapter 6 · Evaluation of the Structural Model
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       . Fig. 6.12 BIC values and BIC Akaike weights for CUSA. (Source: authors’ screenshot from 
RStudio)

Summary
The structural model assessment in PLS-SEM starts with the evaluation of potential 
collinearity among predictor constructs in structural model regressions, followed by 
the evaluation of the path coefficients’ significance and relevance and concluding 
with the analysis of the model’s explanatory and predictive power. After ensuring the 
model estimates are not affected by high levels of collinearity by examining VIF 
values, we need to test the path coefficients’ significance by applying the bootstrap-
ping routine and examining t-values or bootstrapping confidence intervals. To assess 
a model’s explanatory power, researchers rely on the coefficient of determination 
(R2). Predictive power assessment builds on PLSpredict, a holdout sample-based pro-
cedure that applies k-fold cross-validation to estimate the model parameters. Some 
research situations call for the comparison of alternative models. To compare differ-
ent model configurations and select the best model, the BIC criterion should be used. 
The model, which yields the smallest BIC value, is considered the best model in the 
set. BIC-based Akaike weights offer further evidence for the relative likelihood of a 
model compared to alternative models in the set.

6.6 · Case Study Illustration: Structural Model Evaluation
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 ? Exercise
We continue evaluating the influencer model introduced in the exercise section of 
7 Chap. 3 (7 Fig. 3.10; 7 Tables 3.9 and 3.10) and subsequently evaluated in the 
follow- up chapters. To start the exercise, load the influencer data, reproduce the 
influencer model in the SEMinR syntax, and estimate the model. We have evaluated 
both reflectively and formatively measured constructs in 7 Chaps. 4 and 5, so we 
can now turn our attention to the structural model evaluation as follows:
 1. Do any predictor constructs suffer from collinearity issues?
 2. Are all structural paths significant and relevant? Which paths are of low or weak 

relevance?
 3. Now focus on the key target construct PI as follows:

(a) Does the model have satisfactory explanatory power in terms of this con-
struct?

(b) Does the model have satisfactory predictive power in terms of this construct?
(c) Construct a theoretically justified competing model and conduct a model 

comparison in order to detect if  the original influencer model is supported by 
the BIC statistic. Can you generate a model with a higher BIC-based Akaike 
weight than the original influencer model?
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Learning Objectives
After reading this chapter, you should:
 1. Understand the basic concepts of mediation in a PLS-SEM context
 2. Know how to execute a mediation analysis
 3. Comprehend how to interpret the results
 4. Learn to distinguish between a single and a multiple mediation analysis
 5. Acquire the capability to use SEMinR to conduct a mediation analysis based on 

the corporate reputation example

7.1  Introduction

Mediation occurs when a construct, referred to as mediator construct, intervenes 
between two other related constructs. More precisely, a change in the exogenous 
construct causes a change in the mediator construct, which, in turn, results in a 
change in the endogenous construct in the PLS path model. When such an effect is 
present, mediation can be a useful statistical analysis, if  supported by theory and 
carried out properly.

Consider . Fig. 7.1 for an illustration of a mediating effect in terms of direct 
and indirect effects. A direct effect describes the relationships linking two constructs 
with a single arrow. Indirect effects are those structural model paths that involve a 
sequence of relationships with at least one intervening construct involved. Thus, an 
indirect effect is a sequence of two or more direct effects and is represented visually 
by multiple arrows. . Figure 7.1 shows both a direct effect p3 between Y1 and Y3 
and an indirect effect of Y1 on Y3 in the form of a Y1 → Y2 → Y3 sequence. The 
indirect effect, computed as the product p1 ∙ p2, represents the mediating effect of the 
construct Y2 on the relationship between Y1 and Y3. Finally, the sum of the direct 
and indirect effect is referred to as the total effect (i.e., p1 ∙ p2 + p3 in . Fig. 7.1).

Many PLS path models include mediation effects but are often not explicitly 
hypothesized and tested (Hair et al., 2022). Only when the possible mediation is 
theoretically considered and also empirically tested is it possible to fully and accu-
rately understand the nature of the cause–effect relationship. Again, theory is 
always the foundation of empirical analyses, including mediation. Nitzl, Roldán, 
and Cepeda Carrión (2016) as well as Cepeda Carrión, Nitzl, and Roldán (2017) 
and Memon, Cheah, Ramayah, Ting, and Chuah (2018) provide detailed explana-
tions of mediation analysis in PLS-SEM.

       . Fig. 7.1 Mediation model. 
(Source: Hair, Hult, Ringle, & 
Sarstedt, 2022, Chap. 7; used 
with permission by Sage)
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7.2  Systematic Mediation Analysis

A systematic mediation analysis builds on a theoretically established model and 
hypothesized relationships, including the mediating effect. To begin, it is important 
to estimate and assess the model, which includes all considered mediators. The next 
steps are the characterization of the mediation analysis’ outcomes and testing of 
the mediating effects. We address these three steps in the following sections.

7.2.1  Evaluation of the Mediation Model

Evaluating a mediation model requires all quality criteria of the measurement and 
structural models to be met, as discussed in 7 Chaps. 4, 5, and 6. The analysis 
begins with the assessment of the reflective and formative measurement models. 
For example, a lack of reliability for one or more reflective mediator constructs will 
have a meaningful impact on the estimated relationships in the PLS path model 
(i.e., the indirect paths can become considerably smaller than expected). For this 
reason, it is important to ensure that the reflectively measured mediator constructs 
exhibit a high level of reliability.

After establishing the reliability and validity of measurement models for the 
mediator as well as the other exogenous and the endogenous constructs, it is impor-
tant to consider all structural model evaluation criteria. For instance, high collin-
earity must not be present since it is likely to produce biased path coefficients. For 
example, as a result of collinearity, the direct effect may become nonsignificant, 
suggesting the absence of mediation even though, for example, complementary 
mediation may be present (see the next section). Likewise, high collinearity levels 
may result in unexpected sign changes, rendering any differentiation between dif-
ferent mediation types problematic. Moreover, a lack of the mediator construct’s 
discriminant validity with the exogenous or endogenous construct might result in 
a strong and significant but substantially biased indirect effect, consequently lead-
ing to incorrect implications regarding the existence or type of mediation. After 
meeting the relevant assessment criteria for reflective and formative measurement 
models, as well as the structural model, the actual mediation analysis follows.

7.2.2  Characterization of Outcomes

The question of how to test mediation has attracted considerable attention in 
methodological research. Decades ago, Baron and Kenny (1986) presented a medi-
ation analysis approach, referred to as causal step approach, which many research-
ers still routinely draw upon (Rasoolimanesh, Wang, Roldán, & Kunasekaran, 
2021). More recent research, however, concludes there are conceptual and method-
ological problems with Baron and Kenny’s (1986) approach (e.g., Hayes, 2018). 
Against this background, our description builds on Zhao, Lynch, and Chen (2010), 
who offer a synthesis of prior research on mediation analysis and corresponding 
guidelines for future research (Nitzl et al., 2016).
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The authors characterize three types of mediation:
 5 Complementary mediation: the indirect effect and the direct effect are signifi-

cant and point in the same direction.
 5 Competitive mediation: the indirect effect and the direct effect are significant 

but point in opposite directions.
 5 Indirect-only mediation: the indirect effect is significant, but not the direct 

effect.

In addition, they identify two types of non-mediation:
 5 Direct-only non-mediation: the direct effect is significant, but not the indirect 

effect.
 5 No-effect non-mediation: neither the direct nor the indirect effect is significant.

As a result, a mediation analysis may show that mediation does not exist at all (i.e., 
direct-only non-mediation and no-effect non-mediation) or, in case of a mediation 
effect, the mediator construct accounts either for some (i.e., complementary and 
competitive mediation) or for all of the observed relationship between two latent 
variables (i.e., indirect-only mediation). In that sense, the Zhao et al. (2010) proce-
dure closely corresponds to Baron and Kenny’s (1986) concepts of partial media-
tion (i.e., complementary mediation), suppressor effect (i.e., competitive mediation), 
and full mediation (i.e., indirect-only mediation).

Testing for the type of mediation in a model requires running a series of analy-
ses, which . Fig.  7.2 illustrates. The first step addresses the significance of the 
indirect effect (p1 · p2) via the mediator construct (Y2) as shown in . Fig. 7.1. If  the 
indirect effect is not significant (right-hand side of . Fig. 7.2), we conclude that Y2 
does not function as a mediator in the tested relationship. While this result may 
seem disappointing at first sight, as it does not provide empirical support for a 

Is
p1 · p2

significant
?

Is p3
significant

?

Is p3
significant

?

Is 
p1 · p2 · p3
positive?

Complementary
(partial mediation)

No effect
(no mediation)

Competitive
(partial mediation)

Indirect-only
(full mediation)

Direct-only
(no mediation)

Yes

Yes Yes

Yes

No

NoNo

No

       . Fig. 7.2 Mediation analysis procedure. (Source: authors’ own figure; Zhao et al., 2010)
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hypothesized mediating relationship, further analysis of the direct effect p3 can 
point to as yet undiscovered mediators. Specifically, if  the direct effect is signifi-
cant, we could conclude it is possible that there is an omitted mediator, which 
potentially explains the relationship between Y1 and Y3 (direct-only non- mediation). 
If  the direct effect is also nonsignificant (no-effect non-mediation), however, we 
must conclude that our theoretical framework is flawed. In this case, we should go 
back to theory and reconsider the path model setup. Note that this situation can 
occur despite a significant total effect of Y1 on Y3 (p1 ∙ p2 + p3 in . Fig. 7.1).

We may, however, find general support for a hypothesized mediating relation-
ship in our initial analysis based on a significant indirect effect (left-hand side of 
. Fig. 7.2). As before, our next interest is with the significance of the direct effect 
p3. If  the direct effect is not significant, we face the situation of indirect-only medi-
ation. This situation represents the best-case scenario, as it suggests that our medi-
ator fully complies with the hypothesized theoretical framework. If  the direct effect 
p3 is significant, we still find support for the hypothesized mediating relationship. 
However, the total effect between the two constructs Y1 and Y3 stems partially from 
the direct effect p3 and partially from the indirect effect p1 · p2. In this situation, we 
can distinguish between complementary and competitive mediation.

Complementary mediation describes a situation in which the direct effect and 
the indirect effect p1 · p2 point in the same direction. In other words, the product of 
the direct effect and the indirect effect (i.e., p1 · p2 · p3) is positive (. Fig. 7.2). On 
the contrary, in competitive mediation – also referred to as inconsistent mediation 
(MacKinnon, Fairchild, & Fritz, 2007)  – the direct effect p3 and either indirect 
effect p1 or p2 have opposite signs. In other words, the product of the direct effect 
and the indirect effect p1 · p2 · p3 is negative (. Fig. 7.2). It is important to note that 
in competitive mediation, the mediating construct acts as a suppressor effect, which 
substantially decreases the magnitude of the total effect of Y1 on Y3. Therefore, 
when competitive mediation occurs, researchers need to carefully analyze the theo-
retical substantiation of all effects involved.

7.2.3  Testing Mediating Effects

Prior testing of the significance of mediating effects relied on the Sobel (1982) test, 
which should no longer be used (Hair et al., 2022, Chap. 7). Instead of using the 
Sobel (1982) test, researchers should bootstrap the sampling distribution of the 
indirect effect (Preacher & Hayes, 2004; Preacher & Hayes, 2008a). Bootstrapping 
(see 7 Chap. 5) makes no assumptions about the shape of the variables’ distribu-
tion or the sampling distribution of the statistics and can be applied to small sam-
ple sizes with more confidence. Even though bootstrapping has been introduced 
for the mediation analysis in regression models, the approach is perfectly suited for 
the PLS-SEM method as well. In addition, bootstrapping the indirect effect yields 
higher levels of statistical power compared to the Sobel (1982) test (Zhao et al., 
2010).

7.2 · Systematic Mediation Analysis
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 > There is no need for researchers to use the PROCESS routine (Hayes, 2018) pro-
posed for regression models to analyze mediation effects in PLS-SEM (i.e., in a 
subsequent tandem analysis, by using the latent variable scores obtained by PLS-
SEM to run a regression model in PROCESS), since bootstrapping in PLS-SEM 
provides all relevant results with more accuracy and precision than PROCESS 
(Sarstedt, Hair, Nitzl, Ringle, & Howard, 2020).

7.3  Multiple Mediation Models

In the previous sections, we considered the case of a single mediator construct, 
which accounts for the relationship between an exogenous and an endogenous con-
struct. Analyzing such a model setup is also referred to as single mediation analy-
sis. More often, however, when evaluating structural models, exogenous constructs 
exert their influence through more than one mediating variable. This situation 
requires running multiple mediation analyses for the hypothesized relationships via 
more than one mediator in PLS-SEM (Cepeda Carrión et al., 2017; Nitzl et al., 
2016). As an example of multiple mediation with two mediators, consider 
. Fig.  7.3. In this model, p3 represents the direct effect between the exogenous 
construct and the endogenous construct. The specific indirect effect of  Y1 on Y3 via 
mediator Y2 is quantified as p1 ∙ p2. For the second mediator Y4, the specific indirect 
effect is given by p4 ∙ p5. In addition, we can consider the specific indirect effect of 
Y1 on Y3 via both mediators, Y2 and Y4, which is quantified as p1 ∙ p6 ∙ p5. The total 
indirect effect is the sum of the specific indirect effects (i.e., p1 ∙ p2 + p4 ∙ p5 + p1 ∙ p6 
∙ p5). Finally, the total effect of Y1 on Y3 is the sum of the direct effect and the total 
indirect effects (i.e., p3 + p1 ∙ p2 + p4 ∙ p5 + p1 ∙ p6 ∙ p5).

To test a multiple mediation model, such as the one shown in . Fig.  7.3, 
researchers may be tempted to run a set of separate single mediation analyses, one 
for each proposed mediator (in this case, Y2 and Y4) separately. However, as 
Preacher and Hayes (2008a, 2008b) point out, this approach is problematic for at 
least two reasons. First, one cannot simply add up the indirect effects calculated in 
several single mediation analyses to derive the total indirect effect, as the mediators 
in a multiple mediation model typically will be correlated. As a result, the specific 
indirect effects, estimated using several single mediation analyses, will be biased 

Y1 Y3
p3

Y2

p1 p2

Y4

p4 p5

p6

       . Fig. 7.3 Multiple mediation 
model. (Source: Hair et al., 2022, 
Chap. 7; used with permission by 
Sage)
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and will not sum to the total indirect effect through the multiple mediators. Second, 
hypothesis testing and confidence intervals calculated for specific indirect effects 
may not be accurate due to the omission of other, potentially important, media-
tors. By considering all mediators at the same time in one model, we gain a more 
complete picture of the mechanisms through which an exogenous construct affects 
an endogenous construct (Sarstedt et al., 2020). Hence, we recommend including 
all relevant mediators in the model and, thus, analyzing their hypothesized effects 
simultaneously. In a multiple mediation model, a specific indirect effect can be 
interpreted as the indirect effect of Y1 on Y3 through a given mediator, while con-
trolling for all other included mediators.

The analysis of a multiple mediation model also follows the procedure shown 
in . Fig. 7.2. That is, we should test the significance of the indirect effects (i.e., 
each specific and total indirect effects) and the direct effect between the exogenous 
construct and the endogenous construct. In addition, we should test whether the 
total indirect effect is significant. To assess the significance of the specific indirect 
effects, the total indirect effect, and the direct effect, we should use the results of 
the bootstrap routine. Similar to the path coefficient significance test (7 Chap. 6), 
we should select 10,000 (or more) bootstrap subsamples and report the 95% per-
centile bootstrap confidence intervals for the final result reporting. On this basis, 
the analysis and result interpretation of a multiple mediation follow the same pro-
cedure as a single mediation analysis. Nitzl et al. (2016) as well as Cepeda Carrión 
et al. (2017) and Sarstedt et al. (2020) provide additional insights on multiple medi-
ation analysis in PLS-SEM.

7.4  Case Study Illustration: Mediation Analysis

We now perform a deeper investigation of the relationship between the two dimen-
sions of corporate reputation (LIKE and COMP) on the key construct customer 
loyalty (CUSL). The theory of cognitive dissonance (Festinger, 1957) proposes 
that customers who perceive that a company has a favorable reputation are likely 
to show higher levels of satisfaction in an effort to avoid cognitive dissonance. 
Previous research has demonstrated, however, that customer satisfaction is the pri-
mary driver of customer loyalty (Anderson & Fornell, 2000). Therefore, we expect 
that customer satisfaction mediates the relationship between likeability and cus-
tomer loyalty as well as competence and customer loyalty (. Fig.  7.4). To test 
these hypothesized effects, we will apply the procedure shown in . Fig. 7.2.

To begin the mediation analysis, we need to ensure that all construct measures are 
reliable and valid and that the structural model meets all quality criteria. As we have 
conducted these evaluations in 7 Chaps. 5 and 6 and found the model to be satisfac-
tory, we can now move directly to the mediation analysis. If your model has not yet 
been thoroughly assessed, please do so before conducting the mediation analysis.

As illustrated in . Fig. 7.2, we first need to test for significance of the relevant 
indirect effects in the extended corporate reputation model (. Fig. 7.4). The indi-
rect effect from COMP via CUSA to CUSL is the product of the path coefficients 
from COMP to CUSA and from CUSA to CUSL (mediation path 1, dashed line 
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ATTR

       . Fig. 7.4 Extended corporate 
reputation model with highlighted 
mediation effects. (Source: authors’ 
own figure)

in . Fig. 7.4). Similarly, the indirect effect from LIKE via CUSA to CUSL is the 
product of the path coefficients from LIKE to CUSA and from CUSA to CUSL 
(mediation path 2, dotted line in . Fig. 7.4). To test for significance of these path 
coefficients’ products, we first need to estimate and bootstrap the model and sum-
marize the results (see 7 Chaps. 5 and 6 for details and thorough explanation).

# Load the SEMinR library
library(seminr)

# Load the data
corp_rep_data <- corp_rep_data

# Create measurement model
corp_rep_mm_ext <- constructs(
  composite(“QUAL”, multi_items(“qual_”, 1:8), weights = mode_B),
  composite(“PERF”, multi_items(“perf_”, 1:5), weights = mode_B),
  composite(“CSOR”, multi_items(“csor_”, 1:5), weights = mode_B),
  composite(“ATTR”, multi_items(“attr_”, 1:3), weights = mode_B),
  composite(“COMP”, multi_items(“comp_”, 1:3)),
  composite(“LIKE”, multi_items(“like_”, 1:3)),
  composite(“CUSA”, single_item(“cusa”)),
  composite(“CUSL”, multi_items(“cusl_”, 1:3))
)
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# Create structural model
corp_rep_sm_ext <- relationships(
  paths(from = c(“QUAL”, “PERF”, “CSOR”, “ATTR”), to = c(“COMP”, 
“LIKE”)),
  paths(from = c(“COMP”, “LIKE”), to = c(“CUSA”, “CUSL”)),
  paths(from = c(“CUSA”), to = c(“CUSL”))
)

# Estimate the model
corp_rep_pls_model_ext <- estimate_pls(
  data = corp_rep_data,
  measurement_model = corp_rep_mm_ext,
  structural_model = corp_rep_sm_ext,
  missing = mean_replacement,
  missing_value = “-99”
)

# Summarize the results of the model estimation
summary_corp_rep_ext <- summary(corp_rep_pls_model_ext)

# Bootstrap the model
boot_corp_rep_ext <- bootstrap_model(
  seminr_model = corp_rep_pls_model_ext,
  nboot = 1000,
  cores = parallel::detectCores(),
  seed = 123
)

# Summarize the results of the bootstrap
summary_boot_corp_rep_ext <- summary(boot_corp_rep_ext, alpha = 
0.05)

The results for total indirect effects can be found by inspecting the total_indi-
rect_effects element within the summary_corp_rep_ext object, sum-
mary_corp_rep_ext$total_indirect_effects. Specific indirect paths 
can be evaluated for significance, by using the specific_effect_signifi-
cance() function. This function takes a bootstrapped model object, an anteced-
ent construct name, and an outcome construct name as arguments and returns the 
bootstrap confidence interval for the total indirect paths from the antecedents to 
the outcome construct (. Table 7.1).

We use the specific_effect_significance() function on the boot_
corp_rep_ext object and specify the indirect path using the from and to argu-
ments. A separate path must be specified for COMP, through CUSA, to CUSL, 
and another for LIKE, through CUSA, to CUSL:

7.4 · Case Study Illustration: Mediation Analysis
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       . Table 7.1 A list of  arguments for the specific_effect_significance() function

Argument Value

boot_seminr_
model

The bootstrapped SEMinR model containing the estimated paths

from The antecedent construct name

through A vector of all mediating construct names

to The outcome construct name

alpha The statistical power in percentage to be used for determining confidence 
intervals. The default is 0.05 (5%) for a two-tailed test

Source: authors’ own table

# Inspect total indirect effects
summary_corp_rep_ext$total_indirect_effects

# Inspect indirect effects
specific_effect_significance(boot_corp_rep_ext,
  from = “COMP”,
  through = “CUSA”,
  to = “CUSL”,
  alpha = 0.05)
specific_effect_significance(boot_corp_rep_ext,
  from = “LIKE”,
  through = “CUSA”,
  to = “CUSL”,
  alpha = 0.05)

Tip

The specific_effect_significance() can be used for calculating the bootstrap 
mean, standard deviation, t-statistic, and bootstrap confidence intervals for paths 
involving multiple mediators. The through argument can take multiple mediating con-
structs as arguments (e.g., through = c(“construct1”, “construct2”)). 
Therefore, this function can be used for testing models with serial mediation.

The results in . Fig. 7.5 show that the total indirect effect of COMP on CUSL is 
0.074, and the total indirect effect of LIKE on CUSL is 0.220. When inspecting the 
bootstrap confidence intervals, we conclude that  – since the confidence interval 
does not include the zero for either effect – the effects are significant at the specified 
5% level. Note that the confidence intervals will look slightly different in your anal-
ysis, as they are derived from bootstrapping, which is a random process.
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       . Fig. 7.5 Results of  total indirect effects and specific effect confidence intervals. (Source: authors’ 
screenshot from R)

Following the mediation analysis procedure (. Fig. 7.2), we can now ascertain 
if  the direct effect is significant for each of the two mediation effects (i.e., COMP 
to CUSL and LIKE to CUSL). These paths can be accessed by inspecting the 
paths element of the summary_corp_rep_ext object. The confidence inter-
vals for the direct effects can be evaluated by inspecting the bootstrapped_
paths element of the summary_boot_corp_rep_ext object.

# Inspect the direct effects
summary_corp_rep_ext$paths

# Inspect the confidence intervals for direct effects
summary_boot_corp_rep_ext$bootstrapped_paths

The results in . Fig.  7.6 show that the direct effect from COMP to CUSL is 
0.006 with a 95% confidence interval [−0.104; 0.115]. As this interval includes 
zero, this direct effect is not significant. According to the guidelines shown in 
. Fig.  7.2, we therefore conclude that the relationship between COMP and 
CUSL is fully mediated by CUSA. Next, we need to consider the direct relation-
ship between LIKE and CUSL, which has a 0.344 path coefficient with a 95% 
confidence interval [0.231; 0.449]. As this confidence interval does not include 
zero, we conclude that CUSA partially mediates the effect of  LIKE on CUSL. 
We now need to further evaluate if  CUSA acts as a complementary or competi-
tive mediator for the effect of  LIKE on CUSL. To do so, we need to determine 
whether the product of  the direct and indirect effects (p1 ∙ p2 ∙ p3 in . Fig. 7.1) 
has a positive or negative sign. To show these paths, we use the path element 
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       . Fig. 7.6 Results of  direct effects and confidence intervals for direct effects. (Source: authors’ 
screenshot from R)

of  summary_corp_rep_ext. We can subset this path’s matrix to display the 
path from LIKE to CUSA, summary_corp_rep_ext$paths[“LIKE”, 
“CUSA”]. We need to repeat this step for each of  the three paths in the media-
tion relationship and then multiply the paths.

# Calculate the sign of p1*p2*p3
summary_corp_rep_ext$paths[“LIKE”, “CUSL”] *
  summary_corp_rep_ext$paths[“LIKE”,“CUSA”] *
  summary_corp_rep_ext$paths[“CUSA”,“CUSL”]

The results in . Fig. 7.7 show that the product of the three paths is positive (0.076). 
We therefore conclude that CUSA acts as a complementary partial mediator in the 
relationship between LIKE and CUSL.
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       . Fig. 7.7 Results of  calculating p1 ∙ p2 ∙ p3. (Source: authors’ screenshot from R)

Summary
Mediation occurs when a third variable, referred to as a mediator construct, inter-
venes between two other related constructs. More precisely, a change in the exoge-
nous construct results in a change in the mediator construct, which, in turn, affects 
the endogenous construct in the model. After theoretically establishing a mediation 
model and its hypothesized relationships, a systematic mediation analysis includes 
the estimation and evaluation of the mediation model results, their characterization, 
and testing for the mediating effects. Analyzing the strength of the mediator con-
struct’s relationships with the other construct(s) enables the researcher to better 
understand the mechanisms that underlie the relationship between an exogenous 
and an endogenous construct. In the simplest form, the PLS-SEM analysis considers 
only one mediator construct, but the model also can involve multiple mediator con-
structs that need to be analyzed simultaneously.

 ? Exercise
We continue analyzing the influencer model as introduced in the exercise section of 
7 Chap. 3. In the model (7 Fig. 3.10), SIC has a direct effect on PI, but also two 
indirect effects via PL and PQ. In the following, we turn our attention to the poten-
tial mediating effects of SIC on PI:
 1. Is the indirect effect between SIC and PI via PL significant?
 2. Is the indirect effect between SIC and PI via PQ significant?
 3. Is the direct relationship between SIC and PI significant?
 4. Which types of mediation effects are present?
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Learning Objectives
After reading this chapter, you should:
 1. Comprehend the basic concepts of moderation when using PLS-SEM
 2. Be able to technically execute a moderation analysis
 3. Understand how to interpret the results of a moderation analysis
 4. Learn how to execute a slope analysis
 5. Be able to use SEMinR to conduct a moderation analysis based on the corporate 

reputation example

8.1  Introduction

Moderation describes a situation in which the relationship between two constructs 
is not constant but depends on the values of a third variable, referred to as a mod-
erator variable. The moderator variable (or construct) changes the strength, or 
even the direction of a relationship between two constructs in a model. For exam-
ple, prior research has shown that the relationship between customer satisfaction 
and customer loyalty differs as a function of the customers’ income or age (e.g., 
Homburg & Giering, 2001). More precisely, income has a pronounced negative 
effect on the satisfaction to loyalty relationship – the higher the income, the weaker 
the relationship between satisfaction and loyalty. In short, income serves as a mod-
erator variable that accounts for heterogeneity in the data. This means the satisfac-
tion to loyalty relationship is not the same for all customers but differs depending 
on the income level. In this respect, moderation can (and should) be seen as a 
means to account for heterogeneity in the data.

Moderating relationships are hypothesized a priori by the researcher. The test-
ing of the moderating relationship depends on whether the researcher hypothesizes 
whether one specific model relationship or whether all model relationships depend 
on the values of the moderator. Moderators can be either single items or multi- 
item constructs. In our satisfaction–loyalty example, we hypothesized that only the 
satisfaction to loyalty relationship is influenced by income. These considerations 
also apply for the corporate reputation model and its relationship between CUSA 
and CUSL. In such a setting, we would, for example, examine if  and how the 
respondents’ income influences the relationship between CUSA and CUSL. 
. Figure 8.1 shows the theoretical model of such a moderating relationship.

Alternatively, we could also hypothesize that several relationships in the corpo-
rate reputation model depend on some customer characteristic, such as gender. In 
this case, we would run a multigroup analysis (Klesel, Schuberth, Niehaves, & 
Henseler, 2021). For a detailed explanation of multigroup analysis in PLS-SEM, 
see Chap. 8 in Hair et al. (2022) and Chap. 4 in Hair, Sarstedt, Ringle, and Gudergan 
(2018). In this chapter, our focus is on the (single) moderator analysis. More spe-
cifically, we address the modeling and interpretation of an interaction effect that 
occurs when a moderator variable is assumed to influence one specific  relationship.
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Customer 
Satisfaction

Customer 
Loyalty

Income
       . Fig. 8.1 Theoretical 

moderation model example. 
(Source: Hair, Hult, Ringle, & 
Sarstedt, 2022, Chap. 7; used 
with permission by Sage)

8.2  Types of Moderator Variables

Moderators can be present in structural models in different forms. They can repre-
sent observable traits, such as gender, age, or income. But they can also represent 
unobservable traits, such as risk attitude, attitude toward a brand, or ad liking. 
Moderators can be measured with a single item or multiple items and using reflec-
tive or formative indicators. The most important differentiation, however, relates to 
the moderator’s measurement scale, which involves distinguishing between cate-
gorical (typically dichotomous) and continuous moderators.

In our corporate reputation case study in the mobile phone industry, we could, for 
example, use the service-type variable (contract versus prepaid) as a categorical mod-
erator variable. These categorical variables are usually dummy coded (i.e., 0/1), 
whereby the zero (“0”) represents one of the two categories, called the reference cate-
gory, while the value one (“1”) represents the other category in a two- category situa-
tion. Note, however, that a categorical moderator can represent more than two groups. 
For example, in the case of three groups (e.g., short-term contract, long-term con-
tract, and prepaid), we could divide the moderator into two dummy variables, which 
are simultaneously included in the model. In the latter case, both dummy variables 
would take the value zero for the reference category (e.g., prepaid). The other two 
categories would be indicated by the value 1 in the corresponding dummy variable.

Similar to regression analysis, categorical moderators can be included in a PLS 
path model when specifying the structural model. For example, in the case study on 
corporate reputation, we could evaluate whether the customers’ gender has a sig-
nificant bearing on the satisfaction–loyalty link. In many cases, however, research-
ers use a categorical moderator variable to split up the dataset into two or more 
groups and then estimate the models separately for each group of data. Running a 
multigroup analysis enables identification of model relationships that differ signifi-
cantly between the groups (Hair et al., 2018, Chap. 4). This approach offers a more 
complete picture of the moderator’s influence on the analysis results as the focus 
shifts from examining its impact on one specific model relationship to examining 
its impact on all model relationships.

In many situations, researchers have a continuous moderator variable that they 
theorize will affect the strength of one specific relationship between two latent vari-
ables. Returning to our case study on corporate reputation, we could, for example, 
hypothesize that the relationship between satisfaction and loyalty is influenced by 
the customers’ income. More precisely, we could hypothesize that the relationship 
between customer satisfaction and customer loyalty is weaker for high-income cus-
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tomers and stronger for low-income customers. This type of moderator effect 
would indicate the satisfaction to loyalty relationship changes depending on the 
level of income. If  this income moderator effect is not present, we would assume 
the strength of the relationship between satisfaction and loyalty is constant.

Continuous moderators are typically measured with multi-item constructs but can, 
in principle, also be measured using only a single item. When the moderator variable 
represents some abstract unobservable trait (as opposed to some  observable phenom-
enon, such as income), however, we clearly advise against the use of single items for 
construct measurement. In short, multi-item scales are much more effective in terms of 
explaining the target construct’s variance (Diamantopoulos, Sarstedt, Fuchs, Kaiser, 
& Wilczynski, 2012; Sarstedt, Diamantopoulos, Salzberger, & Baumgartner, 2016), 
which can be particularly problematic in the context of moderation. The reason is that 
moderation is usually associated with rather limited effect sizes (Aguinis, Beaty, Boik, 
& Pierce, 2005), so small (but meaningful) effects will be more difficult to identify as 
significant. Furthermore, when modeling moderating effects, the moderator’s mea-
surement model is included twice in the model – in the moderator variable itself and in 
the interaction term (see the next section). This characteristic amplifies the limitations 
of single-item measurement(s) in research situations involving moderation.

8.3  Modeling Moderating Effects

To gain an understanding of how moderating effects are modeled, consider the 
path model shown in . Fig. 8.2. This model illustrates our previous example in 
which income serves as a moderator variable (M), influencing the relationship 
between customer satisfaction (Y1) and customer loyalty (Y2). The moderating 
effect (p3) is represented by an arrow pointing at the effect p1 linking Y1 and Y2. 
Furthermore, when including the moderating effect in a PLS path model, there is 
also a direct relationship (p2) from the moderator to the endogenous construct. 
This additional path is important (and a frequent source of mistakes), as it con-
trols for the direct impact of the moderator on the endogenous construct. If  the 
path p2 was to be omitted, the effect of M on the relationship between Y1 and Y2 
(i.e., p3) would be inflated. As can be seen, moderation is somewhat similar to medi-
ation, in that a third variable (i.e., a mediator or moderator variable) affects the 
strength of a relationship between two latent variables. The crucial distinction 
between both concepts is that the moderator variable does not depend on the exog-
enous construct. In contrast, with mediation, there is a direct effect between the 
exogenous construct and the mediator construct (Memon et al., 2018).

Y1 Y2p1

p3
p2

M
       . Fig. 8.2 Moderation model 

example. (Source: Hair et al., 
2022, Chap. 7; used with 
permission by Sage)
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The path model in . Fig. 8.2, which includes a moderating effect, can also be 
expressed mathematically using the following formula:

Y p p M Y p M2 1 3 1 2= +( ) +· · · .

As can be seen, the influence of Y1 on Y2 not only depends on the strength of the 
simple effect p1 but also on the product of p3 and M. To understand how a moderator 
variable can be integrated in a path model, we need to rewrite the equation as follows:

Y p Y p M p Y M2 1 1 2 3 1= + + ( )· · · · .

This equation shows that including a moderator effect requires the specification of 
the effect of the exogenous construct (i.e., p1·Y1), the effect of the moderator variable 
(i.e., p2·M), and the product term p3·(Y1·M), which is also called the interaction term. 
As a result, the coefficient p3 expresses how the effect p1 changes when the moderator 
variable M is increased or decreased by one standard deviation unit. . Figure 8.3 
illustrates the concept of an interaction term. As can be seen, the model includes the 
interaction term as an additional latent variable covering the product of the exoge-
nous construct Y1 and the moderator M. Because of this interaction term, research-
ers often refer to interaction effects when modeling moderator variables.

So far, we have looked at a two-way interaction because the moderator interacts 
with one other variable, the exogenous construct Y1. However, it is also possible to 
analyze a multiple moderator model. In such a model, the researcher can include a two-
way interaction term for each moderator and the moderated relationship into the same 
model (e.g., when income and age both affect the customer to loyalty relationship in a 
moderation analysis). When using multiple moderators, it is also possible to model 
higher levels of interaction (e.g., a three-way interaction term), where the moderating 
effect (itself) is again moderated. Such a setup is also referred to as cascaded moderator 
analysis. The most common form of a cascaded moderator analysis is a three-way 
interaction (Henseler & Fassott, 2010). For example, we could imagine that the mod-
erating effect of income is not constant but is itself influenced by some other variable, 
such as age, which would then serve as a second moderator variable in the model.

8.4  Creating the Interaction Term

In the previous section, we introduced the concept of an interaction term to facili-
tate the inclusion of a moderator variable in a PLS path model. But a fundamental 
question remains: How should the interaction term be operationalized? Research 

Y1 Y2

M

p1

p2 p3

Y1·M
       . Fig. 8.3 Interaction term in 

moderation. (Source: Hair et al., 
2022, Chap. 7; used with 
permission by Sage)

8.4 · Creating the Interaction Term



160

8

has proposed three primary approaches for creating the interaction term: (1) the 
product indicator approach, (2) the orthogonalizing approach, and (3) the two- 
stage approach. Simulation studies have shown that Chin, Marcolin, and Newsted’s 
(2003) two-stage approach excels in terms of parameter recovery and statistical 
power (e.g., Becker, Ringle, & Sarstedt, 2018; Henseler & Chin, 2010). In addition, 
this approach offers much flexibility, as it is the only approach that is applicable 
when the exogenous construct (Y1 in . Fig. 8.3) or the moderator (M in . Fig. 8.3) 
is specified formatively. We therefore recommend using the two-stage approach in 
most situations to create the interaction term. In the following, we discuss the two- 
stage approach in greater detail. See Chap. 7 in Hair et al. (2022) for a discussion 
of the product indicator approach and the orthogonalizing approach.

The two-stage approach has its roots in its explicit exploitation of PLS-SEM’s 
advantage to estimate latent variable scores (Becker et al., 2018; Rigdon, Ringle, & 
Sarstedt, 2010). The two stages are as follows:

 5 Stage 1: the main effect model (i.e., without the interaction term) is estimated to 
obtain the scores of the latent variables. These are saved for further analysis in 
Stage 2.

 5 Stage 2: the latent variable scores of the exogenous construct and moderator 
variable from Stage 1 are multiplied to create a single item used to measure the 
interaction term. All other latent variables are represented by means of single 
items of their latent variable scores from Stage 1.

. Figure 8.4 illustrates the two-stage approach for our previous model, where two 
formative indicators are used in Stage 1 to measure the moderator variable. The 
main effect model in Stage 1 is run to obtain the latent variable scores for Y1, Y2, 
and M (i.e., LVS(Y1), LVS(Y2), and LVS(M)). The latent variable scores of Y1 
and M are then multiplied to form the single item used to measure the interaction 
term Y1 · M in Stage 2. The latent variables Y1, Y2, and M are each measured with 
a single item of the latent variable scores from Stage 1. It is important to note that 
the limitations identified when using single items do not apply in this case, since the 
single item represents the latent variable scores as obtained from a multi-item mea-
surement in Stage 1.

       . Fig. 8.4 Two-stage approach. 
(Source: Hair et al., 2022, Chap. 
7; used with permission by Sage)

 Chapter 8 · Moderation Analysis



161 8

Becker et al. (2018) examined the impact of different data treatment options on 
the two-stage approach’s performance. The results show parameter recovery works 
best when standardizing the indicator data and the interaction term rather than 
working with unstandardized or mean-centered data. Standardization is done by 
subtracting the variable’s mean from each observation and dividing the result by 
the variable’s standard error (Sarstedt & Mooi, 2019; Chap. 5). As indicated previ-
ously and in consideration of the above advantages, we recommend that in most 
situations, researchers apply the two-stage approach with standardized data when 
conducting moderator analyses.

8.5  Model Evaluation

Measurement and structural model evaluation criteria, as discussed in 7 Chaps. 
4, 5, and 6, also apply to moderator models. For the interaction term, however, 
there is no requirement to assess its measurement model since it represents an 
auxiliary measurement that incorporates the interrelationships between the mod-
erator and the exogenous construct in the path model. This characteristic, how-
ever, renders any measurement model assessment of  the interaction term 
meaningless. In addition, standard measurement model evaluation standards 
would not apply since the interaction term is measured with a single item. 
Therefore, the interaction term does not necessarily have to be assessed in the 
measurement model evaluation step.

 > Important
There is no requirement to assess the measurement model of  the interaction term 
since it represents an auxiliary measurement that does not represent a distinct the-
oretical entity.

Finally, it is always important to consider the standard criteria for structural model 
assessment. In the context of moderation, particular attention should be paid to 
the f2 effect size of the interaction effect (Hair et al., 2022; Memon et al., 2018). As 
explained in 7 Chap. 6, this criterion enables an assessment of the change in the 
R2 value when an exogenous construct is omitted from the model. With regard to 
the interaction effect, the f2 effect size indicates how much the moderation contrib-
utes to the explanation of the endogenous construct. The effect size can be calcu-
lated as

f
R R

R
2

2 2

21
=

−
−

included excluded

included

,

where Rincluded
2  and Rexcluded

2  are the R2 values of the endogenous construct when 
the interaction term of the moderator model is included in or excluded from the 
PLS path model. In this way, one can assess the relevance of the moderating effect. 
General guidelines for assessing ƒ2 suggest values of 0.02, 0.15, and 0.35 represent 
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small, medium, and large effect sizes, respectively (Cohen, 1988). However, Aguinis 
et al. (2005) have shown that the average effect size in tests of moderation is only 
0.009. Against this background, Kenny (2018) proposes that 0.005, 0.01, and 0.025, 
respectively, constitute more realistic standards for small, medium, and large effect 
sizes of moderation but also points out that even these values are optimistic.

 > Important
Standard cutoff values for the f2 effect size do not apply when interpreting the inter-
action term’s impact. Instead f2 values of 0.005, 0.01, and 0.025 should be consid-
ered as evidence for small, medium, and large effect sizes, respectively.

8.6  Result Interpretation

When interpreting the results of a moderation analysis, the primary focus is the 
significance of the interaction term. If  the interaction term’s effect on the endoge-
nous construct is significant, we conclude the moderator M has a significant mod-
erating effect on the relationship between Y1 and Y2. The bootstrapping procedure 
(7 Chap. 5) facilitates this assessment. If  the relationship is statistically significant, 
the next step is to determine the strength of the moderating effect.

In a model without moderation (i.e., without the moderator variable M) in 
which there is only an arrow linking Y1 and Y2 (see . Fig.  8.3), the effect p1 is 
referred to as a direct effect or main effect. In the case of the two-stage approach, 
such a main effect is, however, different from the corresponding relationship in a 
moderator model shown in . Fig.  8.3. Here, in contrast, p1 is referred to as a 
simple effect, expressing the effect of Y1 on Y2 that is moderated by M. More spe-
cifically, the estimated value of p1 represents the strength of the relationship 
between Y1 and Y2 when the moderator variable M has a value of zero. If  the level 
of the moderator variable is increased (or decreased) by one standard deviation 
unit, the simple effect p1 is expected to change by the size of p3. For example, if  the 
simple effect p1 equals 0.30 and the moderating effect p3 has a value of −0.10, one 
would expect the relationship between Y1 and Y2 to decrease to a value of 
0.30 + (−0.10) = 0.20, if  (ceteris paribus) the mean value of the moderator variable 
M increases by one standard deviation unit (Henseler & Fassott, 2010). As a result, 
a moderator variable can strengthen, weaken, or even reverse a relationship 
(Gardner, Harris, Li, Kirkman, & Mathieu, 2017).

In many model setups, however, zero is not a number on the scale of M or, as in 
the case in our example (i.e., it is not a meaningful value for the moderator). If  this 
is the case, the interpretation of the simple effect becomes problematic. This is 
another reason why we need to standardize the indicators of the moderator as 
described earlier. The standardization shifts the reference point from an income of 
zero to the average income and thus facilitates interpretation of the effects.

An important concept to understand is that the nature of the effect between Y1 
and Y2 (i.e., p1) differs for models with and without the moderator when using the 
two-stage approach. If  the focus is on testing the significance of the main effect p1 

 Chapter 8 · Moderation Analysis

https://doi.org/10.1007/978-3-030-80519-7_5


163 8

between Y1 and Y2, the PLS-SEM analysis should be initially executed without the 
moderator. The evaluation and interpretation of results should follow the proce-
dures outlined in 7 Chap. 6. The moderator analysis then is executed as a comple-
mentary analysis for the specific moderating relationship. This issue is important 
because the direct effect becomes a simple effect in the moderator model, which 
differs in its estimated value, meaning, and interpretation. The simple effect repre-
sents the relationship between an exogenous and an endogenous construct when 
the moderator variable’s value is equal to its mean value (provided standardization 
has been applied). Hence, interpreting the simple effect results of a moderator 
model as if  it were a direct effect (e.g., for testing the hypothesis of a significant 
relationship p1 between Y1 and Y2) may result in misleading and incorrect conclu-
sions (Henseler & Fassott, 2010).

 > When testing a hypothesized direct relationship between two constructs, the mod-
erator needs to be excluded from the model.

Beyond understanding these aspects of moderator analysis, the interpretation of 
moderation results is often quite challenging. For this reason, graphical illustra-
tions of results support their understanding and drawing of conclusions. A com-
mon way to illustrate the results of a moderation analysis is by slope plots (Memon 
et al., 2018).

Tip

Web pages, such as those by Jeremy Dawson (7 http://www. jeremydawson. co. uk/
slopes. htm) or Kristopher Preacher (7 http://quantpsy. org/interact/mlr2. htm), 
provide online tools for corresponding computations and simple slope plot 
 extractions.

As an example of  a two-way interaction, refer to . Fig. 8.3. Assume the relation-
ship between Y1 and Y2 has a value of  0.50, the relationship between M and Y2 
has a value of  0.10, and the interaction term (Y1 · M) has a 0.25 relationship with 
Y2. . Figure  8.5 shows a typical slope plot used for such a setting, where the 
x-axis represents the exogenous construct (Y1) and the y-axis the endogenous 
construct (Y2).

The two lines in . Fig. 8.5 represent the relationship between Y1 and Y2 for low 
and high levels of the moderator construct M. Usually, a low level of M is one 
standard deviation unit below its average (straight line in . Fig. 8.5), while a high 
level of M is one standard deviation unit above its average (dotted line in . Fig. 8.5). 
Because of the positive moderating effect, as expressed in the 0.25 relationship 
between the interaction term and the endogenous construct, the high moderator 
line’s slope is steeper. That is, the relationship between Y1 and Y2 becomes stronger 
with high(er) levels of M. For low(er) levels of M, the slope is much flatter, as 
shown in . Fig. 8.5. Hence, with low(er) levels of the moderator construct M, the 
relationship between Y1 and Y2 becomes weaker.
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       . Fig. 8.5 Slope plot. (Source: Hair et al., 2022, Chap. 7; used with permission by Sage)

8.7  Case Study Illustration: Moderation Analysis

We again turn to the corporate reputation model as discussed in the previous chap-
ters to illustrate the moderation concepts. In the subsequent discussion, we focus 
on the relationship between customer satisfaction and customer loyalty. Specifically, 
we introduce perceived switching costs as a moderator variable that can be assumed 
to negatively influence the relationship between satisfaction and loyalty (Hair et al., 
2022; Chap. 7). The higher the perceived switching costs, the weaker the relation-
ship between these two constructs (. Fig. 8.6). We use an extended form of Jones, 
Mothersbaugh, and Beatty’s (2000) scale and measure switching costs reflectively 
using four indicators (switch_1 to switch_4; . Table  8.1), each measured on a 
5-point Likert scale (1 = fully disagree, 5 = fully agree).

First, we need to update the measurement and structural models to include the 
new SC construct and its indicators switch_1, switch_2, switch_3, and switch_4. We 
thus need to add a new element to the list of constructs in the measurement model 
using the composite() function. We name the construct “SC” and specify the 
items using the multi_items() function and arguments “switch_” and 
“1:4”: composite(“SC”, multi_items(“switch_”, 1:4)).

Creating interaction terms by hand can be time-consuming and error prone. 
SEMinR provides functions for simply creating interactions between con-
structs. In doing so, SEMinR adjusts the standard errors of  the construct scores 
in the generation of  the interaction term (Henseler & Chin, 2010). Interaction 
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       . Table 8.1 Switching costs indicators

Construct 
name

Construct definition

switch_1 It takes me a great deal of time to switch to another company

switch_2 It costs me too much to switch to another company

switch_3 It takes a lot of effort to get used to a new company with its specific “rules” 
and practices

switch_4 In general, it would be a hassle switching to another company

Source: authors’ own table; Jones et al. (2000)

       . Fig. 8.6 Corporate reputa-
tion model with the added 
moderator switching costs (SC) 
and the interaction term (CUSA 
* SC). (Source: authors’ own 
figure)

terms are described in the measurement model function constructs() using 
the following methods:

 5 two_stage implements the two-stage approach as recommended in our previ-
ous discussions. It specifies the interaction term as the product of the scores of 
the exogenous construct and the moderator variable.

 5 product_indicator generates the interaction term by multiplying each indi-
cator of the exogenous construct with each indicator of the moderator variable.

 5 orthogonal is an extension of the product indicator approach, which gener-
ates an interaction term whose indicators do not share any variance with the 
indicators of the exogenous construct and the moderator. The orthogonalizing 
approach is typically used to handle multicollinearity in the structural model.

 > The SEMinR syntax uses an asterisk (“*”) as a naming convention for the interaction 
construct. Thus, when creating an interaction from the constructs CUSA and SC, the 
resulting interaction is called “CUSA*SC” in the structural model. We therefore rec-
ommend refraining from using an asterisk in the naming of noninteraction constructs.

8.7 · Case Study Illustration: Moderation Analysis
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In addition to including the SC construct, we need to specify the interaction term 
composed of  the independent variable CUSA and the moderator SC using the 
interaction_term() function. The interaction_term() function takes 
the following arguments: iv specifies the independent variable (i.e., exogenous 
construct); moderator specifies the moderating variable; and method specifies the 
interaction calculation method (with values product_indicator, orthogo-
nal, or two_stage). We now need to choose the two-stage approach to create 
the interaction term. We specify the interaction term as follows: interaction_
term(iv = “CUSA”, moderator = “SC”, method = two_stage). SEMinR automati-
cally generates a name for the new interaction term by combining the exogenous 
construct’s and the moderator construct’s name separated by an asterisk (“*”), 
representing multiplication. Thus, the newly created interaction term will be 
called CUSA*SC. Note that SEMinR always standardizes the data when calculat-
ing the interaction term.

# Load the SEMinR library
library(seminr)

# Load the data
corp_rep_data <- corp_rep_data

# Create the measurement model
corp_rep_mm_mod <- constructs(
  composite(“QUAL”, multi_items(“qual_”, 1:8), weights = mode_B),
  composite(“PERF”, multi_items(“perf_”, 1:5), weights = mode_B),
  composite(“CSOR”, multi_items(“csor_”, 1:5), weights = mode_B),
  composite(“ATTR”, multi_items(“attr_”, 1:3), weights = mode_B),
  composite(“COMP”, multi_items(“comp_”, 1:3)),
  composite(“LIKE”, multi_items(“like_”, 1:3)),
  composite(“CUSA”, single_item(“cusa”)),
  composite(“SC”, multi_items(“switch_”, 1:4)),
  composite(“CUSL”, multi_items(“cusl_”, 1:3)),
  interaction_term(iv = “CUSA”, moderator = “SC”, method = two_
stage))

When the measurement model has been updated, we need to add the new struc-
tural paths. There are two new paths in the model: from SC to CUSL and from the 
interaction term CUSA*SC to CUSL. We therefore append the list with the two 
new construct names: paths(from = c(“CUSA”, “SC”, “CUSA*SC”), to 
= c(“CUSL”)). With the measurement and structural models now updated, the 
model can be estimated, bootstrapped, and summarized.
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# Create the structural model
corp_rep_sm_mod <- relationships(
  paths(from = c(“QUAL”, “PERF”, “CSOR”, “ATTR”), to = c(“COMP”, 
“LIKE”)),
  paths(from = c(“COMP”, “LIKE”), to = c(“CUSA”, “CUSL”)),
  paths(from = c(“CUSA”, “SC”, “CUSA*SC”), to = c(“CUSL”))
)

# Estimate the new model with moderator
corp_rep_pls_model_mod <- estimate_pls(
  data = corp_rep_data,
  measurement_model = corp_rep_mm_mod,
  structural_model = corp_rep_sm_mod,
  missing = mean_replacement,
  missing_value = “-99”
)

# Extract the summary
sum_corp_rep_mod <- summary(corp_rep_pls_model_mod)

# Bootstrap the model
boot_corp_rep_mod <- bootstrap_model(
  seminr_model = corp_rep_pls_model_mod,
  nboot = 1000)

# Summarize the results of the bootstrap
sum_boot_corp_rep_mod <- summary(boot_corp_rep_mod, alpha = 0.05)

Following the procedures outlined in 7 Chaps. 4 and 5, we find that all mea-
surement models exhibit sufficient levels of  reliability and validity. This also 
holds for the measures of  the newly added SC construct, which exhibit high 
degrees of  internal consistency reliability and convergent validity. In terms of 
discriminant validity, SC exhibits increased HTMT values only with COMP 
(0.850) and LIKE (0.802), but these values are significantly lower than 0.90 
(Hair et al., 2022; Chap. 7).

Our next concern is the size of the moderating effect. In order to evalu-
ate the moderating effect, we need to inspect the bootstrapped_paths 
element within the sum_boot_corp_rep_mod object, sum_boot_corp_
rep_mod$bootstrapped_paths.

# Inspect the bootstrapped structural paths
sum_boot_corp_rep_mod$bootstrapped_paths

8.7 · Case Study Illustration: Moderation Analysis
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8        . Fig. 8.7 The bootstrapped paths for moderated model. (Source: author’s screenshot from R)

As can be seen in . Fig. 8.7, the interaction term (CUSA*SC) has a negative effect 
on CUSL of  −0.071, whereas the simple effect of CUSA on CUSL is 0.467. Jointly, 
these results suggest that the relationship between CUSA and CUSL is 0.467 for an 
average level of switching costs. For higher levels of switching costs (i.e., for every 
standard deviation unit increase of SC), the relationship between CUSA and 
CUSL decreases by the size of the interaction term (i.e., 0.467 − 0.071 = 0.396). 
On the contrary, for lower levels of switching costs (i.e., for every standard devia-
tion unit decrease of SC), the relationship between CUSA and CUSL increases by 
the size of the interaction term (i.e., 0.467 − (−0.071) = 0.538). To better compre-
hend the results of the moderator analysis, we can use the slope_analysis() 
function to visualize the two-way interaction effect (see . Fig. 8.8). This function 
takes the arguments shown in . Table 8.2.

We apply the slope_analysis() function to the corp_rep_pls_
model_mod, with CUSL as the endogenous construct, SC as the moderator con-
struct, and CUSA as the exogenous construct. Finally, we assign the legend to the 
bottom-right corner of the plot.

# Simple slope analysis plot
slope_analysis(
  moderated_model = corp_rep_pls_model_mod,
  dv = “CUSL”,
  moderator = “SC”,
  iv = “CUSA”,
  leg_place = “bottomright”)

The three lines shown in . Fig.  8.8 represent the relationship between CUSA 
(x-axis) and CUSL (y-axis). The middle line represents the relationship for an aver-
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       . Fig. 8.8 Simple slope analysis of  the two-way interaction effect CUSA*SC on CUSL. (Source: 
author’s screenshot from RStudio)

       . Table 8.2 Arguments for the slope_analysis() function

Argument Value

moderated_
model

The SEMinR model containing the moderated relationship

dv The dependent variable involved in the moderation

moderator The moderator variable involved in the moderation

iv The independent variable involved in the moderation

leg_place Where to place the legend (default is “bottomright”, an alternative is 
“topleft”, etc.)

Source: authors’ own table

age level of switching costs. The other two lines represent the relationship between 
CUSA and CUSL for higher (i.e., mean value of SC plus one standard deviation 
unit) and lower (i.e., mean value of SC minus one standard deviation unit) levels of 
the moderator variable SC. As can be seen, the relationship between CUSA and 
CUSL is positive for all three lines as indicated by their positive slope. Hence, 
higher levels of customer satisfaction go hand in hand with higher levels of cus-
tomer loyalty. Due to the negative moderating effect, at high levels of the modera-

8.7 · Case Study Illustration: Moderation Analysis
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tor SC, the effect of CUSA on CUSL is weaker, while at lower levels of moderator 
SC, the effect of CUSA on CUSL is stronger.

Next, we assess whether the interaction term is significant using the output 
shown in . Fig. 8.7. The analysis yields a t-value of −2.277 for the path linking the 
interaction term and CUSL. Similarly, the 95% bootstrap confidence interval of 
the interaction term’s effect is [−0.134, −0.013]. As the confidence interval does not 
include zero, we conclude that the effect is significant. Again, note that these results 
will slightly differ from yours due to the random nature of the bootstrapping pro-
cess.

Overall, these results provide clear support that SC exerts a significant and neg-
ative moderating effect on the relationship between CUSA and CUSL. The higher 
the switching costs, the weaker the relationship between customer satisfaction and 
customer loyalty.

Summary
Moderation occurs when one construct affects the strength or even the direction of 
a relationship between two other constructs. As such, moderation accounts for het-
erogeneity in the data. After theoretically establishing a moderation model, its 
hypothesized relationships, and the interaction term (generated using the two-stage 
approach), the model evaluation follows. The moderator construct must be assessed 
for reliability and validity following the standard evaluation procedures for reflective 
and formative measurement models. However, this does not hold for the interaction 
term, which relies on an auxiliary measurement model to represent the interplay 
between exogenous construct and moderator and their joint effect on the endoge-
nous construct. The result assessment further considers the significance and effect 
size of the interaction effect. In the simplest form, the analysis considers only one 
moderator construct, but the model also can involve multiple moderator constructs 
that can be analyzed simultaneously.

 ? Exercise
We continue analyzing the influencer model as introduced in the exercise section of 
7 Chap. 3. Extending the original model (7 Fig. 3.10), we hypothesize that per-
ceived influencer competence (PIC) moderates the relationship between perceived 
quality (PQ) and purchase intention (PI). PIC is measured with reflective items cov-
ering traits of the influencer – see 7 Table 3.10 for an overview of the indicators. 
. Fig. 8.9 visualizes the model with the PIC and the interaction term (PQ*PIC) 
included.
 1. Do the measurement models and structural model meet all quality standards?
 2. Describe the moderating effect in terms of direction and significance. Visualize 

the effects using a simple slope analysis.
 3. Quantify the moderating effect’s size using the f2 effect size.
 4. What conclusions can you draw from the moderator analysis?
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       . Fig. 8.9 The influencer model with additional hypothesized moderation effect of  PIC on PQ 
(source: authors’ own figure)

References

Aguinis, H., Beaty, J. C., Boik, R. J., & Pierce, C. A. (2005). Effect size and power in assessing mod-
erating effects of  categorical variables using multiple regression: A 30-year review. Journal of 
Applied Psychology, 90(1), 94–107.

Becker, J.-M., Ringle, C. M., & Sarstedt, M. (2018). Estimating moderating effects in PLS-SEM and 
PLSc-SEM: Interaction term generation*data treatment. Journal of Applied Structural Equation 
Modeling, 2(2), 1–21.

Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable model-
ing approach for measuring interaction effects: Results from a Monte Carlo simulation study and 
an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189–217.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence 
Erlbaum.

Diamantopoulos, A., Sarstedt, M., Fuchs, C., Kaiser, S., & Wilczynski, P. (2012). Guidelines for 
choosing between multi-item and single-item scales for construct measurement: A predictive 
validity perspective. Journal of the Academy of Marketing Science, 40(3), 434–449.

Gardner, R. G., Harris, T. B., Li, N., Kirkman, B. L., & Mathieu, J. E. (2017). Understanding “it 
depends” in organizational research: A theory-based taxonomy, review, and future research 
agenda concerning interactive and quadratic relationships. Organizational Research Methods, 
20(4), 610–638.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares 
structural equation modeling (PLS-SEM) (3rd ed.). Thousand Oaks, CA: Sage.

Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least 
squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage.

Henseler, J., & Chin, W. W. (2010). A comparison of  approaches for the analysis of  interaction effects 
between latent variables using partial least squares path modeling. Structural Equation Modeling, 
17(1), 82–109.

References



172

8

Henseler, J., & Fassott, G. (2010). Testing moderating effects in PLS path models: An illustration of 
available procedures. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook 
of partial least squares: Concepts, methods and applications in marketing and related fields. 
(Springer Handbooks of  Computational Statistics Series, (Vol. II, pp. 713–735). Berlin: Springer.

Homburg, C., & Giering, A. (2001). Personal characteristics as moderators of  the relationship 
between customer satisfaction and loyalty—An empirical analysis. Psychology and Marketing, 
18(1), 43–66.

Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2000). Switching barriers and repurchase inten-
tions in services. Journal of Retailing, 76(2), 259–274.

Kenny, D. A. (2018). Moderation. Retrieved from http://davidakenny. net/cm/moderation. htm
Klesel, M., Schuberth, F., Niehaves, B., & Henseler, J. (2021). Multigroup analysis in information 

systems research using PLS-PM: A systematic investigation of  approaches. The DATA BASE for 
Advances in Information Systems, forthcoming.

Memon, M. A., Cheah, J.-H., Ramayah, T., Ting, H., Chuah, F., & Cham, T. H. (2018). Moderation 
analysis: Issues and guidelines. Journal of Applied Structural Equation Modeling, 3(1), i–ix.

Rigdon, E. E., Ringle, C. M., & Sarstedt, M. (2010). Structural modeling of  heterogeneous data with 
partial least squares. In N.  K. Malhotra (Ed.), Review of Marketing Research (pp.  255–296). 
Armonk, NY: Sharpe.

Sarstedt, M., Diamantopoulos, A., Salzberger, T., & Baumgartner, P. (2016). Selecting single items to 
measure doubly-concrete constructs: A cautionary tale. Journal of Business Research, 69(8), 
3159–3167.

Sarstedt, M., & Mooi, E. A. (2019). A concise guide to market research: The process, data, and methods 
using IBM SPSS statistics (3rd ed.). Berlin: Springer.

Suggested Reading

Aguinis, H., Edwards, J. R., & Bradley, K. J. (2016). Improving our understanding of  moderation and 
mediation in strategic management research. Organizational Research Methods, 20(4), 665–685.

Dawson, J. F. (2014). Moderation in management research: What, why, when, and how. Journal of 
Business and Psychology, 29(1), 1–19.

Fassott, G., Henseler, J., & Coelho, P. S. (2016). Testing moderating effects in PLS path models with 
composite variables. Industrial Management & Data Systems, 116(9), 1887–1900.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares 
structural equation modeling (PLS-SEM) (3rd ed.). Thousand Oaks, CA: Sage.

Memon, M. A., Cheah, J.-H., Ramayah, T., Ting, H., Chuah, F., & Cham, T. H. (2018). Moderation 
analysis: Issues and guidelines. Journal of Applied Structural Equation Modeling, 3(1), i–ix.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons. org/licenses/by/4. 0/), which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as you give appropriate credit 
to the original author(s) and the source, provide a link to the Creative Commons license and indicate if  
changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Com-
mons license, unless indicated otherwise in a credit line to the material. If  material is not included in the 
chapter's Creative Commons license and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

 Chapter 8 · Moderation Analysis

http://davidakenny.net/cm/moderation.htm
http://creativecommons.org/licenses/by/4.0/


173

Supplementary 
Information
Appendix A: The PLS-SEM Algorithm – 174

Appendix B: Assessing the Reflectively 
Measured Constructs in the Corporate  
Reputation Model – 177

Glossary – 182

Index – 195

© The Editor(s) (if applicable) and The Author(s) 2021
J. F. Hair Jr. et al., Partial Least Squares Structural Equation  
Modeling (PLS-SEM) Using R, Classroom Companion: Business, 
 https://doi.org/10.1007/978-3-030-80519-7

https://doi.org/10.1007/978-3-030-80519-7#DOI


174

 Appendix A: The PLS-SEM Algorithm

In the following, we briefly describe the iterative algorithm employed to generate 
model parameter estimates (i.e., outer weights, outer loadings, and path coeffi-
cients) in PLS-SEM. In . Table A.1, we describe the algorithm in pseudo-code.

The PLS-SEM algorithm comprises three stages: the initialization stage, the 
estimation stage, and the finalization stage. In the initialization stage, the data are 
prepared for model estimation, and the indicator weights are set to preliminary 
values. Specifically, the data are z-standardized (i.e., the mean is set to 0 and the 
standard deviation is set to 1), and each indicator weight is set to a value of 1.

The estimation stage comprises the iterative process which is at the heart of 
PLS-SEM. This is an accordion-like, back-and-forth process where the outer mod-
els (i.e., the measurement models) and the inner model (i.e., the structural model) 
are used to estimate each other. This process is repeated until model parameters 
stabilize and stop changing beyond a certain threshold.

Looking deeper into each iteration, we can recognize five distinct steps. First, 
construct scores (Yi) are estimated as the weighted linear combination of the stan-
dardized indicator scores (xiy) using the measurement model weights (wij). Note 
that in the first iteration, these weights were initialized to 1 and so construct scores 
are thus initially just the sum of their items.

       . Table A.1 Pseudo-code for PLS-SEM algorithm (source: authors’ own illustration)

    1 Initialization stage:
       1.1 Fully standardize all indicator scores (xij) across the n records of the given dataset
       1.2 Initialize all weights wij = 1
    2 Iterative estimation stage:
       2.1 Estimate construct scores Yi =  ∑ wij ∗ xij

       2.2 Estimate inner structural model weights according to inner weighting scheme:
             2.2.1  Centroid: +1 or -1 for the relationship between two constructs depending on the 

sign of the correlation
             2.2.2  Factorial: correlation for the relationship between two constructs
             2.2.3  Path weighting: coefficients of partial regression models for the relationship 

between two constructs
       2.3 Re-estimate the construct scores using structural model weights
       2.4 Re-estimate the measurement model weights according to outer weighting scheme:
             2.4.1  Mode A: standardized correlations for the relationships between the construct and 

each of its indicators
             2.4.2  Mode B: coefficients of partial regression models for the relationship between the 

construct and each of its indicators
       2.5  Check convergence (the sum of measurement model weight changes is smaller than stop 

criterion)
    3 Finalization stage:
       3.1 Estimate final construct scores Yi =  ∑ wij ∗ xij

       3.2 Estimate inner structural model path coefficients using partial regression
       3.3  Estimate measurement model loadings as simple correlations between the construct and 

each of its indicators

 Appendix A: The PLS-SEM Algorithm
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Second, the construct scores are then used to estimate the inner model weights. 
This estimation process depends on the researcher’s choice of structural model 
weighting method: factor, or path weighting. The factor weighting scheme uses the 
(bivariate) correlation between two constructs as their path coefficient. The path 
weighting scheme uses the coefficients of a regression model, resulting from regres-
sions where each endogenous construct is regressed on all its direct antecedents. 
Note that the methodological literature on PLS-SEM also documents centroid as 
a third weighting scheme. However, as the centroid weighting scheme does not 
offer any advantages over factor and path weighting, it has not been implemented 
in SEMinR.

Third, regardless of the choice of structural model weighting scheme, the rela-
tionships between constructs are then used to re-estimate the construct scores. To 
achieve this aim, the exogenous construct scores are multiplied by the structural 
model weights relating them to the endogenous construct scores to estimate a new 
construct score for each endogenous construct. The endogenous construct scores 
are simultaneously multiplied by the weights relating them to their antecedent con-
structs to estimate a new construct score for each exogenous construct.

Fourth, using these new construct scores, the measurement weights are esti-
mated depending on the measurement model weighting scheme for each construct: 
mode A or mode B. Mode A uses correlation weights between the construct and its 
indicators, such that the outer weights (i.e., indicator weights) correspond to the 
standardized correlations between the construct and each of its indicators. In con-
trast, mode B uses regression weights, such that the construct is regressed on its 
indicators in a multiple linear regression. Hence, the outer weights (i.e., indicator 
weights) in mode B are the beta coefficients of a multiple regression model. The 
decision whether to use mode A or mode B is strongly tied to the measurement 
model specification. To mimic reflective measurement models, researchers typically 
use mode A.  In contrast, to mimic formative measurement models, researchers 
typically use mode B. However, this default setting is not optimal under all condi-
tions.

The fifth and final step in the estimation stage is to check whether the model has 
converged or whether another iteration is required. The newly estimated outer 
weights are compared to those at the beginning of iteration. If  the summed differ-
ence between the two sets of weights is greater than a given threshold (typically 
10−7), then the iteration continues with the outer weights. Thus, the iterations 
repeat until the weights converge.

In the finalization stage, the final model parameters and construct scores to be 
reported are estimated. The final outer weights from the estimation stage are used 
to generate construct scores as weighted linear combinations of standardized indi-
cator data. With the final construct scores at hand, the structural model relation-
ships (path coefficients) are then estimated by means of least squares regressions of 
exogenous constructs on endogenous constructs. Similarly, all reliability and valid-
ity (7 Chaps. 4 and 5) as well as structural model parameters (e.g., the endogenous 
constructs’ R2 values; 7 Chap. 6) are estimated.

. Table A.1 shows a more formal description of the entire algorithm.
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 Appendix B: Assessing the Reflectively 
Measured Constructs in the Corporate 
Reputation Model

An important characteristic of PLS-SEM is that the model estimates will change 
when any of the model relationships or variables are changed. We thus need to 
reassess the reflective measurement models to ensure that this portion of the model 
remains valid and reliable before we continue to evaluate the four new exogenous 
formative constructs in 7 Chap. 5. We follow the reflective measurement model 
assessment procedure in . Fig. 4.1 (for a refresher on this topic, return to 7 Chap. 
4). The following code is used to evaluate the reflectively measured constructs:

# Inspect the indicator loadings
summary_corp_rep_ext$loadings

# Inspect the indicator reliability
summary_corp_rep_ext$loadings^2

# Inspect the internal consistency and reliability
summary_corp_rep_ext$reliability

# Table of the FL criteria
summary_corp_rep_ext$validity$fl_criteria

# HTMT criterion
summary_corp_rep_ext$validity$htmt

# Extract the bootstrapped HTMT
sum_boot_corp_rep_ext$bootstrapped_HTMT

We first evaluate the indicator loadings and indicator reliability (summary_corp_
rep_ext$loadings, summary_corp_rep_ext$loadings^2). Note that 
the outputs contain the estimates for loadings, reliability, Fornell–Larcker criterion 
(i.e., FL in SEMinR), and HTMT for both reflective and formative constructs – 
only the reflectively measured constructs need to be evaluated. All indicator load-
ings of the reflective constructs COMP, CUSL, and LIKE have values of 0.821 
and higher (. Fig. B.1), which are well above the threshold value of 0.708. The 
indicators comp_1 and comp_2 have the lowest indicator reliability with a value of 
0.679 (0.8242) and 0.673 (0.8212) demonstrating that the indicators of the reflec-
tively measured constructs exhibit sufficient reliability (. Fig. B.2).
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       . Fig. B.1 Indicator loadings (source: author’s screenshot from RStudio)

. Figure B.3 shows the internal consistency reliability values of the reflective 
constructs. With rhoA values of 0.786 (COMP), 0.839 (CUSL), and 0.836 (LIKE), 
all three reflective constructs have high levels of internal consistency reliability. 
. Figure B.3 shows that the AVE values of COMP (0.688), CUSL (0.748), and 
LIKE (0.747) are well above the required minimum level of 0.50. We conclude that 
the measures of the three reflective constructs have high levels of convergent 
 validity.

. Figure B.4 documents the results of the Fornell–Larcker criterion assessment 
with the square root of the reflective constructs’ AVE on the diagonal and the cor-
relations between the constructs in the off-diagonal position. Overall, the square 
roots of the AVEs for the reflective constructs COMP (0.829), CUSL (0.865), and 
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       . Fig. B.2 Indicator reliability (source: author’s screenshot from RStudio)

       . Fig. B.3 Indicator consistency reliability (source: author’s screenshot from RStudio)
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       . Fig. B.4 Fornell–Larcker criterion and HTMT (source: author’s screenshot from RStudio)

LIKE (0.864) are all higher than the correlations of these constructs with other latent 
variables in the PLS path model. . Figure B.4 also shows the HTMT values for all 
pairs of constructs in a matrix format. As can be seen, all HTMT values for the 
reflective constructs are lower than the more conservative threshold value of 0.85.

The output in . Fig. B.5 displays the results of bootstrapping the HTMT met-
ric. We consider the comparisons between the reflectively measured constructs 
COMP, CUSA, CUSL, and LIKE – that is, the last six rows of the table. None of 
the upper bounds of the one-sided 95 % bootstrap confidence intervals are higher 
than the threshold value of 0.90 (see 7 Chap. 4). To summarize, the bootstrap 
confidence interval results of the HTMT criterion clearly demonstrate the discrim-
inant validity of the constructs.

We conclude that the reflectively measured constructs in the PLS-SEM model 
meet the criteria for reliability and validity and therefore should be included in the 
path model.
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       . Fig. B.5 Bootstrapped HTMT values (source: author’s screenshot from RStudio)
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Glossary

Absolute contribution Is the information an indicator variable provides about the 
formatively measured item, ignoring all other indicators. The absolute contribu-
tion is provided by the loading of the indicator (i.e., its bivariate correlation with 
the formatively measured construct).

Akaike weights Are the weights of evidence in favor of a certain model being the 
best model for the situation at hand given a set of alternative models.

AVE See average variance extracted.

Average variance extracted (AVE) A measure of convergent validity. It is the degree 
to which a latent construct explains the variance of its indicators; also referred to 
as communality (construct).

Bayesian information criterion (BIC) Is a criterion for model selection among an 
alternative set of models. The model with the lowest BIC is preferred.

BIC See Bayesian information criterion.

Bootstrap confidence intervals Provide an estimated range of values that is likely 
to include an unknown population parameter. An interval is determined by its 
lower and upper bounds, which depend on a predefined probability of error and 
the standard error of the estimation for a given set of sample data. When zero does 
not fall into the confidence interval, an estimated parameter can be assumed to be 
significantly different from zero for the prespecified probability of error (e.g., 5 %).

Bootstrap samples Are the number of samples drawn in the bootstrapping proce-
dure. Generally, 10,000 or more samples are recommended.

Bootstrapping Is a resampling technique that draws a large number of subsamples 
from the original data (with replacement) and estimates models for each subsam-
ple. It is used to determine standard errors of coefficients to assess their statistical 
significance without relying on distributional assumptions.

Cascaded moderator analysis Is a type of moderator analysis in which the strength 
of a moderating effect is influenced by another variable (i.e., the moderating effect 
is again moderated).

CB-SEM See covariance-based structural equation modeling.

Coefficient of determination (R²) Is a measure of the proportion of an endogenous 
construct’s variance that is explained by its predictor constructs. It indicates a mod-
el’s explanatory power with regard to a specific endogenous construct.

 Glossary
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Collinearity Arises when two indicators are highly correlated.

Common factor-based SEM Is a type of SEM method, which considers the con-
structs as common factors that explain the covariation between its associated indi-
cators.

Communality (construct) See average variance extracted.

Communality (indicator) See indicator reliability.

Competitive mediation A situation in mediation analysis that occurs when the indi-
rect effect and the direct effect are both significant and point in opposite directions.

Complementary mediation A situation in mediation analysis that occurs when 
the indirect effect and the direct effect are both significant and point in the same 
 direction.

Composite reliability rhoC Is a measure of internal consistency reliability, which, 
unlike Cronbach’s alpha, does not assume equal indicator loadings. It should be 
above 0.70 (in exploratory research, 0.60 to 0.70 is considered acceptable).

Composite-based SEM Is a type of SEM method, which represents the constructs 
as composites, formed by linear combinations of sets of indicator variables.

Confidence intervals See bootstrap confidence intervals.

Construct scores Are columns of data (vectors) for each latent variable that repre-
sent a key result of the PLS-SEM algorithm. The length of every vector equals the 
number of observations in the dataset used.

Constructs Measure theoretical concepts that are abstract and complex and can-
not be directly observed by means of (multiple) items. Constructs are represented 
in path models as circles or ovals and are also referred to as latent variables.

Content validity Is a subjective but systematic evaluation of how well the domain 
content of a construct is captured by its indicators.

Convergent validity It is the degree to which a reflectively specified construct 
explains the variance of its indicators (see average variable extracted). In formative 
measurement model evaluation, convergent validity refers to the degree to which 
the formatively measured construct correlates positively with an alternative (reflec-
tive or single-item) measure of the same concept (see redundancy analysis).

Correlation weights See mode A.

Glossary



184

Covariance-based structural equation modeling (CB-SEM) Is an approach for esti-
mating structural equation models, which assumes that the concepts of interest can 
be represented by common factors. It can be used for theory testing but has clear 
limitations in terms of testing a model’s predictive power.

Critical values See significance testing.

Cronbach’s alpha A measure of internal consistency reliability that assumes equal 
indicator loadings. Cronbach’s alpha represents a conservative measure of internal 
consistency reliability.

Cross-validated predictive ability test (CVPAT) A statistical test for comparing the 
predictive power of different models.

CVPAT See cross-validated predictive ability test.

Direct effect Is a relationship linking two constructs with a single arrow between 
the two.

Direct-only non-mediation A situation in mediation analysis that occurs when the 
direct effect is significant but not the indirect effect.

Discriminant validity Is the extent to which a construct is empirically distinct from 
other constructs in the model.

Endogenous latent variables Serve only as dependent variables or as both indepen-
dent and dependent variables in a structural model.

Error terms Capture the unexplained variance in constructs and indicators when 
path models are estimated.

Exogenous latent variables Are latent variables that serve only as independent vari-
ables in a structural model.

Explanatory power Provides information about the strength of the assumed causal 
relationships in a PLS path model. The primary measure for assessing a PLS path 
model’s explanatory power is the coefficient of determination (R2).

ƒ² effect size Is a measure used to assess the relative impact of a predictor con-
struct on an endogenous construct in terms of its explanatory power.

Factor (score) indeterminacy Means that one can compute an infinite number of 
sets of factor scores matching the specific requirements of a certain common factor 
model. In contrast to their explicit estimation in PLS-SEM, the scores of common 
factors as assumed in CB-SEM are indeterminate.

 Glossary
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Factor weighting scheme Uses the correlations between constructs in the structural 
model to determine their relationships in the first stage of the PLS-SEM algo-
rithm; see weighting scheme.

Formative measurement model Is a type of measurement model setup, in which 
the indicators form the construct, and arrows point from the indicators to the con-
struct. The indicator weight estimation of formative measurement models usually 
uses mode B in PLS-SEM.

Full mediation A situation in mediation analysis that occurs when the mediated 
effect is significant but not the direct effect. Hence, the mediator variable fully 
explains the relationship between an exogenous and an endogenous latent variable. 
Full mediation is also referred to as indirect-only mediation.

Geweke and Meese criterion (GM) Is a criterion for model selection among a set of 
alternative models. The model with the lowest GM is preferred.

GM See Geweke and Meese criterion.

Heterogeneity Occurs when the data underlie groups of data characterized by 
significant differences in terms of model parameters. Heterogeneity can be either 
observed or unobserved, depending on whether its source can be traced back to 
observable characteristics (e.g., demographic variables) or whether the sources of 
heterogeneity are not fully known.

Heterotrait–heteromethod correlations Are the correlations of the indicators 
across constructs measuring different constructs.

Heterotrait–monotrait ratio (HTMT) Is a measure of discriminant validity. The 
HTMT is the mean of all correlations of indicators across constructs measuring 
different constructs (i.e., the heterotrait–heteromethod correlations) relative to the 
(geometric) mean of the average correlations of indicators measuring the same 
construct (i.e., the monotrait–heteromethod correlations).

Higher-order construct Represents a higher-order structure (usually second order) 
that contains several layers of constructs and involves a higher level of abstraction. 
Higher-order constructs involve a more abstract higher-order component related 
to two or more lower-order components in a reflective or formative way.

Holdout sample Is a subset of a larger dataset or a separate dataset not used in 
model estimation.

HTMT See heterotrait–monotrait ratio.

Inconsistent mediation: See competitive mediation.
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Indicator loadings Are the bivariate correlations between a construct and the indi-
cators. They determine an item’s absolute contribution to its assigned construct. 
Loadings are of primary interest in the evaluation of reflective measurement mod-
els but are also interpreted when formative measures are involved. They are also 
referred to as outer loadings.

Indicator reliability Is the square of a standardized indicator’s indicator loading. It 
represents how much of the variation in an item is explained by the construct and 
is referred to as the variance extracted from the item; see communality (indicator).

Indicator weights Are the results of a multiple regression of a construct on its set 
of indicators. Weights are the primary criterion to assess each indicator’s relative 
importance in formative measurement models.

Indicators Are directly measured observations (raw data), also referred to as either 
items or manifest variables, which are represented in path models as rectangles. 
They are also available data (e.g., responses to survey questions or collected from 
company databases) used in measurement models to measure the latent variables.

Indirect effect Represents a relationship between two latent variables via a third 
(e.g., mediator) construct in the PLS path model. If  p1 is the relationship between 
the exogenous latent variable and the mediator variable and p2 is the relationship 
between the mediator variable and the endogenous latent variable, the indirect 
effect is the product of path p1 and path p2.

Indirect-only mediation A situation in mediation analysis that occurs when the 
indirect effect is significant but not the direct effect. Hence, the mediator variable 
fully explains the relationship between an exogenous and an endogenous latent 
variable. Indirect-only mediation is also referred to as full mediation.

Inner model See structural model.

In-sample predictive power See coefficient of determination.

Integrated development environment (IDE) Is a software that provides a set of tools 
to assist computer programmers in developing software, including a source code 
editor, build automation tools, and a debugger.

Interaction effect See moderation.

Interaction term Is an auxiliary variable entered into the path model to account for 
the interaction of the moderator variable and the exogenous construct.

Internal consistency reliability Is a form of reliability used to judge the consistency 
of results across items on the same test. It determines whether the items measur-
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ing a construct are similar in their scores (i.e., if  the correlations between items are 
strong).

Interval scale Can be used to provide a rating of objects and has a constant unit of 
measurement so the distance between scale points is equal.

Inverse square root method Is a method for determining the minimum sample size 
requirement, which uses the value of the path coefficient with the minimum mag-
nitude in the PLS path model as input.

k-fold cross-validation Is a model validation technique for assessing how the results 
of a PLS-SEM analysis will generalize to an independent dataset. The technique 
combines k-1 subsets into a single training sample that is used to predict the 
remaining subset.

Latent variables See constructs.

Linear regression model (LM) benchmark Is a benchmark used in PLSpredict, derived 
from regressing an endogenous construct’s indicators on the indicators of all exog-
enous constructs. The LM benchmark thereby neglects the measurement model 
and structural configurations. PLS-SEM results are assumed to outperform the 
LM benchmark.

MAE See mean absolute error.

Main effect Refers to the direct effect between an exogenous and an endogenous 
construct in the path model without the presence of a moderating effect. After 
inclusion of the moderator variable, the main effect typically changes in magni-
tude. Therefore, it is commonly referred to as simple effect in the context of a 
moderator model.

Mean absolute error (MAE) Is a metric used in PLSpredict, defined as the average 
absolute differences between the predictions and the actual observations, with all 
the individual differences having equal weight.

Measurement error Is the difference between the true value of a variable and the 
value obtained by a measurement.

Measurement models Are elements of a path model that contain the indicators 
and their relationships with the constructs and are also called outer models in PLS-
SEM.

Measurement theory Specifies how constructs should be measured with (a set of) 
indicators. It determines which indicators to use for construct measurement and 
the directional relationship between construct and indicators.
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Mediating effect Occurs when a third construct intervenes between two other 
related constructs.

Mediation model See mediation.

Mediation Represents a situation in which one or more mediator constructs 
explain the processes through which an exogenous construct influences an endog-
enous construct.

Mediator construct Is a construct that intervenes between two other directly related 
constructs.

Metric scale Represents data on a ratio scale and interval scale; see ratio scale and 
interval scale.

Metrological uncertainty Is the dispersion of the measurement values that can be 
attributed to the object or concept being measured.

Minimum sample size requirement Is the number of observations needed to meet 
the technical requirements of the multivariate analysis method used or to achieve a 
sufficient level of statistical power. See inverse square root method.

Missing value treatment Can employ different methods, such as mean replace-
ment, EM (expectation–maximization algorithm), and nearest neighbor to obtain 
values for missing data points in the set of data used for the analysis. As an alter-
native, researchers may consider deleting cases with missing values (i.e., casewise 
deletion).

Missing values Are missing data (e.g., missing responses) of a variable.

Mode A Uses correlation weights to compute composite scores from sets of indica-
tors. More specifically, the indicator weights are the correlation between the con-
struct and each of its indicators. See reflective measurement model.

Mode B Uses regression weights to compute composite scores from sets of indica-
tors. To obtain the weights, the construct is regressed on its indicators. Hence, the 
outer weights in mode B are the coefficients of a multiple regression model. See 
formative measurement model.

Model comparisons Involve establishing and empirically comparing a set of theo-
retically justified competing models that represent alternative explanations of the 
phenomenon under research.

Model estimation Uses the PLS-SEM algorithm and the available indicator data to 
estimate the PLS path model.
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Moderating effect See moderation.

Moderation Occurs when the effect of an exogenous latent variable on an endog-
enous latent variable depends on the values of a third variable, referred to as a 
 moderator variable, which impacts the relationship. Including a moderating effect 
in a PLS path model requires specifying an interaction term, which represents the 
interplay between exogenous construct and moderator variable.

Moderator variable See moderation.

Monotrait–heteromethod correlations Are the correlations of indicators measur-
ing the same construct.

Multigroup analysis Is a type of moderator analysis where the moderator variable 
is categorical (usually with two categories) and is assumed to potentially affect all 
relationships in the structural model; it tests whether parameters (mostly path coef-
ficients) differ significantly between two groups. Research has proposed a range of 
approaches to multigroup analysis, which rely on the bootstrapping or permuta-
tion procedure.

Multiple mediation model Describes a mediation analysis in which multiple media-
tor variables are being included in the model.

Multiple moderator model Describes a moderation analysis in which multiple 
moderators are being included in the model.

No-effect non-mediation A situation in mediation analysis that occurs when nei-
ther the direct nor the indirect effect is significant.

Open source Is a software with source code that anyone can view, modify, and 
extend. The source code is made available to others who wish to view, copy, learn 
from, modify, or redistribute that code.

Outer loadings See indicator loadings.

Outer models See measurement model.

Outer weights See indicator weights.

Out-of-sample predictive power See predictive power.

Packages Are a collection of applications or code modules that work together to 
meet various goals and objectives as part of a larger software system.
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Partial least squares structural equation modeling (PLS-SEM) Is a composite-based 
method to estimate structural equation models. The goal is to maximize the 
explained variance of the endogenous latent variables.

Partial mediation Occurs when a mediator variable partially explains the relation-
ship between an exogenous and an endogenous construct. Partial mediation can 
come in the form of complementary and competitive mediation, depending on the 
relationship between direct and indirect effects.

Path coefficients Are estimated path relationships in the structural model (i.e., 
between constructs in the model). They correspond to standardized betas in a 
regression analysis.

Path model Is a diagram that visually displays the hypotheses and variable rela-
tionships that are examined when structural equation modeling is applied.

Path weighting scheme Uses the results of partial regression models to determine 
the relationships between constructs in the structural model in the first stage of the 
PLS-SEM algorithm; see weighting scheme.

Percentile method Is an approach for constructing bootstrap confidence intervals. 
Using the ordered set of parameter estimates obtained from bootstrapping, the 
lower and upper bounds are directly computed by excluding a certain percentage 
of lowest and highest values (e.g., as determined by the 2.5 % and 97.5 % bounds of 
the 95 % bootstrap confidence interval). The percentile method should be preferred 
when constructing confidence intervals.

PLS path modeling See partial least squares structural equation modeling.

PLS regression Is an analysis technique that explores the linear relationships 
between multiple independent variables and a single or multiple dependent 
variable(s). In developing the regression model, it constructs composites from both 
the multiple independent variables and the dependent variable(s) by means of prin-
cipal component analysis.

PLSpredict Is a holdout-sample-based procedure that generates case-level predictions 
on an item or a construct level to facilitate the assessment of a PLS path model’s 
predictive power. The PLSpredict procedure relies on the concept of k-fold cross-val-
idation.

PLS-SEM algorithm Is the heart of the method. Based on the PLS path model and 
the indicator data available, the algorithm estimates the scores of all latent vari-
ables in the model, which in turn serve for estimating all path model relationships.

PLS-SEM bias Refers to PLS-SEM’s property that structural model relationships 
are slightly underestimated and relationships in the measurement models are 
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slightly overestimated compared to CB-SEM when using the method on common 
factor model data. This difference can be attributed to the methods’ different han-
dling of the latent variables in the model estimation but is negligible in most set-
tings typically encountered in empirical research.

PLS-SEM See partial least squares structural equation modeling.

Prediction error Is the difference between a variable’s predicted and original value.

Prediction statistics Quantify the degree of prediction error.

Prediction See predictive power.

Predictive power Indicates a model’s ability to predict new observations.

R documentation Is a standard way of documenting the parameters, usage, and 
output of objects and functions in an R package. These files use a custom syntax 
and are rendered to HTML, plain text, and pdf for viewing.

R scripts Are text files containing a set of commands and comments to be executed 
in R. The script can be saved and used later to re-execute the saved commands. 
The script can also be edited so that you can execute a modified version of the 
 commands.

R² See coefficient of determination (R2).

Ratio scale Is a measurement scale, which has a constant unit of measurement and 
an absolute zero point; a ratio can be calculated using the scale points.

Redundancy analysis Is a method used to assess a formative construct’s convergent 
validity. It tests whether a formatively measured construct is highly correlated with 
a reflective or single-item measure of the same construct.

Reflective measurement model Is a type of measurement model setup in which 
measures represent the effects (or manifestations) of an underlying construct. 
Causality is from the construct to its measures (indicators). The indicator loading 
estimation of reflective measurement models usually uses mode A in PLS-SEM.

Regression weights See mode B.

Relative contribution Is the unique importance of each indicator by partializing 
the variance of the formatively measured construct that is predicted by other indi-
cators. An item’s relative contribution is provided by its weight.

Relevance of the path coefficients Compares the relative importance of predictor 
constructs to explain endogenous constructs in the structural model. Significance 
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is a prerequisite for the relevance, but not all constructs and their significant path 
coefficients are highly relevant to explain a selected target construct.

Reliability coefficient rhoA Is a measure of internal consistency reliability, which 
considered a sound trade-off  between the conservative Cronbach’s alpha and the 
liberal composite reliability (rhoC).

RMSE See root-mean-square error.

Root-mean-square error (RMSE) Is a metric used in PLSpredict, defined as the square 
root of the average of the squared differences between the predictions and the 
actual observations.

Sample Is a collection of data that shall be representative for the analyzed popula-
tion.

Secondary data Are data that have already been gathered, often for a different 
research purpose and some time ago.

Second-generation techniques Overcome the limitations of first-generation tech-
niques, for example, in terms of accounting for measurement error. SEM is the 
most prominent second-generation data analysis technique.

Seed Is a number that specifies the start point when a computer generates a ran-
dom number sequence. A seed is used when a computational process includes a 
random element in order to make the random process reproducible.

Significance of the path coefficients Tests whether a certain effect is significantly 
different from zero and, thereby, can be assumed to truly exist in the population.

Significance testing Is the process of testing whether a certain result likely has 
occurred by chance (i.e., whether an effect can be assumed to truly exist in the 
population). To test whether a parameter is significant, we need to compare the 
t-values – derived from bootstrapping – with the critical values from the standard 
normal distribution. Alternatively, we can inspect bootstrap confidence intervals.

Simple effect Is a cause–effect relationship in a moderator model. The parameter 
estimate represents the size of the relationship between the exogenous and the 
endogenous latent variable when the moderator variable is included in the model. 
For this reason, the main effect and the simple effect usually have different sizes.

Single mediation analysis Describes a mediation analysis in which only one media-
tor variable is being included in the model.

Specific indirect effect Describes an indirect effect via one single mediator in a mul-
tiple mediation model.
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Standard error Is the standard deviation of the sampling distribution of a given 
statistic. Standard errors are important to show how much sampling fluctuation a 
statistic has.

Statistical power The probability to detect a significant relationship when the rela-
tionship is in fact present in the population.

Structural equation modeling (SEM) Is a set of statistical methods used to estimate 
relationships between constructs and indicators, while accounting for measure-
ment error.

Structural model Includes the construct and their relationships as derived from 
theory and logic.

Structural theory Specifies how the latent variables are related to each other. That 
is, it shows the constructs and the paths between them.

Sum scores Represent a naive way to determine the latent variable scores. Instead 
of estimating the relationships in the measurement models, sum scores use the same 
weight for each indicator per measurement model to determine the latent variable 
scores. As such, the sum scores approach does not account for measurement error.

Suppressor effect Describes the effect of a mediator variable in competitive media-
tion, which absorbs a significant share of or the entire direct effect, thereby sub-
stantially decreasing the magnitude of the total effect.

Theory Is a set of systematically related hypotheses developed following the sci-
entific method that can be used to explain and predict outcomes and that can be 
tested empirically.

Three-way interaction Is an extension of two-way interaction where the moderator 
effect is again moderated by another moderator variable.

Total effect Is the sum of the direct effect and the indirect effect between an exog-
enous and an endogenous latent variable in the path model.

Total indirect effect Is the sum of all specific indirect effects in a multiple mediation 
model.

Training sample Is a subset of a larger dataset used for model estimation.

Two-stage approach (moderation) Is an approach to model the interaction term 
when including a moderator variable in the model. The approach can also be 
used when the exogenous construct and/or the moderator variable is measured 
 formatively.
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Two-way interaction Is the standard approach to moderator analysis where the 
moderator variable interacts with one other exogenous latent variable.

Variance inflation factor (VIF) Quantifies the severity of collinearity among indica-
tors in a formative measurement model and a set of predictor constructs in the 
structural model.

Variance-based SEM See partial least squares structural equation modeling.

VIF See variance inflation factor.

Vignettes Are documentation that accompany software and are intended to serve 
as an introduction and description of functionality of the software. Typically, a 
vignette describes the problem the package is designed to solve and then shows the 
reader how to solve it. Vignettes serve as a user manual for the software.

Weighting scheme Describes a particular method to determine the relationships in 
the structural model when running the PLS-SEM algorithm. Standard options con-
sidered in SEMinR are the factor and path weighting schemes. The final results do 
not differ much, and one should use the path weighting scheme as a default option 
since it maximizes the R² values of  the PLS path model estimation.
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