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SERIES FOREWORD

The MIT Press Essential Knowledge series offers acces-
sible, concise, beautifully produced pocket-size books on 
topics of current interest. Written by leading thinkers, the 
books in this series deliver expert overviews of subjects 
that range from the cultural and the historical to the sci-
entific and the technical.

In today’s era of instant information gratification, we 
have ready access to opinions, rationalizations, and super-
ficial descriptions. Much harder to come by is the founda-
tional knowledge that informs a principled understanding 
of the world. Essential Knowledge books fill that need. 
Synthesizing specialized subject matter for nonspecialists 
and engaging critical topics through fundamentals, each 
of these compact volumes offers readers a point of access 
to complex ideas.

Bruce Tidor
Professor of Biological Engineering and Computer Science
Massachusetts Institute of Technology





PREFACE

The goal of data science is to improve decision making by 
basing decisions on insights extracted from large data sets. 
As a field of activity, data science encompasses a set of 
principles, problem definitions, algorithms, and processes 
for extracting nonobvious and useful patterns from large 
data sets. It is closely related to the fields of data mining 
and machine learning, but it is broader in scope. Today, 
data science drives decision making in nearly all parts of 
modern societies. Some of the ways that data science may 
affect your daily life include determining which advertise-
ments are presented to you online; which movies, books, 
and friend connections are recommended to you; which 
emails are filtered into your spam folder; what offers you 
receive when you renew your cell phone service; the cost of 
your health insurance premium; the sequencing and tim-
ing of traffic lights in your area; how the drugs you may 
need were designed; and which locations in your city the 
police are targeting.

The growth in use of data science across our societies 
is driven by the emergence of big data and social media, 
the speedup in computing power, the massive reduction 
in the cost of computer memory, and the development of 
more powerful methods for data analysis and modeling, 
such as deep learning. Together these factors mean that 
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it has never been easier for organizations to gather, store, 
and process data. At the same time, these technical inno-
vations and the broader application of data science means 
that the ethical challenges related to the use of data and 
individual privacy have never been more pressing. The aim 
of this book is to provide an introduction to data science 
that covers the essential elements of the field at a depth 
that provides a principled understanding of the field.

Chapter 1 introduces the field of data science and pro-
vides a brief history of how it has developed and evolved. 
It also examines why data science is important today and 
some of the factors that are driving its adoption. The 
chapter finishes by reviewing and debunking some of the 
myths associated with data science. Chapter 2 introduces 
fundamental concepts relating to data. It also describes 
the standard stages in a data science project: business un-
derstanding, data understanding, data preparation, mod-
eling, evaluation, and deployment. Chapter 3 focuses on 
data infrastructure and the challenges posed by big data 
and the integration of data from multiple sources. One 
aspect of a typical data infrastructure that can be chal-
lenging is that data in databases and data warehouses of-
ten reside on servers different from the servers used for 
data analysis. As a consequence, when large data sets are 
handled, a surprisingly large amount of time can be spent 
moving data between the servers a database or data ware-
house are living on and the servers used for data analysis 
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and machine learning. Chapter 3 begins by describing a 
typical data science infrastructure for an organization and 
some of the emerging solutions to the challenge of mov-
ing large data sets within a data infrastructure, which in-
clude the use of in-database machine learning, the use of 
Hadoop for data storage and processing, and the develop-
ment of hybrid database systems that seamlessly combine 
traditional database software and Hadoop-like solutions. 
The chapter concludes by highlighting some of the chal-
lenges in integrating data from across an organization into 
a unified representation that is suitable for machine learn-
ing. Chapter 4 introduces the field of machine learning 
and explains some of the most popular machine-learning 
algorithms and models, including neural networks, deep 
learning, and decision-tree models. Chapter 5 focuses on 
linking machine-learning expertise with real-world prob-
lems by reviewing a range of standard business problems 
and describing how they can be solved by machine-learning 
solutions. Chapter 6 reviews the ethical implications of 
data science, recent developments in data regulation, 
and some of the new computational approaches to pre-
serving the privacy of individuals within the data science 
process. Finally, chapter 7 describes some of the areas 
where data science will have a significant impact in the 
near future and sets out some of the principles that are 
important in determining whether a data science project  
will succeed.
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1

WHAT IS DATA SCIENCE?

Data science encompasses a set of principles, problem 
definitions, algorithms, and processes for extracting non-
obvious and useful patterns from large data sets. Many 
of the elements of data science have been developed in 
related fields such as machine learning and data mining. 
In fact, the terms data science, machine learning, and data 
mining are often used interchangeably. The commonality 
across these disciplines is a focus on improving decision 
making through the analysis of data. However, although 
data science borrows from these other fields, it is broader 
in scope. Machine learning (ML) focuses on the design 
and evaluation of algorithms for extracting patterns from 
data. Data mining generally deals with the analysis of 
structured data and often implies an emphasis on com-
mercial applications. Data science takes all of these consid-
erations into account but also takes up other challenges,  
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such as the capturing, cleaning, and transforming of 
unstructured social media and web data; the use of big-
data technologies to store and process big, unstructured  
data sets; and questions related to data ethics and 
regulation.

Using data science, we can extract different types of 
patterns. For example, we might want to extract patterns 
that help us to identify groups of customers exhibiting 
similar behavior and tastes. In business jargon, this task 
is known as customer segmentation, and in data science 
terminology it is called clustering. Alternatively, we might 
want to extract a pattern that identifies products that are 
frequently bought together, a process called association-
rule mining. Or we might want to extract patterns that 
identify strange or abnormal events, such as fraudulent 
insurance claims, a process known as anomaly or outlier 
detection. Finally, we might want to identify patterns that 
help us to classify things. For example, the following rule 
illustrates what a classification pattern extracted from 
an email data set might look like: If an email contains the 
phrase “Make money easily,” it is likely to be a spam email. 
Identifying these types of classification rules is known as 
prediction. The word prediction might seem an odd choice 
because the rule doesn’t predict what will happen in the 
future: the email already is or isn’t a spam email. So it 
is best to think of prediction patterns as predicting the 
missing value of an attribute rather than as predicting 



If a human expert can 
easily create a pattern  
in his or her own  
mind, it is generally  
not worth the time and 
effort of using data  
science to “discover” it.
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the future. In this example, we are predicting whether the 
email classification attribute should have the value “spam”  
or not.

Although we can use data science to extract differ-
ent types of patterns, we always want the patterns to be 
both nonobvious and useful. The example email classifica-
tion rule given in the previous paragraph is so simple and 
obvious that if it were the only rule extracted by a data 
science process, we would be disappointed. For example, 
this email classification rule checks only one attribute of 
an email: Does the email contain the phrase “make money 
easily”? If a human expert can easily create a pattern in 
his or her own mind, it is generally not worth the time 
and effort of using data science to “discover” it. In general, 
data science becomes useful when we have a large number 
of data examples and when the patterns are too complex 
for humans to discover and extract manually. As a lower 
bound, we can take a large number of data examples to 
be defined as more than a human expert can check easily. 
With regard to the complexity of the patterns, again, we 
can define it relative to human abilities. We humans are 
reasonably good at defining rules that check one, two, or 
even three attributes (also commonly referred to as fea-
tures or variables), but when we go higher than three attri-
butes, we can start to struggle to handle the interactions 
between them. By contrast, data science is often applied in 
contexts where we want to look for patterns among tens, 
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hundreds, thousands, and, in extreme cases, millions of 
attributes.

The patterns that we extract using data science are 
useful only if they give us insight into the problem that 
enables us to do something to help solve the problem. The 
phrase actionable insight is sometimes used in this context 
to describe what we want the extracted patterns to give us. 
The term insight highlights that the pattern should give 
us relevant information about the problem that isn’t ob-
vious. The term actionable highlights that the insight we 
get should also be something that we have the capacity to 
use in some way. For example, imagine we are working for 
a cell phone company that is trying to solve a customer 
churn problem—that is, too many customers are switching 
to other companies. One way data science might be used to 
address this problem is to extract patterns from the data 
about previous customers that allow us to identify current 
customers who are churn risks and then contact these cus-
tomers and try to persuade them to stay with us. A pattern 
that enables us to identify likely churn customers is useful 
to us only if (a) the patterns identify the customers early 
enough that we have enough time to contact them before 
they churn and (b) our company is able to put a team in 
place to contact them. Both of these things are required in 
order for the company to be able to act on the insight the 
patterns give us.
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A Brief History of Data Science

The term data science has a specific history dating back 
to the 1990s. However, the fields that it draws upon have 
a much longer history. One thread in this longer history 
is the history of data collection; another is the history of 
data analysis. In this section, we review the main develop-
ments in these threads and describe how and why they 
converged into the field of data science. Of necessity, this 
review introduces new terminology as we describe and 
name the important technical innovations as they arose. 
For each new term, we provide a brief explanation of its 
meaning; we return to many of these terms later in the 
book and provide a more detailed explanation of them. 
We begin with a history of data collection, then give a his-
tory of data analysis, and, finally, cover the development 
of data science.

A History of Data Gathering
The earliest methods for recording data may have been 
notches on sticks to mark the passing of the days or poles 
stuck in the ground to mark sunrise on the solstices. With 
the development of writing, however, our ability to re-
cord our experiences and the events in our world vastly 
increased the amount of data we collected. The earliest 
form of writing developed in Mesopotamia around 3200 
BC and was used for commercial record keeping. This type 
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of record keeping captures what is known as transactional 
data. Transactional data include event information such 
as the sale of an item, the issuing of an invoice, the deliv-
ery of goods, credit card payment, insurance claims, and 
so on. Nontransactional data, such as demographic data, 
also have a long history. The earliest-known censuses took 
place in pharaonic Egypt around 3000 BC. The reason that 
early states put so much effort and resources into large 
data-collection operations was that these states needed to 
raise taxes and armies, thus proving Benjamin Franklin’s 
claim that there are only two things certain in life: death 
and taxes.

In the past 150 years, the development of the elec-
tronic sensor, the digitization of data, and the invention 
of the computer have contributed to a massive increase 
in the amount of data that are collected and stored. A 
milestone in data collection and storage occurred in 1970 
when Edgar F. Codd published a paper explaining the re-
lational data model, which was revolutionary in terms of 
setting out how data were (at the time) stored, indexed, 
and retrieved from databases. The relational data model 
enabled users to extract data from a database using simple 
queries that defined what data the user wanted without 
requiring the user to worry about the underlying structure 
of the data or where they were physically stored. Codd’s 
paper provided the foundation for modern databases and 
the development of structured query language (SQL), an 
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international standard for defining database queries. Re-
lational databases store data in tables with a structure of 
one row per instance and one column per attribute. This 
structure is ideal for storing data because it can be decom-
posed into natural attributes.

Databases are the natural technology to use for storing 
and retrieving structured transactional or operational data 
(i.e., the type of data generated by a company’s day-to-day 
operations). However, as companies have become larger 
and more automated, the amount and variety of data 
generated by different parts of these companies have dra-
matically increased. In the 1990s, companies realized that 
although they were accumulating tremendous amounts 
of data, they were repeatedly running into difficulties in 
analyzing those data. Part of the problem was that the 
data were often stored in numerous separate databases 
within the one organization. Another difficulty was that 
databases were optimized for storage and retrieval of data, 
activities characterized by high volumes of simple opera-
tions, such as SELECT, INSERT, UPDATE, and DELETE. In 
order to analyze their data, these companies needed tech-
nology that was able to bring together and reconcile the 
data from disparate databases and that facilitated more 
complex analytical data operations. This business chal-
lenge led to the development of data warehouses. In a data 
warehouse, data are taken from across the organization 
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and integrated, thereby providing a more comprehensive 
data set for analysis. 

Over the past couple of decades, our devices have be-
come mobile and networked, and many of us now spend 
many hours online every day using social technologies, 
computer games, media platforms, and web search en-
gines. These changes in technology and how we live have 
had a dramatic impact on the amount of data collected. 
It is estimated that the amount of data collected over the 
five millennia since the invention of writing up to 2003 
is about 5 exabytes. Since 2013, humans generate and 
store this same amount of data every day. However, it is 
not only the amount of data collected that has grown dra-
matically but also the variety of data. Just consider the 
following list of online data sources: emails, blogs, pho-
tos, tweets, likes, shares, web searches, video uploads, 
online purchases, podcasts. And if we consider the meta-
data (data describing the structure and properties of the 
raw data) of these events, we can begin to understand the 
meaning of the term big data. Big data are often defined in  
terms of the three Vs: the extreme volume of data, the va-
riety of the data types, and the velocity at which the data 
must be processed.

The advent of big data has driven the development 
of a range of new database technologies. This new gen-
eration of databases is often referred to as “NoSQL da-
tabases.” They typically have a simpler data model than 
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traditional relational databases. A NoSQL database stores 
data as objects with attributes, using an object notation 
language such as the JavaScript Object Notation (JSON). 
The advantage of using an object representation of data 
(in contrast to a relational table-based model) is that the 
set of attributes for each object is encapsulated within the 
object, which results in a flexible representation. For ex-
ample, it may be that one of the objects in the database, 
compared to other objects, has only a subset of attributes. 
By contrast, in the standard tabular data structure used 
by a relational database, all the data points should have 
the same set of attributes (i.e., columns). This flexibility in 
object representation is important in contexts where the 
data cannot (due to variety or type) naturally be decom-
posed into a set of structured attributes. For example, it 
can be difficult to define the set of attributes that should 
be used to represent free text (such as tweets) or images. 
However, although this representational flexibility allows 
us to capture and store data in a variety of formats, these 
data still have to be extracted into a structured format be-
fore any analysis can be performed on them.

The existence of big data has also led to the develop-
ment of new data-processing frameworks. When you are 
dealing with large volumes of data at high speeds, it can 
be useful from a computational and speed perspective to 
distribute the data across multiple servers, process que-
ries by calculating partial results of a query on each server, 
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and then merge these results to generate the response to 
the query. This is the approach taken by the MapReduce 
framework on Hadoop. In the MapReduce framework, the 
data and queries are mapped onto (or distributed across) 
multiple servers, and the partial results calculated on each 
server are then reduced (merged) together.

A History of Data Analysis
Statistics is the branch of science that deals with the col-
lection and analysis of data. The term statistics originally 
referred to the collection and analysis of data about the 
state, such as demographics data or economic data. How-
ever, over time the type of data that statistical analysis 
was applied to broadened so that today statistics is used 
to analyze all types of data. The simplest form of statisti-
cal analysis of data is the summarization of a data set in 
terms of summary (descriptive) statistics (including mea-
sures of a central tendency, such as the arithmetic mean, or 
measures of variation, such as the range). However, in the 
seventeenth and eighteenth centuries the work of people 
such as Gerolamo Cardano, Blaise Pascal, Jakob Bernoulli, 
Abraham de Moivre, Thomas Bayes, and Richard Price 
laid the foundations of probability theory, and through 
the nineteenth century many statisticians began to use 
probability distributions as part of their analytic tool kit. 
These new developments in mathematics enabled statis-
ticians to move beyond descriptive statistics and to start 
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doing statistical learning. Pierre Simon de Laplace and Carl 
Friedrich Gauss are two of the most important and famous 
nineteenth-century mathematicians, and both made im-
portant contributions to statistical learning and modern 
data science. Laplace took the intuitions of Thomas Bayes 
and Richard Price and developed them into the first ver-
sion of what we now call Bayes’ Rule. Gauss, in his search 
for the missing dwarf planet Ceres, developed the method 
of least squares, which enables us to find the best model 
that fits a data set such that the error in the fit minimizes 
the sum of squared differences between the data points in 
the data set and the model. The method of least squares 
provided the foundation for statistical learning methods 
such as linear regression and logistic regression as well as the 
development of artificial neural network models in artifi-
cial intelligence (we will return to least squares, regression 
analysis, and neural networks in chapter 4).

Between 1780 and 1820, around the same time that 
Laplace and Gauss were making their contributions to 
statistical learning, a Scottish engineer named William 
Playfair was inventing statistical graphics and laying the 
foundations for modern data visualization and exploratory 
data analysis. Playfair invented the line chart and area chart 
for time-series data, the bar chart to illustrate compari-
sons between quantities of different categories, and the 
pie chart to illustrate proportions within a set. The advan-
tage of visualizing quantitative data is that it allows us to 
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use our powerful visual abilities to summarize, compare, 
and interpret data. Admittedly, it is difficult to visualize 
large (many data points) or complex (many attributes) 
data sets, but data visualization is still an important part 
of data science. In particular, it is useful in helping data sci-
entists explore and understand the data they are working 
with. Visualizations can also be useful to communicate the 
results of a data science project. Since Playfair’s time, the 
variety of data-visualization graphics has steadily grown, 
and today there is research ongoing into the development 
of novel approaches to visualize large, multidimensional 
data sets. A recent development is the t-distributed stochas-
tic neighbor embedding (t-SNE) algorithm, which is a use-
ful technique for reducing high-dimensional data down to 
two or three dimensions, thereby facilitating the visualiza-
tion of those data.

The developments in probability theory and statis-
tics continued into the twentieth century. Karl Pearson 
developed modern hypothesis testing, and R.  A. Fisher 
developed statistical methods for multivariate analysis 
and introduced the idea of maximum likelihood estimate 
into statistical inference as a method to draw conclusions 
based on the relative probability of events. The work of 
Alan Turing in the Second World War led to the inven-
tion of the electronic computer, which had a dramatic 
impact on statistics because it enabled much more com-
plex statistical calculations. Throughout the 1940s and 
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subsequent decades, a number of important computa-
tional models were developed that are still widely used in 
data science. In 1943, Warren McCulloch and Walter Pitts 
proposed the first mathematical model of a neural net-
work. In 1948, Claude Shannon published “A Mathemati-
cal Theory of Communication” and by doing so founded 
information theory. In 1951, Evelyn Fix and Joseph Hodges 
proposed a model for discriminatory analysis (what would 
now be called a classification or pattern-recognition prob-
lem) that became the basis for modern nearest-neighbor 
models. These postwar developments culminated in 1956 
in the establishment of the field of artificial intelligence 
at a workshop in Dartmouth College. Even at this early 
stage in the development of artificial intelligence, the 
term machine learning was beginning to be used to de-
scribe programs that gave a computer the ability to learn 
from data. In the mid-1960s, three important contribu-
tions to ML were made. In 1965, Nils Nilsson’s book titled 
Learning Machines showed how neural networks could be 
used to learn linear models for classification. The follow-
ing year, 1966, Earl B. Hunt, Janet Marin, and Philip J. 
Stone developed the concept-learning system frame-
work, which was the progenitor of an important family 
of ML algorithms that induced decision-tree models from 
data in a top-down fashion. Around the same time, a 
number of independent researchers developed and pub-
lished early versions of the k-means clustering algorithm, 
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now the standard algorithm used for data (customer)  
segmentation.

The field of ML is at the core of modern data science 
because it provides algorithms that are able to automati-
cally analyze large data sets to extract potentially interest-
ing and useful patterns. Machine learning has continued 
to develop and innovate right up to the present day. Some 
of the most important developments include ensemble 
models, where predictions are made using a set (or com-
mittee) of models, with each model voting on each query, 
and deep-learning neural networks, which have multiple 
(i.e., more than three) layers of neurons. These deeper lay-
ers in the network are able to discover and learn complex 
attribute representations (composed of multiple, interact-
ing input attributes that have been processed by earlier 
layers), which in turn enable the network to learn patterns 
that generalize across the input data. Because of their abil-
ity to learn complex attributes, deep-learning networks 
are particularly suitable to high-dimensional data and so 
have revolutionized a number of fields, including machine 
vision and natural-language processing.

As we discussed in our review of database history, the 
early 1970s marked the beginning of modern database 
technology with Edgar F. Codd’s relational data model and 
the subsequent explosion of data generation and storage 
that led to the development of data warehousing in the 
1990s and more recently to the phenomenon of big data. 
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However, well before the emergence of big data, in fact by 
the late 1980s and early 1990s, the need for a field of re-
search specifically targeting the analysis of these large data 
sets was apparent. It was around this time that the term 
data mining started to be used in the database communi-
ties. As we have already discussed, one response to this 
need was the development of data warehouses. However, 
other database researchers responded by reaching out 
to other research fields, and in 1989 Gregory Piatetsky-
Shapiro organized the first workshop on knowledge dis-
covery in databases (KDD). The announcement of the first 
KDD workshop neatly sums how the workshop focused on 
a multidisciplinary approach to the problem of analyzing 
large databases:

Knowledge discovery in databases poses many 
interesting problems, especially when databases 
are large. Such databases are usually accompanied 
by substantial domain knowledge which can 
significantly facilitate discovery. Access to large 
databases is expensive—hence the need for sampling 
and other statistical methods. Finally, knowledge 
discovery in databases can benefit from many 
available tools and techniques from several different 
fields including expert systems, machine learning, 
intelligent databases, knowledge acquisition, and 
statistics.1
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In fact, the terms knowledge discovery in databases and 
data mining describe the same concept, the distinction 
being that data mining is more prevalent in the business 
communities and KDD more prevalent in academic com-
munities. Today, these terms are often used interchange-
ably,2 and many of the top academic venues use both. 
Indeed, the premier academic conference in the field is the 
International Conference on Knowledge Discovery and 
Data Mining.

The Emergence and Evolution of Data Science
The term data science came to prominence in the late 1990s 
in discussions relating to the need for statisticians to join 
with computer scientists to bring mathematical rigor to 
the computational analysis of large data sets. In 1997, 
C. F. Jeff Wu’s public lecture “Statistics = Data Science?” 
highlighted a number of promising trends for statistics, 
including the availability of large/complex data sets in 
massive databases and the growing use of computational 
algorithms and models. He concluded the lecture by call-
ing for statistics to be renamed “data science.”

In 2001, William S. Cleveland published an action plan 
for creating a university department in the field of data 
science (Cleveland 2001). The plan emphasizes the need 
for data science to be a partnership between mathematics 
and computer science. It also emphasizes the need for data 
science to be understood as a multidisciplinary endeavor 
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and for data scientists to learn how to work and engage 
with subject-matter experts. In the same year, Leo Brei-
man published “Statistical Modeling: The Two Cultures” 
(2001). In this paper, Breiman characterizes the tradi-
tional approach to statistics as a data-modeling culture 
that views the primary goal of data analysis as identifying 
the (hidden) stochastic data model (e.g., linear regression) 
that explains how the data were generated. He contrasts 
this culture with the algorithmic-modeling culture that 
focuses on using computer algorithms to create prediction 
models that are accurate (rather than explanatory in terms 
of how the data was generated). Breiman’s distinction be-
tween a statistical focus on models that explain the data 
versus an algorithmic focus on models that can accurately 
predict the data highlights a core difference between stat-
isticians and ML researchers. The debate between these 
approaches is still ongoing within statistics (see, for ex-
ample, Shmueli 2010). In general, today most data science 
projects are more aligned with the ML approach of build-
ing accurate prediction models and less concerned with 
the statistical focus on explaining the data. So although 
data science became prominent in discussions relating 
to statistics and still borrows methods and models from 
statistics, it has over time developed its own distinct ap-
proach to data analysis.

Since 2001, the concept of data science has broad-
ened well beyond that of a redefinition of statistics. For 
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example, over the past 10 years there has been a tremen-
dous growth in the amount of the data generated by online 
activity (online retail, social media, and online entertain-
ment). Gathering and preparing these data for use in data 
science projects has resulted in the need for data scientists 
to develop the programming and hacking skills to scrape, 
merge, and clean data (sometimes unstructured data) 
from external web sources. Also, the emergence of big data 
has meant that data scientists need to be able to work with 
big-data technologies, such as Hadoop. In fact, today the 
role of a data scientist has become so broad that there is an 
ongoing debate regarding how to define the expertise and 
skills required to carry out this role.3 It is, however, pos-
sible to list the expertise and skills that most people would 
agree are relevant to the role, which are shown in figure 1. 
It is difficult for an individual to master all of these areas, 
and, indeed, most data scientists usually have in-depth 
knowledge and real expertise in just a subset of them. 
However, it is important to understand and be aware of 
each area’s contribution to a data science project.

Data scientists should have some domain exper-
tise. Most data science projects begin with a real-world, 
domain-specific problem and the need to design a data-
driven solution to this problem. As a result, it is important 
for a data scientist to have enough domain expertise that 
they understand the problem, why it is important, and 
how a data science solution to the problem might fit into 
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Figure 1  A skills-set desideratum for a data scientist.
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an organization’s processes. This domain expertise guides 
the data scientist as she works toward identifying an op-
timized solution. It also enables her to engage with real 
domain experts in a meaningful way so that she can illicit 
and understand relevant knowledge about the underly-
ing problem. Also, having some experience of the project 
domain allows the data scientist to bring her experiences 
from working on similar projects in the same and related 
domains to bear on defining the project focus and scope.

Data are at the center of all data science projects. 
However, the fact that an organization has access to data 
does not mean that it can legally or should ethically use 
the data. In most jurisdictions, there is antidiscrimina-
tion and personal-data-protection legislation that regu-
lates and controls the use of data usage. As a result, a data 
scientist needs to understand these regulations and also, 
more broadly, to have an ethical understanding of the im-
plications of his work if he is to use data legally and ap-
propriately. We return to this topic in chapter 6, where we 
discuss the legal regulations on data usage and the ethical 
questions related to data science.

In most organizations, a significant portion of the 
data will come from the databases in the organization. 
Furthermore, as the data architecture of an organization 
grows, data science projects will start incorporating data 
from a variety of other data sources, which are commonly 
referred to as “big-data sources.” The data in these data 
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sources can exist in a variety of different formats, gener-
ally a database of some form—relational, NoSQL, or Ha-
doop. All of the data in these various databases and data 
sources will need to be integrated, cleansed, transformed, 
normalized, and so on. These tasks go by many names, 
such as extraction, transformation, and load, “data mung-
ing,” “data wrangling,” “data fusion,” “data crunching,” and 
so on. Like source data, the data generated from data sci-
ence activities also need to be stored and managed. Again, 
a database is the typical storage location for the data gen-
erated by these activities because they can then be easily 
distributed and shared with different parts of the organi-
zation. As a consequence, data scientists need to have the 
skills to interface with and manipulate data in databases.

A range of computer science skills and tools allows 
data scientists to work with big data and to process it 
into new, meaningful information. High-performance 
computing (HPC) involves aggregating computing power 
to deliver higher performance than one can get from a 
stand-alone computer. Many data science projects work 
with a very large data set and ML algorithms that are com-
putationally expensive. In these situations, having the 
skills required to access and use HPC resources is impor-
tant. Beyond HPC, we have already mentioned the need 
for data scientists to be able to scrap, clean, and integrate 
web data as well as handle and process unstructured text 
and images. Furthermore, a data scientist may also end up 
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writing in-house applications to perform a specific task or 
altering an existing application to tune it to the data and 
domain being processed. Finally, computer science skills 
are also required to be able to understand and develop the 
ML models and integrate them into the production or ana-
lytic or back-end applications in an organization.

Presenting data in a graphical format makes it much 
easier to see and understand what is happening with the 
data. Data visualization applies to all phases of the data 
science process. When data are inspected in tabular form, 
it is easy to miss things such as outliers or trends in dis-
tributions or subtle changes in the data through time. 
However, when data are presented in the correct graphical 
form, these aspects of the data can pop out. Data visualiza-
tion is an important and growing field, and we recommend 
two books, The Visual Display of Quantitative Information 
by Edward Tufte (2001) and Show Me the Numbers: Design-
ing Tables and Graphs to Enlighten by Stephen Few (2012) 
as excellent introductions to the principles and techniques 
of effective data visualization.

Methods from statistics and probability are used 
throughout the data science process, from the initial 
gathering and investigation of the data right through 
to the comparing of the results of different models and 
analyses produced during the project. Machine learning 
involves using a variety of advanced statistical and com-
puting techniques to process data to find patterns. The 
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data scientist who is involved in the applied aspects of 
ML does not have to write his own versions of ML algo-
rithms. By understanding the ML algorithms, what they 
can be used for, what the results they generate mean, and 
what type of data particular algorithms can be run on, the 
data scientist can consider the ML algorithms as a gray 
box. This allows him to concentrate on the applied aspects 
of data science and to test the various ML algorithms to 
see which ones work best for the scenario and data he is  
concerned with.

Finally, a key aspect of being a successful data scien-
tist is being able to communicate the story in the data. 
This story might uncover the insight that the analysis of 
the data has revealed or how the models created during a 
project fit into an organization’s processes and the likely 
impact they will have on the organization’s functioning. 
There is no point executing a brilliant data science proj-
ect unless the outputs from it are used and the results are 
communicated in such a way that colleagues with a non-
technical background can understand them and have con-
fidence in them.

Where Is Data Science Used?

Data science drives decision making in nearly all parts of 
modern societies. In this section, we describe three case 
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studies that illustrate the impact of data science: consumer 
companies using data science for sales and marketing; 
governments using data science to improve health, crimi-
nal justice, and urban planning; and professional sporting 
franchises using data science in player recruitment.

Data Science in Sales and Marketing
Walmart has access to large data sets about its customers’ 
preferences by using point-of-sale systems, by tracking 
customer behavior on the Walmart website, and by track-
ing social media commentary about Walmart and its prod-
ucts. For more than a decade, Walmart has been using data 
science to optimize the stock levels in stores, a well-known 
example being when it restocked strawberry Pop-Tarts 
in stores in the path of Hurricane Francis in 2004 based 
on an analysis of sales data preceding Hurricane Char-
ley, which had struck a few weeks earlier. More recently, 
Walmart has used data science to drive its retail revenues 
in terms of introducing new products based on analyzing 
social media trends, analyzing credit card activity to make 
product recommendations to customers, and optimizing 
and personalizing customers’ online experience on the 
Walmart website. Walmart attributes an increase of 10 to 
15 percent in online sales to data science optimizations 
(DeZyre 2015).

The equivalent of up-selling and cross-selling in the 
online world is the “recommender system.” If you have 
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watched a movie on Netflix or purchased an item on Ama-
zon, you will know that these websites use the data they 
collect to provide suggestions for what you should watch 
or buy next. These recommender systems can be designed 
to guide you in different ways: some guide you toward 
blockbusters and best sellers, whereas others guide you 
toward niche items that are specific to your tastes. Chris 
Anderson’s book The Long Tail (2008) argues that as pro-
duction and distribution get less expensive, markets shift 
from selling large amounts of a small number of hit items 
to selling smaller amounts of a larger number of niche 
items. This trade-off between driving sales of hit or niche 
products is a fundamental design decision for a recom-
mender system and affects the data science algorithms 
used to implement these systems.

Governments Using Data Science
In recent years, governments have recognized the advan-
tages of adopting data science. In 2015, for example, the 
US government appointed Dr. D. J. Patil as the first chief 
data scientist. Some of the largest data science initiatives 
spearheaded by the US government have been in health. 
Data science is at the core of the Cancer Moonshot4 and 
Precision Medicine Initiatives. The Precision Medicine 
Initiative combines human genome sequencing and 
data science to design drugs for individual patients. One 
part of the initiative is the All of Us program,5 which is 
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gathering environment, lifestyle, and biological data from 
more than one million volunteers to create the world’s 
biggest data sets for precision medicine. Data science is 
also revolutionizing how we organize our cities: it is used 
to track, analyze, and control environmental, energy, and 
transport systems and to inform long-term urban plan-
ning (Kitchin 2014a). We return to health and smart cit-
ies in chapter 7 when we discuss how data science will 
become even more important in our lives over the coming  
decades.

The US government’s Police Data Initiative6 focuses 
on using data science to help police departments under-
stand the needs of their communities. Data science is 
also being used to predict crime hot spots and recidivism. 
However, civil liberty groups have criticized some of the 
uses of data science in criminal justice. In chapter 6, we 
discuss the privacy and ethics questions raised by data 
science, and one of the interesting factors in this discus-
sion is that the opinions people have in relation to per-
sonal privacy and data science vary from one domain to 
the next. Many people who are happy for their personal 
data to be used for publicly funded medical research have 
very different opinions when it comes to the use of per-
sonal data for policing and criminal justice. In chapter 6, 
we also discuss the use of personal data and data science 
in determining life, health, car, home, and travel insurance  
premiums.
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Data Science in Professional Sports
The movie Moneyball (Bennett Miller, 2011), starring Brad 
Pitt, showcases the growing use of data science in mod-
ern sports. The movie is based on the book of the same 
title (Lewis 2004), which tells the true story of how the 
Oakland A’s baseball team used data science to improve 
its player recruitment. The team’s management identified 
that a player’s on-base percentage and slugging percent-
age statistics were more informative indicators of offen-
sive success than the statistics traditionally emphasized 
in baseball, such as a player’s batting average. This insight 
enabled the Oakland A’s to recruit a roster of undervalued 
players and outperform its budget. The Oakland A’s suc-
cess with data science has revolutionized baseball, with 
most other baseball teams now integrating similar data-
driven strategies into their recruitment processes.

The moneyball story is a very clear example of how 
data science can give an organization an advantage in a 
competitive market space. However, from a pure data sci-
ence perspective perhaps the most important aspect of 
the moneyball story is that it highlights that sometimes 
the primary value of data science is the identification of 
informative attributes. A common belief is that the value 
of data science is in the models created through the pro-
cess. However, once we know the important attributes 
in a domain, it is very easy to create data-driven models. 
The key to success is getting the right data and finding 
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the right attributes. In Freakonomics: A Rogue Economist 
Explores the Hidden Side of Everything, Steven D. Levitt and 
Stephen Dubner illustrate the importance of this observa-
tion across a wide range of problems. As they put it, the 
key to understanding modern life is “knowing what to 
measure and how to measure it” (2009, 14). Using data 
science, we can uncover the important patterns in a data 
set, and these patterns can reveal the important attributes 
in the domain. The reason why data science is used in  
so many domains is that it doesn’t matter what the prob-
lem domain is: if the right data are available and the  
problem can be clearly defined, then data science can help.

Why Now?

A number of factors have contributed to the recent growth 
of data science. As we have already touched upon, the emer-
gence of big data has been driven by the relative ease with 
which organizations can gather data. Be it through point-
of-sales transaction records, clicks on online platforms, 
social media posts, apps on smart phones, or myriad other 
channels, companies can now build much richer profiles of 
individual customers. Another factor is the commoditiza-
tion of data storage with economies of scale, making it less 
expensive than ever before to store data. There has also 
been tremendous growth in computer power. Graphics 
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cards and graphical processing units (GPUs) were origi-
nally developed to do fast graphics rendering for computer 
games. The distinctive feature of GPUs is that they can 
carry out fast matrix multiplications. However, matrix 
multiplications are useful not only for graphics rendering 
but also for ML. In recent years, GPUs have been adapted 
and optimized for ML use, which has contributed to large 
speedups in data processing and model training. User-
friendly data science tools have also become available and 
lowered the barriers to entry into data science. Taken to-
gether, these developments mean that it has never been 
easier to collect, store, and process data.

In the past 10 years there have also been major ad-
vances in ML. In particular, deep learning has emerged 
and has revolutionized how computers can process lan-
guage and image data. The term deep learning describes 
a family of neural network models with multiple lay-
ers of units in the network. Neural networks have been 
around since the 1940s, but they work best with large, 
complex data sets and take a great deal of computing 
resources to train. So the emergence of deep learning is 
connected with growth in big data and computing power. 
It is not an exaggeration to describe the impact of deep 
learning across a range of domains as nothing less than  
extraordinary.

DeepMind’s computer program AlphaGo7 is an ex-
cellent example of how deep learning has transformed a 
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field of research. Go is a board game that originated in 
China 3,000 years ago. The rules of Go are much simpler 
than chess; players take turns placing pieces on a board 
with the goal of capturing their opponent’s pieces or sur-
rounding empty territory. However, the simplicity of the 
rules and the fact that Go uses a larger board means that 
there are many more possible board configurations in Go 
then there are in chess. In fact, there are more possible 
board configurations for Go than there are atoms in the 
universe. This makes Go much more difficult than chess 
for computers because of its much larger search space 
and difficulty in evaluating each of these possible board 
configurations. The DeepMind team used deep-learning 
models to enable AlphaGo to evaluate board configura-
tions and to select the next move to make. The result was 
that AlphaGo became the first computer program to beat 
a professional Go player, and in March 2016 AlphaGo beat 
Led Sedol, the 18-time Go world champion, in a match 
watched by more than 200 million people worldwide. To 
put the impact of deep learning on Go in context, as re-
cently as 2009 the best Go computer program in the world 
was rated at the low end of advanced amateur; seven 
years later AlphaGo beat the world champion. In 2016, 
an article describing the deep-learning algorithms behind 
AlphaGo was published in the world’s most prestigious ac-
ademic science journal, Nature (Silver, Huang, Maddison,  
et al. 2016).
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Deep learning has also had a massive impact on a 
range of high-profile consumer technologies. Facebook 
now uses deep learning for face recognition and to ana-
lyze text in order to advertise directly to individuals based 
on their online conversations. Both Google and Baidu 
use deep learning for image recognition, captioning and 
search, and machine translation. Apple’s virtual assistant 
Siri, Amazon’s Alexa, Microsoft’s Cortana, and Samsung’s 
Bixby use speech recognition based on deep learning. 
Huawei is currently developing a virtual assistant for the 
Chinese market, and it, too, will use deep-learning speech 
recognition. In chapter 4, “Machine Learning 101,” we de-
scribe neural networks and deep learning in more detail. 
However, although deep learning is an important techni-
cal development, perhaps what is most significant about 
it in terms of the growth of data science is the increased 
awareness of the capabilities and benefits of data science 
and organization buy-in that has resulted from these high-
profile success stories.

Myths about Data Science

Data science has many advantages for modern organiza-
tions, but there is also a great deal of hype around it, so we 
should understand what its limitations are. One of the big-
gest myths is the belief that data science is an autonomous 
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process that we can let loose on our data to find the answers 
to our problems. In reality, data science requires skilled 
human oversight throughout the different stages of the 
process. Humans analysts are needed to frame the prob-
lem, to design and prepare the data, to select which ML 
algorithms are most appropriate, to critically interpret the 
results of the analysis, and to plan the appropriate action 
to take based on the insight(s) the analysis has revealed. 
Without skilled human oversight, a data science project 
will fail to meet its targets. The best data science outcomes 
occur when human expertise and computer power work 
together, as Gordon Linoff and Michael Berry put it: “Data 
mining lets computers do what they do best—dig through 
lots of data. This, in turn, lets people do what people do 
best, which is to set up the problem and understand the 
results” (2011, 3).

The widespread and growing use of data science 
means that today the biggest data science challenge for 
many organizations is locating qualified human analysts 
and hiring them. Human talent in data science is at a 
premium, and sourcing this talent is currently the main 
bottleneck in the adoption of data science. To put this 
talent shortfall in context, in 2011 a McKinsey Global 
Institute report projected a shortfall in the United States 
of between 140,000 and 190,000 people with data sci-
ence and analytics skills and an even larger shortfall of 
1.5 million managers with the ability to understand data  
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science and analytics processes at a level that will enable 
them to interrogate and interpret the results of data sci-
ence appropriately (Manyika, Chui, Brown, et al. 2011). 
Five years on, in their 2016 report, the institute remained 
convinced that data science has huge untapped value po-
tential across an expanding range of applications but that 
the talent shortfall will remain, with a predicted shortfall 
of 250,000 data scientists in the near term (Henke, Bug-
hin, Chui, et al. 2016).

The second big myth of data science is that every data 
science project needs big data and needs to use deep learn-
ing. In general, having more data helps, but having the 
right data is the more important requirement. Data sci-
ence projects are frequently carried out in organizations 
that have significantly less resources in terms of data 
and computing power than Google, Baidu, or Microsoft. 
Examples indicative of the scale of smaller data science 
projects include claim prediction in an insurance company 
that processes around 100 claims a month; student drop-
out prediction for a university with less than 10,000 stu-
dents; membership dropout prediction for a union with 
several thousand members. So an organization doesn’t 
need to be handling terabytes of data or to have mas-
sive computing resources at its disposal to benefit from  
data science.

A third data science myth is that modern data sci-
ence software is easy to use, and so data science is easy to 
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do. It is true that data science software has become more 
user-friendly. However, this ease of use can hide the fact 
that doing data science properly requires both appropri-
ate domain knowledge and the expertise regarding the 
properties of the data and the assumptions underpin-
ning the different ML algorithms. In fact, it has never 
been easier to do data science badly. Like everything else 
in life, if you don’t understand what you are doing when 
you do data science, you are going to make mistakes. The 
danger with data science is that people can be intimidated 
by the technology and believe whatever results the soft-
ware presents to them. They may, however, have unwit-
tingly framed the problem in the wrong way, entered the 
wrong data, or used analysis techniques with inappro-
priate assumptions. So the results the software presents 
are likely to be the answer to the wrong question or to 
be based on the wrong data or the outcome of the wrong  
calculation.

The last myth about data science we want to mention 
here is the belief that data science pays for itself quickly. 
The truth of this belief depends on the context of the or-
ganization. Adopting data science can require significant 
investment in terms of developing data infrastructure 
and hiring staff with data science expertise. Furthermore, 
data science will not give positive results on every project. 
Sometimes there is no hidden gem of insight in the data, 
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and sometimes the organization is not in a position to act 
on the insight the analysis has revealed. However, in con-
texts where there is a well-understood business problem 
and the appropriate data and human expertise are avail-
able, then data science can (often) provide the actionable 
insight that gives an organization the competitive advan-
tage it needs to succeed.





2

WHAT ARE DATA,  
AND WHAT IS A DATA SET?

As its name suggests, data science is fundamentally de-
pendent on data. In its most basic form, a datum or a piece 
of information is an abstraction of a real-world entity 
(person, object, or event). The terms variable, feature, and 
attribute are often used interchangeably to denote an in-
dividual abstraction. Each entity is typically described by a 
number of attributes. For example, a book might have the 
following attributes: author, title, topic, genre, publisher, 
price, date published, word count, number of chapters, 
number of pages, edition, ISBN, and so on.

A data set consists of the data relating to a collection 
of entities, with each entity described in terms of a set of 
attributes. In its most basic form,1 a data set is organized 
in an n * m data matrix called the analytics record, where n 
is the number of entities (rows) and m is the number of at-
tributes (columns). In data science, the terms data set and 
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analytics record are often used interchangeably, with the 
analytics record being a particular representation of a data 
set. Table 1 illustrates an analytics record for a data set of 
classic books. Each row in the table describes one book. 
The terms instance, example, entity, object, case, individual, 
and record are used in data science literature to refer to 
a row. So a data set contains a set of instances, and each 
instance is described by a set of attributes.

The construction of the analytics record is a prerequi-
site of doing data science. In fact, the majority of the time 
and effort in data science projects is spent on creating, 
cleaning, and updating the analytics record. The analytics 
record is often constructed by merging information from 
many different sources: data may have to be extracted 
from multiple databases, data warehouses, or computer 
files in different formats (e.g., spreadsheets or csv files) or 
scraped from the web or social media streams.

Table 1  A Data Set of Classic Books

ID Title Author Year Cover Edition Price

1 Emma Austen 1815 Paperback 20th $5.75

2 Dracula Stoker 1897 Hardback 15th $12.00

3 Ivanhoe Scott 1820 Hardback 8th $25.00

4 Kidnapped Stevenson 1886 Paperback 11th $5.00
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Four books are listed in the data set in table 1. Ex-
cluding the ID attribute—which is simply a label for each 
row and hence is not useful for analysis—each book is 
described using six attributes: title, author, year, cover, 
edition, and price. We could have included many more at-
tributes for each book, but, as is typical of data science 
projects, we needed to make a choice when we were de-
signing the data set. In this instance, we were constrained 
by the size of the page and the number of attributes we 
could fit onto it. In most data science projects, however, 
the constraints relate to what attributes we can actually 
gather and what attributes we believe, based on our do-
main knowledge, are relevant to the problem we are trying 
to solve. Including extra attributes in a data set does not 
come without cost. First, there is the extra time and effort 
in collecting and quality checking the attribute informa-
tion for each instance in the data set and integrating these 
data into the analytics record. Second, including irrelevant 
or redundant attributes can have a negative effect on the 
performance of many of the algorithms used to analyze 
data. Including many attributes in a data set increases the 
probability that an algorithm will find irrelevant or spuri-
ous patterns in the data that appear to be statistically sig-
nificant only because of the particular sample of instances 
in the data set. The problem of how to choose the correct 
attribute(s) is a challenge faced by all data science projects, 
and sometimes it comes down to an iterative process of 
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trial-and-error experiments where each iteration checks 
the results achieved using different subsets of attributes.

There are many different types of attributes, and for 
each attribute type different sorts of analysis are appro-
priate. So understanding and recognizing different attri-
bute types is a fundamental skill for a data scientist. The 
standard types are numeric, nominal, and ordinal. Numeric 
attributes describe measurable quantities that are repre-
sented using integer or real values. Numeric attributes can 
be measured on either an interval scale or a ratio scale. In-
terval attributes are measured on a scale with a fixed but 
arbitrary interval and arbitrary origin—for example, date 
and time measurements. It is appropriate to apply order-
ing and subtraction operations to interval attributes, but 
other arithmetic operations (such as multiplication and 
division) are not appropriate. Ratio scales are similar to 
interval scales, but the scale of measurement possesses a 
true-zero origin. A value of zero indicates that none of the 
quantity is being measured. A consequence of a ratio scale 
having a true-zero origin is that we can describe a value 
on a ratio scale as being a multiple (or ratio) of another 
value. Temperature is a useful example for distinguishing 
between interval and ratio scales.2 A temperature mea-
surement on the Celsius or Fahrenheit scale is an interval 
measurement because a 0 value on either of these scales 
does not indicate zero heat. So although we can compute 
differences between temperatures on these scales and 
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compare these differences, we cannot say that a temper-
ature of 20° Celsius is twice as warm as 10° Celsius. By 
contrast, a temperature measurement in Kelvins is on a 
ratio scale because 0 K (absolute zero) is the temperature 
at which all thermal motion ceases. Other common exam-
ples of ratio-scale measurements include money quanti-
ties, weight, height, and marks on an exam paper (scale 
0–100). In table 1, the “year” attribute is an example of 
an interval-scale attribute, and the “price” attribute is an 
example of a ratio-scale attribute.

Nominal (also known as categorical) attributes take 
values from a finite set. These values are names (hence 
“nominal”) for categories, classes, or states of things. Ex-
amples of nominal attributes include marital status (sin-
gle, married, divorced) and beer type (ale, pale ale, pils, 
porter, stout, etc.). A binary attribute is a special case of 
a nominal attribute where the set of possible values is re-
stricted to just two values. For example, we might have 
the binary attribute “spam,” which describes whether an 
email is spam (true) or not spam (false), or the binary at-
tribute “smoker,” which describes whether an individual is 
a smoker (true) or not (false). Nominal attributes cannot 
have ordering or arithmetic operations applied to them. 
Note that a nominal attribute may be sorted alphabeti-
cally, but alphabetizing is a distinct operation from order-
ing. In table 1, “author” and “title” are examples of nominal 
attributes.
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Ordinal attributes are similar to nominal attributes, 
with the difference that it is possible to apply a rank order 
over the categories of ordinal attributes. For example, an at-
tribute describing the response to a survey question might 
take values from the domain “strongly dislike, dislike, neu-
tral, like, and strongly like.” There is a natural ordering over 
these values from “strongly dislike” to “strongly like” (or 
vice versa depending on the convention being used). How-
ever, an important feature of ordinal data is that there is 
no notion of equal distance between these values. For ex-
ample, the cognitive distance between “dislike” and “neu-
tral” may be different from the distance between “like” and 
“strongly like.” As a result, it is not appropriate to apply 
arithmetic operations (such as averaging) on ordinal at-
tributes. In table 1, the “edition” attribute is an example of 
an ordinal attribute. The distinction between nominal and 
ordinal data is not always clear-cut. For example, consider 
an attribute that describes the weather and that can take 
the values “sunny,” “rainy,” “overcast.” One person might 
view this attribute as being nominal, with no natural order 
over the values, whereas another person might argue that 
the attribute is ordinal, with “overcast” being treated as 
an intermediate value between “sunny” and “rainy” (Hall, 
Witten, and Frank 2011).

The data type of an attribute (numeric, ordinal, nomi-
nal) affects the methods we can use to analyze and under-
stand the data, including both the basic statistics we can 
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use to describe the distribution of values that an attribute 
takes and the more complex algorithms we use to iden-
tify the patterns of relationships between attributes. At 
the most basic level of analysis, numeric attributes allow 
arithmetic operations, and the typical statistical analysis 
applied to numeric attributes is to measure the central 
tendency (using the mean value of the attribute) and the 
dispersion of the attributes values (using the variance or 
standard deviation statistics). However, it does not make 
sense to apply arithmetic operations to nominal or ordi-
nal attributes. So the basic analysis of these types of at-
tributes involves counting the number of times each of the 
values occurs in the data set or calculating the proportion 
of occurrence of each value or both.

Data are generated through a process of abstraction, 
so any data are the result of human decisions and choices. 
For every abstraction, somebody (or some set of people) 
will have made choices with regard to what to abstract 
from and what categories or measurements to use in the 
abstracted representation. The implication is that data are 
never an objective description of the world. They are in-
stead always partial and biased. As Alfred Korzybski has 
observed, “A map is not the territory it represents, but, 
if correct, it has a similar structure to the territory which 
accounts for its usefulness” (1996, 58).

In other words, the data we use for data science are 
not a perfect representation of the real-world entities and 
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processes we are trying to understand, but if we are careful 
in how we design and gather the data that we use, then the 
results of our analysis will provide useful insights into our 
real-world problems. The moneyball story given in chapter 
1 is a great example of how the determinant of success 
in many data science projects is figuring out the correct 
abstractions (attributes) to use for a given domain. Recall 
that the key to the moneyball story was that the Oakland 
A’s figured out that a player’s on-base percentage and slug-
ging percentage are better attributes to use to predict a 
player’s offensive success than traditional baseball sta-
tistics such as batting average. Using different attributes 
to describe players gave the Oakland A’s a different and 
better model of baseball than the other teams had, which 
enabled it to identify undervalued players and to compete 
with larger franchises using a smaller budget.

The moneyball story illustrates that the old computer 
science adage “garbage in, garbage out” is true for data 
science: if the inputs to a computational process are in-
correct, then the outputs from the process will be incor-
rect. Indeed, two characteristics of data science cannot 
be overemphasized: (a) for data science to be successful, 
we need to pay a great deal of attention to how we create 
our data (in terms of both the choices we make in design-
ing the data abstractions and the quality of the data cap-
tured by our abstraction processes), and (b) we also need 
to “sense check” the results of a data science process—that 
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is, we need to understand that just because the computer 
identifies a pattern in the data this doesn’t mean that it is 
identifying a real insight in the processes we are trying to 
analyze; the pattern may simply be based on the biases in 
our data design and capture.

Perspectives on Data

Other than type of data (numeric, nominal, and ordinal), 
a number of other useful distinctions can be made re-
garding data. One such distinction is between structured 
and unstructured data. Structured data are data that can 
be stored in a table, and every instance in the table has 
the same structure (i.e., set of attributes). As an example, 
consider the demographic data for a population, where 
each row in the table describes one person and consists of 
the same set of demographic attributes (name, age, date 
of birth, address, gender, education level, job status, etc.). 
Structured data can be easily stored, organized, searched, 
reordered, and merged with other structured data. It is 
relatively easy to apply data science to structured data be-
cause, by definition, it is already in a format that is suit-
able for integration into an analytics record. Unstructured 
data are data where each instance in the data set may have 
its own internal structure, and this structure is not neces-
sarily the same in every instance. For example, imagine a 
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data set of webpages, with each webpage having a struc-
ture but this structure differing from one webpage to an-
other. Unstructured data are much more common than 
structured data. For example, collections of human text 
(emails, tweets, text messages, posts, novels, etc.) can be 
considered unstructured data, as can collections of sound, 
image, music, video, and multimedia files. The variation in 
the structure between the different elements means that 
it is difficult to analyze unstructured data in its raw form. 
We can often extract structured data from unstructured 
data using techniques from artificial intelligence (such as 
natural-language processing and ML), digital signal pro-
cessing, and computer vision. However, implementing 
and testing these data-transformation processes is expen-
sive and time-consuming and can add significant financial 
overhead and time delays to a data science project.

Sometimes attributes are raw abstractions from an 
event or object—for example, a person’s height, the num-
ber of words in an email, the temperature in a room, the 
time or location of an event. But data can also be derived 
from other pieces of data. Consider the average salary in 
a company or the variance in the temperature of a room 
across a period of time. In both of these examples, the 
resulting data are derived from an original set of data by 
applying a function to the original raw data (individual sal-
aries or temperature readings). It is frequently the case that 
the real value of a data science project is the identification 
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of one or more important derived attributes that provide 
insight into a problem. Imagine we are trying to get a bet-
ter understanding of obesity within a population, and we 
are trying to understand the attributes of an individual 
that identify him as being obese. We would begin by exam-
ining the raw attributes of individuals, such as their height 
and weight, but after studying the problem for some time 
we might end up designing a more informative derived 
attribute such as the Body Mass Index (BMI). BMI is the 
ratio of a person’s mass and height. Recognizing that the 
interaction between the raw attributes “mass” and “height” 
provides more information about obesity then either of 
these two attributes can when examined independently 
will help us to identify people in the population who are at 
risk of obesity. Obviously, BMI is a simple example that we 
use here to illustrate the importance of derived attributes. 
But consider situations where the insight into the problem 
is given through multiple derived attributes, where each 
attribute involves two (or potentially more) additional 
attributes. It is in contexts where multiple attributes in-
teract together that data science provides us with real 
benefits because the algorithms we use can, in some cases, 
learn the derived attributes from the raw data.

There are generally two terms for gathered raw data: 
captured data and exhaust data (Kitchin 2014a). Captured 
data are collected through a direct measurement or obser-
vation that is designed to gather the data. For example, 
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the primary purpose of surveys and experiments is to 
gather specific data on a particular topic of interest. By 
contrast, exhaust data are a by-product of a process whose 
primary purpose is something other than data capture. 
For example, the primary purpose of many social media 
technologies is to enable users to connect with other peo-
ple. However, for every image shared, blog posted, tweet 
retweeted, or post liked, a range of exhaust data is gener-
ated: who shared, who viewed, what device was used, what 
time of day, which device was used, how many people 
viewed/liked/retweeted, and so on. Similarly, the primary 
purpose of the Amazon website is to enable users to make 
purchases from the site. However, each purchase gener-
ates volumes of exhaust data: what items the user put into 
her basket, how long she stayed on the site, what other 
items she viewed, and so on.

One of the most common types of exhaust data is 
metadata—that is, data that describe other data. When 
Edward Snowden released documents about the US Na-
tional Security Agency’s surveillance program PRISM, he 
revealed that the agency was collecting a large amount of 
metadata about people’s phone calls. This meant that the 
agency was not actually recording the content of peoples 
phone calls (it was not doing wiretapping) but rather col-
lecting the data about the calls, such as when the call was 
made, who the recipient was, how long the call lasted, and 
so on (Pomerantz 2015). This type of data gathering may 
not appear ominous, but the MetaPhone study carried 
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out at Stanford highlighted the types of sensitive insights 
that phone-call metadata can reveal about an individual 
(Mayer and Mutchler 2014). The fact that many organiza-
tions have very specific purposes makes it relatively easy 
to infer sensitive information about a person based on his 
phone calls to these organizations. For example, some of 
the people in the MetaPhone study made calls to Alcohol-
ics Anonymous, divorce lawyers, and medical clinics spe-
cializing in sexually transmitted diseases. Patterns in calls 
can also be revealing. The pattern analysis from the study 
showed how patterns of calls reveal potentially very sensi-
tive information: 

Participant A communicated with multiple local 
neurology groups, a specialty pharmacy, a rare 
condition management service, and a hotline for a 
pharmaceutical used solely to treat relapsing multiple 
sclerosis. … In a span of three weeks, Participant D 
contacted a home improvement store, locksmiths, 
a hydroponics dealer, and a head shop. (Mayer and 
Mutchler 2014)

Data science has traditionally focused on captured 
data. However, as the MetaPhone study shows, exhaust 
data can be used to reveal hidden insight into situations. 
In recent years, exhaust data have become more and more 
useful, particularly in the realm of customer engagement, 
where the linking of different exhaust data sets has the 
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potential to provide a business with a richer profile of indi-
vidual customers, thereby enabling the business to target 
its services and marketing to certain customers. In fact, 
one of the factors driving the growth in data science in 
business today is the recognition of the value of exhaust 
data and the potential that data science has to unlock this 
value for businesses.

Data Accumulates, Wisdom Doesn’t!

The goal of data science is to use data to get insight and un-
derstanding. The Bible urges us to attain understanding by 
seeking wisdom: “wisdom is the principal thing, therefore 
get wisdom and with all thy getting get understanding” 
(Proverbs 4:7 [King James]). This advice is reasonable, but 
it does beg the question of how one should go about seek-
ing wisdom. The following lines from T.  S. Eliot’s poem 
“Choruses from The Rock” describes a hierarchy of wis-
dom, knowledge, and information:

Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information? 
(Eliot 1934, 96)

Eliot’s hierarchy mirrors the standard model of the 
structural relationships between wisdom, knowledge, 
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information, and data known as the DIKW pyramid (see 
figure 2). In the DIKW pyramid, data precedes informa-
tion, which precedes knowledge, which precedes wisdom. 
Although the order of the layers in the hierarchy are gener-
ally agreed upon, the distinctions between the layers and 
the processes required to move from one layer to the next 
are often contested. Broadly speaking, however,

Figure 2  The DIKW pyramid (adapted from Kitchin 2014a).



56    Chapter 2

•  Data are created through abstractions or measurements 
taken from the world.

•  Information is data that have been processed, structured, 
or contextualized so that it is meaningful to humans.

•  Knowledge is information that has been interpreted and 
understood by a human so that she can act on it if required.

•  Wisdom is acting on knowledge in an appropriate way.

The activities in the data science process can also be 
represented using a similar pyramid hierarchy where the 
width of the pyramid represents the amount of data be-
ing processed at each level and where the higher the layer 
in the pyramid, the more informative the results of the 
activities are for decision making. Figure 3 illustrates the 
hierarchy of data science activities from data capture and 
generation through data preprocessing and aggregation, 
data understanding and exploration, pattern discovery 
and model creation using ML, and decision support using 
data-driven models deployed in the business context.

The CRISP-DM Process

Many people and companies regularly put forward sug-
gestions on the best process to follow to climb the data 
science pyramid. The most commonly used process is the 
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Figure 3  Data science pyramid (adapted from Han, Kamber, and Pei 2011).

Cross Industry Standard Process for Data Mining (CRISP-
DM). In fact, the CRISP-DM has regularly been in the 
number-one spot in various industry surveys for a number 
of years. The primary advantage of CRISP-DM, the main 
reason why it is so widely used, is that it is designed to 
be independent of any software, vendor, or data-analysis 
technique.
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CRISP-DM was originally developed by a consortium 
of organizations consisting of leading data science ven-
dors, end users, consultancy companies, and researchers. 
The original CRISP-DM project was sponsored in part by 
the European Commission under the ESPRIT Program, 
and the process was first presented at a workshop in 
1999. Since then, a number of attempts have been made 
to update the process, but the original version is still pre-
dominantly in use. For many years, there was a dedicated 
website for CRISP-DM, but in recent years this website is 
no longer available, and on occasion you might get redi-
rected to the SPSS website by IBM, which was one of the 
original contributors to the project. The original consor-
tium published a detailed (76-page) but readable step-by-
step guide to the process that is freely available online (see 
Chapman et al. 1999), but the structure and major tasks of 
the process can be summarized in a few pages.

The CRISP-DM life cycle consists of six stages: busi-
ness understanding, data understanding, data preparation, 
modeling, evaluation, and deployment, as shown in figure 4. 
Data are at the center of all data science activities, and that 
is why the CRISP-DM diagram has data at its center. The 
arrows between the stages indicate the typical direction of 
the process. The process is semistructured, which means 
that a data scientist doesn’t always move through these 
six stages in a linear fashion. Depending on the outcome 
of a particular stage, a data scientist may go back to one of 



	 What Are Data, and What Is a Data Set?    59

Data
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Data
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Data
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Figure 4  The CRISP-DM life cycle (based on figure 2 in Chapman, Clinton, 
Kerber, et al. 1999).
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the previous stages, redo the current stage, or move on to 
the next stage.

In the first two stages, business understanding and 
data understanding, the data scientist is trying to define 
the goals of the project by understanding the business 
needs and the data that the business has available to it. 
In the early stages of a project, a data scientist will often 
iterate between focusing on the business and exploring 
what data are available. This iteration typically involves 
identifying a business problem and then exploring if the 
appropriate data are available to develop a data-driven so-
lution to the problem. If the data are available, the project 
can proceed; if not, the data scientist will have to identify 
an alternative problem to tackle. During this stage of a 
project, a data scientist will spend a great deal of time in 
meetings with colleagues in the business-focused depart-
ments (e.g., sales, marketing, operations) to understand 
their problems and with the database administrators to 
get an understanding of what data are available.

Once the data scientist has clearly defined a busi-
ness problem and is happy that the appropriate data are 
available, she moves on to the next phase of the CRISP-
DM: data preparation. The focus of the data-preparation 
stage is the creation of a data set that can be used for the 
data analysis. In general, creating this data set involves 
integrating data sources from a number of databases. 
When an organization has a data warehouse, this data 
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integration can be relatively straightforward. Once a data 
set has been created, the quality of the data needs to be 
checked and fixed. Typical data-quality problems include 
outliers and missing values. Checking the quality of the 
data is very important because errors in the data can have 
a serious effect on the performance of the data-analysis  
algorithms.

The next stage of CRISP-DM is the modeling stage. 
This is the stage where automatic algorithms are used to 
extract useful patterns from the data and to create models 
that encode these patterns. Machine learning is the field 
of computer science that focuses on the design of these al-
gorithms. In the modeling stage, a data scientist will nor-
mally use a number of different ML algorithms to train 
a number of different models on the data set. A model is 
trained on a data set by running an ML algorithm on the 
data set so as to identify useful patterns in the data and to 
return a model that encodes these patterns. In some cases 
an ML algorithm works by fitting a template model struc-
ture to a data set by setting the parameters of the template 
to good values for that data set (e.g., fitting a linear regres-
sion or neural network model to a data set). In other cases 
an ML algorithm builds a model in a piecewise fashion (e.g. 
growing a decision tree one node at a time beginning at the 
root node of the tree). In most data science projects it is 
a model generated by an ML algorithm that is ultimately 
the software that is deployed by an organization to help it 
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solve the problem the data science project is addressing. 
Each model is trained by a different type of ML algorithm, 
and each algorithm looks for different types of patterns 
in the data. At this stage in the project, the data scientist 
typically doesn’t know which patterns are the best ones to 
look for in the data, so in this context it makes sense to 
experiment with a number of different algorithms and see 
which algorithm returns the most accurate models when 
run on the data set. In chapter 4 we will introduce ML al-
gorithms and models in much more detail and explain how 
to create a test plan to evaluate model accuracy.

In the majority of data science projects, the initial 
model test results will uncover problems in the data. These 
data errors sometimes come to light when the data scien-
tist investigates why the performance of a model is lower 
than expected or notices that maybe the model’s perfor-
mance is suspiciously good. Or by examining the structure 
of the models, the data scientist may find that the model is 
reliant on attributes that she would not expect, and as a re-
sult she revisits the data to check that these attributes are 
correctly encoded. It is thus not uncommon for a project to 
go through several rounds of these two stages of the pro-
cess: modeling, data preparation; modeling, data prepara-
tion; and so on. For example, Dan Steinberg and his team 
reported that during one data science project, they rebuilt 
their data set 10 times over a six-week period, and in week 
five, having gone through a number of iterations of data 



	 What Are Data, and What Is a Data Set?    63

cleaning and preparation, they uncovered a major error in 
the data (Steinberg 2013). If this error had not been iden-
tified and fixed, the project would not have succeeded.

The last two stages of the CRISP-DM process, evalu-
ation and deployment, are focused on how the models fit 
the business and its processes. The tests run during the 
modeling stage are focused purely on the accuracy of the 
models for the data set. The evaluation phase involves 
assessing the models in the broader context defined by 
the business needs. Does a model meet the business ob-
jectives of the process? Is there any business reason why 
a model is inadequate? At this point in the process, it is 
also useful for the data scientist to do a general quality-
assurance review on the project activities: Was anything 
missed? Could anything have been done better? Based on 
the general assessment of the models, the main decision 
made during the evaluation phase is whether any of the 
models should be deployed in the business or another it-
eration of the CRISP-DM process is required to create ad-
equate models. Assuming the evaluation process approves 
a model or models, the project moves into the final stage 
of the process: deployment. The deployment phase in-
volves examining how to deploy the selected models into 
the business environment. This involves planning how 
to integrate the models into the organization’s techni-
cal infrastructure and business processes. The best mod-
els are the ones that fit smoothly into current practices. 
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Models that fit current practices have a natural set of users 
who have a clearly defined problem that the model helps 
them to solve. Another aspect of deployment is putting 
a plan in place to periodically review the performance of  
the model.

The outer circle of the CRISP-DM diagram (figure 4) 
highlights how the whole process is iterative. The itera-
tive nature of data science projects is perhaps the aspect of 
these projects that is most often overlooked in discussions 
of data science. After a project has developed and deployed 
a model, the model should be regularly reviewed to check 
that it still fits the business’s needs and that it hasn’t be-
come obsolete. There are many reasons why a data-driven 
model can become obsolete: the business’s needs might 
have changed; the process the model emulates and pro-
vides insight into might have changed (for example, cus-
tomer behavior changes, spam email changes, etc.); or the 
data streams the model uses might have changed (for ex-
ample, a sensor that feeds information into a model may 
have been updated, and the new version of the sensor pro-
vides slightly different readings, causing the model to be 
less accurate). The frequency of this review is dependent 
on how quickly the business ecosystem and the data that 
the model uses evolve. Constant monitoring is needed to 
determine the best time to go through the process again. 
This is what the outer circle of the CRISP-DM process 
shown in figure 4 represents. For example, depending on 
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the data, the business question, and the domain, you may 
have go through this iterative process on a yearly, quar-
terly, monthly, weekly, or even daily basis. Figure 5 gives a 
summary of the different stages of the data science project 
process and the major tasks involved in each phase.

A frequent mistake that many inexperienced data sci-
entists make is to focus their efforts on the modeling stage 
of the CRISP-DM and to rush through the other stages. 
They may think that the really important deliverable from 
a project is the model, so the data scientist should devote 
most of his time to building and finessing the model. How-
ever, data science veterans will spend more time on ensur-
ing that the project has a clearly defined focus and that it 
has the right data. For a data science project to succeed, a 
data scientist needs to have a clear understanding of the 
business need that the project is trying to solve. So the 
business understanding stage of the process is really im-
portant. With regard to getting the right data for a project, 
a survey of data scientists in 2016 found that 79 percent 
of their time is spent on data preparation. The time spent 
across the major tasks in the project was distributed as fol-
lows: collecting data sets, 19 percent; cleaning and orga-
nizing data, 60 percent; building training sets, 3 percent; 
mining data for patterns, 9 percent; refining algorithms, 
4 percent; and performing other tasks, 5 percent (Crowd-
Flower 2016). The 79 percent figure for preparation comes 
from summing the time spent on collecting, cleaning, and 
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organizing the data. That around 80 percent of project 
time is spent on gathering and preparing data has been 
a consistent finding in industry surveys for a number of 
years. Sometimes this finding surprises people because 
they imagine data scientists spend their time building 
complex models to extract insight from the data. But the 
simple truth is that no matter how good your data analysis 
is, it won’t identify useful patterns unless it is applied to 
the right data.





3

A DATA SCIENCE ECOSYSTEM

The set of technologies used to do data science varies  
across organizations. The larger the organization or the 
greater the amount of data being processed or both,  
the greater the complexity of the technology ecosystem 
supporting the data science activities. In most cases, this 
ecosystem contains tools and components from a number 
of different software suppliers, processing data in many 
different formats. There is a spectrum of approaches from 
which an organization can select when developing its own 
data science ecosystem. At one end of the spectrum, the 
organization may decide to invest in a commercial inte-
grated tool set. At the other end, it might build up a be-
spoke ecosystem by integrating a set of open-source tools 
and languages. In between these two extremes, some 
software suppliers provide solutions that consist of a mix-
ture of commercial products and open-source products. 
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However, although the particular mix of tools will vary 
from one organization to the next, there is a commonality 
in terms of the components that are present in most data 
science architectures.

Figure 6 gives a high-level overview of a typical data 
architecture. This architecture is not just for big-data 
environments, but for data environments of all sizes. In 
this diagram, the three main areas consist of data sources, 
where all the data in an organization are generated; data 
storage, where the data are stored and processed; and ap-
plications, where the data are shared with consumers of 
these data.

All organizations have applications that generate 
and capture data about customers, transactions, and op-
erational data on everything to do with how the organiza-
tion operates. Such data sources and applications include 
customer management, orders, manufacturing, delivery, 
invoicing, banking, finance, customer-relationship man-
agement (CRM), call center, enterprise resource planning 
(ERP) applications, and so on. These types of applications 
are commonly referred to as online transaction processing 
(OLTP) systems. For many data science projects, the data 
from these applications will be used to form the initial in-
put data set for the ML algorithms. Over time, the volume 
of data captured by the various applications in the orga-
nization grows ever larger and the organization will start 
to branch out to capture data that was ignored, wasn’t 
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captured previously, or wasn’t available previously. These 
newer data are commonly referred to as “big-data sources” 
because the volume of data that is captured is significantly 
higher than the organization’s main operational applica-
tions. Some of the common big-data sources include 
network traffic, logging data from various applications, 
sensor data, weblog data, social media data, website data, 
and so on. In traditional data sources, the data are typi-
cally stored in a database. However, because the applica-
tions associated with many of the newer big-data sources 
are not primarily designed to store data long term—for 
example, with streaming data—the storage formats and 
structures for this type of data vary from application to 
application.

As the number of data sources increases, so does the 
challenge of being able to use these data for analytics 
and for sharing them across the wider organization. The 
data-storage layer, shown in figure 6, is typically used to 
address the data sharing and data analytics across an or-
ganization. This layer is divided into two parts. The first 
part covers the typical data-sharing software used by most 
organizations. The most popular form of traditional data-
integration and storage software is a relational database 
management system (RDBMS). These traditional sys-
tems are often the backbone of the business intelligence 
(BI) solutions within an organization. A BI solution is a 
user-friendly decision-support system that provides data 
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aggregating, integration, and reporting as well as analy-
sis functionality. Depending on the maturity level of a BI 
architecture, it can consist of anything from a basic copy 
of an operational application to an operational data store 
(ODS) to massively parallel processing (MPP) BI database 
solutions and data warehouses.

Data warehousing is best understood as a process of 
data aggregation and analysis with the goal of supporting 
decision making. However, the focus of this process is the 
creation of a well-designed and centralized data reposi-
tory, and the term data warehouse is sometimes used to 
denote this type of data repository. In this sense, a data 
warehouse is a powerful resource for data science. From a 
data science perspective, one of the major advantages of 
having a data warehouse in place is a much shorter proj-
ect time. The key ingredient in any data science process 
is data, so it is not surprising that in many data science 
projects the majority of time and effort goes into find-
ing, aggregating, and cleaning the data prior to their 
analysis. If a data warehouse is available in a company, 
then the effort and time that go into data preparation on 
individual data science projects is often significantly re-
duced. However, it is possible to do data science without 
a centralized data repository. Constructing a centralized 
repository of data involves more than simply dumping 
the data from multiple operational databases into a single  
database. 
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Merging data from multiple databases often requires 
much complex manual work to resolve inconsistencies 
between the source databases. Extraction, transformation, 
and load (ETL) is the term used to describe the typical proc-
esses and tools used to support the mapping, merging, 
and movement of data between databases. The typical op-
erations carried out in a data warehouse are different from 
the simple operations normally applied to a standard rela-
tional data model database. The term online analytical pro-
cessing (OLAP) is used to describe these operations. OLAP 
operations are generally focused on generating summaries 
of historic data and involve aggregating data from mul-
tiple sources. For example, we might pose the following 
OLAP request (expressed here in English for readability): 
“Report the sales of all stores by region and by quarter and 
compare these figures to last year’s figures.” What this ex-
ample illustrates is that the result of an OLAP request of-
ten resembles what you would expect to see as a standard 
business report. OLAP operations essentially enable users 
to slice, dice, and pivot the data in the warehouse and get 
different views of these data. They work on a data repre-
sentation called a data cube that is built on top of the data 
warehouse. A data cube has a fixed, predefined set of di-
mensions in which each dimension represents a particular 
characteristic of the data. The required data-cube dimen-
sions for the example OLAP request given earlier would 
be sales by stores, sales by region, and sales by quarter. The 
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primary advantage of using a data cube with a fixed set of 
dimensions is that it speeds up the response time of OLAP 
operations. Also, because the set of data-cube dimensions 
is preprogrammed into the OLAP system, the system can 
provide user-friendly graphical user interfaces for defining 
OLAP requests. However, the data-cube representation 
also restricts the types of analysis that can be done using 
OLAP to the set of queries that can be generated using the 
predefined dimensions. By comparison, SQL provides a 
more flexible query interface. Also, although OLAP sys-
tems are useful for data exploration and reporting, they 
don’t enable data modeling or the automatic extraction of 
patterns from the data. Once the data from across an orga-
nization has been aggregated and analyzed within the BI 
system, this analysis can then be used as input to a range 
of consumers in the applications layer of figure 6.

The second part of the data-storage layer deals with 
managing the data produced by an organization’s big-data 
sources. In this architecture, the Hadoop platform is used 
for the storage and analytics of these big data. Hadoop 
is an open-source framework developed by the Apache 
Software Foundation that is designed for the processing 
of big data. It uses distributed storage and processing 
across clusters of commodity servers. Applying the Ma-
pReduce programming model, it speeds up the processing 
of queries on large data sets. MapReduce implements the 
split-apply-combine strategy: (a) a large data set is split up 
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into separate chunks, and each chunk is stored on a dif-
ferent node in the cluster; (b) a query is then applied to 
all the chunks in parallel; and (c) the result of the query 
is then calculated by combining the results generated on 
the different chunks. Over the past couple of years, how-
ever, the Hadoop platform is also being used as an exten-
sion of an enterprise’s data warehouse. Data warehouses 
originally would store three years of data, but now data 
warehouses can store more than 10 years of data, and this 
number keeps increasing. As the amount of data in a data 
warehouse increases, however, the storage and processing 
requirements of the database and server also have to in-
crease. This requirement can have a significant cost im-
plication. An alternative is to move some of the older data 
in a data warehouse for storage into a Hadoop cluster. For 
example, the data warehouse would store the most recent 
data, say three years’ worth of data, which frequently need 
to be available for quick analysis and presentation, while 
the older data and the less frequently used data are stored 
on Hadoop. Most of the enterprise-level databases have 
features that connect the data warehouse with Hadoop, 
allowing a data scientist, using SQL, to query the data in 
both places as if they all are located in one environment. 
Her query could involve accessing some data in the data-
warehouse database and some of the data in Hadoop. 
The query processing will be automatically divided into 
two distinct parts, each running independently, and the 
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results will be automatically combined and integrated be-
fore being presented back to the data scientist.

Data analysis is associated with both sections of the 
data-storage layer in figure 6. Data analysis can occur on 
the data in each section of the data layer, and the results 
from data analysis can be shared between each section 
while additional data analysis is being performed. The data 
from traditional sources frequently are relatively clean and 
information dense compared to the data captured from 
big-data sources. However, the volume and real-time na-
ture of many big-data sources means that the effort in-
volved in preparing and analyzing these big-data sources 
can be repaid in terms of additional insights not available 
through the data coming from traditional sources. A vari-
ety of data-analysis techniques developed across a number 
of different fields of research (including natural-language 
processing, computer vision, and ML) can be used to 
transform unstructured, low-density, low-value big data 
into high-density and high-value data. These high-value 
data can then be integrated with the other high-value data 
from traditional sources for further data analysis. The de-
scription given in this chapter and illustrated in figure 6 
is the typical architecture of the data science ecosystem. 
It is suitable for most organizations, both small and large. 
However, as an organization scales in size, so too will the 
complexity of its data science ecosystem. For example, 
smaller-scale organizations may not require the Hadoop 
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component, but for very large organizations the Hadoop 
component will become very important.

Moving the Algorithms to the Data

The traditional approach to data analysis involves the ex-
traction of data from various databases, integrating the 
data, cleaning the data, subsetting the data, and building 
predictive models. Once the prediction models have been 
created they can be applied to the new data. Recall from 
chapter 1 that a prediction model predicts the missing 
value of an attribute: a spam filter is a prediction model 
that predicts whether the classification attribute of an 
email should have the value of “spam” or not. Applying the 
predictive models to the instances in new data to generate 
the missing values is known as “scoring the data.” Then 
the final results, after scoring new data, may be loaded 
back into a database so that these new data can be used 
as part of some workflow, reporting dashboard, or some 
other company assessment practice. Figure 7 illustrates 
that much of the data processing involved in data prepa-
ration and analysis is located on a server that is separate 
from the databases and the data warehouse. Therefore, a 
significant amount of time can be spent just moving the 
data out of the database and moving the results back into 
the database.
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An experiment run at the Dublin Institute of Tech-
nology on building a linear-regression model supplies an 
example of the time involved in each part of the process. 
Approximately 70 to 80 percent of the time is taken with 
extracting and preparing the data; the remaining time is 
spent on building the models. For scoring data, approxi-
mately 90 percent of the time is taken with extracting 
the data and saving the scored data set back into the da-
tabase; only 10 percent of the time is spent on actually 
scoring. These results are based on data sets consisting of 
anywhere from 50,000 records up to 1.5 million records. 

Time

Analytics server

Data
extraction

Loading 
results

Extract 
data

Integrate
data

Database or
data warehouse

Prepare
data

Build models
and score data

Figure 7  The traditional process for building predictive models and  
scoring data.
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Most enterprise database vendors have recognized the 
time savings that would be available if time did not have 
to be spent on moving data and have responded to this 
problem by incorporating data-analysis functionality and 
ML algorithms into their database engines. The following 
sections explore how ML algorithms have been integrated 
into modern databases, how data storage works in the big-
data world of Hadoop, and how using a combination of 
these two approaches allows organizations to easily work 
with all their data using SQL as a common language for 
accessing, analyzing, and performing ML and predictive 
analytics in real time.

The Traditional Database or the Modern Traditional 
Database
Database vendors continuously invest in developing the 
scalability, performance, security, and functionality of 
their databases. Modern databases are far more advanced 
than traditional relational databases. They can store and 
query data in variety of different formats. In addition 
to the traditional relational formats, it is also possible 
to define object types, store documents, and store and 
query JSON objects, spatial data, and so on. Most mod-
ern databases also come with a large number of statisti-
cal functions, so that some have an equivalent number 
of statistical functions as most statistical applications. 
For example, the Oracle Database comes with more than 
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300 different statistical functions and the SQL language 
built into it. These statistical functions cover the major-
ity of the statistical analyses needed by data science proj-
ects and include most if not all the statistical functions 
available in other tools and languages, such as R. Using 
the statistical functionality that is available in the data-
bases in an organization may allow data analytics to be 
performed in a more efficient and scalable manner using 
SQL. Furthermore, most leading database vendors (in-
cluding Oracle, Microsoft, IBM, and EnterpriseDB) have 
integrated many ML algorithms into their databases, and 
these algorithms can be run using SQL. ML that is built 
into the database engine and is accessible using SQL is 
known as in-database machine learning. In-database ML 
can lead to quicker development of models and quicker 
deployment of models and results to applications and 
analytic dashboards. The idea behind the in-database 
ML algorithms is captured in the following directive: 
“Move the algorithms to the data instead of the data to the  
algorithms.”

The main advantages of using the in-database ML  
algorithms are:

•  No data movement. Some data science products re-
quire the data to be exported from the database and 
converted to a specialized format for input to the ML  
algorithms. With in-database ML, no data movement or 
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conversion is needed. This makes the entire process less 
complex, less time-consuming, and less error prone.

•  Faster performance. With analytical operations per-
formed in the database and with no data movement, it is 
possible to utilize the computing capabilities of the data-
base server, delivering performance up to 100 times faster 
than the traditional approach. Most database servers have 
high specifications, with many central processing units 
(CPUs) and efficient memory management to process data 
sets containing more than one billion records.

•  High security. The database provides controlled and 
auditable access to the data in the database, accelerating 
the data scientist’s productivity while maintaining data 
security. Also, in-database ML avoids the physical secu-
rity risks inherent in extracting and downloading data to 
alternative analytics servers. The traditional process, in 
contrast, results in the creation of many copies (and po-
tentially different versions) of data sets in separate silos 
across the organization.

•  Scalability. A database can easily scale the analytics 
as the data volume increases if the ML algorithms are 
brought into the database. The database software is de-
signed to manage large volumes of data efficiently, utiliz-
ing the multiple CPUs and memory on the server to allow 
the ML algorithms to run in parallel. Databases are also 
very efficient at processing large data sets that do not fit 
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easily into memory. Databases have more than 40 years of 
development work behind them to ensure that they can 
process datasets quickly.

•  Real-time deployment and environments. The models 
that are developed using the in-database ML algorithms 
can be immediately deployed and used in real-time envi-
ronments. This allows the integration of the models into 
everyday applications, providing real-time predictions to 
end users and customers.

•  Production deployment. Models developed using stand-
alone ML software may have to be recoded into other 
programming languages before they can be deployed 
into enterprise applications. This is not the case with in-
database ML. SQL is the language of the database; it can 
be used and called by any programming language and data 
science tool. It is then a simple task to incorporate the in-
database models into production applications.

Many organizations are exploiting the benefits of 
in-database ML. They range from small and medium or-
ganizations to large, big-data-type organizations. Some 
examples of organizations that use in-database ML tech-
nologies are:

•  Fiserv, an American provider of financial services and 
fraud detection and analysis. Fiserv migrated from using 
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multiple vendors for data storage and ML to using just 
the ML capabilities in its database. By using in-database 
ML, the time used for creating/updating and deploying a 
fraud-detection model went from nearly a week to just a 
few hours.

•  84.51° (formally Dunnhumby USA), a customer science 
company. 84.51° used many different analytic products to 
create its various customer models. It typically would spend 
more than 318 hours each month moving data from its da-
tabase to its ML tools and back again, plus an additional 67 
hours a month to create models. When it switched to using 
the ML algorithms in its database, there was no more need 
for data movement. The data stayed in the database. The 
company immediately saved more than 318 hours of time 
per month. Because it was using its database as a compute 
engine, it was able to scale its analytics, and the time taken 
to generate or update its ML models went from more than 
67 hours to one hour per month. This gave the company 
a saving of sixteen days each month. It is now able to get 
significantly quicker results and can now provide its cus-
tomers with results much sooner after they have made a 
purchase.

•  Wargaming, the creators of World of Tanks and many 
other games. Wargaming uses in-database ML to model 
and predict how to interact with their more than 120 mil-
lion customers.
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Big Data Infrastructure
Although the traditional (modern) database is incredibly 
efficient at processing transactional data, in the age of big 
data new infrastructure is required to manage all the other 
forms of data and for longer-term storage of the data. The 
modern traditional database can cope with data volumes 
up to a few petabytes, but for this scale of data, traditional 
database solutions may become prohibitively expensive. 
This cost issue is commonly referred to as vertical scaling. 
In the traditional data paradigm, the more data an or-
ganization has to store and process within a reasonable 
amount of time, the larger the database server required 
and in turn the greater the cost for server configuration 
and database licensing. Organizations may be able to in-
gest and query one billion records on a daily/weekly bases 
using traditional databases, but for this scale of processing 
they may need to invest more than $100,000 just purchas-
ing the required hardware.

Hadoop is an open-source platform developed and 
released by the Apache Software Foundation. It is a well-
proven platform for ingesting and storing large volumes of 
data in an efficient manner and can be much less expensive 
than the traditional database approach. In Hadoop, the 
data are divided up and partitioned in a variety of ways, 
and these partitions or portions of data are spread across 
the nodes of the Hadoop cluster. The various analytic tools 
that work with Hadoop process the data that reside on each 
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of the nodes (in some instances these data can be memory 
resident), thus allowing for speedy processing of the data 
because the analytics is performed in parallel across the 
nodes. No data extraction or ETL process is needed. The 
data are analyzed where they are stored. 

Although Hadoop is the best known big-data proc-
essing framework, it is by no means the only one. Other 
big-data processing frameworks include Storm, Spark, and 
Flink. All of these frameworks are part of the Apache soft-
ware foundation projects. The difference between these 
frameworks lies in the fact that Hadoop is primarily de-
signed for batch processing of data. Batch processing is ap-
propriate where the dataset is static during the processing 
and where the results of the processing are not required 
immediately (or at least are not particularly time sensi-
tive). The Storm framework is designed for processing 
streams of data. In stream processing each element in the 
stream is processed as it enters the system, and conse-
quently the processing operations are defined to work on 
each individual element in the stream rather than on the 
entire data set. For example, where a batch process might 
return an average over a data set of values, a stream process 
will return an individual label or value for each element in 
the stream (such as calculating a sentiment score for each 
tweet in a Twitter stream). Storm is designed for real-time 
processing of data and according to the Storm website,1 it 
has been benchmarked at processing over a million tuples 
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per second per node. Spark and Flink are both hybrid (batch 
and stream) processing frameworks. Spark is a fundamen-
tally a batch processing framework, similar to Hadoop, but 
also has some stream processing capabilities whereas Flink 
is a stream processing framework that can also be used 
for batch processing. Although these big-data processing 
frameworks provide data scientists with a choice of tools 
to meet the specific big-data requirements of their project 
using these frameworks can have the drawback that the 
modern data scientist now has to analyze data in two dif-
ferent locations, in the traditional modern databases and 
in the big-data storage. The next section looks at how this 
particular issue is being addressed.

The Hybrid Database World
If an organization does not have data of the size and scale 
that require a Hadoop solution, then it will require only 
traditional database software to manage its data. How-
ever, some of the literature argues that the data-storage 
and processing tools available in the Hadoop world will 
replace the more traditional databases. It is very difficult 
to see this happening, and more recently there has been 
much discussion about having a more balanced approach 
to managing data in what is called the “hybrid database 
world.” The hybrid database world is where traditional da-
tabases and the Hadoop world coexist.

In the hybrid database world, the organization’s da-
tabases and Hadoop-stored data are connected and work 
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together, allowing the efficient processing, sharing, and 
analysis of the data. Figure 8 shows a traditional data 
warehouse, but instead of all the data being stored in the 
database or the data warehouse, the majority of the data 
is moved to Hadoop. A connection is created between the 
database and Hadoop, which allows the data scientist to 
query the data as if they all are in one location. The data 
scientist does not need to query the portion of data that 
is in the database warehouse and then in a separate step 
query the portion that is stored in Hadoop. He can query 
the data as he always has done, and the solution will iden-
tify what parts of the query need to be run in each loca-
tion. The results of the query arrived at in each location 
will be merged together and presented to him. Similarly, 
as the data warehouse grows, some the older data will not 
be queried as frequently. The hybrid database solution 
automatically moves the less frequently used data to the 
Hadoop environment and the more frequently used data 
to the warehouse. The hybrid database automatically bal-
ances the location of the data based on the frequency of 
access and the type of data science being performed.

One of the advantages of this hybrid solution is that 
the data scientist still uses SQL to query the data. He does 
not have to learn another data-query language or have to 
use a variety of different tools. Based on current trends, 
the main database vendors, data-integration solution 
vendors, and all cloud data-storage vendors will have solu-
tions similar to this hybrid one in the near future.
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Virtual
(90%)

RDBMS

90%

Data off-loaded 
and virtualized automatically

Analytics off-loaded
and results merged

Users and applications seamlessly access data 
from databases/data warehouses and Hadoop

10%

Virtual
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Figure 8  Databases, data warehousing, and Hadoop working together 
(inspired by a figure in the Gluent data platform white paper, 2017, https://
gluent.com/wp-content/uploads/2017/09/Gluent-Overview.pdf).

https://gluent.com/wp-content/uploads/2017/09/Gluent-Overview.pdf
https://gluent.com/wp-content/uploads/2017/09/Gluent-Overview.pdf
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Data Preparation and Integration

Data integration involves taking the data from different 
data sources and merging them to give a unified view of 
the data from across the organization. A good example of 
such integration occurs with medical records. Ideally, every 
person would have one health record, and every hospital, 
medical facility, and general practice would use the same 
patient identifier or same units of measures, the same 
grading system, and so on. Unfortunately, nearly every 
hospital has its own independent patient-management 
system, as does each of the medical labs within the hos-
pital. Think of the challenges in finding a patient’s record 
and assigning the correct results to the correct patient. 
And these are the challenges faced by just one hospital. In 
scenarios where multiple hospitals share patient data, the 
problem of integration becomes significant. It is because 
of these kind of challenges that the first three CRISP-DM 
stages take up to 70 to 80 percent of the total data science 
project time, with the majority of this time being allocated 
to data integration.

Integrating data from multiple data sources is difficult 
even when the data are structured. However, when some 
of the newer big-data sources are involved, where semi- or 
unstructured data are the norm, then the cost of integrat-
ing the data and managing the architecture can become 
significant. An illustrative example of the challenges of 
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data integration is customer data. Customer data can re-
side in many different applications (and the applications’ 
corresponding databases). Each application will contain a 
slightly different piece of customer data. For example, the 
internal data sources might contain the customer credit 
rating, customer sales, payments, call-center contact in-
formation, and so on. Additional data about the customer 
may also be available from external data sources. In this 
context, creating an integrated view of a customer re-
quires the data from each of these sources to be extracted 
and integrated.

The typical data-integration process will involve a 
number of different stages, consisting of extracting, clean-
ing, standardizing, transforming, and finally integrating 
to create a single unified version of the data. Extracting 
data from multiple data sources can be challenging be-
cause many data sources can be accessed only by using an 
interface particular to that data source. As a consequence, 
data scientists need to have a broad skill set to be able to 
interact with each of the data sources in order to obtain 
the data.

Once data have been extracted from a data source, the 
quality of the data needs to be checked. Data cleaning is a 
process that detects, cleans, or removes corrupt or inaccu-
rate data from the extracted data. For example, customer 
address information may have to be cleaned in order to 
convert it into a standardized format. In addition, there 
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may be duplicate data in the data sources, in which case it 
is necessary to identify the correct customer record that 
should be used and to remove all the other records from 
the data sets. It is important to ensure that the values used 
in a data set are consistent. For example, one source appli-
cation might use numeric values to represent a customer 
credit rating, but another might have a mixture of nu-
meric and character values. In such a scenario, a decision 
regarding what value to use is needed, and then the other 
representations should be mapped into the standardized 
representation. For example, imagine one of the attri-
butes in the data set is a customer’s shoe size. Custom-
ers can buy shoes from various regions around the world, 
but the numbering system used for shoe sizes in Europe, 
the United States, the United Kingdom, and other coun-
tries are slightly different. Prior to doing data analysis and 
modeling, these data values need to be standardized.

Data transformation involves the changing or com-
bining of the data from one value to another. A wide vari-
ety of techniques can be used during this step and include 
data smoothing, binning, and normalization as well as 
writing custom code to perform a particular transforma-
tion. A common example of data transformation is with 
processing a customer’s age. In many data science tasks, 
precisely distinguishing between customer ages is not 
particularly helpful. The difference between a 42-year-
old customer and a 43-year-old customer is generally not 
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significant, although differentiating between a 42-year-
old customer and a 52-year-old customer may be in-
formative. As a consequence, a customer’s age is often 
transformed from a raw age into a general age range. This 
process of converting ages into age ranges is an example of 
a data-transformation technique called binning. Although 
binning is relatively straightforward from a technical per-
spective, the challenge here is to identify the most appro-
priate range thresholds to apply during binning. Applying 
the wrong thresholds may obscure important distinctions 
in the data. Finding appropriate thresholds, however, may 
require domain specific knowledge or a process of trial-
and-error experimentation.

The final step in data integration involves creating the 
data that are used as input to the ML algorithms. This data 
is known as the analytics base table.

Creating the Analytics Base Table

The most important step in creating the analytics base 
table is the selection of the attributes that will be included 
in the analysis. The selection is based on domain knowl-
edge and on an analysis of the relationships between attri-
butes. Consider, for example, a scenario where the analysis 
is focused on customers of a service. In this scenario, some 
of the frequently used domain concepts that will inform 
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the design and selection of attributes include customer 
contract details, demographics, usage, changes in usage, 
special usage, life-cycle phase, network links, and so on. 
Furthermore, attributes that are found to have a high cor-
relation with other attributes are likely to be redundant, 
and so one of the correlated attributes should be excluded. 
Removing redundant features can result in simpler mod-
els which are easier to understand, and also reduces the 
likelihood of an ML algorithm returning a model that is 
fitted to spurious patterns in the data. The set of attri-
butes selected for inclusion define what is known as the 
analytics record. An analytics record typically includes both 
raw and derived attributes. Each instance in the analytics 
base table is represented by one analytics record, so the set 
of attributes included in the analytics record defines the 
representation of the instances the analysis will be carried 
out on.

After the analytics record has been designed, a set of 
records needs to extracted and aggregated to create a data 
set for analysis. When these records have been created and 
stored—for example, in a database—this data set is com-
monly referred to as the analytics base table. The analytics 
base table is the data set that is used as input to the ML 
algorithms. The next chapter introduces the field of ML 
and describes some of the most popular ML algorithms 
used in data science.



4

MACHINE LEARNING 101

Data science is best understood as a partnership between 
a data scientist and a computer. In chapter 2, we described 
the process the data scientist follows: the CRISP-DM life 
cycle. CRISP-DM defines a sequence of decisions the data 
scientist has to make and the activities he should engage in 
to inform and implement these decisions. In CRISP-DM, 
the major tasks for a data scientist are to define the prob-
lem, design the data set, prepare the data, decide on the 
type of data analysis to apply, and evaluate and interpret 
the results of the data analysis. What the computer brings 
to this partnership is the ability to process data and search 
for patterns in the data. Machine learning is the field of 
study that develops the algorithms that the computers fol-
low in order to identify and extract patterns from data. ML 
algorithms and techniques are applied primarily during 
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the modeling stage of CRISP-DM. ML involves a two-step 
process.

First, an ML algorithm is applied to a data set to iden-
tify useful patterns in the data. These patterns can be 
represented in a number of different ways. We describe 
some popular representations later in this chapter, but 
they include decision trees, regression models, and neural 
networks. These representations of patterns are known 
as “models,” which is why this stage of the CRISP-DM life 
cycle is known at the “modeling stage.” Simply put, ML al-
gorithms create models from data, and each algorithm is 
designed to create models using a particular representa-
tion (neural network or decision tree or other).

Second, once a model has been created, it is used for 
analysis. In some cases, the structure of the model is what 
is important. A model structure can reveal what the im-
portant attributes are in a domain. For example, in a medi-
cal domain we might apply an ML algorithm to a data set 
of stroke patients and use the structure of the model to 
identify the factors that have a strong association with 
stroke. In other cases, a model is used to label or classify 
new examples. For instance, the primary purpose of a 
spam-filter model is to label new emails as either spam or 
not spam rather than to reveal the defining attributes of 
spam email.
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Supervised versus Unsupervised Learning

The majority of ML algorithms can be classified as either 
supervised learning or unsupervised learning. The goal of 
supervised learning is to learn a function that maps from 
the values of the attributes describing an instance to the 
value of another attribute, known as the target attribute, 
of that instance. For example, when supervised learning 
is used to train a spam filter, the algorithm attempts to 
learn a function that maps from the attributes describing 
an email to a value (spam/not spam) for the target attri-
bute; the function the algorithm learns is the spam-filter 
model returned by the algorithm. So in this context the 
pattern that the algorithm is looking for in the data is the 
function that maps from the values of the input attributes 
to the values of the target attribute, and the model that 
the algorithm returns is a computer program that imple-
ments this function. Supervised learning works by search-
ing through lots of different functions to find the function 
that best maps between the inputs and output. However, 
for any data set of reasonable complexity there are so many 
combinations of inputs and possible mappings to outputs 
that an algorithm cannot try all possible functions. As a 
consequence, each ML algorithm is designed to look at or 
prefer certain types of functions during its search. These 
preferences are known as the algorithm’s learning bias. The 
real challenge in using ML is to find the algorithm whose 
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learning bias is the best match for a particular data set. 
Generally, this task involves experiments with a number 
of different algorithms to find out which one works best 
on that data set.

Supervised learning is “supervised” because each of 
the instances in the data set lists both the input values 
and the output (target) value for each instance. So the 
learning algorithm can guide its search for the best func-
tion by checking how each function it tries matches with 
the data set, and at the same time the data set acts as a 
supervisor for the learning process by providing feedback. 
Obviously, for supervised learning to take place, each in-
stance in the data set must be labeled with the value of the 
target attribute. Often, however, the reason a target attri-
bute is interesting is that it is not easy to directly measure, 
and therefore it is not possible to easily create a data set 
of labeled instances. In such scenarios, a great deal of time 
and effort is required to create a data set with the tar-
get values before a model can be trained using supervised  
learning.

In unsupervised learning, there is no target attribute. 
As a consequence, unsupervised-learning algorithms can 
be used without investing the time and effort in labeling 
the instances of the data set with a target attribute. How-
ever, not having a target attribute also means that learn-
ing becomes more difficult: instead of the specific problem 
of searching for a mapping from inputs to output that 
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matches the data, the algorithm has the more general task 
of looking for regularities in the data. The most common 
type of unsupervised learning is cluster analysis, where the 
algorithm looks for clusters of instances that are more sim-
ilar to each other than they are to other instances in the 
data. These clustering algorithms often begin by guessing 
a set of clusters and then iteratively updating the clusters 
(dropping instances from one cluster and adding them to 
another) so as to increase both the within-cluster similar-
ity and the diversity across clusters.

A challenge for clustering is figuring out how to mea-
sure similarity. If all the attributes in a data set are numeric 
and have similar ranges, then it probably makes sense just 
to calculate the Euclidean distance (better known as the 
straight-line distance) between the instances (or rows). 
Rows that are close together in the Euclidean space are 
then treated as similar. A number of factors, however, can 
make the calculation of similarity between rows complex. 
In some data sets, different numeric attributes have dif-
ferent ranges, with the result that a variation in row values 
in one attribute may not be as significant as a variation of 
a similar magnitude in another attribute. In these cases, 
the attributes should be normalized so that they all have 
the same range. Another complicating factor in calculating 
similarity is that things can be deemed similar in many 
different ways. Some attributes are sometimes more im-
portant than other attributes, so it might make sense to 
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weight some attributes in the distance calculations, or it 
may be that the data set includes nonnumeric data. These 
more complex scenarios may require the design of bespoke 
similarity metrics for the clustering algorithm to use.

Unsupervised learning can be illustrated with a con-
crete example. Imagine we are interested in analyzing the 
causes of Type 2 diabetes in white American adult males. 
We would begin by constructing a data set, with each row 
representing one person and each column representing 
an attribute that we believe are relevant for the study. For 
this example, we will include the following attributes: an 
individual’s height in meters and weight in kilos, the num-
ber of minutes he exercises per week, his shoe size, and 
the likelihood that he will develop diabetes expressed as 
a percentage based on a number of clinical tests and life-
style surveys. Table 2 illustrates a snippet from this data 

Table 2  Diabetes Study Data Set

ID Height 
(meters)

Weight 
(kilograms)

Shoe Size Exercise 
(minutes 
per week) 

Diabetes  
(% likelihood)

1 1.70 70 5 130 0.05

2 1.77 88 9 80 0.11

3 1.85 112 11 0 0.18

…
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set. Obviously, other attributes could be included—for 
example, a person’s age—and some attributes could be 
removed—for example, shoe size, which wouldn’t be par-
ticularly relevant in determining whether someone will 
develop diabetes. As we discussed in chapter 2, the choice 
of which attributes to include and exclude from a data set 
is a key task in data science, but for the purposes of this 
discussion we will work with the data set as is.

An unsupervised clustering algorithm will look for 
groups of rows that are more similar to each other than 
they are to the other rows in the data. Each of these groups 
of similar rows defines a cluster of similar instances. For 
instance, an algorithm can identify causes of a disease or 
disease comorbidities (diseases that occur together) by 
looking for attribute values that are relatively frequent 
within a cluster. The simple idea of looking for clusters of 
similar rows is very powerful and has applications across 
many areas of life. Another application of clustering rows 
is making product recommendations to customers. If a 
customer liked a book, song, or movie, then he may enjoy 
another book, song, or movie from the same cluster.

Learning Prediction Models

Prediction is the task of estimating the value of a target 
attribute for a given instance based on the values of other 
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attributes (or input attributes) for that instance. It is the 
problem that supervised ML algorithms solve: they gener-
ate prediction models. The spam-filter example we used 
to illustrate supervised learning is also applicable here: we 
use supervised learning to train a spam-filter model, and 
the spam-filter model is a prediction model. The typical 
use case of a prediction model is to estimate the target at-
tribute for new instances that are not in the training data 
set. Continuing our spam example, we train our spam fil-
ter (prediction model) on a data set of old emails and then 
use the model to predict whether new emails are spam or 
not spam. Prediction problems are possibly the most pop-
ular type of problem that ML is used for, so the rest of this 
chapter focuses on prediction as the case study for intro-
ducing ML. We begin our introduction to prediction mod-
els with a concept fundamental to prediction: correlation 
analysis. Then we explain how supervised ML algorithms 
work to create different types of popular prediction mod-
els, including linear-regression models, neural network 
models, and decision trees.

Correlations Are Not Causations, but Some Are Useful
A correlation describes the strength of association between 
two attributes.1 In a general sense, a correlation can de-
scribe any type of association between two attributes. 
The term correlation also has a specific statistical mean-
ing, in which it is often used as shorthand for “Pearson 
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correlation.” A Pearson correlation measures the strength 
of a linear relationship between two numeric attributes. It 
ranges in value from −1 to +1. The letter r is used to denote 
the Pearson value or coefficient between two attributes. 
A coefficient of r = 0 indicates that the two attributes are 
not correlated. A coefficient of r = +1 indicates that the 
two attributes have a perfect positive correlation, mean-
ing that every change in one attribute is accompanied by 
an equivalent change in the other attribute in the same 
direction. A coefficient of r = −1 indicates that the two at-
tributes have a perfect negative correlation, meaning that 
every change in one attribute is accompanied by the oppo-
site change in the other attribute. The general guidelines 
for interpreting Pearson coefficients are that a value of r ≈ 
±0.7 indicates a strong linear relationship between the at-
tributes, r ≈ ±0.5 indicates a moderate linear relationship, 
r ≈ ±0.3 indicates a weak relationship, and r ≈ 0 indicates 
no relationship between the attributes.

In the case of the diabetes study, from our knowl-
edge of how humans are physically made we would expect 
that there will be relationships between some of the at-
tributes listed in table 2. For example, it is generally the 
case that the taller someone is, the larger her shoe size is. 
We would also expect that the more someone exercises, 
the lighter she will be, with the caveat that a tall person 
is likely to be heavier than a shorter person who exercises 
the same amount. We would also expect that there will be 
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no obvious relationship between someone’s shoe size and 
the amount she exercises. Figure 9 presents three scat-
terplots that illustrate how these intuitions are reflected 
in the data. The scatterplot at the top shows how the data 
spread out if the plotting is based on shoe size and height. 
There is a clear pattern in this scatterplot: the data go 
from the bottom-left corner to the top-right corner, indi-
cating the relationship that as people get taller (or as we 
move to the right on the x axis), they also tend to wear 
larger shoes (we move up on the y axis). A pattern of data 
generally going from bottom left to top right in a scat-
terplot is indicative of a positive correlation between the 
two attributes. If we compute the Pearson correlation be-
tween shoe size and height, the correlation coefficient is 
r = 0.898, indicating a strong positive correlation between 
this pair of attributes. The middle scatterplot shows how 
the data spread out when we plot weight and exercise. 
Here the general pattern is in the opposite direction, 
from top left to bottom right, indicating a negative cor-
relation: the more people exercise, the lighter they are. 
The Pearson correlation coefficient for this pair of attri-
butes is r = −0.710, indicating a strong negative correla-
tion. The final scatterplot, at the bottom, plots exercise 
and shoe size. The data are relatively randomly distrib-
uted in this plot, and the Pearson correlation coefficient 
for this pair of attributes is r = −0.272, indicating no  
real correlation.



Figure 9  Scatterplots of shoe size and height, weight and exercise, and shoe 
size and exercise.



	 Machine Learning 101    109

The fact that the definition of a statistical Pearson cor-
relation is between two attributes might appear to limit 
the application of statistical correlation to data analysis 
to just pairs of attributes. Fortunately, however, we can 
circumvent this problem by using functions over sets of at-
tributes. In chapter 2, we introduced BMI as a function of 
a person’s weight and height. Specifically, it is the ratio of 
his weight (in kilograms) divided by his height (in meters) 
squared. BMI was invented in the nineteenth century by 
a Belgian mathematician, Adolphe Quetelet, and is used 
to categorize individuals as underweight, normal weight, 
overweight, or obese. The ratio of weight and height is 
used because BMI is designed to have a similar value for 
people who are in the same category (underweight, nor-
mal weight, overweight, or obese) irrespective of their 
height. We know that weight and height are positively cor-
related (generally, the taller someone is, the heavier he is), 
so by dividing weight by height, we control for the effect 
of height on weight. We divide by the square of the height 
because people get wider as they get taller, so squaring the 
height is an attempt to account for a person’s total vol-
ume in the calculation. Two aspects of BMI are interest-
ing for our discussion about correlation between multiple 
attributes. First, BMI is a function that takes a number 
of attributes as input and maps them to a new value. In 
effect, this mapping creates a new derived (as opposed to 
raw) attribute in the data. Second, because a person’s BMI 
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is a single numeric value, we can calculate the correlation 
between it and other attributes.

In our case study of the causes of Type 2 diabetes in 
white American adult males, we are interested in iden-
tifying if any of the attributes have a strong correlation 
with the target attribute describing a person’s likelihood 
of developing diabetes. Figure 10 presents three more 
scatterplots, each plotting the correlation between the 
target attribute (diabetes) and another attribute: height, 
weight, and BMI. In the scatterplot of height and diabetes, 
there doesn’t appear to be any particular pattern in the 
data indicating that there is no real correlation between 
these two attributes (the Pearson coefficient is r = −0.277). 
The middle scatterplot shows the distribution of the data 
plotted using weight and diabetes. The spread of the data 
indicates a positive correlation between these two attri-
butes: the more someone weighs, the more likely she is to 
develop diabetes (the Pearson coefficient is r = 0.655). The 
bottom scatterplot shows the data set plotted using BMI 
and diabetes. The pattern in this scatterplot is similar to 
the middle scatterplot: the data spread from bottom left 
to top right, indicating a positive correlation. In this scat-
terplot, however, the instances are more tightly packed 
together, indicating that the correlation between BMI and 
diabetes is stronger than the correlation between weight 
and diabetes. In fact, the Pearson coefficient for diabetes 
and BMI for this data set is r = 0.877.



Figure 10  Scatterplots of the likelihood of diabetes with respect to height, 
weight, and BMI.
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The BMI example illustrates that it is possible to cre-
ate a new derived attribute by defining a function that 
takes multiple attributes as input. It also shows that it 
is possible to calculate a Pearson correlation between 
this derived attribute and another attribute in the data 
set. Furthermore, a derived attribute can actually have a 
higher correlation with a target attribute than any of the 
attributes used to generate the derived attribute have 
with the target. One way of understanding why BMI has a 
higher correlation with the diabetes attribute compared to 
the correlation for either height or weight is that the likeli-
hood of someone developing diabetes is dependent on the 
interaction between height and weight, and the BMI at-
tribute models this interaction appropriately for diabetes. 
Clinicians are interested in people’s BMI because it gives 
them more information about the likelihood of someone 
developing Type 2 diabetes than either just the person’s 
height or just his weight does independently.

We have already noted that attribute selection is a key 
task in data science. So is attribute design. Designing a 
derived attribute that has a strong correlation with an at-
tribute we are interested in is often where the real value of 
data science is found. Once you know the correct attributes 
to use to represent the data, you are able to build accurate 
models relatively quickly. Uncovering and designing the 
right attributes is the difficult part. In the case of BMI, a 
human designed this derived attribute in the nineteenth 
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century. However, ML algorithms can learn interactions 
between attributes and create useful derived attributes 
by searching through different combinations of attributes 
and checking the correlation between these combinations 
and the target attribute. This is why ML is useful in con-
texts where many weak interacting attributes contribute 
to the process we are trying to understand.

Identifying an attribute (raw or derived) that has a 
high correlation with a target attribute is useful because 
the correlated attribute may give us insight into the pro-
cess that causes the phenomenon the target attribute rep-
resents: the fact that BMI is strongly correlated with the 
likelihood of a person’s developing diabetes indicates that 
it is not weight by itself that contributes to a person’s de-
veloping diabetes but whether that person is overweight. 
Also, if an input attribute is highly correlated with a target 
attribute, it is likely to be a useful input into the prediction 
model. Similar to correlation analysis, prediction involves 
analyzing the relationships between attributes. In order to 
be able to map from the values of a set of input attributes 
to a target attribute, there must be a correlation between 
the input attributes (or some derived function over them) 
and the target attribute. If this correlation does not exist 
(or cannot be found by the algorithm), then the input at-
tributes are irrelevant for the prediction problem, and the 
best a model can do is to ignore those inputs and always 
predict the central tendency of that target2 in the data set. 
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Conversely, if a strong correlation does exist between in-
put attributes and the target, then it is likely that an ML 
algorithm will be able to generate a very accurate predic-
tion model.

Linear Regression
When a data set is composed of numeric attributes, then 
prediction models based on regression are frequently 
used. Regression analysis estimates the expected (or aver-
age) value of a numeric target attribute when all the input 
attributes are fixed. The first step in a regression analysis 
is to hypothesize the structure of the relationship between 
the input attributes and the target. Then a parameterized 
mathematical model of the hypothesized relationship is 
defined. This parameterized model is called a regression 
function. You can think of a regression function as a ma-
chine that converts inputs to an output value and of the 
parameters as the settings that control the behavior of a 
machine. A regression function may have multiple param-
eters, and the focus of regression analysis is to find the 
correct settings for these parameters.

It is possible to hypothesize and model many different 
types of relationships between attributes using regression 
analysis. In principle, the only constraint on the structure 
of the relationship that can be modeled is the ability to 
define the appropriate regression function. In some do-
mains, there may be strong theoretical reasons to assert a 
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particular type of relationship, but in the absence of this 
type of domain theory it is good practice to begin by as-
suming the simplest form of relationship—namely, a lin-
ear relationship—and then, if need be, progress to model 
more complex relationships. One reason for starting with 
a linear relationship is that linear-regression functions are 
relatively easy to interpret. The other reason is the com-
monsense notion that keeping things as simple as possible 
is generally a good idea.

When a linear relationship is assumed, the regression 
analysis is called linear regression. The simplest application 
of linear regression is modeling the relationship between 
two attributes: an input attribute X and a target attribute 
Y. In this simple linear-regression problem, the regression 
function has the following form:

Y X= +ω ω0 1

This regression function is just the equation of a 
line (often written as y = mx + c) that is familiar to most 
people from high school geometry.3 The variables ω0 and 
ω1 are the parameters of the regression function. Modi-
fying these parameters changes how the function maps 
from the input X to the output Y. The parameter ω0 is the 
y-intercept (or c in high school geometry) that specifies 
where the line crosses the vertical y axis when X is equal to 
zero. The parameter ω1 defines the slope of the line (i.e., it 
is equivalent to m in the high school version).
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In regression analysis, the parameters of a regression 
function are initially unknown. Setting the parameters of 
a regression function is equivalent to searching for the line 
that best fits the data. The strategy for setting these pa-
rameters begins by guessing parameters values and then 
iteratively updating the parameters so as to reduce the 
overall error of the function on the data set. The overall 
error is calculated in three steps:

1.  The function is applied to the data set, and for each 
instance in the data set it estimates the value of the target 
attribute.

2.  The error of the function for each instance is calculated 
by subtracting the estimated value of the target attribute 
from the actual value of the target attribute.

3.  The error of the function for each instance is squared, 
and then these squared values are summed.

The error of the function for each instance is squared 
in step 3 so that the error in the instances where the func-
tion overestimates the target doesn’t cancel out with the 
error when it underestimates. Squaring the error makes 
the error positive in both cases. This measure of error is 
known as the sum of squared errors (SSE), and the strategy 
of fitting a linear function by searching for the parameters 
that minimize the SSE is known as least squares. The SSE 
is defined as



	 Machine Learning 101    117

SSE target predictioni i
i i

n

= −
=

∑( )2

where the data set contains n instances, targeti is the value 
of the target attribute for instance i in the data set, and 
predictioni is the estimate of the target by function for the 
same instance.

To create a linear-regression prediction model that 
estimates the likelihood of an individual’s developing 
diabetes with respect to his BMI, we replace X with the 
BMI attribute, Y with the diabetes attribute, and apply the 
least-squares algorithm to find the best-fit line for the dia-
betes data set. Figure 11a illustrates this best-fit line and 
where it lies relative to the instances in the data set. In 
figure 11b, the dashed lines show the error (or residual) 
for each instance for this line. Using the least-squares ap-
proach, the best-fit line is the line that minimizes the sum 
of the squared residuals. The equation for this line is

Diabetes BMI= − + ∗7 38431 0 55593. . .

The slope parameter value ω1 = 0.55593 indicates that 
for each increase of one unit in BMI, the model increases 
the estimated likelihood of a person developing diabetes 
by a little more than half a percent. In order to predict 
the likelihood of a person’s developing diabetes, we sim-
ply input his BMI into the model. For example, when BMI 
equals 20, the model returns a prediction of a 3.73 percent 
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Figure 11  (a) The best-fit regression line for the model “Diabetes = 
−7.38431 + 0.55593 BMI.” (b) The dashed vertical lines illustrate the residual 
for each instance.
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likelihood for the diabetes attribute, and when BMI equals 
21, the model predicts a 4.29 percent likelihood.4

Under the hood, a linear-regression model fitted  
using the least-squares method is actually calculating a 
weighted average over the instances. In fact, the intercept 
parameter value ω0 = −7.38431 ensures that the best-fit 
line goes through the point defined by the average BMI 
value and average diabetes value for the data set. If the av-
erage BMI value in the data set (BMI = 24.0932) is entered, 
the model estimates a 4.29 percent likelihood for the dia-
betes attribute, which is the average value for diabetes in 
the data set.

The weighting of the instances is based on the dis-
tance of the instance from the line: the farther an instance 
is away from the line, the larger the residual for that in-
stance, and the algorithm will weight that instance by 
the residual squared. One consequence of this weighting 
is that instances that have extreme values (outliers) can 
have a disproportionately large impact on the line-fitting 
process, resulting in the line being dragged away from the 
other instances. Thus, it is important to check for outliers 
in a data set prior to fitting a line to the data set (or, in 
other words, training a linear regression function on the 
data set) using the least squares algorithm.

Linear-regression models can be extended to take mul-
tiple inputs. A new parameter is added to the model for 
each new input attribute, and the equation for the model 
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is updated to include the result of multiplying the new at-
tribute by the new parameter within the summation. For 
example, to extend the model to include the exercise and 
weight attributes as input, the structure of the regression 
function becomes

Diabetes BMI Exercise Weight= + + +ω ω ω ω0 1 2 3 .

In statistics, a regression function that maps from 
multiple inputs to a single output in this way is known 
as a multiple linear regression function. The structure of a 
multi-input regression function is the basis for a range of 
ML algorithms, including neural networks.

Correlation and regression are similar concepts inso-
far as both are techniques that focus on the relationship 
across columns in the data set. Correlation is focused 
on exploring whether a relationship exists between two 
attributes, and regression is focused on modeling an as-
sumed relationship between attributes with the purpose 
of being able to estimate the value of one target attribute 
given the values of one or more input attributes. In the 
specific cases of Pearson correlation and linear regression, 
a Pearson correlation measures the degree to which two 
attributes have a linear relationship, and linear regression 
trained using least squares is a process to find the best-fit 
line that predicts the value of one attribute given the value  
of another.
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Neural Networks and Deep Learning
A neural network consists of a set of neurons that are con-
nected together. A neuron takes a set of numeric values as 
input and maps them to a single output value. At its core, a 
neuron is simply a multi-input linear-regression function. 
The only significant difference between the two is that in 
a neuron the output of the multi-input linear-regression 
function is passed through another function that is called 
the activation function.

These activation functions apply a nonlinear map-
ping to the output of the multi-input linear-regression 
function. Two commonly used activation functions are 
the logistic function and tanh function (see figure 12). Both 
functions take a single value x as input; in a neuron, this x 
value is the output from the multi-input linear-regression 
function the neuron has applied to its inputs. Also, both 
functions use Euler’s number e, which is approximately 
equal to 2.71828182. These functions are sometimes 
called squashing functions because they take any value be-
tween plus infinity and minus infinity and map it into a 
small, predefined range. The output range of the logistic 
function is 0 to 1, and the tanh function is −1 to 1. As a 
consequence, the outputs of a neuron that uses a logistic 
function as its activation function are always between 0 
and 1. The fact that both the logistic and tanh functions 
apply nonlinear mappings is clear in the S shape of the 
curves. The reason for introducing a nonlinear mapping 
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into a neuron is that one of the limitations of a multi-
input linear-regression function is that the function is by 
definition linear, and if all the neurons within a network 
implement only linear mappings, then the overall network 
is also limited to learning a linear functions. However, in-
troducing a nonlinear activation function in the neurons 
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Figure 12  Mapping the logistic and tanh functions as applied to the input x.
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of a network allows the network to learn more complex 
(nonlinear) functions.

It is worth emphasizing that each neuron in a neural 
network is doing a very simple set of operations:

1.  Multiplying each input by a weight.

2.  Adding together the results of the multiplications.

3.  Pushing this result through an activation function.

Operations 1 and 2 are just the calculation of a multi-
input regression function over the inputs, and operation 3 
is the application of the activation function.

All the connections between the neurons in a neural 
network are directed and have a weight associated with 
them. The weight on a connection coming into a neuron is 
the weight that the neuron applies to the input it receives 
on that connection when it is calculating the multi-input 
regression function over its inputs. Figure 13 illustrates 
the topological structure of a simple neural network. The 
squares on the left side of the figure, labeled A and B, rep-
resent locations in memory that we use to present input 
data to the network. No processing or transformation of 
data is carried out at these locations. You can think of 
these nodes as input or sensing neurons, whose output 
activation is set to the value of the input.5 The circles in 
figure 13 (labeled C, D, E, and F) represent the neurons 
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in the network. It is often useful to think of the neurons 
in a network as organized into layers. This network has 
three layers of neurons: the input layer contains A and B; 
one hidden layer contains C, D, and E; and the output layer 
contains F. The term hidden layer describes the fact that 
the neurons in a layer are in neither the input layer nor the 
output layer, so in this sense they are hidden from view.

The arrows connecting the neurons in the network 
represent the flow of information through the network. 
Technically, this particular network is a feed-forward neu-
ral network because there are no loops in the network: all 
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Figure 13  A simple neural network.
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the connections point forward from the input toward the 
output. Also, this network is considered fully connected 
because each neuron is connected to all the neurons in the 
next layer in the network. It is possible to create many dif-
ferent types of neural networks by changing the number 
of layers, the number of neurons in each layer, the type 
of activation functions used, the direction of the connec-
tions between layers, and other parameters. In fact, much 
of the work involved in developing a neural network for 
a particular task involves experimenting to find the best 
network layout for that task.

The labels on each arrow represent the weight that the 
node at the end of the arrow applies to the information 
passed along that connection. For example, the arrow con-
necting C with F indicates that the output from C is passed 
as an input to F, and F will apply the weight WC,F to the 
input from C.

If we assume that the neurons in the network in figure 
13 use a tanh activation function, then we can define the 
calculation carried out in neuron F of the network as

Output C D EC F D F E F= + +( )tanh , , ,ω ω ω

The mathematical definition of the processing carried 
out in neuron F shows that the final output of the network 
is calculated using a composition of a set of functions. The 
phrase “composing functions” just means that the output 
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of one function is used as input to another function. In 
this case, the outputs of neurons C, D, and E are used as in-
puts to neuron F, so the function implemented by F com-
poses the functions implemented by C, D, and E.

Figure 14 makes this description of neural networks 
more concrete, illustrating a neural network that takes a 
person’s body-fat percentage and VO2 max (a measure of 
the maximum amount of oxygen that a person can use in a 
minute) as input and calculates a fitness level for the that 
person.6 Each neuron in the middle layer of the network 
calculates a function based on the body-fat percentage and 
VO2 max: f1(), f2(), and f3(). Each of these functions mod-
els the interaction between the inputs in a different way. 
These functions essentially represent new attributes that 
are derived from the raw inputs to the network. They are 
similar to the BMI attribute described earlier, which was 
calculated as a function of weight and height. Sometimes 
it is possible to interpret what the output of a neuron in 
the network represents insofar as it is possible to provide 
a domain-theoretic description of what the derived attri-
bute represents and to understand why this derived attri-
bute is useful to the network. Often, however, the derived 
attribute calculated by a neuron will not have a symbolic 
meaning for humans. These attributes are instead captur-
ing interactions between the other attributes that the net-
work has found to be useful. The final node in the network, 
f4, calculates another function—over the outputs of f1(), 
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f2(), and f3()—the output of which is the fitness prediction 
returned by the network. Again, this function may not be 
meaningful to humans beyond the fact that it defines an 
interaction the network has found to have a high correla-
tion with the target attribute.

Training a neural network involves finding the correct 
weights for the connections in the network. To understand 
how to train a network, it is useful to begin by thinking 
about how to train the weights for a single neuron in the 
output layer of the network. Assume that we have a train-
ing data set that has both inputs and target output for 
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Figure 14  A neural network that predicts a person’s fitness level.
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each instance. Also, assume that the connections coming 
into the neuron already have weights assigned to them. 
If we take an instance from the data set and present the 
values of the input attributes for this instance to the net-
work, the neuron will output a prediction for the target. 
By subtracting this prediction from the value for the target 
in the data set, we can measure the neuron’s error on that 
instance. Using some basic calculus, it is possible to derive 
a rule to update the weights on the connections coming 
into a neuron given a measure of the neuron’s output error 
so as to reduce the neuron’s error. The precise definition 
of this rule will vary depending on the activation function 
used by the neuron because the activation function affects 
the derivative used in the derivation of the rule. But we 
can give the following intuitive explanation of how the 
weight-update rule works:

1.  If the error is 0, then we should not change the weights 
on the inputs.

2.  If the error is positive, we will decrease the error if we 
increase the neuron’s output, so we must increase the 
weights for all the connections where the input is positive 
and decrease the weights for the connections where the 
input is negative.

3.  If the error is negative, we will decrease the error if we 
decrease the neuron’s output, so we must decrease the 
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weights for all the connections where the input is posi-
tive and increase the weights for the connections where 
the input is negative.

The difficulty in training a neural network is that the 
weight-update rule requires an estimate of the error at a 
neuron, and although it is straightforward to calculate the 
error for each neuron in the output layer of the network, 
it is difficult to calculate the error for the neurons in the 
earlier layers. The standard way to train a neural network 
is to use an algorithm called the backpropagation algorithm 
to calculate the error for each neuron in the network and 
then use the weight-update rule to modify the weights in 
the network.7 The backpropagation algorithm is a super-
vised ML algorithm, so it assumes a training data set that 
has both inputs and the target output for each instance. 
The training starts by assigning random weights to each 
of the connections in the network. The algorithm then it-
eratively updates the weights in the network by showing 
training instances from the data set to the network and 
updating the network weights until the network is work-
ing as expected. The algorithm’s name comes from the fact 
that after each training instance is presented to the net-
work, the algorithm passes (or backpropagates) the error 
of the network back through the network starting at the 
output layer and at each layer in the network calculates the 
error for the neurons in that layer before sharing this error 
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back to the neurons in the preceding layer. The main steps 
in the algorithm are as follows:

1.  Calculate the error for the neurons in the output layer 
and use the weight-update rule to update the weights  
coming into these neurons.

2.  Share the error calculated at a neuron with each of the 
neurons in the preceding layer that is connected to that 
neuron in proportion to the weight of the connection  
between the two neurons.

3.  For each neuron in the preceding layer, calculate the 
overall error of the network that the neuron is responsi-
ble for by summing the errors that have been backpropa-
gated to it and use the result of this error summation to 
update the weights on the connections coming into this  
neuron.

4.  Work back through the rest of the layers in the network 
by repeating steps 2 and 3 until the weights between the 
input neurons and the first layer of hidden neurons have 
been updated.

In backpropagation, the weight updates for each neu-
rons are scaled to reduce but not to eliminate the neuron’s 
error in the training instance. The reason for this is that 
the goal of training the network is to enable it to generalize 
to new instances that are not in the training data rather 
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than to memorize the training data. So each set of weight 
updates nudges the network toward a set of weights that 
are generally better over the whole data set, and over many 
iterations the network converges on a set of weights that 
captures the general distribution of the data rather than 
the specifics of the training instances. In some versions of 
backpropagation, the weights are updated after a number 
of instances (or batch of instances) have been presented 
to the network rather than after each training instance. 
The only adjustment required in these versions is that the 
algorithm uses the average error of the network on a batch 
as the measure of error at the output layer for the weight-
update process.

One of the most exciting technical developments in 
the past 10 years has been the emergence of deep learn-
ing. Deep-learning networks are simply neural networks 
that have multiple8 layers of hidden units; in other words, 
they are deep in terms of the number of hidden layers 
they have. The neural network in figure 15 has five lay-
ers: one input layer on the left containing three neurons, 
three hidden layers (the black circles), and one output 
layer on the right containing two neurons. This network 
illustrates that it is possible to have a different number of 
neurons in each layer: the input layer has three neurons; 
the first hidden layer has five; each of the next two hid-
den layers has four; and the output layer has two. This 
network also shows that it is possible to have multiple 
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neurons in the output layer. Using multiple output neu-
rons is useful if the target is a nominal or ordinal data type 
that has distinct levels. In these scenarios, the network is 
set up so that there is one output neuron for each level, 
and the network is trained so that for each input only one  
of the output neurons outputs a high activation (denoting 
the predicted target level).

As in the previous networks we have looked at, the 
one shown in figure 15 is a fully connected, feed-forward 
network. However, not all networks are fully connected, 
feed-forward networks. In fact, myriad network topolo-
gies have been developed. For example, recurrent neural 

Figure 15  A deep neural network.
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networks (RNNs) introduce loops in the network topol-
ogy: the output of a neuron for one input is fed back into 
the neuron during the processing of the next input. This 
loop gives the network a memory that enables it to pro-
cess each input in the context of the previous inputs it has 
processed. As a consequence, RNNs are suitable for pro-
cessing sequential data such as language.9 Another well-
known deep neural network architecture is a convolutional 
neural network (CNN). CNNs were originally designed for 
use with image data (Le Cun 1989). A desirable character-
istic of an image-recognition network is that it should be 
able to recognize if a visual feature has occurred in an im-
age irrespective of where in the image it has occurred. For 
example, if a network is doing face recognition, it needs 
to be able to recognize the shape of an eye whether the 
eye is in the top-right corner of the image or in the center 
of the image. CNNs achieve this by having groups of neu-
rons that share the same set of weights on their inputs. 
In this context, think of a set of input weights as defining 
a function that returns true if a particular visual feature 
occurs in the set of pixels that are passed into the func-
tion. This means that each group of neurons that share 
their weights learns to identify a particular visual feature, 
and each neuron in the group acts as a detector for that 
feature. In a CNN, the neurons within each group are ar-
ranged so that each neuron examines a different location 
in the image, and the group covers the entire image. As a 
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consequence, if the visual feature the group detects occurs 
anywhere in the image, one of the neurons in the group will  
identify it.

The power of deep neural networks comes from the 
fact that they can automatically learn useful attributes, 
such as the feature detectors in CNNs. In fact, deep learn-
ing is sometimes known as representation learning because 
these deep networks are essentially learning a new rep-
resentation of the input data that is better at predicting 
the target output attribute than the original raw input is. 
Each neuron in a network defines a function that maps 
the values coming into the neuron into a new output at-
tribute. So a neuron in the first layer of a network might 
learn a function that maps the raw input values (such as 
weight and height) into an attribute that is more useful 
than individual input values (such as BMI). However, the 
output of this neuron, along with the outputs of its sister 
neurons in the first layer, is then fed into the neurons in 
the second layer, and these second-layer neurons try to 
learn functions that map the outputs of the first layer into 
new and yet more useful representations. This process of 
mapping inputs to new attributes and feeding these new 
attributes as inputs to new functions continues through-
out the network, and as a network gets deeper, it can learn 
more and more complex mappings from raw inputs to new 
attribute representations. It is the ability to automatically 
learn complex mappings of input data to useful attribute 
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representations that has made deep-learning models so 
accurate in tasks with high-dimensional inputs (such as 
image and text processing).

It has been known for a long time that making neural 
networks deeper allows the network to learn more com-
plex mappings of data. The reason that deep learning has 
not really taken off until the past few years, however, is 
that the standard combination of using a random-weight 
initialization followed by the backpropagation algorithm 
doesn’t work well with deep networks. One problem with 
the backpropagation algorithm is that the error gets 
shared out as the process goes back through the layers, so 
that in a deep network by the time the algorithm reaches 
the early layers of the network, the error estimates are not 
that useful anymore.10 As a result, the layers in the early 
parts of the network don’t learn useful transformations 
for the data. In the past few years, however, researchers 
have developed new types of neurons and adaptations to 
the backpropagation algorithm that deal with this prob-
lem. It has also been found that being careful with how 
the network weights are initialized is also helpful. Two 
other factors that formerly made training deep networks 
difficult were that it takes a great deal of computing power 
to train a neural network, and neural networks work best 
when there is a great deal of training data. However, as 
we have already discussed, in recent years significant in-
creases in the availability of computing power and large 
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data sets have made the training of deep networks more 
feasible.

Decision Trees
Linear regression and neural networks work best with 
numeric inputs. If the input attributes in a data set are 
primarily nominal or ordinal, however, then other ML al-
gorithms and models, such as decision trees, may be more 
appropriate.

A decision tree encodes a set of if then, else rules in 
a tree structure. Figure 16 illustrates a decision tree for 
deciding whether an email is spam or not. Rectangles with 
rounded corners represent tests on attributes, and the 
square nodes indicate decision, or classification, nodes. 
This tree encodes the following rules: if the email is from 
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Figure 16  A decision tree for determining whether an email is spam or not.
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an unknown sender, then it is spam; if it isn’t from an un-
known sender but contains suspicious words, then it is spam; 
if it is neither from an unknown sender nor contains suspi-
cious words, then it is not spam. In a decision tree, the deci-
sion for an instance is made by starting at the top of the 
tree and navigating down through the tree by applying a 
sequence of attribute tests to the instance. Each node in 
the tree specifies one attribute to test, and the process 
descends the tree node by node by choosing the branch 
from the current node with the label matching the value 
of the test attribute of the instance. The final decision is 
the label of the terminating (or leaf) node that the instance  
descends to.

Each path in a decision tree, from root to leaf, defines 
a classification rule composed of a sequence of tests. The 
goal of a decision-tree-learning algorithm is to find a set 
of classification rules that divide the training data set into 
sets of instances that have the same value for the target 
attribute. The idea is that if a classification rule can sepa-
rate out from a data set a subset of instances that have the 
same target value, and if this classification rule is true for a 
new example (i.e., the example goes down that path in the 
tree), then it is likely that the correct prediction for this 
new example is the target value shared by all the training 
instances that fit this rule.

The progenitor of most modern ML algorithms for 
decision-tree learning is the ID3 algorithm (Quinlan 1986). 
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ID3 builds a decision tree in a recursive, depth-first man-
ner, adding one node at a time, starting with the root 
node. It begins by selecting an attribute to test at the root 
node. A branch is grown from the root for each value in 
the domain of this test attribute and is labeled with that 
value. For example, a node with a binary test attribute will 
have two branches descending from it. The data set is then 
divided up: each instance in the data set is pushed down 
the branch and given a label that matches the value of the 
test attribute for the instance. ID3 then grows each branch 
using the same process used to create the root node: select 
a test attribute, add a node with branches, split the data 
by funneling the instances down the relevant branches. 
This process continues until all the instances on a branch 
have the same value for the target attribute, in which case 
a terminating node is added to the tree and labeled with 
the target attribute value shared by all the instances on  
the branch.11

ID3 chooses the attribute to test at each node in the 
tree so as to minimize the number of tests required to 
create pure sets (i.e., sets of instances that have the same 
value for the target attribute). One way to measure the pu-
rity of a set is to use Claude Shannon’s entropy metric. The 
minimum possible entropy for a set is zero, and a pure set 
has an entropy of zero. The numeric value of the maxi-
mum possible entropy for a set depends on the size of the 
set and the number of different types of elements that can 
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be in the set. A set will have maximum entropy when all 
the elements in it are of different types.12 ID3 selects the 
attribute to test at a node to be the attribute that results 
in the lowest-weighted entropy after splitting the data set 
at the node using this attribute. The weighted entropy 
for an attribute is calculated by (1) splitting the data set 
using the attribute; (2) calculating the entropy of the re-
sulting sets; (3) weighting each of these entropies by the 
fraction of data that is in the set; and (4) then summing  
the results.

Table 3 lists a data set of emails in which each email 
is described by a number of attributes and whether it is a 
spam email or not. The “attachment” attribute is true for 
emails that have an attachment and false otherwise (in this 
sample of emails, none of the emails has an attachment). 

Table 3  A Data Set of Emails: Spam or Not Spam?

Attachment Suspicious 
Words

Unknown 
Sender

Spam

False False True True

False False True True

False True False True

False False False False

False False False False
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The “suspicious words” attribute is true if the email con-
tains one or more words on a predefined list of suspicious 
words. The “unknown sender” attribute is true if the 
sender of the email is not in the recipient’s address book. 
This is the data set that was used to train the decision tree 
shown in figure 16. In this data set, the attributes “attach-
ment,” “suspicious words,” and “unknown sender” are the 
input attributes and the “spam” attribute is the target. The 
“unknown sender” attribute splits the data set into purer 
sets more than any of the other attributes does (one set 
containing instances where “Spam = True” and another set 
in which “Spam = False” for the majority of instances). As 
a consequence, “unknown sender” is put at the root node 
(see figure 17). After this initial split, all of the instances 

Unknown
sender?

Attachment Suspicious
words Spam

False True True

False False False

False False False

False
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False False True

False False True

True

Figure 17  Creating the root node in the tree. 
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Figure 18  Adding the second node to the tree.

on the right branch have the same target value. However, 
the instances on the left branch have different values 
for the target. Splitting the instances on the left branch  
using the “suspicious words” attribute results in two pure 
sets: one where “Spam = False” and another where “Spam 
= True.” So “suspicious words” is selected as the test attri-
bute for a new node on the left branch (see figure 18). At 
this point, the data subsets at the end of each branch are 
pure, so the algorithm finishes and returns the decision 
tree shown in figure 16.
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One of the strengths of decision trees is that they are 
simple to understand. Also it is possible to create very 
accurate models based on decision trees. For example, a 
random-forest model is composed of a set of decision trees, 
where each tree is trained on a random subsample of the 
training data, and the prediction returned by the model 
for an individual query is the majority prediction across all 
the trees in the forest. Although decision trees work well 
with both nominal and ordinal data, they struggle with 
numeric data. In a decision tree, a separate branch de-
scends from each node for each value in the domain of the 
attribute tested at the node. Numeric attributes, however, 
have an infinite number of values in their domains, with 
the implication that a tree would need an infinite number 
of branches. One solution to this problem is to transform 
numeric attributes into ordinal attributes, although doing 
so requires the definition of appropriate thresholds, which 
can also be difficult.

Finally, because a decision-tree-learning algorithm 
repeatedly divides a data set as a tree becomes large, it 
becomes more sensitive to noise (such as mislabeled in-
stances). The subset of examples on each branch becomes 
smaller, and so the data sample each classification rule is 
based on becomes smaller. The smaller the data sample 
used to define a classification rule, the more sensitive to 
noise the rule becomes. As a consequence, it is a good idea 
to keep decision trees shallow. One approach is to stop the 
growth of a branch when the number of instances on the 



	 Machine Learning 101    143

branch is still less than a predefined threshold (e.g., 20 
instances). Other approaches allow the tree to grow and 
then prune the tree back. These approaches typically use 
statistical tests or the performance of the model on a set of 
instances specifically chosen for this task to identify splits 
near the bottom of the tree that should be removed.

Bias in Data Science

The goal of ML is to create models that encode appropriate 
generalizations from data sets. Two major factors contrib-
ute to the generalization (or model) that an ML algorithm 
will generate from a data set. The first is the data set the 
algorithm is run on. If the data set is not representative of 
the population, then the model the algorithm generates 
won’t be accurate. For example, earlier we developed a re-
gression model that predicted the likelihood that an indi-
vidual will develop Type 2 diabetes based on his BMI. This 
model was generated from a data set of American white 
males. As a consequence, this model is unlikely to be accu-
rate if used to predict the likelihood of diabetes for females 
or for males of different race or ethnic backgrounds. The 
term sample bias describes how the process used to select 
a data set can introduce biases into later analysis, be it a 
statistical analysis or the generation of predictive models 
using ML.
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The second factor that affects the model generated 
from a data set is the choice of ML algorithm. There are 
many different ML algorithms, and each one encodes a 
different way to generalize from a data set. The type of 
generalization an algorithm encodes is known as the learn-
ing bias (or sometimes the modeling or selection bias) of the 
algorithm. For example, a linear-regression algorithm en-
codes a linear generalization from the data and as a result 
ignores nonlinear relationships that may fit the data more 
closely. Bias is normally understood as a bad thing. For 
example, the sampling bias is a bias that a data scientist 
will try to avoid. However, without a learning bias there 
can be no learning, and the algorithm will only be able to 
memorize the data.

However, because ML algorithms are biased to look 
for different types of patterns, and because there is no one 
learning bias across all situations, there is no one best ML 
algorithm. In fact, a theorem known as the “no free lunch 
theorem” (Wolpert and Macready 1997) states that there 
is no one best ML algorithm that on average outperforms 
all other algorithms across all possible data sets. So the 
modeling phase of the CRISP-DM process normally in-
volves building multiple models using different algorithms 
and comparing the models to identify which algorithm 
generates the best model. In effect, these experiments are 
testing which learning bias on average produces the best 
models for the given data set and task.
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Evaluating Models: Generalization Not Memorization

Once a data scientist has selected a set of ML algorithms 
to experiment with on a data set, the next major task is to 
create a test plan for how the models generated by these 
algorithms will be evaluated. The goal of the test plan is to 
ensure that the evaluation provides realistic estimates of 
model performance on unseen data. A prediction model 
that simply memorizes a data set is unlikely to do a good 
job at estimating values for new examples. One problem 
with just memorizing data is that most data sets will con-
tain noise. So a prediction model that merely memorizes 
data is also memorizing the noise in the data. Another 
problem with just memorizing the data is that it reduces 
the prediction process to a table lookup and leaves un-
solved the problem of how to generalize from the training 
data to new examples that aren’t in the table.

One part of the test plan relates to how the data set 
is used to train and test the models. The data set has to 
be used for two different purposes. The first is to find 
which algorithm generates the best models. The second 
is to estimate the generalization performance of the best 
model—that is, how well the model is likely to do on un-
seen data. The golden rule for evaluating models is that 
models should never be tested on the same data they were 
trained on. Using the same data for training and test-
ing models is equivalent to giving a class of students the 



The golden rule for  
evaluating models is 
that models should 
never be tested on the 
same data they were 
trained on.
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questions on an exam the night before the test is held. The 
students will of course do very well in the test, and their 
scores will not reflect their real proficiency with the gen-
eral course material. So, too, with ML models: if a model 
is evaluated on the same data that it is trained on, the re-
sults of the evaluation will be optimistic compared to the 
model’s real performance. The standard process for ensur-
ing that the models aren’t able to peek at the test data dur-
ing training is to split the data into three parts: a training 
set, a validation set, and a test set. The proportions of the 
split will vary between projects, but splits of 50:20:30 and 
40:20:40 are common. The size of the data set is a key fac-
tor in determining the splits: generally, the larger the data 
set, the larger the test set. The training set is used to train 
an initial set of models. The validation set is then used 
to compare the performance of these models on unseen 
data. Comparing the performance of these initial models 
on the validation set enables us to determine which algo-
rithm generated the best model. Once the best algorithm 
has been selected, the training and validation set can be 
merged back together into a larger training set, and this 
data set is fed into the best algorithm to create the final 
model. It is crucial that the test set is not used during the 
process to select the best algorithm, nor should it be used 
to train this final model. If these caveats are followed, then 
the test set can be used to estimate the generalization per-
formance of this final model on unseen data.
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The other major component of the test plan is to 
choose the appropriate evaluation metrics to use during 
the testing. In general, models are evaluated based on 
how often the outputs of the model match the outputs 
listed in the test set. If the target attribute is a numeric 
value, then the sum of squared errors is one way to mea-
sure the accuracy of a model on the test set. If the target 
attribute is nominal or ordinal, then the simplest way to 
estimate the model accuracy is to calculate the proportion 
of examples of the test set the model got correct. How-
ever, in some contexts it is important to include an error 
analysis within the evaluation. For example, if a model 
is used in a medical diagnosis setting, it is much more 
serious if the model diagnoses an ill patient as healthy 
than if it diagnoses a healthy patient as ill. Diagnosing 
an ill patient as healthy may result in the patient being 
sent home without receiving appropriate medical atten-
tion, but if a model diagnoses a healthy patient as ill, 
this error is likely to be discovered through later test-
ing the patient will receive. So the evaluation metric 
used to evaluate these types of models should weight 
one type of error more than the other when estimating 
model performance. Once the test plan has been cre-
ated, the data scientist can begin training and evaluating  
models.
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Summary

This chapter started by noting that data science is a part-
nership between a data scientist and a computer. Machine 
learning provides a set of algorithms that generate models 
from a large data set. However, whether these models are 
useful will depend on the data scientist’s expertise. For a 
data science project to succeed, the data set should be rep-
resentative of the domain and should include relevant at-
tributes. The data scientist should evaluate a range of ML 
algorithms to find which one generates the best models. 
The model-evaluation process should follow the golden 
rule that a model should never be evaluated on the data 
it was trained on.

Currently in most data science projects, the primary 
criterion for selecting which model to use is model accu-
racy. However, in the near future, data usage and privacy 
regulations may affect the selection of ML algorithms. 
For example, the General Data Protection Regulations 
will come into force in the European Union on May 25, 
2018. We discuss these regulations in relation to data us-
age in chapter 6, but for now we just want to point out that 
some articles in the regulations may appear to mandate a 
“right to explanation” in relation to automated decision 
processes.13 A potential implication of such a right is that 
using models, such a neural networks, that are difficult to 
interpret for decisions relating to individuals may become 
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problematic. In such circumstances, the transparency and 
ease of explanation of some models, such as decision trees, 
may make the use of these models more appropriate.

Finally, the world changes, and models don’t. Implicit 
in the ML process of data set construction, model training, 
and model evaluation is the assumption that the future 
will be the same as the past. This assumption is known 
as the stationarity assumption: the processes or behaviors 
that are being modeled are stationary through time (i.e., 
they don’t change). Data sets are intrinsically historic in 
the sense that data are representations of observations 
that were made in the past. So, in effect, ML algorithms 
search through the past for patterns that might general-
ize to the future. Obviously, this assumption doesn’t al-
ways hold. Data scientists use the term concept drift to 
describe how a process or behavior can change, or drift, as 
time passes. This is why models go out of date and need to 
be retrained and why the CRISP-DM process includes the 
outer circle shown in figure 4 to emphasize that data sci-
ence is iterative. Processes need to put in place postmodel 
deployment to ensure that a model has not gone stale, and 
when it has, it should be retrained. The majority of these 
decisions cannot be automated and require human insight 
and knowledge. A computer will answer the question it is 
posed, but unless care is taken, it is very easy to pose the 
wrong question.
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STANDARD DATA SCIENCE TASKS

One of the most important skills for a data scientist is the 
ability to frame a real-world problem as a standard data 
science task. Most data science projects can be classified as 
belonging to one of four general classes of task:

•  Clustering (or segmentation)

•  Anomaly (or outlier) detection

•  Association-rule mining

•  Prediction (including the subproblems of classification 
and regression)

Understanding which task a project is targeting can 
help with many project decisions. For example, training 
a prediction model requires that each of the instances in 
the data set include the value of the target attribute. So 
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knowing that the project is doing prediction gives guidance 
(through requirements) in terms of data set design. Un-
derstanding the task also informs which ML algorithm(s) 
to use. Although there are a large number of ML algo-
rithms, each algorithm is designed for a particular data-
mining task. For example, ML algorithms that generate 
decision-tree models are designed primarily for prediction 
tasks. There is a many-to-one relationship between ML al-
gorithms and a task, so knowing the task doesn’t tell you 
exactly which algorithm to use, but it does define a set of 
algorithms that are designed for the task. Because the data 
science task affects both the data set design and the selec-
tion of ML algorithms, the decision regarding which task 
the project will target has to be made early on in the proj-
ect life cycle, ideally during the business-understanding 
phase of the CRISP-DM life cycle. To provide a better un-
derstanding of each of these tasks, this chapter describes 
how some standard business problems map to tasks.

Who Are Our Customers? (Clustering)

One of the most frequent application areas of data science 
in business is to support marketing and sales campaigns. 
Designing a targeted marketing campaign requires an un-
derstanding of the target customer. Most businesses have 
a diverse range of customers with a variety of needs, so 
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using a one-size-fits-all approach is likely to fail with a 
large segment of a customer base. A better approach is to 
try to identify a number of customer personas or customer 
profiles, each of which relates to a significant segment of 
the customer base, and then to design targeted marketing 
campaigns for each persona. These personas can be created 
using domain expertise, but it is generally a good idea to 
base the personas on the data that the business has about 
its customers. Human intuition about customers can of-
ten miss important nonobvious segments or not provide 
the level of granularity that is required for nuanced mar-
keting. For example, Meta S. Brown (2014) reports how 
in one data science project the well-known stereotype 
soccer mom (a suburban homemaker who spends a great 
deal of time driving her children to soccer or other sports 
practice) didn’t resonate with a customer base. However, 
using a data-driven clustering process identified more fo-
cused personas, such as mothers working full-time outside 
the home with young children in daycare and mothers who 
work part-time with high-school-age children and women 
interested in food and health and who do not have children. 
These customer personas define clearer targets for mar-
keting campaigns and may highlight previously unknown 
segments in the customer base.

The standard data science approach to this type of 
analysis is to frame the problem as a clustering task. Clus-
tering involves sorting the instances in a data set into 
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subgroups containing similar instances. Usually clustering 
requires an analyst to first decide on the number of sub-
groups she would like identified in the data. This decision 
may be based on domain knowledge or informed by proj-
ect goals. A clustering algorithm is then run on the data 
with the desired number of subgroups input as one of the 
algorithms parameters. The algorithm then creates that 
number of subgroups by grouping instances based on the 
similarity of their attribute values. Once the algorithm has 
created the clusters, a human domain expert reviews the 
clusters to interpret whether they are meaningful. In the 
context of designing a marketing campaign, this review 
involves checking whether the groups reflect sensible cus-
tomer personas or identifies new personas not previously 
considered.

The range of attributes that can be used to describe 
customers for clustering is vast, but some typical examples 
include demographic information (age, gender, etc.), loca-
tion (ZIP code, rural or urban address, etc.), transactional 
information (e.g., what products or services they have pur-
chased), the revenue the company generates from them, 
how long have they been customers, if they are a mem-
ber of a loyalty-card scheme, whether they ever returned 
a product or made a complaint about a service, and so on. 
As is true of all data science projects, one of the biggest 
challenges with clustering is to decide which attributes to 
include and which to exclude so as to get the best results. 
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Making this decision on attribute selection will involve it-
erations of experiments and human analysis of the results 
of each iteration.

The best-known ML algorithm for clustering is the 
k-means algorithm. The k in the name signals that the 
algorithm looks for k clusters in the data. The value of k 
is predefined and is often set through a process of trial-
and-error experimentation with different values of k. The 
k-means algorithm assumes that all the attributes describ-
ing the customers in the data set are numeric. If the data 
set contains nonnumeric attributes, then these attributes 
need to be mapped to numeric values in order to use k-
means, or the algorithm will need to be amended to handle 
these nonnumeric values. The algorithm treats each cus-
tomer as a point in a point cloud (or scatterplot), where 
the customer’s position is determined by the attribute val-
ues in her profile. The goal of the algorithm is to find the 
position of each cluster’s center in the point cloud. There 
are k clusters, so there are k cluster centers (or means)—
hence the name of the algorithm.

The k-means algorithm begins by selecting k instances 
to act as initial cluster centers. Current best practice is to 
use an algorithm called “k-means++” to select the initial 
cluster centers. The rationale behind k-means++ is that it 
is a good idea to spread out the initial cluster centers as 
much as possible. So in k-means++ the first cluster cen-
ter is set by randomly selecting one of the instances in 
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the data set. The second and subsequent cluster centers 
are set by selecting an instance from the data set with 
the probability that an instance selected is proportional 
to the squared distance from the closest existing cluster 
center. Once all k cluster centers have been initialized, the 
algorithm works by iterating through a two-step process: 
first, assigning each instance to the nearest cluster center, 
and then, second, updating the cluster center to be in the 
middle of the instances assigned to it. In the first itera-
tion the instances are assigned to the nearest cluster cen-
ter returned by the k-means++ algorithm, and then these 
cluster centers are moved so that they are positioned at 
the center of instances assigned to them. Moving the clus-
ter centers is likely to move them closer to some instances 
and farther away from other instances (including farther 
away from some instances assigned to the cluster center). 
The instances are then reassigned, again to the closest up-
dated cluster center. Some instances will remain assigned 
to the same cluster center, and others may be reassigned 
to a new cluster center. This process of instance assign-
ment and center updating continues until no instances are 
assigned to a new cluster center during an iteration. The 
k-means algorithm is nondeterministic, meaning that dif-
ferent starting positions for the cluster centers will likely 
produce different clusters. As a result, the algorithm is 
typically run several times, and the results of these differ-
ent runs are then compared to see which clusters appear 
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most sensible given the data scientist’s domain knowledge 
and understanding.

When a set of clusters for customer personas has been 
deemed to be useful, the clusters are often given names 
to reflect the main characteristics of the cluster persona. 
Each cluster center defines a different customer persona, 
with the persona description generated from the attri-
bute values of the associated cluster center. The k-means 
algorithm is not required to return equal-size clusters, 
and, in fact, it is likely to return different-size clusters. 
The sizes of the clusters can be useful, though, because 
they can help to guide marketing. For example, the clus-
tering process may reveal small, focused clusters of cus-
tomers that current marketing campaigns are missing. Or 
an alternative strategy might be to focus on clusters that 
contain customers that generate a great deal of revenue. 
Whatever marketing strategy is adopted, understanding 
the segments within a customer base is the prerequisite 
to marketing success.

One of the advantages of clustering as an analytics 
approach is that it can be applied to most types of data. 
Because of its versatility, clustering is often used as a data-
exploration tool during the data-understanding stage of 
many data science projects. Also, clustering is also useful 
across a wide range of domains. For example, it has been 
used to analyze students in a given course in order to iden-
tify groups of students who need extra support or prefer 
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different learning approaches. It has also been used to 
identify groups of similar documents in a corpus, and in 
science it has been used in bio-informatics to analyze gene 
sequences in microarray analysis.

Is This Fraud? (Anomaly Detection)

Anomaly detection or outlier analysis involves searching 
for and identifying instances that do not conform to the 
typical data in a data set. These nonconforming cases are 
often referred to as anomalies or outliers. Anomaly detec-
tion is often used in analyzing financial transactions in 
order to identify potential fraudulent activities and to trig-
ger investigations. For example, anomaly detection might 
uncover fraudulent credit card transactions by identifying 
transactions that have occurred in an unusual location or 
that involve an unusually large amount compared to other 
transactions on a particular credit card.

The first approach that most companies typically use 
for anomaly detection is to manually define a number of 
rules based on domain expertise that help with identify-
ing anomalous events. This rule set is often defined in 
SQL or in another language and is run against the data 
in the business databases or data warehouse. Some pro-
gramming languages have begun to include specific com-
mands to facilitate the coding of these types of rules. For 
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example, database implementations of SQL now includes 
a MATCH_RECOGNIZE function to facilitate pattern 
matching in data. A common pattern in credit card fraud 
is that when a credit card gets stolen, the thief first checks 
that the card is working by purchasing a small item on the 
card, and then if that transaction goes through, the thief 
as quickly as possible follows that purchase with the pur-
chase of an expensive item before the card is canceled. The 
MATCH_RECOGNIZE function in SQL enables database 
programmers to write scripts that identify sequences of 
transactions on a credit card that fit this pattern and ei-
ther block the card automatically or trigger a warning to 
the credit-card company. Over time, as more anomalous 
transactions are identified—for example, by customers re-
porting fraudulent transactions—the set of rules identify-
ing anomalous transactions is expanded to handle these 
new instances.

The main drawback with a rule-based approach to 
anomaly detection is that defining rules in this way means 
that anomalous events can be identified only after they 
have occurred and have come to the company’s atten-
tion. Ideally, most organizations would like to be able to 
identify anomalies when they first happen or if they have 
happened but have not been reported. In some ways, 
anomaly detection is the opposite of clustering: the goal 
of clustering is to identify groups of similar instances, 
whereas the goal of anomaly detection is to find instances 
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that are dissimilar to the rest of the data in the data set. 
By this intuition, clustering can also be used to automati-
cally identify anomalies. There are two approaches to us-
ing clustering for anomaly detection. The first is that the 
normal data will be clustered together, and the anomalous 
records will be in separate clusters. The clusters containing 
the anomalous records will be small and so will be clearly 
distinct from the large clusters for the main body of the 
records. The second approach is to measure the distance 
between each instance and the center of the cluster. The 
farther away the instance is from the center of the clus-
ter, the more likely it is to be anomalous and thus to need 
investigation.

Another approach to anomaly detection is to train a 
prediction model, such as a decision tree, to classify in-
stances as anomalous or not. However, training such a 
model normally requires a training data set that contains 
both anomalous records and normal records. Also, it is not 
enough to have just a few instances of anomalous records; 
in order to train a normal prediction model, the data set 
needs to contain a reasonable number of instances from 
each class. Ideally, the data set should be balanced; in a 
binary-outcome case, balance would imply a 50:50 split in 
the data. In general, acquiring this type of training data for 
anomaly detection is not feasible: by definition, anomalies 
are rare events, occurring maybe in 1 to 2 percent or less of 
the data. This data constraint precludes the use of normal, 
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off-the-shelf prediction models. There are, however, ML 
algorithms known as one-class classifiers that are designed 
to deal with the type of imbalanced data that are typical of 
anomaly-detection data sets.

The one-class support-vector machine (SVM) algorithm 
is a well-known one-class classifier. In general terms, the 
one-class SVM algorithm examines the data as one unit 
(i.e., a single class) and identifies the core characteristics 
and expected behavior of the instances. The algorithm 
will then indicate how similar or dissimilar each instance 
is from the core characteristics and expected behavior. 
This information can then be used to identify instances 
that warrant further investigation (i.e., the anomalous re-
cords). The more dissimilar an instance is, the more likely 
that it should be investigated.

The fact that anomalies are rare means that they can 
be easy to miss and difficult to identify. As a result, data 
scientists often combine a number of different models to 
detect anomalies. The idea is that different models will 
capture different types of anomalies. In general, these 
models are used to supplement the known rules within the 
business that already define various types of anomalous 
activity. The different models are integrated together into 
a decision-management solution that enables the predic-
tions from each of the models to feed into a decision of 
the final predicted outcome. For example, if a transaction 
is identified as fraudulent by only one out of four models, 
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the decision system may decide that it isn’t a true case 
of fraud, and the transaction can be ignored. Conversely, 
however, if three or four out of the four models have iden-
tified the transaction as possible fraud, then the transac-
tion would be flagged for a data scientist to investigate.

Anomaly detection can be applied to many problem 
domains beyond credit card fraud. More generally, it 
is used by clearinghouses to identify financial transac-
tions that require further investigation as potentially 
fraudulent or as cases of money laundering. It is used in 
insurance-claims analysis to identify claims that are not 
in keeping with a company’s typical claims. In cybersecu-
rity, it is used to identify network intrusions by detecting 
possible hacking or untypical behavior by employees. In 
the medical domain, identifying anomalies in medical re-
cords can be useful for diagnosing disease and in studying 
treatments and their effects on the body. Finally, with the 
proliferation of sensors and the increasing usage of Inter-
net of Things technology, anomaly detection will play an 
important role in monitoring data and alerting us when 
abnormal sensor events occur and action is required.

Do You Want Fries with That? (Association-Rule Mining)

A standard strategy in sales is cross-selling, or suggest-
ing to customers who are buying products that they may 
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also want to purchase other related or complementary 
products. The idea is to increase the customers’ overall 
spending by getting them to purchase more products and 
at the same time to improve customer service by remind-
ing customers of products they probably wanted to buy 
but may have forgotten to do so. The classic example of 
the cross-sell is when a waiter in a hamburger restaurant 
asks a customer who has just ordered a hamburger, “Do 
you want fries with that?” Supermarkets and retailer busi-
nesses know that shoppers purchase products in groups, 
and they use this information to set up cross-selling op-
portunities. For example, supermarket customers who 
buy hot dogs are also likely to purchase ketchup and beer. 
Using this type of information, a store can plan the lay-
out of the products. Locating hot dogs, ketchup, and beer 
near each other in the store helps customers to collect this 
group of items quickly and may also boost the store sales 
because customers who are purchasing hot dogs might 
see and purchase the ketchup and beer that they forgot 
they needed. Understanding these types of associations 
between products is the basis of all cross-selling.

Association-rule mining is an unsupervised-data-anal-
ysis technique that looks to find groups of items that fre-
quently co-occur together. The classic case of association 
mining is market-basket analysis, wherein retail companies 
try to identify sets of items that are purchased together, 
such as hot dogs, ketchup, and beer. To do this type of 
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data analysis, a business keeps track of the set (or basket) 
of items that each customer bought during each visit to 
the store. Each row in the data set describes one basket of 
goods purchased by a particular customer on a particular 
visit to the store. So the attributes in the data set are the 
products the store sells. Given these data, association-rule 
mining looks for items that co-occur within each basket 
of goods. Unlike clustering and anomaly detection, which 
focus on identifying similarities or differences between 
instances (or rows) in a data set, association-rule mining 
focuses on looking at relationships between attributes 
(or columns) in a data set. In a general sense, it looks  
for correlations—measured as co-occurrences—between 
products. Using association-rule mining, a business can 
start to answer questions about its customers’ behaviors 
by looking for patterns that may exist in the data. Ques-
tions that market-basket analysis can be used to answer 
include: Did a marketing campaign work? Have this custom-
er’s buying patterns changed? Has the customer had a major 
life event? Does the product location affect buying behavior? 
Who should we target with our new product?

The Apriori algorithm is the main algorithm used to 
produce the association rules. It has a two-step process:

1.  Find all combinations of items in a set of transactions 
that occur with a specified minimum frequency. These 
combinations are called frequent itemsets.
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2.  Generate rules that express the probable co-occurrence 
of items within frequent itemsets. The Apriori algorithm 
calculates the probability of an item being present in a 
frequent itemset given that another item or items are 
present.

The Apriori algorithm generates association rules that 
express probabilistic relationships between items in fre-
quent itemsets. An association rule is of the form “IF ante-
cedent, THEN consequent.” It states that an item or group 
of items, the antecedent, implies the presence of another 
item in the same basket of goods, the consequent, with 
some probability. For example, a rule derived from a fre-
quent itemset containing A, B, and C might state that if A 
and B are included in a transaction, then C is likely to also 
be included:

IF {hot-dogs, ketchup}, THEN {beer}.

This rule indicates that customers who are buying 
hot dogs and ketchup are also likely to buy beer. A frequent 
example of the power of association-rule mining is the 
beer-diapers example that describes how an unknown US 
supermarket in the 1980s used an early computer sys-
tem to analyze its checkout data and identified an un-
usual association between diapers and beer in customer 
purchases. The theory developed to understand this rule 
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was that families with young children were preparing for 
the weekend and knew that they would need diapers and 
would have to socialize at home. The store placed the two 
items near each other, and sales soared. The beer-and-dia-
pers story has been debunked as apocryphal, but it is still 
a useful example of the potential benefits of association-
rule mining for retail businesses.

Two main statistical measures are linked with associa-
tion rules: support and confidence. The support percentage 
of an association rule—or the ratio of transactions that 
include both the antecedent and consequent to the total 
number of transactions—indicates how frequently the 
items in the rule occur together. The confidence percent-
age of an association rule—or the ratio of the number of 
transactions that include both the antecedent and con-
sequent to the number of transactions that includes the 
antecedent—is the conditional probability that the con-
sequent will occur given the occurrence of the antecedent. 
So, for example, a confidence of 75 percent for the asso-
ciation rule relating hot dogs and ketchup with beer would 
indicate that in 75 percent of cases where customers pur-
chased both hot dogs and ketchup, they also purchased beer. 
The support score of a rule simply records the percentage 
of baskets in the data set where the rule holds. For exam-
ple, a support of 5 percent indicates that 5 percent of all 
the baskets in the data set contain all three items in the 
rule “hot dogs, ketchup, and beer.”
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Even a small data set can result in the generation of 
a large number of association rules. In order to control 
the complexity of the analysis of these rules, it is usual 
to prune the generated rule set to include only rules that 
have both a high support and a high confidence. Rules that 
don’t have high support or confidence are not interesting 
either because the rule covers only a very small percent-
age of baskets (low support) or because the relationship 
between the items in the antecedent and the consequent is 
low (low confidence). Rules that are trivial or inexplicable 
should also be pruned. Trivial rules represent associations 
that are obvious and well known to anyone who under-
stands the business domain. An inexplicable rule repre-
sents associations that are so strange that it is difficult to 
understand how to convert the rule into a useful action 
for the company. It is likely that an inexplicable rule is the 
result of an odd data sample (i.e., the rule represents a spu-
rious correlation). Once the rule set has been pruned, the 
data scientist can then analyze the remaining rules to un-
derstand what products are associated with each other and 
apply this new information in the organization. Organiza-
tions will typically use this new information to determine 
store layout or to perform some targeted marketing cam-
paigns to their customers. These campaigns can involve 
updates to their websites to include recommended prod-
ucts, in-store advertisements, direct mailings, the cross-
selling of other products by check-out staff, and so on.
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Association mining becomes more powerful if the bas-
kets of items are connected to demographic data about the 
customer. This is why so many retailers run loyalty-card 
schemes because such schemes allow them not only to 
connect different baskets of goods to the same customer 
through time but also to connect baskets of goods to the 
customer’s demographics. Including this demographic in-
formation in the association analysis enables the analysis 
to be focused on particular demographics, which can fur-
ther help marketing and targeted advertising. For exam-
ple, demographic-based association rules can be used with 
new customers, for whom the company has no buying-
habit information but does have demographic informa-
tion. An example of an association rule augmented with 
demographic information might be

IF gender(male) and age(< 35) and {hot-dogs, ketchup}, 
THEN {beer}.

[Support = 2%, Confidence = 90%.]

The standard application area for association-rule 
mining focuses on what products are in the shopping bas-
ket and what products are not in the shopping basket. This 
assumes that the products are purchased in one visit to 
the store or website. This kind of scenario will probably 
work in most retail and other related scenarios. However, 
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association-rule mining is also useful in a range of domains 
outside of retail. For example, in the telecommunications 
industry, applying association-rule mining to customer 
usage helps telecommunications companies to design how 
to bundle different services together into packages. In the 
insurance industry, association-rule mining is used to see 
if there are associations between products and claims. In 
the medical domain, it is used to check if there are inter-
actions between existing and new treatments and medi-
cines. And in banking and financial services, it is used to 
see what products customers typically have and whether 
these products can be applied to new or existing custom-
ers. Association-rule mining can also be used to analyze 
purchasing behavior over a period of time. For example, 
customers tend to buy product X and Y today, and in three 
months’ time they buy product Z. This time period can 
be considered a shopping basket, although it is one that 
spans three months. Applying association-rule mining to 
this kind of temporally defined basket expands the appli-
cations areas of association-rule mining to include main-
tenance schedules, the replacement of parts, service calls, 
financial products, and so on.

Churn or No Churn, That Is the Question (Classification)
A standard business task in customer-relationship man-
agement is to estimate the likelihood that an individual 
customer will take an action. The term propensity modeling 
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is used to describe this task because the goal is to model an 
individual’s propensity to do something. This action could 
be anything from responding to marketing to default-
ing on a loan or leaving a service. The ability to identify 
customers who are likely to leave a service is particularly 
important to cell phone service companies. It costs a cell 
phone service company a substantial amount of money to 
attract new customers. In fact, it is estimated that it gener-
ally costs five to six times more to attract a new customer 
than it does to retain an established one (Verbeke et al. 
2011). As a result, many cell phone service companies are 
very keen to retain their current customers. However, they 
also want to minimize costs. So although it would be easy 
to retain customers by simply giving all customers reduced 
rates and great phone upgrades, this is not a realistic op-
tion. Instead, they want to target the offers they give their 
customers to just those customers who are likely to leave 
in the near future. If they can identify a customer who 
is about to leave a service and persuade that customer to 
stay, perhaps by offering her an upgrade or a new billing 
package, then they can save the difference between the 
price of the enticement they gave the customer and the 
cost of attracting a new customer.

The term customer churn is used to describe the pro-
cess of customers leaving one service and joining another. 
So the problem of predicting which customers are likely 
to leave in the near future is known as churn prediction. As 
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the name suggests, this is a prediction task. The predic-
tion task is to classify a customer as being a churn risk 
or not. Many companies are using this kind of analysis to 
predict churn customers in the telecommunications, utili-
ties, banking, insurance, and other industries. A growing 
area that companies are focusing on is the prediction of 
staff turnover or staff churn: which staff are likely to leave 
the company within a certain time period.

When a prediction model returns a label or category 
for an input, it is known as a classification model. Training 
a classification model requires historic data, where each 
instance is labeled to indicate whether the target event 
has happened for that instance. For example, customer-
churn classification requires a data set in which each cus-
tomer (one row per customer) is assigned a label indicating 
whether he or she has churned. The data set will include 
an attribute, known as the target attribute, that lists this 
label for each customer. In some instances, assigning a 
churn label to a customer record is a relatively straightfor-
ward task. For example, the customer may have contacted 
the organization and explicitly canceled his subscription 
or contract. However, in other cases the churn event may 
not be explicitly signaled. For example, not all cell phone 
customers have a monthly contract. Some customers have 
a pay-as-you-go (or prepay) contract in which they top up 
their account at irregular intervals when they need more 
phone credit. Defining whether a customer with this type 
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of contract has churned can be difficult: Has a customer 
who hasn’t made a call in two weeks churned, or is it neces-
sary for a customer to have a zero balance and no activity 
for three weeks before she is considered to have churned? 
Once the churn event has been defined from a business 
perspective, it is then necessary to implement this defini-
tion in code in order to assign a target label to each cus-
tomer in the data set.

Another complicating factor in constructing the train-
ing data set for a churn-prediction model is that time lags 
need to be taken into account. The goal of churn prediction 
is to model the propensity (or likelihood) that a customer 
will churn at some point in the future. As a consequence, 
this type of model has a temporal dimension that needs to 
be considered during the creation of the data set. The set of 
attributes in a propensity-model data set are drawn from 
two separate time periods: the observation period and the 
outcome period. The observation period is when the values 
of the input attributes are calculated. The outcome period 
is when the target attribute is calculated. The business 
goal of creating a customer-churn model is to enable the 
business to carry out some sort of intervention before the 
customer churns—in other words, to entice the customer 
to stay with the service. This means that the prediction 
about the customer churning must be made sometime in 
advance of the customer’s actually leaving the service. The 
length of this period is the length of the outcome period, 
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and the prediction that the churn model returns is actually 
that a customer will churn within this outcome period. For 
example, the model might be trained to predict that the 
customer will churn within one month or two months, de-
pending on the speed of the business process to carry out 
the intervention.

Defining the outcome period affects what data should 
be used as input to the model. If the model is designed 
to predict that a customer will churn within two months 
from the day the model is run on that customer’s record, 
then when the model is being trained, the input attri-
butes that describe the historic customers who have al-
ready churned should be calculated using only the data 
that were available about those customers two months 
prior to their leaving the service. The input attributes 
describing currently active customers should similarly be 
calculated with the data available about these customers’ 
activity two months earlier. Creating the data set in this 
way ensures that all the instances in the data set, including 
both churned and active customers, describe the custom-
ers at the time in their individual customer journeys that 
the model is being designed to make a prediction about 
them: in this example, two months before they churn  
or stay.

Nearly all customer-propensity models will use attri-
butes describing the customer’s demographic information 
as input: age, gender, occupation, and so on. In scenarios 
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relating to an ongoing service, they are also likely to in-
clude attributes describing the customer’s position in the 
customer life cycle: coming on board, standing still midcycle, 
approaching end of a contract. There are also likely to be 
attributes that are specific to the industry. For example, 
typical attributes used in telecommunication industry 
customer-churn models include the customer’s average 
bill, changes in billing amount, average usage, staying 
within or generally exceeding plan minutes, the ratio of 
calls within the network to those outside the network, and 
potentially the type of phone used.1 However, the specific 
attributes used in each model will vary from one project to 
the next. Gordon Linoff and Michael Berry (2011) report 
that in one churn-prediction project in South Korea, the 
researchers found it useful to include an attribute that de-
scribed the churn rate associated with a customer’s phone 
(i.e., What percentage of customers with this particular 
phone churned during the observation period?). However, 
when they went to build a similar customer-churn model 
in Canada, the handset/churn-rate attribute was useless. 
The difference was that in South Korea the cell phone ser-
vice company offered large discounts on new phones to 
new customers, whereas in Canada the same discounts 
were offered to both existing and new customers. The 
overall effect was that in South Korea phones going out 
of date drove customer churn; people were incentivized to 
leave one operator for another in order to avail themselves 
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of discounts, but in Canada this incentive to leave did not 
exist.

Once a labeled data set has been created, the major 
stage in creating a classification model is to use an ML algo-
rithm to build the classification model. During modeling, 
it is good practice to experiment with a number of differ-
ent ML algorithms to find out which algorithm works best 
on the data set. Once the final model has been selected, 
the likely accuracy of the predictions of this model on new 
instances is estimated by testing it on a subset of the data 
set that was not used during the model-training phase. If 
a model is deemed accurate enough and suitable for the 
business need, the model is then deployed and applied to 
new data either in a batch process or in real time. A really 
important part of deploying the model is ensuring that 
the appropriate business processes and resources are put 
in place so that the model is used effectively. There is no 
point in creating a customer-churn model unless there is 
a process whereby the model’s predictions result in trig-
gering customer interventions so that the business retains 
customers.

In addition to predicting the classification label, pre-
diction models can also give a measure of how confident 
the model is in the prediction. This measure is called the 
prediction probability and will have a value between 0 and 
1. The higher the value, the more likely the prediction 
is correct. The prediction-probability value can be used 
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to prioritize which customers to focus on. For example, 
in customer-churn prediction the organization wants to 
concentrate on the customers who are most likely to leave. 
By using the prediction probability and sorting the churn-
ers based on this value, a business can focus on the key 
customers (those most likely to leave) first before mov-
ing on to customers with a lower prediction-probability  
score.

How Much Will It Cost? (Regression)

Price prediction is the task of estimating the price that a 
product will cost at a particular point in time. The product 
could be a car, a house, a barrel of oil, a stock, or a medical 
procedure. Having a good estimate of what something will 
cost is obviously valuable to anyone who is considering 
buying the item. The accuracy of a price-prediction model 
is domain dependent. For example, due to the variability 
in the stock market, predicting the price of a stock tomor-
row is very difficult. By comparison, it may be easier to 
predict the price of a house at an auction because the vari-
ation in house prices fluctuates much more slowly than 
stocks.

The fact that price prediction involves estimating the 
value of a continuous attribute means that it is treated as 
a regression problem. A regression problem is structurally 
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very similar to a classification problem; in both cases, the 
data science solution involves building a model that can 
predict the missing value of an attribute given a set of in-
put attributes. The only difference is that classification in-
volves estimating the value of a categorical attribute and 
regression involves estimating the value of a continuous 
attribute. Regression analysis requires a data set where 
the value of the target attribute for each of the historic in-
stances is listed. The multi-input linear-regression model 
introduced in chapter 4 illustrated the basic structure of a 
regression model, with most other regression models be-
ing variants of this approach. The basic structure of a re-
gression model for price prediction is the same no matter 
what product it is applied to; all that varies are the name 
and number of the attributes. For example, to predict the 
price of a house, the input would include attributes such 
as the size of the house, the number of rooms, the number 
of floors, the average house price in the area, the average 
house size in the area, and so on. By comparison, to predict 
the price of a car, the attributes would include the age of 
the car, the number of miles on the odometer, the engine 
size, the make of the car, the number of doors, and so on. 
In each case, given the appropriate data, the regression al-
gorithm works out how each of the attributes contributes 
to the final price.

As has been the case with all the examples given 
throughout this chapter, the application example of using 
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a regression model for price prediction is illustrative only 
of the type of problem that it is appropriate to frame as 
a regression-modeling task. Regression prediction can be 
used in a wide variety of other real-world problems. Typi-
cal regression-prediction problems include calculating 
profit, value and volume of sales, sizes, demand, distances, 
and dosage.



6

PRIVACY AND ETHICS

The biggest unknown facing data science today is how 
societies will choose to answer a new version of the old 
question regarding how best to balance the freedoms and 
privacy of individuals and minorities against the security 
and interests of society. In the context of data science, this 
old question is framed as follows: What do we as a soci-
ety view are reasonable ways to gather and use the data 
relating to individuals in contexts as diverse as fighting 
terrorism, improving medicine, supporting public-policy 
research, fighting crime, detecting fraud, assessing credit 
risk, providing insurance underwriting, and advertising to 
targeted groups?

The promise of data science is that it provides a way 
to understand the world through data. In the current 
era of big data, this promise is very tantalizing, and, in-
deed, a number of arguments can be used to support the 
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development and adoption of data-driven infrastructure 
and technologies. One common argument relates to im-
proving efficiency, effectiveness, and competiveness—an 
argument that, at least in the business context, is backed 
by some academic research. For example, a study involv-
ing 179 large publicly traded firms in 2011 showed that 
the more data driven a firm’s decision making is, the more 
productive the firm is: “We find that firms that adopt DDD 
[data-driven decision making] have output and productiv-
ity that is 5–6% higher than what would be expected given 
their other investments and information technology us-
age” (Brynjolfsson, Hitt, and Kim 2011, 1).

Another argument for increased adoption of data sci-
ence technologies and practices relates to securitization. 
For a long time, governments have used the argument 
that surveillance improves security. And since the terror-
ist attacks in the United States on September 11, 2001, 
as well as with each subsequent terrorist attack through-
out the world, the argument has gained traction. Indeed, 
it was frequently used in the public debate caused by Ed-
ward Snowden’s revelations about the US National Secu-
rity Agency’s PRISM surveillance program and the data it 
routinely gathered on US citizens. A stark example of the 
power of this argument is the agency’s US$1.7 billion in-
vestment in a data center in Bluffdale, Utah, that has the 
ability to store huge amounts of intercepted communica-
tions (Carroll 2013).
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At the same time, however, societies, governments, 
and business are struggling to understand the long-term 
implications of data science in a big-data world. Given the 
rapid development of technologies around data gather-
ing, data storage, and data analysis, it is not surprising 
that the legal frameworks in place and the broader ethical 
discussions around data, in particular the question of in-
dividual privacy, are running behind these advances. Not-
withstanding this difficulty, basic legal principles around 
data collection and usage are important to understand 
and are nearly always applicable. Also, the ethical debate 
around data usage and privacy has highlighted some wor-
rying trends that we as individuals and citizens should be  
aware of.

Commercial Interests versus Individual Privacy

Data science can be framed as making the world a more 
prosperous and secure place to live. But these same argu-
ments can be used by very different organizations that 
have very distinct agendas. For example, contrast calls by 
civil liberties groups for government to be more open and 
transparent in the gathering, use, and availability of data 
in the hope of empowering citizens to hold these same 
governments to account with similar calls from busi-
ness communities who hope to use these data to increase 
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their profits (Kitchin 2014a). In truth, data science is a 
double-edged sword. It can be used to improve our lives 
through more efficient government, improved medicine 
and health care, less-expensive insurance, smarter cities, 
reduced crime, and many more ways. At the same time, 
however, it can also be used to spy on our private lives, to 
target us with unwanted advertising, and to control our 
behavior both overtly and covertly (the fear of surveillance 
can affect us as much as the surveillance itself does).

The contradictory aspects of data science can often 
be apparent in the same applications. For example, the 
use of data science in health insurance underwriting uses 
third-party marketing data sets that contain informa-
tion such as purchasing habits, web search history, along 
with hundreds of other attributes relating to people’s life-
styles (Batty, Tripathi, Kroll, et al. 2010). The use of these 
third-party data is troublesome because it may trigger 
self-disciplining, wherein people avoid certain activities, 
such as visiting extreme-sports websites, for fear of in-
curring higher insurance premiums (Mayer-Schönberger 
and Cukier 2014). However, the justification for the use 
of these data is that it acts as a proxy for more invasive 
and expensive information sources, such as blood tests, 
and in the long term will reduce costs and premiums and 
thereby increase the number of people with health insur-
ance (Batty, Tripathi, Kroll, et al. 2010).



	P rivacy and Ethics    185

The fault lines in the debate between the commercial 
benefits and ethical considerations of using data science 
are apparent in the discussions around the use of per-
sonal data for targeted marketing. From a business ad-
vertising perspective, the incentive to use personal data 
is that there is a relationship between personalizing mar-
keting, services, and products, on the one hand, and the 
effectiveness of the marketing, on the other. It has been 
shown that the use of personal social network data—
such as identifying consumers who are connected to prior 
customers—increases the effectiveness of a direct-mail 
marketing campaign for a telecommunications service 
by three to five times compared to traditional marketing 
approaches (Hill, Provost, and Volinsky 2006). Similar 
claims have been made about the effectiveness of data-
driven personalization of online marketing. For example, 
a study of online cost and effectiveness of online targeted 
advertising in the United States in 2010 compared run-of-
the-network marketing (when an advertising campaign is 
pushed out across a range of websites without specific tar-
geting of users or sites) with behavioral targeting1 (Beales 
2010). The study found that behavioral marketing was 
both more expensive (2.68 times more) but also more ef-
fective, with a conversion rate more than twice that of run-
of-the-network marketing. Another well-known study on 
the effectiveness of data-driven online advertising was 
conducted by researchers from the University of Toronto 
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and MIT (Goldfarb and Tucker 2011). They used the enact-
ment of a privacy-protection bill in the European Union 
(EU)2 that limited the ability of advertising companies to 
track users’ online behavior in order to compare the effec-
tiveness of online advertising under the new restrictions 
(i.e., in the EU) and the effectiveness online advertising 
not under the new restrictions (i.e., in the United States 
and other non-EU countries). The study found that online 
advertising was significantly less effective under the new 
restrictions, with a reported drop of 65 percent in study 
participants’ recorded purchasing intent. The results of 
this study have been contested (see, for example, Mayer 
and Mitchell 2012), but the study has been used to sup-
port the argument that the more data that are available 
about an individual, the more effective the advertising 
that is directed to that individual will be. Proponents of 
data-driven targeted marketing frame this argument as a 
win–win for both the advertiser and the consumer, claim-
ing that advertisers lower marketing costs by reducing 
wasted advertising and achieve better conversions rates, 
and consumers get more relevant advertising.

This utopian perspective on the use of personal data 
for targeted marketing is at best based on a selective un-
derstanding of the problem. Probably one of the most wor-
rying stories related to targeted advertising was reported 
in the New York Times in 2012 and involves the American 
discount retail store Target (Duhigg 2012). It is well known 
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in marketing that one of the times in a person’s life when 
his or her shopping habits change radically is at the con-
ception and birth of a child. Because of this radical change, 
marketers see pregnancy as an opportunity to shift a 
person’s shopping habits and brand loyalties, and many 
retailers use publicly available birth records to trigger per-
sonalized marketing for new parents, sending them offers 
relating to baby products. In order to get a competitive ad-
vantage, Target wanted to identify pregnant customers at 
an early stage (ideally during the second trimester) with-
out the mother-to-be voluntarily telling Target that she 
was pregnant.3 This insight would enable Target to begin 
its personalized marketing before other retailers knew the 
baby was on the way. To achieve this goal, Target initiated 
a data science project with the aim of predicting whether a 
customer was pregnant based on an analysis of her shop-
ping habits. The starting point for the project was to ana-
lyze the shopping habits of women who had signed up for 
Target’s baby-shower registry. The analysis revealed that 
expectant mothers tended to purchase larger quantities of 
unscented lotion at the beginning of the second trimes-
ter as well as certain dietary supplements throughout the 
first 20 weeks of pregnancy. Based on this analysis, Target 
created a data-driven model that used around 25 products 
and indictors and assigned each customer a “pregnancy-
prediction” score. The success, for want of a better word, of 
this model was made very apparent when a man turned up 
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at a Target store to complain about the fact that his high-
school-age daughter had been mailed coupons for baby 
clothes and cribs. He accused Target of trying to encour-
age his daughter to get pregnant. However, over the sub-
sequent days it transpired that the man’s daughter was in 
fact pregnant but hadn’t told anyone. Target’s pregnancy-
prediction model was able to identify a pregnant high 
school student and act on this information before she had 
chosen to tell her family.

Ethical Implications of Data Science: Profiling and 
Discrimination

The story about Target identifying a pregnant high school 
student without her consent or knowledge highlights how 
data science can be used for social profiling not only of 
individuals but also of minority groups in society. In his 
book The Daily You: How the New Advertising Industry Is De-
fining Your Identity and Your Worth (2013), Joseph Turow 
discusses how marketers use digital profiling to categorize 
people as either targets or waste and then use these cat-
egories to personalize the offers and promotions directed 
to individual consumers: “those considered waste are ig-
nored or shunted to other products that marketers deem 
more relevant to their tastes or income” (11). This person-
alization can result in preferential treatment for some and 
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marginalization of others. A clear example of this discrim-
ination is differential pricing on websites, wherein some 
customers are charged more than other customers for the 
same product based on their customer profiles (Clifford 
2012).

These profiles are constructed by integrating data 
from a number of different noisy and partial data sources, 
so the profiles can often be misleading about an individual. 
What is worse is that these marketing profiles are treated 
as products and are often sold to other companies, with 
the result that a negative marketing assessment of an indi-
vidual can follow that individual across many domains. We 
have already discussed the use of marketing data sets in in-
surance underwriting (Batty, Tripathi, Kroll, et al. 2010), 
but these profiles can also make their way into credit-risk 
assessments and many other decision processes that af-
fect people’s lives. Two aspects of these marketing pro-
files make them particularly problematic. First, they are a 
black box, and, second, they are persistent. The black-box 
nature of these profiles is apparent when one considers 
that it is difficult for an individual to know what data are 
recorded about them, where and when the data were re-
corded, and how the decision processes that use these data 
work. As a result, if an individual ends up on a no-fly list or 
a credit blacklist, it is “difficult to determine the grounds 
for discrimination and to challenge them” (Kitchin 2014a, 
177). What is more, in the modern world data are often 
stored for a long time. So data recorded about an event in 
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an individual’s life persists long after an event. As Turow 
warns, “Turning individual profiles into individual evalu-
ations is what happens when a profile becomes a reputa-
tion” (2013, 6).

Furthermore, unless used very carefully, data science 
can actually perpetuate and reinforce prejudice. An argu-
ment is sometimes made that data science is objective: 
it is based on numbers, so it doesn’t encode or have the 
prejudicial views that affect human decisions. The truth 
is that data science algorithms perform in an amoral 
manner more than in an objective manner. Data science 
extracts patterns in data; however, if the data encode a 
prejudicial relationship in society, then the algorithm is 
likely to identify this pattern and base its outputs on the 
pattern. Indeed, the more consistent a prejudice is in a 
society, the stronger that prejudicial pattern will appear 
in the data about that society, and the more likely a data 
science algorithm will extract and replicate that pattern of 
prejudice. For example, a study carried out by academic re-
searchers on the Google Online Advertising system found 
that the system showed an ad relating to a high-paying 
job more frequently to participants whose Google profile 
identified them as male compared to participants whose 
profile identified them as female (Datta, Tschantz, and  
Datta 2015).

The fact that data science algorithms can reinforce 
prejudice is particularly troublesome when data science 
is applied to policing. Predictive Policing, or PredPol,4 is 
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a data science tool designed to predict when and where 
a crime is most likely to occur. When deployed in a city, 
PredPol generates a daily report listing a number of hot 
spots on a map (small areas 500 feet by 500 feet) where the 
system believes crimes are likely to occur and tags each hot 
spot with the police shift during which the system believes 
the crime will occur. Police departments in both the United 
States and the United Kingdom have deployed PredPol. 
The idea behind this type of intelligent-policing system is 
that policing resources can be efficiently deployed. On the 
surface, this seems like a sensible application of data sci-
ence, potentially resulting in efficient targeting of crime 
and reducing policing costs. However, questions have 
been raised about the accuracy of PredPol and the effec-
tiveness of similar predictive-policing initiatives (Hunt, 
Saunders, and Hollywood 2014; Oakland Privacy Work-
ing Group 2015; Harkness 2016). The potential for these 
types of systems to encode racial or class-based profiling 
in policing has also been noted (Baldridge 2015). The de-
ployment of police resources based on historic data can re-
sult in a higher police presence in certain areas—typically 
economically disadvantaged areas—which in turn results 
in higher levels of reported crime in these areas. In other 
words, the prediction of crime becomes a self-fulfilling 
prophesy. The result of this cycle is that some locations 
will be disproportionately targeted by police surveillance, 
causing a breakdown in trust between the people who live 
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in those communities and policing institutions (Harkness 
2016).

Another example of data-driven policing is the Stra-
tegic Subjects List (SSL) used by the Chicago Police De-
partment in an attempt to reduce gun crime. The list was  
first created in 2013, and at that time it listed 426 peo-
ple who were estimated to be at a very high risk of gun 
violence. In an attempt to proactively prevent gun crime, 
the Chicago Police Department contacted all the people 
on the SSL to warn them that they were under surveil-
lance. Some of the people on the list were very surprised 
to be included on it because although they did have crimi-
nal records for minor offenses, they had no violence on  
their records (Gorner 2013). One question to ask about 
this type of data gathering to prevent crime is, How ac-
curate is the technology? A recent study found that the 
people on the SSL for 2013 were “not more or less likely to 
become a victim of a homicide or shooting than the com-
parison group” (Saunders, Hunt, and Hollywood 2016). 
However, this study also found that individuals on the list 
were more likely to be arrested for a shooting incident, 
although it did point out that this greater likelihood could 
have been created by the fact that these individuals were 
on the list, which resulted in increasing police officers’ 
awareness of these individuals (Saunders, Hunt, and Hol-
lywood 2016). Responding to this study, the Chicago Police 
Department stated that it regularly updated the algorithm 
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used to compile the SSL and that the effectiveness of the 
SSL had improved since 2013 (Rhee 2016). Another ques-
tion about data-driven crime-prevention lists is, How 
does an individual end up on the list? The 2013 version 
of the SSL appears to have been compiled using, among 
other attributes of an individual, an analysis of his or her 
social network, including the arrest and shooting histo-
ries of his or her acquaintances (Dokoupil 2013; Gorner 
2013). On the one hand, the idea of using social network 
analysis makes sense, but it opens up the very real prob-
lem of guilt by association. One problem with this type 
of approach is that it can be difficult to define precisely 
what an association between two individuals entails. Is 
living on the same street enough to be an association? 
Furthermore, in the United States, where the vast major-
ity of inmates in prison are African American and Latino 
males, allowing predictive-policing algorithms to use the 
concept of association as an input is likely to result in pre-
dictions targeting mainly young men of color (Baldridge  
2015).

The anticipatory nature of predictive policing means 
that individuals may be treated differently not because of 
what they have done but because of data-driven inferences 
about what they might do. As a result, these types of sys-
tems may reinforce discriminatory practices by replicating 
the patterns in historic data and may create self-fulfilling 
prophecies.
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Ethical Implications of Data Science: Creating a 
Panopticon
If you spend time absorbing some of the commercial 
boosterism that surrounds data science, you get a sense 
that any problem can be solved using data science technol-
ogy given enough of the right data. This marketing of the 
power of data science feeds into a view that a data-driven 
approach to governance is the best way to address complex 
social problems, such as crime, poverty, poor education, 
and poor public health: all we need to do to solve these 
problems is to put sensors into our societies to track ev-
erything, merge all the data, and run the algorithms to 
generate the key insights that provide the solution.

When this argument is accepted, two processes are 
often intensified. The first is that society becomes more 
technocratic in nature, and aspects of life begin to be 
regulated by data-driven systems. Examples of this type 
of technological regulation already exist—for example, in 
some jurisdictions data science is currently used in parole 
hearings (Berk and Bleich 2013) and sentencing (Barry-
Jester, Casselman, and Goldstein 2015). For an example 
outside of the judicial system, consider how smart-city 
technologies regulate traffic flows through cities with 
algorithms dynamically deciding which traffic flow gets 
priority at a junction at different times of day (Kitchin 
2014b). A by-product of this technocratic regulation is the 
proliferation of the sensors that support the automated 
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regulating systems. The second process is “control creep,” 
wherein data gathered for one purpose is repurposed and 
used to regulate in another way (Innes 2001). For exam-
ple, road cameras that were installed in London with the 
primary purpose of regulating congestion and implement-
ing congestion charges (the London congestion charge is 
a daily charge for driving a vehicle within London dur-
ing peak times) have been repurposed for security tasks 
(Dodge and Kitchin 2007). Other examples of control 
creep include a technology called ShotSpotter that con-
sists of a city-wide network of microphones designed to 
identify gunshots and report the locations of them but 
that also records conversations, some of which were used 
to achieve criminal convictions (Weissman 2015), and the 
use of in-car navigation systems to monitor and fine rental 
car drivers who drive out of state (Elliott 2004; Kitchin 
2014a).

An aspect of control creep is the drive to merge data 
from different sources so as to provide a more complete 
picture of a society and thereby potentially unlock deeper 
insights into the problems in the system. There are often 
good reasons for the repurposing of data. Indeed, calls 
are frequently made for data held by different branches 
of government to be merged for legitimate purposes—for 
example, to support health research and for the conve-
nience of the state and its citizens. From a civil liberties 
perspective, however, these trends are very concerning. 
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Heightened surveillance, the integration of data from 
multiple sources, control creep, and anticipatory gover-
nance (such as the predictive-policing programs) may re-
sult in a society where an individual may be treated with 
suspicion simply because a sequence of unrelated inno-
cent actions or encounters matches a pattern deemed sus-
picious by a data-driven regulatory system. Living in this 
type of a society would change each of us from free citizens 
into inmates in Bentham’s Panopticon,5 constantly self-
disciplining our behaviors for fear of what inferences may 
be drawn from them. The distinction between individuals 
who believe and act as though they are free of surveillance 
and individuals who self-discipline out of fear that they 
inhabit a Panopticon is the primary difference between a 
free society and a totalitarian state.

Á la recherche du privacy perdu

As individuals engage with and move through techni-
cally modern societies, they have no choice but to leave 
a data trail behind them. In the real world, the prolifera-
tion of video surveillance means that location data can be 
gathered about an individual whenever she appears on a 
street or in a shop or car park, and the proliferation of 
cell phones means that many people can be tracked via 
their phones. Other examples of real-world data gathering 
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include the recording of credit card purchases, the use of 
loyalty schemes in supermarkets, the tracking of with-
drawals from ATMs, and the tracking of cell phone calls 
made. In the online world, data are gathered about in-
dividuals when they visit or log in to websites; send an 
email; engage in online shopping; rate a date, restaurant, 
or store; use an e-book reader; watch a lecture in a massive 
open online course; or like or post something on a social 
media site. To put into perspective the amount of data that 
are gathered on the average individual in a technologically 
modern society, a report from the Dutch Data Protection 
Authority in 2009 estimated that the average Dutch citi-
zen was included in 250 to 500 databases, with this figure 
rising to 1,000 databases for more socially active people 
(Koops 2011). Taken together, the data points relating to 
an individual define that person’s digital footprint.

The data in a digital footprint can be gathered in two 
contexts that are problematic from a privacy perspective. 
First, data can be collected about an individual without 
his knowledge or awareness. Second, in some contexts an 
individual may choose to share data about himself and 
his opinions but may have little or no knowledge of or 
control over how these data are used or how they will be 
shared with and repurposed by third parties. The terms 
data shadow and data footprint6 are used to distinguish 
these two contexts of data gathering: an individual’s data 
shadow comprises the data gathered about an individual 
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without her knowledge, consent, or awareness, and an in-
dividual’s data footprint consists of the pieces of data that 
she knowingly makes public (Koops 2011).

The collection of data about an individual without 
her knowledge or consent is of course worrying. However, 
the power of modern data science techniques to uncover 
hidden patterns in data coupled with the integration and 
repurposing of data from several sources means that even 
data collected with an individual’s knowledge and consent 
in one context can have negative effects on that individual 
that are impossible for them to predict. Today, with the 
use of modern data science techniques, very personal in-
formation that we may not want to be made public and 
choose not to share can still be reliably inferred from seem-
ingly unrelated data we willingly post on social media. 
For example, many people are willing to like something 
on Facebook because they want to demonstrate support 
to a friend. However, by simply using the items that an 
individual has liked on Facebook, data-driven models can 
accurately predict that person’s sexual orientation, politi-
cal and religious views, intelligence and personality traits, 
and use of addictive substances such as alcohol, drugs, and 
cigarettes; they can even determine whether that person’s 
parents stayed together until he or she was 21 years old 
(Kosinski, Stillwell, and Graepel 2013). The out-of-context 
linkages made in these models is demonstrated by how lik-
ing a human rights campaign was found to be predictive of 
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homosexuality (both male and female) and by how liking 
Hondas was found to be predictive of not smoking (Kosin-
ski, Stillwell, and Graepel 2013).

Computational Approaches to Preserving Privacy

In recent years, there has been a growing interest in com-
putational approaches to preserving individual privacy 
throughout a data-analysis process. Two of the best-known 
approaches are differential privacy and federated learning.

Differential privacy is a mathematical approach to the 
problem of learning useful information about a popula-
tion while at the same time learning nothing about the in-
dividuals within the population. Differential privacy uses 
a particular definition of privacy: the privacy of an indi-
vidual has not been compromised by the inclusion of his 
or her data in the data-analysis process if the conclusions 
reached by the analysis would have been the same inde-
pendent of whether the individual’s data were included or 
not. A number of processes can be used to implement dif-
ferential privacy. At the core of these processes is the idea 
of injecting noise either into the data-collection process 
or into the responses to database queries. The noise pro-
tects the privacy of individuals but can be removed from 
the data at an aggregate level so that useful population-
level statistics can be calculated. A useful example of a 
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procedure for injecting noise into data that provides an 
intuitive explanation of how differential privacy processes 
can work is the randomized-response technique. The use 
case for this technique is a survey that includes a sensitive 
yes/no question (e.g., relating to law breaking, health con-
ditions, etc.). Survey respondents are instructed to answer 
the sensitive question using the following procedure:

1.  Flip a coin and keep the result of the coin flip secret.

2.  If tails, respond “Yes.”

3.  If heads, respond truthfully.

Half the respondents will get tails and respond “Yes”; 
the other half will respond truthfully. Therefore, the true 
number of “No” respondents in the total population is (ap-
proximately) twice the number of “No” responses (the coin 
is fair and selects randomly, so the distribution of yes/no 
responses among the respondents who got tails should 
mirror the number of respondents who answered truth-
fully). Given the true count for “No,” we can calculate the 
true count for “Yes.” However, although we now have an 
accurate count for the population regarding the sensitive 
“Yes” condition, it is not possible to identify for which 
of the “Yes” respondents the sensitive condition actually 
holds. There is a trade-off between the amount of noise 
injected into data and the usefulness of the data for data 
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analysis. Differential privacy addresses this trade-off by 
providing estimates of the amount of noise required given 
factors such as the distribution of data within the data-
base, the type of database query that is being processed, 
and the number of queries through which we wish to guar-
antee an individual’s privacy. Cynthia Dwork and Aaron 
Roth (2014) provide an introduction to differential pri-
vacy and an overview of several approaches to implement-
ing differential privacy. Differential-privacy techniques 
are now being deployed in a number of consumer prod-
ucts. For example, Apple uses differential privacy in iOS 
10 to protect the privacy of individual users while at the 
same time learning usage patterns to improve predictive 
text in the messaging application and to improve search 
functionality.

In some scenarios, the data being used in a data sci-
ence project are coming from multiple disparate sources. 
For example, multiple hospitals may be contributing to 
a single research project, or a company is collecting data 
from a large number of users of a cell phone application. 
Rather than centralizing these data into a single data re-
pository and doing the analysis on the combined data, an 
alternative approach is to train different models on the 
subsets of the data at the different data sources (i.e., at 
the individual hospitals or on the phones of each individ-
ual user) and then to merge the separately trained models. 
Google uses this federated-learning approach to improve 
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the query suggestions made by the Google keyboard 
on Android (McMahan and Ramage 2017). In Google’s 
federated-learning framework, the mobile device initially 
has a copy of the current application loaded. As the user 
uses the application, the application data for that user are 
collected on his phone and used by a learning algorithm 
that is local to the phone to update the local version of 
the model. This local update of the model is then uploaded 
to the cloud, where it is averaged with the model updates 
uploaded from other user phones. The core model is then 
updated using this average. With the use of this process, 
the core model can be improved, and individual users’ 
privacy can at the same time be protected to the extent 
that only the model updates are shared—not the users’  
usage data.

Legal Frameworks for Regulating Data Use and 
Protecting Privacy

There is variation across jurisdictions in the laws relating 
to privacy protection and permissible data usage. How-
ever, two core pillars are present across most democratic 
jurisdictions: antidiscrimination legislation and personal-
data-protection legislation.

In most jurisdictions, antidiscrimination legisla-
tion forbids discrimination based on any of the following 
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grounds: disability, age, sex, race, ethnicity, nationality, 
sexual orientation, and religious or political opinion. In 
the United States, the Civil Rights Act of 19647 prohib-
its discrimination based on color, race, sex, religion, or 
nationality. Later legislation has extended this list; for 
example, the Americans with Disabilities Act of 19908 ex-
tended protection to people against discrimination based 
on disabilities. Similar legalization is in place in many 
other jurisdictions. For example, the Charter of Funda-
mental Rights of the European Union prohibits discrimi-
nation based on any grounds, including race, color, ethnic 
or social origin, genetic features, sex, age, birth, disability, 
sexual orientation, religion or belief, property, member-
ship in a national minority, and political or any other opin-
ion (Charter 2000).

A similar situation of variation and overlap exists 
with respect to privacy legislation across different juris-
dictions. In the United States, the Fair Information Prac-
tice Principles (1973)9 have provided the basis for much 
of the subsequent privacy legislation in that jurisdiction. 
In the EU, the Data Protection Directive (Council of the 
European Union and European Parliament 1995) is the 
basis for much of that jurisdiction’s privacy legislation. 
The General Data Protection Regulations (Council of the 
European Union and European Parliament 2016) expand 
on the data protection principles in the Data Protection 
Directive and provide consistent and legally enforceable 
data protection regulations across all EU member states. 
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However, the most broadly accepted principles relating to 
personal privacy and data are the Guidelines on the Pro-
tection of Privacy and Transborder Flows of Personal Data 
published by the Organisation for Economic Co-operation 
and Development (OECD 1980). Within these guidelines, 
personal data are defined as records relating to an identifi-
able individual, known as the data subject. The guidelines 
define eight (overlapping) principles that are designed to 
protect a data subject’s privacy:

1.  Collection Limitation Principle: Personal data should 
only be obtained lawfully and with the knowledge and con-
sent of the data subject.

2.  Data Quality Principle: Any personal data that are col-
lected should be relevant to the purpose for which they are 
used; they should be accurate, complete, and up to date.

3.  Purpose Specification Principle: At or before the time 
that personal data are collected, the data subject should be 
informed of the purpose for which the data will be used. 
Furthermore, although changes of purpose are permis-
sible, they should not be introduced arbitrarily (new pur-
poses must be compatible with the original purpose) and 
should be specified to the data subject.

4.  Use Limitation Principle: The use of personal data is 
limited to the purpose that the data subject has been in-
formed of, and the data should not be disclosed to third 
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parties without the data subject’s consent or by authority 
of law.

5.  Safety Safeguards Principle: Personal data should be 
protected by security safeguards against deletion, theft, 
disclosure, modification, or unauthorized use.

6.  Openness Principle: A data subject should be able to 
acquire information with reasonable ease regarding the 
collection, storage, and use of his or her personal data.

7.  Individual Participation Principle: A data subject has 
the right to access and challenge personal data.

8.  Accountability Principle: A data controller is account-
able for complying with the principles.

Many countries, including the EU and the United 
States, endorse the OECD guidelines. Indeed, the data 
protection principles in the EU General Data Protection 
Regulations can be broadly traced back to the OECD guide-
lines. The General Data Protection Regulations apply to 
the collection, storage, transfer and processing of personal 
data relating to EU citizens within the EU and has impli-
cations for the flows of this data outside of the EU. Cur-
rently, several countries are developing data protection 
laws similar to and consistent with the General Data Pro-
tection Regulations.
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Toward an Ethical Data Science

It is well known that despite the legal frameworks that are 
in place, nation-states frequently collect personal data on 
their citizens and foreign nationals without these people’s 
knowledge, often in the name of security and intelligence. 
Examples include the US National Security Agency’s 
PRISM program; the UK Government Communications 
Headquarters’ Tempora program (Shubber 2013); and the 
Russian government’s System for Operative Investigative 
Activities (Soldatov and Borogan 2012). These programs 
affect the public’s perception of governments and use of 
modern communication technologies. The results of the 
Pew survey “Americans’ Privacy Strategies Post-Snowden” 
in 2015 indicated that 87 percent of respondents were 
aware of government surveillance of phone and Internet 
communications, and among those who were aware of 
these programs 61 percent stated that they were losing 
confidence that these programs served the public inter-
est, and 25 percent reported that they had changed how 
they used technologies in response to learning about these 
programs (Rainie and Madden 2015). Similar results have 
been reported in European surveys, with more than half 
of Europeans aware of large-scale data collection by gov-
ernment agencies and most respondents stating that this 
type of surveillance had a negative impact on their trust 
with respect to how their online personal data are used 
(Eurobarometer 2015).
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At the same time, many private companies avoid the 
regulations around personal data and privacy by claiming 
to use derived, aggregated, or anonymized data. By re-
packaging data in these ways, companies claim that the 
data are no longer personal data, which, they argue, per-
mits them to gather data without an individual’s aware-
ness or consent and without having a clear immediate 
purpose for the data; to hold the data for long periods of 
time; and to repurpose the data or sell the data when a 
commercial opportunity arises. Many advocates of the 
commercial opportunities of data science and big data 
argue that the real commercial value of data comes from 
their reuse or “optional value” (Mayer-Schönberger and 
Cukier 2014). The advocates of data reuse highlight two 
technical innovations that make data gathering and stor-
age a sensible business strategy: first, today data can be 
gathered passively with little or no effort or awareness on 
the part of the individuals being tracked; and, second, data 
storage has become relatively inexpensive. In this context, 
it makes commercial sense to record and store data in case 
future (potentially unforeseeable) commercial opportuni-
ties make it valuable.

The modern commercial practices of hoarding, repur-
posing, and selling data are completely at odds with the 
purpose specification and use-limitation principles of the 
OECD guidelines. Furthermore, the collection-limitation 
principle is undermined whenever a company presents 
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a privacy agreement to a consumer that is designed to 
be unreadable or reserves the right for the company to 
modify the agreement without further consultation or 
notification or both. Whenever this happens, the process 
of notification and granting of consent is turned into a 
meaningless box-ticking exercise. Similar to the public 
opinion about government surveillance in the name of 
security, public opinion is quite negative toward com-
mercial websites’ gathering and repurposing of personal 
data. Again using American and European surveys as our 
litmus test for wider public opinion, a survey of Ameri-
can Internet users in 2012 found that 62 percent of adults 
surveyed stated that they did not know how to limit the 
information collected about them by websites, and 68 per-
cent stated that they did not like the practice of targeted 
advertising because they did not like their online behavior 
tracked and analyzed (Purcell, Brenner, and Rainie 2012). 
A recent survey of European citizens found similar results: 
69 percent of respondents felt that the collection of their 
data should require their explicit approval, but only 18 per-
cent of respondents actually fully read privacy statements. 
Furthermore, 67 percent of respondents stated that they 
don’t read privacy statements because they found them 
too long, and 38 percent stated that they found them un-
clear or too difficult to understand. The survey also found 
that 69 percent of respondents were concerned about 
their information being used for different purposes from 
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the one it was collected for, and 53 percent of respondents 
were uncomfortable with Internet companies using their 
personal information to tailor advertising (Eurobarom-
eter 2015).

So at the moment public opinion is broadly negative 
toward both government surveillance and Internet com-
panies’ gathering, storing, and analyzing of personnel 
data. Today, most commentators agree that data-privacy 
legislation needs to be updated and that changes are hap-
pening. In 2012, both the EU and the United States pub-
lished reviews and updates relating to data-protection 
and privacy policies (European Commission 2012; Federal 
Trade Commission 2012; Kitchin 2014a, 173). In 2013, 
the OECD guidelines were extended to include, among 
other updates, more details in relation to implementing 
the accountability principle. In particular, the new guide-
lines define the data controller’s responsibilities to have 
a privacy-management program in place and to define 
clearly what such a program entails and how it should be 
framed in terms of risk management in relation to per-
sonal data (OECD 2013). In 2014, a Spanish citizen, Mario 
Costeja Gonzalez, won a case in the EU Court of Justice 
against Google (C-131/12 [2014]) asserting his right to be 
forgotten. The court held that an individual could request, 
under certain conditions, an Internet search engine to re-
move links to webpages that resulted from searches on the 
individual’s name. The grounds for such a request included 
that the data are inaccurate or out of date or that the data 
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had been kept for longer than was necessary for historical, 
statistical, or scientific purposes. This ruling has major 
implications for all Internet search engines but may also 
have implications for other big-data hoarders. For ex-
ample, it is not clear at present what the implications are 
for social media sites such as Facebook and Twitter (Marr 
2015). The concept of the right to be forgotten has been 
asserted in other jurisdictions. For example, the Califor-
nia “eraser” law asserts a minor’s right to have material 
he has posted on an Internet or mobile service removed 
at his request. The law also prohibits Internet, online, or 
cell phone service companies from compiling personal 
data relating to a minor for the purposes of targeted ad-
vertising or allowing a third party to do so.10 As a final 
example of the changes taking place, in 2016 the EU-US 
Privacy Shield was signed and adopted (European Com-
mission 2016). Its focus is on harmonizing data-privacy 
obligations across the two jurisdictions. Its purpose is to 
strengthen the data-protection rights for EU citizens in the 
context where their data have been moved outside of the 
EU. This agreement imposed stronger obligations on com-
mercial companies with regard to transparency of data us-
age, strong oversight mechanisms and possible sanctions, 
as well as limitations and oversight mechanisms for public 
authorities in recording or accessing personal data. How-
ever, at the time of writing, the strength and effectiveness 
of the EU-US Privacy Shield is being tested in a legal case 
in the Irish courts. The reason why the Irish legal system 
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is at the center of this debate is that many of the large 
US multinational Internet companies (Google, Facebook, 
Twitter, etc.) have their European, Middle East, and Africa 
headquarters in Ireland. As a result, the data-protection 
commissioner for Ireland is responsible for enforcing EU 
regulations on transnational data transfers made by these 
companies. Recent history illustrates that it is possible 
for legal cases to result in significant and swift changes 
in the regulation of how personnel data are handled. In 
fact, the EU-US Privacy Shield is a direct consequence of a 
suit filed by Max Schrems, an Austrian lawyer and privacy 
activist, against Facebook. The outcome of Schrems’s case 
in 2015 was to invalidate the existing EU-US Safe Harbor 
agreement with immediate effect, and the EU-US Privacy 
Shield was developed as an emergency response to this 
outcome. Compared to the original Safe Harbor agree-
ment, the Privacy Shield has strengthened EU citizens’ 
data-privacy rights (O’Rourke and Kerr 2017), and it may 
well be that any new framework would further strengthen  
these rights. For example, the EU General Data Protection 
Regulations will provide legally enforceable data protec-
tion to EU citizens from May 2018.

From a data science perspective, these examples illus-
trate that the regulations around data privacy and protec-
tion are in flux. Admittedly, the examples listed here are 
from the US and EU contexts, but they are indicative of 
broader trends in relation to privacy and data regulation. 
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It is very difficult to predict how these changes will play 
out in the long term. A range of vested interests exist in 
this domain: consider the differing agendas of big Inter-
net, advertising and insurances companies, intelligence 
agencies, policing authorities, governments, medical and 
social science research, and civil liberties groups. Each of 
these different sectors of society has differing goals and 
needs with regard to data usage and consequently has dif-
ferent views on how data-privacy regulation should be 
shaped. Furthermore, we as individuals will probably have 
shifting views depending on the perspective we adopt. 
For example, we might be quite happy for our personnel 
data to be shared and reused in the context of medical re-
search. However, as the public-opinion surveys in Europe 
and the United States have reported, many of us have res-
ervations about data gathering, reuse, and sharing in the 
context of targeted advertising. Broadly speaking, there 
are two themes in the discourse around the future of data 
privacy. One view argues for the strengthening of regu-
lations relating to the gathering of personal data and in 
some cases empowering individuals to control how their 
data are gathered, shared, and used. The other view argues 
for deregulation in relation to the gathering of data but 
also for stronger laws to redress the misuse of personnel 
data. With so many different stakeholders and perspec-
tives, there are no easy or obvious answers to the ques-
tions posed about privacy and data. It is likely that the 
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eventual solutions that are developed will be defined on a 
sector-by-sector basis and consist of compromises negoti-
ated between the relevant stakeholders.

In such a fluid context, it is best to act conservatively 
and ethically. As we work on developing new data science 
solutions to business problems, we should consider ethi-
cal questions in relation to personal data. There are good 
business reasons to do so. First, acting ethically and trans-
parently with personal data will ensure that a business will 
have good relationships with its customers. Inappropriate 
practices around personal data can cause a business severe 
reputational damage and cause its customer to move to 
competitors (Buytendijk and Heiser 2013). Second, there 
is a risk that as data integration, reuse, profiling, and tar-
geting intensify, public opinion will harden around data 
privacy in the coming years, which will lead to more-
stringent regulations. Consciously acting transparently 
and ethically is the best way to ensure that the data science 
solutions we develop do not run afoul of current regula-
tions or of the regulations that may come into existence in 
the coming years.

Aphra Kerr (2017) reports a case from 2015 that illus-
trates how not taking ethical considerations into account 
can have serious consequences for technology developers 
and vendors. The case resulted in the US Federal Trade 
Commission fining app game developers and publishers 
under the Children’s Online Privacy Protection Act. The 
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developers had integrated third-party advertising into 
their free-to-play games. Integrating third-party advertis-
ing is standard practice in the free-to-play business model, 
but the problem arose because the games were designed 
for children younger than 13. As a result, in sharing their 
users’ data with advertising networks, the developers 
where in fact also sharing data relating to children and as 
a result violated the Children’s Online Privacy Protection 
Act. Also, in one instance the developers failed to inform 
the advertising networks that the apps were for children. 
As a result, it was possible that inappropriate advertising 
could be shown to children, and in this instance the Federal 
Trade Commission ruled that the game publishers were re-
sponsible for ensuring that age-appropriate content and 
advertising were supplied to the game-playing children. 
There has been an increasing number of these types of 
cases in recent years, and a number of organizations, in-
cluding the Federal Trade Commission (2012), have called 
for businesses to adopt the principles of privacy by design 
(Cavoukian 2013). These principles were developed in the 
1990s and have become a globally recognized framework 
for the protection of privacy. They advocate that protect-
ing privacy should be the default mode of operation for 
the design of technology and information systems. To fol-
low these principles requires a designer to consciously and 
proactively seek to embed privacy considerations into the 
design of technologies, organizational practices, and net-
worked system architectures.
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Although the arguments of ethical data science are 
clear, it is not always easy to act ethically. One way to make 
the challenge of ethical data science more concrete is to 
imagine you are working for a company as a data scientist 
on a business-critical project. In analyzing the data, you 
have identified a number of interacting attributes that 
together are a proxy for race (or some other personal at-
tribute, such as religion, gender, etc.). You know that le-
gally you can’t use the race attribute in your model, but 
you believe that these proxy attributes would enable you 
to circumvent the antidiscrimination legislation. You also 
believe that including these attributes in the model will 
make your model work, although you are naturally con-
cerned that this successful outcome may be because the 
model will learn to reinforce discrimination that is already 
present in the system. Ask yourself: “What do I do?”



7

FUTURE TRENDS AND PRINCIPLES 
OF SUCCESS

An obvious trend in modern societies is the proliferation 
of systems that can sense and react to the world: smart 
phones, smart homes, self-driving cars, and smart cities. 
This proliferation of smart devices and sensors presents 
challenges to our privacy, but it is also driving the growth 
of big data and the development of new technology para-
digms, such as the Internet of Things. In this context, data 
science will have a growing impact across many areas of 
our lives. However, there are two areas where data science 
will lead to significant developments in the coming decade: 
personal medicine and the development of smart cities.

Medical Data Science

In recent years, the medical industry has been looking 
at and adopting data science and predictive analytics. 
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Doctors have traditionally had to rely on their experiences 
and instincts when diagnosing a condition or deciding on 
what the next treatment might be. The evidence-based 
medicine and precision-medicine movement argue that 
medical decisions should be based on data, ideally linking 
the best available data to an individual patient’s predica-
ment and preferences. For example, in the case of precision 
medicine, fast genome-sequencing technology means that 
it is now feasible to analyze the genomes of patients with 
rare diseases in order to identify mutations that cause the 
disease so as to design and select appropriate therapies 
specific to that individual. Another factor driving data sci-
ence in medicine is the cost of health care. Data science, 
in particular predictive analytics, can be used to automate 
some health care processes. For example, predictive ana-
lytics has been used to decide when antibiotics and other 
medicines should be administrated to babies and adults, 
and it is widely reported that many lives have been saved 
because of this approach.

Medical sensors worn or ingested by the patient or 
implanted are being developed to continuously monitor 
a patient’s vital signs and behaviors and how his or her 
organs are functioning throughout the day. These data 
are continuously gathered and fed back to a centralized 
monitoring server. It is here at the monitoring server that 
health care professionals access the data being generated 
by all the patients, assess their conditions, understand 
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what effects the treatment is having, and compare each 
patient’s results to those of other patients with similar 
conditions to inform them regarding what should happen 
next in each patient’s treatment regime. Medical science 
is using the data generated by these sensors and integrat-
ing it with additional data from the various parts of the 
medical profession and the pharmaceutical industry to 
determine the effects of current and new medicines. Per-
sonalized treatment programs are being developed based 
on the type of patient, his condition, and how his body 
responds to various medicines. In addition, this new type 
of medical data science is now feeding into new research 
on medicines and their interactions, the design of more 
efficient and detailed monitoring systems, and the uncov-
ering of greater insights from clinical trials.

Smart Cities

Various cities around the world are adopting new tech-
nology to be able to gather and use the data generated by 
their citizens in order to better manage the cities’ orga-
nizations, utilities, and services. There are three core en-
ablers of this trend: data science, big data, and the Internet 
of Things. The name “Internet of Things” describes the 
internetworking of physical devices and sensors so that 
these devices can share information. This may sound 
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mundane, but it has the benefit that we can now remotely 
control smart devices (such as our home if it is properly 
configured) and opens the possibility that networked 
machine-to-machine communication will enable smart 
environments to autonomously predict and react to our 
needs (for example, there are now commercially available 
smart refrigerators that can warn you when food is about 
to spoil and allows you to order fresh milk through your 
smart phone).

Smart-city projects integrate real-time data from 
many different data sources into a single data hub, where 
they are analyzed and used to inform management and 
planning decisions. Some smart-city projects involve 
building brand-new cities that are smart from the ground 
up. Both Masdar City in the United Arab Emirates and 
Songdo City in South Korea are brand-new cities that have 
been built with the smart technology at their core and a 
focus on being eco-friendly and energy efficient. However, 
most smart-city projects involve the retrofitting of exist-
ing cities with new sensor networks and data-processing 
centers. For example, in the SmartSantander project in 
Spain,1 more than 12,000 networked sensors have been 
installed across the city to measure temperature, noise, 
ambient lighting, carbon monoxide levels, and parking. 
Smart-city projects often focus on developing energy ef-
ficiency, planning and routing traffic, and planning utility 
services to match population needs and growth.
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Japan has embraced the smart-city concept with a par-
ticular focus on reducing energy usage. The Tokyo Electric 
Power Company (TEPC) has installed more than 10 million 
smart meters across homes in the TEPC service area.2 At 
the same time, TEPC is developing and rolling out smart-
phone applications that enable customers to track the 
electricity used in their homes in real time and to change 
their electricity contract. These smart-phone applications 
also enable the TEPC to send each customer personalized 
energy-saving advice. Outside of the home, smart-city 
technology can be used to reduce energy usage through 
intelligent street lighting. The Glasgow Future Cities 
Demonstrator is piloting street lighting that switches on 
and off depending on whether people are present. Energy 
efficiency is also a top priority for all new buildings, par-
ticularly for large local government and commercial build-
ings. These buildings’ energy efficiency can be optimized 
by automatically managing climate controls through a 
combination of sensor technology, big data, and data sci-
ence. An extra benefit of these smart-building monitor-
ing systems is that they can monitor for levels of pollution 
and air quality and can activate the necessary controls and 
warnings in real time.

Transport is another area where cities are using data 
science. Many cities have implemented traffic-monitoring 
and management systems. These systems use real-time 
data to control the flow of traffic through the city. For 
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example, they can control traffic-light sequences in real 
time, in some cases to give priority to public-transport 
vehicles. Data on city transport networks are also useful 
for planning public transport. Cities are examining the 
routes, schedules, and vehicle management to ensure that 
services support the maximum number of people and to 
reduce the costs associated with delivering the transport 
services. In addition to modeling the public network, data 
science is also being used to monitor official city vehicles to 
ensure their optimal usage. Such projects combine traffic 
conditions (collected by sensors along the road network, 
at traffic lights, etc.), the type of task being performed, 
and other conditions to optimize route planning, and dy-
namic route adjustments are fed to the vehicles with live 
updates and changes to their routes.

Beyond energy usage and transport, data science is be-
ing used to improve the provision of utility services and 
to implement longer-term planning of infrastructure proj-
ects. The efficient provision of utility services is constantly 
being monitored based on current usage and projected 
usages, and the monitoring takes into account previous 
usage in similar conditions. Utility companies are using 
data science in a number of ways. One way is monitoring 
the delivery network for the utility: the supply, the qual-
ity of the supply, any network issues, areas that require 
higher-than-expected usage, automated rerouting of the 
supply, and any anomalies in the network. Another way 
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that utility companies are using data science is in monitor-
ing their customers. They are looking for unusual usage 
that might indicate some criminality (for example, a grow 
house), customers who may have altered the equipment 
and meters for the building where they live, and custom-
ers who are most likely to default on their payments. Data 
science is also being used in examining the best way to al-
locate housing and associated services in city planning. 
Models of population growth are built to forecast into the 
future, and based on various simulations the city planners 
can estimate when and where certain support services, 
such as high schools, are needed.

Data Science Project Principles: Why Projects Succeed  
or Fail

A data science project sometimes fails insofar as it doesn’t 
deliver what was hoped for because it gets bogged down 
in some technical or political issues, does not deliver use-
ful results, and, more typically, is run once (or a couple 
of times) but never run again. Just like Leo Tolstoy’s 
happy families,3 the success of a data science project is de-
pendent on a number of factors. Successful data science 
projects need focus, good-quality data, the right people, 
the willingness to experiment with multiple models, in-
tegration into the business information technology (IT) 
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architecture and processes, buy-in from senior manage-
ment, and an organization’s recognition that because the 
world changes, models go out of date and need to be re-
built semiregularly. Failure in any of these areas is likely to 
result in a failed project. This section details the common 
factors that determine the success of data science projects 
as well as the typical reasons why data science projects fail.

Focus
Every successful data science project begins by clearly 
defining the problem that the project will help solve. In 
many ways, this step is just common sense: it is difficult 
for a project to be successful unless it has a clear goal. 
Having a well-defined goal informs the decisions regard-
ing which data to use, what ML algorithms to use, how to 
evaluate the results, how the analysis and models will be 
used and deployed, and when the optimal time might be 
to go through the process again to update the analysis and 
models.

Data
A well-defined question can be used to define what data 
are needed for the project. Having a clear understanding of 
what data are needed helps to direct the project to where 
these required data are located. It also helps with defining 
what data are currently unavailable and hence identifies 
some additional projects that can look at capturing and 
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making available these data. It is important, however, to 
ensure that the data used are good-quality data. Organi-
zations may have applications that are poorly designed, a 
very poor data model, and staff who are not trained cor-
rectly to ensure that good data get entered. In fact, myriad 
factors can lead to bad-quality data in systems. Indeed, the 
need for good-quality data is so important that some orga-
nizations have hired people to constantly inspect the data, 
assess the quality of the data, and then feed back ideas on 
how to improve the quality of the data captured by the 
applications and by the people inputting the data. With-
out good-quality data, it is very difficult for a data science 
project to succeed.

When the required data are sourced, it is always im-
portant to check what data are being captured and used 
across an organization. Unfortunately, the approach to 
sourcing data taken by some data science projects is to 
look at what data are available in the transactional data-
bases (and other data sources) and then to integrate and 
clean these data before going on to data exploration and 
analysis. This approach completely ignores the BI team 
and any data warehouse that might exist. In many or-
ganizations, the BI and data-warehouse team is already 
gathering, cleaning, transforming, and integrating the 
organization’s data into one central repository. If a data 
warehouse already exists, then it probably contains all 
or most of the data required by a project. Therefore, a 
data warehouse can save a significant amount of time on 
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integrating and cleaning the data. It will also have much 
more data than the current transactional databases con-
tain. If the data warehouse is used, it is possible to go back 
a number of years, build predictive models using the his-
toric data, roll these models through various time periods, 
and then measure each model’s level of predictive accu-
racy. This process allows for the monitoring of changes in 
the data and how they affect the models. In addition, it 
is possible to monitor variations in the models that are 
produced by ML algorithms and how the models evolve 
over time. Following this kind of approach facilitates the 
demonstration of how the models work and behave over 
a number of years and helps with building up the cus-
tomer’s confidence in what is being done and what can 
be achieved. For example, in one project where five years 
of historical data were available in the data warehouse, it 
was possible to demonstrate that the company could have 
saved US$40 million or more over that time period. If the 
data warehouse had not been available or used, then it 
would not have been possible to demonstrate this conclu-
sion. Finally, when a project is using personal data it is 
essential to ensure that the use of this data is in line with 
the relevant antidiscrimination and privacy regulations.

People
A successful data science project often involves a team 
of people with a blend of data science competencies and 
skills. In most organizations, a variety of people in existing 
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roles can and should contribute to data science projects: 
people working with databases, people who work with the 
ETL process, people who perform data integration, proj-
ect managers, business analysts, domain experts, and so 
on. But organizations often still need to hire data science 
specialists—that is, people with the skills to work with big 
data, to apply ML, and to frame real-world problems in 
terms of data-driven solutions. Successful data scientists 
are willing and able to work and communicate with the 
management team, end users, and all involved to show 
and explain what and how data science can support their 
work. It is difficult to find people who have both the re-
quired technical skill set and the ability to communicate 
and work with people across an organization. However, 
this blend is crucial to the success of data science projects 
in most organizations.

Models
It is import to experiment with a variety of ML algorithms 
to discover which works best with the data sets. All too 
often in the literature, examples are given of cases where 
only one ML algorithm was used. Maybe the authors are 
discussing the algorithm that worked best for them or that 
is their favorite. Currently there is a great deal of inter-
est in the use of neural networks and deep learning. Many 
other algorithms can be used, however, and these alterna-
tives should be considered and tested. Furthermore, for 
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data science projects based in the EU, the General Data 
Protection Regulations, which go into effect in April 
2018, may become a factor in determining the selection 
of algorithms and model. A potential side effect of these 
regulations is that an individual’s “right to explanation” in 
relation to automated decision processes that affect them 
may limit the use in some domains of complex models that 
are difficult to interpret and explain (such as deep neural 
network models).

Integration with the Business
When the goal of a data science project is being defined, 
it is vital also to define how the outputs and results of 
the project will be deployed within the organization’s IT 
architecture and business processes. Doing so involves 
identifying where and how the model is to be integrated 
within existing systems and how the generated results will 
be used by the system end users or if the results will be fed 
into another process. The more automated this process is, 
the quicker the organization can respond to its customers’ 
changing profile, thereby reducing costs and increasing 
potential profits. For example, if a customer-risk model is 
built for the loan process in a bank, it should be built into 
the front-end system that captures the loan application  
by the customer. That way, when the bank employee is en-
tering the loan application, she can be given live feedback 
by the model. The employee can then use this live feedback 
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to address any issues with the customer. Another example 
is fraud detection. It can take four to six weeks to identify 
a potential fraud case that needs investigation. By using 
data science and building it into transaction-monitoring 
systems, organizations can now detect potential fraud 
cases in near real time. By automating and integrating 
data-driven models, quicker response times are achieved, 
and actions can be taken at the right time. If the outputs 
and models created by a project are not integrated into the 
business processes, then these outputs will not be used, 
and, ultimately, the project will fail.

Buy-in
For most projects in most organizations, support by se-
nior management is crucial to the success of many data 
science projects. However, most senior IT managers are 
very focused on the here and now: keeping the lights on, 
making sure their day-to-day applications are up and run-
ning, making sure the backups and recovery processes 
are in place (and tested), and so on. Successful data sci-
ence projects are sponsored by senior business manag-
ers (rather than by an IT manager) because the former 
are focused not on the technology but on the processes 
involved in the data science project and how the outputs 
of the data science project can be used to the organiza-
tion’s advantage. The more focused a project sponsor is 
on these factors, the more successful the project will be. 
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He or she will then act as the key to informing the rest 
of the organization about the project and selling it to 
them. But even when data science has a senior manager 
as an internal champion, a data science strategy can still 
fail in the long term if the initial data science project is 
treated as a box-ticking exercise. The organization should 
not view data science as a one-off project. For an orga-
nization to reap long-term benefits, it needs to build its 
capacity to execute data science projects often and to use 
the outputs of these projects. It takes long-term commit-
ment from senior management to view data science as  
a strategy.

Iteration
Most data science projects will need to be updated and 
refreshed on a semiregular basis. For each new update 
or iteration, new data can be added, new updates can be 
added, maybe new algorithms can be used, and so on. The 
frequency of these iterations will vary from project to proj-
ect; it could be daily or quarterly or biannually or annually. 
Checks should be built into the productionalized data sci-
ence outputs to detect when models need updating (see 
Kelleher, Mac Namee, and D’Arcy 2015 for an explanation 
of how to use a stability index to identify when a model 
should be updated).
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Final Thoughts

Humans have always abstracted from the world and tried 
to understand it by identifying patterns in their experi-
ences of it. Data science is the latest incarnation of this 
pattern-seeking behavior. However, although data science 
has a long history, the breadth of its impact on modern life 
is without precedent. In modern societies, the words preci-
sion, smart, targeted, and personalized are often indicative 
of data science projects: precision medicine, precision polic-
ing, precision agriculture, smart cities, smart transport, tar-
geted advertising, personalized entertainment. The common 
factor across all these areas of human life is that decisions 
have to be made: What treatment should we use for this 
patient? Where should we allocate our policing resources? 
How much fertilizer should we spread? How many high 
schools do we need to build in the next four years? Who 
should we send this advertisement to? What movie or 
book should we recommend to this person? The power 
of data science to help with decision making is driving its 
adoption. Done well, data science can provide actionable 
insight that leads to better decisions and ultimately better 
outcomes.

Data science, in its modern guise, is driven by big data, 
computer power, and human ingenuity from a number of 
fields of scientific endeavor (from data mining and data-
base research to machine learning). This book has tried to 
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provide an overview of the fundamental ideas and concepts 
required to understand data science. The CRISP-DM proj-
ect life cycle makes the data science process explicit and 
provides a structure for the data science journey from data 
to wisdom: understand the problem, prepare the data, use 
ML to extract patterns and create models, use the models 
to get actionable insight. The book also touches on some 
of the ethical concerns relating to individual privacy in a 
data science world. People have genuine and well-founded 
concerns that data science has the potential to be used by 
governments and vested interests to manipulate our be-
haviors and police our actions. We, as individuals, need 
to develop informed opinions about what type of a data 
world we want to live in and to think about the laws we 
want our societies to develop in order to steer the use of 
data science in appropriate directions. Despite the ethical 
concerns we may have around data science, the genie is 
already very much out of the bottle: data science is hav-
ing and will continue to have significant effects on our 
daily lives. When used appropriately, it has the potential 
to improve our lives. But if we want the organizations we 
work with, the communities we live in, and the families 
we share our lives with to benefit from data science, we 
need to understand and explore what data science is, how 
it works, and what it can (and can’t) do. We hope this book 
has given you the essential foundations you need to go on 
this journey.
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Analytics Base Table 
A table in which each row contains the data relating to a specific instance 
and each column describes the values of a particular attribute for each in-
stance. These data are the basic input to data-mining and machine-learning 
algorithms.

Anomaly Detection 
Searching for and identifying examples of atypical data in a data set. These 
nonconforming cases are often referred to as anomalies or outliers. This process 
is often used in analyzing financial transactions to identify potential fraudu-
lent activities and to trigger investigations.

Association-Rule Mining 
An unsupervised data-analysis technique that looks to find groups of items 
that frequently co-occur together. The classic use case is market-basket analy-
sis, where retail companies try to identify sets of items that are purchased 
together, such as the hot dogs, ketchup, and beer.

Attribute 
Each instance in a data set is described by a number of attributes (also known 
as features or variables). An attribute captures one piece of information relating 
to an instance. An attribute can be either raw or derived.

Backpropagation 
The backpropagation algorithm is an ML algorithm used to train neural net-
works. The algorithm calculates for each neuron in a network the contribution 
the neuron makes to the error of the network. Using this error calculation for 
each neuron it is possible to update the weights on the inputs to each neuron 
so as to reduce the overall error of the network. The backpropagation algo-
rithm is so named because it works in a two stage process. In the first stage an 
instance is input to the network and the information flows forward through 
the network until the network generates a prediction for that instance. In 
the second stage the error of the network on that instance is calculated by 
comparing the network's prediction to the correct output for that instance 
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(as specified by the training data) and then this error is then shared back (or 
backpropagated) through the neurons in the network on a layer by layer basis 
beginning at the output layer.

Big Data 
Big data are often defined in terms of the three Vs: the extreme volume of 
data, the variety of the data types, and the velocity at which the data must 
be processed.

Captured Data 
Data that are captured through a direct measurement process that is designed 
to gather the data. Contrast with exhaust data.

Classification 
The task of predicting a value for a target attribute of an instance based on 
the values of a set of input attributes, where the target attribute is a nominal 
or ordinal data type.

Clustering 
Identifying groups of similar instances in a data set.

Correlation 
The strength of association between two attributes.

Cross Industry Standard Process for Data Mining (CRISP-DM) 
The CRISP-DM defines a standard life cycle for a data-mining project. The life 
cycle is often adopted for data science projects.

Data  In its most basic form, a piece of data is an abstraction (or measure-
ment) from a real-world entity (person, object, or event).

Data Analysis 
Any process for extracting useful information from data. Types of data  
analysis include data visualization, summary statistics, correlation analysis, 
and modeling using machine learning.

Database 
A central repository of data. The most common database structure is a rela-
tional database, which stores data in tables with a structure of one row per 



	 Glossary    241

instance and one column per attribute. This representation is ideal for storing 
data with a clear structure that can be decomposed into natural attributes.

Data Mining 
The process of extracting useful patterns from a data set to solve a well-defined 
problem. CRISP-DM defines the standard life cycle for a data-mining project. 
Closely related to data science but in general not as broad in scope.

Data Science 
An emerging field that integrates a set of problem definitions, algorithms, and 
processes that can be used to analyze data so as to extract actionable insight 
from (large) data sets. Closely related to the field of data mining but broader 
in scope and concern. Deals with both structured and unstructured (big) data 
and encompasses principles from a range of fields, including machine learn-
ing, statistics, data ethics and regulation, and high-performance computing.

Data Set 
A collection of data relating to a set of instances, with each instance described 
in terms of a set of attributes. In its most basic form, a data set is organized in 
an n * m matrix, where n is the number of instances (rows) and m is the number 
of attributes (columns).

Data Warehouse 
A centralized repository containing data from a range of sources across an or-
ganization. The data are structured to support summary reports from the ag-
gregated data. Online analytical processing (OLAP) is the term used to describe 
the typical operations on a data warehouse.

Decision Tree 
A type of prediction model that encodes if-then-else rules in a tree structure. 
Each node in the tree defines one attribute to test, and a path from the root 
node to a terminating leaf node defines a sequence of tests that an instance 
must pass for the label of the terminating node to be predicted for that 
instance.

Deep Learning 
A deep-learning model is a neural network that has multiple (more than two) 
layers of hidden units (or neurons). Deep networks are deep in terms of the 
number of layers of neurons in the network. Today many deep networks have 
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tens to hundreds of layers. The power of deep-learning models comes from the 
ability of the neurons in the later layers to learn useful attributes derived from 
attributes that were themselves learned by the neurons in the earlier layers.

Derived Attribute 
An attribute whose value is generated by applying a function to other data 
rather than a direct measurement taken from the entity. An attribute that 
describes an average value in a population is an example of a derived attribute. 
Contrast with raw attribute.

DIKW Pyramid 
A model of the structural relationships between data, information, knowledge, 
and wisdom. In the DIKW pyramid, data precedes information, which precedes 
knowledge, which precedes wisdom.

Exhaust Data 
Data that are a by-product of a process whose primary purpose is some-
thing other than data capture. For example, for every image shared, tweeted, 
retweeted, or liked, a range of exhaust data is generated: who shared, who 
viewed, what device was used, what time of day, and so on. Contrast with  
captured data.

Extraction, Transformation, and Load (ETL)  
ETL is the term used to describe the typical processes and tools used to support 
the mapping, merging, and movement of data between databases.

Hadoop 
Hadoop is an open-source framework developed by the Apache Software Foun-
dation that is designed for the processing of big data. It uses distributed stor-
age and processing across clusters of commodity hardware.

High-Performance Computing (HPC) 
The field of HPC focuses on designing and implementing frameworks to con-
nect large number of computers together so that the resulting computer clus-
ter can store and process large amounts of data efficiently.

In-Database Machine Learning 
Using machine-learning algorithms that are built into the database solution. 
The benefit of in-database machine learning is that it reduces the time spent 
on moving data in and out of databases for analysis.
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Instance 
Each row in a data set contains the information relating to one instance (also 
known as an example, entity, case, or record).

Internet of Things 
The internetworking of physical devices and sensors so that these devices can 
share information. Includes the field of machine-to-machine communication, 
which develops systems that enable machines not only to share informa-
tion but also to react to this information and trigger actions without human 
involvement.

Linear Regression 
When a linear relationship is assumed in a regression analysis, the analysis is 
called linear regression. A popular type of prediction model used to estimate the 
value of a numeric target attribute based on a set of numeric input attributes.

Machine Learning (ML) 
The field of computer science research that focuses on developing and evalu-
ating algorithms that can extract useful patterns from data sets. A machine-
learning algorithm takes a data set as input and returns a model that encodes 
the patterns the algorithm extracted from the data.

Massively Parallel Processing Database (MPP) 
In an MPP database, data is partitioned across multiple servers, and each 
server can process the data on that server locally and independently. 

Metadata 
Data describing the structures and properties of other data—for example, a 
time stamp that describes when a piece of data was collected. Metadata are one 
of the most common types of exhaust data.

Model 
In the context of machine learning, a model is a representation of a pattern 
extracted using machine learning from a data set. Consequently, models are 
trained, fitted to a data set, or created by running a machine learning algo-
rithm on a data set. Popular model representations include decision trees and 
neural networks. A prediction model defines a mapping (or function) from a 
set of input attributes to a value for a target attribute. Once a model has been 
created, it can then be applied to new instances from the domain. For example, 
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in order to train a spam filter model, we would apply a machine learning al-
gorithm to a data set of historic emails that have been labeled as spam or not 
spam. Once the model has been trained it can be used to label (or filter) new 
emails that were not in the original data set.

Neural Network 
A type of machine-learning model that is implemented as a network of simple 
processing units called neurons. It is possible to create a variety of different 
types of neural networks by modifying the topology of the neurons in the 
network. A feed-forward, fully connected neural network is a very common 
type of network that can be trained using backpropagation.

Neuron 
A neuron takes a number of input values (or activations) as input and 
maps these values to a single output activation. This mapping is typically 
implemented by applying a multi-input linear-regression function to the 
inputs and then pushing the result of this regression function through a  
nonlinear activation function, such as the logistic or tanh function.

Online Analytical Processing (OLAP) 
OLAP operations generate summaries of historic data and aggregate data from 
multiple sources. OLAP operations are designed to generate report-type sum-
maries and enable users to slice, dice, and pivot data in a data warehouse using 
a predefined set of dimensions on the data, such as sales by stores, sale by 
quarter, and so on. Contrast with Online Transaction Processing (OLTP).

Online Transaction Processing (OLTP) 
OLTPs are designed for short online data transactions (such as INSERT, DE-
LETE, UPDATE, etc.) with an emphasis on fast query processing and main-
taining data integrity in a multi-access environment. Contrast with OLAP 
systems, which are designed for more complex operations on historic data.

Operational Data Store (ODS) 
An ODS system integrates operational or transactional data from multiple sys-
tems to support operational reporting.

Prediction 
In the context of data science and machine learning, the task of estimating 
the value of a target attribute for a given instance based on the values of other 
attributes (or input attributes) for that instance.
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Raw Attribute 
An abstraction from an entity that is a direct measurement taken from the 
entity—for example, a person’s height. Contrast with derived attribute.

Regression Analysis 
Estimates the expected (or average) value of a numeric target attribute when 
all the input attribute values are fixed. Regression analysis assumes a param-
eterized mathematical model of the hypothesized relationship between the 
inputs and output known as a regression function. A regression function may 
have multiple parameters, and the focus of regression analysis is to find the 
correct settings for these parameters.

Relational Database Management System (RDBMS) 
Database management systems based on Edgar F. Codd’s relational data model. 
Relational databases store data in collection of tables where each table has a 
structure of one row per instance and one column per attribute. Links between 
tables can be created by having key attributes appear in multiple tables. This 
structure is suited for SQL queries which define operations on the data in the  
tables.

Smart City 
Smart-city projects generally try to integrate real-time data from many differ-
ent data sources into a single data hub, where they are analyzed and used to 
inform city-management and planning decisions.

Structured Data 
Data that can be stored in a table. Every instance in the table has the same set 
of attributes. Contrast with unstructured data.

Structured Query Language (SQL) 
An international standard for defining database queries.

Supervised Learning 
A form of machine learning in which the goal is to learn a function that maps 
from a set of input attribute values for an instance to an estimate of the miss-
ing value for the target attribute of the same instance.

Target Attribute 
In a prediction task, the attribute that the prediction model is trained to es-
timate the value of.
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Transactional Data 
Event information, such as the sale of an item, the issuing of an invoice, the 
delivery of goods, credit card payment, and so on.

Unstructured Data 
A type of data where each instance in the data set may have its own internal 
structure; that is, the structure is not necessarily the same in every instance. 
For example, text data are often unstructured and require a sequence of op-
erations to be applied to them in order to extract a structured representation 
for each instance.

Unsupervised Learning 
A form of machine learning in which the goal is to identify regularities in the 
data. These regularities may include clusters of similar instances within the 
data or regularities between attributes. In contrast to supervised learning, in 
unsupervised learning no target attribute is defined in the data set.



NOTES

Chapter 1
1.  Quote taken from the call for participation sent out for the KDD workshop 
in 1989.
2.  Some practitioners do distinguish between data mining and KDD by  
viewing data mining as a subfield of KDD or a particular approach to KDD.
3.  For a recent review of this debate, see Battle of the Data Science Venn  
Diagrams (Taylor 2016).
4.  For more on the Cancer Moonshot Initiative, see https://www.cancer.gov/
research/key-initiatives.
5.  For more on the All of Us program in the Precision Medicine Initiative, see 
https://allofus.nih.gov.
6.  For more on the Police Data Initiative, see https://www.policedatainitiative 
.org.
7.  For more on AlphaGo, see https://deepmind.com/research/alphago.

Chapter 2
1.  Although many data sets can be described as a flat n * m matrix, in some 
scenarios the data set is more complex: for example, if a data set describes 
the evolution of multiple attributes through time, then each time point  
in the data set will be represented by a two-dimensional flat n * m matrix, 
listing the state of the attributes at that point in time, but the overall data 
set will be three dimensional, where time is used to link the two-dimensional 
snapshots. In these contexts, the term tensor is sometimes used to generalize 
the matrix concept to higher dimensions.
2.  This example is inspired by an example in Han, Kamber, and Pei 2011.

Chapter 3
1.  See Storm website, at http://storm.apache.org.

Chapter 4
1.  This subheading, Correlations Are Not Causations, but Some Are Useful, is 
inspired by George E. P. Box’s (1979) observation, “Essentially, all models are 
wrong, but some are useful.”
2.  For a numeric target, the average is the most common measure of central 
tendency, and for nominal or ordinal data the mode (or most frequently occur-
ring value is the most common measure of central tendency).

https://www.cancer.gov/research/key-initiatives
https://www.cancer.gov/research/key-initiatives
https://allofus.nih.gov
https://www.policedatainitiative.org
https://www.policedatainitiative.org
https://deepmind.com/research/alphago
http://storm.apache.org
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3.  We are using a more complex notation here involving ω0 and ω1 because a 
few paragraphs later we expand this function to include more than one input 
attribute, so the subscripted variables are useful notations when dealing with 
multiple inputs.
4.  A note of caution: the numeric values reported here should be taken as  
illustrative only and not interpreted as definitive estimates of the relationship 
between BMI and likelihood of diabetes.
5.  In general, neural networks work best when the inputs have similar ranges. 
If there are large differences in the ranges of input attributes, the attributes 
with the much larger values tend to dominate the processing of the network. 
To avoid this, it is best to normalize the input attributes so that they all have 
similar ranges.
6.  For the sake of simplicity, we have not included the weights on the connec-
tions in figures 14 and 15.
7.  Technically, the backpropagation algorithm uses the chain rule from calcu-
lus to calculate the derivative of the error of the network with respect to each 
weight for each neuron in the network, but for this discussion we will pass over 
this distinction between the error and the derivative of the error for the sake of 
clarity in explaining the essential idea behind the backpropagation algorithm.
8.  No agreed minimum number of hidden layers is required for a network to 
be considered “deep,” but some people would argue that even two layers are 
enough to be deep. Many deep networks have tens of layers, but some net-
works can have hundreds or even thousands of layers.
9.  For an accessible introduction to RNNs and their natural-language process-
ing, see Kelleher 2016.
10.  Technically, the decrease in error estimates is known as the vanishing-
gradient problem because the gradient over the error surface disappears as the 
algorithm works back through the network.
11.  The algorithm also terminates on two corner cases: a branch ends up with 
no instances after the data set is split up, or all the input attributes have al-
ready been used at nodes between the root node and the branch. In both cases, 
a terminating node is added and is labeled with the majority value of the target 
attribute at the parent node of the branch.
12.  For an introduction to entropy and its use in decision-tree algorithms, see 
Kelleher, Mac Namee, and D’Arcy 2015 on information-based learning.
13.  See Burt 2017 for an introduction to the debate on the “right to 
explanation.”

http://.
http://.
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Chapter 5
1.  A customer-churn case study in Kelleher, Mac Namee, and D’Arcy 2015 
provides a longer discussion of the design of attributes in propensity  
models.

Chapter 6
1.  Behavioral targeting uses data from users’ online activities—sites visited, 
clicks made, time spent on a site, and so on—and predictive modeling to select 
the ads shown to the user.
2.  The EU Privacy and Electronic Communications Directive (2002/58/EC).
3.  For example, some expectant women explicitly tell retailers that they  
are pregnant by registering for promotional new-mother programs at the 
stores.
4.  For more on PredPol, see http://www.predpol.com.
5.  A Panopticon is an eighteenth-century design by Jeremy Bentham for in-
stitutional buildings, such as prisons and psychiatric hospitals. The defining 
characteristic of a Panopticon was that the staff could observe the inmates 
without the inmates’ knowledge. The underlying idea of this design was that 
the inmates were forced to act as though they were being watched at all times.
6.  As distinct from digital footprint.
7.  Civil Rights Act of 1964, Pub. L. 88-352, 78 Stat. 241, at https://www.gpo 
.gov/fdsys/pkg/STATUTE-78/pdf/STATUTE-78-Pg241.pdf.
8.  Americans with Disabilities Act of 1990, Pub. L. 101-336, 104 Stat. 327, 
at https://www.gpo.gov/fdsys/pkg/STATUTE-104/pdf/STATUTE-104-Pg327 
.pdf.
9.  The Fair Information Practice Principles are available at https://www.dhs 
.gov/publication/fair-information-practice-principles-fipps.
10.  Senate of California, SB-568 Privacy: Internet: Minors, Business and 
Professions Code, Relating to the Internet, vol. division 8, chap. 22.1 (com-
mencing with sec. 22580) (2013), at https://leginfo.legislature.ca.gov/faces/
billNavClient.xhtml?bill_id=201320140SB568.

Chapter 7
1.  For more on the SmartSantander project in Spain, see http:// 
smartsantander.eu.
2.  For more on the TEPC’s projects, see http://www.tepco.co.jp/en/press/
corp-com/release/2015/1254972_6844.html.

http://.
http://www.predpol.com
https://www.gpo.gov/fdsys/pkg/STATUTE-78/pdf/STATUTE-78-Pg241.pdf
https://www.gpo.gov/fdsys/pkg/STATUTE-78/pdf/STATUTE-78-Pg241.pdf
https://www.gpo.gov/fdsys/pkg/STATUTE-104/pdf/STATUTE-104-Pg327.pdf
https://www.gpo.gov/fdsys/pkg/STATUTE-104/pdf/STATUTE-104-Pg327.pdf
https://www.dhs.gov/publication/fair-information-practice-principles-fipps
https://www.dhs.gov/publication/fair-information-practice-principles-fipps
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB568
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB568
http://smartsantander.eu
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http://www.tepco.co.jp/en/press/corp-com/release/2015/1254972_6844.html
http://www.tepco.co.jp/en/press/corp-com/release/2015/1254972_6844.html
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3.  Leo Tolstoy’s book Anna Karenina (1877) begins: “All happy families are 
alike; each unhappy family is unhappy in its own way.” Tolstoy’s idea is that 
to be happy, a family must be successful in a range of areas (love, finance, 
health, in-laws), but failure in any of these areas will result in unhappiness. 
So all happy families are the same because they are successful in all areas, 
but unhappy families can be unhappy for many different combinations of  
reasons.
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