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Preface

As already realized by the general community, the electrification of passenger cars
has increased significantly over the past ten years, starting with micro-hybrid cars,
which provide start-stop systems and limited energy recovery from braking, and
going over to mild and full-hybrid electric vehicles, as well as full electric cars. This
trend of growing electrification also occurs in the segment of heavy-duty vehicles
and long-haul trucks.

The sociopolitical pressure for higher energy efficiency of on-road vehicles will
also be imposed on non-road mobile machinery in the foreseeable future. Increasing
energy prices will also enhance the economical motivation to go for higher energy
efficiency. Any additional costs due to the energy efficiency increase of mobile
machinery, which are usually counted as assets, need to be compensated by reduced
fuel consumption or increased productivity, though. An environmental sustain-
ability life cycle analysis requires therefore to include the resourcing, production,
results of application, and the component disposal after lifetime to see if the energy
efficiency increase is reasonable by ecological aspects.

Therefore, the conclusion to achieve a positive life cycle leads to the fact that
any additional components of the hybrid powertrain and their degrees of freedom
are used in the best way. This goal is the key topic of the book!

In comparison to on-road vehicles, the spectrum of load profiles of the power-
train is significantly larger and more dynamic for mobile machinery applications.
The usual load profile is not only obtained by the drivetrain, but also by auxiliary
equipment such as oil pumps, e.g., for lifting a bucket. On the other side, the total
number of vehicles is much smaller and, therefore, development costs are more
expensive.

A generic energy management, which is capable of controlling a wide range of
totally different applications at an optimum, is presented to meet the requirements
for non-road mobile machinery. Without any change to energy management soft-
ware, the operation strategies such as torque split for maximum energy efficiency,
phlegmatization, downspeeding, constant speed, and stationary operation may be
changed between each other for flexibility reasons.



vi Preface

Cycle detection and load prediction, as presented in the book, provide further
information for energy management, which help to operate the hybrid powertrain
more on the optimal operation point and closer on the feasibility limit. In this
context, the battery charging status needs to be known with high accuracy, but is
not measurable online during operation. For this purpose, a generic methodology
has been developed to identify battery dynamics automatically; it is independently
applicable to any battery chemistry.

This book discusses several different sectors of technology and highly sophis-
ticated engineering, but it should not be seen as a general reference or as a fun-
damentally educational book. It is more a book of detailed research content that can
be used for implementation into given problem sets as well as a reference for
different methodologies applicable to any other fields.

The book’s content resulted from a project that had been financed by the
Austrian Research Promotion Agency (FFG), and which was overseen by Graz
University of Technology. The project consortium consisted of Graz University of
Technology, Vienna University of Technology, Liebherr Machines Bulle SA,
Liebherr Werk Bischofshofen, Liebherr Werk Nenzing and Kiristl, Seibt & Co
GmbH.

We, the authors, want to direct special thanks to Prof. Helmut Eichlseder, Prof.
Martin Kozek, Dr. Peter Grabner, Dr. Herbert Pfab, Dr. Wilfried Rossegger, Dr.
Christoph Hametner, Dr. Christian Mayr, Dr. Oliver Konig, Dipl.-Ing. Michaela
Killian, Dipl.-Ing. Wolfgang Monschein, Dipl.-Ing. (FH) Christoph Kiegerl, Dipl.-
Ing. Rupert Gappmaier and Mr. Hans Knapp for their help and inputs, which made
this book possible.

Vienna/Bulle Johannes Unger
December 2015 Marcus Quasthoff
Stefan Jakubek
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Chapter 1
Introduction

Abstract Nonlinear system behavior of hybrid electric vehicle powertrains demands
advanced methodologies in modeling and control in order to achieve optimal results
by energy and battery management systems of such powertrains. This book describes
the main problems in the real-time control of parallel hybrid electric powertrains in
non-road applications, which work in continuous high dynamic operation. In order
to maximize the energetic efficiency of such powertrains, the operation point of the
engine must be kept in the optimal region. In terms of driveability, the optimal regions
are mostly in regions with lower dynamics, which leads to engine stalling at high
load peaks. This must be prevented by the controller in any case. For this purpose, the
book addresses an energy management control structure, which considers all con-
straints of the physical powertrain and uses novel methodologies for the prediction
of future load requirements to optimize controller output in terms of an entire work
cycle of a non-road vehicle. The load prediction includes a methodology for short
term loads as well as for an entire load cycle by means of cycle detection. This way,
energy efficiency can be maximized, which simultaneously results in a reduction of
fuel consumption and exhaust emissions. One significant information required by the
energy management system is the battery’s state of charge, which is not measurable
on-line. This requires an accurate state of charge estimation, which is based on a
dynamic battery model. A novel methodology is introduced for the nonlinear battery
modeling that also considers the design of experiments of the measurements to iden-
tify model parameters with minimum variance. The reader of the book gets a deep
insight into the necessary topics to be considered in designing an energy and battery
management system for non-road vehicles and learns that only a combination of the
management systems can significantly increase the performance of a controller.

Keywords Non-road hybrid electric vehicle (HEV) - Model predictive control -
Nonlinear system identification + Optimal model based design of experiments (DoE)
Load and cycle prediction

© The Author(s) 2016 1
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2 1 Introduction

Fig. 1.1 Two classic examples of non-road mobile machinery. a Wheel Loader. b Excavator

1.1 Motivation

Non-road mobile machinery (NRMM), such as wheel loaders or excavators, is highly
dynamic, mostly cyclically used, applications (see Fig.1.1) that are operated by
especially trained drivers to bring out the maximum performance of the vehicles,
c.f. Filla (2009). Usually, compared to on-road vehicles, higher power densities and
load dynamics occur, which increase the exhaust emissions of non-road vehicles sig-
nificantly (Lin et al. 2003). In the past years, the legislative regulations for exhaust
emissions of such vehicles also became more stringent (e.g., US EPA Tier 4 respec-
tively EU Stage 1V, (The European Parliament and Council of the European Union,
1997)) and will be more severe in the future (up to particle counting in, e.g., EU Stage
V, (The European Parliament and Council of the European Union, 2014)). Exhaust
after treatment systems (EATS) are in general used to keep the exhaust emission
regulations, but they are cost intensive and may not be enough for future regulations
(Weibel et al. 2014). Lowering the rotational speed of the powertrain (downspeeding)
and limiting the dynamics of the engine torque (phlegmatization) can decrease fuel
consumption and production of emissions in the engine, but these are contrary objec-
tives compared to the required powertrain dynamics (Unger et al. 2015). Considering
the future load demand as well as cycle information in the control of the powertrain
might also have positive effects on exhaust emission reduction, whereby the load
demand of non-road machinery is mostly unknown and directly dependent on the
driver. Nevertheless, a reduction of the generated exhaust emissions not exclusively
achieved by EATS is desirable.
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@ Filling lowered bucket
@ Reverse driving while lifting bucket

@ Stop for reversion

@ Forward driving towards load receiver
@ Emptying lifted bucket

@ Reverse driving while lowering bucket
@ Stop for reversion

Forward driving towards pile

Fig. 1.2 Classic Y-cycle of a wheel loader loading a truck with bulk material

1.2 Characteristic Applications of Non-Road Mobile
Machines

Applications, where non-road mobile machines are established, are manifold. They
are used in earth moving, material loading, refilling of bulk storages, ditching, build-
ing demolition, flattening, and many other applications, which demand different
requirements on their powertrain. The requirements are basically defined by the
dynamics of the powertrain loads and need to be provided by the powertrain with-
out engine stalling at high dynamic load peaks. In terms of energy, the drivetrain of
non-road vehicles is mostly the main energy consumer, which sometimes enables
recuperation of regenerative power. The wheel loader is such an application that has
high drivetrain energy consumption as well as high dynamic load requirements due
to the rough environmental influences acting on the machinery during operation (e.g.,
unsuitable grounds, slopes or task impacts,...). Therefore, it is chosen as an example
of the concepts and proposed methodologies that are presented in this book.

Bucket-equipped wheel loaders are very often used in the earth moving industry
to transport bulk material or load trucks with it. The driver controls the vehicle with
a joystick and an accelerator, which moves the shovel and requests the driving speed,
respectively. Load trajectory and driving patterns are exclusively dependent on the
driver and unknown in advance. Typical loading cycles—such as V or Y-cycles—
are repeated periodically for a few times, and thereafter the operation is changed to
another cycle. In Fig. 1.2, a Y-cycle is depicted exemplarily, which comprises several
steps repeated periodically.

Filla (2013) analyzed different loading cycles to optimize the path trajectory in
order to achieve reductions in fuel consumption and an increase in productivity.
However, periodical operation is observable in the past load signal, which in fact can
be considered for the control of the powertrain.
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1.3 Configurations of Hybrid Electric Powertrains

Actual developments for conventional powertrains, which usually only consist of
an internal combustion engine (ICE), may not be sufficient to reach the low emis-
sion and fuel consumption standards requested by law and customers, respectively.
Therefore, a great deal of interest is given to hybridization of non-road vehicles,
where the conventional fuel-based powertrain is enhanced with a secondary energy
source to achieve lower fuel consumption and exhaust emissions, respectively. Com-
monly, an electric energy source such as an electrochemical battery or a double-layer
capacitor (DLC) is used, though hydraulic concepts are available as well. Meanwhile,
distinguished power capabilities are provided by power-type batteries, which make
batteries—as compared to DLCs—more attractive to be used within non-road hybrid
electric vehicles (HEV) (Unger et al. 2012a). Hybrid powertrains can be assembled in
series or parallel configuration as well as in a combination of both, which is depicted
schematically in Fig. 1.3.

Figure 1.3a depicts the series configuration, where no direct form-locking con-
nection between the ICE and the load P, is realized. A secondary energy storage
module supplies and receives the power for the electric machines through an inverter
unit (INV). Series configuration means to the electric motor (EM) that full power
needs to be provided for the consumer, while the electric generator (EG) may have

Fig. 1.3 Typical hybrid
powertrain configurations for
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Fig. 1.4 Detailed schematic overview of a parallel hybrid electric powertrain used in non-road
HEV

less power capabilities. In case of high energy conversions, the energy flow must
be converted at least two times to reach the consumer, which is disadvantageous. In
the parallel configuration (b), where ICE and EM are coupled form-locked on one
axis, the rotational speed for the ICE and the integrated starter generator (ISG) is the
same, while the torques add up. With this configuration, as long as no clutch is used
between ICE and ISG, an electric only strategy cannot be realized without engine
hauling. A combination of series and parallel configuration (c) has the advantage
that electric power can be used for the auxiliary components. Much research interest
has been spent on analyzing the different configurations (see e.g., Xiao et al. 2008,
Bayindiretal. 2011, Katrasnik 2009), while following Kwon et al. (2010), the parallel
configuration is most favorable for non-road vehicles, though. In Fig. 1.4, a parallel
hybrid electric powertrain is depicted with a schematic overview of the energy man-
agement system (EMS). The depicted powertrain can be used in different non-road
vehicles and applications, while the EMS needs to be especially parametrized for the
corresponding vehicles.

The duty of the EMS is to keep the state of charge (SoC) of the battery at the
demand value SoC,,4. This can be achieved by controlling the ICE set-point torque
Tice,ser and ISG set-point torque Ty, 5, under consideration of all constraints of the
components in such a way that the rotational speed w is kept at an optimal value,
while the unknown load Py, acts on the powertrain. Subsidiary component series
controllers apply the set-points to the ICE torque 7;., and ISG torque 7;,,. Battery
current / and voltage V attune to T}, but must be kept below their limits to avoid
physical damage. Due to the nonlinearities of the powertrain, achieving an optimal
control performance amounts to a nonlinear optimization problem to be solved in
the EMS in real time (Unger et al. 2015).

1.4 Challenges in Controlling Hybrid Electric Vehicles

Hybridization can enhance the degrees of freedom of the powertrain to provide the
high dynamic load demand of non-road vehicles, but the engine needs to be limited
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in dynamics according to the downspeeding and phlegmatization strategies in order
to reduce fuel consumption and exhaust emissions. The reduced dynamic tightens to
keep all physical constraints of the system, though. Only the information of the entire
future load cycle, which is in general unknown for non-road machinery, provides the
possibility to reduce the dynamic as far as possible and to exploit the full energy stor-
age capabilities of the battery (Mayr et al. 2011a). An electrochemical battery offers
sufficient energy storage capabilities to recuperate regenerative power and consider
motor braking phases resulting from an entire load cycle, but the disadvantage of
batteries is that the SoC of the battery is not measurable online and requires an SoC
estimator during operation (Plett 2004c¢). In this context, the SoC estimation is only
accurate if a precise nonlinear dynamic battery model is used that is capable of the
high dynamic loads occurring at non-road vehicles (Hametner and Jakubek 2013).
Such model needs to consider the nonlinear dependency on SoC, temperature, and
current, as well as many other nonlinear effects such as relaxation and hysteresis
(Hametner et al. 2012).

Furthermore, as a result of hybridization, system nonlinearities are implicated
by the electrical system, and the system complexity as well as costs is increased
(Unger et al. 2014). Minimal costs can only be achieved if the powertrain design
is matched with the application (Gao and Porandla 2005) and the decrease in fuel
consumption and exhaust emissions is significant to reduce the operational costs of
the powertrain as well as the acquisition costs for the EATS, respectively. The latter is
only achievable if an appropriate framework is available that considers all information
in the EMS. Such a framework is provided by a model predictive controller (MPC),
which is an advanced method of process control that uses a model of the process
to predict the future evolution of the process to optimize the control signal (Mayne
et al. 2000). Due to the nonlinearities of the powertrain, a nonlinear optimization
problem results within the MPC, for which real-time implementation is necessary in
the hybrid control unit (HCU). However, fast sampling rates intensify the real-time
requirements and predicting the entire future cycle load trajectory is difficult (Mayr
etal. 2011a).

1.5 Proposed Concepts

This book presents methodologies for an efficient control of the described parallel
hybrid electric powertrain that is based on the prediction of the future load trajectory
as well as for the precise battery SoC estimation during high dynamic operation of
a non-road vehicle, respectively. An electrochemical battery is chosen in this book
in order to show the applicability of batteries as the secondary energy storage in
non-road vehicles.

In the following, the functions of a battery management system (BMS) to precisely
estimate the SoC are discussed first. Thus, a methodology for identification of high-
accurate battery cell models is proposed, which is based on the architecture of local
model networks (LMN). The global nonlinear model output is obtained by weighted
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aggregation of the outputs of dynamic local linear models, while the LMN structure
is built by an automatic iterative algorithm. Nonlinearities of the battery cell are con-
sidered by corresponding inputs that provide sufficient information for the model.
Since the LMN approach is only data-based, optimal model-based design of exper-
iments is proposed to create optimal test sequences, which minimize the variance
of the battery cell model’s identified parameters. Based on an optimality criterion,
which is obtained with the Fisher information matrix, a gradient-based algorithm is
used for optimization, while constraints of the battery cell are considered to avoid
physical damage of the battery cells. Note that due to the data-based approach, the
methodology is applicable to different battery cell chemistries and also for DLCs.
The obtained LMN battery cell model is then used to build the battery module model,
for which a SoC estimator is built that is based on Kalman filter theory. Real mea-
surements are made to verify the battery cell as well as module models and to show
their cell chemistry independence. In order to fulfill the dynamic requirements of
non-road machinery, a new high dynamic battery cell tester device was developed
for the measurements of lithium-iron-phosphate and lithium-polymer battery cells.
The real lithium-iron-phosphate battery module has been tested at a battery simu-
lator/tester unit. A special measurement procedure, which is also proposed in this
book, was followed exactly to achieve reproducible and comparable measurements.

Second, a real-time capable EMS is proposed, which is based on model predictive
control; its primary objective is to minimize overall energy conversion, fuel consump-
tion as well as exhaust emissions, while constraints are kept to avoid physical damage
to the system (safety-related requirements) as well as to enforce that the degrees of
freedom are optimally considered (efficiency-related requirements). The EMS con-
sists of a cascaded controller architecture that refers to a linear slave and a nonlinear
master MPC, respectively. In the prediction of the future evolution of the process
in both MPCs, the unknown future load trajectory is considered by a prediction to
increase the control performance as well as to achieve an optimal control during an
entire load cycle. Thus, two methodologies are proposed for predicting short-term
load peaks and detecting recurrent load cycles. Bayesian inference is used to statis-
tically predict the short-term load based on the available powertrain signals such as
driving speed or accelerator position, while recurrent load cycles are identified by a
cycle detection (CD) that analyzes cyclic correlations within the past load trajectory
by way of using the cross correlation function. Since the electrical system—including
the ISG and the battery—is nonlinear, the optimization problem within the master
MPC leads to a nonlinear optimization problem. A relaxation approach is used to
solve the problem in real time, while simplifications are applied. Note that due to
the small number of non-road applications, the EMS must be generically applica-
ble to any non-road machinery to minimize development and implementation costs.
In order to guarantee stability of the concept, stability as well as convergence are
discussed.

Third, for the example of a wheel loader as representation of non-road machinery,
the EMS is implemented on a real test bed to demonstrate the feasibility of the
whole conceptincluding accurate battery models. The obtained battery module model
is implemented at the test bed battery simulator to emulate the battery during the
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measurements, which are made for different controller adjustments. Three main
results are discussed in detail by means of simulation and real test bed measurements
(Unger et al. 2015):

1. The feasibility of the proposed control concept with respect to the dynamic
requirements of the machinery, when downspeeding and phlegmatization are
applied.

2. The optimality of the control approach compared to the conventional powertrain
by means of fuel consumption and emissions.

3. The benefit given by the cycle detection to exploit the full energy storage
capabilities.

1.6 Main Contributions

This book is a revised and adapted version of the dissertation written by Johannes
Unger (2015), where the authors’ previously published papers form the main contri-
butions.

Dissertation
JOHANNES UNGER: Energy and Battery Management for Non-Road Hybrid Electric
Vehicles. Dissertation, Vienna University of Technology, 2015.

Paper A

M. QUASTHOFF, J. UNGER, S. JAKUBEK: Entwicklungsmethodik eines gene-
rischen Batterie-Simulationsmodells und dessen Einsatzmoglichkeiten. 5. Fachta-
gung Baumaschinentechnik 2012 in Dresden, Baumaschinentechnik 2012—Energie,
Mechatronik, Simulation, Dresden, Schriftreihe der Forschungsvereinigung Bau-
und Baustoffmaschinen e.V. (FVB), Heft Nr. 44, pages 263-284, 2012.

In Paper A, the focus lies on the identification of accurate battery models for
the application in non-road machinery. The methodology of the local model net-
work applied to battery modeling is given in detail and results are presented without
consideration of the temperature in the model.

Paper B

J. UNGER, C. HAMETNER, S. JAKUBEK, M. QUASTHOFF: Optimal Model Based
Design of Experiments Applied to High Current Rate Battery Cells. IEEE Interna-
tional Conference on Electrical Systems for Aircraft, Railways, Ship Propulsion and
Road Vehicles (ESARS 2012 Edition), Bologna, ISBN: 978-1-4673-1371-1, pages
1-6, 2012.

In Paper B, the optimal design of experiments for battery cells is presented in
detail, without consideration of the temperature. The results show significant increase
of model quality due to optimal excitation signals used for the identification of the
model parameters.
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Paper C

J. UNGER, C. HAMETNER, S. JAKUBEK, M. QUASTHOFF: A novel methodology
for nonlinear system identification of battery cells used in non-road hybrid electric
vehicles. Journal of Power Sources, Volume 269, pages 883—-897, Elsevier 2014.

In Paper C, the methodology of optimal model-based design of experiments and
the local model network approach for battery modeling is presented including high
current and temperature dependency. Results are shown for lithium-iron-phosphate
as well as for lithium-polymer battery cells.

Paper D

J. UNGER, M. QUASTHOFF, S. JAKUBEK: Innovative Energy Management
System Using a Model Predictive Controller with Disturbance Prediction for Off-
Road Applications. 16. Antriebstechnisches Kolloquium (ATK 2015), 1. Auflage
2015, pages 427443, 2015.

In Paper D, the concept of the EMS is presented in the context of non-road machin-
ery and the improvement due to load and cycle prediction is discussed. The focus
lies on the non-road machinery and the generic applicability of the methodology.

Paper E

J. UNGER, M. KOZEK, S. JAKUBEK: Nonlinear model predictive energy manage-
ment controller with load and cycle prediction for non-road HEV. Control Engineer-
ing Practice, Volume 36, pages 120132, Elsevier, March 2015.

In Paper E, the energy management system for a parallel hybrid electric powertrain
is proposed, including the load and cycle prediction. The results measured at the test
bed measurements show that a significant reduction in ICE dynamics is feasible, and
fuel consumption as well as exhaust emissions can be reduced simultaneously by the
proposed EMS. The results of Paper C are directly considered within the EMS as
well as for the emulation of battery behavior.



Chapter 2
Battery Management

Abstract The battery management in non-road HEV is exposed to higher require-
ments compared to on-road HEV, since higher power densities and load dynamics
are usually demanded. For the control of HEV (see Chap.4), a battery model com-
prising the nonlinear effects is required to be used in the controller itself as well as
essentially within the battery management system. The state of charge of the battery
is not measurable online, though, and needs to be estimated online during operation
(Hametner and Jakubek 2013). In this chapter, a generic methodology is proposed
comprising nonlinear system identification and optimal model-based design of exper-
iments (DoE) of battery cells, which can be used for battery module modeling and
accurate SoC estimation during operation.

Keywords Lithium ion batteries - Nonlinear system identification - Optimal model
based design of experiments (DoE) - State observer

2.1 Introduction

2.1.1 Motivation

In many BMS, the open-circuit voltage (OCV) of the battery is used to estimate the
SoC, which is feasible as long as the battery is not in use. During operation, the
nonlinear behavior of the battery voltage comes into effect and big estimation errors
occur if only the OCV is used to estimate the SoC (Hu and Yurkovich 2012). The
integration of the battery current is another approach for SoC estimation, whose dis-
advantage is the drift due to the accumulation of current offsets when time increases.
Dynamic SoC estimators (e.g., extended Kalman filter) are a powerful way to esti-
mate the SoC, but require a precise dynamic battery model for accurate estimation
(Plett 2004c). Precise battery models describe the nonlinear dynamic behavior of
the battery cell terminal voltage accurately by considering nonlinear battery effects
such as hysteresis, relaxation, and temperature effects. In general, due to the high

© The Author(s) 2016 11
J. Unger et al., Energy Efficient Non-Road Hybrid Electric Vehicles,

SpringerBriefs in Applied Sciences and Technology,

DOI 10.1007/978-3-319-29796-5_2


http://dx.doi.org/10.1007/978-3-319-29796-5_4

12 2 Battery Management

power densities in non-road HEV, the nonlinear effects of electrochemical batteries
are increased (Gao et al. 2002), which complicates the modeling of the nonlinear
battery effects (Unger et al. 2012a). Note that the used battery model needs to be
real-time capable in order to be implemented in the BMS, which is in general a
trade-off between accuracy and complexity.

2.1.2 Cell Chemistry-Dependent System Behavior of Batteries

The most known cell chemistry is the lead acid cell chemistry, which is used in
almost every vehicle to start the engine. Beside of lead acid, there are many other cell
chemistries such as lithium-iron-phosphate (LiFePOy), lithium-polymer (LiPo), or
nickel-metal hydride (Ni-MH). However, electrochemical batteries are strongly non-
linear systems, which depend nonlinearly on the SoC, temperature, and current, while
additional effects such as relaxation and hysteresis are observable. In this context,
relaxation refers to the slightly converging battery voltage at standby or steady-state
current, while hysteresis refers to a phenomenon in relation to the cell polarization,
which causes different shapes of the voltage values during charge/discharge of the
battery. Inner chemical reactions may not be observed clearly in the voltage behavior
since they occur randomly, but they are present and may have an influence on the
voltage behavior. Lithium-ion batteries have a higher energy density compared to
lead acid batteries and are therefore often used in mobile phones. Ni-MH chemistry
has been used for traction batteries of HEV, but more and more traction batteries
use the lithium-ion cells. This is not only caused by the higher energy density of
lithium-ion cells but also by a smaller phenomenon referred to as “memory effect,”’
which reduces the capacity if the battery is not fully discharged before being charged
again. A comparison of different battery cell chemistries in terms of energy and
power capabilities is given in Fig.2.1.

In general, traction batteries are built by coupling battery cells in serial and par-
allel connection in order to achieve a desired voltage level (series connection, since
voltage add up) or battery capacity (parallel connection, since capacity add up). For
the powertrain of non-road vehicles, the power capability of the traction battery is
essential, due to which power-type battery cells are usually assembled in the battery
module. Battery cells can be divided into power and energy cells, while power cells
usually have higher power capabilities than the energy density maximized energy
cells. The power capabilities of a battery cell can be expressed by the referred to
as C-rate, which is a battery capacity-independent measure of the current intensity
applied to a battery and is obtained by the quotient of current and battery cell capac-
ity. In non-road vehicles, battery cells must be able to cope with possible C-rates
above 20C, while electric vehicles mostly require larger energy contents. Due to this
reason, power cells are generally used in non-road HEV.

Furthermore, depending on the cell chemistry, voltage levels and battery behav-
iors are different, while even the shape of the discharge curve within the same cell
chemistry may vary (e.g., lithium-iron-phosphate and lithium-polymer). Also rele-
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Fig. 2.1 Specific energy and power capabilities of different rechargeable battery cell chemistries

vant is the voltage level, which is significantly responsible for the overall energy
flow and system requirements of the traction battery system. The type of the cell and
the geometric structure (e.g., cylindrical, prismatic, ...) mostly define the tempera-
ture behavior of the cell. This can be seen at higher C-rates, where the temperature
increases significantly and limits the ability of the battery cells to be used in the high
dynamic environment of non-road vehicles. In this context, the energetic efficiency
plays a major role for the temperature behavior of the cells and is especially essen-
tial in non-road applications. Note here that the energetic efficiency is nonlinearly
depending on the history of the battery cell’s usage, which is important for the more
than 10 years intended product life of a non-road vehicle. For the lithium-ion chem-
istry, additionally higher safety requirements are relevant, because overcharging with
higher voltage may lead to explosion or fire and must be avoided in any case.

2.1.3 Challenges in Dynamic Battery Model Identification

In order to use a battery model approach within non-road vehicles, it must be generi-
cally applicable to any battery cell chemistry. A general model structure is therefore
required that considers nonlinear effects. The nonlinear relations between the voltage
and temperature as well as the SoC are unknown in advance, and only physically
measurable variables are available for parameter identification. In order to identify
specific nonlinear effects, long test runs must be performed because the reaction
times of batteries are slow. Time consuming and expensive measurements are unac-
ceptable for non-road applications, since the sales volume of non-road machines is
low. Data-based approaches are methodologies which only depend on the provided
data. The advantage of data-based models is that the model is flexible to any cell
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chemistry, while any model structure can be applied to consider the nonlinearities of
the battery cells. On the other hand, the disadvantage is that an appropriate model
structure needs to be found, and suitable data must be available for parameter iden-
tification. Nevertheless, an initial structure can be obtained from expert knowledge
and included in the approach. The high dynamic requirement of non-road vehicles
challenges especially the test equipment, because high current steps occur during
operation. So far, high dynamics are not state of the art in the testing hardware
of battery cells. Therefore, a major role corresponds to the design of experiments
in order to achieve appropriate and reproducible measurements. The reproducibil-
ity of battery measurements depends on the excitation history of the battery, and
appropriate procedures to clear the cell’s short time history must be applied. Finding
the appropriate procedure is challenging for battery cells, though, while the case is
even more difficult for battery modules due to cell balancing. In order to gain maxi-
mum information from one test run, optimal design of experiments can be applied.
Optimized test signals are able to achieve sufficient information content in the mea-
surements, but since only the current is applied to the battery cell; in principle, a
multi-dimensional optimization problem must be solved that consists of only one
degree of freedom (DOF) and multiple effects to be tested.

2.1.4 State of the Art

The following sections review literature regarding battery cell modeling, design of
experiments, battery module modeling, and SoC estimation.

2.14.1 Battery Cell Modeling

Three model approaches have been mainly used in the literature to model battery
behavior:

1. Equivalent circuit models
2. Electrochemical battery models
3. Data-based battery models

InFig. 2.2, the equivalent circuit model (ECM) approach is depicted schematically.
Basic electric elements are used to describe the behavior of the terminal voltage, due
to which physically interpretable parameters and real-time capability are achieved.
Depending on the number of RC-circuits, different time constants are considered
in the model. Only one RC-circuit accounting for nonlinear equilibrium potentials,
rate and temperature dependencies, thermal effects, and response to transient power
demand is used by Gao et al. (2002). A modified equivalent circuit model is used by
Pattipati et al. (2010) to estimate SoC, state-of-health (SoH) and remaining useful
life in the BMS. Due to the high power density appearing in the automotive industry,
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Fig. 2.2 Schematic overview of an equivalent circuit model (V) that consists of a constant
voltage source (V,,), an inner resistance (R;), and two RC-elements (R;, C1, R2, C2)

solution resistance, charge transfer resistance, and Warburg impedance cannot be
neglected and must be considered within the ECM (Gomez et al. 2011).

Electrochemical battery models describe the electrochemical behavior of the bat-
tery by chemical reaction equations, which results in a physical model that is com-
putationally intensive. The internal chemical states of the battery are simulated with
high accuracy, and insight into the system is achieved (Klein et al. 2010), but in
general the model is not real-time capable. Concentrated solution theory is used by
Doyle et al. (1993) to describe lithium-ion battery cells. Klein et al. (2010) used
partial differential-algebraic equations for state estimation, while a single particle
model (SPM) is used by Santhanagopalan and White (2006) to estimate the SoC
with an extended Kalman filter. However, the SPM model approach neglects the
spatial variation of the states within the battery cell, which questions the validity for
the operating region encountered for HEV (Chaturvedi et al. 2010).

Data-based system identification is a powerful approach for modeling and estima-
tion purposes. Model structure and order are easily adaptable, although in general,
physical interpretability is not given (Klein et al. 2010). In a series of three papers,
Plett (20044, b, c) proposed a SoC estimator based on a data-based nonlinear state-
space model and an extended Kalman filter. The current direction is considered in
the model, and hysteresis as well as relaxation is also included by a “hysteresis
state” and a low-pass filter on the current, respectively. The model is assumed to be
cell chemistry independent. Neural networks for battery modeling have been used
by Charkhgard and Farrokhi (2010) and stochastic fuzzy neural networks by Wang
(1994), Wang and Chen (2005), and Jing et al. (1998). A stochastic fuzzy neural
network is also used by Wang et al. (2009) for the purpose of modeling the nonlinear
dynamics of current, temperature, and SoC, while Xu et al. (2012) used it for the
purpose of SoC estimation.

Hametner and Jakubek (2013) obtained a nonlinear battery model due to a local
model network, which composes of several local models that are linear in their
model parameters and have a certain area of validity defined by validity functions
(see e.g., Hametner and Jakubek 2007; Murray-Smith and Johansen 1997; Gregorcic
and Lightbody 2007). The nonlinear interpolation of the local linear models (LLM)
achieves a nonlinear model output, while the model is constructed by an iterative
algorithm. Starting with one global linear model, in each iteration, a LLM is added
to the network until a certain threshold is reached (partitioning). Depending on the
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algorithm’s strategy, the validity of the new LLM lies in a specific form in the
partition space of the model. In order to identify the model parameters, any model
approach requires measurements for parametrization. Battery cells are tested by
applying a current excitation signal and recording the voltage response. Depending
on the excitation signal, the testing device needs to fulfill certain requirements in
terms of dynamics.

2.1.4.2 Design of Experiments

Simple constant discharge and charge cycles are used by Kroeze and Krein (2008)
to identify the parameters of an ECM, while Gao et al. (2002), Chen and Rincon-
Mora (2006), and Hentunen et al. (2011) used a discharge pulse excitation signal.
Smith et al. (2010) also used a discharge pulse excitation signal for the model-based
estimation of an electrochemical battery cell model. Charge and discharge modes
within a pulse profile have been considered by Hu et al. (2011), Hu et al. (2009a),
and Plett (2004b), in order to identify the parameters for more advanced ECMs (e.g.,
linear parameter-varying models). An asymmetrical current step profile, significantly
more dynamic than the other excitation signals, has been used by Hu et al. (2009b)
for the purpose of covering a wide range of SoC as well as a wide range of the current.
The dynamic Federal Urban Driving Schedule (FUDS) is mostly used as a validation
signal (see e.g., Smith and Wang 2006; Xu et al. 2012; Kroeze and Krein 2008; Sun
et al. 2012a), but in non-road applications, the FUDS is rated as an example for low
dynamics.

The design of experiments plays an important role, especially for data-based
approaches, due to the decisive influence of the excitation signal on the parameter
estimation (Unger et al. 2012a; Hametner and Jakubek 2013). In order to maximize
the information content of measurements, model-based design of experiments can be
used. The idea of model-based design of experiments is to use a prior process model
(reference model) to maximize the information content of measurements in order
to identify parameters with minimum variance (Pronzato 2008). A measure for the
information content of an excitation signal can be obtained by the Fisher information
matrix Z (FIM), which gives the covariance for the parameters estimated from the
excitation signal. Based on optimality criteria, the FIM is often used to optimize the
excitation signal. Furthermore, depending on the accuracy of the reference model,
constraints of the process can be considered in the excitation signal.

Static experiment design based on a local model network generation algorithm
is proposed by Hartmann et al. (2011). Dynamic experiment design for multilayer
perceptron networks is proposed by, e.g., Cohn (1996) and Deflorian and Klopper
(2009), where optimal inputs are chosen from a candidate set. Dynamic design of
experiments based on multilayer perceptron networks is also centered by Stadlbauer
et al. (2011a, b). These papers are used by Hametner et al. (2013b) to design non-
linear dynamic experiments, which minimize the model variance of dynamic multi-
layer perceptron networks as well as local model networks. The influence of optimal
model-based design of experiments on battery modeling, compared to dynamic exci-
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tation signals from the literature, is investigated by Unger et al. (2012a). Model-based
design of experiments using a linear dynamic model and predefined current levels is
proposed by Hametner and Jakubek (2013) in order to achieve optimal SoC excitation
and minimal measurement duration.

2.14.3 Battery Module Modeling

The modeling of battery modules is different compared to battery cells, since battery
balancing needs to be considered (Bentley 1997). Furthermore, the internal resis-
tance of the battery cell connections as well as the temperature effect on the internal
resistance of the battery plays major roles in the overall voltage behavior. Lee et al.
(2010) provided a comprehensive review of joining technologies and processes for
automotive lithium-ion battery manufacturing and discussed advantages and disad-
vantages of the different joining technologies, while corresponding manufacturing
issues are mentioned. Since the battery forms a critical part of the HEV powertrain,
Sen and Kar (2009) present a battery pack model that analyzes the variation of inter-
nal resistance as a function of temperature in order to provide the possibilities to
design a cost-effective and efficient battery management system. Watrin et al. (2011)
proposed a multiphysical battery pack model along with a test procedure that must
be followed to obtain the different model parameters. Based on a screening process
that provides a selection of battery cells with similar electrochemical characteristics,
in Kim et al. (2011), the accuracy of the SoC estimator is increased. Due to the
screening process and a parameter comparison, the battery module model can be
simplified into a unit-cell model that is multiplied with the number of series con-
nected cells. A similar capacity and resistance screening process is used by Kim et al.
(2012) to improve the voltage/SoC balancing of a lithium-ion series battery module.
Dubarry et al. (2008) use an equivalent circuit technique commonly applied for elec-
trochemical impedance characterizations to describe the behavior of battery cells.
These battery cell models are furthermore used to express the behavior of a battery
module, while the imbalance of the battery cells is addressed along other effects to
improve the battery module model. Battery module model accuracy can be increased
significantly if intrinsic cell-to-cell variations in capacity and internal resistance are
considered (Dubarry et al. 2009). An estimation of the remaining available power of
a battery module is presented in Plett (2004d).

2.1.4.4 State of Charge Estimation

Many state of charge estimation algorithms are based on the open-circuit voltage (Lee
et al. 2008). Since the relationship between the OCV and SoC is not identical for all
batteries, Lee et al. (2008) proposed a modified OCV-SoC relationship to increase
the SoC estimation accuracy. Commonly, an equivalent circuit model is used in
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combination with an extended Kalman filter (EKF) for the purpose of SoC estimation
of batteries (see e.g., Do et al. 2009; Vasebi et al. 2007, 2008; Han et al. 2009; Bhangu
etal. 2005), while Santhanagopalan and White (2006) use an electrochemical model.
A sliding mode observer is applied by Kim (2006) to compensate the modeling errors
of the used simple resistor—capacitor battery model. Neural networks (NNs) and EKF
are used for modeling and SoC estimation by Charkhgard and Farrokhi (2010). Chen
et al. (2011) used the same combination, but also developed a method to consider
battery hysteresis effects. An adaptive unscented Kalman filtering method is proposed
by Sun et al. (2011), which is further compared with an extended and an unscented
Kalman filter. He et al. (2011) improved the dependence of the traditional filter
algorithm on the battery model by an adaptive Kalman filter algorithm. An adaptive
Luenberger observer for the SoC that uses an optimized model is built by Hu et al.
(2010b). For the same purpose, a stochastic fuzzy neural network in combination with
an extended Kalman filter for SoC estimation is proposed by Xu et al. (2012). Plett
(2004b) based the SoC estimation also on an EKF, but used a state-space structure
that considers the dynamic contributions due to open-circuit voltage, ohmic loss, and
polarization time constants.

An alternative to the Kalman filter is the interacting multiple model (IMM) esti-
mator, which has the ability to estimate the state of a dynamic system with several
behavior models and to switch between them by corresponding rules (Mazor et al.
1998). The IMM is one of the most cost-effective hybrid state estimation schemes
that can act as a self-adjusting variable-bandwidth filter, which is widely used for
tracking maneuvering targets. Helm et al. (2012) used the IMM for a misfire detection
that is based on two dedicated parametric Kalman filters. A fusion prediction-based
interacting multiple model algorithms is used by Song et al. (2012). Another appli-
cation of IMM is hypotheses merging (Blom and Bar-Shalom 1988). In the field of
vehicle maneuvering, a fuzzy interacting multiple model unscented Kalman filter
approach is presented by Jwo and Tseng (2009). Although the IMM approach could
be applied for SoC estimation, so far, no papers are known in the literature discussing
this topic.

Two different sliding mode observers for dynamic Takagi-Sugeno fuzzy systems
are proposed by Bergsten et al. (2002). A nonlinear filter approach based on local
linear models is proposed by Hametner and Jakubek (2013). Lendek et al. (2009)
focused on the stability of cascaded fuzzy systems and observers.

2.1.5 Solution Approach

In this chapter, the methodologies are presented to achieve a precise battery cell
terminal voltage model for non-road application, which can be applied to estimate
the SoC of a battery module with high accuracy during operation.
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The model is based on the data-based LMN approach, whose advantages are
that expert knowledge can be considered, the computational effort is low, a random
initialization of the parameters is avoided, and the LLLMs can be interpreted as local
linearization of the process (Hametner et al. 2012; Nelles 2001). Nelles and Isermann
(1996) proposed the local linear model tree (LOLIMOT) construction algorithm,
which is used to construct the LMN, while corresponding inputs are used to define
the LMN structure. In order to consider the battery nonlinearities SoC, temperature
and current as well as relaxation and hysteresis in the model, the inputs are adapted. In
this context, a physically appropriate network is obtained by adapting the LOLIMOT
algorithm to make use of a prepartitioned network and to prohibit splitting within
specified dimensions of the network. The resulting battery cell model is applicable
to different cell chemistries and real-time capable due to the low computational
complexity.

Furthermore, optimal model-based design of experiments is utilized to achieve
high dynamic excitation signals, which cover the entire SoC range during the mea-
surements. Based on the Fisher information matrix Z, a scalar cost function J(Z) is
used to optimize the excitation signal, while the battery cell is sufficiently excited and
relaxation, hysteresis, as well as current and temperature effects are considered addi-
tionally. For this reason, the optimization is furthermore focused on real load ranges
that are frequently used in operation (Unger et al. 2014). A gradient-based algorithm
is used to solve the optimization problem, while battery constraints on current, volt-
age, and SoC are considered simultaneously. The obtained excitation signal reduces
the identified model parameter variance and maximizes the information content of
measurements.

Based on the optimal model-based DoE and the LMN approach, the battery mod-
ule model can be built. A simple approach that multiplies the cell voltage with the
number of cells in series connection is compared with the approach proposed by
Kim et al. (2011), which considers the internal resistance of the battery cell connec-
tions as well as a voltage offset. The cell balancing is neglected, because in non-road
vehicles, mostly a passive cell balancing strategy is used due to the appearing high
energy conversions.

An accurate SoC estimation is then achieved for the battery module using the
fuzzy observer approach as proposed by Hametner and Jakubek (2013). For a straight
forward implementation, the battery module model must be transferred into a state-
space representation with an augmented state vector that includes the SoC. At the
end, different choices of process and measurement noise within the filter tuning show
the trade-off between convergence and accuracy of the filter.

This chapter is organized as follows: First, the battery cell model is developed
and an appropriate optimal model-based DoE is introduced for the developed battery
cell model structure. Second, the temperature model approach is described. Third,
different battery module model approaches that are based on the developed battery
cell model are discussed. At the end, the SoC estimation for battery modules as well
as for battery cells is discussed.
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2.2 Data-Based Identification of Nonlinear Battery Cell
Models

In this section, the generic methodology for nonlinear identification of high dynamic,
current—voltage battery cell models is discussed. Nonlinear battery effects such as
SoC, current, temperature, relaxation as well as hysteresis effects are considered by
the model. First, the general architecture and structure of LMN is given, followed
by the construction of the LMN using the LOLIMOT algorithm. Based on this, the
final battery model is developed.

2.2.1 General Architecture and Structure of Local Model
Networks

In principle, the local model network structure is built by local linear models that are
only valid in a certain operation regime and interpolated to obtain the global nonlinear
model output. An autoregressive with exogenous input model structure is chosen for
the LLM, by what the regression vector ¢ follows with the global nonlinear model
output y, the global parameter vector @, and the input variables u; to

ok, 0)=[yu,...a, 1],
y=[3k—-1,0)...5k—n 0],
=[wk—d) .. wk—-—d—m)l,l=1,....q, (2.1)

with the actual time instant k, the output order =, the input order m; of the /th of ¢
input variables, and the dead time d. Following Nelles and Isermann (1996), the input
variables u; span the so-called input space Q of the model. The bias is considered
by the one in Eq. (2.1). Note that Eq. (2.1) is denoted for MISO systems, but MIMO
systems can be modeled as well (Nelles 2001).

One challenge in data-based modeling is the optimal choice of the model order
of the inputs and outputs. In D’ Agostino (1986), different methodologies such as
goodness-of-fit (GOF) techniques are recommended to find the optimal model order.
GOF, from the statistical point of view, is discussed by De S4 (2007). Akaike’s
information criterion trades off goodness-of-fit and model complexity and is used
by, e.g., Yuan et al. (2013) for the optimal order of an ARX-structured battery model.
As presented by Jackey et al. (2013), another methodology is to analyze different
selections of the model order and choose the best compromise between complexity
and accuracy. To this end, the mean squared error (MSE) provides a basis to make a
decision.

The chosen model order is applied to the M LLMs, where the ith model output
y; is obtained by

Ji(k,0) = @ (k, 0)9;, (22)
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where § = [#,...9)]” denotes the global parameter vector, which consists of the
local parameter vectors #; of all M LLM. Weighted aggregation of y; leads to the
global nonlinear LMN output

M
Sk, 0) =D 5k, 0)®i k), (2.3)

i=1

where @; (k) is the validity function of the ith LLM. Using a Kernel function y; (k, z),
which can be any common function (e.g., uniform, triangle, ...) (Nelles 2001), the
validity function follows by

oilhy = L&D 2.4)

2> ik, z)
j=1

where z = [zl . Z¢] span the so-called partition space Z of the model using the
¢ partition variables (Gregorcic and Lightbody 2007). Note that the normalization
results from the sum of all validity functions, which is required to be 1. Although
input and partition variables may be used in the partition space Z and input space Q
simultaneously, they are not mandatorily the same (Hoffmann and Nelles 2001).

2.2.2 Construction of LMN Using LOLIMOT

A LMN is usually constructed by algorithms, which iteratively add new LLM to
the network. One such algorithm is the local linear model tree algorithm presented
by Nelles (2001). LOLIMOT searches for the worst LLM by the quadratic error
criterion and identifies the dimension in which a split of the model could achieve
the best improvement for the global model output. The worst LLM is then axis-
orthogonally split into two new models in the dimension with the best improvement
(Nelles and Isermann 1996). Iteratively, the LMN grows until a certain threshold
(here the maximal number of LLM M) is reached.

The parameters for the two new models are determined by weighted least squares
(WLS). In case of numerical effects due to significant differences in the input, parti-
tion, and output variables, all signals used within the algorithm are normalized from
0to 1 (Nelles 2001). Schematically, the LOLIMOT procedure for a two-dimensional
partition space is depicted in Fig.2.3. In every iteration, the quadratic evaluation
criterion is used to find the worst LLM. The worst model is split into all possible
dimensions, while the best alternative, identified likewise with the quadratic evalu-
ation criterion, is chosen.

A characteristic of the LOLIMOT algorithm is the Kernel function y; (k, z), which
is chosen to be Gaussian (Nelles 2001):
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v

Fig. 2.3 Decision process of the LOLIMOT algorithm in a two-dimensional partition space

— i) 1) — )
ik, z) =eXp(—%(—(Zl(k)az Gy (&o® ~ci) )ovz ) )) (2.5)
il i9

Since the partition space Z is split axis-orthogonally, c;; denotes the center point
of the LLM and o;; is the corresponding individual standard deviation, which is
approximated by

0ij = ko, j Ajj. (2.6)

The term A;; corresponds to the spread of the LLM, while k. ; is a user-defined
sharpness factor that can be seen as an LLM overlapping factor that influences the
smoothness of the nonlinear model output. Note that the optimal sharpness factor
varies depending on the specific application as well as the partitioning dimensions.

Alternative construction algorithms have the same aim, but are different to
LOLIMOT. Jakubek and Keuth (2006) used statistical criteria along with regular-
ization to allow an arbitrary orientation and extent in the partition space of the con-
structed LMN. In Jakubek and Hametner (2009), a proper partitioning of the LMN
is achieved by an expectation—maximization algorithm that makes use of a residual
obtained from generalized total least squares parameter estimation. The advantage
of LOLIMOT compared to mentioned alternatives is the low implementation com-
plexity due to the axis-orthogonal orientation, for which reason LOLIMOT is used
in this book.

2.2.3 Battery Cell Modeling Using LMN

So far, the methodology for battery modeling has been discussed. In the following,
the procedure to apply the LMN to battery modeling is presented. Corresponding
inputs and the structure for the LMN are presented in order to consider nonlinear bat-
tery effects and enhancements for the LOLIMOT algorithm to increase the physical
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Fig. 2.4 Construction process flowchart for the battery model identification

meaning of the battery model. Figure 2.4 depicts an overview of the battery model
construction process using a flowchart.

2.2.3.1 Corresponding LMN Inputs of Nonlinear Battery Cell Effects

Electrochemical batteries comprise physical and chemical nonlinear effects, which
can be observed and explained in detail on the basis of Figs.2.5 and 2.6.

Figure 2.5 depicts constant charge and discharge curves for different C-rates over
the SoC. Cell A refers to a lithium-polymer chemistry, while Cell B represents a

35"

CellA 2C Charge
CellA OCV
CellA 2C Discharge
CellB 4C Charge

Voltage [V]

2.5H CellB 1C Discharge |
CellB OCV
CellB 1C Charge
CellB 4C Discharge
2 1 1 1 1 1 1 1 1 1
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0.5
SoC [-]

Fig. 2.5 Open-circuit voltages and different constant current discharge/charge curves from a
lithium-polymer (Cell A) and a lithium-iron-phosphate (Cell B) cell
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Fig. 2.6 Measurements of voltage responses obtained from a lithium-iron-phosphate cell (Cell B)
during an applied current step sequence at different temperatures

lithium-iron-phosphate chemistry. In order to be able to plot the voltage curves over
the SoC, the cell current is integrated (Sun et al. 2012a), while interpolation between
the charge and discharge curve provided an estimate for the open-circuit voltage
(Abu-Sharkh and Doerffel 2004).

InFig.2.6, a current step sequence at different temperatures measured for Cell B is
shown. The nonlinear physical influence of current and temperature can be observed,
but distinction must be made between physical and chemical effects. Physical effects
are caused by any physical interaction such as an applied current and the resulting
temperature increase, while chemical effects arise also without physical interaction
such as hysteresis and relaxation. A dynamic change in the battery voltage is caused
by the applied battery cell current, while the voltage drop is directly influenced by
the temperature. Due to the lower/higher temperature, increased/decreased internal
resistance of the battery cell is obtained and a bigger/smaller voltage drop is caused.
Current as well as temperature are physically measurable online and can directly
be considered in the model. Hence, the corresponding inputs #cument and ZTemp are
selected. The time constant of the temperature is significantly higher than the time
constant of the current. Due to this reason, the current is included in the input space
Q, while the temperature is assumed to be static and is therefore included in the
partition space Z. Note that the small temperature gradients compared to gradients
of the current underline the assumption.

The nonlinear influence of the SoC on the battery cell voltage is clearly shown in
Fig.2.5. Since the SoC cannot change dynamically or independently to the current,
the SoC is considered as corresponding static input zs,c With the value of the actual
SoC. The value of the SoC is not measurable online and needs to be estimated in
real batteries (see e.g., Hametner and Jakubek 2013; Plett 2004c). For simulation
purposes, the current can be integrated to determine a value for the SoC. Note that
in Sect. 2.6, the SoC estimation is discussed in detail.
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Chemical effects are not directly measurable and need to be provided indirectly
by corresponding inputs. The slightly to a steady-state value converging voltage
at standby current in Fig.2.6 is referred to as relaxation (Plett 2004b), although
relaxation also acts during current phases (Bernardi and Go 2011). In Plett (2004b),
a low-pass filter on the current, which follows certain requirements, is used to model
the relaxation, whose time constant is significantly different to the one of the currents.
Following Plett (2004b),

e after a long rest period and
e during constant current discharge/charge,

the relaxation state needs to converge to zero, which can be realized by the dynamic
corresponding input
URelax = fllt (AuCurrem)~ (27)

Note that in order to force the filter fi/¢(-) to have zero DC-gain, the change rate of
the current Aucyrene 18 Used. For lithium-iron-phosphate as well as lithium-polymer
chemistry, a third-order low-pass filter showed to be appropriate, whose relaxation
time constant is approximated properly on the basis of the voltage converging speed
at standby current after a current pulse has been applied to the battery cell (Unger
et al. 2014).

Different shapes of the charge and discharge curve in Fig. 2.5 indicate the nonlinear
chemical effect referred to as hysteresis (Tang et al. 2008). At standby current in
Fig. 2.6, the effect is observable as well. In principle, the hysteresis effect separates
the model into a charge and discharge model, which can be achieved using sign(-)
of the current as a corresponding first-order hysteresis input zyys that is kept at the
last value, if the current is zero (Unger et al. 2014). As hysteresis is acting statically
on the battery behavior, zpyg is included in Z. Intercalation effects, conductivity of
anode/electrolyte/cathode, concentration gradients, or other known chemical effects
play a tangential role compared to the mentioned effects and are therefore neglected.

2.2.3.2 LMN Structure of Battery Cell Models

Distinction must further be made between dynamic and static influence on the cell
voltage. Dynamic influence of the inputs needs to be considered in the dynamic
LLM and must therefore be included in the input space O, while static influence is
important for the partitioning and must therefore be included in the partition space
Z. This defines the structure of the LMN and leads to

Z = [z1 22 z3] = [ZSOC ZHyst ZTemp] s 2.8)
Q = [uy ur u3] = [2s0C UCurrent URelax] -

To this end, the inclusion of the SoC zgoc in the input space Q implies two
advantages. On the one hand side, the continuous change of the voltage depending
on the SoC is considered and on the other hand, the observability of the SoC within
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the model is given, which is required by the SoC estimation with a fuzzy observer
(c.f. Hametner and Jakubek 2013).

2.2.3.3 User-Defined Prepartitioning of the LMN Structure

In the iterative construction of the LMN, only the quadratic evaluation criterion
decides whether to split a model or not. This may lead to physically inappropri-
ate partitions that make a physical interpretation impossible. Due to this reason,
LOLIMOT is enhanced to use initial partitions of Z instead of one global partition.
The predefined physically appropriate partitions reduce the computational efforts,
while all partitions can be kept physically appropriate if selected dimensions of the
partition space are prohibited to be split (Unger et al. 2014). This influences the
partitioning significantly and needs to be discussed in detail in the following.
Prohibiting a dimension to be split is only appropriate if a physical reason is given
to limit the number of LLM within this dimension. At this point, expert knowledge
can be included to improve the model accuracy. The hysteresis input zpys refers to the
corresponding cell polarization, which can only reach two different states. In this case,
an initial split into charge as well as discharge mode and prohibiting to split within
this dimension is advantageous. From Fig. 2.6, the temperature influence seems to be
evenly distributed, and therefore three initial partitions are defined for the temperature
input. Note that due to the split in the hysteresis dimension, a simultaneous split
of charge and discharge mode cannot be achieved by definition, because of which
partitioning is prohibited within the temperature dimension. The number of initial
partitions follows to 6 and the partitioning DOF is limited to the SoC dimension.

2.3 Optimal Model-Based Design of Experiments

This section discusses the optimal model-based design of experiments for battery
model identification. The goal of optimal model-based DoE is to obtain an excitation
signal that minimizes the variance of the identified model parameters. To this end,
the system dynamics of a battery cell must be sufficiently excited, while the entire
SoC range is covered and relaxation as well as hysteresis effects are considered. The
battery system behavior is obtained by applying a load current excitation signal U
to the battery cell and recording the cell terminal voltage. In on-road applications,
intermediate current steps show sufficient dynamics (Hu et al. 2009b), but in non-road
applications higher dynamic excitation signals are required (Unger et al. 2012a).
For that purpose, a methodology is proposed to obtain optimal excitation signals
for non-road application. In the following, first, an a priori available battery model
and the Fisher information matrix Z are used to formulate optimality criteria. Second,
a constrained optimization problem is formulated to optimize an excitation signal
under consideration of constraints and the nonlinear effects of a battery cell. Note that
the information content is further improved by focusing the optimization especially
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on load ranges frequently used in operation. Third, the optimization by means of
a gradient-based algorithm is described in detail. At the end, some extensions are
made to the obtained optimal excitation sequence to take into account the entire SoC
operating range, relaxation, hysteresis, and constant current behavior.

2.3.1 Optimization Criteria Based on the Fisher Information
Matrix

The Fisher information matrix Z is a tool to measure the information content of
measurements in terms of the covariance of the estimated model parameters. In order
to increase the information content, the system inputs by means of the excitation
signal U need to be modified (Hametner et al. 2013b). The calculation of Z is based
on the parameter sensitivity vector ¥ (k), which is the partial derivative of the model
output with respect to the model parameters. For the LMN approach as described in
Sect.2.2, ¥ (k) follows by

. D1 (k)o(k, 0)
,/,(k):%a’o): : , k=1,...,N, (2.9)
Dy (k)o(k, 0)

where M denotes the number of LLM and @; (k), ¢(k, #), 6 as defined in Egs. (2.4)
and (2.1). A reference model is required for the optimization and can be obtained by
two possibilities (Unger et al. 2014):

e A LMN model is available.
e A different model (no LMN model) or measurements are available.

A LMN with only one LLLM describes a linear model of the battery and can be

identified easily based on a priori available measurements. In this book, the easy

approach of only a linear model is followed to show the significant influence of the

methodology to the model quality. Note that a reference LMN can be identified by

simulation data created by an available complex electrochemical model, alternatively.
The Fisher information matrix is defined by

k=1,...,N, (2.10)

03t4.0) 0tk 0’
JZZ arral
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¥ (k)

where o is the variance of the measurement noise (Goodwin and Payne 1977).
Denoting ¥ as

=[w'W...¥"]" . @.11)
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the FIM can be expressed by

1
IT=—vTy, (2.12)

o2
Based on the obtained FIM, in the literature three common scalar criteria are known

for the optimization of the excitation sequence. They are formulated as follows
(Goodwin and Payne 1977):

A-optimality: J4 = Tr (I’l) — rrgn (2.13)
D-optimality: Jp = det (Z) — mg.X (2.14)
E-optimality: Jg = Apin () — m{jlx (2.15)

A-optimality minimizes the trace of the inverse of the Fisher information matrix,
D-optimality corresponds to the maximization of the determinant of the FIM, and E-
optimality is targeted to maximize the smallest eigenvalue of the FIM. The advantage
of D-optimality is the higher sensitivity to single-parameter covariances compared
to the A-optimality (Stadlbauer et al. 2011a).

Following the three common criteria Egs. (2.13)—(2.15), Fig. 2.7 shows the process
to obtain the optimal excitation signal U.

Selection of

optimality criterion Initial model
(Eqgs. (2.13)—(2.15))

\/ \/

—){ Select model }—)1 Determine optimal excitation signal U ‘
no
‘ Apply U to battery cell at testbed
yes

Identify Nonlinear LMN Battery Model . o .
L (Sect. 2.2.3, Fig. 2.4) / Optimal Excitation Signal U /

Fig. 2.7 Flowchart of the optimal design of experiments for battery models. The dot and dash line
refer to the LMN identification as depicted in Fig.2.4
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2.3.2 Formulation of the Constrained Optimization Problem

The optimization aims primarily to achieve sufficient high dynamic currents within
the excitation sequence, while constraints on current and battery cell voltage are con-
sidered. Note that the SoC is limited due to the physical capacity of the battery, which
is automatically considered by voltage and current constraints. Constraints must be
kept to avoid, among other things, physical damage, accelerated life-time reduction,
electrolyte oxidation, fire, or explosion. Especially, the lithium-ion chemistry is sen-
sitive to overcharge and over-voltage, respectively, which attracts the attention due
to safety issues.

The current is furthermore constraint to ranges frequently used in operation to
increase the information content especially in ranges used in real applications. Con-
sequentially, two possibilities can be used for current constraints:

1. High dynamic excitation between physical minimum/maximum current.
2. High dynamic excitation between load ranges, frequently used in operation.

The first approach simply defines the current constraints at the physical minimum
and maximum values, while the second approach defines the constraints using a real
load cycle analysis that is realized as follows:

step 1. Select a representative load cycle.

step 2. Determine the distribution density of the load by a histogram with a defined
number of intervals.

step 3. Set the lower and the upper current constraints corresponding to the interval
limits of the histogram.

step 4. Define the durations within the corresponding constraint ranges by the cor-
responding distribution densities.

step 5. Scale the constraints corresponding to the SoC.

Figures 2.8 and 2.9 show the load cycle analysis in more detail: A scaled real load
cycle, for which the analysis is done, can be seen in the left subplot of Fig.2.8. In
the middle subplot, the corresponding histogram is depicted, while to the right, the
current constraints for the depicted load cycle are shown.

Step 1: Load Cycle Step 2: Histogram Step 3 & 4: Generate Constraints
100 100
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— = (I
5 \ M = i ‘ !
I 1 I |
S ° MN \ﬂ \ E 0 [ “ 77777777
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Fig. 2.8 Step 1-4 in the constraint construction used for the optimization of the excitation signal
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In order to consider output constraints within the experiment design, the reference
model must have sufficient accuracy. The used linear reference model is not able to
provide such a precision, though, which implicates that voltage constraints must be
included indirectly through the current. To this end, a limitation ratio for the current
depending on the SoC is introduced. Figure 2.9 depicts the limitation ratio. Note that
the reliability of the output constraints in general depends on the model accuracy and
increases with each model update (Hametner et al. 2013a). Nevertheless, due to the
maximal current constraints, the maximal deviation of the SoC from the starting SoC
value is limited (Unger et al. 2014). The SoC limits therefore follow by an adequately
chosen starting SoC value.

On the basis of these constraints, a formulation of the optimization problem can be
obtained. Following Pronzato (2008), the D-optimality criterion has higher sensitivity
to single-parameter covariances and is more invariable to re-parametrization of the
model than the A-optimality. Due to this reason, the D-optimality criterion is used
to formulate the optimization problem:

D-optimality: max det (Z) (2.16)

Umin(k) =< U(k) = Umax(k)a k= 17 e N
S.t. N
Ue Rle

where U = ucyrent corresponds to the current input. Note that relaxation input and
SoC are directly dependent on the current, which is therefore the only degree of
freedom within the optimization.

2.3.3 Constrained Optimization

The constraints require to solve the stated optimization problem iteratively. One
approach with low computational efforts and sufficient performance is the gradient
descent method. The derivative of the design criterion with respect to the input U (r)
for all observations N composes the gradientg = [g(1) ... g(N)]”. In order to obtain
the single gradients, the trace of the product of the derivative of the determinant of
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the FIM with respect to the parameter sensitivity matrix ¥ and the derivative of ¥
with respect to U (r) need to be built, which is computationally intensive (Stadlbauer
et al. 2011a). Nevertheless, the rth observation follows by

dJp(¥) _ (dJD(lII) aw )’ 2.17)

dU(r) dwT dU(r)

where for the D-optimality, the first term is obtained by (cf. Magnus and Neudecker
1988)
dJp(¥) T -1
——— =2Jp(W)V [V V] . 2.18
o D (W) W[¥T W] (2.18)
Note that the inversion of the FIM appears in Eq.(2.18), due to which the FIM is
required to be a regular matrix with full rank (Hametner et al. 2013b).

The second term in Eq. (2.17) is obtained by the single derivatives of the parameter
sensitivity vectors with respect to the model input, which are based on the derivative of
the regressor ¢ (k, @) as defined in Eq. (2.1) with respect to the input U (r). Denoting
the derivative of @ (k, 0) by

deT(k.0) [dStk—1,0) d9k—n,0)
- 186ty - Soi8kemnr O k> 7
dU () dU(r) dU(r) HOU=Dyr - - OplOthk=my) -

(2.19)

where §;; is the Kronecker delta function and / corresponds to the current input of
the LMN battery model. The former model output with respect to the input U () is
recursively calculated and follows to

dyk,0)  9y(k,0) dyk—1,0)
dU(r) 99k —1,0) dU(r)
———————
recursive calculation
dy(k,0) dyk—n,0) 93k, 0)
39k —n,0)  dU®r) au(r)

k > r. (2.20)

Based on Eqgs. (2.19) and (2.20), the derivative of the parameter sensitivity vector
with respect to the model input is obtained by

de(k,0 ddq(k

dn(k)% ok, 0) dU‘()

o ) )
i : + : . k> 2.21)

dok, 0 dDy(k

By (0 L2EO | ok gy 21D

dU(r) du(r)
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while the compact notation of Eq. (2.21) yields the second term of Eq. (2.17)

(2.22)

av__ [dW(l) dv/fT(N)T

dU (r) du(ry T du@r) |
Using Egs.(2.18) and (2.22), the gradient g can be used in the gradient descent
method to update the excitation sequence. Considering the current constraints along
with an adaptively adjusted step size 7, the update follows by

U(V-H):U(U)_i_n.g(v), 1):0,],2,...

Umin = U(v+1) = Umax
s.t. {U v : (2.23)

which process is repeated until no further improvement is achieved.

Note that the voltage constraints are included indirectly, and therefore a nonlin-
ear constrained optimization problem is avoided. Nevertheless, several alternative
approaches are known, which include the output constraints directly in the formu-
lation of the optimization problem: The (quadratic) difference between the gradient
of the design criterion and the excitation signal increment is minimized by Stadl-
bauer et al. (2011a), while the feasible area is approached simultaneously. In order
to realize the constrained optimization, Hametner et al. (2013b) applied Lagrangian
multipliers. Sequential quadratic programming (see e.g., Luenberger and Ye 2008)
and numerical multi-objective optimization (see e.g., Seyr and Jakubek 2007) are
further approaches.

2.3.4 Extensions on the Excitation Sequence

The previous sections discussed the optimization of the excitation sequence, while
constraints are considered. For the purpose of especially including the battery-
specific nonlinear effects, the optimized excitation sequence is extended in the fol-
lowing.

Constant discharge/charge currents with following standby currents are able to
reveal the voltage behavior caused by relaxation and to discharge/charge the battery
to a desired SoC value. Constant discharge/charge current pulses with subsequent
standby current are therefore added in front of/after the optimized sequence. Follow-
ing the limitation ratio (see Fig. 2.9), the values of the constant currents are obtained,
while the duration of the pulses is related to the longest time constant of the system.
Sufficient information about relaxation requires the duration of the standby current
to be at least a multiple of the duration of the constant current. An analysis of Fig.2.6
leads to a duration ratio of at least 6 for an abated voltage degradation at standby
current. Due to this reason, a duration ratio of 8 is suggested and used in this book.
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The final excitation signal is obtained by merging the extended high dynamic
sequences for evenly distributed SoC values across the entire SoC range of interest
(Unger et al. 2014). Any SoC deviations from the desired SoC are carefully compen-
sated by varying the durations of the constant currents, in order to achieve information
across the entire SoC range. Note that the SoC range of interest for different non-road
applications differs from each other and therefore may vary.

2.4 Temperature Model of Battery Cells

In order to provide a simulation model, the battery temperature needs to be modeled
as well. At high charge and discharge currents, the cell temperature increases signif-
icantly and may raise above allowable limits (Onda et al. 2006). Hu et al. (2010a)
proposed an accurate battery thermal model using a Foster network, which extracts
capacitance and resistance from computational fluid dynamics (CFD) results. A sim-
plified mathematical model is presented by Jeon and Baek (2011) that considers heat
generations due to joule heating and entropy change, respectively. Sun et al. (2012b)
developed a three-dimensional thermal model to gain a better understanding of the
thermal battery cell behavior in a battery module. The more advanced approach
considers the battery nonuniform heat generation rate, the battery temperature distri-
bution as well as battery temperature variation across the module in order to predict
the temperature behavior during simulated driving cycles. A lumped-parameter ther-
mal model based on a differential equation is developed in Forgez et al. (2010),
whose approach is used in this book. Based on the cell thermal capacity ¢, and
the heat transfer coefficient 4,,,, the temperature behavior of a battery cell can be
expressed by

d ﬁcel !

Cp dt = haut (ﬁamb - ﬂcell) + 15231[ Rintv (224)

where ¥, s the ambient temperature, . is the cell temperature, R;,, is the internal
resistance of the cell model, and I, is the cell current. The battery type (energy or
power cell) influences the temperature behavior essentially, since the losses produce
heat, which is dissipated through the battery cell. In general, energy cells have a
different design, due to which the heat transfer resistance is higher. Nevertheless,
as can be seen in Eq.(2.24), the internal resistance R;,, is required and needs to be
exported from the LMN battery cell. Due to the nonlinear behavior of the battery
cell, R;,; depends on the actual state of the battery cell, though.

In this context, the interpretability of the LMN battery model should be discussed
in more detail. Due to the physically appropriate partitioning of the LMN, the steady-
state gain of the LLM can be interpreted as the local internal resistance of the partic-
ular LLM. Note that the calculated steady-state gain is normalized and needs to be
transformed first before it can be interpreted as physical value. In Fig. 2.10 in the upper
two subplots, the identified internal resistances for Cell A and Cell B, respectively,
are shown for different temperatures. Since the partition space is three-dimensional,
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Fig. 2.10 Interpretability of LMN battery model parameters shown at Cell A and Cell B. The
current dimension is held at 1..,;; = —40 A

the current is held at I,..,;, = —40 A to be able to depict a two-dimensional repre-
sentation of the parameters. The lower two subplots show the identified open-circuit
voltages in comparison with an OCV that is obtained from an interpolation of the
charge and discharge curves at 2C. As can be seen, the OCV is precisely identified,
though the excitation signal has been highly dynamic and included only few standby
phases during the measurements. Based on this interpretation, look-up tables for the
internal resistance R;,, and the OCV V, can be exported from the LMN and used in
Eq.(2.24).



2.5 Battery Module Model Design 35

2.5 Battery Module Model Design

Battery module models are required for the simulation of powertrain concepts in
hybrid electric vehicles as well as for the implementation in battery simulators, which
emulate the real battery behavior at the test bed. Real-time capability is especially
necessary for the implementation in battery simulators. Nevertheless, battery mod-
ules consist of multiple battery cells connected in series and parallel connections,
which results in a required monitoring system that observes the voltage and SoC
balance between the battery cells to avoid physical damage. The balancing strategy
needs to be included in a battery model, as long as there is an effect during operation.
Due to this reason, cell balancing in battery modules is reviewed in the following,
before the design of the LMN-based battery module model is discussed.

2.5.1 Battery Cell Balancing in Battery Modules

Battery balancing refers to the equalization of the state of charge of the battery cells
within a battery module to avoid overcharge, which might cause physical damage
and safety issues due to explosion and fire. Cao et al. (2008) present the theory
behind balancing methods for battery systems within the past 20 years and group
their nature of balancing. In general, two different balancing techniques are known
(Andrea 2010):

1. Active balancing
2. Passive balancing

Active balancing draws the energy from the most charged cell and transfers the energy
through DC-DC converters to the least charged cells. For example, Lee and Cheng
(2005) proposed an active balancing algorithm for lithium battery modules. Passive
systems waste energy from the most charged cell as heat, until the cell charges are
equalized. To this end, the balancing strategy needs to be considered in the battery
module model, if cell balancing is carried out during operation and has an influence
on the voltage behavior.

In this book, a battery module with implemented passive balancing system is used.
Thus, balancing is neglected in the proposed model approach. Nevertheless, different
balancing strategies and their implementation in battery models are discussed in, e.g.,
Bentley (1997), Daowd et al. (2011), and Weicker (2013).

2.5.2 LMN-Based Battery Module Design

In non-road vehicles, the voltage level of battery modules is usually high, because
the current capabilities of electrochemical batteries for high power demands are
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generally limited. Thus often super capacitors are used due to their significantly
larger power capabilities. Nevertheless, the higher energy densities of batteries make
them an equal alternative. During the design process of hybrid electric powertrains,
the planned battery module may not be physically available. This complicates the
design of battery module models, since a sufficient parametrization is difficult. To this
end, four different approaches of battery module model approaches X; are discussed
in the following in order to show the influence of different considered effects.
Battery cell measurements are easier to realize, and therefore a battery module
model that is based on battery cell models is desired and advantageous. The pro-
posed methodology in the previous sections provides LMN battery cell models that
can easily be obtained by cell measurements, but does not consider the additional
internal resistance of battery modules resulting from the cell connections. Never-
theless, the internal resistance is unknown in advance, and therefore a first obvious
model approach is
Vmodule,ZJ] = Neeits * Veells (225)

where 7n..;s 1s the number of series connected cells and V.., refers to the battery
cell voltage. The battery cell voltage V,.;; can be obtained by the LMN battery cell
model using the battery cell current

Imo uie
Loy = —2odtle (2.26)

Pcells

where pc.;s 1S the number of parallel connected cells, and 1,4, is the battery
module current. Note that the internal resistances of the battery cell connections
are not considered in this simple approach and may limit the accuracy. Therefore,
however, no information is required about the internal resistance of a battery module.

Considering the internal resistance of the battery module in V544, 5, leads to
model X,

Vmodule,Ez = Neells * VL‘ell - Rinr,Ez ‘ Imodulw (227)

where R;,, 5, refers to the internal module resistance. Battery cells usually vary in
nominal cell voltage, which can be considered by an offset voltage. Module model
approach X5 follows therefore to

Vinodute, 55 = Neells * Veetl — Rint,zy * Imodute + Voffser, 5y (2.28)

where the offset voltage V, s, 5, also considers measurement sensor offsets and any
other additional influences on the module voltage. Electrical resistances are usually
linear elements, but a current-dependent adaptation of the internal resistance and
offset, respectively, has been shown as advantageous. This can be caused by, e.g.,
inaccuracies in the battery cells, different ages of the installed battery cells, or the
battery cell used to identify the battery cell model. Nevertheless, the resulting model
can be denoted by
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+ +
Vmodule,24 = Neells * Vcell - Rinl,EA : Imodule + V()ffsgt’ZA (229)
with
+ . + .
+ _ Rint,24 if Imodule >0 Vi _ Voffxet,24 if Imodule >0
int, Xy — - . > Voffset, Xy T - .
R,'m’24 if Imodule = 0 Voffset,24 if Imndule =< 0

(2.30)

Battery module measurements can then be used to identify the module parameters
Rin, 5, and Viprser, 5, , respectively.

2.6 State of Charge Estimation

State estimation is required, if system states are not measurable. An observer is used
to estimate the unmeasurable states based on the measurable states and a dynamic
model of the process. In this context, the observability of the system must be given,
which is the case if the observability matrix O

O = [CT(CA)T(CAY)" ... (CA™ 1T, 2.31)

where n,4.5 denotes the number of states in the state-space system with state matrix
A and output matrix C, has full rank.

The linear Kalman filter is an efficient recursive filter that is able to observe the
internal states of a linear dynamic system by measurements corrupted with noise. It
is of advantage that the filter is based on time-invariant models, which significantly
reduces the computational complexity. In general, nonlinear processes are more chal-
lenging, since nonlinear estimation approaches need to be applied. A well-known
nonlinear estimator is the extended Kalman filter, which is based on the local Jacobian
of a nonlinear model and is therefore more complex than a linear Kalman filter. Note
that the filter gain as well as the data-dependent local linearization of the EKF cannot
be precalculated, which is disadvantageous for real-time application (Plett 2004b;
Vasebi et al. 2007). The interacting multiple models’ approach achieves a nonlin-
ear estimation by running separate linear Kalman filters and switching between the
filters based on a detection scheme using the validity probability of the underlying
models (Mazor et al. 1998; Helm et al. 2012). Another similar nonlinear estimator,
which is ideal in combination with LMN models, is the fuzzy observer (Chen et al.
1998; Senthil et al. 2006). Since each LLM of the LMN corresponds to an linear
time-invariant dynamic system, the linear Kalman filter theory can be applied, and
the global filter output can be obtained by weighted aggregation of the local filters
(Simon 2003). Furthermore, stability of the fuzzy observer can be shown based on
Lyapunov stability theory and is discussed in, e.g., Mayr et al. (2011b) and Tanaka
et al. (1998). The fuzzy observer approach is therefore used in this book.
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In the following, the general architecture of the SoC estimation scheme is pre-
sented before the development of the fuzzy SoC observer. Note that the SoC estima-
tion approach is applicable for cell and module SoC estimation, respectively, and is
therefore developed for the general case.

2.6.1 General Architecture of the SoC Observer Scheme

The estimation of the SoC of a battery can be obtained by two practical principles.
First, measuring the open-circuit voltage leads to an accurate estimate of the SoC
if the battery has been in standby mode for a sufficiently long period of time, but
cannot be used during operation. The second possibility is to integrate the current,
which can be denoted by

1 t
SOC(I) = SOCinit + —/ nbalt,cou(lbatr (V)) Ibutl(v)dv’ (232)
Qc,batt 0

where SoC;,;, is the initial SOC, Q. par 1s the battery capacity, and Npasr.cou 1S the
charge efficiency. Note that 1pq con 1S usually 0.99 and can be neglected for the
purpose of observer based SoC estimation. Nevertheless, the integration of the current
leads to an acceptable initial SoC value that can be used in an advanced SoC observer
scheme.

Following Hametner and Jakubek (2013), the estimation of the SoC can be done
by automated nonlinear observer design using a fuzzy observer. In this context,
the relative SoC estimation given by Eq.(2.32) should be included in the observer
scheme. For that purpose, Eq. (2.32) is represented in the discrete formulation

SoC(k) = SoC(k — 1) + é”’” Tpart (K), (2.33)

c,batt

where t; ;s corresponds to the sampling time. An overview of the observer scheme
is depicted in Fig. 2.11 exemplarily. As can be seen in the figure, the SoC is corrected
by the observer, which obtains the simulated battery voltage by the LMN battery
model discussed in Sect.2.2. Any drift of the SoC due to extended operational time
is compensated, since the SoC estimator is able to act during operation. Note that the
estimation accuracy is mainly dependent on the battery model accuracy. In the next
subsection, the SoC fuzzy observer is developed in detail.

2.6.2 SoC Fuzzy Observer Design

The automated nonlinear observer design requires the nonlinear LMN in state-space
(SS) representation (Senthil et al. 2006), the state vector of which needs to be
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Fig. 2.11 SoC fuzzy observer scheme

augmented in order to consider the initial SoC from the current integration in the
fuzzy observer. A correct transformation of the LLM (c.f. Eq.(2.2)) into the SS rep-
resentation can be achieved by including the past outputs y and the previous state of
charge SoC(k — 1) in the augmented state vector Xz, Which follows to

Xaug (k) = [y(k — 1) yk—=2)... y(k —n) SoC(k — 1)]T. (2.34)
The parameter vector of the ith LLM can be denoted by
1?,' = [al,i oAy bll,i ce blml,i e quq’,’ bO,i] s (235)

where a. ; and b.; denote the output and input parameters, respectively, while by, ; =
bsoc,; corresponds to the order-one SoC input parameter used in the LMN design
(cf. Eq.(2.8)). Note that the LMN design described in Sect.2.2.3 already includes
the SoC as input variable, in order to be able to use the identified parameter for
the augmented state variable in the design of the linear Kalman filters. Using these
parameters, the state matrix A; can be established by

ayi ax; ... i bsec,
0 o 0 0
A = 0 1 ... 0 0 (2.36)
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and the input matrix B; follows by

baui o b oo bgmgi Do
B; = : - : - : e (2.37)

by ' ’ '

Q(:bun O O O O O
where by ; corresponds to the local affine term (bias term). Note that the corresponding
parameter of the SoC input by;; = bsec,; is excluded from B; since it is already
considered in A;. The augmented input vector for the augmented observer SS model
follows then to

g () = [t (k) ur(k = 1) -+ ug (k —my) 1]", (2.38)

where u; corresponds to the actual and past elements of the model inputs. At this point
it is important to mention that the integrator needs to be adapted if a normalization
of the LMN is used. In case of scaled parameters, the integrator increment can be
transformed by a corresponding additional term in the last row and column of the
matrix B;.

Using Eqgs. (2.34)—(2.38), the augmented state equation

M
Xaug(k) = Z (pi (k - 1) {Aixaug(k - 1) + Biuaug(k)} (239)

i=1
leads to the global model output
Y(k) = Cxaug(k) (2.40)

with
C=C,~=[10...00]. (2.41)

Based on these equations, the local steady-state Kalman filters can be designed for
each local linear model, while the global filter is obtained by weighted aggregation
of the individual local estimates. The state estimate X,,, of the global filter can be
determined based on the gain matrix K; by

M
Xaug (k) = Z @ik — 1) {x},, . () + K; [y(k) — § (k) ]}, (2.42)
i=1
with
qug,i(k) = Aiiaug(k - 1) + Biuaug(k)s (243)
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where

M
$k) =D @ik — 1)CX},, (k). (2.44)
i=1

The gain matrix K; is calculated by
K; = APTCT (CPTCT +R")", (2.45)
where P; refers to the solution of the discrete-time algebraic Riccati equation (DARE)
APA] — P, —AP,C" (CP,C" + R)’1 CP,A] +Q=0. (2.46)

InEq. (2.46), the matrices R and Q reflect the covariance matrices of the measurement
and process noise, respectively. The Kalman filter theory assumes R, Q to be known,
but often the covariance matrices are unknown and R and Q are used as tuning
parameters (Hametner and Jakubek 2013). For the application of SoC estimation in
batteries, the terminal voltage measurement noise R can be found by experiments.
The process noise Q, similar to Vasebi et al. (2007), is used to tune the filter and no
correlation between the different elements in Q is assumed.



Chapter 3
Results for BMS in Non-Road Vehicles

Abstract The battery management system of batteries used in non-road vehicles
needs to be able to provide an accurate value of the SoC, even during operation if
high dynamic currents act on the battery. This can be achieved based on the gener-
ically applicable methodologies proposed in Chap. 2. In this chapter, the proposed
concepts and methodologies are validated using measurements from real battery cells
with different cell chemistries as well as a battery module. The battery module is
established with battery cells, which are separately available to be investigated with
cell measurements.

Keywords Lithium ion batteries - Nonlinear system identification - Optimal model
based design of experiments (DoE) + State observer

In the following, first, the measurement procedures and hardware are specified.
Second, the results for the nonlinear battery cell model identification are discussed.
Third, the results for the temperature and battery module model are validated and
at the end, the estimation accuracy achieved with the SoC estimator introduced in
Sect. 2.6 is demonstrated.

3.1 Generation of Reproducible High Dynamic Data Sets

The reliability of precise battery models depends on the data set used to identify the
model parameters. Due to this reason, the reproducibility of measurements is essential
for the whole methodology, since only reproducible measurements can verify the
model accuracy. In the following, the measurement procedure is discussed and the
measurement hardware is described. At the time, when battery cell measurements
were required, an affordable and sufficiently high dynamic battery cell tester was not
available, and therefore a cell tester hardware has been developed. Measurements on a
real battery module could be achieved using an adapted battery simulator available at
the test bed also used to measure the hybrid powertrain (cf. Chap. 5). In the following,
the measurement procedures are introduced before the developed battery cell tester
and the module tester are described in detail.
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3.1.1 Measurement Procedures

Electrochemical batteries show that the previous excitation has influence on the
voltage behavior of the cells. Reproducibility can only be guaranteed if the initial
battery conditions are uniquely defined in advance to the measurements. Unexpected
and undefined appearing effects are avoided and all short-term history of the battery
cells (cell conditioning) is erased. It has been shown that the following procedure
enables to compare measurements as well as different battery cells and chemistries,
respectively, with each other (Unger et al. 2014):

. Initial capacity check at 25°C

. Set temperature of climate chamber

. Fully charge the battery cell

. Discharge until initial SoC is reached

Apply excitation signal

. Repeat 3 to 5 until all excitation signals are recorded
. Repeat 2 to 6 until all temperatures are recorded

Since the exact capacity of a battery cell is unknown in advance, the initial capacity
check (see enumeration 1) is applied only once before any dynamic measurements
are taken. Eight charge/discharge cycles with different C-rates from 4C to 1C are
applied to the battery cell, due to which the short-term history is reduced and the
true capacity can be calculated. Due to the high C-rates, the full capacity of a battery
cell cannot be exploited, because of which only the last cycle is used to calculate the
capacity. The quotient of discharge and charge capacity can additionally be used to
obtain a charge efficiency for each cycle. Any battery cell measurements obtained in
this book are based on this procedure.

In case of battery modules, the capacity check is more difficult due to the cell
balancing. Nevertheless, in order to achieve the best reproducibility possible, the
battery module is fully charged and balanced before the battery module is discharged
to the demanded initial SoC. Prior to the measurements, a conditioning cooling circuit
established the demand temperature of the battery module.

3.1.2 Test Hardware for Battery Cells

High dynamic current excitation signals such as real load profiles are not state of
the art yet, which implicates that reasonably priced high dynamic battery cell testers
are unavailable. Due to this reason, a battery cell tester is developed based on a
Hocherl&Hackl source/drain module for closed-loop current control in real time
and a National Instruments USB data acquisition board for the measurements. A
LabView control software executed the measurement procedure, kept any physical
constraints, and monitored battery states and safety issues. The voltage range is —1—
10V, and the current range is £240 A. A Votsch climate chamber, also triggered
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Fig. 3.1 Battery cell tester (lefr) and climate chamber (right) used to test different cell chemistries
and temperatures

by the LabView control software, provided an ambient temperature between —20
and 60 °C (relevant temperature range for non-road application is between 12.5 and
35°C). Note that the system is designed for up to 10 kHz with step response time
constants of the source/drain module for less than 200 ps. Due to the slow system
behavior of battery cells, the measurement duration is very long, and an enormous
amount of data is generated if the sampling time is chosen too high. Any voltage
response from the applied excitation signals and the cell temperature are therefore
recorded with a sampling rate of 100 Hz. In Fig. 3.1, the battery cell tester (left) and
the climate chamber (right) are depicted.

3.1.3 Test Hardware for Battery Modules

A battery simulator (KS BattSim) from Kiristl, Seibt & Co GmbH, usually desig-
nated to emulate battery models in real time, is adapted to test the available real
battery module. The battery simulator has a voltage range from 500 to 750V and a
current range of £250 A. These specifications are sufficient for the battery module
measurements and the emulation of the battery module during the hybrid powertrain
test bed measurements. The current excitation signal is directly programmed into
the control unit of the battery simulator, and an implementation of high dynamic
excitation signals is possible. Depending on the purpose of the battery simulator, the
control interface is changed.
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(b)

Fig. 3.2 Exemplary battery cells commonly used in HEV compared to a commercial AA-type
battery cell (left) and real battery module (right)

3.2 Battery Cells and Battery Module Specifications

The presented methodologies are data-based approaches that are generically applica-
ble to any battery chemistry. In order to show this benefit, battery cells with different
cell chemistries are investigated in this book. The three battery cells and one battery
module under investigation are introduced in the following.

Cell A is a prismatic type, energy cell based on lithium-polymer chemistry, which
has a nominal voltage of 3.7 V. Cell B and C are cylindrical type, power cells based
on lithium-iron-phosphate cell chemistry and have a nominal voltage of 3.3 V. The
capacity of Cell A is 40 Ah, while Cell B and Cell C have a capacity of 4.4 Ah
and 1.1 A h, respectively. In Fig.3.2 (left), similar battery cells commonly used in
HEV are depicted exemplarily and compared with a standard AA-sized primary
battery cell. The battery module is built by 192 series and 2 parallel connected cells
(192S2P-configuration) of type Cell B, and has a nominal voltage of 630V and a
maximal current of £200 A (see Fig. 3.2 (right)). Passive cell balancing is established
between the battery cells, but balancing does not start until a 15 minute standby time
of the battery. All battery cells and the battery module allow a temperature range for
charge and discharge, respectively, between 0 and 40°C, although the investigated
and relevant temperature range in non-road application lies between 12.5 and 35 °C.

3.3 Training Data for Battery Cell Models

The methodology of optimal model-based DoE, described in Sect. 2.3, provides exci-
tation signals, which minimize the parameter variances of the identified battery mod-
els. In this book, these signals are used as training data and should be presented
exemplarily for battery cell B in the following. Figure 3.3 shows the result for the
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obtained optimal excitation signal with the recorded voltage response of battery cell
B. The current signal and current constraints are depicted in Subplot two, where
currents with more than 100 A can be observed. Cell B has a capacity of 4.4 Ah,
which results in a C-rate of more than 22.5C. Nevertheless, the corresponding volt-
age responses for the two depicted temperatures (see Subplot one) and the SoC (see
Subplot three) keep the constraints. Note that even though the constraints of voltage
and SoC are indirectly considered, any constraints are met, and the entire relevant
range of the SoC is covered.

In Fig.3.4, one extended excitation sequence is shown in more detail. Subplot
two shows that the optimization considered the current constraints and the maximal
current depending on the SoC, respectively. Furthermore, it can be seen that high
dynamic current is obtained between the lower and upper current constraints (green
and red lines), which is the optimized part of the optimal model-based DoE method-
ology. However, the voltage response depicted in Subplot one shows that the degree



48 3 Results for BMS in Non-Road Vehicles

of freedom has not been fully exploited due to the linear reference model. Note that
the spread of the current over the dynamic range may also include more intermediate
steps, if a nonlinear reference model is used (Unger et al. 2012a).

3.4 Validation of Battery Cell Model Accuracy

The results obtained with LMN battery models are presented in this section. First, the
improvements due to optimal excitation signals are discussed based on two different
LMN battery models. Second, the generic applicability to different cell chemistries
and the influence of the mentioned nonlinearities are demonstrated. Finally, the best
LMN battery model is further discussed in terms of dynamic accuracy.

3.4.1 Battery Model Quality Improvement with Optimal DoE

The accuracy of data-based LMN is significantly dependent on the used training
data. For this reason, two local model networks (models Iy and ) with the same
configuration are identified by conventional DoE and optimal model-based DoE,
respectively, to show this dependency. The benefit can better be seen on a simplified
LMN structure, which is chosen to Z;, = [Zsoc zHyst] as partition space and Q, =
[ Current] as input space of the models. Since the ambient temperature is kept constant
at22.5°C, Zremp is excluded in Z,, and zsoc and urerax are neglected in Q5 in order to
exclusively show the effect of the training data. Following the methodology by Jackey
etal. (2013), a good compromise for the model order is found by analyzing the mean
squared error of a linear model for different selections of the order and choosing a
suitable model order between complexity and accuracy. The model orders of current
and voltage are finally set by m curent = 7voltage = 5.

An LMN model with 10 local linear models is used to find a suitable choice for the
kernel function sharpness of the SoC &, soc. The given configuration of the partition
space leads to a good compromise by ks soc,12 = 0.75, which is obtained by com-
paring different selections of &, soc With each other. Note that smoothness and strict
partitioning is controlled by k. soc, since the overlapping of the validity functions
is increased with a larger k, soc value. A smooth separation between discharge and
charge behavior of zpy is not physically reasonable, due to which a desired sharp
separation is obtained by k, myst = 0.05. The threshold for the number of LLM is
predefined by the critical real-time limit of the battery emulator control unit (Beck-
hoff Industrial PC C6515), which is capable of M = 30 as is obtained by test runs.!
Table 3.1 shows the summary of the LMN configuration parameters for models I}
and I>.

18-12 % CPU usage of battery emulator.
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Table 3.1 Collectior.l of the Structure of LMN
parameter configuration used
in battery models I} and I3

Values of parameter
configuration

MCurrent = MVoltage = 5

Q12 = [ucurrent] ko.soc,12 = 0.75
212 = [2s0C ZHyst] ko, myst = 0.05
M =30

InFig. 3.5, the raw training data for model I is depicted, where conventional DoE
for Cell C is used to obtain the excitation signal. Hu et al. (2009b) proposed a step
profile training data, which is similar to the one used. Note that the conventional DoE
is more dynamic than other excitation signals in the literature (Unger et al. 2012a)
and is therefore used for comparison with the proposed experiment design. However,
the step profile is established by alternating intermediate current steps in charge and
discharge directions, and the variation of the step durations realizes to cover the
entire SoC range. Disadvantageous is that the DoE is very strict in terms of voltage,
since voltage behavior is not considered. Expert knowledge needs to be used to limit
the current in order to avoid voltage violations. Nevertheless, the applied current
constraints can be seen in the second subplot, which ensure that current, voltage, and
SoC constraints are met, although full current capabilities of the battery cell are not
exploited by the step profile. Subplot one includes the training result obtained for
the battery model I7.

Model I'; is identified using an optimal excitation signal obtained with the method-
ology proposed in Sect. 2.3 and adapted for Cell C. The optimal model-based DoE is
depicted in Fig. 3.6, where the training result of battery model I is included in the
first subplot. Subplot two depicts the optimal excitation signal including the applied
constraints, which indirectly consider the voltage and SoC limits, respectively. In
comparison to the conventional DoE in Fig.3.5, the optimal excitation signal has
superior dynamics and higher currents, while all constraints are met.

In order to validate the obtained battery models I"} and I'; in terms of dynamics and
high currents occurring in non-road applications, a repeated real (current-) load cycle
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Fig. 3.5 Measurements from Cell C at 22.5°C used to training LMN model I


http://dx.doi.org/10.1007/978-3-319-29796-5_2

50 3 Results for BMS in Non-Road Vehicles

N — — F———— 7 - 7T T - T T — —
s 36f =
S 34y . e
% 320 Data j A A A M i
Et 3]~~~ Mooel ]
S 28 = = Constaints] _ T 4y _ ¥ SO S e el

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
z 10 T T T T T T = T T
£ o
E
= —
o -10 1 I 1 1 1 =+

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ll eosnvenppneny r— | p—— C - - - - I - - - - I - - - - JIT---—-—J--_-—-J —  B——
Q 05 m -
@ — = Constraints AN

o) E— [ [ e o (U P oo IS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [s]

Fig. 3.6 Resulting optimal excitation of Cell C at a temperature of 22.5°C to training LMN
model I

3.6 - m
34l v ‘
32| T R A ‘ N A N

il i A et bR b i i

e
1k - g

Voltage [V]

28 [
26

10 F w

Data — — - I

Current [A]

T —— T T T T T T T T

SoC [-]
o
o
T

0 1 1 1 1 1 | 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [s]

Fig. 3.7 Accuracy of models I and I> shown on the simulation of the SoC validation signal for
Cell C at 22.5°C. See Fig. 3.8 for a detailed view

is used, which does not change the SoC on average. Alternatingly raising/lowering
the mean current value of the cycle forces the SoC to pass the entire SoC range, due
to which the signal is referred to as SoC validation signal. Note that in the following,
the maximal current capabilities of the battery cells under investigation are exhausted
by scaling the cycle to the maximal current allowed for the specific cells. Figure 3.7
depicts the obtained simulation results for models I} and I3. In Subplot one, the
voltage response of the battery and the simulated voltages of the models are shown.
Subplot two and three show the current and the SoC trajectory, respectively. The
ambient temperature during the experiment is kept constant at 22.5°C.

Both models consider the nonlinear relationship between SoC and battery cell
voltage, which is observable by comparing the envelope curves of the maximal
voltage values in Subplot one of Fig.3.7. Nevertheless, a significant average error
of model I (56.25 mV) can be seen compared to the error of model I (5.44 mV).
The marked region in Fig.3.7 is depicted in detail in Fig.3.8.
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In Fig. 3.8, one cycle is enlarged to show the dynamic behavior of models I} and
I';. Behaviors are generally similar, but model I} shows a large offset compared to
I, which is observable in the first subplot. One reason is the lack of high dynamic
excitation in the step excitation signal used to train model 7. Due to the optimal
model-based DoE, an optimal excitation signal is obtained, which is able to signif-
icantly increase the model accuracy for high dynamic excited battery cells. Even
though C-rates above 9C occur in the validation signal, satisfactory model accuracy
is obtained. For this reason, exclusively optimal excitation signals are used in the
following to train the battery models.

3.4.2 Comparison of Battery Cell Models with Different
LMN Structures and Cell Chemistries

The influence of optimal excitation signals on the LMN battery model quality is
presented in the previous section. In the following, the influence of hysteresis, relax-
ation, and temperature input on the LMN structure as well as the applicability of
the LMN approach to different battery cell chemistries is discussed in detail. To this
end, three different LMN battery model structures (I3, Iy, ['5) are validated using
two different validation signals (temperature validation signal and SoC validation
signal) and two different cell chemistries (Cell A with lithium-polymer and Cell
B with lithium-iron-phosphate chemistry). The achieved results are then compared
with each other and interpreted.

Training data for the three models is obtained by creating optimal excitation
signals for each cell chemistry separately and measuring the voltage response at 10
different temperatures between 12.5 and 35°C in 2.5 °C steps. Figure 3.3 shows the
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Table 3.2 Collection of the parameter configuration used in battery models I3, 14 and I'5
Structure of Iz, I'y and I's LMNs Configuration Parameters for I3, I'; and s

I3: Q3 = [zSoC UcCurrent]s
Z3 = |280C ZCurrent ZTemp msoc = 1, ko,50C,345 = ko, Temp = 0.6,
I'y: Q4 = [zsoC UcCurrent]s
Z4 = [ZSOC ZHyst ZTemp]s
I's: Qs = [2S0C UCurrent URelax]s
25 = [zs0C ZHyst ZTemp

MRelax = 3, ka.Hyst = ko, Current = 0.05,
MCurrent = NVoltage = 5, M =30

optimal excitation signal of Cell B at two different temperatures exemplarily for all
cell chemistries, which are then merged to one training data set (raw identification
data) for Cell A and B, similarly.

In Table3.2, the LMN structures and configuration parameters of the models
explained in the following are summarized. The purpose of the simplest model (13)
is to provide a reference to show the influence of hysteresis and relaxation input to
the model structure, which are not considered in /3. However, the temperature is
considered in the partition space, which follows by Z; = [ZSOC ZCurrent zTemp] and
the input space, including the SoC as mentioned in Sect.2.2.3, is defined by Q3 =
[ZsoC Ucurrent]- Note that due to the excluded hysteresis input, the corresponding
polarization of the battery cell is not indicated through the current zcyrent at standby,
since Zcurrent 1S ONly interpolated between charge and discharge behavior. The current
is therefore initially partitioned between positive and negative current instead of
charge and discharge mode, but nevertheless the current effects are considered in
model I5%.

Model Iy is improved compared to model I's by replacing the current input with
the hysteresis input, which leads to a partition space 24 = [zSoC ZHyst zTemp] and an
input space Q4 = Q3. At this point, it is important to mention that the complexity of
the model is unchanged in this case. An increase in model complexity is obtained in
model 5, which includes the relaxation input in the input space. Hence, the input
space can be denoted by Qs = [Zsoc Ucurrent URelax]> and the partition space remains
the same (Z4 = Z5). Note here that any nonlinear and/or electrochemical effects
mentioned in this book are considered in model I75.

In terms of the configuration parameters, the objectives remain the same as for
the models I} and I and can therefore directly taken from Table 3.1. Therefore, the
parameters for models I'3, 14, and I's follow t0 7 cugrent = Rvoltage = J, ko, Hyst = 0.05,
and M = 30, while kg current = ko,1yst = 0.05 is set for the sharpness factor of the
current input to achieve a sharp separation between charge and discharge behav-
iors. In case of the optimal kernel function sharpness of the SoC and temperature,
kg.50c,345 = ko, Temp = 0.6 slightly increases the smoothness of the validity function
and is therefore chosen for the temperature input. The SoC input has no dynamic
influence on the system behavior, for which reason the order of the input is set
straight forward to msoc = 1. Because filt(-) of the relaxation input is established
using a third-order low-pass filter, the order within the LMN model is also set straight
forward to mgex = 3.
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The validation of the battery models is achieved using the two mentioned vali-
dation signals for temperature and SoC, while the SoC validation signal is already
introduced beforehand and slightly improved. Aim of the temperature validation is
to show the model accuracy in case of temperature changes and different SoC values.
Due to this reason, the ambient temperature is heated up to the upper level of 32°C
and cooled back to the lower level of 18 °C, while the aforementioned real load cycle
is continuously applied to the battery cell (Unger et al. 2014). This procedure is
repeated for different SoC levels and is referred to as temperature validation signal.

The SoC validation signal, as introduced earlier in this section, is furthermore
improved to strengthen the significance of the validation by alternatingly rais-
ing/lowering the current mean value in between the repetitions of the cycle. Due
to the more often changed average charge direction, the dynamic behavior is more
excited and therefore proves the battery model with more significance, though the
entire SoC range is covered. In the next subsection, the temperature validation sig-
nal and SoC validation signal are described in terms of the dynamic behavior and
depicted in Figs.3.9 and 3.11, respectively.

Based on the mean squared error and a normalized root mean squared error
(NRMSE), the model accuracy can be evaluated. The NRMSE can be denoted by

N, 5 2
1 Yi — Vi
= LS (i Y g0 .
ENRMSE,% N, ; (max(y) — m1n(y)> ’ oy

where y is the measured output, y is the simulated output, and N; is the number of
samples. Note that the different cell chemistries have different nominal voltages, due
to which a normalization of the measured output values in Eq. (3.1) is required in
order to allow a direct comparison between the different battery model accuracies.
Table 3.3 presents the MSE and NRMS values for the different LMN architectures
and cell chemistries.

In Table 3.3, a continuous decrease in error values is observable from model I3 to
model I's. Reasons are the included hysteresis input (I4) and the increased complexity
(I's) similar for both cell chemistries. The interpolation between the charge/discharge
behavior at standby current in model I; is not physically appropriate, while in con-
trast, the corresponding polarization is indicated through the hysteresis input in model
Iy and I5. In terms of the electrochemical behavior of battery cells, models I'y and I
are more physically appropriate, and therefore the model accuracies are improved.

The time constants of electrochemical batteries are usually very different, due to
which a high sampling rate is required for the measurements, since otherwise the
fast dynamic behavior is not considered in the recorded data. A fast sampling rate
causes a highly correlated data set, though, and leads to numerical problems due to
ill-conditioning at the parameter estimation (Billings and Aguirre 1995; Ljung 1998).
This phenomenon is referred to as redundance (Billings and Aguirre 1995). The used
sample time of 100 Hz makes it very difficult to precisely identify the corresponding
relaxation time constant within the dynamic behavior. Therefore, the relaxation input
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Table 3.3 Accuracy comparison of models I3, I'4 and I'5 based on error values obtained for Cell
A and Cell B

Temp. Val. SoC Val. Sig. | SoC Val. Sig. | SoC Val. Sig.
Sig. 20°C 25°C 30°C
MSE Cell A I3 2.935¢~4 3.711e~* - -
Ty 2.668e~* 3.559~* - -
Is 2.447e~% 1.431e~* - -
MSE Cell B I3 7.592¢~4 5.652e~* 4.622¢4 3.633¢*
Iy 6.585¢* 4.811e™* 4.094e* 3.393¢ 4
T 5.236e~* 3.386e % 3.109¢ 4 2.496¢*
NRMSE Cell A | I3 2.059 % 2.537 % - -
Ty 1.963 % 2.485 % - -
s 1.752 % 1.438% - -
NRMSE Cell B | I3 2.671 % 2.933 % 2.928 % 2.847 %
Iy 2.487 % 2.706 % 2.756 % 2.752 %
s 2.218% 2.270 % 2.402 % 2.360 %

of model I is used to provide the required information of the slow relaxation time
constant. As is observable in the results, this improves the accuracy significantly.

Based on Table 3.3 and the corresponding MSE/NRMSE values, the best model
accuracy of the three discussed models (13, Iy, I'5) is achieved by model I5, which
is discussed in detail in the following.

3.4.3 Dynamic Accuracy of the LMN Battery Models

Previously, only the error values were used to evaluate the battery model accuracy. In
the following, the dynamic accuracy achieved with the introduced battery model I,
which considers all relevant electrochemical effects, is discussed in detail in terms
of relaxation, hysteresis, and temperature influence. The dynamic behavior of the
measured cell chemistries is all similar, due to which the resulting plots are depicted
for Cell B only. Figure 3.9 shows the temperature validation signal, where SoC and
temperature trajectory are depicted in Subplot three and four, respectively.

The measured voltage response and the simulated cell voltage using model I's can
be seen in Subplot one in Fig. 3.9. The dependence of the model output on the ambient
temperature is clearly observable. A changing time constant of the relaxation effect,
which is not considered in the constant time constant of the filter input, causes a model
mismatch at the beginning of the dynamic excitation after discharging/charging to
the different SoC levels. Nevertheless, following Table 3.3, the model accuracy is
increased significantly due to the relaxation input. Since high battery currents (more
than 20C) occur in non-road applications, the training data is focused to high dynam-
ically excite the battery behavior, which leads to a lack of sufficient information at
low constant current (below 2C). This is observable at the small model mismatch
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Fig. 3.9 Accuracy of model I's shown on the simulation of the temperature validation
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Cell B. See Fig.3.10. Detail (a) for an enlarged view
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Fig. 3.10 Detailed views of the simulation of one SoC level during a temperature change between

18 and 32°C

during transition to the different SoC levels using low constant currents. Note that
the continuous change between charge and discharge prevents from observing the
hysteresis effect directly in Fig. 3.9. Influence and benefit due to the hysteresis input
are verified explicitly by the error values in Table 3.3, though. Figure 3.10 shows an
enlarged view of the marked region (Detail (a)) in Fig.3.9.



56 3 Results for BMS in Non-Road Vehicles

ik i

Voltage [V]

<

=

o

=1

=1

O

Q

o

w
=
&>,

| -0.05

0 20 40 60 80 100 120 140 160 180 200
Time [min]

Fig. 3.11 SoC validation signal simulation results for Cell B at three temperatures (20, 25, and
30°C). See Fig.3.12 for an detailed view

AN M P
21 < / W , \
o W\\J\ﬂ 1

31 [ = =~ Model N

Voltage [V]
w
S

=z

= AN

= /N/\MV W‘/\p«/\/w, W .

5 LA\ N

O -100

oo T _ T —

Q o021 — o — i

% I I L e 7\ I I
103.15 103.2 103.25 103.3 103.35 1034 103.45

Time [min]

Fig. 3.12 Detailed view of the accuracy of model I's at 30°C during one load cycle at Cell B

In Fig.3.10, one load cycle is shown in an enlarged view. Detail (a) depicts the
voltage and temperature signal, while Detail (b) and Detail (c) show the correspond-
ing enlargement of the marked regions in Detail (a). The model dynamics, as can
be seen, are sufficient for non-road applications. A comparison between Detail (b)
and (c) shows the slightly bigger voltage error in Detail (b) due to the mentioned
changing time constant of the relaxation effect.

Figure3.11 presents the resulting SoC validation signal at a constant ambient
temperature of 20, 25, and 30°C, where the temperature influence on the voltage
behavior is clearly observable.

Subplot four in Fig.3.11 shows the invariant model error for the different tem-
peratures, which never exceed a maximum error of 90 mV and stay within a small
tolerance tube. Hence, it can be concluded that the SoC and temperature are consid-
ered in the battery model, since the error does not depend on the changing SoC or
temperature. In Fig.3.12, the marked region in Fig.3.11 is depicted in detail, where
one real load cycle with current rates above 20C at 30 °C ambient temperature can
be seen.
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The nonlinear behavior at low SoC is especially distinctive. In Fig.3.12, it can be
seen that although the SoC is low and high current values (above 20C) occur, the
LMN battery model accurately represents the underlying strong nonlinear behavior
of the battery cell.

3.5 Battery Cell Temperature Model Accuracy

In order to simulate the battery model without measured signals, the temperature is
required as model input. The simple temperature model proposed in Sect. 2.4 is able
to provide sufficient accuracy for the simulation of the cell temperature. Based on the
same training data used for the battery cell identification, the cell thermal capacity
and heat transfer coefficient can be identified. For Cell B, the temperature model
parameters are obtained to ¢, = 833.34% and h,,; = 3.686% respectively, which
leads to the temperature model accuracy shown in Fig. 3.13. The first row of subplots
shows the measured and simulated cell temperature, respectively, for the optimal
excitation signal, the SoC validation signal, and the temperature validation signal. In
the second row of subplots, the corresponding errors are depicted, while in the third
row, the ambient temperature is shown. As can be seen is that the model quality is
accurate, while only the transient temperature changes of the temperature validation
signal show higher errors. This is caused by the external mounted temperature sensor,
which is more influenced by the strong gradient of the ambient temperature in case of
the temperature validation signal. Nevertheless, these ambient temperature gradients
usually do not appear in real non-road vehicles, due to which the temperature model
is legitimized. Note that the two error peaks in the SoC validation signal result from
the merging of the validation signals and are observable at the non-realistic steps in
the ambient temperature signal.
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Fig. 3.13 Result obtained for the temperature model of Cell B
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3.6 Battery Module Model Accuracy

The used battery module is built with n..;; = 192 series and p..;; = 2 parallel
connected cells of type Cell B. Hence, the obtained LMN battery cell model Is (cf.
Table 3.2) can be used for the simulation of the battery module behavior, which is
discussed in the following. Note that the balancing is activated after 15 minutes in
standby mode and thus has no influence in the following.

Due to limited time capacities at the test bed, only step profiles are measured at
three different current levels to create a set of training data for the battery module
parameter identification. Nevertheless, the training results showed that the step pro-
file with the full current coverage is sufficient. In Fig.3.14, the used step profile is
depicted.

In the first subplot of Fig.3.14, voltage behavior as well as the training results is
depicted for the four proposed module models. The corresponding current and SoC
signals are shown in the second and third subplots, respectively. In the last subplot,
the absolute value of the voltage difference between measurement and model (error) is
shown. It can be observed that the error values are very small for all model approaches.
An enlarged view of the training data is depicted in Fig.3.15.

The error of the battery models is again depicted in the last subplot of Fig.3.15.
The significantly higher error of the simple model X} is clearly observable; it does not
consider the internal resistance of the battery model. The other models are similar
to each other, which indicates that the internal resistance is the major influencing
effect beside the electrochemical effects considered by the LMN battery cell model.
In order to validate the battery module models, a SoC validation signal is generated
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that is based on the scaled real load cycle as introduced for the battery cell validation.
The repeated real load cycles are superposed by zero, negative, and positive constant
currents, respectively, to obtain the system behavior across the entire SoC range.
Figure 3.16 depicts the SoC validation signal used for the battery module.

Subplot one of Fig.3.16 shows the measured as well as simulated voltages. The
second subplot shows the current signal, where one can see that the full current range
is exploited. In Subplot three, the SoC profile is shown, which passes the entire range
of SoC used in non-road vehicles. The last subplot shows the model errors, where
the difference between model X' and the other models X5, X5, and Xy is clearly
observable. Note that the reason for the peak errors at the transitions results from
data set merging, since a continuous measurement of the entire SoC validation signal
is not supported by the battery tester. Nevertheless, Fig. 3.17 shows an enlarged view
of the validation signal.

Ascanbe seenin Fig. 3.17, all models are able to depict the high dynamic behavior
of the battery module, while only model X; has a slightly larger mismatch. Although
a current of almost 200 A is applied to the battery module, the accuracy is supe-
rior. Nevertheless, model X, has a slightly better overall accuracy compared to the
other models. This is also observable in the MSE and NRMSE (cf. Eq. (3.1)) values
obtained for the SoC validation signal as shown in Table 3.4.
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Fig. 3.17 Enlargement of Fig.3.16: Validation data for battery module models
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Table 3.4 Battery module SoC validation signal error values for the LMN battery module models
El, 22, 23 and 24

Criterion MSE NRMSE (%)
Model X 27.8851 2.5962
Model X, 7.5727 1.3529
Model X3 6.9949 1.3003
Model X4 6.5871 1.2618

Table 3.4 shows the slight increase in accuracy due to the considered voltage off-
set and current-dependent parameters, respectively. Nevertheless, a NRMSE clearly
below 2 % is worth mentioning.

3.7 SoC Estimation Accuracy

The SoC estimation is essential in non-road vehicles, since the occurring high power
densities cause measurement inaccuracies of the on-board sensors. Thus, large SoC
mismatches are observable during operation in case of a current-accumulated SoC.
Several initializations are required during operation to increase the accuracy, but
mostly non-road vehicles are operated without breaks due to which a SoC reset based
on standby conditions is not possible. For the SoC validation signal of the available
real battery module, in Fig.3.18, the comparison is depicted between the current-
accumulated SoC and the implemented BMS SoC. At this point, it is important to
mention that a high accurate current sensor implemented in the battery tester is used
to measure the current signal, which admits the comparison.

The first, second, and third subplots in Fig.3.18 show the voltage, current, and
SoC signal, respectively. In the last subplot, the difference between the current-
accumulated SoC and the BMS-provided SoC is depicted, where a significant mis-
match is clearly observable. Note that the SoC validation signal is not measured in
one test run, due to which the observable SoC drift of the real BMS is cleared after
the cycles without superimposed constant current. Based on this information, the
assumption of inaccurate SoC estimation of the BMS is shown to be true.

In the following, the results achieved with the LMN-based SoC estimation for the
battery module are presented. Since cell monitoring is important in terms of safety
issues of battery modules, the SoC estimation methodology is also applicable to
battery cells. To this end, SoC estimation results obtained for the battery cells are
presented additionally. Nevertheless, an overall SoC estimation is desired, for which
the module SoC estimation is of main interest.
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Fig. 3.18 SoC estimation accuracy shown on a SoC validation signal measured at a real battery
module

3.7.1 Battery Module SoC Estimation Results

The battery module model X4 is used in the fuzzy observer to estimate the SoC of the
battery module. As discussed in Sect. 2.6.2, estimation accuracy of the Kalman filters
can be tuned by choosing the corresponding process Q = 1 - Q and measurement
R =1 R noise variance matrices, where 1 € R"*" indicates a one matrix with
corresponding dimension n. For the given battery module, a measurement noise
variance is chosen to R = 25000, while the process noise variance is chosen between
Q = 0.01 and Q = 1 to show the influence. The results are depicted in Fig.3.19.
The upper subplot in Fig.3.19 shows the estimated SoC, while in the lower sub-
plot, the difference to the current-accumulated SoC is depicted. It can be seen that
the accuracy increases with smaller process noise, which in other terms can be inter-
preted as larger weighting of the current accumulation within the augmented observer
model. The disadvantage of a small Q is, though, that the convergence in case of a
wrong initial SoC is significantly slower. Since a correctly approximated SoC value
is usually obtained after standby, the OCV-based SoC estimation is accurate enough
to initialize the fuzzy observer, and the process noise can be chosen small. Never-
theless, the convergence speed of the filter is also important, and the performance
of the observer in terms of convergence should be discussed in the following. To
this end, unrealistic initial SoC values are used to test the convergence speed of the
filter with different process noise variances. In Fig. 3.20, the results for initial SoC at
S0C;,ir = 0% and SoC;p,;; = 200 % are depicted. Note that SoC;,,;; = 200 % is not
feasible in general, but shows that the filter converges from any initial SoC.
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Fig. 3.19 Accuracy of LMN-based SoC estimation on real battery module
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Fig. 3.20 Convergence of LMN-based SoC estimation on real battery module

As canbe seen in the second subplot, the larger choice of the process noise variance
has a positive influence on the convergence speed, but the accuracy at converged
state is poor. Therefore, a trade-off between a fast convergence and SoC estimation
accuracy needs to be made, and the best application-specific alternative must be
chosen. In comparison to the SoC value obtained through the BMS of the module,
the differences are low due to the precise LMN-based battery model. Nevertheless,
small process noise leads to unsufficient performance, since the actual SoC of the
module cannot be reached if the initial SoC is too far from the actual value.
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Fig. 3.21 SoC estimation accuracy shown on the SoC validation signal at different temperatures
measured on battery Cell B

3.7.2 Battery Cell SoC Estimation Results

Since monitoring purposes of the BMS are also important, in the following, the SoC
estimation applied to battery cells is reviewed shortly. The BMS requires the moni-
toring of single-cell voltages and conditions, which provides a possibility to estimate
the cell SoC beside of the module SoC simultaneously. Note that the estimation of the
cell SoC is more difficult than the module SoC, since an already very small voltage
difference indicates a large SoC difference. This is caused by the flat discharge volt-
age behavior as discussed in Sect.2.2.3.1 and Fig.2.5. Nevertheless, similar to the
battery module, the filter parameters can be chosen correspondingly to the desired
filter properties.

Based on the merged SoC validation signals measured at different temperatures,
the SoC estimation of battery cells should be presented. In Fig.3.21, the validation
datais depicted. The merging of the individual data sets can be observed clearly in the
temperature and SoC signal, respectively, where steps in the ambient temperature
and SoC due to a SoC reset occur. In Fig.3.22, the battery cell SoC estimation
results for the initial SoC values SoC;,;; = 0 %, SoC;,;; = SoC, and SoC,,;; = 200 %
are depicted, which are obtained for a chosen measurement noise variance of R =
1-25000 and a set process noise variance of Q = 1 x 10%0,

The convergence of the filter is clearly observable in Fig.3.22, where at the end
of the signal, all SoC signals are almost identical. Although the initial condition of
SoCinir = 200 % is physically impossible, the filter is able to converge to the correct
SoC. As can be seen in Subplot two of Fig.3.22, the accuracy for the first SoC
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Fig. 3.22 SoC estimation of battery cells with different initial SoC values

validation signal is better in comparison to the others, although a SoC estimation
error is observable for the discharge part of the signal. This is caused by the model
mismatch, although the accuracy of the LMN battery cell model is high. For the higher
temperature validation signals, the error is significantly higher, because the SoC is
reset in the reference SoC integration. In combination with the model mismatch,
this leads to an estimation error of up to 10 %. Nevertheless, the voltage behavior
is very similar around a wide range of approximately 50 % SoC, which makes an
accurate estimation significantly below 10 % very difficult. In comparison with the
battery module SoC estimation, this influence is reduced due to the higher voltage
deviations.



Chapter 4
Energy Management

Abstract Energy management in hybrid electric vehicles in non-road application
is the superordinated control of the overall energy flows and influences the system
behavior of the powertrain significantly. Minimization of the overall energy flows,
exhaust emissions as well as fuel consumption are the primary objectives of the EMS,
while all physical constraints of the system need to be taken into account (Sciarretta
and Guzzella 2007). Due to the multiple energy conversions from and into the battery,
the minimization of the losses is essential and can only be achieved by an optimization
of the overall system. However, the overall system is strongly nonlinear in general
and differs significantly between different applications. A generic EMS in terms of
applicability and cost reductions is therefore favorable. In this chapter, the energy
management system is described in detail and methodologies to improve the EMS
performance are introduced.

Keywords Non-road hybrid electric vehicle (HEV) - Nonlinear model predictive
control *+ Load and cycle prediction - Stability - Convergence - Real-time control

4.1 Introduction

4.1.1 Challenges for Energy Management Systems

The unknown high dynamic load acting on the powertrain is characteristic for non-
road vehicles. Compared to on-road vehicles, the driving directions and conditions
as well as working tasks change very often in non-road vehicles and depend directly
on the driver. In this context, the control of the powertrain has to cope with these
circumstances to fulfill the requirement of a robust operation and the obviation of
engine stalling. Additional to the external circumstances, different strategies such as
a limited ICE torque gradient to reduce exhaust emissions (phlegmatization) (Lin-
denkamp and Tilch 2012; Niiesch et al. 2014) and a lowered average rotational
speed to reduce fuel consumption (downspeeding) influence the degrees of freedom
to control the powertrain.
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Vehicle misuse or driver errors often lead to unexpected load peaks, while noise
corrupted (measured) variables pretend the wrong actual state of the vehicle. Espe-
cially the actual load value, which is obtained by the calculation from different sig-
nals, and the torque values, which are obtained by the control units instead of being
measured, are relevant for the controller. In terms of minimization of the losses,
cyclically operated vehicles are often especially challenging, because higher SoC
variations increase the usage of the electrical system. Nevertheless, the potential for
fuel and emission reduction of cyclical operated vehicles is higher if the load cycle
can be considered in the EMS. The required predictions of the future load trajecto-
ries are difficult to achieve, though, and can only be based on statistical evidence,
which is subject to inaccuracies. Driver information, which is mostly not available
in advance, can be considered for prediction of future load requirements. However,
the difficulty is to predict the future load cycle to a sufficiently accurate extent and in
particularly at often changing load cycles. In the end, a multidimensional nonlinear
optimization problem results that needs to be solved in real time in each time step to
obtain the optimal control values, which is additionally tightened by the nonlinear
behavior of the electrical system (Lyshevski 2000).

4.1.2 State-of-the-Art

The field of EMS in HEV is strongly investigated, while only some of the authors
consider load predictions to improve their proposed energy management systems. In
the following, the state-of-the-art in EMS and load prediction is reviewed.

Desai and Williamson (2009) classified and compared various control strategies
to provide novel development directions in HEV. In Pisu and Rizzoni (2007), three
different energy management approaches are compared, but a-priori knowledge of
the future load demand is not considered. A model-based strategy to control the load
of an on-road parallel HEV is proposed by Sciarretta et al. (2004), which also does
not include the future driving conditions in the concept. In Lin et al. (2003), dynamic
programming is applied to simulation data in order to extract a rule-based controller
as power management for a parallel hybrid truck. By accepting a small increase in
fuel consumption, real-time capability and a significant emission reduction could
be achieved by the extracted controller. Poursamad and Montazeri (2008) tuned
a genetic-fuzzy control strategy with a genetic algorithm based on three driving
cycles including NEDC,! FTP? and TEH-CAR.? Stochastic dynamic programming
is used by Moura et al. (2011) to optimize a power management for plug-in HEV
over a distribution of drive cycles rather than a single cycle. Furthermore, fuel and
electricity usage are explicitly traded off, and the impact of variations in relative
fuel-to-electricity pricing is considered. In general, offline optimization may lead

INew European Driving Cycle.
2EPA Federal Test Procedure.
3Car driving cycle for the capital city of Tehran.
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to suboptimal control of non-road vehicles, since the load demand is unknown in
advance.

For on-road vehicles, several approaches are known that predict the future load
demand in order to be considered in the energy management. An approach with
exponentially decreasing torque demand across the prediction horizon is used by
Yan et al. (2012) and Borhan et al. (2010). Lin et al. (2004) proposed a driving
pattern recognition to classify the current state into one of the six representative
driving patterns, for which implementable, sub-optimal controllers are extracted.
Analytical approaches for future load demands are very difficult or impossible to
find, since load trajectories of non-road vehicles are normally unknown in advance
(Unger et al. 2015). A genetic-fuzzy HEV control is used by Montazeri-Gh et al.
(2008), which classifies driving patterns by Hidden Markov models. Hulnhagen et al.
(2010) used a probabilistic finite-state machine to merge basic maneuver elements
to a driving pattern of on-road vehicles. The classification into driving patterns or
basic maneuver elements is not suitable for non-road HEV, because in most non-
road applications the elements are not clearly assignable. Since map information is
not available for non-road vehicles, GPS data-based path-forecasting for trajectory
planning (c.f. Katsargyri et al. 2009, Ganji and Kouzani 2011), as mentioned for
on-road vehicles by Sciarretta and Guzzella (2007) and Back (2005), is not feasible.
Payri et al. (2014) extract an estimate for future driving conditions by analyzing the
power demands in a given receding horizon and use the information in a stochastic
controller. The prediction of recurrent load cycles used by Mayretal. (201 1a) is based
on the cross correlation function algorithm proposed by Lorenz and Kozek (2007)
that originally detected cycle boundaries automatically for a statistic evaluation. The
disadvantage of the autocorrelation function is the slow detection of a changing load
cycle at significantly different cycle times (Unger et al. 2015).

In summary, no online implemented MPC for non-road application is known that
features real-time prediction of the future load demand in the MPC.

4.1.3 Solution Approach

In the following, a cascaded control concept is proposed for the parallel hybrid
powertrain schematically depicted in Fig. 1.4. Additionally, two methodologies are
presented to predict the future short-term load and to detect recurrent load cycles in
the past load signal. The proposed cascaded control concept consists of two separate
controllers, which are both designed as model predictive controllers. In this context,
MPCs provide the required possibilities to achieve an optimization of the overall
system with consideration of the load predictions (Mayne et al. 2000). Note that an
advanced solving algorithm as presented for the optimization problem and sufficient
computational capabilities in the HCU are required to achieve real-time capability.
The operation of the powertrain on the optimal load cycle trajectory can increase
the overall efficiency and fully exploit the battery capacity. To this end, the cross
correlation function (CCF) is used by a cycle detection algorithm to identify a recur-
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rent load cycle within the past load signal that is further used to build the future
load trajectory for the master MPC. Based on the detected recurrent load cycle, the
master MPC is designed to provide the optimal operation point of the ICE as demand
value for the slave controller, while the SoC of the battery is kept at the demand SoC,
and constraints as well as the nonlinearities of the electrical system are considered.
In this context, the electrical system of the hybrid powertrain provides for a boost
at high load demands and to recuperate regenerative loads, but the battery capacity
and physical constraints restrict its usage, which furthermore reduces the degrees of
freedom to a certain operation range of the ICE. A nonlinear optimization problem
results within the master controller, which is iteratively solved by a real-time capable
relaxation approach.

Purpose of the slave MPC is to apply the demands of the master MPC to the
powertrain, while constraints are considered. The ICE dynamics are significantly
limited by phlegmatization and downspeeding strategies, which is disadvantageous
for the high dynamic requirements of non-road vehicles. However, in order to prevent
engine stalling and to be able to lower the average rotational speed of the powertrain,
Bayesian inference is applied to statistically predict the future short-term load by
means of available vehicle information such as accelerator position or driving speed
(load prediction algorithm). This approach provides insight into the intentions of the
driver and allows an increase of the rotational speed in case of sudden load peaks,
which compensates the disadvantage of the restricted ICE dynamics. Nevertheless,
the short-term load prediction is based on probabilities and misprediction is consid-
ered. Furthermore, the convergence of the master MPC and the essential stability of
the slave MPC are discussed, since the controller directly acts on the vehicle.

4.2 Basic Concept of Model Predictive Control

Model predictive control is an advanced method in control theory, which is suited
to solve constrained control problems in the time domain. Different types such as
Dynamic Matrix Control (DMC), Model Algorithmic Control (MAC), Generalized
Predictive Control (GPC), etc. are known, but the main principle is similar for all
approaches. The idea of the concept is to obtain the control moves for a process based
on an online optimization of an objective (cost) function. A dynamic process model
is used to predict the system output over a so-called prediction horizon. In order to
minimize the control error, the sequence of control moves over a so-called control
horizon is optimized until the cost function reaches a minimum. Only the first control
move in the obtained sequence is applied to the plant, the horizons are moved for
one sample (receding horizon principle), and the optimization is done anew.
Process Model. The process model has a substantial influence on the MPC. It is
therefore important that the process model fully captures the process dynamics and
allows accurate predictions of the output. In general, two main methodologies can
be used to obtain a process model: Modeling by physical principles to obtain a white
box model or data-based system identification to obtain a black box model. Inde-
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pendent to the method of parameter determination, different types of process model
representations can be used in the MPC. Commonly, a state space representation

x(k + 1) = Ax(k) + Bu(k) + Ez(k), 4.1
y(k) = Cx(k), 4.2)

is implemented, though, where A, B, C, D, E are the system matrices including the
system dynamics, X is the state vector, u is the input vector, y is the output, z is the
disturbance vector, and the time instant is denoted by k.

In many cases, real processes are nonlinear, which means that system parame-
ters depend on system states or/and time. Linearization is one possibility to map
the system behavior into one invariant SS-system with the disadvantage of reduced
model accuracy. Nonlinear system behavior can be represented by, e.g., local model
networks (see Sect.2.2), which use, in principle, local linearizations to calculate the
nonlinear system behavior. A fuzzy MPC (Babuska 1998) can handle the LMN model
to consider the nonlinearities. Another nonlinear MPC approach is presented in the
following sections, and more information can be found in e.g. Allgéwer and Zheng
(2000).

In Fig.4.1, the principle of MPC is depicted for a single-input-single-output
(SISO) system. The blue trajectory indicates the system output if the red control
moves and the gray disturbance is acting on the plant, while the green trajectory
shows the system states. As can be seen in the figure, the input and state trajectory
keep the applied constraints of the plant.
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Fig. 4.1 Principle of model predictive control trajectories
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Prediction and Control Horizon. As can further be seen in Fig. 4.1, the control
moves are kept constant on the last calculated value u(k + i) = u(k + n.) fori =
N¢, ..., n,—1until the end of the prediction horizon n,, (Babuska 1998; Wang 2009).
In order to predict further into the future, the prediction horizon n, is chosen larger
than the control horizon n., since n, determines the number of manipulated variables
and thus affects the computation time. Due to the process model, the predicted output
values y(k+ilk), i=1,...,n » are influenced by the current state of the process at
time instant & and the future control moves u(k +1i), i =0, ..., n. — 1. However,
the prediction and control horizons are tuning parameters, and no general rule exists
for optimal horizons.

Objective Function. In order to optimize the control moves, an objective function
needs to be formulated. A common cost function J is

np ne

J =" 0ilrtk+)—§k+ilOP+D Au" (k+i— DR Autk+i—1),  (43)

i=1 i=1

where 1, and n. denote the prediction and control horizon, respectively, the pre-
diction of the output is indicated by y(k + i|k),i = 1,2, ... for time instant k at
prediction instant i and Q;, R; weight output error and control effort, respectively.
Note that in absence of constraints, an explicit analytical solution can be found due
to the quadratic nature of the cost function.

4.3 Cascaded Model Predictive Controller Design

In this section, the cascaded model predictive controller design for parallel hybrid
electric vehicles is discussed. The architecture and system models are developed first,
before constraints and both MPCs are discussed in detail. Methodologies to predict
the future load trajectory are discussed in the next section (see Sect.4.4).

4.3.1 Architecture of the Control Concept

In the following, the controller architecture is briefly discussed to give a better
overview of the concept. The powertrain consists of significantly different dynamics.
Rotational speed and the torques represent fast dynamics within the ms time range.
On the other hand, the battery’s state of charge is only slowly changing within the
seconds time range. This difference is addressed by the cascaded control concept,
which includes a slow master controller and a fast slave controller both established
as MPC. However, note that the interaction between INV and battery also has a
fast electrical impedance time constant, which is not relevant to the change in SoC
referred to in this book (Hametner et al. 2014).
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In Fig.4.2, the concept is depicted schematically, where the light blue area rep-
resents the EMS and the white area the powertrain. The load P, (red) acts as the
unknown disturbance of the powertrain, ngy is the driving speed, and « is the accel-
erator angle that is directly influenced by the driver. Note that the actual SoC can be
obtained by the SoC estimator presented in Sect. 2.6 and is therefore assumed to be
known. The aim of the master MPC is to hold the control variable SoC at the demand
value SoCy,,4, while a full recurrent load cycle as well as all constraints are consid-
ered. In the concept, the cycle detection (Cycle Det.) provides the predicted future
load trajectory Z¢p for the master MPC, while due to an optimization, the optimal
values for the demand rotational speed wg;,4 and ICE torque 7. 4mq are obtained.
Note that the prediction of the SoC trajectory within the master MPC depends on
the battery conditions and is thus strongly nonlinear. In principle, the output of the
master MPC defines the operation point of the ICE. The aim of the slave MPC is then
to compensate unpredicted short-term load peaks by considering the load prediction
(Load Pred.) methodology that provides the short-term load trajectory Z; p for the
slave MPC. Constraints are especially important to be kept by the slave MPC, since
the manipulated variables ICE torque T s.; and ISG torque T, ¢, directly act on
the vehicle. In this context, it is worth mentioning that the rotational speed w is only
controlled by ICE torque Tj., and ISG torque 7, respectively. Note that sufficient
powertrain dynamics in case of strong load gradients must be guaranteed, which due
to the slow sampling time f , = 0.25s of the master MPC must be compensated
by the slave MPC. To this end, undetected or wrongly detected load cycles must
be compensated. The CD and LP methodologies aim to find the a-priori unknown
future load trajectories only based on the system states Pjyqq, @ and ngw actually
available during operation, which is discussed in more detail in the next subsection
(cf. Sect.4.4).

4.3.2 System Models for Controller Design

The models for the slow as well as fast system dynamics of the plant are required by
the design of the MPCs and are developed in the following.
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Fig. 4.2 Schematic workflow of the cascaded control concept
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First order lag elements and the principle of angular momentum, respectively, can
be used to model the fast dynamics of the rotational speed and the torques in the
continuous time domain (c.f. Powell 1979, Fekri and Assadian 2012), which follow
to

Tice(t) + Tisg(t) - Tlaad(t) =0 d)(t)’ (44)
Tice Tice(t) + Tice(t) = Tice.sel(t)v 4.5)
Tisg Tlsg (t) + Tug (t) = Tisg.sel (t) (46)

In Egs. (4.4)—(4.6), the powertrain’s total moment of inertia is denoted by @, the time
constants of the torques are denoted by Tic., Tisg and Tjpaq(t) = Pioaa(t)/w(t). The
ICE is in general a nonlinear system, but the dependence of T;., on w is neglected.
In order to consider the variant time constant of the ICE, t;., can be updated in each
time instant to improve the control quality of the slave controller. Nevertheless, for
the main focus of this book, the simplified model of the ICE dynamic is satisfactory,
because it is important that time delays from the components are addressed in the
process model of the controller and feasibility of the concept can be shown (Unger
et al. 2015).

For the SS-representation of the slave MPC process model, the input vector uy,
state vector X, ¢, output y, ; and disturbance z; can be chosen to

@ T,
ice,set
Xgs = | Tice | » Yas =, Uy = |:T‘ i| s Zs = Tioad, 4.7)
isg,set
Tixg

while the fast sampling time of the slave controller is defined by 7, ; = 10 ms. The
discrete linear state space slave controller model is obtained by

Xd,s(k + 1) = Ad,sxd,s(k) + Bd,sus(k) + Ed,sTload(k)v (48)
w (k) = CysXa,5(k), 4.9)
where 3
| s
2, e
Ad,s = O Ticgi;ftx_x 0 ) Cd,s‘ = [ 1 O 0] )
L 0 0 Ti.rgl‘:’gfly,x (4 10)
ts.s >
Bd,s = Ticetls.s tO ’ Ed,.f = 0
L 0 T,‘A-g:fLJ O

The process model for the master MPC needs to constitute the relation between
ISG torque and the resulting battery SoC (Unger et al. 2015). Based on the fact that
integral of the battery current / () and SoC are proportional (Hametner and Jakubek
2013), a corresponding model is obtained by
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1
SoC(t) = SoCipir + / Nbart,cou (I (V) T (V)dv, (4.11)
c,batt J0O

I1(t) =kt (Tixg.dmdv Wdmd » V) Tixg,dmd([)» 4.12)

where SoC;,;; is the initial SoC of the battery. The relation between current and
SoC is defined by battery capacity Q. 54 and coulombic efficiency npqsr.cou, While
the proportionality between ISG torque and current is denoted by k;. Note that the
battery current 7 (¢) is a nonlinear function of ISG torque, speed and battery voltage.
Since the voltage depends on the current itself, the equations lead to an implicit form
(Mayr et al. 2011a).

The difference between load and ICE torque defines the ISG torque, which follows

to
Pload (t)

Wdmd (t)

Tisg,dmd @) = - Tice,dmd @). (4.13)

The nonlinear proportionality &; is invariant during transient operation and can there-
fore be statically determined by test bed measurements. A characteristic map of k;
can be extracted, which includes the motor and drive efficiencies at different voltage
levels. By means of analytical polynomial surface approximation of each voltage
level of the identified characteristic map, the current can be expressed by

I(wdmdv Tisg)v = Poo,v + P10,y Wdmd + Dol Tisg
+ P20y @yug + P2y T,-ig + Pty @WamaTisg, (4.14)

where p;; are least squares identified parameters and v corresponds to the voltage
level. Note that the analytical approximation has sufficient accuracy and simplifies
the further process significantly. Differentiation of I (wgua, Tisg)y With respect to the
ISG torque follows to

dl(wama Trs)
kl,v = = Po1,v +2 Po2,v Tisg + P11,y @dmd - (415)
dTisg

In order to obtain the value of k;, the obtained analytic equation for k;, can be
linearly interpolated between the different voltage levels

kl,v- - k],v,-
k[ = k[,vi + — (V — V,’) . (416)

Vi — Vi

where V is the terminal voltage of the battery. Note that for the purpose of the state
prediction, a battery model is required to provide a value for V in the prediction.
The system behavior of electrochemical batteries is nonlinearly dependent on
SoC, temperature %, and current / (Unger et al. 2014). Nonlinear effects such as
relaxation and hysteresis are observable as well (Plett 2004b). A powerful approach
are local model networks, though several approaches are known for battery modeling
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(see Chap. 2). LMN comprise of local linear dynamic models, each of which is valid in
a certain operating region of a partition space (Hametner et al. 2012). The mentioned
effects are considered by corresponding inputs, while the global nonlinear model
output is obtained by weighted aggregation of the LLM outputs (Hametner et al.
2013b). Automatic iterative algorithms (e.g., Nelles and Isermann 1996, Jakubek
and Hametner 2009) are used to built the LMN structure. A complete discussion
about battery modeling with LMN is given in Chap. 2.

Since dynamic models require past system inputs and outputs, the output trajectory
for a given input trajectory requires a simulation. The computational demand of
dynamic models is therefore significantly higher than for parameter varying static
models. Due to this reason, in the EMS, a simplified equivalent circuit battery model
is used, which is depicted schematically in Fig.4.3 (see e.g. Hu et al. 2009b).

In order to consider the nonlinear parameter varying nature of batteries, look-up
tables of the values of inner resistance R;,; (SoC, ¥p4, 1) and open circuit voltage
Vo (SoC, B¥pyy,) are extracted from an identified LMN. Applying Kirchhoff’s second
law, the battery voltage follows by

V(1) = Vo (SoC, Bparr) = Rins (SOC, Fpars, I) I(2). (4.17)

Note that other modeling and prediction inaccuracies have large influences due to
which the effect of the decreased battery model accuracy is of no consequence (Unger
et al. 2015). Discretizing Eq. (4.11) using the master sampling time f, , leads to a
discrete time state space representation of the SoC model. Accumulation of the
discrete current / (k) multiplied with

Nbatt,Cou (k) ts,m

kpar (k) = ) (4.18)
Qc,hatl
Fig. 4.3 Schematic Vo (SoC, Bparr)
overview of the used ECM o Rint (SoC, Dparr, 1)
battery model N\
) WAy o
4 v
O
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where the coulombic efficiency 0pqr,cou (k) of the battery

Nena = 0.99 for I (k) > 0,

4.19)
Nagis = 1 for I (k) < 0,

Nbatt,Cou (k) = I

is obtained by Verbrugge and Tate (2004), approximates the integral in Eq. (4.11).
Choosing the input u,,, state x4 ,, output y, , and disturbance z,, of the system by

Xd,m = Yd,m = SOCa Uy = Tice,dmda im = Tloada (420)
the discrete SS representation of Eqs. (4.11)—(4.19) follows to

xd,m(k + 1) = Ad,mxd,m(k) + Bd,m(k)um(k) + Ed,m(k)zm(k)v (421)
Yd.m (k) = Cd,mxd,m (k)» (422)

with
Ad,m = 15 Bd,m (k) = _kl ('xd,mv Mm, Znu k) kbatt (umv va k)v (4 23)
Cd,m = la Ed,m (k) = k] (xd,ma Ums Tms k) kbatt (uma Zm> k)a ’

where the parameter varying structure of the ECM is directly integrated in k;.

4.3.3 Structured Constraints for Controllers

The system states of both controllers do not directly include the battery current
and voltage as well as the temperature of ISG and battery. Thus, these constraints
need to be considered indirectly by structured constraints. In this context, struc-
tured constraints means to apply only the most constraining value, while current,
voltage, and temperatures can be limited by increasing/decreasing the ISG torque.
Equations (4.24)—(4.32) summarize all relevant structured constraints:

WDmin,driver

iy = MAX [“’m , (4.24)

Tice,min - Pload s (425)

Wdmd

L {Tice,min (a))
max

A
- Tisg,min

Tice,mux (w)

Pioad T
ot 1,
'dmd

’fice,max = min [ y (4.26)

sg.max
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Tisg,min (a), V)
7’:' — max Tisg.min (ﬁisgv ﬂbatt)
isg,min — s
Tisg,min (SOC)

l Tisg,min(v» I)

Tisg.max (@, V)
Tisgmax (Disg, Vpart)
Tisg,max (S0C)
| Tisgmax (V, 1)

)

Tisg,max = min

Imin =< 1 = Imaxv
Vmin =< 14 =< Vmaxv
ﬁbatt,min =< ﬁbart = ﬂbatt,mam

ﬁisg.min = ﬁisg = ﬁisg.max:

4.27)

(4.28)

(4.29)
(4.30)
4.31)
(4.32)

where wyin. 4river 15 the minimal rotational speed required by the driver and ©# denotes
the temperatures. Using the actual states of the system, the characteristic maps pro-
vide the minimal (min) and maximal (max) system constraints (see corresponding
function arguments). Note that f(V, I') additionally constrains the maximal/minimal

battery power.

The finally applied set of constraints for the slave controller can be summarized

by
d\)min S W = Wpax
ATice,min = ATice,set = ATice,max
CS = ATisg,min =< ATisg,set = ATisg,max s

T;'ce,min E Tice,set

ice,max

=
isg,min = Tisg,set = Tisg,max

(4.33)

where the backwards difference operator A indicates rate constraints. The set of

constraints for the master controller follows to

ATice,min < Ance,dmd < ATice,max
C = Omin = Odmd = Omax
m = N ~
Tice,min < Tice,dmd < Tice,max

SoC,,in < SoC < SoC,ux

All given constraints are considered in the control system.

(4.34)
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4.3.4 Slave Controller

In the following, the slave MPC is discussed in detail. The demand values rota-
tional speed wy,,,y and ICE torque T;.. 4ma are applied to the plant, while the used
manipulated variables Tjc, s, Tisg,se: NE€d to keep the constraints.

4.3.4.1 Slave MPC Formulation

An augmentation of the process model Egs. (4.8) and (4.9) provides the possibility
to directly constrain the gradient of the manipulated variables as well as allows an
offset free control by avoiding a steady state bias (Camacho and Bordons 1999). The
augmentation is done by embedding an integrator, which leads to an incremental
plant description (Ogata 1995)

|:Axd,s(k + 1):| _ [ Ad,s 0:| |:Axda(k)i|
yd,s(k + 1) B Cd.sAd,s 1 yd,s(k)

X;(k"rl) A: Xx(k)
Bd's Ed,s
* |:Cd,sBd,si| Au (k) + |:Cd,sEd,s:| Azs k), (4.35)
— -
B, E,
wk) = [01]x,(K), “36)
——
C,

where X; is the augmented state vector, Au; is the incremental input, Az is the incre-
mental disturbance, and 0 represents a zero matrix with corresponding dimension.
A sequence of n. = 25 incremental control moves

AU (k) = [ Augk + DT ... Autk+n)" ], (4.37)

can be found that minimizes a cost function

n,—1 ne—1
Js =05 D (@amak + i) — ok + )"+ D (Au] (k + )R, Aug (k + 1))
i=1 i=0
n.—1
+ > (AW] (k + DR Al (k + 1) + Vo (% (k + 1)), (4.38)
i=0

with Vi (x,(k+np)) = x,(k + np)TPsxs (k+n,), where the term V/ is a terminal
weight. In principle, the cost function J; has no unique minimum, since the torque
split between ICE and ISG is not uniquely defined. For this reason, the term A, =

T . .. . .
[ Tice.ama Tisg,ama ] —u, penalizes the deviations of the manipulated variables from
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the demand values provided by the master MPC. Therefore, in case of no active
constraints, u, is forced to reach the demand values at steady state (c.f. Gonzdlez
et al. 2008).

Output, input rate, and input, respectively, are penalized by user-defined, sym-
metric and positive definite weighting matrices Q,, R, and R;. The solution of the
discrete algebraic Riccati equation (DARE) is used as terminal weight matrix Py,
which follows to

PS = AZPS‘AY - KST (Rv + BZPYBY) Ks + CZ Qscx (439)

withK; = (R, + B/ PB;) - BTP,A;. Note that, V. is used to obtain the stabilizing
properties of the linear-quadratic regulator (LQR) (Konig et al. 2013).

As mentioned in Sect.4.2, there exists no general rule for the selection of the
prediction as well as for the control horizon. However, a guideline for a minimum
prediction horizon is to choose it at least large enough to cover the smallest time
constant of the system, while a maximum for n, is given by the maximal system
runtime (Camacho and Bordons 1999).

For the example of the wheel loader, usual short-term load peaks occur within
250 ms ahead, which leads to a prediction horizon of n,, = 25 chosen in this book.

The matrix notation of the output prediction Y, is obtained by

Vo=[ok+1) - ok+n,)xk+n,)"]"
= Fx;(k) + @, AU (k) + @, AL, p(k), (4.40)
where AZ; p denotes the incremental disturbance trajectory, which is predicted by

the short-term load prediction, and the matrices Fy, @; , and @; . predict the system
states based on x; (k) and AU (k):

T

T
Fo=[ca)” €A (car) @] @an
C;B; 0 .0
C,A;B, CB, ... 0
Pou = 5 3 S : (4.42)
CA B, CA B, ... 0
A7'B, A"7T’B, ...AV"B,
C,E; 0 .. 0
C,AE, CE, ...0
?,.= : : RN (4.43)

C,AY E, C,APTE, ... 0
APT'E, AYTE, LK,
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Following Wang (2009), the slave controller constraints Eq. (4.33) can be formu-
lated by corresponding linear inequalities and directly implemented in the optimiza-
tion problem. The compact notation follows to

Cs : MSAUS S}’;v

Ms,Au Ys,Au
with My = Ms,u , Vs = Vsu s 4.44)
M.Y,y ys,y

where the indices refer to the rate, input and output constraints, respectively. A formal
formulation of the final constrained optimal control problem can be denoted by

'@J(Xé(k)) : AU?(XJ(k)) = arg min Js(xs(k)v AUS)
s.t. M;AU < p,. (4.45)

4.3.4.2 Real-Time Implementation

The given optimization problem Eq. (4.45) needs to be solved in each time instant,
which gives a time frame of 7, ; = 10 ms to solve the full optimization problem. In
order to reduce computational loads, in the work of Unger et al. (2012b), an approach
is presented to reduce the order of the formulated MPC problem by using principal
control moves. Following example, Tondel and Johansen (2002) and Rojas et al.
(2004), the idea is to parametrize AU, in Eq. (4.37) according to

AU = 2,py, (4.46)

where 2 € R""*'r is a matrix whose columns form a basis for AUy, n, is the
number of input variables and p, € IR"*! is the new decision variable with reduced
dimension (v, < n.-ny). The columns of §2 describe the shape of the control incre-
ments of every manipulated variable up to the control horizon and are called principal
control moves, while the integer variable v, indicates the number of columns in £
and is called the order of principal control moves (PCM-order). Replacing AU in
the constrained optimization problem Eq. (4.45) by (4.46), the optimization problem
Eq. (4.45) with p, as the new decision variable follows to

Ppxs(k) 1 Py(xs(k)) = argmin J; , (X, (k), ps) s.t. MR2,p, < y,.  (447)

Another approach for real-time implementation of the MPC is the fast model pre-
dictive control (FMPC) algorithm proposed by Wang and Boyd (2010). The particular
structure of the MPC problem is exploited to decrease computation times. Since the
algorithm is provided for implementation, this method is used, though, the algorithm
is appropriately extended to include the disturbance costs in the optimization.
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Further approaches are presented in, e.g., Richter et al. (2009), Zeilinger et al.
(2011) and Quoc et al. (2012).

4.3.4.3 Stability Analysis Slave Controller

The stability of the slave controller is essential, since it directly acts on the plant.
In order to show stability for the constrained controller, distinction is usually made
between stability inside a terminal set X, where no constraints are active and a
region of attraction X v, Where constraints are active (Konig et al. 2014; Simon et al.
2012).

Assuming that X, € Xy and X,(k + 1) = (A — B;K{)X,(k) € X/, a stabilizing
control law AU, = —K(x; — x}) = —K,X; inside the positive invariant terminal
set Xy is obtained so that all constraints C, are satisfied, when a terminal weight
Vs is applied to the MPC (Rawlings and Mayne 2009). Outside the terminal set, an
N-step admissible set Xy can be found, for which the MPC is enforced to reach X
in N steps if a terminal set constraint X, (k + N) € Xy is added to & (x,(k)) (Konig
et al. 2014). Following Rawlings and Mayne (2009), the terminal set constraint is
usually too complex for real-time implementations and can be omitted if the initial
state lies inside a region of attraction Xy. Depending on the choice of the controller
parameters, the region of attraction is defined as a sufficiently small subset of the
admissible set Xy C Xy.

A terminal set X ; for the given controller can be calculated following the algorithm
proposed by Gilbert and Tan (1991), while Keerthi and Gilbert (1987) proposed an
algorithm to calculate X. Since the state vector only consists of three variables, X
and Xy can be determined straightforward and depicted in a 3-D figure. Figure4.4
depicts the terminal set X; and the 25-step admissible set A>s. Additionally, the
state trajectories with initial states inside (blue) and outside (cyan) X,5 are depicted
as well.

As can be seen in the figure, both trajectories converge to the origin, while the
blue trajectory reaches X ; in less than 25 samples. Since the initial state of the cyan
trajectory is outside the admissible set, the controller needs 21 samples (equivalent
to 210 ms) to reach X»s. The slight increase of the rotational speed in both cases
results from the input constraints which implies due to the compensation of the
excessive torque.

Note that the proof of stability does not guarantee that engine stalling is avoided
and that due to this reason, the load must lie within the feasible range of the powertrain
(Unger etal. 2015). The stability of the control loop is also not effected by unpredicted
disturbances, though the performance of the control loop is mainly depending on the
controller tuning which may cause poor performance in case of prediction errors.
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Tisg [Nm]

71] 10

® — Wy [rads

Fig. 4.4 Resulting terminal (X ) and 25-step admissible (X>5) set obtained for the slave controller
with operation point wg,,q = 100rad/s

4.3.5 Master Controller

The goal of the master controller is to take SoC,,,,4 as areference value and provide the
demand set point values speed @g,,4 and ICE torque 7., 4mq for the slave controller.
Due to the nonlinear behavior of the plant, optimal demand values are only obtained
if the nonlinearities are considered (Lyshevski 2000). In the following, the concept
and design of the master controller are developed in detail, and the convergence of
the iterative approach is discussed.

4.3.5.1 Concept of Master Controller

A link between the applied load of the powertrain and the battery SoC must be estab-
lished in the controller. Due to this reason, following the SoC model in Sect.4.3.2,
the nonlinear function k; in Eq.(4.12) links the SoC to the ISG torque, which is
proportional to the current of the battery. In each time and in each prediction step the
model changes, which results in a nonlinear optimization problem to be solved in
real time. A solution of the optimization problem can only be achieved by an iterative
approach. The master controller is designed to consider a full load cycle duration in
the optimization. In this book, a solution approach is proposed that consists of an
inner iteration loop, a linear optimization Z(xX,,) as well as an outer iteration loop.
The flowchart in Fig. 4.5 depicts the concept schematically, where the variables indi-
cate trajectories across the prediction horizon N,. Note that the minimum prediction
horizon is defined in such a way that the full cycle duration can be considered, while
the real-time capability gives an upper limit for N,,. Due to consideration of the entire



84 4 Energy Management

SOCdmd

v
‘ O yna = f(Picedma) }—V‘ Tisgdmd }—P{ k; H \% ‘ C
v

“ =

Inner Iteration Loop

APice,dmd <Y

Outer Iteration Loop

Fig. 4.5 Concept of the nonlinear master MPC

load cycle within the optimization, the energy storage can be fully exploited. In the
following, the concept is discussed in more detail.

4.3.5.2 Inner Iteration Loop

A relaxation approach is used to consider the influence of the battery behavior. The
implicit equations for the SoC model are evolved for optimization by using the pre-
dicted load trajectory Z¢p € IRV’ to initialize the ICE load trajectory P;ce gma € IR
and to obtain the optimal demand speed trajectory @g,,s € R"» from a character-
istic map of the ICE. From Eq.(4.13) follows the ISG demand torque trajectory
Tisg.ama € RM», from which the initial k; € R can be obtained using an initial
voltage trajectory V,;; € IR"" as the actual voltage. Due to the ISG torque trajectory
Tisg.ama € IRM», the current trajectory I RN> by Eq. (4.12) affects the battery volt-
age V whose behavior is updated with the implemented battery model Eq. (4.17).
Based on the determined V, a more accurate voltage trajectory V is obtained by
updating k;. This iteration is done until the voltage change AV has converged to a
small threshold value §. A small threshold implies that the nonlinear plant behavior
is considered in the SoC model.

4.3.5.3 MPC Formulation

The master controller, similar to the slave controller, is based on the augmentation
of the obtained SoC model Eqgs. (4.21) and (4.22) which follows to the incremental
formulation (Wang 2009)
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X (k + 1) = Ay x,, (k) + By, (k) Auyy, (k) + E,y (k) Az, (k), (4.48)
SoC (k) = CpXp (k), (4.49)

where x,, (k) = [ASOC(k) SoC(k) ]T is the augmented state vector, Au,, is the
incremental input and Az, is the incremental disturbance. For the optimization, the
objective function J,, to be optimized can be formulated by

Np—1 No—1
Jn=0u D (S0Cqna — SoCKk +))? + Ry D (At (k +1))?
i=1 i=0
+ X (k + Np) ' Ppx, (k + Np) (4.50)

where Q,,, R, are weights. The weight P,, is calculated by the discrete algebraic
Riccati equation

P, =AlP,A, —K! (R, +B!P,B,)K, + C.0,C,, 4.51)

where K,, = (R,, + B,T,LP,,LB,,,)_1 B P,,A,,. The stacked output prediction Y, fol-
lows then to

Y, = [SoC(k 4 1) --- SoC(k + N,) X, (k + N,)" |’

= F, X, (k) + @,,,, AU, (k) + D, . ALcp(k), (4.52)
with
AU, (k) = [ Aupk + 1) ... Aupk+N)]", (4.53)
T TqT
F,=[©an" (Ca2)" - (cal ™) (an) ] @sy
C,B,, (k| 1) 0 . 0 7
2
Cn S B, (kli) CnBnkll) ... 0
i=1
(pm,u = N,,—l. N,,—2. ’ ’ , (455)
Con X Bukl) Cp 3 Bu(kliy... 0
N,l)=1 Nl,iTl N,—N.
> By (kli) > Bukliy ... > B(kli)
L i=1 i=1 i=1 .
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CE, (k|1) 0 o0
2
Cn 2 Enkl)  CuEn&kll) ... 0
i=1
®,. = eri Nfzi R , (4.56)
Cn X E,kli) Cp X Eukli)... 0
N, Iy
> E,.(kli) > E,(kli) ...E,(k|D)
L i=l i=l1 .

where (k|i) denotes the time step k at prediction step i, AZcp is the incremental
disturbance trajectory obtained by the cycle detection and F,,, ®,,, and @, , pre-
dicting the states. Due to the time varying process model Eqgs. (4.21) and (4.22), the
terms in @,, , and @, . appear to be sum instead of a multiplication of A,,.

In order to provide sufficient dynamics within the master controller, a sampling
time of at least ¢, ,, = 0.25s is beneficial, while the used computational capability
limits the prediction horizon to N, = 100. Due to this reason, cycle durations up to
250 s can only be considered by implementing a not equidistant prediction model.
Following Eq. (4.18), which contains the sampling time 7, ,, = 0.25 s of the master
controller, t, , is adapted for the prediction instants. Note that this provides the
possibility to achieve dynamic control with a sampling time of #; ,, = 0.25 s, while
a wide prediction horizon is covered. The inaccuracy due to the larger sampling
intervals toward the end of the prediction horizon may have negligible influence,
since the mean discharge—mainly important—is considered. A multiplication factor
for each single SS-model can be used to implement the different sampling times of
the prediction within the cost function J,, (Unger et al. 2015).

Under consideration of the set of constraints Eq. (4.34), the formal optimization
problem can be denoted by

gz(xm(k)) : AU;;(Xm (k)) = arg min Jm (Xm(k)s AUm)s
st. Cy: M, AU, <y,

Mm,Au ym,Au
with M, =| Muu |2 Vo= Ymu 4.57)
Mm,y Ym,y

referring to rate, input and output constraints, respectively. Similar to the slave con-
troller, the real-time optimization is realized using the FMPC algorithm proposed by
Wang and Boyd (2010).

4.3.5.4 Outer Iteration Loop

As a result, the optimization problem Eq. (4.57) provides the incremental trajectory
of the ICE torque AU}, that minimizes the SoC deviation from SoCy,,4 at a defined
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®gma- Calculating the demand ICE torque by

Tice.ama(k + i) = Tice(k) + D Auj (1) (4.58)
=1

and taking ICE load constraints into consideration, the demand ICE load P;. gma
can be obtained by

Pice,dmd (k) = Wdmd (k)Tice,dmd (k)v
s.t. Pice,min = Pice,dmd(k) = Pice,max- (459)
The outer iteration loop is obtained by solving the inner iteration loop and the opti-
mization Eq.(4.57) anew with the obtained ICE load P;c. gmqa until AP;c. gma is
converged to a defined threshold y or the maximal computation time is reached.
Note that the ICE load represents another nonlinearity of the master controller that
is considered due to iteration loop.

The master controller equals a power controller that is capable of controlling
the SoC, speed as well as ICE and ISG torque, if none of the powertrain limits are
violated. Nevertheless, the optimal trajectories can only be achieved if the system is
controllable, which is assumed for any load request.

4.3.5.5 Convergence of the Concept

The Banach fixed-point theorem shows convergence for iteration loops, if the
Lipschitz condition is fulfilled and the sequence is Cauchy. Using Eq.(4.12) and
(4.17), the inner iteration loop can be denoted by an implicit equation V =
Fv(Tisg.amd @ama, SOC, Ypars, V) = f,(¢, V). Similarly, with Eqs. (4.11)-(4.13),
(4.18) and (4.19) as well as the MPC, the outer iteration loop is expressed by a
function Pice,dmd = fp (Pload’ SOC: ﬂbattv Pice,dmd) = fp (‘i:, Pice,dmd)~ Both equa-
tions are assumed to be feasible in the operation range, since the output voltage V as
well as demand ICE load P;., 4,4 are bounded by constraints.

The proof for convergence can be done by standard linear MPC literature (c.f. e.g.
Gunderson 2010, Istratescu 2001, Vidyasagar 2002) and is similar for both iterations
as given in the following.

Assumption 1 Both functions f, and f, satisfy the Lipschitz condition such that

I/ V+AV) = fi(£, V)| < L, |AV], (4.60)
|fp(%-a Pice,dmd + APice,dmd) - fp(gv Pice,dmd)| = Lp |APice,dmd ) (461)

with L, L, > 0 hold. Therefore, if f, and f, are continuous and satisfy Eqgs. (4.60)
and (4.61), respectively, it follows that each of f, and f, have unique solutions (Gao
2012; Unger et al. 2015).
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Denoting X instead of V and P;, 4.4, respectively, with Assumption 1 and math-
ematical induction, Lemma 1 follows:

Lemma 1 For all k € N.g, arbitrary Xy and Lipschitz constant L € [0, 1),
1 Xp41 — Xell, < L I1Xy — Xoll, holds.

Proof Proceeding using mathematical induction, the base case holds:
X2 = Xill, = If X1) = f Ko)ll, = L [X1 = Xoll» (4.62)

Then, supposing the statement holds for some k € N, the induction hypothesis
follows to

If Xis1) — f Xy < L IXps1 — Xell (4.63)
< LL* X, — Xoll» (4.64)
= LM IX — Xoll, (4.65)

which proves the Lemma by the principle of mathematical induction (Gunderson
2010). ]

Based on Lemma 1, the sequence can be shown to be Cauchy.

Lemma2 Let M € R be a metric space. The sequence {X;} in M is a Cauchy
sequence and therefore converges with a Lipschitz constant L € [0, 1) to a limit X*
in M (Istratescu 2001).

Proof Let m,n € N.j such that m > n. Using the Triangle Inequality, Lemma 1
and the Geometric Series, the following can be denoted:

X — Xl < 11X = Xl + - + [ Xzt — Xl (4.66)
< L"IX) —Xoll, Xpy' Lk (4.67)

< L"IX; — Xoll, 32, L (4.68)

=L"|IX; = X . 4.69

X, 0||2(1_L) (4.69)

Let ¢ > O arbitrary, a large N € N can be found such that

1—-L
N _ ed-1 (4.70)
IX: — Xoll,
is satisfied, and
X, — Xall, < L" ||X1_X0||2(1_L) <e¢ 4.71)

follows for m, n large enough. Since ¢ > 0 is arbitrary, the sequence is proven to be
Cauchy. O
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Using Assumption 1, Lemmas 1 and 2, Theorem 1 follows:

89

Theorem 1 (Banach Fixed-Point Theorem (Banach 1922)) Amap f : M — M is
called contraction mapping on M if there exists a Lipschitz constant L € [0, 1) such

that
I f Xir1) — fF X lly < LIXgq1 — Xkl Yk € Ny

with Xy = f Xg-1). If
v e(=1)

T~ ~ > 01
1X1 — Xoll
is satisfied for a large N € N+, the following inequalities hold:

1Xst1 — Xl “IF < X, — X,
1X1 — Xoll, I1X1 — Xoll,

Theorem 1 is fulfilled if 3L € [0, 1).

4.72)

4.73)

(4.74)

Convergence of iteration loops. Based on Theorem 1, 0 < L < 1 can be
shown for both iteration loops separately by evaluating the closed set of possible
configurations. Both iterations converged to the true value V* (see Fig.4.6) and

P}, ama (see Fig.4.7), respectively.
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Fig. 4.6 Inner iteration loop: resulting contraction map shows that the Lipschitz constant L exists

and is 0 < L < 1 for the entire operation range
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Pioaa [kW]

Fig. 4.7 Outer iteration loop: resulting contraction map shows that the Lipschitz constant L exists
and is 0 < L < 1 for the entire operation range

4.4 Load and Cycle Prediction for Non-Road Machinery

The driver exclusively influences the load trajectory and driving patterns of non-road
machinery (Frank et al. 2012). Exact prediction of future load demands is in general
very difficult or sometimes impossible. Nevertheless, in the following, two statistical
approaches are introduced, which are able to predict the future load trajectories with
sufficient accuracy for the usage in non-road vehicles. A short-term load trajectory
Z; p for use in the slave MPC and a long term cycle prediction Z¢p for use in the
master MPC are proposed in detail. The cycle prediction is based on a cycle detection
that is similar to the approach proposed by Mayr et al. (2011a).

4.4.1 Short-Term Load Prediction

The idea of short-term load prediction is to detect critical load demands of, e.g., wheel
loaders at digging or at reversion, in order to permit a control action in advance (e.g.,
increasing the rotational speed in advance to a load peak acting on the powertrain).
For example, at reversion of the vehicle, if the load requirement is especially high
shortly after direction change and vehicle acceleration, the load prediction offers the
possibility to avoid engine stalling or a speed undershoot. Driveability and handling
capacity may be increased, which is especially of interest for the industry. In the fol-
lowing, the theory of Bayesian inference is shortly reviewed before the methodology
is discussed in detail. Based on the wheel loader, the accuracy of the methodology
is validated based on real data measured on a real wheel loader.
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4.4.1.1 Bayesian Inference

In the field of mathematical statistics, the Bayesian inference (BI) is an important
technique to update a probability of a hypothesis (H) as new evidence (E) is available.
Especially for dynamic data sequence analysis, the BI has a decisive role. Based on
Bayes’ rule, the posterior probability is calculated using the a-priori probability and
the likelihood function, respectively. The latter two can be obtained from a probability
model describing the data to be observed. The posterior probability is calculated using
Bayes’ theorem Eq. (4.75)

_ P(E|H)-P(H)
P(H | E)= ) , 4.75)

where | denotes a conditional probability, P(H) and P(H | E) are prior and poste-
rior probability, respectively, P(E) is the likelihood function and P(E | H) is the
conditional probability of observing evidence E if hypothesis H is given. Note here
that the posterior probability is proportional to P(H) and P(E | H), since these
values appear in the numerator of Eq. (4.75). Using the theory of Bayesian inference,
the load prediction methodology can be developed.

4.4.1.2 Methodology of Load Prediction

The actual vehicle inputs u;, such as accelerator angle «, driving speed nw and load
Pjoqq offer the only information about the vehicle state that can be used to predict the
future load demand. In case of a specific input state configuration, a probability can be
calculated that provides statistical evidence about the future load demand depending
on the actual vehicle state. For that purpose, inputs and outputs are assigned to discrete
classes ¢;; in the possible input/output range in order to be able to apply the theory of
the discrete Bayesian inference. Based on Bayes’ rule, the a posteriori probability for
a certain load class v; given a certain input configuration @ (k) can be calculated.
A-priori probability and the likelihood function are required (Marques De Sa 2003)
and can be obtained from training data (Box and Tiao 2011). Note that the accuracy
is directly dependent on the training data, and therefore all relevant information
needs to be included in the training data. Determining the a-priori probability and
the likelihood function based on training data shifted backwards in time, the basis
to calculate the a posteriori probabilities P (lﬁh j ] Q) for further prediction steps 4 is
given. The flowchart of the methodology is depicted in Fig.4.8, where the rule of
Bayes to calculate P (wh j | [} ) is denoted.

i D (k) P(oly)P(wy) | EK)
g : » P (D) = =y i J
—» Classification (‘l/h j|f) =7 P(®] iy ) P ()

Conversion » Zrp

Fig. 4.8 Flowchart of the load prediction process
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4.4.1.3 Prediction of the Future Load Demand

Since a load trajectory is required by the controllers, the probabilities P (wh j | [ ) need
to be converted into a load value. A simple approach to extract the load value is to
choose the highest load class probability max (P (5, |®)) and use the corresponding
maximum load value associated by the class for each prediction step /. Note that
in case of large load classes, the resolution is rough and the prediction may have
insufficient accuracy. This can be avoided by choosing enough output classes or an
average class load value. The short-term load trajectory Z, p follows therefore by
storing the corresponding load value z;, p j of the class in a vector

Z,p= [Zl_p,l...zLPq,,p]T, (4.76)

The incremental notation required by the MPC follows by

AZpp = [AZLp(l) L. AZLP(np)]T ,
iLP,1 — Pload(k) ifi =1

4.77)
ZLpi — ZLP,i—1 else

with AZLP(i) = I

4.4.1.4 Validation of the Load Prediction

For validation of the load prediction, training data were recorded on a correspond-
ing wheel loader at operation for an eight hour duration. An analysis showed the
following input configuration u to be significant for the load prediction

u=[a lnowl Poa A% El(Poaa))], (4.78)

where A? denotes the dual backwards difference operator and filt() is a low pass filter.
The selection includes the driver information («), an indication for the overall power
consumption (|ngw|) and the actual state of the vehicle (P4, A? (filt (Proaa)))-
Note that the filter input corresponds to the mechanical inertia and needs to be tuned
in such a way that strong gradients are not too much delayed, but that noise and small
load peaks are avoided. A selection of 6 input classes n.; for «, 4 for |ngw|, 24 for
Pioaq and 6 for the filter input showed to be adequate, while 24 output classes n.
have been chosen to achieve sufficient resolution for the load prediction.

Figure 4.9 shows the scaled input signals (subplot two) corresponding to the mea-
sured load signal (subplot one, red) and the predicted short-term load trajectories
across a horizon of n,, = 25 samples (subplot one, blue). The load sequence is previ-
ously unknown by the load prediction, but though, accurate predictions are achieved
at increasing load gradients (c.f. around second 2 and 9). This is plausible since
accelerator position, filter input and driving speed indicate a clear load demand. The
largest part of the overall load is in general consumed by the drivetrain. Around
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Fig. 4.9 Validation of the load prediction based on a real load sequence

second 6, the driving speed is increasing although the accelerator position is around
60 % and decreasing. At this point, a serious indication is impossible, since not even
the filter input can provide an additional indication, and therefore, the actual load is
in principle predicted.

Between second 7 and 8, negative loads appear, which are not critical to engine
stalling. A significant prediction mismatch results from a low resolution obtained
by the simplification of assigning only one load class for the entire negative load
range. Note that an increase in the number of output load classes would enhance the
prediction accuracy in the negative load range.

4.4.2 Cycle Detection

Dockside cranes or wheel loaders are mostly used in cyclical operations, which yield
recurrent load demands that can be used to predict the future cycles. The goal is to
predict the load trajectory by detecting a recurrent load cycle z.,. € IR** within the

past load signal and to provide a disturbance trajectory Z¢p = [zCTyC .. .zCTyC ]T €
R"» with sampling time t;_,, for the master controller based on the obtained cycle
information. Correlation analysis provides the necessary theory to find the recurrent
cycles within the past load signal. In the following, the theory of correlation analysis
is therefore reviewed before the methodology of the cycle detection is presented in
detail. Based on a real load signal obtained from a wheel loader, the methodology is
validated to show the possibilities.
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4.4.2.1 Cross Correlation Function

Commonly, in signal processing, tasks consist of finding short signals within a long
signal. A measure for the similarity of two signals is given by the cross correlation,
which has applications over all natural sciences. It is used in, e.g., pattern recog-
nition, single particle analysis, electron tomography, averaging, cryptanalysis, or
neurophysiology. In terms of statistical analysis, the term cross correlation refers to
the correlation between the values of two random vectors x and y, while a special
case is the correlation of the values of one vector x with itself, which is referred to
as auto correlation (ACF). The cross correlation function is defined by

N
Ry =0 > x(k) ytk — 1), (4.79)
k=1

where x, y are the entries of the vectors x and y respectively, N is the signal length
and o is a scaling factor. Note here that in the field of statistical analysis, the scaling
factor o is usually included in the definition in order to obtain correlations between
—1 and +1. Based on the cross correlation function, the methodology of the cycle
detection can be developed in the following.

4.4.2.2 Identification Methodology for Recurrent Load Cycles

Mayr et al. (2011a) proposed an algorithm to detect the cycle duration f.yc = Scyclts,m
of a recurrent load cycle within the past load signal ycp € IR=**>< based on the
auto correlation function. The first local maximum in the ACF is used to identify
the cycle. One disadvantage of the ACF is that in case of a changing load cycle, a
detection of the cycle with an acceptable time delay is difficult. In case of cycles
with significantly different cycle times, the shape of the first local maximum is not
formed clearly, which makes a secure detection impossible.

In this book, the cross correlation function Iéxyj between ycp and different parts
Xcp.i, | = 1,2,3, ..., which are systematically taken from ycp, is used to adapt
the ACF approach in order to avoid this disadvantage. The size of the parts X¢p ;
are within the scope of the possible cycle durations within y¢p, due to which reason
a cycle change can be detected sufficiently fast. A cycle is detected and included
in ycp, if more than two local maxima of Iéxy,,- lie within a small range around
Iéxy,,' = 1, and the distance between the local maxima defines the corresponding
cycle time (Unger et al. 2015).

Once a cycle is detected, the past s.,. load values form the load cycle z.,., which
is used to build the incremental notation of the future load trajectory Z¢p used in
the master controller by
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Fig. 4.10 Cycle detection methodology shown on a sequence of two different load cycles

AZcp () = [ Azep(1) -+ Azep(N)]

Z ) — Poa k ifi =1
with Azep(i) = § 262 = Pload (k) te=a (4.80)
Zep(i) — Zep(i — 1) else

4.4.2.3 Validation of the Methodology

A more sophisticated representation of the methodology is depicted in Fig.4.10,
where the cycle detection is demonstrated on real load measurement from a wheel
loader. The measured signal (blue), the past load trajectory ycp (orange) and the
predicted disturbance trajectory Zc¢p (red) are drawn in the middle subplot, while
the true (blue) with the detected (green) cycle time ., are given in the subplot below.
It can be seen that almost 3 cycles are required to detect the cycle change, which is
sufficiently fast, since a confident prediction needs at least 3 occurred cycles. Note
that, though, the new cycle is only a short part of y¢ p, the cycle time can be detected
correctly.

In the first row of subplots, the past load signal ycp (orange) and the different
parts xcp,; (blue, magenta, green, cyan) are depicted on the left side, while the
corresponding CCFs Iéxy,i (blue, magenta, green, cyan) between Xcp ; and ycp are
shown on the right side. The blue points indicate that the local maxima lie inside the
thresholds (black dashed lines) and match for the different Iéxy,i. Consequentially, a
cycle is detected.



Chapter 5
Application Example: Wheel Loader

Abstract The Chaps. 2, 3, and 4 discussed the methodologies to estimate the battery
SoC with high accuracy as well as to control a parallel hybrid electric powertrain
in non-road vehicles. In this chapter, the results obtained by these methodologies
should be presented. First, the hardware of the used real powertrain and test bed
including a battery simulator, respectively, are described. Second, simulation and
real measurement results are presented in terms of dynamics, overall optimality, and
efficiency improvement due to the proposed EMS.

Keywords Non-road hybrid electric vehicle (HEV) - Nonlinear model predictive
control *+ Load and cycle prediction - Stability - Convergence - Real-time control

5.1 Hardware Configuration of the Hybrid Powertrain
Test bed

Non-road vehicles are usually equipped with more powerful engines than they are
registered with, which in this context means that they are restricted in power. At
the test bed, a real diesel electrical parallel hybrid powertrain comprising a 290 kW
ICE (limited at Pjc, gy = 215 kW) and a 120kW ISG is set up. A torque sensing
shaft connects the test bed dyno with the powertrain in order to apply the load.
Instead of a real battery, a battery simulator supplies the required power for the ISG
where an accurate LMN battery model of the lithium-iron-phosphate chemistry-
based battery module with 630V nominal voltage and £ 200 A maximal current
(192S2P configuration) is implemented (see Sect.3.6). Note that the powertrain is
also modeled and used for real-time simulation.

A dSpace DS1006 platform is used to control the test bed measurements as well
as real-time simulations. The platform runs the standard fixed step-size solver for
which the controller is compiled, while the optimization problem is solved using the
primal barrier interior-point method in theFMPC algorithm proposed by Wang and
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Fig. 5.1 Parallel hybrid electric powertrain at the test bed

Boyd (2010). Further details on algorithm and computation times can be found in
Wang and Boyd (2010) and in Richter et al. (2010), Zeilinger et al. (2011). The pro-
posed controller can be parametrized by the number of iterations in the FMPC, which
are properly chosen to njser. Fayrpc.siave = 10 and Rjrer, pypC.master = 3, r€spectively,
the number of inner (%iser inner = 10) and outer (Miser ourer = 3) iteration loops of
the master controller and the prediction horizons for both MPCs in order to achieve
lower computation times. Based on the given selections, the runtime limit of the
platform is fully exploited, but is not exceeded. Relevant information between plat-
form and supervisory test bed control system is exchanged with a CAN interface,
while a sampling time of #,; = 10 ms is used for the interface as well as for all
measurements. Figure 5.1 shows a picture of the test bed application.

5.2 Energy Management in Wheel Loaders

The feasibility of the control concept is validated by carrying out real test bed mea-
surements using the real powertrain described previously. Important to show is that
the controller is able to cope with the high dynamic load transients appearing in
non-road applications, while emissions and fuel consumption are reduced simulta-
neously. A critical point of the control is, if constraints are active. For the purpose
of reasonable results, the controller is tuned based on simulations, before test bed
measurements are carried out. In the following, the controller penalties are discussed
before the simulations are presented and measurement results are discussed.
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5.2.1 User-Defined Tuning of the Controller Penalties

The selection of the penalties used in the optimization problems Z(x,(k)) and
P, (X (k)) is referred to as tuning and influences the behavior of the controller. In
order to achieve maximal efficiency of the powertrain, the electrical energy conver-
sion (EEC) must be kept at a minimum, since efficiency and EEC are directly linked
by the conservation of energy principle. To this end, the penalties need to be set in
such a way that dynamic requirements of the powertrain are provided in any case
and the EEC is minimized simultaneously.

The SoC deviation from the demand SoC has direct influence on the EEC and
can be penalized with the state penalty Q,,. By choosing Q,, = 0.1 (more EEC) and
O = 10 (less EEC), the influence of the SoC deviation can be seen and compared.
In terms of dynamic and a good speed controlling performance, the state penalty
Q; plays a major role and is therefore chosen significantly higher than the control
R, and input R, penalties. Desirable is also a smooth dynamic behavior of the ICE,
since strong torque gradients cause higher emissions. This is achieved by penalizing
the ICE torque increments more than the ISG torque increments. Note that this is
inconsistent with the required dynamics, but due to the optimization, solved in an
optimal manner. In contrast to the slave dynamics, the master controller has inferior
influence on the fast control dynamics, due to which the control penalty R,, is chosen
appropriately small. The parameters of the model and controller, respectively, which
are used for simulations and test bed measurements, are summarized in Table 5.1 to
give a better overview.

5.2.2 Simulation Results

The simulations are executed on the real-time platform, where a real-time model of
the powertrain is implemented. Main interest of the simulations is to validate the
controller tuning in terms of the optimality of the controller set points, while a ICE
torque gradient restriction of ATj. max = 1000 Nm/s is applied to limit the ICE
dynamics.

Based on the dimensionless energetic efficiency map 7;., in Fig. 5.2, the simula-
tion results are compared with a real load cycle of a conventional operated powertrain
(black x). The results of the hybrid powertrain are inserted for the hybrid strategies
with small (purple, Q,, = 0.1) and large (dark green, Q,, = 10) state penalty in
order to see the difference between the strategies. As can be seen, the distribution of
the operation points is limited to the optimal characteristic line (dark yellow) with
the lowest specific fuel consumption for Q,, = 0.1, while for Q,, = 10 an increased
distribution is obtained due to the increased usage of the ICE to compensate the
transient load.
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Table 5.1 Summary of the used controller parameters

5 Application Example: Wheel Loader

Description Parameter Nominal value
Slave controller sampling time Ls.s 0.01s

Master controller sampling time Ls.m 0.25s

Master controller prediction horizon N, = N, 100

Master controller state penalties Om 0.1, 10

Master controller control penalty Ry 0.01

Slave controller prediction horizon np =ne 25

Slave controller state penalty O 100

Slave controller control penalties Ry diag[10 2]
Slave controller input penalties R, diag[0.5 1]
Engine operation speed Omin - - - Omax 1000...2000 rpm
Battery state of charge operation limits SoCuin . .. S0Cax 20...80%
Battery current limits Lyin - .. Lnax —200...200 A
Battery voltage limits Viin « -+« Vinax 550...700 V
Maximal ICE power constraint Pice,max 215kW
Battery capacity Qc.bart 8.8Ah

Total ICE moment of inertia ® 10 kg m?

Time constant of ICE model Tice 0.1s

Time constant of ISG model Tisg 0.05s
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Fig. 5.2 Simulation results for two different hybrid strategies shown by the ICE operation points
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Compared to the conventional powertrain, a significant decrease of the mean speed
is observable due to the optimal operation set points, which proves that the down-
speeding strategy is considered directly as proposed. The outliers at w ~ 1500rpm
and T;., &~ 750 N m are caused by the driver request Wyin.driver-

5.2.3 Experimental Results

The experimental results focus mainly on the three following critical points and are
presented in detail in the following:

1. Dynamic feasibility under consideration of all relevant constraints of the power-
train and hybrid strategies such as downspeeding and phlegmatization.

2. Reduction of exhaust emissions and fuel consumption compared to the conven-
tional powertrain due to optimal control.

3. The benefit of a full exploitation of the energy storage capabilities by use of the
cycle detection.

5.2.3.1 Dynamic Feasibility

Phlegmatization incises the dynamics of the powertrain drastically, especially at
an optimal (low) rotational speed, but provides a large potential to reduce exhaust
emissions significantly (Niiesch et al. 2014). Feasibility mainly depends on the
phlegmatization rate, though. On the test bed, different phlegmatization rates between
ATice.max between 500 Nm/s and 5000 Nm/s are measured, while a rate of 500 Nm/s
showed a significant emission reduction. Nevertheless, cycles with higher load gra-
dients may not be feasible using 500 Nm/s, and therefore a time-variant phlegma-
tization rate is applied to the powertrain: In general, the ICE torque is limited by
ATice.max = 500 Nm/s, but after an active constraint for the past 15 samples, it is
relaxed to ATjc. max = 1500 Nm/s. Note that an effective maximum of 1350 Nm/s
is reachable, which is an appreciable limitation. Furthermore, the load prediction is
used to avoid engine stalling on high load peaks and to provide sufficient engine
dynamics. The influence of the load prediction on the reduced dynamics of the ICE
is presented in Fig.5.3, where the enabled load prediction (subscript LP) is com-
pared to the disabled case. The first subplot of Fig.5.3 shows the rotational speed
trajectories of the actual speed w and the speed set point w;,, for enabled (subscript
LP) and disabled load prediction. Marked point (a) shows that in case of an enabled
LP, wy,; is raised prior to the load peak. At marked point (b) engine stalling occurs
for disabled LP due to insufficient ICE dynamics.

The time-variant phlegmatization rate is observable in the second subplot (see
marked point (c)), where the trajectories of the ICE torques are depicted. Point (b)
shows furthermore that 7}, 1 p is increased prior to a load peak, due to which engine
stalling is avoided. The missing constraints for the driveability limit of the ICE
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Fig. 5.3 Influence of an enabled (subscript LP) load prediction on the powertrain operation

are observable at higher torque levels, where a large mismatch occurs. Prior to the
testruns, driveability limit information was not available and could not be consid-
ered. Nevertheless, the structured constraints as introduced in Sect.4.3.3 provide to
integrate any additional limits easily.

The ISG torque signals are shown in the third subplot, where it can be observed
that in terms of dynamics, the load prediction smooths T;,, as well as reduces the
dynamics of the signal in general. The last subplot shows the corresponding load
trajectory for Py,,,. Note that in order to avoid engine stalling with disabled LP, the
speed must be increased, which also increases fuel consumption due to friction losses.
Hence, the load prediction enables to further reduce fuel consumption although the
load demand is unknown and ICE dynamics are restricted.

5.2.3.2 Fuel Consumption and Exhaust Emissions

In order to achieve a suitable comparison between the hybrid and conventional pow-
ertrain, real load cycles are measured at the test bed with the same experimental setup.
For that purpose, four representative real load cycles are extracted from a large data
set of field measurements obtained from common wheel loaders representing com-
mon applications. In Table 5.2, more details about the cycles are summarized, which
test bed measurements are used for comparison of fuel consumption and raw exhaust
emissions.

The ECU of the used ICE provides two series controllers that take the speed
or ICE torque demand as reference value. For the reference measurements on the
conventional ICE, the speed controller is used to control the speed demand, which
is proportional to the accelerator position. In contrast, the series torque controller
is used for the hybrid measurements to execute the set point torque of the hybrid
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Table 5.2 Basic data of the used load cycles

Cycle Duration (s) Mean load (kW) Mean speed (rpm)
1 38.48 70.1 1236
2 54.15 61.3 1215
3 189.84 58.4 1360
4 90.44 66.5 1277

Table 5.3 Resulting reductions for fuel consumption and exhaust emissions obtained with enabled
load and cycle prediction

Cycle Strategy Fuel (%) CO (%) HC (%) NOx (%) Soot (%)
1 O =10 —2.04 —50.16 —9.64 8.12 —21.00
1 Om=0.1® | —298 —54.98 —13.46 8.44 —31.01
2 Om =10 —2.00 —55.09 —14.99 7.45 —27.25
2 Om=0.1® | —1.39 —56.37 —13.52 8.99 —29.81
3 O =10 —8.54 —71.76 —11.23 7.10 —17.74
3 Om=0.1® | —9.14 —70.70 —3.65 7.64 —7.47

4 Om =10 —3.79 —51.26 —11.59 9.27 —19.02
4 O, =01® | —426 —53.76 —11.76 9.52 —22.35

Relative change is calculated from the conventional powertrain. Small mean discharges (a) and
charges (b) of the battery are not compensated in the results

controller on the shaft. Since the proposed control concept is supervisory in terms
of the components, the parametrization of both series controllers is not changed in
any way.

The compensation of any SoC change in the battery is an important topic, which
plays a significant role, especially at short load cycles. Many works address the issue
to compensate the deviations correctly, e.g., Sciarretta et al. (2004) and Johnson et al.
(2000). In this book, in order to avoid the problem, the values for fuel consumption
and raw exhaust emissions are obtained by repeating any load cycle for 10 times
and determining the average value. Almost all cycles reached the initial SoC after
the 10th cycle, due to what the SoC deviation can be neglected. Nevertheless, any
significant deviations are marked in Table 5.3, where the results for the measured
values of fuel consumption and raw exhaust emissions of the four representative
cycles are summarized.

As can be seen in Table 5.3, fuel consumption, carbon monoxide (CO), hydrocar-
bons (HC), and soot emissions are significantly reduced, while nitrogen oxide (NOx)
emissions are slightly increased. Note that the optimal rotational speed of the ICE
is in the lower speed range, which has higher specific NOx emissions and therefore
increase the NOx emissions. Nevertheless, the vehicle’s after treatment system is
capable of compensating the slightly increased raw NOx emissions.
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It can be observed that significant SoC deviations mainly occur for Q,, = 0.1,
which is caused by the small state penalty that focuses more on maximizing the
powertrain efficiency than minimizing the SoC deviations. Nevertheless, the capacity
limits of the battery are not even closely reached, since the overall energy conversion
is large compared to the deviations, and two of the four test runs even increased the
SoC in average.

5.2.3.3 Benefit for a Cyclically Working Wheel Loader Using CD

Filla (2013) analyzed different work cycles of wheel loaders in order to optimize the
path trajectories to decrease fuel consumption and to increase productivity, respec-
tively. The cycle detection targets for the same aims, but only based on the past load
trajectory, since the applied cycles are unknown in advance. In Fig. 5.4, the influence
on the system behavior due to enabled (subscript extension CD) and disabled cycle
detection is depicted in more detail for the measurements of cycle number 3.
Subplot one in Fig. 5.4 shows the rotational speed, while marked points (a) empha-
size that due to the CD, the speed is increased prior to the load peak. This reduces
the need of the electrical system to support any speed changes, which can be seen in
Subplot three, where the ISG torques are depicted. The SoC trajectories are shown
in the fourth subplot, where the marked points (b) clearly show the difference. After
the second recurrence, the cycle is detected and the master MPC optimizes across the
predicted load trajectory, which enforces to optimally use the energy storage capabil-
ities, minimizes fuel consumption as well as exhaust emissions and fully considers
phlegmatization. Any slightly larger deviation from the demand SoC has therefore
less influence on the cost function than the efficiency improvement. It is important
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to mention that the cycle detection, in principle, needs at least two or more cycles
to detect a cycle and reduces noise emissions due to the smoothed operation of the
powertrain.

Another way to express the benefit is to calculate the rate of electrical and overall
energy conversion, which follows for cycle number 3 to 28.14 % with disabled CD and
25.21 % with enabled CD. In other words, almost 3 % less electrical system usage
can be achieved if the information available from the past load trajectory is used
accordingly in the control concept. Nevertheless, the reduction in fuel consumption
and exhaust emissions is the main aim of the control concept, and keeping the SoC
at the demand SoC value is only of secondary importance. On this account, there is
a great importance on the accuracy of the SoC value, though.



Chapter 6
Conclusion and Outlook

In this book, the hybridization of non-road vehicles is discussed in terms of the control
aspect. The book is motivated by the continuously increasing legislative regulations
of non-road mobile machinery to decrease exhaust emissions and fuel consumption.
Two topics are mainly relevant to be discussed in this context: the energy management
system of the hybrid electric powertrain and the mandatory accurate estimation of
the battery state of charge during operation.

First, the generic methodology for nonlinear system identification of battery mod-
els in the context of accurate real-time SoC estimation is discussed. The SoC is not
measurable online and needs to be estimated during operation, which in case of non-
road vehicles is difficult due to the high dynamic usage of the electrical system. In
order to obtain a precise battery model for different battery cell chemistries and dif-
ferent temperatures, the data-based local model network approach is used to model
the battery cell terminal voltage. The LMN consists of local linear models, which are
interpolated to obtain the global nonlinear model output, while the LMN structure
is iteratively built by the automatic LOLIMOT algorithm. Battery cells have strong
nonlinear effects acting on the voltage, which need to be considered in the model
structure. To this end, SoC, current, temperature, relaxation, and hysteresis effects
are integrated by corresponding inputs in the LMN structure, which is enhanced by
a prepartitioned network to achieve a physically appropriate network. A significant
increase in model accuracy results from optimal model-based design of experiments,
where a model of the battery is used to optimize the excitation signal of battery cell
tests. The high dynamic excitation signal consists of sufficient high currents, which
are necessarily required for non-road applications. Furthermore, a real load cycle
analysis is made to especially consider frequently used load ranges in operation. The
results showed that a battery cell model accuracy with less than 3 % NRMSE could be
achieved, while currents above 20C were applied to the cell. Result reproducibility
and comparability is guaranteed by the proposed measurement procedure.

Based on the battery cell model, different battery module models are built, while
the results showed that the consideration of the additional internal resistance due
to the cell connections can obviously increase the model quality significantly. Nev-
ertheless, the results also showed that the disregard of the battery module internal
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resistance also achieves reasonable accuracy, which leads to the fact that if no battery
module is available for measurements, the battery module model can nevertheless
be built and used for principle analyses. A NRMSE of significantly less than 1.4 %
for the battery module models could be achieved. The obtained battery models could
further be used in a SoC estimator based on the theory of Kalman filter. Due to
the LMN models, a fuzzy observer is used to dynamically estimate the SoC during
operation, which could achieve an accuracy below 5 % depending on the used filter
tuning. The results obtained with the fuzzy observer were compared to the SoC esti-
mation provided by the battery management system of the battery module, which
showed that the assumption of an inaccurate SoC estimation of the BMS after some
time is justified.

Second, an energy management system is presented for a non-road parallel hybrid
electric powertrain that considers physical constraints and the future load demand to
achieve an optimal control. A cascaded model predictive control concept provides
the possibilities to implement the mentioned requirements. The future load demand
is in advance unknown, due to which two data-based methodologies are introduced,
which predict the disturbance trajectories of the vehicle with sufficient accuracy to
be used in the control concept. To this end, a short-term load trajectory prediction
based on the Bayesian inference provides a load trajectory for the fast inner control
loop, while a cycle detection based on correlation analysis is used to detect recurrent
cycles in the past load signal. The strong nonlinear behavior of the electrical system
is fully integrated by an iterative optimization of the master control loop.

Simulations and real-time test bed measurements verify the feasibility of the
concept on the application example of a wheel loader, while also a theoretical proof
of stability is given. The special strategies of downspeeding and phlegmatization have
a significant influence on powertrain dynamics, which could be compensated by the
proposed controller. At the expense of slightly increased NOx exhaust emissions, CO,
HC, and soot emissions as well as fuel consumption are significantly reduced. The
results showed furthermore that a change in the MPC penalties can easily implement
different hybrid strategies on the powertrain, due to which an easy portability to other
vehicles is given.

Future work needs to be focused on an experimental vehicle, which must prove
the overall methodology of energy and battery management system. Furthermore,
the controller can be improved by integrating material behavior and penetration force
of the wheels in the process model (see e.g., Ning and Liu 2013; Blouin et al. 2001).
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