
TE
AM
FL
Y

Team-Fly®

The Document Object Model:
Processing Structured

Documents

About the Author
Joe Marini has been a professional software engineer for 12 years at companies
such as Quark, Inc., mFactory, Macromedia, and Panscopic Corporation. Joe also
founded his own software development company, Lepton Technologies, which was
acquired by Extensis Corp. in 1997. Joe served as Macromedia’s representative to
the World Wide Web Consortium’s Document Object Model working group from
1999–2000.

In addition to his engineering work, Joe has served as a contributing author on
several books, including Fireworks MX Magic with Lisa Lopuck and the forthcoming
Beyond Dreamweaver with Joseph Lowery. Joe is also a regular speaker at various
industry conferences on web development and related subjects. Joe works and lives
in San Francisco and Lake Tahoe, California with his wife, Stacy, and their dog, Milo.

The Document Object Model:
Processing Structured

Documents

Joe Marini

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan

New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2002 by The McGraw-HIll Companies, Inc. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-222831-8

The material in this eBook also appears in the print version of this title: 0-07-222436-3

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatso-
ever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072228318

To Stacy and Milo,
for their love, patience, and support;

and to my Mom,
for her continual encouragement

and for making it all possible.

This page intentionally left blank.

Contents at a Glance

Part I Overview of the W3C Document Object Model

Chapter 1 Introduction to the DOM . 3

Chapter 2 How the DOM Represents Structured Documents 17

Chapter 3 Navigating and Manipulating Structured Documents 49

Part II Real-World DOM

Chapter 4 Algorithms . 87

Chapter 5 Browsers . 101

Chapter 6 Applications . 133

Chapter 7 Debugging DOM Applications . 169

Part III Practical Uses of the DOM

Chapter 8 Providing Automatic Document Navigation 205

Chapter 9 Dynamic User Interfaces . 229

Chapter 10 Client Processing of Data-Driven Documents 255

Chapter 11 Future Directions for the DOM . 301

Appendix DOM Core Level 1 API Reference . 337

Index . 365

vii

For more information about this title, click here.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Contents

Acknowledgments . xvii
Introduction . xix

Part I Overview of the W3C Document Object Model

Chapter 1 Introduction to the DOM . 3
What Is the Document Object Model? . 4
The DOM Philosophy . 6

Yet Another Standard? . 6
Design Philosophy . 7
Object-Oriented vs. Flat Views of the DOM Interfaces 7

History of the DOM . 8
The DOM on the Client . 8
The DOM on the Server . 9

Levels of the DOM . 9
Level 1 . 10
Level 2 . 11
Level 3 . 12

Conventions Used in the DOM Specification . 12
What the DOM Isn’t . 14
Conclusion . 15

Chapter 2 How the DOM Represents Structured Documents 17
Basic DOM Data Types . 18

The DOMString Type . 18
The DOMTimeStamp Type . 19
Handling Errors: The DOMException Interface . 19

The Document Tree Structure . 20
DOM Node Types . 22

ix

For more information about this title, click here.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The Fundamental Core DOM Interfaces . 24
DOMException Codes . 25
The DOM Node Interface . 26
Node Helper Interfaces: NodeList and NamedNodeMap 31
The DOMImplementation Interface . 33
The Document Interface . 34
The DocumentFragment Interface . 37
The Element Interface . 37
The Attr Interface . 40
The CharacterData Interface . 41
The Comment Interface . 43
The Text Interface . 43

The Extended Core Interfaces . 44
CDATASection Interface . 44
DocumentType Interface . 44
Notation Interface . 45
Entity Interface . 46
EntityReference Interface . 46
ProcessingInstruction Interface . 46

Conclusion . 47

Chapter 3 Navigating and Manipulating Structured Documents 49
Working with Nodes . 50

A Word About Namespaces . 51
Obtaining Object References to Nodes . 52
Inspecting Nodes . 53
Manipulating Nodes . 56
Creating New Nodes . 62
Importing Nodes from Other Documents . 65

Traversing Documents . 67
Using the Node Interface Properties . 67
Using the DOM Level 2 Traversal Module . 68

Conclusion . 84

Part II Real-World DOM

Chapter 4 Algorithms . 87
DOM Algorithms . 88
Basic Node Traversal Algorithms . 88

x T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

Position-Based Algorithms . 91
Determining Whether a Node Has an Ancestor of a Given Type 91
Determining Whether a Node Has a Sibling of a Given Type 92

Content-Based Algorithms . 93
Determining Whether a Node Contains Another Node 93
Better Versions of Node Interfaces: Retrieving Relative Nodes by Type 95
Finding a Node by Attribute Value . 97

Conclusion . 99

Chapter 5 Browsers . 101
DOM Support in the Major Browsers . 102

Microsoft Internet Explorer 6 . 103
Netscape Navigator 6.x . 103
Opera 6 . 104

Using the DOM in a Browser Environment . 104
Obtaining a Reference to the Document . 105
Examining the Structure and Content of a Page 106
Creating and Modifying Page Elements . 110
Handling Events with the DOM Level 2 Events Interface 116

Internet Explorer–Specific Methods and Properties . 127
Internet Explorer–Specific Properties . 127
Internet Explorer–Specific Methods . 128

Browser Quirks . 129
Internet Explorer . 130
Netscape Navigator . 130

Conclusion . 130

Chapter 6 Applications . 133
DOM Implementations Aren’t Just for Browsers . 134
Standalone vs. Embedded DOM Implementations . 135
The Apache Xerces Parser . 135

Where to Get Xerces . 136
Installing Xerces . 137
Getting to Know the API . 139
Using Xerces . 141
Where to Get More Information About Xerces . 152

The Microsoft MSXML Parser . 152
Where to Get MSXML4 . 152
Installing MSXML4 . 152

C o n t e n t s x i

Getting to Know the API . 153
Using MSXML4 . 153
Where to Get More Information About MSXML 159

Macromedia Dreamweaver . 159
Where to Get Dreamweaver . 159
The DOM in Dreamweaver . 159
Getting to Know the API . 160
Using the Dreamweaver DOM . 162
Where to Get More Information About the Dreamweaver DOM 167

Conclusion . 167

Chapter 7 Debugging DOM Applications . 169
Importance of Good Debugging Skills . 170
Be Assertive: Use ASSERT() . 171

Defining ASSERT() . 171
Using ASSERT() Effectively . 173
Getting Fancy with ASSERT() . 177

Tracing Your Steps with TraceConsole . 179
Using the TraceConsole . 181
The TraceConsole Functions . 182

The DOMDumper . 192
DOMDumper Output . 193
DOMDumper Code . 195
Using the DOMDumper . 198

Conclusion . 201

Part III Practical Uses of the DOM

Chapter 8 Providing Automatic Document Navigation 205
Using the DOM to Provide Better Document Navigation 206
Example: On-the-Fly Bookmarks . 207

Setting Up . 210
Creating the User Interface Elements . 211
Building the Bookmark List . 212
Inserting the Bookmark List into the Document 213
Responding to the User’s Bookmark Selection . 214

Example: Automatic Table of Contents . 215
Setting Up . 218
Scanning the Document’s Nodes . 219

x i i T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Building a TOC Destination . 219
Adding the TOC Entry . 220

Example: Document Placeholders . 221
Setting Up . 224
Handling Click Events . 225
Finding a Containing Paragraph Node . 226

Conclusion . 227

Chapter 9 Dynamic User Interfaces . 229
Building Dynamic User Interfaces with the DOM . 230
Creating a Color Picker . 231
In-Place List Editing . 238
DOM-Based Pop-up Menus . 246
Conclusion . 254

Chapter 10 Client Processing of Data-Driven Documents 255
Processing Data-Driven Documents on the Client . 256
Client-Side Sorting . 257

Sorting a List . 257
Sorting a Table . 263

Post-Processing Server-Generated Documents . 271
Working with Embedded XML Data in Web Pages . 275

Data Islands in Internet Explorer . 276
Data Islands in Netscape Navigator . 281

Example: Joe’s Cafe Menu Application . 283
The Menu Page . 283
The Menu XML Code . 285
Generating the Menu HTML . 287
Handling User Interaction . 295

Conclusion . 299

Chapter 11 Future Directions for the DOM . 301
Where Is the DOM Headed? . 302
Proposed Changes in DOM Level 3 . 303

General Changes . 303
Abstract Schema Support . 307
Error Handling . 308
Loading and Saving DOM Documents . 309
Attaching Application-Specific Data to Nodes . 313

C o n t e n t s x i i i

Determining Relative Document Positions of Nodes 316
XPath Support . 318

Other Potential Future DOM Enhancements . 326
XSLT Support in the DOM . 326
Transaction-Oriented Processing . 332

Conclusion . 334

Appendix DOM Core Level 1 API Reference . 337
DOM Interface Inheritance Tree . 338
Interface Attr . 338

Properties . 339
Methods . 339

Interface CDATA . 339
Properties . 340
Methods . 340

Interface CharacterData . 340
Properties . 340
Methods . 341

Interface Comment . 343
Properties . 343
Methods . 343

Interface Document . 343
Properties . 343
Methods . 344

Interface DocumentFragment . 347
Properties . 347
Methods . 347

Interface DocumentType . 347
Properties . 348
Methods . 348

Interface DOMImplementation . 348
Properties . 349
Methods . 349

Interface DOMException . 349
Constants . 349
Properties . 350
Methods . 350

x i v T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Interface Element . 350
Properties . 350
Methods . 350

Interface Entity . 353
Properties . 353
Methods . 354

Interface EntityReference . 354
Properties . 354
Methods . 354

Interface NamedNodeMap . 354
Properties . 355
Methods . 355

Interface Node . 356
Constants . 357
Properties . 357
Methods . 359

Interface NodeList . 361
Properties . 361
Methods . 362

Interface Notation . 362
Properties . 362
Methods . 363

Interface ProcessingInstruction . 363
Properties . 363
Methods . 363

Interface Text . 363
Properties . 364
Methods . 364

Index . 365

C o n t e n t s x v

This page intentionally left blank.

Acknowledgments

Let me say right up front that this is my first full-length book, and I am very
grateful to have worked with a wonderful team at McGraw-Hill/Osborne.
Most of my writing up until this point had been in pursuit of much smaller-

scale projects, and the McGraw-Hill/Osborne team made sure the book went smoothly.
In particular, I want to thank Jim Schachterle for seeing the potential for a book

about the Document Object Model, for believing in me, and for getting the project
approved. Next, thanks to Timothy Madrid for making sure chapters stayed on
schedule, and to Laura Stone for all the editing help and for putting up with all
those times I changed my mind about something in mid-stream.

Special thanks go to Andrew Woolridge, my technical editor, whom I’ve known
since the early Dreamweaver days. When I had to find someone with the technical
ability to review pages of JavaScript, C++, and Java code, Andrew came through.

I couldn’t have completed this book without the help of everyone mentioned
above. You hold the completed work of all of us in your hands; I hope it helps you
create the next generation of web applications.

xvii
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Introduction

Web applications have come a long way since the release of Netscape
Navigator 2.0, the first web browser to have a scripting language
embedded in it. That language, JavaScript, allowed developers for the

first time to manipulate their web pages directly in the user’s browser. From those
humble beginnings arose the Document Object Model, a full-fledged specification
of standard methods and properties for working with HTML and XML data.

The need for a standard API for working with these types of documents became
clear almost immediately after HTML and XML technologies began to catch on with
the Internet development community. The World Wide Web Consortium (W3C)
realized that the types of operations needed to work with these documents were
common enough that they could be specified in a portable way, allowing different
document-processing application vendors to offer a standard interface. This, in turn,
allowed developers to focus their energies on building their applications rather than
figuring out which browser or platform they would need to port their work to.

With this book, you learn to use the DOM to work with HTML and XML data in
a variety of settings, including web browsers, server-side applications, and consumer
client applications. The DOM is language independent, so you don’t need to worry
about learning an unfamiliar programming language. The DOM is also available in
most of the web browsers in use today, such as Internet Explorer 5 and later and
Netscape Navigator 6 and later (and Mozilla 1.0 and later), so finding a place to test
your applications should be easy. You also learn the different ways of manipulating
documents and their content, how to provide the user with new kinds of user interfaces,
and how to help lighten the server’s load by moving some processing to the client.

Who Should Read this Book
Every day, XML and HTML are becoming more and more prevalent in an ever-
widening variety of applications. Developers who want to quickly create applications
that leverage these technologies can use the Document Object Model to save themselves

xix
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

a lot of time and trouble associated with learning one vendor’s proprietary interfaces
for working with these kinds of structured documents. In this book, you’ll find out
how to

� Work with the common data types and structures needed to create professional
DOM applications

� Discover the structure of a document dynamically and navigate its elements

� Discover and change any part of a document’s content

� Build DOM applications that work across multiple browsers and other
implementations

� Use the browser-based DOM to create entirely new kinds of user interfaces
and navigational elements

� Offload server-side processing onto the client—for example, sorting data
and deriving entirely new data from existing data

� Embed XML data in web pages and present it to the user at runtime

� Take advantage of common algorithms and processes to avoid reinventing
the wheel

� Effectively debug DOM applications in browsers and other implementations

How to Use This Book
This book is organized into 12 different chapters in three parts. Part I introduces the
DOM, explains some important concepts, and introduces the basic structures that
the DOM uses to represent a document. It also introduces the DOM interfaces and
reviews their functionalities and purposes. Part II addresses real-world DOM usage,
from typical DOM algorithms to the DOM support available in various web browsers
and other popular application packages. The subject of debugging DOM-based
applications is also covered. Part III examines several practical uses of the DOM and
shows examples of how to take advantage of the DOM in your applications, from
providing client-side data sorting to performing complex data manipulation directly
in the client.

If you aren’t already familiar with the DOM or its concepts, then you should read
Chapters 1 and 2 for an introduction and high-level overview of the DOM, along
with what it specifically does not address and leaves as implementation dependent.
Otherwise, you can skip directly to Chapter 3 for a look at how DOM interfaces are
used to perform common document operations.

x x T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

It isn’t necessary to have a copy of the W3C DOM specification handy in order to
use this book, although you may find it helpful as a reference. You can download a
copy in one of many different formats (HTML, PDF, PostScript, etc.) by visiting the
W3C on the Web at www.w3.org/DOM.

The different parts of the book are described in detail in the following sections.

Part I: Overview of the W3C Document Object Model
Chapter 1, “Introduction to the DOM,” presents a high-level overview of how the
DOM is organized and how it came into being. In this chapter you learn the history
behind the DOM, the forces shaping its evolution, and the design philosophy that
went into making the DOM what it is today.

Chapter 2, “How the DOM Represents Structured Documents,” discusses how a
DOM implementation represents a structured document to a client application. This
chapter introduces basic data types and document structures that all DOM applications
need to deal with. It also discusses the DOM document tree and other important
theoretical DOM concepts.

Chapter 3 “Navigating and Manipulating Structured Documents,” introduces the
various DOM Level 1 Core API methods available for inspecting document content,
modifying it, and navigating among the document’s elements.

Part II: Real-World DOM
Chapter 4, “Algorithms,” illustrates some common algorithms encountered when
working with the DOM. Read this chapter to learn about basic node traversal,
determining the relative positions of nodes, and determining node content.

Chapter 5, “Browsers,” examines the current level of DOM support in various
browser applications such as Netscape 6, IE 5/6, and Opera 6. This chapter investigates
the major differences among the implementations, the proprietary extensions of each,
and how to go about creating applications that work across multiple browsers.

Chapter 6, “Applications,” explores DOM support in various non-browser
applications such as Macromedia Dreamweaver, Apache Xerces, etc. Here we
discuss the differences among each, how each evolved, and some common
applications.

Chapter 7, “Debugging DOM Applications,” illustrates various debugging
techniques for working with DOM code in browser and non-browser applications.
This chapter examines ways of catching error conditions at runtime, making code
easier to debug, and examining document structure at specific points in the
application’s life.

I n t r o d u c t i o n x x i

Part III: Practical Uses of the DOM
Chapter 8, “Providing Automatic Document Navigation,” demonstrates common
ways of providing the user with navigation aids in a DOM application. In particular,
it shows how to build user interface elements that dynamically populate themselves
based on document content and how to respond to user events to help a user maintain
their place in the document.

Chapter 9, “Dynamic User Interfaces,” demonstrates how to make rich, dynamic
user interfaces using DOM methods. This chapter covers how to dynamically create
and check common form elements in response to user events and how to use HTML
elements to create entirely new types of user interface controls.

Chapter 10, “Client Processing of Data-Driven Documents,” illustrates some common
techniques for document processing on the client side, such as sorting data, reading
the contents of a document to derive entirely new data, and performing data calculations
on the client.

Chapter 11, “Future Directions for the DOM,” looks at the evolution of the DOM
and where it is going. Read this chapter to learn about the changes coming up in
DOM Level 3, new technologies such as XPath and XSLT, and techniques that have
not yet been addressed in the DOM but might be down the road, such as Transaction-
based processing.

The appendix, “DOM Core Level 1 API Reference,” lists the core modules and
interfaces of DOM Level 1, their arguments, and their associated exception types.

x x i i T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

PART

I
Overview of the W3C

Document Object Model

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

CHAPTER

1
Introduction to the DOM

3
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The Document Object Model specification, published by the World Wide
Web Consortium (W3C), represents a significant advancement in the
handling of structured documents. The specification provides a standard

set of programming interfaces for working with information stored in XML
(eXtensible Markup Language), HTML (HyperText Markup Language), and other
types of documents containing structured information. Using the DOM application
programming interface (API), application programmers can write their code to one
common set of methods that will work across various DOM implementations.

The W3C DOM specification is written both for companies who want to
implement DOM functionality in their applications and programmers who want to
use the DOM programming interfaces to manipulate that information. In this book,
we explore the DOM mainly from the programmer’s point of view, using the core
methods of DOM Level 1 to work with structured documents, along with other parts
of the DOM specification where necessary (such as events and Cascading Style
Sheets, or CSS). We begin this chapter by examining the philosophy and history of
the DOM and taking a look at the different DOM levels of support. Then we cover
some important things to remember when reading the W3C DOM specification and
general conventions that the specification uses.

What Is the Document Object Model?
Put simply, the W3C Document Object Model, better known as the DOM, is a set
of platform- and language-neutral application programming interfaces (APIs) that
describe how to access and manipulate information stored in structured XML and
HTML documents. It is a recognized and recommended standard published and
maintained by the W3C, or World Wide Web Consortium, an organization of
member companies dedicated to establishing and promoting standards for the World
Wide Web. According to the W3C DOM specification, the term Document Object
Model was chosen because the DOM is an object model in the traditional object-
oriented programming sense: documents are modeled using objects, and the model
describes the structure of the document as well as its behavior and the behavior of
its objects.

C h a p t e r 1 : I n t r o d u c t i o n t o t h e D O M 5

DOM documents are represented by a tree structure, with each point in the tree
called a node, as shown in the following example. Suppose you have a typical
HTML document, such as this:

<HTML>

<HEAD>

<TITLE>This is a document.</TITLE>

</HEAD>

<BODY>

This is some bold text!

<I>This is some italic text!</I>

</BODY>

</HTML>

This HTML code can be represented as a tree structure, as illustrated in Figure 1-1.
This figure neatly illustrates the relationship between different tags in the HTML
document, much like a family tree. At the top, or root of the tree, is the <HTML> tag
itself. Underneath the root, the other tags become children of the root tag. These
child tags can, in turn, have children of their own; for example, the <HEAD> tag is
clearly a child of the <HTML> tag; and the <TITLE> tag is, in turn, a child of the
<HEAD> tag. Child tags that share the same parent tag are said to be siblings of each
other. The DOM specification uses this type of notation and terminology extensively
in its API.

Figure 1-1 Document tree diagram

6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The DOM Philosophy
As with any large design project, the DOM Working Group had to choose a reasonable
scope for their work, lest the API get out of control and try to accomplish everything.
In addition, the group met face-to-face only once every six weeks, so the design had to
be modular enough to support collaboration among disparate and remote colleagues.
The group also realized early on that there would be a variety of DOM API users, and
satisfying them all would be no easy task.

Faced with these realities, the DOM Working Group had to decide on a simple,
flexible design philosophy for the DOM specification to succeed in being adopted by
vendors. The principles were kept simple and realistic: be open and extensible, make
the spec as easy to understand and implement as possible, and stay language and
platform neutral.

Yet Another Standard?
So why do we need another standard? As the XML language has grown in importance
over the past several years, so, too, has the need for a standardized way of accessing
the information stored in XML documents. The DOM provides a standard set of
methods for adding, removing, changing, and examining a document’s elements and
for navigating a document’s structure. It is important to note that the term document
is used here in a very broad sense. Even though much of the information that is
presented via XML would normally be seen as raw data, XML information is pre-
sented as a document, and the DOM can be used to manage this information.

Before the advent of the DOM, companies that wanted to exchange information
using XML had to use their own proprietary APIs for getting at the data within
these documents; now, vendors can provide a standard set of methods and objects
that represent the internal logical structure of their information regardless of its
internal representation. In fact, the DOM does not explicitly specify anything
regarding how data must be stored internally to an application. Vendors are free
to use whatever internal storage mechanism they feel is most appropriate for their
data. The DOM attempts only to describe how that data is represented to the outside
world from a user of that application’s point of view. Content authors can then
write to these standard APIs instead of having to learn the proprietary interfaces
offered by a large number of different application vendors, which, in turn, enhances
and increases the interoperability of the Internet.

C h a p t e r 1 : I n t r o d u c t i o n t o t h e D O M 7

Design Philosophy
The DOM Working Group, composed of the W3C member companies interested in
working together on the DOM specification, decided early on to adhere to a basic
philosophy regarding the DOM: specify only what needs to be specified. In other
words, focus only on the important parts of document manipulation without
worrying about the details of how a program came to be in possession of the
document object itself or a host of other platform- and implementation-specific
details. The details of the implementation of these and other capabilities were
intentionally left to the individual vendor companies, with the understanding that
later versions of the DOM would attempt to address them.

In addition, the W3C members realized that platform and language neutrality
would play a key part in the DOM’s acceptance by application vendors. Thus, the
DOM was designed to be used with any programming language; and today there are
language bindings for almost every popular language, including Java, JavaScript
(ECMAScript), Python, Perl, C/C++, and others. These bindings are available from
well-known large companies such as Oracle and IBM, as well as popular
open-source movements, such as the Apache Foundation.

The DOM was also designed to be open and extensible; that is, a vendor may add
methods and properties outside of those that the DOM specification defines, yet still
be considered to be compliant with the DOM spec. Microsoft, for example, provides
several Internet Explorer–specific extensions to the DOM API for developers’
convenience without breaking compliance with the base DOM specification.

Object-Oriented vs. Flat Views of the DOM Interfaces
The DOM specification takes a couple of different approaches toward specifying
interfaces for manipulating XML/HTML documents: a traditional, hierarchical
inheritance approach, and a simpler, flattened approach. The inheritance approach
works just like any good object-oriented programmer would expect: there exists a
hierarchy of interface classes, with each subclass inheriting the interfaces of its
superclass. The flattened approach takes the view that all document manipulation
can be accomplished using the Node interface without requiring the programmer
to cast a node reference to another type of object.

According to the specification, this decision was made because casting objects
from one type to another can be an expensive operation in some programming
environments, such as Java and Microsoft’s COM. The DOM Working Group
realized that the DOM API would be used in performance-critical environments

8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

where such operations could have a materially adverse impact on system
performance. Thus, the decision was made to allow a significant amount of the
DOM’s functionality to be used via the Node interface.

Still, the DOM Working Group considers the hierarchical view of the API to be
the “primary” view of the DOM, with the added functionality of the Node interface
as “extra” functionality that developers can use at their discretion. The spec notes
that this leads to some redundancy; for example, even though there is a generic
property called nodeName on the Node interface, there is still a property called
tagName on the Element interface. Both of these properties must contain the same
value; however, the Working Group considers supporting both as being worthwhile
(politics are hard to escape, especially when you’re trying to satisfy as many
constituencies as the DOM Working Group is).

History of the DOM
Before the DOM became an official W3C specification, the web community had
started to develop ways of creating page-based script programs using languages like
JavaScript that could be used among different web browsers. This early work led to
the development of what was called Dynamic HTML, which was primarily used for
such things as richer user interfaces than plain HTML could provide on its own.
The origins of Dynamic HTML were in the web browsers, so its development
was heavily influenced by the needs of web developers and the capabilities of the
browsers themselves. For example, there was no way of dealing with selections of
text in a document because the browser was not an editor and didn’t need to worry
about such things.

When the DOM Working Group was formed at the W3C, application vendors
from other domains, such as XML and HTML editors, joined this early group of
developers in manipulating documents in different ways. Several of these vendors
already had experience with SGML (Standard Generalized Markup Language),
an early forerunner of XML and HTML, and this experience helped influence the
DOM’s development. Many of these vendors had developed their own proprietary
interfaces for working with XML and HTML documents to serve their specific
needs, such as document editing, and these interfaces have, in turn, also influenced
the DOM’s evolution.

The DOM on the Client
The DOM got its start on the client side, becoming available around the time of
Netscape 2 and Internet Explorer 3. Initially, these early implementations were

TE
AM
FL
Y

Team-Fly®

intended to allow web-scripting programmers to manipulate the contents of web
pages, usually for things like animation or richer user interface construction. Thus,
these initial advancements in browser capabilities were referred to as Dynamic HTML,
the ability to dynamically alter the appearance of HTML code in the browser.

As the browsers improved, so did their APIs for manipulating documents.
However, there was no clear standard for doing so, and the programming interfaces
for the two main browsers began to diverge. The W3C formed a working group to
develop a standard way of working with structured documents, and it released its
first recommendation in 1998. Microsoft and Netscape, the two main browser
vendors, began working to bring their applications into conformance with the DOM
specification; and with the release of Internet Explorer 6 and Netscape Navigator 6,
the two companies have achieved complete support for DOM Level 1. Other
browser vendors followed, such as Opera, a compact, multiplatform browser, and
Konqueror, a popular web browser for the Linux platform.

The DOM on the Server
It wasn’t long before companies realized that the benefits of the DOM could be
applied on the server side as well as the client side, and DOM implementations
began appearing for server-side products as well. One well-known example is
the Xerces parser, available from the Apache Foundation, the open-source group
responsible for the Apache web server. The Apache team implemented support for
the DOM in their Xerces parser, available in Java and C++ source-code versions and
additional language bindings for Perl and COM. The Xerces parser can be used for
client applications, and also can be used to provide support for parsing and working
with structured XML documents on the server.

Levels of the DOM
The DOM is organized into separate levels, each providing its own methods and
definitions. These levels define certain capabilities and services that a user of that
level can expect from an application that supports the APIs defined in that level. It is
tempting to think of the different DOM levels as “versions” of the DOM; however,
they are not versions in the true sense of the word. Rather, they define a certain level
of functionality that an application provides to its users; a developer who is working
with a Level 1–compliant DOM implementation can expect less functionality and
features than a Level 2–compliant implementation.

C h a p t e r 1 : I n t r o d u c t i o n t o t h e D O M 9

Currently, there are two official DOM levels: Level 1 and Level 2. Each of these
levels are W3C Recommendations. The latest level, Level 3, is in working draft
form, meaning it has not yet been adopted by the W3C as a formal recommendation.
A fourth level, informally referred to as Level 0, is not an official DOM
specification or working draft; it refers to the DOM implementations that were
provided by the early web browsers such as Netscape 3 and Internet Explorer 3
before the DOM Working Group was formed. These levels have evolved over time,
based upon input from the general public, as well as the DOM member companies.

Each level is typically divided into two or more modules. Common to each level
is the Core module, which specifies the core methods needed for working with
structured documents and objects. The remaining modules focus on more specific
features of that particular level. DOM applications may conform to a particular
DOM level, or to a specific module within a DOM level. For example, Level 1 of the
DOM supports only two modules: XML and HTML. Level 2 increases this support
to more than 14 different modules.

NOTE

When discussing the DOM or a particular implementation of the DOM, the term conformance will
often pop up. This term is used to describe how much of a particular level or module of the DOM is
supported by an implementation. In general, an implementation is said to be conformant to a DOM
level if it supports the methods defined in the Core section of that level. DOM implementations may
conform to a level of the DOM or even to a particular module within that level.

Level 1
DOM Level 1 was adopted as a W3C Recommendation in October of 1998 (a second
edition working draft was published in September of 2000). It is divided into two
modules: Core and HTML. The Core module provides a basic set of methods for
accessing and manipulating document objects in any structured document, along
with a set of extended interfaces for working with XML content. The HTML module
provides higher-level interfaces that are used along with those in the Core module
for working with HTML documents, though the Core interfaces are usually enough
for working with both XML and HTML content.

These two modules provide sufficient functionality for working with parsed XML
and HTML documents inside of products that support the API and for populating a
skeleton document object using only the provided methods. Creating the document
object and saving/loading it to and from persistent storage are left as application-
specific operations.

1 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Most applications at the time of this writing support (to varying degrees) most
of the methods in Level 1. In particular, the two main browser vendors, Netscape
and Microsoft, have implemented almost complete support for DOM Level 1 in
Netscape 6 and Internet Explorer 6, respectively. Other applications, such as
Macromedia’s popular Dreamweaver HTML editing program, support only a subset
of the Level 1 API.

Level 2
Level 2 of the DOM was adopted as a W3C Recommendation in November of 2000.
Level 2 is divided into 14 distinct modules (Core, XML, HTML, Range, Traversal,
CSS, CSS 2, Views, Stylesheets, Events, User Interface Events, Mouse Events,
Mutation Events, and HTML Events) and organized into 5 major modules (Core,
Views, Events, Style, and Traversal/Range).

DOM Level 2 updated the Core functionality provided by DOM Level 1 with the
addition of namespace support, as well as new methods to handle circumstances that
Level 1 did not provide explicit support for. For example, DOM Level 1 did not
specify a way to create an empty document; DOM Level 2 now includes a method
for handling this common case.

In addition to providing fundamental interfaces for handling structured
documents, DOM Level 2 stretches its wings a little bit and attempts to address other
areas of document handling, such as

� Range Specifies methods for working with ranges of content in a parsed
DOM document. Though this does not necessarily mean that every range
corresponds to a selection of content as made by a GUI user, these selections
can be returned to a DOM client application as a range.

� Traversal Provides utility interfaces for selectively traversing and filtering a
document’s content.

� Style/CSS Provides base interfaces for supporting any kind of style sheet.
When a module provides support for a specific type of style sheet language,
it includes interfaces that are derived from these base interfaces. For example,
the CSS module provides interfaces that allow programmatic access to CSS
constructs from within DOM applications.

� Views Provides interfaces that allow documents to have more than one view
of the document source. For example, a document may have a view that is
computed in real time, such as the application of style sheets, or it may have
several views in different browser frames of the same document.

C h a p t e r 1 : I n t r o d u c t i o n t o t h e D O M 1 1

1 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

� Events Specifies a generic event mechanism for registering event handlers,
describing the flow of events in an application and providing event-specific
information for the context of each event.

Level 3
Level 3 is still a work in progress and was last issued as a working draft in
September of 2001 (though a new draft may have been released by the time you read
this). DOM Level 3 further builds on the modules in DOM Levels 1 and 2 and
introduces a few new ones:

� Abstract Schemas Provides interfaces representing XML abstract schemas,
for example, DTDs and XML Schemas.

� Load/Save Specifies interfaces for serializing a document to and from
persistent storage.

� XPath Provides interfaces for using the XPath 1.0 syntax for declaratively
locating nodes within a DOM document.

Conventions Used in the DOM Specification
When reading the W3C DOM specification, there are some important issues that you
need to keep in mind. First, because the DOM was intended to be used in a multitude
of programming environments and implementation languages, the DOM Working
Group had to select an interface definition language (IDL) with which to define the
interfaces that would lend itself to a language- and platform-independent spec. The
Working Group chose to use the OMG (Object Management Group) IDL as
specified by version 2.3.1 of the CORBA specification. The OMG IDL is used only
as a way of specifying these interfaces and should not be used to infer an association
with any particular implementation language. The following is an example of an
interface definition using OMG IDL:

Interface DOMImplementation {

boolean hasFeature(in DOMString feature, in DOMString version);

// Introduced in DOM Level 2:

DocumentType createDocumentType(in DOMString qualifiedName,

in DOMString publicId, in DOMString systemId)

raises(DOMException);

C h a p t e r 1 : I n t r o d u c t i o n t o t h e D O M 1 3

// Introduced in DOM Level 2:

Document createDocument(in DOMString namespaceURI,

in DOMString qualifiedName, in DocumentType doctype)

raises(DOMException);

// Introduced in DOM Level 3:

DOMImplementation getInterface(in DOMString feature);

};

Second, the interfaces specified in the DOM spec are an abstraction, similar to
the way one might use abstract base classes in C++ or interfaces in Java. They are
simply a way of describing how to access and manipulate an application’s internal
representation of a given object. Interfaces—and this is taken directly from the
spec—“do not imply a particular concrete implementation.” Remember, each DOM
application is free to maintain whatever internal representation of document objects
it feels is best for that application, as long as the interfaces in the DOM spec are
respected.

Finally, the DOM is designed to be implemented in any language and avoid
implementation dependencies, and the DOM spec particularly calls out four
important points relevant to this fact:

1. “Attributes defined in the IDL do not imply concrete objects which must have
specific data members.”

In other words, just because the spec specifies an attribute attr on interface
intr does not necessarily mean your code can access it using the code form
intr.Attr. Many DOM implementations translate this notation to a pair of
setxxx() and getxxx() functions, that is, intr.getAttr() and
intr.setAttr(). Attributes that are read-only will have only a
corresponding get() function.

2. “DOM applications may provide additional interfaces and objects not found in
this specification and still be considered DOM conformant.”

This is important: the DOM was designed to be extensible from the beginning,
and the decision was made that application vendors could add their own
interfaces to a particular implementation without breaking conformance to the
spec. This allows vendors the freedom and flexibility to add convenient,
differentiating features to their DOM implementations.

3. “Because we specify interfaces and not the actual objects that are to be created,
the DOM cannot know what constructors to call for an implementation.”

Basically, the spec is saying here that the objects that are specified by the
DOM are implementation specific, and they will only provide interfaces for
creating those objects. The DOM spec provides interfaces in the form of
createxxx() on the Document interface, where xxx is the type of
document object to be created.

4. “The DOM spec does not specify multithreading mechanisms.”

This is pretty self-explanatory. The DOM specification does not specify
anything having to do with multithreading or other thread-safety topics. For
the moment, this is left up to individual implementations.

What the DOM Isn’t
Now that we’ve spent the better part of the chapter discussing what the DOM is,
we’ll take a moment and point out a few of the things that the DOM is not (in fact,
the actual W3C specification goes out of its way to do pretty much the same thing—
perhaps they wanted to avoid any misconceptions of the DOM as early as possible):

� The DOM isn’t a way of creating programs that are, in the spec’s words,
“binary compatible,” in other words, usable across disparate computer systems
without recompiling. Programs that are written using the same language
binding will be source-code compatible across platforms, but you can’t take a
DOM program written for Windows and run it on a Macintosh without
recompiling it, for example.

� The DOM doesn’t describe how to persist objects into XML or HTML, like
SOAP (Simple Object Access Protocol) does, for example. It represents
documents as a collection of objects.

� The DOM isn’t a set of specific data structures. It merely describes
relationships in a logical fashion. Even though the DOM specification (and this
book) will talk about such things as parent-child relationships of objects, they
are logical relationships and do not describe any internal representation of
objects or data.

� The DOM does not describe what information in a document is relevant or how
that information is structured; that’s what XML Infoset does. The DOM is just
an API to this information.

1 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Conclusion
In this chapter, we introduced the basic concepts of the Document Object Model,
such as the document tree structure, and we looked at some of the history behind the
DOM’s origins in SGML and Dynamic HTML. We also examined the different
DOM levels and the different types of functionality they provide, along with the
different types of DOM implementations available for both the client and server.

In the next chapter, we’ll start getting more involved with the DOM’s technical
side, beginning with a look at how the DOM represents a structured document, along
with the different parts of the document as stored by a DOM implementation.

C h a p t e r 1 : I n t r o d u c t i o n t o t h e D O M 1 5

This page intentionally left blank.

CHAPTER

2
How the DOM

Represents Structured
Documents

17
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In this chapter, we examine the structure of a DOM document and the various
types of objects the DOM uses to represent a document’s various parts. We
also introduce the core data types and interfaces that the DOM uses to represent

information that a DOM application needs to manipulate. In particular, we closely
examine the concepts of the document tree structure and the individual document
nodes that make up the DOM tree, along with their standard properties and methods.
Finally, we take a look at the extended interfaces for manipulating XML content. All
of this information will build the foundation necessary for working with documents
in later chapters.

This chapter contains a lot of information; if you are so inclined, you can skip
ahead to the following chapters and refer back to this one as necessary. It is
recommended, though, that you at least familiarize yourself with the material in this
chapter before continuing.

Basic DOM Data Types
Every programming interface has basic, atomic data types that are essential to
its inner workings, and the DOM is no different. The DOM Working Group had
to define some basic data types to represent the information stored inside of a
document that could be used and implemented across a variety of languages (both
programming and spoken) and platforms. For the most part, they were able to
borrow the existing data types from other languages (such as short integers and
such), but for more complex types, the committee invented their own. As of DOM
Level 2, the basic data types in use by the specification are the DOMString and
DOMTimeStamp types.

The DOMString Type
The DOMString type is used to describe a sequence of characters, with each
character represented as 16-bit units. It has the following definition in the DOM
specification:

valuetype DOMString sequence<unsigned short>;

According to the DOM spec, DOMStrings are encoded using UTF-16 (which is
defined in the Unicode specification). The UTF-16 encoding was selected because it
is in wide use in the high-tech industry and it includes support for a wide variety of
spoken languages throughout the world.

1 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

NOTE

The DOM specification defines the name of the data type to be DOMString, but certain language
bindings use names that are different. For example, the Java language uses the String data type
to represent DOMStrings because they both happen to be UTF-16 encoded.

DOMStrings are used throughout the DOM specification wherever strings are
required. Often, it is necessary to convert a DOMString to a platform-native string
type. Some DOM implementations (such as Xerces, for example) provide a method
for converting DOMStrings into native character strings. This is purely a convenience
provided by the implementation, however; there is no requirement that a DOM
implementation provide such a method, and there are no such methods defined in the
DOM spec.

The DOMTimeStamp Type
The DOM specification defines the DOMTimeStamp data type as

typedef unsigned long long DOMTimeStamp;

The DOMTimeStamp is used, according to the spec, to represent a number of
milliseconds. It does not specify what the base date is for 0 milliseconds.

NOTE

The DOM specification uses the DOMTimeStamp type, but language bindings may use different
types. Java, for example, uses the long type, while the ECMAScript binding uses the Date type.

Handling Errors: The DOMException Interface
One interface that should be introduced right up front is the DOMException interface.
DOMExceptions are used by DOM implementations to report error conditions that
are, interestingly enough, “exceptional.” In other words, the requested operation is
impossible to perform for some reason—either the implementation program has
become unstable, or there is some logical error in the DOM program that prevents it
from continuing. In other nonexceptional cases, specific error codes are returned by
interface methods when an error occurs.

The DOMException interface is defined in IDL as

exception DOMException {

unsigned short code;

};

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 1 9

2 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Of course, some languages don’t support exceptions. For these particular
bindings, an interface’s methods may return regular error codes that correspond to
the DOM exception that would have been raised otherwise. For specific information
on what exceptions are and how they work, you should consult the documentation
for your specific language binding. The specific exception codes defined by the
DOM are introduced later in this chapter.

The Document Tree Structure
As briefly alluded to in the first chapter, the DOM represents a document using a
tree structure. In this section, we take a more in-depth look at the document structure
and how the DOM represents the various parts of a document. Let’s take another
look at the example from Chapter 1. Recall our example code listing:

Listing 2-1 A typical HTML document

<HTML>

<HEAD>

<TITLE>This is a document.</TITLE>

</HEAD>

<BODY>

This is some bold text!

<I>This is some italic text!</I>

</BODY>

</HTML>

For this document, there is a corresponding tree structure that illustrates how the
DOM would represent the relationships among the document’s elements, as shown
in Chapter 1 and repeated here in Figure 2-1.

In fact, the DOM document tree structure can be thought of as a collection of
individual subtrees. For example, the branch of the overall tree that begins with
the <BODY> tag can be thought of as its own tree within the larger document tree.
In a sense, a DOM document can thus be thought of as a collection of trees, or a
grove. The DOM, of course, doesn’t define how the information represented by
the tree structure shown in Figure 2-1 is actually implemented for a given DOM
implementation; it simply says the information needs to be exposed to the outside
world in this way.

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 2 1

Each box in Figure 2-1 is called a node in DOM terminology. A node is an object
representation of a particular element in the document’s content. Nodes have special
names, depending on where they are located in the document tree and what their
position is relative to other nodes.

All documents have a root node, which is the node located at the base of the tree
structure. In Figure 2-1, the root node is the box representing the <HTML> tag. If a
node has one or more nodes below it, those nodes are referred to as child nodes of
the given node, and each of these child nodes is a descendant of its parent node. The
node represented in the figure by the <HEAD> tag is a child of the <HTML> node,
and it in turn, has a child node that represents the <TITLE> tag. This parent-child
relationship between nodes is used and referred to extensively throughout the DOM
API. Nodes that have no children of their own are called leaf nodes, and they are the
nodes located at the furthest reaches of the tree. The text nodes that represent the text
content of the , <I>, and <TITLE> tags in the figure are leaf nodes.

Continuing with the parent-child relationship metaphor, nodes that share the same
parent are called sibling nodes. In Figure 2-1, the <BODY> and <HEAD> tags are
sibling nodes. If two nodes descend from the same node somewhere in the tree
structure, they are said to have a common ancestor node. Figure 2-2 highlights the
common ancestor nodes shared by the nodes represented by the and <I> tags,
which are the <BODY> and <HTML> tags.

Figure 2-1 Document tree diagram

Nodes aren’t just limited to elements, such as <HEAD> and <TITLE>.
Everything in a document is represented as a node, including comments, attributes
of elements, text content, XML processing instructions, document type declarations,
and so on. If it’s in the document, it can be represented as a node.

The DOM API provides several interfaces in the Core module for manipulating
nodes and inserting/extracting information to and from nodes. There are also
methods provided for determining and changing the relationships between nodes
and discovering the type of a particular node.

DOM Node Types
The DOM specification defines 12 different types of nodes that can be contained
within a document. Each type of node has a set of related attributes and capabilities
associated with it. The following table lists the different types of nodes available as
of DOM Level 2 and provides a brief description of each type:

Node Type Description
Element Represents an element in an HTML or XML document, which

is represented by tags. In Figure 2-1, the <BODY> node is an
Element type.

Attribute Represents an element’s attribute. For example, a tag with the
syntax has an Attribute
node named src.

2 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 2-2 Common ancestor nodes

Node Type Description
Text Represents the textual content of an element. In Figure 2-1,

the node has a Text child node that represents the text,
“This is bold text!”

CDATASection Represents a Character Data section in an XML document.

Comment Represents a comment. Comments are of the form <!--
comment text -->

Document Represents the root node of a document.

DocumentType Each Document node has a DocumentType node that provides
a list of entities defined in the document.

DocumentFragment Document fragments can be thought of as lightweight or
rather minimal Document nodes. They came about because it
is common to want to extract just a portion of a document for
processing.

ProcessingInstruction Represents a specific instruction to be used by the document
processor. It is used as a way of keeping processor-specific
information in the document’s content.

Entity Represents an entity in an XML document.

EntityReference Represents an entity reference in the document.

Notation Represents a notation in an XML document. Notations have
no parent nodes.

Usually, your DOM programs will only need to manipulate the most important
node types, which contain the actual content of the document: Document, Element,
Comment, Attribute, CDATA, and Text. The other node types are typically used to
describe the format and structure of the information contained in a complex XML
document.

NOTE

Specific definitions of each of the node types and their syntax can be found in the W3C XML and
HTML specifications; the detailed definition of each of these node types is beyond the scope of
this book.

Each node is allowed to have child nodes according to its node type. Some types
of nodes are not permitted to contain child nodes at all. The following table lists the
types of child nodes that each node type is allowed to have.

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 2 3

Node Type Allowable Child Node Types
Document Element (one at most), ProcessingInstruction, Comment,

DocumentType

DocumentFragment Element, ProcessingInstruction, Comment, Text,
CDATASection, EntityReference

DocumentType None

Element Element, Text, Comment, ProcessingInstruction,
CDATASection, EntityReference

Comment None

Text None

Attribute Text, EntityReference

EntityReference Element, ProcessingInstruction, Comment, Text,
CDATASection, EntityReference

Entity Element, ProcessingInstruction, Comment, Text,
CDATASection, EntityReference

CDATASection None

Notation None

If a DOM program tries to assign a node as a child of another node that is not
allowed to have a child node of the given type, then the DOM implementation will
indicate an error condition by raising a DOMException.

The Fundamental Core DOM Interfaces
In this section, we introduce the interfaces that are fundamental to manipulating
information inside of a DOM document. We will cover only the interfaces in this
section that are related to working with documents that contain HTML and XML
content. The next section will cover the extended Core interfaces, which deal with
the set of interfaces needed for working with XML-specific document structure
elements.

We’ll start by taking a look at the specific types of errors that can occur while
working with the fundamental interfaces, and then introduce and walk through the
basic Node interface. Next, we’ll examine some utility interfaces for working with
ordered and unordered lists of nodes, and, finally, introduce the interfaces for
specific node types. In the next chapter, we’ll use these interfaces to manipulate
the contents of a DOM document.

2 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

DOMException Codes
DOMExceptions were introduced and discussed earlier in this chapter. Table 2-1
lists the current DOMException types, their meanings, and the DOM Level where
they were introduced. Each interface can raise one or more of the following
DOMException types in the course of working with a document:

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 2 5

Exception Code Description of Error DOM Level
INDEX_SIZE_ERR A specified array index or size is

negative, or is larger than the maximum
allowed value.

1

DOMSTRING_SIZE_ERR The given range of text doesn’t fit into
a DOMString.

1

HIERARCHY_REQUEST_
ERR

A node was inserted in a place where
that particular node type isn’t allowed
to be.

1

INUSE_ATTRIBUTE_
ERR

An attempt was made to add an attribute
that is already in use somewhere else.

1

INVALID_ACCESS_
ERR

A particular parameter or operation is
not supported by the underlying object.

2

INVALID_CHARACTER_
ERR

An invalid or illegal character is
specified, such as in a name. The
definition of a legal character can be
found in production 2 in the W3C XML
specification, and the definition of a
legal name character can be found in
production 5 of the same spec.

1

INVALID_MODIFICATION_
ERR

An attempt was made to modify the
type of the underlying object.

2

INVALID_STATE_ERR An attempt was made to use an object
that is not, or is no longer, usable.

2

NAMESPACE_ERR An attempt was made to create or
change an object in a way that is
incorrect with regard to namespaces.

2

Table 2-1 DOMExceptions

Knowledge of how exceptions work is not required to learn how to use the DOM
interfaces, though more and more implementations are starting to use them. For the
specific DOMExceptions that can be raised by each DOM method, you should refer
to the corresponding interface definition for that method in the W3C specification.

The DOM Node Interface
Nodes are a fundamental concept of the DOM (after all, everything in a document
is some kind of node), so let’s begin by introducing the base interface that provides
access to the properties and methods of document nodes. The specific types of nodes,
such as Document, Element, and so on, all inherit their methods and properties from
the base Node interface.

Following the “everything is a node” part of the DOM’s design philosophy, the
Node interface contains all of the methods and properties necessary for basic node
manipulation, except for creating new nodes. Node creation is handled by the
Document interface because all nodes exist only in the context of a containing
document.

2 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Exception Code Description of Error DOM Level
NOT_FOUND_ERR An attempt was made to reference a

node in a context where it does not
exist.

1

NOT_SUPPORTED_ERR The DOM implementation does not
support the requested type of object or
operation.

1

NO_DATA_ALLOWED_
ERR

Data is specified for a node that does
not support data

1

NO_MODIFICATION_
ALLOWED_ERR

An attempt was made to modify an
object where modifications are not
allowed.

1

SYNTAX_ERR An invalid or illegal string was
specified.

2

WRONG_DOCUMENT_
ERR

A node is used in a different document
from the one that created it (and the
document doesn’t support it).

1

Table 2-1 DOMExceptions (continued)

It is important to note that even though the Node interface exposes methods and
properties for dealing with child nodes, not all nodes in a document may be allowed
to have child nodes. Calling these methods on a node that does not have child nodes
will result in a DOMException being raised.

Some of the properties exposed in the Node interface are put there for the
convenience of the developer, such as nodeName, nodeValue, and attributes.
These are provided so that the information provided by these properties can be
retrieved without having to cast down to the specific node type for a given node. It is
common in many types of DOM algorithms to have a list of nodes to process, and it
may be time consuming and inelegant to have to first determine the node type before
being able to access certain parts of its data. Placing these properties in the base
Node interface, even for nodes that don’t contain that particular information,
simplifies this process.

Some of the information provided in the Node interface may be duplicated in
derived interfaces, and the derived interfaces themselves may provide additional
information that is specific to that node type. In some cases, the properties in the
Node interface may have no meaning for a particular type of node (for example, a
Comment node cannot have attributes). In these instances, that particular property
returns null.

The Node interface has the following IDL definition:

interface Node {

// NodeType

const unsigned short ELEMENT_NODE = 1;

const unsigned short ATTRIBUTE_NODE = 2;

const unsigned short TEXT_NODE = 3;

const unsigned short CDATA_SECTION_NODE = 4;

const unsigned short ENTITY_REFERENCE_NODE = 5;

const unsigned short ENTITY_NODE = 6;

const unsigned short PROCESSING_INSTRUCTION_NODE = 7;

const unsigned short COMMENT_NODE = 8;

const unsigned short DOCUMENT_NODE = 9;

const unsigned short DOCUMENT_TYPE_NODE = 10;

const unsigned short DOCUMENT_FRAGMENT_NODE = 11;

const unsigned short NOTATION_NODE = 12;

readonly attribute DOMString nodeName;

attribute DOMString nodeValue;

// raises(DOMException) on setting

// raises(DOMException) on retrieval

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 2 7

2 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

readonly attribute unsigned short nodeType;

readonly attribute Node parentNode;

readonly attribute NodeList childNodes;

readonly attribute Node firstChild;

readonly attribute Node lastChild;

readonly attribute Node previousSibling;

readonly attribute Node nextSibling;

readonly attribute NamedNodeMap attributes;

// Modified in DOM Level 2:

readonly attribute Document ownerDocument;

Node insertBefore(in Node newChild,

in Node refChild)

raises(DOMException);

Node replaceChild(in Node newChild,

in Node oldChild)

raises(DOMException);

Node removeChild(in Node oldChild)

raises(DOMException);

Node appendChild(in Node newChild)

raises(DOMException);

boolean hasChildNodes();

Node cloneNode(in boolean deep);

// Modified in DOM Level 2:

void normalize();

// Introduced in DOM Level 2:

boolean isSupported(in DOMString feature,

in DOMString version);

// Introduced in DOM Level 2:

readonly attribute DOMString namespaceURI;

// Introduced in DOM Level 2:

attribute DOMString prefix;

// raises(DOMException) on setting

// Introduced in DOM Level 2:

readonly attribute DOMString localName;

// Introduced in DOM Level 2:

boolean hasAttributes();

};

The first 12 constants defined by the Node interface correspond to the 12 node
types that a document can contain. Each node has one of these values stored in its

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 2 9

nodeType property, which is read-only: you cannot change the type of a node once
it has been created.

The nodeName, nodeValue, and attributes properties have different
meanings based upon the node’s type. The following table lists the individual
meanings of the fields nodeName, nodeValue, and attributes for each
particular node type:

Node Type nodeName nodeValue attributes

Document #document null null

Element Tag name null NamedNodeMap

Attr Attribute name Attribute value null

Comment #comment Comment text null

Text #text Content of text node null

CDATASection #cdata-section CDATASection
content

null

DocumentFragment #document-
fragment

null null

DocumentType Name of document
type

null null

Entity Entity name null null

EntityReference Name of
referenced entity

null null

ProcessingInstruction Target name Content excluding
the target

null

Notation Notation name null null

The parentNode property refers to the node that is the parent of this node. All
nodes with the exception of Attr, Document, DocumentFragment, Entity, and Notation
nodes can have parent nodes. If a node has been removed from the document tree
or has been newly created but not yet inserted into the document, then this property
is null.

The childNodes property contains a list of the nodes that are children of this
node. If the node contains no children, then this is an empty list.

The firstChild and lastChild properties represent this node’s first and
last children, respectively. They are null if there are no such child nodes.

The previousSibling and nextSibling properties refer to the nodes that
immediately precede and follow this node. If there are no such nodes, then these
properties are null.

3 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The attributes property contains a NamedNodeMap structure that represents
an unordered collection of the attributes attached to this node if the node is an
Element node. It is null otherwise.

The ownerDocument property contains a reference to the root node of the document
that contains this node. If this node is itself a Document node, or is a DocumentType node
that is not yet being used by a document, then this property is null.

The namespaceURI property specifies the namespace URI for this node, or
null if it is unspecified. For nodes that are not elements or attributes, or any node
created with a DOM Level 1 method, this property will be null.

The prefix property holds the namespace prefix for this node.
The localName property returns the local part of the qualified name for this node.

This property will always be null for nodes that are not elements or attributes, or for
any node created with a DOM Level 1 method.

The insertBefore() method inserts a new node before the specified child
node of this node. It accepts two arguments: newChild and refChild. The
newChild argument is the node to be inserted. The refChild node specifies the
child node to insert the new node before. If newChild is a DocumentFragment,
then all of its child nodes are inserted before refChild. If the newChild node is
already elsewhere in the tree, it is removed first. The return value is the node being
inserted.

The replaceChild() method replaces this node’s specified child node with
a new node. The first argument, newChild, is the node that will replace the child
node. The second argument, oldChild, is the node to be replaced. The function
returns the old child node. If newChild is a DocumentFragment, then oldChild
is replaced by all of the DocumentFragment’s child nodes.

The removeChild() method removes the child node specified by the
oldChild argument and returns it.

The appendChild() method adds a new child node to the end of the list of this
node’s child nodes and returns the added node. The newChild argument is the new
child node to be added. If newChild already exists in the tree, it is first removed.
If newChild is a DocumentFragment, then all if its child nodes are added to this
node’s children.

The hasChildNodes() method returns true if this node has child nodes, false
otherwise.

The cloneNode() method duplicates this node and returns a copy. The
duplicated node is not inserted into the tree (it has a parentNode of null). When
an Element node is cloned, all attributes, along with their values, are also copied.
This includes attributes that are generated by the XML processor as default attributes.
If the deep argument is true, then this operation performs a “deep clone,” in which all

child nodes of this node are also cloned. According to the DOM specification, cloning
Document, DocumentType, Entity, and Notation nodes is implementation dependent.

The normalize() method removes all empty text nodes and forces adjacent
text nodes that are not separated by structure nodes (CDATA, Elements, Comments,
and so on) to be joined into single Text nodes. This method is used to ensure that a
document’s text nodes will be in the same state as if the document had been saved
and then reloaded.

The isSupported() method tests whether the DOM implementation
implements a specific feature that is supported by this node. The feature and version
arguments are the same as those passed to the hasFeature() method of the
DOMImplementation interface.

The hasAttributes() method returns true if this node has any elements,
false otherwise.

Node Helper Interfaces: NodeList and NamedNodeMap
The Core DOM interfaces provide two “helper” interfaces for working with sets
of nodes: NodeList, which implements an interface for accessing a collection of
ordered nodes, and NamedNodeMap, which provides support for accessing a
collection of nodes by name.

All node references in NodeLists and NamedNodeMaps are “live,” which, as
defined by the DOM spec, means that the nodes contained in a node collection are
directly affected by changes to the node in the document tree. For example, if a
particular node is in a certain node collection and that node is somehow changed in
the document by another part of the DOM program, then that change is immediately
reflected in all NodeLists and NamedNodeMaps that contain a reference to that node.

NodeList
The NodeList interface provides a single method for accessing an ordered list of
nodes. The list of nodes in a NodeList is maintained in the order that the nodes are
encountered in the document itself. For example, in Listing 2-1, the <HEAD> and
<BODY> nodes are both children of the <HTML> node. If you were to obtain the
list of child nodes for the <HTML> node, you would receive a NodeList with two
elements: one for the <HEAD> node, and one for the <BODY>, in that order.

The NodeList interface contains one property, length, which contains the
number of elements in the NodeList. The item() method accepts a single
argument, which is the index in the NodeList of the element to retrieve, and returns
the requested Node object.

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 3 1

The NodeList interface has the following IDL definition:

interface NodeList {

Node item(in unsigned long index);

readonly attribute unsigned long length;

};

NamedNodeMap
The NamedNodeMap interface provides support for accessing a collection of nodes
by name. NamedNodeMaps do not imply an ordering of the nodes that they contain.
It has the following IDL definition:

interface NamedNodeMap {

Node getNamedItem(in DOMString name);

Node setNamedItem(in Node arg)

raises(DOMException);

Node removeNamedItem(in DOMString name)

raises(DOMException);

Node item(in unsigned long index);

readonly attribute unsigned long length;

// Introduced in DOM Level 2:

Node getNamedItemNS(in DOMString namespaceURI,

in DOMString localName);

// Introduced in DOM Level 2:

Node setNamedItemNS(in Node arg)

raises(DOMException);

// Introduced in DOM Level 2:

Node removeNamedItemNS(in DOMString namespaceURI,

in DOMString localName)

raises(DOMException);

};

The NamedNodeMap interface has one property, length, which is the number
of elements contained within the NamedNodeMap. The getNamedItem()method
returns a node given the node’s name. The setNamedItem()method adds a node
to the NamedNodeMap with the supplied node name. The removeNamedItem()
method removes a node from the list given the node name. The item()method allows
the NamedNodeMap to return a node based on an ordinal number, which is the index of
the item in the NamedNodeMap. The other three methods are namespace-aware versions
of the first three methods.

3 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 3 3

NOTE

Even though the NamedNodeMap interface contains an item() method that will return a node
based on an index, it is provided simply to allow the contents of a NamedNodeMap to be
enumerated.

The DOMImplementation Interface
The DOMImplementation interface provides methods that are not dependent upon
any single instance of a DOM document. It is up to individual implementations to
determine how a DOM program retrieves a DOMImplementation interface. For
example, the Netscape and Microsoft browsers provide an implementation object
on the document object.

interface DOMImplementation {

boolean hasFeature(in DOMString feature,

in DOMString version);

// Introduced in DOM Level 2:

DocumentType createDocumentType(in DOMString qualifiedName,

in DOMString publicId,

in DOMString systemId)

raises(DOMException);

// Introduced in DOM Level 2:

Document createDocument(in DOMString namespaceURI,

in DOMString qualifiedName,

in DocumentType doctype)

raises(DOMException);

};

The DOMImplementation interface contains no properties. In DOM Level 1, there
was only one method, hasFeature(), that DOM programs could use to test for
the presence of a particular interface or feature. The first argument is a string that
contains the name of the DOM module or feature that the program is testing for, and
the second argument is a string specifying the level of the feature to test for. If a
level is not specified, the method returns true if the implementation supports any
level of the requested feature.

DOM Level 1 implementations were free to specify how a DOM program
created new documents. In DOM Level 2, the createDocument() and
createDocumentType() methods were added to fill this gap, but only for XML
documents. HTML-only implementations do not need to implement these methods
and are free to specify how HTML documents are created.

The createDocument() method creates a new XML document and accepts
three arguments. The first, namespaceURI, accepts a namespace URI for the

document (see the XML Namespaces specification). This is not required if the
following argument, qualifiedName, does not specify a namespace prefix. The
qualifiedName argument is the name of the document, optionally preceded
by a namespace name and colon (in which case, the namespaceURI argument is
not optional). The last argument, docType, is the type of document to create, as
specified by a DocumentType object.

The createDocumentType() method creates an empty DocumentType
object and also takes three arguments. The first, qualifiedName, is the qualified
name of the DocumentType to create. The second and third arguments, publicID
and systemID, specify the public ID and system ID of the DocumentType.

NOTE

Even though this interface has been around since DOM Level 1, many existing implementations do
not provide it, including the Netscape and Microsoft web browsers versions 5.0 and earlier. In
these cases, it is up to the developer to determine whether a particular implementation exposes
the features that a program needs.

The Document Interface
The Document interface represents the entire document, whether it is an HTML or
XML document. It serves as the primary gateway to accessing the document’s data.
In addition to representing the root of the document tree, the Document interface
contains the “factory” methods necessary for creating new document objects, such as
elements, attributes, Text nodes, comments, and so on. When these factory methods
are used to create new document nodes, each node’s ownerDocument property is
set to the document that created it.

The Document interface has the following IDL definition:

interface Document : Node {

readonly attribute DocumentType doctype;

readonly attribute DOMImplementation implementation;

readonly attribute Element documentElement;

Element createElement(in DOMString tagName)

raises(DOMException);

DocumentFragment createDocumentFragment();

Text createTextNode(in DOMString data);

Comment createComment(in DOMString data);

CDATASection createCDATASection(in DOMString data)

raises(DOMException);

ProcessingInstruction createProcessingInstruction(

3 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 3 5

in DOMString target, in DOMString data)

raises(DOMException);

Attr createAttribute(in DOMString name)

raises(DOMException);

EntityReference createEntityReference(in DOMString name)

raises(DOMException);

NodeList getElementsByTagName(in DOMString tagname);

// Introduced in DOM Level 2:

Node importNode(in Node importedNode,

in boolean deep)

raises(DOMException);

// Introduced in DOM Level 2:

Element createElementNS(in DOMString namespaceURI,

in DOMString qualifiedName)

raises(DOMException);

// Introduced in DOM Level 2:

Attr createAttributeNS(in DOMString namespaceURI,

in DOMString qualifiedName)

raises(DOMException);

// Introduced in DOM Level 2:

NodeList getElementsByTagNameNS(in DOMString namespaceURI,

in DOMString localName);

// Introduced in DOM Level 2:

Element getElementById(in DOMString elementId);

};

The docType property contains the document’s document type declaration. This
returns null for all HTML documents and XML documents without a document type
declaration. As of DOM Level 2, editing the DocumentType is not supported, though
this is planned for the future. In fact, the docType can’t be edited in any way
whatsoever, including using Node methods like removeNode().

The implementation property refers to the implementation object that
handles this particular document. A DOM application can deal with objects created
from multiple implementations.

The documentElement property provides direct access to the child node that
represents the root element of the document (that is, the <HTML> tag for HTML
documents).

The createElement() method creates a new element with the supplied tag
name. For example, createElement("IMG") creates a new IMG element, but
does not insert it into the document.

The createDocumentFragment() method creates a new, empty
DocumentFragment.

3 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The createTextNode() method creates a new Text node. The data argument
is the initial text content for the node.

The createComment() method creates a new Comment node. The data
argument is the initial text content for the comment.

The createCDATASection() method creates a new CDATASection node.
The data argument is the initial text content of the node.

The createProcessingInstruction() method creates a new
ProcessingInstruction node and sets the target and data portions of the processing
instruction to the values of the target and data arguments.

The createAttribute() method creates a new attribute node with the name
supplied in the name argument. The node’s initial value is an empty string.

The createEntityReference() method creates a new EntityReference
node. If the referenced entity is known, the child list of the EntityReference node is
made the same as that of the corresponding Entity node.

The createElementNS() and createAttributeNS() methods are
namespace-aware versions of the createElement() and
createAttribute() methods. In both cases, the namespaceURI argument
specifies the namespace URI of the element or attribute. The qualifiedName
argument gives the qualified name of the element or attribute.

The getElementsByTagName() method returns a NodeList containing all of
the elements in the document with the same tag name as the tagname argument. The
NodeList is ordered by the order in which the Elements were encountered in a preorder
traversal of the document tree. If the tagname argument is *, all tags are matched.

The getElementsByTagNameNS() method is a namespace-aware version of
the getElementsByTagName() method. It returns a NodeList containing all of
the Elements in the document that match the localName and namespaceURI
arguments.

The importNode() method imports a node into this document from another
document. The node in the source document is not affected in any way: a copy of
that node is made before being imported. The returned Node object has no parent
node. If the deep argument is true, the entire subtree under the source node is
imported as well. This argument has no effect on nodes that cannot have child
nodes. Certain types of nodes, such as Documents and DocumentTypes, cannot be
imported.

NOTE

There are certain implications of importing nodes based upon the type of node being imported.
See the detailed description of the Element interface in the W3C DOM specification for more
information.

The getElementByID() method returns the Element whose ID matches the
elementID argument. If no element exists with a matching ID, this method
returns null.

NOTE

DOM implementations must state which attributes specify an element’s ID. Attributes that are
named “ID” are not of type ID unless specifically designated so. If an implementation doesn’t
know which attributes are of type ID, this method must return null. Currently, the major
browsers define the attribute named “ID” to be the ID of the element.

The DocumentFragment Interface
The DocumentFragment interface was added as a “lightweight” way to extract
portions of a document and manipulate them without having to populate another
whole Document object. The DOM specification notes that a Document object could
be used to perform such manipulations; however, documents have the potential to be
very heavyweight objects (depending on the implementation) that don’t readily lend
themselves to such uses. It’s natural to want to use a node for something like this and
a lightweight object was needed, so the DocumentFragment interface was created.

When DocumentFragments are inserted as child nodes of another node, the
children of the DocumentFragment (and not the actual DocumentFragment object)
are inserted into the target node.

DocumentFragments are comprised of zero or more child nodes that represent
subtrees that define the structure of the document that they are part of. The child
nodes of a DocumentFragment do not need to be well-formed XML documents. For
example, a DocumentFragment may consist of a single comment node, which does
not represent a well-formed HTML or XML document.

The DocumentFragment interface has the following IDL definition:

interface DocumentFragment : Node {

};

The DocumentFragment interface does not contain any properties or methods
other than those it inherits from the Node interface.

The Element Interface
The Element interface represents an element in an HTML or XML document.
Elements inherit from the Node interface, so the attributes property of the
Node interface can be used to retrieve an element’s attributes.

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 3 7

All elements have a tagName property, which is the name of the tag they
represent. For example, in Listing 2-1, the <TITLE> element has a tagName of
TITLE. In XML, the tagName is case preserving because XML is case sensitive.
In HTML, the tagName is always returned as the canonical uppercase.

In addition, the Element interface provides methods that retrieve attributes both
as Attr nodes and simple strings. When working with XML, an attribute value may
contain entity references, so Attr objects should be retrieved to examine the possibly
complex subtree representing their values. In HTML, however, attributes are always
simple strings, so retrieving them as DOMStrings can be done as a convenience.

The Element interface has the following IDL definition:

interface Element : Node {

readonly attribute DOMString tagName;

DOMString getAttribute(in DOMString name);

void setAttribute(in DOMString name,

in DOMString value)

raises(DOMException);

void removeAttribute(in DOMString name)

raises(DOMException);

Attr getAttributeNode(in DOMString name);

Attr setAttributeNode(in Attr newAttr)

raises(DOMException);

Attr removeAttributeNode(in Attr oldAttr)

raises(DOMException);

NodeList getElementsByTagName(in DOMString name);

// Introduced in DOM Level 2:

DOMString getAttributeNS(in DOMString namespaceURI,

in DOMString localName);

// Introduced in DOM Level 2:

void setAttributeNS(in DOMString namespaceURI,

in DOMString qualifiedName,

in DOMString value)

raises(DOMException);

// Introduced in DOM Level 2:

void removeAttributeNS(in DOMString namespaceURI,

in DOMString localName)

raises(DOMException);

// Introduced in DOM Level 2:

Attr getAttributeNodeNS(in DOMString namespaceURI,

in DOMString localName);

// Introduced in DOM Level 2:

Attr setAttributeNodeNS(in Attr newAttr)

3 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 3 9

raises(DOMException);

// Introduced in DOM Level 2:

NodeList getElementsByTagNameNS(in DOMString namespaceURI,

in DOMString localName);

// Introduced in DOM Level 2:

boolean hasAttribute(in DOMString name);

// Introduced in DOM Level 2:

boolean hasAttributeNS(in DOMString namespaceURI,

in DOMString localName);

};

The tagName property is the name of the element.
The getAttribute() method retrieves an attribute value by name. It returns

the Attr value as a string, or the empty string if that attribute does not have a
specified or default value.

The setAttribute() method adds a new attribute. If an attribute with that
name is already present in the element, its value is changed to be that of the value
parameter. This value is a simple string; it is not parsed as it is being set. It has no
return value.

The removeAttribute() method removes an attribute by name. If the removed
attribute is known to have a default value, an attribute immediately appears containing
the default value, as well as the corresponding namespace URI, local name, and prefix
when applicable. This function has no return value.

The getAttributeNode() method retrieves an attribute node by name, or
returns null if there is no such attribute.

The setAttributeNode() method adds a new attribute node. If an attribute
with that name (nodeName) is already present in the element, it is replaced by the
new one and the old one is returned; otherwise, null is returned.

The removeAttributeNode() method removes and returns the specified
attribute node. If the removed Attr has a default value, it is immediately replaced.
The replacing attribute has the same namespace URI and local name, as well as the
original prefix, when applicable.

The getElementsByTagName() method returns a NodeList of all descendant
Elements with a given tag name, in the order in which they are encountered in a
preorder traversal of this Element tree. The name argument specifies the name of the
tag to match on. If it is *, all tags are matched.

The hasAttribute() method returns true when an attribute with a given
name is specified on this element or has a default value, false otherwise.

The getAttributeNS() method retrieves an attribute value by local name
and namespace URI and returns it as a string.

The getAttributeNodeNS() method retrieves and returns an Attr node by
local name and namespace URI.

The getElementsByTagNameNS() method returns a NodeList of all the
descendant elements with a given local name and namespace URI in the order in
which they are encountered in a preorder traversal of this Element tree.

The hasAttributeNS() method returns true when an attribute with a given
local name and namespace URI is specified on this element or has a default value,
false otherwise.

The removeAttributeNS() method removes an attribute by local name
and namespace URI. If the removed attribute has a default value, it is immediately
replaced. The replacing attribute has the same namespace URI and local name, as
well as the original prefix. This method has no return value.

The setAttributeNS() method adds a new attribute. If an attribute with the
same local name and namespace URI is already present on the element, its prefix is
changed to be the prefix part of the qualifiedName, and its value is changed to be the
value parameter. This value is a simple string; it is not parsed as it is being set.
This method has no return value.

The setAttributeNodeNS() method adds a new attribute node. If an attribute
with that local name and that namespace URI is already present in the element, it is
replaced by the new one and the old one is returned; otherwise, null is returned.

The Attr Interface
The Attr interface represents an attribute of an Element object. Attr objects inherit
from the Node interface; however, they are treated differently than other Nodes in
the document. First, they are not actually child nodes of the elements that they are
attached to, and thus the DOM does not consider them to be part of the Document
tree. If you attempt to read the values of the parentNode, previousSibling,
or nextSibling properties of an Attr object, they will return null. The reason
for this is that the DOM considers attributes to be properties of elements rather than
having their own, separate identity from the elements they are associated with. The
idea is that this should make it easier to implement features such as default attributes
for all elements of a certain type.

In addition, because attributes do not have a specific place in the DOM tree, they
cannot be immediate child nodes of DocumentFragments, though they can be
associated with Elements that are contained in a DocumentFragment.

In XML documents, Attr nodes can have two types of child nodes: Text and
EntityReference. Either way, the DOM treats attribute values as simple strings.

The Attr interface has the following IDL definition:

4 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

interface Attr : Node {

readonly attribute DOMString name;

readonly attribute boolean specified;

attribute DOMString value;

// raises(DOMException) on setting

// Introduced in DOM Level 2:

readonly attribute Element ownerElement;

};

The Attr interface extends the Node interface with four properties. The name
property holds the name of the attribute. The value property represents the value
of the attribute and is returned as a string. When retrieved, entity references are
replaced with their values. When the value property is set, a Text node is created
with the contents of the supplied string in unparsed form; any characters that an
XML parser would recognize as markup are instead treated as literal text.

The specified property reflects whether the attribute was explicitly given a
value in the original document. If so, then the value of the specified attribute is true;
otherwise, it is false.

In DOM Level 2, the ownerElement property was added, which contains the
Element object that this Attr object is attached to, or null if the attribute is not in
use by any element.

The CharacterData Interface
You won’t find any DOM objects that correspond directly to the CharacterData
interface. It functions like an abstract base class and is used to extend the Node
interface with methods for accessing character data within a DOM document. The
Text and Comment interfaces inherit directly from the CharacterData interface, and
the CDATASection interface inherits from it indirectly through the Text interface.

The CharacterData interface has the following IDL definition:

interface CharacterData : Node {

attribute DOMString data;

// raises(DOMException) on setting

// raises(DOMException) on retrieval

readonly attribute unsigned long length;

DOMString substringData(in unsigned long offset,

in unsigned long count)

raises(DOMException);

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 4 1

4 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

void appendData(in DOMString arg)

raises(DOMException);

void insertData(in unsigned long offset,

in DOMString arg)

raises(DOMException);

void deleteData(in unsigned long offset,

in unsigned long count)

raises(DOMException);

void replaceData(in unsigned long offset,

in unsigned long count,

in DOMString arg)

raises(DOMException);

};

The CharacterData interface contains two properties: data and length. The
data property contains the character data of the node that implements this interface.
The length property contains the length of the character data, as measured in
16-bit units. The length property may be 0; that is, the node may be empty.

The CharacterData interface provides five methods for working with the character
data contained within a node. In the cases where offsets are used as arguments, they
are measured using 16-bit character sizes.

The substringData() method extracts a range of character data from within a
node. It accepts two arguments, offset and count. The offset argument
specifies the 0-based offset into the character data to start extracting data. The count
argument specifies the number of characters to extract.

The appendData() method is used to append character data to the end of the
node’s character data. It accepts one argument, a DOMString to append to the end of
the character data.

The insertData() method inserts character data into the node’s character data
at a specified point. The offset argument is the 0-based character offset at which
to insert the data. The arg argument is the DOMString to insert into the node’s
character data.

The deleteData() method is used to delete a range of character data from the
node. The offset argument specifies the offset at which character data should be
deleted. The count argument specifies the number of characters to delete from
the node.

The replaceData() method replaces a range of characters in the node’s data
with a string of data. The offset argument specifies the point at which character
data should be replaced. The count argument specifies the number of characters
that should be replaced. If the sum of the offset and count arguments exceed the
length of the character data, all of the characters starting from the offset point

until the end of the character data are replaced. The arg argument specifies the
string that should replace the range of characters in the node’s character data.

The Comment Interface
The Comment interface inherits from the CharacterData interface and represents the
textual content of an HTML or XML comment, minus the preceding and trailing
comment delimiters (the <!-- and --> characters). It does not define any
additional properties or methods.

The Comment interface has the following IDL definition:

interface Comment : CharacterData {

};

The Text Interface
The Text interface inherits from the CharacterData interface and represents the
textual content of Element and Attr objects. When a document is first parsed, each
contiguous block of text is represented by a single Text node. Text nodes can have
adjacent Text nodes, which are created either programmatically or as an indirect
result of the user editing the document. There is no way to represent the separation
of these nodes in HTML or XML, so there is no way to guarantee that they will
persist between editing sessions; the next time the document is loaded, the text will
be parsed into one contiguous text node. The Node interface’s normalize()
method can be used to merge adjacent text nodes into a single node.

The Text interface has the following IDL definition:

interface Text : CharacterData {

Text splitText(in unsigned long offset)

raises(DOMException);

};

The Text interface contains a single method, splitText(), which takes the
Text node and splits it into two nodes starting at the given offset into the text content
specified by the offset argument and returns a new Text node. When split, the
original Text node will contain all the text up to the supplied offset. The new node
will contain the text from the offset point until the end of the text content. If the
original node has a parent, the new node will be inserted as the next sibling node of
the original node. If the supplied offset argument is equal to the length of the text
of the original node, the new node will have no content.

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 4 3

The Extended Core Interfaces
In this section, we introduce the Extended Core interfaces, which are provided for
working specifically with XML documents in addition to the fundamental Core
interfaces. The interfaces covered in this section will not be encountered when
working purely with HTML documents.

The interfaces within this section are not mandatory for Core compliance, so
DOM applications should use the hasFeature() method of the
DOMImplementation interface with the arguments XML and 1.0 for DOM Level 1
or 2.0 for DOM Level 2 to determine if these interfaces are available for use.

CDATASection Interface
CDATA sections are used to prevent XML processors from attempting to parse a
block of text data as if it were markup. Everything in the CDATA section, between
the opening <![CDATA[and the closing]]> sequences, is ignored. The primary
purpose of a CDATA section is to include markup text without having to escape
each delimiter. CDATA sections cannot be nested within each other.

The CDATASection interface inherits from the CharacterData interface through
the Text interface. Adjacent CDATASection nodes are not merged by use of the
normalize() method of the Node interface.

The CDATASection interface has the following IDL definition:

interface CDATASection : Text {

};

DocumentType Interface
Each Document has a docType attribute whose value is either null or a
DocumentType object. The DocumentType interface in the DOM Core provides an
interface to the list of entities that are defined for the document. Currently, the DOM
Level 2 spec does not support the editing of DocumentTypes. This has been left for a
future version of the DOM.

The DocumentType interface has the following IDL definition:

interface DocumentType : Node {

readonly attribute DOMString name;

readonly attribute NamedNodeMap entities;

readonly attribute NamedNodeMap notations;

// Introduced in DOM Level 2:

4 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

readonly attribute DOMString publicId;

// Introduced in DOM Level 2:

readonly attribute DOMString systemId;

// Introduced in DOM Level 2:

readonly attribute DOMString internalSubset;

};

The name property is the name of the DTD; that is, the name immediately
following the DOCTYPE keyword.

The entities property is a NamedNodeMap containing the general entities,
both external and internal, declared in the DTD.

The notations property is a NamedNodeMap containing the notations
declared in the DTD. Duplicates are discarded. Every node in this map also
implements the Notation interface. The DOM Level 2 does not support editing
notations; therefore, notations cannot be altered in any way.

The publicId property is the public identifier of the external subset.
The systemId property is the system identifier of the external subset.
The internalSubset property is the internal subset as a string.

NOTE

The actual content returned depends on how much information is available to the implementation.
This may vary depending on various parameters, including the XML processor used to build the
document.

Notation Interface
The Notation interface represents a Notation node in the document. Notation nodes
have no parents. A notation either declares, by name, the format of an unparsed
entity, or is used for formal declaration of processing instruction targets. See the
XML 1.0 specification, sections 4.7 and 2.6, for more detailed information on
notations.

The Notation interface has the following IDL definition:

interface Notation : Node {

readonly attribute DOMString publicId;

readonly attribute DOMString systemId;

};

The publicID property is the public identifier of this notation. If the public
identifier was not specified, this is null.

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 4 5

4 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The systemID property is the system identifier of this notation. If the system
identifier was not specified, this is null.

Entity Interface
This interface represents an entity, either parsed or unparsed, in an XML document.
The Entity interface has the following IDL definition:

interface Entity : Node {

readonly attribute DOMString publicId;

readonly attribute DOMString systemId;

readonly attribute DOMString notationName;

};

The notationName property is, for unparsed entities, the name of the notation
for the entity. For parsed entities, this is null.

The publicId property is the public identifier associated with the entity, if
specified. If the public identifier was not specified, this is null.

The systemId property is the system identifier associated with the entity, if
specified. If the system identifier was not specified, this is null.

EntityReference Interface
The EntityReference interface represents an EntityReference in the document.
EntityReference nodes and their descendants are read-only.

The EntityReference interface has the following IDL definition:

interface EntityReference : Node {

};

ProcessingInstruction Interface
The XML language uses “processing instructions” to send special instructions to
the XML processor, which are enclosed by an opening <? and a closing ?> . They
specify a target and an instruction to send to the processor. The
ProcessingInstruction interface represents these instructions in the DOM.

C h a p t e r 2 : H o w t h e D O M R e p r e s e n t s S t r u c t u r e d D o c u m e n t s 4 7

The ProcessingInstruction interface has the following IDL definition:

interface ProcessingInstruction : Node {

readonly attribute DOMString target;

attribute DOMString data;

// raises(DOMException) on setting

};

The target property returns the target of this processing instruction. The data
property contains the data for this processing instruction, from the first nonwhitespace
character after the target to the character immediately preceding the closing ?>.

Conclusion
In this chapter, we introduced the DOM document tree, and you saw how the DOM
structures the information contained within a document using DOM nodes. We also
introduced some basic DOM data types and interfaces for representing string and
time information and handling error conditions. Next, we examined the possible
relationships between the nodes of a document and the specific types of nodes
available and the information they can contain. Finally, the Core Level 1 DOM
interfaces were introduced and examined in-depth to show how each can be used
to extract and manipulate information in the document.

In the next chapter, we use the fundamental DOM interfaces introduced in this
chapter to create, arrange, and manipulate a DOM document’s nodes and content.
We also examine some of the ways to extract information from document nodes, and
how to use some of the DOM’s more advanced utility classes such as NodeIterator
and TreeWalker to traverse a document in an ordered fashion.

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

CHAPTER

3
Navigating and

Manipulating
Structured Documents

49
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

5 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

As discussed in the previous chapter, the DOM API’s Node interface provides
several methods and properties for working with node information, such as
obtaining a node’s content, discovering its position with respect to other

nodes, and manipulating its child nodes. In this chapter, we’ll examine how to use
the DOM API’s Node interface to inspect, navigate, and manipulate a document’s
nodes and content. You’ll see how properties and methods are used to work with nodes
in the context of structured XML and HTML documents. We’ll also look at how to
handle copying nodes from one document to another, and we’ll finish up with an
examination of the DOM API’s Traversal module, which makes processing documents
and parts of documents easier.

Working with Nodes
Structured documents (such as XML and HTML documents) consist of a collection
of nodes, so you can use the properties and methods of the Node interface to perform
many kinds of common types of document inspection and manipulation. Using
the Node interface, you can discover the content of nodes; their positions in the
document tree; and the nature of their surroundings, such as their parent, child,
and sibling nodes.

Consider the HTML document shown in Listing 3-1.

Listing 3-1 Sample HTML Document

<HTML>

<HEAD>

<TITLE>Sample Document</TITLE>

<!-- This is a comment -->

</HEAD>

<BODY>

This is bold text

<I>This is italic text</I>

<U>This is underlined text</U>

</BODY>

</HTML>

Figure 3-1 shows the corresponding DOM tree structure for this document.

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 5 1

This example document contains at least one of each of four types of nodes most
commonly found in HTML and XML documents: Document, Element, Text, and
Comment. Looking at this document, you can see how the properties of the Node
interface are populated for each different type of node. First, however, you need to
be able to obtain references to nodes so you can act on them. The Node interface,
as well as other specialized functions provided by the DOM API, provides the
necessary methods for obtaining references to a document’s nodes.

NOTE

The DOM specification defines certain operations as implementation-specific functions, such as
obtaining a reference to the Document node. Some implementations, such as web browser–based
JavaScript, provide a global “document” object; whereas others (such as Xerces and Macromedia’s
Dreamweaver) provide API methods for retrieving the document object from the application or
parser. You should refer to the documentation for your particular DOM implementation for more
information.

A Word About Namespaces
The DOM Level 1 interfaces do not deal with XML namespaces. Namespace
support was added in DOM Level 2. According to the W3C DOM Working Group,
developers should start using the namespace-aware methods in their new DOM
applications; the old, non-namespace-aware methods are left in mainly for backward
compatibility and are considered deprecated. However, many DOM implementations

Figure 3-1 Document tree diagram for Listing 3-1

5 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

do not yet provide support for DOM Level 2, and it technically should still be okay
to use the older methods when working with XML documents that do not contain
namespaces. For simplicity, this book will use the non-namespace-aware methods
because the current versions of most browsers and applications don’t yet support
DOM Level 2, although any new development that you do using DOM Level 2
should use the namespace-aware methods. More information on XML namespaces
can be found at www.w3.org/TR/REC-xml-names/.

Obtaining Object References to Nodes
DOM applications can obtain references to a document’s nodes directly by
using the properties of the Node interface. Node references can also be obtained
by using certain node properties that return nodes and lists of nodes, such as the
childNodes property of the Node interface; other specialized DOM methods
such as getElementsByTagName() on the Element interface; and
getElementById(), provided by the Document interface.

For example, to obtain a reference to the first child node of a document using
the properties provided by the Node interface, you would use the following code:

var node = document.documentElement.firstChild;

NOTE

The previous code is specific to DOM implementations that use a JavaScript implementation binding,
such as Microsoft Internet Explorer and Netscape Navigator. Other implementations (such as Xerces)
may use slightly different notation to access node properties; see your DOM implementation’s
documentation for more information.

This line of code would return an object reference to the first child node of the
document element; in our example, this would be the element node represented by
the <HEAD> tag.

As stated previously, you can also use certain DOM methods that return nodes
and lists of nodes to obtain node references. For example, the following code fragment
will return a NodeList containing all H1 elements in a document:

var h1tags = document.documentElement.getElementsByTagName("H1");

The getElementsByTagName() method takes a DOMString as an argument,
which is the type of tag to retrieve. The method scans the document for all tags that
match the given tag name and returns them in the order in which those nodes were
encountered in the document. You can also obtain a reference to a node by using its
ID attribute, if it has one:

var theNode = document.getElementById("thenodeid");

The ID attribute is an attribute attached to Element nodes that uniquely identify
them in a document. Note that the DOM does not enforce this requirement: you can
give the same ID to more than one element, but the resulting behavior is undefined,
according to the DOM specification.

Node references, including those in NodeList and NamedNodeMap structures,
are called “live” references. In other words, changes to a node contained in the
document tree will be immediately reflected in all NodeLists and NamedNodeMaps
where that node is represented, and vice versa. For example, if a DOM application
retrieves a list of the child nodes of a given node and then proceeds to add more
child nodes to that node, the presence of the new child nodes will be immediately
reflected in the NodeList that was returned previously.

Inspecting Nodes
Using the example document represented by Listing 3-1 and illustrated in Figure 3-1,
we can list the properties of the Node interface as they would be populated in a node
reference for each of the four node types contained within the document.

Table 3-1 lists the values of the Node interface properties for the Document node.
Because the Document node is the root of the DOM structure, and because

documents can have only one Document node, this node has no ownerDocument,
previousSibling, nextSibling, or parentNode; thus they are all null.

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 5 3

Node Property Value
ownerDocument null

previousSibling null

nextSibling null

parentNode null

firstChild Element ("HTML")

lastChild Element ("HTML")

nodeName "#document"

nodeValue null

nodeType 9 (Document node)

Table 3-1 Node Properties for the Document Node

In addition, the Node interface specifies that the nodeValue of a Document node
is also null. The Document node has one child, the HTML element, which means
that the node’s firstChild and lastChild are the same node. The nodeType
for a Document node is defined to be 9.

Table 3-2 lists the values of the Node properties for the Element node represented
by the <TITLE> tag.

The <TITLE> tag’s ownerDocument is set to the document that owns this
node. It is the first child of the <HEAD> tag, so it has no previousSibling. Its
nextSibling property is the Comment node that follows it in the document; and
because it is a direct descendant of the <HEAD> tag, it has the HEAD Element node
as its parentNode. It has only one child—a Text node—so its firstChild and
lastChild properties are the same. The nodeName property reflects the name of
the tag that represents the node—in this case, <TITLE>. Element nodes, by definition,
have no node value, so the nodeValue property is set to null. The <TITLE> tag
is an Element node, and its nodeType property reflects this with a value of 1.

The TITLE node is an Element node, so it has one additional property specified
by the Element interface: the tagName property, which is the same as nodeName
("TITLE").

Table 3-3 lists the values of the Node interface properties for the Comment node.
The Comment node is immediately preceded by the TITLE element, causing the

previousSibling property to contain a reference to the TITLE node. There is
no node after the comment, which is why the nextSibling property is null.

5 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Node Property Value
ownerDocument Document node

previousSibling null

nextSibling Comment node

parentNode Element node ("HEAD")

firstChild Text node

lastChild Text node

nodeName "TITLE"

nodeValue null

nodeType 1 (Element node)

Table 3-2 Node Properties for the <TITLE> Tag

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 5 5

Comments do not have child nodes, so the firstChild and lastChild properties
are null. Like the <TITLE> tag, the Comment has the <HEAD> tag as its parent
(and thus, parentNode contains a reference to the HEAD element node). The
nodeName of a Comment is "#comment", and the node’s value is the text
contained within the comment, not including the comment delimiters (<!-- and
-->, respectively). The nodeType for a Comment node is 8.

Comment nodes have additional properties, data and length, which are provided
by the CharacterData interface that they derive from. For a Comment node, the data
property is the same as the nodeValue property. The length property specifies
the number of 16-bit units that comprise the character content of the comment (not
the number of bytes!).

Table 3-4 lists the values of the Node interface properties for the Text node
represented by the text string "This is bold text", which is a child
node of the tag.

As with all the other nodes, the Text node’s ownerDocument is set to the
Document node for this document. The Text node is the only child of the tag,
so its previousSibling and nextSibling properties are set to null. Its
parent is the tag itself, as indicated by the parentNode property. Text nodes
are not allowed to have child nodes, so the firstChild and lastChild
properties are both null. The nodeName property for a Text node is defined by
the W3C specification to be "#text", and the nodeValue property holds the
text content of the node (in this case, "This is bold text"). The nodeType
for Text nodes is set to 3.

Node Property Value
ownerDocument Document node

previousSibling Element node ("TITLE")

nextSibling null

parentNode Element node ("HEAD")

firstChild null

lastChild null

nodeName "#comment"

nodeValue "This is a comment"

nodeType 8 (Comment node)

Table 3-3 Node Properties for the Comment Node

Like Comment nodes, Text nodes also inherit the data and length properties
from the CharacterData interface.

Manipulating Nodes
The Node interface provides all of the necessary methods for modifying the
structural order and content of the nodes of a document. The DOM specification
states that the firstChild, lastChild, parentNode, previousSibling,
and nextSibling properties are read-only, so the only way to change the order
of nodes in a document via the Node interface is by using the provided methods—
insertBefore(), appendChild(), replaceChild(), and
removeChild().

Consider a hypothetical document subtree containing five nodes, as shown in
Figure 3-2.

5 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Node Property Value
ownerDocument Document node

previousSibling null

nextSibling null

parentNode Element node ("B")

firstChild null

lastChild null

nodeName "#text"

nodeValue "This is bold text"

nodeType 3 (Text node)

Table 3-4 Node Properties for the Text Node

Figure 3-2 A document subtree

Let’s examine the effects of using the Node interface’s node-arranging methods
on this subtree.

Adding Nodes
To add new nodes to a node structure, you can use the insertBefore() and
appendChild() methods. The insertBefore() method has the following
interface definition:

Node insertBefore(in Node newChild, in Node refChild)

raises(DOMException);

The method takes two arguments: newChild and refChild. The newChild
argument is the node to be inserted; refChild is the node before which the new
node will be inserted. Listing 3-2 illustrates the call necessary to insert a new node F
as the first child of node C.

Listing 3-2 Inserting a new node

// assume that we already have a node F to insert into the tree

nodeC.insertBefore(nodeF, nodeC.firstChild);

Figure 3-3 shows the effect this has on the document subtree.
If you specify null as the refChild argument, the new node is added at the

end of the list of children. If the newChild node already exists elsewhere in
the document, it is first removed from its current location.

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 5 7

Figure 3-3 The document subtree after insertBefore()

The appendChild() method takes a new node and adds it to the given node’s
list of children. It has this interface definition:

Node appendChild(in Node newChild)

raises(DOMException);

If the child node to be appended already exists somewhere else in the document, it
is first removed from that location. This method is functionally equivalent to calling
insertBefore(newNode, null). The following code listing illustrates the use
of appendChild() to add a new child node F to the end of node B’s child list:

nodeB.appendChild(nodeF);

Figure 3-4 shows the result of this operation on the document subtree from
Figure 3-2.

Removing Nodes
The removeChild() method removes a child node from the given parent. It has
this interface definition:

Node removeChild(in Node oldChild)

raises(DOMException);

If the child node itself has child nodes, then they are all removed from the
document. The following code listing demonstrates removing the child node C
from node A:

nodeA.removeChild(nodeC);

After removal, the document subtree in Figure 3-2 would look as shown in
Figure 3-5.

5 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 3-4 The document subtree after appendChild()

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 5 9

NOTE

Removing a child from the document tree is not the same as deleting it. The DOM does cover
memory management issues, and thus does not specify how to actually delete items from memory.

Replacing Nodes
The replaceChild() method replaces one child node with another. It has the
following interface definition:

Node replaceChild(in Node newChild, in Node oldChild)

raises(DOMException);

If the newChild argument is a DocumentFragment object, the oldChild node
is replaced by all of the newChild node’s children, which are inserted in the same
order as they appear under newChild. If the newChild node already exists
somewhere else in the document tree, it is first removed from its current location
before being inserted into its new location.

This code snippet demonstrates replacing node D with node B:

nodeC.replaceChild(nodeB, nodeD);

Figure 3-6 shows the effect of this operation on the document subtree.

Example: Swapping Two Nodes
The DOM API does not directly provide a single method for swapping two nodes in
a node structure, but you can perform the operation using the existing methods on
the Node interface.

Suppose you have an HTML fragment that looks like this:

<LI id="node1">List Item A

<LI id="node2">List Item B

<LI id="node3">List Item C

<LI id="node4">List Item D

Figure 3-5 The document subtree after removeChild()

Figure 3-7 illustrates this HTML fragment’s node structure.
To swap the positions of List Item A and List Item B, you can use the following

function, written using the JavaScript language binding for the DOM:

function swapItems()

{

// get the element whose id is "node2"

var theNode = document.getElementById("node2");

var theParent = theNode.parentNode;

var tempNode = theNode.previousSibling;

theParent.removeChild(theNode);

theParent.insertBefore(theNode, tempNode);

}

6 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 3-6 The document subtree after replaceChild()

Figure 3-7 Document structure for ordered list fragment

The first line of the function retrieves the LI node with the ID attribute "node2".
You then use the parent of this node to perform the operation of swapping its children.
In fact, the call to removeChild() is actually superfluous; the node would have
been removed anyway by the call to insertBefore() because it was already in
the tree. The result of this operation is shown in Figure 3-8.

Swapping nodes is actually a common enough operation that Internet Explorer
provides a method for it called (appropriately enough) swapNode(). It has this
interface definition:

Node swapNode(in Node refNode)

raises (DOMException);

The swapNode() method swaps the node from which this method is called with
the node specified by the refNode argument, which does not need to be a child
node. It returns a reference to the node on which this method was invoked. Using
the swapNode() method, the previous example becomes even simpler:

function swapItems()

{

// get the element whose id is "node2"

var theNode = document.getElementById("node2");

var tempNode = theNode.previousSibling;

theNode.swapNode(tempNode);

}

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 6 1

Figure 3-8 The ordered list fragment after swapping

Creating New Nodes
Of course, it probably won’t be enough for your application to inspect and rearrange
existing nodes. At some point, you’ll need to create new ones to insert into the
document. The DOM provides different ways of doing this. You can create new
nodes from scratch or duplicate existing nodes in the document.

Using the Factory Methods
Usually, in most object-oriented programming languages, you create a new object by
using the new operator with the type of object you want to create, like this:

var obj = new SomeDocumentObject();

This doesn’t work with the DOM because there are some language bindings that
do not support the new operator. To make these cases easier to handle, the DOM
uses special methods called factory methods that are responsible for creating new
nodes. It is then up to the implementation to handle the actual memory management
involved with creating these new nodes.

Each type of node has an associated factory method. For example, to create a new
Text node, you would write the following code:

var newTextNode = document.createTextNode("This is the node content");

After a node has been created, it is in a state of limbo; it is not actually inserted
into the document tree anywhere but is just sort of floating in space. You need to
attach it to the document tree using one of the node manipulation methods discussed
earlier, such as appendChild().

Table 3-5 lists the different factory methods that the DOM provides for creating
new Document nodes.

6 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Method Description
Element createElement(in
DOMString tagName)

Creates a new Element node of the type
supplied by tagName.

DocumentFragment
createDocumentFragment()

Creates a new empty DocumentFragment node.

Comment createComment(in
DOMString data)

Creates a new Comment node whose content
is given by the data argument.

Table 3-5 Factory Methods for Creating New Document Nodes

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 6 3

Suppose you want to create a new ordered list structure like the one shown earlier
in Figure 3-7, and you want to insert it as the first child of the <BODY> tag. To
accomplish this, you need to create each node, set its content, and add the whole
thing to the <BODY> tag. The following listing demonstrates the necessary steps
to do this.

// declare some temporary variables to hold the LI nodes

var newLI, newText;

// create the new ordered list

var newOL = document.createElement("OL");

// now create each new element. Start with List Item A

newLI = document.createElement("LI");

newText = document.createTextNode("List Item A");

// add the text to the LI node

newLI.appendChild(newText);

// add the LI node to the ordered list

newOL.appendChild(newLI);

newLI = document.createElement("LI");

// now do the same for List Item B

newText = document.createTextNode("List Item B");

newLI.appendChild(newText);

newOL.appendChild(newLI);

newLI = document.createElement("LI");

// now do the same for List Item C

Method Description
Text createTextNode(in
DOMString data)

Creates a new Text node whose content is
given by the data argument.

CDATASection
createCDATASection(in DOMString
data)

Creates a CDATA section whose content is
supplied by the data argument.

ProcessingInstruction
createProcessingInstruction(in
DOMString target, in DOMString
data)

Creates a new ProcessingInstruction node
with the given target and data.

Attr createAttribute(in
DOMString name)

Creates a new Attr node with the given name.

EntityReference
createEntityReference(in
DOMString name)

Creates a new EntityReference node.
The name of the entity to reference
is the given name.

Table 3-5 Factory Methods for Creating New Document Nodes (continued)

newText = document.createTextNode("List Item C");

newLI.appendChild(newText);

newOL.appendChild(newLI);

newLI = document.createElement("LI");

// now do the same for List Item D

newText = document.createTextNode("List Item D");

newLI.appendChild(newText);

newOL.appendChild(newLI);

// now that the list has been built, insert it as the BODY

// tag's first child. We use the document's getElementsByTagName

// method to get a list of the BODY tags, of which there will

// be only one. We then use the insertBefore() method to insert

// the ordered list into the BODY.

var bodyTag = document.getElementsByTagName("BODY").item(0);

bodyTag.insertBefore(newOL, bodyTag.firstChild);

Cloning Existing Nodes
Another way to create new nodes is to clone an existing node using the cloneNode()
method on the Node interface. This will give you a copy of the existing node, optionally
with copies of all of its child nodes.

Using the example document shown in Figure 3-7, you could add new tags
to the end of the ordered list by using an existing tag as the template for each
new one. For example, this code listing shows how to clone an existing tag,
modify it, and add it to the end of the ordered list:

var theTemplateNode = document.getElementById("node4");

// make a clone of the node using a deep clone so that we

// get the text node along with the element node

var newNode = theTemplateNode.cloneNode(true);

// now modify the new node's child text node to have the

// data that we want in the new node

newNode.firstChild.data = "List Item E";

// make a new id attribute for it

newNode.setAttribute("id","node5");

// append it to the ordered list

theTemplateNode.parentNode.appendChild(newNode);

The code begins by retrieving the node with the ID attribute "node4", which
corresponds to the last tag. Once you have a reference to that node, you clone
it using a deep clone to make copies of the target node, as well as its child nodes.

6 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Then, you set the content of the child Text node to be the string you want it
to have and call appendChild() on the original node’s parent.

Importing Nodes from Other Documents
Sometimes, DOM programs need to use or operate on nodes from different documents.
For example, you might want to copy the information in a node contained in one
document into another document. The DOM Level 2 API provides the importNode()
method for this purpose, which can be found on the Document interface. It has the
following interface definition:

Node importNode(in Node importedNode, in boolean deep)

raises(DOMException);

As its name implies, the importNode() method imports a node from another
document into the document from which this method is called. The node that is returned
from this method call has no parent (that is, its parentNode property is set to null)
until it is inserted into the document tree, but it is owned by the calling document
(the one doing the importing). This operation does not change the source node in
the target document in any way. It is not removed from the target document’s
tree—the importNode() method makes a copy of the source node, optionally
copying all of its child nodes (if the deep argument is true).

The node being imported may be entering a document that has a different DTD
(Document Type Definition) than the source document from which it came, so the
importing process affects different types of nodes in different ways. Table 3-6 lists
the different node types and the behavior of imported nodes of that type.

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 6 5

Node Type Importing Behavior
Element Attribute nodes of the source element that have their specified

property set to true are imported and are attached to the
generated element. Default attributes are not copied, though
they are automatically assigned to the element if the importing
document defines default attributes for this element type. If the
deep argument is true, all of the element’s descendants are
copied, and the resulting nodes are assembled into a corresponding
document subtree.

Table 3-6 Imported Node Behavior of Different Node Types

6 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Node Type Importing Behavior
Attribute The Attribute node’s ownerElement is set to null, and the

specified flag is set to true. All of the source attribute
node’s child nodes are also imported, and the resulting nodes
are reassembled to form the corresponding attributes subtree.
In the case of attributes, the deep argument is ignored.

DocumentFragment If the deep argument is false, an empty DocumentFragment
node is generated; otherwise, the descendants of the source
node are all recursively imported, and the resulting nodes are
assembled into the corresponding document subtree.

Text The data and length properties are copied from the
source node.

CDATA The data and length properties are copied from the
source node.

Comment The data and length properties are copied from the
source node.

ProcessingInstruction The target and data properties are copied from the
source node.

Entity Entity nodes can be imported. The current version of the
DOM specification states that the DocumentType is read-only,
however. This may be addressed in a future DOM version. The
publicID, systemID, and notationName attributes of
the source node are copied on import. If the deep argument is
true, all of the entity’s descendants are copied, and the resulting
nodes are assembled into a corresponding document subtree.

EntityReference The source and destination documents might have defined the
entity differently, so only the EntityReference itself is copied,
even if the deep argument is true. If the importing document
defines the entity, its value is assigned.

Notation Notation nodes can be imported. The current version of the
DOM specification states that the DocumentType is read-only,
however. This may be addressed in a future DOM version. The
deep argument is ignored because Notations do not have child
nodes. The publicID and systemID attributes are copied
from the source node.

Document Document nodes cannot be imported.

DocumentType DocumentType nodes cannot be imported.

Table 3-6 Imported Node Behavior of Different Node Types (continued)

Traversing Documents
One of the most common code patterns in DOM applications is document subtree
traversal. At some point, somewhere, sometime, your DOM program will need
to traverse the document tree structure and process its contents. This can be
accomplished in two ways: by using the basic Node interfaces available in DOM
Level 1, and by using the more advanced DocumentTraversal interface available
in DOM Level 2. In this section, we’ll examine both approaches, along with the
advantages and disadvantages of each.

Using the Node Interface Properties
The lowly Node interface available in DOM Level 1 provides all of the information
and methods that your DOM program needs to traverse the entire structure of a
DOM document. You use the properties and methods of the Node interface, such as
firstChild, lastChild, parentNode, and so on, to move among the nodes
relative to any given node in the tree.

For example, this simple pseudocode listing processes all of the nodes in
a document subtree starting with a given node:

function processNode(Node n)

{

doStartNodeProcessing(n);

for (Node c = n.firstChild(); c != null; c = c.nextSibling())

{

processNode(c);

}

doEndNodeProcessing(n);

}

function doStartNodeProcessing(Node n)

{

// Do any processing when a node is first encountered

}

function doEndNodeProcessing(Node n)

{

// Do any processing when a node is about to be left

}

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 6 7

6 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

This example, although simplistic, demonstrates a straightforward way of visiting
every node underneath a starting node, processing each visited node upon entry and
exit of the function. It also has the advantage of being completely implementable
under a DOM Level 1 implementation.

Of course, this example also has some drawbacks. First, it visits and processes
every node in the subtree whether you want it to or not. There is no way, for
example, to only visit nodes that are of a certain type (like elements or comments).
You could, of course, add such functionality without too much difficulty:

function processNode(Node n)

{

if (n.nodeType != Node.ELEMENT_NODE)

return;

doStartNodeProcessing(n);

for (Node c = n.firstChild(); c != null; c = c.nextSibling())

{

processNode(c);

}

doEndNodeProcessing(n);

}

Now, you’ve modified the function so that it only processes Element nodes. It’s
still not as flexible as it could be, though. For example, you might want to change
the types of nodes that you’re processing on-the-fly, which means either adding an
additional argument to the function header or using a global variable to keep track
of what node type you’re currently interested in.

However, there are other drawbacks. This example does not allow for stopping;
all the nodes are processed one right after the next. It might be useful to be able to
stop processing momentarily and then resume later on. To achieve these kinds of
requirements, you need to use a more powerful node traversing method, which is
where the DOM Level 2 Traversal module comes in.

Using the DOM Level 2 Traversal Module
DOM Level 2 introduced a new module named Traversal. It specifies four interfaces:
NodeIterator, NodeFilter, TreeWalker, and DocumentTraversal. The first three

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 6 9

interfaces provide robust node traversal functionality over a document’s nodes. The
DocumentTraversal interface provides the factory methods necessary for creating
TreeWalkers and NodeIterators.

Iterators vs. Walkers
NodeIterators and TreeWalkers represent two very different ways of representing
a document subtree’s set of nodes. NodeIterators present a “flattened” view of the
document: the nodes are presented in the order they are encountered in the document,
as if they had been laid out one after the other. They present their nodes absent of the
hierarchy in the document, so they allow you only to move forward and backward
through a list of nodes. TreeWalkers, on the other hand, maintain their representation
of the document hierarchy relative to the node that they are currently attached to.

So why use a NodeIterator instead of a TreeWalker (or vice versa)? Generally
speaking, NodeIterators are more useful when your DOM application is focused
on the contents of each node. TreeWalkers are better when your application will
manipulate the structure of the subtree’s nodes.

Logical Views and Physical Views
NodeIterators and TreeWalkers have the ability to present views of the document
subtree that may not contain all of the nodes that are actually in the subtree. For
example, a NodeIterator or TreeWalker can be told to only visit Element nodes,
excluding other node types. The DOM Traversal module specification refers to
this as a logical view. The actual document subtree independent of the iterator or
walker is called the physical view. The way this is accomplished is by associating
a NodeFilter object with the NodeIterator or TreeWalker. The NodeFilter examines
each node and determines whether it should be included in the logical view.
NodeFilters are very powerful objects: they can include or exclude nodes based on
almost any criteria you can think of, including node type, whether it has or doesn’t
have certain attributes, what the node’s nodeName property is, and so on. Figure 3-9
illustrates the difference between a physical view and a logical view of the same
document. The document contains several different node types, but the logical view
as seen by a certain traversal object contains only Element nodes (shown with bold
outlines) because it has chosen to exclude all other node types.

7 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Like other DOM collection objects, NodeIterators and TreeWalkers contain live
node references; that is, their logical views will reflect any changes made to the
physical subtree that they represent. The key difference between the two, however,
is how they respond to such changes. NodeIterators will attempt to maintain their
location relative to a sequence of nodes when the sequence changes. TreeWalkers
will maintain their current location relative to their current node and will stay attached
to that node if it moves to a new context due to an external action on the tree by
another part of the DOM program. These behaviors will be discussed in more detail
later in this chapter.

NodeFilters
NodeFilters are objects that are used to “filter” the node selection process. They can
be associated with both NodeIterators and TreeWalkers, but they do not do any node
navigation themselves. If a NodeFilter is associated with an iterator or walker, the
associated traversal object applies the filter before returning the next node. The filter
can decide either to accept or to reject the node. If the node is accepted, the traversal
object returns it to the caller. Otherwise, the node is skipped as if it were not there,
and the traversal object looks for the next node (this is how the logical view is
generated from the physical view).

NodeFilters do not have to perform any node navigation or traversal themselves,
so they are easy to write and can be reused among several different traversal objects.
The DOM itself does not provide any built-in NodeFilters. You can think of the
NodeFilter interface as an “abstract base class” in C++ or an “interface definition”
in Java that DOM programs can use as a starting point to build their own filters.

Figure 3-9 Logical view vs. physical view

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 7 1

NodeFilters have the following interface definition:

interface NodeFilter {

// Constants returned by acceptNode

const short FILTER_ACCEPT = 1;

const short FILTER_REJECT = 2;

const short FILTER_SKIP = 3;

// Constants for whatToShow

const unsigned long SHOW_ALL = 0xFFFFFFFF;

const unsigned long SHOW_ELEMENT = 0x00000001;

const unsigned long SHOW_ATTRIBUTE = 0x00000002;

const unsigned long SHOW_TEXT = 0x00000004;

const unsigned long SHOW_CDATA_SECTION = 0x00000008;

const unsigned long SHOW_ENTITY_REFERENCE = 0x00000010;

const unsigned long SHOW_ENTITY = 0x00000020;

const unsigned long SHOW_PROCESSING_INSTRUCTION = 0x00000040;

const unsigned long SHOW_COMMENT = 0x00000080;

const unsigned long SHOW_DOCUMENT = 0x00000100;

const unsigned long SHOW_DOCUMENT_TYPE = 0x00000200;

const unsigned long SHOW_DOCUMENT_FRAGMENT = 0x00000400;

const unsigned long SHOW_NOTATION = 0x00000800;

short acceptNode(in Node n);

};

The first three constants are returned from a NodeFilter’s acceptNode()method.
If acceptNode() returns FILTER_ACCEPT, the navigation methods for a
NodeIterator or TreeWalker will return the node. If acceptNode() returns
FILTER_REJECT, the node is skipped. If the traversal object is a TreeWalker, the
child nodes of the given node are also skipped. If acceptNode() returns FILTER_
SKIP, the node is skipped; but if the traversal object is a TreeWalker, child nodes of
the given node will still be considered. NodeIterators treat FILTER_REJECT and
FILTER_SKIP the same.

The next 13 constants are used to determine what types of nodes are returned by
NodeIterators and TreeWalkers. These constant values and combinations of them
can be used as values for the whatToShow parameter used in TreeWalkers and
NodeIterators, and they represent a bit position in the whatToShow parameter.
If the corresponding bit position in the whatToShow parameter is set to false for
the given node type, nodes of that type will be skipped over.

NOTE

The values SHOW_ATTRIBUTE, SHOW_ENTITY, and SHOW_NOTATION are only useful when the
NodeIterator or TreeWalker has a node of that type set as its root; attributes, entities, and
notations are not considered part of the document tree, and thus will not normally be encountered
when traversing it.

The acceptNode() method tests whether a given node should be returned by
the associated traversal object. It is typically called by NodeIterator and TreeWalker
objects under two separate circumstances:

� When a traversal method of the NodeIterator or the TreeWalker is executed.

� When the node that a NodeIterator is using as its reference node is removed
from the tree and a new one must be selected.

NOTE

The exact timing of the two events just described may be different among DOM implementations.
The DOM specification explicitly states that NodeFilters should not try to maintain any state
information from past invocations because the resulting behavior may not be portable.

Implementing Your Own NodeFilters The DOM does not provide any built-in
NodeFilters. To use a NodeFilter, you must create your own and pass it to a NodeIterator
or TreeWalker when it is created. For example, suppose you wanted to create a
NodeFilter that only accepted images that have an ALT attribute. A Java implementation
of such a filter might look like this:

class ImageWithAltFilter implements NodeFilter

{

short acceptNode(Node theNode)

{

// first, see if we're dealing with an element

if (n.getNodeType() == Node.ELEMENT_NODE)

{

// cast the node to an element so we can call

// getAttributeNode() more easily

Element el = (Element)theNode;

if (!el.getNodeName().equals("IMG"))

return FILTER_SKIP;

if (el.getAttributeNode("ALT") != null)

return FILTER_ACCEPT;

7 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

}

return FILTER_SKIP;

}

}

To use this filter, you would create it as a new object and pass it to a NodeIterator
or TreeWalker, like this:

ImageWithAltFilter iwaf = new ImageWithAltFilter();

NodeIterator iterator =

((DocumentTraversal)document).createNodeIterator(

rootNode, NodeFilter.SHOW_ALL, iwaf);

Important Notes About NodeFilters There are some important things to keep in mind
when creating and using NodeFilters. The first is that you should avoid writing code
for a NodeFilter that can cause exceptions to be thrown. The DOM can’t prevent this
from happening, so NodeFilter behavior during an exception must be well defined.
The DOM specification states that NodeIterators and TreeWalkers do not catch
exceptions that are thrown by NodeFilters. Instead, they allow the exception to
propagate up to the user’s application code. For NodeIterators, the nextNode()
and previousNode() methods will cause a NodeFilter to execute and will
propagate any exceptions that are thrown in the filter. For TreeWalkers, the
firstChild(), lastChild(), nextSibling(), previousSibling(),
nextNode(), previousNode(), and parentNode() methods will invoke
a NodeFilter and propagate any exceptions thrown inside the filter.

The second important thing to remember is that NodeFilters should not modify
the contents of a document. Again, the DOM can’t prevent this and does not provide
any special processing to handle this case, though it goes against the spirit of what
NodeFilters are intended to do. It is interesting to note that NodeFilters can still
accept a node even if it is removed from the document, which will cause the node
to be returned to the caller. The caller might then try to operate on the node, which
is no longer in the document tree. This can easily lead to confusing behavior, so the
DOM specification urges programmers to leave all tree processing to the code that
is outside the filter.

The third thing to remember is that NodeIterators and TreeWalkers apply their
whatToShow arguments before applying the filter. If a node is skipped over by
the whatToShow flag settings, the filter will not be called for the node. The type
of behavior that is used to skip over nodes using the whatToShow mask is similar
to that of FILTER_SKIP: the node is skipped, but its child nodes will still be considered.
This is true even if the associated filter would have returned FILTER_REJECT for

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 7 3

the node. To circumvent this behavior, you can set the whatToShow argument to
SHOW_ALL and do all your testing inside the filter.

NodeIterators
NodeIterators represent a linear portion of a document. They are created by calling
the createNodeIterator() method on the DocumentTraversal interface. They
have the following interface definition:

interface NodeIterator {

readonly attribute Node root;

readonly attribute unsigned long whatToShow;

readonly attribute NodeFilter filter;

readonly attribute boolean expandEntityReferences;

Node nextNode() raises(DOMException);

Node previousNode() raises(DOMException);

void detach();

};

The root property contains the root node of this iterator, as specified when the
iterator was created. The whatToShow property determines what types of nodes
are visible to the iterator. The available values for this property are listed under the
NodeFilter interface (discussed earlier in the “NodeFilters” section). The filter
property is an optional NodeFilter that can be used to further screen nodes. When
both whatToShow and filter are used, the whatToShow property takes
precedence. The expandEntityReferences property determines whether
the children of EntityReference nodes are visible to the iterator.

The nextNode() method returns the next node in the logical view and advances
the position of the iterator to the next node in the logical view. When an iterator is
first created, the first call to nextNode() returns the root node. If the iterator is at
the end of the node list, nextNode() returns null and the position is not moved.
The previousNode() method returns the previous node in the logical view and
moves the iterator’s position backward in the logical view. If the iterator is at the
start of the node list, previousNode() will return null, and the position is not
moved. The detach() method “detaches” the iterator from the set of nodes it was
iterating over and places the iterator into the INVALID state. Once this method has
been called, any further calls to nextNode() or previousNode() will raise an
INVALID_STATE_ERR exception.

The nodes in the document subtree represented by a NodeIterator are viewed in
document order—that is, the order they are encountered in a document when reading
from top to bottom.

7 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

For example, consider the following XML structure:

<node1>

<node2/>

<node3/>

<node4>

<node5/>

<node6/>

</node4>

</node1>

Figure 3-10 illustrates the hierarchical view of this fragment.

How Iterators Move Forward and Backward Over Nodes The following diagram
illustrates the linear view of this fragment as seen by a NodeIterator when it is
created, with the node represented by node1 as the root. As you can see from the
illustration, all notion of document hierarchy has been removed.

NodeIterators have the concept of a “position,” which represents the current position
of the iterator in the list of nodes with respect to what is called the reference node,
which is the last node returned. The iterator’s position is always before the first
node, between two nodes, or after the last node.

The arrow indicates the position of the iterator. In the case of the previous example,
after the iterator has just been created with node1 as its root node, the iterator’s
position is before the first node, which is the current reference node.

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 7 5

Figure 3-10 Hierarchical view of XML fragment

Following a call to nextNode(), the iterator returns the next node and then
advances the iterator’s position—unless the iterator’s position is at the end of the list,
in which case the return value is null. The following example shows the iterator’s
position after calling nextNode(). The position has been advanced, and the
reference node has a thick outline.

When previousNode() is called, the iterator returns the node immediately before
the current position and moves the position backward in the node list—unless the
current position is before the first node, in which case the return value is null.
The next example shows the iterator’s position in the node list after calling
previousNode().

How NodeIterators Respond to Document Changes The contents of a document can
change while a NodeIterator is active, so it must have a well-defined set of rules that
govern its behavior as nodes are added to or removed from the document tree. According
to the DOM specification, document changes do not invalidate a NodeIterator. In fact,
the only thing that invalidates an iterator is calling its detach()method.

To maintain a consistent state, NodeIterators use their reference nodes to determine
what happens when the document tree structure changes. Generally speaking, iterators
always try to stay “close” to their reference node. Reference nodes are selected
based upon whether an iterator’s position is before or after its reference node.

If a document tree’s changes don’t involve the reference node, the iterator doesn’t
have to worry about anything. Consider the following examples, in which nodes are
inserted into and removed from the document tree in Figure 3-10. First, here’s
a node being inserted into the tree between node2 and node3 when node2 is the
reference node:

The iterator always stays close to its reference node, so the insert takes place
between the iterator’s position and node3.

7 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

This next example shows the effect of removing the newly inserted node.

In this case, the reference node is not affected, so there is no change to the iterator
or its position.

When the reference node itself is the one being removed from the tree, a new
reference node must be selected. The way this is done depends upon the current
position of the iterator with respect to the current reference node. Suppose, for
example, that node3 is the current reference node, and the iterator’s position is
between node3 and node4, as in the following example (this is usually what happens
when nextNode() is called).

If node3 is removed from the document, a new reference node must be selected.
Because the iterator’s position is currently after the reference node, it will remain so
when the new reference node is selected. Node2 is the nearest node that precedes the
iterator’s position, so it is selected as the new reference node, as illustrated here.

If, on the other hand, the iterator’s position is before the current reference node
(between node2 and node3), as it would be if previousNode() had just been
called, and the reference node were removed, the nearest node that is after the
iterator’s position would be selected as the new reference node. In this case, node4
would become the new reference node, as shown next.

There are two special cases that arise when removing the reference node. The first
is when the reference node is the last node in the list and the position is before the
node, as shown here, where node6 is the reference node.

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 7 7

In this case, when node6 is removed, the rules state that the new reference node
should become the nearest node following the position. However, because there is no
next node, the new node becomes the nearest node preceding the position (node5), as
shown next.

The second special case is when the reference node is the first node in the list and the
position is after the reference node, as shown here where node1 is the reference node.

In this case, the rules state that when node1 is removed, the new reference node
should be the nearest node preceding the iterator position. Again, there is no node that
precedes the position, so the new reference node becomes the node that follows the
position (node2), as shown next.

Things get a little trickier when nodes that are outside of the logical view
come into play. The reason is this: even though a node may not be included in a
NodeIterator’s logical view, it may still become the reference node. Consider the
following example: suppose that node3 is not in the logical view of the document
subtree represented by the NodeIterator, and that node4 is the current reference
node, as shown here.

If the current iterator position is after the reference node, and the reference node
is removed, the nearest node before the position becomes the new reference node. This
is true regardless of whether the node is actually in the logical view. Thus, if node4 is
removed from the subtree, node3 will become the new reference node, as shown next.

7 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 7 9

Nodes that aren’t in the logical view cannot be skipped when choosing a new
reference node because the wrong results may occur. For instance, if a new node
named node7 that is visible in the logical view was inserted after node3, then the
document subtree would look like the following example.

Now, if previousNode() is called, node7 will be returned, as would be expected.
If node3 had been skipped over and node2 was selected as the new reference node,
then the new node would not have been returned as the previous node—which would
be incorrect because, as far as the iterator’s user was concerned, node7 would have
been the previous node had node4 not been removed.

Of course, once the NodeIterator’s reference node changes from the node that
is not in the logical view, you will not be able to return to it using the NodeIterator’s
methods because it will be skipped by the whatToShow setting or any associated
NodeFilter’s logic.

TreeWalkers
TreeWalkers, like NodeIterators, allow you to navigate among the nodes of a document
subtree. Unlike NodeIterators, however, TreeWalkers preserve the document’s tree
hierarchy. In fact, using a TreeWalker is almost exactly the same as using the node
navigation properties of the base Node interface itself, and the provided methods are
analogous to those provided by the Node interface.

One major difference between TreeWalkers and NodeIterators is that TreeWalkers do
not have the notion of a position. Instead, TreeWalkers are attached to the node that they
are currently operating on. This will be discussed in detail later.

TreeWalkers have the following interface definition:

interface TreeWalker {

readonly attribute Node root;

readonly attribute unsigned long whatToShow;

readonly attribute NodeFilter filter;

readonly attribute boolean expandEntityReferences;

attribute Node currentNode;

// raises(DOMException) on setting

Node parentNode();

Node firstChild();

Node lastChild();

Node previousSibling();

8 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Node nextSibling();

Node previousNode();

Node nextNode();

};

The root property contains the root node of this iterator, as specified when the
iterator was created. The whatToShow property determines what types of nodes
are visible to the iterator. The available values for this property are listed under
the NodeFilter interface (discussed earlier in the “Node Filters” section). The
filter property is an optional NodeFilter that can be used to further screen nodes.
When both whatToShow and filter are used, the whatToShow property takes
precedence. The expandEntityReferences property determines whether the
children of EntityReference nodes are visible to the iterator. The currentNode
property is the node at which the TreeWalker is currently positioned.

The parentNode() method returns the closest visible ancestor node of
the TreeWalker’s current node and sets currentNode to its parent node. If
currentNode has no parent node, null is returned and the current node is not
changed. The firstChild() method moves the TreeWalker to the first visible
child of currentNode and returns the new node. It returns null if currentNode
has no visible children and the current node is not changed. The lastChild()method
moves the TreeWalker to the last visible child of currentNode and returns the
new node. It returns null if currentNode has no visible children and the current
node is not changed. The previousSibling() method moves the TreeWalker
to the previous sibling of currentNode and returns the new node. It returns null
if currentNode has no visible previous sibling and the current node is not changed.
The nextSibling() method moves the TreeWalker to the next sibling of
currentNode and returns the new node. It returns null if currentNode has
no visible next sibling and the current node is not changed. The nextNode() method
moves the TreeWalker to the next visible node in document order relative to
currentNode and returns the new node. It returns null if currentNode has
no next node, or if the search for the next node attempts to step upward from the
TreeWalker’s root node and retains the current node. The previousNode() method
moves the TreeWalker to the previous visible node in document order relative to
currentNode, and returns the new node. It returns null if currentNode has
no previous node, or if the search for the previous node attempts to step upward from
the TreeWalker’s root node and retains the current node.

Navigating Documents with TreeWalkers Let’s examine the effects of document
traversal using a TreeWalker on the same example document we used earlier for
the NodeIterator. Recall that our example document had the structure shown in
Figure 3-11.

Suppose we create a TreeWalker and assign node4 as its root. This also assigns
node4 as the current node, as shown in Figure 3-12.

A call to any method that would cause the TreeWalker to step above the root node
will return null, such as parentNode(). Calling firstChild() will return
node5 and will also set node5 as the new current node. Because node5 has no child
nodes, subsequent calls to firstChild() will return null and leave node5 as
the current node.

You can also call methods that allow the TreeWalker to behave like NodeIterator,
such as nextNode() and previousNode(). If node4 is the current node,
calling nextNode() will return node5. Calling nextNode() again will return
node6. Calling previousNode() will move the TreeWalker back to node5.

Using the TreeWalker interface, we can rewrite the recursive document traversing
logic that we wrote earlier using the Node interface methods. The only change we
have to make is to ensure that the current node is restored by the processing function
because calling TreeWalker navigation methods will change the currentNode
property. This is easily handled by saving aside the current node at the start of the
function and restoring it before the function completes.

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 8 1

Figure 3-11 Document structure of the example XML fragment

Figure 3-12 Example document structure with TreeWalker assigned

function processNode(TreeWalker theWalker)

{

Node theNode = theWalker.getCurrentNode();

doStartNodeProcessing(theWalker);

for (Node c = n.firstChild(); c != null; c = c.nextSibling())

{

processNode(theWalker);

}

doEndNodeProcessing(theWalker);

theWalker.setCurrentNode(theNode);

}

The major advantage of using the TreeWalker over the regular Node interface in
this example is that you can associate a NodeFilter with the TreeWalker to filter out
unwanted nodes while keeping the same function that iterates over the document.
In fact, you could use the same processing function over and over with different
TreeWalkers to obtain different results.

NOTE

It is important to recognize that the logical view of a document represented by a TreeWalker may
be a completely different structure from the physical view itself. For example, a TreeWalker that
only accepts Comment nodes would present all visible Comment nodes as siblings of each other,
without any parent node.

How TreeWalkers Respond to Document Changes TreeWalker must deal with document
structural changes just like NodeIterators do, but they do so in a different manner.
TreeWalkers are actually attached to their current node, so there does not need to
be any logic that selects a new node when the current node is removed from the
document tree or moved elsewhere within the tree. For this reason, TreeWalkers
are never invalidated like NodeIterators are.

Recall our example document from Figure 3-12, where node4 is the root node of a
TreeWalker. Suppose that node5 is the current node. If node5 were removed from the
document (via the removeChild() method of the Node interface, for example),
the TreeWalker would go with it and remain valid, even though the current node is
no longer part of the document tree. If node5 had child nodes, you would still be able
to navigate through them using the TreeWalker’s methods, but you would not be
able to navigate outside of node5 because it no longer has any parent node or siblings.

Suppose, further, that we were to add node5 back into the document, this time
outside of the subtree represented by node4, which is still the root node. For
example, adding node5 between node2 and node3 would make node5 a child of

8 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

node1. The TreeWalker would still be valid, and, in fact, calling parentNode()
on it would return node1, which is outside of the root node represented by node4.
This would result in a document structure represented by Figure 3-13.

This is perfectly valid, and the TreeWalker can deal with such situations. If the
TreeWalker were to somehow navigate back into the subtree represented by node4,
the TreeWalker’s logic would then prevent it from navigating back outside of the
root node again.

If the TreeWalker is being used with a filter, it gets slightly more complicated
because moving the current node or explicitly selecting a new one can cause the
TreeWalker to have a current node that would otherwise have been rejected or
skipped by the filter’s logic. In this case, the DOM specification refers to the current
node as a “transient” member of the logical view. According to the specification,
you can navigate off of this node just as if it had been visible, but you will not be
able to navigate back to it unless the conditions of the filter’s logic or the TreeWalker’s
whatToShow parameter changes. If the current node somehow becomes a part of
the document subtree that would otherwise have been rejected entirely by the
filtering logic (that is, as if FILTER_REJECT had been returned for the subtree’s
root node), then all of the nodes in that subtree are transient members of the logical
view. The TreeWalker will navigate through the subtree as if its root node had only
been skipped instead of rejected, until the TreeWalker navigates above it. Then,
normal filtering will apply.

For instance, suppose that, in our example document, node1 was set as the root
node of the TreeWalker, node3 is the current node, and node4 represents a subtree
that would be rejected entirely by the TreeWalker. If node3 is somehow inserted into
the subtree represented by node4, the TreeWalker will navigate around inside the
node4 subtree until the navigation takes the TreeWalker above node4. From then on,
node4 and all its child nodes will be skipped.

C h a p t e r 3 : N a v i g a t i n g a n d M a n i p u l a t i n g S t r u c t u r e d D o c u m e n t s 8 3

Figure 3-13 TreeWalker example where currentNode is outside of root

Conclusion
In this chapter, we examined the properties and methods of the Node interface that
allow us to get references to, inspect, modify, and rearrange a document’s nodes.
We also saw how to create new nodes in a document, how to move nodes between
documents, and how to traverse a document’s set of nodes for processing using the
Node interface. Finally, we took a look at the Traversal module of DOM Level 2,
which can be used for advanced node processing.

This chapter brings us to the end of Part I, in which we introduce the DOM API, its
concepts and history, and some basic knowledge of how to use the API to manipulate
documents. In the next section, Part II, we’ll begin taking a look at how the DOM is
used in the real world, including common algorithms, the DOM support available in
today’s browsers and applications, and some tips and tools for debugging your DOM
application code.

8 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

PART

II
Real-World DOM

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

CHAPTER

4
Algorithms

87
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

8 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Part I introduced the DOM; discussed its concepts, design, theory, and origins;
and introduced the main interfaces of the DOM application programming
interface (API). It also explored how the DOM API can be used to examine

and manipulate the information in HTML and XML documents.
In Part II, we take a look at how the DOM is used in the real world (hence the title

of the section). This chapter introduces and dissects several common algorithms and
code patterns that appear regularly when using the DOM to process the information
in structured documents.

DOM Algorithms
When using the DOM API, it soon becomes clear that there are certain types of
document processing algorithms that you need to use over and over again. Common
algorithms include

� Determining whether a node is contained within another node

� Determining whether a node has a sibling of a certain type

� Finding a node based on the value of an attribute

� Processing the children of a node

These algorithms can be readily used in your own DOM code or modified slightly
to suit a related but different purpose. Let’s start by discussing two different types of
DOM algorithms: position based and content based. Position-based DOM algorithms
are best when you are more interested in the position of nodes within a document than
the node’s actual contents; content-based algorithms are best when you are more
concerned with the contents of nodes.

For example, determining whether a given node is contained within another node
is an example of a position-based algorithm; you are trying to discover whether a
node occupies a particular place in the DOM tree. Determining whether a node contains
another node is an example of a content-based algorithm; you are more concerned
about the contents of a node.

Basic Node Traversal Algorithms
Before we cover the position- and content-based algorithms, we first take a look at
some basic node traversing algorithms that will be used later on. These examples

TE
AM
FL
Y

Team-Fly®

will only use the DOM Level 1 Node interface; traversal using the Traversal interface
is not presented here. For more information on the Traversal interface, see Chapter 3.

The DOM document structure is organized as a tree, so there are two ways to
traverse nodes: depth first and breadth first. The depth-first algorithm visits nodes
starting at the root node of a subtree and recursively processing each child node of
the root node. Based upon where you place the processing logic within the recursive
function, the algorithm processes either parent or child nodes first. The node traversal
algorithm we introduced in Chapter 3 was an example of a depth-first traversal. Recall
the code listing

processNode(Node n)

{

doStartNodeProcessing(n);

for (Node c = n.firstChild(); c != null; c = c.nextSibling())

{

processNode(c);

}

doEndNodeProcessing(n);

}

In this listing, parent nodes are processed first (by the doStartNode
Processing() function); then child nodes are processed. Depth-first traversals
follow the pattern shown in Figure 4-1.

The dotted arrows show the order in which the nodes are visited. In this example,
the nodes are visited in the order A, B, D, E, C, F, G.

Breadth-first node traversal visits each child node of a given parent before processing
any other child nodes of the children of that parent. If that sounds confusing, Figure 4-2
should clear things up.

C h a p t e r 4 : A l g o r i t h m s 8 9

Figure 4-1 Depth-first node traversal

The code for processing nodes breadth first is slightly different from the depth-
first algorithm because all of the child nodes at the current level need to be processed
before moving to the next level down. The following code listing shows one possible
example of breadth-first processing that processes each branch of a tree separately:

processNode(Node n)

{

doStartNodeProcessing(n);

if (n.hasChildNodes())

{

for (Node c = n.firstChild(); c != null; c = c.nextSibling())

{

// do child node processing in here

}

for (Node c = n.firstChild(); c != null; c = c.nextSibling())

{

// now move to the next level for this parent

processNode(c);

}

}

doEndNodeProcessing(n);

}

The dotted arrows show the order in which the nodes are visited. In this example,
the nodes are visited in the order A, B, C, D, E, F, G.

There is no real logic-related advantage to using breadth-first over depth-first, or
vice versa, even though the breadth-first algorithm suffers from a performance

9 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 4-2 Breadth-first node traversal

C h a p t e r 4 : A l g o r i t h m s 9 1

disadvantage because it iterates over the child nodes of a given node twice. Your
application should use the algorithm that is most appropriate to solving your specific
traversal problem.

Position-Based Algorithms
Position-based algorithms work by examining the locations of nodes within a given
DOM document; the contents of the node are secondary (if considered at all). Two
common position-based algorithms are determining whether a node has an ancestor node
of a particular type and determining whether a node has a sibling of a particular type.

Determining Whether a Node Has an Ancestor of a Given Type
Suppose your program needs to determine whether a node is contained within
another node. For example, in HTML, image tags can be contained within anchor
tags, which allows them to serve as hyperlinks to other URLs, as in the following:

If your application needs to treat a node differently depending on whether it is
contained by another type of node, you can use the algorithm in the following code
listing to determine if a node has a particular ancestor:

Boolean isContainedBy(Node n, DOMString nodeName)

{

Node testNode;

testNode = n.getParentNode();

while (testNode)

{

if (testNode.getNodeName().equals(nodeName))

return true;

testNode = testNode.getParentNode();

}

return false;

}

This function starts with a given node and traverses up the DOM tree, examining
each node to see if the given node is contained by the node with the given name. If
the current parent node does not match the criteria, set the testNode to the current
parent node and repeat the loop. To see how this works, consider the sample document
tree represented by Figure 4-3.

9 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Suppose you had a reference to the C node labeled node1 and wanted to see if the
node was contained within a B node. You would call the function isContainedBy()
like this:

Boolean bHasBParent = isContainedBy(node1, "B");

In this case, the function would return true because node1 is contained by a
B node. If the same call were made on the C node labeled node2, the function
would return false.

This example could easily be modified to see if a node was contained by a parent
of a particular node type (such as Element), with particular attributes, and so on. For
instance, to change this example to see if a node is contained within a particular type,
you would change the nodeName argument from a DOMString to a short integer
representing the node type. The part of the function where the test is done would be
changed to check the node type instead of the node name, like this:

if (testNode.getNodeName().equals(nodeName))

return true;

Then you would call this function like this:

var bHasBParent = isContainedBy(node1, Node.ELEMENT_NODE);

Determining Whether a Node Has a Sibling of a Given Type
Determining whether a node has a sibling of a particular type is similar to the
previous example of determining whether it has a particular parent. You simply

Figure 4-3 Sample document tree

C h a p t e r 4 : A l g o r i t h m s 9 3

use the previousSibling and nextSibling properties of the Node interface.
This code listing shows one way of accomplishing this:

Boolean hasSiblingWithNodeName(Node n, DOMString nodeName)

{

Node testNode;

// first check the previous siblings

testNode = n.getPreviousSibling()

while (testNode)

{

if (testNode.getNodeName().equals(nodeName))

return true;

testNode = testNode.getPreviousSibling();

}

// now check the following siblings

testNode = n.getNextSibling()

while (testNode)

{

if (testNode.getNodeName().equals(nodeName))

return true;

testNode = testNode.getNextSibling()

}

return false;

}

Again, just like the previous algorithm, this one could easily be modified to see if
a node had a sibling node of a particular node type (such as Element), with particular
attributes, and so on.

Content-Based Algorithms
Whereas position-based algorthms focus on the location of a node within a document,
content-based algorithms focus on the actual content of the nodes and their attributes.
Some of the more common content-based algorithms are determining whether a
given node contains another particular node, retrieving nodes based upon their type
(text, element, and so on), and finding a node with a particular attribute value.

Determining Whether a Node Contains Another Node
This example is the opposite of the example presented previously, where we
determined whether a given node was contained within another node. Here,
we determine whether a particular node contains another node. For example, in

the document represented in Figure 4-4, which contains all element nodes, you can
check to see if the node labeled node1 contains a node of type D.

To accomplish this algorithm, use the depth-first node traversal algorithm presented
earlier to examine all child nodes under the given source node. The following code
listing will determine whether a node contains another node with a given node name:

Boolean containsNode(Node n, DOMString nodeName)

{

Boolean bFound = false;

if (n.getNodeName().equals(nodeName))

return true;

for (Node c = n.firstChild();

c != null && !bFound;

c = c.nextSibling())

{

bFound = containsNode(c, nodeName);

}

return bFound;

}

The containsNode() function first examines the given node to see if it matches
the node name that you are looking for. If so, the function returns true, and you’re done.
If not, you recursively process each child node to see if it matches the supplied node

9 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 4-4 Sample document structure containing only Element nodes

name, and you continue this until either the name has been found or there are no more
children of the node to search. To call this function in order to solve our stated problem,
you would write

Boolean bContainsDNode = containsNode(node1, "D");

In this case, the function returns true because the tree does in fact contain a D node.
To see if node1 contained any text nodes, you would write

Boolean bContainsDNode = containsNode(node1, "#text");

in which case, the function would return false because there are no text nodes.
This example could be modified slightly to determine whether a node contains another

specific node and not just a node of a given type. To do this, the containsNode()
method would need to accept a node as its second argument instead of a DOMString.
The following code illustrates this:

Boolean containsNode(Node source, Node theNode)

{

Boolean bFound = false;

if (source == theNode)

return true;

for (Node c = source.firstChild();

c != null && !bFound;

c = c.nextSibling())

{

bFound = containsNode(c, theNode);

}

return bFound;

}

Better Versions of Node Interfaces:
Retrieving Relative Nodes by Type
The Node interface provides properties for retrieving the first and last child node of
a given node and for returning its previous and next sibling nodes. Using a bit of logic
similar to that in the first example, you can make methods that are “smart” about the
types of nodes they return.

For example, to write methods for returning the first and last child nodes of a
particular node type, you can write functions named getFirstChildOfType()
and getLastChildOfType(). The getFirstChildOfType() method

C h a p t e r 4 : A l g o r i t h m s 9 5

returns the first child of a node with the given node type and can be implemented by
the following code listing:

Node getFirstChildOfType(Node n, short nodeType)

{

Node testNode = null;

Boolean bFound = false;

testNode = n.getFirstChild();

while (testNode)

{

if (testNode.getNodeType() == nodeType)

return testNode;

else

testNode = testNode.getNextSibling();

}

return null;

}

The algorithm works by first retrieving the first child node of node n and checking
if its nodeType is the same as the requested nodeType. If so, then the node is returned.
Otherwise, you move through each following sibling node until there are no more
sibling nodes or a matching node has been found. If no matching node is found, the
function returns null. Calling this function would look like the following:

Node n = getFirstChildOfType(theNode, Node.TEXT_NODE);

The matching code for getLastChildOfType() is almost exactly the same,
with two exceptions: the function begins by retrieving the last child of the given
node, and it moves backward through the sibling nodes using previousSibling().
The following code snippet shows the changes to the function:

Node getLastChildOfType(Node n, const unsigned short nodeType)

{

Node testNode = null;

Boolean bFound = false;

testNode = n.getLastChild();

while (testNode)

{

if (testNode.getNodeType() == nodeType)

return testNode;

else

testNode = testNode.getPreviousSibling();

9 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 4 : A l g o r i t h m s 9 7

}

return null;

}

To use this code to find the last child Comment node for a given node, you would
call the function like this:

Node n = getLastChildOfType(theNode, Node.COMMENT_NODE);

The implementations of the getPreviousSiblingByType() and
getNextSiblingByType() are both very similar to the preceding two
algorithms and are left as exercises for the reader.

Finding a Node by Attribute Value
Sometimes it is especially useful to be able to find a node given an attribute value.
For example, your DOM application might be interested in retrieving an image tag
("IMG") with a specific value for the SRC attribute, or maybe your application
tags a node with a special attribute to denote some kind of state that the node is in.

This is substantially similar to the containsNode() example, except that in
this case you are looking for a specific attribute value. The following code listing
shows how to find a node that has a specific attribute attached to it.

Node getElementByAttributeValue(Node n, DOMString attName,

DOMString attVal)

{

Node theNode = null;

// if this node matches the given attribute name and value,

// the we can return it.

if (n.getNodeType() == Node.ELEMENT_NODE)

{

if ((Element)n).getAttribute(attName).equals(attVal))

return n;

}

// otherwise process all of the child nodes.

for (Node c = n.firstChild();

c != null && !theNode;

c = c.nextSibling())

{

theNode = getElementByAttributeValue (c, attName, attVal);

}

return theNode;

}

9 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The major difference between this example and containsNode() is that you
are always checking for Element nodes because they are the only nodes that can
have attributes. If the test shows that the supplied argument “n” is in fact an element
node, you know that you can call getAttribute() on it, which will return an
empty string if the attribute is not present. Then you check to see if the value of the
attribute matches what you are looking for.

To find out if a document contains an element that has an attribute with a given name,
you can call this function with the document’s documentElement as the first
argument:

Node theNode = getElementByAttributeValue(document.documentElement,

"myattr", "myattrvalue");

This example can be enhanced to return a list of nodes that have a given attribute
value by combining the logic from getElementByAttributeValue() and
the depth-first processing code from earlier in this chapter. The resulting function,
getElementsByAttributeValue(), can be written in Java as

Vector getElementsByAttributeValue(Node n, DOMString attName,

DOMString attVal)

{

Vector theNodes = new Vector();

addNodesToList(n, theNodes, attName, attVal);

return theNodes;

}

addNodesToList(Node n, Vector v, DOMString attName, DOMString attVal)

{

// if this node matches the given attribute name and value,

// then add it to the list of nodes.

if (n.getNodeType() == Node.ELEMENT_NODE)

{

if ((Element)n).getAttribute(attName).equals(attVal))

v.add(n);

}

// now recursively process all of the node's child nodes

for (Node c = n.firstChild(); c != null; c = c.nextSibling())

{

addNodesToList (c, v, attName, attVal);

}

}

TE
AM
FL
Y

Team-Fly®

The addNodesToList() method performs almost the same function as the
original getElementByAttributeValue() method, except that instead of
simply returning the first matching node, it adds the node to a list and keeps going.

Conclusion
In this chapter, we introduced some of the basic node processing algorithms that
commonly appear in DOM applications. We first covered the basic depth-first and
breadth-first node traversal algorithms and discussed their differences. Next, we
introduced and discussed position-based and content-based algorithms, and you saw
examples of each. In particular, we examined algorithms that showed how to tell if
a node is contained within another node, how to see if a node contains another node,
and how to retrieve lists of nodes based upon node types and attribute values.

In the next chapter, we’ll take a look at the DOM implementations provided by
the more popular web browsers in use today, such as Internet Explorer 6, Netscape 6,
and Opera 6.

C h a p t e r 4 : A l g o r i t h m s 9 9

This page intentionally left blank.

CHAPTER

5
Browsers

101
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Modern DOM had its beginnings in the web browser, going back to
Netscape 2 and Internet Explorer 3. In those days, the DOM was not an
official specification, and the various browser vendors added functionality

to their browsers to fit their needs using their own proprietary interfaces. This, of
course, made it very difficult to create web pages that would work across multiple
browsers, which was supposed to be one of the main selling points of the Web.

The situation has (thankfully) changed rather significantly since then. The latest
generation of browsers (6) from Microsoft, Netscape, and Opera Software incorporates
the most complete support for the W3C DOM standards available to date. Although
still not perfect, it is now much easier today to create web pages that will work in
multiple browsers than it was even a couple of years ago. In this chapter, we review
the DOM support of the latest releases of the major web browsers, take a look at
some examples of browser-based DOM usage, and discuss some of their quirks and
special features as they relate to the DOM.

DOM Support in the Major Browsers
Perhaps the most logical place to start examining the DOM’s real-world support
is today’s major web browsers. With Netscape 2 and Internet Explorer 3’s initial
implementations of the JavaScript programming languages, web authors could give
their pages some added interactivity. Developers could dynamically change the contents
of documents, cause an image to point to a new source URL, check the contents of
forms, and more, all by writing some simple script code and tweaking the right properties
of an HTML tag or two. Later browser versions allowed layers to be moved around
the screen over a certain time period, providing simple animation effects. This was
powerful, heady stuff at the time, though it was certainly limited. Not all of the
properties of a given page could be manipulated, and some browsers offered more
control than others (although sometimes they came from the same vendor!). Even
if you could technically accomplish everything you needed to, very often you had
to write special-case code all over the place to handle the inevitable differences
between the various browsers that might visit the page.

Today’s browsers have come a long way since then. Using the DOM API, it is
now possible to dynamically change the appearance of almost any part of a web
page, from the style sheets to the actual structure and content of the page itself.
In addition, because the DOM provides a standard set of interfaces for doing so,
the need for special case code is often greatly reduced (though not yet completely
eliminated). This allows for the building of more complex, engaging user interfaces,

1 0 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 5 : B r o w s e r s 1 0 3

as well as enhanced document processing programs that work across multiple
DOM-compliant browsers.

In this chapter, we will examine the DOM support of the major web browsers
available today: Microsoft Internet Explorer 6, Netscape Navigator 6, and Opera 6.
All the major browsers available today support at least some of the W3C DOM
specification. Microsoft Internet Explorer 6 and Netscape 6.x provide the most
comprehensive support. Opera 6 supports some of the more important DOM API
methods but does not yet provide a full implementation. Although the majority
of the code examples in this chapter will work in all three of the major browsers,
some will not; those that do not will be noted.

Microsoft Internet Explorer 6
With the introduction of Internet Explorer 6, Microsoft provides full support for
DOM Level 1 in its flagship web browsing application. Internet Explorer 6 provides
full support for the Core and HTML interfaces of DOM Level 1, along with CSS
(Cascading Style Sheets) 1. In addition, IE6 supports the DOM Level 2 method
getElementById(), along with several nonstandard properties and methods
for developers’ convenience that are not included in the W3C specification for
DOM Level 1.

Internet Explorer 6 fully supports the DOM Level 1 interfaces, so scripts can take
full advantage of the DOM’s capabilities, including creating page elements dynamically
at runtime, discovering and changing the structure and content of a page, and modifying
a page’s appearance through style sheets.

Netscape Navigator 6.x
The venerable Navigator web browser produced by Netscape (now a part of
America Online) received a hefty amount of DOM support in its latest revision (as
of this writing, 6.2.1), which is based upon the open-source Mozilla project. This
latest version of the Netscape browser provides full support for DOM Level 1 and
part of DOM Level 2, including the DOM 2 Events module.

Scripts can take advantage of the DOM’s capabilities in Netscape Navigator
just as they would in Internet Explorer. Scripts can discover the structure and content
of pages and make changes to a page’s content at runtime. In addition, because
Navigator supports the DOM Level 2 Events module, script developers can attach
event listeners to page elements (more on this later).

Opera 6
The Opera browser, made by the Norwegian company Opera Software, does not yet
(as of version 6) provide full support for the W3C DOM. However, according to the
company’s website (www.opera.com), they are working on providing support for
DOM Level 1, along with many other public Internet standards.

Using Opera’s current (as of this writing) DOM implementation, applications
cannot currently modify the structure of the document or dynamically create new
page elements at runtime. They can, however, examine the document structure and
discover its contents. Opera 6’s support for DOM methods and properties is currently
as follows.

On the document object:

� getElementsByTagName()

� getElementById()

� getElementsByName()

On HTML elements:

� getElementsByTagName()

� contains()

� parentNode

Most of the examples in this chapter will work with Opera 6, except where
specifically noted.

Using the DOM in a Browser Environment
The browsers discussed in this chapter use JavaScript as their native programming
language, and each provides a JavaScript language binding for the DOM in its
implementation of the W3C DOM specification. Scripts do not have to do anything
special to start using the DOM methods and structures provided by these browsers—
they are an inherent part of the JavaScript namespace within the browser and can
be used in any script.

1 0 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Obtaining a Reference to the Document
Scripts do not need to do anything special to obtain a reference to the document. The
JavaScript DOM binding provides a document keyword that represents the document
object of the document in the current browser window. Browser scripts are always
run in the context of being embedded in a document, so there is always a current
document to refer to. Scripts use this keyword to operate on the document itself and
obtain references to its child nodes.

For example, consider the following code snippet, which will display the title of
the document in an alert box when a form button is clicked:

<HTML>

<HEAD>

<TITLE>The DOM Explorer Page</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function buttonClick()

{

// "document" is a global keyword that refers to the document

// "title" is a property of the DOM1 HTMLDocument interface

alert(document.title);

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<H1>The DOM Explorer</H1>

<FORM NAME="form1" METHOD="post" ACTION="">

<INPUT TYPE="BUTTON" NAME="Button" VALUE="Button"

onClick="buttonClick()">

</FORM>

</BODY>

</HTML>

When the button is clicked, an alert displaying the title of the document appears,
as shown next.

C h a p t e r 5 : B r o w s e r s 1 0 5

1 0 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Getting a little more fancy, you can use the code that follows to see the values
of the basic node properties nodeName, nodeValue, and nodeType of the
document object.

NOTE

This code example does not work in Opera 6.

<HTML>

<HEAD>

<TITLE>The DOM Explorer Page</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function buttonClick()

{

// "title" is a property of the DOM1 HTMLDocument interface

alert("Document Node Properties: " + document.nodeName + ", " +

document.nodeValue + ", " + document.nodeType);

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<H1>The DOM Explorer</H1>

<FORM NAME="form1" METHOD="post" ACTION="">

<INPUT TYPE="BUTTON" NAME="Button" VALUE="Button" onClick="buttonClick()">

</FORM>

</BODY>

</HTML>

Now when the button is clicked, an alert will appear showing the document’s
nodeName (#document), nodeValue (null), and nodeType (9).

Examining the Structure and Content of a Page
Using the DOM methods, a browser script can obtain information about the structure
of a web page and discover the types of content in it. Usually, this is accomplished

C h a p t e r 5 : B r o w s e r s 1 0 7

in one of two ways or a combination of both. The first is by using the
DOM methods Getelementsbytagname(), Getelementbyid(), and
Getelementsbyname(). The getElementsByTagName() method is
part of Core DOM Level 1, the getElementById() method is part of
Core DOM Level 2 (although it is supported by most current browsers), and
getElementsByName() is part of HTML DOM Level 1. The second way is
to use the properties firstChild, lastChild, childNodes, and so on,
which are part of the DOM Level 1 Node interface. Because none of the current
major browsers implement the NodeIterator or TreeWalker interfaces, they can’t
be used to navigate the document.

Examining Single Nodes
To obtain a reference to a single node in the document tree using the Node interface
properties, you can chain as many of the Node interface’s child accessor properties
together as you need to build a path to the desired node. For example, consider the
following document:

<HTML>

<HEAD>

<TITLE>Sample Document</TITLE>

</HEAD>

<BODY>

<P>Paragraph 1</P>

<P>Paragraph 2</P>

<P>Paragraph 3</P>

</BODY>

</HTML>

NOTE

Opera 6 does not support the firstChild, lastChild, previousSibling,
or nextSibling properties, so the next three examples will not work in Opera 6.

To obtain a reference to the <P> tag that defines paragraph 1, the code snippet
that follows can be used.

var oPara1 = document.documentElement.lastChild.firstChild;

The lastChild node of the document element is the <BODY> tag (the
firstChild would be the <HEAD>), whose firstChild node is the <P> tag

1 0 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

that defines paragraph 1. Similarly, to refer to the <P> tag that defines paragraph 2,
you simply need to ask for the first paragraph node’s next sibling:

var n = document.documentElement.lastChild.firstChild.nextSibling;

The first child node of the paragraph 1 node is a text node containing the text data
“Paragraph 1.” The following code snippet displays an alert containing the text
inside the Paragraph 1 node:

alert(document.documentElement.lastChild.firstChild.firstChild.data);

Alternatively, the childNodes array can be used to access the same information:

alert(document.documentElement.childNodes[1].childNodes[0].

childNodes[0].data);

If each of the paragraph nodes had unique ID attributes, the getElementById()
method could be used to obtain a reference to each node in a straightforward fashion
without having to use the Node interface properties. For example, consider this
modified version of the document:

<HTML>

<HEAD>

<TITLE>Sample Document</TITLE>

</HEAD>

<BODY>

<P ID="para1">Paragraph 1</P>

<P ID="para2">Paragraph 2</P>

<P ID="para3">Paragraph 3</P>

</BODY>

</HTML>

Each of the paragraph nodes has now been assigned a unique ID attribute. To obtain
a reference to the first paragraph, the getElementById() method can be used:

var oPara1 = document.getElementById("para1");

Obtaining a List of Nodes Using getElementsByTagName()
Recall from Chapter 2 that the getElementsByTagName() method returns
a NodeList containing the nodes that match the given tag name. For example, the
following code snippet will obtain a reference to the <BODY> tag:

var oBody = document.getElementsByTagName("BODY").item(0);

TE
AM
FL
Y

Team-Fly®

There is only one <BODY> tag in an HTML document, so it will always be the
first element in the NodeList, which is item(0).

This method is useful when you want to process an entire list of a document’s
tags of a particular type. For example, to find out which tags in a particular
page do not have an ALT attribute defined (which is necessary for screen readers
to be able to read a representation of a picture to sight-impaired users), you can use
the following code:

<HTML>

<HEAD>

<TITLE>Image Alt Test</ TITLE >

<SCRIPT LANGUAGE="JavaScript">

function checkAltTags()

{

var oImgList = document.getElementsByTagName("img");

var i=0;

if (oImgList.length > 0)

{

for (i=0; i<oImgList.length; i++)

{

var altText = oImgList.item(i).getAttribute("alt");

if (altText == "")

alert("Image: " + oImgList.item(i).src +

" has no ALT attribute!");

}

}

}

</SCRIPT>

</HEAD>

<BODY>

<P>

<INPUT TYPE="button" NAME="button" VALUE="Check ALT Tags"

onClick="checkAltTags()">

</P>

</BODY>

</HTML>

C h a p t e r 5 : B r o w s e r s 1 0 9

1 1 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

When the Check ALT Tags button is clicked, the checkAltTags() function
retrieves a list of tags in the document using getElementsByTagName().
It then uses the getAttribute() method to see if each element has an ALT
attribute. If it finds an tag with no ALT attribute, an alert is displayed
containing the name of the image. In this example, the fourth image tag has no
ALT attribute, so it will be flagged by the code.

NOTE

Most browsers will let you retrieve the content of an attribute by referring to the attribute’s
name as a property of a tag (that is, document.title or image.src). However,
using the getAttribute() method is more flexible and is more likely to work across
multiple DOM implementations, not just web browsers. In addition, some browsers may not
properly register custom user-defined attributes as properties of a node, so this notation may
not work in those circumstances. To be safe, portable, and in tune with the specification, always
use getAttribute().

Creating and Modifying Page Elements
Creating and modifying document elements in a web browser dynamically is relatively
straightforward using the DOM. Once you have obtained a reference to the node or
list of nodes that you want to modify, you can use the DOM to change attributes,
rearrange nodes, or change their content.

Modifying Document Nodes
To modify an attribute associated with a page element, you can use the
setAttribute() and removeAttribute() methods. For example,
the following code allows the user to set the background color of the document
by clicking one of three buttons:

<HTML>

<HEAD>

<TITLE>Untitled</TITLE>

<SCRIPT>

function setBackground(backColor)

{

var oBody = document.getElementsByTagName("BODY").item(0);

if (backColor == "")

oBody.removeAttribute("bgColor");

else

oBody.setAttribute("bgColor",backColor);

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR="#FF0000">

<INPUT TYPE="button" VALUE="Black" onClick="setBackground('Black')">

<INPUT TYPE="button" VALUE="White " onClick="setBackground('White')">

<INPUT TYPE="button" VALUE="Blue " onClick="setBackground('Blue')">

<INPUT TYPE="button" VALUE="Default " onClick="setBackground('')">

</BODY>

</HTML>

When one of the buttons representing a color is clicked, the background of the
page is changed to that color by setting the BGCOLOR attribute of the <BODY> tag.
If the Default Background button is clicked, the color of the page is set to whatever
the default for the browser is—in effect, the BGCOLOR attribute is removed from the
<BODY> tag.

Similarly, block-level items, such as paragraphs and other elements, can be modified
by changing attributes. For example, to change the alignment of a paragraph, a script
only needs to set its align attribute, as shown in the following example:

<HTML>

<HEAD>

<TITLE>Align Example</TITLE>

</HEAD>

<BODY>

<P ID="para1">Paragraph 1</P>

<P>

<A HREF="#" ONCLICK="document.getElementById('para1').setAttribute(

'align','left')">Align Left

<A HREF="#" ONCLICK="document.getElementById('para1').setAttribute(

'align','center')">Align Center

<A HREF="#" ONCLICK="document.getElementById('para1').setAttribute(

'align','right')">Align Right

</P>

</BODY>

</HTML>

This code uses the getElementById() method to retrieve the paragraph node
whose ID attribute is para1. When each link is clicked, the align attribute of the
paragraph node is set to left, right, or center. The results are updated immediately in
the browser.

C h a p t e r 5 : B r o w s e r s 1 1 1

In addition to modifying the appearance of a page or its nodes, the content of
the nodes themselves can be changed. This is accomplished by changing the data
property of a given text node. The following code is the same as the previous
example, but the code has been updated to change the text of the paragraph node
with ID para1. Because the first child of the paragraph node is a text node, changing
its data property will update the text content.

<HTML>

<HEAD>

<TITLE>Untitled</TITLE>

</HEAD>

<BODY>

<P ID="para1">Click on a link!</P>

<P>

<A HREF="#"

ONCLICK="document.getElementById('para1').firstChild.data=

'You clicked link 1'">Link 1

<A HREF="#"

ONCLICK="document.getElementById('para1').firstChild.data=

'You clicked link 2'">Link 2

<A HREF="#"

ONCLICK="document.getElementById('para1').firstChild.data=

'You clicked link 3'">Link 3

</P>

</BODY>

</HTML>

Creating and Removing Document Nodes
Creating nodes at runtime is accomplished by using the DOM’s factory methods for
creating nodes: the various create() methods of the Document interface, such as
createElement(), createTextNode(), and so on. Each of these methods
creates a new type of node. For example, the following code creates new paragraph
nodes and appends them to the end of the document’s <BODY> tag:

<HTML>

<HEAD>

<TITLE>Creating New Nodes</TITLE>

<SCRIPT>

var pCounter = 1;

function addParagraph()

{

1 1 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

var oBody = document.getElementsByTagName("BODY").item(0);

var oParaNode = document.createElement("P");

var oParaText = document.createTextNode("Paragraph #" + pCounter++);

oParaNode.appendChild(oParaText);

oBody.appendChild(oParaNode);

}

function removeParagraph()

{

var oBody = document.getElementsByTagName("BODY").item(0);

oBody.removeChild(oBody.lastChild);

}

</SCRIPT>

</HEAD>

<BODY>

Add New Paragraph

Remove Last Paragraph

</BODY>

</HTML>

When the Add New Paragraph Node link is clicked, a new paragraph node is
created as an element by a call to createElement(). The text content for each
paragraph is created separately as a text node by calling createTextNode(),
which is then appended to the paragraph node as a child of the paragraph. Then the
whole thing is appended to the document’s <BODY> tag.

When the Remove Last Paragraph Node link is clicked, the last child node of the
<BODY> tag is removed.

Using this technique, you can create some fairly complex documents entirely
using the DOM. The code that follows creates an HTML Table dynamically using
the DOM methods.

NOTE

This code will only work in Netscape Navigator 6.x and Internet Explorer. Opera 6 does not yet
support dynamically creating page elements.

<HTML>

<HEAD>

<TITLE>Create Table</TITLE>

<SCRIPT>

function createTable()

{

C h a p t e r 5 : B r o w s e r s 1 1 3

1 1 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

var i=0, j=0;

var oBody = document.getElementsByTagName("BODY").item(0);

// create the TABLE, THEAD, and TBODY tags

var oTableNode = document.createElement("TABLE");

var oTableHead = document.createElement("THEAD");

var oTableBody = document.createElement("TBODY");

oTableNode.appendChild(oTableHead);

oTableNode.appendChild(oTableBody);

// for the THEAD, create one row that spans two columns

// and place a label in it indicating it is the header

var oTableHeadRow = document.createElement("TR");

var oTableHeadTH = document.createElement("TH");

oTableHeadTH.setAttribute("colspan","2");

// create the text

var oTableRowText = document.createTextNode(

"This is the table header");

// add the text to the table row

oTableHeadTH.appendChild(oTableRowText);

oTableHeadRow.appendChild(oTableHeadTH);

// add the TR to the THEAD

oTableHead.appendChild(oTableHeadRow);

// Now build the table

var oTR;

var oTD;

// build the table two rows by two columns

for (i=0; i<2; i++)

{

// create the row

oTR = document.createElement("TR");

for (j=0; j<2; j++)

{

// create each column

oTD = document.createElement("TD");

oTD.appendChild(document.createTextNode(

"This is table cell " + i + "," + j));

oTR.appendChild(oTD);

}

oTableBody.appendChild(oTR);

}

// set the table's border to 2 and the width to 75%

oTableNode.setAttribute("border","2");

oTableNode.setAttribute("width","75%");

// Finally, add the table to the document

oBody.appendChild(oTableNode);

}

</SCRIPT>

</HEAD>

<BODY>

Create An HTML Table

</BODY>

</HTML>

Figures 5-1 and 5-2 show the results of this function in both Netscape 6 and
Internet Explorer 6.

C h a p t e r 5 : B r o w s e r s 1 1 5

Figure 5-1 Results of dynamic table creation script in Internet Explorer 6

Handling Events with the DOM Level 2 Events Interface
One of the modules introduced in DOM Level 2 is the Events module, which specifies
a method for handling events within DOM documents. Events are generated as the
user performs certain actions within a document (such as mouse clicks, key presses,
and so on) and when the browser itself performs certain actions (a page has finished
loading, and so on). These events can be processed by a DOM application using an
Events module–aware browser to provide a high degree of interactivity.

The event models built into earlier browser versions used event handlers that were
attached to elements as attributes, as shown in this code snippet, which handles the
click event for an anchor tag:

Click me!

However, using this method becomes awkward when more than one event handler
for a given event needs to be attached to an element, or when event handlers need to
be attached to and removed from elements dynamically. In addition, it isn’t possible
to attach event handlers to non-Element nodes using this type of model because only
Elements can have attributes.

1 1 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 5-2 Results of dynamic table creation script in Netscape 6

The DOM Level 2 Event model takes care of these and other event features that
DOM applications can use in an Events module–compliant browser. In this section,
we introduce the DOM Level 2 Events interface and illustrate how it can be used to
provide advanced interactivity in your web pages.

NOTE

Currently, only Netscape Navigator 6.x implements the DOM Level 2 Events interface.
Internet Explorer has a similar event model but does not follow the W3C standard.

How Events Flow Through a Document
The term event flow is used to describe the process by which an event originates in
a particular implementation of the DOM and travels through the document. Using
the DOM methods, events can be handled in different ways: either locally at the
element where the event originates, or higher up in the document tree at one of
the element’s ancestors.

Every event has an associated event target. This target is usually a particular node
in the document at which the event originates. In addition, each event target may have
one or more event listeners, which are triggered when an event is fired for the target.
Figure 5-3 illustrates how an incoming event is processed by a target’s event listeners.

There are two directions in which an event may flow in the document tree: up
or down. The direction in which an event flows is dictated by what type of event
listeners are registered for a given event. An event listener may designate itself as
using event capture, in which case it will be the recipient of events before any of its
descendants. This is how an event can flow downward in the document tree. Some
types of events trigger listeners on their targets and then move upward through the

C h a p t e r 5 : B r o w s e r s 1 1 7

Figure 5-3 An event triggering an event target’s listeners

document tree to each successive parent target. These types of events are called
bubbling events because they bubble upward through the document like bubbles
of air in water. Figure 5-4 illustrates these two different directions of event flow
in a sample document tree.

Suppose that node D was clicked by the user, and that nodes A, B, and D each have
two event listeners for the click: one using event capture and one not using capture.
Node A will receive the first event and trigger its capture-based event listener (point 1
in the figure). Next, node B will trigger its capture-based event listener (point 2).
Finally, node D will trigger its event listener (point 3). At this point, the event will
“bubble” back up through the document tree, triggering event listeners on nodes that
are not using event capture—first on node D (point 4), then on node B (point 5), and
finally back up to node A (point 6).

The EventTarget and EventListener Interfaces
The DOM Level 2 EventTarget interface has the following IDL definition:

interface EventTarget {

void addEventListener(in DOMString type, in EventListener listener,

in boolean useCapture);

void removeEventListener(in DOMString type, in EventListener listener,

in boolean useCapture);

boolean dispatchEvent(in Event evt) raises(EventException);

};

1 1 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 5-4 Event flow in a document tree

TE
AM
FL
Y

Team-Fly®

The addEventListener()method attaches an EventListener (discussed shortly)
to a particular event target (usually a node in the document). The type argument
specifies the type of event that the listener handles (see the DOM2 Events module
specification for a list of event types). The listener argument is the particular
EventListener that will handle the events. In the JavaScript DOM implementation,
this is a function that takes a single argument (an Event object). The useCapture
argument specifies whether this listener should use event capture when listening for
events. If it is true, the event target for this listener will receive events of the type for
which it is registered before any of its descendants in the document tree. If a listener
is added while an event target is already processing an event, it will not be triggered
by the current event. Adding identical event listeners will cause the duplicate listener
to be discarded.

NOTE

A node that has an event handler registered for an event using capture and another event handler
that is not using capture for the same event is considered to have two separate handlers, even
though they are for the same event.

The removeListener() method removes a listener from an event target. Note
that in order to remove a listener, you must provide the type, listener, and
useCapture arguments that were all used when the listener was registered. This
is because the type alone is not enough to uniquely identify the listener. Listeners
can be registered for the same event type but with different settings for useCapture,
and each listener is considered to be separate and distinct.

The dispatchEvent() method allows a DOM application to manually
dispatch events into the event model. These manually dispatched events will have
the same types of bubbling and/or capture behavior as events that are generated
normally by the implementation.

The EventListener interface is specified as

interface EventListener {

void handleEvent(in Event evt);

};

The EventListener interface has just one method, handleEvent(), which takes
an Event as its only parameter.

You’ll see how the methods of the EventTarget and EventListener interfaces are
actually used later in the section. First, there’s a bit more theory to cover.

C h a p t e r 5 : B r o w s e r s 1 1 9

1 2 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Event Phases
There are three phases that a DOM event can be in: the Event Capture phase, the
At Target phase, and the Event Bubbling phase.

When an event is being handled by an EventListener that is using event capture,
the event is in the Event Capture phase. Each EventListener that is registered for an
event will get first crack at an event before the event target on which it is registered
if the EventListener is using event capture (its useCapture argument was set to
true when it was attached to the target).

When an event is being handled by an EventListener that is attached to the actual
target of the event, then the event is in the At Target phase.

If this event is specified as a bubbling event, the event begins to bubble back up
the document tree hierarchy all the way to the Document node itself.

NOTE

According to the DOM spec, when an event begins to bubble, the chain of event targets from the
original event target to the top of the tree is determined before the event is actually dispatched. If
the structure of the document tree changes while the event is bubbling, the event follows the path
of the initial state of the tree. Also, not all types of events bubble (for example, focus events).
Refer to the DOM2 Events module specification for a list of events that bubble.

The Event Interface
All events in the DOM Events specification have the Event interface as their base
interface. The Event interface has the following interface definition:

interface Event {

// PhaseType

const unsigned short CAPTURING_PHASE = 1;

const unsigned short AT_TARGET = 2;

const unsigned short BUBBLING_PHASE = 3;

readonly attribute DOMString type;

readonly attribute EventTarget target;

readonly attribute EventTarget currentTarget;

readonly attribute unsigned short eventPhase;

readonly attribute boolean bubbles;

readonly attribute boolean cancelable;

readonly attribute DOMTimeStamp timeStamp;

void stopPropagation();

C h a p t e r 5 : B r o w s e r s 1 2 1

void preventDefault();

void initEvent(in DOMString eventTypeArg, in boolean canBubbleArg,

in boolean cancelableArg);

};

The type property specifies the type of the event (click, mouseover, and so on).
The target property specifies the event target of this event—the node that the
event was originally sent to. The currentTarget property is the event target that
is currently processing the event. The eventPhase property indicates the phase
that the event is currently in (capture, at target, or bubbling). The cancelable
property indicates whether the event can have its default action prevented (i.e., whether
it is possible to stop the implementation from taking the default action associated
with this event). If this property is true, the preventDefault() method (discussed
shortly) can be called on this event. The timeStamp property indicates the time,
in milliseconds, that the event was created. This property may not be available for
all events on all systems. If it is not available, it will be set to 0.

The stopPropagation() method stops the event from propagating to the
next event target. This works for events in all event phases. When this method is
called, all of the EventListeners for the current event target will complete, but the
event will not travel to any more event targets.

The preventDefault() method will prevent the DOM implementation from
taking any default action associated with this event type. This method can only be
called if the cancelable property is true. This method can be called for an event
in any event phase.

The initEvent() method is called to initialize an event that was created directly
by the DOM application. If your application creates its own events, it can initialize
them using this method.

How DOM Applications Handle Events
As stated earlier, DOM applications handle events by attaching event listeners to
document nodes. Consider the following example document, which uses pre-DOM,
attribute-based event handlers to handle events:

<HTML>

<HEAD>

<TITLE>Old-Style Events Example</TITLE>

</HEAD>

<BODY>

<A HREF="#" ONMOUSEOVER="this.style.fontWeight='bold'"

1 2 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

ONMOUSEOUT="this.style.fontWeight='normal'">Link One

<A HREF="#" ONMOUSEOVER="this.style.fontWeight='bold'"

ONMOUSEOUT="this.style.fontWeight='normal'">Link Two

</BODY>

</HTML>

When the user moves the mouse over the links in this document, the links become
bold. To accomplish the same thing using DOM 2 event listeners, the code would
look like this:

<HTML>

<HEAD>

<TITLE>DOM Events Example</TITLE>

</HEAD>

<BODY>

Link One

Link Two

<SCRIPT>

function makeBold(evt)

{

evt.currentTarget.style.fontWeight='bold';

}

function makeNormal(evt)

{

evt.currentTarget.style.fontWeight='normal';

}

document.getElementById("link1").addEventListener("mouseover",makeBold,false);

document.getElementById("link1").addEventListener("mouseout",makeNormal,false)

document.getElementById("link2").addEventListener("mouseover",makeBold,false);

document.getElementById("link2").addEventListener("mouseout",makeNormal,false)

</SCRIPT>

</BODY>

</HTML>

Instead of attaching onClick handlers to the anchor tags, each tag has two event
listeners registered that listen for mouseover and mouseout events. The listeners are
registered by the calls to addEventListener(). Each event listener function
can be attached to more than one target. When one of these events occurs for a given
target, the corresponding event handler will be called, and the link will be made bold
or normal, depending upon the event.

So, why do the handlers use evt.currentTarget instead of evt.target?
It’s because events are always targeted at the most deeply nested nodes in the tree.
In this case, that would be the text nodes that represent the text strings "link1"

C h a p t e r 5 : B r o w s e r s 1 2 3

and "link2". However, that’s not what you want—you want the <A> tags to have
their styles changed. The event’s target property will be set to the original target of
the event, which is the text node for the anchor tag. The mouseover event is a bubbling
event, so you can just wait for it to bubble up to the <A> tag’s event listener and
then operate on it using currentTarget, which, at this point, will be set to the
<A> tag’s node.

Getting a little more sophisticated, we can demonstrate the use of event capture
and bubbling with the following code listing:

<HTML>

<HEAD>

<TITLE>Capture, At Target, and Bubbling Demo</TITLE>

</HEAD>

<BODY>

<UL ID="List1">

List item 1

List item 2

List item 3

<UL ID="List2">

List item 4

<LI ID="item5">List item 5

List item 6

<TEXTAREA ID="output" NAME="textfield" ROWS="5" COLS="75"></TEXTAREA>

Clear Entries

<SCRIPT>

function clickListener(evt)

{

var outStr;

outStr = "Event Target: ";

if (evt.target.tagName)

outStr += evt.target.tagName + "; ";

else

outStr += "(text node); ";

outStr += "Current Target: ";

if (evt.currentTarget.tagName)

{

outStr += evt.currentTarget.tagName +

"(" + evt.currentTarget.getAttribute("ID") +

")" + "; ";

}

1 2 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

else

outStr += "(text node); ";

if (evt.eventPhase == 1)

outStr += "Capture phase\n";

else if (evt.eventPhase == 2)

outStr += "At Target phase\n";

else if (evt.eventPhase == 3)

outStr += "Bubbling phase\n";

document.getElementById("output").value += outStr;

}

document.getElementById("List1").addEventListener("click",

clickListener,true);

document.getElementById("List1").addEventListener("click",

clickListener,false);

document.getElementById("List2").addEventListener("click",

clickListener,true);

document.getElementById("List2").addEventListener("click",

clickListener,false);

document.getElementById("item5").addEventListener("click",

clickListener,true);

document.getElementById("item5").addEventListener("click",

clickListener,false);

</SCRIPT>

</BODY>

</HTML>

This document contains two unordered lists at the top of the <BODY> section, one
of which is embedded inside the other. There are three nodes in particular that we are
interested in, all given ID attributes: List1, List2, and item5. Note that there are
two calls to addEventListener() for each of the event targets. This is to register
a handler for event capture, as well as a noncapture handler. Each time a click event
is triggered on one of the listeners, the code records some information about it and
displays it in the text area.

When you run this example in Netscape 6.x and click the list item List Item 5,
there will be six events triggered. The first three will be the capture-style event
handlers trapping the events on their child nodes, starting at the top of the document:
List1, List2, and item5. The next three will be the click event as it bubbles

C h a p t e r 5 : B r o w s e r s 1 2 5

upward through the tree: item5, List2, and List1. Because the event is directed
at the text node for the List Item 5 that is the child node of the corresponding
list item, there will be no at target phase displayed. However, if you click the little
bullet circle next to the text, the target of the event will be the tag itself, and
the at target phase will be reflected in the textarea.

Using regular, noncapture-style event handlers is relatively straightforward
because they handle an event directly on a target. So, when is it useful to employ
a capture-style event handler? Consider the following example:

<HTML>

<HEAD>

<TITLE>Event Capture Demo</TITLE>

</HEAD>

<BODY>

<UL ID="List1">

List item 1

List item 2

List item 3

List item 4

List item 5

<SCRIPT>

var oSelectedNode = null;

function listListener(evt)

{

var targetNode = evt.target;

if (oSelectedNode)

{

oSelectedNode.style.color = "Black";

oSelectedNode.style.fontWeight = "normal";

oSelectedNode = null;

}

// is it a text node? If so, set targetNode to the parent

if (targetNode.nodeType == 3)

targetNode = targetNode.parentNode;

if (targetNode.tagName)

{

if (targetNode.tagName == "LI")

{

targetNode.style.color = "Red";

targetNode.style.fontWeight = "Bold";

1 2 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

oSelectedNode = targetNode;

}

}

}

document.getElementById("List1").addEventListener("click",listListener,true);

</SCRIPT>

</BODY>

</HTML>

In this example, there is one unordered list (ID “List1”). One capture-style event
listener is registered on the list itself. If you view this example in Netscape 6.x and
click the list items, you’ll notice that each one you click turns bold and red. If one was
already red, it turns back to normal and black, and the new one turns bold and red.

The secret to this behavior is that the single event listener is handling click events
for all of the list’s child nodes because, as a capture-style listener, the parent
node is getting first crack at the event. This is why the handler is registered on the
list and not the individual items. The handler determines which node was clicked
and whether it was the text node for the list item or the list item itself, and it handles
highlighting the item by changing its associated style. Note that if you add new list
items to the list, even programmatically using the DOM, they will all inherit the
same behavior from the event listener on the list.

Using capture-style event listeners is a very powerful way of assigning the same
behavior to a node’s group of child nodes. With this technique, the child nodes can
all be made to exhibit the same behavior without having to attach event listeners to
each one.

How Event Listeners Interact with Old-Style Listeners
Prior to the DOM Level 2 Events specification, event listeners were registered using
attributes on the intended event target. Because all of the current browsers still allow this
technique to provide backward compatibility, there has to be a way for the two to
coexist.

According to the DOM Level 2 Events specification, DOM implementations can
view the setting of an event handler attribute on an element as analogous to creating
and registering an event listener on that element, with the useCapture argument
defaulting to false. In other words,

someElement.onmouseover = myEventFunction;

is the same as

someElement.addEventListener("mouseover", myEventFunction, false);

If an existing event handler attribute is changed, it is analogous to removing the
old event listener and attaching a new event listener.

When using event handler attributes, there is no way for an event listener that
has been registered via an attribute on an element to obtain event-related context
information, such as the current target or event phase.

Internet Explorer–Specific Methods and Properties
Unlike Netscape, Internet Explorer adds dozens of proprietary properties and methods
to its version of the DOM API that are not specified by the W3C. In this section, we
review some of the more important and interesting methods and properties and
demonstrate their usage. A word to the wise here: using nonstandard properties and
methods will make your code less portable, so you should use them only when you
are sure that users of your application will be using a particular browser or when there
is no other way to accomplish a particular programming task. In general, it is usually
preferable to stick to the standard methods. A complete list of IE-specific properties
and methods can be found on the Microsoft website http://msdn.microsoft.com.

Internet Explorer–Specific Properties
Two of the more important and powerful proprietary properties that Internet Explorer
adds to its implementation of the DOM are innerHTML and outerHTML. Though
not a part of the W3C DOM standard, they are very useful and can be used to perform
a wide range of operations on document nodes.

Essentially, these two properties provide access to the inner and outer HTML of
the node upon which these properties are used. The inner HTML of a node is the HTML
code contained between the closing bracket (>) of the opening tag and the opening
bracket (<) of the closing tag. The outer HTML of a node is the code between the
opening bracket of the opening tag and the closing bracket of the closing tag. For
example, consider the HTML tag for a document’s title:

<TITLE>This Is My Document Title</TITLE>

The innerHTML property of the title node would be This Is My Document
Title—the content between the closing bracket of the <TITLE> tag and the
opening bracket of the closing </TITLE> tag. The outerHTML of the title node
would be <TITLE>This Is My Document Title </TITLE>, as illustrated
in Figure 5-5.

C h a p t e r 5 : B r o w s e r s 1 2 7

Each of these properties is both readable and writable, which means you can alter
any portion of the HTML of a document by setting the appropriate property on a node.
For example, suppose your HTML document contained the following code snippet:

<P ID="para1">This is some text</P>

To make the text inside the <P> tag bold, you could use the following code:

var pNode = document.getElementById("para1");

pNode.innerHTML = "" + pNode.innerHTML + "";

This code surrounds the <P> node’s existing innerHTML (This is some
text) with opening and closing tags and places the result (This is
some text) back into the innerHTML of the node.

NOTE

Netscape Navigator 6 adds support for Internet Explorer’s innerHTML property. Scripts can
use the innerHTML property just as they would in Internet Explorer. Curiously, Netscape 6
does not support the outerHTML property—attempts to access it return “undefined.”

Internet Explorer–Specific Methods
Internet Explorer 6 adds dozens of methods that are not a part of the DOM standard,
but they are useful to developers who are working within an IE-only environment or
who are willing to sacrifice some code portability in exchange for the convenience
or added features that they provide. In most cases, the functionality provided by
one of these methods can be implemented in other browsers by using existing
DOM methods. Some of the more useful methods that Internet Explorer adds
are contains(), swapNode(), applyElement(), and replaceNode().
A full list of methods can be found on the Microsoft Developer Network site at
http://msdn.microsoft.com/.

1 2 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 5-5 The outerHTML and innerHTML properties

TE
AM
FL
Y

Team-Fly®

C h a p t e r 5 : B r o w s e r s 1 2 9

The contains() method can be used to determine whether one node contains
another node. It returns true if the node on which it is called contains another
specific node, false otherwise. Its syntax is

var bContainsNode = node.contains(anotherNode);

The swapNode() method swaps the position of the node upon which this
method is called with the node represented by the argument to the function. Its
syntax is

var oNode = oElement.swapNode(oAnotherElement);

The swapNode() method returns a reference to the element upon which the
method was called.

The applyElement() method makes the element upon which the function is
called either the parent or child of another element. Its syntax is

oElement = oObj.applyElement(oTarget [,sWhere]);

The oTarget argument is the element that becomes either the parent or child of
oObj. The sWhere argument is a string that indicates how the object is to be applied.
A value of outside, which is the default, indicates that the oTarget element is to
become the parent of oObj. A value of inside indicates that oTarget is to become
a child of oObj. The function returns a reference to the applied element.

The replaceNode() method is very similar to the Node interface’s
replaceChild() method, but it replaces the node upon which it is called, not
a child of the node. For example, this code snippet replaces a node with a new node:

node.replaceNode(newNode);

It is functionally equivalent to writing

node.parentNode.replaceChild(node, newNode);

The replaceNode() method returns a reference to the node that was replaced.

Browser Quirks
Although the latest versions of the browsers do an admirable job of implementing
the DOM standard, a few quirks are worth mentioning so you can avoid or deal with
them in your browser-based DOM applications.

1 3 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Internet Explorer
Some of Internet Explorer’s more notable DOM-related quirks:

� Versions prior to 6 don’t support createAttribute(),
getAttributeNode(), or setAttributeNode(). You must
use the getAttribute() and setAttribute() methods instead.

� Versions prior to 6 don’t support the normalize() method of the
Node interface.

� If you call getAttribute('style') on an Element, the return
value will be an object, not a string. You can get the content by using
getAttribute('style').cssText.

� Calling getAttribute('class') on an Element returns null,
even if a class attribute has been defined.

Netscape Navigator
Netscape Navigator’s more notable DOM quirks are

� Newline characters are treated as individual text nodes. This may cause your DOM
applications that expect child nodes of a certain type to always be in a particular
location to fail because a newline character in the source text may be treated as
a text node. Always check node types before operating on them to make sure
that what you have is what you think you have (this is true for all browsers).

� Versions of Navigator prior to 6.1 have event capturing problems when clicking
on a text node contained within a DIV. The event will not properly be captured
by the <DIV> element.

� Navigator 6 doesn’t provide backward compatibility for old DHTML constructs
(like document.layers).

Conclusion
In this chapter, we examined the DOM support provided by the major web browsers
in use today from four different vendors. In particular, we discussed the support provided
by Internet Explorer 6, Netscape Navigator 6, and Opera 6. Of these, Internet Explorer
and Netscape 6 have the most complete support for the DOM specification, whereas
Opera currently has the least support.

Both Internet Explorer and Netscape Navigator contain some proprietary methods
and properties, and have a few quirks in their implementations. Each browser, however,
has come a long way from the 3.0 and 4.0 days, when scripts that had to work in
both browsers could require radically different code to obtain the same result. Using
the DOM specification, scripts can be much more uniform now and reuse much of the
same code, though, in some cases, browser-specific code will still be needed.

In the next chapter, we’ll examine the DOM support provided by some nonbrowser
applications.

C h a p t e r 5 : B r o w s e r s 1 3 1

This page intentionally left blank.

CHAPTER

6
Applications

133
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Until recently, support for the Document Object Model was mostly limited
to web browsers. However, with interest in XML growing by leaps and
bounds every day, it has become clear that there is a need for developers

to be able to process XML and other structured documents in many more places
than has been the tradition. As a result, DOM support is being added to an increasing
number of applications and with good reason: its standard way of manipulating
information in all kinds of structured documents flattens the learning curve, promotes
code reuse, and reduces development time.

In the previous chapter, we explored the DOM support provided by the major
web browsers available today (Internet Explorer, Netscape Navigator, and Opera
Software’s Opera) using their native JavaScript language bindings. In this chapter,
we’ll take a look at how the DOM is supported and accessed in several popular
application packages, both standalone and embedded.

DOM Implementations Aren’t Just for Browsers
Although the DOM traces its origins to the web browser, it is useful in many applications
in which a web browser is not the ideal implementation form factor. Developers
are beginning to realize the advantages of having a common way to manipulate
structured information, and DOM support has started showing up in more and more
non-browser-based applications. After all, the DOM essentially gives developers a
standard way of manipulating all kinds of data that fits a structured hierarchy, and
many applications have a common need to do so.

Consider one of the most simple, ubiquitous, yet commonly overlooked examples:
storing preferences or common configuration information for an application. Most
applications have some sort of configuration data that they store in a persistent state.
This information is often manipulated in response to the user’s changes and needs
to be accessed in a variety of places throughout the application. Because this kind of
information is almost always stored in a well-defined, structured format (such as
categories, settings, and values) it is a perfect candidate for using the DOM to manage
it. Major and minor categories for the configuration settings can be represented by
XML tags, and the individual settings themselves can be represented by XML tags,
tag attributes, or a combination of both. Changing, adding, and removing settings
requires simply calling the right DOM APIs to modify the given nodes.

Some of the more popular nonbrowser DOM implementations available today can
be found for both client- and server-based applications. Some of these implementations

1 3 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 6 : A p p l i c a t i o n s 1 3 5

are available as standalone libraries that can be integrated into an application, whereas
others are available as embedded implementations intended for use by application
plug-ins and extensions.

In this chapter, we will examine the DOM implementations in products developed
by the Apache Software Foundation (the Xerces parser), Microsoft (MSXML), and
Macromedia (Dreamweaver).

Standalone vs. Embedded DOM Implementations
Standalone DOM implementations are not tied to or embedded within a larger
application, such as a web browser. These implementations are usually provided
as statically or dynamically linked libraries that can be used by applications that
need to work with structured information, and there are several such standalone
DOM implementations available today. Most are freely downloadable and can be
integrated into a development project for zero or limited cost. Two of the more popular
packages available are the Apache Software Foundation’s Xerces parser and Microsoft’s
MSXML parser. Each of these parser packages provides comprehensive support for
the W3C DOM Level 1 Core specification. In the case of Xerces, DOM Level 2
support is also provided.

Embedded implementations, on the other hand, are much more like browser
implementations because the DOM architecture is hosted and exposed by the application.
In this case, the DOM is usually accessed through the hosting application’s extensibility
architecture, which may be implemented in one or more languages, such as C++,
Java, JavaScript, Perl, and so on. There are several such applications available that
expose a DOM to their extensions, such as Macromedia’s Dreamweaver HTML
authoring application.

The Apache Xerces Parser
The Apache Foundation’s Xerces Parser, commonly known as Xerces (named for
the Blue Xerces butterfly), is available as a free download from the Apache Software
Foundation’s website (see the following section for specifics). Xerces is an XML
parser that follows the DOM Level 2 specification and can be integrated into
applications that need to manipulate structured information. It is available in both
C++ and Java implementations. In addition to the core DOM APIs, Xerces provides

several useful utility classes for working with XML documents and data, such as
transcoding utilities to convert Unicode documents to local machine code and
formatting XML output.

In this section, we’ll examine Xerces’ support for the DOM and take a look at how
common DOM operations are accomplished using the Xerces API.

Where to Get Xerces
Xerces can be downloaded directly from the Apache XML website, located
at http://xml.apache.org/xerces-c/ (for the C++ version, Xerces-C) and
http://xml.apache.org/xerces-j/ (for the Java version, Xerces-J). As of this
writing, Xerces-J is at version 1.4.4, while Xerces-C is at version 1.7.0.

Xerces can be downloaded in either source-code form or a binaries-only distribution.
Prebuilt binaries are available for several platforms, including Windows, Macintosh,
and several variants of the Unix operating system, such as Linux and Solaris. The
Xerces parser is also available as part of the Apache Xalan download, another
open-source package available from the Apache Foundation. Xalan is an XSLT
processing engine that uses Xerces as its XML parser. When you download and
install Xalan from the Apache Xalan website (http://xml.apache.org/xalan/), Xerces
is installed automatically.

Whether you should use the Java or C++ version of Xerces depends on the
application you have in mind. If you’re writing an application that will be used in a
server environment, the Java version is probably the better choice. If your application
is on the client side and is a shrink-wrapped, commercially available application or
is using a client user interface library such as MFC, the C++ version is probably the
right way to go. Because there are several references available that use Java in their
examples, this section will focus on the C++ version (though each version, of course,
provides excellent support for Level 2 of the DOM specification). If you’re not a
C++ programmer, don’t worry: one of the really nice things about Xerces C++ is
that it is very similar to the Java version in both design and use. Converting Xerces
Java code to use C++, and vice versa, is a straightforward process.

NOTE

This section will focus only on the current, official Xerces-C DOM classes. The Xerces-C team is
in the process of creating a new interface to the Xerces-C API called IDOM; this interface is still
experimental and will therefore not be covered here. The Xerces distribution contains some
information on this API and some related example code, and interested developers should
look there for further information on IDOM.

1 3 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Installing Xerces
When downloading Xerces, you get to choose whether to install the entire Xerces
project, complete with source code, or only the binary distribution files. If you’re
not planning on making any modifications to the source code or building the library
for a platform that is not supported by the binary distributions, downloading and
using the binary distribution package for your platform is probably the best way to
go. However, you’ll need the source code if you want to build your application for
a platform that is not supported by the standard Xerces download.

Once you’ve downloaded Xerces, you will need to unpack the archive file to re-create
the Xerces folder structure. Figures 6-1 and 6-2 show the Xerces folder structures for the
Windows version of the source code and binary distribution packages.

C h a p t e r 6 : A p p l i c a t i o n s 1 3 7

Figure 6-1 The Xerces source distribution folder hierarchy for Windows

Among the directories created by the Xerces unpacking process, those that you
will most likely be interested in are doc, Projects, samples, and src. If you’re using
the binary distribution, you won’t have the Projects and src directories; instead,
you’ll see include and lib.

In the source distribution, the Build directory contains the executable versions
of the sample applications, as well as the debug and release builds of the Xerces DLLs.
This directory isn’t included in the source distribution installer; it is built by the compiler
when the source code is compiled. For the binary distribution package, the bin directory
contains the executable DLLs and sample applications, and the lib directory contains
the Xerces import libraries that your application links to.

By default, the Xerces library is built as a dynamic link library (DLL) on Windows.
This is so that if more than one application needs to use it, each application can use
the one copy of the implementation rather than bloating the code by including a statically
linked copy in each version.

The doc directory contains the Xerces documentation. The documentation is
available in XML, HTML, and PDF formats (except the API documentation, which
is available only in HTML).

1 3 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 6-2 The Xerces binary distribution folder hierarchy for WindowsTE
AM
FL
Y

Team-Fly®

C h a p t e r 6 : A p p l i c a t i o n s 1 3 9

The Projects directory contains the various projects needed to build the Xerces
library for the various platforms on which it is supported. Inside this folder, the Win32
directory contains the project files for VisualC++ 6.0 for building the Windows
version of the library. The MacOS folder contains the project files for Metrowerks’
CodeWarrior IDE and Apple ProjectBuilder for MacOS X.

The samples folder contains the source code and makefiles for all of the sample
projects that ship with Xerces. There are sample projects showing how to parse files,
parse memory buffers, install custom error handlers, create documents, and so on.
There is also a data directory that contains some XML and DTD files to use with the
sample projects.

The src folder contains the Xerces source code implementation and header files
(for the binary distribution package, these files are in the include folder). You won’t
usually need to view the contents of this folder unless you are making changes to
Xerces itself. However, you will need to include this directory in your source code
via an #include statement in order to compile your application because this is
where the compiler will expect to find the declarations for all of the DOM and related
utility classes.

Getting to Know the API
The Xerces API documentation is available in both the source-code and binary
distributions. When the Xerces library is installed, the API documentation can be found
inside the apiDocs folder, which is located inside the doc folder. Whereas the rest
of the Xerces documentation is available in XML, HTML, and PDF formats, the
documentation for the programming interfaces is currently available only in HTML
form. There is a brief programming guide available; the file \doc\html\program.html
describes some general characteristics of programming Xerces. This information can
also be found in the PDF and XML documentation.

The API documentation provided with Xerces is mostly reference material gathered
from the various source code header files and does not provide much detail on the
usage of the various classes. Thankfully, Xerces ships with a number of useful examples,
and you should familiarize yourself with them before attempting you build your first
application. Table 6-1 lists the sample applications that ship with the Xerces distribution
and what they demonstrate.

One of the major differences between the Java and C++ APIs are the DOM class
names. In the C++ version of the API, the various DOM class names are prefixed
with DOM_. For example, the Document class becomes DOM_Document, the Node
class becomes DOM_Node, and so on. According to the Xerces documentation, this

1 4 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

is done to avoid collisions with existing code that might try to use the same class
names, either in the application or some other third-party libraries that the application
is using. This could have been avoided using C++ namespaces, of course, but the
Xerces documentation notes that there are still several C++ compilers that do not yet
use namespaces. If you are so inclined, you could always use typedef declarations
to rename the C++ classes to be the same as their Java counterparts, such as

typedef DOM_Document Document;

typedef DOM_Node Node;

typedef DOM_Element Element;

This technique may be particularly useful to developers converting a body of
existing Xerces Java code to C++.

Sample Project Description
CreateDOMDocument Uses the DOM API to create a new document and add elements to it

DOMCount Parses an XML file and counts the number of elements in it

DOMPrint Parses and prints the contents of an XML file

SAXCount Uses the SAX (Simple API for XML) interface to parse an XML
file and count its elements

SAXPrint Uses the SAX interface to parse an XML file and print its contents

MemParse Demonstrates parsing an XML file that is stored in a memory buffer

Redirect Shows how to use the EntityResolver class to redirect the parser
to an external DTD file

Pparse Demonstrates the technique of progressive parsing, in which an
input stream is parsed a piece at a time

StdInParse Parses an XML file that is read from standard input

EnumVal Illustrates how to enumerate the values defined in a DTD Grammar

SenumVal Same as EnumVal, but enumerates values defined in a Schema
Grammar

SAX2Count Uses the SAX2 interface to parse an XML file and count its elements

SAX2Print Uses the SAX2 interface to parse an XML file and print its contents

IDOMCount Demonstrates parsing an XML file and counting its elements
using the new, experimental IDOM interfaces

IDOMPrint Uses the experimental IDOM interfaces to parse and print the
contents of an XML file

Table 6-1 The Xerces Sample Applications

C h a p t e r 6 : A p p l i c a t i o n s 1 4 1

Aside from the class name differences, programming Xerces in C++ is very
similar to programming Xerces in Java, and a great deal of effort went into making
the two as similar as possible. Most of the memory management is done automatically
behind the scenes by the library, and the built-in DOM classes are implemented
using object reference counting. For the most part, your code will not have to do
any explicit object deletion. For this reason, there are some important points you
need to keep in mind when writing Xerces C++ applications:

� Always create DOM classes as local variables on the stack, or as member
variables of another class. Do not try to create them on the heap using new()
or malloc() because this will cause the internal automatic memory
management mechanism to become confused and will most likely lead
to objects not being freed correctly. In other words, do this:

DOM_Document myNode =
theDOMImpl.createDocument(0,"root",DOM_DocumentType());

Not this:

DOM_Document *myDocument = new DOM_Document();

� The public DOM classes can be copied via the assignment operator (=), passed
as function parameters, and returned from functions by value, just as they can
be in Java.

� You should not try to subclass the public DOM classes (for example, DOM_Node,
DOM_Document, DOM_Attr, and so on). In practice, this is almost never
necessary anyway. If you need to attach application-specific data to a DOM
document tree, the DOM_Node class provides a “user data” field that your
application can use to store this data. You’ll see an example of this later in
the chapter in the “Using the Node’s userData Field” section.

NOTE

In Xerces-C, the DOMString == operator checks to see whether two DOMString variables
refer to the same object in memory, not whether they contain the same content. This follows the
Java model of equality testing, and the DOM classes also use it. To see if two DOMStrings contain
the same characters, your code should call the equals() method on one of the strings and
pass the other as the argument to the function.

Using Xerces
In order to use the Xerces-C library, your application needs to link in the appropriate
import libraries that are built from the source distribution, depending on whether

1 4 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

you are building in debug mode or release mode. For the debug version of Xerces,
this is the xerces-c_1D.lib file. For the release version, your application will link to
the xerces-c_1.lib file. If you are using the prebuilt binary distribution package, these
libraries are stored in the lib folder. For the source distribution package, the libraries
are stored in the Build folder. No other third-party libraries are needed.

In this section, we’ll examine how some common uses of the DOM are accomplished
using the Xerces-C interfaces.

Initializing and Terminating the Parser
Before the Xerces API can be used to process structured documents, it needs to be
initialized by the application. This only needs to be done once per instance of the
application, although it is safe to initialize and terminate the library as much as you
like. (Note that this is different from previous versions of Xerces, which only allowed
the library to be initialized and terminated once per process.)

To initialize the Xerces library, your application needs to call
XMLPlatformUtils::Initialize(). To shut down Xerces, your application
calls XMLPlatformUtils::Terminate(). These are static methods in the
XMLPlatformUtils class. The following code snippet illustrates how to do this:

try

{

XMLPlatformUtils::Initialize();

}

catch(const XMLException& toCatch)

{

char *pErrMsg = XMLString::transcode(toCatch.getMessage());

cerr << "Error during Xerces-C Initialization: " << pErrMsg;

delete pErrMsg;

}

The call to Initialize() in the try block will attempt to initialize the Xerces
library. If anything goes wrong, the method will throw an XMLException, which is
handled inside the catch block. In this example, the code simply prints an error message.
This type of initialization only needs to be done once, unless your application initializes
and terminates Xerces as needed (although this shouldn’t be necessary). If your
application is using a framework such as MFC, the previous code could be called
from within your application’s InitInstance() method override.

Assuming everything goes well, the Xerces library will now be initialized and can
be used in your application. After your application has finished using the Xerces library,
it needs to release the library by calling the Terminate() method, as shown here:

XMLPlatformUtils::Terminate();

Again, if your application is using a framework such as MFC, this code would be
called from your application’s ExitInstance() method.

Creating a New Document
Once the Xerces library has been initialized, your application can start using it
to create and/or process documents. To create a new document, your code calls the
createDocument() method on the DOMImplementation interface. For example,
the following code snippet creates a new, empty document with a root element
named rootnode:

// declare an instance of the DOM Implementation class

DOM_DOMImplementation impl;

// create a document with no namespaceURI, a document root element

// named "root", and the default DocumentType

DOM_Document doc = impl.createDocument(0,"root",DOM_DocumentType());

Once the document is created, you can add elements to it or manipulate it in other
ways using the DOM interfaces.

Creating Document Content
Once you create a new document, you can add new document objects to it. The
following code snippet builds a “Hello World” document containing a comment,
a hello element, and a text string, assuming that the document has already been
created as in the example above and is stored in a variable named doc.

// retrieve the document element from a DOM_Document

// object variable "doc"

DOM_Element theRoot = doc.getDocumentElement();

// create the comment node and append it to the document

DOM_Comment theComment = doc.createComment("This is a comment");

theRoot.appendChild(theComment);

// now create the hello element. This will contain our text string

DOM_Element helloNode = doc.createElement("hello");

theRoot.appendChild(helloNode);

// Finally, create the text string and append it to the hello element

DOM_Text theTextStr = doc.createTextNode("Hello World!");

helloNode.appendChild(theTextStr);

C h a p t e r 6 : A p p l i c a t i o n s 1 4 3

1 4 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

This code creates three objects: a comment, an element, and a text node, and
appends them to a document object named doc (assuming the code has earlier either
created this document or retrieved it from somewhere else, like the parser).

Parsing a Document File
Documents are not always created in memory from scratch. The much more common
case is one where you have a document stored in persistent memory, such as on disk,
and you want to load and parse it to build a DOM structure. There is no standard way
of accomplishing this in the DOM API under Levels 1 or 2, so each implementation
is free to provide its own methods for doing this.

The way Xerces accomplishes this task is by providing a class called InputSource.
An InputSource specifies a source of data, whether it is a file, memory buffer, URL,
and so on. The Xerces library reads data from the InputSource and constructs a
DOM from it. In addition to specifying a source of data, the Xerces parser allows the
application to set a variety of parser configuration options that are used when the file
is parsed, such as whether to use validation, whether to use namespaces, what kind
of error handler to use, and so on. The Xerces library provides InputSource-derived
classes for files, memory buffers, URLs, and standard input. You will never use the
InputSource class directly; your application will make use of one of the derived
classes, depending on the source of the data.

This process is illustrated here:

LocalFileInputSource *theSource; // input source for the file

// define some default options for the parser

DOMParser::ValSchemes valScheme = DOMParser::Val_Auto;

bool bNamespaces = false;

bool bSchema = false;

// create the parser (ok to use new() here because

// DOMParser is not a DOM_ class)

DOMParser* parser = new DOMParser;

// set the parser options

parser->setValidationScheme(valScheme);

parser->setDoNamespaces(bNamespaces);

parser->setDoSchema(bSchema);

// parse the file

theSource = new LocalFileInputSource("myfile.xml");

try

{

parser->parse(theSource);

}

catch (const XMLException& toCatch)

{

// handle the XMLException

}

catch (const DOM_DOMException& toCatch)

{

// handle the DOMException

}

catch (...)

{

// handle all other kinds of exceptions, like memory exceptions

}

// get the document from the parser

DOM_Document doc = parser->getDocument();

// perform any document operations

delete theSource; // deallocate the memory we allocated earlier

delete parser;

In this example, some local variables are first declared that will store the input
source for the document and some parsing options. In particular, the valScheme
variable is set to the constant value DOMParser::ValAuto, which means
perform automatic validation if a DTD is present in the file. Other possible values
are ValNever, which means never validate; and ValAlways, which means
always validate. The bNamespaces and bSchema variables are each set to false,
indicating that you do not want the parser to handle namespaces or schemas.

Next, a DOMParser object is created on the heap. This is okay to do here because
DOMParser is not a DOM class, but a utility class provided by Xerces that parses an
InputSource and builds a DOM_Document. After the parser is created, the various
options are set by calling the setValidationScheme, setDoNamespaces,
and setDoSchema methods.

A LocalFileInputSource, which is one of the InputSource-derived classes, is
created on the application heap, along with the path to the file to parse (hard-coded
here to "myfile.xml"). Once everything is ready, the parser’s parse() method
is called, which reads the input source and creates a document. This method
can throw exceptions, so you need to surround the call with a try-catch
block to catch any exceptions that arise. There are two specific handlers for
DOM_DOMExceptions (which means there’s something wrong with the document

C h a p t e r 6 : A p p l i c a t i o n s 1 4 5

tree) and an XMLException, which means there’s something wrong with the
XML code.

Assuming the parser was able to parse the source data, you can retrieve the
document by calling the parser’s getDocument() method, which will return
a DOM_Document. At this point, you can use DOM methods to manipulate
the document.

For a more complete example of file parsing, see the DOMCount example in the
Xerces samples directory.

Parsing a Document in Memory
Parsing a document that is stored in memory is not much different from parsing a
document stored on disk; you simply need to provide a different kind of InputSource.
In this case, you need to use a MemBufInputSource. We can adapt the earlier
example of parsing a file to using a MemBufInputSource pretty easily, as shown
in this example:

static const char* gBuf = "\

<?xml version='1.0'?>\n\

<rootNode>\n\

<childNode>value</childNode>\n\

</rootNode>\

";

static const char* gMemBufId = "someID";

// define some default options for the parser

DOMParser::ValSchemes valScheme = DOMParser::Val_Auto;

bool bNamespaces = false;

bool bSchema = false;

MemBufInputSource* mbIS = new MemBufInputSource (

(const XMLByte*)gBuf,

strlen(gBuf),

gMemBufId,

false);

// create the parser (ok to use new() here because

// DOMParser is not a DOM_ class)

DOMParser* parser = new DOMParser;

// set the parser options

parser->setValidationScheme(valScheme);

1 4 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

parser->setDoNamespaces(bNamespaces);

parser->setDoSchema(bSchema);

// parse the file

try

{

parser->parse(*mbIS);

}

catch (const XMLException& toCatch)

{

// handle the XMLException

}

catch (const DOM_DOMException& toCatch)

{

// handle the DOMException

}

catch (...)

{

// handle all other kinds of exceptions, like memory exceptions

}

// get the document from the parser

DOM_Document doc = parser->getDocument();

// perform any document operations

delete mbIS; // deallocate the memory we allocated earlier

delete parser;

For a complete example of memory buffer parsing, see the MemParse example in
the Xerces samples directory.

Serializing a Document
In addition to loading documents from various input sources, your application may
find it necessary to save the internal representation of the document to persistent
storage. This is slightly more involved than loading a document because Xerces does
not provide classes for serializing a document. One way to do it is to use the stream
classes provided by the operating system and provide your own overrides of the <<
operator to stream out the different node types. An actual working example of this
technique is too long to list here; however, the DOMPrint example in the Xerces
samples folder provides a complete working example of how this is done.

C h a p t e r 6 : A p p l i c a t i o n s 1 4 7

1 4 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Useful String Utilities
The Xerces library provides some useful string utilities that almost all DOM applications
need to use from time to time. For example, the Xerces parser stores documents
using 16-bit characters because this is how Unicode is implemented. Unfortunately,
most operating systems or existing applications do not work directly with Unicode,
so it may be necessary to first transcode Xerces strings to the machine’s local code
page before operating on them. This can be accomplished in two primary ways:
by calling the DOMString class’s transcode() method or by using the static
XMLString::transcode method.

The DOMString class provides a method for transcoding Unicode strings to
the local machine code page. It allocates and returns a native C character pointer
(char *), which can then be passed to C and C++ library methods, such as strlen(),
strcpy(), or other native OS methods requiring C strings. For example, to convert
a DOMString returned from a call to getAttribute to a C string, you could use
code that looks like this:

// get the myAttr attribute

DOMString dsAttr = someElement.getAttribute("myAttr");

// convert the DOMString to a C string

char *p = dsAttr.transcode(); // NOTE -- this call allocates memory!

// call some C library method that takes a char *

int len = strlen(p);

// when finished, it is your responsibility to delete the pointer

delete [] p;

Note that the call to transcode() allocates memory, so it is your responsibility
to deallocate the returned string pointer when you have finished with it.

NOTE

If you are building for Windows, you must make sure that you are using the same runtime model
as the Xerces-C library when you deallocate memory that was allocated by Xerces. For example,
if you are using the debug version of the Xerces DLL, you must make sure that you are linking
against the debug version of the C runtime library, or the OS may throw an exception.

The other option is to use the XMLString::transcode method. This is
useful when you don’t have a DOMString, but you do have a sequence of XMLCh
characters, which are defined to be 16 bits wide. There are four methods provided
for transcoding strings: two sets of two functions for transcoding between XMLCh
strings and 8-bit char * strings. Within each set, there is one function that returns a
newly allocated string and one that takes the address of a previously allocated string.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 6 : A p p l i c a t i o n s 1 4 9

For example, the following code takes an XMLCh string and transcodes it to a char *:

XMLCh *pXMLStr;

char *p;

// transcode the XML string to a char *

p = XMLString::transcode(pXMLStr);

As in the previous example, the returned char * must be deallocated by the caller.
The XMLString class provides a number of other utility functions for working

with 16-bit XML strings, such as comparison, substrings, searching, hashing functions,
and so on. It isn’t intended to be a full replacement for other string classes, such
as MFC’s CString, but it does contain most of the common methods needed for
manipulating 16-bit strings. For more information on XMLString, see the Xerces
API documentation on the XMLString class.

Transcoding an Entire Document
The Xerces parser stores its internal representation of the document content using
Unicode characters, so it may be necessary to first transcode the document to the local
machine code before saving it or handing it off to another application, such as a text
editor. The Xerces library provides several built-in transcoders to assist in this process.

To transcode an entire document, your application needs to make use of the
transcoding services provided by Xerces by following these general steps:

1. Allocate the output buffer. Your application should allocate a buffer to store the
resulting transcoded text. This need not be large enough to hold the entire file
because the transcoding engine can process slices of the document.

2. Create a transcoder object. The XMLPlatformUtils class contains a member
variable called fgTransService, which is an object that represents the XML
transcoding service. To create a new transcoder, your application calls this
object’s makeNewTranscoderFor method with the type of encoding to
transcode for.

3. Decide how unrepresentable characters will be handled. The Unicode
character set can represent thousands of characters, so some of them may not
be representable in the target character set. Your application needs to indicate
to the transcoder what to do when one of these characters is encountered. The
transcoder can either replace the character with the default character for the
target character set, which is guaranteed to be legal, or throw an exception.

4. Call the transcodeTo method. Once the transcoder has been allocated,
your application calls the transcodeTo method as many times as it needs
to process all of the document’s content.

1 5 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The following code illustrates the transcoding process. In this example, the
document is being transcoded to the UTF-8 encoding.

XMLCh *psDocument; // pointer to XML string for the document

char *psOutString; // pointer to a char *, the output string

// if the transcoder cannot be created, this variable will contain

// the code indicating the reason for failure. The list of constants

// can be found in the API docs under the XMLTransService section.

XMLTransService::Codes failReason;

unsigned int charsProcessed; // the number of characters processed

unsigned int charsWritten; // number of chars placed in output buffer

psOutString = new char[1024]; // allocate the output buffer

// assume that the psDocument pointer contains the document source

XMLTranscoder *pTransCoder;

pTransCoder = XMLPlatformUtils::fgTransService->makeNewTranscoderFor(

"UTF-8", // the target character set

failReason, // holds the result code

1024 // size of the buffer

);

// now call the transcodeTo method until

// all characters have been processed

unsigned int charsLeft = XMLString::stringLen(psDocument);

while (charsLeft)

{

charsWritten = pTransCoder->transcodeTo(

psDocument, // the string to transcode

charsLeft > 1024 ? 1024 : charsLeft, // number of characters to process

(XMLByte *)psOutString, // the output buffer

1024, // size of the output buffer

charsProcessed, // returns with number of source chars processed

XMLTranscoder::UnRep_RepChar // replace illegal chars with default char

;)

// write out the buffer

. . . (buffer output code goes here)

// subtract off the number of chars left

charsLeft -= charsProcessed;

}

delete [] psOutString;

Using the Node’s userData Field
Occasionally, it is useful to store some application-specific data with a particular
document node, or perhaps the entire document. For example, your application may

display some data in a user interface that is associated with a particular node, and it
may be inefficient to regenerate the data each time you want to display it.

The DOM_Node class cannot be subclassed, so the Xerces library provides a
separate mechanism for storing application-defined data with document nodes. Each
node has a property named userData, which can be accessed using the Xerces API
methods setUserData() and getUserData(). Note, however, that the memory
pointed to by the userData field is not automatically deleted for you when the node is
deleted. It is your application’s responsibility to delete any memory pointed to by
this field.

This code shows how to set and retrieve the userData field:

DOM_Node myNode;

typedef struct {

int someValue;

char *someString;

} myStruct, *myStructPtr;

// make a new myStruct and give it some values

// NOTE: your responsibility to delete!

myStructPtr theData = new myStruct;

theData->someValue = 5;

theData->someString = new char[10];

strcpy(theData->someString, "hello");

// set the user data field

// assume we somehow got a Node from the document

myNode.setUserData(theData);

// later on, we can retrieve it

theData = (myStructPtr)myNode.getUserData();

delete [] theData->someString;

delete theData;

NOTE

The DOM method cloneNode() does not clone the data pointer associated with the
userData field. The Xerces FAQ has an in-depth discussion of why this decision was made, but
the upshot is that if you want to clone the userData pointer along with the node, you will have
to write your own wrapper interface that performs the cloning operation.

It should be noted that the userData field is considered an experimental part of the
Xerces DOM API, and it may disappear in future versions. The new DOM Level 3

C h a p t e r 6 : A p p l i c a t i o n s 1 5 1

1 5 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

specification, although not yet final, is considering a mechanism that would be more
flexible than the current userData implementation in Xerces (more on this in Chapter 11).

Where to Get More Information About Xerces
The Xerces website is a good source for information, providing quality documentation
along with a maintained FAQ and several good example projects to use as starting
points for your own projects. In addition, the Xerces parser is supported by a community
of knowledgeable developers on the xerces-c-dev and xerces-j-dev mailing lists
who are always willing to help new developers. Before posting a question to the
mailing list, however, make sure you read the FAQ—many of the most commonly
asked questions are already answered there, and it will save you a lot of time (and
embarrassment) if you can find an answer to your question there first.

The Microsoft MSXML Parser
The MSXML parser is Microsoft’s implementation of the Core DOM Level 1
interfaces, along with a collection of Microsoft-specific extension APIs. MSXML
version 4 also provides support for XML Schema (XSD), XPath 1.0, the SAX2 API
(an alternative to DOM processing), and XSLT 1.0.

Where to Get MSXML4
You can download MSXML4 from the Microsoft Developer Network website at
http://msdn.microsoft.com. Go to the MSDN Downloads | Web Development | XML
Web Services area, and you will find installers for the current version of MSXML in
a variety of languages, along with the redistributable files necessary to include with
your application so it can use the MSXML library.

Installing MSXML4
When MSXML4 is installed on the user’s computer, it is installed in what Microsoft
calls side-by-side mode, in which any previous existing version of MSXML is left
untouched. This prevents introduction of incompatibilities with previous versions;
different versions of the Microsoft Windows operating system and Microsoft
Internet Explorer are released with different versions of MSXML.

C h a p t e r 6 : A p p l i c a t i o n s 1 5 3

The MSXML4 SDK installation creates an MSXML 4.0 directory on the computer’s
hard drive containing three directories: doc, inc, and lib. The doc directory contains
the MSXML4 SDK documentation in a standard WinHelp file. The inc folder
contains the MSXML header files that contain the necessary DOM definitions, and
the lib folder contains the import library that your application must link to in order
to use the MSXML4 DLL.

Getting to Know the API
The MSXML API prefixes the DOM class names with IXMLDOM. Thus,
the Document interface becomes IXMLDOMDocument, Element becomes
IXMLDOMElement, and so on. Most of the names are direct matches, with
a few exceptions (for example, the MSXML parser names the Attr interface
IXMLDOMAttribute).

Using the MSXML DOM interfaces is relatively straightforward, assuming that
you are familiar with the things you need to do to work with COM interfaces, such
as using VARIANT data types, checking HRESULT return values from functions,
and using BSTRs instead of regular strings.

The documentation provided with the MSXML SDK is fairly complete and well
documented, although a little light on sample code snippets. This is compounded by
the unfortunate fact that, unlike the Xerces distribution, the MSXML SDK installer
does not install any example code to learn from. It takes some searching, but it is
possible to find some sample code on the MSDN site under the Web and Internet
Samples Home page at (http://msdn.microsoft.com/downloads/samples/internet/
default.asp). There is a separate section under XML for downloading XML-related
sample code, whether you are using C++, Visual Basic, ASP, .NET, or JScript.

This section, like the Xerces one preceding it, will focus on C++, although
the concepts illustrated here are easily portable across other language binding
implementations.

Using MSXML4
To use MSXML4, your application needs to initialize the COM interfaces for
the application’s thread, obtain the appropriate MSXML interfaces, and call the
desired DOM methods. In this section, we will examine how some common DOM
operations are performed using the MSXML library. This section assumes that you

1 5 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

are familiar with Microsoft’s COM specification and using COM classes. If you are
not familiar with COM, you should still be able to follow along. A full tutorial on
COM is beyond the scope of this chapter and book; more information on COM is
available on the MSDN site and from several third-party books on the subject.

Initializing the Parser
Nothing special needs to be done to initialize the MSXML parser outside of
initializing the COM system, which must be done before you can call any COM
methods. To initialize COM and begin using the MSXML parser DOM classes,
your application calls the CoInitialize() method like this:

CoInitialize();

For each successful call to CoInitialize(), your application must call the
CoUninitialize() method to close the COM library and free any resources
that it is maintaining. The call to CoUninitialize() looks like this:

CoUninitialize();

Creating a Document
Creating a new DOM Document in MSXML is accomplished in two steps. First, you
must retrieve the class ID (CLSID) of the COM class you wish to create, which in
this case is the class ID for DOMDocument. Next, you call CoCreateInstance()
to create an instance of the class. For example, the code to create a new, empty DOM
Document can be written as

// Get the CLSID for the MSXML4 DOMDocument

CLSID CLSID_DOMDocument40;

HRESULT hr;

hr = CLSIDFromProgID(OLESTR("Msxml2.DOMDocument.4.0"), &CLSID_DOMDocument40);

// now create a new instance of the document

IXMLDOMDocument *pDocument = NULL;

hr = CoCreateInstance(CLSID_DOMDocument40, // Class of object to create

NULL, // pointer to Iunknow interface. Leave as NULL

CLSCTX_INPROC_SERVER, // context for the newly created object

IID_IXMLDOMDocument2, // ID of the interface being requested

(LPVOID *)&pDocument // receives the new document

);

After the call to CoCreateInstance(), the returned DOM document in the
pDocument pointer is empty and ready to receive content.

Adding Content to Documents
Once you have obtained a pointer to the DOMDocument interface, you can use it
to add new document objects to the document. The MSXML parser provides the
standard DOM interfaces needed to create the various types of document elements.
For example, to add elements to the newly created document in the previous example,
the following code could be used:

BSTR sNodeName = NULL;

IXMLDOMElement *pElem = NULL;

IXMLDOMNode *pNode;

IXMLDOMText *pText;

// new node named "rootNode"

sNodeName = ::SysAllocString("rootNode");

pDocument->createElement(sNodeName, &pElem);

// append new root node, get back result node

pDocument->appendChild(pElem, &pNode);

::SysFreeString(sNodeName);

pElem->Release();

// new node named "firstNode"

sNodeName = ::SysAllocString("firstNode");

pDocument->createElement(sNodeName,&pElem);

pNode->appendChild(pElem, &pNode);

::SysFreeString(sNodeName);

pElem->Release();

BSTR sText = ::SysAllocString("New Text Node");

pDocument->createTextNode(sText, &pText);

pNode->appendChild(pText, &pNode);

::SysFreeString(sText);

pText->Release();

This code creates a new root node for the document, named “rootNode.” It then
creates an Element named firstNode, which it appends to the root node. Finally, it
creates a new Text node with the text “New Text Node,” which is appended as the
first child of the node firstNode. The resulting document structure looks like this:

<rootNode>

<firstNode>New Text Node</firstNode>

</rootNode>

C h a p t e r 6 : A p p l i c a t i o n s 1 5 5

1 5 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Iterating Through a Document’s Nodes
This example uses the MSXML DOM methods to iterate over the document’s nodes,
starting with the document itself. The function IterateNodes() takes a pointer
to a node and recursively calls itself for each of the node’s child nodes.

IXMLDOMDocument *pDocument;

void IterateNodes(IXMLDOMNode *pNode)

{

IXMLDOMNode *pChildNode, *pNextNode;

ProcessNode(pNode); // do your node processing in here

pNode->get_firstChild(&pChildNode);

while (pChildNode)

{

IterateNodes(pChildNode);

pChildNode->get_nextSibling(&pNextNode);

pChildNode = pNextNode;

}

}

// assume we retrieved a document pointer somewhere

IterateNodes(pDocument);

Parsing Files and Memory Buffers
The MSXML parser provides two Microsoft-specific APIs for parsing XML
files and memory buffers. The load() method loads an XML file from persistent
disk storage, and the loadXML() method parses a string buffer and builds a
document. In each case, you must first create an empty DOMDocument before
calling these methods.

The load() method will load an XML file from a file path, URL, another
DOMDocument, or any other object that supports the COM interfaces IStream,
IPersistStream, or ISequentialStream. For example, to load an XML file from
a file path, you could write this code:

IXMLDOMDocument *pDocument;

BSTR filePath;

// assume we retrieve a pointer to a document

pDocument->put_async(VARIANT_FALSE); // no asynchronous loading

VARIANT vPath;

VARIANT_BOOL bSuccess;

// initialize the first argument to be the file path

VariantInit(&vPath);

vPath.vt = VT_BSTR;

V_BSTR(filePath);

// call the load() method

pDocument->load(vPath, &bSuccess);

Loading an XML document from a string buffer is even easier: you just pass the
method the BSTR that contains the document string. This example shows how to do this:

IXMLDOMDocument *pDocument;

// assume we somehow retrieve a pointer to a document

CString myDoc("<book><chapter>Chapter1</chapter></book>");

BSTR bDocStr = myDoc.SysAllocString();

VARIANT_BOOL bSuccess;

HRESULT hr = pDocument->loadXML(bDocStr, &bSuccess)

ASSERT(hr == S_OK);

Serializing a Document
Serializing a document using the MXSML parser is very straightforward: the parser
provides a custom property named xml that represents the XML string of the entire
document. An MSXML application only needs to call the get_xml method on
the DOM document to retrieve the XML string for the contents. The following code
shows how to retrieve the XML string for a given DOM document:

HRESULT hr = S_OK;

BSTR bstr = NULL;

CString XMLText;

hr = pDocument->get_xml(&bstr);

XMLText = bstr;

if(bstr)

SysFreeString(bstr);

Once your application has the XML string, it can do whatever it wants with it—
save it to a file, place it in a text field, and so on.

C h a p t e r 6 : A p p l i c a t i o n s 1 5 7

1 5 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

MSXML also supports the save() method, which can be used to save an
IXMLDOMDocument to an output location. The syntax for the save() method is

HRESULT save(VARIANT destination);

The destination parameter can be a URL, file path, or another object that supports
persistent streaming.

Useful Utilities
The MSXML parser provides several useful utility methods that are not a part of the
core W3C DOM specification, but they can make certain node and other programming
tasks less cumbersome.

The selectNodes() and selectSingleNode() methods available on the
IXMLDOMNode interface can be used to select a single node or create a NodeList
of nodes using an XPath expression. For example, the following code snippet selects
all of the data nodes in a document:

BSTR bstr = NULL;

IXMLDOMNodeList *pList = NULL;

IXMLDOMDocument *pDocument;

// assume we have a pDocument pointer

bstr = ::SysAllocString("//data");

HRESULT hr = pDocument->selectNodes(bstr,&pList);

::SysFreeString(bstr);

The MSXML documentation contains a complete XPath reference that describes
how to use XPath notation in your DOM applications.

The IXMLDOMDocument’s createNode() method can be used to create
arbitrary node types. Its syntax is

RESULT createNode(VARIANT Type,BSTR name,BSTR namespaceURI,

IXMLDOMNode **node);

This example creates nodes based upon a parameter passed to the function
CreateNewNode:

IXMLDOMNode *CreateNewNode(IXMLDOMDocument* pDoc, BSTR nodeName,

int nodeType)

{

VARIANT vtype;

IXMLDOMNode * newNode;

TE
AM
FL
Y

Team-Fly®

vtype.vt = VT_I4;

V_I4(&vtype) = (int)nodeType;

pDoc->createNode(vtype, nodeName, NULL, &newNode);

return newNode;

}

Where to Get More Information About MSXML
The MSDN website (http://msdn.microsoft.com/xml/) is a good source of
information for Microsoft’s XML implementation. In addition, several
websites, such as XML.com (www.xml.com) and Perfect XML
(www.perfectxml.com) have recently run articles on using MSXML.

Macromedia Dreamweaver
Macromedia’s Dreamweaver application is a popular HTML authoring tool that
exposes a DOM interface to its documents. Developers can create extensions to
Dreamweaver using the familiar HTML and JavaScript languages, and these
extensions have full access to the documents open in the application as well as in
persistent storage. In this section, we’ll examine Dreamweaver’s support for the
DOM and take a look at how Dreamweaver differs in its support from browsers
such as Netscape Navigator and Internet Explorer.

Where to Get Dreamweaver
Dreamweaver is available directly from Macromedia as well as third-party software
resellers. A trial version is also downloadable from the Macromedia website
(macromedia.com/software/dreamweaver/), which will last for 30 days. This version
is fully functional, and you can try out the examples in this chapter in the trial version.

The DOM in Dreamweaver
Dreamweaver supports a limited subset of DOM Level 1, along with the
Internet Explorer attributes innerHTML and outerHTML. Table 6-2 lists
the DOM methods and properties supported by Dreamweaver.

C h a p t e r 6 : A p p l i c a t i o n s 1 5 9

1 6 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Getting to Know the API
The Dreamweaver application supports a very rich and robust API for creating all
kinds of extensions with different capabilities and intended uses. For the purposes
of this section, we will focus on one kind of Dreamweaver extension that allows
developers the most power and flexibility when working with documents: the
Dreamweaver Command extension.

Command extensions are written as HTML files with embedded JavaScript and/or
JavaScript contained within external .js files. The HTML file can contain an optional
HTML <FORM> tag, which, if present, signals the application that the extension has
a user interface. When the user invokes the command, the extension’s form (if it has
one) is displayed in a modal dialog box, where the user is allowed to enter values for
whatever form elements the extension developer has made available. The extension
can then use this input to perform its work. Commands are not required to have such
a form, however, and if they do not, then whatever JavaScript code is contained
within the onLoad event handler of the HTML file’s <BODY> tag is executed when
the user invokes the command.

DOM Method or Property Notes
nodeType Supported by all document objects

parentNode Supported by all document objects

childNodes Supported by all document objects

documentElement Supported by the Document object

body Supported by the Document object

URL Supported by the Document object

tagName Supported by all HTML tag elements

innerHTML Supported by all HTML tag elements

outerHTML Supported by all HTML tag elements

data Supported by Text and Comment nodes

getElementsByTagName() Supported by the Document object and all HTML
tag elements

hasChildNodes() Supported by all document objects

getAttribute() Supported by all HTML tag elements

setAttribute() Supported by all HTML tag elements

removeAttribute() Supported by all HTML tag elements

Table 6-2 Supported DOM Methods and Properties in Dreamweaver

Command extensions are stored inside the Commands folder, which is located
inside the Configuration folder, which is located in the same folder as the Dreamweaver
application itself. When a command is placed inside this folder, it shows up in
Dreamweaver’s Commands menu, as shown in Figure 6-3. Each command is listed
in the menu according to the contents of its <TITLE> tag.

The following code illustrates a sample Dreamweaver command extension that
displays an alert when invoked from the Commands menu:

<HTML>

<HEAD>

<TITLE>Sample Extension</TITLE>

</HEAD>

<BODY onLoad="alert('hello world!')">

</BODY>

</HTML>

C h a p t e r 6 : A p p l i c a t i o n s 1 6 1

Figure 6-3 The Dreamweaver Commands menu

1 6 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

There is a global object in Dreamweaver’s JavaScript namespace that represents
the application object, called dreamweaver (or dw for short). Many of the application’s
properties and methods are accessed using the dreamweaver object, as you’ll see in
the following section.

Using the Dreamweaver DOM
Using the Dreamweaver DOM API is strikingly similar to using the DOM in a regular
browser, with some notable exceptions. Because Dreamweaver is an editing application,
not just a viewing application, there are methods and properties available to do things
such as manipulate the current selection in the document, create new documents, and
load and save documents from disk.

In this section, we’ll examine how some common DOM operations are accomplished
using the Dreamweaver API. To create the command extensions that will be needed
to run the code, we will use this document as a template:

<HTML>

<HEAD>

<TITLE>Sample Extension</TITLE>

<SCRIPT>

function doIt()

{

// scripts will go here

}

</SCRIPT>

</HEAD>

<BODY onLoad="doIt()">

</BODY>

</HTML>

For each example, the corresponding script code will be inserted into the doIt()
function and the file will be saved into the Commands folder.

Creating Documents and Getting Document References
Creating a document in Dreamweaver is very straightforward. The method to do
this is called createDocument(), and it is called from the global dreamweaver
application object:

var oDOM = dreamweaver.createDocument();

C h a p t e r 6 : A p p l i c a t i o n s 1 6 3

NOTE

To see this or any other Dreamweaver script in action, enter this code into the doIt() function
in the extension template listed in the preceding section, give the file a name, and save it in the
Dreamweaver Commands folder.

The createDocument() method returns a reference to the DOM for the newly
created document. To obtain a DOM reference for the currently active document
in Dreamweaver, your extension calls the getDocumentDOM() method on the
dreamweaver object:

var currentDOM = dreamweaver.getDocumentDOM();

In addition, the getDocumentDOM() method can be used to retrieve the
DOM of a file stored on disk by passing the “file://” URL of the file to the method.
Note that this does not actually open the document in a Dreamweaver window,
it just returns the DOM for that file. For example, this code returns the DOM of
a file myfile.html on the C drive:

dreamweaver.getDocumentDOM("file://C|/myfile.html");

Most of the document-related methods in Dreamweaver are methods of the
document object. For this reason, it is almost impossible to write a useful Dreamweaver
extension without using the getDocumentDOM() method.

Creating and Manipulating Document Content
The Dreamweaver DOM API does not support the W3C methods appendChild(),
insertBefore(), and so on. So, how do you get new content into a document?
There are several ways; one is to use the innerHTML and outerHTML element
properties, along with certain Dreamweaver-specific methods used to insert text in
a document.

Recall that the innerHTML and outerHTML properties are defined by
Microsoft Internet Explorer (see Chapter 5). In Dreamweaver, these properties can
be used to simulate the various DOM methods that are missing. For example, the
appendChild() method appends a node to the end of the node list of an existing
node. This is functionally equivalent to

oParentNode.innerHTML = oParentNode.innerHTML + HTML_for_new_node;

where HTML_for_new_node is a string of HTML code that represents the HTML
tag to be appended. Similarly, the insertBefore function can be simulated by

oParentNode.innerHTML = HTML_for_new_node + oParentNode.innerHTML;

Using these properties, you can create nodes as strings of text and then insert
them into the document. For example, the following code will insert an IMG tag
at the end of the document’s BODY section:

var oDOM = dreamweaver.getDocumentDOM();

var oBody = oDOM.getElementsByTagName("BODY")[0];

oBody.innerHTML = oBody.innerHTML + "";

There are also methods provided to insert text directly into the document, such as
insertText() and insertHTML(). The insertText() method inserts text
content into the document at the current insertion point. For example, the following
code inserts Dreamweaver into the document:

var DOM = dreamweaver.getDocumentDOM();

DOM.insertText("Dreamweaver");

The insertHTML() method also inserts content into the document but inserts
it as HTML source code, not as text in the document. To see the difference, if the
insertHTML() method were called with the same argument as in the preceding
example, a bold “Dreamweaver” string would be inserted into the document instead
of the escaped version of the HTML just shown.

Retrieving and Setting the Document Selection
As an editing application, Dreamweaver must keep track of what the user has selected
in the current document so it knows which element to apply edits to. Extensions
can retrieve the current selection and change it to be any arbitrary object or range of
text within the document by using Dreamweaver’s built-in selection methods. There
are methods for both retrieving and setting the selection as a range of text or as
a document node, as listed in Table 6-3.

1 6 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Selection Method Description
getSelection Returns the current selection as an array of two integers

getSelectedNode Returns the currently selected document node

setSelection Sets the current selection range in the document

setSelectedNode Sets the given node as the current selection in the document

Table 6-3 Dreamweaver’s Selection Manipulation Methods

C h a p t e r 6 : A p p l i c a t i o n s 1 6 5

All of these methods are called from a document object, which is usually obtained
from a call to dreamweaver.getDocumentDOM(). For example, the following
code illustrates the process of retrieving the selected node, surrounding it with a bold
tag () and adding an ID attribute of "somenode".

var oSelectedObj;

oSelectedObj = dw.getDocumentDOM().getSelectedNode();

oSelectedObj.setAttribute("ID","somenode");

oSelectedObj.outerHTML = "" + oSelectedObj.outerHTML + "";

Examining Document Content
In addition to modifying document nodes directly using the innerHTML and
outerHTML methods, Dreamweaver provides support for the W3C standard
getElementsByTagName() method. Thus, you can write code that works
just like it does in the browser, with very minimal changes. Recall from
Chapter 5 our function for finding images in a browser page that did not have
an ALT attribute defined:

function checkAltTags()

{

var oImgList = document.getElementsByTagName("img");

var i=0;

if (oImgList.length > 0)

{

for (i=0; i<oImgList.length; i++)

{

var altText = oImgList.item(i).getAttribute("alt");

if (altText == "")

alert("Image: " + oImgList.item(i).src +

" has no ALT attribute!");

}

}

}

To turn this code into a Dreamweaver extension that looks for images with no
ALT attributes is very straightforward. First, to operate on the currently active
document, you need to call the getDocumentDOM() method. This means you
need to change the line that reads

var oImgList = document.getElementsByTagName("img");

to read

var oImgList = dreamweaver.getDocumentDOM().getElementsByTagName("img");

This will return a list of all of the IMG tags in the document. Now, you need to find
images that have no ALT attribute. It turns out that Dreamweaver’s implementation
of the getAttribute() method returns null in the case that an attribute is
not specified instead of an empty string, so you need to change the line that reads

if (altText == "")

to read

if (altText == null)

Now, you need to package the whole thing up as a Command extension and save
it in the Commands folder. The following code shows the finished command:

<HTML>

<HEAD>

<TITLE>Check Missing ALT attributes</TITLE>

<SCRIPT>

function checkAltAttrs()

{

var oImgList = dw.getDocumentDOM().getElementsByTagName("img");

var i=0;

if (oImgList.length > 0)

{

for (i=0; i<oImgList.length; i++)

{

var altText = oImgList.item(i).getAttribute("alt");

if (altText == null)

alert("Image: " + oImgList.item(i).src +

" has no ALT attribute!");

}

}

}

</SCRIPT>

</HEAD>

<BODY onLoad="checkAltAttrs()">

</BODY>

</HTML>

1 6 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

When this command is saved in the Commands folder, it appears in Dreamweaver’s
Commands menu. When invoked by the user, it examines the current Dreamweaver
document for images with missing ALT attributes and displays an alert if it finds any.

Serializing Documents
To save a document to disk, an extension can call the saveDocument() method
from the dreamweaver object. The function takes two arguments: the first argument
is the DOM of the document to save, and the second argument is the file URL to
save the document to. The following code, for example, saves the current document
to the root of the C drive on the user’s computer:

dreamweaver.saveDocument(dreamweaver.getDocumentDOM(),

"file://C|/myfile.html");

Where to Get More Information About the Dreamweaver DOM
These examples just barely scratch the surface of what can be accomplished with
Dreamweaver extensions. To learn more about writing Dreamweaver extensions,
the Macromedia Exchange website is a good place to get information about
extending Dreamweaver (macromedia.com/exchange/dreamweaver). There is an
SDK available for download, and most of the extensions available on the site are
free and can be downloaded and examined in depth (after all, most are just HTML
and JavaScript files).

Dreamweaver also ships with online documentation detailing the workings of
the Dreamweaver extensibility mechanism; it can be found under the Help menu
by choosing Extending Dreamweaver.

There are also several books available that deal with extending Dreamweaver,
such as Dreamweaver 4: The Complete Reference by Jennifer Kettell
(McGraw-Hill/Osborne, 2001) and Building Dreamweaver 4 and UltraDev 4
Extensions (McGraw-Hill/Osborne, 2001) by Tom Muck and Ray West. Both
are very good sources of information for building Dreamweaver extensions.

Conclusion
In this chapter, we examined the DOM support available in various nonbrowser
applications, from standalone DOM implementations to commercially available
software packages that expose a DOM structure. Two of these implementations,
Xerces from the Apache Software Foundation and MSXML from Microsoft, are

C h a p t e r 6 : A p p l i c a t i o n s 1 6 7

standalone implementations that can be used by applications that need to work with
XML documents. The third, Macromedia Dreamweaver, is a commercial HTML
editing application that can be extended via HTML and JavaScript to create and
manipulate HTML and XML documents.

In the next chapter, we will take a look at some debugging strategies and utility
code that may be useful when developing DOM applications. In particular, we’ll
look at different strategies and code for debugging browser-based applications, as
well as other DOM implementations.

1 6 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

CHAPTER

7
Debugging DOM

Applications

169
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

So far in Part II, we’ve examined some DOM algorithms that you can use to
perform operations that are common among document processing applications,
and we’ve taken a look at the extent of DOM support available in today’s

browsers and other applications. In this section, we’ll examine some debugging
strategies and useful code that you can use in your own DOM programs to help
make them as robust and stable as possible.

Importance of Good Debugging Skills
It probably comes as no surprise that at some point during the development of your
killer DOM application, you’re going to have to debug your code. It’s just a fact of
programming life: even the best programmers among us run into trouble from time
to time when writing applications and need tools to help iron out the kinks. Indeed,
sometimes debugging a problematic program can take as long as (or even longer
than) writing the code itself. The art of debugging is perhaps one of the most
important yet most neglected skills that programmers need to develop. The reason
for this is really quite simple: getting rid of bugs as quickly as possible translates
directly into earlier shipping dates.

Unfortunately, if you’re a JavaScript developer, you’ve got it tough when it comes
to debugging. Most browsers and other applications that use JavaScript today don’t
have good a debugger built in, and even those that do sometimes can’t catch certain
types of problems or have debuggers that are painfully slow. This is compounded by
the fact that JavaScript is a “loosely typed” language and does not force developers
to explicitly declare what types of data their variables will contain.

NOTE

Things will get a little better for JavaScript developers with the release of Mozilla 1.0, the
open-source browser from mozilla.org, that will include tools such as a DOM Inspector for
examining DOM structures and Venkman, a full-featured JavaScript debugger. For more
information, visit www.mozilla.org. In addition, Microsoft is shipping a new version of its
script debugger in Internet Explorer 6.

Java and C++ developers have it much better—their development environments
usually come with superb debuggers—but there’s still more that can be done to help
the DOM application writer debug code and catch problems before they come up in
production.

1 7 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

In this chapter, we’re going to take a look at some useful utilities and strategies
that you can take advantage of in your own DOM applications. The examples in
this chapter will emphasize browser-based debugging, though you should find the
information useful regardless of what language or platform you’re developing for.

Be Assertive: Use ASSERT()
One of the best ways to rid your applications of bugs is to expose them as early as
possible during the development and testing process. The faster you can force bugs
to the surface, the faster you can exterminate them from your program. One simple
yet effective debugging tool that most C++ programmers have been using for quite
some time is the humble ASSERT() function (technically, a macro in the C++
language). This function evaluates a Boolean condition and “asserts” that the outcome
is true. If everything is OK, the program continues on its merry way. If the Boolean
condition is not met, it displays an error message. The typical syntax for calling
ASSERT() is simple:

ASSERT(someBooleanCondition);

When an ASSERT() condition fails the test, there is usually some kind of
feedback presented to the application user, such as the dialog in Figure 7-1.

Let’s take a closer look at how the ASSERT() function is actually defined.

Defining ASSERT()
The ASSERT()function is defined a little differently for different platforms. In
JavaScript, the ASSERT() function can be defined like this:

function ASSERT(bCondition, strMsg)

{

if (!bCondition)

alert("ASSERTION FAILURE " + strMsg);

}

Here, we’ve defined ASSERT() to take an optional second argument, the message
to display in the event that the condition evaluates to false. In addition, because
JavaScript doesn’t support the concept of macros, you have to define ASSERT() as an
actual function. In practice, this function would probably be defined in an external .js
file and then included in the source file where it is used by a <SCRIPT> tag. In

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 7 1

this case, there is a simple if statement that evaluates the condition and shows an alert
if the condition evaluates to false.

In C++, ASSERT() is usually defined as a macro that expands during the
precompile phase, like this:

#define ASSERT(bCondition)

if (f) {} \

else { \

/* Platform-specific error display code here */ \

/* just print the error to whatever stderr is */ \

fflush(NULL); /* flush open buffer before calling abort() */ \

fprintf(stderr, "Assertion failed! File: %s, Line: %d", \

_ _FILE_ _, _ _LINE_ _); \

fflush(stderr); \

abort();\

}

NOTE

ASSERT() is usually defined to be a debug-only macro or function, and release-quality code
has the ASSERT() macro defined to be an empty function. This is so that, in practice, the
release version of the code runs a little faster (because the code to do all the condition checking is
absent), and the user doesn’t see frightening ASSERT() failure messages when things go
wrong or when the programmer uses ASSERT() incorrectly.

In this case, the ASSERT()macro also evaluates the condition and displays an error
to the stderr output stream. Most common development environments today define the
_ _FILE_ _ and _ _LINE_ _ macros to be the current file and line of the source
code where ASSERTwas called. In case you’re wondering, that empty if() section
at the start of the macro is not a mistake: it has to be there to prevent dangling if-else
situations. For example, guess what will happen if you define ASSERT() as

1 7 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 7-1 Error message showing an assertion failure

#define ASSERT(bCondition)

if (!f) { \

fflush(NULL); \

fprintf(stderr, "Assertion failed! File: %s, Line: %d", \

_ _FILE_ _, _ _LINE_ _); \

fflush(stderr); \

abort();\

}

and you try to use it in the following code snippet:

if (someExpression)

ASSERT(someCondition);

else

everythingIsOK();

The else clause will never execute in the way it was intended. Why? Because it
is being paired up with the if clause defined in the ASSERT() macro. Remember,
the ASSERT() macro gets expanded in place in the code, which can have
unforeseen consequences. Using the if-else form in the macro definition prevents
this problem from happening.

Using ASSERT() Effectively
In general, the ASSERT() function should be used to catch conditions in the code
that are illegal and should never happen during the normal course of the program’s
execution. For example, consider the following JavaScript function:

function getTextNodeData(objNode)

{

return objNode.data;

}

This function seems innocent enough: it simply returns the data property of a
Text node (recall from Chapter 2 that Text nodes inherit from the CharacterData
interface, which provides the data property). There’s just one not-so-small problem
with this code: it may not have been passed a Text node in the first place. Of course,
you could just add some error-checking code, like this:

function getTextNodeValue(objNode)

{

if (objNode.nodeType == 3) // 3 means text node

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 7 3

return objNode.data;

else

return "";

}

However, then you’re just masking the problem, which is that somewhere in your
code you may be asking for the value of a Text node that isn’t a Text node. This code
does nothing to help you find this problem; in fact, it only hides it from you even further
because it isn’t clear why an empty string was returned. Did the function return an
empty string because the text node had no content? Was it because there was an error
somewhere in the function? This becomes even more of a problem when someone
who’s unfamiliar with the code tries to use this nifty getTextNodeData()
function that you’ve written, only to get back an empty string. There’s no quick way
to tell exactly what’s happening without tracking down your function and determining
how it works, which, in turn, slows down development.

Use ASSERT() to Catch Errors
Fortunately, there is a better way. Using the ASSERT() function we have defined,
you could instead write the getTextNodeData() function like this:

function getTextNodeData(objNode)

{

ASSERT(objNode != null && objNode.nodeType == 3,

"Not a text node!");

return objNode.data;

}

In this example, the code first checks to see if the objNode argument is not
null and that its nodeType is indeed that of a text node. If these conditions are
both met, the function is allowed to continue and return the data property.
Otherwise, an error alert is displayed. In this case, it would be obvious to another
user of your function that their code is providing input to getTextNodeData()
that isn’t valid. Programming this way forces developers to always do the right thing
in their code because problems will surface pretty quickly if the constraints of the
code aren’t followed.

Here’s another example of how using an ASSERT() statement can save you a
little money on aspirin costs. Consider this simple JavaScript routine:

function add(i, j)

{

1 7 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

return (i + j);

}

What does this function do? If you said “it returns the sum of two numbers,”
you’re right. Well, almost: you’d be right as long as the two supplied arguments
were both numbers. What if the caller didn’t give you numbers, but strings instead?
The result would indeed be very different! If you needed this routine to be absolutely
sure that it was given two numbers to add, you could do so by making a simple
modification:

function add(i, j)

{

ASSERT(typeof(i) == "number" && typeof(j) == "number");

return (i + j);

}

Anyone trying to pass this function anything other than two numbers would be
quickly made aware of the error of their ways.

Finally, a good example of using ASSERT() arises when checking the values of if
and case statements to make sure that legal values are passed in and processed
correctly. For example, a common programming construct such as switch-case
usually handles multiple possible values and takes action depending on each, such as in
this code listing:

switch (someValue)

{

case 1:

// do the first case

break;

case 2:

// do the second case

break;

// . . . and so on for the rest of the cases

}

In many instances where switch() statements are used, the values of each of
the case handlers are the only ones that are valid, and any other values are illegal.
For example, if you were to write a function that returned a text string description of
a given node type, you might write it using a switch() statement, where each case
handler examines the node’s nodeType property and returns an appropriate string.
There are only 12 node types, so any values outside of 1 and 12 would be invalid. A

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 7 5

1 7 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

good way to catch illegal values in this case would be to use the default handler for
the switch() statement and have it ASSERT() if the code ever reaches that point,
like this:

// . . . code from the previous 11 cases

case 12:

// do case 12 stuff;

break;

default:

ASSERT(FALSE); // should never get here normally

break;

Now, should this switch statement ever try to execute the default case, an ASSERT
would automatically be raised because the only way the code can reach this point is
if an illegal value had been given earlier.

When Not to Use ASSERT()
In general, the ASSERT() function should be used to catch illegal conditions in your
code. In other words, use ASSERT() to make sure that things are the way you expect
them to be, such as legal values for a function’s arguments. Don’t use ASSERT() to
try and trap conditions that are honest-to-goodness error conditions that can arise in
your program under perfectly normal circumstances and that must be handled by your
application.

A good example of when not to use an ASSERT() statement looks like this:

function f()

{

var age;

ASSERT((age = getAgeFromUser()) >= 21);

}

There are two problems with this code. First, it uses an ASSERT() to make
sure that the user entered a value greater than or equal to 21. However, it’s entirely
possible and even likely that the user may enter an age that’s less than 21. This isn’t
a bug in the code; it’s a situation that your application needs to anticipate and handle
correctly. For example, the age may not be mandatory, and hence can be ignored.
On the other hand, if it is mandatory, the user should be prompted to enter it before
continuing. The second problem is that the code that detects this condition tries to be
clever and save some space by wrapping the ASSERT() statement and the code that
retrieves the input into one line. The problem here is that if the ASSERT() function
is disabled for some reason, such as building a release version of the application, the
line won’t get executed because it will evaluate to an empty statement.

The basic rules to follow here are simple: first, don’t put code that must always
execute into ASSERT() calls; and second, use ASSERT() to catch bugs, not
garden-variety errors that are going to happen in the normal course of the program.

Getting Fancy with ASSERT()
Once you get used to the idea of how ASSERT() works and where to effectively use
it, you can define a whole bunch of useful, special-purpose ASSERT() functions that
perform very specific tasks. For example, you can write an ASSERT() that checks to
see if a given node is indeed a “valid” node—that is, that the nodeType property
actually exists (in the JavaScript case) and it is between 1 (for Element nodes) and 12
(for Notation nodes). The ASSERT() function for this in JavaScript looks like this:

function ASSERT_VALID_NODE(objNode)

{

if (objNode == null)

{

alert("Invalid node -- node is null");

return;

}

if (typeof(objNode.nodeType) == "undefined")

{

alert("Invalid node -- no nodeType property!");

return;

}

if (objNode.nodeType < 1 || objNode.nodeType > 12)

{

alert("Invalid node -- nodeType is invalid!");

return;

}

}

This version of ASSERT(), named ASSERT_VALID_NODE, accepts a single
argument and determines whether the node argument is, in fact, a valid node. The
first test is whether an object was even specified. If the argument is null, you
definitely don’t have a valid node. The next test makes sure that the nodeType
property of the object is actually present (note that this test is specifically for
JavaScript—Java and C++ wouldn’t need to do this). If the supplied object has no
nodeType property, the node can’t be valid. Finally, you check to make sure that
the nodeType property is inside the range of acceptable node types.

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 7 7

This example is pretty basic; it only determines whether the basic structure of a
DOM node is present or not. You could get a lot more fancy by adding individual
checks for each node type. For example, this improved version makes sure that the
tagName property is present for Element nodes:

function ASSERT_VALID_NODE(objNode)

{

if (objNode == null)

{

alert("Invalid node -- node is null");

return;

}

if (typeof(objNode.nodeType) == "undefined")

{

alert("Invalid node -- no nodeType property!");

return;

}

if (objNode.nodeType < 1 || objNode.nodeType > 12)

{

alert("Invalid node -- nodeType is invalid!");

return;

}

if (objNode.nodeType == 1)

{

if (typeof(objNode.tagName) == "undefined")

{

alert("Invalid Element -- no tagName property!");

return;

}

}

}

Another example of using ASSERT() is to make sure that your own application
logic is running correctly. For example, suppose there is a point in your DOM
application that requires you to act on the document element node. You can make
sure of this by using a specialized ASSERT() function such as ASSERT_IS_
DOC_ELEMENT:

function ASSERT_IS_DOC_ELEMENT(objNode)

{

if (objNode != document.documentElement)

1 7 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

alert("ASSERT Failure: this is not the document element!");

}

You get the idea. When properly used, simple tools like ASSERT() can really
increase the effectiveness of your debugging efforts by forcing bugs to appear
sooner in the testing process. Using them throughout your code is definitely a good
programming habit to develop.

If you’re using a development environment such as Microsoft’s Visual Studio,
you’ve already got ASSERT() at your disposal. If not, it’s easy to define your own
version for your particular environment.

Tracing Your Steps with TraceConsole
Although using the ASSERT() function will help find errors in programming logic
by exposing illegal conditions in the code, sometimes bugs take on more insidious
forms that cannot be detected or caught by an ASSERT() statement. To find these
bugs, you need a slightly more advanced debugging tool.

The TraceConsole is a utility for browser-based JavaScript DOM developers that
displays a program’s variables and other interesting objects as they change while the
application is running. It essentially provides a record of program execution that can
be examined after the program has run to help pinpoint logic errors in the code.
Figure 7-2 shows a sample screenshot of the TraceConsole.

Almost every JavaScript developer has used the alert() function at some point
in their debugging process; it’s almost a rite of passage as a web developer. The
basic premise is that at some point in your application, you need to verify that a
certain variable contains a certain value, or that an array contains the right data. The
main problem with alert() is that it isn’t very flexible. First, you have to deal
with a pop-up window every time the alert() function is called, which can make
using alert() inside loops very unpractical. Second, the amount of data that can
be reasonably displayed inside an alert() window is pretty small. Once you start
getting more than a half dozen or so lines of output, the readability of the information
rapidly diminishes. Third, the information displayed by alert() is fleeting. Once
you dismiss the dialog box, that information is gone (unless you’ve manually written
it down, which can become a huge pain).

Enter the TraceConsole. Think of TraceConsole as alert() on steroids: instead
of constantly bugging you with pop-up windows that must be manually dismissed
before the execution of the code can continue in the browser, the data that would
normally be displayed by the alert() function is routed to a separate window

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 7 9

instead. This output can then be copied and pasted into a text editor or saved as a log
file for future reference. This eliminates the modal alert dialog, the amount of data,
and the persistence problems presented by the alert() method.

Listing 7-1 contains the code for the TraceConsole.html file.

Listing 7-1 The TraceConsole HTML Source

<HTML>

<HEAD>

<TITLE>TraceConsole</TITLE>

</HEAD>

<BODY>

<FORM NAME="form1" METHOD="post" ACTION="">

TraceConsole Output

<TEXTAREA NAME="consoletext" ROWS="15" COLS="90"></TEXTAREA>

<INPUT TYPE="BUTTON" NAME="btnClear" VALUE="Clear Console"

onClick="document.forms[0].consoletext.value=''">

</FORM>

1 8 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 7-2 The TraceConsole window

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 8 1

</BODY>

</HTML>

The TraceConsole window essentially consists of a <FORM>with a text field, where
the trace output will be sent, and a button that can be used to clear its contents.

Using the TraceConsole
To use the TraceConsole, your script needs to include the TraceConsole.js file,
like this:

<SCRIPT SRC="TraceConsole.js"></SCRIPT>

You also need to make sure that the file TraceConsole.html is available to the
script. The code begins by declaring some global variables:

var g_sIndentStr = ' '; // string to use to indent trace output

var gTraceWin=null; // holds a reference to the trace window

var g_TimeStart = 0; // stores the time when the timer was started

The function openTraceWindow() calls the window.open() method to
create an instance of the console:

function openTraceWindow()

{

gTraceWin = window.open("TraceConsole.html");

}

You can modify the URL path to the TraceConsole file in this function if you want
to store it in a global place. When called, a global reference to the trace window is
created and stored in the gTraceWin variable.

Once you’ve included the JavaScript source file for the console, you need
to create an instance of the console window before you can trace output to it.
The openTraceWindow() does this for you. Once you’ve called
openTraceWindow(), you can start calling the other tracing functions.
If at any point your script needs to clear the console window, it can call the
clearTrace() function:

function clearTrace()

{

gTraceWin.document.forms[0].consoletext.value ='';

}

This will delete all the existing content in the console.

The TraceConsole Functions
The TraceConsole provides a set of useful functions for recording several different
kinds of variables and objects. In addition, the TraceConsole API provides functions
that can be used to perform basic performance timing of sections of code, which can
help you identify areas to focus on in order to improve performance.

Basic Output
The most basic function available in the TraceConsole is traceString(). It takes
a single string as an argument and writes it out to the console window. JavaScript
allows you to build strings rather easily using the + operator, so it’s simple to write
out a string that shows the content of a variable:

var myName = "Joe";

traceString("myName is currently set to " + myName);

Using traceString() is the closest available comparison to using the
alert() function because both take string arguments. The traceString()
function is written as

function traceString(str)

{

if (gTraceWin)

gTraceWin.document.forms[0].consoletext.value += str;

}

Sometimes it is useful to trace a whole bunch of variables to the output at once.
The traceValues() function does this in the TraceConsole. It accepts a variable
number of arguments and traces them to the output window:

var a=1;

var b=3;

var c=9;

traceString("first batch:\n");

traceValues(a,b,c);

a++;

b = c + a;

traceValues(a,b);

traceString("second batch:\n");

1 8 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The result of the previous code snippet in the trace window is shown in
Figure 7-3. The source for the traceValues() function is listed as follows:

function traceValues(/*, [param 1], [param 2], ... */)

{

var cArgs = arguments.length;

var i=0;

var sStr='';

for (i=0; i<cArgs; i++)

{

sStr += '[' + arguments[i];

sStr += '] \n';

}

traceString("traceValues: Tracing " + arguments.length +

" arguments:\n");

traceString(sStr + "\n");

}

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 8 3

Figure 7-3 The TraceConsole window after tracing several values

Tracing Complex Objects
The TraceConsole can also be used to trace complex objects to the console window,
such as arrays, Document nodes, and generic objects. Each object type has a
corresponding trace function in the API, such as traceArray(), traceNode(),
and traceObject().

Listing 7-2 shows the code for the traceArray() function.

Listing 7-2 The traceArray() Function

function traceArray(aTheArray, bIncludeLength, bIncludeElemTypes,

bRecursiveTrace)

{

var thestr='';

var i=0;

if (bIncludeLength)

traceString("-- Tracing Array with length: " +

aTheArray.length + \n");

else

traceString("-- Tracing Array object: \n");

for (i=0; i < aTheArray.length; i++)

{

thestr = g_sIndentStr + "element "+i;

if (bIncludeElemTypes)

thestr += (" (type: " + typeof(aTheArray[i]) + ") value: ");

else

thestr += "value: ";

thestr += aTheArray[i];

traceString(thestr);

if (bRecursiveTrace && typeof(aTheArray[i]) == "object")

{

// if the object has a length property, then it is an array.

// Otherwise, just pass the object to the traceObject routine

if (typeof(aTheArray[i].length) == "undefined")

traceObject(aTheArray[i], bIncludeElemTypes, true,

bRecursiveTrace);

1 8 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

else

traceArray(aTheArray[i], bIncludeLength,

bIncludeElemTypes, bRecursiveTrace);

}

}

}

The traceArray() function takes four arguments. The first argument is the
array to be traced. The remaining three arguments are Boolean values that specify
whether to include the array length in the output, whether to show the type of each
element, and whether the array should be traced recursively (that is, when an array
element is itself another array, whether that array should be traced as well).

The traceNode() method traces the contents of a DOM node to the console
window. The source for the function is shown in Listing 7-3.

Listing 7-3 The traceNode() Function

function traceNode(oTheNode, bShowType, bShowContent, bShowParent,

bShowChildCount)

{

var sOutputString='';

var sID = '';

if (typeof(oTheNode.nodeType) != "undefined")

{

if (oTheNode.nodeType == 1)

sID = oTheNode.getAttribute("id");

sOutputString = 'Node: ' + sID + '\n';

if (bShowType)

{

sOutputString += ' Type: ' + getNodeDescription(oTheNode)

+ "\n";

}

if (bShowParent)

{

sOutputString += ' Parent: ' + getNodeDescription(

oTheNode.parentNode) + "\n";

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 8 5

}

traceString(sOutputString);

traceString(" Child Nodes: ");

if (oTheNode.hasChildNodes())

{

traceString(oTheNode.childNodes.length + " child nodes.\n")

}

else

traceString("None.\n");

if (bShowContent)

{

sOutputString = "Content: ";

switch (oTheNode.nodeType)

{

case 1:

sOutputString += oTheNode.innerHTML + "\n";

break;

case 3:

sOutputString += oTheNode.data + "\n";

break;

case 8:

sOutputString += oTheNode.data + "\n";

break;

case 9:

sOutputString += "[Body Content not shown for

document nodes]" + "\n";

sOutputString += " URL: " + oTheNode.URL + "\n";

break;

}

traceString(sOutputString);

}

}

else

traceString("traceNode(): Invalid node type specified.

'nodeType' property undefined.");

}

The traceNode() function takes five arguments. The first is the node to be
traced. The four remaining Boolean arguments specify whether to show the node

1 8 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

type, its text content, its parent node, and the number of child nodes it has. To output
the node’s content, the traceNode() method uses the innerHTML property that
is not part of the DOM standard but is supported by both Internet Explorer 6 and
Netscape 6.

This version of the traceNode() function has been abbreviated to handle
only the common types of document nodes (Element, Text, Comment, and
Document), although adding support for the other types would be trivial. The
getNodeDescription() function used by traceNode() is basically a big
switch statement that returns a text description of each node type, as shown in
Listing 7-4.

Listing 7-4 The getNodeDescription() Method

function getNodeDescription(oTheNode)

{

if (oTheNode == null)

return "null";

switch (oTheNode.nodeType)

{

case 1:

return "Element Node (Tag: " + oTheNode.tagName + ")";

case 2:

return "Attribute Node";

case 3:

return "Text Node";

case 4:

return "CDATA Node";

case 5:

return "Entity Reference Node";

case 6:

return "Entity Node";

case 7:

return "Processing Instruction Node";

case 8:

return "Comment Node";

case 9:

return "Document Node";

case 10:

return "Document Type Node";

case 11:

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 8 7

return "Document Fragment Node";

case 12:

return "Notation Node";

default:

return "Unknown Node Type";

}

}

The output of the traceNode() function provides a concise description of
the properties of a given node. For example, consider a node represented by an
unordered list:

<UL ID="oList">

item 1

item 2

item 3

item 4

Figure 7-4 shows the trace output when traceNode() is called for the
unordered list.

1 8 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 7-4 Tracing a node

TE
AM
FL
Y

Team-Fly®

The traceObject() function performs almost the same function as
traceNode(), but with generic JavaScript objects. The source for the function
is shown in Listing 7-5.

Listing 7-5 The traceObject() Function

function traceObject(oTheObj, bIncludeElemTypes, bIncludeStaticProps,

bRecursiveTrace /* , cIndentLevel */)

{

var x;

var theStr='';

var sIndentStr = '';

var typeStr='';

var i, cIndentLevel;

// if the object defines a length property, trace it as array

if (typeof(oTheObj.length) != "undefined")

traceArray(oTheObj, true, true, bIncludeElemTypes,

bRecursiveTrace);

// get the indent level if it was specified

if (arguments.length == 5)

cIndentLevel = arguments[4];

else

cIndentLevel = 1;

// indent each string

for (i=0; i<cIndentLevel; i++)

sIndentStr += g_sIndentStr;

// First list the static properties and methods

if (bIncludeStaticProps)

{

traceString(sIndentStr + "-- Static Methods and

Properties:\n");

for (x in oTheObj.constructor)

{

theStr = sIndentStr + "static property: " + x;

typeStr = typeof(oTheObj.constructor[x]);

if (bIncludeElemTypes)

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 8 9

theStr += " (type: " + typeStr + ")";

if (typeStr != "function")

theStr += " value: " + oTheObj.constructor[x];

traceString(theStr);

}

traceString("\n");

}

// now list the object's properties and methods

traceString(sIndentStr + "-- Object Methods and Properties:\n");

for (x in oTheObj)

{

theStr = sIndentStr + "property: " + x;

typeStr = typeof(oTheObj[x]);

if (bIncludeElemTypes)

theStr += " (type: " + typeStr + ")";

if (typeStr != "function")

theStr += " value: " + oTheObj[x];

traceString(theStr);

if (typeof(oTheObj[x]) == "object" && bRecursiveTrace)

traceObject(oTheObj[x], bIncludeElemTypes,

bIncludeStaticProps, bRecursiveTrace,

cIndentLevel+1);

}

traceString("\n");

traceString(sIndentStr + "----- End of Object -----\n");

}

The traceObject() function takes four arguments: the object to trace, the
Boolean values indicating whether to show property types, whether to show static
(class) properties, and whether to trace recursively. The traceObject() function
can also recursively trace subobjects, as traceArray() does with elements that
are arrays. For example, if an object defines a property that is itself an object,
traceObject() can trace its properties as well. The fifth argument is the current
indent level; this is provided so that traceObject() can indent its output in the
trace window for each subobject it encounters.

Using the Timer Functions
When trying to find parts of your code that could use a little speed improvement, it
helps to have something like a stopwatch to time how long it takes to perform certain

1 9 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 9 1

operations. The TraceConsole provides a simple timer that can be used to gauge
approximately how long a part of your code takes to complete. You just need to
bracket the code in question with the trace function to start the timer and the trace
function to stop it: the console handles the rest. The code for the two timer functions,
startTimer() and stopTimer(), are listed here:

function startTimer()

{

var timeStart = new Date();

g_TimeStart = timeStart.getMilliseconds();

traceString("+-+-+ Timer Started: " + g_TimeStart + "\n");

}

function stopTimer()

{

var timeStop = new Date();

var endTime = g_TimeStart + timeStop.getMilliseconds();

traceString("+-+-+ Timer Stopped: " + endTime + "\n");

traceString("+-+-+ Time Difference: " + (endTime-g_TimeStart)

+ "\n");

}

NOTE

JavaScript is an interpreted language, so a script’s execution speed will depend largely on the
power of the machine on which it is running and what other processes are running concurrently.
Because of this, the timer functions should only be used to determine an approximation of relative
performance; these routines do not provide any type of specific accuracy in their measurements.

For example, the following code can be used to measure how long an array
operation takes:

function timerTest()

{

startTimer();

var arr = new Array(10);

var i=0;

for (i=0; i<10; i++)

arr[i] = i * i;

stopTimer();

}

Figure 7-5 shows the console window output when this script is run.

The TraceConsole is certainly more complicated and sophisticated than using
plain alert() functions; but once you start using it and become familiar with the
functions, you will find it a welcome replacement for plain vanilla alerts.

NOTE

If you’re developing in C++ or Java, your platform likely already has built-in support for some
form of trace, such as System.out.println() for Java and the TRACE macro in
VisualC++. Check the documentation for your development environment for more information.

The DOMDumper
Sometimes it’s not practical to sift through the output of a program’s execution, or
maybe you don’t need that level of detail. What you need is a way of seeing the big
picture: a snapshot of your application’s DOM document structure in real time. This
is the kind of situation that the DOMDumper tool is ideally suited for.

Essentially, the DOMDumper tool takes a picture of the current state of a DOM
structure in a web page starting from a given node in the document tree and dumps it

1 9 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 7-5 Trace output from timer functions

into a separate browser window for examination. Each line in the output corresponds
to a particular node in the tree, and the interesting parts of each node are included in
the output. This type of tool is really useful when you want to make sure that your
application is correctly manipulating a document tree because you can visually
inspect the structure of the document at any given point in time.

First, we’ll examine some of the sample output generated by the DOMDumper,
and then we’ll walk through the code to see how it works.

DOMDumper Output
Listing 7-6 shows a simple HTML document with an ordered list containing three
list items.

Listing 7-6 Sample Document with an Ordered List

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Untitled Document</TITLE>

<SCRIPT src="DOMDumper.js"></SCRIPT>

</HEAD>

<BODY BGCOLOR="#FFFFFF" onLoad="DumpDOM(document,' ')">

<OL ID="list1">

item 1

item 2

item 3

</BODY>

</HTML>

The document’s BODY tag has an onLoad handler that calls the DOMDumper
functions to create the output shown in Figures 7-6 and 7-7. Figure 7-6 shows the
output of the DOMDumper for this sample document viewed in Netscape 6. Figure 7-7
shows the same output from Internet Explorer 6.

Each figure shows the structure of the document from the point of view of the
Document node. Right away, it’s obvious that Netscape and IE view different types
of nodes very differently. The output from Netscape 6 more closely resembles the
W3C structure than IE does in a number of ways. First, IE treats the DOCTYPE
declaration as a comment, whereas Netscape 6 correctly identifies it as a DocumentType

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 9 3

1 9 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 7-6 DOMDumper output in Netscape 6

Figure 7-7 DOMDumper output in Internet Explorer 6

node. Second, Netscape 6 identifies the text of the <TITLE> tag as a text node,
whereas IE skips it. Finally, Netscape 6 identifies the carriage returns in the source
code as empty text nodes; IE skips over those as well.

Let’s examine the code that produced this output.

DOMDumper Code
The code for DOMDumper, contained in the file DOMDumper.js, is broken up
among three routines, the second of which does the core of the work. The first and
third routines basically create the output window and clean up after the output has
been generated, respectively. Listing 7-7 shows the code for the function that creates
the window that the document structure will be dumped into.

Listing 7-7 Code for Creating the Dump Window

var gDumpWindow;

// change this to as many spaces as you want nodes indented

var gIndentStr = " ";

var g_I = 1;

var gbShowCRLF = true; // show \n and \r in text output

var gElemColor = "red";

var gAttrColor = "black";

var gTextColor = "blue";

var gCDATAColor = "yellow";

var gEntityRefColor = "black";

var gEntityColor = "black";

var gPIColor = "black";

var gCommentColor = "green";

var gDocElemColor = "orange";

var gDocTypeColor = "black";

var gDocFragColor = "black";

var gNotationColor = "black";

function DumpDOM(startNode, indentStr)

{

gDumpWindow = window.open(

'','DumpDOM'+g_I,'width=600,scrollbars=yes,resizable=yes,

menubar=yes');

gDumpWindow.document.write(

'<HTML>\n<HEAD>\n<TITLE>Document Structure ' + g_I++ +

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 9 5

'</TITLE>\n' +

'<STYLE TYPE="text/css">\nPRE {font-family:sans serif;' +

'font-size:12pt}\n</style>\n</head>\n\n' +

'<BODY BGCOLOR="#FFFFFF">\n\n<pre>');

Dump(startNode, indentStr);

CloseDumpDocument();

}

The code begins by defining some global variables that will be used throughout
the rest of the code. The gDumpWindow variable will be used to hold a reference
to the dump window that is created to hold the output. The gIndentStr variable
holds the string that is used to indent each line of the output. The gbShowCRLF
controls whether \n and \r characters in the source are displayed as [LF] and [CR].
The remaining variables control the colors used in the output to make the various
parts of document structure easier to identify.

The DumpDOM() function performs only a few functions. First, it calls the
window.open() method to create a new window to hold the output. Next, it uses
the document.write() method to write the HTML infrastructure to the output
document. The entire body content of the document is wrapped in a <PRE> element
so that the indentation of each string will be displayed properly by the browser.
After the document has been created and initialized, the Dump() function is
called to write the contents of the DOM to the window’s document. Finally, the
CloseDumpDocument() function is called to clean up and write the closing
HTML code to the dump window.

The workhorse of the DOMDumper tool is the function that generates the output.
Listing 7-8 contain the code for the Dump() function.

Listing 7-8 The Dump() Function

function Dump(oNode,indentString)

{

var sNodeContent = '';

var sNodeStr = '';

var arrChildren = oNode.childNodes;

// check the node type

switch (oNode.nodeType)

{

case 1: // Element Node

sNodeContent = "";

sNodeContent += "Element: " + oNode.tagName;

1 9 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 9 7

if (oNode.getAttribute("id") != "")

sNodeContent += ", ID=" + oNode.getAttribute("id");

break;

case 2: // Attribute Node

sNodeContent = "";

sNodeContent += "Attr: " + oNode.name + "=" + oNode.value;

break;

case 3: // Text Node

sNodeContent = "";

var theNodeData = oNode.data;

if (gbShowCRLF)

{

theNodeData = theNodeData.replace(/\n/g,"[LF]");

theNodeData = theNodeData.replace(/\r/g,"[CR]");

}

sNodeContent += "Text: " + theNodeData;

break;

case 4: // CDATA Node

sNodeContent = "";

sNodeContent += "CDATA Section: " + oNode.data;

break;

case 5: // Entity Reference Node

sNodeContent = "";

sNodeContent += "Entity Reference";

break;

case 6: // Entity Node

sNodeContent = "";

sNodeContent += "Entity: publicId=" + oNode.publicId +

" systemId=" + oNode.systemId + " notationName="

+ oNode.notationName;

break;

case 7: // Processing Instruction Node

sNodeContent = "";

sNodeContent += "Processing Instruction target=" +

oNode.target + " data=" + oNode.data;

break;

case 8: // Comment Node

sNodeContent = "";

sNodeContent += "Comment: " + oNode.data;

break;

case 9: // Document Node

sNodeContent = "";

sNodeContent += "Document Node";

break;

case 10: // Document Type Node

sNodeContent = "";

sNodeContent += "Document Type: " + oNode.name;

break;

case 11: // Document Fragment Node

1 9 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

sNodeContent = "";

sNodeContent += "Document Fragment";

break;

case 12: // Notation Node

sNodeContent = "";

sNodeContent += "Notation publicId=" + oNode.publicId +

" systemId=" + oNode.systemId;

break;

};

sNodeContent += "";

sNodeStr = indentString + sNodeContent + "\n";

gDumpWindow.document.write(sNodeStr);

for (var i=0; i < arrChildren.length; i++)

{

Dump(arrChildren[i], indentString + gIndentStr);

}

}

There’s no real magic behind the Dump() function: it’s essentially a giant
switch() statement that writes out certain properties of a node depending upon
the node type. For example, for Element nodes, the Dump() function writes out the
tagName property and ID attribute, if one exists for the node. After it writes out
the node string, the Dump() function recursively calls itself for each of the node’s
child nodes.

Listing 7-9 shows the code that finishes up writing the output to the dump window.

Listing 7-9 The Closing HTML for the Dump Window

function CloseDumpDocument()

{

gDumpWindow.document.write('</pre></body></html>');

}

The CloseDumpDocument() function writes the closing HTML code to the
output window.

Using the DOMDumper
To use the DOMDumper tool, your application needs to include the JavaScript
source file DOMDumper.js. Then, when you need to view the document structure,
you call the dump functions to create the output window.

TE
AM
FL
Y

Team-Fly®

Listing 7-10 shows Listing 7-5 modified to use the DOMDumper when triggered
by a button click event. The source for the dump functions is included via a
<SCRIPT> tag, and a button has been added to trigger the dump routines. In
addition, a button has been added to delete list items from the document.

Listing 7-10 Using the DOMDumper

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Untitled Document</TITLE>

<SCRIPT src="DOMDumper.js"></SCRIPT>

<SCRIPT>

function deleteItem(listNode)

{

listNode.removeChild(listNode.lastChild);

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<OL ID="list1">

item 1

item 2

item 3

<INPUT type="button" value="Delete Node"

onClick="deleteItem(document.getElementById('list1'))" name="delBtn">

<INPUT type="button" value="Dump Structure" onClick="DumpDOM(

document.getElementById('list1'), ' ')" name="dumpBtn">

</BODY>

</HTML>

When the document is in its initial state, its structure looks like Figure 7-8.
If you close the dump window and click the Delete Node button twice, the two

last list items will be removed. When the Dump Structure button is clicked again,
the structure looks like Figure 7-9.

Clearly, using DOMDumper makes it a lot easier to quickly verify that a DOM
application is in fact manipulating a document correctly. Listing 7-8 doesn’t even
begin to write out all of the possible information that could be helpful when viewing
the structure; modifications are left to the reader as an exercise.

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 1 9 9

2 0 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 7-8 Initial document structure

Figure 7-9 Document structure after two nodes deleted

Conclusion
In this chapter, you saw how some simple debugging tools and strategies can make
finding and eradicating bugs in DOM applications much easier. First, we examined
the humble ASSERT() function, and you saw how it can be used to force bugs to
appear sooner in the testing process by making sure that illegal conditions in the
code are checked for and caught quickly. We also looked at some ways to make the
ASSERT() function more specialized for DOM applications by having it check for
DOM-specific error conditions such as invalid node types and specific nodes in the
document.

Then we looked at a debugging tool called the TraceConsole, which can be used
to trace program output as it happens in an application. Using the methods available
in the TraceConsole API, a DOM application can record the logical progression of
an application over the course of the program’s execution, similar to the way that a
web server saves statistical information to a log file. After the program has been put
through a few tests, the trace output can be examined to help pinpoint hard-to-find
logic bugs.

Finally, we looked at DOMDumper, a tool that can display a real-time picture of
the DOM substructure of any node in the document. Using the Dump() function,
the DOM Dumper creates an HTML document that displays a document’s DOM
structure beginning at a given node and encompassing all of that node’s children.
The DOMDumper can be used to investigate the structure of a document at a
particular point in time, helping to verify that an application is modifying a
document in the intended way.

This chapter brings us to the end of Part II, where we’ve examined how the DOM
is supported in some real-world implementations. In Part III, we’ll use the foundations
and theory learned in Part I along with our real-world experience gained in Part II to
examine some practical examples of how the DOM can be used to provide effective
user interfaces and perform useful document processing in your DOM applications.
We’ll also take a look at where the DOM is headed in the future.

C h a p t e r 7 : D e b u g g i n g D O M A p p l i c a t i o n s 2 0 1

This page intentionally left blank.

PART

III
Practical Uses of the DOM

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

CHAPTER

8
Providing Automatic

Document Navigation

205
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Part I introduced the concepts of the DOM and discussed the basic interfaces
of the DOM API. In Part II, we focused mostly on DOM theory and contrived
examples to illustrate concepts. In Part III, starting here with Chapter 8,

we’re going to concentrate on examples of practical uses of the DOM that you can
put to work in your applications to make them more usable, dynamically engaging to
the user, and processor efficient. We’ll conclude by taking a look at future directions
of the DOM and what you can expect to see as the DOM matures and evolves.

In this chapter, we will look at practical ways to use the DOM to make your
documents and the information that they present more usable and easier to navigate.
In particular, we’ll examine different ways of using the DOM to improve the
presentation and navigability of the document’s structure and information. We’ll
begin by looking at how you can quickly provide a user with a list of interesting
places in the document that they can link to immediately. Next, we’ll look at how
your documents can automatically build tables of contents for the user that correspond
to the document’s sections. Finally, we’ll build an example that allows users to mark
their current place in the document so they can read another section and easily find their
previous place in the page.

NOTE

This chapter is not intended to serve as an official information design reference or tutorial for
creating usable websites in accordance with W3C or other accepted standards. There are plenty
of good resources available on the Web you can refer to for this information. The purpose here
is to illustrate how the DOM can be used to achieve certain practical design objectives. For more
information on creating accessible web pages, refer to the W3C’s Web Accessibility Initiative at
www.w3.org/WAI/.

Using the DOM to Provide
Better Document Navigation
Documents presented on the Web in a modern, DOM-capable browser have the
distinct advantage of being live—that is, they are more than just static words printed
on a piece of paper, as in this book. Because the content and structure of the information
in a web page can be discovered by a DOM application on-the-fly, the developer can
take advantage of some unique abilities of the browser to improve the way this
information is displayed and consumed by the viewer.

2 0 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 0 7

For example, long documents (such as the W3C DOM specification itself) can often
be difficult to read or comprehend because there is too much information presented
right up front. Navigating documents of this size becomes a challenge in itself because
users often scroll through documents and read information in a nonlinear, random-
access fashion. Using the DOM, your documents can automatically adapt to their
content by making themselves easier to navigate. This is accomplished by reading
the structure of the content and modifying the page in the browser to provide user-
interface elements that allow users to quickly jump to certain points in the document.

Another good example is enabling the user to keep track of where they are in a
document by placing a temporary “marker” at a certain point in the document; they
can then use this marker to find the same location later. For instance, if a user is
reading a rather lengthy page and wants to refer to some particular information
earlier or later in the document, they can just click the paragraph they are reading to
mark it with a visual indicator. They can later scroll through the document and easily
return to that section by looking for the marker.

Let’s begin by taking a look at how the DOM can be used to improve the way
a user jumps to specific information in a document.

Example: On-the-Fly Bookmarks
One example of using the DOM to make a document easier to navigate is by providing
a list of bookmarks that is generated on-the-fly for a particular page. This is especially
useful if the page contains locations that you want to expose as bookmark destinations
that don’t necessarily correspond exactly to tag locations in the document (such as
<H1> tags, images, and so on). In this example, the DOM is used to dynamically
create a list of virtual bookmarks or places of interest that the user can select from a
standard <SELECT> list and automatically jump to. Figure 8-1 shows the bookmark
list in the page as seen in Internet Explorer 6.

Each bookmark entry is created from a specially marked tag that has
a bookmark attribute on it. The content of the bookmark attribute becomes the text
displayed in the <SELECT> list. For example, a bookmark named Hotels in the list
would be indicated in the document source as

Hotels Section

Listing 8-1 shows the code that is used to generate the bookmark list. This code is
stored in a separate file named Bookmarks.js and is included in the target web page
using a <SCRIPT> tag with a SRC attribute, like this:

<SCRIPT SRC="Bookmarks.js"></SCRIPT>

Listing 8-1 buildBookmarks() Source

var g_anchorCount;

var g_docLoc;

function buildBookmarks()

{

var i;

g_anchorCount = 0;

// save off the original URL

g_docLoc = new String(document.location);

// build the FORM to hold the controls

var oForm = document.createElement("FORM");

// create the SELECT element for the bookmarks

var oSelect = document.createElement("SELECT");

2 0 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 8-1 List of dynamically generated bookmarks

TE
AM
FL
Y

Team-Fly®

oSelect.setAttribute("id","bookmarks");

// label for the SELECT list

var oText = document.createTextNode("Select a Bookmark: ");

oForm.appendChild(oText);

oForm.appendChild(oSelect);

// build the "Go" button

var oBtn = document.createElement("INPUT");

oBtn.setAttribute("type","button");

oBtn.setAttribute("value","Go");

oBtn.setAttribute("onClick","jumpToBookMark()");

oForm.appendChild(oBtn);

// get all the SPAN elements

var aMarkElements = document.getElementsByTagName("SPAN");

// for each span, see if it has a bookmark attribute

for (i=0; i<aMarkElements.length;i++) {

if (aMarkElements[i].getAttribute("bookmark") != "") {

// build named anchor for the location

var oAnchor = buildNamedAnchor();

aMarkElements[i].innerHTML = oAnchor +

aMarkElements[i].innerHTML;

// build an OPTION tag for the SELECT list

var sName = aMarkElements[i].getAttribute("bookmark");

var oOption = buildBookmarkRef(sName);

// add the OPTION tag to the SELECT

oSelect.appendChild(oOption);

g_anchorCount++; // increment the anchor count

}

}

insertBookmarkList(oForm);

}

function buildBookmarkRef(sName)

{

var oOptionTag = document.createElement("OPTION");

// set the value

oOptionTag.setAttribute("value","bookmark"+g_anchorCount);

// create the display name

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 0 9

2 1 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

var oOptionText = document.createTextNode(sName);

oOptionTag.appendChild(oOptionText);

return oOptionTag;

}

function buildNamedAnchor()

{

// use innerHTML to get around IE "name" attr bug:

// IE won't let you set the "name" attr of A tags

return "";

}

function insertBookmarkList(oBookMarkNode)

{

// get the BODY tag

var oBody = document.getElementsByTagName("BODY")[0];

// insert the bookmark list as the first child

oBody.insertBefore(oBookMarkNode,oBody.firstChild);

// IE BUG: IE won't trigger form elements with attached

// event handlers that have been inserted via the DOM

// unless you force it to reparse the document by setting

// the innerHTML property of the BODY tag. Netscape doesn't

// mind this, so we just do it for both browsers.

oBody.innerHTML = oBody.innerHTML;

}

function jumpToBookMark()

{

var oSelect = document.getElementById("bookmarks");

var selOption = oSelect.selectedIndex;

var newURL = g_docLoc + "#" + oSelect.options[selOption].value;

document.location = newURL;

}

Let’s examine the code in Listing 8-1 by each function to see how it all works.

Setting Up
The buildBookmarks() function is the one that is called to create the bookmarks
from the document’s tags. The function starts by setting up some global

variables that will be used to build the bookmarks: g_anchorAcount is used to
create named anchor tags to serve as bookmark destinations, and the g_docLoc
string holds the initial URL of the document. The script stores this value aside in a
variable because it needs to work with the original document’s URL each time the
user chooses a bookmark. Note also that the value of g_docLoc is set by creating
a new String object and initializing it with the value of the document’s location
property. Just writing the following code wouldn’t work.

g_docLoc = document.location

Why? Because the g_docLoc variable would just point to the same underlying
string object as the document.location property, and when it changed, you would
lose the original value of the document URL.

Creating the User Interface Elements
The buildBookmarks() function next creates the user interface controls that
will be needed to display the bookmarks. First, the enclosing <FORM> tag is created,
then the <SELECT> list that will hold the bookmarks is created:

// build the FORM to hold the controls

var oForm = document.createElement("FORM");

// create the SELECT element for the bookmarks

var oSelect = document.createElement("SELECT");

oSelect.setAttribute("id","bookmarks");

The <SELECT>list is also given the ID of “bookmarks” so it can be referred to later.
After the select list is created, a text node is created to serve as a label for the list:

var oText = document.createTextNode("Select a Bookmark: ");

Then the text label and <SELECT>list are added to the form element:

oForm.appendChild(oText);

oForm.appendChild(oSelect);

Finally, the Go button is created and added to the form:

var oBtn = document.createElement("INPUT");

oBtn.setAttribute("type","button");

oBtn.setAttribute("value","Go");

oBtn.setAttribute("onClick","jumpToBookMark()");

oForm.appendChild(oBtn);

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 1 1

The script sets the value of the onClick attribute to be the jumpToBookMark()
function, which is part of the script that is included in the page (discussed shortly).

Building the Bookmark List
Once the user interface controls have been created, the script scans the document for
all tags and builds the list of bookmarks. The line

var aMarkElements = document.getElementsByTagName("SPAN");

retrieves all of the elements in the page. However, the page may already be
teeming with existing tags, and you are only interested in the ones that have
been marked as representing a bookmark. The tags have special “bookmark”
attributes, so you need to filter these tags out and use them to build the bookmark list.
This is done by iterating over the list of elements and looking for those
with bookmark attributes:

for (i=0; i<aMarkElements.length;i++) {

if (aMarkElements[i].getAttribute("bookmark") != "") {

If the getAttribute() call indicates the presence of a bookmark attribute, a
bookmark entry is constructed. This is done in two steps: first, the named anchor tag
that will serve as the destination for the bookmark link is created.

var oAnchor = buildNamedAnchor();

aMarkElements[i].innerHTML = oAnchor +

aMarkElements[i].innerHTML;

You have to be a little tricky here because IE has a bug in it that prevents the
setting of the NAME attribute on <A> tags. The workaround is to build the string of
HTML to represent the <A> tag and then use the innerHTML property to add it to
the document. The buildNamedAnchor() function takes care of creating the
HTML string for the <A> tag:

function buildNamedAnchor()

{

. . .

return "";

}

The string returned is then inserted into the innerHTML of the tag that
represents the bookmark.

2 1 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

After the named anchor has been created, the second step is that each of the
<OPTION> tags for the <SELECT> list needs to be created. This is accomplished
by the buildBookmarkRef() function:

var sName = aMarkElements[i].getAttribute("bookmark");

var oOption = buildBookmarkRef(sName);

The buildBookmarkRef() function takes the value of the bookmark attribute
and creates an <OPTION> tag for it:

function buildBookmarkRef(sName)

{

var oOptionTag = document.createElement("OPTION");

// set the value

oOptionTag.setAttribute("value","bookmark"+g_anchorCount);

// create the display name

var oOptionText = document.createTextNode(sName);

oOptionTag.appendChild(oOptionText);

return oOptionTag;

}

The <OPTION> tag is created by a call to createElement, and the value attribute
is set to the string bookmarkX, where X is the value of the g_anchorCount
global counter. The display name for the <OPTION> tag is created as a text node
and appended to the <OPTION> element, which is then returned and added to the
<SELECT> node. Then the g_anchorCount counter is incremented, and the
process repeats for each of the remaining tags:

oSelect.appendChild(oOption);

g_anchorCount++; // increment the anchor count

Inserting the Bookmark List into the Document
After the main loop in the buildBookmarks() function completes, the user interface
controls are inserted into the top of the document by the insertBookmarkList()
function with the <FORM> node as the argument:

insertBookmarkList(oForm);

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 1 3

2 1 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The function finds the <BODY> tag of the document by calling
getElementsByTagName().

// get the BODY tag

var oBody = document.getElementsByTagName("BODY")[0];

Then the form node, passed as the oBookMarkNode argument, is inserted into
the document’s body as the first child node:

oBody.insertBefore(oBookMarkNode,oBody.firstChild);

At this point, you once again have to resort to some trickery in Internet Explorer.
It seems that IE will not call any JavaScript methods or event handlers if the document’s
DOM has been modified directly unless the document is forcibly reparsed. This can
be accomplished by setting the <BODY> tag’s innerHTML property to itself:

oBody.innerHTML = oBody.innerHTML;

Netscape doesn’t require this trick; however, because this has no adverse effect
in Netscape, you simply have it happen in both browsers without enclosing it inside
a browser-specific function.

Responding to the User’s Bookmark Selection
Now all that is left is to handle the user’s clicking the Go button. When the Go button
is clicked, the jumpToBookMark() function is called:

function jumpToBookMark()

{

var oSelect = document.getElementById("bookmarks");

var selOption = oSelect.selectedIndex;

var newURL = g_docLoc + "#" + oSelect.options[selOption].value;

document.location = newURL;

}

The function finds the <SELECT> list by calling getElementById() with the
ID that you previously assigned to it (“bookmarks”). It then extracts the value of the
currently selected option, which will be the name of a named anchor tag in the document.
It then sets the document’s location property to the original URL plus the name
of the anchor tag, which causes the browser to jump to that location in the document.

Now, to use this script, the developer needs to identify the places in a given
document that will be accessible as bookmarks, place the special bookmark
tags at those locations, include the Bookmarks.js file in the page, and trigger the

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 1 5

buildBookmarks() function from the <BODY> tag’s onLoad handler to
automatically build the list of bookmarks for that page.

Example: Automatic Table of Contents
Although the on-the-fly bookmark generator works well, its main drawback is that it
isn’t fully automatic. The author has to manually go through the document and mark
each place where a bookmark should appear, which can be time consuming if you
have a large number of documents or documents with a lot of content in them. A
better solution would be totally automatic and would allow the user to control the
visibility of the user-interface elements.

The automatic table of contents generator accomplishes these requirements. It
builds a table of contents for a given page by reading the content of the document
when it is loaded and creating a list of links to the <H1> and <H2> tags contained
within the page. When finished, the list can be displayed at the top of the page in
the form of an ordered or unordered list, as shown in Figure 8-2.

Figure 8-2 Automatically generated table of contents

Listing 8-2 lists the code for generating a table of contents automatically. This
code is stored in a separate file named buildTOC.js and is included in the target web
page using a <SCRIPT> tag with a SRC attribute, like this:

<SCRIPT SRC="buildTOC.js"></SCRIPT>

To create the list of bookmarks, your page should call the buildTOC() function
from the web page’s onLoad event handler.

Listing 8-2 Automatic Table of Contents Generator

var gNodeCounter = 1; // keeps track of the current indent level

var gbDoH1=true, gbDoH2=true; // flags for H1 and H2

var oCurNode = null;

var sLastNodeAdded="";

var gTOCNode = null;

function buildTOC()

{

// create the root of the TOC as an unordered list

gTOCNode = document.createElement("UL");

oCurNode = gTOCNode; // initialize the current node

oBodyNode = document.getElementsByTagName("BODY")[0];

nodeScanner(oBodyNode); // build the table of contents

// insert the TOC at the top of the BODY

oBodyNode.insertBefore(gTOCNode, oBodyNode.firstChild);

}

// scans all of the nodes in the document in document order

function nodeScanner(oNode)

{

processNode(oNode);

var chld;

chld = oNode.firstChild;

while (chld) {

nodeScanner(chld);

chld = chld.nextSibling;

}

2 1 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

}

function processNode(oNode)

{

var oLINode = null;

if (oNode.nodeType == 1) {

// we have an element node -- see if it is a HEADING element

if ((oNode.nodeName == "H1" && gbDoH1) ||

(oNode.nodeName == "H2" && gbDoH2))

{

// make a new List Item for TOC

oLINode = document.createElement("LI");

// create A tag for the list item to link to the heading

var oAnchor = document.createElement("A");

oAnchor.setAttribute("href","#"+gNodeCounter);

oLINode.appendChild(oAnchor);

// text content for the A tag is innerHTML of the H1 or H2

var textContent = oNode.innerHTML;

var oTextNode = document.createTextNode(textContent);

oAnchor.appendChild(oTextNode);

// IE BUG: For some reason, IE doesn't allow you to create

// named anchors by setting the "name" attribute on an

// "a" tag, so we have to workaround it by setting the

// innerHTML property of the target heading node

oNode.innerHTML = "<a name=\""+

gNodeCounter++ + "\">" + oNode.innerHTML;

}

if (oLINode)

addTOCNode(oLINode,oNode);

}

}

function addTOCNode(oNewNode, oRefNode)

{

if (oCurNode == gTOCNode) {

gTOCNode.appendChild(oNewNode);

oCurNode = oNewNode;

sLastNodeAdded = "H1";

}

else {

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 1 7

2 1 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

if (oRefNode.nodeName == "H1") {

// h1 nodes are always children of the root UL

gTOCNode.appendChild(oNewNode);

oCurNode = oNewNode;

sLastNodeAdded = "H1";

}

else if (oRefNode.nodeName == "H2") {

// if current node is H1, add it as a child of the H1.

if (sLastNodeAdded == "H1") {

var oUL = document.createElement("UL");

oCurNode = oCurNode.appendChild(oUL);

oCurNode.appendChild(oNewNode);

}

// if current node is H2, add the new node as a sibling.

if (sLastNodeAdded == "H2")

oCurNode.parentNode.appendChild(oNewNode);

oCurNode = oNewNode;

sLastNodeAdded = "H2";

}

}

}

Let’s examine the code piece by piece to see how the TOC is created.

Setting Up
The script begins by initializing some global variables that will be used throughout
the code. Specifically, the gbDoH1 and gbDoH2 variables can be set to create TOC
entries for <H1> and <H2> tags, respectively.

The buildTOC() function is the only method that users of the script need to
call directly, usually from the onLoad handler of the web page that the TOC will be
created for. Using the onLoad handler creates the TOC automatically once the page
has been loaded. To create the TOC manually, a control such as a button or hyperlink
can be added to the page to call the buildTOC() method when triggered.

The buildTOC() method creates an unordered list (UL) that will serve as the
table of contents list and assigns it to the global gTOCNode. It then retrieves
the <BODY> tag for the document:

gTOCNode = document.createElement("UL");

oCurNode = gTOCNode; // initialize the current node

oBodyNode = document.getElementsByTagName("BODY")[0];

TE
AM
FL
Y

Team-Fly®

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 1 9

Next, buildTOC() calls the function nodeScanner() with the BODY tag as
its argument:

nodeScanner(oBodyNode); // build the table of contents

The nodeScanner() method recursively visits all of the nodes in the document
and builds the TOC as it goes along. After it is finished, the TOC is inserted into the
document at the top of the body section:

oBodyNode.insertBefore(gTOCNode, oBodyNode.firstChild);

Scanning the Document’s Nodes
The nodeScanner() method is the same as the depth-first traversal algorithm you
first saw in Chapter 4. It walks through all of the document nodes in document order
and calls the processNode() method for each node that it finds.

It is important that the nodes be scanned in document order because the TOC
must reflect the nodes in the same order they appear in the document.

Building a TOC Destination
The processNode() method is where most of the work is done. The function
declares a local variable named oLINode to hold the list item node that will become
the TOC entry.

var oLINode = null;

Next, the function checks to see if the node being processed is an element node.
If it is, it then checks to see if it is an <H1> or <H2> and whether that particular
heading tag type is desired for inclusion in the TOC:

if (oNode.nodeType == 1) {

// we have an element node -- see if it is a HEADING element

if ((oNode.nodeName == "H1" && gbDoH1) ||

(oNode.nodeName == "H2" && gbDoH2))

{

If these conditions are met, a new TOC entry is created for the heading tag. First,
a new list item element is created:

// make a new List Item for TOC

oLINode = document.createElement("LI");

Next, an anchor tag is created that will link the list item in the TOC to the location
of the heading tag in the text. The text for the anchor tag that will appear in the TOC
is the same as the text content of the heading node:

// create A tag for the list item to link to the heading

var oAnchor = document.createElement("A");

oAnchor.setAttribute("href","#"+gNodeCounter);

oLINode.appendChild(oAnchor);

// text content for the A tag is innerHTML of the H1 or H2

var textContent = oNode.innerHTML;

var oTextNode = document.createTextNode(textContent);

oAnchor.appendChild(oTextNode);

Now you just need to insert a named anchor in the heading tag that will serve as
the link destination for the TOC entry. Internet Explorer has issues with setting the
name of an <A> tag directly via the DOM, so you should do it using the innerHTML
property of the heading node. This also works in Netscape, so you don’t need to
enclose it in browser-specific checking code.

oNode.innerHTML = "<a name=\""+

gNodeCounter++ + "\">" + oNode.innerHTML;

Finally, the list item is added to the TOC by calling addTOCNode():

if (oLINode)

addTOCNode(oLINode,oNode);

Adding the TOC Entry
The addTOCNode() takes the list item that will be the TOC entry and adds it to
the global gTOCNode object. You want the entries for <H2> tags to be properly
indented underneath the <H1> entries, so the script has to keep track of what kind
of heading tag the most recently added TOC entry was for.

The addTOCNode() method first checks the special case where the very first
TOC entry is being added.

if (oCurNode == gTOCNode) {

gTOCNode.appendChild(oNewNode);

oCurNode = oNewNode;

sLastNodeAdded = "H1";

}

2 2 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

If this is not the first TOC entry, the code checks to see what kind of heading tag
the TOC entry corresponds to. If it is an <H1> tag, the TOC entry is added at the top
level of the TOC list:

if (oRefNode.nodeName == "H1") {

// h1 nodes are always children of the root UL

gTOCNode.appendChild(oNewNode);

oCurNode = oNewNode;

sLastNodeAdded = "H1";

}

Otherwise, if the TOC entry is for an <H2> tag, the script checks to see what the
most recently added TOC entry was for. If it was for an <H1>, the TOC list needs to
first indent the new entry under the most recent one:

else if (oRefNode.nodeName == "H2") {

// if current node is H1, add it as a child of the H1.

if (sLastNodeAdded == "H1") {

var oUL = document.createElement("UL");

oCurNode = oCurNode.appendChild(oUL);

oCurNode.appendChild(oNewNode);

}

If the most recently added TOC entry was for an H2 tag, the code simply adds the
new TOC entry as a sibling of the previous one:

// if current node is H2, add the new node as a sibling.

if (sLastNodeAdded == "H2")

oCurNode.parentNode.appendChild(oNewNode);

oCurNode = oNewNode;

sLastNodeAdded = "H2";

}

When the code is finished, the TOC represents all of the H1 and H2 tags in the
document, and the user simply clicks one to be taken to that section of the document.

Example: Document Placeholders
Both of the previous examples allow the user to navigate a document by quickly
jumping to various locations within the page. In this example, we’ll provide the user
with a simple mechanism for marking their current place in the page so they can

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 2 1

easily find it again if they scroll away from it. I came up with this idea while reading
the W3C specification because I found myself reading one section and needing to
quickly refer to another section in a different part of the page. Finding my previous
location was a bit of pain because the document has a lot of sections that look very
similar to each other.

The general idea is to temporarily modify the appearance of the part of the page
the user is viewing by performing a simple task, such as clicking the paragraph of
text they are reading to highlight it. When the user clicks, the paragraph’s background
color changes slightly so it can easily be spotted again later. Figure 8-3 shows two
paragraphs, one highlighted and one normal.

Listing 8-3 lists the code for highlighting the selected paragraph in the browser when
the user clicks it. This code is stored in a separate file named buildPlaceholders.js and is
included in the target web page using a <SCRIPT> tag with a SRC attribute, like this:

<SCRIPT SRC="buildPlaceholders.js"></SCRIPT>

2 2 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 8-3 Highlighted paragraph in the document

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 2 3

Listing 8-3 Highlighting Paragraph Tags in the Page

var currentNode;

var curBackColor;

function initPlaceholders()

{

var oBody = document.getElementsByTagName("BODY")[0];

if (window.event)

oBody.attachEvent("onclick",handleClick);

else

oBody.addEventListener("click",handleClick,true);

currentNode = null;

}

function handleClick(evt)

{

var targetNode;

if (window.event)

targetNode = window.event.srcElement;

else

targetNode = evt.target;

// if text node, set to parent

if (targetNode.nodeType == 3)

targetNode = targetNode.parentNode;

if (currentNode)

currentNode.style.backgroundColor = curBackColor;

if (targetNode.nodeType == 1) {

var pNode;

if(targetNode.nodeName != "P")

pNode = getContainingParaNode(targetNode);

else

pNode = targetNode;

if (pNode) {

curBackColor = pNode.style.backgroundColor;

2 2 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

pNode.style.backgroundColor="#ffff99";

currentNode = pNode;

}

else

currentNode = null;

}

}

function getContainingParaNode(oNode)

{

var testNode;

testNode = oNode.parentNode;

while (testNode)

{

if (testNode.nodeName == "P")

return testNode;

testNode = testNode.parentNode;

}

return null;

}

Using the code is simple—in the onLoad handler of the document in which you
want to use placeholders, you simply call the initPlaceholders() function.
This function attaches event handlers to the <BODY> tag of the document, and all
subsequent clicks are examined to see if the clicked element is within a <P> tag and
needs to be highlighted.

Let’s examine the code to see how each piece works.

Setting Up
The initPlaceholders function is where the placeholder code is set up:

function initPlaceholders()

{

var oBody = document.getElementsByTagName("BODY")[0];

if (window.event)

oBody.attachEvent("onclick",handleClick);

else

oBody.addEventListener("click",handleClick,true);

currentNode = null;

}

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 2 5

The code begins by retrieving the <BODY> tag for the document because this
is the page element that the event listener will be installed on. To install the event
handler, the code first needs to see if the script is running in Internet Explorer or
Netscape; IE’s event model is slightly different than the DOM Events module
that Netscape implements. More information on IE’s event model can be found
at msdn.microsoft.com/library/default.asp.

Internet Explorer doesn’t pass an event object to the handler for an event as
Netscape does and as the DOM Level 2Events module specifies. Instead, IE uses a
global event object accessed from the window object. Thus, if the window object has
a property named event, you know that the script is running inside IE; if it doesn’t,
it is in Netscape.

Attaching events to objects in IE is almost the same as in Netscape. Instead of
calling the function addEventListener, IE uses the function attachEvent.
The event names are also slightly different in that they keep their “on” prefix; for
example, a click event is named onclick.

Handling Click Events
Once the browser has been determined, the <BODY> tag has an event handler
attached to it named handleClick(). This handler will determine the clicked
element and will highlight it if it is a paragraph tag:

function handleClick(evt)

{

var targetNode;

if (window.event)

targetNode = window.event.srcElement;

else

targetNode = evt.target;

if (currentNode)

currentNode.style.backgroundColor = curBackColor;

var pNode;

if (targetNode.nodeName != "P")

pNode = getContainingParaNode(targetNode);

else

pNode = targetNode;

if (pNode) {

2 2 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

curBackColor = pNode.style.backgroundColor;

pNode.style.backgroundColor="#ffff99";

currentNode = pNode;

}

else

currentNode = null;

}

When a click in the document is detected, the handleClick() function is called.
The function (again) determines whether the script is in IE or Netscape because the
target element is accessed slightly differently in each case. In the Netscape case,
the target element is contained in the target property of the event argument passed
to the function. In IE, the target element is stored in the srcElement property of
the window.event object.

If there is already a selected node in the document, it is first unhighlighted by setting
the backgroundColor property of the node’s style attribute to a previously saved
value. Next, you check to see if the clicked node is a <P> node or is contained within
a <P> node by calling the getContainingParaNode() function. If so, the
current background color of the node is saved and is changed to be a light yellow
color. This node is then set to be the currently selected node.

Finding a Containing Paragraph Node
The getContainingParaNode()method determines if the given node is contained
within a paragraph node:

function getContainingParaNode(oNode)

{

var testNode;

testNode = oNode.parentNode;

while (testNode)

{

if (testNode.nodeName == "P")

return testNode;

testNode = testNode.parentNode;

}

return null;

}

The function walks up the document hierarchy starting from the given node until
it finds a paragraph tag or traverses above the document root. It returns the <P>

node if it finds one, or it returns null if the given node is not contained within
a <P> tag.

This particular example may or may not be useful in all cases. It is primarily
intended to provide a working example of one way of giving users a method of
marking their current place in the document. Possible customizations of this code
include changing the highlight color based upon the clicked element type, using
different CSS style rules other than background color, and changing the color of the
text itself. Alternative methods might involve outlining the selected paragraph or
moving a layer containing a special symbol next to the paragraph tag. You should
choose the method most appropriate for your web pages according to your desired
design specifications.

Conclusion
In this chapter, you saw several ways of using the DOM to make web pages more
usable and approachable by dynamically adapting to the content contained within
the page. First, you saw how a document can build a list of bookmarks on-the-fly
by searching the content for specially marked tags that indicate where bookmark
destinations should be. Next, you saw how to automatically generate a table of
contents for a web page by scanning the page for <H1> and <H2> tags and building
a list of links to the tags in the document. Finally, you saw how to help users save their
place in a web page by highlighting a portion of the page, making it easy to spot if
the user decides to temporarily read another section of the page and then return.

In the next chapter, we’ll examine ways of using the DOM to provide more dynamic
user interfaces for your web pages that minimize browser-specific coding, such as
creating a color picker, implementing in-place list editing, and pop-up menus.

C h a p t e r 8 : P r o v i d i n g A u t o m a t i c D o c u m e n t N a v i g a t i o n 2 2 7

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

CHAPTER

9
Dynamic User Interfaces

229
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In Chapter 8, you saw some examples of how to build web pages that can use the
DOM to provide automatic navigational aids to users by adapting to a document’s
content on-the-fly. This is accomplished by reading the structure and content of

the page and dynamically configuring some common user interface controls to allow the
user to easily move around within the document. These navigation controls, such as
tables of contents, bookmarks, and so on, can then be reused across multiple pages.

In this chapter, we’ll take a look at how to build web pages with dynamic, interactive,
cross-browser user interfaces using the DOM API. We’ll start with an example that
illustrates how to create a dynamically generated color picker that allows users to
interactively select a color. Then we’ll look at how to create lists of items that can
be edited in-place. Finally, we’ll examine how to create pop-up menus using the
DOM methods.

Building Dynamic User Interfaces with the DOM
Prior to the DOM, building dynamic, engaging user interfaces for web pages usually
meant dealing with Dynamic HTML (DHTML). This, in turn, usually meant dealing
with incredible headaches because there was no official standardization between the
major browser vendors with respect to their proprietary object models and scripting
APIs. As a result, browser-specific code often needed to be created to accomplish
the same user interface results in different browsers from different vendors, and
sometimes even between different versions of the same browser from one vendor.

Though it still isn’t quite seamless to build highly interactive user interfaces using
completely browser-independent code today, the situation has improved significantly
with the introduction of the latest DOM-capable browsers such as Netscape 6.2 and
Internet Explorer 6. In fact, most of the actual document manipulation itself can be
accomplished with browser-independent code; it’s the interactivity part that’s still not
quite standardized, such as event processing and style handling. Whereas Netscape 6.2.x
faithfully supports the DOM Level 2 Events module, Internet Explorer implements
its own event handling system. Even so, processing events across different browsers
isn’t as hard as it used to be because Internet Explorer at least follows the same general
principles as the DOM specification in its event handling APIs, such as event capture
and event bubbling.

One of the key benefits of using the DOM instead of DHTML to create web-based
user interfaces is that every aspect of the page can be modified by the application,
not just the parts of the page that the older DHTML browsers specifically make
available for manipulation (such as layers and images). In addition, because the

2 3 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

DOM makes it possible to create entirely new page elements, your applications can
achieve user interactions that weren’t possible before: elements can come and go,
text can change colors and styles, and even forms and form elements can be created
and processed dynamically.

Let’s begin by taking a look at how to create a color picker user interface.

Creating a Color Picker
One of the more complex user-interface gadgets I’ve always admired is the color
picker. Color pickers usually have several characteristics in common: they display
a range of colors from which the user can choose, they display the currently selected
color, and they display the color that the mouse is currently over. Using the DOM,
you can create a color picker that performs all of these tasks.

Figure 9-1 shows a page that contains a dynamically generated color picker that
allows a user to select a color and then displays that color in a box. In addition, as

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 3 1

Figure 9-1 Selecting a color with the color picker

the mouse is being moved over the picker, the color that the mouse is currently
hovering over is also displayed.

Creating the color picker involves three major steps. First, the code generates a
table whose cells represent the various background colors. Next, each table cell has
the appropriate event handlers registered to detect mouse click and mouse-over
events. Finally, the event handlers are written to respond to the events and allow
the user to select a color.

Listing 9-1 lists the code for the color picker HTML page.

Listing 9-1 Color Picker HTML Page

<HTML>

<HEAD>

<TITLE>Color Picker Demo</TITLE>

<SCRIPT SRC="CreateColorPicker.js"></SCRIPT>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<SCRIPT>

var oBody = document.getElementsByTagName('BODY').item(0);

oBody.insertBefore(createColorTable(),oBody.firstChild);

</SCRIPT>

<P>

<TABLE CELLSPACING="0" CELLPADDING="0" WIDTH="339">

<TR>

<TD WIDTH="232">The color you selected is:</TD>

<TD STYLE="BORDER:1px solid #000000" ID="colorCell"

WIDTH="105"> </TD>

</TR>

<TR>

<TD WIDTH="232">The color you are hovering over is:</TD>

<TD STYLE="BORDER:1px solid #000000" ID="hoverCell"

WIDTH="105"> </TD>

</TR>

</TABLE>

</BODY>

</HTML>

The page includes an external JavaScript file called ColorPicker.js, which
contains the code that controls the picker. The body section contains a script that

2 3 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

creates the color picker user interface and inserts it as the first child of the body
section, along with a static table that displays the selected color and the color that
the mouse is hovering over.

Listing 9-2 shows the code that controls the color picker.

Listing 9-2 CreateColorPicker.js

function createColorTable()

{

var tableNode = document.createElement("TABLE");

var oTableHead = document.createElement("THEAD");

var oTableBody = document.createElement("TBODY");

var colorArray = new Array("00","33","66","99","CC","FF");

var i,j;

var oTR, oTD;

var colorStr = "";

var color1,color2,color3;

tableNode.appendChild(oTableHead);

tableNode.appendChild(oTableBody);

tableNode.setAttribute("border","1");

tableNode.setAttribute("width","400");

tableNode.setAttribute("id","colorTable");

for (i=0; i < 6; i++)

{

color2 = colorArray[(6-i)-1];

oTR = document.createElement("TR");

for (j=0; j < 6; j++)

{

color1 = colorArray[5];

color3 = colorArray[j];

colorStr = "#"+color1+color2+color3;

oTR.appendChild(createColorCell(colorStr));

}

for (j=0; j < 6; j++)

{

color1 = colorArray[3];

color3 = colorArray[(6-j)-1];

colorStr = "#"+color1+color2+color3;

oTR.appendChild(createColorCell(colorStr));

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 3 3

}

for (j=0; j < 6; j++)

{

color1 = colorArray[1];

color3 = colorArray[j];

colorStr = "#"+color1+color2+color3;

oTR.appendChild(createColorCell(colorStr));

}

oTableBody.appendChild(oTR);

}

for (i=0; i < 6; i++)

{

color2 = colorArray[i];

oTR = document.createElement("TR");

for (j=0; j < 6; j++)

{

color1 = colorArray[4];

color3 = colorArray[j];

colorStr = "#"+color1+color2+color3;

oTR.appendChild(createColorCell(colorStr));

}

for (j=0; j < 6; j++)

{

color1 = colorArray[2];

color3 = colorArray[(6-j)-1];

colorStr = "#"+color1+color2+color3;

oTR.appendChild(createColorCell(colorStr));

}

for (j=0; j < 6; j++)

{

color1 = colorArray[0];

color3 = colorArray[j];

colorStr = "#"+color1+color2+color3;

oTR.appendChild(createColorCell(colorStr));

}

oTableBody.appendChild(oTR);

}

return tableNode;

}

function createColorCell(colorStr)

{

2 3 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

oTD = document.createElement("TD");

oTD.style.backgroundColor=colorStr;

addClickHandler(oTD,selectColor);

addMouseOverHandler(oTD,hoverColor);

oTD.innerHTML = " ";

return oTD;

}

function addClickHandler(oNode, oFunction)

{

if (typeof(window.event) != "undefined")

oNode.attachEvent("onclick",oFunction);

else

oNode.addEventListener("click",oFunction,true);

}

function addMouseOverHandler(oNode, oFunction)

{

if (typeof(window.event) != "undefined")

oNode.attachEvent("onmouseover",oFunction);

else

oNode.addEventListener("mouseover",oFunction,true);

}

function selectColor(evt)

{

var oTarget;

if (typeof(window.event) != "undefined")

oTarget = window.event.srcElement;

else

oTarget = evt.currentTarget;

document.getElementById("colorCell").style.backgroundColor =

oTarget.style.backgroundColor;

}

function hoverColor(evt)

{

var oTarget;

if (typeof(window.event) != "undefined")

oTarget = window.event.srcElement;

else

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 3 5

2 3 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

oTarget = evt.currentTarget;

document.getElementById("hoverCell").style.backgroundColor =

oTarget.style.backgroundColor;

}

The createColorTable() function creates a <TABLE> node and populates
it with 12 rows of 18 cells, each representing a web-safe color. Each table row is
generated in 3 groups of 6 cells at a time. As each cell is created, a new color value
is computed and assigned to the cell. When it is finished, the table contains 216 colors.

Let’s examine the code to see how it works.

Set up the Color Picker User Interface
The createColorTable() function begins by creating the TABLE, THEAD, and
TBODY nodes that will hold the table structure:

var tableNode = document.createElement("TABLE");

var oTableHead = document.createElement("THEAD");

var oTableBody = document.createElement("TBODY");

Next, some local variables are declared, including an array of 6 base hexadecimal
numbers that will be used to create the RGB colors:

var colorArray = new Array("00","33","66","99","CC","FF");

The THEAD and TBODY are appended to the TABLE element, and some common
table settings are initialized and set as attributes on the table:

tableNode.appendChild(oTableHead);

tableNode.appendChild(oTableBody);

tableNode.setAttribute("border","1");

tableNode.setAttribute("width","400");

tableNode.setAttribute("id","colorTable");

Now the color cells are generated. In order to achieve a certain continuous tone
and look to the table, the cells are generated in a particular pattern. There are 12 rows
of colors divided into two groups, consisting of 6 rows each. Within the row groups,
there are three groups of cells, each consisting of 6 cells.

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 3 7

For each row group, a TR node is created first, followed by the TDs for the TR. When
each TD is created, it is assigned a color by the function createColorCell(). The
function takes a single argument, the RGB background color for the cell, and returns
a newly created TD node whose background color matches the argument:

function createColorCell(colorStr)

{

oTD = document.createElement("TD");

oTD.style.backgroundColor=colorStr;

addClickHandler(oTD,selectColor);

addMouseOverHandler(oTD,hoverColor);

oTD.innerHTML = " ";

return oTD;

}

The entity is required in Netscape 6 so that the table cell will
render properly. In addition to setting the background color of the cell, the
createColorCell() function assigns click and mouse-over handlers to
the TD node. These event handlers allow the user to select a color and display the
color that the mouse is hovering over.

Respond to User Events
The selectColor() method is called in response to a mouse click. It extracts the
background color from the cell’s style and sets the color of the TD with ID “colorCell”
in the color selection table to match the selected color:

function selectColor(evt)

{

var oTarget;

if (typeof(window.event) != "undefined")

oTarget = window.event.srcElement;

else

oTarget = evt.currentTarget;

document.getElementById("colorCell").style.backgroundColor =

oTarget.style.backgroundColor;

}

The hoverColor() method performs a similar function, except that it displays
the color that the mouse is currently hovering over in the TDwith ID “hoverCell” in the
color selection table:

function hoverColor(evt)

{

var oTarget;

if (typeof(window.event) != "undefined")

oTarget = window.event.srcElement;

else

oTarget = evt.currentTarget;

document.getElementById("hoverCell").style.backgroundColor =

oTarget.style.backgroundColor;

}

The end result is a dynamically generated color picker that can be used to allow
the user to select a color. This example doesn’t make use of the color that the user
selects, but doing so would simply require changing the selectColor() method
to perform whatever function was desired for the newly selected color.

In-Place List Editing
Lists are common in web pages—common enough that the HTML language provides
several different list types, such as definition lists, ordered (numbered) lists, and
unordered (bulleted) lists. Lists are great for displaying information in a columnar
form, especially information that lends itself to list format, such as sorted information.
Unfortunately, HTML contains no built-in way for a user to dynamically edit the
content of a list. For example, a to-do list application needs to let the user add and
delete list items, as well as edit the text description of each item. In addition, the
application might allow the user to specify the priority of each to-do item and its
required completion date.

You can achieve most of these requirements using standard form controls in
DHTML, such as a standard <SELECT> list, along with buttons to add and delete
items and an edit field to change the item’s content. These types of lists, however,
don’t have very many formatting options, and they certainly can’t display more than
one column of information. In addition, indenting subitems is not automatic the way
it is with HTML lists, and it requires a bit of a hack to work correctly (each item in
the select list needs to be prepended with some spaces to “indent” them in the list).

2 3 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

Building the same interface using the DOM, however, provides a much higher
level of interactivity and a richer user experience. Your application can use regular
HTML lists and at the same time provide in-place editing of the contents of each list
item. Figure 9-2 shows an HTML list with editing controls for changing and deleting
the list item, as well as canceling the edit operation.

Let’s examine the code involved in creating and controlling the document shown
in Figure 9-2. Listing 9-3 shows the code for the document in Figure 9-2.

Listing 9-3 List Editing Sample Document

<HTML>

<HEAD>

<TITLE>Untitled Document</TITLE>

<SCRIPT SRC="ListEditing.js"></SCRIPT>

</HEAD>

<BODY BGCOLOR="#FFFFFF" onLoad='initListEditor("theList")'>

<H2>List Editing Example</H2>

Click on a list item to edit or delete it.

<FORM NAME="form1" METHOD="post" ACTION="">

<UL id="theList">

New Item

<INPUT TYPE="BUTTON" NAME="Button" VALUE="Add New Item"

onClick="addNewItem()">

</FORM>

</BODY>

</HTML>

This HTML page is pretty simple: it contains a form with a basic unordered list
and a button for adding new items. The list has an ID attribute named theList
to make it easier to refer to the node in the script. The page includes an external
JavaScript file named ListEditing.js, which contains all of the script code to handle
in-place list editing.

There are only two functions that the page needs to call to get the in-place list
editing functionality: initListEditor() and addNewItem(). Everything
else is handled directly by the ListEditing script. In this example, the document’s
<BODY> tag has an onLoad event handler, which is used to initialize the script
code for editing the list. The script calls the initListEditor() function, which
takes the ID of the script that will support in-place editing. When the user wants to

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 3 9

add a new item to the list, they click the Add New Item button, which in turn calls
the addNewItem() function. Listing 9-4 contains the code for ListEditing.js.

Listing 9-4 ListEditing.js—A Script for In-place List Editing

var gTheList;

var gOldContent="";

function initListEditor(whichList)

{

// get the list element

gTheList = document.getElementById(whichList);

// add the click handler to handle item clicks

if (typeof(window.event) != "undefined")

gTheList.attachEvent("onclick", itemClick);

2 4 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 9-2 In-place editing of a list item

else

gTheList.addEventListener("click", itemClick, true);

}

function itemClick(evt)

{

var oTarget;

// get the event target

if (typeof(window.event) != "undefined")

oTarget = window.event.srcElement;

else

oTarget = evt.target;

// if the event target was a text node, get its parent LI tag

if (oTarget.nodeType == 3)

oTarget = getParentLITag(oTarget);

if (oTarget && oTarget.nodeName == "LI") {

// are we already editing another item? If so,

// remove the current controls and move them to the new

// item.

var curEditItem = document.getElementById("itemText");

if (curEditItem) {

var oLItag = getParentLITag(curEditItem);

oLItag.innerHTML = gOldContent;

}

gOldContent = oTarget.firstChild.data; // save old value

editListItem(oTarget);

}

}

// get the parent LI tag for the given node, if it has one.

function getParentLITag(oNode)

{

var oParent = oNode.parentNode;

while (oParent)

{

if (oParent.nodeName == "LI")

return oParent;

oParent = oParent.parentNode;

}

return null;

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 4 1

2 4 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

}

// adds click handlers to the list item editing buttons

function addClickHandler(oNode, oFunc)

{

if (typeof(window.event) != "undefined")

oNode.attachEvent("onclick", oFunc);

else

oNode.addEventListener("click", oFunc, true);

}

function addNewItem()

{

// add a new list item to the list

var oLINode = document.createElement("LI");

var oLIText = document.createTextNode("New Item");

oLINode.appendChild(oLIText);

gTheList.appendChild(oLINode);

}

function editListItem(oLIItem)

{

var sTextContent = oLIItem.firstChild.data;

// create the text field for editing the content

var oTextField = document.createElement("INPUT");

oTextField.setAttribute("type","text");

oTextField.setAttribute("value",sTextContent);

oTextField.setAttribute("id","itemText");

// replace the text content of the LI with the textfield

oLIItem.replaceChild(oTextField,oLIItem.firstChild);

// add the Change, Cancel, and Delete Buttons

var oBtnOK = document.createElement("INPUT");

oBtnOK.setAttribute("type","button");

oBtnOK.setAttribute("value"," Change ");

addClickHandler(oBtnOK, commitEdit);

var oBtnCancel = document.createElement("INPUT");

oBtnCancel.setAttribute("type","button");

oBtnCancel.setAttribute("value"," Cancel ");

addClickHandler(oBtnCancel, cancelEdit);

var oBtnDEL = document.createElement("INPUT");

oBtnDEL.setAttribute("type","button");

oBtnDEL.setAttribute("value"," Delete ");

addClickHandler(oBtnDEL, deleteItem);

// add the buttons to the list

oLIItem.appendChild(oBtnOK);

oLIItem.appendChild(oBtnCancel);

oLIItem.appendChild(oBtnDEL);

}

function commitEdit(evt)

{

// get the value from the text field

var oTextField = document.getElementById("itemText");

// we have to actually refer to the value property here;

// doing a getAttribute() has no effect in Netscape 6.2

var sTextContent = oTextField.value;

// set the innerHTML of the LI to the text.

// this has the dual purpose of removing the controls.

oTextField.parentNode.innerHTML = sTextContent;

}

function deleteItem(evt)

{

// delete the selected list item

var oTextField = document.getElementById("itemText");

gTheList.removeChild(oTextField.parentNode);

}

function cancelEdit(evt)

{

// cancel the current list item being edited

var oTextField = document.getElementById("itemText");

oTextField.parentNode.innerHTML = gOldContent;

}

The script code for ListEditing.js is broken up into nine separate functions. Each
function is responsible for handling one piece of the list editing functionality:
initialization, event handling, cleanup, and so on.

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 4 3

The initListEditor() function takes one argument, the ID of the list to edit,
and calls getElementById() to retrieve the node for that list. The script stores
that node in a global variable named gTheList. It then adds an event handler for
click events to the list. IE and Netscape handle events slightly differently, so the script
needs to detect which browser is running and call the appropriate API. Because only
IE 6 has a window property named event, the script tests for the existence of the
window.event property and calls the attachEvent() method if it is present.
If not, the script calls the DOM Level 2 Events method addEventListener()
because that is what Netscape 6 uses. This event handler, named itemClick(),
will be the one that processes mouse clicks on all of the list items.

When the user clicks a list item, the itemClick() event handler method is called.
If the function is running under Netscape 6, the function will be called with a single
argument, an Event data structure. Under IE, the function is called with no arguments;
the global property window.event contains all of the event information. The
function retrieves the target of the mouse click and stores it in a local variable,
oTarget. The next line checks to see if the mouse clicked a text element, which
would be the text child node of an tag. If so, the getParentLITag()
function is called to retrieve the corresponding tag of the text node.

Once the tag that was clicked has been determined, the script is ready to
create the controls to handle the in-place editing. However, if the controls are already
editing another item, they must first be moved to the new item. The script calls
getElementById() with the itemText argument, which is the ID for the edit
field. If this returns a non-null value, the script calls getParentLITag() to
retrieve the parent list item for the edit field and resets its innerHTML to the contents
of the global variable gOldContent. The first time the list is clicked, there will
be no current list item being edited, so this code will not execute, and thus the
gOldContent variable does not need to be initialized. Instead, the next line of
the script, which sets the content of the gOldContent variable to the text content
of the tag, will be executed. This variable is used to store away the original
contents of the tag in case the user decides to cancel editing the item or clicks
another item. Finally, the script calls editListItem() with one argument, the
LI node that is about to be edited.

The editListItem() function begins by retrieving the text content of its child
Text node, which will be used to initialize the value of the edit field. Next, the script
uses the createElement() DOM method to create an <INPUT> element for the
edit field. The setAttribute() method is used to set the type, value, and id
attributes for the edit control. The script then calls the replaceChild() method
on the node to replace the child Text node with the edit field.

2 4 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 4 5

Once the edit control has been added, the script creates the Change, Cancel, and
Delete buttons by calling the createElement() and setAttribute()methods.
Each button is assigned a click event handler by calling the addClickHandler()
function, which is a simple utility function that takes a node and assigns a click
event handler to it, depending on which browser the script is running under. The
Change button is assigned the commitChange() handler, the Cancel button is
assigned the cancelEdit() handler, and the Delete button is assigned the
deleteItem() handler. Once each button has been created, it is added as
a child of the LI node by calling appendChild().

When the editListItem() function completes, the controls have all been
created and placed in position. Now, the script just needs to handle the button clicks
for the item being edited.

The commitChange() event handler, which is called when the user clicks the
Change button, retrieves the node for the edit control and extracts the value that the user
has entered into the control. The script then sets the innerHTML attribute of the
 tag to the text string. This has two purposes: first, it stores the value that the user
entered into the control as the new text for the tag. Second, it has the side effect
of deleting the controls because the document will be reflowed by the browser when
the innerHTML property is set.

NOTE

Even though the innerHTML property is not part of the official W3C DOM specification, it is
supported by both IE 6 and Netscape 6, which makes it safe to use for scripts where you know the
code will be used in one of those browsers. In addition, it is often more convenient and practical to
use this property than it is to manually set each child node of a given parent.

If the user decides to cancel editing the item by clicking the Cancel button, the
cancelEdit() function resets the innerHTML property of the LI node to the text
that was stored in the gOldContent variable when the item was first clicked. As
in the case of the commitChange() function, this sets the text value of the LI tag,
as well as deleting the controls.

Deleting an item by clicking the Delete button calls the deleteItem() function.
The function retrieves the node for the edit control, then gets the parent tag
using the parentNode property. The script then calls the removeChild() DOM
method on the global gTheList variable, using the tag as the argument. This
effectively removes the list item along with the editing controls.

Adding new items to the list is accomplished with the addNewItem() method.
This function uses the createElement() and createTextNode() DOM
methods to make a new tag, which is appended to the list being edited via the
appendChild() method.

A few notes about the ListEditing.js script: first, the script does not do any error
checking. If this script were to be used in a real production environment, it would
need to be significantly improved with error checking and handling code, such as
ASSERT statements (see Chapter 7). Also, the script makes several assumptions
about the list being edited, such as that the first child item of each tag is a
text node. This may not always be the case, and again, this should be checked for
in a production setting.

DOM-Based Pop-up Menus
Implementing pop-up menus has always been one of the more complex user interface
tasks that web developers have been faced with, usually because making it work
across multiple browsers was difficult. Using the DOM together with Cascading
Style Sheets (CSS), the task becomes somewhat simpler.

Figure 9-3 shows a web page with a pop-up menu displayed over a hyperlink.

2 4 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 9-3 Pop-up menu

The menu itself is a standard DIV element. It starts out invisible in the page and
is positioned over the link and made visible when the user clicks the link. When the
user moves the mouse off the DIV, the menu becomes invisible again.

Each menu item is a separate anchor tag inside the DIV. The anchors have an
associated CSS style sheet that changes their appearance when the mouse is moved
over them. Clicking the item causes the browser to jump to the new URL represented
by the link, which may also be a javascript: URL that causes a particular action
to occur.

Let’s examine the code that controls the pop-up menu. Listing 9-5 shows the code
for the document in Figure 9-3.

Listing 9-5 Document with Pop-up Menu

<HTML>

<HEAD>

<TITLE>DOM Popup Menu Example</TITLE>

<SCRIPT SRC="PopupMenu.js"></SCRIPT>

<STYLE TYPE="text/css">

a.menuItemStyle {

color: #000000;

border: 0px solid #000000;

display: block;

font-family: sans-serif;

font-size: 10pt;

font-weight: bold;

padding: 4px 10px 4px 10px;

text-decoration: none;

}

a.menuItemStyle:hover {

background-color: #000000;

border: 1px solid #ffffff;

padding: 3px 9px 3px 9px;

color: #ffffff;

}

.menuStyle {

background-color: #dddddd;

border: 1px solid #000000;

position: absolute;

left: 0px;

top: 0px;

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 4 7

2 4 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

visibility: hidden;

}

</STYLE>

</HEAD>

<BODY>

<DIV ID="menu1" class="menuStyle">

Item A

Item B

Item C

Item D

Item E

Item F

Item G

Item H

</DIV>

<H2>DOM Popup Menu Example</H2>

Click on the link below to show the popup menu.

<P>

Show The Menu

</P>

</BODY>

</HTML>

The HTML page defines some styles that are used for the menu items and includes
a JavaScript file named Pop-upMenu.js, which contains the code that controls the
menu behavior. The page defines three CSS styles that govern the appearance of
the menus. The first two, menuItemStyle and menuItemStyle:hover,
are defined as class selectors of the <A> tag, so you can assign these styles to the
anchor tags inside the DIV that defines the menu. In addition, by defining
the menuItemStyle:hover style as a :hover pseudostyle for the <A> tag,
you get automatic mouse-over functionality. When the mouse moves over the
<A> tag, the menuItemStyleOver style will be automatically applied and
automatically removed when the mouse moves off it. The third CSS style, menuStyle,
defines the basic appearance for the DIV. Its visibility property is initially set to
hidden so that the menu will not be visible when the page is first loaded. To make
the menu visible, the code toggles this setting.

TE
AM
FL
Y

Team-Fly®

TIP

The border property of the menuItemStyle’s hover pseudoclass is one pixel shorter on each side
than the regular menuItemStyle. This is because the hover style includes a 1-pixel white border as
the highlight color. The hover border is made smaller to account for this and to avoid an unpleasant
redraw effect when the mouse is moved over each item.

The body of the page contains the definition for the DIV element that implements
the menu. It, in turn, contains eight <A> tags, each of which represents a menu item.
In this example, the href attribute of each <A> tag is set to “#” so that the mouse-
over functionality will work, but in actual use each menu item’s href would be set
to the URL of the destination page.

The Show The Menu link has an onClick handler that displays the menu when
clicked. The return false part of the handler is needed to keep the browser from
trying to follow the link specified by the href attribute. The call to the doMenu()
function displays the menu. It is contained in the PopupMenu.js code, which is
shown in Listing 9-6.

Listing 9-6 PopupMenu.js

var gMenuOffsetX = 3;

var gMenuOffsetY = 3;

// IE has a native function for this, but Netscape doesn't,

// so we'll use our own version.

function containsNode(containerNode, testNode)

{

while (testNode.parentNode)

{

testNode = testNode.parentNode;

if (testNode == containerNode)

return true;

}

return false;

}

function doMenu(event, id)

{

var theNode;

var menuX, menuY;

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 4 9

// get the node that represents the menu

theNode = document.getElementById(id);

// in IE, position the menu relative to where the user

// clicked. Have to take into account the scroll amount

// of the document's body because that's how IE

// calculates mouse offsets. On Netscape, just need to

// include the amount that the window is scrolled.

if (typeof(window.event)!= "undefined") {

menuX = window.event.clientX +

document.documentElement.scrollLeft +

document.body.scrollLeft;

menuY = window.event.clientY +

document.documentElement.scrollTop +

document.body.scrollTop;

}

else {

menuX = event.clientX + window.scrollX;

menuY = event.clientY + window.scrollY;

}

// start the menu underneath the mouse a little bit.

menuX -= gMenuOffsetX;

menuY -= gMenuOffsetY;

// position the menu by setting the style's left and top

// CSS selectors. Append the "px" designation.

theNode.style.top = menuY + "px";

theNode.style.left = menuX + "px";

// make the menu visible!

theNode.style.visibility = "visible";

// set up an onmouseout handler so the menu will go away

// when the mouse leaves the DIV.

theNode.onmouseout = doMouseOut;

}

function doMouseOut(evt)

{

var curNode;

var newNode;

// on IE, retrieve the event information from the "this"

2 5 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

// reference to the element and the global window.event

// property. On Netscape, use the evt argument provided

// by the browser.

if (typeof(window.event) != "undefined")

{

curNode = this;

newNode = window.event.toElement;

}

else

{

curNode = evt.currentTarget;

newNode = evt.relatedTarget;

}

// if the mouseout event occurred in one of the child anchor

// tags, then we don't want the menu to go away. We only want

// the menu to disappear when the mouseout event is happening

// on the DIV element. Here, we check to see if the new element

// is different from the current event target and make sure

// that the new element is not contained by the DIV tag.

if (curNode != newNode && !containsNode(curNode, newNode))

curNode.style.visibility = "hidden";

}

When the doMenu() function is called, the script retrieves the DIV element that
represents the menu by calling getElementById() with the ID of the menu:

theNode = document.getElementById(id);

Next, the script calculates the point at which the upper-left corner of the menu
should be displayed. This is done slightly differently for IE and Netscape because
IE 6 uses the <BODY> tag as its base reference for calculating mouse offsets when
rendering page elements in compatibility mode. When running in standards mode,
however, it uses the document element as its base. Fortunately, IE sets the values of
the body’s scrollOffset fields to zero when using the document element and
vice versa, so that the correct measurement is produced, regardless of which mode
IE is running in. The offset for the DIV is thus arrived at by adding the coordinates of
the mouse click to the scroll offsets of the body and documentElement. In
Netscape 6’s case, the window property contains the global scroll offsets, so those
are added to the mouse click location to arrive at the point where the menu should be

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 5 1

displayed. Finally, the menu’s location is offset by a few pixels to ensure that it is
placed under the mouse pointer:

if (typeof(window.event)!= "undefined") {

menuX = window.event.clientX +

document.documentElement.scrollLeft +

document.body.scrollLeft;

menuY = window.event.clientY +

document.documentElement.scrollTop +

document.body.scrollTop;

}

else {

menuX = event.clientX + window.scrollX;

menuY = event.clientY + window.scrollY;

}

// start the menu underneath the mouse a little bit.

menuX -= gMenuOffsetX;

menuY -= gMenuOffsetY;

Once the position for the menu has been calculated, the menu is moved to its
location by setting the top and left properties of the DIV’s style:

theNode.style.top = menuY + "px";

theNode.style.left = menuX + "px";

Next, the menu is made visible by setting the visibility property of the style:

theNode.style.visibility = "visible";

Finally, the script sets an onMouseOut handler for the DIV so that it will be
notified when the mouse leaves the menu. This is done so the menu can be hidden:

theNode.style.visibility = "visible";

At this point, the menu is visible on the screen, and the user can interact with
it using the mouse. As each item is moved over by the mouse, it highlights and
unhighlights. When the mouse is moved off the DIV, the doMouseOut() method
is called, which hides the menu. First, the menu determines the current target of the
event and the new target where the mouse is moving to:

if (typeof(window.event) != "undefined")

{

curNode = this;

2 5 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

newNode = window.event.toElement;

}

else

{

curNode = evt.currentTarget;

newNode = evt.relatedTarget;

}

Next, things get a little tricky. Because the mouseout event will be generated
for the DIV’s child <A> tags, it is necessary to make sure that the new element that
the mouse is moving to is not the DIV itself or one of the <A> tags that constitute
the menu items. Otherwise, the menu would disappear as soon as you moved the
mouse, even if you kept it within the confines of the DIV tag!

The solution is to make sure that new target and current targets are different and
that the new target is not one of the child elements of the DIV element. If these
conditions are met, the menu is hidden again by setting the visibility property of the
style to hidden:

if (curNode != newNode && !containsNode(curNode, newNode))

curNode.style.visibility = "hidden";

The containsNode() method is a utility function that determines whether a
node contains another node. Internet Explorer provides a native implementation of
this function, but unfortunately Netscape does not, so the script uses its own version.
Given the test node and the node that might be the container, the code successively
examines each parent of the test node to see if it is the container node:

while (testNode.parentNode)

{

testNode = testNode.parentNode;

if (testNode == containerNode)

return true;

}

return false;

If the container node is found as one of the ancestors of the test node, the function
returns true. Otherwise, the top of the document is eventually reached, and the
function returns false.

C h a p t e r 9 : D y n a m i c U s e r I n t e r f a c e s 2 5 3

Conclusion
In this chapter, you saw how to accomplish some common user interface techniques
using the DOM that used to require browser-specific DHTML programming (and in
some cases, couldn’t even be accomplished with DHTML). First, you saw how to
create a web page-based color picker that allows users to select colors from a palette
of web-safe color values. This example used mouse-move and click events to update
the color selection fields. Next, you examined a new way to provide list editing
functionality that allows a user to edit items in a list directly in-place by dynamically
creating form controls when the user clicks a list item. Finally, you took a crack at a
DOM-oriented solution to a familiar problem: cross-browser pop-up menus, written
entirely using the DOM and CSS.

In the next chapter, we’ll focus on how to use the DOM to perform client-side
data-driven document processing. These techniques can make web pages even more
powerful and useful to users because the information contained within them can be
processed and manipulated without having to wait for round trips to the server each
time. This results in saved bandwidth, improved responsiveness, and a lighter
processing load on the server.

2 5 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

CHAPTER

10
Client Processing of

Data-Driven Documents

255
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

2 5 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

In Chapters 8 and 9, you saw how to use the DOM to improve the usability of
web pages and create more engaging user interfaces than were possible with earlier,
DHTML-based scripts. Creating these types of interfaces is made possible mainly

because the DOM provides two important capabilities: the ability to access and modify
any part of the document, and the ability to create entirely new elements in the document.

In this chapter, we’ll examine how to use these DOM capabilities, along with some
browser JavaScript code to provide rich, client-side data processing functionality to
users of your applications. We’ll start by looking at a simple example of sorting a
list of items and continue with a more advanced demonstration of sorting any table
in a web page. Next, you’ll see how to use the DOM to perform what’s commonly
known as “screen-scraping,” in which a browser script post-processes the contents of
a server-generated document to provide additional data presentation to the end user.
For example, some pages are generated by server-side ASP or JSP scripts, and even
though their exact contents cannot be known at design time, your scripts can discover
the data contained within the page and perform additional processing on it. Finally,
we’ll look at how to embed XML data in a web page and use the DOM to create an
advanced data-presentation application.

Processing Data-Driven Documents on the Client
By using the DOM to process data directly in the client, your applications can help
relieve the workload on the server and provide the user with a much more responsive
application. The client will not need to hit the server each time the user wants to
manipulate the information in the page, so the round-trip time from the server is
eliminated, and data manipulation that would normally be done on the server can
be performed locally.

For example, using the DOM, it is entirely possible to provide advanced features
such as client-side data sorting, dynamic HTML generation, and advanced data
analysis in your web pages. Along with some JavaScript code, your DOM applications
can sort tables and lists, perform complex calculations, and even derive new data, all
completely on the client. These capabilities become even more powerful when you

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 5 7

combine client-side data processing with embedded XML data in your web pages,
a capability supported either directly or indirectly by both Netscape Navigator 6.x
and Internet Explorer 5 and later. Both Internet Explorer and Netscape allow you to
embed XML data fragments, called “data islands,” inside web pages. This enables
applications to provide advanced data presentation to users by employing standard
DOM, CSS, and JavaScript technologies.

Let’s begin by taking a look at a common use of client-side data manipulation:
data sorting in tables and lists.

Client-Side Sorting
One of the more obvious applications of client-side data processing is the sorting
of information. There are all kinds of instances where a user might want to sort the
information displayed to them in a web page: listing their credit card transactions
by date or amount, sorting lists of data alphabetically, displaying college courses
grouped by prerequisite classes and grade level, and so on.

Usually, this kind of data sorting would be performed on the server. Typically, the
user clicks a link in the first row of a table column whose URL links to a server-side
ASP or JSP script. The server script then sorts the data, regenerates the table (along
with the rest of the page), produces the finished document, and retransmits it to the
client for display.

That whole round-trip process can take a fairly long time, depending on the amount
of processing load on the server at any given moment. In modern DOM-capable
browsers, however, implementing the same sorting functionality using the DOM
API along with some standard JavaScript is pretty straightforward. Let’s look at a
simple example of sorting the contents of a list.

Sorting a List
Figure 10-1 shows a sample document containing an ordered list of items representing
a grocery shopping list.

The source code for this document is shown in Listing 10-1.

Listing 10-1 HTML Code for Shopping List Document

<html>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<style type="text/css">

<!--

li { font-family: Verdana, Arial, Helvetica, sans-serif;

font-size: 14px;

color: #000000

}

-->

</style>

<script src="SortList.js"></script>

2 5 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 10-1 Sample document to be sorted
TE
AM
FL
Y

Team-Fly®

</head>

<body bgcolor="#FFFFFF" text="#000000">

<h1>Sorting a list on the client</h1>

Click the buttons below to sort the contents of the ordered list

by ascending or descending order.

<ol id="theList">

Milk

Eggs

Butter

Bread

Pasta

Honey

Cookies

Apples

Sugar

Pepper

<input type="button" name="sortBtnAsc" value="Sort The List Ascending"

onClick="gbAscending = true; sortList('theList')">

<input type="button" name="sortBtnDesc" value="Sort The List Descending"

onClick="gbAscending = false; sortList('theList')">

</body>

</html>

The grocery list page allows the user to sort the list in one of two directions
by providing two buttons: one to sort the list in an ascending order, and one for
descending order. When the ascending button is clicked, the list sorts the items
alphabetically, as shown in Figure 10-2.

When they are clicked, each of the two buttons in the document performs two
JavaScript actions. First, each sets a global variable, gbAscending, to indicate
whether the list is being sorted in an ascending or descending order. Then, each calls
the sortList() function with the ID of the list node to be sorted. The code to
perform the sorting is contained in the SortList.js JavaScript file, shown in Listing 10-2.

Listing 10-2 SortList.js—Sorting a List

var gbAscending = true;

function sortList(sListID)

{

var oListToSort = document.getElementById(sListID);

// retrieve the LI tags in the list

var listItems = oListToSort.getElementsByTagName("LI");

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 5 9

// store a count of the number of LI tags

var numItems = listItems.length;

// create an array the same size as the number of tags.

// this will hold the sorted results.

var aStrings = new Array(numItems);

// build the array of strings to sort

for (var i=0; i < numItems; i++) {

aStrings[i] = new String(listItems.item(i).firstChild.data);

}

// sort the list using JavaScript's built-in sorting function.

// Pass our custom callback function as the argument to do the

// actual sorting of the data.

aStrings.sort(sortCallBack);

// once the list has been sorted, replace the list items

// with the sorted ones by replacing the text of each

// list item with the contents of the sorted array.

for (var i=0; i < numItems; i++) {

var newLIText = document.createTextNode(aStrings[i]);

listItems.item(i).replaceChild(

newLIText,listItems.item(i).firstChild);

}

}

function sortCallBack(a,b)

{

if (a < b)

return gbAscending ? -1 : 1;

else if (a > b)

return gbAscending ? 1 : -1;

else return 0;

}

Prepare the Data for Sorting
The sortList() function begins by calling document.getElementById() to
retrieve the node for the list to be sorted:

var oListToSort = document.getElementById(sListID);

2 6 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Once the list has been located in the page, the script uses the
getElementsByTagName() method to get the list of tags for the list
node and stores the number of tags in a local variable to use as a loop control.

var listItems = oListToSort.getElementsByTagName("LI");

var numItems = listItems.length;

To make the sorting easier, you’re going to take advantage of JavaScript’s built-in
array sorting functionality. There are two reasons for doing it this way, rather than
sorting the data manually. The first is that the JavaScript Array class provides built-in
sorting functionality via the sort() method. The second is to prevent screen flicker
during the sorting process. If you just sorted the list in-place by rearranging the table
row nodes, the user would see the list as it was being rearranged, which, in the case
of large list, would be noticeable. To prevent this from happening, you can store the
data in a temporary array, sort it there, and then replace the list contents all at once.

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 6 1

Figure 10-2 List sorted in ascending order

Of course, there’s no reason you can’t use a custom sorting algorithm to accomplish
the same thing—this way just keeps the example simple and takes advantage of the
increased performance of JavaScript engine’s platform-native sorting code.

To do this, the code needs to store the contents of each list item in a temporary
array and then call the Array class’s sort() method. The script first creates an array
the same size as the number of tags:

var aStrings = new Array(numItems);

Next, the script needs to store the contents of each tag’s child text node
in the array so they can be sorted. To do this, the script extracts the contents of the
 tag’s child text node, creates a JavaScript String object for it, and inserts it
into the array:

for (var i=0; i < numItems; i++) {

aStrings[i] = new String(listItems.item(i).firstChild.data);

}

Performing the Sort
Once the array has been filled with the text data, it just needs to be sorted. The
JavaScript Array class has a built-in method, sort(), that sorts the contents of the
array. It accepts one argument, which is the name of a callback function that will be
used to compare the items in the array and tell the JavaScript engine which one is
“larger” than the other. JavaScript then uses this information to sort the items in the
array. If the function returns a number greater than 0, the first argument will sort
before the second argument. If the function returns a value less than 0, the second
argument will sort before the first one. If the function returns 0, the two items are equal.

The script invokes the array’s sorting method by calling the sort() function:

aStrings.sort(sortCallBack);

The callback function is named sortCallBack(), and it accepts two
arguments. When called by the JavaScript engine, each of the two arguments will
represent a string in the array. The function uses the global variable gbAscending
to determine whether the user has selected ascending or descending sorting, and it
compares each string to determine its sort order:

if (a < b)

return gbAscending ? -1 : 1;

else if (a > b)

2 6 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

return gbAscending ? 1 : -1;

else return 0;

Here, the comparison function uses the standard greater-than (<) and less-than (>)
operators to compare the strings, which compares them using ASCII values. The benefit
of this is that you don’t have to write separate code to compare strings and numbers.

Replacing the Original Data with the Sorted Data
After the sort() method has compared all of the items, the contents of the array
will be rearranged to reflect the new sorting. All that is left to do is replace the
contents of the list’s tags with the newly sorted array contents. The script
iterates over each item in the array, creates a new text node for the string in each
item, and calls replaceChild() on each tag in the list to replace the
 tag’s existing text node (which is the firstChild) with the new one:

for (var i=0; i < numItems; i++) {

var newLIText = document.createTextNode(aStrings[i]);

listItems.item(i).replaceChild(newLIText,listItems.item(i).firstChild);

}

Sorting a Table
A slightly more complex example involves sorting a table. In this case, you want to
provide the user with the ability to sort each table column in ascending and descending
order by clicking a link in the top row of each column, just as they would in a web
page that used server-side sorting.

To illustrate, let’s take the same document as in the list sorting example, modified
by adding prices to each of the items on the shopping list and displaying it as a table,
as shown in Figure 10-3.

Here, the user has the option to sort either column in ascending or descending
order by clicking one of the links in the table header. The source HTML for this
document is shown in Listing 10-3:

Listing 10-3 HTML Source for Table-Based Shopping List Document

<html>

<head>

<title>Untitled Document</title>

<style type="text/css">

<!--

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 6 3

2 6 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

th,td { font-family: Verdana, Arial, Helvetica, sans-serif;

font-size: 18px;

color: #000000

}

-->

</style>

<script src="SortTable.js"></script>

</head>

<body bgcolor="#FFFFFF" text="#000000">

<h1>Sorting a table on the client</h1>

<table border="1" cellpadding="2" id="theList">

<thead>

<tr>

<th>

Item (<a href="#"

onClick="javascript:sortTable('theList',0,true);return false;"

>Asc)

(<a href="#"

onClick="javascript:sortTable('theList',0,false);return false;"

>Desc)

</th>

<th>

Price (<a href="#"

onClick="javascript:sortTable('theList',1,true);return false;"

>Asc)

(<a href="#"

onClick="javascript:sortTable('theList',1,false);return false;"

>Desc)

</th>

</tr>

</thead>

<tbody>

<tr>

<td>Milk</td>

<td>1.99</td>

</tr>

<tr>

<td>Eggs</td>

<td>2.29</td>

</tr>

<tr>

<td>Butter</td>

<td>3.49</td>

</tr>

<tr>

<td>Bread</td>

<td>0.99</td>

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 6 5

</tr>

<tr>

<td>Pasta</td>

<td>1.19</td>

</tr>

<tr>

<td>Honey</td>

<td>4.39</td>

</tr>

<tr>

<td>Cookies</td>

<td>2.99</td>

</tr>

<tr>

<td>Apples</td>

<td>0.59</td>

</tr>

<tr>

<td>Sugar</td>

<td>1.78</td>

</tr>

<tr>

<td>Pepper</td>

<td>1.56</td>

</tr>

</tbody>

</table>

</body>

</html>

The table contains both a <THEAD> and <TBODY> section, which will make it easier
to sort (because you’re only interested in the contents of the TBODY node). Note that
both IE and Netscape assume the presence of the TBODY node, regardless of whether the
actual HTML source contains one, so you should include one in your tables to reduce
any confusion that may arise over which table child node you are working with.

The <THEAD> contains two columns, each containing a label (“Item” and
“Price”) and two links. Each link allows the user to sort the corresponding column
in an ascending or descending fashion. The links each have an HREF attribute that
contains JavaScript code to call the sortTable() function. The sortTable()
function is called with a different set of parameters depending upon the link that is
clicked: the ID of the table, the index of the column to sort, and whether to sort

2 6 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

ascending (true) or descending (false). The code to sort the table is shown in
Listing 10-4.

Listing 10-4 SortTable.js

var gbAscending = true;

var gbCol = 0;

function sortCallBack(a,b)

{

// each of the arguments passed to this function is a TR node

// with one or more child TD nodes.

// get the child node of each TR element that corresponds

// to the column to be sorted.

var col1 = a.getElementsByTagName("TD")[gbCol];

var col2 = b.getElementsByTagName("TD")[gbCol];

Figure 10-3 The shopping list document presented as a table with items and prices

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 6 7

// now get the text node for each col

var text1 = col1.firstChild.data;

var text2 = col2.firstChild.data;

// now that we have the text nodes, do the sorting

if (text1 < text2)

return gbAscending ? -1 : 1;

else if (text1 > text2)

return gbAscending ? 1 : -1;

else return 0;

}

function sortTable(whichTable, whichCol, sortDir)

{

// Find the table to be sorted

var oTable = document.getElementById(whichTable);

// begin by getting the node for the TBODY because that

// node contains all the rows to be sorted

var oTBody = oTable.getElementsByTagName('TBODY')[0];

// get all of the TR tags within the tbody

var aTRows = oTBody.getElementsByTagName('TR');

// store the length of the TR array

var numRows = aTRows.length;

gbAscending = sortDir;

gbCol = whichCol;

// make an array to hold each TR tag in the body.

var theSortedRows = new Array(numRows);

// copy each TR tag into the array. Do a "deep clone" on

// each TR tag so that all of the child TD tags come along

// with it.

var i;

for (i=0; i < numRows; i++) {

theSortedRows[i] = aTRows[i].cloneNode(true);

}

// now -- sort the array!

theSortedRows.sort(sortCallBack);

// now that the array has been sorted, we put back all of the

// table rows that we had copied out earlier.

// First, get rid of the current TBODY.

oTable.removeChild(oTBody);

// make a new one in its place

oTBody = document.createElement("TBODY");

oTable.appendChild(oTBody);

// now copy in all of the sorted TR tags

for (i=0; i< numRows; i++) {

oTBody.appendChild(theSortedRows[i]);

}

}

The sortTable() function works similarly to the sortList() function in
the previous example, with some notable exceptions. First, when sorting a table, it
is necessary to rearrange all of the rows for each of the columns in the table, not just
for the column being sorted. In the list example, all the code had to keep track of was
the contents of each tag. Here it’s a little more complex because the code needs
to keep track of the entire row contents. Second, when sorting the list, it was okay to
process all of the list’s child nodes because they were all tags. In the case of
the table, there are some child nodes of the table tag that need to be left alone, such
as the header section. This job is made somewhat easier because the two sections of
the table are divided into <THEAD> and <TBODY> sections.

Prepare the Data for Sorting
Just as in the list sorting example, the sortTable() function begins by
gathering some necessary information about the table to be sorted. The first
argument, whichTable, is the ID of the table to be sorted. The function
calls getElementById() to find the table node with the given ID:

var oTable = document.getElementById(whichTable);

Next, the function retrieves the TBODY node for the table because that section
contains the nodes for the rows that need to be sorted. Once the TBODY has been found,
its child <TR> tags are retrieved, and the number of rows is stored in a local variable:

var oTBody = oTable.getElementsByTagName('TBODY')[0];

var aTRows = oTBody.getElementsByTagName('TR');

var numRows = aTRows.length;

2 6 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 6 9

The sortTable() code then sets the gbAscending global variable just as
in the list sorting example, but in this case also remembers which column is being
sorted by storing the index of the column in gbCol:

gbAscending = sortDir;

gbCol = whichCol;

Now an array is created to hold all of the TR nodes. This is the array that will
be sorted:

var theSortedRows = new Array(numRows);

After the array has been created, each <TR> tag is copied into it using the
clone() method of the DOM’s Node interface. The clone is performed as a deep
copy, so that all of the TR node’s child nodes, such as the TD and Text nodes, are
copied as well. This will minimize the amount of code needed to replace the original
data with the sorted data later:

var i;

for (i=0; i < numRows; i++) {

theSortedRows[i] = aTRows[i].cloneNode(true);

}

After the array has been filled with the TR nodes, the sort() method is called
for the array. As in the list sorting example, the only argument is the name of the
callback function to perform the actual sorting:

theSortedRows.sort(sortCallBack);

Performing the Sort
The Array class’s sort() method will repeatedly call the sortCallBack()
function that it was given as an argument to compare two items together. In the list
sorting example, this was easy because each item in the array was just a JavaScript
string that could be compared to another string. In the case of the table sorting,
however, each item will be a document fragment consisting of a TR node with a
number of TD and Text child nodes.

To compare each item, the sortCallBack() function retrieves the <TD> tag
representing the column that is being sorted from each of the TR nodes. It does this
by using the gbCol global variable to index the TD array for each TR:

var col1 = a.getElementsByTagName("TD")[gbCol];

var col2 = b.getElementsByTagName("TD")[gbCol];

After extracting the <TD> tag, the function retrieves the text from the Text node
child of the column:

var text1 = col1.firstChild.data;

var text2 = col2.firstChild.data;

Now, the function can perform the comparison function, just as in the list sorting
example. If the function returns > 0, the first argument will sort before the second
argument. If the function returns < 0, the second argument will sort before the first
one. If the function returns 0, the two items are equal:

if (text1 < text2)

return gbAscending ? -1 : 1;

else if (text1 > text2)

return gbAscending ? 1 : -1;

else return 0;

After all of the items have been compared, the array of TR nodes will have been
rearranged into the proper order for the selected column.

Replace the Original Data with the Sorted Data
Once the <TR> tags have all been sorted, the only remaining task is to copy them
back into the table structure. This is a little trickier than the list example because
you’re replacing an entire structure of nodes and not just a text string. To make
things a little easier, the code removes any existing <TBODY> tag and replaces it
with a new, empty one:

oTable.removeChild(oTBody);

oTBody = document.createElement("TBODY");

oTable.appendChild(oTBody);

Once the <TBODY> has been replaced, the function iterates over the array of
sorted <TR> tags and appends each one, child tags and all, to the new <TBODY>:

for (i=0; i< numRows; i++) {

oTBody.appendChild(theSortedRows[i]);

}

That’s it! The new table rows are in place, and the screen is updated to show the
newly sorted table.

2 7 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Post-Processing Server-Generated Documents
So far, the examples you’ve seen have all dealt with static HTML pages whose contents
were known at the time the processing script was written. However, there will be
times when your application will need to perform post-processing of documents that
were created by a script on the server. For example, you might segment your application
to split the responsibilities for the data presentation between the server, which will
extract data from a database and generate the basic HTML, and the client, which will
perform data transformation and display locally. This type of technique is often
referred to as “screen-scraping,” which means post-processing data that has already
been generated for presentation by another source.

Let’s use the document in Listing 10-5 as an example of the kinds of post-
processing you can do within the client. This listing contains a table that represents
the closing prices of the stock ticker for an imaginary company, JOEM, for seven
days. Assume that this document was created by a server-side script that reads the
prices from a database and generates the raw HTML output for display in the browser.

Listing 10-5 Server-Generated HTML Page

<html>

<head>

<title>Screen Scraping Example</title>

<script src="CalcStockData.js"></script>

</head>

<body bgcolor="#FFFFFF" onLoad="calcStockData('stockData')">

<table id="stockData" border="1" width="193">

<thead>

<tr>

<th colspan="2">JOEM Historical Prices</th>

</tr>

<tr>

<th>Date</th>

<th>Price</th>

</tr>

</thead>

<tbody>

<tr>

<td>4-1-02</td>

<td>25.35</td>

</tr>

<tr>

<td>4-2-02</td>

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 7 1

2 7 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

<td>28.02</td>

</tr>

<tr>

<td>4-3-02</td>

<td>31.45</td>

</tr>

<tr>

<td>4-4-02</td>

<td>29.34</td>

</tr>

<tr>

<td>4-5-02</td>

<td>27.10</td>

</tr>

<tr>

<td>4-6-02</td>

<td>24.00</td>

</tr>

<tr>

<td>4-7-02</td>

<td>25.35</td>

</tr>

</tbody>

</table>

<p>Share Price Calculations:</p>

<form>

<table border="0" width="337">

<tr>

<td>The highest closing price was:</td>

<td>

<input type="text" name="txtHigh" id="txtHighField">

</td>

</tr>

<tr>

<td>The lowest closing price was: </td>

<td>

<input type="text" name="txtLow" id="txtLowField">

</td>

</tr>

<tr>

<td>The average 7-day price was:</td>

<td>

<input type="text" name="txtAvg" id="txtAvgField">

</td>

</tr>

</table>

</form>

</body>

</html>

Suppose further that you wanted to perform some post-processing on the
document, such as calculating the high and low closing prices for the week, along
with the average stock price over the seven-day time frame. The results would then
be displayed in a results table below the stock table, as shown in Figure 10-4.

To accomplish this, you would need to extract the data from the raw HTML and
perform the calculations on the client side. The JavaScript code in Listing 10-6
calculates the low and high prices and the seven-day average and inserts the results
into the text form fields in the results table.

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 7 3

Figure 10-4 The stock table with client-side calculations

Listing 10-6 CalcStockData.js

function calcStockData(idTable)

{

var highPrice=0.0, lowPrice=100000.0, avgPrice=0.0;

var oTable = document.getElementById(idTable);

var i=0;

// get the rows from the table body

var oBODY = oTable.getElementsByTagName('TBODY')[0];

var aTRs = oBODY.getElementsByTagName('TR');

for (i=0; i < aTRs.length; i++)

{

// for each row, get the price for the day

var thePrice =

parseFloat(aTRs[i].getElementsByTagName('TD')[1].firstChild.data);

if (thePrice < lowPrice)

lowPrice = thePrice;

if (thePrice > highPrice)

highPrice = thePrice;

avgPrice += thePrice;

}

// store the results in the table

document.getElementById("txtHighField").value=highPrice;

document.getElementById("txtLowField").value=lowPrice;

avgPrice = avgPrice/7.0;

avgPrice = Math.round(avgPrice*100.0)/100.0;

document.getElementById("txtAvgField").value=avgPrice;

}

The calcStockData() function is called by the <BODY> tag’s onLoad
handler, which passes the ID of the table to extract the data from. In this case, the
data is not very complex—it’s just a series of dates and floating-point numbers, but
it’s not hard to imagine more complex examples where the required data is buried
within a long string of text, such as a phone number, a postal code, or an employee
number. In such cases, it is not uncommon to have to use regular expression (RegExp)
syntax to extract the required data from the text.

Here, the calcStockData() function extracts the stock price from the table
using the native JavaScript function parseFloat(), which takes a string argument
and returns a floating-point number represented by the string. You know that the

2 7 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

only contents of the cell will be a floating-point number, so extracting it is easy. If
the text were prepended with a $ sign or some other text, the code would need to
strip off the extraneous information to get the price datum (again, probably using a
regular expression). The function uses this value to record the highest and lowest
prices it finds, and calculates a seven-day average price using the Math.round()
function to round the number to two decimal places.

Once the necessary data has been calculated, the function uses the
getElementById() method to retrieve the text field objects and set their
contents to the calculated high, low, and average price values.

Working with Embedded XML Data in Web Pages
The potential power of client-side data processing becomes even more evident when
combined with embedded XML. Both Internet Explorer and Netscape Navigator
allow XML code fragments to be embedded directly in a web page or referenced
from an external XML file. DOM applications can use these XML data “islands”
to provide true data-driven web pages entirely on the client browser.

NOTE

There is currently no accepted W3C standard for working with embedded XML in HTML web pages,
although Microsoft is working with the W3C to define one. There is no word yet on if or when this
will be adopted as an official W3C recommendation, but stay tuned.

A data island is a section of XML code that is either directly embedded within
the web page (called “inline” XML) or referenced via a separate XML file (called
“external” XML). For example, the following code fragment illustrates an inline
XML data island embedded in the body section of an HTML file:

<body>

<xml id="myDataIsland">

<people>

<person>

<name>John</name>

</person>

<person>

<name>Paul</name>

</person>

<person>

<name>George</name>

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 7 5

</person>

<person>

<name>Ringo</name>

</people>

</xml>

</body>

Once XML data has been embedded in a web page, it can be used to generate
HTML to present that data. For example, the XML data island listed previously
might appear in a web page as an HTML table or as the contents of a select list,
as shown in Figure 10-5.

In this section, you’ll examine how to embed XML data in web pages that will
work across multiple browsers, and you’ll see how to write DOM code to manipulate
the XML information and build HTML to display the data.

Let’s begin by taking a look at the XML support currently provided by Internet
Explorer 6, which provides robust built-in support for data islands.

Data Islands in Internet Explorer
Internet Explorer provides native support for XML data islands, along with several
methods for working with them. For example, IE allows certain types of HTML
elements to be “bound” to XML data islands for automatic data-driven HTML code
generation. When the page is viewed in the browser, Internet Explorer automatically
populates the HTML element with the data from the associated XML data island. In
addition, IE supports using XSLT to transform the XML data island into HTML.

2 7 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 10-5 XML as an HTML select list (left) and as an HTML table (right)

Data islands can be defined in Internet Explorer as either inline or external. Inline
data islands embed their XML code directly within the page. External data islands
reference an external XML source, just as an tag points to its image source file.

Inline Data Islands
To define an inline XML data island in Internet Explorer, your application needs to
enclose the XML code within an <XML> tag. This XML tag is then assigned a unique
ID that can be used to refer to the element throughout the document and bind the
island to an HTML element that supports data binding. Listing 10-7 shows a sample
HTML page with an embedded XML data island, along with an HTML table that
uses the data island to populate the table cells.

Listing 10-7 HTML Document with an XML Data Island

<html>

<head>

<title>Inline XML Sample Document</title>

</head>

<body bgcolor="#FFFFFF">

<xml id="myDataIsland">

<people>

<person>

<name>John</name>

</person>

<person>

<name>Paul</name>

</person>

<person>

<name>George</name>

</person>

<person>

<name>Ringo</name>

</person>

</people>

</xml>

</body>

</html>

The XML tag identifies an individual section of XML within the HTML
document and uses the ID myDataIsland to assign the island a unique ID within

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 7 7

the page. This ID attribute can be used to bind the XML data island to a data-driven
HTML tag in IE 5 and later versions (discussed shortly).

The XML element is parsed and stored within the DOM document tree just as any
other element is, so you can use the DOM to interact with the contents of the data island.
For example, to count the number of <person> tags within the data island, you can use
code like the following, which will produce an alert displaying the number 4:

var xmlDoc = document.getElementById('myDataIsland');

var tagList = xmlDoc.getElementsByTagName('person');

alert (tagList.length);

External Data Islands
In addition to specifying an XML data island inline, the XML tag can refer to an
external XML document using the SRC attribute. The syntax for this is

<XML ID="myDataIsland" SRC="http://localhost/docs/myxmldoc.xml"></XML>

The URL for the SRC attribute can be either a local file, as in the previous
example, or it can be a path to an XML file on a remote computer. Using this type
of syntax, the XML document can be kept independent of the HTML page, which
allows for easier updating of the document’s data.

Using Data-Bound Controls
Internet Explorer supports binding XML data islands directly to certain types of
HTML constructs, such as tables. This is accomplished by using the dataSrc
and dataFld attributes of the HTML element that you want to bind the data to.
The dataSrc attribute refers to the data island’s ID attribute, preceded by a
hash symbol (#). For example, to bind an HTML table to the XML data island
myDataIsland, the syntax would be as follows:

<table dataSrc="#myDataIsland">

... table contents ...

</table>

NOTE

This only works on the Windows version of Internet Explorer. Data-bound controls do not work in
the Macintosh version of IE.

2 7 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

To refer to a specific field of the data within the table, you use the dataFld
attribute. For example, to create a span of text containing the value of a certain field
within the XML, the syntax is as follows:

When the two are put together, IE generates some basic HTML output containing
the data for the island. Listing 10-8 shows Listing 10-7 modified to include a
data-bound table.

Listing 10-8 Binding XML Data to an HTML Table

<html>

<head>

<title>Inline XML Sample Document</title>

</head>

<body bgcolor="#FFFFFF">

<!-- The XML data for the page -->

<xml id="myDataIsland">

<people>

<person>

<name>John</name>

</person>

<person>

<name>Paul</name>

</person>

<person>

<name>George</name>

</person>

<person>

<name>Ringo</name>

</person>

</people>

</xml>

<table width="50%" dataSrc="#myDataIsland" border="1">

<tr>

<td></td>

</tr>

</table>

</body>

</html>

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 7 9

The table tag in the body section binds itself to the data island using this ID
attribute as the value of a dataSrc attribute, preceded by a # character. The
dataSrc attribute is available on a variety of HTML constructs within IE, such
as tables, select lists, frames, layers, and so on.

Once the table has been bound to a data source, it is populated by using an HTML
element that supports the dataFld property, which refers to an individual field
within the XML data. In this example, the XML data island has the <people> tag
as its document element because it is the root node. Under the root node, there are
several <person> tags, each of which represent the series of data “records” within
the data island. Each of these records has one field, <name>, which represents the
person’s name. Thus, to fill the table with the names of the people, the TD of the table
must refer to the name field of each record. However, TDs cannot be bound directly
to data because they don’t support the dataFld property, so an element that does
must be enclosed within the TD, such as a SPAN. Each TD will then be looped over
using each successive record in the XML island to fill out the table with data.

When this document is viewed in Internet Explorer, the table is populated with
all of the data records for the XML data island, as shown in Figure 10-6.

More information on using XML data islands within Internet Explorer can be found
on Microsoft’s developer network website at http://msdn.microsoft.com/ (search on
the term “XML Data Islands”—it will provide more than enough hits to start with).

2 8 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 10-6 A table populated with XML data in IE

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 8 1

Data Islands in Netscape Navigator
Unfortunately, Netscape Navigator does not provide native support for data islands
the same way that Internet Explorer does. However, you can emulate much of the same
functionality in Netscape by using a few tricks and some custom JavaScript code.

Inline Data Islands
Let’s take a look at what happens when you try to view the document in Figure 10-7
inside Netscape 6.2.

Although Netscape correctly parses the contents of the XML tag, it also renders
the contents of the tag directly into the page instead of ignoring them. To prevent
this from happening, you can enclose the XML data island inside an invisible DIV
tag, as shown in Listing 10-9.

Listing 10-9 Hiding a Data Island Inside an Invisible DIV

<div id="xmlLayer1" style="position:absolute; width:0px; height:0px;

z-index:1; visibility: hidden">

<xml id="myDataIsland">

<people>

<person>

<name>John</name>

</person>

... more XML tags ...

</people>

</xml>

</div>

Now, when you view the file in Netscape 6, the XML data island will be invisible,
hidden within the DIV layer. This technique does not interfere with Internet Explorer,
which still correctly finds the data island when bound to an HTML element.

External Data Islands
Netscape also does not provide any native support for external data islands the way
the IE does. However, you can use the DOM’s createDocument() method
along with the Document object’s load() function to simulate this behavior. The

2 8 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

load() method of the document object was added by Netscape for compatibility
with Microsoft. It takes a single argument, a URL to a document to be loaded. The
load() method is asynchronous; that is, it will return control back to your script
before the document has finished loading. To detect when the document has finished
loading, you must use an event listener to listen for the load event.

The loading process is done in two steps. First, your script creates the document
using the createDocument()method, which is found on the DOMImplementation
interface (note that createDocument is a DOM Level 2 method). After the document
has been created, you can call the load() method on it. When the load event listener
fires, the document has been loaded into memory, and your script can begin processing
it. The following code fragment illustrates the whole process:

// create the document

var myXMLDoc = document.implementation.createDocument("","myDoc",null);

// attach a "load" event listener

myXMLDoc.addEventListener("load",docLoaded,false);

// now load the document

myXMLDoc.load("myxmldoc.xml");

function docLoaded(evt)

{

// do whatever processing is required

alert(doc.documentElement.nodeName);

}

Figure 10-7 Viewing a document with XML data islands in Netscape

Example: Joe’s Cafe Menu Application
In this example, we’ll take what you’ve learned so far in this chapter and put it to
use in a simple but practical application. You’ll develop a web page for a fictional
restaurant, Joe’s Café, that displays the restaurant’s menu and provides a variety of
functions for the user. The web page visitor can view menu items from which to
order and select items from the menu to find out what a hypothetical order would
cost. In addition, the user can highlight items that are suitable for vegetarians.

The Menu Page
Figure 10-8 shows the HTML page that the user is presented with when using the
Joe’s Café Menu application.

The menu page allows the user to calculate what the total would be for a
hypothetical meal before they even set foot in the restaurant. The tip calculator uses
the bill total to figure a tip based on a user-selectable tip percentage. The content
filter allows the user to highlight dishes that are suitable for people who are
vegetarians. Listing 10-10 shows the code for the HTML portion of the page.

Listing 10-10 HTML Source for the Menu Page

<html>

<head>

<title>Joe's Cafe Menu</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<style type="text/css">

<!--

th.Title {

font-family: Georgia, "Times New Roman", Times, serif;

font-size: 24px; color: #663300 }

th.Column {

font-family: Georgia, "Times New Roman", Times, serif;

font-size: 14px; color: #663300 }

td { font-family: Georgia, "Times New Roman", Times, serif;

font-size: 14px; color: #000000 }

-->

</style>

<script language="JavaScript" src="MenuApp.js">

</script>

</head>

<body bgcolor="#FFFFFF" text="#000000"

onLoad="initialize('menuTable','cafeMenuXML');

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 8 3

document.forms[0].txtBillAmt.value=calculateBill('menuTable');

">

<!-- (XML Code within invisible DIV tag goes here ...) -->

<h1>Welcome to Joe's Cafe</h1>

<p>Select your entrees from the menu below. To calculate the amount

of the bill, click the Calculate Bill button. Check the

"Highlight Vegetarian meals" box to highlight

vegetarian dishes.</p>

<table id="menuTable" width="75%" border="1">

<thead>

<tr>

<th colspan="3" class="Title">Joe's Cafe Menu</th>

</tr>

<tr>

<th class="Column"> </th>

<th class="Column">Item</th>

<th class="Column">Price</th>

</tr>

</thead>

<tbody>

</tbody>

</table>

<form>

<p>

<input type="button" name="btnCalcBill" value="Calculate Bill"

onClick="document.forms[0].txtBillAmt.value=calculateBill('menuTable');">

Total: $<input type="text" name="txtBillAmt">

<input type="checkbox" name="cbOpts" value="isVeg"

onClick="highlightVegetarian('menuTable',this.checked)">

Highlight Vegetarian Meals

</p>

</form>

</body>

</html>

The structure of the page is pretty basic. There are a couple of CSS styles to define
the appearance of the menu, some text in the document to direct the user what to do,
and some controls at the bottom of the page that allow the user to interact with the menu.
The main centerpiece of the code is the <TABLE> tag with the ID “menuTable.” This is
the element that will hold the HTML code for the menu generated from the XML. The
comment just below the body tag indicates where the DIV tag with the embedded
XML code should go.

2 8 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 8 5

The Menu XML Code
Listing 10-11 shows the XML code that comprises the menu for Joe’s Café. Note
that the XML data island is contained within an invisible <DIV> tag.

Figure 10-8 The menu page for Joe’s Cafe

Listing 10-11 The XML Code for the Menu

<div id="xmlLayer" style="position:absolute; width:0px;

height:0px; z-index:1; visibility: hidden">

<xml id="cafeMenuXML">

<cafemenu>

<section name="Breakfast">

<entree>

<item>Two Eggs, any style</item>

<price>2.99</price>

</entree>

<entree>

<item>Joe's Famous Peppers and Eggs</item>

<price>6.29</price>

</entree>

<entree vegetarian="true">

<item>Bowl of fruit</item>

<price>4.99</price>

</entree>

<entree vegetarian="true">

<item>French toast</item>

<price>3.25</price>

</entree>

</section>

<section name="Lunch">

<entree>

<item>Grilled Chicken Sandwich</item>

<price>5.99</price>

</entree>

<entree>

<item>Tuna Melt</item>

<price>4.99</price>

</entree>

<entree vegetarian="true">

<item>Pasta Salad</item>

<price>5.39</price>

</entree>

</section>

<section name="Dinner">

<entree>

<item>New York Steak</item>

<price>8.99</price>

2 8 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

</entree>

<entree>

<item>Chilean Sea Bass</item>

<price>10.99</price>

</entree>

<entree vegetarian="true">

<item>Linguini with Porcini Mushrooms</item>

<price>7.79</price>

</entree>

</section>

</cafemenu>

</xml>

</div>

This XML structure is fairly straightforward, although it’s obviously a simplified
example. The menu is organized into sections, each delimited by a <section> tag.
Each <section> tag defines a set of entrées for a particular type of meal: breakfast,
lunch, or dinner, which is delimited by an <entree> tag. Each <entree> tag
has an optional attribute, vegetarian, which indicates whether the entrée is
vegetarian. If no vegetarian attribute is present, then the item is assumed to be
not vegetarian. Each <entree> tag in a section contains child tags that describe the
name of the item and its price. The <item> and <price> tags each contain a
single text node that describes the item name and the price for the item.

From this XML structure, your DOM code generates the appropriate HTML and
fills out the table in the page body with the results.

Generating the Menu HTML
Once the menu XML code has been embedded in the page, the HTML needs to be
generated and displayed to the user. There are several good methods for doing this,
based upon how much control you want to have over the display of the HTML, how
much coding work you want to do yourself, what kinds of special features you want
to provide, and which browser you expect the user to be viewing the page in.

If you’re using Internet Explorer as the target browser, the available options are
varied: you can bind the XML directly to a table control and have the table populate
automatically, you can use XPath and XSLT to transform the XML code directly
into HTML, or you can use the DOM to generate the page. In Netscape, you give up
the data-bound controls, but you can still use the DOM and XSLT.

Binding the XML to an HTML table provides a direct solution in IE, but you want
to provide some fairly advanced features without redesigning the XML structure of

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 8 7

2 8 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

the code. In addition, Netscape doesn’t directly support data-bound controls,
although you could write some custom JavaScript to get it to behave properly and
work acceptably. Still, this would be a daunting task, and if you’re going to write
JavaScript code to get it to work in one browser, you might as well use JavaScript
for the entire solution. Therefore, for the requirements in this example, data-bound
controls are out.

Using XSLT to transform the XML into displayable HTML would be a
straightforward, elegant solution because that’s what it is designed to do. XSLT is a
standard also defined by the W3C that describes how to transform XML documents
into other types of documents, such as XML, HTML, PDF, text, and so on. It works
by applying templates to sections of the source XML file to produce the output file.
The XSLT support provided by Internet Explorer and Netscape would be enough to
perform the necessary transformation of the sample document if it were a stand-alone
XML file that was being displayed by a browser. In addition, IE provides native XSLT
transform support for individual document nodes via the transformNode()method,
but Netscape lacks this feature as of version 6.2.2, so it won’t work for the embedded
XML data island example. In addition, you’ll want more control over the generation
of your document during processing than XSLT might allow. Because a full introduction
to XSLT is beyond our scope, for now we’ll put it aside.

That leaves using the DOM to directly manipulate the XML content, which will
work in both Netscape and IE because both provide excellent support the DOM. You
also can be sure that it will continue to work down the road as new DOM-compliant
browsers are introduced because you’re using an API that is independent of any
particular vendor’s implementation.

Listing 10-12 lists the JavaScript code that creates and handles the menu.

Listing 10-12 JavaScript for Generating the Menu

var gEntreeCount = 0;

function initialize(idTheTable,idXMLData)

{

var oTheTable = document.getElementById(idTheTable);

// if the table already has a TBODY, remove it

var theTBODY = oTheTable.getElementsByTagName('TBODY');

if (theTBODY.length > 0)

oTheTable.removeChild(theTBODY[0]);

// now create the menu content

theTBODY = generateMenuContent(idXMLData);

// and add it to the table

TE
AM
FL
Y

Team-Fly®

oTheTable.appendChild(theTBODY);

}

function generateMenuContent(idXMLData)

{

var i=0,j=0;

var theTBODYNode = document.createElement('TBODY');

var oXMLDoc = document.getElementById(idXMLData);

var aMenuSections = oXMLDoc.getElementsByTagName('section');

for (i=0; i < aMenuSections.length; i++)

{

// each <section> tag starts a new Menu section, so create

// a table row for the section with the value of the

// section's 'name' attribute

var sName = aMenuSections.item(i).getAttribute('name');

var oTR = document.createElement('TR');

var oTD = document.createElement('TD');

oTD.setAttribute('colspan','3');

oTD.appendChild(document.createTextNode(sName));

oTR.appendChild(oTD);

theTBODYNode.appendChild(oTR);

// now create each menu item. The child nodes of each

// <section> tag represent an individual entree.

var aEntrees = aMenuSections.item(i).getElementsByTagName('entree');

for (j=0; j < aEntrees.length; j++)

{

oTR = document.createElement('TR');

// create a custom attribute on the TR tag called "vegetarian"

// to indicate whether the item is vegetarian or not. This

// will save us a lot of effort later when we're trying to

// highlight the vegetarian items.

if (aEntrees.item(j).getAttribute("vegetarian"))

oTR.setAttribute("vegetarian",

aEntrees.item(j).getAttribute("vegetarian")

);

// create the TD for the checkbox

oTD = document.createElement('TD');

oTD.setAttribute('align','center');

var oCB = document.createElement('INPUT');

oCB.setAttribute('name','item'+gEntreeCount++);

oCB.setAttribute('type','checkbox');

oTD.appendChild(oCB);

oTR.appendChild(oTD);

// create the TD for the item name

oTD = document.createElement('TD');

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 8 9

2 9 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

var oItemNode =

aEntrees.item(j).getElementsByTagName('item')[0];

// just copy the item node's text child to the TD

oTD.appendChild(

document.createTextNode(oItemNode.firstChild.data)

);

oTR.appendChild(oTD);

// create the TD for the price

oTD = document.createElement('TD');

// align the prices to the right so they line up

// over the decimal point

oTD.setAttribute('align','right');

var oPriceNode =

aEntrees.item(j).getElementsByTagName('price')[0];

// just copy the price node's text child to the TD

oTD.appendChild(

document.createTextNode(oPriceNode.firstChild.data));

oTR.appendChild(oTD);

// add the row to the table body

theTBODYNode.appendChild(oTR);

}

}

return theTBODYNode;

}

function calculateBill(idMenuTable)

{

var fBillTotal = 0.0;

var i=0;

var oTable = document.getElementById(idMenuTable);

// go through the table and add up the prices of all

// the selected items. The code takes advantage of the

// fact that each checkbox has a corresponding row in

// the table, and the only INPUT tags are the checkboxes.

var aCBTags = oTable.getElementsByTagName('INPUT');

for (i=0; i < aCBTags.length; i++)

{

if (aCBTags[i].checked)

{

// get the checkbox' parent TR

var oTR = getParentTag(aCBTags[i],'TR');

// retrieve the price from the TD

var oTDPrice = oTR.getElementsByTagName('TD')[2];

// the child text node contains the price

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 9 1

fBillTotal += parseFloat(oTDPrice.firstChild.data);

}

}

return Math.round(fBillTotal*100.0)/100.0;

}

function highlightVegetarian(idTable,bShowVeg)

{

// if bShowVeg is true, then we're highlighting vegetarian

// meals, otherwise we're unhighlighting them.

var i=0;

var oTable = document.getElementById(idTable);

// start by getting all of the TR elements in the TBODY

var oTBODY = oTable.getElementsByTagName('TBODY')[0];

var aTRs = oTBODY.getElementsByTagName('TR');

for (i=0; i < aTRs.length; i++)

{

if (aTRs[i].getAttribute('vegetarian'))

{

if (bShowVeg)

aTRs[i].style.backgroundColor = "lightGreen";

else

aTRs[i].style.backgroundColor = "";

}

}

}

function getParentTag(oNode, sParentType)

{

var oParent = oNode.parentNode;

while (oParent)

{

if (oParent.nodeName == sParentType)

return oParent;

oParent = oParent.parentNode;

}

return oParent;

}

Initializing the Page
The menu page’s <BODY> tag contains an onLoad event handler that handles the
details of the page initialization:

<body bgcolor="#FFFFFF" text="#000000"

onLoad="initialize('menuTable','cafeMenuXML');

document.forms[0].txtBillAmt.value=calculateBill('menuTable');

">

The initialize() function takes two arguments: the ID of the table that will
hold the menu and the ID of the XML data island that will be used to generate the
HTML. The function begins by locating the table represented by the given ID:

function initialize(idTheTable,idXMLData)

{

var oTheTable = document.getElementById(idTheTable);

Next, the code removes any existing TBODY that it finds from the table. This will
make it easier to add a new one later on.

// if the table already has a TBODY, remove it

var theTBODY = oTheTable.getElementsByTagName('TBODY');

if (theTBODY.length > 0)

oTheTable.removeChild(theTBODY[0]);

Once the table is ready for the HTML code, the generateMenuContent()
function is called with the ID of the XML data island. This function returns a TBODY
node populated with rows and columns representing the XML data for the menu:

// now create the menu content

theTBODY = generateMenuContent(idXMLData);

Now, the new TBODY node is appended to the table element using the
appendChild() method:

// and add it to the table

oTheTable.appendChild(theTBODY);

}

Building the Table
The generateMenuContent() function is the workhorse of the menu page.
This function is responsible for transforming the HTML code into a fully formed
TBODY node with all of the child nodes in place to represent each section, item,
and price in the menu XML code.

The generateMenuContent() function begins by creating a new TBODY
element, which will hold the resulting <TR> and <TD> tags for the generated menu:

function generateMenuContent(idXMLData)

{

var i=0,j=0;

var theTBODYNode = document.createElement('TBODY');

2 9 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 9 3

Once the TBODY is created, the function locates the XML data island represented
by the idXMLData argument:

var oXMLDoc = document.getElementById(idXMLData);

Next, the list of <SECTION> tags is generated. The function loops over each
section tag in the XML structure and processes all of the child <ENTREE> tags:

var aMenuSections = oXMLDoc.getElementsByTagName('section');

for (i=0; i < aMenuSections.length; i++)

{

Each section tag corresponds to a table row that contains the name of the
menu section:

var sName = aMenuSections.item(i).getAttribute('name');

var oTR = document.createElement('TR');

var oTD = document.createElement('TD');

oTD.setAttribute('colspan','3');

oTD.appendChild(document.createTextNode(sName));

oTR.appendChild(oTD);

theTBODYNode.appendChild(oTR);

Once the row for the section name is created, the rows for the entrées in the
section need to be created and added to the table body. The function gets the list of
<ENTREE> tags and loops over each one, processing the <ITEM> and <PRICE> tags:

var aEntrees =

aMenuSections.item(i).getElementsByTagName('entree');

for (j=0; j < aEntrees.length; j++)

{

Each <ENTREE> tag corresponds to its own table row, so a new <TR> tag is
created for the entrée:

oTR = document.createElement('TR');

If the entrée is vegetarian, you create a vegetarian attribute for the table row
so it will be easier to find later. Both IE and Netscape allow you to attach custom-
defined attributes to a tag using the setAttribute() DOM method.

2 9 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

NOTE

In IE, you can also set custom attributes in JavaScript by using the name of the attribute on the
object, for example, oTR.vegetarian="true". This doesn’t work in Netscape for
some reason—instead, you need to use setAttribute().

if (aEntrees.item(j).getAttribute("vegetarian"))

oTR.setAttribute("vegetarian",

aEntrees.item(j).getAttribute("vegetarian")

);

Now the function creates the contents of each table row. The row contains three
columns: a check box that allows the user to “select” the menu item, the name of the
entrée, and its price.

// create the TD for the checkbox

oTD = document.createElement('TD');

oTD.setAttribute('align','center');

var oCB = document.createElement('INPUT');

oCB.setAttribute('name','item'+gEntreeCount++);

oCB.setAttribute('type','checkbox');

oTD.appendChild(oCB);

oTR.appendChild(oTD);

// create the TD for the item name

oTD = document.createElement('TD');

var oItemNode =

aEntrees.item(j).getElementsByTagName('item')[0];

// just copy the item node's text child to the TD

oTD.appendChild(

document.createTextNode(oItemNode.firstChild.data)

);

oTR.appendChild(oTD);

// create the TD for the price

oTD = document.createElement('TD');

// align the prices to the right so they line up

// over the decimal point

oTD.setAttribute('align','right');

var oPriceNode =

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 9 5

aEntrees.item(j).getElementsByTagName('price')[0];

// just copy the price node's text child to the TD

oTD.appendChild(

document.createTextNode(oPriceNode.firstChild.data));

oTR.appendChild(oTD);

Once the row is created, it is appended to the <TBODY> tag, and the loop goes on
to process the next entrée. When all of the entrées and sections are finished, the
loops terminate.

// add the row to the table body

theTBODYNode.appendChild(oTR);

}

}

That’s it! Now the code returns the completed TBODY to the caller, and it is
appended to its parent table element:

return theTBODYNode;

}

Handling User Interaction
This menu page provides several ways in which the user can interact with the menu.
Users can select items from the menu, calculate the total bill, and highlight items
that are suitable for vegetarians. When the user performs each action, the menu page
takes an appropriate response to the action by updating part of the page.

Selecting Items from the Menu
The user can choose items from the menu by clicking the check boxes in each row for
each entrée item. No action is performed when the check box is actually checked—
the code performs the bill calculation when the Calculate Bill button is clicked. This
could be automated by having the bill update when each check box was checked by
calling the calculateBill() function each time a check box was clicked.

Calculating the Bill
If the user wants to see how much money they can expect to spend on a meal before
they even get to the restaurant, they can select items from the menu, and the page

will display a running total of the items that have been selected. When the Calculate
Bill button is clicked, the calculateBill() function examines all of the checked
items, adds their prices up, and displays the result in the form below the table.

The function accepts one argument, the ID of the table, and returns a floating-
point number representing the bill amount. The function first retrieves the table node
with the given ID and then collects all of the <INPUT> tags in the table:

function calculateBill(idMenuTable)

{

var fBillTotal = 0.0;

var i=0;

var oTable = document.getElementById(idMenuTable);

// go through the table and add up the prices of all

// the selected items. The code takes advantage of the

// fact that each checkbox has a corresponding row in

// the table, and the only INPUT tags are the checkboxes.

var aCBTags = oTable.getElementsByTagName('INPUT');

Because the only <INPUT>tags within the table are the check boxes themselves,
and they are only present within the TBODY, the code can take advantage of this fact to
work backward to find the corresponding TR for the menu item. The function loops
over each check box tag, gets its parent <TR> tag using the getParentTag()
method, and then retrieves the child <TD> tag corresponding to where the price
information is kept. The text string within the <TD> tag is always formatted as a
floating-point number, so the code can call the parseFloat() function on the child
text node’s data property to get a floating-point number (this, of course, is usually
not the case in real life, and the text would probably require some further processing to
get the numerical representation):

for (i=0; i < aCBTags.length; i++)

{

if (aCBTags[i].checked)

{

// get the checkbox' parent TR

var oTR = getParentTag(aCBTags[i],'TR');

// retrieve the price from the TD

var oTDPrice = oTR.getElementsByTagName('TD')[2];

// the child text node contains the price

2 9 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

fBillTotal += parseFloat(oTDPrice.firstChild.data);

}

}

return Math.round(fBillTotal*100.0)/100.0;

}

The code for the getParentTag() function retrieves the indicated parent type
for a given node, if one exists. The function takes two arguments: the node for which
the ancestor is to be returned, and the name of the node type to find. The function
then walks upward through the node’s parent nodes until it finds a parent of the
given type, or the top of the document is reached, in which case NULL is returned:

function getParentTag(oNode, sParentType)

{

var oParent = oNode.parentNode;

while (oParent)

{

if (oParent.nodeName == sParentType)

return oParent;

oParent = oParent.parentNode;

}

return oParent;

}

Highlighting Vegetarian Meals
One of the features that the menu page provides to users is the ability to highlight
certain dishes in the menu based upon a vegetarian dietary restriction. When the user
clicks the check box that highlights vegetarian entrées, the onClick handler for
the check box calls the highlightVegetarian() method, which modifies the
background color of the vegetarian items in the table to make them stand out more.

The highlightVegetarian() function accepts two arguments: the ID of the
table and a Boolean value indicating whether the items should be highlighted or not.
The function first retrieves the table with the given ID and then collects all of the
<TR> tags in the table’s TBODY section:

function highlightVegetarian(idTable,bShowVeg)

{

// if bShowVeg is true, then we're highlighting vegetarian

// meals, otherwise we're unhighlighting them.

var i=0;

var oTable = document.getElementById(idTable);

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 9 7

// start by getting all of the TR elements in the TBODY

var oTBODY = oTable.getElementsByTagName('TBODY')[0];

var aTRs = oTBODY.getElementsByTagName('TR');

For each tag, the function checks for the presence of the vegetarian attribute
on the <TR> tag. If it is present, the <TR>’s backgroundColor style selector is
changed to the named color “lightGreen,” otherwise it is set to the empty string
value (which effectively removes it):

for (i=0; i < aTRs.length; i++)

{

if (aTRs[i].getAttribute('vegetarian'))

{

if (bShowVeg)

aTRs[i].style.backgroundColor = "lightGreen";

else

aTRs[i].style.backgroundColor = "";

}

}

}

Adding New Items to the Menu
The data for the page has now been isolated to the XML data island fragment, so
adding new sections to the menu is as simple as adding new XML tags—the changes
are automatically picked up by the processing script and handled accordingly. For
example, if a new section were added, such as Side Dishes, Listing 10-13 shows
what the XML code might look like.

Listing 10-13 A New Section Added to the Menu XML

<!-- New section here: side dishes -->

<section name="Side Dishes">

<entree vegetarian="true">

<item>Potato Salad</item>

<price>2.95</price>

</entree>

<entree>

<item>French Fries</item>

<price>2.50</price>

</entree>

2 9 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

</section>

<section name="Lunch">

<entree>

<item>Grilled Chicken Sandwich</item>

<price>5.99</price>

</entree>

<entree>

<item>Tuna Melt</item>

<price>4.99</price>

</entree>

<entree vegetarian="true">

<item>Pasta Salad</item>

<price>5.39</price>

</entree>

</section>

... more section tags follow ...

Now, when the page is reloaded in the browser, the changes are automatically
incorporated into the HTML table, as shown in Figure 10-9.

The page automatically handles all of the menu selection, bill calculation, and
highlighting of the vegetarian options.

Conclusion
In this chapter, we examined various ways of building and processing data-driven
documents directly on the client without having to make round-trips to the server.
First, you saw how to sort data using the DOM and the built-in JavaScript classes,
and you built scripts that allowed users to sort HTML lists and tables directly in the
browser.

Next, you looked at an example of using “screen-scraping” techniques to extract
data from a web page that was dynamically generated on the server to provide the
user with some additional client-side post-processing.

Finally, you looked at XML data islands, what they are, and how they can be used
to present and manipulate data on the client. You also built a functioning example
that transformed an XML document into an interactive HTML page.

The advantages of client-side data processing are clear: by offloading document
processing to the client where possible, the load on the server diminishes significantly,
and the user experiences a more responsive, interactive application.

C h a p t e r 1 0 : C l i e n t P r o c e s s i n g o f D a t a - D r i v e n D o c u m e n t s 2 9 9

In the next chapter, we’ll take a look at some possible future directions for the DOM
and examine the new types of functionality being considered for DOM Level 3.

3 0 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure 10-9 Updated XML in the browser

CHAPTER

11
Future Directions

for the DOM

301
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The W3C DOM is an evolving standard, designed from the beginning to be
improved upon with time. The currently published version of the DOM is
Level 2, which was adopted as a W3C Recommendation on November 13,

2000 (except for Level 2 HTML, which is currently in last call status as of April 2002).
The DOM Working Group is currently working on Level 3, which is available as a
set of working draft publications on the W3C web site (www.w3.org/DOM). One of
the major changes in the way that the DOM has been published since Level 2 is that
separate DOM modules can now be put forth as recommendations on an individual
basis to speed up the adoption process.

This chapter takes a look at some of the new additions and changes to the DOM
that are being developed for Level 3, along with some other trends and technologies
that are shaping and influencing the development of the next version of the DOM
standard. Some of these efforts are well underway, while some others are still ideas
that are just now being discussed for possible future implementation in the DOM.

NOTE

The information in this chapter is based on working draft publications and other in-progress work
from the W3C and other sources, which may change before being officially adopted as W3C
recommendations or other accepted standards. Some of the information in this chapter may not
become part of the standard at all. This information should be used only as a high-level guide to
where the DOM API may be going in future releases. Readers are encouraged to check the W3C
DOM website for the most up-to-date information.

Where Is the DOM Headed?
When DOM Level 1 was published, it provided a base reference for implementing a
set of functionality that allowed applications to manipulate the contents of structured
documents. Level 1 only allowed certain basic document operations, such as creating
and deleting nodes, working with their contents, and traversing the document tree.
Everything else was left to be implementation specific, even operations that might
be considered obvious, such as loading and saving documents.

DOM Level 2 included support for more types of document operations and content,
such as events and styles. These additions gave developers standardized ways of
handling user events and working with Cascading Style Sheets (CSS) information
within XML documents.

3 0 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Currently, the DOM’s future is taking shape as the Level 3 specification, parts of
which are now in “last call” phase (such as DOM XPath) and parts of which are still
under development. In addition, there are other standards under development that are
not officially part of the DOM, but directly or indirectly affect how developers use it
and may be considered for inclusion in the DOM at a later date. In the Level 3 version
of the DOM, more attention is being paid to some of the things that were left out of
earlier versions, such as loading and saving files. In addition, the DOM is beginning
to consider the use of other W3C recommendations within DOM documents, such as
XPath expression handling.

In the following sections, I’ll summarize the changes and additions that are being
developed for DOM Level 3 and examine some of the new modules that will be
included. We’ll also take a look at some developing technologies and trends that
are not yet being considered for inclusion in the DOM but probably will be at some
later date.

Proposed Changes in DOM Level 3
The working drafts of the Level 3 DOM modules incorporate several changes and
additions to the specification that have been requested by developers. The size
and scope of the changes range from relatively small, such as new data types and
methods, to entirely new modules, such as Load and Save, Abstract Schemas,
and XPath support. In this section, I’ll summarize the more important changes
made to the existing modules and take a look at some of the new modules that
will be included in Level 3.

General Changes
Some of the more general changes in the Level 3 version of the DOM specification
include new data types, new methods and properties for various interfaces, and
modifications to existing interfaces and properties. In addition, Level 3 introduces
some entirely new concepts to the DOM, such as mixed DOM implementations.

New Data Types
DOM Level 3 introduces two new data types. The first is DOMObject, which represents
an arbitrary memory object. The second is DOMUserData, which represents an
interface to an arbitrary block of data in a DOM application.

The DOMObject type has the following IDL specification:

typedef Object DOMObject;

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 0 3

The DOMUserData type has the following IDL specification:

typedef Object DOMUserData;

NOTE

The DOM Level 3 specification uses the DOMObject and DOMUserData types in its interfaces,
though actual implementations may use different bindings. In Java, for example, the DOMObject
and DOMUserData types are bound to the Java’s Object type. In C++, they may be specified as
void pointers (void *), as in the Xerces-C implementation. In JavaScript, they can be bound to
any type.

Currently, the Level 3 specification uses DOMObject and DOMUserData types in
the interfaces for handling user data on document nodes (discussed later).

New and Modified Interface Methods
Several of the DOM interfaces have added new methods in the Level 3 specification.
In this section, we’ll review the more notable additions to the DOM interfaces.

The Node interface is slated to receive a fair number of additions, allowing
developers to compare the document tree positions of nodes, test for node equality,
retrieve the text content of nodes, and attach application-defined data to nodes.

Comparing the tree positions of nodes is done via the compareTreeNode()
method, which returns the position of a given node relative to the node it is called
on. Application-specific data can now be attached to nodes using the setUserData()
and getUserData() methods. Each of these new capabilities is discussed more
fully later in this chapter in the section “Attaching Application-Specific Data to Nodes.”

Two new methods, isSameNode() and isEqualNode(), have been added
to allow applications to test two nodes for sameness and equality, respectively. Two
node references are said to be the same if both node references refer to the same
underlying node in memory. When two node references are the same, DOM operations
on either reference will behave as if the same operation had been performed on the
other reference.

Two nodes are considered to be equal if all of the following conditions are met:

� The two nodes are the same type (Element, Comment, and so on).

� The nodeName, localName, namespaceURI, prefix, nodeValue,
and baseURI properties on one node are all equal to the corresponding
property on the other node. That is, they are both null, or they both have
the same string value.

3 0 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 0 5

� All of the two nodes’ attribute nodes are equal. Either the attributes
NamedNodeMap properties of the nodes are both null, or they both have the
same length, and an attribute that exists in one of the NamedNodeMaps also
exists in the attributes NamedNodeMap property of the other node, and
they are equal to each other (although they don’t have to be at the same index).

� The childNodes lists are equal on both nodes. Either they are both null, or
they contain the same number of child nodes and each one is equal to the other
and is at the same index. Note that the process of normalizing, or concatenating
adjacent text nodes, can affect node equality, so normalization should be done
before tests for equality are performed.

In addition to the preceding, the following conditions must be met for two
DocumentType nodes to be equal:

� The publicID, systemID, and internalSubset properties are equal.

� The entities NamedNodeMap structures are equal.

� The notations NamedNodeMap structures are equal.

For example, consider the following document fragment:

<myNode attr1="first attr" attr2="second attr"/>

<myNode attr2="second attr" attr1="first attr"/>

Both of these nodes are equal because they are both Element nodes, they have the
same nodeName, and their attributes are equal, even though they are at different
indexes. On the other hand, consider this example:

<myNode attr1="first attr" attr2="second attr">

Hello World!</myNode>

<myNode attr2="second attr" attr1="first attr"/>

Here, the two nodes are not equal because one of them has a text child node while
the other does not. Even though everything else about the two nodes match up, they
fail the equality test because of their child node content. This is an important
consideration to remember when comparing two nodes: you’re not just comparing
the nodes themselves; in some cases, you’re comparing two subtrees of the document.

To retrieve the text content of a node, applications can now use the textContent
property. This property returns the text content of a node and its descendant nodes,
depending on the node type. It can also be set to a string, in which case all of the

descendants of the node are removed and replaced with a single Text node containing
the string value that this property is set to. When this property is read, the string
returned does not contain any markup at all, and no extra whitespace is removed
from the string. Table 11-1 lists the value of the textContent property that is
returned for the different types of nodes.

The Document interface also received a good dose of new methods and properties.
Among the more important ones are the actualEncoding, encoding,
standalone, and version properties that represent the corresponding values
provided in the <?xml?> statement declaration at the top of the XML file. There
is also a new errorHandler property, which allows developers to set a
DOMErrorHandler object on the document to handle errors (discussed in
depth later in the “Error Handling” section).

Among the new methods, there is now an adoptNode() method, which changes
the ownerDocument of a given node along with its child and attribute nodes, if
there are any. This method was added to allow the moving of a document subtree
to another document.

The insertBefore(), removeChild(), and replaceChild() methods
have been changed to raise a new DOMException, VALIDATION_ERROR, if the
requested operation would leave the node in an invalid state.

For a full list of the additions and changes to the DOM 3 interfaces, consult the
appropriate module specification at the W3C DOM website.

Mixed DOM Implementations
Over the past few years, specialized vocabularies of XML have started to become
prevalent, and they are targeted at specific tasks or markets. As a result, the
developers of these new vocabularies have begun extending the DOM to provide
specialized services to developers that need to perform certain operations frequently.
Examples of this can be seen in the MathML and Scalable Vector Graphics (SVG)

3 0 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Node Type TextContent Value
Element, Entity, EntityReference,
DocumentFragment

The concatenated value of the textContent
property for all of the child nodes, except for
Comment and ProcessingInstruction nodes.

Attribute, Text, CDATA, Comment,
ProcessingInstruction

nodeValue

Document, DocumentType, Notation null

Table 11-1 textContent Values for Individual Node Types

specifications, where those specifications have started providing DOM extension
methods and properties to their respective developers. This becomes an issue when
fragments of one type of XML document (SVG, for example) are embedded within
an XML document that follows a different schema (such as XHTML). The DOM
Working Group realized that Level 2 didn’t provide enough functionality to cover
all of the instances that come up when working with documents that can contain two
or more different types of XML fragments.

DOM Level 3 tries to remedy this by allowing DOM implementations to make
specialized interfaces available when needed by an application to perform special
processing on certain parts of the document that contain specialized node types.
The solution takes the form of the new getInterface() method on the
DOMImplementation interface, which has this IDL definition:

DOMImplementation getInterface(DOMString feature);

An application can request a specialized DOM implementation by passing in the
name of the feature that it wishes to support. If there is no alternative implementation
that supports the requested feature, the return value is null.

Abstract Schema Support
DOM Level 3 includes the new Abstract Schemas module, which is intended to
provide support for working with Document Type Definition (DTD) files, XML
Schemas, and other nonspecific schema types. The DOM Working Group realized
early on that such support would one day be a necessity in the DOM. In fact, the 1997
DOM requirements document explicitly refers to the ability “to determine the presence
of a DTD” and “to add, remove, and change declarations in the underlying DTD (if
available).” However, the spec notes that this work was intentionally delayed beyond
DOM Level 2 because XML Schemas were still being defined, and they hoped that
any support provided for working with DTDs would be extended to work with XML
Schemas as well as any other abstract schemas that came along later.

The Abstract Schema module formalizes the API provided to address these
issues, as well as some other specific use cases, such as changing the abstract schema
associated with a document, validating the document against the schema, and loading
a schema independently from a document. Implementations can provide read-only
access to abstract schemas, editing access to schemas, and document-editing access to
schemas. Each of these capabilities can be discovered by a DOM application by calling
the hasFeature() method on the DOMImplementation interface with the
“AS-READ,” “AS-WRITE,” and “AS-DOC” feature strings.

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 0 7

3 0 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The Abstract Schema module is included in the module for Load and Save
because the two are intended to interact closely with each other. For example, the
Load and Save module will have to read and write any abstract schema associated
with a particular document and may be required to load an abstract schema
independent of a document.

The subject of abstract schemas is beyond the scope of this section. If you would
like to read more about them, see the Abstract Schema module working draft of the
DOM Level 3 for more information. The current working draft can be found at
www.w3.org/TR/DOM-Level-3-ASLS.

Error Handling
The DOM introduces new error-handling interfaces in Level 3: DOMError,
DOMErrorHandler, and DOMLocator. The DOMError interface describes an error
condition that occurred while processing a document or performing some other
document operation (such as validating the document). It has the following IDL
definition:

interface DOMError {

const unsigned short SEVERITY_WARNING = 0;

const unsigned short SEVERITY_ERROR = 1;

const unsigned short SEVERITY_FATAL_ERROR = 2;

readonly attribute unsigned short severity;

readonly attribute DOMString message;

readonly attribute Object relatedException;

readonly attribute DOMLocator location;

}

The three severity constants describe the severity of an error, indicating whether it
is a warning, an error, or a fatal error. Warnings and some errors may be ignorable or
recoverable; fatal errors always terminate the attempted operation. These values are
reported in the severity field.

The message field contains an implementation-supplied error message that can be
displayed to the user describing the error. If the platform on which the implementation
is running supports exceptions, the relatedException field will contain the platform-
specific exception for the error, if there is any. The location field represents a
DOMLocator object that describes the location of the error in the document.

The DOMLocator interface has the following IDL definition:

interface DOMLocator {

readonly attribute long lineNumber;

readonly attribute long columnNumber;

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 0 9

readonly attribute long offset;

readonly attribute Node errorNode;

readonly attribute DOMString uri;

}

When an error occurs and a DOMError object is available to describe it, the
location property will contain a DOMLocator object that describes the location of
the error. The lineNumber and columnNumber fields indicate the line and column in
the text where the error was caught. If this information is not available, these fields
will be −1. The offset field represents the byte or character offset into the input source
where the error occurred, or −1 if this information is not available. The errorNode
field indicates the node where the error occurred or null if no node is available.
The uri field will be the URI where the error occurred or null if there is no URI
available.

Errors are reported by means of a DOMErrorHandler, which represents a callback
interface that an implementation will call when reporting errors. The DOMErrorHandler
has the following interface:

interface DOMErrorHandler {

boolean handleError(in DOMError error);

}

The handleError() method is called when the DOM implementation needs to
report an error. The method returns a boolean value indicating what the implementation
should do after reporting the error. If the method returns true, the implementation should
try to continue as if the error didn’t happen (the spec notes that this may not always
be possible). If the method returns false, the implementation should stop any further
processing (again, the spec notes that this may not always be possible).

Loading and Saving DOM Documents
It may be hard to believe, but Levels 1 and 2 of the DOM specification did not
provide a way to load or save documents to or from a DOM implementation. This
was intentionally left as an implementation-dependent function, and several DOM
implementers such as Macromedia, Apache, Microsoft, and Netscape went ahead
and defined their own interfaces and methods for loading and saving documents.
The result, of course, was that not all DOM implementations used the same methods
for document persistence. For example, loading a document in Macromedia’s
Dreamweaver DOM implementation is done via a method called openDocument(),
whereas in Microsoft Internet Explorer the method is named load().

The DOM Level 3 Load and Save module aims to standardize the methods used
for performing these types of document persistence functions. The good news here is
that the Load and Save module interfaces and methods are modeled on many of the
already existing load and save implementations in use today in DOM applications
such as Apache Xerces, Microsoft Internet Explorer 6, and Netscape Navigator 6,
so learning the new interfaces should be a relatively straightforward task.

The Document Load and Save Module defines nine new major interfaces and a
few smaller, ancillary interfaces for use when saving and loading XML documents.
Table 11-2 lists the major interfaces and describes each.

3 1 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Load and Save Interface Description
DOMImplementationLS Provides the factory methods that are necessary for

creating the objects used for loading and saving
documents.

DOMBuilder An interface to an object that is capable of building
a DOM document tree by reading data from a
variety of input sources, such as files, URLs, and
strings of text.

DOMInputSource Specifies a single source of data from which the
application can read data.

DOMEntityResolver Provides an interface through which applications
can redirect references to any external entities.

DOMBuilderFilter Allows an application to examine document nodes
as they are built when the document is being parsed.

DOMWriter Provides an API for writing a document out to an
XML file.

DOMWriterFilter Allows an application to examine document nodes
as they are being written to the output. The
application can use this interface to affect which
nodes get written out.

DocumentLS Extends the base Document interface with methods
that allow loading and saving of an existing
document’s contents.

ParserErrorEvent Specifies the type of error event that is fired if
an error is encountered when the document is
being parsed.

Table 11-2 The DOM Level 3 Load and Save Module Interfaces

After reading through Table 11-2, you’re probably asking the obvious question:
why are there so many interfaces for loading and saving documents? The simple
answer is that loading and saving DOM documents is not always as easy as it may
seem at first blush. Consider, for example, the seemingly simple task of loading an
XML file and creating a document tree from it.

Recall from Chapter 6 the process of using the Xerces parser to load a document
from a file; that is the closest analogy to the way the new DOM interfaces work. First,
there has to be a way to get the necessary interfaces for creating the objects to do the
loading and parsing of the data. This is usually done by a “factory method” that creates
an object that represents the input source. Once the proper factory method has been
called to create the object that reads or writes the data source, an object needs to be
created that parses the input and builds a document. Because the document source
might refer to an external entity, such as a DTD or other Abstract Schema, an object
will be needed to find the schema and cause it to be loaded. If an error occurs during
the loading or parsing process, there needs to be an error handler object to report the
errors. Suddenly, simply loading a document doesn’t seem so simple!

In fact, most of the DOM Level 3 Load and Save interfaces are provided
to serve the same functions that the ones in standalone DOM implementations
such as Xerces already provide. For example, the DOMBuilder, DOMInputSource,
DOMEntityResolver, and ParserErrorEvent interfaces in Level 3 are formalized
versions of the Xerces API’s DOMParser, InputSource, EntityResolver, and
ErrorHandler interfaces. Implementations that allow creating and loading
documents from scratch will need to provide these interfaces to their applications.

Fortunately, there are many common instances in which loading and saving XML
is, in fact, a simple process. Because most browser-centric DOM applications already
have a document created and available to them, along with a built-in way of reading
data from a URL, they will usually only need to deal with the simplest of the interfaces,
DocumentLS. The DocumentLS interface provides four methods for loading and
saving content from an existing document. According to the W3C specification, it is
expected that each DOM implementation will have a way of using a binding-specific
casting mechanism to cast the regular Document interface to a DocumentLS interface
to use these methods. It has the following IDL specification:

interface DocumentLS {

attribute boolean async; //raises DOMException on setting

void abort();

boolean load(in DOMString URI);

boolean loadXML(in DOMString source);

DOMString saveXML(in Node snode) raises (DOMException);

}

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 1 1

The async attribute specifies whether the document is loaded synchronously or
asynchronously. When a document is loaded asynchronously, it means that control
of the application is given back to the calling function before the load() function
actually completes loading the document. In this case, your application should define
an event handler for the document’s load event, which will fire when it has finished
loading. On the other hand, when loading a document synchronously, everything
stops until the load() function finishes loading the document and returns control
to the caller. This attribute defaults to false, meaning that documents are loaded
synchronously by default.

The abort() method immediately interrupts the loading process of the document
(if it is being loaded asynchronously). The document is cleared of any partial parsing
result that may have taken place up to the point where abort() was called and all the
document content is discarded.

The load() method will replace all of the current contents of the document with
the result of parsing the given URI. If the value of the async attribute is false, the
function immediately returns control to the caller. The document will fire off a
load event when it has finished loading, or a ParserErrorEvent if the load fails. If
this method is called on a document that is already loading, that loading process is
aborted and a new loading process is started with the new URI.

The loadXML() method replaces the contents of the document with the parsed
result of the XML string given by the source argument. This method is always called
synchronously, and it always returns a UTF-16 encoded DOMString. The source
argument must contain a legal, fully formed XML document. The method returns
true if the source string was successfully parsed, or false if there was a parsing error.

The saveXML() method saves the contents of the document to a DOMString. If
the snode argument is null, the whole document is serialized. If snode represents
a node in the document, the given node is written to the string.

Both Internet Explorer 6 and Netscape Navigator 6 currently support the load()
method; however, only IE supports the async attribute (the W3C Level 3 spec says
that supporting asynchronous loading is optional). Interestingly, even though the
async attribute is not present in Netscape 6, the application loads documents
asynchronously by default. IE6 also supports the loadXML() method for creating a
document from a string of XML code. Neither application supports the saveXML()
method, though IE6 does have an xml property on the document object that contains
a string of XML code that represents the entire document contents.

Even though Netscape 6 doesn’t support the loadXML() or saveXML()
methods, you can emulate them with some JavaScript code. To implement the
saveXML() method, you need to create an XMLSerializer instance and then
use it to serialize the document to a string, as in the following code.

3 1 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 1 3

// emulate the saveXML method

Document.prototype.saveXML = doc__saveXML;

function doc__saveXML()

{

var s = new XMLSerializer();

var xmlStr = s.serializeToString(this);

return xmlStr;

}

The loadXML() method can be implemented by using a DOMParser object to
parse a document source from a string:

// emulate the loadXML() method

Document.prototype.loadXML = doc__loadXML;

function doc__loadXML(xmlStr)

{

var domParser = new DOMParser();

var newDoc = domParser.parseFromString(xmlStr,"text/xml");

// the current document needs to have all of its nodes replaced

while (this.childNodes.length > 0)

this.removeChild(this.firstChild);

// now all of the new child nodes need to be appended

// to the existing document.

this.appendChild(this.importNode(newDoc.documentElement, true));

}

You can find more information on this subject on Microsoft’s MSDN website
(http://msdn.microsoft.com) or on the Mozilla site (www.mozilla.org).

Attaching Application-Specific Data to Nodes
Developers often find it useful to be able to attach application-defined data to a
document’s nodes. For example, some legacy applications may use an XML file
to represent certain types of internal data that are computationally expensive to
construct. To avoid the performance hit, they can build the complex data structure
once and then attach it to the corresponding node in the DOM document tree. In
addition, developers might choose to use this functionality as an alternative to
subclassing the DOM interfaces in their particular implementation because it might
just be easier to define a data structure and attach it to a node rather than write a new
node subclass.

Levels 1 and 2 of the DOM did not provide an official way to do this, though
certain DOM implementations did allow applications to take arbitrary data pointers

and store them within a specially provided “slot” on the Node interface, such as the
Apache Xerces implementation. The Xerces DOM implementation provides two
Node interface methods for working with data objects attached to document nodes:
setUserData() and getUserData(), which (for Xerces-C) have the following
function definitions:

// Xerces-J setUserData and getUserData interfaces

public void setUserData(java.lang.Object data);

public java.lang.Object getUserData();

// Xerces-C setUserData and getUserData interfaces

void setUserData(void *p);

void *getUserData(void);

These methods allow a Xerces-based application to attach an arbitrary block of
data to a given node in a document (see the Xerces section of Chapter 6). The Xerces
implementation does have a few drawbacks, however. First, when that node is
cloned, the Xerces parser explicitly does not clone the data along with it, preferring
instead to leave this as something the application should take care of. Second, there
can be only one data block attached to a node at any given time, so if an application
wants to attach more than one piece of data to the node, it has to come up with its
own management scheme to get and set the correct data blocks. For example, in the
Java version of Xerces, the application might choose to store a Vector object on
the node and then use it to manage an array of other data objects.

DOM Level 3 seeks to remedy these shortcomings and officially add the
setUserData() and getUserData() methods to the Node interface.
The new methods have the following proposed IDL definition:

DOMUserData setUserData(in DOMString key, in DOMUserData data,

in UserDataHandler handler);

DOMUserData getUserData(in DOMString key);

The DOM solution differs from the Xerces-style solution in two important ways.
First, it allows more than one piece of user-defined data to be associated with a node
by using a key-value approach. Each piece of data is associated with a key, which is
used to identify a particular piece of data. When the data is stored in the node via the
setUserData() method, the key is used as an indexing mechanism to locate it,
much the same way that associative arrays work in JavaScript. When the data needs
to be retrieved, the key is supplied to the getUserData() method and the data
object is returned. Figure 11-1 illustrates how the data is stored within the node.

3 1 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The second major difference is in the behavior of nodes that are cloned or imported
into another document. Whereas Xerces does not perform any special processing on
nodes that are cloned, deleted, renamed, or imported, the DOM solution allows an
application to supply a UserDataHandler that will be called when one of these
operations is performed on a node. The UserDataHandler has the following IDL
definition:

interface UserDataHandler {

const unsigned short NODE_CLONED = 1;

const unsigned short NODE_IMPORTED = 2;

const unsigned short NODE_DELETED = 3;

const unsigned short NODE_RENAMED = 4;

void handle(in unsigned short operation,

in DOMString key,

in DOMObject data,

in Node src,

in Node dst);

}

The first four constants represent the four Node operations that a UserDataHandler
can be informed about. There is a single method, handle(), which is called
when one of the operations is being performed on the node. The first argument,

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 1 5

Figure 11-1 Key-value method of storing data in a node

operation, indicates the type of operation being performed. The key argument
specifies the key for the handler that is being called. The data argument contains the
data object for which the handler is being called. The src argument specifies the node
that the data object is attached to (when the node is being deleted, this argument is
null). If a new node is being created as part of the operation (that is, it is being
cloned), then the dst argument specifies the newly created node. The handle()
method has no return value.

Determining Relative Document Positions of Nodes
One of the new features that DOM Level 3 will allow applications to take advantage
of is the concept of a node’s “tree position” relative to other nodes in the document.
In Chapter 4 we discussed the concept of document order—that is, the order in
which nodes appear in the document when they are parsed. The Level 3 DOM API
provides a new method on the Node interface called compareTreePosition(),
which takes a node as an argument. The return value of the function is the position in
the document tree of the given node relative to the node that this method was called
on (also referred to as the “reference” node). The possible return values from
compareTreePosition() are as follows:

Return Value Meaning
TREE_POSITION_ANCESTOR The given node is an ancestor of the

reference node.

TREE_POSITION_DESCENDANT The given node is a descendant of the
reference node.

TREE_POSITION_DISCONNECTED The two nodes do not have a relationship to
each other. This occurs when the two nodes
are in separate documents.

TREE_POSITION_EQUIVALENT The two nodes have an equivalent position. This
is the case when comparing two attribute nodes
that are on the same element.

TREE_POSITION_FOLLOWING The given node follows the reference node in the
document.

TREE_POSITION_PRECEDING The given node comes before the reference node
in the document.

TREE_POSITION_SAME_NODE The two nodes are the same. When two nodes are
the same, they also have an equivalent position.

As an example, consider the document tree in Figure 11-2.

3 1 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 1 7

This document can be described by the following XML code:

<NodeA>

<NodeB>

<NodeD/>

<NodeE/>

</NodeB>

<NodeC>

<NodeF/>

<NodeG/>

</NodeC>

</NodeA>

Suppose you currently had a reference to node F and wanted to know what the
relative position of node B was to it. The call to compareTreePosition()
would be written as

var nodeF, nodeB; // contain references to nodes F and B

// nodeF is the reference node, nodeB is the given node

nodeF.compareTreePosition(nodeB);

In this example, the return value of compareTreePosition() would be
TREE_POSITION_PRECEDING because node B precedes node F (the reference
node, in this case) in the document order. If the same function were called where the
given node was nodeC, the return value would be TREE_POSITION_ANCESTOR.

Figure 11-2 Sample document illustrating tree positions of nodes

NOTE

The functionality provided by the compareTreePosition() method can also
be achieved by using the DOM Level 1 methods and properties. This method is provided as
a convenience for applications.

XPath Support
Recently, a lot of activity has been occurring around XPath, which is a W3C
Recommendation describing how to declaratively address nodes in an XML file
using path-like syntax. XPath is finding its way into several W3C specifications,
such as XSLT, XPointer, XML Query, and so on. DOM Level 3’s XPath module
introduces new interfaces for allowing XPath to be used in DOM applications.
Although it is beyond the scope of this book to provide a full section on XPath, it is
worth a brief discussion here to note the functionality available to developers today
in certain DOM implementations and to provide an introduction for the support that
will be available down the road in the DOM. The full XPath specification is available
on the W3C website at www.w3.org/TR/1999/REC-xpath-19991116.html.

What Is XPath?
Basically, XPath is a way of addressing parts of an XML document. In fact, the name
“XPath” is derived from the way that the language uses non-XML path structures to
navigate through the structure of an XML document, similar to the way paths are used
in regular URLs in Internet addresses.

For example, consider the following sample XML document, which models what
a typical book structure might look like:

<book title="My Book">

<toc />

<chapter name="Chapter 1">

<section>text</section>

<section>text</section>

</chapter>

<chapter name="Chapter 2">

<section>text</section>

<section>text</section>

</chapter>

<chapter name="Chapter 3">

<section>text</section>

<section>text</section>

</chapter>

3 1 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

<appendix name="Appendix A">

<section>text</section>

<section>text</section>

</appendix>

</book>

XPath provides a way of describing the location of each node or a set of nodes
using a path-like syntax. Technically, these are called “expressions,” which, when
evaluated, represent a node set, a boolean value, a number, or a string. One of the
most important types of expressions is called the LocationPath, which is the syntax
used to describe a node’s location in a document relative to another node. Because
XML documents are organized as hierarchical tree structures, much like the directories
on a computer’s file system, you can think of LocationPaths the same way you would
think of a directory path to a file on a computer system. For example, just as a directory
path can be absolute, starting from the very top of the hard drive, an XPath expression
can start from the root of the document tree. On a computer system, directory paths
can also be evaluated as “relative” paths—that is, relative to the current “working
directory” on the computer. Likewise, XPath expressions are also evaluated relative
to what is called the “context node” in the XML document.

There is a major difference between directory paths and XPaths, however. In
a computer’s file system, all of the files in a particular directory must have unique
names. This is not the case in XML, where the child nodes of a given node may all
have the same name—witness the book example just shown, where the book node
has several chapter child nodes. As a result, XPath must be able to represent not just
one node per path, but multiple nodes. In this sense, XPath expressions can be
thought of as patterns in addition to just regular paths.

A basic XPath LocationPath describes a path through the XML hierarchy and uses
forward-slash characters to separate the names of the elements. So, to refer to the
chapter elements in our book example, the following path could be used:

book/chapter

Note that this LocationPath matches all of the chapter elements in the book, not
just the first one that it encounters. In addition to specifying actual element names
within the path expression, XPath allows wildcard characters such as the * to be
used in place of element names. So, a LocationPath specified as

book/*/section

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 1 9

3 2 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

would refer to all the section elements in the document, as long as they are
grandchildren of the book node, though they do not have to be child nodes of a
chapter element. In this case, all of the section elements in our example document
would be returned as a result, both in the chapter elements and the appendix element.

XPath can also be used to take the values of attributes into account when evaluating
the path expression. For example, to get chapter elements that have a particular title,
you can use a LocationPath expression such as

book/chapter[@name="Chapter 1"]

Using the @ character indicates the name of an attribute of the given element. The
preceding example retrieves the chapter elements that have a name attribute whose
value is Chapter 1.

XPath also provides a core set of functions that can be used when selecting nodes
in a document. For example, the following XPath expression uses the position()
function to select the first chapter child node of the book node:

book/chapter[position()=1]

Of course, the full XPath language supports far more than can be shown here in
just a simple introduction. In addition to regular path specifiers and functions, XPath
supports comparison operators, branching, and filters. XPath is a very flexible way
of working with nodes in a document, and it can often be more convenient to address
nodes in a document using XPath than writing the corresponding application logic
using standard DOM methods. This helps explain its growing popularity and support
in real-world DOM implementations.

XPath Support in DOM Level 3
The DOM XPath Module specifies six interfaces for working with XPath expressions
within DOM documents. Table 11-3 lists the interfaces and their purpose.

The main interfaces used in evaluating XPath expressions are the XPathEvaluator,
XPathExpression, and XPathResult. To evaluate a DOM XPath expression relative
to a given node, applications use the XPathEvaluator interface to create a parsed and
compiled XPathExpression either by calling createExpression() or by calling
the evaluate() method directly to evaluate an XPath expression contained within
a DOMString. According to the DOM spec, the XPathEvaluator interface is expected
to be available on the same object that provides the Document interface for a given
implementation. The result of the expression is returned as an XPathResult.

The XPathEvaluator interface has the following IDL definition:

interface XPathEvaluator {

XPathExpression createExpression(in DOMString expression,

in XPathNSResolver resolver)

raises(XPathException, DOMException);

XPathNSResolver createNSResolver(in Node nodeResolver);

XPathResult evaluate(in DOMString expression,

in Node contextNode,

in XPathNSResolver resolver,

in unsigned short type,

in XPathResult result)

raises(XPathException, dom::DOMException);

};

The evaluate() method is used to directly evaluate XPath expressions given in
string form. The expression argument contains the XPath expression to be evaluated.
The contextNode argument represents the document node that will serve as the
context node with respect to which the expression will be evaluated. The resolver
argument translates any prefixes within the XPath expression into appropriate namespace
URIs (this argument can be specified as null if no namespaces are to be used). The
type argument allows the caller to specify the type of result desired. If possible,
the XPath result will be coerced into the specified type, which should be one of the

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 2 1

Interface Purpose
XpathException Defines new exception codes for exceptions raised when working

with XPath expressions.

XpathEvaluator Provides evaluation of XPath expressions.

XpathExpression Represents both parsed and resolved XPath expressions.

XPathNSResolver Resolves namespaces by permitting prefix strings to be bound to
namespaceURI strings.

XpathResult Represents the result of the evaluation of an XPath expression
when it has been evaluated within the context of a certain node.

XpathNamespace Because the DOM does not provide the necessary namespace nodes
that XPath requires, this interface is returned by the XPathResult
interface to represent such a namespace node. For more information,
see the DOM Level 3 XPath module specification.

Table 11-3 The DOM XPath Interfaces

type codes listed in the XPathResult interface. The result argument is provided so
that any previously returned XPathResult may be reused.

The createNSResolver()method uses the node in the given nodeResolver
argument to resolve namespaces by calling the lookupNamespacePrefix()
method on the node.

Sometimes, it is more convenient for performance reasons to compile an XPath
expression that will be reused within an application because the expression can be
compiled into a more efficient internal representation. In addition, any needed
namespace resolution can be done at this point. The createExpression()
method allows an application to create an XPathExpression object that represents
a compiled expression.

The XPathExpression interface has the following IDL definition:

interface XPathExpression {

XPathResult evaluate(in Node contextNode,

in unsigned short type,

in XPathResult result)

raises(XPathException, dom::DOMException);

};

The XPathExpression interface contains one method, evaluate(), which
performs the same function as the evaluate() method in the XPathEvaluator
interface.

The XPathResult interface represents the result of an evaluated XPath expression.
It has the following IDL definition:

interface XPathResult {

// XPathResultType

const unsigned short ANY_TYPE = 0;

const unsigned short NUMBER_TYPE = 1;

const unsigned short STRING_TYPE = 2;

const unsigned short BOOLEAN_TYPE = 3;

const unsigned short UNORDERED_NODE_ITERATOR_TYPE = 4;

const unsigned short ORDERED_NODE_ITERATOR_TYPE = 5;

const unsigned short UNORDERED_NODE_SNAPSHOT_TYPE = 6;

const unsigned short ORDERED_NODE_SNAPSHOT_TYPE = 7;

const unsigned short ANY_UNORDERED_NODE_TYPE = 8;

const unsigned short FIRST_ORDERED_NODE_TYPE = 9;

readonly attribute unsigned short resultType;

readonly attribute double numberValue;

3 2 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

// raises(XPathException) on retrieval

readonly attribute DOMString stringValue;

// raises(XPathException) on retrieval

readonly attribute boolean booleanValue;

// raises(XPathException) on retrieval

readonly attribute Node singleNodeValue;

// raises(XPathException) on retrieval

readonly attribute boolean invalidIteratorState;

readonly attribute unsigned long snapshotLength;

// raises(XPathException) on retrieval

Node iterateNext()

raises(XPathException, dom::DOMException);

Node snapshotItem(in unsigned long index)

raises(XPathException);

};

The first ten constant values represent the possible types of an XPathResult,
which can be accessed via the resultType property. Table 11-4 lists the possible
constant values along with the meaning of each.

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 2 3

Result Type Constant Meaning
ANY_TYPE Does not represent any specific type. This value will never

be returned by an evaluated expression; but if this type is
requested, the evaluation returns whatever type naturally
results from evaluation of the expression.

NUMBER_TYPE Returns a number result. Modifying the document doesn’t
invalidate the result, but reevaluating the expression might
not return the same number value.

STRING_TYPE Returns a string result. Modifying the document doesn’t
invalidate the result, but reevaluating the expression might
not return the same string value.

BOOLEAN_TYPE Returns a boolean result. Modifying the document doesn’t
invalidate the result, but reevaluating the expression might
not return the same boolean value.

UNORDERED_NODE_
ITERATOR_TYPE

Returns a node set that will be accessed iteratively using
the iterateNext() method. The nodes in the set may
not be in any particular order. Modifying the document will
invalidate the node set.

Table 11-4 XPath Result Codes and Meanings

3 2 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The numberValue property retrieves the value of the number type result.
If the result is not NUMBER_TYPE, a TYPE_ERR exception is raised. The
stringValue property returns the value of the string type result. This raises a
TYPE_ERR if the result is not STRING_TYPE. The booleanValue property
contains the value of the boolean type result. If the result is not BOOLEAN_TYPE,
a TYPE_ERR exception is raised. The singleNodeValue property contains the
value of a single node result. If the result is not a FIRST_ORDERED_NODE_TYPE
or ANY_UNORDERED_NODE_TYPE, a TYPE_ERR exception is raised.

The invalidIteratorState property is true if the node iterator has become
invalid due to the document being modified since the iterator was last returned. This will

Result Type Constant Meaning
ORDERED_NODE_
ITERATOR_TYPE

Returns a node set that will be accessed iteratively using the
iterateNext() method. The nodes in the set will be
ordered in document order. Modifying the document will
invalidate the node set.

UNORDERED_NODE_
SNAPSHOT_TYPE

Returns a node set that will be accessed as a snapshot list of
nodes using the snapshotItem() method. The nodes in
the set will be returned in no particular order. Modifying the
document will not necessarily invalidate the snapshot list,
but it does mean that reevaluating the expression might not
produce the same list, and any nodes already in the list may
have been removed, relocated, or altered.

ORDERED_NODE_
SNAPSHOT_TYPE

Returns a node set that will be accessed as a snapshot list of
nodes using the snapshotItem() method. The nodes in
the set will be returned in document order. Modifying the
document will not necessarily invalidate the snapshot list,
but it does mean that reevaluating the expression might not
produce the same list, and any nodes already in the list may
have been removed, relocated, or altered.

ANY_UNORDERED_
NODE_TYPE

Returns a node set that will be accessed as a single node value
using the singleNodeValue property. If the document is
modified, the node may no longer correspond to the current
document. If more than one node fits the expression, the
returned node may not be the first one in the document order.

FIRST_ORDERED_
NODE_TYPE

Returns a node set that will be accessed as a single node
value using the singleNodeValue property. If the
document is modified, the node may no longer correspond
to the current document. If more than one node fits the
expression, the returned node will be the first one in
the document order.

Table 11-4 XPath Result Codes and Meanings (continued)

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 2 5

only be relevant when the result type is UNORDERED_NODE_ITERATOR_TYPE or
ORDERED_NODE_ITERATOR_TYPE.

The snapshotLength property returns the number of nodes in the result snapshot.
This is only relevant when the result type is UNORDERED_NODE_SNAPSHOT_
TYPE or ORDERED_NODE_SNAPSHOT_TYPE.

The iterateNext() method returns the next node in the node iterator and
advances the iterator position to the next node. The method returns null if there
are no more nodes. This method will raise a TYPE_ERR exception if the result
type is not UNORDERED_NODE_ITERATOR_TYPE or ORDERED_NODE_
ITERATOR_TYPE. In addition, if the document has been modified since the result
was returned, an INVALID_STATE_ERR exception will be raised.

The snapshotItem() method returns the item in the snapshot list specified by
the given index. If the index is larger than the number of nodes in the index, null is
returned. Snapshots do not automatically become invalid like the iterator when the
document is modified, but the nodes in the snapshot may no longer correspond to
the document. If the result type is not UNORDERED_NODE_SNAPSHOT_TYPE
or ORDERED_NODE_SNAPSHOT_TYPE, a TYPE_ERR exception will be raised
when this method is called.

XPath Support in Today’s Applications
Microsoft Internet Explorer 6 supports XPath operations in XML documents
and XML data islands through the use of the selectSingleNode() and
selectNodes() methods, which are proprietary Microsoft DOM extension
methods available on the Node interface. To evaluate an expression relative to a
particular node (the context node), your application calls one of these methods with
an appropriate XPath expression. The selectNodes() method returns a NodeList
containing the nodes that match the given XPath expression. It has the following
IDL definition:

NodeList selectNodes(in DOMString queryStr);

The selectSingleNode() method returns a single document node that
matches the given XPath expression. If more than one node match the given pattern,
then only the first matching node is returned. It has the following IDL definition:

Node selectSingleNode(in DOMString queryStr);

For example, assuming you have a web page with an embedded XML data island
named myXMLDataIsland, the following script will return a NodeList containing all
of the child chapter elements of the root book element in the data island.

3 2 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

// assume an embedded XML data island named "myXMLDataIsland"

var xmlDoc = document.getElementById('myXMLDataIsland');

var myNodeList = xmlDoc.selectNodes('book/chapter');

The Apache Xerces Java version has a minimal XPath implementation. The C++
version of Xerces does not directly support XPath, though there are third-party
solutions that do, such as Pathan from DecisionSoft. In addition, the Apache Xalan
implementation does support XPath because it is needed to support XSLT (discussed
in the upcoming section). The Apache Xalan package can be downloaded at http://
xml.apache.org, and the Pathan package is available at http://software.decisionsoft.com.

Currently, Netscape 6 does not support programmatic XPath expression
evaluation from within DOM applications, though it does support XPath notation
when using XSLT transforms.

Other Potential Future DOM Enhancements
In this section, we’ll take a look at some technologies and concepts that haven’t
officially found their way into the DOM yet but may be considered for inclusion at
some point. Specifically, we’ll examine the XSL Transformation language (XSLT)
and the concepts behind transaction-oriented processing.

XSLT Support in the DOM
Extensible Style Language Transformation (XSLT) is fast becoming a rapidly accepted
standard for transforming XML documents into other types of documents. It is being
used primarily as a bridge language to take data-centric XML documents and give
them a visible appearance, such as HTML. XSLT is a W3C Recommendation
currently in version 1.0, which was adopted on November 16, 1999 (and is available
online at www.w3.org/TR/xslt). In this section, we’ll take a look at what XSLT is,
how it works, and the level of XSLT support available in today’s applications. Note
that this isn’t intended to be a full introduction to XSLT. I encourage you to check
out the XSLT specification on the W3C website and other good tutorials available
on the web. The purpose here is to provide a brief introduction to XSLT concepts
and examine some implementations at a high level.

What Is XSLT?
In a nutshell, XSLT provides the ability to take a source XML document tree, apply
a transformation to it, and produce a result tree. The result document can be of
almost any type: text, XML, HTML, and so on. Figure 11-3 illustrates this process.

Why would you want to do this? Increasingly, XML is being used as a format for
data storage and representation, and there is a clear need for being able to take XML
data and present it in a human-consumable form. Often, in fact, it is desirable to be
able to present the same data in several forms, such as HTML for web pages, WML
for mobile phones, PDF for print versions, CSV for importing into spreadsheets, and
so on. This is essentially what XSLT allows developers to do: create transformations
that can produce multiple versions of output for a single input document.

How XSLT Works
XSLT works by applying a series of template rules to the source document tree to
produce the result document tree. Each template rule consists of two parts: a pattern,
which is used to determine which portions of the source tree are affected, and a template,
which is used to produce a portion of the output tree.

The rules are described in a construct called an XML style sheet using XSL
(Extensible Style Language). XSL describes how the data contained within an XML
document should be presented—whether the presentation medium is a web page,
handheld device, piece of paper, and so on.

The style sheet is then associated with the XML document, typically by using the
<?xml-stylesheet?> processing instruction defined in the W3C’s XML style
sheet specification. To see how it all works, let’s look at a simple example.

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 2 7

Figure 11-3 XSLT transformations

Consider the following simple XML document:

<?xml version="1.0"?>

<hello>Hello there, world!</hello>

Suppose you had the task of taking this XML document and transforming it into
an HTML document that looked like this:

<HTML>

<HEAD>

<TITLE>Transformed Document</TITLE>

</HEAD>

<BODY>

<H1>Hello there, world!</H1>

</BODY>

</HTML>

In other words, you want the text contained in the <hello> tag to be displayed
inside an <H1> tag in the resulting HTML document. To perform this in XSLT
requires a couple of steps.

First, you need to define the XSL style sheet that will be responsible for generating
the output. This means that an HTML document must be created with some kind of
“holding slot” where the <hello> tag’s text will go. If you name the style sheet
“hello.xsl,” in XSL parlance, the style sheet would look like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<HTML>

<HEAD>

<TITLE>Transformed Document</TITLE>

</HEAD>

<BODY>

<H1><xsl:value-of select="hello"/></H1>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

The <xsl:stylesheet> tag indicates that this file defines an XSL style sheet.
The <xsl:template> tag defines an XSLT template. Its match attribute is an
XPath expression indicating what part of the source document this template will

3 2 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

match up to. The value of / means that the template will be used to match the root
element of the source document.

Contained within the template is some literal HTML code that will be included in
the output document, along with the <xsl:value-of> tag. This XSLT tag means
“take the value of the tag that matches my select attribute and insert it here.” The
select attribute uses an XPath expression to determine which node in the source
document will supply the value. Here, the node is the <hello> tag.

Now, you need to associate the XSL style sheet file “hello.xsl” with the source
XML document. This is done by using the <?xml-stylesheet?> instruction,
which looks like this:

<?xml-stylesheet type="text/xsl" href="hello.xsl"?>

The type attribute indicates to the processor that this is an XSL document, and
the href attribute contains the relative path to the XSL file. In your finished XML
document, it all comes together like this:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="hello.xsl"?>

<hello>Hello there, world!</hello>

When run through an XSLT processor, the resulting HTML file contains the value
of the <hello> tag where the <xsl:value-of> tag was in the XSL file:

<HTML>

<HEAD>

<TITLE>Transformed Document</TITLE>

</HEAD>

<BODY>

<H1>Hello there, world!</H1>

</BODY>

</HTML>

Of course, this example shows just a fraction of the capability provided by XSLT.
For further reading, check out the XSLT specification on the W3C website. There
are also several good XSLT tutorials on the web; a recent search on the term “XSLT
Tutorial” yielded several good starting points.

XSLT Support in Today’s Browsers
Both Netscape 6 and Internet Explorer 6 support XSLT, though of the two only IE6
supports programmatically triggering a transformation from within a web page.

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 2 9

3 3 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

That is, IE6 lets you dynamically load and transform XML documents using XSL
style sheets from within a script in an HTML page.

Internet Explorer supports the transformNode() and
transformNodeToObject() methods on the Node interface, which perform
XSLT transformations on XML data. The transformNode() method actually
performs the transformation in-place, and will replace the target node with the
transformed contents of the XML data. The transformNodeToObject()
method performs the same kind of transformation but stores the results in a supplied
XML document object. These two methods have the following IDL definitions:

DOMString transformNode(in Node stylesheet);

void transformNodeToObject(in Node stylesheet, in Node target);

Using these methods from within a web page requires that you create a new XML
document for the source XML file and source XSL file, load the two documents, and
then perform the transformation. Listing 11-1 demonstrates this process using sample
HTML, XML, and XSL documents.

Listing 11-1 Transforming an XML Document Within an HTML Page

// File 1: helloworld.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="helloworld.xsl"?>

<hello>

Hello there, world!

</hello>

// file 2: helloworld.xsl

<?xml version="1.0"?>

<xsl:stylesheet

xmlns:xsl=http://www.w3.org/1999/XSL/Transform

version="1.0">

<xsl:template match="/">

<HTML>

<HEAD>

<TITLE></TITLE>

</HEAD>

<BODY>

<H1><xsl:value-of select="hello"/></H1>

</BODY>

</HTML>

</xsl:template>

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 3 1

</xsl:stylesheet>

// file 3: helloworld.html

<HTML>

<HEAD>

<TITLE>Programmatic Transform Sample</TITLE>

<SCRIPT>

function transformContent ()

{

var srcXML = new ActiveXObject("Msxml2.DOMDocument.4.0");

srcXML.async=false;

srcXML.load("helloworld.xml");

var xsltTree= new ActiveXObject("Msxml2.DOMDocument.4.0");

xsltTree.async = false;

xsltTree.load("helloworld.xsl");

var resNode = document.getElementById("theResult");

resNode.innerHTML = srcXML.transformNode(xsltTree);

}

</SCRIPT>

</HEAD>

<BODY onload = "transformContent()" >

<div id="theResult"></div>

</BODY>

</HTML>

This example code loads two documents, the source XML and the XSL style sheet,
and then calls the transformNode() method to transform the DIV element in the
document’s body into the resulting HTML code.

In this example, you’re doing something a little differently than you’ve
done before. You’re creating new XML and XSL documents by calling the
ActiveXObject constructor function to return empty documents, and then loading
them using the documents’ load functions. For this example to work, you must have
the MSXML4 parser installed on your computer, which can be downloaded from
Microsoft’s developer site (http://msdn.microsoft.com). The MSXML4 package
contains all the documentation necessary for creating new XML documents in IE
using the supplied API.

The transformNode() method returns a string as its result, so you can store
it directly into the innerHTML property of the DIV element to replace its content
with the transformed HTML code. Figure 11-4 shows the web page that results from
the transformation.

3 3 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

XSLT in Other Applications
Among standalone implementations, Apache’s Xalan package is a free, open-source
implementation of the XSLT specification, and it includes its own copy of the
Xerces parser for manipulating XML documents. It also includes its own support
for using XSLT on Xerces DOM structures and an XPath implementation used for
selecting nodes to transform in the source document. Microsoft’s MSXML4 parser
also supports XSLT transformations.

There are also several XSLT authoring applications that support XSLT development,
such as Xselerator from MarrowSoft; XMLSpy from Altova, Inc.; and XMetaL from
SoftQuad. All of these applications are available in downloadable demonstration
form from their respective company’s web site.

Transaction-Oriented Processing
Transaction-based processing is a term used to describe a type of processing where
several small actions can be grouped together to form a single large, logical action.
For example, consider the common task of doing a search-and-replace operation on
a document in a word processor. When performing one search-and-replace operation
at a time, each change to the document can be considered an individual action. If you
were to stop making replacements and start using the application’s “undo” command,
each change you had made to the document would be individually undone.

Figure 11-4 The transformed web page

However, if you were to use the “change all” function, in which the program
automatically searches the entire document and replaces all of the matches that it
finds, each one of those changes would no longer be considered one individual
change. If you were to use the undo command after a “change all” operation, all of
the individual changes that were made to the document’s content would be undone
all at once. In this case, all of the singular changes would be grouped together into
one transaction.

Another benefit of transactions is that they lock out other changes while the
underlying data is being modified. If an application allows concurrent processes access
to a shared piece of data, such as a document, and each of those processes tries to modify
the document at the same time, the results can quickly become chaotic unless some
type of control mechanism is employed. Transactions can prevent this from happening
by ensuring that only one pending transaction can be active at any one time.

NOTE

The Level 3 DOM does not yet address transactions, although it is an idea that might find its way
into future versions of the specification.

Though it is beyond the scope of this section to provide an in-depth discussion
of how transactions work and all their nuances, it is worth a brief exploration to see
how transactions might be applied in the DOM.

Wrapping a Series of Edits as a Transaction
To create a single transaction, it is necessary to indicate the beginning and end of the
range of edits that will comprise the transaction. This can be done in several ways,
but one way is to use explicit function calls to wrap each transaction. The following
JavaScript pseudocode illustrates one example of what this might look like:

DOMImplementation impl = document.implementation;

DOMTransaction tID = impl.beginTransaction();

// perform some edits to the document

var text = document.createTextNode("Some Text");

document.documentElement.appendChild(text);

// end the transaction

impl.endTransaction(tID);

This code explicitly wraps the beginning and ending of a transaction with calls to
two made-up functions called beginTransaction() and endTransaction().

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 3 3

3 3 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

The beginTransaction() call also returns an identifier token that can be used to
identify the transaction.

In addition, it may be useful for an application to be able to discover whether a
transaction is currently taking place. This can be accomplished by calling a method
like isInsideTransaction(), which would return the identifier of the current
transaction ID or −1 if no transaction is underway:

var tID = impl.isInsideTransaction();

Rolling Back a Transaction
One of the nice things about transactions is that once completed, they can be recorded
and “rolled back,” or undone on an individual basis. For example, an application may
keep a list of completed transactions on a document and expose this to the user when
implementing a “multiple undo” feature, or a history-like list of past operations that
show all of the operations on a document. To roll a transaction back, the developer
might use a function like rollBackTransaction(), which returns true if the
transaction was able to be rolled back:

var bResult = rollBackTransaction(tID);

Conclusion
In this chapter, we examined the changes proposed in the latest working drafts of the
DOM Level 3 modules and investigated some other trends and technologies that are
affecting the development of the DOM, though they are not yet part of the official
standard.

We started off by examining the latest proposed changes in DOM Level 3, beginning
with the additions and changes to the existing interfaces. We looked at the new data
types and methods added to the DOM to support such concepts as testing nodes for
sameness and equality, extracting text content from nodes, attaching application-specific
data to document nodes, and determining the positions of nodes in the document tree
relative to other nodes.

Next, we investigated some entirely new interfaces proposed for the latest
specification to support document loading and saving, error handling, working with
and editing DTDs and other abstract schemas, and working with XPath expressions—
all very useful functionality that has been noticeably absent from prior DOM levels.

Finally, we investigated XSLT and transaction-oriented processing and how they
might be used in future DOM implementations. In the case of XSLT, some DOM
implementers have already started adding support without waiting for the W3C
Working Group, such as Microsoft and Apache.

When DOM Level 3 is released, it will substantially increase the DOM’s
capabilities and types of operations available to developers. Level 3 will finally
address many of the limitations of earlier DOM levels and will allow developers
to create even richer, standardized applications than are possible today.

C h a p t e r 1 1 : F u t u r e D i r e c t i o n s f o r t h e D O M 3 3 5

This page intentionally left blank.

APPENDIX

DOM Core Level 1 API
Reference

337
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This appendix lists the methods and properties of the interfaces that make
up the Core Level 1 DOM API. Each interface entry lists the constants
(if any) for that interface, along with the properties and methods that the

interface provides.

DOM Interface Inheritance Tree
Figure A-1 shows the inheritance relationships among the various Core DOM
Level 1 interfaces.

Interface Attr
The Attr interface represents an attribute node on an Element node. Typically, the
permissible values for an attribute are specified by a Document Type Definition
(DTD) file. Attributes inherit from the Node interface, but they are not actually
children of the Element node that they are attached to, and they are not considered
part of the Document tree by the DOM. For this reason, their previousSibling,
nextSibling, and parentNode properties are always null.

3 3 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Figure A-1 DOM inheritance diagram

TE
AM
FL
Y

Team-Fly®

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 3 9

Attribute values are determined as follows: if a value has been explicitly assigned
to an attribute, it has that value. Otherwise, if the DTD specifies a default value for
the attribute, that default value is the attribute’s effective value. If neither condition
is true, the attribute has no value and does not exist on the element until explicitly
created.

Properties

name (read-only)
Type: DOMString
Description: Represents the name of the attribute.
Exceptions: None

specified (read-only)
Type: Boolean
Description: Indicates whether the attribute was explicitly assigned a value in the
source document.
Exceptions: None

value
Type: DOMString
Description: When retrieved, returns the value of the attribute as a string. When set,
a new Text node is created for the attribute containing the unparsed text content of
the string.
Exceptions: None

Methods
No methods other than those inherited from the Node interface.

Interface CDATA
CDATA sections are used to escape blocks of text containing characters that would
otherwise be processed by the XML parser as markup. CDATA sections cannot be
nested, and they do not have any child nodes. According to the DOM specification,
the primary purpose of a CDATA section is for including material such as XML
fragments without needing to escape all the delimiters.

Properties
No properties other than those inherited from the Text interface.

Methods
No methods other than those inherited from the Text interface.

Interface CharacterData
The CharacterData interface provides methods and properties for working with
character data in the DOM. The CharacterData interface is provided only as an
interface from which others inherit, such as Text. There are never any objects in
the DOM document tree that correspond directly to CharacterData.

The CharacterData interface provides properties for directly accessing the text
content of a node and its length, and it provides methods for appending, inserting,
replacing, deleting, and extracting substrings of text.

Properties

data
Type: DOMString
Description: Indicates whether the attribute was explicitly assigned a value in the
source document.
Exceptions:

NO_MODIFICATION_ALLOWED_ERR Raised when set if the node is
read-only

DOMSTRING_SIZE_ERR Raised when retrieving if it would return more
characters than fit in a DOMString variable on the implementation platform

length (read-only)
Type: unsigned long
Description: Indicates whether the attribute was explicitly assigned a value in the
source document.
Exceptions: None

3 4 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 4 1

Methods

substringData
Syntax:
DOMString substringData(in unsigned long offset,

in unsigned long count)
raises(DOMException);

offset: Offset at which to start the substring
count: Number of characters to extract
Description: Extracts a substring of data from the node.
Returns: The requested substring
Exceptions:

INDEX_SIZE_ERR Raised if the specified offset is negative or greater than the
number of characters in data, or if the specified count is negative

DOMSTRING_SIZE_ERR Raised if the specified range of text does not fit into
a DOMString

appendData
Syntax:
void appendData(in DOMString arg)
raises(DOMException);

arg: The string to append to the node data
Description: Append the given string to the end of the character data of the node.
Returns: Nothing
Exceptions:

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only

deleteData
Syntax:
void deleteData(in unsigned long offset,in unsigned long count)
raises(DOMException);

offset: Offset at which to delete characters
count: Number of characters to delete

3 4 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Description: Deletes characters from the node’s text data.
Returns: Nothing
Exceptions:

INDEX_SIZE_ERR Raised if the specified offset is negative or greater than the
number of characters in data or if the specified count is negative

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only

insertData
Syntax:
void insertData(in unsigned long offset,in DOMString arg)
raises(DOMException);

offset: Offset at which to insert the new string
arg: The new string to be inserted
Description: Inserts the given string into the node’s text data at the given offset.
Returns: Nothing
Exceptions:

INDEX_SIZE_ERR Raised if the specified offset is negative or greater than the
number of characters in data

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only

replaceData
Syntax:
void replaceData(in unsigned long offset, in unsigned long count,

in DOMString arg)
raises(DOMException);

offset: Offset at which to begin replacing characters
count: Number of characters to replace
arg: String to replace characters with
Returns: Nothing
Description: Replaces the characters starting at the given character offset with the
given string.
Exceptions:

INDEX_SIZE_ERR Raised if the specified offset is negative or greater than the
number of characters in data, or if the specified count is negative

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only

Interface Comment
This represents the content of a comment, that is, all the characters between the
starting <!-- and ending -->.

Properties
See CharacterData interface.

Methods
See CharacterData interface.

Interface Document
The Document interface represents the entire XML or HTML document and is
conceptually the “root” of the document. The Document interface also provides the
factory methods for creating new document nodes because they cannot exist outside
of the context of a document.

Properties

docType (read-only)
Type: DocumentType
Description: Represents the Document Type Declaration (DTD) for this document.
When the document has no DTD, this will return null. Note that DOM Level 1
does not support editing DTDs, thus the docType cannot be altered.
Exceptions: None

documentElement (read-only)
Type: Node
Description: Refers to first child node of the document root. In HTML documents,
this corresponds to the <HTML> tag.
Exceptions: None

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 4 3

3 4 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

implementation (read-only)
Type: DOMImplementation
Description: The corresponding DOMImplementation that handles this document.
DOM applications are not limited to using documents from a single implementation.
Exceptions: None

Methods

createElement
Syntax:
Element createElement(in DOMString tagName)
raises (DOMException);

tagName: The type of element to create
Description: Creates an Element node of the specified type. Note that in XML, this
is case sensitive. In HTML, the string provided may be in any case, but will be mapped
to uppercase by the application.
Returns: The newly created Element node
Exceptions:

INVALID_CHARACTER_ERR Raised if the specified name contains an
invalid character

createDocumentFragment
Syntax:
DocumentFragment createDocumentFragment();

Description: Creates an empty DocumentFragment object to which child nodes can
then be appended.
Exceptions: None

createTextNode
Syntax:
Text createTextNode(in DOMString data);

data: The content for the newly created Text node

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 4 5

Description: Creates a new Text node whose data is the given string.
Returns: The newly created Text node
Exceptions: None

createComment
Syntax:
Comment createComment(in DOMString data);

data: The content for the newly created Comment node
Description: Creates a Comment node whose data is the given string.
Returns: The new Comment node
Exceptions: None

createCDATASection
Syntax:
CDATASection createCDATASection(in DOMString data);
raises (DOMException);

data: The content for the newly created CDATASection node
Description: Creates a CDATASection node whose data is the given string.
Returns: The new CDATASection node
Exceptions:

NOT_SUPPORTED_ERR Raised if this document does not support
CDATASection nodes (for example, the document is an HTML document)

createProcessingInstruction
Syntax:
ProcessingInstruction createProcessingInstruction(in DOMString target,

in DOMString data)
raises(DOMException);

target: The target for the ProcessingInstruction
data: The data for the node
Description: Creates a ProcessingInstruction node given the specified name and
data strings.

3 4 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Returns: The new ProcessingInstruction node
Exceptions:

INVALID_CHARACTER_ERR Raised if an invalid character is specified
NOT_SUPPORTED_ERR Raised if this document does not support

CDATASection nodes (for example, the document is an HTML document)

createAttribute
Syntax:
Attr createAttribute(in DOMString name)
raises (DOMException);

name: The name of the attribute node to create
Description: Creates a new Attr node of the given name.
Returns: The new attribute node
Exceptions:

INVALID_CHARACTER_ERR Raised if the specified name contains an
invalid character

createEntityReference
Syntax:
EntityReference createEntityReference(in DOMString name)
raises(DOMException);

name: The name of the Entity to create a reference to
Description: Creates a new EntityReference node.
Returns: The new EntityReference node
Exceptions:

INVALID_CHARACTER_ERR Raised if the specified name contains an
invalid character

NOT_SUPPORTED_ERR Raised if this document does not support
CDATASection nodes (for example, the document is an HTML document)

getElementsByTagName
Syntax:
NodeList getElementsByTagName(in DOMString tagName);

tagName: The tag name of the elements to match. The special tagName * will
match all elements in the tree.

Description: Returns a NodeList containing all the Element nodes with a given tag
name in the order in which they would be encountered in a preorder traversal of the
Document tree.
Returns: A NodeList containing the matching Element nodes
Exceptions: None

Interface DocumentFragment
The DocumentFragment interface was added as a lightweight way of extracting
a portion of a document tree and manipulating it without having to construct and
populate a whole new Document object because this might be an expensive operation
in some implementations. For this reason, the DocumentFragment inherits directly
from the Node interface.

There are several methods in the DOM API that take Nodes as arguments that
also allow DocumentFragments to be passed. Doing so operates on all of the child
nodes in the DocumentFragment (but not the DocumentFragment node itself).

DocumentFragments are not required to be well-formed XML documents
(although they do need to follow the rules imposed upon well-formed XML parsed
entities, which can have multiple top nodes). For example, a DocumentFragment
node may have a Comment node as its only child.

Properties
No properties other than those inherited from the Node interface.

Methods
No methods other than those inherited from the Node interface.

Interface DocumentType
The DocumentType interface in the DOM Level 1 Core provides an interface

to the list of entities that are defined for the document. DOM Level 1 defines these
properties to be read-only, recognizing that a future level of the DOM will specify
how to read and write these settings.

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 4 7

Properties

name (read-only)
Type: DOMString
Description: The name of DTD for this document. That is, the name immediately
following the DOCTYPE keyword.
Exceptions: None

entities (read-only)
Type: NamedNodeMap
Description: A NamedNodeMap containing the general entities, both external and
internal, declared in the DTD, with duplicates discarded. DOM Level 1 does not
provide a way to edit these entities.
Exceptions: None

notations (read-only)
Type: NamedNodeMap
Description: A NamedNodeMap containing the notations declared in the DTD, with
duplicates discarded. Every node in this map also implements the Notation interface.
DOM Level 1 does not provide a way to edit these notations.
Exceptions: None

Methods
No methods other than those inherited from the Node interface.

Interface DOMImplementation
The DOMImplementation interface is intended to provide methods that

are independent of any particular document instance. DOM Level 1 does not
specify a way of obtaining a DOMImplementation interface, leaving it as an
implementation-dependent operation. For example, in the browsers, you refer to
the DOMImplementation by using the implementation object on the document
interface (document.implementation).

3 4 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 4 9

Properties
No properties.

Methods

hasFeature
Syntax:
boolean hasFeature (in DOMString feature, in DOMString version)

raises(DOMException);

feature: The package name of the requested feature
version: The version number of the package name to test. If not specified, supporting
any version of the requested feature will cause the method to return true.
Description: Test if the DOM implementation implements a specific feature.
Returns: Returns true if the feature is implemented in the specified version,
false otherwise.
Exceptions: None

Interface DOMException
The DOMException interface is used by an implementation to report exceptions
raised in the process of working with a document. Some implementations do not
support exceptions, so the codes provided by the DOMException interface may
be reported using other standard error reporting mechanisms used natively by that
implementation.

Constants
const unsigned short INDEX_SIZE_ERR = 1;

const unsigned short DOMSTRING_SIZE_ERR = 2;

const unsigned short HIERARCHY_REQUEST_ERR = 3;

const unsigned short WRONG_DOCUMENT_ERR = 4;

const unsigned short INVALID_CHARACTER_ERR = 5;

const unsigned short NO_DATA_ALLOWED_ERR = 6;

const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;

const unsigned short NOT_FOUND_ERR = 8;

3 5 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

const unsigned short NOT_SUPPORTED_ERR = 9;

const unsigned short INUSE_ATTRIBUTE_ERR = 10;

Properties

code
Type: unsigned short
Description: Contains the exception code representing the exception.
Exceptions: None

Methods
No methods

Interface Element
Element nodes represent the majority of node types that a DOM application will
encounter in any given document. They correspond to what are commonly called
the tags in XML and HTML documents.

Properties

tagName (read-only)
Type: DOMString
Description: The tag name for this element. This is equivalent to the Node interface’s
nodeName.
Exceptions: None

Methods

getAttribute
Syntax:
DOMString getAttribute(in DOMString name);

name: Name of the attribute to retrieve

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 5 1

Description: Retrieves the value of the given attribute.
Returns: The string content of the requested attribute
Exceptions: None

getAttributeNode
Syntax:
Attr getAttributeNode(in DOMString name);

name: The name of the attribute to retrieve
Description: Retrieves the requested attribute as an Attr node. If there is no such
attribute, returns null.
Returns: An Attr node corresponding to the requested attribute, or null if there is
no attribute by the given name.
Exceptions: None

getElementsByTagName
Syntax:
NodeList getElementsByTagName(in DOMString name);

name: Tag name of the elements to match
Description: Returns a NodeList of all descendant elements with a given tag name,
in the order in which they would be encountered in a preorder traversal of the
Element subtree.
Returns: A NodeList containing the child element nodes matching the given name.
The special tagName * matches all elements.
Exceptions: None

normalize
Syntax:
void normalize();

Description: Collapses all of the adjacent Text nodes in the full depth of the subtree
under this Element into singular text nodes. This has the same effect as if the document
were saved and then reloaded.
Returns: Nothing
Exceptions: None

3 5 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

removeAttribute
Syntax:
void removeAttribute(in DOMString name)
raises(DOMException);

name: The name of the attribute to remove
Description: Removes an attribute by name. If the removed attribute has a default
value in the DTD it is immediately replaced.
Returns: Nothing
Exceptions:

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only

removeAttributeNode
Syntax:
Attr removeAttributeNode(in Attr oldAttr)
raises(DOMException);

Description: Removes the specified attribute.
Returns: The Attr node of the removed attribute
Exceptions:

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only
NOT_FOUND_ERR Raised if oldAttr is not an attribute of the element

setAttribute
Syntax:
void setAttribute(in DOMString name,in DOMString value)
raises(DOMException);

name: The name of the attribute to create or change
value: New value for the attribute
Description: Adds a new attribute. If an attribute with that name is already present
in the element, its value is changed to be that of the value parameter. Note that the
value is a simple string and is not parsed when it is set. Applications must escape
the appropriate markup characters when writing out the attribute.
Returns: Nothing

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 5 3

Exceptions:
INVALID_CHARACTER_ERR Raised if the specified name contains an

invalid character
NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only

setAttributeNode
Syntax:
Attr setAttributeNode(in Attr newAttr)
raises(DOMException);

Description: Adds a new attribute. If an attribute with that name is already present
in the element, it is replaced by the new one.
Returns: If the given attribute node replaces an existing one, the replaced node is
returned; otherwise null is returned.
Exceptions:

WRONG_DOCUMENT_ERR Raised if newAttr was created from a different
document than the one that created the element.

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only.
INUSE_ATTRIBUTE_ERR Raised if the given attribute node is already an

attribute of another Element object. The DOM user must explicitly clone Attr nodes
to reuse them in other elements.

Interface Entity
This interface represents an entity, either parsed or unparsed, in an XML document.
The nodeName attribute that is inherited from the Node interface contains the name
of the entity.

Properties

publicID (read-only)
Type: DOMString
Description: The public identifier associated with the entity, if specified. If the
public identifier was not specified, this is null.
Exceptions: None

3 5 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

systemID (read-only)
Type: DOMString
Description: The system identifier associated with the entity, if specified.
If the system identifier was not specified, this is null.
Exceptions: None

notationName (read-only)
Type: DOMString
Description: For unparsed entities, the name of the notation for the entity.
For parsed entities, this is null.
Exceptions: None

Methods
No methods other than those inherited from the Node interface.

Interface EntityReference
Represents an EntityReference node in the document.

Properties
No properties other than those inherited from the Node interface.

Methods
No methods other than those inherited from the Node interface.

Interface NamedNodeMap
The NamedNodeMap interface is used to represent collections of nodes that can be
accessed by name. NamedNodeMaps are not maintained in any particular order.

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 5 5

Properties

length (read-only)
Type: unsigned long
Description: The number of nodes in the map
Exceptions: None

Methods

getNamedItem
Syntax:
Node getNamedItem(in DOMString name);

name: Name of the node in the NamedNodeMap to return
Description: Retrieves a node in the map, given its name.
Returns: The requested node, or null if it does not exist in the map
Exceptions: None

setNamedItem
Syntax:
Node setNamedItem(in Node arg)
raises(DOMException);

arg: Name of the node to add to the NamedNodeMap
Description: Stores a node in the map using its nodeName. If another node by the
same name is already in the map, it is replaced by the new node.
Returns: If the new node replaces an existing node with the same name the previously
existing node is returned, otherwise null is returned.
Exceptions:

WRONG_DOCUMENT_ERR Raised if arg was created from a different
document than the one that created the NamedNodeMap.

NO_MODIFICATION_ALLOWED_ERR Raised if this NamedNodeMap is
read-only.

INUSE_ATTRIBUTE_ERR Raised if arg is an Attr that is already an attribute
of another Element object. The application must explicitly clone Attr nodes to reuse
them in other elements.

3 5 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

removeNamedItem
Syntax:
Node removeNamedItem(in DOMString name)
raises(DOMException);

name: Name of the node in the NamedNodeMap to remove
Description: Removes a node specified by name. If the removed node is an
Attr with a default value it is immediately replaced.
Returns: The node removed from the map or null if no node with such
a name exists
Exceptions:

NOT_FOUND_ERR Raised if there is no node with the given name in the map

item
Syntax:
Node item(in unsigned long index);

index: Index of the node in the NamedNodeMap to return
Description: Returns the node at the given index in the NamedNodeMap. Note that
even though NamedNodeMaps allow retrieval by index, this does not imply any
ordering of the nodes.
Returns: The node at the given index in the NamedNodeMap, or null if it is not
a valid index
Exceptions: None

Interface Node
The Node interface represents the primary, basic type of object present in DOM
documents. All of the specific node types such as Elements, Attrs, and so on
derive from the Node interface. However, even though the Node interface exposes
properties and methods for working with child nodes, not all node types support
children.

Constants
const unsigned short ELEMENT_NODE = 1;

const unsigned short ATTRIBUTE_NODE = 2;

const unsigned short TEXT_NODE = 3;

const unsigned short CDATA_SECTION_NODE = 4;

const unsigned short ENTITY_REFERENCE_NODE = 5;

const unsigned short ENTITY_NODE = 6;

const unsigned short PROCESSING_INSTRUCTION_NODE = 7;

const unsigned short COMMENT_NODE = 8;

const unsigned short DOCUMENT_NODE = 9;

const unsigned short DOCUMENT_TYPE_NODE = 10;

const unsigned short DOCUMENT_FRAGMENT_NODE = 11;

const unsigned short NOTATION_NODE = 12;

Properties

nodeName (read-only)
Type: DOMString
Description: The name of this particular node, depending on its type
Exceptions: None

nodeValue
Type: DOMString
Description: Value of the node, depending on its type
Exceptions:

NO_MODIFICATION_ALLOWED_ERR Raised when setting if the node is
read-only

DOMSTRING_SIZE_ERR Raised when retrieving if it would return more
characters than fit in a DOMString variable on the implementation platform

nodeType (read-only)
Type: unsigned short
Description: A code number representing the node type; see the Constants section
above for allowable values.
Exceptions: None

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 5 7

parentNode (read-only)
Type: Node
Description: The parent node of this node or null if it has no parent
Exceptions: None

childNodes (read-only)
Type: NodeList
Description: A NodeList containing all of the child nodes of this node. If the node
has no children, the NodeList is empty.
Exceptions: None

firstChild (read-only)
Type: Node
Description: The first child of this node. If there is no such node, this returns null.
Exceptions: None

lastChild (read-only)
Type: Node
Description: The last child of this node. If there is no such node, this returns null.
Exceptions: None

previousSibling (read-only)
Type: Node
Description: The node immediately preceding this node. If there is no such node,
this returns null.
Exceptions: None

nextSibling (read-only)
Type: Node
Description: The node immediately following this node. If there is no such node,
this returns null.
Exceptions: None

attributes (read-only)
Type: NamedNodeMap
Description: If this node is an Element node, this property represents a
NamedNodeMap containing the attributes of this node. Otherwise, it is null.

3 5 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

Exceptions: None

ownerDocument (read-only)
Type: Document
Description: The document that owns this node. This is also the Document object
that creates new nodes. If this node is itself a Document, this property is null.
Exceptions: None

Methods

appendChild
Syntax:

Node appendChild(in Node newChild)
raises(DOMException);

newChild: The node to be appended
Description: Appends the given new child node to this node. If the given node
already exists elsewhere in the document, it is first removed from its current position.
Returns: The appended node
Exceptions:

HIERARCHY_REQUEST_ERR Raised if this node is of a type that does not
allow children of the type of the newChild node, or if the node to append is one
of this node’s ancestors

WRONG_DOCUMENT_ERR Raised if newChildwas created from a different
document than the one that created this node

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only

cloneNode
Syntax:

Node cloneNode(in boolean deep);

deep: True if this should perform a deep clone
Description: Performs a copy of this node. If the deep argument is true, all child
nodes are also copied.
Returns: The new copy of the node
Exceptions: None

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 5 9

3 6 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

hasChildNodes
Syntax:
boolean hasChildNodes();

Description: Returns true if this node has any child nodes.
Returns: True if this node has child nodes, false otherwise
Exceptions: None

insertBefore
Syntax:
Node insertBefore(in Node newChild,in Node refChild)
raises(DOMException);

newChild: The node to be inserted
refChild: The node to insert the new node before
Description: Inserts the newChild node before the existing child node represented
by refChild. If refChild is null, the new node is inserted at the end of the
list of children.
Returns: The newly inserted node
Exceptions:

HIERARCHY_REQUEST_ERR Raised if this node is of a type that does not
allow children of the type of the newChild node, or if the node to insert is one of this
node’s ancestors

WRONG_DOCUMENT_ERR Raised if newChildwas created from a different
document than the one that created this node

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only
NOT_FOUND_ERR Raised if refChild is not a child of this node

removeChild
Syntax:
Node removeChild(in Node oldChild)
raises(DOMException);

oldChild: The child node to be removed

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 6 1

Description: Removes the given child node from the list of children.
Returns: The removed node
Exceptions:

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only
NOT_FOUND_ERR Raised if oldChild is not a child of this node

replaceChild
Syntax:
Node replaceChild(in Node newChild,in Node oldChild)
raises(DOMException);

newChild: The new node to insert
oldChild: The node to be replaced
Description: Replaces the given child node oldChild with the new node
newChild.
Returns: The old, replaced child node
Exceptions:

HIERARCHY_REQUEST_ERR Raised if this node is of a type that does not
allow children of the type of the newChild node, or it the node to put in is one of
this node’s ancestors

WRONG_DOCUMENT_ERR Raised if newChildwas created from a different
document than the one that created this node

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only
NOT_FOUND_ERR Raised if oldChild is not a child of this node

Interface NodeList
The NodeList interface provides a way of accessing an ordered collection of nodes,
without defining or constraining how this collection is implemented.

Properties

length (read-only)
Type: unsigned long
Description: The number of nodes in the list
Exceptions: None

3 6 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Methods

item
Syntax:
Node item(in unsigned long index);

index: Index of the node in the NodeList to return
Description: Retrieves the node in the collection at the given index.
Returns: The node at the given index in the NodeList, or null of the
given index is out of range
Exceptions: None

Interface Notation
This interface represents a notation declared in the DTD. A notation either declares
by name the format of an unparsed entity, or is used for formal declaration of
Processing Instruction targets. The nodeName attribute inherited from the Node
interface is set to the declared name of the notation. The DOM Level 1 does not
support editing Notation nodes, so all properties therefore read-only. Notation nodes
do not have parent nodes.

Properties

publicID
Type: DOMString
Description: The public identifier of this notation. If the public identifier was not
specified, this is null.
Exceptions: None

systemID
Type: DOMString
Description: The system identifier of this notation. If the system identifier was not
specified, this is null.
Exceptions: None

A p p e n d i x : D O M C o r e L e v e l 1 A P I R e f e r e n c e 3 6 3

Methods
No methods other than those inherited from the Node interface.

Interface ProcessingInstruction
Represents a processing instruction, which is used in XML as a way to keep
processor-specific information stored in the document content.

Properties

data
Type: DOMString
Description: Represents the content of this processing instruction. This is from the
first non-whitespace character after the target to the character immediately preceding
the ?>.
Exceptions:

NO_MODIFICATION_ALLOWED_ERR Raised if the ProcessingInstruction
node is read-only

target (read-only)
Type: DOMString
Description: The target of this processing instruction. XML defines this as being the
first token following the markup that begins the processing instruction.
Exceptions: None

Methods
The ProcessingInstruction interface has no methods other than those inherited from
the Node interface.

Interface Text
The Text interface represents the textual content of an Element or Attr node. If there
is no markup inside an element’s content, the text is contained in a single object

implementing the Text interface that is the only child of the element. If there is
markup, it is parsed into a list of elements and Text nodes that form the list of
children of the element.

Properties
See CharacterData interface.

Methods

splitText
Syntax:
Text splitText(in unsigned long offset) raises(DOMException);

offset: Character offset at which to split the text content of the node
Description: Breaks this Text node into two Text nodes at the specified offset,
keeping both in the tree as siblings. This node then only contains all the content up
to the offset point. A new Text node, which is inserted as the next sibling of this
node, contains all the content at and after the offset point.
Returns: The newly created Text node
Exceptions:

INDEX_SIZE_ERR Raised if the specified offset is negative or greater than the
number of characters in data

NO_MODIFICATION_ALLOWED_ERR Raised if this node is read-only

3 6 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

365

Index

Symbols
 entity, 237

A
<A> tags

automatic table of contents, 220
bookmark list, 212
pop-up menus, 248–249

abort() method, 312
abstract schemas, 12, 307–308
acceptNode() method, 71–72
addClickHandler() method, 245
addEventListener() method

defined, 119
event handling, 122, 124
in-place list editing, 244

addNewItem() method, 239–240, 242, 245
addNodesToList() method, 99
addTOCNode() method, 220–221
adoptNode() method, 306
alert() function, 179
algorithms, 87–100

content-based, 93–99
node traversal, 88–91
position-based, 91–93

Apache, 332. See also Xerces parser
API documentation

DOM Level 1. see DOM Level 1
Dreamweaver. see Dreamweaver
MSXML4 parser. see MSXML4 parser
Xerces. see Xerces parser

appendChild() method
adding nodes, 57–58
defined, 30
reference guide, 359

appendData() method
overview of, 42
reference guide for, 341

applications
Dreamweaver. see Dreamweaver

MSXML4 parser. see MSXML4 parser
non-browser, 134–135
standalone vs. embedded, 135
Xerces. see Xerces

ASSERT() function, 171–179
defining, 171–173
when not to use, 176–177
when to use, 173–176
writing for useful tasks, 177–179

attachEvent() method, 244
Attr interface

overview of, 40–41
reference guide for, 338–339

attributes
DOM conventions for, 13
finding nodes by values of, 97–98

attributes property
for each node type, 29
overview of, 358–359

automatic document navigation. See navigation,
automatic

B
backgroundColor property, 226
basic node traversal algorithms, 88–91
bookmarks, on-the-fly, 207–215

building bookmark list, 212–213
code for, 207–210
inserting bookmark list, 213–214
responding to user’s bookmark, 214–215
setting up, 210–211
user interface for, 211–212

booleanValue property, XPathResult interface, 324
breadth-first node traversal algorithm, 89–90
browsers

creating/modifying page elements, 110–116
DOM-related quirks of, 129–130
DOM support for, 102–104
event flow and, 117–118
event handling and, 121–126

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

3 6 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

Event interface and, 120–121
event listeners and, 126–127
event phases and, 120
Events module and, 116–117
EventTarget/EventListener interfaces and,

118–119
examining structure/content of pages, 106–119
Internet Explorer, methods, 128–129
Internet Explorer, properties, 127–128
obtaining document references, 105–106

bubbling events, 118, 120
buffer, document transcoding and, 149–150
buildBookmark() function, 210–215
buildBookmarkRef() function, 213
buildNamedAnchor() function, 212
buildTOC() function, 216, 218

C
C++

ASSERT() function and, 171–179
debugging, 170
DOM Level 3 data types and, 304
Xerces and, 136, 139–141

calculateBill() function, 295–297
calcStockData() function, 274
cancelable property, Event interface, 121
cancelEdit() function, 245
Cascading Style Sheets (CSS), pop-up menus, 247, 248
CDATA interface, 339–340
CDATASection interface, 44
CharacterData interface, 41–43, 340–342
child tags, 5
childNodes property

defined, 29
DOM tree structure with, 21
for node types, 24
reference guide for, 358

clearTrace() function, 181
click events, placeholders, 225–226
client-side data processing. See data processing,

client-side
clone() method, 269
cloneNode() method

cloning existing nodes, 64–65
Node interface, 30–31, 359–360
userData field data pointers and, 151

CloseDumpDocument() function, 198
CoCreateInstance() method, 154
code property, DOMException interface, 350
CoInitialize() method, 154
color picker interface, 231–238

code controlling, 233–236
HTML code, 232–233
overview of, 231–232

responding to user events, 237–238
setting up, 236–237

Command extensions, Dreamweaver
examining document content, 166–167
overview of, 160–162

Comment interface
defined, 43
reference guide for, 343

Comment nodes, 54–55
commitChange() handler, 245
common ancestor nodes, DOM trees, 21–22
compareTreeNode() method, 304
compareTreePosition() method, 316–318
conformance, 10, 13
constants

DOMException interface, 349–350
Node interface, 357

contains() method, 129
containsNode() method

building pop-up menus, 253
determining if nodes contain other nodes, 94–95
finding nodes with, 98

content-based algorithms, 93–99
defined, 88
determining if nodes contain other nodes, 93–95
finding nodes with, 97–99
retrieving relative nodes, 95–97

conventions, DOM, 12–14
Core interfaces, 24–43

Attr, 40–41
CharacterData, 41–43
Comment, 43
Document, 34–37
DocumentFragment, 37
DOMExceptions and, 25–26
DOMImplementation, 33–34
Element, 37–40
NamedNodeMap, 32–33
Node, 26–33
NodeList, 31–32
Text, 43

Core interfaces, Extended, 44–47
CDATASection, 44
DocumentType, 44–45
Entity, 46
EntityReference, 46
Notation, 45–46
ProcessingInstruction, 46–47

Core module
DOM Level 1, 10–11
DOM Level 2, 11–12

create() methods, 112–116
createAttribute() method

overview of, 36
reference guide for, 346

createAttributeNS() method, 36
createCDATASection() method

overview of, 36
reference guide for, 345

createColorCell() function, 237
createColorTable() function, 236
createComment() method

overview of, 36
reference guide for, 345

createDocument() method
Dreamweaver and, 162–163
Netscape Navigator data islands and, 281–282
overview of, 33–34
Xerces and, 143

createDocumentFragment() method
overview of, 35–36
reference guide for, 344

createDocumentType() method, 34
createElement() method

overview of, 35
reference guide for, 344

createElementNS() method, 36
createEntityReference method

overview of, 36
reference guide for, 346

createExpression() method, 320
CreateNewNode() method, 158–159
createNode() method, 158
createNodeIterator() method, 74
createNSResolver() method, 320–322
createProcessingInstruction() method

overview of, 36
reference guide for, 345–346

createTextNode() method
defined, 36
reference guide for, 344–345

CSS (Cascading Style Sheets), 11, 247, 248
currentTarget property, Event interface, 121

D
data-bound controls, IE6, 278–280
data islands, XML

IE6 and, 276–280
Netscape Navigator and, 281–282
overview of, 275–276

data processing, client-side
DOM development and, 8–9
example of, 283–299
overview of, 256–257
post-processing in, 271–275
sorting lists, 257–263

sorting tables, 263–270
working with embedded XML, 275–282

data property
CharacterData interface, 42, 340
ProcessingInstruction interface, 47, 363

data types, DOM
basic, 18–20
Level 3, 303–304

dataFld property, data-bound controls, 280
debugging

ASSERT() function and, 171–179
DOMDumper. see DOMDumper
importance of skill in, 170–171
TraceConsole. see TraceConsole

deleteData() method
overview of, 42
reference guide for, 341–342

deleteItem() function, 245
depth-first traversal algorithm

determining if nodes contain other nodes, 94
overview of, 89

detach() method, 74, 76
DHTML (Dynamic HTML)

history of, 8–9
limitations of, 230, 238

dispatchEvent() method, 119
DIV element, pop-up menus, 247–253
doc directory, Xerces, 138
docType property

overview of, 35
reference guide for, 343

Document interface
DOM Level 3 additions to, 305–306
overview of, 34–37
reference guide for, 343–347

document navigation. See navigation, automatic;
traversals

Document node, 53–54
document structure

Attr interface, 40–41
CDATASection interface, 44
CharacterData interface, 41–43
Comment interface, 43
data types, 18–20
Document interface, 34–37
DocumentFragment interface, 37
DocumentType interface, 44–45
DOMException interface, 25–26
DOMImplementation interface, 33–34
Element interface, 37–40
Entity interface, 46
EntityReference interface, 46

I n d e x 3 6 7

NamedNodeMap interface, 32–33
Node interface, 26–33
node types, 22–24
NodeList interface, 31–32
Notation interface, 45–46
ProcessingInstruction interface, 46–47
Text interface, 43
tree structure, 20–22

Document Type Definition (DTD) files, 307–308
documentElement property, Document interface

overview of, 35
reference guide for, 343

DocumentFragment interface
overview of, 37
reference guide for, 347

DocumentLS interface, 311–312
documents. See also document structure

defined, 6
loading, 12, 309–313
MSXML4 parser and, 154
order, 315–316
saving, 12, 309–313
serializing, 157–158
subtree traversal. see traversals

DocumentType interface
DOM Level 3 additions to, 305
overview of, 44–45
reference guide for, 347–348

doIt() function, Dreamweaver, 163
DOM (Document Object Model)

conventions used in, 12–14
future directions, 302–303
history of, 8–9
levels of, 9–12
misconceptions about, 14
overview of, 4–6
philosophy of, 6–8
standalone vs. embedded, 135
transaction-oriented processing, 332–334
XSLT support, 326–332

DOM Level 1
Attr interface, 338–339
CDATA interface, 339–340
CharacterData interface, 340–342
Comment interface, 343
Document interface, 343–347
DocumentFragment interface, 347
DocumentType interface, 347–348
DOMException interface, 349–350
DOMImplementation interface, 348–349
Element interface, 350–353
Entity interface, 353–354
EntityReference interface, 354

features, 302
NamedNodeMap interface, 354–356
namespaces, 51
Node interface, 356–361
NodeList interface, 361–362
Notation interface, 362–363
overview of, 10–11
ProcessingInstruction interface, 363
Text interface, 363–364

DOM Level 2
Attr interface, 41
DOMImplementation interface, 33
features of, 302
namespaces, 51–52
overview of, 11–12

DOM Level 3
abstract schema, 307–308
attaching application-specific data, 313–316
determining document positions of nodes,

316–318
development of, 302–303
error handling, 308–309
general changes, 303–307
loading and saving documents, 309–313
overview of, 12
working draft publications, 302
XPath support, 318–326

DOM Working Group
design philosophy of, 7
history of, 8
IDL and, 12–14
Level 3 working draft publications, 302

DOMDumper, 192–200
code, 195–198
output, 193–195
using, 198–200

doMenu() function, 248, 251
DOMError interface, DOM Level 3, 308
DOMErrorHandler interface, DOM Level 3, 308
DOMException interface

overview of, 19–20
reference guide for, 349–350
table, 25–26

DOMImplementation interface
overview of, 33–34
reference guide for, 348–349

DOMLocator interface, DOM Level 3, 308–309
DOMObject type, DOM Level 3, 303–304
doMouseOut() method, 252–253
DOMStrings

overview of, 18–19
using, 148
Xerces-C and, 141

3 6 8 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TE
AM
FL
Y

Team-Fly®

I n d e x 3 6 9

DOMTimeStamp type, 19
DOMUserData type, 303–304
Dreamweaver, 159–167

built-in selection methods, 164
DOM support for, 159–160
information on, 167
loading documents in, 309
overview of, 160–162
using, 162–167
where to get, 159

DTD (Document Type Definition) files, 307–308
Dump() function, 196–198
DumpDOM() function, 196
Dynamic HTML (DHTML)

history of, 8–9
limitations of, 230, 238

dynamic user interfaces
building, 230–231
creating color pickers, 231–238
creating in-place list editing, 238–246
implementing pop-up menus, 246–253
Joe’s Cafe Menu example, 295–299

E
editListItem() function, 244
Element interface

node properties and, 54
overview of, 37–40
reference guide for, 350–353

embedded XML, 275–282
entities property

overview of, 45
reference guide for, 348

Entity interface
overview of, 46
reference guide for, 353–354

EntityReference interface
overview of, 46
reference guide for, 354

equals() method, 141
error handling, 308–309
evaluate() method

XPathEvaluator interface, 320–322
XPathExpression interface, 322–323

Event Bubbling phase, 120, 123–125
Event Capture phase, 120
event flow, 117–118
Event interface, 120–121
EventListener interface, 118–119
eventPhase property, 121
events, 12

Events module, 116–127
DOM applications and, 121–126
event flow, 117–118
Event interface, 120–121
event listeners, 126–127
event phases, 120
EventTarget/EventListener interfaces, 118–119
overview, 116–117

EventTarget interface, 118–119
exceptions

DOMExceptions, 19–20, 25–26
NodeFilter code and, 73

ExitInstance() method, 143
expandEntityReferences property, 74, 80
eXtensible Markup Language. See XML (eXtensible

Markup Language)
Extensible Style Language (XSL), 326–329
external data islands

defined, 277
in Internet Explorer, 278
in Netscape Navigator, 281–282

F
factory methods, 62–64, 311
fgTransService, 149–150
filter property, 74, 80
firstChild() method, 80, 81
firstChild property

overview of, 29
reference guide for, 358

flattened approach, inheritance approach vs., 7–8
<FORM> tags, 211

G
generateMenuContent() function, 292–295
getAttribute() method

advantages of, 110
building bookmark list, 142
Element interface, 39, 350–351
using in Dreamweaver, 166

getAttributeNode() method
overview of, 39
reference guide for, 351

getAttributeNodeNS() method, 40
getAttributeNS() method, 39
getContaining ParaNode() method, 226–227
getDocument() method, 146
getDocumentDOM() method

creating document, 163
examining document, 165–166

3 7 0 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

getElementByID() method
bookmarks, 214
client-side sorting, 260, 268
Document interface, 37
in-place list editing, 244
modifying document nodes with, 111
pop-up menus, 251
post-processing, 275

getElementsByAttributeValue() method, 98
getElementsByID() method

examining page structure, 107
examining single nodes, 108

getElementsByName() method, 107
getElementsByTagName() method

client-side list sorting, 261
Document interface, 36, 346–347
Dreamweaver support of, 165
Element interface, 39, 351
examining page structure, 107
inserting bookmark list, 214
obtaining node list, 108–110

getElementsByTagNameNS() method, 40
getFirstChildOfType() method, 95–97
getInterface() method, 307
getLastChildOfType() method, 95–97
getNamedItem() method

overview of, 32
reference guide for, 355

getNextSiblingByType() method, 96
getNodeDescription() method, 187
getParentLITag() method

in-place list editing, 244
menu example, 297

getPreviousSiblingByType() method, 96
getUserData() method

attaching specific data to nodes, 314
DOM Level 3, 304

Go button, 211
grove, defined, 20

H
handle() method, 315–316
handleClick() function, 225–226
handleEvent() method

DOMErrorHandler interface, 309
EventListener interface, 119

hasAttributeNS() method, 40
hasAttributes() method

Element interface, 39
Node interface, 31

hasChildNodes() method
overview of, 30
reference guide for, 360

hasFeature() method
defined, 33
DOM Level 3 and, 307–308
reference guide for, 349

highlightVegetarian() method, 297–298
hoverColor() method, 238
HTML (HyperText Markup Language)

color picker page, 232–233
DOM Level 1 and, 10–11
in-place list editing page, 239
insertHTML() method, 164
menu example, 283–285, 287–295
pop-up menus page, 247–248

I
IDL (interface definition language)

Attr interface, 40–41
CDATASection interface, 43
CharacterData interface, 41–42
Comment interface, 43
defined, 12–14
Document interface, 34–35
DocumentFragment interface, 37
DocumentLS interface, 311–312
DocumentType interface, 44–45
DOMObject type, 303
DOMUserData type, 304
Element interface, 38–39
Entity interface, 46
EntityReference interface, 46
Event interface, 120–121
EventTarget interface, 118
getInterface() method, 307
insertBefore() method, 57
NamedNodeMap interface, 32
Node interface, 27–28
NodeFilters, 71
NodeIterators, 74
NodeList interface, 32
Notation interface, 45
ProcessingInstruction interface, 47
removeChild() method, 58
replaceChild() method, 59
setUserData(), getUserData() methods, 314
Text interface, 43
TreeWalkers, 79–80
UserDataHandler, 315
XPathExpression, 322
XPathResult interface, 322–323

IDOM, defined, 136
IE6 (Internet Explorer 6)

click events in, 226
DOM-related quirks, 130

I n d e x 3 7 1

DOM support for, 103
DOMDumper output, 193–195
dynamic table scripts, 115
event handler installation, 225
Events interface and, 117
loading and saving in, 312
loading DOM documents, 309
menu example generated with, 287–291
methods, 128–129
pop-up menu display, 251–252
properties, 127–128
XML data islands, 276–280
XPath support for, 325
XSLT support for, 329–331

implementation property
overview of, 35
reference guide for, 344

importNode() method
importing nodes from other documents, 65–66
overview of, 36

inheritance approach, flattened approach vs., 7–8
initEvent() method, 121
initialization

automatic table of contents, 218
menu example, 291–292
MSXML4 parser, 154
Xerces parser, 142–143

Initialize() method
menu example, 292
Xerces parser, 142–143

InitInstance() method, 142
initListEditor() function, 239–240, 244
initPlaceholders() function, 224–225
inline data islands

defined, 277
in Internet Explorer, 277–278
in Netscape Navigator, 281

innerHTML property
building bookmark list, 212
building TOC destination, 220
creating Dreamweaver content, 163–164
in-place list editing, 245
inserting bookmark list, 214
Internet Explorer and, 127

INPUT element, 244
InputSource classes, Xerces, 144–146
insertBefore() method

adding nodes, 57
DOM Level 3 changes to, 306
overview of, 30
reference guide for, 360
swapping nodes, 60–61

insertBookmarkList() function, 213

insertData() method
overview of, 42
reference guide for, 342

insertHTML() method, 164
insertText() method, 164
interface definition language. See IDL (interface

definition language)
internalSubset property, 45
Internet Explorer 6. See IE6 (Internet Explorer 6)
invalidIteratorState property, 324–325
isEqualNode() method, 304–305
isSameNode() method, 304
isSupported() method, 31
item() method

NamedNodeMap interface, 32–33, 356
NodeList interface, 31–32

itemClick() method, 244
iterateNext() method, 325
iteration, MSXML, 156
IXMLDOM, defined, 153

J
Java

debugging and, 170
DOM Level 3 data types and, 304
for Xerces API, 136, 139–141

JavaScript
debugging and, 170
TraceConsole and, 179

Joe’s Cafe Menu example, 283–299
menu HTML, 287–295
menu page, 283–285
menu XML code, 285–287
user interaction, 295–299

jumpToBookMark() function, 212, 214

L
lastChild() method, 80
lastChild property

overview of, 29
reference guide for, 358

leaf nodes, 21
length property

CharacterData interface, 42, 340
NamedNodeMap interface, 32
NodeList interface, 31

levels, DOM, 9–12
 tags

in-place list editing, 244–245
list sorting, 261–263
table sorting, 268

library, Xerces
initializing and terminating parser, 142–143
overview of, 138
parsing document files, 144–146

list editing, in-place, 238–246
functions within code, 244–245
HTML code for, 239
limitations of, 246
script for, 240–243

listener argument
handling events with, 122
overview of, 119

lists
sorting, 257–263
XML as HTML select, 276

Load and Save Module
Abstract Schemas module and, 308
overview of, 310–313

load() method
DocumentLS interface, 312
MSXML and, 156–157
Netscape Navigator and, 282

loading DOM documents, 12, 309–313
loadXML() method

DocumentLS interface, 312
MSXML, 156–157

localName property, 30
logical views

vs. physical views, 69–70
TreeWalker and, 82

M
Macromedia Dreamweaver. See Dreamweaver
Math.round() function, 275
MemBufInputSource, 146–147
memory buffer parsing, 146–147
menuItemStyle, 248
menuItemStyle:hover, 248–249
menuItemStyleOver, 248
methods

Dreamweaver, 159–160
Internet Explorer, 128–129

methods, API reference for
Attr interface, 339
CDATA interface, 340
CharacterData interface, 341–342
Comment interface, 343
Document interface, 344–347
DocumentFragment interface, 347
DocumentType interface, 348
DOMImplementation interface, 349
Element interface, 350–353

Entity interface, 354
EntityReference interface, 354
NamedNodeMap interface, 355–356
Node interface, 359–361
NodeList interface, 362
Notation interface, 363
ProcessingInstruction interface, 363
Text interface, 364

Microsoft Internet Explorer 6. See IE6 (Internet
Explorer 6)

Microsoft MSXML parser. See MSXML4 parser
modules

Core module. see Core module
defined, 10
DOM Level 1, 10–11
DOM Level 2, 11–12
Events module. see Events module
Load and Save Module. see Load and Save

module
Traversal module. see Traversal module
XPath module. see XPath module

Mozilla 1.0, 170
MSXML4 parser, 152–159

adding content, 155
API overview, 153
creating documents, 154
information on, 159
initializing, 154
installing, 152–153
iterating through document’s nodes, 156
parsing files/memory buffers, 156–157
serializing documents, 157–158
useful utilities, 158–159
where to get, 152

multithreading, 14

N
name property

Attr interface, 41, 339
DocumentType interface, 45, 348

NamedNodeMap interface
overview of, 30, 32–33
reference guide for, 354–356

namespace URI property, 30
naming conventions

DOMStrings, 19
DOMTimeStamp type, 19
Java vs. C++, 139–140
namespaces, 51–52

navigation, automatic. See also traversal
document placeholders, 221–227
on-the-fly bookmarks, 207–215

3 7 2 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

overview of, 206–207
table of contents, 215–221

Netscape Navigator 6.x
click events, 226
data islands, 281–282
DOM-related quirks, 130
DOM support for, 103
DOMDumper output, 193–195
dynamic table scripts, 116
embedded XML, 275
event handlers, 225
Events interface support for, 117
innerHTML property, 128
loading and saving in, 312–313
menu example, 288–291
pop-up menu display, 251–252
XPath support for, 326
XSLT support for, 329–330

newChild argument, 30
nextNode() method

NodeIterators and, 74, 76–77
TreeWalkers and, 80, 81

nextSibling() method, 80
nextSibling property

overview of, 29
position-based algorithms and, 93
reference guide for, 358

Node interface, 50–66
attaching specific data to nodes, 314
creating new nodes, 62–65
document subtree traversal and, 67–68
DOM Level 3 additions to, 304–306
importing nodes, 65–66
inspecting nodes, 53–56
manipulating nodes, 56–60
namespaces and, 51–52
object references and, 52–53
overview of, 50–51
reference guide for, 356–361
TreePosition() method and, 316–318

NodeFilters, 70–74
NodeIterators

logical vs. physical views and, 69–70
NodeFilters and, 70–74
overview of, 74–79
Walkers vs., 69

NodeList interface, 361–362
nodeName property

overview of, 29
reference guide for, 357

nodes
creating, 62–65
defined, 5

importing, 65–66
inspecting, 53–56
manipulating, 56–60
namespaces, 51–52
Node interface, 26–33
NodeList interface, 31–32
object references, 52–53
overview, 50–51
page elements, creating/removing, 112–116
page elements, modifying, 110–112
page structure/content, 107–110
tree structure and, 21–22
types of, 22–24

nodeScanner() method, 219
nodeType property, 357
nodeValue property

overview of, 29
reference guide for, 357

normalize() method
Element interface, 351
Node interface, 31

Notation interface
overview of, 45–46
reference guide, 362–363

notationName property
overview of, 46
reference guide, 354

notations property
overview of, 45
reference guide, 348

numberValue property, 324

O
object references, nodes, 52–53
OMG (Object Management Group), 12–14
on-the-fly bookmarks. See bookmarks, on-the-fly
onLoad handler

automatic table of contents, 218
placeholders, 224
post-processing, 274

openDocument() method, 309
openTraceWindow() function, 181
Opera 6 browser, 103
<OPTION> tags, 213
outerHTML property

Dreamweaver and, 163
Internet Explorer and, 127

ownerDocument property
overview of, 30
reference guide, 359

ownerElement property, 41

I n d e x 3 7 3

P
page elements, 110–116

creating/removing nodes, 112–116
modifying nodes, 110–112

parent nodes
defined, 5
DOM tree structure, 21

parentNode() method, 80, 81
parentNode property

overview of, 29
reference guide, 358

parse() method, 145–146
parseFloat() function

menu example, 296–297
post-processing, 274

parsing
document files, 144–146
document in memory, 146–147
files and memory buffers, 156–157

<people> tags, 280
<person> tags, 280
physical views

logical views vs., 69–70
TreeWalker and, 82

placeholders, 221–227
click events, 225–226
overview of, 221–224
paragraph node, 226–227
setting up, 224–225

pop-up menus
display for, 251–252
HTML code for, 247–248
implementing, 246–253
overview of, 246–247
script for, 249–251

position-based algorithms, 88, 91–93
post-processing, 271–275
prefix property, Node interface, 30
preventDefault() method, 121
previousNode() method

NodeIterators using, 74, 76–77, 79
TreeWalker using, 80, 81

previousSibling() method, 80
previousSibling property

overview of, 29
position-based algorithms using, 93
reference guide for, 358
retrieving relative nodes using, 96

ProcessingInstruction interface
overview of, 46–47
reference guide, 363

processNode() method, 219

programming languages. See C++; Java
Projects directory, Xerces, 139
properties

Dreamweaver, 159–160
Internet Explorer, 127–128

properties, API reference for
Attr interface, 339
CDATA interface, 340
CharacterData interface, 340
Comment interface, 343
Document interface, 343–344
DocumentFragment interface, 347
DocumentType interface, 348
DOMException interface, 350
Element interface, 350
Entity interface, 353–354
EntityReference interface, 354
NamedNodeMap interface, 355
Node interface, 357–359
NodeList interface, 361
Notation interface, 362
ProcessingInstruction interface, 363
Text interface, 364

publicID property
DocumentType interface, 45
Entity interface, 46, 353
Notation interface, 45, 362

R
refChild argument, 30
reference node

defined, 75
NodeIterators and, 78

removeAttribute() method
modifying document nodes, 110–112
overview of, 39
reference guide for, 352

removeAttributeNode() method
overview of, 39
reference guide for, 352

removeAttributeNS() method, 40
removeChild() method

DOM Level 3 changes to, 306
overview of, 30
reference guide for, 360–361
removing nodes, 58–59
swapping nodes, 60–61

removeListener() method, 119
removeNamedItem() method

overview of, 32
reference guide for, 356

replaceChild() method

3 7 4 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

I n d e x 3 7 5

client-side sorting, 263
DOM Level 3 changes to, 306
in-place list editing, 244
overview of, 30
reference guide for, 361
replacing nodes with, 59–60

replaceData() method
overview of, 42–43
reference guide for, 342

replaceNode() method, 129
rolled back transactions, 334
root, defined, 5
root property

NodeIterators, 74
TreeWalkers, 80

S
save() method, 158
saveDocument() method, 167
saveXML() method, 312
saving documents, 12, 309–313
screen-scraping, 271
<SELECT> tags, 211
selectColor() method, 237
selectNodes() method, 158, 325
selectSingleNode() method, 158, 325
serializing documents

Dreamweaver and, 167
MSXML parser and, 157–158
overview of, 147

server-side development, 8–9
setAttribute() method

Element interface, 39, 352–353
in-place list editing, 244–245
menu example, 293–294
modifying document nodes, 110–112

setAttributeNode() method
overview of, 39
reference guide for, 353

setAttributeNodeNS() method, 40
setAttributeNS() method, 40
setNamedItem() method

overview of, 32
reference guide for, 355

setUserData() method
attaching specific data to nodes, 314
DOM Level 3 and, 304

SGML (Standardized Generalized Markup Language), 8
sibling nodes

defined, 5
DOM tree structure and, 21

side-by-side mode, MSXML4 installation, 152–153
singleNodeValue property, 324
snapshotItem() method, 325
snapshotLength property, 325
sort() method, 261–262
sortCallBack() method, 262, 269
sorting, client-side

lists, 257–263
tables, 263–270

sortList() function, 259–260
sortTable() function, 265–268, 266–269
 tags, 210–214
specified property, Attr interface, 339
splitText() method

overview of, 43
reference guide for, 364

src folder, 139
standalone DOM implementations, vs. embedded, 135
Standardized Generalized Markup Language (SGML), 8
stopPropagation() method, 121
strings, Xerces library, 148–149
stringValue property, 324
style/CSS, DOM Level 2 and, 11
substringData() method

overview of, 42
reference guide for, 341

swapNode() method
Internet Explorer and, 129
swapping nodes with, 60–61

systemID property
DocumentType interface, 45
Entity interface, 46, 354
Notation interface, 46, 362

T
table of contents, automatic, 215–221

adding TOC entry, 220–221
building TOC destination, 219–220
code for, 215–218
scanning document’s nodes, 219
setting up, 218–219

tables
menu example, 292–295
sorting, 263–270
XML, 276, 278–280

tagName property
overview of, 38–39
reference guide for, 350

target property
Event interface, 121
ProcessingInstruction interface, 47, 363

3 7 6 T h e D o c u m e n t O b j e c t M o d e l : P r o c e s s i n g S t r u c t u r e d D o c u m e n t s

TBODY node
client-side table sorting, 265, 268, 270
menu example, 292–293

<TD> tags
client-side table sorting and, 269–270
data-bound controls using, 280

Terminate() method, 142–143
terminology, DOM tree structure, 5, 20–22
Text interface

overview of, 43
properties for, 55–56
reference guide for, 363–364

textContent property, 305–306
THEAD node, 265
timer functions, TraceConsole, 190–192
timeStamp property, 121
<TITLE tag>, 54
TOC entries, 220–221
traceArray() function, 184–185
TraceConsole, 179–192

basic output, 182–183
overview, 179–181
timer functions, 190–192
tracing complex objects, 184–190

traceNode() method, 185, 188
traceObject() function, 189–190
traceString() function, 182
traceValues() function, 182–183
transaction-oriented processing

overview of, 332–333
rolled back transactions, 334
wrapping series of edits, 333–334

transcode() method, 148
transcodeTo() method, 149–150
transcoding

entire documents, 149–150
using Xerces library string utilities, 148–149

transformNode() method, 329–331
transformNodeToObject() method, 329–331
Traversal module

logical vs. physical views, 69–70
NodeFilters, 70–74
NodeIterators, 74–79
NodeIterators vs. TreeWalkers, 69
TreeWalkers, 79–83

traversals
breadth-first node, 89–90
depth-first, 89
DOM Level 2 and, 11
Iterators vs. Walkers, 69
logical vs. physical views, 69–70
with Node interface, 67–68
NodeFilters, 70–74
NodeIterators, 74–79
TreeWalkers, 79–83

tree structure
defined, 5
overview of, 20–22
working with nodes and, 50–51

TreeWalkers
vs. Iterators, 69
logical vs. physical views, 69–70
NodeFilters and, 70–74
overview of, 79–83

type property, Event interface, 121

U
useCapture argument, 119
user interfaces. See also dynamic user interfaces
userData field, 150–152
UserDataHandler, 315
UTF-16 encoding, 18

V
VALIDATION_ERROR, 306
value property

overview of, 41
reference guide for, 339

views
DOM Level 2 and, 11
logical vs. physical, 69–70, 82

W
W3C (World Wide Web Consortium)

defined, 4
DOM development and, 8–9
DOM levels and, 10–12
Level 3 working drafts and, 302
XPath and, 318
XSLT and, 326

Web site information
DOM Level 3 working drafts, 302
Dreamweaver, 159, 167
Internet Explorer, event handlers, 225
Internet Explorer, methods, 128
Internet Explorer, XML data islands, 280
loading and saving DOM documents, 313
MSXML4 parser, 152, 159
Xerces, 136, 152
XML namespaces, 52
XPath specification, 318

whatToShow parameter
NodeFilter, 71, 73–74
NodeIterators, 74
TreeWalkers, 80

World Wide Web Consortium. See W3C (World Wide
Web Consortium)

I n d e x 3 7 7

X
Xalan, 332
Xerces parser, 135–152

API for, 139–141
attaching specific data to nodes, 314–315
creating document content, 143–144
creating new document, 143
defined, 9
folder structure, 137–138
information on, 152
initializing/terminating, 142–143
installing, 137–139
overview, 135–136
parsing document file, 144–146
parsing document in memory, 146–147
serializing document, 147
support of XPath, 326
transcoding entire document, 149–150
useful string utilities, 148–149
using node’s userData field, 150–152
where to get, 136
Xalan using XSLT on, 332

XML data islands. See data islands, XML
XML (eXtensible Markup Language)

example, 285–287, 298–299
transforming document within HTML page,

329–331
using DOM standard for, 6
working with embedded, 275–282

XMLString::transcode method, 148
XPath module, 318–326

defining, 318–320
DOM Level 3 and, 12, 320–325
support in today’s applications, 325–326

XPathEvaluator interface, 320–322
XPathExpression interface, 320, 322
XPathResult interface, 320, 322–325
XSL (Extensible Style Language), 326–329
XSLT (XSL Transformation Language), 326–332

defining, 326–327
example, 288
how it works, 327–329
in other applications, 332
support in today’s browsers, 329–332

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9415-9899
FAX +61-2-9415-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

TE
AM
FL
Y

Team-Fly®

	sample.pdf
	sterling.com
	Welcome to Sterling Software

