Context Driven Observation of Human Activity

James L. Crowley

Laboratoire GRAVIR, INRIA Rhone Alpes,
655 Ave de I’Europe, F-38330 Montbonnot, France
Crowley@inrialpes.fr
http://www-prima.imag. fr

Abstract. Human activity is extremely complex. Current technology
allows us to handcraft real-time perception systems for a specific perceptual
task. However, such an approach is inadequate for building systems that
accommodate the variety that is typical of human environments. In this
paper we define a framework for context aware observation of human
activity. A context in this framework is defined as a network of situations.
A situation network is interpreted as a specification for a federation of
processes to observe humans and their actions. We present a process-based
software architecture for building systems for observing activity. We
discuss methods for building systems using this framework. The framework
and methods are illustrated with examples from observation of human
activity in an "Augmented Meeting Environment".

1 Introduction

This paper presents a framework for context aware observation of human activity.
Within this framework, contexts are modeled as a network of situations. Situation
models are interpreted to dynamically configure a federation of processes for observing
the entities and relations that define a situation. We propose a software architecture
based on dynamically assembled process federations [1], [2]. Our model builds on
previous work on process-based architectures for machine perception and computer
vision [3], [4], as well as on data flow models for software architecture [5].

Within this framework, a situation is described by a configuration of relations for
observed entities. Changes in relations correspond to events that signal a change in
situation. Such events can be used to trigger actions by the system. Situation models
are used to specify an architecture in which reflexive processes are dynamically
composed to form federations for observing and predicting situations. We believe that
this architecture provides a foundation for the design of systems that act as a silent
partner to assist humans in their activities in order to provide appropriate services
without explicit commands and configuration. In the following section we review the
use of the term "context aware" in different domains. This leads us to a situation-based
approach to modeling context.

E. Aarts et al. (Eds.): EUSAI 2003, LNCS 2875, pp. 101-118, 2003.
© Springer-Verlag Berlin Heidelberg 2003

102 J.L. Crowley

2 A Brief History of Context

The word "context" has come to have many uses. Winograd [6] points out that the
word “Context” has been adapted from linguistics. Composed of “con” (with) and
“text”, context refers to the meaning that must be inferred from the adjacent text. Such
meaning ranges from the references intended for indefinite articles such as “it” and
“that” to the shared reference frame of ideas and objects that are suggested by a text.
Context goes beyond immediate binding of articles to the establishment of a
framework for communication based on shared experience. Such a shared framework
provides a collection of roles and relations with which to organize meaning for a
phrase.

Early researchers in both artificial intelligence and computer vision recognized the
importance of a symbolic structure for understanding. The “Scripts” representation [7]
sought to provide just such information for understanding stories. Minsky’s Frames
[8] sought to provide the default information for transforming an image of a scene into
a linguistic description. Semantic Networks [9] sought to provide a similar
foundation for natural language understanding. All of these were examples of what
might be called “schema” [10]. Schema provided context for understanding, whether
from images, sound, speech, or written text. Recognizing such context was referred to
as the “Frame Problem” and became known as one of the hard unsolved problems in
AL

In computer vision, the tradition of using context to provide a framework for
meaning paralleled and drew from theories in artificial intelligence. The “Visions
System” [11] expressed and synthesized the ideas that were common among leading
researchers in computer vision in the early 70’s. A central component of the “Visions
System” was the notion of a hierarchical pyramid structure for providing context.
Such pyramids successively transformed highly abstract symbols for global context
into successively finer and more local context terminating in local image
neighborhood descriptions that labeled uniform regions. Reasoning in this system
worked by integrating top-down hypotheses with bottom-up recognition. Building a
general computing structure for such a system became a grand challenge for computer
vision. Successive generations of such systems, such as the “Schema System”[12] and
“Condor” [13] floundered on problems of unreliable image description and
computational complexity. Interest in the 1990’s turned to achieving real time
systems using “active vision” [14], [15]. Many of these ideas were developed and
integrated into a context driven interpretation within a process architecture using the
approach “Vision as Process” [16]. The methods for sensing and perceiving context
for interaction described below draws from this approach.

Context awareness has become very important to mobile computing where the
term was first introduced by Schilit and Theimer [17]. In their definition, context is
defined as “the location and identities of nearby people and objects and changes to
those objects”. While this definition is useful for mobile computing, it defines
context by example, and thus is difficult to generalize and apply to other domains.
Other authors, such as [18] [19] and [20] have defined context in terms of the

Context Driven Observation of Human Activity 103

environment or situation. Such definitions are essentially synonyms for context, and
are also difficult to apply operationally. Cheverest [21] describes context in anecdotal
form using scenarios from a context aware tourist guide. His system is considered one
of the early models for a context aware application.

Pascoe [22] defines context to be a subset of physical and conceptual states of
interest to a particular entity. This definition has sufficient generality to apply to a
recognition system. Dey [23] reviews definitions of context, and provides a definition
of context as “any information that can be used to characterize situation”. This is the
sense in which we use the term context. Situation refers to the current state of the
environment. Context specifies the elements that must be observed to model
situation. However, to apply context in the composition of perceptual processes, we
need to complete a clear definition with an operational theory. Such a foundation is
provided by a process-based software architecture.

3 Perceptual Components for Context Awareness

In this section we describe a process-based software architecture for real time
observation of human activity. The basic component of this architecture is a
perceptual process. Perceptual processes are composed from a set of modules
controlled by a supervisory controller. We describe several common classes of
modules, and describe the operation of the controller. We also present several classes
of perceptual processes and discuss how they can be combined into process federations
according to a network of expected situations.

3.1 Perceptual Processes

A system’s view of the external world is driven by a collection of sensors. These
sensors generate observations that may have the form of numeric or symbolic values.
Observations may be produced in a synchronous stream or as asynchronous events. In
order to determine meaning from observations, a system must transform observations
into some form of action. Such transformations may be provided by perceptual
processes.

I Process Supervisor I

J] l
Event Module Module Module ‘—L> Events
1

Data 2 3 |—> Data

Fig. 1. A perceptual process integrates a set of modules to transform data streams or events
into data streams or events.

Perceptual processes are composed from a collection of modules controlled by a
process supervisor, as shown in figure 1. Processes operate in a synchronous manner
within a shared address space. In our experimental system, the process supervisor is
implemented as a multi-language interpreter [24] equipped with a dynamic loader for
precompiled libraries. This interpreter allows a processes to receive and interpret
messages containing scripts, to add new functions to a process during execution.

104 J.L. Crowley

The modules that compose a process are formally defined as transformations applied
to a certain class of data or event. Modules are executed in cyclic manner by the
supervisor according to a process schedule. We impose that transformations return an
auto-critical report that describes the results of their execution. Examples of
information contained in an auto-critical report include elapsed execution time,
confidence in the result, and any exceptions that were encountered. The auto-critical
report enables a supervisory controller to adapt parameters for the next call in order to
maintain a execution cycle time, or other quality of service.

Parameters Auto-Critique
Events —> Transformation —> Events
Data — —> Data

Fig. 2. Modules apply a transformation to an input data stream or events and return an auto-
critical report.

3.2 Examples: Modules for Observing, Grouping, and Tracking

A typical example of a module is a transformation that uses table look-up to
convert a color pixel into a probability of skin, as illustrated in figure 3. Such a table
can easily be defined using the ratio of a histograms of skin colored pixels in a
training image, divided by the histogram of all pixels in the same image [25]. Skin
pixels for an individual in a scene will all exhibit the same chrominance vector
independent of surface orientation and thus can be used to detect the hands or face of
that individual [26]. This technique has provided the basis for a very fast (video rate)
process that converts an RGB color image into image of the probability of detection
based on color using a look-up table.

Region of Interest

Sample rate Average probability
Color Table ¢ T Execution time
Skin Color .
Color Detection —» Skin
Image Probability

Fig. 3. A module for detecting skin colored pixels with a region of interest

A color observation module applies a specified look-up table to a rectangular
“Region of Interest” or ROI using a specified sample rate. The sample rate, S, can be
adapted to trade computation time for precision. The output from the module is an
image in which pixels inside the ROI have been marked with the probability of
detection. The auto-critical report returns the average value of the probabilities (for use
as a confidence factor) as well as the number of microseconds required for execution.
The average probability can be used to determine whether a target was detected within
the ROI. The execution time can be used by the process supervisor to assure that the

Context Driven Observation of Human Activity 105

overall execution time meets a constraint. This module can be used either for initial
detection or for tracking, according to the configuration specified by the supervisor.
The color observation module is one example of a pixel level observation module.
Pixel level observation modules provide the basis for an inexpensive and controllable
perceptual processes. In our systems, we use pixel level observation modules based on
color, motion, background subtraction [27], and receptive field histograms [28]. Each
of these modules applies a specified transformation to a specified ROI at a specified
sample rate and returns an average detection probability and an execution time.
Interpretation requires that detected regions be grouped into "blobs". Grouping is
provided by a grouping module, defined using on moments, as shown in figure 4.

ROI Confidence
Sample Rate ¢ 1 Execution time

Probability - Moment Based
Image Grouping (glob, ID, CF, X, Y, 8 Sy, 0)

Fig. 4. A module for grouping detected pixels using moments

Let w(i,j) represent an image of detection probabilities provided by a pixel level
observation process. The detection mass, M, is the sum of the probabilities within the
ROI. The ratio of the sum of probability pixels to the number of pixels, N, in the
ROI provides a measure of the confidence that a skin colored region has been observed.

M= Xw(ij) CF=<

ije ROI N

The first moment of the detected probabilities is the center of gravity in the row and
column directions (X, y). This is a robust indicator of the position of the skin colored
blob.

1 C 1
=— ZW(I,J)' 1 y=— Zw(i,j)-j
i,jeROI M ijeROI
The second moment of w(i, j) is a covariance matrix. Principal components analysis
of the covariance matrix formed from 6,°, 6;°,and 6, yield the length and breadth of
(S 8y), as well as its orientation 0, of the blob of detected pixels.

1 1
=1 > wiij) - (i-x)’ oi=— 2wy G-y

ije ROI ije ROI

2 1 S
o= 3 2t G- -y)

Tracking is a cyclic process of recursive estimation applied to a data stream. The
Kalman filter provides a framework for designing tracking processes [29]. A general

106 J.L. Crowley

discussion of the use of the Kalman filter for sensor fusion is given in [30]. The use
of the Kalman filter for tracking faces is described in [31].

Tracking provides a number of fundamentally important functions for a perception
system. Tracking aids interpretation by integrating information over time. Tracking
makes it possible to conserve information, assuring that a label applied to an entity at
time T, remains associated with the entity at time T,. Tracking provides a means to
focus attention, by predicting the region or interest and the observation module that
should be applied to a specific region of an image. Tracking processes can be designed
to provide information about position speed and acceleration that can be useful in
describing situations.

In perception systems, a tracking process is generally composed of three phases:
predict, observe and estimate, as illustrated in figure 4. Tracking maintains a list of
entities, known as "targets". Each target is described by a unique ID, a target type, a
confidence (or probability of existence), a vector of properties and a matrix of
uncertainties (or precisions) for the properties.

The prediction phase uses a temporal model (called a "process model" in the
tracking literature) to predict the properties that should be observed at a specified time
for each target. For many applications of tracking, a simply linear model is adequate
for such prediction. A linear model maintains estimates of the temporal derivatives for
each target property and uses these to predict the observed property values. For
example, a first order temporal model estimates the value for a property, X;,, at time
T, from the value X, at a time T, plus the temporal rate of change multiplied by the
time step, AT = T,-T,,

Xy = Xopp + ATAX/dO)y,

Higher order linear models may also be used provided that the observation sample rate
is sufficiently fast compared to the derivatives to be estimated. Non-linear process
models are also possible. For example, articulated models for human motion can
provide important constraints on the temporal evolution of targets.

The prediction phase also updates the uncertainty (or precision model) of properties.
Uncertainty is generally represented as a covariance matrix for errors between estimated
and observed properties. These uncertainties are assumed to arise from imperfections in
the process model as well as errors in the observation process.

Restricting processing to a region of interest (ROI) can greatly reduce the
computational load for image analysis. The predicted position of a target determines
the position of the ROI at which the target should be found. The predicted size of the
target, combined with the uncertainties of the size and position, can be used to
estimate the appropriate size for the ROI. In the tracking literature, this ROI is part
of the "validation gate", and is used to determine the acceptable values for properties.

Observation is provided by the observation and grouping modules described above.
Processing is specific for each target. A call to a module applies a specified
observation procedure for a target at a specified ROI in order to verify the presence of
the target and to update its properties. When the detection confidence is large,
grouping the resulting pixels provides the information to update the target properties.

Context Driven Observation of Human Activity 107

The estimation process combines (or fuses) the observed properties with the
previously estimated properties for each target. If the average detection confidence is
low, the confidence in the existence of a target is reduced, and the predicted values are
taken as the estimates for the next cycle. If the confidence of existence falls below a
threshold, the target is removed from the target list.

The detection phase is used to trigger creation of new targets. In this phase,
specified observation modules are executed within a specified list of "trigger" regions.
Trigger regions can be specified dynamically, or recalled from a specified list. Target
detection is inhibited whenever a target has been predicted to be present within a
trigger region.

Time

| Detection | | Prediction |
ROI, S, Detection Method * ¢ ROI, S, Detection Method

Fig. 5. Tracking is a cyclic process of four phases: Predict, Observe, Detect and Estimate.
Observation is provided by the observation and grouping modules described above.

> ObservationMo

Video Stream Observation
Modules

A simple zeroth order Kalman filter may be used to track bodies, faces and hands in
video sequences. In this model, targets properties are represented by a "state vector"
composed of position, spatial extent and orientation (X, y, Sy, 8,, 0). A 5x5
covariance matrix is associated with this vector to represent correlations in errors
between parameters. Although prediction does not change the estimated position, it
does enlarge the uncertainties of the position and size of the expected target. The
expected size provides bounds on the sample rate, as we limit the sample rate so that
there are at least 8 pixels across an expected target.

3.3 A Supervisory Controller for Perceptual Processes

The supervisory component of a process provides four fundamental functions:
command interpretation, execution scheduling, parameter regulation, and reflexive
description. The supervisor acts as a programmable interpreter, receiving snippets of
code script that determine the composition and nature of the process execution cycle
and the manner in which the process reacts to events. The supervisor acts as a
scheduler, invoking execution of modules in a synchronous manner. The supervisor
regulates module parameters based on the execution results. Auto-critical reports from
modules permit the supervisor to dynamically adapt processing. Finally, the
supervisor responds to external queries with a description of the current state and
capabilities. We formalize these abilities as the autonomic properties of auto-
regulation, auto-description and auto-criticism.

108 J.L. Crowley

A process is auto-regulated when processing is monitored and controlled so as to
maintain a certain quality of service. For example, processing time and precision are
two important state variables for a tracking process. These two may be traded off
against each other. The process controllers may be instructed to give priority to either
the processing rate or precision. The choice of priority is dictated by a more abstract
supervisory controller.

An auto-critical process maintains an estimate of the confidence for its outputs.
Such a confidence factor is an important feature for the control of processing.
Associating a confidence factor to every observation allows a higher-level controller to
detect and adapt to changing circumstances. When supervisor controllers are
programmed to offer “services” to higher-level controllers, it can be very useful to
include an estimate of the confidence of their ability to "play the role" required for the
service. A higher-level controller can compare responses from several processes and
determine the assignment of roles to processes.

An auto-descriptive controller can provide a symbolic description of its capabilities
and state. The description of the capabilities includes both the basic command set of
the controller and a set of services that the controller may provide to a more abstract
supervisor. Such descriptions are useful for the dynamic composition of federations of
controllers.

3.4 Classes of Perceptual Processes

We have identified several classes of perceptual processes. The most basic class is
composed of processes that detect and track entities. Entities may generally be
understood as spatially correlated sets of properties, corresponding to parts of physical
objects. However, correlation may also be based on temporal location or other, more
abstract, relations. From the perspective of the system, an entity is any association of
correlated observable variables.

Formally, an entity is a predicate function of one or more observable variables.

Entity-process(vy, v, ..., v,,) = Entity(Entity-Class, ID, CF, p,, pa---, Pn)

Entities may be composed by an entity detection an tracking processes, as shown in
figure 6.

Control in State and
l{ 1 Capabilities

Control

Variable, —>| Entity detection
... —>»| and tracking
Variable, —>]

Entities and
their properties

Fig. 6. Entities and their properties are detected and described by a special class of percep-
tual processes.

Context Driven Observation of Human Activity 109

The input to an entity detection process is typically a stream of numeric or
symbolic data. The output of the transformation is a stream including a symbolic
token to identify the class of the entity, accompanied by a set of numerical or
symbolic properties. These properties allow the system to define relations between
entities. The detection or disappearance of an entity may, in some cases, also generate
asynchronous symbolic signals that are used as events by other processes.

A fundamental aspect of interpreting sensory observations is determining relations
between entities. Relations can be formally defined as a predicate function of the
properties of entities. Relations may be unary, binary, or N-ary. For example,
Visible(Entity1), On(Entity 1, Entity2), and Aligned(Entityl, Entity2, Entity3) are
examples of relations.

Relations that are important for describing situations include 2D and 3D spatial
relations, as well as temporal relations [32]. Other sorts of relations, such as acoustic
relations (e.g. louder, sharper), photometric relations (e.g. brighter, greener), or even
abstract geometric relations may also be defined. As with entity detection tracking, we
propose to observe relations using Perceptual processes.

Relation-observation processes are defined to transform a list of entities into a list
of relations based on their properties, as shown in figure 7. Relation observation
processes read in a list of entities tracked by an entity detection and tracking process
and produce a list of relations that are true along with the entity or entities that render
them true. Relation observation uses tracking to predict and verify relations. Thus
they can generate an asynchronous event when a new relation is detected or when a
previously detected relations becomes false.

Control in State and

¢ Capabilities

Control
E, —> Relation Relation(E;. ..., Ex)
E, — Observation |—>

Fig. 7. Relations are predicates defined over one or more entities. Relation observation pro-
cesses generate events when relations become true or false.

Composition processes assemble sets of entities into composite entities.
Composition processes are similar to relation observation entities, in that they operate
on a list of entities provided by an entity observation process. However, entity
observation processes produce a list of composite objects satisfying a set of relations.
They can also measure properties of the composite object. As with relation
observation processes, composition processes can generate asynchronous events when
a composite object is detected or lost.

110 J.L. Crowley

Control in State and
¢ Capabilities
Control
E, — —> Events

Composition

g Observation —» Composite Objects
Enm —

Fig. 8. Composition processes observe and track compositions of entities.

3.5 Process Federations

Perceptual processes may be organized into software federations [2]. A federation is a
collection of independent processes that cooperate to perform a task. We have designed
a middle ware environment that allows us to dynamically launch and connect process
on different machines. In our system, processes are launched and configured by a
"meta-supervisor”. The meta-supervisor configures a process by sending snippets of
control script to be interpreted by the controller. Each control script defines a
command that can be executed by a message from the meta-supervisor. Processes may
be interrogated by the meta-supervisor to determine their current state and the current
set of commands.

Meta-supervisors can also launch and configure other meta-supervisors so that
federations can be built up hierarchically. Each meta-supervisor invokes and controls
lower level supervisors that perform the required transformation. At the lowest level
are Perceptual processes that observe and track entities and observe the relations
between entities. These are grouped into federations as required for to observe the
situations in a context.

As a simple example of a federation of perceptual processes, consider a system that
detects when a human is in the field of view of a camera and tracks his hands and face.
We say that observed regions can be selected to "play the role" of torso, hands and
faces. We call this a FaceAndHand observer. The system uses an entity and detection
tracking process that can use background difference subtraction and color modeling to
detect and track blobs in an image stream. The set of tracked entities are sent to a
composition process that labels likely blobs as a torso, face or a left or right hand.

FaceAndHand Observer
Control Control
Events
. . —>» £, —> . —>
) Entity Detection ! Entity
Video —> and Tracking :: Em —> Composition » Torso, Face, Hands

Fig. 9. A simple process federation composed of an entity detection process, a composition
process and a meta-supervisor.

Context Driven Observation of Human Activity 111

The control for this process federation works as follows. The meta-supervisor
begins by configuring the entity detection and tracking processes to detect a candidate
for torso by looking for a blob of a certain size using background subtraction in a pre-
configured "detection region". The acceptance test for torso requires a blob detected by
background subtraction in the center region of the image, with a size within a certain
range. Thus the system requires an entity detection process that includes an adaptive
background subtraction detection.

When a region passes the torso test, the composition process notifies the meta-
supervisor. The meta-supervisor then configures new trigger regions using color
detection modules in the likely positions of the hands and face relative to the torso.
The acceptance test for face requires a skin colored region of a certain range of sizes in
the upper region of the torso. Hands are also detected by skin color blob detection
over a regions relative to the torso. Sets of skin colored regions are passed to the
composition process so that the most likely regions can be assigned to each role. We
say that the selected skin-colored regions are assigned the "roles" of face, left hand and
right hand. The assignments are tracked so that a change in the entity playing the role
of hand or face signals an event. Such role assignment is a simple example of a more
general principle developed in the next section.

4 Context and Situation

Perceptual processes provide a means to detect and track compositions of entities and
to verify relations between entities. The design problem is to determine which entities
to detect and track and which relations to verify. For most human environments, there
is a potentially infinite number of entities that could be detected and an infinite
number of possible relations for any set of entities. The appropriate entities and
relations must be determined with respect to a task or service to be provided.

In this section we discuss the methods for specifying context models for human
activity, We define the concept of a "role" and explain how roles can help simplify
context models. We define three classes of events in such systems, and describe the
system reaction to each class. We then present two examples of simple context
models. An early version of the concepts presented in this section was presented in
[33] . This paper refines and clarifies many aspects of this framework in the light
of experience with implementing systems based on this model.

4.1 Specifying a Context Model

A system exists in order to provide some set of services. Providing services
requires the system to perform actions. The results of actions are formalized by
defining the output "state" of the system. Simple examples of actions for interactive
environments include adapting the ambient illumination and temperature in a room, or
displaying a users "availability for interruption". More sophisticated examples of tasks
include configuring an information display at a specific location and orientation, or

112 J.L. Crowley

providing information or communications services to a group of people working on a
common task.

The "state" of an environment is defined as a conjunction of predicates. The
environment must act so as to render and maintain each of these predicates to be true.
Environmental predicates may be functions of information observed in the
environment, including the position, orientation and activity of people in the
environment, as well as position, information and state of other equipment. The
information required to maintain the environment state determines the requirements of
the perception system.

The first step in building a context model is to specify the desired system behavior.
For an interactive environment, this corresponds to the environmental states, defined
in terms of the variables to be controlled by the environment, and predicates that
should be maintained as true. For each state, the designer then lists a set of possible
situations, where each situation is a configuration of entities and relations to be
observed. Although a system state may correspond to many situations, each situation
must uniquely belong to one state. Situations form a network, where the arcs
correspond to changes in the relations between the entities that define the situation.
Arcs define events that must be detected to observe the environment.

In real examples, we have noticed that there is a natural tendency for designers to
include entities and relations that are not really relevant to the system task. Thus it is
important to define the situations in terms of a minimal set of relations to prevent an
explosion in the complexity of the system. This is best obtained by first specifying
the system output state, then for each state specifying the situations, and for each
situation specifying the entities and relations. Finally for each entity and relation, we
determine the configuration of perceptual processes that may be used.

4.2 Simplifying Context Models with Roles

The concept of role is an important (but subtle) tool for simplifying the network of
situations. It is common to discover a collection of situations for an output state that
have the same configuration of relations, but where the identity of one or more
entities is varied. A role serves as a "variable" for the entities to which the relations
are applied, thus allowing an equivalent set of situations to have the same
representation. A role is played by an entity that can pass an acceptance test for the
role. In that case, it is said that the entity can play or adopt the role for that situation.
In our framework, the relations that define a situation are defined with respect to roles,
and applied to entities that pass the test for the relevant roles.

For example, in a group discussion, at any instant, one person plays the "role" of
the speaker while the other persons play the role of "listeners". Dynamically
assigning a person to the role of "speaker" allows a video communication system to
transmit the image of the current speaker at each instant. Detecting a change in roles
allows the system to reconfigure the transmitted image.

Entities and roles are not bijective sets. One or more entities may play a role. A
role may be played by one or several entities. The assignment of entities to roles may
(and often will) change dynamically. Such changes provide the basis for an important

Context Driven Observation of Human Activity 113

class of events : role-events. Role events signal a change in assignment of an entity
to a role, rather than a change in situation.

Roles and relations allow us to specify a context model as a kind of "script" for
activity in an environment. However, unlike theater, the script for a context is not
necessarily linear. Context scripts are networks of situations where a change in
situations is determined based on relations between roles.

4.3 Context and Situation

To summarize, a context is a composition of situations that concerns a set of roles
and relations. A context determines the configuration of processes necessary to detect
and observe the entities that can play the roles and the relations between roles that
must be observed. The roles and relations should be limited to the minimal set
necessary for recognizing the situations necessary for the environmental task. All of
the situations in a context are observed by the same federation.

Context = {Role,, Role,,...,Role; Relation,,...,Relation,, }

A situation is a kind of state, defined by a conjunction of relations. Relations are
predicate functions evaluated over the properties of the entities that have been assigned
to roles. A change in the assignment of an entity to a role does not change the
situation, unless a relation changes in value.

Entities are assigned to roles by role assignment processes. The context model
specifies which roles are to be assigned and launches the necessary role assignment
processes. A meta-supervisor determines what kind of entities can play each role, and
launches processes to detect and observe these entities. A description of each detected
entity is returned to the role assignment process where it is subjected to the acceptance
test to determine its suitability for the role based on type, properties and confidence
factor. The most suitable entity (or entities) is (are) assigned to the roles. Relations
are then evaluated, and the set of relations determines the situation.

The situation is a set of relations computed on the entities assigned to roles.
Situation changes when the relations between entities change. If the assignment of
entities to situations changes, the situation remains the same. However, the system
may need to act in response to a change in role assignment. For example, if the
person playing the role of speaker changes, then a video communication system may
need to change the camera view to center on the new speaker.

4.4 Classes of Events

From the above, we can distinguish three classes of events: Role Events, Relation
events and Context events.

Role events signal a change in the assignment of entities to roles. Such a may
result in a change in the system output state and thus require that the system act so as
to bring the state back to the desired state. For example, the change in speaker (above)
renders a predicate Camera-Aimed -At(Speaker) false, requiring the system to selected

114 J.L. Crowley

the appropriate camera and orient it to the new speaker. Situation events or (relation
events) signal changes in relations that cause a change in situation. If the person
playing the role of speaker stops talking and begins writing on a blackboard, then the
situation has changed. Context events signal changes in context, and usually require a
reconfiguration of the perceptual processes.

Role events and Situation-Events are data driven. The system is able to interpret
and respond to them using the context model. They do not require a change in the
federation of Perceptual processes. Context events may be driven by data, or by some
external system command .

4.5 A Simple Example: An Interuptibility Meter

As first simple example, consider a system whose task is to display the level of
"interruptibility” of a user in his office environment. Such a system may be used to
automatically illuminate a colored light at the door of the office, or it may be used in
the context of a collaborative tool such as a media-space [34]. The set of output
actions are very simple. The environment should display one of a set of
interruptibility states. For example, states could be "Not in Office", "Ok for
interruptions”, "urgent interrupts only" and "Do not Disturb".

Suppose that the user has decided that his four interruptibility states depend on the
following eight situations, labeled s1 to s8: (S1) The user is not in office when the
user is not present. He is interruptible when (S2) alone in his office or (S3) not
working on the computer or (S4) talking on the phone. He may receive urgent
interruptions when (S5) working at his computer, or when (S6) visitors are standing
in the office. The user should not be interrupted (S7) when on the phone, or (S8)
when the visitors are sitting in his office.

The roles for these situations are <User>, <Visitor>, <Computer>, <Phone>. The
<User> role may be played by a human who meets an acceptance test. This test could
be based on an RFID badge, a face recognition system, a spoken password, or a
password typed into a computer. A <Visitor> is any person in the office who has not
met the test for <User>. A person is a class of entity that is detected and tracked by a
person observation process. For example, this can be a simple visual tracker based on
subtraction from an adaptive background.

The predicate "Present(User)" would be true whenever a person observed to be in
the office has been identified as the <User>. The fact that entities are tracked means
that the person need only be identified once. Evaluating the current situation requires
applying a logical test for each person. These tests can be applied when persons enter
the office, rather then at each cycle.

Situation S1 would be true if the no person being tracked in the office passes the
test for user. Situation S2 also requires a predicate to know if a person is playing the
role of visitor. States S4 and S7 require assigning an entity to the role <Phone>. This
can be done in naive manner by assigning regions of a certain color or texture at a
certain location. However, if we wish to include cellular phones we would need more
sophisticated vision processes for the role assignment.

Context Driven Observation of Human Activity 115

For assigning an object to the role of <Computer> a simple method would be to
consider a computer as a box of a certain color at a fixed location. The <User> could
then be considered to be using the computer if a face belonging to his torso is in a
certain position and orientation. Facing would normally require estimating the
position and orientation of a person's face. The test would be true if the orientation of
the position of the face was within a certain distance of the computer and the
orientation of the face were opposite the compute screen. Again, such tests could be
arbitrarily sophisticated, arbitrarily discriminant and arbitrarily costly to develop.
Situations S6 and S8 require tests for persons to be sitting and standing. These can be
simple and naive or sophisticated and expensive depending on how the system is to be
used.

4.6 Second Example: A Video Based Collaborative Work Environment

As a second example, consider a video based collaborative work environment. Two
or more users are connected via high bandwidth video and audio channels. Each user is
seated at a desk and equipped with a microphone, a video communications monitor and
an augmented work surface. Each user’s face and eyes are observed by a steerable pan-
tilt-zoom camera. A second steerable camera is mounted on the video display and
maintains a well-framed image of the user’s face. The augmented workspace is a white
surface, observed by a third video camera mounted overhead.

The system task is to transmit the most relevant image of the user. If the user is
facing the display screen, then the system will transmit a centered image of the users
face. If the user faces his drawing surface, the system will transmit an image of the
drawing surface. If the user is facing neither the screen nor the drawing surface then the
system will transmit a wide-angle image of the user within the office. This can be
formalized as controlling two functions: transmit(video-stream) and center(camera,
target). For each function, there is a predicate that is true when the actual value
corresponds to the specified value.

The roles that compose the context are 1) the user 2) the display screen, 3) a
writing surface. The user is a composite entity composed of a torso, face and hands.
The system’s task is to determine one of three possible views of the user: a well-
centered image of the user’s face, the user’s workspace and an image of the user and
his environment. Input data include the microphone signal strength, and a coarse
resolution estimation of the user’s face orientation. The system context includes the
roles “speaker” and “listener”. At each instant, all users are evaluated by a meta-
supervisor to determine assignment to one of the roles "speaker" and “listener”. The
meta-supervisor assigns one of the users to the role speaker based on recent energy
level of his microphone. Other users are assigned the role of listener. All listeners
receive the output image of the speaker. The speaker receives the mosaic of output
images of the listeners.

The user may place his attention on the video display, or the drawing surface or
“off into space”. This attention is manifested by the orientation of his face, as
measured by positions of his eyes relative to the center of gravity of his face (eye-gaze
direction is not required). When the user focuses attention on the video display, his
output image is the well-framed image of his face. When a user focuses attention on

116 J.L. Crowley

the work surface, his output image is his work-surface. When the user looks off “into
space”, the output image is a wide-angle view of the user’s environment. This system
uses a simple model of the user’s context completed by the system’s context to
provide the users with the appropriate video display. Because the system adapts its
display based on the situation of the group of users, the system, itself, fades from the
user’s awareness.

5 Conclusions

A context is a network of situations concerning a set of roles and relations. Roles are
services or functions relative to a task. Roles may be “played” by one or more
entities. A relation is a predicate defined over the properties of entities. A situation is
a configuration of relations between the entities.

This ontology provides the basis for a software architecture for the perceptual
components of context aware systems. Observations are provided by perceptual
processes defined by a tracking process or transformation controlled by reflexive
supervisor. Perceptual processes are invoked and organized into hierarchical federations
by reflexive meta-supervisors. A model of the user’s context makes it possible for a
system to provide services with little or no intervention from the user.

Acknowledgment.
This work has been partly supported by the EC project IST FAME project (IST-
2000-28323) and IST CAVIAR (IST 2001-37540) as well as French national project
RNTL/ProAct CONTACT. This work has been performed in active collaboration
with Joelle Coutaz, Gaetan Rey, Patrick Reignier, Dave Snowdon, Jean-Luc Meunier
and Alban Caporossi.

References

[1] Software Process Modeling and Technology, edited by A. Finkelstein, J. Kramer and
B. Nuseibeh, Research Studies Press, John Wiley and Sons Inc, 1994.

[2] J. Estublier, P. Y. Cunin, N. Belkhatir, "Architectures for Process Support
Ineroperability", ICSP5,Chicago, 15-17 juin, 1997.

[3] J.L.Crowley, "Integration and Control of Reactive Visual Processes", Robotics and
Autonomous Systems, Vol 15, No. 1, décembre 1995.

[4] J. Rasure and S. Kubica, “The Khoros application development environment “, in
Experimental Environments for computer vision and image processing, H.
Christensen and J. L. Crowley, Eds, World Scientific Press, pp 1-32, 1994.

[5] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging

Disciplines, Prentice Hall, 1996.
[6] T. Winograd, “Architecture for Context”, Human Computer Interaction, Vol. 16,
pp401-419.

(7]
(8]
(9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

Context Driven Observation of Human Activity 117

R. C. Schank and R. P. Abelson, Scripts, Plans, Goals and Understanding, Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1977.
M. Minsky, "A Framework for Representing Knowledge", in: The Psychology of

Computer Vision, P. Winston, Ed., McGraw Hill, New York, 1975.

M. R. Quillian, "Semantic Memory", in Semantic Information Processing, Ed: M.
Minsky, MIT Press, Cambridge, May, 1968.

D. Bobrow: "An Overview of KRL", Cognitive Science 1(1), 1977.

A. R. Hanson, and E. M. Riseman, , VISIONS: A Computer Vision System for
Interpreting Scenes, in Computer Vision Systems, A.R. Hanson & E.M. Riseman,
Academic Press, New York, N.Y., pp. 303-334, 1978.

B. A.Draper, R. T. Collins, J. Brolio, A. R. Hansen, and E. M. Riseman, "The
Schema System", International Journal of Computer Vision, Kluwer, 2(3), Jan 1989.

M.A. Fischler & T.A. Strat. Recognising objects in a Natural Environment; A
Contextual Vision System (CVS). DARPA Image Understanding Workshop, Morgan
Kauffman, Los Angeles, CA. pp. 774-797, 1989.

R. Bajcsy, Active perception, Proceedings of the IEEE, Vol. 76, No 8, pp. 996-1006,
August 1988.

J. Y. Aloimonos, I. Weiss, and A. Bandyopadhyay, "Active Vision", International
Journal of Computer Vision, Vol. 1, No. 4, Jan. 1988.

J. L. Crowley and H. I Christensen, Vision as Process, Springer Verlag, Heidelberg,
1993.

B. Schilit, and M. Theimer, “Disseminating active map information to mobile
hosts”, IEEE Network, Vol 8 pp 22-32, 1994.

P. J. Brown, “The Stick-e document: a framework for creating context aware
applications”, in Proceedings of Electronic Publishing, 96, pp 259-272.

T. Rodden, K.Cheverest, K. Davies and A. Dix, “Exploiting context in HCI design
for mobile systems”, Workshop on Human Computer Interaction with Mobile
Devices 1998.

A. Ward, A.Jones and A. Hopper, “A new location technique for the active office”,
IEEE Personal Comunications 1997. Vol 4. pp 42-47.

K. Cheverest, N. Davies and K. Mitchel, “Developing a context aware electronic
tourist guide: Some issues and experiences”, in Proceedings of ACM CHI *00, pp 17-
24, ACM Press, New York, 2000.

J. Pascoe “Adding generic contextual capabilities to wearable computers”, in
Proceedings of the 2nd International Symposium on Wearable Computers, pp 92-99,
1998.

Dey, A. K. “Understanding and using context”, Personal and Ubiquitous Computing,
Vol 5, No. 1, pp 4-7, 2001.

[24] A. Lux, "The Imalab Method for Vision Systems", International Conference on

[25]

[26]

[27]

Vision Systems, ICVS-03, Graz, april 2003.

K. Schwerdt and J. L. Crowley, "Robust Face Tracking using Color", 4th [EEE
International Conference on Automatic Face and Gesture Recognition", Grenoble,
France, March 2000.

M. Storring, H. J. Andersen and E. Granum, "Skin color detection under changing
lighting conditions", Journal of Autonomous Systems, June 2000.

J. Piater and J. Crowley, "Event-based Activity Analysis in Live Video using a
Generic Object Tracker", Performance Evaluation for Tracking and Surveillance,
PETS-2002, Copenhagen, June 2002.

118

(28]

[29]
[30]

(31]

[32]

[33]

(34]

[35]

(36]

J.L. Crowley

D. Hall, V. Colin de Verdiere and J. L. Crowley, "Object Recognition using Coloured

Receptive Field", 6th European Conference on Computer Vision, Springer Verlag,
Dublin, June 2000.

R. Kalman, "A new approach to Linear Filtering and Prediction Problems",
Transactions of the ASME, Series D. J. Basic Eng., Vol 82, 1960.

J. L. Crowley and Y. Demazeau, “Principles and Techniques for Sensor Data Fusion®,
Signal Processing, Vol 32 Nos 1-2, p5-27, May 1993.

J. L. Crowley and F. Berard, "Multi-Modal Tracking of Faces for Video
Communications", IEEE Conference on Computer Vision and Pattern Recognition,
CVPR '97, St. Juan, Puerto Rico, June 1997.

J. Allen, "Maintaining Knowledge about Temporal Intervals", Journal of the ACM,
26 (11) 1983.

J. L. Crowley, J. Coutaz, G. Rey and P. Reignier, "Perceptual Components for
Context Aware Computing", UBICOMP 2002, International Conference on
Ubiquitous Computing, Goteborg, Sweden, September 2002.

J. L. Crowley, J. Coutaz and F. Berard, "Things that See: Machine Perception for
Human Computer Interaction", Communications of the A.C.M., Vol 43, No. 3, pp
54-64, March 2000.

Schilit, B, N. Adams and R. Want, “Context aware computing applications”, in First
international workshop on mobile computing systems and applications, pp 85 - 90,
1994.

Dey, A. K. “Understanding and using context”, Personal and Ubiquitous Computing,
Vol 5, No. 1, pp 4-7, 2001.

	Introduction
	A Brief History of Context
	Perceptual Components for Context Awareness
	Perceptual Processes
	Examples: Modules for Observing, Grouping, and Tracking
	A Supervisory Controller for Perceptual Processes
	Classes of Perceptual Processes
	Process Federations

	Context and Situation
	Specifying a Context Model
	Simplifying Context Models with Role
	Context and Situation
	Classes of Events
	A Simple Example: An Interuptibility Meter
	Second Example: A Video Based Collaborative Work Environment

	Conclusions
	References

